Compare commits

..

2 Commits

Author SHA1 Message Date
4c2e646f1a Merge pull request 'lazarev_andrey_lab_6' (#149) from lazarev_andrey_lab_6 into main
Reviewed-on: #149
2024-11-25 21:25:30 +04:00
059a3cc811 lazarev_andrey_lab_6 2024-11-08 01:13:53 +04:00
3 changed files with 109 additions and 0 deletions

View File

@ -0,0 +1,32 @@
# Лабораторная работа №6
## Задание
Реализовать последователный и параллельный алгоритм поиска детерминанта матрицы размером 100x100, 300x300, 500x500 элементов, сравнить результаты.
## Описание алгоритмов
### Последовательное поиск детерминанта
- Использует метод Гаусса для приведения матрицы к верхней треугольной форме. Детерминант равен произведению элементов на диагонали. Время работы — O(n³).
### Параллельное поиск детерминанта
- Разделяет матрицу на блоки, каждый из которых обрабатывается отдельным потоком.
### Поиск с использованием библиотеки Numpy
- Использует оптимизированную функцию np.linalg.det, которая применяет методы, такие как LU-разложение, для быстрого вычисления детерминанта.
## Результаты
![](report.png "")
### Вывод
- Параллельное умножение матриц эффективно при работе с большими матрицами при увеличении потоков.
- Последовательное умножение матриц эффективно использовать при меньших размерах матриц, где выйгрыш от управления потоками минимален.
- Numpy показал блестящий результат.
## Видеодемонстрация работоспособности
[Демонстрация работы](https://files.ulstu.ru/s/nWF9CGBGA6Kxw5T)

View File

@ -0,0 +1,77 @@
import numpy as np
from concurrent.futures import ProcessPoolExecutor
import time
# Функция последовательного поиска детерминанта
def det_sequential(matrix):
n = len(matrix)
det = 1
for i in range(n):
if matrix[i][i] == 0:
for j in range(i + 1, n):
if matrix[j][i] != 0:
matrix[i], matrix[j] = matrix[j], matrix[i]
det *= -1
break
else:
return 0
for j in range(i + 1, n):
factor = matrix[j][i] / matrix[i][i]
for k in range(i, n):
matrix[j][k] -= factor * matrix[i][k]
det *= matrix[i][i]
return det
# Функция поиска детерминанта с numpy
def det_numpy(A):
return np.linalg.det(A)
# Функция параллельного поиска детерминанта
def det_parallel(A, num_threads):
n = len(A)
C = []
step = n // num_threads
with ProcessPoolExecutor(max_workers=num_threads) as executor:
futures = []
for i in range(num_threads):
start_row = i * step
end_row = (i + 1) * step if i != num_threads - 1 else n
a_slice = A[start_row:end_row, start_row:end_row]
futures.append(executor.submit(det_sequential, a_slice))
for future in futures:
C.append(future.result())
return np.prod(C)
# Пример использования
if __name__ == "__main__":
matrix_sizes = [100, 300, 500]
num_threads = [2, 4, 5, 10]
for n in matrix_sizes:
A = np.random.rand(n, n)
# Поиск с numpy
start_np = time.time()
nump = det_numpy(A)
end_np = time.time()
print(f'Детерминант матрицы {n}x{n} с numpy: {(end_np - start_np):.3f} с.')
# Последовательное умножение
start_seq = time.time()
sequential = det_sequential(A)
end_seq = time.time()
print(f'Детерминант матрицы {n}x{n} последовательно: {(end_seq - start_seq):.3f} с.')
# Параллельное умножение
for thread in num_threads:
start_par = time.time()
parallel = det_parallel(A, thread)
end_par = time.time()
print(f'Детерминант матрицы {n}x{n} параллельно для {thread} потоков: {(end_par - start_par):.3f} с.')
print('')

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB