Compare commits

...

4 Commits

Author SHA1 Message Date
3a316d94a1 mashkova_margarita_lab_2 change md 2023-11-22 00:40:05 +04:00
481a18c68d mashkova_margarita_lab_2 change md 2023-11-22 00:35:41 +04:00
27d25c8f14 mashkova_margarita_lab_2 ready 2023-11-22 00:31:35 +04:00
a8c58683dd kutygin_andrey_lab_3_ready 2023-11-13 20:53:33 +04:00
8 changed files with 321 additions and 0 deletions

View File

@@ -0,0 +1,118 @@
**Задание**
***
Решите с помощью библиотечной реализации дерева решений задачу из лабораторной работы «Веб-сервис «Дерево решений» по предмету «Методы искусственного интеллекта»на 99% ваших данных. Проверьте работу модели на оставшемся проценте, сделайте вывод
**Как запустить лабораторную**
***
Запустить файл main.py
**Используемые технологии**
***
Библиотеки pandas, scikit-learn, matplotlib, их компоненты
**Описание лабораторной (программы)**
***
В данном коде мы создаем и обучаем модель дерева решений для прогнозирования инцидентов с НЛО на основе набора данных.
1. В первой строке кода мы загружаем данные из CSV-файла 'ufo_data_nuforc.csv' с помощью функции pd.read_csv(). Эти данные содержат информацию о различных инцидентах с НЛО.
2. Далее мы выбираем набор признаков, в данном случае, эти признаки - населенность и время, которые будут использоваться для обучения модели, и сохраняем их в переменную features.
3. Затем преобразуем категориальные признаки в числовой вид при помощи функции pd.get_dummies(). Это необходимо, так как модель дерева решений работает только с числовыми данными.
4. После этого мы разделяем данные на обучающую и тестовую выборки с помощью функции train_test_split(). Обучающая выборка будет использоваться для обучения модели, а тестовая - для проверки ее точности.
5. Создаем модель дерева решений с помощью класса DecisionTreeClassifier() из библиотеки sklearn.tree.
6. Обучаем модель на обучающей выборке с помощью метода fit(). В процессе обучения модель настраивает параметры дерева решений, чтобы лучше предсказывать целевой признак.
7. После обучения модели, мы производим прогнозы на тестовых данных с помощью метода predict().
8. Оцениваем точность модели на тестовой выборке с помощью метода accuracy_score() из библиотеки sklearn.metrics. Этот метод сравнивает фактические значения целевого признака с предсказанными и возвращает точность модели.
9. Наконец, выводим точность модели на тестовой выборке, чтобы оценить, насколько хорошо модель предсказывает инциденты с НЛО.
10. Также, код визуализирует данные в виде графика с помощью библиотеки matplotlib.pyplot, отображая фактические значения целевого признака и предсказания модели. Это помогает наглядно оценить, насколько близки предсказания модели к реальным значениям.
**Результат**
***
Точность модели на тестовой выборке: 0.1377245508982036
Прогнозы по оставшемуся проценту данных: 'cylinder' 'circle' 'sphere' 'disk' 'disk' 'fireball' 'disk' 'oval'
'circle' 'disk' 'disk' 'other' 'light' 'light' 'oval' 'fireball' 'light'
'rectangle' 'chevron' 'unknown' 'sphere' 'oval' 'light' 'circle'
'unknown' 'unknown' 'disk' 'triangle' 'triangle' 'unknown' 'formation'
