Compare commits
4 Commits
orlov_arte
...
mashkova_m
| Author | SHA1 | Date | |
|---|---|---|---|
| 3a316d94a1 | |||
| 481a18c68d | |||
| 27d25c8f14 | |||
| a8c58683dd |
118
kutygin_andre_lab_3/README.md
Normal file
118
kutygin_andre_lab_3/README.md
Normal file
@@ -0,0 +1,118 @@
|
||||
**Задание**
|
||||
***
|
||||
Решите с помощью библиотечной реализации дерева решений задачу из лабораторной работы «Веб-сервис «Дерево решений» по предмету «Методы искусственного интеллекта»на 99% ваших данных. Проверьте работу модели на оставшемся проценте, сделайте вывод
|
||||
|
||||
**Как запустить лабораторную**
|
||||
***
|
||||
Запустить файл main.py
|
||||
|
||||
**Используемые технологии**
|
||||
***
|
||||
Библиотеки pandas, scikit-learn, matplotlib, их компоненты
|
||||
|
||||
**Описание лабораторной (программы)**
|
||||
***
|
||||
В данном коде мы создаем и обучаем модель дерева решений для прогнозирования инцидентов с НЛО на основе набора данных.
|
||||
|
||||
1. В первой строке кода мы загружаем данные из CSV-файла 'ufo_data_nuforc.csv' с помощью функции pd.read_csv(). Эти данные содержат информацию о различных инцидентах с НЛО.
|
||||
2. Далее мы выбираем набор признаков, в данном случае, эти признаки - населенность и время, которые будут использоваться для обучения модели, и сохраняем их в переменную features.
|
||||
3. Затем преобразуем категориальные признаки в числовой вид при помощи функции pd.get_dummies(). Это необходимо, так как модель дерева решений работает только с числовыми данными.
|
||||
4. После этого мы разделяем данные на обучающую и тестовую выборки с помощью функции train_test_split(). Обучающая выборка будет использоваться для обучения модели, а тестовая - для проверки ее точности.
|
||||
5. Создаем модель дерева решений с помощью класса DecisionTreeClassifier() из библиотеки sklearn.tree.
|
||||
6. Обучаем модель на обучающей выборке с помощью метода fit(). В процессе обучения модель настраивает параметры дерева решений, чтобы лучше предсказывать целевой признак.
|
||||
7. После обучения модели, мы производим прогнозы на тестовых данных с помощью метода predict().
|
||||
8. Оцениваем точность модели на тестовой выборке с помощью метода accuracy_score() из библиотеки sklearn.metrics. Этот метод сравнивает фактические значения целевого признака с предсказанными и возвращает точность модели.
|
||||
9. Наконец, выводим точность модели на тестовой выборке, чтобы оценить, насколько хорошо модель предсказывает инциденты с НЛО.
|
||||
10. Также, код визуализирует данные в виде графика с помощью библиотеки matplotlib.pyplot, отображая фактические значения целевого признака и предсказания модели. Это помогает наглядно оценить, насколько близки предсказания модели к реальным значениям.
