368 lines
12 KiB
Python
368 lines
12 KiB
Python
"""
|
|
Utilities for cross validation.
|
|
|
|
taken from scikits.learn
|
|
|
|
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>,
|
|
# Gael Varoquaux <gael.varoquaux@normalesup.org>
|
|
# License: BSD Style.
|
|
# $Id$
|
|
|
|
changes to code by josef-pktd:
|
|
- docstring formatting: underlines of headers
|
|
|
|
"""
|
|
|
|
from statsmodels.compat.python import lrange
|
|
import numpy as np
|
|
from itertools import combinations
|
|
|
|
|
|
################################################################################
|
|
class LeaveOneOut:
|
|
"""
|
|
Leave-One-Out cross validation iterator:
|
|
Provides train/test indexes to split data in train test sets
|
|
"""
|
|
|
|
def __init__(self, n):
|
|
"""
|
|
Leave-One-Out cross validation iterator:
|
|
Provides train/test indexes to split data in train test sets
|
|
|
|
Parameters
|
|
----------
|
|
n: int
|
|
Total number of elements
|
|
|
|
Examples
|
|
--------
|
|
>>> from scikits.learn import cross_val
|
|
>>> X = [[1, 2], [3, 4]]
|
|
>>> y = [1, 2]
|
|
>>> loo = cross_val.LeaveOneOut(2)
|
|
>>> for train_index, test_index in loo:
|
|
... print "TRAIN:", train_index, "TEST:", test_index
|
|
... X_train, X_test, y_train, y_test = cross_val.split(train_index, test_index, X, y)
|
|
... print X_train, X_test, y_train, y_test
|
|
TRAIN: [False True] TEST: [ True False]
|
|
[[3 4]] [[1 2]] [2] [1]
|
|
TRAIN: [ True False] TEST: [False True]
|
|
[[1 2]] [[3 4]] [1] [2]
|
|
"""
|
|
self.n = n
|
|
|
|
|
|
def __iter__(self):
|
|
n = self.n
|
|
for i in range(n):
|
|
test_index = np.zeros(n, dtype=bool)
|
|
test_index[i] = True
|
|
train_index = np.logical_not(test_index)
|
|
yield train_index, test_index
|
|
|
|
|
|
def __repr__(self):
|
|
return '%s.%s(n=%i)' % (self.__class__.__module__,
|
|
self.__class__.__name__,
|
|
self.n,
|
|
)
|
|
|
|
|
|
|
|
################################################################################
|
|
class LeavePOut:
|
|
"""
|
|
Leave-P-Out cross validation iterator:
|
|
Provides train/test indexes to split data in train test sets
|
|
"""
|
|
|
|
def __init__(self, n, p):
|
|
"""
|
|
Leave-P-Out cross validation iterator:
|
|
Provides train/test indexes to split data in train test sets
|
|
|
|
Parameters
|
|
----------
|
|
n: int
|
|
Total number of elements
|
|
p: int
|
|
Size test sets
|
|
|
|
Examples
|
|
--------
|
|
>>> from scikits.learn import cross_val
|
|
>>> X = [[1, 2], [3, 4], [5, 6], [7, 8]]
|
|
>>> y = [1, 2, 3, 4]
|
|
>>> lpo = cross_val.LeavePOut(4, 2)
|
|
>>> for train_index, test_index in lpo:
|
|
... print "TRAIN:", train_index, "TEST:", test_index
|
|
... X_train, X_test, y_train, y_test = cross_val.split(train_index, test_index, X, y)
|
|
TRAIN: [False False True True] TEST: [ True True False False]
|
|
TRAIN: [False True False True] TEST: [ True False True False]
|
|
TRAIN: [False True True False] TEST: [ True False False True]
|
|
TRAIN: [ True False False True] TEST: [False True True False]
|
|
TRAIN: [ True False True False] TEST: [False True False True]
|
|
TRAIN: [ True True False False] TEST: [False False True True]
|
|
"""
|
|
self.n = n
|
|
self.p = p
|
|
|
|
|
|
def __iter__(self):
|
|
n = self.n
|
|
p = self.p
|
|
comb = combinations(lrange(n), p)
|
|
for idx in comb:
|
|
test_index = np.zeros(n, dtype=bool)
|
|
test_index[np.array(idx)] = True
|
|
train_index = np.logical_not(test_index)
|
|
yield train_index, test_index
