From de0a8ee5bce931457bd6124df8ba0eced57ce53c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=D0=9C=D0=B0=D1=80=D0=B8=D1=8F=20=D0=A8?= Date: Wed, 29 Nov 2023 20:32:10 +0300 Subject: [PATCH] shestakova_maria_lab_3 is ready --- shestakova_maria_lab_3/3.1.png | Bin 0 -> 33794 bytes shestakova_maria_lab_3/3.2.png | Bin 0 -> 64549 bytes shestakova_maria_lab_3/README.md | 32 + .../shestakova_maria_lab_3.1.py | 22 + .../shestakova_maria_lab_3.2.py | 51 + shestakova_maria_lab_3/sleep.csv | 375 +++++ shestakova_maria_lab_3/titanic.csv | 1310 +++++++++++++++++ 7 files changed, 1790 insertions(+) create mode 100644 shestakova_maria_lab_3/3.1.png create mode 100644 shestakova_maria_lab_3/3.2.png create mode 100644 shestakova_maria_lab_3/README.md create mode 100644 shestakova_maria_lab_3/shestakova_maria_lab_3.1.py create mode 100644 shestakova_maria_lab_3/shestakova_maria_lab_3.2.py create mode 100644 shestakova_maria_lab_3/sleep.csv create mode 100644 shestakova_maria_lab_3/titanic.csv diff --git a/shestakova_maria_lab_3/3.1.png b/shestakova_maria_lab_3/3.1.png new file mode 100644 index 0000000000000000000000000000000000000000..be396929e372511e7218d598656c4ec074a2dfdf GIT binary patch literal 33794 zcmd?Rby!u+7sm@ocSuW@(v2XEbVzfgTaXUv4grx)r3LAhZVoApv^0uzci%zZ_x1PO z`_KL3KKK4{dCqyxaqly;XV0veS)cV?+c0G%X$({nR2Uc-3|X1ysxUBcnlLc1*2sw9 z2xjq_EDQ{~ou!0?vaEyzrLv=)xuvxk42(=zLJ|^0?JI%bS|TkiZIvi|PS65;jDAkg z2sN?{zI707w6d`RGPR4dN_%zqV@+p`=c5z&(UOwP(*$B&rQrzpW_sh2D(VYC@XqsE zEqsf7uD71Q2KZkMrFrh5!+iAC4WlKUfTNU7Ws1N+GgeYiGKx)yMHPjG>28bdkCTOP zaK!9mqF4K}?b*USAJunKpT2x`=gT7C<^LWDhLhNl#Gt$1e-0U@^FE~;4UKaCT zau1teDoY(mNBiGxP{AKN*2$*AK zE9<}94v$~&#m2Ev92#LTX*|Y=(ioulwXZpOjEta0WnYVLwog8jtDp-FI-bp(|$n}YSTIje&4X64b$h*!mqI1YncSBO*a!E)cV z;VZYf_VZ=ka!vo_1a?zt$`m4gZo(GIr_cFax9deyvGXd&7`|e>(}?VP61z>5AZ*Lp zi>cN-NY(iDa7EqZpi{T*X~OA&v#hN`6Q@!WW!y7XDPpV^)aP)#$cPG*Av_ogNFPMU zzv<0l?8OUZ`Jv@dK0x-%mgD56wk(%MFLTI*xrUX6G41#ffar-piPa~9C7+-r9W6Ya z!uOOKO)xn10ktS^QxaArE|#Y}{EN)z$5?y15O?+kYY6_$oxU*b4Wp5mY>pf?#bNLG zqi?itu>-@FJC#3?*@j;IXmO)$LWFJxcrGtU9Gw@waFes35u~od6F{!b3q$?9D9KOm zEP9nysGH-Rf;LC;-MJ^wUc`b-yPLR<%D!_xlY)R8MyOHZi4J}(HPgVJ^_>mkq98^B z`OJs+vC`2GzSb;8jh9c^Q`CIwJ*mA=>Hf%@YIkZse0DptXqtgF8@k6+@p&4jnD|++ zUK>fdc3Y>C@tbM0?Ye*vt*N;737(%UF6`;d7ShL9z7j7qV`M)#B{(G=F_;;YQi^CD ztW@O5o6AZPLv`uVZpq*kB9qs+-)*dHub}#^7-V02HJhQ|N?><)l~qE`VXi+RAtI8r z^idzdK1E&R=u0W%Ou>K|frm-W7><)ais#gIplT}%qW2m@_d_X%sj(MkZF_JYAc_sw z?QemN72B>()Qnx~^duSOmtSxua=f30q0lsZjenXU+fx|KK%H1S?|3G!+r&$7bziiI@6w*BRXyQ-C?Y3F7grgrDpio1`gtz9NkdDEPwPxGBa>CtAX7ir zN9LyKQsM+lovctOK`~7sK}}2fOqsNxw!qGk`y&rabfS3w=aNi~Z%Sk2BbVIkBuXTY zFj~63A{-+~B8o`LxW9hX{K!05@DbtT=a16dWfm@0G1bM@)7rWv?%J!`Jyo`^PhO8z z_gF|5E#!HNUDadC_GmLa4=MWsd6hS0nbza{-d60@nESEhvEK2QV9^?DFE}(~B6gRX+Y`;aPk7()p7ebb&3ox`DP$>TQWc?< z&Cs(;nv(}72$x-#NGG!=A|&h>;^>v=nxx|-b9|i`I~WW^L)>$(-6qRDb9QAGW13>R zXt1K1OoB*eNV`Y|dB0ma&*V={cRn3}7&nccS2@(8bkL5_j+v%?MTuioYba!3?=b@EBdY%)VK;YSMYRy(nZ{Ysfy$g5G)Q4`D8 z{0okeW(ligOqB^q2_vrqHNH%ET9IziZqZFvPY&B0+dSn(;ML$gv$m{(t>Lm}vM!s& z*=gFY+^(6f{+@lhdn$hAc*TU79~ctYYZNXq`xyFoPh~{~KigJ7mF#7td!$ArRvM8~ zj8d>twNjasPNWiXvxoE1I@{3h(9BR{>R#k1F_*2va`GjIo$j`t8|y0Tl%8d2R_T%6 zmaah~e;vwPO~brnUSpK2!OFtV+nJ6riA|NA(N)Wh51aKfN4ZI*TJNVE%Z?V{_bB%+ z7BChlyac@*y)mz@H@4PORvU-UE+8ot0Tqqi!lztkKQ4FnxAtFM=3UyI?IE+HEg`DI z3!+vb|3uow^y;oOF{?cNqL09jBpVos*!=3Me65l+uwtovX=N!9J1sgWT9FD%d{BZ* zyhz*=I@e(y!t)jnN(0pjS^P=lbQs;UgcEI#w zkA9lI7w;o34;}-9CVk5bR3+`WaSn&$&U!pHI#T-Z*ez9=Ct*(-)jSx26|_YPoGPz= ze)`InJFW0F!_la4d3?K|C(lyphtjiHIT=N{`J~G*(!r9Y(_Dvdym=@4(@hvnN!Oyc z0zOG?FUqC%ndjNO6)%s_Ti;g`>p@|R3d(gl32bnihtP-T5-)_A1gu_6in^$twm+&) z9ZxkeCUZzUA8?M_xEPzI#f+tv?Lp5V-gut@;@8Dm z!rIB8LaIBh!83zYU-!hDVzV#l_(25M+@u+UDf8St);sv-E=F;^MhiRd#0h+H_@`-$mSgxBQnLyqSocc!tS|nfM4U} z5NWNgQp=1(xbN1*&h~8C-p~1s*2X3BW&H#1lB>^H@5$A#ZO^XSF{2`XU`#d~b z-!)nIk@Uj!h433zA30C$%YoyUt4>L47t0XXXBPF2Lry7D3}#v`SBKj~ z*v=HTH@sN9h4#%abOLKVZym3S3ixu*+8a|{Z}!5k&@WGY_Af`SIW~TLx&4qKlhG$U z>s@+>d$777I@IPD#I%ZOi@**UJ$8m!*!I5)GKE>+pOgBKBZ!7c@Z8;pjCMZ*;;#RQ znH)yFL#iU;6(5{EvgQ_o{T8N97lE)ac4ld5hlYmfMk%YDj=CEz^)Uu|6Az-FI#%1O zjW*G{M1TL`M#J)2Sc}vw!9Ye-oOI$EB*uI_-#*TLJ(ctqtsj1zu_!-ZLTs_SL!g?E zI>Y)YQw|8^of$;dTu~8*5qw96frll5K>*)i!CM%X^uO;?u#aIL{5}o`0~2Bi1OLx& zl)&fxUo?2%m-+MgAoeW`68IM`c)Ml7{rhV;&CCb?euuRN=U~LtBxC{qz^Iuxnwi-; zS=c!b<_y$;11R<~FP&gu2TLALul|DT@t)6Kt+f_@f86=eHw z%!E;M!$)wyFg~(;{z4sm0weqVcW(-h!TbIby!m2^D;W5|r=IL{F?BcC?KG5WMUAU& z3eI6JVooV9PApM2S|C;8Mc=^U5q=;rj2qC>%LXX89p9Z4uSK=PB>2 zc<_It3Y6!Wre9-YS#)ar2=wY5B_qj&7#m&p643}*;kWtbqlG+O>UU~p12n&w^%L;B zY(qwF=9V%1-R6DmwC(i6TW-S%+4?poiUyfXF;sBsZcbtDivrU_x9Zt$cz)G^QiOs>-`gEQN>dn)RL^i< zcT3ko;`r1Hqg9qE8LRB_ck$}$KOPs0A1&+S%BaF!b~*0O@e>PqRPD_bsO2SkT^z~| ze&nIEnk;_(tN|eeop|M0w<)Zi|M{zGxdcYp1V)WK+57R6?Tem&C?>-g1G!O~a zaGq-t&_-kOx_eI{B5Yc{UOHcGrPXUUlkWG0 zH+!vjE!K-ILiAJL@>OUG^crglQ=p9Wp$`}pbFL^x>S(92cQ4~IQTUFZRFwxvUyIyb z3}XyJf37?!R#>lKMsZW1j3tzhqgVVn^lVT4RXT^sTV|aa=1lzk*Apc=T8?W&C4#!4 zg8~jKLD#3Vc9r(a&``J~#UPEyNBr@R`&0PJOovimvKq87`(7V}ptkf}9E3lOPk5{% zUZ_z-j~%-)mZuex&hI3JuwSNI&$-QJHg=fxouJ=af8MwDy1hiRM0*qWK=-r42UWQw zR+eBi!o;6n8`j!E zo`KnQmTY4(!rxoNaws(Gi;sarK+R9qK<>J^IxE_v5Ntdbe)m}g(iO|PMeqL@1!BP5 z9^krHzeeu9-;Sg)D4)cdP}XwUx5w-{=MeI}3?XcBs8uVHLWDKL=h715u%Zc>$XAh2 z=G7=vKUFJwgUsyA1s{$jG1Iu$q7zFe{|iD+?J!yVveNV`ZqH3F;0VP}5&Cn!c(-mY zANlM`OIZlaVT_K&aqzSx<<+l8mU*s3c@3xcoK=MB07aglFtYN{`UIl#n%L;q=zip;~{37;{}zkCm0t62oy3zyl?W+*1Dr$IuAtW zsK{g*oHxqlg~kFAF;Lxn#+7az6x-AxT~`-Okn+qbtEr*2)wdz!i#X>oNOr|abg&LQ zwsTLXQla=c<*3r3SF)5SDC>ms(~9%)9rx;`3SowaM#=vVTcLuT5#@V(q%xY+N&^45?b5+uGprMf zFOlT)wRRbzbC5xgyLmz1%S#moW2Bz<#6PxbhCXoRdH5Xnk8WI4)CBjB;<4jvPF_(& zt?dC@)?BdF{E<0_e0rT2$ zMiST~2DC_h9K@2tgL$?$vC~v?H4&9ZWpUb2rFo-F($vjF#BAQ@>=H`mzCoz zAi9wSd>}Ono@Ps>FwkA}I*K@ShHTl*RDM=3)qQCr?z-?vGQ7C4i$sLi^VAw2%UlSC zLqx!yVr49yd7`T6ME3x~+kBUMT>{-qGVoD>b`LFAPwA_rOE`aRKI~)iX;l0@y3W(( zMzHe}SVG6q;{|HcX?SddhV$({5i4??@Kxo|JA*6NkY-#ruhZT6ty+Fy%szGPMVC_s zzOsug-Uu{=C2wu}aurhw6~}TFtoq(yVb=i*&`@P-Z^_^1<+z6a=A2-Yz6Rpe{g6T}<~SMuo=t1j;k}CBMtA zu+n^)!78tuwXg|?+%pl~M(9B;DpTIM(D-77iL_V}RmGUZba-Uk&gSWzG}i@{1Ne3F=X_aV_4u0mrOQcFQna6DrFt~7 zSk@7rKY}0F=n5TuuGipv@P=^Z>3j1|X94U0WC&(L{&51p+%yyslm2dbdjk|_V4>lS)f?NqHR+utimChVhrw}Peaq<d=c2wcbkoeA-SDj8BzEg#&SQZsJrRSHciOe!&DddN z0{y7e*p*$M2(A%6YVgKUURef|@!{(9&KPv_+h_T2B|5eFFXA5$8_;6pmA?zZjiU13 z@)NBil&_QL_O5uj6{QKGYL+p&T2t3Bfr{GX0 zI>kaG^eV%=T#K@Fx6-T7<*mQd-#?Rs)O+7T^;&1w7!uF6Jql-^L+GGKc_!EFpB{cu z?d*SCyds&tMhA-ox2(^MDS6F%vN0xIY1W@Bb!<3e>&CIMgw{?TFycvpL2NM^pO;E9lP_(Qb30 zea9DQt~U=gZPN>T`;(E2p1a*1=c{*`7^^!sy@xXD|8&>KwWq}1?OIXpw8J~BGDO9m zKHeBJ>w1Upb9G{GYTY?b>9jU^|J}w7-&5fNXIf>OxFH&IE$y4%|<;(iDQB^bbPI=bft7P#d zZgysCwfcLrgMVhr;D!#&geE}ef_r_62W25yJ9UUea3>sa*z00eKS*1l+ z?BA;C+8X)F1j4*4MLyIczFwB|)Fu$Z8=;qPQ&G5**u&KCj*Db(hdLWrdhS3*b| zP!DeK(SX<;j+Oz2j>9wEtS~>r+b_cFugUKt$Ega`>xe-+G`Dhy!L4P#E|HzamNx=`Vxf!G)w)Jsts6$a<7}QH4Rr!@6FDvKT!j3 zd*xAkI>mN&JW&Q;uQMg<9$Hmv~_Wwgxx_Fu8juDXvvj2fqTLvg5f>jy=gA)DcF!4}h|%bx8ET?B@r64T@bHEs^}aejPnnx=F~;V*fT$1Qhcn*QNP;{V8y_ zy4faTe;c{a0E+#;-AUE(G|^NNhy}X!m8O01vOd=b(lgDTt^w82ga3f2{~g0peL3UH z${f@F#GSk0{o!v3Ojll7ODLKYcB#3@6K4 z>?}W&F2qD59T^W;bzSkA)*lA0+G;BCe%=+T7nlN1?GShgNRRLa5mAdQEDj*QN5S6$ zrBeZt)o2c`+H#tsl%{>S+Rp&o`1sRQfE@$uE#a07^y*uD+ zZ+fH-q46T$int%<45SO`FskQMc7+paEeONgQ3yE8{2IR2BAc*$RXWz{HT4i zrC9)}_|#k{YUq8rk@p%~v~8%BZ|QQcVT+Z{wD_t_znSsr*-q_ZDX&BhvwqXGN2oTh zRRX%vL(XU}vc=$-R$9{dT5dR4yiU?D%)T z*gm%x7(x>>=6kcLzAC9k zcsxwuHbcT~VK|@D6uIvrNnN}|<_UVydssGqE3f>pV*vlpGKYl>%v_v23xFaTT&xkG zUHniio5?0gk(=W+T%f9*!d?nTU_>o@R!oQLu_V zw!ykokpDayThr1}5Wk*?pxOOq*+Y{>FQ|iU!H(RxmhL&k(2yFGV0rZ$CeKtzcQJ@M zq9ssQ*i%n-X0=eh$pqm)=P$*pF&`xPz-<{@=3(9AWAjk+BfQ9;x!**6Klg91-7mJk z414Va^&paGgUNE)#E*^H5rTC_7KqTPFD5GL=5;j4*EeP)lnL6vh{sox^~?^ek(2X2 z2RflD;)012*hkq9)|Lk=8JMcOee0iKEr-Cz``(-+iDK(Exs7^w;EUuOJqCcS2>Rw( z>y4%nkM(r9AEZ2l+(QPyes-T|)l4H72Rn>|9<~~`?P-j&rqKp%vBIn!zGmz7VK`V{ zy7w;255HTLJsGBI;5KkyP4K%p#TZ3q8V{-Cd@m=--x>dM&;vNKnw)>Fb0A2gt~)Cn z&AoW!GkyfsW8xK5L=^-FGoDVV_AR)3x;rGwVq#R~ViCEgG8ME$Ik-kI<_6=#Q^cBlA7s=`ExkLLGSJd{g{2#F7of-$qjceZA1+ z9^mT|*u&y`d;OZL$z?e=e{|}htX8J2NJG--pf%sti5g^P!#?e|`_L9IIuL{pA3s4F zi1X5o!?>kQ`E5NS&Rl8WfCSkVEwjDg+nEll&kwqG-fYh|YDK)AEjJ4EPSWOkQf9Cn zi9gFrUs+zsGvP2%a1(>f)YB(!4MH-oA&r0B72J2Ab`AC@`TQd3mV({+#-dW@Mks+cDCzCoFtl7ZLyMp^wK~eD{*>#BIY1Gd5xx^_bs!h+x zt@2wUF8FDk!Euw|T@m=N5^XIPzfvX(Cpf>cbKA~ASV9gV^)|pMhH=4`_IsCDB@}Nvk^}cVuUG|GgeL-nQg_JKdR<8}5$aZYA7oam7MN6rP=ydw zCUtCY&_)Nh=+xRWG7z0ULtz>_?a_g3*h;v~VfWhc(Y}zB@+AsRNW+}^Gr<*5z+F}T zdMf@AKId6^iV~9F4q!3&RQ4GzNQT<_SZmS^$UjG*{Kapb zI-C$CCY?O(YYWQ70~D)Z5fPIs5idS1Np^(Fg)-SFLHnw14hS^anvY}c>>qG8(sVTP z=6r`SKv(utfmm{0|M6Y---(K&6wTT;Dt@oED=WotFK4eMjg>dn7wMD(5#gz%YaAqg zl%gJTPlZ98(3?;$D6*(C+Vbaj0!xFV?#1kD3v=~O4*A0h{W@TI;KW`*nGZ<5!&2)K zoi;M1e2&$C3f9hzXM6+-!T6h^xXS2o_MH3ZJf9;huM~qdI^JSD$Zcy+jlzB_Gins2 zBOwn|De^&pfdy|0j7zyCs ztV~TI??oxqm)p$p(nXgK%R;DpP-g~9(uwt=PVhci^+r?q_#aH$X_LP(B!B)>9@UIV zvp5<=tC1e91ec3{UO!~iDotI1aUp{7Q~23?Tx#+@RZ#P>)i)nCqtAhNqmeS`{QYAP}FpU0er1L;6)fhY3-)7ls2Nz;)xz3 zOd$JoYpSeFKNDG?_WNh~q;Wy-^#F-WBtTwK0$USBc~W#M2zE9P4&_U9>s2X>Q<+oC zq0T((r9lXdK32`iCOF0q>YEHFiK-2us6F*It-!ibgh$`Xpg-XfzCAZ-l~^Ww?&7In z^k9z?okOej_Oj>@dsFsPVAsKgM)yA(CT?he-x`$hol}V5Ls{{d=ePwAMm`6!QaB?> zn&dyg9JMp()^c9>6rqWGJ-qLKvI-})9WJkERKu$`w=bvips_?qk! zuAZ-q=(}+O?tic&l*c~^U$dfRpR~fqZ8+Wi7jeQU`Baqq^>+ISA2p#q*FRL_CJ9K0 zDHcU@7`PnyzXrwz#a(HG5~{7xkKn#DWKH%Q#r;b}lpcVrM!6d4<(keGJbfzkCZ%Yi z$--1{&K3W|pZ!RHajwjGg}H?KZtZJn-!K9*p%yamLtBO}%~2Wu5!f#PNdv@{i2t+} zEG^35$T{Ud><4^)KWT745bo>izl`PweK-6cdBLE#JqJyvi7tNoZv*}At3dz%M-`O6 zpoIz_IAb|Xq$DpvOyO|ebumWZeo#Au+E{Ams1Z;fBI}&hJFS_{H@q>5`T=`Dqg<%| z+F~Fhx}d<4LdRyJ8ygo;Pt<| zI9gjhTl7r=!Nk588tH)aQspf1ST=)}%&Qa3xnaOj>l!^TKp0Ycp+W`6_Wg%)xfI?K zZlIF%C9&;U^#Q8P0dh~v8`k@=@k_c#${%NGc*VOWJ(04lJ~sh7zfPaxwuRR_{ODFK zhE(`zE(JFkccFgZdKIbL;>B-xSKXAQlqPUEB7r6O2F2~|0kfy2EK6=G~(t*ZYX(j33B@;db8j*R>2$@ zDVpkfMU7mfTkj~lHk5{NCPpe~{6sA`KE<{{)-D$GRXhi3Eb( z2Xv0GMPT;aa(y}6I3fngy)UPsRyE5G&`#V4e|3I&88ickv|#)7&O(|D0Em?&P2sKX z__H^Q7eI=(@YOcg7L~3N3>=GgRWxuu3lp~i^yMmip!Pi5)!3SJMQhTa@Y?s^p01#Q z)!tFWD~7%XzGva=pgvcpBESY(AeK3vZohN~KAGSS>h?%hU_1~E(_FxP98PE%d`%bf zq*eUL?YP%`#%TBOmaX0CWWjTJi=AE6?3>|W zjlG3tZv%Z&KHGx*I16x6N~sX$-ZGGrGdM= zfgNRc+h6i?BfqvN(<)0BxPk_wnVoLWaJ-iNre%e%$z?vEtY>?wnVEtyZ&MDqs-Gdl z%UGoIM4&0)0U~-d5Se=qe)OyY>(^Kr)LzDWAxMSKsIHs>R1N}ct_TV?V4dn$AsD3e zpaUuiuo~~RwEhqq!yu&2=MX9gnJpA-0fpwy+tV>nMkpz?1FSbqbR&ftOa$m2(kHuM4`iVjfwOL@Wv~`g( zgZGV#s!EG_v{qm4DDVVqy7>2-ZYZ5Uh`^xTw%?xrz?!HI%6zG9j9cD9q*bE*87h;i zjao+V99jQ*Dz4nIL34|@XboRT9GUXP>%bp5)-#oxRRHF3I|E)0lKkLyURTC13yvoa zwYlCZYgO+Du%}R@CyVZ+P||9G|w(^bFb2g8~?~q#kOX%{fI0o-YNylV~#TrzVCmJ}Jzq zAZiX9O_NFSH_eurg^?hnYCtV9zqd!7S>px;BQv?^Rp5={#)_s3x{tFvymx`Jy@H>h zCVPM`(aW*%I`_FD2sQisYm4S-OY z2~Xd))DeU#^X6hLLyM1WtdG)7B?NycH%lPkN0UmpOv zjl0@wHNdZCAm+KhZdz&24(~roh0M}N8pFXrZtqKH9-%%SSDY!!z%>2$b?WHZwL>AU z*(gj_yZH!c1n_A}^aN1|E1%iFVTH+#rkw%m><3{X-HgqeS=+eNo!O$p)0m9hv&E{W zt#HT3GDfQ~!6{&Zm%e~=Q=x1laA~GXZkpVKloMv(G}zJ_1&cbsmq_Ru?;|v6tQ*Ut zcC3qZDs0p}X1i_8e1YAL@Wl=EBT$r44tt`q{WiudG%gUKvFDU?>QJB* ze+oT?-6&uQNrD^EDCmhrG(kK0-os+@(2Q3Z-jjSdPWh?Ervlg_2yC;!F(+fNtTDHh zPFflGz;*M-Ms7$<%EgV$V4@`N%{9EO&HsT$DaFt8c6(c^(hLwml>>?*0 kNZyMK zVaHzsA37WSNSk;-&{my>kE4uP)p)u&@`dn4PCS#Al1jruaK%XoT+k>;J|dnNgT+z; zkw7mv6!$iE7|M9DP9tqnAzVBW!8U%?FOmAr4I-1W=^SR5E5*hCPM*qb5M)J$^Ky7u z0+N6N_|vhk5tBYmz$AXXEPh_607tu&*yc1W!~i0O>RmDFxcV6HbD;9Mzdox!CvE>o>7zHcNv#=v( zg7E_uuTHks*1D>v@`Qv>ca*ly?;d2C^Smby(kg^h7*7uR^zTb4ec+VTEYshq)hkQB zUuPT0=rbN_(jP+-!2+<1+}1c+WvM1sjGVhX^7i6uG|@5ef{-s9M|+OAgyHucOToTv z2sP;3vIxu+-|KF2KcbE#{AN~GJq&`S^4U@m>R+fR?_+)^beYev$RA%*_$9ad!8o@D zbE+8yHyqqyonetnIk#F#MB!JK52p(~%XxgC3$gmfQ&CumP?J8w2rT%pxcjj%vHsMy z@NA~eDBnt1;ChpzeAf?6IJI2QFz4;gRUFnws9f>um=XK~?>yJvO4m~Rj6WwGv$$Vh z8=IW7${pn+SO3C9n-ri2#Gs=8kObHWU>6-nX6e7m5icMfUP@iMzv@mcV2rs~lY6J; zpI13Z@2iAeX8a$Shz`JU;-mim(Xt{y)fmWHe_{>yjc8*5!qIP8_P-`sgQ~4X>*W4k z-u7O&qU&+|+eSkgQ6sYlP>sKrx0eU^!NQ;TAA(WBl7gy9u}l9)rP2ZSVf(e>(cd;s zBP&B@{Ol9{veO(c(B%HV>>^QxV2zD$pXmUF#DdI5e&5@sYp_{Wf(Sl82t_vAKJl#Q}1*)HEL40oW#$g$X!0&Zl4m24(kg@hK?&yQ& zJ6AoRX=N9h0~`WrgY}taD;L)vTUyZ`KBfc;y&B09h>}&l8YaINqpra|CRTQqsAG#0 zkM_zC(Zz*}#jb34$3r1V1EiDXsANm2mK(PFxriBp~K0;&mtGJX1R*~S%VWIV6UcjV`h^ZUN`Ut{SwttOeTSgRu)C-1&QBHc9O473f| z=C1CX)a#w;LRR|{{T$J}d)*k2ye>D$Ke%+e-rU)w|H_Ini*k0M$8ZN22Hj-G}?@(;xm}-0oU< z`jikXMhw`*>*SsQey$tfN~S_9WpC~cfWmW|qd>FdW5YJk*1m%5tAbsM2Iu84XbZsK zf*ZHHEzcs}>zlP-DR!rC=C^FlgUsE4%R~oqS6?3i@?QNiEc}K1Q=(!&lKQ%1U>+2; zl@Sr0h!O}!(LZ{k`a!;85jnZlY`WVDN`Z1#z;|w&@7&#jkY)Q1U>OJ%{f$j60Gr}L z4r||idP76Pw513H+zf^t)>peRP0w8zF!2GJ=FB2N>sTZ-C4= zA@D*+16%>gY|{XhOs~%mUh{tw$z7!piV_|I>$0IlzQZ(@$TcNMQkh&k@YehXTqbd> zf{~(si|hK>ZQ&^Go5);{2IqppO2G0DHTByf9LUxu)&V4;61P+4fp7t0Du>grfxiAg zGF$y}SbUGVcE*nZC`F}ujh6vmmL0Bu&vv7YJ-jw`d=p`x0Yp-1_a93oB)rzii`7O5 zu(u#bOnLU-Ou`3|6?PUAg$e3~>asT7P8{X~L}BzTLsd=9LNUdjjKw2mh0Q83TR(G4 zUVh1S+{kjcmma-tFVk&wJ5$4;LV~ zSUr%O#%p9&evaHA4Z?KXkb@j$Ll}u1b8X>oN7GS9>W~>GSM8oawHoV})o3&iMhJh0 z(EK4_F9BI5c3ah`MH)q#1-80*Tx~@NIB^!xzJiiT8_i)9!9t=o{4lz2N2I$qHW3w< zV5OQ6dR|M3zUS@yz`QqF%surjCK(B~iP@@3tB-fP2oXFDbR%XBCnun`H4uA2wI2nmDK_%#tD(ItI=I#dVyI3RbKfG9Xs;4Mqv0@5@ZSMpJ5M*Sbn4B8Ryph zQI~PQ-2$lr8vgZ|#5U+q3Azaa?8^0D_f4(=f+fy3x*9lU8xGmQ9=o%bCPXC;`GL3=rJ&|0y<1nl#QVq3_1MvMMQ>t&PAoGV z_`{gB7^Fl{BU?xqbHm(RZk1`sU0INPHM#de+F1PET9fB$uB4dOXp7rm^wGAwJf=SO z^nGmP_&BF{c?--t;`HX`n><@V!S<5q%OpkDQv81dfB^el$qDs%75E`6uN9wr>CmS@?}AyV zFu7S^S7ADYE?K!1DWyI&YR!q>I`Htx_V!I;eyN)7xy%0s?5x%?V5ddUCFIPb`HaX} zV8UsGZW!K8c}(tm?V!;akG3guN)Yo&QR{6%ZY~P%5b_GprPdA;04vuOb4Oh z#Tz1f9EiCj3%1%@Q(E$UBboWqgv6h=S?F|h+pXIc8WuR1%Fkud8#N>x^*p1j>F^yc zm5B`vUe$q6u4Q{4F3*^fPG-EgJ(o zro!5b9VM6y0_hG-wJBhjs6x}_5)z(DZmP9=uISw0wyK{fzxkE#yzDjJ9A)Rv|ejpy4stC4!)jTX-@u316&@IS4{z#~5qnTFt58&uu zq;ETeXDz|L|Bll3Be&(JPMq(4wjxA9WDUquB|3zTk%n#z9C?OW;=$^(8q2MBh8~Y- z5hZVnl*eE}BJdj5#j!5r1NU3Ae*i}mPqf?SS|Z7S`zz%ecb|82F0(dr@s!PCs-!{q zO)rqqpf?geMHcAkY@Oa>%GvVl+FUFYI~T_X|C4g@+nbIC+(ae%dmjD6TOi?2E^dk8 zFUb%AZsCOQUHJ=1nE;zCasSa(f18v9;GaLyyMGf7xd9_72K*JIXboimM`2Tj|C4Wa zFI0eRzt6J!|LI?T@aUjoVmMQWzw|W%n2j67=YLR(3REoN$NWdb{{0l#eL^IC`-{JY z*l7X8AxC%pr9n|3KYXJ-m;H-=Z$ZWAu$3U@`>*0<0q)_ye3buZJLe8Oxp{XNb^AjM z21bbe{z1E)G^BET$;lopDpEJYB;^-`mnz?{0uyIR`n{~J$L@d zIRH7-51E!ObM1wyYJ~5?W>J}KKTB=u$@*vqNHny}@Hz}@KIkR|$$JypYf1;ktOl;2$?Dr1ftgpJ7_-@VkIBFFGuj@5Pj|?xdAUX%E zG@Z<00;RMG_d^a9rHAvlHHA)L$811czgseFfo)#JeO;O1MY=WccVDewwmgnO#F)1J zGH4w_=8~W9e4KUs*&X%WNV!o*Y5>=iu2Z!v3Btxf4@IqxU30afTius$a!fOsVu9Ad z_?pOp^SlQX9_v)DH}5cqP$(BbHXn&=zTz}+{lO*>WsCRAl_cv%rs7abq7`(v;tSDt z8cqgK1VY^rOp$B*4($MtCpf$Qd@apYU&qiN0X4z%XN}6F z#8Uq=79r=c1mK3KU^&evxAM#tK@pGmztu(Rm*?ZOg2Yha-rbff+s3WZM${{x2f-e3 zio6GnbiVRWG$X#Z0-s$1F?h>aYNnyT zGJJisigj%3yIy8MIU~U{4!|gW1T1)LvAmk`092~`XvH`}oKW=TGjQ|s`-Vim`%CRL zqf(^xnZRsXa(H$DIC6Z8lFP2jn8Po!ki5CwU+#$D(E15Xp{k#)b&ld&*}ciCC-|j{ zXmq9Mtn@r`dhdB5W%+cg_{+O%2j$|LIY;@V#pbgGE3l&vu{#kV9LQ;4rE~ zcL(;jQ&?2$IO~4hLESsDGUqgGW8iyJ9YOYN(tIF!lzs#D0pc`}959onR(JL?Fr}mj>&wy^R z1F|7)otm1{q%1{vREkf(Te0c5&c7kUOPykEKK_zy`YE&c<-Q`|ACCRqy_|RbA&)ZE5z} zYp*re7-Nn(iH8i|Fg%8IJ@Y=S_ATdu%RjxYU~Xy;X!(4!p=-Yoo(X$#8{TwyM31Ya z&R)q2OY~aKn0%W4?Jka#hBIevNWMM6&-J{#{6G%VxlwKsX(wrye7(+I5fmGE#N6BO z!%{zcMSvAU^sK6zw_K3CUD&)^lJ#yOTiY-N_uxI^RU-A-oT8aeC?gn~PSnYqyL-h?$Zl)0#mVj#Px;NoxZG%E2-hdSIQLML z{G@8Zqj61rnlfNn;~2$3SCQ3OFV55WW$s8dxLGtFx_Mo0g+9$cJnnkttq}#1+&Nbc zG;evi1;XARz0O#slihZTPx0B?KFMik*af$pHzJrkA~V*1LW*ueTZLJF=<7S!CQeS} zjfLtzV=sLd4(L)KxtHI6agk~9IXZz6V;cw(nQPaH*(aJxzXx-aLZ+fG(MXUmo&SrR znCpYXl^G2ybA-(}%WF=$Lz&L>edD8we7tJDc;S0w6b>P_SUHZphkgkd|*U;t!$X<3}zBmR_m7txg9Mox7}lD|~u#LOV_^${Ye!2sIh zi#SKMV#1{EqW7r2hE2&&epdAfvfT`{+~Mm8UbY*l;$N9DJJ#2|M&}HSU2GCxxVNP19e(^SweBF60IfNaKUZz*ga`<=V=bCi7B~3Zb z3$|+_mPrF?*p}(-93wtjVdnX2D&hi2W-J%gDfz0cp1r`#Mn@-RH(=LOEDKr4GA?BL z?yc6>pD}wFtt9=?DEx_$A?qCLNS2W_?!oI-@Lc|G|A?F@AU<4BNvEwU4kK zWa%`R>E+O;k~fyQQ#AJ5ZlX^aJzIzi#6HD+(+u?Z$hoy{xy>T0`$>p5Za;fQD_r?e zahxF!x;u*rTNY-S4L)oYI^3+8Q1e)OIxla?f%afl$ zlPpWF8!^h(dbA#+dy_SM!6H{d*Rjy7mM{9M?95u2+; z{HOsf-@~ajdycjyghKWMa}2LR%zLDVKI(o~eQ(POi^^=l2x92x_{0K9lLq+gWVL1iee=#XG|!0 z4}%geDWQ<6TtM7^!@51JDDw#xyC4+E6A;;$xh0Z*a$gtmtxz-P?B1gz>?&KmIL)Di;bJM8P5{f01r`bqZ9gGQKK)kGgwK!@ReoUT^ zlNs(~>Wquv@XvdC7MOE&?dZ)On&uJn-gdfU)K9^KQJF^;ek?+~NK5b3=n*Rdd5$&> znPh=hm8fIVMt4aIiV~j?!tBUBrfMe{<0%QPW|=E@!#uK+O$*7<=l+Ehz=a@Z>{2^o zVruk0rk>RH!tF>ijQCfwS6e)iUKgxd$LbAJu36S0QOipW;Rx~&7 zE|s}Q7_*TFa$@_|IIO&g)cM1s)YwZAGuZxmT$^@2=$CIVkVjS|k9?@Kn!p9b)YB)a zkFh*GP#GdS)|)Q(sG#EY_osZ4Xvrd3d2M^q=s71X5A4G>3@9J#NobGXr!~O+#SgKDQ5& z#;?t&JV^gTWoD9YDPt~9Pq~sHn2z?S&14c|Fzc1WljeOCoHVs;rda_POQJyX9S4zb zUJuX6wige5(s<=nVkksQO8Mfbs}eb%WugV9g0jRAf5z*R5N7fHM;H1u0L6-$UrsW` zuTK2uNiOlVO2^`!+&28AAAZC{kMJ1u1#Id0{Gk*<;cVy7rMZF;r04(quEAcye1!Ps zi0((_U%yD6kRj?mby@feCf(EvJn?r+p$xzA;BtoCBxe>J6wL__dS{eWVe^Ip~+SfoK!Be#&ypF2exy&qV zKX`7!>)rJU0epf5&$0xi-Js!v%eeCpNy{-frs*UAlE8Qjm-7*}_A1on^gqR_DdLy$_$h=tnr3R#7O<={l_0wGL~Qt^(e2h_ zt56M7?>hCOal^t!i6jk16Vv~x2ZFIB6{p5p(}~S!g@!K9j2h$Ys|Kj5-&0V3cZM=s z%NtFq1&R17JgRF@EpM15y$cwHl2)?_j?_qb4+1Yo7|}C;m;r*6LLS8B#5yRZsPO&z zz3)xN2m3hFGjiB9MMm)Ly@aYASGndoM44don!;Tuc3~`)g&r1lF%si%lfJ?1Nb;+@ zgD~3i0kFHim;JYb6hU&+2%^PwC&3B-#VnUfG_7YVbfKvPuV+}%d=>Kr&Q`S_IjFJc zpVmEtq_`fH@)@vlV@n00n5DV9-0N^>p9r#wy;wN7vqqq@xVaGjaY3*w%V)L-%Oj3hM3&59Z;ay!y@i@UEI|&qj zdAQV8ZfWPScKTjtr{-PU60=-Nv^Wfa*FdW52mI(LcseqmF-w;JmoyG>Ofzpjel*g8 zN6z+2l}&q(nQjA{ls-jt*6#^*8K*rZAo7+huVK~l7C#_YD|yj^yu4d%(fpR6TQrkB zFAUaBbZ`3yyDRbG)=^)eb2%>1g2A;dwLo*i>G@0NDep0FuGb5oxj#z}G)ms%THY%2 z#SR-j**Fg%m7dSefT%6wm>c~sWJ((Z8*7Y5FSh{VV6FXP#&=3}ehYAn)~Ns6#g$V7 z6kJdu;muMQ`AI9$=IcljiWsx3658>8{pMQ^#*i znV@{;5IOUfE!I>myBL;p{mp4jmbLxT%OAjKyGj~vi-hXB z2{2ombK4gqL`>^0KYMvfoAHnf1aJr$6$tdbvw%L;_-Rd zDxQiV?&}*T)$bfwzeH}u=5W=U(C{(526AZwN|moo^GrBnlq@SNns=b5s0JUS&d1kS z*$Xi$1>Ft z%T?*w$n%rw&Tm>~(Wci%G2P{PPsx3rc7nP8x7^P3CCar?U?XXT1lVzwS zF9ku`_d{jp*=0&g`j|9NcaL$0qDDpW-oCxb`g-=Ho12mW3;o5)OU^4{VNM z*fsQ0jUsYRZ$Nvl@fgWZ^p^|D_b{539iz~J!U|Wk);bPM-t-KM-{&Lnx+X{$R^JuH z#emSYno`OrYiI0S8FmR`ba^FSB|0VN8uH2qVptu%U(VZUzVFzE3bpUQg7n-{4ky1M znpgG6yj4Zom=(?Zd9%C-V`Vn3Np8lJ;P`n?)sB-hO7xE2bP`DMqeQcr z@(g#9wn$JK%2IPtbB87^tXGpRBa$Z<=Rt7xIKT8^f zkqt4qAzSR)|Nf#91v*{0$6LE2myiX{YFR?)QtC5dAhL=v2f<@E2=jfUdu85&?2!C| zP=~Yp>_+SNl-OssMYkB3gWo2kquv$18mEtl7gJ37CxVW=>{*Aj;()WFVQKwi7X z6PzOjkW30qhIEEIFeWUK-TYMW-70qCdj6OA^2)qMioPf`6A zF?_TizJn2DNQ7k#&#ax!QoZR`)vL5z*cP$ssHqHAo?CSPwVzpR5^Uk#431F%c?aVO zH@?y{R9P|?YjJZ0IQc+}uP_V#(l~`MZ};JR)e>BoW6Pr`RYe)Vo8n^$U3ji&Hujf4D`uqvr9#FmMS5kr^3HvB9uPjed^?xAFID7e9zW*0pu-cb3+$;^ z>5)o2V7a`R{xxm(S5T_k&_N9+=*s*7@<&cbo{G1mIg)4k-<50Xa2EcW<3EXo({NU? z$=Cc3;^07Xtx`?>#yTEY{Q8_zfUglo`uv6eO6LTCH#l_hWdDKx_lcE&TtxjdRQ}(U ze2#NyUV)2fydLuF6GRMOJAG~(&#-=9seyf3z)|G)mm;v8Vuh~}C^h|eB|aJ0M$J66 z=AQw{6SBeAl<(Uc{&!`VGTt&NIdc||*nWNFL*Z-0r&go>yK)nr_W$2WnlDFyPw6m6 za!mr=1exEOqU<}RnEML&$v(#s1T`k(fDfl#S3qSQg2J>kpMiHITjwi)4o`UW2-tz& zM|d|H^3rcU`OTfcF9IB?etV`v=gYf4>ui#ZI*^zdBCw79bcPa|ZNRMW^Qj#$iyse) zy5tBSiz8DF3MLx)44~^-)pg0KnkkO}5SJwG{QDJupTmPR@%3P?BKXvhtJ(X%Gd1Iv zHM!nr|0DF}(rV3PUEaLLr?;+W%Y6Laymf>cmyv``Pkd7&*lvY7ow+Rs5zqf5{i}r*BCjXj;`XgEHT)t>t zra76#OivWp_FcRAU!9n~_cJTw!d>{EQBA8gDkASNpUFsoPeZOptTkKMlc?CMT2T^T z>Hv~6xi%C-g}N!lQ=ex^!^?@U&9?eHu>!E-Tlf*WoA#`B?gfEc`*!Y`yeIy}7#bClW0ql+VY!;U!?W_;8P`Xl67{mKo>5HtCG4st16u{w4u61?%Q zm2qWa0muqI zb2-^tj$+?v_gBzJGN+gGMLWLS8m-nhFhVc1ayjL--vh}t$)&na;yVWRz^X>NMNo~v zuP47>n|Vebh*^XB+0I1+W1mAr^iEf1&vF|K_?nYq1S@-P#D=U`?AaoG>zV zKe>1}fH*oL&uf9B_Op5U!9aT8D8}ENJu4j~+H*ZzWT#|<@4$RFx!?}d7>-o8EKi)Q zyT&IdY~+F*(P+`@r0=VSblr%7aUWiSHk<-NH6r*5GiyIGHCw{38bo!8<*Dq}d)?@M zRYonc{e|DtnQUy*3^%c#AYuuq;ESd%Yf#S<2BB4q(C^*PXsQ&bi*t2WN7t6)5@UNqn7jKlknf4LAJJy zXT9HRHwyR||GhB_*(IA>-=k>ubsrwBrk2xHc-lsfk96OHchr8m)KAe~R^B_DQjsI0 zy^JE3q0tc(-2jyliN|Fx;bA{n%a?Sg6{ucb!CEx1)TSCOHHO=2s0@BdiBMZp_?k0h2(_Ui~3ReM0{UVH-) z9fj=K`_K_|){f&a(8~~KdUW%2pm=HZtuNBGG_W~P$vVF0hU2bj{WNCismcVjG1+)) z;4rWB8Cvyu#ZEvv%|qQ%=~?Wbe8U3mSj)WL!x!xB{02({TrQZaY-IPZw$MbPY2^6& z9o&NS_@xl_!d~Z4M>`1bdnEjg_$gMpU6pWNuEoSBjW&wd|072Dsy}9vp^YsU&wWHD z6c4w$|Ebq1$INL$l{qRM0|4w_FIGg6wof-7ST>XVr0_4!~ylp^OOA;Q!V zZw^IEsKA5$FbW6Hl{ZwH{5mpA25XrYZ0#wIky$k60l#RgorbtH(N|YQVZ(^;GqdM; zN#vkSh~hRq8C^~<&)A~vLQd_kMJqzDdu*W`v3}$_N(YdSpwYQcSMd%Akj{AgV^88S zpnL%#;=CJXZKj{7KyMPV&u@(sUx8Cbr--{bmhdDHinfHy?r8avwvFHr-!c-#065z; zEmY%mwyg3O!x>$1lg?FmKf9tC1T9YXax|=SXwCeL2Tfb4(nOx4CB;mcGx2UpIU*oBW6wFG9E?-KKBA{FfOy;;GVgVLqzAzxw~fNeTkxm5A9Z z9`7?!W&)+&7>wA?+6@H%O{8ED61V&Db8Cpz5gBM0gHKj{u!^BZ=%XDWT{#LHC2tpx zb9^S#cO# z!2F&!V9N!RO59lqND=PMKh|7u9geuYqiX?BFpqVe zk#xc;D73hUF}B$6RIm8H+0L-r!*?Ti_F}2D_Nf$KI<;`jnX7Je~ywCA*zKbz|y#K zf#$WgtHw(Ch`ylD0tV*Dor0{}Z6qf(5(2r8|K?ANPfuz5;!phv6d&v}#rA;W++VHg z5ezpP?t!j*E6~betEsXDI)%AVac$>c3^ET`4~sb?%DF8}K`^{7spv;(14xf(1uQMZ zA!HMO_*{j#W5^7mTvM;AQ{(%K%1Vx z%gvmbS-*pIMBbXmk;#zBXl>OAq$<}cF2io;=~jt#i`lB=^WEn)!)jMAnOKC;M3r9O z^9T9Jy__IH{ws?T)#K+-Ei1 zZiXE4j5KrATO<@-|88g0;+`a8x1I;Oc>WkV(=R$8L(6OA{xi@F#K`T8h5f!VEJ=pr zio=$3i~sw;2OP;2_%!#{TCj4$Hokb3#oBlJUOnU>OvCQAJgUX*dbLeYAMF1umt!T5 zKE00yrsL@sHPQcce@N*YSuxcHbiMnC|ADVOVK~Qm%~{oDbM9-_po0=#V~8Gs#pDXg znlH~im?jA%*6%KCx+&Qh>j{_oTIg{xV04&4l9V~sCGpNRm59W@TBNX-J!%9fswurR zIhjIH#b*Dd3Cn1KFTq6`X_j*xF=U$V6Mwj-3xtOWAJ_~{yQ1uBN9Pc5`cAIHQ&+$4 z;0k>=jc39>{+AxyWnBCWJY?2YjAh`!HfDMSD-%)E!u%3v>muhBg_QaM5^Mz|zxqxD zZdz8h9%uYOYwT=+&*U`8)K7XuSIc6YXne>)xz1tSUhl*TW${HZ3h|IX2lZmzC7htT zZkqq6+u4PmTN-=D1KSxYIK>{~D8l6HCfxR-HO#0TnP}}%f8+%jdbQDQ#zM3N=_kBX z1el`t)nLBzhBh<5nXs=8u5xj^5hR`iOaSldfIv3vZ-8Jgxtpky;JZJstBO-kQjgLP z)nGs`rCPL2L z2{54}Rjv)Q3%0GZcbD)?x!K!7TY9zTU8b9=ADh*HVmP_`6=36%nEH?C|)~u5Ue8+3UL*cvbv{?2h#qlAhxt z1mUa=rj7s2nyC0_z&UxF@ylGjqH^t|XU=Bz==9>Zz=IzL`vVeq3llyvkHeB(q(JX~ z$&yRc(>eH{&_|MJNyDmJVu?0Jt8!({Yt%`dF#~S?h`P^Vy4i+pRs4P4TM`1liqELn zGz^{-iky^Ld#w>QVs>}c2GV2Y>d|*hL6@!Ew@5Afrs0?IrH=s3%_~KJ*8Rn@(|>jdQTX+BntsNLZc}ggd@%=Mx(G zh|V3>Q>&C-sc0vCtX|=#!t7sNGmXNpo(RpGCBFCxValw$%2q)A00`Rv97&qKCtn%V zJl3kJnHFZQb2pfVo*gEE9b^QwRXXR1GjnS9^Jl_rV%Laly%r(8?TaH7T3%ouz;+c4 z@22n?V@%@XMwp<=g~txGXx@OMdCe&% z9uG2R5T&oBc0|d7Mf?&qq~o;erjd6ipsS&&R%VW>6t#QD89VxRo}_D|n7;n!lmpOaX33MwAYYq$jIKcW?hjis56iCs{S_fO{>n{1+cAQz7Z31U*~;be zJk&h-&|1_}VSC1r)srp$iE_ni=!`Ab7Ng~XVcAa%=*^5p7rlxvn;KW4-KKUEIJze? z6Sj8fIBBJ0M623})h~A4JP>xdYLq$@RUvbPRP}Cx-Tu731MC+~{C=TDN2SS;x1&i& ziDI5GMCqF#9sXD`wc_c=oqs%IZLWk9%%<~orx6?+Q^KDW$OPv3%|HaX@hDE;{?3Aw zsP@`GTYa>{D}JM(164hX&8>ch=_0Cq396Qg$t2eZX5C*qLJ>>8bsj@2i(PB4O!*89 z)m`+J-_GlZ{P!DVLvM2z=%d99D%o{Z_uvm0B=c#GZ=|S;%8VATj-`mi?LL*-WKvEw z>Z=w`W#NQn;;gr(Ota{nzo@31)8)-E__Hh zcel18UAc0D!a6Q2_P!)f??AIiCy5%B+dQ`-G3hBy@`IG9 zL$hZJE7RTa{D2=TAFt!4Z8X>P z=KKNgx74;`Su^?$AMqXK%~ET*a;qi#RY|A4E82OA3aO{xrn{Im2;G+59ym(-)B3IO z1L1&vVQHNbw?elFRcgNB0gnSpxf@l9a)K`#Dz3V;B#OuFa;3>9!gG%b=M<}}+YdE= z4kjZdrCaY-9o`ka5{2y{Sxrs3I~tdMu%6u1~bQ`tUV#L(0lV>P?E;Z zHTz{R(?dAkdWs1g&OIa-CRah4DWG{>H$vrvb~9@BiI{H7w+_U=3Kj~xO=01_JAHsN zKeYA@BUZ{Azoh3a28x-tiEEn=VG$& zF8aKx!RgIgifgn@L&U^LV4En1!wj#c3nqkyOfMNgX0*LN^&dsS5xTh1NN~$-RF`$ zuRTR@Jd=xF-d}YK^!&~ikV}Xb*quFH{*K19oW1<|sbqM>5lF?&chBb{9-~Pj2 zyv$PBw9UH#{I!K_o+uWU#UrmZV)0F1lstn+$QHYyNopg`!9FGm$H~6#HwZ+pknWu~rg3qu7JY*p1RSP{y zRxPOWATDa){B^9FG-r-x$@HB~K7GNqb|Q7YUebqUP8avx7ggGaYgmRcb1Vn;fxGW= zOgxe>*DPkx4$KS5T@;8idba0E33bzshbM`HDPtwhwnVO+nw#O%bFtm#>)jkO&rSAD z?1=P6x;g1Z{*W6>w&t!#*o{awqdmHSzIdZ;`(c?vqbgI zs0F`9oqJofP7nAPbI%hz?NwTcC(>*o7p_;`1Dbc-w$=YPJuOAp5UfRgxJYyyW!jrdj?e& z)MRf!87YsxM1U*CmL_=fGn758*6pZBbw2v~ked!OA=h$8EQ{P~i5p?ImNP401+_7i zEN9RWub<02RLu-f=wgu5=y8*zf(8=+ts8M|D27!o6XVD<4f0$rnt+Y9y9)b2O!URj zQ&5MG`{I7ED}%#hW(STPmzwR2!hLSJz?~lRNzZucldHMYda&W5@96e&Ti5N~8taD7@!ju_1=#m^!7>GugiiA+^2+ z+ebz^hUJq{$J?Y4Qm+kp;c4@ii=wT}Y_uB&d%K-kKQ+6%S{ob>XsbVF+o~Oy$!{c{ zE^>!DU#r4zXz2EhNrIA@l^7}685Om;PmWa`6g|-N?m>=_=lFE&B+??;ch7>8ZxEy>S5@pP@xV5H!?zcHkIU4cdx!8fin+uFd@29!Wqq`qtRwZLB zX^_MTTT#L@7v?*?hM?;$ovd}Q2-A=5%hv5l13Z*5F`73*-Z~Fp}lCEw08gM+A;sx2V5orvKl=r z?