DAS_2023_1/alexandrov_dmitrii_lab_6/readme.md

42 lines
5.1 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

## Задание
Создать программу, производящую поиск детерминанта больших квадратных матриц.
## Выполнение
Программа состоит из модуля-сервиса service и модуля для вычислений matrix.
В модуле для вычислений реализовано:
* метод get_determinant_usr_implementation. "Вручную" ищет детерминант переданной матрицы.
* метод get_determinant_component_usr_implementation. Ищет минорный детерминант, используя "ручной" метод, для реализации распараллеливания.
* метод get_determinant_component. Ищет минорный детерминант, используя библиотечный метод для поиска детерминантов миноров, для распараллеливания.
* метод calculate_determinant_parallel. Генерирует случайные матрицы заданного размера и производит параллельные вычисления предыдущими методами в зависимости от размера (если размер больше 10 использовать ручной метод лучше не надо, можно случайно компьютер).
* метод прогона эксперимента с заполнением данных результатами. Методы интерфейса доступа.
Способ вычисления: в методе do_multiplication_parallel матрица B транспонируется, создаётся объект ProcessPoolExecutor с переданным количеством процессов, который их создаёт и распределяет по ним вычисление минорных детерминантов первой строки для последующего сложения, в зависимости от размера матрицы используется get_determinant_component_usr_implementation или get_determinant_component.
Если передать методу число 1 в качестве количества процессов, то соответственно вычисление произойдёт в одном потоке.
## Результаты
Был создан Flask сервис, позволяющий получать детерминанты случайных квадратных матриц.
Возможно задать размер и количество процессов.
Дополнительно возможно провести эксперимент и получить результаты умножения матриц размера 2, 5 и 10 одним, десятью и ста процессами.
Для создания бенчмарка был сокращён размер матриц, поскольку:
* ручной метод не может в обозримом будущем посчитать матрицу размером больше 15-20.
* библиотечный метод считает детерминант за секунду-две без заметных изменений от увеличения количества процессов обработки. анализировать результаты не получится (разве что заключить, что метод не нуждается в распараллеливании).
Поскольку распараллеливание основано на процессах, а в системе имеется 6 ядер (+2 виртуальных), то максимальное увеличение производительности будет достигнуто при выборе такого количества процессов.
Более 61 потока урезается до 61 из-за системных ограничений.
Как видно из бенчмарка:
* в случае больших размеров скорость максимальна при выборе 100 (61) процессов, можно заключить, что алгоритм "ручной" алгоритм хорошо реагирует на распараллеливание.
* в случае 100 процессов из-за издержек создания процессов малые матрицы обрабатываются на порядок дольше, нежели одним процессом.
* в случае 100 процессов благодаря распараллеливанию скорость обработки матрицы размером 10 оказалась в 5 раз выше скорости обработки одним процессом.
Результаты:
![matrix5x5](screens/5x5.png)
![matrix30x30](screens/30x30.png)
Бенчмарк:
![bench](screens/bench.png)
## Ссылка на видео
https://drive.google.com/file/d/1kxMccJDCQsVK1qcrsiQKDXUuDzPQ1Lsc/view?usp=drive_link