shestakova_maria_lab_3 is ready
This commit is contained in:
parent
a8c58683dd
commit
de0a8ee5bc
BIN
shestakova_maria_lab_3/3.1.png
Normal file
BIN
shestakova_maria_lab_3/3.1.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 33 KiB |
BIN
shestakova_maria_lab_3/3.2.png
Normal file
BIN
shestakova_maria_lab_3/3.2.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 63 KiB |
32
shestakova_maria_lab_3/README.md
Normal file
32
shestakova_maria_lab_3/README.md
Normal file
@ -0,0 +1,32 @@
|
|||||||
|
### Задание:
|
||||||
|
|
||||||
|
Часть 1. По данным о пассажирах Титаника решите задачу классификации (с помощью дерева решений), в которой по различным характеристикам пассажиров требуется найти у выживших пассажиров два наиболее важных признака из трех рассматриваемых: Pclass, Parch, Fare
|
||||||
|
|
||||||
|
Часть 2. Решите с помощью библиотечной реализации дерева решений задачу из лабораторной работы «Веб-сервис «Дерево решений» по предмету «Методы искусственного интеллекта»на 99% ваших данных: зависимость качества сна (Quality of Sleep) от возраста (Age) и пола (Gender). Проверьте работу модели на оставшемся проценте, сделайте вывод
|
||||||
|
|
||||||
|
### Технологии:
|
||||||
|
|
||||||
|
Библиотека Scikit-learn, библиотека numpy, библиотека pandas
|
||||||
|
|
||||||
|
### Что делает лабораторная:
|
||||||
|
|
||||||
|
Часть 1. Из выборки отбирается 3 необходимых по заданию признака, определяется целевая переменная по заданию, обучается дерево, выводятся важности признаков по каждому классу
|
||||||
|
|
||||||
|
Часть 2. Из выборки отбирается 2 необходимых по заданию признака, определяется целевая переменная по заданию, данные разделяются на обущающую и тестовую выборку, дерево обучается классификацией и регрессией, выводятся важности признаков, предсказания значений на тестовой выборке и оценка качества
|
||||||
|
|
||||||
|
### Как запустить:
|
||||||
|
|
||||||
|
Первая часть лабораторной работы запускается в файле `shestakova_maria_lab_3.1.py` через Run: появляется вывод в консоли
|
||||||
|
Вторая часть лабораторной работы запускается в файле `shestakova_maria_lab_3.2.py` через Run: появляется вывод в консоли
|
||||||
|
|
||||||
|
### Вывод:
|
||||||
|
|
||||||
|
Часть 1.
|
||||||
|
|
||||||
|
![img1.png](3.1.png)
|
||||||
|
|
||||||
|
Часть 2.
|
||||||
|
|
||||||
|
![img2.png](3.2.png)
|
||||||
|
|
||||||
|
По выводу можно заметить, что модель дерева классификации подходит больше для решения данной задачи
|
22
shestakova_maria_lab_3/shestakova_maria_lab_3.1.py
Normal file
22
shestakova_maria_lab_3/shestakova_maria_lab_3.1.py
Normal file
@ -0,0 +1,22 @@
|
|||||||
|
import pandas
|
||||||
|
from sklearn.tree import DecisionTreeClassifier
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
# загрузка данных из набора
|
||||||
|
data = pandas.read_csv('titanic.csv', index_col='Passengerid')
|
||||||
|
|
||||||
|
data = data.loc[(np.isnan(data['Pclass']) == False) & (np.isnan(data['Parch']) == False) & (np.isnan(data['Fare']) == False) & (np.isnan(data['2urvived']) == False)]
|
||||||
|
|
||||||
|
# отбор по заданию
|
||||||
|
correct = data[['Pclass', 'Parch', 'Fare']]
|
||||||
|
print(correct.head())
|
||||||
|
|
||||||
|
y = data['2urvived']
|
||||||
|
|
||||||
|
# дерево решений
|
||||||
|
clf = DecisionTreeClassifier(random_state=27)
|
||||||
|
clf.fit(correct, y)
|
||||||
|
|
||||||
|
# важность признаков
|
||||||
|
important = clf.feature_importances_
|
||||||
|
print(important)
|
51
shestakova_maria_lab_3/shestakova_maria_lab_3.2.py
Normal file
51
shestakova_maria_lab_3/shestakova_maria_lab_3.2.py
Normal file
@ -0,0 +1,51 @@
|
|||||||
|
import pandas as pd
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier
|
||||||
|
from sklearn.metrics import mean_squared_error
|
||||||
|
from sklearn.metrics import accuracy_score
|
||||||
|
|
||||||
|
# загрузка данных из набора
|
||||||
|
data = pd.read_csv('sleep.csv', index_col='Person ID')
|
||||||
|
|
||||||
|
# приведение строковых ячеек к числу
|
||||||
|
data['Gender'] = data['Gender'].map({'Male': 0, 'Female': 1})
|
||||||
|
|
||||||
|
# признаки (X) и целевая переменная (y)
|
||||||
|
X = data[['Age', 'Gender']]
|
||||||
|
print(X.head())
|
||||||
|
y = data['Quality of Sleep']
|
||||||
|
|
||||||
|
# обуч и тест выборка
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.01, random_state=27)
|
||||||
|
|
||||||
|
# дерево регрессии
|
||||||
|
regression_tree = DecisionTreeRegressor()
|
||||||
|
regression_tree.fit(X_train, y_train)
|
||||||
|
test_score_reg = regression_tree.score(X_test, y_test)
|
||||||
|
# важность признаков
|
||||||
|
important_reg = regression_tree.feature_importances_
|
||||||
|
# предсказание
|
||||||
|
y_pred_reg = regression_tree.predict(X_test)
|
||||||
|
# оценка модели
|
||||||
|
mse = mean_squared_error(y_test, y_pred_reg)
|
||||||
|
|
||||||
|
# дерево классификации
|
||||||
|
classifier_tree = DecisionTreeClassifier()
|
||||||
|
classifier_tree.fit(X_train, y_train)
|
||||||
|
test_score_class = classifier_tree.score(X_test, y_test)
|
||||||
|
# важность признаков
|
||||||
|
important_class = classifier_tree.feature_importances_
|
||||||
|
# предсказание
|
||||||
|
y_pred_class = classifier_tree.predict(X_test)
|
||||||
|
# оценка модели
|
||||||
|
accuracy = accuracy_score(y_test, y_pred_class)
|
||||||
|
|
||||||
|
print("Regression Tree:")
|
||||||
|
print("Score:", test_score_reg)
|
||||||
|
print("Importance:", important_reg)
|
||||||
|
print("Mean Squared Error: {:.2f}".format(mse))
|
||||||
|
print("")
|
||||||
|
print("Classification Tree:")
|
||||||
|
print("Score:", test_score_class)
|
||||||
|
print("Importance:", important_class)
|
||||||
|
print("Accuracy: {:.2f}%".format(accuracy * 100))
|
375
shestakova_maria_lab_3/sleep.csv
Normal file
375
shestakova_maria_lab_3/sleep.csv
Normal file
@ -0,0 +1,375 @@
|
|||||||
|
Person ID,Gender,Age,Occupation,Sleep Duration,Quality of Sleep,Physical Activity Level,Stress Level,BMI Category,Blood Pressure,Heart Rate,Daily Steps,Sleep Disorder
|
||||||
|
1,Male,27,Software Engineer,6.1,6,42,6,Overweight,126/83,77,4200,None
|
||||||
|
2,Male,28,Doctor,6.2,6,60,8,Normal,125/80,75,10000,None
|
||||||
|
3,Male,28,Doctor,6.2,6,60,8,Normal,125/80,75,10000,None
|
||||||
|
4,Male,28,Sales Representative,5.9,4,30,8,Obese,140/90,85,3000,Sleep Apnea
|
||||||
|
5,Male,28,Sales Representative,5.9,4,30,8,Obese,140/90,85,3000,Sleep Apnea
|
||||||
|
6,Male,28,Software Engineer,5.9,4,30,8,Obese,140/90,85,3000,Insomnia
|
||||||
|
7,Male,29,Teacher,6.3,6,40,7,Obese,140/90,82,3500,Insomnia
|
||||||
|
8,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
|
||||||
|
9,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
|
||||||
|
10,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
|
||||||
|
11,Male,29,Doctor,6.1,6,30,8,Normal,120/80,70,8000,None
|
||||||
|
12,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
|
||||||
|
13,Male,29,Doctor,6.1,6,30,8,Normal,120/80,70,8000,None
|
||||||
|
14,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,None
|
||||||
|
15,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,None
|
||||||
|
16,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,None
|
||||||
|
17,Female,29,Nurse,6.5,5,40,7,Normal Weight,132/87,80,4000,Sleep Apnea
|
||||||
|
18,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,Sleep Apnea
|
||||||
|
19,Female,29,Nurse,6.5,5,40,7,Normal Weight,132/87,80,4000,Insomnia
|
||||||
|
20,Male,30,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None
|
||||||
|
21,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
|
||||||
|
22,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
|
||||||
|
23,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
|
||||||
|
24,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
|
||||||
|
25,Male,30,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
|
||||||
|
26,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None
|
||||||
|
27,Male,30,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
|
||||||
|
28,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None
|
||||||
|
29,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None
|
||||||
|
30,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None
|
||||||
|
31,Female,30,Nurse,6.4,5,35,7,Normal Weight,130/86,78,4100,Sleep Apnea
|
||||||
|
32,Female,30,Nurse,6.4,5,35,7,Normal Weight,130/86,78,4100,Insomnia
|
||||||
|
33,Female,31,Nurse,7.9,8,75,4,Normal Weight,117/76,69,6800,None
|
||||||
|
34,Male,31,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
|
||||||
|
35,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
|
||||||
|
36,Male,31,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
|
||||||
|
37,Male,31,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
|
||||||
|
38,Male,31,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None
|
||||||
|
39,Male,31,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None
|
||||||
|
40,Male,31,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None
|
||||||
|
41,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
|
||||||
|
42,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
|
||||||
|
43,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
|
||||||
|
44,Male,31,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
|
||||||
|
45,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
|
||||||
|
46,Male,31,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
|
||||||
|
47,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
|
||||||
|
48,Male,31,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
|
||||||
|
49,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
|
||||||
|
50,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,Sleep Apnea
|
||||||
|
51,Male,32,Engineer,7.5,8,45,3,Normal,120/80,70,8000,None
|
||||||
|
52,Male,32,Engineer,7.5,8,45,3,Normal,120/80,70,8000,None
|
||||||
|
53,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
|
||||||
|
54,Male,32,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None
|
||||||
|
55,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
|
||||||
|
56,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
|
||||||
|
57,Male,32,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
|
||||||
|
58,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
|
||||||
|
59,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
|
||||||
|
60,Male,32,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
|
||||||
|
61,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
|
||||||
|
62,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
|
||||||
|
63,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None
|
||||||
|
64,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None
|
||||||
|
65,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None
|
||||||
|
