44 lines
1.7 KiB
Python
44 lines
1.7 KiB
Python
import random as rnd
|
|
import time
|
|
import concurrent.futures
|
|
def gen_square_matrix(size):
|
|
return [[rnd.randint(1, 100) for _ in range(size)] for _ in range(size)]
|
|
# Параллельное вычисление определителя
|
|
def parallel_det(matrix, num_threads):
|
|
n = len(matrix)
|
|
# Определитель
|
|
det_value = 1
|
|
def process_row(i, j):
|
|
factor = matrix[j][i] / matrix[i][i]
|
|
for k in range(i, n):
|
|
matrix[j][k] -= factor * matrix[i][k]
|
|
for i in range(n):
|
|
if matrix[i][i] == 0:
|
|
for j in range(i + 1, n):
|
|
if matrix[j][i] != 0:
|
|
matrix[i], matrix[j] = matrix[j], matrix[i]
|
|
det_value *= -1
|
|
break
|
|
else:
|
|
return 0
|
|
# Параллельное вычисление
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
|
|
futures = [
|
|
executor.submit(process_row, i, j) for j in range(i + 1, n)
|
|
]
|
|
concurrent.futures.wait(futures)
|
|
# Обновление определителя
|
|
det_value *= matrix[i][i]
|
|
return det_value
|
|
|
|
if __name__ == "__main__":
|
|
sizes = [100, 300, 500]
|
|
num_threads = [1, 5, 8]
|
|
for size in sizes:
|
|
matrix = gen_square_matrix(size)
|
|
for threads in num_threads:
|
|
start_time = time.time()
|
|
parallel_det(matrix, threads)
|
|
end_time = time.time()
|
|
print(f"Параллельное вычисление определителя.\tРазмер: {size}, {threads} потоков\t|\t {end_time - start_time}")
|
|
print("=" * 100) |