<;DC`& zqSUB(6K$*#mgJunHj`q_ophX(xmuQbjhGNg*AC-RaRP%MWbhpV~LuU9gpFEUk1@%fiXlE!oC?W?q+^@X&5|BVV8; zE@z=W8<5>47u-v9Uy<(jltm$-@!a{3$aXKBj}Ds61=nSV5H6kDJQ4Vfs8Vl7C@r)T z>ywPV$Kc+gy3Ep%WJxoeTAgK3ndd%7+)X5k6F#f@RLg?7P3Q3&b5c)XH{sqk`Lx%p z*)z{Q61G~^#t~!T;LmvZ<>A)enRB6={tUFoZEz(X-OSx*mSdh|Y7?QZ6H5{*hW37m zM$UC-txd>nM6fVFHbZEfZ`PRsc3O|1Tx+)3W#b0!9#MrOrUgE`v zbM;1>E`v|5xYoZXHx6{gWB`A=bD)!5vp}(&;M0VE){8El+9K*dWZ<4^rytEF> zKQ?E3m=8AP4(4bJx6d;@{Jy3Wcc6cD^6iv+Qloqns|D} zabXo|`*yi6qH+!s*1u(0&2uIRZzFchc?>+SRgk(%QGc1iobg1OAC@rv5`14vo^UUC zK*brCX&$pn$CaWujggZ161SMNe=z6ze4JgGU&K3-}0IN z)p3*0!|fLYOLz~{&3G|cO9sVm^;e=6P=VX`nCj?X`zuJB!5BxPn>YS?XY4P+?QechC{_6T gwf_^R=zwC%`v~(jlx8UY&zGty-%u)7xE1`r0GwZra{vGU literal 0 HcmV?d00001 diff --git a/shestakova_maria_lab_3/3.2.png b/shestakova_maria_lab_3/3.2.png new file mode 100644 index 0000000000000000000000000000000000000000..c5d048adb931fc6d2ee9d6ab8a3bb0fb68906b79 GIT binary patch literal 64549 zcmeFZ1z1&E*e(jVz(p@oKsu#6rMr<1>FyTkMnDNc8l<}$lnw!vl#mh-MN&k%xnu3E z?){(t{O8=~KKDMi4i5_!bIm#CoMVpheQ$h&=m)BDm}n$u2nYz63i8q#2na|9;57tA z0b5FrjPnr?FkI}Uq#h_pNl`v{M-t_-F2@>K6>dUj98Q(Jmsn&7#N49hH`#GC48$OKkKQ!?sWOW_dD zPr9A_%lwb8{k{zg+Kj&R`+brXcno&Ir;I#vWR;=QcM%tU~@FF}D%8h}}s{2HuA(LJ>OC84|uBiE9n9 zT7Of-Z%3%F#z%qrybR?|YS-?Q7^Sh`Cu)5| z8awW-TtT#YF}0yJDV=^%CI*|=q31-`N#nNi&qUx>G8jEX-{x zremsVy!M%-!-pcr6ve=7X0pSIy(97LL(fAVm{T5d&8KxLzFD) z%r=CjIW$7m_I7_&%i?FhVXHv$@lQ_$XXSP-)pp7k_t|8Lu{+VEk@%n}%9N43n98@) z#iu?PEnxmg63GijFQmK$4K7gR;-R*ymBXlU%SE_ER6wxo`x1)chfIn6P7GTqSy%44 z=xipx05!UBMAj{8alZCc>^NL(KP8A-uJj@H4?{g4jwMGuf~y;2QQ9jeGYN%4MQV!u zp()Z2v`=7R(VzPtWQcnW>CvyrAj)xR>pV|4S9ey?f>%unF8w>KFs`Lw18-{Td#w>J^KYY| zkaWJIK0p*eTjqS1S;Liyi7*a9$jTXep>&YMW#~rLT@z04KZy~HT8q%^D$3S<>oimx zhBOdj3&T$A(IV=AReLa|p?(XF$b}{aYnzJ9LYhNfnz9QZV1*fsBdCUWtl-)re_vrU z6nVKqw}JRWTr8B5HvGvr&aHm@I!RL4oqqJ6a+1&GX$ci%H4-qSV}=q0ho}o7`eBZe zUX;m0V?&%@@!b*aq?~E66WG3D?&G|9z*PQ>q+n*lb_(4p564zm2zf-@CKq|b+!NX0 ziB9gt1j!-3FRGK={qa;=b`*|BF(K(@acOr32J-9hS;$_PAJm#x;#YK+*ZH1i)tHg# z@gE~Hta@fe-|riTJz3>FCB7uNhW+U2g4sf7LT~j%c2gbUB@O1LUvPE!|qnl`IMoq!>aMJuMk z6Rq@)jv#?A@%V*mVs)aBLV*32eX%{8eV#p|y?K*llSWg3J;PLWxrpXAgF`~qkmy%i zt{mZK?TPKr4AnX%cWF;F8yWfV#T13h+9Kd4TUkDv2wkf@T7 zVs;Mr$GXRo#8!~h@Vw2?$zT~N%RtU3%8=u!vGsCDXsT?QH88C5F<3JgY;?9ivY%`k zw3TyMw`KphR1zR@@d`^}(11ZYvZg`LrexIa<)CMbvxLp0&!Nnr(P6`(s!@J*ESns^ zW{dPmu=6wL`0TjsOyhjxPUBZgZXH-C1GUz!L~}98F?}(2W8!II zPR?nLZXF??zd65sv~VOw!htD?QIDZ>cZy_@zaR5ECIitZ&!WBeOs!wxuKaRBd%_zU z?D%$zaFV&ZZ%9V?=IuP^NU-w@;ily0xJ8(T>wjTE2XX`hrdKby-*0kmt)y zg~>b0BJ|JFM_4Sf&5qNE(<3t9j(DXtr5$B1q%ox3$)Mora*?RptCw%lvzf4*u&}ci zTyl@IN?s#lu1`))9=8wEZkYCSxVufeO*hjtGv;*YB*2Hvr_FcbXxEI`%*B$n@iU;Sn{AElqmf;8UiE>| zwxLOzU@Pik^XpIUC2jGKO;(q_UeEPSN^PlspIEcoOy7DncTk*KtsC>vz2;yE@`Lin z*%Iawg}<=BdjQtO<>vNA=33j>$(deeU1(j~fao#z$(Qr*d)s?9=OyPZCqJMZ=qo5% z5Mi`N=-1o3SpEa`7FPAg4aUfVw-v(TP&#ZbYS-)UhSjaquB@)4z+OHNf38A>Ejc2^ zEm66sFN$%5osXBU)iZ~lAcD6qLDe;r} z%Mbcl`XRgwTwXi|1|9lNH8fR&7gL;WhyAbc*y--lKTF)!kY|i$Y}52*h)^~VEAyzo z_?rKgzj#*pZH~KH`RA#fvcVEN)i0{|6BXrE6hEb&N8cT(S~)Iu`@mOnv^U$1*`9hS zek~N3+O1YAyT|g0JwWCB0HZ6WiP)$Y!K|$IVLzc0ZpSFb*ka0=D6^1*+KjlD#&Hj6 zQ`S_Lg*lm9%IUD@i_Npi1zM~`YK1|J9O7-8LwTCQHmfMdr;#|w7O=!e}=w^4}yXWCSM?L;OPwCjgC&S~SG!y^2{#S*KUnkv{_MeHxoz?9Oh7fEr8|e5}F1~)+s@T3YuoXP*_tCb7 zQSZR}`)L#JcG~vSk5^5B^XKSA&P5A+5BP@oJ(FZorkxrWTkXG;sPw9QUz1q7&41U) zxcTgg@H(a9;jI=O7w#pU`tM)7CXOH8@AaC}($h`arQID~IP=t9t^StN9$3EU)Y@iw zvM#bJLgr_2l3jLKS-EJ_=wd}+Kv%OhFXj`p9kO!k(RAGOeJn1l6jG$fuaU-=S?33_ zeK?Vsao%KQ*Kf8`N8~o;o;f_v(B~Ct>Ya~!{q=RT#g{nV>5CbPtLe>;BAC{gYlBB| zHNp~tb*KH^Z$n>n#3l~xY7&=_^Q$<#_VZoc+_s_5vJ<@Pc6|A2+@mB@e}rM|;-yRL zipS?!nVM%!slsg2hF)F%hx{kYan0V1Q-(j=H9l^AGFawo{@y~sn8JrIv>aTgEu45YI8C9{su?VGo0?BCi za`b$RNmuky8kfjqU+Q?OQ1L0|&!p$HH}5(H%M4iUUW5%2zaFN=5&;nrWiu&hAIE<<@?W3)w?}GwSh-8NIDu1oivIJsex3H;AO1Q}m>quS|LTdqyZNuJpr1w2 zgxUW*Gf}iOHK!c#7)kA<)wIBGFv#Fvh?d~Ty}y6M-y4XM(wbf)Ac!Labr+qB1u}C2y9-2sp9tk0M0HakLl^Z2S{5&L| zSZn$AXOP-e&4sVEua}LNm)C2*oRfpOm%HU#+2t-ryTY1BGY@|n`>ZA3k)%PyrTqOJ z<%ab0UZZ&yql-Ket@y9+rw9>*6p(**g5n~gRZ)hlIVl7~bhSZ(-~itE8nB?EMXrFHsf~N zhaCF#mI;?<2NmZzB7Qn-hOMRx&9$rGEIm}-^k}QF1%slTMmA=A z%*RxfQnOfDqs7^XQKK+QE`&iXdnk_VzUA9Qy8Y9i7V-WS3`y)J#w2`>rRA^u&)oGp ze4C~#hR+iaQ2V(+AL*ftwluJZJYMpV+bbZJwd%awS9;}lQk~MT%a4SLOZ#AzM=p-k z7ptE@7CE70?)dwH)$z{Ue3_FmW257wcI7?P@EFjML*oar-(_=T@v=5*i}R;MnP-G=udgoX+*bQF@+6Vz4Baj-&pe3vowKsQ ztp(j#Sc#H+kMgpgDN#HM^?_|f>#ft{V=4~YaY}^*>ImFhJ_p~l3%J_6z9;4cUC)We zMy+KuJA70%4m`6us$LGd=^z#LpDjXZa`>3Sq+MRxs9mA+_9+3g;eJ)1WS-R#x%rhm z%rvU^4eRGnDnz6$jfdLAsY%dpIdB~-(88Oi*rQjdJdv*;R zSbjsfS8dd0ecowcp3Y@8)#Um${tkP#DOLYW)k8X~cS-x#7e6Y@6V7a9TCRyCs`Tpe zU*8PG-lbE|m)2;sRi6kK-3nOgMvN=BCwrrdTT6+E#)|HRR$(cE)MP)MSgu`B{!}H6 zL!$P)*8AtG{X2)1?hyAc1DG|*)tV)7TIE^_CRL>b{y$eEE{_*n_CI!AYtykBx9fqk zmsoArob9i@(5W(btHj<>SVD~L8cz{;+LLHr5p;8%$fV8m%6;vr|IxJWfc^GhP5b`S z48?FFu1q0}!mCehk9B+TC4bD;S!k4NF$*PQRy4KyxI!@b z5*7&?=Wvl^etzC{Jn!(K)y?A3jY=k8nJ=w!+Jl#OgTBu-$Q7&QI4iGmqCO9nfj+R+ zFQn1Kbimt~tt&7Xh)*aS6T2~F(yeBJJ*Wi(=4}e=L*=^WsOaf>6ugIB}_!oI$J zfxaI@kzp-~&P=w@Xjf3o@)M=&=DO`Qd7ui>_u!}y2}hL-9tE<8o2l%Q%=PCe^MNY1 zpG7#fZgWPei@V;wDO7k--qPi{nP?!fCCU{wQ4n_O6+H-9Eyq{memr1C*p8)+rdHtDXqGvR6CJYVJhl9=ojRlFMJO-^6b&q zcgr+OGG<6=)ZaWM(DVVFQ$Zp)Av#QzG~eu05$~Cf${H@?eK5j5eYE|tMtAh<{M{ne zmj=4X_h<&jedfwtlDInfimF=2Z zRmvlDst4U%ENf45G~JefT&zB0PrAXrw504Gu2f28dslazN`m98}k&-8LB4%{fBm24ib^)Qj3$F~@CyaH}f9cjs7 zk}BOA<99W?pZg-8iurHFSnr7ab$PLp+d~O7`yiwcFB_B5^vi>Jl{`kgrS#wQt!ruE zmsozSkv)k>Y+<7QJJLiL*K%n(?k!+0DrWH5B^~&61zs&SBro5&>@u~Mbl6+zvCqJn zG%^XgY8pIpjf+eRquN`q)Nc@e7tYnAY#S2Iw`Nzl&~?lbe|FA^S=~f^Y?^SkJHRj5OzOiw;U?E60ugQH)u_wNbO85yO zjIbcXTh$IEpc#;WtX_7Ss<6mYf+VHL(xZmXj1HQr{D{lhwB)NR)Z13CJ}#UBn{&Uf;(s|eghxX5q?siVbo@{T9v1Np>V78ei^x;9f>0m&KJ{^nAYwm9 zZzS2y=46TeqntVgqJ#-a{uok0jnN!2mtmbiiMe_!&Aap#^An%aJ0!wTe7iNc^N_nJ zE4_q$_6z;NRAW17?u({xq^72ZBpiLhq}DnxfE&=)4DydbE>ZUUTZbLgBv1mBFZ_mU&w0 zFP$VuJhDQ&+~lB3U_@#MA`=xY>`8a#gNa?M>5pTg7s@hbL5CX&!9{H$m_$9p&D>z# z7~IHwlvBccx+KejqlDS%%h7O+-3aa?-DlWi4YgtI-JHjFKMaf`s2w4Qxz7Tb-14@_3BE`afH#`Df$>kMI zd}BtPO+|=E3Al*k#pXg3uyeSWrP{ww-JO|EI5@OWiW-_o$YwaZqe0-$RnO{8nGfb= ze)XGoyittGH0C#=j^9IT@nE4aw=@Icfb+)9i*P0!KjCKE2}v29!71j@KytA_Lm6v1 zN?mE=NGef+;%|#5q!^7?A!t?LD$%k|%%Gl6om^qh(9x-CZ|BkXK6jySM5+>tARPK2 z-@ODz$Ihpq$^aOu>0DPc|5Ciz^}VPaXY1K~89b#Z5|?HZisH0dernm;T1L*}k6|0# zin1evgO1X-f7mSAOzd1GJehvpb-DknW#@VEUBL`(NWr6n^|8nL6Lu_j*c>+SI>! zhbsz5+BSzY4<&xn4pRwmv4lJLI?=y5MmI4SPgxW3j>x|mK`=77Y5iJFJ-Rb{F|yk{=aiU5_b$D(C?&pZhr9LxjH*ocmF=mE9iGzDI9n? zOOt~-L;0LRjr?u4NSj*nT%ARvu;1};QKkNkn9shn>PsQIk2NNb8QO5DHkX-bt z-A`>w09SOlhphGEJqEcG@vd23Q^<&Dc? zE7khw%NHO_zXNH~u=)$?uO}oBB0dz6f`UUajz_QjfTG=i#6(JMrQ>AjMaz=!`;w=p z%#Dqi#;vXr^eP#&AklwFJXQQP0OBZN4wBmdoa}#ZS>754ATGbSkV&hQ(r&U?doxY; z@_f7Ih)WnM5`xdD(W*=)=}Ew%_dwfmG)vI_T(@HF=a<1IsVnWf6TMLc;XEup`(G1j zLR-ym^mKc8xYawYA)C;IaE4pUP(RwJ6nC!)Mw5 zAQlkG4+W%nl@hstVQJJ`Drl#>eHnNQU>7d~LMUlHzA(Cv32o-@>=lcV9UG6!f6S6#yz02>*5uWq0qNbAxKr<~-lQjEw@1ObZ z#mlceN+R)^y}~3T&=dehoo3w4yr)jhXwX>tbtF?4&V6Mqu}B3dTjeaDT)^pYG*Zld zHznH2c$d|CLeQA9Wom_b+q-0DrDEmuDUlTz76l!Y!0^XNH%fu%B;g<54AyQ$1QN0Vw|WirU*>6}@xNy!T7XxtC=R!Z7RP&23# z$?riJ5lk08bMd3A1_H}{9dEk^cs{_i1<#TIp*4!Nq*Kk(<9L?@*wyqM*hAM+FaCmY zN%G=SNL7kj?4A^#JIiTa&W(KDF(uMI%Z9A4gOfF}L*w z6>L#%YlQ_1$Cd|l%?@Lf0&6(ZY{2Eu!E^cL{%E`~(Q=tQs~s}(7k>*t;$I==Dz+lN zhw_2fXEq&tL=!!>*u~S0jJ(ij@bI>*T){Jx>nWWCA_F6sD0fczh^ze1_CM5`NhODC zyDl_4aa*@Rt7zonh8`~mtS835VDGxrh*j=cF9W27?M(KD^Hjb{zhQumLewOKMohMC zF|5X367@TUuy-wq0{2q)y+goC>2J~6c1^f-|^07{XS-=K9P3V)z3i+d+CvYDFrLvGeFQyP-VAQ8bvLKVDTE@+UpyE zic-`^74&U5oz03T4;k@e)kFSN;VdG#otbK*3ja64Xm3oBB6Ki%zgGR7s7Tc)zXJAr z!tnuO<9@30YN6JwFG&nfwsBF0=$-i*rGK)i-^nh4K*ZgVd(t}9hK#3f{L-Rwh73fq zZ(s*X4H(2+@*pZF&rW^-3QHO3M;dDCDJ?P`R$uO_>olx4jiqg$18`OmtaXA^Y||s; zx_MpWT$b7eu_7du%vRWcC52jy5IsBtnAX4qedSc&J?vf@Y3qy!(UmbNHuPHlI0o}a zOU5|-XaxotUpo9=0dV#n3`)zJ>#JS;{OKIY_rh@`FF%Wr6Vv~l`~{*wKeM{faH-c# zg`+jw%(b|f6u$ZV1v&Cj!JF{$-Ybr)+dW6AU6(Q(?~+9We3Oei?)VSFx+gb=;)SaK z@WwZoZ|K$i>*7LMrMmYe9X7`ELcjaMSjpADTs5WP8tneaq?ABf8^WewgHT0K@jxV{ ziBu}YWIJTzNbQC-2BBF`_pmt{a0E-#$Ve`3qa)T*1_O%pm-47eW$KeRT_A@oL3Ha> z3X_Cq$Ypl`+ucRfAaHrgHH348KI?1K)ny~~tPVx-Nje+kG6Hbtofdz(NbT&0s58U{!5m| z+SPrEo72d7Le#n*(VI(;)aHZmUjceY74*$}fz`0&NSJ1tZ2xr-^b|D@{+Hz6SYIgz z!qiB@YhQRQ(692jHJ;!J7%ZBr2-gO#-)2^A&Bl5Nm~~p)g8*?`3&R$DV7K?B*Eldu zR@(A$%oDRM*pmQk9G2+-&9w*URl3GLGG|3)ir4FR<}p5_hTY?txicBK>o(eWP7_De z>(I?X5VNTRWj!Rr_&HX)`r=P_Q-khCo}Imob3r9*oyqT#ViI`vra(Sd5J5H7>HOejy{?k@q8D@V_G7_gWPWqD36E2 z#zaeulBwq&T>;|*mIKMG70;;qM*kmuu z@&{^*BTc}yc2>vs-&Y6Dl1~pd@zSLHMo2(Eu?70cQ$jxDzuClJ6Gj~mY|6k<`UCBs zi#GzwC4+vK{SUUM3@HULU1lVT?$5=`QyKs)pC1u>2T0|=juoGRZ?f*k{d+3Hf5KP+ z2bky`c=oRY?ZGB>ZgbRs-8B&Ws%*`^$o%U-Ua+Z@xDN8Wad6kqK;Jah{-plbf&Vvj zSJb1tqpgaXcW`~z{&@8b`dqWq!>J}qR9shtkbIeEip`F5v;pUb`x_H9a0i3*zLzr4 zM3f&!)&r@PcjO?Y_3;m5pVPg(7RTa+H1Py#8Cu{WY@PXBp4J(@a+guf7G_LkH)(dO z(0hdIDhiL@fXlu(Sq?H$OuCn+8E}313a);Mts|leB#3wVpA`Zska+*GbNn|6SEt2R z^%QoK-2`0#^UI9dn&o^gQE#DOJO?_coKCn8AI)fM*q+ zQ-)+W1K_D&XC48N6&mXuQn!7`n99d$BRZ$~#`3E)z=+6W2+>AG3jv0TQl4bQ6rA<5qTgXl z@>m~L_)w?-pPm}8+^wQ1#5yw+Nd?^tGgPOT%<&BzK2~c_#u#KDqt(q6tK5wS#(=Q* zp7{CE_F$P5X51}f5ay}P%*@K^?ywst={H!v1*B{G)z2Vi*@l653icA!m+s;fa}Zot zLO7QKc7xIr3}XDITeq=>0C`^f5p>f=f>JW>KGWAf(~8?&+PBgZ21mkhhk#hrzZF+% zK!eqw@p&ShQh6bO@vWyUBoQ;f*_y&H_-Q~YRcdB{+w8I|n$G8xA@q&i1~z^jBq<$F z!uzf-2iwFPptow0HtP`*{nwsl+$5tq&x6CD{ZGe35AGMs@Hx)rjtA_&1;7W(H)BcXN|AE6s`kU5UtH<))sDzEh*4~+Olf+ z7=qQufP`1ZXw8z5#$gsJ_e`TiwMv#V!3`KUz*2cC_gA(LPk}$53Z1H?ZXuvMFKM8$ zk|AT0DpMN0_B^*G$PQ|-dx=KCBp-%?i62q*u;m@FYaUVWjWO!g<_dMWehwY9mA$?^ zE3z1jW4ifJq{QX9@!-mUd^QK+^1}Ccr;KD(rIZG*p!n?z2HmlbK;Hkp?Aja*A(aJz z^?l48AOH~*zmY*YrPip_5K)oCGyI1q2M+vx84xI1npo`<`<7%L87g1)e807@h~wP+5-i!_5Mn zY$|DpsAC;TENIJGk{P%fiiR}dgTRH;wqR_`np}5`<_7Uku)$=G=`PIn)9WV6D8^xv zn+#wTDOMRYR7CE)X#l8tN(mh&i&eOSuKm$iGY=Um zh#!Lsc=M^#=Dn13F36uuANb8psIDhsh`F_FQA{ds-9E!26DnPu9k@L@&a;lgfoH($ zFoWMe7AlY<^r$>b#1GT}`WTH73IaParB5hnq>eA7-s-(#fo$wlVu19Sal3b2rAgOP zjpAJkmn!3qdCv>-F6W`%6k1dI#s})*0UWzFZ_A{VyeODukc5EL14aT|J+6HXV@9sK z!eS9Zr2i~{&EV}nD+;uUSnE&iKHRMY>z||~yEDh#YcL{G?&D;?2yTL#Q59l(cO!AT z`Glcs2q6#;Y}GA?hGn3W`~2uQ(Q-Sr>JfYPO&JL&(YpC0RSO+{Eg9x~4vecMX3rY% z7*vN^-M$Pz<%k86SvcriNobA>89x*lGIFBl8#DnHn?vT*GBSk^TbvVFAM$DM0Qw4Z zbdd32LsXHbTKS&FX(3GV)CO@3GAy!EC1(c5wc+7lq{!DEsC+>~^oN<>C3h;C%@*;q z1jA#(UR3r?tpYE`&t?=XQlhGhJ?abC#!^R{C9pSZ*>?a>{0iI_w&a_=KI|f37&2jw z5oEIi>I&`^Vq|L;LC{RiX%LM|2l4alAtutiC)=lkH>(;hi=;{kBPVBr8@4JTw+?_U z-OjfS1|8D6m&**`z&*=Yj-OsXdY7>DP`~(oSg@Ogn>5x5)Ak_k69sNeu%6>DYTex|rGY84zm z0Wlk&#XnayOJHJdWmf2=cqjz5(D!I76mzIXxZ4L=# zYh;-*)`^588b>8cU~Gj_DC3yp*}=Q$2n=ieu6RAEKRG=UH+Q_=Zm@3t4;GkV0P^3J zs5#~@B?dI32=vHevO)V_Y!#%E95AepE~0p8f9sL8j9`#vdXZMB{9*>QrU3wW%>1C4 zdHx$*br*y2<2dhD$@d#&{I3i8Pd#L=ZA-vvpap^jJ(!WHa`EJErz>>VK)A-m!7S zzDs_8YY=c%tE=;)dds)C@xt^1Vd9`bpvbtxSJASq1sduAB$%z6b%1LY8+=rOgN6v7 zA0WFW?(Mn4YbBNzLD*HymyV{D2!;60gJ5n6gt~J%JKQTuu?FQQBc3hElqsoiIu5iX;% zNQ10a@v8!4`s-wg+I!%0PAAFz7igvtMxhe{L869j94wcr(=h5*XO;J*bK6*gjOu=U z>BAeLl`oB&oGR?&o*dsr@pU3gDp%nJJuV?(F^T8TRhe{Nhm@tkWG3xIKoR8ux`Gtw ze;JHV)htmJEcxk(iYgE;{vd*|^ARSwupTbG@;!d%#pgh*MfX>VnaP(yXVkARRLtPE ziE~_N9!VRqz^!EsN%Ou2iU}hTLEpUrV1C1kG1!FPrLwaF*H#NIJblA&M<=_;Io$p9 zkjru?_u3`yFI+<)Spi~1d7i^eC0wnruO-1ekm}6+K3nbGr zgQjxDf}A*Xl7$>oT0EKz4i^)xgh>5c$`oI2w!!R3kcQjsu#j9dR+D*Dxn+>G%kuRE zn}7#y!e&8?>k0`e%?>Jvp8=f?FKw|W!HFGQ#w^AJ1xscAp0e@eRTn=5kW@)s!qsh^ zmOG7(I*4&&e0%J&0XV{%gjeZEGBwsFqA=Ux>XRoj4 zw&Oqyu{MT~a+}2#jK%;%Z?m#wP}z36QeP7$hHjz?Fg}ybSoT^}O2cc=Hf4z39RsWP zDFgzi)J(#nl!WZYmCZ0W%7=W>5Mk))#pUCzDFr8^2zJ`-nW`6H$IX-BEWrlKT&rwh zA1#v5bjk3EEC~Sq@~og2!Jl|}zC@+ShSt!Usvy;Y2c%dIScd%t*@|hfh=VA8rM4@) z%{y#{dhk*eCXd4n^>hKZe7QHUVO%PN+BPJtxOiUA25OGCzDZ4a0QH)%ta^8?wC4w zr2hiITqa=bIIo$T%^>X%1v`0z6i)SJAeNiCmj?&~Fx)7Dyoj>ccu}AS>j~ATaZp+I zw9tp-!lHH$;yc7Yzqs|V(Kg{D<1w4jYbak%AmFNpThmI&{FsVT-jjL^xzYDbyiiQL z*Y$pocT%CA!lNDfX#4CFxrdA(1e2$W2E0~FwxGhTy&oc;eZ!((FMqQ8X_` zaDw9P-3qr{XButOE0#}JCOUhEY_Rdn4pvOiI0Wodnw?{zDr!4Ov zhT|&J9teP}-M#>FRDNWrObCMl`7RhKQxPadCW7r2XylXO90FYyif%uaIu>cPaNNGJ zhxhjMMgfYo5m;@@2$=zsbn4zW;ETPS^KO0$A%!bY?-65WA-J^|h|nq^9+U|v?!A@t zXEj))3ZAt)4XGhN&jHHW|AIdMj|YcvwE;Xp1>k-b^dIbfmYQpO?2@#m7Yx}^%(b1! zhjST)9MKM8;K@`QcQ6gck-dnDg63p|cNHKZqm}x>WscF8_Zb*evz{-sxLkOOpwDIg z*Xq*aK0QBNR{{8G0Zvf_{3O5M`|A7=F^8%6-=~$OH0ksQ!T{OZm-k!brm0%_oEPuC zPh~$Dn#83X-g_L*&boUHYE$*Q0z1Hb?iYEsjz#rbT*95(RS8|0Z}(~N4FpW;TlRzv1+saM&xaVD(B+-=Xl@bF-256(}yHRZ3A_ zee2kT@Z_tQ;mJ!7Q6-1C>7*!(WmROLn3YA$Qkq=zgIBO;M z;aP{-ekhC%kBBHkF>3c#2LeXXiQB()uO8c()1P0~rph!&?SvmnB4JU%JoDCKH9@{X z7GemAF6pk%{=MvvRiRHi4f85y`e;obwDUP))d8@fHm ziUZVcpI4yzv^?+r?3Lu+X`sN861FXgJ{bYv z+Jo3Zj+2($OCa|2}+^B=aHSeRIf}T>~6W>S%b_q=IMgC7*S&9&8K>A|kZGBxo#Tl?hSc^&Ms% zWnK#A+dxR#4(;72cyzjFmM-Gge9a%W&Eb^BWu?eV4W_E?r=Y<#df_@c#Dej8U_Nj8 zH9Rq$LRUS&H?Z~uo<<%6tU_}8g_@|FetwM0=4o;KW+EsMjmSoE5J#$$M__(in~y<} z2-MGHDyb(!plaLD9sy^%+UWk;WgLdT#9XaenCaV~GL51n8WA|Cqy87DD_CTMVc7sD zue=W5V06=?xj!8a8F>m_53_je5;v!w>O85TUEx9MWP^rKr~<7)<;%opm)lt5XV-ccHG&CE(EEJ(N2DhJ*HDAW#WlS6?eC;e(b ziyCwg5@LbNG$?1DZir8gwtn&p=n=(Q!3dG4X#OWaPmjQ0_q4Vgjk%c1dbqTHWytOu z$4(&Gm_qj`gh{8elsbTB<=!gANE)XU%ynwGwj5r;e0~S_GGOHvVGwszPlTPEGMTyb zGeqVQ=sf?(AK3-YGgCqk^50u{mKR1a)(p?+)T{?yI|6Kj zpSB_qDYtRy1)d``f0np+J4Uv9G3-SKFELIR=PG*NJ3~VY>zDT*>)chfAaIE%7a_X* zh>?gnS)1;iBO0JJ^7zM6RdL!#MhMxhTFfy}3}d<2>SiqiciUi+ND>4Fr>;H5E*uS} zG4hdPh{yh6DmkJ?fUFe6ojrqONg`mz`j7%A10GAvKsj-+zv{d*Md!qB)zF0nr8qEgwh9ujxEj{LU5MT?k*a z5ync5T~Q`_vBNC^aq7o82L|m|far$u6M|`=-RWctd$!DP_GFMu?)h_8e)tZQxcN{9 zYHCT?^QnLusTgRV8hYFj!2Iaie#sIy7FNeVCeVhGp6G{Qi(Ni=dWXH5}DJs=taUv_8_s2vjBzU_7&sGCZZ~ZV#}~Ouv*t;-mX5(ltf?Ez&hZOt==q z;>?*~q3B)*-&7unTnE;wKk5lZ)^=ni?E^-BS>P0EkYK1dVBdwH;HsQ8D*ef(1rWX7 zzXZA+yap(n-*rVCn`##db%dbKW&s#Wcx)$SIsg!WkIWG$#Vd7jSXzbpbUY`fHFZOp zj|yj>?gu~|GxiB%4&j6R2MOa*5<^KI)M+l|B^rn z_(H$z#9$Kul`nhW^!`x-X;7Pu;MP+84@^&gdli6Zi^M~aw#c!`g`WfW4qkEh71(;BMq`r4 z^bZQaRXe*eTVlMNwN1>(VP(JbOI$WZm5JR`Ee`e2nQ1e6;AdFK%= zkle_jl>ZT(8Z@6gXRJ28yrn&{s?e5f^tKJOuj1n@n?6~!Q!?1i2`os zM;NwMi}hB|hBNuq?yoTekvsz0|9ZSvEDm1b4%cco!YxxHeTt8jUIG zD-lrr&0^U4K;?{1B|{5{ne@rbx+wrwR+RN8(8!fnPO-Ed_$L+qhVjA~9#Bv_Dc#%Ks}%+o-rZ}k9{F(53Tj3*3S==A5^1ANc^ocJ zf4Xl?F|PAuvr-{O!hj=gbvcOGRSD{_1t4^p5=hk$jx7%FJyV4=jy#Z1q@I9Mp1mqA z1CSaD!P+|}J8%K@P78b%&G6+N986EtW58OFze-Q{0mJyCC&qcAeOQyso(&ZToR|)* zI@@|h%xj+%DMk^l12C-iLr~{R1MpIlOq-qpZj=%Ph}Au39U!IJzk^ItoT7kg&7;=- zOs7~W$V&SnFodU9K{k8`Rso3^m=r4$+s!wYDMr@7{n7f1PhKnD;3t&N6(gP^K5=>w|JnEU~3JOw4W=h^S>;GF{+;^BR zrvvNqwCxTj-6Sk7@M0{@rSZN2vlP3aI8AimfY)nBk9Gq1DL_=72`7Bg!a0oD2K?3- zBFq zSEy=^3f=b_fw*0LzEnvCTiFXJ8s{qL;Az5u>2}^tu1}VHv1hlLjaLrhyn$3R2)EO%Kt;{J+5}VY2Bz zV6`@?6jVUJTQmQUVAWjaZ~3tj=bI?R`Eo$ic~QV9SP+l@p$yUujp=1u)NmI{punT; z8G=eKPkw=q79`}8aXdC~`;+XxR}y@==o52KJQ^c_f43et5BR{{sJ*H-fEb^WQtMf) z!BOg?MA^KEwYP)u6dw=3DlSzz)5EIX)#>RMv#6qjs7x16)w=r_XUtyNmt? z#tSVqXt7}_&hw255f`9f{TDFS0xf+9Ws?BKWU!imGJz$jH-s{(zbsoFJaeW1piPDb z7g#^hjyTOv1ShzePd@yn7FuD_7Fxw7j9Tjv^7Pp6&WT>YSPp zfmzO$+k-MN-wF8gx7818z$-1HN@J8J8X<p+f_^Ph7F* zk8!hvJWKjK7;w6$Oh7=GI=*kKtA$7p3Nk8JNAuw5b($KN^e!g40t^XZVy*5K2kDmG zDCLTZ?W>kJ$@edz0KFT)D@xBkI08BRUR?|ss_Csq;qKkGz=ahk)6a~dQil!Ue@r9R zIW+IH+qv_!%r_=*Vn+=jGx}t6QjXUWsD<`V=PI>lIT052;LcKQZWNrNvHpcp88*u1NBwtO0D2EH6>3#%JK%;+NKbIFBf{mABU)ZT!t%%?8 z5U8gPuvblC(JurAoc8G1K!{oUveEgG%D;1^1bNUGrScH9q6#hVrVfVWhQa_!;{jB6 zE4u+!^u0IF?&#WiSMT}5CvYVky%=2e%mX*%w~mR1H4N7==OuS;HpxBl|HzlyHO3v~ zeB}d6c~MmnDivnTy46}@Tj5=#61j@WOd4%oPSb?_%6*5N#n8GnRj@9JJO}0j>Q)YC zJr{9cvrybxLAWLQn6kpf=`Tdt)E|no<7CUTlQj+uAA-@IwB5iM@os32{*x!R zc-%2yIa-0KtDa&3%rNHvAym}(-wPG@ZuS9+ao_){0G906cibJAe-Ye=3TiE;%QWS{ zs%BEU0U$*U-7)dUu@WStL~O$uN@dSk`9TRsirSGY^Q~?LEGC_cG-^u091efm$x2Ee zOmf76*nkI?3JQ%j?1Wtj5&hM{3fpWTWwM6-cce_f9ec&1z|@nO(?YAdhf^1f`EPXS z`~Ck+bO^a&25Gl48?h?+VY6cbNMLp){&asEjObMW-@d==(w>(AfUM&y@GlkY4gkGp z0?TChMl7gNXOqP*j=vW@$dfET_wEGNQ)%&KBE1R|@V7M!I)D(Ws~HU{^|dCW2b%f* zk77h36H|w&QYruuabm1vDa4FHQQ}(GKm#4^3Jk8i0?_juSQ+;WL4hBRzuve!B^&HN zm(O*#ytDmx`P>lDGGpdGG}x&1loH8uKEWbm0>jDUExSo)JCEb+gCbC?B=mt%J{8@^ z932T*Tqyu~l>X1e%-7?-H&-WXp!ir<8LS<504uH>4Oibc514_9I_JsaSn67jb=7o1 zkK)_0TvqSoK`oZHkbe^)i(YPO&*3Vldakv_Oz|%RVUCIna+S8&gHXjc|tAR z!iX5-i$%gCufl0D(I1YACv1=?^vHhmV@-~t7@$o+9DP%Ofd`^LSo97I9DyTF^M2?n zu=>XK;qYUI5It&yE+*hiOTKk9xLwdebQIzA>9zK^|Bbx24ytku`$m;qbf+{(NH<6d zix5ymLPA<#(MSnMOG=8;2$D(*EE?&M?gr^@L^{sB+}pkPJ7>N#=dUwozHdfmWKqw0 zo;$AVS9jmXt*5o1nNZHt$OXkZ%ckrJun2OU{mCp4INzxHRC0wO&&QjA@soMvU9g%u z;G)kc#auaJV2IX+0ieoeN4(?`9`M6wO@wCH!8d1XX;z_!fFy3aLT;4_N0g3~f0vH4 z0Np&OG!j@Miv@)v)+H5h1f<0!K?q!a_TgaD9GMq9{Ak)@7kviZKDI#{X3xEtQH_+ z$kVTN?K-2TIF%_iZb2hSE&`-Al7dG8wB@bbDGVqb0NI-T@V&fJJXawp$s04Cv2T zjVIUi?F4!lWndf{t)-Fh&|rR?vaW_)@IwxAOQh|80fvGKVqyC9=4$SS?H-VJd5CBy zColqT8^7yzCIQdMe3toMz~Ah+`ad`*>#R9Q^i@WXDE~iIsg=Pcj`6V7{|idpSoZ%;scY*8s^tS3(@ieW-Wp8b z7_b7kbGBd;er3FE3vG_CVFYx$kN{;43XmbBH;a-F&qnbQivI>btKYnAbPvX*KEf9@ z@AdmG^97wF;S)j~5QTtMlfvx{9k$zqc~A^Tu)C)T?$W#~JX4j)Y<|XqC}I6jk>FpTsSgwB=Hdp12`zI+o+U({NtDQMR^Wh0^<8WZd`zjwo(COM1pCj*uTCDUo249lTnG& z|It3u0Z0f)H=Q`#S^m*g5;}mGiWUDiEdQdZ_)Y*|HHo~t_a8e57kKHp!~P!=64<0n zB7ruxr)2pf`2XMk8Uuma5(_u=Z=e<+w$eQaXNhQB9nrtYY!$-D-PH8QoD6IzA)-Km z$=eb0>R)HcZ8Go@mx!Cpzwj-u0&usiY9BuS_e$qwK%0b${>O*~F695Co25pe2(~*w zzRCjx>@H$;2U2RGJmrKx$o0$L8hOCu+yyh8#up)NL=f*0Fif-*gEor` zjPV%IJtoH)XOu&nx5gd;O=iwBD*&)5@oZt>-d~@oE<-3Iivd9ZR|KPaZ(Q(iTzvjH z5fDF#N-;1rGxlcR`ukBX5+ig?fQ5<$ZR6`k94xH&z)1e(2(%5|0K1gv z;_*W%kog20<5s-4Hu(XedUka(SNK$L>@Od4qd&rx-IxUk(imVi^mB3nO|lAaQ~wq) zaK-{5&b_o^U~>NsZrf;HB?9^bVkDK~VZwz*@VqQL6L>S36r-gh?%M!?-R@iiH-cJj zb4UY}yH)&`XClyN1=?!Vz#gv_QIAl;9Q0WBtE6TXMx!)M=uf}ylkjudY zj4_*qPhQpC07V7LejJSf#p}UjB^TK0{Vh8{5tSWS&GgaxA zwNHHPwLs)mdBP$9flHk?o+8wj#J~*?wt}M6cmRp!t37cD!TI?Nrn7Q}add{PcR4$f z|4jAZ2H5yfeWU=U9g4H zj)tq_jo~qtiRTk(Lhl1eh{Vu4e4<}IVDQ`p3fP>Jjtqa$LAkj!%U@)^mVm+lUaB%j z#$fS1nm)(99U86+?6P`fA?@N+vP}Ner1DkC6$wa;83;iOxQc2rHUF*8Y2Gm)55!}+ z&Dp;}rW>v)+JiAem z0DBGCD4x3CTWDxN`bLxKD`+*s^W$lRqOm|fS$g38py1%G`p5W#>&Qp6^4S8{Kh9N& zbidr13fUs4#Trk)5unWj7?>#fwd^MlL2?J0HCoYWJwHV~O_B7{y*}&rsTqOW&DK~6poMA+MXmfy`W<=o1z>*p zgKVwN&CVYNc?h+DmnJsgRxV2@J8bpkV=2%q*BgQ>3f!|O!f z#bcov^_Ow+%7Wm)`O*(Jya^yxT>&=yXB|_;K*W;Erj`Pxn=Y`M6`AFZOBcVYp7c>Y zKiMlrDdLvtCVz!xVue6EEe#Vc6uUtq^daPGZ~6;a=0Nj3g%Hb~bD$df{yTQW8K@C? z*E4lND$RtqH_%>(d-*k#fd+D8@p$g$y0ROI%v9%ZZ~CPVQVBC0I6LnFlx(2dlnLuv zYk$&jVVXDRX2vV)zUwwCxuCx)L~?#%+Em~aPY`s8|53#N{ocqRdrHYHdg9+x-wq6> zN~C0ziIhMw`81Q3977;U?F*M)h067>Vjqe!xmub~P=O!p%e8!9(n4xBVGPowlVK!Yixxy?3uuI4stRi4(Z3} za*XgDL2cy7HVh=Pf}??Er~51~EB`hjX*g=gSpS{kaH98}CCxJ;1y!FDTdq9rVmRzn1gCJD9vUWrWwCZ?ZQ9msJjO2PnbDi#~eX;b4{ij*@99gVhi5 z&#p-xM7P?RD(`yM`%Oh96`cVtb8ra+k8Mn1Kf(~@z#@Ym5Nu4rur6N<%u$_=sQ{$f z3qRSV@we9FC%1G6*a0eOPp}^zF+|R(?)i5Gg_~1pIytS0)7Cvs%Y$Hw> zy^;CVXW&L(crZ@|;(wf6zKsTIv8K{S_&DEq6Kh}pRcC|fj2#5e(fz*x?&4E1l)ia6&Aq!Jg_o`fc^0glY zk!n3}*DW35f?BEudGsNl-CK41KRF2pcuCvPX*(-`Krl;j5KJ}ojpqujDFAj(o-H%O zn`MbMC%7%P&gpCZY2146%`?nGKFnb5+sdX&Fu9YnsNA*wi5v01iiZ7<(%%C}kwQ%5 zD6!d55i-^GG^6v8;bPcTK;~ zr|~;^&3}1!!0`Z(!~q$70)8yzBV!=3#fKWa5-!BPd`H)QDcCwMe`2z#jyLp{Gl z@%UE4?e-VTKQHAMjma6_4rAX0Qpmixn_A%qSPj1Wcp>zGcMs)dPmw&eTY9v(80MLG zZ_A>%1Vl;KvD>_T4hX+;1~s$mwP!qt1VRNW9+YF~EWsPheC~*#0X(By{8+U3>%ZDh zh9be6hmeMGIvD|qE*6OXtt!=u+u4>u+=ULHvsPkg#{;!Kfyq36M-2Ia`5oZG&naGT z3MCi;Li9Uf`w72G<;DnU#XwRMY2!@G(APNe<__RmM-=I&bcF!j425uEg5njgFf&R`RoFR6$f+Zy!e-GyC-#1$0HgCZ`9#v4G z8Q^h?A|o2Y&B8a@O+Cx5SKFhrlX z++b$Pe0lW(jUY(G6c#^-^v%F2N9YHCscAU*V*rI^hw$ESP;U28rEBET4gP+$OFAA% z>V|T7+1mO`H%;2P0p#3H<(@mf+3+lrxc5uu?;Za!V#m+a0S~0Qz7RbJefAk{MpPbf z&uYz@ft1qu?}Zf2LN=47ZEI}Ur>4eCI3-_Vlf=3MjcH|HS-ig4{XX<>W3?}Z^im#X+|?q28pI|7;S?Ea!N(`OXdWy% z@xeon`lsbXV#K!yAoVw^xe&HopO=m#iE>!}`%fX>kF*Lw2*1o0P$i5h6brcFYwsU4 zzm@A1HRxUfeexeg4~i09AEZ$F!GXuWUFkj|{H~!@JM~X*>5JkC;=WcGSxJGA=udQk z53mWIDTlB8;{a4_Q~-UWq`wL8Ki@<6|JPsDcmqPoZ*CTFAcKEWp|?MxR#CML1&LMF zT06XYy#jI`hU_#^DvDiL*-VvhGU#^~KTgcHeGKD%IJhd*5V9g}p~k zLs4GQ25&b<+2szCj5Gvto1P9Oz!x7MDVuRX7Mky@5}OV_`STTVBnI70$e+)^_rVCj zE1XDLlbHYfpo}zB+3UZ*i4(k%FV}ca@6WFWKM!XgOfvGvm~kF{w8os~={OFm?2|S! z!zxfPP9tn&uQG_}cz*Wq*LE@|_e6;8R_%hXIHh?VC*A?V-V2bqG@X5Xlx+F=; z++1JS1MysAo^>-apkkfhKfZ72##-Hb<+hpoIc9BpzM!mcvjiCSK-FXiT8>>%#5o{V z3H_nfO4vngz4pz<_G$Ts%FVU_sAD$Dxl!)3Bkjn*gJ`|oDksg8tHDPh=4a6BcT1ei zIPK;n+c`=B>&d7)HTgM&XP~%xH7RwuwcOZu4@ipvUzBzMda$M8>}^?Wp*c?{;WlD* zjTMC(_x&dHS=-84EtfuAfn@L8>^R5#!iprb_gg0+jFAo?C&g^EoH0tgRL}m~ubJmg zy_%v5v)~W*cX?Zxg8ZRZ-#mUPeYA4g1~Fbv2=9(lk84hby&tDjM%o zW1pLQ=r^;hQ{LI!V?OuAyvNd#yskOEc?U{cD12IhT4%kJcbvAXElf5~vb?9w+xTg4 zv40snG-p7MmF#R*zMK0qCjqpg6_@(ya2wnpxv{rgd3VS z>Dg6h-?2z}dC&bCJjwd)uQ%cs+hs)vZL+mZrs8=9^2gEJg%fCZY(U74gN)d+&rf_# z$S$EW#~`!56-yW_T@G{=v(zVpC=qwwrx^!RkKtB>H#a@&zV0Jo~e!Utp| zyFt2l$E@2@M7^g<0xVcWxQjLO^e4+l=cn0rTEPq(vKbD5EPBnKykgxD9lKL8-KR>) zV?pCOVQi}sOfR3s%RdVugZB>c3(Ln1ra3DnOzNwwi>jG(IhU4ceJsbO-<|Rkkh^$dl!aG_XdK@$xN2= zmKQx8qcJ`0_E9KH>i4c@+BCPtQ0mBmFGG{^7k)wOVBG(-{CO&zF46Qs;Oc0&7OY1< ztkFU2_D0eQsc7if(wEH0LuTfboPN=@l)UYBDkqiVwgu?qs^M43>(ixg6%ha1gCVHF z3t(uE(|T`Y$Ir-->1$MH!Oo+hW;h?l8rX;4WCIoSNBtmDu;$(<7%Xc-Kio`xQm!9~JwnWo8-?cN z4XKaR4H^Auzhtj4{rV!MyF*Et-o^%f*Lz#So!!e|l#C?(Qv-x=?UFfLiV$nRaWMx@2R>bx62 z;=+tq?z8L{hpw(k6GIxGXhHiFQ&heb&8jb5u*tIn^C>*etZN~dcDJ3}6k9c%-U|%x zN6Fh8WFQ>}E){o3#2%A+jg%_~yn8M8Y-zlMYjmmdmxN_C)H|JReLc`uiQ^Lgph9$zN}?mxf^j5UCfxLGp5 zKmh#VVB7W7WU6fE=XqWMbrhBx10@F-4olWb1b6Q4jpOXS1aJNXc;bw-7Yb^g=O#(i@6 z4-MOISeQS#Z#D_yKX8C*S3fjx&z?NiyH=WeezT!+T7G!OPj$qOa{oSJz7)Wl>yS#M zc@lY@n14K>X>Kd^)+5BD@cWW@Mo>n;gfI^XBC|HtyJG^zly9JcghZSw z>Iq*|KvI``<>FiRbA31sj9Ny=G(vDDMwx2^k05A1PR}kkrG2|%__3I~6KhuJz%AHX zDGJBQglQC}rRPrh_zYOG<6Ybrme?{-$D*-h$noQlE$0;q+XldF;e+ya*Jo=dIuG&| zW5ZH>kA{m)%gnUST&bMyvn$beiVV}f-Y)q;Y`128MQSN^cF*hQ)o1>N@w~NSt+^3V z`hh`wnCM_eQ$by`GZ`0)g+l=BK^0Hu0)K1_z>DXsi%QYTG_`cvF6`b3WxGs*RLnY6 z;*G)U)+SEb4CfB&S5>d~zEwUFl*tIhn*^lz+^V=(FqLBno{w+lu^&3k#H#p|2;2Zh z`y{ht2m52Ssl~Do#Z_&KRWDc-hKWAPqmOBLmq%uY#FYm-=QLU09n7GDumy}lggaE| zc17kpP^SBS>Irxy#M_z{wc3OVY$lIE1~JPeKLpB?M6mYb5#d}KMH6?PuvlGAnKO_$nzjkBa93If&cXJxr2br-h35QAbiT~_*%T15P$8(i< zR{d_DHQoM>pTCZpu5vPEWuf9lr}9Sfp43O21}$-)mp&u)`0L*x@H>Ni_;f_%R0v9<`2aBczYsGg%&c0zKkgM8+9tvKBx^+_hO|V1WQ9Ll}||k3Sptf1R6VS zgjScv+YKy^XpOU%Iy=>A47%*ab*1A^_(Tj{C(XP`p0kIN>fZT|R__Y&Ho_M_$IUP0 zd7VD{ATt&-L07;F)1GRX_l%+SqrZwULj*pj7HX2LWZFb%c|y9p5Q(#ZCO4_(SC3fV zV%T>cF~THAe^IKG#e6(VGog!p$=C{bt6G z7w5BF^}o$!>^wU+`Mu7(T`M-Y8F8l{ARvIT4Kn!OXHSm)kXe1(g!0{ome)X>euW;W zbHCq}gX5s``&fWah?EMBnlI0bY?cJJRTh+C;+zjp-V$=^35I4$?rhtbFx^vq;d+_X z>>Hn3!8cIGJZL}tDt1PfJ6i2(`@g<+lP7`C=kff13Zy*= zePeyt^jtC}EDP;cN@Op^DX88YK-`7>8&h&Sx)p4y9M!f-%;C=r<79VrE5vDi$lpU}wW)HqPsi~sX~mn^+gpk_x5k@Izsf}V7QMWxoG`(nwevp=c}ZG) zj=gnzLGI!OvgFGuhcEqvNJCF0A5S0MA(d^NyWhG7$>=Z1Tu~}w2O(0C`UFxGYaJnjx4`J9qS;bpm~9KfQqsF@=sP2l|a~{ zA<8@Bjcbto#wNsOyiL#LYeSHn|KkiSBggqDlF9_Q?^6t&gA;WS8CPrg;MA*mu z?oi5Rz$>516dL7GDUv3!QH@zYRDm~sgq@Z%>O?y#0QB(l9m0uM@Pe3TIVsk{`Q&Q<&}oAzjDTKJ4wZCEjA+`^WB z()Tnc3)Dddzw4mw)7W2^6u9RkNFNFO;)pn;Ii(56BGFMBQ(X@)UH z#n7YYAYU7K6b;v9W-q$CO1P1WHFYcCHWAC~`U6t$qw%!M6GIAUSb+m}_7y%FnktcG zesf3k&xBjN-$0*dM`8=fsRWU6+FG0!+4Uo7c=*YaQO$JPFhjcUzb*@_Xi9N5f;?q$ z2OgX3=CRB;sT7FRy$_z13ZZ0{OKG(B$}EO?Y%1I==)G4Q!&LO)JAd{8_Ktc=c3C{XI__RB`?-CB_;HNjD2bg^93MSG+Y1X+OW|FYEJAxlS9DqOS?D3&i~ zaV7CdfK>bRLVmH#pzhdf(COlH^%#AaTfbsYsvkU$bC(DpOJj!!?|i;#&)MbcRyUCO zWP@`5=g((Cq+P`qbOXE4{0r&)xPQT-S?b#ag}XnHN4)<5hd!A>LSW_Cx@H`I0Z{-g za(;yZh1a~sdvXzofTj@mlV2P?UB)OMEVkqycxqsl0Do|ES3-J+>>t2NH^?_ctNW8? z`#+eK^eY7bN7bI(DmVNG?SfGtP^>pv6j=YDSpSDzn7uHH>#WN&;e`Mqt=JQA+)p(C zVCy%laQ^}XrFl_SldQQaLF>)J{~O8yg;LB~mpE&NCUa7kGGs*h6Hs2*rMzsdRmn57_8S>c1bB38Y8r=F%=RLP*K{5ELg>pvn+*FY0*%dXGQIThVe*coJnw2>e`elm5oZm^%)^?|bHFytfM2Elv&Os& zkDuf190KZNPJBTaC3WKPAE?h=TP1miZ<^Lz99&y1xP%|H=fEj58^&Evo?2v6nRlsl z8^?yYt-&uNCO%G6@`~a)!LCHVG!2`scji@E{ryo5^_5)R70T2HscpJLiWfg4Z|eF} zJvMWN+Tt{QHfz5#glQbon1=IGogi)SL9NS2wVaeW%Qdp!l?z>8%-z%=@W!