alexandrov_dmitrii_lab_4 ready #44

Merged
Alexey merged 1 commits from alexandrov_dmitrii_lab_4 into main 2023-10-17 17:32:39 +04:00
3 changed files with 28963 additions and 0 deletions

View File

@ -0,0 +1,40 @@
from scipy.cluster import hierarchy
import pandas as pd
from matplotlib import pyplot as plt
def start():
data = pd.read_csv('sberbank_data.csv', index_col='id')
x = data[['full_sq', 'price_doc']]
plt.figure(1, figsize=(16, 9))
plt.title('Дендрограмма кластеризации цен')
prices = [0, 0, 0, 0]
for ind, val in x.iterrows():
val = val['price_doc'] / val['full_sq']
if val < 100000:
prices[0] = prices[0] + 1
elif val < 300000:
prices[1] = prices[1] + 1
elif val < 500000:
prices[2] = prices[2] + 1
else:
prices[3] = prices[3] + 1
print('Результаты подчсёта ручного распределения:')
print('низких цен:'+str(prices[0]))
print('средних цен:'+str(prices[1]))
print('высоких цен:'+str(prices[2]))
print('премиальных цен:'+str(prices[3]))
hierarchy.dendrogram(hierarchy.linkage(x, method='single'),
truncate_mode='lastp',
p=15,
orientation='top',
leaf_rotation=90,
leaf_font_size=8,
show_contracted=True)
plt.show()
start()

View File

@ -0,0 +1,27 @@
### Задание
Использовать метод кластеризации по варианту для выбранных данных по варианту, самостоятельно сформулировав задачу.
Интерпретировать результаты и оценить, насколько хорошо он подходит для
решения сформулированной вами задачи.
Вариант 1: dendrogram
Была сформулирована следующая задача: необходимо разбить записи на кластеры в зависимости от цен и площади.
### Запуск программы
Файл lab4.py содержит и запускает программу, аргументов и настройки ~~вроде~~ не требует.
### Описание программы
Программа считывает цены и площади из файла статистики сбербанка по рынку недвижимости.
Поскольку по заданию требуется оценить машинную кластеризацию, для сравнения программа подсчитывает и выводит в консоль количество записей в каждом из выделенных вручную классов цен.
Далее программа кластеризует данные с помощью алгоритма ближайших точек (на другие памяти нету) и выводит дендрограмму на основе кластеризации.
Выводимая дендрограмма ограничена 15 последними (верхними) объединениями.
### Результаты тестирования
По результатам тестирования, можно сказать следующее:
* Последние объединения в дендрограмме - объединения выбросов с 'основным' кластером, то есть 10-20 записей с кластером с более чем 28000 записями.
* Это правильная информация, так как ручная классификация показывает, что премиальных (аномально больших) цен как раз порядка 20, остальные относятся к другим классам.
* Поскольку в имеющихся данных нет ограничений по ценам, выбросы аномально высоких цен при использовании данного алгоритма формируют отдельные кластеры, что негативно сказывается на наглядности.
* Ценовое ограничение также не дало положительнх результатов: снова сформировался 'основной' кластер, с которым последними объединялись отдельные значения.
* Значит, сам алгоритм не эффективен.
Итого: Алгоритм ближайших точек слишком чувствителен к выбросам, поэтому можно признать его неэффективным для необработанных данных. Дендрограмма как средство визуализации скорее уступает по наглядности диаграмме рассеяния.

File diff suppressed because one or more lines are too long