'unknown' 'cigar' 'unknown' 'light' 'other' 'rectangle' 'light' 'other'
'light' 'cylinder' 'delta' 'sphere' 'other' 'changing' 'fireball'
'cylinder' 'cigar' 'circle' 'triangle' 'light' 'fireball' 'fireball'
'sphere' 'circle' 'light' 'chevron' 'oval' 'oval' 'light' 'unknown'
'triangle' 'other' 'rectangle' 'triangle' 'triangle' 'flash' 'unknown'
'sphere' 'unknown' 'other' 'circle' 'oval' 'light' 'oval' 'formation'
'sphere' 'triangle' 'changing' 'sphere' 'oval' 'unknown' 'circle'
'circle' 'flash' 'light' 'light' 'sphere' 'other' 'other' 'egg' 'unknown'
'other' 'light' 'light' 'disk' 'diamond' 'oval' 'unknown' 'light'
'triangle' 'other' 'light' 'disk' 'unknown' 'light' 'changing' 'sphere'
'triangle' 'circle' 'flash' 'sphere' 'light' 'unknown' 'oval' 'formation'
'light' 'circle' 'unknown' 'other' 'triangle' 'other' 'light' 'disk'
'formation' 'oval' 'triangle' 'triangle' 'light' 'formation' 'oval'
'light' 'light' 'oval' 'disk' 'sphere' 'egg' 'unknown' 'unknown'
'unknown' 'light' 'disk' 'changing' 'light' 'light' 'circle' 'circle'
'formation' 'light' 'light' 'cigar' 'light' 'triangle' 'oval' 'fireball'
'cylinder' 'other' 'circle' 'egg' 'changing' 'triangle' 'circle' 'other'
'oval' 'disk' 'light' 'flash' 'fireball' 'circle' 'circle' 'circle'
'circle' 'light' 'disk' 'fireball' 'other' 'sphere' 'light' 'changing'
'cigar' 'light' 'cylinder' 'rectangle' 'chevron' 'light' 'light' 'light'
'light' 'circle' 'circle' 'light' 'light' 'circle' 'sphere' 'triangle'
'light' 'egg' 'circle' 'fireball' 'sphere' 'sphere' 'triangle' 'light'
'other' 'cigar' 'sphere' 'sphere' 'fireball' 'light' 'light' 'disk'
'oval' 'oval' 'other' 'cigar' 'triangle' 'light' 'light' 'light' 'disk'
'light' 'light' 'light' 'light' 'other' 'light' 'teardrop' 'triangle'
'teardrop' 'fireball' 'sphere' 'cylinder' 'fireball' 'circle' 'egg'
'sphere' 'disk' 'chevron' 'triangle' 'light' 'other' 'light' 'circle'
'rectangle' 'fireball' 'formation' 'light' 'light' 'circle' 'light'
'light' 'formation' 'light' 'triangle' 'light' 'oval' 'light' 'unknown'
'fireball' 'diamond' 'light' 'circle' 'light' 'triangle' 'oval' 'oval'
'cylinder' 'circle' 'light' 'disk' 'light' 'sphere' 'circle' 'light'
'triangle' 'light' 'fireball' 'triangle' 'light' 'flash' 'triangle' 'egg'
'disk' 'oval' 'circle' 'flash' 'light' 'oval' 'sphere' 'light' 'triangle'
'other' 'chevron' 'other' 'circle' 'unknown' 'unknown' 'sphere' 'light'
'cigar' 'light' 'fireball' 'circle' 'diamond' 'fireball' 'triangle'
'diamond' 'sphere' 'circle' 'chevron' 'cylinder' 'light' 'circle'
'fireball' 'unknown' 'light' 'circle' 'fireball' 'light' 'fireball'
'fireball' 'fireball' 'light' 'sphere' 'light' 'sphere' 'sphere'
'formation' 'light' 'fireball' 'fireball' 'disk' 'disk' 'circle'
'rectangle' 'unknown' 'disk' 'unknown' 'disk' 'triangle' 'other' 'sphere'
'diamond' 'light' 'light' 'unknown' 'sphere' 'circle' 'disk' 'circle'
'oval' 'changing' 'other' 'other' 'disk' 'unknown' 'unknown' 'disk'
'rectangle' 'disk' 'light' 'oval' 'unknown' 'sphere' 'light' 'changing'
'disk' 'disk' 'other' 'other' 'disk' 'cylinder' 'disk' 'rectangle'