66,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None
|
||||||
|
67,Male,32,Accountant,7.2,8,50,6,Normal Weight,118/76,68,7000,None
|
||||||
|
68,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,Insomnia
|
||||||
|
69,Female,33,Scientist,6.2,6,50,6,Overweight,128/85,76,5500,None
|
||||||
|
70,Female,33,Scientist,6.2,6,50,6,Overweight,128/85,76,5500,None
|
||||||
|
71,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
|
||||||
|
72,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
|
||||||
|
73,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
|
||||||
|
74,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
|
||||||
|
75,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None
|
||||||
|
76,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None
|
||||||
|
77,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None
|
||||||
|
78,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None
|
||||||
|
79,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None
|
||||||
|
80,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None
|
||||||
|
81,Female,34,Scientist,5.8,4,32,8,Overweight,131/86,81,5200,Sleep Apnea
|
||||||
|
82,Female,34,Scientist,5.8,4,32,8,Overweight,131/86,81,5200,Sleep Apnea
|
||||||
|
83,Male,35,Teacher,6.7,7,40,5,Overweight,128/84,70,5600,None
|
||||||
|
84,Male,35,Teacher,6.7,7,40,5,Overweight,128/84,70,5600,None
|
||||||
|
85,Male,35,Software Engineer,7.5,8,60,5,Normal Weight,120/80,70,8000,None
|
||||||
|
86,Female,35,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||||
|
87,Male,35,Engineer,7.2,8,60,4,Normal,125/80,65,5000,None
|
||||||
|
88,Male,35,Engineer,7.2,8,60,4,Normal,125/80,65,5000,None
|
||||||
|
89,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None
|
||||||
|
90,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None
|
||||||
|
91,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None
|
||||||
|
92,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None
|
||||||
|
93,Male,35,Software Engineer,7.5,8,60,5,Normal Weight,120/80,70,8000,None
|
||||||
|
94,Male,35,Lawyer,7.4,7,60,5,Obese,135/88,84,3300,Sleep Apnea
|
||||||
|
95,Female,36,Accountant,7.2,8,60,4,Normal,115/75,68,7000,Insomnia
|
||||||
|
96,Female,36,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
|
||||||
|
97,Female,36,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||||
|
98,Female,36,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
|
||||||
|
99,Female,36,Teacher,7.1,8,60,4,Normal,115/75,68,7000,None
|
||||||
|
100,Female,36,Teacher,7.1,8,60,4,Normal,115/75,68,7000,None
|
||||||
|
101,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||||
|
102,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||||
|
103,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||||
|
104,Male,36,Teacher,6.6,5,35,7,Overweight,129/84,74,4800,Sleep Apnea
|
||||||
|
105,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,Sleep Apnea
|
||||||
|
106,Male,36,Teacher,6.6,5,35,7,Overweight,129/84,74,4800,Insomnia
|
||||||
|
107,Female,37,Nurse,6.1,6,42,6,Overweight,126/83,77,4200,None
|
||||||
|
108,Male,37,Engineer,7.8,8,70,4,Normal Weight,120/80,68,7000,None
|
||||||
|
109,Male,37,Engineer,7.8,8,70,4,Normal Weight,120/80,68,7000,None
|
||||||
|
110,Male,37,Lawyer,7.4,8,60,5,Normal,130/85,68,8000,None
|
||||||
|
111,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||||
|
112,Male,37,Lawyer,7.4,8,60,5,Normal,130/85,68,8000,None
|
||||||
|
113,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||||
|
114,Male,37,Lawyer,7.4,8,60,5,Normal,130/85,68,8000,None
|
||||||
|
115,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||||
|
116,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||||
|
117,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||||
|
118,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||||
|
119,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||||
|
120,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||||
|
121,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||||
|
122,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||||
|
123,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||||
|
124,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||||
|
125,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
|
||||||
|
126,Female,37,Nurse,7.5,8,60,4,Normal Weight,120/80,70,8000,None
|
||||||
|
127,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
|
||||||
|
128,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
|
||||||
|
129,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
|
||||||
|
130,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
|
||||||
|
131,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
|
||||||
|
132,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
|
||||||
|
133,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
|
||||||
|
134,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
|
||||||
|
135,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
|
||||||
|
136,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
|
||||||
|
137,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
|
||||||
|
138,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,None
|
||||||
|
139,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
|
||||||
|
140,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,None
|
||||||
|
141,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
|
||||||
|
