40 lines
1.1 KiB
Python
40 lines
1.1 KiB
Python
import numpy as np
|
||
from multiprocessing import Pool
|
||
import time
|
||
|
||
|
||
def determinant_block(matrix_block):
|
||
return np.linalg.det(matrix_block)
|
||
|
||
|
||
def determinant_parallel(matrix, num_processes):
|
||
size = matrix.shape[0]
|
||
step = size // num_processes
|
||
|
||
pool = Pool(processes=num_processes)
|
||
blocks = []
|
||
for i in range(0, size, step):
|
||
blocks.append(matrix[i:i+step, i:i+step])
|
||
|
||
dets = pool.map(determinant_block, blocks)
|
||
return np.product(dets)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
sizes = [100, 300, 500]
|
||
processes = [2, 4, 8]
|
||
|
||
for size in sizes:
|
||
matrix = np.random.rand(size, size)
|
||
|
||
for p in processes:
|
||
start = time.time()
|
||
det = determinant_parallel(matrix, p)
|
||
end = time.time()
|
||
print(f"{size}x{size} матрица с {p} процессами заняла {end - start:.5f} сек")
|
||
|
||
start = time.time()
|
||
det_seq = determinant_block(matrix)
|
||
end = time.time()
|
||
print(f"{size}x{size} умн. последовательно заняло {end - start:.5f} сек")
|
||
print("=======================================") |