#bv*$CE z)&&d9Nic>JP*hi8ao2s-GaaP3V-MW|?Y$##gShQ7^Qh@K^$O0yhac<329aq12b4ZI zb;*h_H7@{%%6G!Hq>a?OS)hlf1^y6Y!EL*wW2RSlZf3P=$EN;l6?fE2;tZ%ZX92kN zuC74w?1eUQL+P+I6vgF36+Z@i|=xmblhrxei9O#3t0)h_#%1JqQV?CM;JL^66Y1eO`lMk?nwkU}c81e=uIe+sQ z?dnTw@$x@0Wi8B;+G9+`${H&p8p~dH?H1I{FDQMhXP#*0II0fK7g7NjUu{}C!mMNm zu;5&;l0H`vlq7oH%*gwBOKt5oq-Q`=K+T;^AWz;DA%6HhR%p@M0UR*!?6`Ys{%*sp z>vZ`6=bPu)0EOjZ($`rbqh1e-GbC=nU`}W}n0Xh4!S6jKwf(haivAUt1+{?MDJ!+V zBR6e-7SMpjRrP7w=nc*#y}-TGlY_^K581m^W8b?JuwLt&tx6cUo+)#b1f(53LG0zT zV5}IF-IMF)9=g$cph0OXMFbrhAtEUBfQ*W&D!ds?mab7*@dEvC4N%oIKVH#l(js&& z!yzc_^J+<^*S%v`m9A&xhw9lP1(GPo0ZV_k*vX$VQ(AIWY|M6-a zpIWJ;LMk{KF1>aoPHzTGt(AvAnz6XIIAyY4i-vX974#e?PHY1x%?`j9 zNBz?Pg5LlT?8lx`Q8oA_!<7^hFbn!L2s?Genw2&}^FSKlk0j>_<6yHS++<6s$LnF7 z6$#v=JBD!;*z7p{&sfdI=MHycC^@ZDuIwr%&F#Rla9nHg(Iw8ua$59iOumukz9rmh zX+*7GNEQwxY;>yfJh@=HcWPcs;}?Qk(07nOm z3m4&`OCZ;&h53cunx)UZmm&@p3vo(hwAK}uB558Ma{I;cuTp=S#WjrST2}+Ke1`0z zl}NP;0m|8ty!~JZzX^uk6~xFmR3YZsqX)*^f-RsTo_l;{opYsF&`*<0NSr5pUlPSZIhaGbrYpexY5)G^*y`1$uBUxiH{u?yZt)- zZlkftnK#3Z65buoxBIJ-J}zb!G0LDm1^wHMb@4azVD<)ZYagykhpqaaFB!r3`Ox}L ze!TAIm9`L-4m#xxk&PKt%*bw~r&O@%VNN$MeVT5Bd^uoF_`}zBY99dRwIKIpJU*&e zjnmj1FfwJYJFF_IU%}kINKLezNW_wr32RJ_(4w1ohNS`kbtIcpbc}T{!;scxMC}JO zaQGK^N9vl~yLZc;WPNYci#?D+Zzg*hXBqB{PUYb1!*y7cI`iWFqZxqwZiQv(1A55& z@S23Pfz?~2hi_V;6m9HmHM!rm?x6jeGSwap?h#XY^-}U^8tfH6PS7FTlyDB52Pr}` z_7#^rQR35JQB#*MwC>_aI~fDm_C|R}xPr=ka&@bRgNI?qHvpa`DExLjm0zlj8sQda z>chW-o(#z5{-|l2G{-KsYp-5c8n&`)V|V%@{dNU*8@lNQ?60ZvSQ#bDG0GlKkqID= z@Uf$@&(qTst#~E?rbLCzkJkafhNrwO0lyZr+qMy6J50Q16}+?a8X;4XcfUjxS1rC> zR^~qX>;}Ml&(E^5_*gsiQBT~y+PWyaiCZUY8vRE3Ew!HWSQ`hW5~3*zU?xCKFb+(g zq*$c7FDi>K)Lb5ROHdTuKkL8EqwO-P$$#+XYmB5aP89zk!0jeiuY*@UJ*)m-8L*NWX&ow_7d zEx2N*omk_ePB}OhRY&7MAlhI2iOH4&vC7aA2@KZ{3+LK%^o&^&9fDN}fxd9nXZ3nB z?%2QIPy0B4k@yggC`&$D@hl=vllVryJFJ+y?6R<8s!R2V^^L4xw0vWk#$PFSiA2Au|M|VJ2~Hucni$&66YFOTvcJ!GzagUn~gXtcC{{ACSca zbw*BNG|z{VVh{OibttOGO)@d*X0iA{x&bq?Reo!viOHbJ--8zC0|t~Rf*eUSH1N2? zo2x*hrN5Qx6@7{kTF`QYEzJUXPHxo|uQ#0b5+>|^hfDm6xZ+C>o<-w|EjpLyVOr57 zAG9QsO4L;)%9YC6mAK)U@{WVPYR~o+^u9mUXTtLFIh^x3z$B;Yre{0AVpUOJbtT9M zJdU`2M+i5Ve=i4Dw>+e3VG6Y*e4y6@rN0X>&tSuM!Et1?aaDNQNhDg@O$WgPcNYT}O+ZxcYP}TG348bm1JY_iC$PNnx@5y!9!#RrV@h+`L^9v3! zEStqb9!l)dsC;(^k6=N9d+97}i^@t!=eu79!`dvNZL z#kEgK{#J$>6T^5wp{VY#D^HtdA&(l(si*{>xFiR47?-1i> zk$A;;a1WS!!kf=COENu)6q%SHwh%|KVQ5)q%UqIw$6z-2mVB?QFcyRA?G3zn5NFQlB0@BzRJrdV#~nGZcJA5~1|^ zAq5nxfTz}&uT=YaA%pHhIGHU^|6`8yhko(Q{V(FSOS`#jWi<9vGT536Zl6Vh3MkjF zNad2pFVoC_d9epPla4Wgbm1xQ7UYxL@M#rH`Vw&qmHPzG>B!+cZR3t_*QU(7S#0@- ztS+}ka|;e_8Jfh<$Vh*P8QHymoQiXqYy#@c!E4%amYKDWKH!2cB-^Sw#h9#zhHWm` zqNLMNu;tvO_Ul7Xvyqpq;wJg(Q?KMVX+M(0=#U*Sj$_GPNhDngI^4LjorH8!zVGBAgA2B8+ zZdboYLd!laTOl$unhdv$)g&f2io_;NDTxpzMm(W2vRJ;5xP=G$D#%m! zGUO=mS%%NsPvUQ*KfASy=Wj_sWE$6s{7oPIWpHChKl57HhcwFduGV6;;6w8%JTzm` z5)4s+-VvuZScT{2KscQ8#>3@arst()Q$w7zVNSj)U-}7R6XmiEK|H- z;~%+S(ht2|NVh~lWLq{cqRtmB^r7w--ta_4NF4pap1nZ^3GOir&J&eLuGTo|G3Rws z-V!_am60Hk)SUXQi?fPekGAQ9!naYFgbgU7q*idi)1|*K>exqx1;oHh1Z3fh;)_=U ziDV>PFW5hLoCfYFXLnGA=?HhD`!*%X;X;_}CPZg1qj;Vzs!(9@dr;jcsOOMAeG_@l z44+eS)Ra^$_l$xN^ov#C_tI$i}S*iA%JjunA!c7!y&Zn}HGWUhtKz)MskS z?c=q6AXk2OsE(|!bGqR4y_;siOLo@UQoXt;@py@-dLt(}W=1uJM=x-%G8#7OXwK}# zzw*9F$MWvA`=*Bc8LX$bKeUq}U&$S9;LF!1);Wphhnf#ELn{E!l2)uy7=9RbbfY9k zcqhGqHpvR^$i_D0eVDnI1guSI4m%~NR2-0&BfC9(nb?5S>`l{-!?C#{JRdo@jKK9I z*L&E3qklk~|F?wXpe*y{0xn}CqgzewRLb9u=m{2tx?$Z`aWFL> z0V!-dXRA8`ooQr2a&?ah?lS7?oCYF4xaTEtxhT|r5k~`n`?`R+067)a*#?n@^lC%2 zL0xdZxz{b}-43&O{Z+$r0G7`KG@av;C-JkEoVkAg%kPx$Y4voHheVw8%T_+4)$r|` zs-fmTbB|0&=NDB@jQsMNGk4rORZpP#*sJG5dj((`$FmL24t_=KR$|`N{bJRXY?3MA z*^e~Nz@22eGLc?4$NH9Cy z@Gsv>4C2vH6f3eH-AgU-%ld&&|73ah#W* zp-5dmq7&xeYPxK~gik!Ta{*LR{+01n8MB962=;P5J61LEZa8-s^8K1*1HFR7#RBtM+TMXM#Qs(JvPir%Jo3r9$ zGImr~C}=Zp#!6Y+#)Y5Wh!pOG!6*oCuH(QI%&JU)8uRuH-26#BhJh}5}0eGey30b{2kt8oU&_c5l{Uq(r%oaOJ zoi87fe~K1wdKgwAMfJsW=II6R;5}XMym0x**iawFm8o*Dzmsh))9WU@b2p%{j?P%o z6I-0CyOMg`;jK7Oszs<*ld)6jX>~Pr$7cy1F(UQY`hr0>sI{TNjF7YRg^OX`CYLjs z#VBMo?1`I$n^8hG&y#k-m_&^alj#rP&8o~46BZlYr@F<|U8Nd_%Trpgp*k7!-&Fo%YiWN+!8y*m37v&+E7p5GShgJ#UQ8j? zL$4gV=PvKw{v_riW6@@%?ZC-a$sqBb7wUc~!Xf4?(8K2x@XH=`5c5F!Y(8M+a|*q! zJI^&wL1bt-gGi=~D?x~zRf(UmzZ9w@=kO!pkA~H4z7*V@71nwOV6yW?FqmV=(6#Q& znS^nAR$*@HMSbCMAc_hlqm`lJqT0MeAW)T{w6A93hs6F;R^2%zz7X)YL@$PW?mbtS zfC!k1ye_lC@>IElzh-(7fj~7x#`HF^aJ4E&>?e1ky1%Stj&2?*a zs&s8_(2s#FNOw1yHwz6m6WljHHMxtcNzRgMlM!e|CMNcVg#Dq>Fvp;rc1@UNv?h6a zKn~7kdl)G{!@I$1V`onkPE_QF6EuOC_mexR>fb(=tqhF+J5WHIz=>e3oXs+Lh&7o)(NbQ6y;jb|W zj5i!EQBQe_d5$qVbgF~R*;;w(>bG~yL$pqfH5VTlmm*1Nh56$wJjCx?2+<2W3V7G_ zP`1`mN@O`UntbgHTSequdjAl*dpo&+4u-Onbg6*r%Wss3uF<^cGYy9{U4UZT{`S&y zDy2yPgP7OS3|hIIz4ThV$~X-^15%{0IC~)4-1A3nhK&;C7&Q ztMeZX-bcP2?MuDx z0JHHRNpz|=DZHlTRa~z6`Q8A68o4`ynX`%3DZ?)}vZ+gmr*Wj0u@S7Bqq`wHq|CwD z!=z$hg^^zZIn~}u{+RH5U~Du@c2wnTq!8jgc4J*W*q5!+Y*sPXh2gVBP^cA8J9gK) z7IJNz+Iu{gu@bDi^i{H=*C{}-rGCVyW2X{!7N=Tvm39>Vx~d6(7=MR1sjqJD8^ewQ zd(c>y%)Yi>v*C}HR;lp92MdC7o3yJfuJKH|^qCQNsP-%fIPFj(w|iJQ3EkFz62(*( z_+~%vZ;`%C-siv7^VH}>XU@I!KA{M%4>J`(MAm@u%ft4YPzraYE+*Y&)!?>WoDDvr z=-6c4ylz2`1$lmp{OqdKc;qS0`<1BAA7xkiF^9oQ2(cL6W({2s-CW8hqj=Yy%08%l zP~%ZA>Un}S$6&&Bu%E;;k4Mf!7mtC@*=1L|v${wB;ysxu$j;!%kGm04hQqjb)`ry= zB!Z0y^st>QX?)m`KFW;fWViDNx)Qi}87xo;;Aj*^sdSvBdo5Yx!nkb%sm8y?d{|op z_)fpvaS~?(;>IosWgn|U!?wDteDZocp!uUKpErqV+5LSIo|Royh94##@za}af8Cqr zbGL}`z0o4=%(yoDpehNV*C9Ud15}a#42lJ9%6C8ya`W@rpEXDc=|>X`eK34HnTfQ} zXJU*C%t|!e2;0|cLD1Vyv~Re$6`CeNIOYMd4 zD(bsu@72up&*T&2kk`tvbdmiugk1sq2D0My&%PkB_&8OEhQ9K80YYd1e4(h?d2d%FT&i_&gaTmDoeFm(-zu@kbxRq}MH|*Eljr7>AbY zL$uyEvgvF zCc4;&|GZ`bI4~0^oEzn@%Rq2oG5Gj{_b?RA82|GcIUv-?33mQvvSdCnfuB@DdOG=^ zE1{E@hO)~;FaC2GtQg=YV|+D){`1=Z4wt5@1eXUIWMLoztpRBer;Z3+;R$G5Dsx*n z%6b;tDXlqtwt-F5v0vikdGgPxGg>4f6&^pJJldE6hr90bUV+@$8IYT?1ALR04Po%n zB8ZB>Ak;3&GUvdo9<;){EqGEK<(CM;X>LzE5ztbVyMSTpbIL8Ez=ZSw;gVfxC$kfP zq>8|o=4LF?yjDS8_%b+meb_a(_Ye1EcwO9Zy$Oumi$8#bIPaCCb|MJgu6fAvQ9%5| zOpb)A#4nA*6kJTd-AIJ)g*y)5G)4X|0nIauBRunD(qd^q7OxPW(?FyHaA4q_ytD&! z&8uYFibU`+nKzF>Z^cEwfp%{Ok>TKCfUXr|c$J!>7=h8WOGTa2FZ;i^dd8nHtt&4KvTOw$#= z2oO>e@rEvkX~?Z@8}}c5qhB`^Uzw|Iv}(+#S>ECV;7CxB&HQ6`=7%%O0g% z%)i0o>)(Q2Fn(PKx>JKns@+I-3DnNjz|^O;OMqgY9joQY7%7r5ZvN5hc=89yrygCt zcV;qS^Ck|!6{&R$-N39P|=a@%a7*ll^1tZbKk?o&}ZTDxN+d0e1lu zhOPRn;^uS-ubM|=U?2z|7A9Sb&nduzIKmtuzOPH7 z-+?!w-Erej{J&9Kjd~t(AinPTC70S5(7EnK=;TEhNF6 zMTop*W3K@T=CKq0QCai#VknDiS-)iMD{S-RNilvXRWyR{s=3Cg+uj#!q;N*?P~)=K ziv3u)E*?q=gAef4B7PDsXCuVguh9pAz<#h2z5I1Pnluj*`}cdT0!1v5

I}_#Ch` zNtWKy7lE$WRQp(dUybcrZ@LY#0O#yHY7&6Z|3~n)lV8hGUyQ42Qe`i{Gx>94{A$a6m6x02*wfnd(QyO0JPUS{2*~NnZ=b0XY!W8{+m~qv zB&<%r$CAojGb*Xui(i;=O7h751Z9|_pO%Q7v;jeX)~kL4`~q&7PTU7g$urY?EyV3V zFMvMv^$w3$y{7-zIznr{vgqvHC%UFV(pI|;#I!#I=ffU|F^XzB~uzwS@ zYiFeozv?T_836V8)h^rTl*PGt*T)TD8(5b8G#f&iL^@o@Q)K#OWN^Hdnr^XbsYzALQ{xBZG1HrRFQ0|zpvGGGcZTF85X zHS8G)G7UlrD&-CA6SW8r%4QP7sVSvge((RGHzWf<3Hy#a5<4v7+amejIPAl1eA4 zvxlQRzRjH#(@78`=PVLDX8A!){@{HY9~nQ-0|8qS@{TEoF7uecF-+q{hgp~LGuw*} zsC9ZE>0vEPs+-A1zEvR=5YiWgOV<)`hTtPhmg%6q(3<~>xeC}@XN0C=9Hcmqj(>F= zOc6cUlX;J7X;KkZf$C?Y5AMF^$y>*Lb)F7Y2+_tM^wVr<(|c3=#?x$TXjr&tM>hp0 z`5Os$erq`}#fUn>SRe1HlAe;Cm#8VAF?DsZM+;0v9ium?C`;B&U4&Hm~ zBQo&RXFqVCu*=u4M~2-2mzL0TLWXV1XCT!UjGeQZJY8gWbE92?a`^W>I7uu!CZi3%*&r{Mo-Js1QwMP#T>K zdF#FIB1lUK(hYOp1J_#r^}O%%VSn8F*w43h%*AxhG3FTexUcg%&)?bBo# zRf5fXI2+XixI3AEGmMz4uevZSXlcGL#?Ss2YAHgA`ovwhNhZIEmyAtv`tbq_bm~4S zLHA*Su}2t`DpTX~aK<@m>Lu)#kATSrF~IuLc#Y@36RWL8r9S&<)s7#8&Ey6`ye~CX zlIW1=eTgczO5`_+-U{4iBi?&x!4QO>$W?eRi)N(fwe+TJImUcTHrb+uD=$4y7pa0^ znrB&7Y2sSJC#8bhm-8}_gi~OvmAoh<81yrd21j;Qw3^}E2Q6MMEivLjS+DF0;WZS3poH$~&L z2lZO~84{!#8ov2>b1}U5v}x(zv|t(1Xvi5#cZx(Y2YvsIh!F>m>%PxmH;HSN=TEW} zIQlp$j0urMv%t&L#dAM)55%mD*_#=5!g0DEATC=u>B}FJz5X0(YBZsA)XQSfKlk{i zADdR(`_c02WC8=CAHRcKngr(^>D;VkkqGzXiM+5x$=J7+1wo;hh=t_5-%M57X8JN5 zRCt%~e!lAwU+NPWEIb}AWx$B8u6DXzrxBHQ7~F&ew+$5+URdRB569zk+aZSe?2}pK zrHDXX>rN;A?|vH?T&qF#m~I{`C}XBskPOd8M9}n8z2}`IQ?iNqf*|4Rs*pZj7sWtZ zy5xcxJ96{e6SJ1Q0O5~M`Q}-1ba(O<;Jol}@KCq75-_gH29gv-De zx8P7Lk;$MAIrLypsv0!G>KdPTk#Lb=%<=Sk5nU&>ktTD^4hknK5G2-EDJA0_Rhbf( zN{EfY@!x{h%_0Ln3k|zBDF;)LVuPA$^`D-kJO#V9A4~!hJ$V8|MJ1PgD&fuYP4Yp5 zjWUUHlv4`eO7+B?DyiRbLtI*}iK8OeYu0%qKXoJppIOhR2LoRwN1>DQ)IDOZ_0SN( zRD7^^X;Ds02&!TDjVlbE;a#cT~6;Dwr7_RaYY4PV3O1iF@6&&yI z@VxaPGRfpDE>FTYxj=V)K_mFMOtoLSvXy;DE#?V=FR~TD_KX$HMYZd5ycfgX{J&d zPNmp(?fYedhrN56VujZ}$KDH#)L+;ZPYeadS$AdVM=&&rk_NF9qdC0=dffD`dF$xy zEP@X?^2+_3LY`IAH6Mw&O!DJypWks#TUMmSdd%XDO2P1%97cf^@oBKGPm`BXh6P6| zEE{w(2R%*TqID?`cr*fo24xnu$*t#1Uu0CAij4Td;)ChT-m0Y=8Qdn!SybqUu7x8xTv9U@K&+Y78^UQ#v7x%_^yc>x)UgKmc03qQk_6v_J z(g6>BPweEDsIC=OY!7UN*)k&!zec2Y<`0$^qbxCmEP-b4`nWy6ahLb;C-8ia&jm-l zt|0S}riU1g>a9-HPs$RS5ZdR+RpVys=}O^y4WE~C$XC}eYg1r^hRY*t;q0J8&K zXz645aW!9WyL9)k<#<~knHuFWIV~)5pMI)^y%emm<06qV?_s~1Vh>lEdD=cEZ^pq8 zewNV|Nw*AQj%)oDcQ{g{1i7@`F<?_8z&vFdKeo~Lrz0_(&75`=AII3x z?+X|8Ii95WzYwnW8 zb4U%YXoH~DSK&~Eqh1)6$;(5o<`@;Y^Z1JOQ-NXO>nHA5Z@TgLM}K~EEgkQU`Oece zvaL$Y^#!ld-Da)D)Z|!U@+St3`or^H3g|4rb(7p$9#EN6hj%yzYLfZRA4EHbf;5c5 zc5Gw9W-tq)n9G<+=J}fi(2G&}_F=9yDcmE_lI5SOy$;nIviD4$i*- zhgEylyg~vb1Z((FX#-%yR&PkfKI?>HN}1yi{otM3*?vz%AEED^h;yyKRgI%)Nt)Tb zz(J)~9rulYNEa$wZVU5dWJIz7dkh(eCxuGfqnCbJbJD1FyKizX$a?%a8ASo4b;p2B zP*WdOABwF@F!Ba;_r8V=!SWciRJgL5p2Q7dPp*VirAZ8J5gkaAwuak9ESQeVe78qt zUWeU3`N=}ie%P<#{dN1bY@jWD{lG37ORP-}ah9SF6!8~UBy9(t`2r1qm8z3w@%eVj zK&3@SsV5;>D}2sX;Jw?n4{Z6hC$G9SzVg-|tc~2_{KERZu6WhYyD53489gA_Ed@sl zsI+W`8Z{nio`=pQokowH`|GDwv_Q@TJj5qpoLky1G>%xYj~nkqg;kK z(~wry7_N-xDjy{ikw71-Cpr?}`??2WFQ9c)$Br%O)?lW~_1Pyu_Ht!IW-=6exb(xA z;+SGm$;}!Kh;4LqpY~gL0xXErX8zb0H_zX1O2diIc@r!GRGiKV>E^e<_W9q5qx3<#8e zto}0CZv(-n-W6ph|JQ4efU{o*Bm6Jx`IX^6g9f~{r}<&^za-2IT=2!%RbBug^q+rm znE||&Af`w0U$5zaIDw9A7TUjL&D&Vut+;+uqkq2^ z433|aMT`OcpBMfA=hXersr#R+?*E({cG9srN_Yz92r?4SK~N*a3%H(UK(=AR(OP?G zh`Z64`u**~+Dd7ZZ~~k^>&A8TsRWoNKvO$L+{txbj220QxGpnsjPlbNvVqge^gfSt z+Fd$nC;CMfqjWkqo1j!|!}+fI_f6r(zqNO7FTe90W%o8>4z zx+Czd+r=LONB!qyQ_AJaJ0^&OVT>VeUA3y4jQEa6{Bp|$J9Q%F1I z%P0n(eaD~4Prjh;0VUZTkYcNVpW^#8FdXaN1;Ti5E$L&U(lUA{BcQUFd?ca&y?%DK zRa^Yt>WwOUzr;piITSC@`Bq%X2mZST&^czJL29R4ozbxZ+a9qSAN+Mh_H<5xL~{w$ z;e_r0^&zZd`^3@jEvtEEAW3B_QfQpD=nJy;<{8VFM5aTzKlX<(5yk$`D`@U}Xy~M->$GsJ}S;z6FZs zzL|Zf3ji_|CO^*KC48bouxt71CU3fWgDi);wx&?RN8~0Dh&4&SCx4%X1uDX+6g4KU zI%WC9AoGulGXg;Di%C0DfSr?en-hr8q{G{wfp8Zt5Ql|6!swUT2Sl7Jx1CSqtS3pE+FW=IEdng8akYv1P9D0^j0W8#yO!~-;oc+C) z6CO{=)B*MKuE~!skkQ)Q0tQy$l~!5}6WGnTEe*Jw2Guu$9SE~C^9luxO7+KDF~|eD zzGT1^Gy_-RVI*JI0$^9T0_KUM|Mc5O&{J~g06KKB)r`P8`AyIjnwyNl&?Z1**af>#j9ZNa~?Rj_vL9)>f%2`n>sTF)|i8EVIv zf?nEbx6e*Hd0I&ZPCjdYZfCK>Yeh0un+qtbbrt>Mb}gYi?_sAeU*_-ST!eZLox)Ta za7O&mIr`I;ob?}l7p=EA_7&yj1%M!aRt7aU@-2pTXFzYwA?DpT-&6X_hw!52>nn z3iRxLL7=A4bcR96EwoW;@>f8@&9XUwgj^AjNT>y=nCa3BaOa*W3Q9C)Tf1m--APHS zb8*!J4Hn7ESwCcb>&!d|`h3wT9Jspmje5h!A%uxMu?#M-QYW!2fm$h2gq1%jX^q#_ zTtLC!n}I#Mz4#6*(HHP7ChGx$>hp-yCIriPxxe~ag79fmvUD#_QrUY=`joSU7D}sF zKvFt(wx)k}<3=>pE`lf#ml8ot6;ts#8JTM(Dkr+HL1j8r1ax%L0Nc(@@)j2$Vb*e% zP5rvC8|@5ha0j>sy^3=u%1tbH!Ahl}?>Dyx2{s!5uOq*&$_VK5XPy?#3d^7u;0$m` z_fw}yxVJ4?9Sd?EX0_MPg20n^1+Nac@mh2^jPK%@qXfRa>h|?=RqnIgb%nrvhg4gf zWjccO2{`6Pc10ET6Y;a)vMuE9E?@zDCnD6D8~y~c@LeWg3{G*IdO8DyKs}ebCrtrn zM1(k-iLYkzt;nBY!X>Cf+j(3`Sql$H6}M)EzuS-4 z1hY+X3bJD_ag(Y1gmmYh&WOVi<)O)xVv=|qHrhDflG1IexZqJW6=s7+5mHJo;iB1S z)V<^y_a%1P@-M&V^0EH9$!IW+iM@Db_4gXl5YWug8B&%6#MV!8TUgZH( zU0gp`z$1yLPT@PWk@jatuaQ6)*q64SziNv-{^9leKwyn17?9Y`-9djRG>=w_f63p> zu{HhnO+glz8WG&MwD=)n-(3Ie2ltH5cUVX|lJn^8=d!RTwruy{p3HKI+?V}^Qfr5^ zetxk?sEHmUwtl<#HO`))b%IXaZ?et>B6=E*m&mSGD;N1#^3q?SeQ#Zeb3_L33gJIBwdE^hFRenFu7ApLTI5j^y<`4O$IalOIw37>U#3O?3we zQkHv}w|N~(Y4Hqj&fSQ@Og|2^A8eWG{TN~}IA-M+ee#t4b*4@)q-djUic8()oFTCQV#aLM~J(2@fM1+k}c+g|U{p_ggk(Wlc-h<2DO$Uf8jLJvdDxoMkuUx|74 z0L~eaTj>p?9dKYUGKhO1sMdyOF-97w#90_*87{pGY%jX)e7MDg;baY*_!<>Ka{*)t zVij3&a46y$d)Vj36-~CH9UvSJA@=o8)~ld>4+9TGq%t4s z8{IwFmI%ZT)J){8-yfE05d|k7zVKpx*t3PdE&cKQOGBvvw+I;VYpN`jeRm6n($hOP zTL_6-P*k~0c~Yb}d%ud4AeaV-&Dr9>>1#gtJv*B+?KQkKtvu$34)q{*u(Xn?I=!^bst zYD2yALJxN!Uv{@8m8e*OO2VVW3v88q(!g;E+M>6z=rN^BG*3i0{r=XZ9&i(}(B30L zKzzncZNt0pikmZgLDW+*qI%1q08IY5qN;idv>WU7w!AD z7Ird9icfSt3DV|w{E&Q=&-}tt2QQYU!G>jvw>0^!3zCz^SO2DYCX1d>1SWr!my%Jo z2LsO(6zZ6TFj@^%@Yk33sjKrOsFMhYQ5|l4lf-vu+5x|tTr@ogA)~g$QCleU90v)l zE*(E{3%qNOUJb0$Ci4ohi*Z~k?vtS{8vw}%uCi;;MTTpB;<--kkSd>41o@k)Z9>hn zw~_Z}4y9+cnR((Ly?D`6PDB_dg-!B?$$$tIe&go@r<0DxINpWxpqN7=K>WD7*RgE9 zDbFvzXXs%Jd)ZH|ToAP@Uu3P9?)*ONRAD?eXY~SakNJ(*&sJw*c@HU9WG_tGpdW0+ zm^t(Nh0*aH?lfCiu5BscNgUr}W64X*(3i7Jd6TuqHOO1V-O1p7{6TJt_39DDd1W>c zEq&%pLnzN8<8i!2%_e#Nd>8xP5=UW4K{?xGmt?2i?A{jxv`3ihTSmn^A zUQ^fTtruPIGQ!@5hXn7+pMXNldxlS+=q*31;_w~1s zmj0|e&{Ka|;K2eR`42yKA*(K;`z2+l3E)bV;|;5Bdy>FlyhN+Ee)(?9S1=r&eyvDp zcTF6oyhGo2n&Bpyh2bCA#rXL&bd$sKJ)r^#3#lwx=ac8QsuT}|IAU~*_T3z-mlO92 zd{0zf9^>y`Qt+C|%%~b5_D2H~I=qkGdUe%CJ}CnHO}y;h@Dk7j5F6Qg6a8? zuWOEFnl8W(LzdW6b+<@V!#+Aulg>MR&;;IR#rQahZ%+lW@7c4uIx%^Xmxe!#?$^(3 zJ>4j=3_qm`V`CxAx{nqjQ_>`oop-k8Xqm1wwoza> z3D>R1U90<-lvaZabTi}Sd-=4`FN1RR7!8#Nl3VM{4IPz#l)hDVpw_u2h<|qbj~+-% z0E9jQclAe%(7XOfi3LC-9Mjp#o?`s#6;K|F0(ntvn(JZkpTB|jC|?4AGWWPT-Zu1~ zuQD_bM7?$AN(IszsDFQz|M_zN&6$&_y-@@a6~L4Hh2w7bEq5@+*4fm1C)f+fY*p+&~L?wWz_C*hl1h6G)KyA_wY;aE;hcaZh09(nSQtT7M z-#=wE!w|QE-G6a7t{;MG9Z*8O24(iKZzBi(W3dkR;K#~_Q)?Czf}Lse-!3b z3I0a+(6EAUEjzwOXu@bj6Kwx<6lJQw$cf*8T(oitOe*<%|LC%2FeXrp3;pFv9M=Rf z;{-Q;nUDV;0xlXOF93d2Ul*Qi(iEK!alqDpEI_w@M&Lx8ebT%-k? zS+py?8f|%Mbz< zXK3ZA1rkhpEf8up-}?UTmBx2PH@F7}Oc|cv=K~quz=?RJbZLHcv4?Db7o~rQt$}N> zD`G3he<8NEKh8^x%Y9sILJ)cmkti;JDQ*kw)}KL-+}2-jSq1ud0|W7yK%G+3I%_|! z|HL(E1b}lXeh(3%cmk_nS=n|cRO*K^-^D|j3=z%9^aQ3E?cEqQaVI2|ndlohS7Q2`A7iDaqWODn zn;1rnKl-~_lkt%OlAZu5wMLOlzpaw|I)N3~5=wQ?`0A!^f=Y*A6LS}!V~+P>IRHtM z6(KLFeh%EpqwLX?Qy+mcRsV+WnVjCW)X&}DRY0F0zC|FH^O6z8*S?JjUYzueSY zU5eGeP7i;OoBB+x64d-UDs)t$&KcftYe-{llqfjoEr#?(yX9XLG4pXzlc_css{dmL zLxKrMGl2Z7cefK*#tY{Yjh?Cc{eoi+czJ zG#JQWUm1*&mbR1Cy1~``Tj()_L!y6xPzf#rEnbgVu9zG+9avJ+kHVQGr|1PA{?~Z6 z`0o2PBKk5QU^Vu8x)I!6BBJ-51N5L5Sacp{@AqJf;4EspLiWlE5(jz%>7^;V;v(v6 zZ^u%gtN0cb#7uf$Hf8q&c7v-m{%Z>6Ly%qAs_XgF4)a$chLL9}=0N`4%26%#ldc~w ztl>oW@r!`0EGo4OL>^IkgKJtHZk({-?e}uLne7Afoixv*Vk?85?f~O-bbKx4lT-wR zdA;=LA-p{bn=g0)m8i?+ZGj}mH-Rhneu7<}A9mgmgeiYEE$kelyci0Rn54Y@KWuzz z9RHzPEQSw;hbqv6e6=qh+ThlA|7sz0%0iS) zvwu-GqyC|6rjNY=m>Bya^^5#!U`WdODMUNJG&Bm!nc~SxkW=jZYoo)=0Q%6uPvf>R zv9IWuaFVtFxdO#&T6j`V=O`X}0;$Ev%2_<^Xu`Yh*uEFU3?3y!HGK^7lhLBeiNm%@ zCMe*)PM~)JhHgCrybv4b+&#yyoiw@&~I<9u0?*wgm-=_u&;QGt2VtT~P=w zDi^DP!h=~*3VF9`#rzz%7*WZl`2j|pZvr)vhCVfZQ}5Vh0j!w62uUs(FL{N~gwTWw zNVV5+YZ#H1l$!$oKmtDF8;=-ca_L`bL_KjR?@YB3ydvYEp$WnXN-$91MC! zslyp}Q@_*_#-QW4zjuGDx3S@GVSJzDxUn~0?eU{o(-=Jm2ASu;i}|&)RW~tsj_66m z{Q(A%Y3IO=*+xH)DJ+4Cj7(tmuS7o5@Q_WCB7MSvPaYRxWcn7iBkQmrMLe(ocofb- zf4G(L|8Ofo_og8hPM9`Fx@bP}b+=MK3uAr;Z0|Xm4Z{P2<-NE{w`mHUSu*USX2}fg z=Ua{Au=vIobn+^8$M63AAE7iLEhRvp5> z0^n`Pez|*P>#xl|n!_+-0E98KBPt;@?oMAAYz;dJ7h$!`sDL`M@CQT5NjImhz!t}4 z@qFxT;G^+uA5Z#4=9kP@)aF7AvEE3&n}Y8?k0ltDgAUBGbZy#8ZNI74tc9yAnACD5 zhCPdyd)>4pigvauF%r8f%A5j!WvsCMV*;QBj{bQER!>%C9u+~iS-W|n@DqpyPj7WE zr^52$^kC0(()YOc=oI_TYgQuOb3cnWod=5HWS%lH45}6A{Wqy<4Q^mQSr&7aw@f-! zvMlnZy4$Io(+Or)Ppb}znYU>Eg^hF}ni6&Rln^yoN{Avaa0o(ldG|Jw{@Tp@XNExE zgiHRc`5)e62k6gv3+@Bv0=!P%kNV*->1>tnrndE8(hyWI^%DnjEg zKssgo=g00ukw(B|*wqL1mG_xG1CdhKN^K+vo^)BG{&AS-z*UoefKjaShg|U>qG?4v zeElSZCF?`q>4O)O4BM!UfbkBua9ff<$J?YtmyB(EoRs(V?=2D>3z{d<60-gJNf#zd zWbCz%V=%Bz#bLEnV(5RK43il>rVs+;#$%NiUbt*L0NaRIcfoaf#G9P;7q&6eMe;9N zfNxxrzVY`pM@tEzg=s1A$29+`qKHtfLAK@()bH;*i3k-1RA49+Q#b!9dxB(= zA#X%@?(Tm|p&%K^LUJuc`0plT3(Rk^0C1>;kM%Tfigg4(-;@ zfD50R+wFX((;edH-ai8WqZU*ie96jy#pNM!FsiNNslnHNGv?()Jm`hDOM)u#fO~JH zJJ$O(D1oNy0n5u*{CA_xh{#K1^?lIk)%jt2ve9&n(||F0yphy32^5hK_in2k?4ufI z0ItoBOdF20woa==<_(Js`$Zfgv({Qqp=O&SL^mHC0GpWAAHHV}$X}yWd%d^m>&W!2 zUaRRq!wHm46>9Ji2A}~ot)#^RZ&8W%Y#}}>=cIzrs^ zqRXfIYj0(E-|1O|kA4>JoQi}!Bwr80r<0ic017yV^@mP*h<(K^KV=Z|ST`l?ty@8? zBW5j-T@nffFr@le>FZ1SJSRBvCM&z*hB`}hG0~%c4 zIH>OaUxR%nw5Duo(7wSCbk4mKK{ho8Dz1G_l6XDMT^ym%(aL?XwQRMSvh}93SE?;g zb6s^2$`(Q~t-{`Vk_{;9H~3MqXZUNza`15*|4tjpV-3amyC%E9n-K$^hdbx<0CzeJ zs!N@DR-Ny0y^tw88mOUkzXAJn#9!6qDVxvhGk`?_H^po{_|LI(S32aPvC zF(%lGacUv+dxTvWyp>c4N|kwMmKhC1ACj;6HI&Sme!P%YS-&L`eb|_F(Fl7w0ZRq*opu{`1 z%=_SGAm5g&se~8+-P1*z53ag?g7+n>oQo>PpFuu>`+I-E8mF9qsZ!&V=?HKuKg&kF zv`lQ52ocOm*vA1#IV~j3w~6|;o)tN4Nh_bL(Kg56^7?f-0Yef}Pii1>Mnb>$?<18) zW`{TAa~3p*d@DD_gm%2HDexU z_AB@d3OgKw9o7uU*lzT8PJBw_EpL9EaMmGwL~xz(0IT-6A#c~>Fy;-Q}S#FT*Y6Qm@6#}YE$x9$z?gV1uOOs8>(`9a3gc^aVG%f(NOsVtkqpR6? zgz0^?)j1fMo+6og7=7R{2%D3bF5pZ6TgFzm^H{eZ!K>!{f-foI^g#*x`Zh@r(f14| z_(+;FGgV1p@}qQZZX^mI zZ7`%_G_XEwv^i}wAJRaU!sngJFJ^aPEcMZ|*~=Gc75VO=v~JrygkK6ODL%g5?dD-+ zG9YH3k6uvpKZHS6Jph|dX?z0;o$Fyl0-A!x$C^PF3jUV(pJ4n$0U4}wih(alDEY0z z{19z{+*2ePZhZqpm`~uQab$2YrIfPKG)4rId=-|dexOAb}rSvCw&BZ0&`&ue4+ zQ|u79WdXxI$^vena@Ku14k=&1*@Y3Q(TVMD#=g8w-6__of-`3qr za~RAs(UWXPIs(Ux{r4Z>qqF42%+#BjA2FpYw4o+!uKV@Sbgg^Krw+nCDvu0Ykn;W4 zrZCy^tIHaiY-$0_zEfwJVsu1BTOF_}$6X|1N!Nng2rZ(C3L3CG6 zmLOUBYLIU$u-FMIprh!k#w;hjVQ0X*DU&4^9!{2<@ZkB^zs!kDz7uvd%P+JE>Y$TBKwsQ2H9#lKO!g>6TMWwlpub+7;Td zU)~{`aF2s3`tS{Z7@3~=Vat+DX%ztNF+A)OWfZ|i$GDDyPPNIlg!YT_6JK*4`ku&? zKATXT!rCp36e5l0I5v&$J9!?c*Karz`9E?Yv@{=Xd9FYB%NngPXGPLK7p%_8@6hj0<(gs)8OI{ls^x3i3OR*mg929&N3RyIc&WFcFKjCKTNXCYBI<0j#RtlXg1q_@@ZRHE>*#L>)>n2lNk+|CpIlQ5WKS5P1) z+f5DcpWcyvL%{j4svVSqi&?%MOnd{Q&o(aj0k4j-u&M4Mdj>kuwjGJJILa<2_fl9VZ}O@>lfor{rKkytTaWchD^z$CK$Yi%q9f z$obKvk!Gz%2_k42Cb=jM(6FO0j6o)zPkIb9Nhp>9G$!O?Upm-^9#|$C(2&>~cada; z=!Re7KNPv{RIiHrbdg-BlW3|5oyk|knZQqN9qG6E0Sj)dc+i3M0G;m@D(WyQg~0>4 z-ycX(QG{NhG;_)s56j-fu18-Zd;5b$MdU@Gg=`L%UfYnD3=Y-H-`j&uiD#E9{qLV| z)jt`iS52EW*{Jur|LuuQgTPUrh}Z9Lc^VWYjCM-`k*vznijUT7kn_)rwHcxFjGWC?3D_lXpA|&+Oy|1S4__YU- zxhV|MawATykIapM`R!_lRxqr6BCOJ-UG6K9if*b$8KtlJnbv8W&)hgy1j>A;P4ht2 z_QKqYNa+@1Ro)kzdJ5R9iXP?H)(CSSe-4E0LrH7zCS8SM?vr;m1_Rs*>`Vw*);BI+wzh z9@m&2=*wPn*K;LaAaP;s2xuQ&NQH4Iq&0*oh6Rg(j!EHT#(MPesj73Di<=KWZ(N4% z$mvm)h>mi7DD=B$yy^KJ7tyonSA8L!his$JSwqeX<*$}A1nzv3Q#jr^pUzf z^?@4^dVDOdNHy-619?}XqD=YFQ}ndySjfLgc>00GKrfoYJ}S=az<+L@V4hLUo?@Jp z)4-+W(J3vNrdOk7&%$IBjE|T%t5xClSGf?fwZ`CE1K&Ei(#AXJ$lP5 zOyVf40Nz0@np;T)=}hdd(|+4l*ObFFt@%fA)*f9v-!Wh4W9pj%`UUcuvFE@2s&;D=rk_M( zR-EK$A2^j$)!%apg&kajq=ci0_ZXi{IVNVK9DQ*Dp$7(vMggV>( zv|n6fajJ#-Z4MprpFVwBvME>&?SWv;+KrL01N3a;tl)~~GUw;4sL9E9gH&%Zn!S*) zddX%mTF*I`bZY6a7K9gMH^Jzt2iH1Sy@?3Ojz7X>#7+%0=R^-)-0D~-shw!`4^hNz z(`|1-n`A?|Ghy!STQ}2}MUzhNL;}0tBygh>79!v>+(<+f_r`gyqv8o)R`n^PFC!vi zV`$)FC0T|@!YbNBxlq5#N}Tb-CqLQ){NInu-D!n6iVKm!o5jP(=V$lJYo6B?BHgvp zQzP0|nC|ig=&bW(kgc%Va59luww1Zw;Ovk~#YV?gU8`IW ziz?QK&u}A{HZjPsvSCVNeFu-7jKb$0uH&Q{5Do412*;bi5Kn2Ic@rTHKSDb@&76a=Go=W7(VfyrCdI7x!o$oDfa;19^qP)w=HqHHQ0N9!C4IE zIjFTbaG$ClzZt%#2ahtkIgf=XH}keIT6kPGnXibtoLoKFWueDgYmH&e0T7Xb=>7cV zB)1eJqWGKN$Yz;N8}(}()P+VRF|e5M-Apw9*6s#U!}a9FLp z%Ib&x0D*T4d86d;$)F7kaspc z2rW5(#9Pi)%r=)Y_OMhZz|5+P8x^6+CA^K5cgdUEktCp(Rs3#WT?ou}w7vR$o;GCr?MdO~;gB~TF7d@8GMN`#R_ zg!cxTUEjYHkVPDPo8?sEFrs~DYkK@%MgN2S7_UM)%jcitAMJIu`ODe#(scr->C2T| zQdt_~yfBZl%#L}rUC%AnjeOQ0tbi-yi)dO@nHZz%c;n2a;b@v$n64v|BR_DHX9MZF zpPqVopZ57d(TBruEbQ~A)Oe|S-SpDhzl@|dxYO+pRkIYY(V)G@nN@WQ+cv|cw@06v zvQJuc1%o5c+Vpw#h_zenlUS#))hk`Dm*L)eJ5(VvleDv-#3CRj5)~6@mNO?y_cipw z^+wTly&5Q_`qXsHgF6u_^@RAOQ^|su{5%&_~-QtGi{ckIVNf z=h0#ey8?$dAMc5yhbh}}sliQqmHPqCQ8K^ELUoh$DQTxP&zdt;`m(xQEId^*o1KC# z2iJvs(GJ~$vUDmGCv5z_$+YeaEwo+a`N^-Y3cS^%m(%*pJV}2q`?!CbI^z<5s<17G zo=K5Rp7}J@a*g&^KYHDp&K@lFVfCO!=@-uqHtLY(yK`?3KAetofm5!AT&^(ux;{3g z)Y$CPz7##HeLIS9e*Ne4CAo?CLA^e5a8nvQ5*|xCJ{K)@Toy8NeRtod3VBWz=XgP2 zlcE+Rwa4nVYMQi|uTT6@DcaVGc4Zo@LTE(NoaZffRP}3rNjy8qeun+cMFsVwa)CyS zrZ^sEZq9J8_ePWc$zd{+TB6YGz&r^J#U~<62j-SLKJQ=aYW|j?ocF4kyw_djvWP1X z87iB3$M`TIIYaYSl&2Z}5`JXxvUS;>*nvI(HoY5SPs*oe!Rx(=vSEEikt|ya)lJh& zm#{9>D!+-n9it+n1l}q?!3c#aavY1 zd;4a{Hc5;iMz5Sp+t2&n7hl?=^c6aDq9u6i%g~$*!;6NP)4-<*m%R}W$n4?l`)G0$ z8qdzsjq_H^^^wXvdC04Kx@2ZPJK4yf>f3uso^{UI_2FCLx}wY_A!I&e#9VaQ=w;>E zGyMLceA0}`9BO(!CldIf*Qv)Bh3NXU%q#kT>?sZ~EF>r4P^!-RE5?cJ-0ut1)&dLR zDZXgib(xwz46EhbMBC>C>Sm>Vuie{%no%~$0^?bYG}lC!4Tv6u-F`D%xm&{KPcNPN zpoBYvyrUzib5q>^TN@eQ+}^gpJXUXSl%WfXMLVRkPy>We2cKofWRBRSegX_(GBsF` z*WyLcY;hRP`dPn@G@2Q4N8y8x?|E(s_kyDx+q8fYJdX5>`9-=^kos#yhPZw9;U1a5 zgP6m;41!yfVE@X^C&0~|yy|yUJL`IpXK>#knAz2um7~#g*Dv9<=79BZXHd{vGMi@0 zT})MG--0l!%*dtH2^XZN?+)hmY#7F8=}CV-*U@xaowdelg~(^m&*&#^ztKIFuDN@0 z3p_K{4Zl;i_6HapzIiG>E49Hs`(@%*c%qP_flqE2>XsCyu}z6pzC%ZTYmLCF%rgor z50%P~)Fye~XT$GX+~HSvjgo?r^=)oAT#UaKzVxn6IA1e(5f>28+34Pa zB*tDWT;zy^wTC^LCPU<7r;gexzvA4;+~~n=s_Br!{i`iH8hH)x2R5w=P9$S~h-CJc z$ME9C=50j`ce}?4H&Lz#S zS?B-TpaA~-FSg~^e;vCmlmTaBaHag$TmQFDTg^TAxY2V>5zw1DdkF?ra6qk>$c=0O zjNn6WIO%t)0l}S<4L@LKgph;w)rHVVqAM>~n&(d!Xnxbx^iasIee~N8S({_Gv|jm0 zrCYUn`7y#2%)pYcIsb_~DE6yXrt{1$39&0I4S5gn@6*8G^ZW8-(2p!F5AEs)qr~z5 za-*o7%&?CZggmZ$du&4!$D$p4hyile4159i)=)wSa%J%`3|QMnFSbLa?d{2Z^r0AE ziFxbvMC0XwNuEp<;MfX_I8KWm0bO`sY#_$yVoCA)WU`?zsSh@Y`fM(N$Z)Ky%r?8lT=o ztza&J2GN5c>OembY9+tS;385W++3{hKJ(EskKeZq3k)yNa+-linG8;BKs~KJ+jR1? zdmlY$bkPya?%U1Pn17l3-fmWdVj-h+IjyT8Y>C)70C`B)#^ZJ#Z@Ut2^W~VM$FTfIS6A`~E2=T80q|tEVc9^g(e@J`Ujxl zFX3}$nl%G?@ZkJQTPr-yIQ~)gVlz^isEX}HtjXUHu1Y~ z1sUDJyHkTQI&3;qjo?5~?cw}~OhK{ANT zeZtti8g!3%JROb28F8x$LA2ZE2wd}HrVuyHF&qX(=?LUx>Va3x#T{5j5Aw;57C`cK z=j_(K)KzHAd&k}C(`Y=M^EZaRF%85;pf~Z|5anr$d&3@WCBSC_nxc^orEc z-QQ|$Ik&IYyL}<_8YMUd9C&9fW9iYz3J9?P2Nq{!74cE>^&QlAV=Akb*VS=YRzV_k zhdX?9hsNhULc0TsHE--fv!|)~EP`eUyQ@I6&MQ^^TN@UmAM$MW3ebs_NOwzf=9TmL zPm#uO_cJI4{oUv6`|Kef=VuZIBmC{caW&PkLnmN@N}GPx4_R100HlBPga8+Cr#wxEbAG|W}5@^)CAi$w=HY8j(mRe^>9tAXjo`s10*P`dRo zhL);o?cMnF^ERKINYnkqDbvf{chTC<4yeiVk6A0vX?$9fq{3N=N_{v3nq9$+8LXE~ z_g_gkKE8VRW$-W!31w9PH=Agobd{M>G}Uquh*}3RSOkP?w?y1}k!;Ky7XhpQh<<=G zx@43DiOZ75f?LpE3$#=|5Sv^si zLZUXzjl_y{AAA_!)9$Cp#|^ure#Ip%=6pf04m@&Tz167%cHiR~A!^?0S-oWqY|hZ^ zwk=WdAD{12Z@;f5kk4xNnZL|tc@a(ya3iOm%cj1GaBUD~hUh(ybwDiv^Ba$yQB*hz z2qyHO&?;w0G=6tH@^^C{t-e}`Y0zur;1r)q4T$43yvYKIxj)Mj+-;k<0BWo= z?vxE0M|dk!Pdg5>(LXjRd(epMJEwlh5_HTw{WkL#aOp;~o@hUJxJKXP{3aqshHrLdA$~A@?A-?fY;$(avpJ=&12Q4t~a;pu?i=8l9Ygm zWPhvn_n}xGOnJ3Ny*+ICYx=WjBKbq#!}4??BU$slG0qILEDLaP0n=AMozFgKlxkprVqgg={21ae+YoJK|Mb1k+>Uf??+q z^U_jLrUh5ddmEs;>J9=7c07duDQiWKF7JHtV9;)@QIICw(uTU<%dK}gWHA0ck z!p4U(e`}$6axq)5JV;!ZAc21v5Yd6 zFbIi)GQ|`FmZ72y3KA&D3;`67FqEla1eJzF5O^{fl`u%4jKv^m#UKI!Z9##^AUzk` z_wwWA_x--R?!M=oyT6sa)?##}dZbpLx8d?NEs(|9uX)ia!9J%?Rzd`DLezdncib!93>DN|pfFZ}bev^;5F3zp?7Yon2rQt+ks z-pmWE?(>;M*88l{;MBSKcBq9TI@nds*k?a_1zM*~tbT)#rImiM_AKwX3-t^5_Hu5* z^Kg$O_+EHpf-Efe!Na@2hVx!$-KXl&>29{xqJ3wJ#ly4aJH;+d+&9fGP5ANLp^)fy zGKhOwaM-@!Cd%l9&b(i$&pz|Va8t!(x0E!O=y08)Ov9z#sHeM4B+PQr zqkZ{tZEt7Nw1x;?He4kOUZbaaoYe7boe-~y$JpnQWVyIJ#E97YV7XSQ?8!%0E4`}J zFpROln2w86VNnudhEE;y6W4%dan4p#N=NQYP}|s45Y1k~AO<*s@OeO0VoV889= zPX7|O;tZ+$jRyP1!w7e{#m_;t=#y(o>J_5zJl!qoOXd8=QMBVI2?^AYF!v8~0_F2d z6NX+I(1X-#N(wQAom@K5*Z5k#tR(45+o${!I?`q1>2bMVQ2k=coz6%HzIpSUuno;g$MMsh!!EoJSI?Maf_vwvt;epTnqcX3A?!ndfW7w!U4L|MaJ|M0L-F^!_~S zdyn4p3KX2d$D^sw=@kD8vz}gk&4};Z^t1jSM`q+q{jSPycFyt=_$<{en&(7VJ}q}jHbkm3grLn52~lPoJQQ2vXGvt2Z|U?kf_3I(gAdwK6BgzD$u1eruZ}7)t7uqt%&nNTy+|~`PMJ*Ka2RH{wdq<}D*PlIH zMd!~1w6rYv_o?HXa-$!szlO8?lc%H%_WAg!Cv`W6<945Mv6NVn>Rn2c??2Gmi2wd@ z&(}Yb3iHL*%hF^T3deFd%g*BBb?6(?V?A1XOfI|1G_>U%>(Xj!8O06W-f5VW-1zam+mM=boNXLme$lyi}?C z{7^EYmi}0Gp$;?q>=nE7b#bud8WM5%K0*RTO~Zw5(g{|-DRxEsQsYN3^2^PK#VGyM z#6noK+ekb7bXzcmqSM3Z`|%p9*4C;?{9D|9rp-O_(O3}oko;h0$Jpy710k#Xl{_#9 zC?9eTn5(wB)PI*cWDmPac_d8Kh{-E+`HJxPVw~U zQaOQ|HhXnEUIanWV2QXkgkDp%X8NsaFeN)n@}I9w8OPAskj%>@Go#Ejf~sPKPP?uB6&&AYme|m zoGhy%{M0*?fJy!+SZtEbUc&lndJ~twBZq0!qO{TsB0PHTYM!e(WcK#<3y~``=2}R_ zP#QYfrJxNcudslXe5K*)qgU39^r~D;QKb>p_1_+Yc0@${0_TJCmEIQ{y4_L3yN78N z1vU_FPoog$Cud=)3S2S&porvMG@t=Vl-36M6|{p&AiYD+L|NazC8b^)GD_YZ9EK%9 z97a~d$n`x!o*Z~|3ZjMw!*RTz)@An+A{uZDJW*YBo6=N}9RBf=56Pxf;@=^4z&+#u zw!qBF9R1Jr5C_5rq=yc!NR};2zi@1q9ve=qNZmtpLak_OP>?0Pivja1_qmyeWX=4#b`W%vWm* zz`Y1?u$M>N1aO>!N@fu0E;z((25`*s=kEyMKtpg9%u#}Hl>v^6agn=zLH`u75WxL) he+5Di?*A>@mg=X#7mwH+1MD8~bH?E88Fs|vzX70pQq}+f literal 0 HcmV?d00001 diff --git a/shestakova_maria_lab_3/README.md b/shestakova_maria_lab_3/README.md new file mode 100644 index 0000000..192b9c0 --- /dev/null +++ b/shestakova_maria_lab_3/README.md @@ -0,0 +1,32 @@ +### Задание: + +Часть 1. По данным о пассажирах Титаника решите задачу классификации (с помощью дерева решений), в которой по различным характеристикам пассажиров требуется найти у выживших пассажиров два наиболее важных признака из трех рассматриваемых: Pclass, Parch, Fare + +Часть 2. Решите с помощью библиотечной реализации дерева решений задачу из лабораторной работы «Веб-сервис «Дерево решений» по предмету «Методы искусственного интеллекта»на 99% ваших данных: зависимость качества сна (Quality of Sleep) от возраста (Age) и пола (Gender). Проверьте работу модели на оставшемся проценте, сделайте вывод + +### Технологии: + +Библиотека Scikit-learn, библиотека numpy, библиотека pandas + +### Что делает лабораторная: + +Часть 1. Из выборки отбирается 3 необходимых по заданию признака, определяется целевая переменная по заданию, обучается дерево, выводятся важности признаков по каждому классу + +Часть 2. Из выборки отбирается 2 необходимых по заданию признака, определяется целевая переменная по заданию, данные разделяются на обущающую и тестовую выборку, дерево обучается классификацией и регрессией, выводятся важности признаков, предсказания значений на тестовой выборке и оценка качества + +### Как запустить: + +Первая часть лабораторной работы запускается в файле `shestakova_maria_lab_3.1.py` через Run: появляется вывод в консоли +Вторая часть лабораторной работы запускается в файле `shestakova_maria_lab_3.2.py` через Run: появляется вывод в консоли + +### Вывод: + +Часть 1. + +![img1.png](3.1.png) + +Часть 2. + +![img2.png](3.2.png) + +По выводу можно заметить, что модель дерева классификации подходит больше для решения данной задачи diff --git a/shestakova_maria_lab_3/shestakova_maria_lab_3.1.py b/shestakova_maria_lab_3/shestakova_maria_lab_3.1.py new file mode 100644 index 0000000..835274b --- /dev/null +++ b/shestakova_maria_lab_3/shestakova_maria_lab_3.1.py @@ -0,0 +1,22 @@ +import pandas +from sklearn.tree import DecisionTreeClassifier +import numpy as np + +# загрузка данных из набора +data = pandas.read_csv('titanic.csv', index_col='Passengerid') + +data = data.loc[(np.isnan(data['Pclass']) == False) & (np.isnan(data['Parch']) == False) & (np.isnan(data['Fare']) == False) & (np.isnan(data['2urvived']) == False)] + +# отбор по заданию +correct = data[['Pclass', 'Parch', 'Fare']] +print(correct.head()) + +y = data['2urvived'] + +# дерево решений +clf = DecisionTreeClassifier(random_state=27) +clf.fit(correct, y) + +# важность признаков +important = clf.feature_importances_ +print(important) \ No newline at end of file diff --git a/shestakova_maria_lab_3/shestakova_maria_lab_3.2.py b/shestakova_maria_lab_3/shestakova_maria_lab_3.2.py new file mode 100644 index 0000000..15474da --- /dev/null +++ b/shestakova_maria_lab_3/shestakova_maria_lab_3.2.py @@ -0,0 +1,51 @@ +import pandas as pd +from sklearn.model_selection import train_test_split +from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier +from sklearn.metrics import mean_squared_error +from sklearn.metrics import accuracy_score + +# загрузка данных из набора +data = pd.read_csv('sleep.csv', index_col='Person ID') + +# приведение строковых ячеек к числу +data['Gender'] = data['Gender'].map({'Male': 0, 'Female': 1}) + +# признаки (X) и целевая переменная (y) +X = data[['Age', 'Gender']] +print(X.head()) +y = data['Quality of Sleep'] + +# обуч и тест выборка +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.01, random_state=27) + +# дерево регрессии +regression_tree = DecisionTreeRegressor() +regression_tree.fit(X_train, y_train) +test_score_reg = regression_tree.score(X_test, y_test) +# важность признаков +important_reg = regression_tree.feature_importances_ +# предсказание +y_pred_reg = regression_tree.predict(X_test) +# оценка модели +mse = mean_squared_error(y_test, y_pred_reg) + +# дерево классификации +classifier_tree = DecisionTreeClassifier() +classifier_tree.fit(X_train, y_train) +test_score_class = classifier_tree.score(X_test, y_test) +# важность признаков +important_class = classifier_tree.feature_importances_ +# предсказание +y_pred_class = classifier_tree.predict(X_test) +# оценка модели +accuracy = accuracy_score(y_test, y_pred_class) + +print("Regression Tree:") +print("Score:", test_score_reg) +print("Importance:", important_reg) +print("Mean Squared Error: {:.2f}".format(mse)) +print("") +print("Classification Tree:") +print("Score:", test_score_class) +print("Importance:", important_class) +print("Accuracy: {:.2f}%".format(accuracy * 100)) \ No newline at end of file diff --git a/shestakova_maria_lab_3/sleep.csv b/shestakova_maria_lab_3/sleep.csv new file mode 100644 index 0000000..b7e16bd --- /dev/null +++ b/shestakova_maria_lab_3/sleep.csv @@ -0,0 +1,375 @@ +Person ID,Gender,Age,Occupation,Sleep Duration,Quality of Sleep,Physical Activity Level,Stress Level,BMI Category,Blood Pressure,Heart Rate,Daily Steps,Sleep Disorder +1,Male,27,Software Engineer,6.1,6,42,6,Overweight,126/83,77,4200,None +2,Male,28,Doctor,6.2,6,60,8,Normal,125/80,75,10000,None +3,Male,28,Doctor,6.2,6,60,8,Normal,125/80,75,10000,None +4,Male,28,Sales Representative,5.9,4,30,8,Obese,140/90,85,3000,Sleep Apnea +5,Male,28,Sales Representative,5.9,4,30,8,Obese,140/90,85,3000,Sleep Apnea +6,Male,28,Software Engineer,5.9,4,30,8,Obese,140/90,85,3000,Insomnia +7,Male,29,Teacher,6.3,6,40,7,Obese,140/90,82,3500,Insomnia +8,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None +9,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None +10,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None +11,Male,29,Doctor,6.1,6,30,8,Normal,120/80,70,8000,None +12,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None +13,Male,29,Doctor,6.1,6,30,8,Normal,120/80,70,8000,None +14,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,None +15,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,None +16,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,None +17,Female,29,Nurse,6.5,5,40,7,Normal Weight,132/87,80,4000,Sleep Apnea +18,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,Sleep Apnea +19,Female,29,Nurse,6.5,5,40,7,Normal Weight,132/87,80,4000,Insomnia +20,Male,30,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None +21,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +22,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +23,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +24,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +25,Male,30,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None +26,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None +27,Male,30,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None +28,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None +29,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None +30,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None +31,Female,30,Nurse,6.4,5,35,7,Normal Weight,130/86,78,4100,Sleep Apnea +32,Female,30,Nurse,6.4,5,35,7,Normal Weight,130/86,78,4100,Insomnia +33,Female,31,Nurse,7.9,8,75,4,Normal Weight,117/76,69,6800,None +34,Male,31,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None +35,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +36,Male,31,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None +37,Male,31,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None +38,Male,31,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None +39,Male,31,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None +40,Male,31,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None +41,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +42,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +43,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +44,Male,31,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None +45,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +46,Male,31,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None +47,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +48,Male,31,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None +49,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +50,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,Sleep Apnea +51,Male,32,Engineer,7.5,8,45,3,Normal,120/80,70,8000,None +52,Male,32,Engineer,7.5,8,45,3,Normal,120/80,70,8000,None +53,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None +54,Male,32,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None +55,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None +56,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None +57,Male,32,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +58,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None +59,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None +60,Male,32,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +61,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None +62,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None +63,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None +64,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None +65,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None +66,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None +67,Male,32,Accountant,7.2,8,50,6,Normal Weight,118/76,68,7000,None +68,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,Insomnia +69,Female,33,Scientist,6.2,6,50,6,Overweight,128/85,76,5500,None +70,Female,33,Scientist,6.2,6,50,6,Overweight,128/85,76,5500,None +71,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None +72,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None +73,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None +74,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None +75,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None +76,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None +77,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None +78,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None +79,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None +80,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None +81,Female,34,Scientist,5.8,4,32,8,Overweight,131/86,81,5200,Sleep Apnea +82,Female,34,Scientist,5.8,4,32,8,Overweight,131/86,81,5200,Sleep Apnea +83,Male,35,Teacher,6.7,7,40,5,Overweight,128/84,70,5600,None +84,Male,35,Teacher,6.7,7,40,5,Overweight,128/84,70,5600,None +85,Male,35,Software Engineer,7.5,8,60,5,Normal Weight,120/80,70,8000,None +86,Female,35,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +87,Male,35,Engineer,7.2,8,60,4,Normal,125/80,65,5000,None +88,Male,35,Engineer,7.2,8,60,4,Normal,125/80,65,5000,None +89,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None +90,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None +91,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None +92,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None +93,Male,35,Software Engineer,7.5,8,60,5,Normal Weight,120/80,70,8000,None +94,Male,35,Lawyer,7.4,7,60,5,Obese,135/88,84,3300,Sleep Apnea +95,Female,36,Accountant,7.2,8,60,4,Normal,115/75,68,7000,Insomnia +96,Female,36,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None +97,Female,36,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +98,Female,36,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None +99,Female,36,Teacher,7.1,8,60,4,Normal,115/75,68,7000,None +100,Female,36,Teacher,7.1,8,60,4,Normal,115/75,68,7000,None +101,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,None +102,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,None +103,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,None +104,Male,36,Teacher,6.6,5,35,7,Overweight,129/84,74,4800,Sleep Apnea +105,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,Sleep Apnea +106,Male,36,Teacher,6.6,5,35,7,Overweight,129/84,74,4800,Insomnia +107,Female,37,Nurse,6.1,6,42,6,Overweight,126/83,77,4200,None +108,Male,37,Engineer,7.8,8,70,4,Normal Weight,120/80,68,7000,None +109,Male,37,Engineer,7.8,8,70,4,Normal Weight,120/80,68,7000,None +110,Male,37,Lawyer,7.4,8,60,5,Normal,130/85,68,8000,None +111,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +112,Male,37,Lawyer,7.4,8,60,5,Normal,130/85,68,8000,None +113,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +114,Male,37,Lawyer,7.4,8,60,5,Normal,130/85,68,8000,None +115,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +116,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +117,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +118,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +119,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +120,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +121,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +122,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +123,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +124,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +125,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +126,Female,37,Nurse,7.5,8,60,4,Normal Weight,120/80,70,8000,None +127,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None +128,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None +129,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None +130,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None +131,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None +132,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None +133,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None +134,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None +135,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None +136,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None +137,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None +138,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,None +139,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None +140,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,None +141,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None +142,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,None +143,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None +144,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None +145,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,Sleep Apnea +146,Female,38,Lawyer,7.4,7,60,5,Obese,135/88,84,3300,Sleep Apnea +147,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,Insomnia +148,Male,39,Engineer,6.5,5,40,7,Overweight,132/87,80,4000,Insomnia +149,Female,39,Lawyer,6.9,7,50,6,Normal Weight,128/85,75,5500,None +150,Female,39,Accountant,8,9,80,3,Normal Weight,115/78,67,7500,None +151,Female,39,Accountant,8,9,80,3,Normal Weight,115/78,67,7500,None +152,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None +153,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None +154,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None +155,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None +156,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None +157,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None +158,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None +159,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None +160,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None +161,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None +162,Female,40,Accountant,7.2,8,55,6,Normal Weight,119/77,73,7300,None +163,Female,40,Accountant,7.2,8,55,6,Normal Weight,119/77,73,7300,None +164,Male,40,Lawyer,7.9,8,90,5,Normal,130/85,68,8000,None +165,Male,40,Lawyer,7.9,8,90,5,Normal,130/85,68,8000,None +166,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,Insomnia +167,Male,41,Engineer,7.3,8,70,6,Normal Weight,121/79,72,6200,None +168,Male,41,Lawyer,7.1,7,55,6,Overweight,125/82,72,6000,None +169,Male,41,Lawyer,7.1,7,55,6,Overweight,125/82,72,6000,None +170,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None +171,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None +172,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None +173,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None +174,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None +175,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,None +176,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,None +177,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,None +178,Male,42,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +179,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None +180,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None +181,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None +182,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None +183,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None +184,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None +185,Female,42,Teacher,6.8,6,45,7,Overweight,130/85,78,5000,Sleep Apnea +186,Female,42,Teacher,6.8,6,45,7,Overweight,130/85,78,5000,Sleep Apnea +187,Female,43,Teacher,6.7,7,45,4,Overweight,135/90,65,6000,Insomnia +188,Male,43,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +189,Female,43,Teacher,6.7,7,45,4,Overweight,135/90,65,6000,Insomnia +190,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +191,Female,43,Teacher,6.7,7,45,4,Overweight,135/90,65,6000,Insomnia +192,Male,43,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia +193,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +194,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +195,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +196,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +197,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +198,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +199,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +200,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +201,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +202,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,Insomnia +203,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,Insomnia +204,Male,43,Engineer,6.9,6,47,7,Normal Weight,117/76,69,6800,None +205,Male,43,Engineer,7.6,8,75,4,Overweight,122/80,68,6800,None +206,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None +207,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None +208,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None +209,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None +210,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None +211,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None +212,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None +213,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None +214,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None +215,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None +216,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None +217,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None +218,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None +219,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,Sleep Apnea +220,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Sleep Apnea +221,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +222,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia +223,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +224,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia +225,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +226,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +227,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +228,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +229,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +230,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +231,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +232,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +233,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +234,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +235,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +236,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +237,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia +238,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia +239,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +240,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia +241,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia +242,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +243,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia +244,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia +245,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +246,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia +247,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +248,Male,44,Engineer,6.8,7,45,7,Overweight,130/85,78,5000,Insomnia +249,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,None +250,Male,44,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,None +251,Female,45,Teacher,6.8,7,30,6,Overweight,135/90,65,6000,Insomnia +252,Female,45,Teacher,6.8,7,30,6,Overweight,135/90,65,6000,Insomnia +253,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia +254,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia +255,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia +256,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia +257,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +258,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +259,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +260,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +261,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +262,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,None +263,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,None +264,Female,45,Manager,6.9,7,55,5,Overweight,125/82,75,5500,None +265,Male,48,Doctor,7.3,7,65,5,Obese,142/92,83,3500,Insomnia +266,Female,48,Nurse,5.9,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +267,Male,48,Doctor,7.3,7,65,5,Obese,142/92,83,3500,Insomnia +268,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,None +269,Female,49,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +270,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +271,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +272,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +273,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +274,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +275,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +276,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +277,Male,49,Doctor,8.1,9,85,3,Obese,139/91,86,3700,Sleep Apnea +278,Male,49,Doctor,8.1,9,85,3,Obese,139/91,86,3700,Sleep Apnea +279,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Insomnia +280,Female,50,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None +281,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,None +282,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +283,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +284,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +285,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +286,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +287,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +288,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +289,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +290,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +291,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +292,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +293,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +294,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +295,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +296,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +297,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +298,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +299,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +300,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +301,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +302,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +303,Female,51,Nurse,7.1,7,55,6,Normal Weight,125/82,72,6000,None +304,Female,51,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +305,Female,51,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +306,Female,51,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +307,Female,52,Accountant,6.5,7,45,7,Overweight,130/85,72,6000,Insomnia +308,Female,52,Accountant,6.5,7,45,7,Overweight,130/85,72,6000,Insomnia +309,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia +310,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia +311,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia +312,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia +313,Female,52,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +314,Female,52,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +315,Female,52,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +316,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,Insomnia +317,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +318,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +319,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +320,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +321,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +322,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +323,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +324,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +325,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None +326,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +327,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None +328,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +329,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None +330,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +331,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +332,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +333,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +334,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +335,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +336,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +337,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +338,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +339,Female,54,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +340,Female,55,Nurse,8.1,9,75,4,Overweight,140/95,72,5000,Sleep Apnea +341,Female,55,Nurse,8.1,9,75,4,Overweight,140/95,72,5000,Sleep Apnea +342,Female,56,Doctor,8.2,9,90,3,Normal Weight,118/75,65,10000,None +343,Female,56,Doctor,8.2,9,90,3,Normal Weight,118/75,65,10000,None +344,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,None +345,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +346,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +347,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +348,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +349,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +350,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +351,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +352,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +353,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +354,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +355,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +356,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +357,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +358,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +359,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,None +360,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,None +361,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +362,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +363,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +364,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +365,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +366,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +367,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +368,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +369,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +370,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +371,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +372,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +373,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +374,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea \ No newline at end of file diff --git a/shestakova_maria_lab_3/titanic.csv b/shestakova_maria_lab_3/titanic.csv new file mode 100644 index 0000000..4b1b6df --- /dev/null +++ b/shestakova_maria_lab_3/titanic.csv @@ -0,0 +1,1310 @@ +Passengerid,Age,Fare,Sex,sibsp,zero,zero,zero,zero,zero,zero,zero,Parch,zero,zero,zero,zero,zero,zero,zero,zero,Pclass,zero,zero,Embarked,zero,zero,2urvived +1,22,7.25,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +2,38,71.2833,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +3,26,7.925,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +4,35,53.1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +5,35,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +6,28,8.4583,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +7,54,51.8625,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +8,2,21.075,0,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +9,27,11.1333,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +10,14,30.0708,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1 +11,4,16.7,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +12,58,26.55,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +13,20,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +14,39,31.275,0,1,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +15,14,7.8542,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +16,55,16,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +17,2,29.125,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +18,28,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +19,31,18,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +20,28,7.225,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1 +21,35,26,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +22,34,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +23,15,8.0292,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,1 +24,28,35.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +25,8,21.075,1,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +26,38,31.3875,1,1,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +27,28,7.225,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +28,19,263,0,3,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +29,28,7.8792,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,1 +30,28,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +31,40,27.7208,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +32,28,146.5208,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +33,28,7.75,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,1 +34,66,10.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +35,28,82.1708,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +36,42,52,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +37,28,7.2292,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1 +38,21,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +39,18,18,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +40,14,11.2417,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1 +41,40,9.475,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +42,27,21,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +43,28,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +44,3,41.5792,1,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1 +45,19,7.8792,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,1 +46,28,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +47,28,15.5,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +48,28,7.75,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,1 +49,28,21.6792,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +50,18,17.8,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +51,7,39.6875,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +52,21,7.8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +53,49,76.7292,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +54,29,26,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +55,65,61.9792,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +56,28,35.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +57,21,10.5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +58,28.5,7.2292,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +59,5,27.75,1,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +60,11,46.9,0,5,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +61,22,7.2292,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +62,38,80,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,,0,0,1 +63,45,83.475,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +64,4,27.9,0,3,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +65,28,27.7208,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +66,28,15.2458,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1 +67,29,10.5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +68,19,8.1583,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +69,17,7.925,1,4,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +70,26,8.6625,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +71,32,10.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +72,16,46.9,1,5,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +73,21,73.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +74,26,14.4542,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +75,32,56.4958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +76,25,7.65,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +77,28,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +78,28,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +79,0.83,29,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +80,30,12.475,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +81,22,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +82,29,9.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +83,28,7.7875,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,1 +84,28,47.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +85,17,10.5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +86,33,15.85,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +87,16,34.375,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +88,28,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +89,23,263,1,3,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +90,24,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +91,29,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +92,20,7.8542,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +93,46,61.175,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +94,26,20.575,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +95,59,7.25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +96,28,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +97,71,34.6542,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +98,23,63.3583,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +99,34,23,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +100,34,26,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +101,28,7.8958,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +102,28,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +103,21,77.2875,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +104,33,8.6542,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +105,37,7.925,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +106,28,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +107,21,7.65,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +108,28,7.775,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +109,38,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +110,28,24.15,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,1 +111,47,52,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +112,14.5,14.4542,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +113,22,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +114,20,9.825,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +115,17,14.4583,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +116,21,7.925,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +117,70.5,7.75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +118,29,21,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +119,24,247.5208,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +120,2,31.275,1,4,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +121,21,73.5,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +122,28,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +123,32.5,30.0708,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0 +124,32.5,13,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +125,54,77.2875,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +126,12,11.2417,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1 +127,28,7.75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +128,24,7.1417,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +129,28,22.3583,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1 +130,45,6.975,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +131,33,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +132,20,7.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +133,47,14.5,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +134,29,26,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +135,25,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +136,23,15.0458,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0 +137,19,26.2833,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +138,37,53.1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +139,16,9.2167,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +140,24,79.2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +141,28,15.2458,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +142,22,7.75,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +143,24,15.85,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +144,19,6.75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +145,18,11.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +146,19,36.75,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +147,27,7.7958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +148,9,34.375,1,2,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +149,36.5,26,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +150,42,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +151,51,12.525,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +152,22,66.6,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +153,55.5,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +154,40.5,14.5,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +155,28,7.3125,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +156,51,61.3792,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +157,16,7.7333,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,1 +158,30,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +159,28,8.6625,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +160,28,69.55,0,8,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +161,44,16.1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +162,40,15.75,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +163,26,7.775,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +164,17,8.6625,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +165,1,39.6875,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +166,9,20.525,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +167,28,55,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +168,45,27.9,1,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +169,28,25.925,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +170,28,56.4958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +171,61,33.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +172,4,29.125,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +173,1,11.1333,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +174,21,7.925,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +175,56,30.6958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +176,18,7.8542,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +177,28,25.4667,0,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +178,50,28.7125,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +179,30,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +180,36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +181,28,69.55,1,8,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +182,28,15.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0 +183,9,31.3875,0,4,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +184,1,39,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +185,4,22.025,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +186,28,50,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +187,28,15.5,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,1 +188,45,26.55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +189,40,15.5,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +190,36,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +191,32,13,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +192,19,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +193,19,7.8542,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +194,3,26,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +195,44,27.7208,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +196,58,146.5208,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +197,28,7.75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +198,42,8.4042,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +199,28,7.75,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,1 +200,24,13,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +201,28,9.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +202,28,69.55,0,8,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +203,34,6.4958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +204,45.5,7.225,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +205,18,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +206,2,10.4625,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +207,32,15.85,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +208,26,18.7875,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1 +209,16,7.75,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,1 +210,40,31,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +211,24,7.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +212,35,21,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +213,22,7.25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +214,30,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +215,28,7.75,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +216,31,113.275,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +217,27,7.925,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +218,42,27,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +219,32,76.2917,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +220,30,10.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +221,16,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +222,27,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +223,51,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +224,28,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +225,38,90,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +226,22,9.35,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +227,19,10.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +228,20.5,7.25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +229,18,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +230,28,25.4667,1,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +231,35,83.475,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +232,29,7.775,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +233,59,13.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +234,5,31.3875,1,4,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +235,24,10.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +236,28,7.55,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +237,44,26,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +238,8,26.25,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +239,19,10.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +240,33,12.275,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +241,28,14.4542,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +242,28,15.5,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,1 +243,29,10.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +244,22,7.125,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +245,30,7.225,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +246,44,90,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0 +247,25,7.775,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +248,24,14.5,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +249,37,52.5542,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +250,54,26,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +251,28,7.25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +252,29,10.4625,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +253,62,26.55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +254,30,16.1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +255,41,20.2125,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +256,29,15.2458,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1 +257,28,79.2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +258,30,86.5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +259,35,512.3292,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +260,50,26,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +261,28,7.75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +262,3,31.3875,0,4,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +263,52,79.65,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +264,40,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +265,28,7.75,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +266,36,10.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +267,16,39.6875,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +268,25,7.775,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +269,58,153.4625,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +270,35,135.6333,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +271,28,31,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +272,25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +273,41,19.5,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +274,37,29.7,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +275,28,7.75,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,1 +276,63,77.9583,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +277,45,7.75,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +278,28,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +279,7,29.125,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +280,35,20.25,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +281,65,7.75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +282,28,7.8542,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +283,16,9.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +284,19,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +285,28,26,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +286,33,8.6625,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +287,30,9.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +288,22,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +289,42,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +290,22,7.75,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,1 +291,26,78.85,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +292,19,91.0792,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +293,36,12.875,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0 +294,24,8.85,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +295,24,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +296,28,27.7208,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +297,23.5,7.2292,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +298,2,151.55,1,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +299,28,30.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +300,50,247.5208,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +301,28,7.75,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,1 +302,28,23.25,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,1 +303,19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +304,28,12.35,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,1 +305,28,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +306,0.92,151.55,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +307,28,110.8833,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +308,17,108.9,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +309,30,24,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0 +310,30,56.9292,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +311,24,83.1583,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +312,18,262.375,1,2,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +313,26,26,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +314,28,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +315,43,26.25,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +316,26,7.8542,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +317,24,26,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +318,54,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +319,31,164.8667,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +320,40,134.5,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +321,22,7.25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +322,27,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +323,30,12.35,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,1 +324,22,29,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +325,28,69.55,0,8,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +326,36,135.6333,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +327,61,6.2375,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +328,36,13,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +329,31,20.525,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +330,16,57.9792,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +331,28,23.25,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,1 +332,45.5,28.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +333,38,153.4625,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +334,16,18,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +335,28,133.65,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +336,28,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +337,29,66.6,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +338,41,134.5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +339,45,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +340,45,35.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +341,2,26,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +342,24,263,1,3,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +343,28,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +344,25,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +345,36,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +346,24,13,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +347,40,13,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +348,28,16.1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +349,3,15.9,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +350,42,8.6625,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +351,23,9.225,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +352,28,35,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +353,15,7.2292,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +354,25,17.8,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +355,28,7.225,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +356,28,9.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +357,22,55,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +358,38,13,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +359,28,7.8792,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,1 +360,28,7.8792,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,1 +361,40,27.9,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +362,29,27.7208,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0 +363,45,14.4542,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +364,35,7.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +365,28,15.5,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +366,30,7.25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +367,60,75.25,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +368,28,7.2292,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1 +369,28,7.75,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,1 +370,24,69.3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +371,25,55.4417,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +372,18,6.4958,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +373,19,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +374,22,135.6333,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +375,3,21.075,1,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +376,28,82.1708,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +377,22,7.25,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +378,27,211.5,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +379,20,4.0125,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +380,19,7.775,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +381,42,227.525,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +382,1,15.7417,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1 +383,32,7.925,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +384,35,52,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +385,28,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +386,18,73.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +387,1,46.9,0,5,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +388,36,13,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +389,28,7.7292,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +390,17,12,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1 +391,36,120,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +392,21,7.7958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +393,28,7.925,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +394,23,113.275,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +395,24,16.7,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +396,22,7.7958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +397,31,7.8542,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +398,46,26,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +399,23,10.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +400,28,12.65,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +401,39,7.925,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +402,26,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +403,21,9.825,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +404,28,15.85,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +405,20,8.6625,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +406,34,21,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +407,51,7.75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +408,3,18.75,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +409,21,7.775,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +410,28,25.4667,1,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +411,28,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +412,28,6.8583,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +413,33,90,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1 +414,28,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +415,44,7.925,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +416,28,8.05,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +417,34,32.5,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +418,18,13,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +419,30,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +420,10,24.15,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +421,28,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +422,21,7.7333,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +423,29,7.875,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +424,28,14.4,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +425,18,20.2125,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +426,28,7.25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +427,28,26,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +428,19,26,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +429,28,7.75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +430,32,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +431,28,26.55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +432,28,16.1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +433,42,26,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +434,17,7.125,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +435,50,55.9,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +436,14,120,1,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +437,21,34.375,1,2,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +438,24,18.75,1,2,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +439,64,263,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +440,31,10.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +441,45,26.25,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +442,20,9.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +443,25,7.775,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +444,28,13,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +445,28,8.1125,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +446,4,81.8583,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +447,13,19.5,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +448,34,26.55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +449,5,19.2583,1,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1 +450,52,30.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +451,36,27.75,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +452,28,19.9667,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +453,30,27.75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +454,49,89.1042,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +455,28,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +456,29,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1 +457,65,26.55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +458,28,51.8625,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +459,50,10.5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +460,28,7.75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +461,48,26.55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +462,34,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +463,47,38.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +464,48,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +465,28,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +466,38,7.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +467,28,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +468,56,26.55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +469,28,7.725,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +470,0.75,19.2583,1,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1 +471,28,7.25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +472,38,8.6625,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +473,33,27.75,1,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +474,23,13.7917,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1 +475,22,9.8375,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +476,28,52,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +477,34,21,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +478,29,7.0458,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +479,22,7.5208,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +480,2,12.2875,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +481,9,46.9,0,5,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +482,28,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +483,50,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +484,63,9.5875,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +485,25,91.0792,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +486,28,25.4667,1,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +487,35,90,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +488,58,29.7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +489,30,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +490,9,15.9,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +491,28,19.9667,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +492,21,7.25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +493,55,30.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +494,71,49.5042,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +495,21,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +496,28,14.4583,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +497,54,78.2667,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +498,28,15.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +499,25,151.55,1,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +500,24,7.7958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +501,17,8.6625,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +502,21,7.75,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +503,28,7.6292,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +504,37,9.5875,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +505,16,86.5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +506,18,108.9,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +507,33,26,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +508,28,26.55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +509,28,22.525,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +510,26,56.4958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +511,29,7.75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,1 +512,28,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +513,36,26.2875,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +514,54,59.4,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +515,24,7.4958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +516,47,34.0208,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +517,34,10.5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +518,28,24.15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +519,36,26,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +520,32,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +521,30,93.5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +522,22,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +523,28,7.225,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +524,44,57.9792,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +525,28,7.2292,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +526,40.5,7.75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +527,50,10.5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +528,28,221.7792,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +529,39,7.925,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +530,23,11.5,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +531,2,26,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +532,28,7.2292,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +533,17,7.2292,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +534,28,22.3583,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1 +535,30,8.6625,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +536,7,26.25,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +537,45,26.55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +538,30,106.425,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +539,28,14.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +540,22,49.5,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +541,36,71,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +542,9,31.275,1,4,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +543,11,31.275,1,4,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +544,32,26,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +545,50,106.425,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +546,64,26,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +547,19,26,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +548,28,13.8625,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1 +549,33,20.525,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +550,8,36.75,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +551,17,110.8833,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +552,27,26,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +553,28,7.8292,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +554,22,7.225,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1 +555,22,7.775,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +556,62,26.55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +557,48,39.6,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +558,28,227.525,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +559,39,79.65,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +560,36,17.4,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +561,28,7.75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +562,40,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +563,28,13.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +564,28,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +565,28,8.05,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +566,24,24.15,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +567,19,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +568,29,21.075,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +569,28,7.2292,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +570,32,7.8542,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +571,62,10.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +572,53,51.4792,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +573,36,26.3875,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +574,28,7.75,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,1 +575,16,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +576,19,14.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +577,34,13,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +578,39,55.9,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +579,28,14.4583,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +580,32,7.925,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +581,25,30,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +582,39,110.8833,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +583,54,26,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +584,36,40.125,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +585,28,8.7125,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +586,18,79.65,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +587,47,15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +588,60,79.2,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +589,22,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +590,28,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +591,35,7.125,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +592,52,78.2667,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +593,47,7.25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +594,28,7.75,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +595,37,26,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +596,36,24.15,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +597,28,33,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +598,49,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +599,28,7.225,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +600,49,56.9292,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +601,24,27,1,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +602,28,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +603,28,42.4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +604,44,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +605,35,26.55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +606,36,15.55,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +607,30,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +608,27,30.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +609,22,41.5792,1,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1 +610,40,153.4625,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +611,39,31.275,1,1,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +612,28,7.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +613,28,15.5,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,1 +614,28,7.75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +615,35,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +616,24,65,1,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +617,34,14.4,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +618,26,16.1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +619,4,39,1,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +620,26,10.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +621,27,14.4542,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +622,42,52.5542,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +623,20,15.7417,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1 +624,21,7.8542,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +625,21,16.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +626,61,32.3208,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +627,57,12.35,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0 +628,21,77.9583,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +629,26,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +630,28,7.7333,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +631,80,30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +632,51,7.0542,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +633,32,30.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +634,28,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +635,9,27.9,1,3,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +636,28,13,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +637,32,7.925,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +638,31,26.25,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +639,41,39.6875,1,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +640,28,16.1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +641,20,7.8542,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +642,24,69.3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +643,2,27.9,1,3,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +644,28,56.4958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +645,0.75,19.2583,1,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1 +646,48,76.7292,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +647,19,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +648,56,35.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +649,28,7.55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +650,23,7.55,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +651,28,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +652,18,23,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +653,21,8.4333,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +654,28,7.8292,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,1 +655,18,6.75,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +656,24,73.5,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +657,28,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +658,32,15.5,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +659,23,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +660,58,113.275,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +661,50,133.65,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +662,40,7.225,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +663,47,25.5875,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +664,36,7.4958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +665,20,7.925,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +666,32,73.5,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +667,25,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +668,28,7.775,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +669,43,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +670,28,52,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +671,40,39,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +672,31,52,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +673,70,10.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +674,31,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +675,28,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +676,18,7.775,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +677,24.5,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +678,18,9.8417,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +679,43,46.9,1,1,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +680,36,512.3292,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +681,28,8.1375,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +682,27,76.7292,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +683,20,9.225,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +684,14,46.9,0,5,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +685,60,39,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +686,25,41.5792,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0 +687,14,39.6875,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +688,19,10.1708,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +689,18,7.7958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +690,15,211.3375,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +691,31,57,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +692,4,13.4167,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1 +693,28,56.4958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +694,25,7.225,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +695,60,26.55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +696,52,13.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +697,44,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +698,28,7.7333,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,1 +699,49,110.8833,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +700,42,7.65,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +701,18,227.525,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +702,35,26.2875,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +703,18,14.4542,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +704,25,7.7417,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +705,26,7.8542,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +706,39,26,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +707,45,13.5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +708,42,26.2875,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +709,22,151.55,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +710,28,15.2458,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1 +711,24,49.5042,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +712,28,26.55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +713,48,52,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +714,29,9.4833,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +715,52,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +716,19,7.65,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +717,38,227.525,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +718,27,10.5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +719,28,15.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +720,33,7.775,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +721,6,33,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +722,17,7.0542,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +723,34,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +724,50,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +725,27,53.1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +726,20,8.6625,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +727,30,21,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +728,28,7.7375,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,1 +729,25,26,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +730,25,7.925,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +731,29,211.3375,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +732,11,18.7875,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +733,28,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +734,23,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +735,23,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +736,28.5,16.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +737,48,34.375,1,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +738,35,512.3292,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +739,28,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +740,28,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +741,28,30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +742,36,78.85,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +743,21,262.375,1,2,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +744,24,16.1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +745,31,7.925,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +746,70,71,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +747,16,20.25,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +748,30,13,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +749,19,53.1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +750,31,7.75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +751,4,23,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +752,6,12.475,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +753,33,9.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +754,23,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +755,48,65,1,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +756,0.67,14.5,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +757,28,7.7958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +758,18,11.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +759,34,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +760,33,86.5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +761,28,14.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +762,41,7.125,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +763,20,7.2292,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1 +764,36,120,1,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +765,16,7.775,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +766,51,77.9583,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +767,28,39.6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +768,30.5,7.75,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +769,28,24.15,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +770,32,8.3625,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +771,24,9.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +772,48,7.8542,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +773,57,10.5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +774,28,7.225,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +775,54,23,1,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +776,18,7.75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +777,28,7.75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +778,5,12.475,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +779,28,7.7375,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +780,43,211.3375,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +781,13,7.2292,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1 +782,17,57,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +783,29,30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +784,28,23.45,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +785,25,7.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +786,25,7.25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +787,18,7.4958,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +788,8,29.125,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +789,1,20.575,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +790,46,79.2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +791,28,7.75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +792,16,26,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +793,28,69.55,1,8,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +794,28,30.6958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +795,25,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +796,39,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +797,49,25.9292,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +798,31,8.6833,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +799,30,7.2292,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +800,30,24.15,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +801,34,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +802,31,26.25,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +803,11,120,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +804,0.42,8.5167,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1 +805,27,6.975,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +806,31,7.775,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +807,39,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +808,18,7.775,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +809,39,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +810,33,53.1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +811,26,7.8875,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +812,39,24.15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +813,35,10.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +814,6,31.275,1,4,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +815,30.5,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +816,28,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +817,23,7.925,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +818,31,37.0042,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0 +819,43,6.45,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +820,10,27.9,0,3,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +821,52,93.5,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +822,27,8.6625,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +823,38,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +824,27,12.475,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +825,2,39.6875,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +826,28,6.95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +827,28,56.4958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +828,1,37.0042,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1 +829,28,7.75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,1 +830,62,80,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,,0,0,1 +831,15,14.4542,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1 +832,0.83,18.75,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +833,28,7.2292,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +834,23,7.8542,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +835,18,8.3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +836,39,83.1583,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +837,21,8.6625,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +838,28,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +839,32,56.4958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +840,28,29.7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +841,20,7.925,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +842,16,10.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +843,30,31,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +844,34.5,6.4375,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +845,17,8.6625,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +846,42,7.55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +847,28,69.55,0,8,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +848,35,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +849,28,33,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +850,28,89.1042,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +851,4,31.275,0,4,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +852,74,7.775,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +853,9,15.2458,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +854,16,39.4,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +855,44,26,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +856,18,9.35,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +857,45,164.8667,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +858,51,26.55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +859,24,19.2583,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1 +860,28,7.2292,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +861,41,14.1083,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +862,21,11.5,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +863,48,25.9292,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +864,28,69.55,1,8,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +865,24,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +866,42,13,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +867,27,13.8583,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1 +868,31,50.4958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +869,28,9.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +870,4,11.1333,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,1 +871,26,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +872,47,52.5542,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +873,33,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +874,47,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +875,28,24,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1 +876,15,7.225,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1 +877,20,9.8458,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +878,19,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +879,28,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +880,56,83.1583,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +881,25,26,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,1 +882,33,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +883,22,10.5167,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +884,28,10.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +885,25,7.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +886,39,29.125,1,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +887,27,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +888,19,30,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1 +889,28,23.45,1,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +890,26,30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 +891,32,7.75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +892,34.5,7.8292,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +893,47,7,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +894,62,9.6875,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0 +895,27,8.6625,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +896,22,12.2875,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +897,14,9.225,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +898,30,7.6292,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +899,26,29,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +900,18,7.2292,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +901,21,24.15,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +902,28,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +903,46,26,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +904,23,82.2667,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +905,63,26,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +906,47,61.175,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +907,24,27.7208,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0 +908,35,12.35,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0 +909,21,7.225,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +910,27,7.925,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +911,45,7.225,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +912,55,59.4,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +913,9,3.1708,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +914,28,31.6833,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +915,21,61.3792,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +916,48,262.375,1,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +917,50,14.5,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +918,22,61.9792,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +919,22.5,7.225,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +920,41,30.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +921,28,21.6792,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +922,50,26,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +923,24,31.5,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +924,33,20.575,1,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +925,28,23.45,1,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +926,30,57.75,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +927,18.5,7.2292,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +928,28,8.05,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +929,21,8.6625,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +930,25,9.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +931,28,56.4958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +932,39,13.4167,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +933,28,26.55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +934,41,7.85,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +935,30,13,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +936,45,52.5542,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +937,25,7.925,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +938,45,29.7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +939,28,7.75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +940,60,76.2917,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +941,36,15.9,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +942,24,60,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +943,27,15.0333,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0 +944,20,23,1,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +945,28,263,1,3,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +946,28,15.5792,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0 +947,10,29.125,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +948,35,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +949,25,7.65,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +950,28,16.1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +951,36,262.375,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +952,17,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +953,32,13.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +954,18,7.75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +955,22,7.725,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +956,13,262.375,0,2,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +957,28,21,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +958,18,7.8792,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +959,47,42.4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +960,31,28.5375,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +961,60,263,1,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +962,24,7.75,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +963,21,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +964,29,7.925,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +965,28.5,27.7208,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +966,35,211.5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +967,32.5,211.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +968,28,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +969,55,25.7,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +970,30,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +971,24,7.75,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +972,6,15.2458,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +973,67,221.7792,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +974,49,26,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +975,28,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +976,28,10.7083,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0 +977,28,14.4542,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +978,27,7.8792,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +979,18,8.05,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +980,28,7.75,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +981,2,23,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +982,22,13.9,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +983,28,7.775,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +984,27,52,1,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +985,28,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +986,25,26,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +987,25,7.7958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +988,76,78.85,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +989,29,7.925,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +990,20,7.8542,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +991,33,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +992,43,55.4417,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +993,27,26,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +994,28,7.75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +995,26,7.775,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +996,16,8.5167,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +997,28,22.525,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +998,21,7.8208,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +999,28,7.75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +1000,28,8.7125,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1001,18.5,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1002,41,15.0458,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0 +1003,28,7.7792,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +1004,36,31.6792,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1005,18.5,7.2833,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +1006,63,221.7792,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1007,18,14.4542,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +1008,28,6.4375,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +1009,1,16.7,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1010,36,75.2417,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1011,29,26,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1012,12,15.75,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1013,28,7.75,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +1014,35,57.75,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1015,28,7.25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1016,28,7.75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +1017,17,16.1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1018,22,7.7958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1019,28,23.25,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +1020,42,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1021,24,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1022,32,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1023,53,28.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1024,28,25.4667,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1025,28,6.4375,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +1026,43,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1027,24,7.8542,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1028,26.5,7.225,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +1029,26,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1030,23,8.05,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1031,40,46.9,0,1,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1032,10,46.9,1,5,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1033,33,151.55,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1034,61,262.375,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1035,28,26,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1036,42,26.55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1037,31,18,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1038,28,51.8625,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1039,22,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1040,28,26.55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1041,30,26,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1042,23,83.1583,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1043,28,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +1044,60.5,14.4542,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1045,36,12.1833,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1046,13,31.3875,0,4,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1047,24,7.55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1048,29,221.7792,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1049,23,7.8542,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1050,42,26.55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1051,26,13.775,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1052,28,7.7333,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +1053,7,15.2458,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +1054,26,13.5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1055,28,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1056,41,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1057,26,22.025,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1058,48,50.4958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1059,18,34.375,0,2,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1060,28,27.7208,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1061,22,8.9625,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1062,28,7.55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1063,27,7.225,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +1064,23,13.9,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1065,28,7.2292,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +1066,40,31.3875,0,1,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1067,15,39,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1068,20,36.75,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1069,54,55.4417,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1070,36,39,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1071,64,83.1583,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1072,30,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1073,37,83.1583,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1074,18,53.1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1075,28,7.75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +1076,27,247.5208,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1077,40,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1078,21,21,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1079,17,8.05,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1080,28,69.55,1,8,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1081,40,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1082,34,26,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1083,28,26,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1084,11.5,14.5,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1085,61,12.35,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0 +1086,8,32.5,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1087,33,7.8542,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1088,6,134.5,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1089,18,7.775,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1090,23,10.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1091,28,8.1125,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1092,28,15.5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +1093,0.33,14.4,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1094,47,227.525,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1095,8,26,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1096,25,10.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1097,28,25.7417,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1098,35,7.75,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +1099,24,10.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1100,33,27.7208,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1101,25,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1102,32,22.525,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1103,28,7.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1104,17,73.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1105,60,26,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1106,38,7.775,1,4,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1107,42,42.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1108,28,7.8792,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +1109,57,164.8667,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1110,50,211.5,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1111,28,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1112,30,13.8583,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0 +1113,21,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1114,22,10.5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1115,21,7.7958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1116,53,27.4458,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1117,28,15.2458,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +1118,23,7.7958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1119,28,7.75,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +1120,40.5,15.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1121,36,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1122,14,65,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1123,21,26.55,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1124,21,6.4958,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1125,28,7.8792,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +1126,39,71.2833,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1127,20,7.8542,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1128,64,75.25,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1129,20,7.225,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +1130,18,13,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1131,48,106.425,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1132,55,27.7208,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1133,45,30,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1134,45,134.5,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1135,28,7.8875,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1136,28,23.45,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1137,41,51.8625,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1138,22,21,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1139,42,32.5,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1140,29,26,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1141,28,14.4542,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +1142,0.92,27.75,1,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1143,20,7.925,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1144,27,136.7792,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1145,24,9.325,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1146,32.5,9.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1147,28,7.55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1148,28,7.75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +1149,28,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1150,19,13,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1151,21,7.775,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1152,36.5,17.4,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1153,21,7.8542,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1154,29,23,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1155,1,12.1833,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1156,30,12.7375,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0 +1157,28,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1158,28,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1159,28,7.55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1160,28,8.05,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1161,17,8.6625,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1162,46,75.2417,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1163,28,7.75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +1164,26,136.7792,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1165,28,15.5,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +1166,28,7.225,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +1167,20,26,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1168,28,10.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1169,40,26,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1170,30,21,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1171,22,10.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1172,23,8.6625,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1173,0.75,13.775,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1174,28,7.75,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +1175,9,15.2458,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +1176,2,20.2125,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1177,36,7.25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1178,28,7.25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1179,24,82.2667,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1180,28,7.2292,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +1181,28,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1182,28,39.6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1183,30,6.95,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +1184,28,7.2292,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +1185,53,81.8583,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1186,36,9.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1187,26,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1188,1,41.5792,1,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0 +1189,28,21.6792,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +1190,30,45.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1191,29,7.8542,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1192,32,7.775,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1193,28,15.0458,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0 +1194,43,21,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1195,24,8.6625,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1196,28,7.75,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +1197,64,26.55,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1198,30,151.55,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1199,0.83,9.35,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1200,55,93.5,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1201,45,14.1083,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1202,18,8.6625,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1203,22,7.225,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +1204,28,7.575,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1205,37,7.75,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +1206,55,135.6333,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1207,17,7.7333,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +1208,57,146.5208,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1209,19,10.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1210,27,7.8542,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1211,22,31.5,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1212,26,7.775,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1213,25,7.2292,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +1214,26,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1215,33,26.55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1216,39,211.3375,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1217,23,7.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1218,12,39,1,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1219,46,79.2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1220,29,26,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1221,21,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1222,48,36.75,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1223,39,29.7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1224,28,7.225,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +1225,19,15.7417,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +1226,27,7.8958,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1227,30,26,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1228,32,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1229,39,7.2292,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +1230,25,31.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1231,28,7.2292,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +1232,18,10.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1233,32,7.5792,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1234,28,69.55,0,1,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1235,58,512.3292,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1236,28,14.5,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1237,16,7.65,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1238,26,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1239,38,7.2292,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +1240,24,13.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1241,31,21,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1242,45,63.3583,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1243,25,10.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1244,18,73.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1245,49,65,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1246,0.17,20.575,1,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1247,50,26,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1248,59,51.4792,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1249,28,7.8792,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1250,28,7.75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +1251,30,15.55,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1252,14.5,69.55,0,8,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1253,24,37.0042,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0 +1254,31,21,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1255,27,8.6625,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1256,25,55.4417,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1257,28,69.55,1,1,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1258,28,14.4583,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0 +1259,22,39.6875,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1260,45,59.4,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1261,29,13.8583,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0 +1262,21,11.5,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1263,31,134.5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1264,49,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1265,44,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1266,54,81.8583,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1267,45,262.375,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1268,22,8.6625,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1269,21,11.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1270,55,50,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1271,5,31.3875,0,4,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1272,28,7.75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +1273,26,7.8792,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +1274,28,14.5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1275,19,16.1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1276,28,12.875,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1277,24,65,1,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1278,24,7.775,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1279,57,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1280,21,7.75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +1281,6,21.075,0,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1282,23,93.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1283,51,39.4,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1284,13,20.25,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1285,47,10.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1286,29,22.025,0,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1287,18,60,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1288,24,7.25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +1289,48,79.2,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1290,22,7.775,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1291,31,7.7333,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +1292,30,164.8667,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1293,38,21,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1294,22,59.4,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1295,17,47.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0 +1296,43,27.7208,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1297,20,13.8625,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0 +1298,23,10.5,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0 +1299,50,211.5,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1300,28,7.7208,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +1301,3,13.775,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1302,28,7.75,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0 +1303,37,90,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0 +1304,28,7.775,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1305,28,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1306,39,108.9,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +1307,38.5,7.25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1308,28,8.05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0 +1309,28,22.3583,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0