142,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,None
|
||||||
|
143,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
|
||||||
|
144,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
|
||||||
|
145,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,Sleep Apnea
|
||||||
|
146,Female,38,Lawyer,7.4,7,60,5,Obese,135/88,84,3300,Sleep Apnea
|
||||||
|
147,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,Insomnia
|
||||||
|
148,Male,39,Engineer,6.5,5,40,7,Overweight,132/87,80,4000,Insomnia
|
||||||
|
149,Female,39,Lawyer,6.9,7,50,6,Normal Weight,128/85,75,5500,None
|
||||||
|
150,Female,39,Accountant,8,9,80,3,Normal Weight,115/78,67,7500,None
|
||||||
|
151,Female,39,Accountant,8,9,80,3,Normal Weight,115/78,67,7500,None
|
||||||
|
152,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
|
||||||
|
153,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
|
||||||
|
154,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
|
||||||
|
155,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
|
||||||
|
156,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
|
||||||
|
157,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
|
||||||
|
158,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
|
||||||
|
159,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
|
||||||
|
160,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
|
||||||
|
161,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
|
||||||
|
162,Female,40,Accountant,7.2,8,55,6,Normal Weight,119/77,73,7300,None
|
||||||
|
163,Female,40,Accountant,7.2,8,55,6,Normal Weight,119/77,73,7300,None
|
||||||
|
164,Male,40,Lawyer,7.9,8,90,5,Normal,130/85,68,8000,None
|
||||||
|
165,Male,40,Lawyer,7.9,8,90,5,Normal,130/85,68,8000,None
|
||||||
|
166,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,Insomnia
|
||||||
|
167,Male,41,Engineer,7.3,8,70,6,Normal Weight,121/79,72,6200,None
|
||||||
|
168,Male,41,Lawyer,7.1,7,55,6,Overweight,125/82,72,6000,None
|
||||||
|
169,Male,41,Lawyer,7.1,7,55,6,Overweight,125/82,72,6000,None
|
||||||
|
170,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None
|
||||||
|
171,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None
|
||||||
|
172,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None
|
||||||
|
173,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None
|
||||||
|
174,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None
|
||||||
|
175,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,None
|
||||||
|
176,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,None
|
||||||
|
177,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,None
|
||||||
|
178,Male,42,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
179,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None
|
||||||
|
180,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None
|
||||||
|
181,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None
|
||||||
|
182,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None
|
||||||
|
183,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None
|
||||||
|
184,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None
|
||||||
|
185,Female,42,Teacher,6.8,6,45,7,Overweight,130/85,78,5000,Sleep Apnea
|
||||||
|
186,Female,42,Teacher,6.8,6,45,7,Overweight,130/85,78,5000,Sleep Apnea
|
||||||
|
187,Female,43,Teacher,6.7,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||||
|
188,Male,43,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
189,Female,43,Teacher,6.7,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||||
|
190,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
191,Female,43,Teacher,6.7,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||||
|
192,Male,43,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
193,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
194,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
195,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
196,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
197,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
198,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
199,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
200,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
201,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
202,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,Insomnia
|
||||||
|
203,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,Insomnia
|
||||||
|
204,Male,43,Engineer,6.9,6,47,7,Normal Weight,117/76,69,6800,None
|
||||||
|
205,Male,43,Engineer,7.6,8,75,4,Overweight,122/80,68,6800,None
|
||||||
|
206,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None
|
||||||
|
207,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None
|
||||||
|
208,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None
|
||||||
|
209,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None
|
||||||
|
210,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
|
||||||
|
211,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None
|
||||||
|
212,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
|
||||||
|
213,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
|
||||||
|
214,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
|
||||||
|
215,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
|
||||||
|
216,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
|
||||||
|
217,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