'light' 'disk' 'disk' 'light' 'fireball' 'formation' 'cigar' 'oval'
'fireball' 'unknown' 'disk' 'light' 'light' 'triangle' 'triangle' 'light'
'sphere' 'triangle' 'sphere' 'circle' 'light' 'oval' 'oval' 'circle'
'oval' 'rectangle' 'disk' 'oval' 'light' 'light' 'other' 'cigar'
'triangle' 'disk' 'cigar' 'other' 'triangle' 'egg' 'unknown' 'triangle'
'light' 'triangle' 'disk' 'changing' 'triangle' 'disk' 'disk' 'rectangle'
'other' 'triangle' 'triangle' 'formation' 'triangle' 'egg' 'sphere'
'fireball' 'triangle' 'rectangle' 'light' 'triangle' 'triangle' 'other'
'light' 'light' 'disk' 'fireball' 'light' 'disk' 'oval' 'triangle'
'other' 'fireball' 'light' 'light' 'triangle' 'unknown' 'cigar' 'light'
'unknown' 'chevron' 'formation' 'disk' 'cigar' 'light' 'sphere' 'cigar'
'unknown' 'triangle' 'other' 'light' 'light' 'triangle' 'diamond' 'light'
'triangle' 'oval' 'changing' 'light' 'flash' 'circle' 'oval' 'other'
'sphere' 'circle' 'triangle' 'unknown' 'teardrop' 'unknown' 'fireball'
'light' 'light' 'cigar' 'cigar' 'light' 'fireball' 'other' 'egg' 'light'
'other' 'unknown' 'unknown' 'changing' 'circle' 'light' 'other' 'unknown'
'unknown' 'light' 'other' 'light' 'unknown' 'cylinder' 'triangle'
'circle' 'light' 'circle' 'circle' 'circle' 'light' 'light' 'changing'
'changing' 'circle' 'circle' 'triangle' 'triangle' 'light' 'light'
'light' 'light' 'other' 'changing' 'triangle' 'cylinder' 'light'
'unknown' 'circle' 'disk' 'sphere' 'oval' 'formation' 'teardrop'
'triangle' 'chevron' 'light' 'unknown' 'unknown' 'other' 'egg' 'circle'
'oval' 'cigar' 'unknown' 'chevron' 'oval' 'cigar' 'fireball' 'circle'
'unknown' 'light' 'sphere' 'fireball' 'changing' 'light' 'circle'
'unknown' 'fireball' 'light' 'sphere' 'light' 'formation' 'circle'
'fireball' 'formation' 'formation' 'formation' 'light' 'other' 'light'
'light' 'circle' 'diamond' 'oval' 'circle' 'oval' 'triangle' 'light'
'disk' 'light' 'other' 'triangle' 'triangle' 'cylinder' 'disk' 'cylinder'
'light' 'oval' 'cigar' 'circle' 'disk' 'light' 'unknown' 'circle' 'other'
'light' 'light' 'light' 'unknown' 'triangle' 'other' 'disk' 'cylinder'
'triangle' 'oval' 'disk' 'light' 'triangle' 'circle' 'light' 'other'
'light' 'other' 'circle' 'disk' 'other' 'triangle' 'oval' 'unknown'
'light' 'triangle' 'unknown' 'circle' 'unknown' 'light' 'fireball'
'fireball' 'rectangle' 'light' 'formation' 'unknown' 'light' 'light'
'formation' 'fireball' 'light' 'light' 'other' 'unknown' 'light'
'triangle' 'fireball' 'triangle' 'triangle' 'flash' 'circle' 'triangle'
'disk' 'light' 'unknown' 'light' 'light' 'fireball' 'circle' 'unknown'
'unknown' 'circle' 'disk' 'chevron' 'disk' 'disk' 'triangle' 'light'
'light' 'disk'
***Вывод:*** Наша модель дерева решений показала низкую точность предсказаний (Точность модели на тестовой выборке: 0.1377245508982036), что означает, что она не очень хорошо предсказывает форму НЛО на основе выбранных признаков (население и время). Из-за чего можно сделать вывод, что возможно, эти признаки недостаточно информативны или недостаточно связаны с формой НЛО.

