4.4 KiB
Пупков Алексей ИСЭбд-41
Отчет по умножению матриц
Описание
В данной лабораторной работе реализованы два алгоритма для умножения больших квадратных матриц: последовательный и параллельный. Для параллельного вычисления используется библиотека concurrent.futures в Python. Программа позволяет задавать количество процессов, что позволяет наблюдать за изменением производительности при увеличении числа потоков.
Как работает код:
- Импорт библиотек
- concurrent.futures помогает запускать параллельные задачи с использованием потоков
- time используется для измерения времени выполнения алгоритмов
- numpy используется для работы с матрицами и для вычислений
- argparse для обработки аргументов командной строки
- Функция matrix_multiply_sequential(A, B)
- Выполняет последовательное умножение двух матриц A и B.
- Функция worker(A, B, C, start_row, end_row)
- Выполняет умножение для части строк матрицы, параметры start_row и end_row определяют диапазон строк, которые нужно вычислить
- Функция matrix_multiply_parallel(A, B, num_threads)
- Реализует параллельное умножение матриц
- Функция benchmark(matrix_sizes, num_threads_list)
- Выполняет бенчмаркинг (измерение времени выполнения) для обоих методов умножения
Результаты
Размер матриц: 100x100 Последовательное умножение заняло: 0.0558 секунд
Параллельное умножение с 2 потоками заняло: 0.0886 секунд
Параллельное умножение с 4 потоками заняло: 0.0876 секунд
Параллельное умножение с 8 потоками заняло: 0.0868 секунд
Параллельное умножение с 16 потоками заняло: 0.0914 секунд
Размер матриц: 300x300 Последовательное умножение заняло: 1.6149 секунд
Параллельное умножение с 2 потоками заняло: 2.4936 секунд
Параллельное умножение с 4 потоками заняло: 2.4383 секунд
Параллельное умножение с 8 потоками заняло: 2.4458 секунд
Параллельное умножение с 16 потоками заняло: 2.4899 секунд
Размер матриц: 500x500 Последовательное умножение заняло: 7.9416 секунд
Параллельное умножение с 2 потоками заняло: 11.8896 секунд
Параллельное умножение с 4 потоками заняло: 11.8901 секунд
Параллельное умножение с 8 потоками заняло: 12.0230 секунд
Параллельное умножение с 16 потоками заняло: 11.8548 секунд
Выводы
Во всех случаях параллельный алгоритм выполняется дольше, чем последовательный. На рассматриваемых матрицах (100x100, 300x300, 500x500) последовательное умножение оказывается более выгодным. Это связано с тем, что накладные расходы на параллельное исполнение и синхронизацию между потоками превышают время, которое можно сэкономить за счёт многопоточности.
Запуск
Python main.py – threads 2 4 8 16