|
||||||
|
218,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
|
||||||
|
219,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,Sleep Apnea
|
||||||
|
220,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Sleep Apnea
|
||||||
|
221,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||||
|
222,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
223,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
224,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
225,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||||
|
226,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
227,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||||
|
228,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
229,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||||
|
230,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
231,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||||
|
232,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
233,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||||
|
234,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
235,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||||
|
236,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
237,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
238,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||||
|
239,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
240,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
241,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||||
|
242,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
243,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
244,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||||
|
245,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
246,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||||
|
247,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
248,Male,44,Engineer,6.8,7,45,7,Overweight,130/85,78,5000,Insomnia
|
||||||
|
249,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,None
|
||||||
|
250,Male,44,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,None
|
||||||
|
251,Female,45,Teacher,6.8,7,30,6,Overweight,135/90,65,6000,Insomnia
|
||||||
|
252,Female,45,Teacher,6.8,7,30,6,Overweight,135/90,65,6000,Insomnia
|
||||||
|
253,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||||
|
254,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||||
|
255,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||||
|
256,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||||
|
257,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||||
|
258,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||||
|
259,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||||
|
260,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||||
|
261,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
|
||||||
|
262,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,None
|
||||||
|
263,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,None
|
||||||
|
264,Female,45,Manager,6.9,7,55,5,Overweight,125/82,75,5500,None
|
||||||
|
265,Male,48,Doctor,7.3,7,65,5,Obese,142/92,83,3500,Insomnia
|
||||||
|
266,Female,48,Nurse,5.9,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||||
|
267,Male,48,Doctor,7.3,7,65,5,Obese,142/92,83,3500,Insomnia
|
||||||
|
268,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,None
|
||||||
|
269,Female,49,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||||
|
270,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||||
|
271,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||||
|
272,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||||
|
273,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||||
|
274,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||||
|
275,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||||
|
276,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||||
|
277,Male,49,Doctor,8.1,9,85,3,Obese,139/91,86,3700,Sleep Apnea
|
||||||
|
278,Male,49,Doctor,8.1,9,85,3,Obese,139/91,86,3700,Sleep Apnea
|
||||||
|
279,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Insomnia
|
||||||
|
280,Female,50,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None
|
||||||
|
281,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,None
|
||||||
|
282,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||||
|
283,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||||
|
284,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||||
|
285,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||||
|
286,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||||
|
287,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||||
|
288,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||||
|
289,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||||
|
290,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||||
|
291,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||||
|
292,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||||
|
293,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||||
|
294,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||||
|
295,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||||
|
296,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||||
|
297,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||||
|
298,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||||
|
