AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/sandbox/tools/cross_val.py

368 lines
12 KiB
Python
Raw Normal View History

2024-10-02 22:15:59 +04:00
"""
Utilities for cross validation.
taken from scikits.learn
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>,
# Gael Varoquaux <gael.varoquaux@normalesup.org>
# License: BSD Style.
# $Id$
changes to code by josef-pktd:
- docstring formatting: underlines of headers
"""
from statsmodels.compat.python import lrange
import numpy as np
from itertools import combinations
################################################################################
class LeaveOneOut:
"""
Leave-One-Out cross validation iterator:
Provides train/test indexes to split data in train test sets
"""
def __init__(self, n):
"""
Leave-One-Out cross validation iterator:
Provides train/test indexes to split data in train test sets
Parameters
----------
n: int
Total number of elements
Examples
--------
>>> from scikits.learn import cross_val
>>> X = [[1, 2], [3, 4]]
>>> y = [1, 2]
>>> loo = cross_val.LeaveOneOut(2)
>>> for train_index, test_index in loo:
... print "TRAIN:", train_index, "TEST:", test_index
... X_train, X_test, y_train, y_test = cross_val.split(train_index, test_index, X, y)
... print X_train, X_test, y_train, y_test
TRAIN: [False True] TEST: [ True False]
[[3 4]] [[1 2]] [2] [1]
TRAIN: [ True False] TEST: [False True]
[[1 2]] [[3 4]] [1] [2]
"""
self.n = n
def __iter__(self):
n = self.n
for i in range(n):
test_index = np.zeros(n, dtype=bool)
test_index[i] = True
train_index = np.logical_not(test_index)
yield train_index, test_index
def __repr__(self):
return '%s.%s(n=%i)' % (self.__class__.__module__,
self.__class__.__name__,
self.n,
)
################################################################################
class LeavePOut:
"""
Leave-P-Out cross validation iterator:
Provides train/test indexes to split data in train test sets
"""
def __init__(self, n, p):
"""
Leave-P-Out cross validation iterator:
Provides train/test indexes to split data in train test sets
Parameters
----------
n: int
Total number of elements
p: int
Size test sets
Examples
--------
>>> from scikits.learn import cross_val
>>> X = [[1, 2], [3, 4], [5, 6], [7, 8]]
>>> y = [1, 2, 3, 4]
>>> lpo = cross_val.LeavePOut(4, 2)
>>> for train_index, test_index in lpo:
... print "TRAIN:", train_index, "TEST:", test_index
... X_train, X_test, y_train, y_test = cross_val.split(train_index, test_index, X, y)
TRAIN: [False False True True] TEST: [ True True False False]
TRAIN: [False True False True] TEST: [ True False True False]
TRAIN: [False True True False] TEST: [ True False False True]
TRAIN: [ True False False True] TEST: [False True True False]
TRAIN: [ True False True False] TEST: [False True False True]
TRAIN: [ True True False False] TEST: [False False True True]
"""
self.n = n
self.p = p
def __iter__(self):
n = self.n
p = self.p
comb = combinations(lrange(n), p)
for idx in comb:
test_index = np.zeros(n, dtype=bool)
test_index[np.array(idx)] = True
train_index = np.logical_not(test_index)
yield train_index, test_index
def __repr__(self):
return '%s.%s(n=%i, p=%i)' % (
self.__class__.__module__,
self.__class__.__name__,
self.n,
self.p,
)
################################################################################
class KFold:
"""
K-Folds cross validation iterator:
Provides train/test indexes to split data in train test sets
"""
def __init__(self, n, k):
"""
K-Folds cross validation iterator:
Provides train/test indexes to split data in train test sets
Parameters
----------
n: int
Total number of elements
k: int
number of folds
Examples
--------
>>> from scikits.learn import cross_val
>>> X = [[1, 2], [3, 4], [1, 2], [3, 4]]
>>> y = [1, 2, 3, 4]
>>> kf = cross_val.KFold(4, k=2)
>>> for train_index, test_index in kf:
... print "TRAIN:", train_index, "TEST:", test_index
... X_train, X_test, y_train, y_test = cross_val.split(train_index, test_index, X, y)
TRAIN: [False False True True] TEST: [ True True False False]
TRAIN: [ True True False False] TEST: [False False True True]
Notes
-----
All the folds have size trunc(n/k), the last one has the complementary
"""
assert k>0, ValueError('cannot have k below 1')
assert k<n, ValueError('cannot have k=%d greater than %d'% (k, n))
self.n = n
self.k = k
def __iter__(self):
n = self.n
k = self.k
j = int(np.ceil(n/k))
for i in range(k):
test_index = np.zeros(n, dtype=bool)
if i<k-1:
test_index[i*j:(i+1)*j] = True
else:
test_index[i*j:] = True
train_index = np.logical_not(test_index)
yield train_index, test_index
def __repr__(self):
return '%s.%s(n=%i, k=%i)' % (
self.__class__.__module__,
self.__class__.__name__,
self.n,
self.k,
)
################################################################################
class LeaveOneLabelOut:
"""
Leave-One-Label_Out cross-validation iterator:
Provides train/test indexes to split data in train test sets
"""
def __init__(self, labels):
"""
Leave-One-Label_Out cross validation:
Provides train/test indexes to split data in train test sets
Parameters
----------
labels : list
List of labels
Examples
--------
>>> from scikits.learn import cross_val
>>> X = [[1, 2], [3, 4], [5, 6], [7, 8]]
>>> y = [1, 2, 1, 2]
>>> labels = [1, 1, 2, 2]
>>> lol = cross_val.LeaveOneLabelOut(labels)
>>> for train_index, test_index in lol:
... print "TRAIN:", train_index, "TEST:", test_index
... X_train, X_test, y_train, y_test = cross_val.split(train_index, \
test_index, X, y)
... print X_train, X_test, y_train, y_test
TRAIN: [False False True True] TEST: [ True True False False]
[[5 6]
[7 8]] [[1 2]
[3 4]] [1 2] [1 2]
TRAIN: [ True True False False] TEST: [False False True True]
[[1 2]
[3 4]] [[5 6]
[7 8]] [1 2] [1 2]
"""
self.labels = labels
def __iter__(self):
# We make a copy here to avoid side-effects during iteration
labels = np.array(self.labels, copy=True)
for i in np.unique(labels):
test_index = np.zeros(len(labels), dtype=bool)
test_index[labels==i] = True
train_index = np.logical_not(test_index)
yield train_index, test_index
def __repr__(self):
return '{}.{}(labels={})'.format(
self.__class__.__module__,
self.__class__.__name__,
self.labels,
)
def split(train_indexes, test_indexes, *args):
"""
For each arg return a train and test subsets defined by indexes provided
in train_indexes and test_indexes
"""
ret = []
for arg in args:
arg = np.asanyarray(arg)
arg_train = arg[train_indexes]
arg_test = arg[test_indexes]
ret.append(arg_train)
ret.append(arg_test)
return ret
'''
>>> cv = cross_val.LeaveOneLabelOut(X, y) # y making y optional and
possible to add other arrays of the same shape[0] too
>>> for X_train, y_train, X_test, y_test in cv:
... print np.sqrt((model.fit(X_train, y_train).predict(X_test)
- y_test) ** 2).mean())
'''
################################################################################
#below: Author: josef-pktd
class KStepAhead:
"""
KStepAhead cross validation iterator:
Provides fit/test indexes to split data in sequential sets
"""
def __init__(self, n, k=1, start=None, kall=True, return_slice=True):
"""
KStepAhead cross validation iterator:
Provides train/test indexes to split data in train test sets
Parameters
----------
n: int
Total number of elements
k : int
number of steps ahead
start : int
initial size of data for fitting
kall : bool
if true. all values for up to k-step ahead are included in the test index.
If false, then only the k-th step ahead value is returnd
Notes
-----
I do not think this is really useful, because it can be done with
a very simple loop instead.
Useful as a plugin, but it could return slices instead for faster array access.
Examples
--------
>>> from scikits.learn import cross_val
>>> X = [[1, 2], [3, 4]]
>>> y = [1, 2]
>>> loo = cross_val.LeaveOneOut(2)
>>> for train_index, test_index in loo:
... print "TRAIN:", train_index, "TEST:", test_index
... X_train, X_test, y_train, y_test = cross_val.split(train_index, test_index, X, y)
... print X_train, X_test, y_train, y_test
TRAIN: [False True] TEST: [ True False]
[[3 4]] [[1 2]] [2] [1]
TRAIN: [ True False] TEST: [False True]
[[1 2]] [[3 4]] [1] [2]
"""
self.n = n
self.k = k
if start is None:
start = int(np.trunc(n*0.25)) # pick something arbitrary
self.start = start
self.kall = kall
self.return_slice = return_slice
def __iter__(self):
n = self.n
k = self.k
start = self.start
if self.return_slice:
for i in range(start, n-k):
train_slice = slice(None, i, None)
if self.kall:
test_slice = slice(i, i+k)
else:
test_slice = slice(i+k-1, i+k)
yield train_slice, test_slice
else: #for compatibility with other iterators
for i in range(start, n-k):
train_index = np.zeros(n, dtype=bool)
train_index[:i] = True
test_index = np.zeros(n, dtype=bool)
if self.kall:
test_index[i:i+k] = True # np.logical_not(test_index)
else:
test_index[i+k-1:i+k] = True
#or faster to return np.arange(i,i+k) ?
#returning slice should be faster in this case
yield train_index, test_index
def __repr__(self):
return '%s.%s(n=%i)' % (self.__class__.__module__,
self.__class__.__name__,
self.n,
)