View File

@@ -0,0 +1,39 @@
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
# Загрузка данных
data = pd.read_csv('ufo_sighting_data.csv')
# Выбор признаков
features = [ 'length_of_encounter_seconds', 'latitude', 'longitude']
target = 'UFO_shape'
# Удаление строк содержащих NaN
data.dropna(inplace=True)
# Удаление столбцов содержащих NaN
data.dropna(axis='columns', inplace=True)
# Разделение данных на обучающую и тестовую выборки
train_data, test_data, train_labels, test_labels = train_test_split(data[features], data[target], test_size=0.2, random_state=42)
# Создание и обучение модели дерева решений
model = DecisionTreeClassifier()
model.fit(train_data, train_labels)
# Прогнозирование на тестовой выборке
predictions = model.predict(test_data)
# Оценка точности модели
accuracy = accuracy_score(test_labels, predictions)
print('Точность модели на тестовой выборке:', accuracy)
# Прогнозирование на оставшемся проценте данных
remaining_data = data.drop(test_data.index)
remaining_predictions = model.predict(remaining_data[features])
# Вывод результатов
print('Прогнозы по оставшемуся проценту данных:', remaining_predictions)
# Сделайте необходимые выводы

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,63 @@
# Лабораторная работа №2
## ПИбд-42 Машкова Маргарита (Вариант 19)
## Задание
Выполнить ранжирование признаков с помощью указанных по варианту моделей.
Отобразить получившиеся значения\оценки каждого признака каждым методом\моделью и среднюю оценку.
Провести анализ получившихся результатов. Какие четыре признака оказались самыми важными по среднему значению?
### Модели:
> - Линейная регрессия (LinearRegression)
> - Гребневая регрессия (Ridge)
> - Лассо (Lasso)
> - Случайное Лассо (RandomizedLasso)
> **Note**
>
> Модель `RandomizedLasso` была признана устаревшей в scikit-learn 0.19 и удалена в 0.21.
Вместо нее будет использоваться регрессор случайного леса `RandomForestRegressor`.
## Запуск программы
Для запуска программы необходимо запустить файл main.py
## Используемые технологии
> **Язык программирования:** python
>
> **Библиотеки:**
> - `numpy` - используется для работы с массивами.
> - `sklearn` - предоставляет широкий спектр инструментов для машинного обучения, статистики и анализа данных.
## Описание работы программы
Для начала необходимо сгенерировать исходные данные (Х) - 750 строк-наблюдений и 14 столбцов-признаков.
Затем задать функцию-выход (Y): регрессионную проблему Фридмана, когда на вход моделей подается 14 факторов,
выход рассчитывается по формуле, использующей только пять факторов, но факторы 11-14 зависят от факторов 1-4.
Соотвественно, далее добавляется зависимость для признаков (факторов) х11, х12, х13, х14 от х1, х2, х3, х4.
Далее создаются модели, указанные в варианте задания, и выполняется их обучение.
После чего в единый массив размера 4×14 (количествооделей и количество_признаков) выгружаются все оценки
моделей по признакам. Находятся средние оценки и выводится результат в формате списка пар `{номер_признака средняя_оценка}`,
отсортированном по убыванию. Оценки признаков получаются через поле `coef_` у моделей LinearRegression, Ridge и Lasso.
У модели RandomForestRegressor - через поле `feature_importances_`.
Для удобства отображения данных оценки помещаются в конструкцию вида:
`[имя_модели : [{имя_признака : оценка},{имя_признака : оценка}...]]`.
Таким образом, получаем словарь, в котором располагаются 4 записи из четырнадцати пар каждая.
Ключом является имя модели.
## Тесты
### Оценки важности признаков моделями
![Оценки важности признаков моделями](ranks.png)
### Оценки важности признаков моделями, отсортированные по убыванию
![Оценки важности признаков моделями, отсортированные по убыванию](ranks_sorted.png)
### Средние оценки важности признаков
![Средние оценки важности признаков](means.png)
**Вывод:** основываясь на средних оценках, четырьмя наиболее важными празнаками оказались:
`x4 (0.86), x1 (0.8), x2 (0.73), x14 (0.51)`.
Все модели оценили как наиболее важные признаки x1, x2, x4, и четвертым важным признаком выбрали зависимые признаки:
LinearRegression - х11, Ridge - х14, RandomForestRegressor - х14. Модель Lasso включила также независимый признак - х5.