299,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
|
||||||
|
300,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
|
||||||
|
301,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
|
||||||
|
302,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
|
||||||
|
303,Female,51,Nurse,7.1,7,55,6,Normal Weight,125/82,72,6000,None
|
||||||
|
304,Female,51,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||||
|
305,Female,51,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||||
|
306,Female,51,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
|
||||||
|
307,Female,52,Accountant,6.5,7,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
308,Female,52,Accountant,6.5,7,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
309,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
310,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
311,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
312,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia
|
||||||
|
313,Female,52,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
|
||||||
|
314,Female,52,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
|
||||||
|
315,Female,52,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
|
||||||
|
316,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,Insomnia
|
||||||
|
317,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
|
||||||
|
318,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
|
||||||
|
319,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
|
||||||
|
320,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
|
||||||
|
321,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
|
||||||
|
322,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
|
||||||
|
323,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
|
||||||
|
324,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
|
||||||
|
325,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None
|
||||||
|
326,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
|
||||||
|
327,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None
|
||||||
|
328,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
|
||||||
|
329,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None
|
||||||
|
330,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
|
||||||
|
331,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
|
||||||
|
332,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
|
||||||
|
333,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
|
||||||
|
334,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
|
||||||
|
335,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
|
||||||
|
336,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
|
||||||
|
337,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
|
||||||
|
338,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
|
||||||
|
339,Female,54,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
|
||||||
|
340,Female,55,Nurse,8.1,9,75,4,Overweight,140/95,72,5000,Sleep Apnea
|
||||||
|
341,Female,55,Nurse,8.1,9,75,4,Overweight,140/95,72,5000,Sleep Apnea
|
||||||
|
342,Female,56,Doctor,8.2,9,90,3,Normal Weight,118/75,65,10000,None
|
||||||
|
343,Female,56,Doctor,8.2,9,90,3,Normal Weight,118/75,65,10000,None
|
||||||
|
344,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,None
|
||||||
|
345,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||||
|
346,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||||
|
347,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||||
|
348,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||||
|
349,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||||
|
350,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||||
|
351,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||||
|
352,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||||
|
353,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||||
|
354,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||||
|
355,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||||
|
356,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||||
|
357,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||||
|
358,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||||
|
359,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,None
|
||||||
|
360,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,None
|
||||||
|
361,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||||
|
362,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||||
|
363,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||||
|
364,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||||
|
365,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||||
|
366,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||||
|
367,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||||
|
368,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||||
|
369,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||||
|
370,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||||
|
371,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||||
|
372,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||||
|
373,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
||||||
|
374,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
|
|
1310
shestakova_maria_lab_3/titanic.csv
Normal file
1310
shestakova_maria_lab_3/titanic.csv
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user