AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/stats/tests/test_sandwich.py
2024-10-02 22:15:59 +04:00

99 lines
3.7 KiB
Python

"""Tests for sandwich robust covariance estimation
see also in regression for cov_hac compared to Gretl and
sandbox.panel test_random_panel for comparing cov_cluster, cov_hac_panel and
cov_white
Created on Sat Dec 17 08:39:16 2011
Author: Josef Perktold
"""
import numpy as np
from numpy.testing import assert_almost_equal, assert_allclose
from statsmodels.regression.linear_model import OLS
from statsmodels.tools.tools import add_constant
import statsmodels.stats.sandwich_covariance as sw
def test_cov_cluster_2groups():
# comparing cluster robust standard errors to Peterson
# requires Petersen's test_data
# http://www.kellogg.northwestern.edu/faculty/petersen
# .../htm/papers/se/test_data.txt
import os
cur_dir = os.path.abspath(os.path.dirname(__file__))
fpath = os.path.join(cur_dir, "test_data.txt")
pet = np.genfromtxt(fpath)
endog = pet[:, -1]
group = pet[:, 0].astype(int)
time = pet[:, 1].astype(int)
exog = add_constant(pet[:, 2])
res = OLS(endog, exog).fit()
cov01, covg, covt = sw.cov_cluster_2groups(res, group, group2=time)
# Reference number from Petersen
# http://www.kellogg.northwestern.edu/faculty/petersen/htm
# .../papers/se/test_data.htm
bse_petw = [0.0284, 0.0284]
bse_pet0 = [0.0670, 0.0506]
bse_pet1 = [0.0234, 0.0334] # year
bse_pet01 = [0.0651, 0.0536] # firm and year
bse_0 = sw.se_cov(covg)
bse_1 = sw.se_cov(covt)
bse_01 = sw.se_cov(cov01)
# print res.HC0_se, bse_petw - res.HC0_se
# print bse_0, bse_0 - bse_pet0
# print bse_1, bse_1 - bse_pet1
# print bse_01, bse_01 - bse_pet01
assert_almost_equal(bse_petw, res.HC0_se, decimal=4)
assert_almost_equal(bse_0, bse_pet0, decimal=4)
assert_almost_equal(bse_1, bse_pet1, decimal=4)
assert_almost_equal(bse_01, bse_pet01, decimal=4)
def test_hac_simple():
from statsmodels.datasets import macrodata
d2 = macrodata.load_pandas().data
g_gdp = 400 * np.diff(np.log(d2['realgdp'].values))
g_inv = 400 * np.diff(np.log(d2['realinv'].values))
exogg = add_constant(np.c_[g_gdp, d2['realint'][:-1].values])
res_olsg = OLS(g_inv, exogg).fit()
# > NeweyWest(fm, lag = 4, prewhite = FALSE, sandwich = TRUE,
# verbose=TRUE, adjust=TRUE)
# Lag truncation parameter chosen: 4
# (Intercept) ggdp lint
cov1_r = [
[+1.40643899878678802, -0.3180328707083329709, -0.060621111216488610],
[-0.31803287070833292, 0.1097308348999818661, +0.000395311760301478],
[-0.06062111121648865, 0.0003953117603014895, +0.087511528912470993]
]
# > NeweyWest(fm, lag = 4, prewhite = FALSE, sandwich = TRUE,
# verbose=TRUE, adjust=FALSE)
# Lag truncation parameter chosen: 4
# (Intercept) ggdp lint
cov2_r = [
[+1.3855512908840137, -0.313309610252268500, -0.059720797683570477],
[-0.3133096102522685, +0.108101169035130618, +0.000389440793564339],
[-0.0597207976835705, +0.000389440793564336, +0.086211852740503622]
]
cov1 = sw.cov_hac_simple(res_olsg, nlags=4, use_correction=True)
se1 = sw.se_cov(cov1)
cov2 = sw.cov_hac_simple(res_olsg, nlags=4, use_correction=False)
se2 = sw.se_cov(cov2)
# Relax precision requirements for this test due to failure in NumPy 1.23
assert_allclose(cov1, cov1_r)
assert_allclose(cov2, cov2_r)
assert_allclose(np.sqrt(np.diag(cov1_r)), se1)
assert_allclose(np.sqrt(np.diag(cov2_r)), se2)
# compare default for nlags
cov3 = sw.cov_hac_simple(res_olsg, use_correction=False)
cov4 = sw.cov_hac_simple(res_olsg, nlags=4, use_correction=False)
assert_allclose(cov3, cov4)