View File

@@ -0,0 +1,100 @@
from sklearn.linear_model import LinearRegression, Ridge, Lasso
from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import MinMaxScaler
import numpy as np
# Генерация исходных данных: 750 строк-наблюдений и 14 столбцов-признаков
np.random.seed(0)
size = 750
X = np.random.uniform(0, 1, (size, 14))
# Задаем функцию-выход: регрессионную проблему Фридмана
Y = (10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - .5) ** 2 + 10 * X[:, 3] + 5 * X[:, 4] ** 5
+ np.random.normal(0, 1))
# Добавление зависимости признаков
X[:, 10:] = X[:, :4] + np.random.normal(0, .025, (size, 4))
# Создание моделей и их обучение
# Линейная модель
lr = LinearRegression()
lr.fit(X, Y)
# Гребневая модель
ridge = Ridge(alpha=7)
ridge.fit(X, Y)
# Лассо
lasso = Lasso(alpha=.05)
lasso.fit(X, Y)
# Регрессор случайного леса
rfr = RandomForestRegressor()
rfr.fit(X, Y)
# Список, содержащий имена признаков
names = ["x%s" % i for i in range(1, 15)]
# Функция создания записи в словаре оценок важности признаков
def rank_to_dict(ranks):
ranks = np.abs(ranks)
minmax = MinMaxScaler()
ranks = minmax.fit_transform(np.array(ranks).reshape(14, 1)).ravel()
ranks = map(lambda x: round(x, 2), ranks)
return dict(zip(names, ranks))
# Словарь, содержащий оценки важности признаков
ranks_dict = dict()
# Добавление записей в словарь
ranks_dict["Linear regression"] = rank_to_dict(lr.coef_)
ranks_dict["Ridge"] = rank_to_dict(ridge.coef_)
ranks_dict["Lasso"] = rank_to_dict(lasso.coef_)
ranks_dict["Random Forest Regressor"] = rank_to_dict(rfr.feature_importances_)
def print_ranks():
for key, value in ranks_dict.items():
print(key)
print(value)
def print_ranks_sorted():
for key, value in ranks_dict.items():
print(key)
value_sorted = sorted(value.items(), key=lambda x: x[1], reverse=True)
print(value_sorted)
def get_means():
# Создаем пустой список для средних оценок
mean = {}
for key, value in ranks_dict.items():
# Пробегаемся по словарю значений ranks, которые являются парой имя:оценка
for item in value.items():
# Имя будет ключом для нашего mean
# Если элемента с текущим ключом в mean нет - добавляем
if item[0] not in mean:
mean[item[0]] = 0
# Суммируем значения по каждому ключу-имени признака
mean[item[0]] += item[1]
# Находим среднее по каждому признаку
for key, value in mean.items():
res = value / len(ranks_dict)
mean[key] = round(res, 2)
# сортируем список
mean_sorted = sorted(mean.items(), key=lambda x: x[1], reverse=True)
return mean_sorted
def print_means():
for item in get_means():
print(item)
print("Оценки каждого признака каждой моделью:")
print_ranks()
print("\nОценки каждого признака каждой моделью, отсортированные по убыванию:")
print_ranks_sorted()
print("\nСредние оценки признаков:")
print_means()

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB