DAS_2024_1/balakhonov_danila_lab_6/program.py

44 lines
1.7 KiB
Python
Raw Normal View History

import random as rnd
import time
import concurrent.futures
def gen_square_matrix(size):
return [[rnd.randint(1, 100) for _ in range(size)] for _ in range(size)]
# Параллельное вычисление определителя
def parallel_det(matrix, num_threads):
n = len(matrix)
# Определитель
det_value = 1
def process_row(i, j):
factor = matrix[j][i] / matrix[i][i]
for k in range(i, n):
matrix[j][k] -= factor * matrix[i][k]
for i in range(n):
if matrix[i][i] == 0:
for j in range(i + 1, n):
if matrix[j][i] != 0:
matrix[i], matrix[j] = matrix[j], matrix[i]
det_value *= -1
break
else:
return 0
# Параллельное вычисление
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
futures = [
executor.submit(process_row, i, j) for j in range(i + 1, n)
]
concurrent.futures.wait(futures)
# Обновление определителя
det_value *= matrix[i][i]
return det_value
if __name__ == "__main__":
sizes = [100, 300, 500]
num_threads = [1, 5, 8]
for size in sizes:
matrix = gen_square_matrix(size)
for threads in num_threads:
start_time = time.time()
parallel_det(matrix, threads)
end_time = time.time()
print(f"Параллельное вычисление определителя.\tРазмер: {size}, {threads} потоков\t|\t {end_time - start_time}")
print("=" * 100)