|
||||
**Результат**
|
||||
***
|
||||
Точность модели на тестовой выборке: 0.1377245508982036
|
||||
Прогнозы по оставшемуся проценту данных: 'cylinder' 'circle' 'sphere' 'disk' 'disk' 'fireball' 'disk' 'oval'
|
||||
'circle' 'disk' 'disk' 'other' 'light' 'light' 'oval' 'fireball' 'light'
|
||||
'rectangle' 'chevron' 'unknown' 'sphere' 'oval' 'light' 'circle'
|
||||
'unknown' 'unknown' 'disk' 'triangle' 'triangle' 'unknown' 'formation'
|
||||
'unknown' 'cigar' 'unknown' 'light' 'other' 'rectangle' 'light' 'other'
|
||||
'light' 'cylinder' 'delta' 'sphere' 'other' 'changing' 'fireball'
|
||||
'cylinder' 'cigar' 'circle' 'triangle' 'light' 'fireball' 'fireball'
|
||||
'sphere' 'circle' 'light' 'chevron' 'oval' 'oval' 'light' 'unknown'
|
||||
'triangle' 'other' 'rectangle' 'triangle' 'triangle' 'flash' 'unknown'
|
||||
'sphere' 'unknown' 'other' 'circle' 'oval' 'light' 'oval' 'formation'
|
||||
'sphere' 'triangle' 'changing' 'sphere' 'oval' 'unknown' 'circle'
|
||||
'circle' 'flash' 'light' 'light' 'sphere' 'other' 'other' 'egg' 'unknown'
|
||||
'other' 'light' 'light' 'disk' 'diamond' 'oval' 'unknown' 'light'
|
||||
'triangle' 'other' 'light' 'disk' 'unknown' 'light' 'changing' 'sphere'
|
||||
'triangle' 'circle' 'flash' 'sphere' 'light' 'unknown' 'oval' 'formation'
|
||||
'light' 'circle' 'unknown' 'other' 'triangle' 'other' 'light' 'disk'
|
||||
'formation' 'oval' 'triangle' 'triangle' 'light' 'formation' 'oval'
|
||||
'light' 'light' 'oval' 'disk' 'sphere' 'egg' 'unknown' 'unknown'
|
||||
'unknown' 'light' 'disk' 'changing' 'light' 'light' 'circle' 'circle'
|
||||
'formation' 'light' 'light' 'cigar' 'light' 'triangle' 'oval' 'fireball'
|
||||
'cylinder' 'other' 'circle' 'egg' 'changing' 'triangle' 'circle' 'other'
|
||||
'oval' 'disk' 'light' 'flash' 'fireball' 'circle' 'circle' 'circle'
|
||||
'circle' 'light' 'disk' 'fireball' 'other' 'sphere' 'light' 'changing'
|
||||
'cigar' 'light' 'cylinder' 'rectangle' 'chevron' 'light' 'light' 'light'
|
||||
'light' 'circle' 'circle' 'light' 'light' 'circle' 'sphere' 'triangle'
|
||||
'light' 'egg' 'circle' 'fireball' 'sphere' 'sphere' 'triangle' 'light'
|
||||
'other' 'cigar' 'sphere' 'sphere' 'fireball' 'light' 'light' 'disk'
|
||||
'oval' 'oval' 'other' 'cigar' 'triangle' 'light' 'light' 'light' 'disk'
|
||||
'light' 'light' 'light' 'light' 'other' 'light' 'teardrop' 'triangle'
|
||||
'teardrop' 'fireball' 'sphere' 'cylinder' 'fireball' 'circle' 'egg'
|
||||
'sphere' 'disk' 'chevron' 'triangle' 'light' 'other' 'light' 'circle'
|
||||
'rectangle' 'fireball' 'formation' 'light' 'light' 'circle' 'light'
|
||||
'light' 'formation' 'light' 'triangle' 'light' 'oval' 'light' 'unknown'
|
||||
'fireball' 'diamond' 'light' 'circle' 'light' 'triangle' 'oval' 'oval'
|
||||
'cylinder' 'circle' 'light' 'disk' 'light' 'sphere' 'circle' 'light'
|
||||
'triangle' 'light' 'fireball' 'triangle' 'light' 'flash' 'triangle' 'egg'
|
||||
'disk' 'oval' 'circle' 'flash' 'light' 'oval' 'sphere' 'light' 'triangle'
|
||||
'other' 'chevron' 'other' 'circle' 'unknown' 'unknown' 'sphere' 'light'
|
||||
'cigar' 'light' 'fireball' 'circle' 'diamond' 'fireball' 'triangle'
|
||||
'diamond' 'sphere' 'circle' 'chevron' 'cylinder' 'light' 'circle'
|
||||
'fireball' 'unknown' 'light' 'circle' 'fireball' 'light' 'fireball'
|
||||
'fireball' 'fireball' 'light' 'sphere' 'light' 'sphere' 'sphere'
|
||||
'formation' 'light' 'fireball' 'fireball' 'disk' 'disk' 'circle'
|
||||
'rectangle' 'unknown' 'disk' 'unknown' 'disk' 'triangle' 'other' 'sphere'
|
||||
'diamond' 'light' 'light' 'unknown' 'sphere' 'circle' 'disk' 'circle'