|
|
|
|
|
|
def __repr__(self):
|
|
return '%s.%s(n=%i, p=%i)' % (
|
|
self.__class__.__module__,
|
|
self.__class__.__name__,
|
|
self.n,
|
|
self.p,
|
|
)
|
|
|
|
|
|
################################################################################
|
|
class KFold:
|
|
"""
|
|
K-Folds cross validation iterator:
|
|
Provides train/test indexes to split data in train test sets
|
|
"""
|
|
|
|
def __init__(self, n, k):
|
|
"""
|
|
K-Folds cross validation iterator:
|
|
Provides train/test indexes to split data in train test sets
|
|
|
|
Parameters
|
|
----------
|
|
n: int
|
|
Total number of elements
|
|
k: int
|
|
number of folds
|
|
|
|
Examples
|
|
--------
|
|
>>> from scikits.learn import cross_val
|
|
>>> X = [[1, 2], [3, 4], [1, 2], [3, 4]]
|
|
>>> y = [1, 2, 3, 4]
|
|
>>> kf = cross_val.KFold(4, k=2)
|
|
>>> for train_index, test_index in kf:
|
|
... print "TRAIN:", train_index, "TEST:", test_index
|
|
... X_train, X_test, y_train, y_test = cross_val.split(train_index, test_index, X, y)
|
|
TRAIN: [False False True True] TEST: [ True True False False]
|
|
TRAIN: [ True True False False] TEST: [False False True True]
|
|
|
|
Notes
|
|
-----
|
|
All the folds have size trunc(n/k), the last one has the complementary
|
|
"""
|
|
assert k>0, ValueError('cannot have k below 1')
|
|
assert k<n, ValueError('cannot have k=%d greater than %d'% (k, n))
|
|
self.n = n
|
|
self.k = k
|
|
|
|
|
|
def __iter__(self):
|
|
n = self.n
|
|
k = self.k
|
|
j = int(np.ceil(n/k))
|
|
|
|
for i in range(k):
|
|
test_index = np.zeros(n, dtype=bool)
|
|
if i<k-1:
|
|
test_index[i*j:(i+1)*j] = True
|
|
else:
|
|
test_index[i*j:] = True
|
|
train_index = np.logical_not(test_index)
|
|
yield train_index, test_index
|
|
|
|
|
|
def __repr__(self):
|
|
return '%s.%s(n=%i, k=%i)' % (
|
|
self.__class__.__module__,
|
|
self.__class__.__name__,
|
|
self.n,
|
|
self.k,
|
|
)
|
|
|
|
|
|
################################################################################
|
|
class LeaveOneLabelOut:
|
|
"""
|
|
Leave-One-Label_Out cross-validation iterator:
|
|
Provides train/test indexes to split data in train test sets
|
|
"""
|
|
|
|
def __init__(self, labels):
|
|
"""
|
|
Leave-One-Label_Out cross validation:
|
|
Provides train/test indexes to split data in train test sets
|
|
|
|
Parameters
|
|
----------
|
|
labels : list
|
|
List of labels
|
|
|
|
Examples
|
|
--------
|
|
>>> from scikits.learn import cross_val
|
|
>>> X = [[1, 2], [3, 4], [5, 6], [7, 8]]
|
|
>>> y = [1, 2, 1, 2]
|
|
>>> labels = [1, 1, 2, 2]
|
|
>>> lol = cross_val.LeaveOneLabelOut(labels)
|
|
>>> for train_index, test_index in lol:
|
|
... print "TRAIN:", train_index, "TEST:", test_index
|
|
... X_train, X_test, y_train, y_test = cross_val.split(train_index, \
|
|
test_index, X, y)
|
|
... print X_train, X_test, y_train, y_test
|
|
TRAIN: [False False True True] TEST: [ True True False False]
|
|
[[5 6]
|
|
[7 8]] [[1 2]
|
|
[3 4]] [1 2] [1 2]
|
|
TRAIN: [ True True False False] TEST: [False False True True]
|
|
[[1 2]
|
|
[3 4]] [[5 6]
|
|
[7 8]] [1 2] [1 2]
|
|
"""
|
|
self.labels = labels
|
|
|
|
|
|
def __iter__(self):
|
|
# We make a copy here to avoid side-effects during iteration
|
|
labels = np.array(self.labels, copy=True)
|
|
for i in np.unique(labels):
|
|
test_index = np.zeros(len(labels), dtype=bool)
|
|
test_index[labels==i] = True
|
|
train_index = np.logical_not(test_index)
|
|
yield train_index, test_index
|
|
|
|
|
|
def __repr__(self):
