DAS_2024_1/kashin_maxim_lab_5/readme.md
2024-10-27 19:42:27 +04:00

99 lines
8.9 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Кашин Максим ПИбд-42
# Отчет по умножению матриц
## Описание
В данной лабораторной работе реализованы два алгоритма для умножения больших квадратных матриц: последовательный и параллельный.
### Алгоритмы
1. **Последовательное умножение**:
- Для умножения используется функция `sequential_multiply`, которая принимает две матрицы \( A \) и \( B \) и возвращает их произведение \( C = A \cdot B \). Умножение реализовано с помощью функции NumPy `np.dot()`.
2. **Параллельное умножение**:
- Для параллельного умножения используется функция `parallel_multiply`, которая делит задачу на несколько процессов, каждый из которых умножает свои строки матрицы \( A \) на матрицу \( B \).
- Результат записывается в разделяемый массив `C`, который создается с помощью `multiprocessing.Array`.
- Каждому процессу передается диапазон строк, которые он должен обработать.
### Структура кода
- **Функции**:
- `sequential_multiply(A, B)`: Выполняет последовательное умножение.
- `parallel_multiply(A, B, num_processes)`: Выполняет параллельное умножение с заданным количеством процессов.
- `perform_multiplication(A, B, C, start, end, rows_A, cols_B)`: Вспомогательная функция, выполняющая умножение строк матрицы.
## Результаты
Результаты выполнения программы для разных размеров матриц и количества потоков:
### Время выполнения для 2 потоков
```
Введите количество потоков: 2
Последовательное умножение 100x100: 0.001003 секунд
Параллельное умножение 100x100: 0.900024 секунд
Последовательное умножение 300x300: 0.015999 секунд
Параллельное умножение 300x300: 1.078092 секунд
Последовательное умножение 500x500: 0.096649 секунд
Параллельное умножение 500x500: 1.450420 секунд
```
### Время выполнения для 4 потоков
```
Введите количество потоков: 4
Последовательное умножение 100x100: 0.001000 секунд
Параллельное умножение 100x100: 1.686326 секунд
Последовательное умножение 300x300: 0.015986 секунд
Параллельное умножение 300x300: 1.749842 секунд
Последовательное умножение 500x500: 0.087000 секунд
Параллельное умножение 500x500: 1.960365 секунд
```
### Время выполнения для 8 потоков
```
Введите количество потоков: 8
Последовательное умножение 100x100: 0.000000 секунд
Параллельное умножение 100x100: 3.307927 секунд
Последовательное умножение 300x300: 0.016013 секунд
Параллельное умножение 300x300: 3.321677 секунд
Последовательное умножение 500x500: 0.086618 секунд
Параллельное умножение 500x500: 3.446928 секунд
```
### Время выполнения для 16 потоков
```
Введите количество потоков: 16
Последовательное умножение 100x100: 0.000000 секунд
Параллельное умножение 100x100: 6.534394 секунд
Последовательное умножение 300x300: 0.016131 секунд
Параллельное умножение 300x300: 6.787100 секунд
Последовательное умножение 500x500: 0.086582 секунд
Параллельное умножение 500x500: 7.096588 секунд
```
## Анализ результатов
1. **Сравнение времени выполнения**:
- Последовательное умножение показывает значительно более быстрое время выполнения по сравнению с параллельным умножением для всех размеров матриц. Например, при умножении матриц размером 100x100, время последовательного умножения составляет всего 0.001003 секунд, в то время как параллельное умножение занимает 0.900024 секунд при использовании 2 потоков. Это указывает на то, что накладные расходы на создание и управление потоками значительно превышают выгоды от параллельной обработки на малом размере матриц.
2. **Увеличение размеров матриц**:
- Время выполнения параллельного умножения становится менее эффективным по мере увеличения размеров матриц. Например, при умножении матриц размером 500x500 время параллельного умножения увеличивается до 1.450420 секунд при 2 потоках, в то время как последовательное умножение занимает всего 0.096649 секунд. Это происходит из-за того, что при больших размерах матриц накладные расходы на распределение задач между потоками становятся более значительными.
3. **Влияние количества потоков**:
- Увеличение количества потоков также негативно сказывается на времени выполнения параллельного алгоритма. Например, при 4 потоках время выполнения для 100x100 матриц составляет 1.686326 секунд, а при 8 потоках — 3.307927 секунд. Это объясняется тем, что количество потоков, превышающее количество доступных ядер процессора, приводит к дополнительным накладным расходам на переключение контекста между потоками, что замедляет выполнение.
4. **Эффективность последовательного алгоритма**:
- Последовательный алгоритм показывает стабильную производительность, которая не зависит от накладных расходов, связанных с многопоточностью. Он использует оптимизированные алгоритмы NumPy, что также способствует высокой производительности.
## Выводы
1. **Эффективность**:
- Последовательное умножение матриц показывает значительно более высокую производительность по сравнению с параллельным умножением для малых и средних размеров матриц.
- Параллельное умножение начинает терять эффективность при увеличении количества потоков, что может быть связано с накладными расходами на создание процессов и синхронизацию между ними.
2. **С увеличением размера матриц**:
- Время выполнения параллельного алгоритма увеличивается, особенно для больших матриц и большого количества потоков, что указывает на ограниченную эффективность параллельного подхода в данной реализации.
## Ссылка на видео
[Видео-отчёт Кашин Максим ПИбд-42](https://disk.yandex.ru/i/0g-KQ5FarFGtqg)