|
||||
'oval' 'changing' 'other' 'other' 'disk' 'unknown' 'unknown' 'disk'
|
||||
'rectangle' 'disk' 'light' 'oval' 'unknown' 'sphere' 'light' 'changing'
|
||||
'disk' 'disk' 'other' 'other' 'disk' 'cylinder' 'disk' 'rectangle'
|
||||
'light' 'disk' 'disk' 'light' 'fireball' 'formation' 'cigar' 'oval'
|
||||
'fireball' 'unknown' 'disk' 'light' 'light' 'triangle' 'triangle' 'light'
|
||||
'sphere' 'triangle' 'sphere' 'circle' 'light' 'oval' 'oval' 'circle'
|
||||
'oval' 'rectangle' 'disk' 'oval' 'light' 'light' 'other' 'cigar'
|
||||
'triangle' 'disk' 'cigar' 'other' 'triangle' 'egg' 'unknown' 'triangle'
|
||||
'light' 'triangle' 'disk' 'changing' 'triangle' 'disk' 'disk' 'rectangle'
|
||||
'other' 'triangle' 'triangle' 'formation' 'triangle' 'egg' 'sphere'
|
||||
'fireball' 'triangle' 'rectangle' 'light' 'triangle' 'triangle' 'other'
|
||||
'light' 'light' 'disk' 'fireball' 'light' 'disk' 'oval' 'triangle'
|
||||
'other' 'fireball' 'light' 'light' 'triangle' 'unknown' 'cigar' 'light'
|
||||
'unknown' 'chevron' 'formation' 'disk' 'cigar' 'light' 'sphere' 'cigar'
|
||||
'unknown' 'triangle' 'other' 'light' 'light' 'triangle' 'diamond' 'light'
|
||||
'triangle' 'oval' 'changing' 'light' 'flash' 'circle' 'oval' 'other'
|
||||
'sphere' 'circle' 'triangle' 'unknown' 'teardrop' 'unknown' 'fireball'
|
||||
'light' 'light' 'cigar' 'cigar' 'light' 'fireball' 'other' 'egg' 'light'
|
||||
'other' 'unknown' 'unknown' 'changing' 'circle' 'light' 'other' 'unknown'
|
||||
'unknown' 'light' 'other' 'light' 'unknown' 'cylinder' 'triangle'
|
||||
'circle' 'light' 'circle' 'circle' 'circle' 'light' 'light' 'changing'
|
||||
'changing' 'circle' 'circle' 'triangle' 'triangle' 'light' 'light'
|
||||
'light' 'light' 'other' 'changing' 'triangle' 'cylinder' 'light'
|
||||
'unknown' 'circle' 'disk' 'sphere' 'oval' 'formation' 'teardrop'
|
||||
'triangle' 'chevron' 'light' 'unknown' 'unknown' 'other' 'egg' 'circle'
|
||||
'oval' 'cigar' 'unknown' 'chevron' 'oval' 'cigar' 'fireball' 'circle'
|
||||
'unknown' 'light' 'sphere' 'fireball' 'changing' 'light' 'circle'
|
||||
'unknown' 'fireball' 'light' 'sphere' 'light' 'formation' 'circle'
|
||||
'fireball' 'formation' 'formation' 'formation' 'light' 'other' 'light'
|
||||
'light' 'circle' 'diamond' 'oval' 'circle' 'oval' 'triangle' 'light'
|
||||
'disk' 'light' 'other' 'triangle' 'triangle' 'cylinder' 'disk' 'cylinder'
|
||||
'light' 'oval' 'cigar' 'circle' 'disk' 'light' 'unknown' 'circle' 'other'
|
||||
'light' 'light' 'light' 'unknown' 'triangle' 'other' 'disk' 'cylinder'
|
||||
'triangle' 'oval' 'disk' 'light' 'triangle' 'circle' 'light' 'other'
|
||||
'light' 'other' 'circle' 'disk' 'other' 'triangle' 'oval' 'unknown'
|
||||
'light' 'triangle' 'unknown' 'circle' 'unknown' 'light' 'fireball'
|
||||
'fireball' 'rectangle' 'light' 'formation' 'unknown' 'light' 'light'
|
||||
'formation' 'fireball' 'light' 'light' 'other' 'unknown' 'light'
|
||||
'triangle' 'fireball' 'triangle' 'triangle' 'flash' 'circle' 'triangle'
|
||||
'disk' 'light' 'unknown' 'light' 'light' 'fireball' 'circle' 'unknown'
|
||||
'unknown' 'circle' 'disk' 'chevron' 'disk' 'disk' 'triangle' 'light'
|
||||
'light' 'disk'
|
||||
|
||||
***Вывод:*** Наша модель дерева решений показала низкую точность предсказаний (Точность модели на тестовой выборке: 0.1377245508982036), что означает, что она не очень хорошо предсказывает форму НЛО на основе выбранных признаков (население и время). Из-за чего можно сделать вывод, что возможно, эти признаки недостаточно информативны или недостаточно связаны с формой НЛО.
|
||||
39
kutygin_andre_lab_3/main.py
Normal file
39
kutygin_andre_lab_3/main.py
Normal file
@@ -0,0 +1,39 @@
|
||||
import pandas as pd
|
||||
from sklearn.tree import DecisionTreeClassifier
|
||||
from sklearn.metrics import accuracy_score
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
# Загрузка данных
|
||||
data = pd.read_csv('ufo_sighting_data.csv')
|
||||
|
||||
# Выбор признаков
|
||||
features = [ 'length_of_encounter_seconds', 'latitude', 'longitude']
|
||||
target = 'UFO_shape'
|
||||
# Удаление строк содержащих NaN
|
||||
data.dropna(inplace=True)
|
||||
|
||||
# Удаление столбцов содержащих NaN
|
||||
data.dropna(axis='columns', inplace=True)
|
||||
|
||||
# Разделение данных на обучающую и тестовую выборки
|
||||
train_data, test_data, train_labels, test_labels = train_test_split(data[features], data[target], test_size=0.2, random_state=42)
|
||||
|
||||
# Создание и обучение модели дерева решений
|
||||
model = DecisionTreeClassifier()
|
||||
model.fit(train_data, train_labels)
|
||||
|
||||
# Прогнозирование на тестовой выборке
|
||||
predictions = model.predict(test_data)
|
||||
|
||||
# Оценка точности модели
|
||||
accuracy = accuracy_score(test_labels, predictions)
|
||||
print('Точность модели на тестовой выборке:', accuracy)
|
||||
|
||||
# Прогнозирование на оставшемся проценте данных
|
||||
remaining_data = data.drop(test_data.index)
|
||||
remaining_predictions = model.predict(remaining_data[features])
|
||||
|
||||
# Вывод результатов
|
||||
print('Прогнозы по оставшемуся проценту данных:', remaining_predictions)
|
||||
|
||||
# Сделайте необходимые выводы
|
||||
1
kutygin_andre_lab_3/ufo_sighting_data.csv
Normal file
1
kutygin_andre_lab_3/ufo_sighting_data.csv
Normal file
File diff suppressed because one or more lines are too long
63
mashkova_margarita_lab_2/README.md
Normal file
63
mashkova_margarita_lab_2/README.md
Normal file
@@ -0,0 +1,63 @@
|
||||
# Лабораторная работа №2
|
||||
## ПИбд-42 Машкова Маргарита (Вариант 19)
|
||||
## Задание
|
||||
Выполнить ранжирование признаков с помощью указанных по варианту моделей.
|
||||
Отобразить получившиеся значения\оценки каждого признака каждым методом\моделью и среднюю оценку.
|
||||
Провести анализ получившихся результатов. Какие четыре признака оказались самыми важными по среднему значению?
|
||||
|
||||
### Модели:
|
||||
|
||||
> - Линейная регрессия (LinearRegression)
|
||||
> - Гребневая регрессия (Ridge)
|
||||
> - Лассо (Lasso)
|
||||
> - Случайное Лассо (RandomizedLasso)
|
||||
|
||||
|
||||
> **Note**
|
||||
>
|
||||
> Модель `RandomizedLasso` была признана устаревшей в scikit-learn 0.19 и удалена в 0.21.
|
||||
Вместо нее будет использоваться регрессор случайного леса `RandomForestRegressor`.
|
||||
|
||||
|
||||
## Запуск программы
|
||||
Для запуска программы необходимо запустить файл main.py
|
||||
|
||||
## Используемые технологии
|
||||
> **Язык программирования:** python
|
||||
>
|
||||
> **Библиотеки:**
|
||||
> - `numpy` - используется для работы с массивами.
|
||||
> - `sklearn` - предоставляет широкий спектр инструментов для машинного обучения, статистики и анализа данных.
|
||||
## Описание работы программы
|
||||
|
||||
Для начала необходимо сгенерировать исходные данные (Х) - 750 строк-наблюдений и 14 столбцов-признаков.
|
||||
Затем задать функцию-выход (Y): регрессионную проблему Фридмана, когда на вход моделей подается 14 факторов,
|
||||
выход рассчитывается по формуле, использующей только пять факторов, но факторы 11-14 зависят от факторов 1-4.
|
||||
Соотвественно, далее добавляется зависимость для признаков (факторов) х11, х12, х13, х14 от х1, х2, х3, х4.
|
||||
|
||||
Далее создаются модели, указанные в варианте задания, и выполняется их обучение.
|
||||
|
||||
После чего в единый массив размера 4×14 (количество_моделей и количество_признаков) выгружаются все оценки
|
||||
моделей по признакам. Находятся средние оценки и выводится результат в формате списка пар `{номер_признака – средняя_оценка}`,
|
||||
отсортированном по убыванию. Оценки признаков получаются через поле `coef_` у моделей LinearRegression, Ridge и Lasso.
|
||||
У модели RandomForestRegressor - через поле `feature_importances_`.
|
||||
Для удобства отображения данных оценки помещаются в конструкцию вида:
|
||||
`[имя_модели : [{имя_признака : оценка},{имя_признака : оценка}...]]`.
|
||||
Таким образом, получаем словарь, в котором располагаются 4 записи из четырнадцати пар каждая.
|
||||
Ключом является имя модели.
|
||||
|
||||
## Тесты
|
||||
|
||||
### Оценки важности признаков моделями
|
||||

|
||||
### Оценки важности признаков моделями, отсортированные по убыванию
|
||||

|
||||
### Средние оценки важности признаков
|
||||

|
||||
|
||||
**Вывод:** основываясь на средних оценках, четырьмя наиболее важными празнаками оказались:
|
||||
`x4 (0.86), x1 (0.8), x2 (0.73), x14 (0.51)`.
|
||||
Все модели оценили как наиболее важные признаки x1, x2, x4, и четвертым важным признаком выбрали зависимые признаки:
|
||||
LinearRegression - х11, Ridge - х14, RandomForestRegressor - х14. Модель Lasso включила также независимый признак - х5.
|
||||
|
||||
|
||||
100
mashkova_margarita_lab_2/main.py
Normal file
100
mashkova_margarita_lab_2/main.py
Normal file
@@ -0,0 +1,100 @@
|
||||
from sklearn.linear_model import LinearRegression, Ridge, Lasso
|
||||
from sklearn.ensemble import RandomForestRegressor
|
||||
from sklearn.preprocessing import MinMaxScaler
|
||||
import numpy as np
|
||||
|
||||
# Генерация исходных данных: 750 строк-наблюдений и 14 столбцов-признаков
|
||||
np.random.seed(0)
|
||||
size = 750
|
||||
X = np.random.uniform(0, 1, (size, 14))
|
||||
|
||||
# Задаем функцию-выход: регрессионную проблему Фридмана
|
||||
Y = (10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - .5) ** 2 + 10 * X[:, 3] + 5 * X[:, 4] ** 5
|
||||
+ np.random.normal(0, 1))
|
||||
|
||||
# Добавление зависимости признаков
|
||||
X[:, 10:] = X[:, :4] + np.random.normal(0, .025, (size, 4))
|
||||
|
||||
# Создание моделей и их обучение
|
||||
# Линейная модель
|
||||
lr = LinearRegression()
|
||||
lr.fit(X, Y)
|
||||
# Гребневая модель
|
||||
ridge = Ridge(alpha=7)
|
||||
ridge.fit(X, Y)
|
||||
# Лассо
|
||||
lasso = Lasso(alpha=.05)
|
||||
lasso.fit(X, Y)
|
||||
# Регрессор случайного леса
|
||||
rfr = RandomForestRegressor()
|
||||
rfr.fit(X, Y)
|
||||
|
||||
# Список, содержащий имена признаков
|
||||
names = ["x%s" % i for i in range(1, 15)]
|
||||
|
||||
|
||||
# Функция создания записи в словаре оценок важности признаков
|
||||
def rank_to_dict(ranks):
|
||||
ranks = np.abs(ranks)
|
||||
minmax = MinMaxScaler()
|
||||
ranks = minmax.fit_transform(np.array(ranks).reshape(14, 1)).ravel()
|
||||
ranks = map(lambda x: round(x, 2), ranks)
|
||||
return dict(zip(names, ranks))
|
||||
|
||||
|
||||
# Словарь, содержащий оценки важности признаков
|
||||
ranks_dict = dict()
|
||||
# Добавление записей в словарь
|
||||
ranks_dict["Linear regression"] = rank_to_dict(lr.coef_)
|
||||
ranks_dict["Ridge"] = rank_to_dict(ridge.coef_)
|
||||
ranks_dict["Lasso"] = rank_to_dict(lasso.coef_)
|
||||
ranks_dict["Random Forest Regressor"] = rank_to_dict(rfr.feature_importances_)
|
||||
|
||||
|
||||
def print_ranks():
|
||||
for key, value in ranks_dict.items():
|
||||
print(key)
|
||||
print(value)
|
||||
|
||||
|
||||
def print_ranks_sorted():
|
||||
for key, value in ranks_dict.items():
|
||||
print(key)
|
||||
value_sorted = sorted(value.items(), key=lambda x: x[1], reverse=True)
|
||||
print(value_sorted)
|
||||
|
||||
|
||||
def get_means():
|
||||
# Создаем пустой список для средних оценок
|
||||
mean = {}
|
||||
for key, value in ranks_dict.items():
|
||||
# Пробегаемся по словарю значений ranks, которые являются парой имя:оценка
|
||||
for item in value.items():
|
||||
# Имя будет ключом для нашего mean
|
||||
# Если элемента с текущим ключом в mean нет - добавляем
|
||||
if item[0] not in mean:
|
||||
mean[item[0]] = 0
|
||||
# Суммируем значения по каждому ключу-имени признака
|
||||
mean[item[0]] += item[1]
|
||||
|
||||
# Находим среднее по каждому признаку
|
||||
for key, value in mean.items():
|
||||
res = value / len(ranks_dict)
|
||||
mean[key] = round(res, 2)
|
||||
# сортируем список
|
||||
mean_sorted = sorted(mean.items(), key=lambda x: x[1], reverse=True)
|
||||
return mean_sorted
|
||||
|
||||
|
||||
def print_means():
|
||||
for item in get_means():
|
||||
print(item)
|
||||
|
||||
|
||||
print("Оценки каждого признака каждой моделью:")
|
||||
print_ranks()
|
||||
print("\nОценки каждого признака каждой моделью, отсортированные по убыванию:")
|
||||
print_ranks_sorted()
|
||||
print("\nСредние оценки признаков:")
|
||||
print_means()
|
||||
|
||||
BIN
mashkova_margarita_lab_2/means.png
Normal file
BIN
mashkova_margarita_lab_2/means.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 9.8 KiB |
BIN
mashkova_margarita_lab_2/ranks.png
Normal file
BIN
mashkova_margarita_lab_2/ranks.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 26 KiB |
BIN
mashkova_margarita_lab_2/ranks_sorted.png
Normal file
BIN
mashkova_margarita_lab_2/ranks_sorted.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 32 KiB |
Reference in New Issue
Block a user