"""Tests for sandwich robust covariance estimation see also in regression for cov_hac compared to Gretl and sandbox.panel test_random_panel for comparing cov_cluster, cov_hac_panel and cov_white Created on Sat Dec 17 08:39:16 2011 Author: Josef Perktold """ import numpy as np from numpy.testing import assert_almost_equal, assert_allclose from statsmodels.regression.linear_model import OLS from statsmodels.tools.tools import add_constant import statsmodels.stats.sandwich_covariance as sw def test_cov_cluster_2groups(): # comparing cluster robust standard errors to Peterson # requires Petersen's test_data # http://www.kellogg.northwestern.edu/faculty/petersen # .../htm/papers/se/test_data.txt import os cur_dir = os.path.abspath(os.path.dirname(__file__)) fpath = os.path.join(cur_dir, "test_data.txt") pet = np.genfromtxt(fpath) endog = pet[:, -1] group = pet[:, 0].astype(int) time = pet[:, 1].astype(int) exog = add_constant(pet[:, 2]) res = OLS(endog, exog).fit() cov01, covg, covt = sw.cov_cluster_2groups(res, group, group2=time) # Reference number from Petersen # http://www.kellogg.northwestern.edu/faculty/petersen/htm # .../papers/se/test_data.htm bse_petw = [0.0284, 0.0284] bse_pet0 = [0.0670, 0.0506] bse_pet1 = [0.0234, 0.0334] # year bse_pet01 = [0.0651, 0.0536] # firm and year bse_0 = sw.se_cov(covg) bse_1 = sw.se_cov(covt) bse_01 = sw.se_cov(cov01) # print res.HC0_se, bse_petw - res.HC0_se # print bse_0, bse_0 - bse_pet0 # print bse_1, bse_1 - bse_pet1 # print bse_01, bse_01 - bse_pet01 assert_almost_equal(bse_petw, res.HC0_se, decimal=4) assert_almost_equal(bse_0, bse_pet0, decimal=4) assert_almost_equal(bse_1, bse_pet1, decimal=4) assert_almost_equal(bse_01, bse_pet01, decimal=4) def test_hac_simple(): from statsmodels.datasets import macrodata d2 = macrodata.load_pandas().data g_gdp = 400 * np.diff(np.log(d2['realgdp'].values)) g_inv = 400 * np.diff(np.log(d2['realinv'].values)) exogg = add_constant(np.c_[g_gdp, d2['realint'][:-1].values]) res_olsg = OLS(g_inv, exogg).fit() # > NeweyWest(fm, lag = 4, prewhite = FALSE, sandwich = TRUE, # verbose=TRUE, adjust=TRUE) # Lag truncation parameter chosen: 4 # (Intercept) ggdp lint cov1_r = [ [+1.40643899878678802, -0.3180328707083329709, -0.060621111216488610], [-0.31803287070833292, 0.1097308348999818661, +0.000395311760301478], [-0.06062111121648865, 0.0003953117603014895, +0.087511528912470993] ] # > NeweyWest(fm, lag = 4, prewhite = FALSE, sandwich = TRUE, # verbose=TRUE, adjust=FALSE) # Lag truncation parameter chosen: 4 # (Intercept) ggdp lint cov2_r = [ [+1.3855512908840137, -0.313309610252268500, -0.059720797683570477], [-0.3133096102522685, +0.108101169035130618, +0.000389440793564339], [-0.0597207976835705, +0.000389440793564336, +0.086211852740503622] ] cov1 = sw.cov_hac_simple(res_olsg, nlags=4, use_correction=True) se1 = sw.se_cov(cov1) cov2 = sw.cov_hac_simple(res_olsg, nlags=4, use_correction=False) se2 = sw.se_cov(cov2) # Relax precision requirements for this test due to failure in NumPy 1.23 assert_allclose(cov1, cov1_r) assert_allclose(cov2, cov2_r) assert_allclose(np.sqrt(np.diag(cov1_r)), se1) assert_allclose(np.sqrt(np.diag(cov2_r)), se2) # compare default for nlags cov3 = sw.cov_hac_simple(res_olsg, use_correction=False) cov4 = sw.cov_hac_simple(res_olsg, nlags=4, use_correction=False) assert_allclose(cov3, cov4)