|
|
return '{}.{}(labels={})'.format(
|
|
self.__class__.__module__,
|
|
self.__class__.__name__,
|
|
self.labels,
|
|
)
|
|
|
|
|
|
def split(train_indexes, test_indexes, *args):
|
|
"""
|
|
For each arg return a train and test subsets defined by indexes provided
|
|
in train_indexes and test_indexes
|
|
"""
|
|
ret = []
|
|
for arg in args:
|
|
arg = np.asanyarray(arg)
|
|
arg_train = arg[train_indexes]
|
|
arg_test = arg[test_indexes]
|
|
ret.append(arg_train)
|
|
ret.append(arg_test)
|
|
return ret
|
|
|
|
'''
|
|
>>> cv = cross_val.LeaveOneLabelOut(X, y) # y making y optional and
|
|
possible to add other arrays of the same shape[0] too
|
|
>>> for X_train, y_train, X_test, y_test in cv:
|
|
... print np.sqrt((model.fit(X_train, y_train).predict(X_test)
|
|
- y_test) ** 2).mean())
|
|
'''
|
|
|
|
|
|
################################################################################
|
|
#below: Author: josef-pktd
|
|
|
|
class KStepAhead:
|
|
"""
|
|
KStepAhead cross validation iterator:
|
|
Provides fit/test indexes to split data in sequential sets
|
|
"""
|
|
|
|
def __init__(self, n, k=1, start=None, kall=True, return_slice=True):
|
|
"""
|
|
KStepAhead cross validation iterator:
|
|
Provides train/test indexes to split data in train test sets
|
|
|
|
Parameters
|
|
----------
|
|
n: int
|
|
Total number of elements
|
|
k : int
|
|
number of steps ahead
|
|
start : int
|
|
initial size of data for fitting
|
|
kall : bool
|
|
if true. all values for up to k-step ahead are included in the test index.
|
|
If false, then only the k-th step ahead value is returnd
|
|
|
|
|
|
Notes
|
|
-----
|
|
I do not think this is really useful, because it can be done with
|
|
a very simple loop instead.
|
|
Useful as a plugin, but it could return slices instead for faster array access.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scikits.learn import cross_val
|
|
>>> X = [[1, 2], [3, 4]]
|
|
>>> y = [1, 2]
|
|
>>> loo = cross_val.LeaveOneOut(2)
|
|
>>> for train_index, test_index in loo:
|
|
... print "TRAIN:", train_index, "TEST:", test_index
|
|
... X_train, X_test, y_train, y_test = cross_val.split(train_index, test_index, X, y)
|
|
... print X_train, X_test, y_train, y_test
|
|
TRAIN: [False True] TEST: [ True False]
|
|
[[3 4]] [[1 2]] [2] [1]
|
|
TRAIN: [ True False] TEST: [False True]
|
|
[[1 2]] [[3 4]] [1] [2]
|
|
"""
|
|
self.n = n
|
|
self.k = k
|
|
if start is None:
|
|
start = int(np.trunc(n*0.25)) # pick something arbitrary
|
|
self.start = start
|
|
self.kall = kall
|
|
self.return_slice = return_slice
|
|
|
|
|
|
def __iter__(self):
|
|
n = self.n
|
|
k = self.k
|
|
start = self.start
|
|
if self.return_slice:
|
|
for i in range(start, n-k):
|
|
train_slice = slice(None, i, None)
|
|
if self.kall:
|
|
test_slice = slice(i, i+k)
|
|
else:
|
|
test_slice = slice(i+k-1, i+k)
|
|
yield train_slice, test_slice
|
|
|
|
else: #for compatibility with other iterators
|
|
for i in range(start, n-k):
|
|
train_index = np.zeros(n, dtype=bool)
|
|
train_index[:i] = True
|
|
test_index = np.zeros(n, dtype=bool)
|
|
if self.kall:
|
|
test_index[i:i+k] = True # np.logical_not(test_index)
|
|
else:
|
|
test_index[i+k-1:i+k] = True
|
|
#or faster to return np.arange(i,i+k) ?
|
|
#returning slice should be faster in this case
|
|
yield train_index, test_index
|
|
|
|
|
|
def __repr__(self):
|
|
return '%s.%s(n=%i)' % (self.__class__.__module__,
|
|
self.__class__.__name__,
|
|
self.n,
|
|
)
|