degtyarev_mikhail_lab_1 #234

Merged
Alexey merged 1 commits from degtyarev_mikhail_lab_1 into main 2023-12-05 22:51:04 +04:00
5 changed files with 111 additions and 0 deletions

View File

@ -0,0 +1,57 @@
# Лабораторная 1
## Задание
Сгенерируйте определенный тип данных и сравнить на нем 3 модели (по варианту 9). Построить графики, отобразить качество моделей, объяснить полученные результаты
## Данные
make_classification (n_samples=500, n_features=2, n_redundant=0, n_informative=2, random_state=rs, n_clusters_per_class=1)
- Модели:
- - Персептрон
- - Многослойный персептрон с 10-ю нейронами в скрытом слое (alpha = 0.01)
- - Многослойный персептрон со 100-а нейронами в скрытом слое (alpha =0.01)
## Описание Программы
### Используемые библиотеки
- scikit-learn
- numpy
- matplotlib
### Шаги программы
1. **Генерация данных:**
- Используется функция `make_classification` из библиотеки scikit-learn.
- Создаются два признака, и данные разделяются на два класса.
- Используется 500 сэмплов.
2. **Разделение данных:**
- Данные разделяются на обучающий и тестовый наборы с использованием `train_test_split` из scikit-learn.
- Размер тестового набора установлен в 20% от общего размера.
3. **Создание моделей:**
- Три модели создаются с использованием библиотеки scikit-learn:
- Персептрон
- Многослойный персептрон с 10 нейронами в скрытом слое
- Многослойный персептрон с 100 нейронами в скрытом слое
4. **Обучение и Оценка:**
- Каждая модель обучается на обучающем наборе данных.
- Производится оценка каждой модели на тестовом наборе с использованием метрики точности (`accuracy`).
5. **Визуализация данных и Границ Решения:**
- Для каждой модели строится график, на котором отображаются точки тестового набора и граница решения модели.
- Каждый график снабжен названием, указывающим на модель и ее точность.
### Запуск программы
- Склонировать или скачать код `main.py`.
- Запустите файл в среде, поддерживающей выполнение Python.
### Результаты
- Можно проанализировать точность на графиках и понять,
что самая точная из 3 моделей оказалась Многослойный персептрон со 100-а нейронами в скрытом слое.
- Многослойный персептрон со 100-а нейронами: 0.96
- Многослойный персептрон с 10-ю нейронами: 0.90
- Персептрон: 0.86

View File

@ -0,0 +1,54 @@
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Perceptron
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import accuracy_score
# Установите random_state, чтобы результаты были воспроизводимыми
rs = 42
# Генерация данных
X, y = make_classification(
n_samples=500, n_features=2, n_redundant=0, n_informative=2,
random_state=rs, n_clusters_per_class=1
)
# Разделение данных на обучающий и тестовый наборы
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=rs)
# Создание моделей
models = [
('Perceptron', Perceptron(random_state=rs)),
('MLP (10 neurons)', MLPClassifier(hidden_layer_sizes=(10,), alpha=0.01, random_state=rs)),
('MLP (100 neurons)', MLPClassifier(hidden_layer_sizes=(100,), alpha=0.01, random_state=rs))
]
# Обучение и оценка моделей
results = {}
plt.figure(figsize=(15, 5))
for i, (name, model) in enumerate(models, 1):
plt.subplot(1, 3, i)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
results[name] = accuracy
# Разбиение точек на классы
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=plt.cm.Paired, edgecolors='k')
# Построение границы решения для каждой модели
h = .02 # Шаг сетки
x_min, x_max = X_test[:, 0].min() - 1, X_test[:, 0].max() + 1
y_min, y_max = X_test[:, 1].min() - 1, X_test[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8)
plt.title(f'{name}\nAccuracy: {accuracy:.2f}')
plt.show()

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB