IIS_2023_1/antonov_dmitry_lab_1/README.md

87 lines
4.7 KiB
Markdown
Raw Normal View History

2023-09-19 10:23:19 +04:00
# Лаб 1
2023-09-23 17:42:04 +04:00
2023-09-19 10:23:19 +04:00
Работа с типовыми наборами данных и различными моделями
2023-09-23 17:42:04 +04:00
2023-09-19 10:23:19 +04:00
# Вариант 3
2023-09-23 17:42:04 +04:00
2023-09-19 10:23:19 +04:00
Данные: make_classification (n_samples=500, n_features=2,
n_redundant=0, n_informative=2, random_state=rs, n_clusters_per_class=1)
2023-09-23 17:42:04 +04:00
2023-09-19 10:23:19 +04:00
# Модели:
2023-09-23 17:42:04 +04:00
2023-09-19 10:23:19 +04:00
1. Линейную регрессию
1. Полиномиальную регрессию (со степенью 3)
1. Гребневую полиномиальную регрессию (со степенью 3, alpha = 1.0)
2023-09-23 17:42:04 +04:00
# Графики
2023-09-23 20:53:45 +04:00
<div>
Качество каждой модели может быть оценено на основе среднеквадратичной ошибки (MSE).
Более низкий MSE указывает на лучшее соответствие данным.
Однако выбор модели зависит от набора данных и лежащей в основе взаимосвязи между объектами и целевой переменной.
Линейная регрессия: Линейная регрессия предполагает линейную зависимость между признаками и целевой переменной.
Это хорошо работает, когда взаимосвязь линейна, а шум в наборе данных минимален.
Лучше всего сработала на наборе лун. Хуже всего на кругах.
На линейном наборе показала себя на равне с остальными.
Полиномиальная и гребневая показали примерно одинаково на всех наборах.
Полиномиальная регрессия (степень=3):
Полиномиальная регрессия обеспечивает более гибкую подгонку за счет полинома более высокого порядка(кубическая кривая).
Она может выявить более сложные взаимосвязи между объектами и целевой переменной.
Она может сработать лучше, чем линейная регрессия, если истинная взаимосвязь нелинейна.
Гребневая регрессия (степень= 3, альфа=1,0):
В случае полиномиальной регрессии с регуляризацией (альфа=1,0) модель добавляет коэффициент регуляризации
для управления сложностью обучения. Регуляризация помогает предотвратить переобучение, когда набор
данных содержит шум или когда он ограничен.
</div>
2023-09-23 17:42:04 +04:00
<p>
<div>Набор лун (moon_dataset)</div>
2023-09-23 20:53:45 +04:00
<img src="screens/myplot1.png" width="650" title="датасет 1">
2023-09-23 17:42:04 +04:00
</p>
<p>
<div>Графики регрессии</div>
2023-09-23 20:53:45 +04:00
<img src="screens/myplot2.png" width="450" title="линейная модель">
<img src="screens/myplot3.png" width="450" title="полиномиальная модель">
<img src="screens/myplot4.png" width="450" title="гребневая модель">
2023-09-23 17:42:04 +04:00
<div>
Линейная MSE: 0.0936
Полиномиальная (degree=3) MSE: 0.0674
Гребневая (degree=3, alpha=1.0) MSE: 0.0682
</div>
</p>
<p>
<div>Набор кругов (circles_dataset)</div>
2023-09-23 20:53:45 +04:00
<img src="screens/myplot5.png" width="650" title="датасет 2">
2023-09-23 17:42:04 +04:00
</p>
<p>
<div>Графики регрессии</div>
2023-09-23 20:53:45 +04:00
<img src="screens/myplot6.png" width="450" title="линейная модель">
<img src="screens/myplot7.png" width="450" title="полиномиальная модель">
<img src="screens/myplot8.png" width="450" title="гребневая модель">
2023-09-23 17:42:04 +04:00
<div>
Линейная MSE: 0.2684
Полиномиальная (degree=3) MSE: 0.1341
Гребневая (degree=3, alpha=1.0) MSE: 0.1312
</div>
</p>
<p>
<div>Набор линейный (linearly_dataset)</div>
2023-09-23 20:53:45 +04:00
<img src="screens/myplot9.png" width="650" title="датасет 3">
2023-09-23 17:42:04 +04:00
</p>
2023-09-19 10:23:19 +04:00
<p>
2023-09-23 17:42:04 +04:00
<div>Графики регрессии</div>
2023-09-23 20:53:45 +04:00
<img src="screens/myplot10.png" width="450" title="линейная модель">
<img src="screens/myplot11.png" width="450" title="полиномиальная модель">
<img src="screens/myplot12.png" width="450" title="гребневая модель">
2023-09-23 17:42:04 +04:00
<div>
Линейная MSE: 0.1101
Полиномиальная (degree=3) MSE: 0.1045
Гребневая (degree=3, alpha=1.0) MSE: 0.1078
</div>
2023-09-19 10:23:19 +04:00
</p>