AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/sandbox/tsa/diffusion2.py
2024-10-02 22:15:59 +04:00

503 lines
13 KiB
Python

""" Diffusion 2: jump diffusion, stochastic volatility, stochastic time
Created on Tue Dec 08 15:03:49 2009
Author: josef-pktd following Meucci
License: BSD
contains:
CIRSubordinatedBrownian
Heston
IG
JumpDiffusionKou
JumpDiffusionMerton
NIG
VG
References
----------
Attilio Meucci, Review of Discrete and Continuous Processes in Finance: Theory and Applications
Bloomberg Portfolio Research Paper No. 2009-02-CLASSROOM July 1, 2009
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1373102
this is currently mostly a translation from matlab of
http://www.mathworks.com/matlabcentral/fileexchange/23554-review-of-discrete-and-continuous-processes-in-finance
license BSD:
Copyright (c) 2008, Attilio Meucci
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
TODO:
* vectorize where possible
* which processes are exactly simulated by finite differences ?
* include or exclude (now) the initial observation ?
* convert to and merge with diffusion.py (part 1 of diffusions)
* which processes can be easily estimated ?
loglike or characteristic function ?
* tests ? check for possible index errors (random indices), graphs look ok
* adjust notation, variable names, more consistent, more pythonic
* delete a few unused lines, cleanup
* docstrings
random bug (showed up only once, need fuzz-testing to replicate)
File "../diffusion2.py", line 375, in <module>
x = jd.simulate(mu,sigma,lambd,a,D,ts,nrepl)
File "../diffusion2.py", line 129, in simulate
jumps_ts[n] = CumS[Events]
IndexError: index out of bounds
CumS is empty array, Events == -1
"""
import numpy as np
#from scipy import stats # currently only uses np.random
import matplotlib.pyplot as plt
class JumpDiffusionMerton:
'''
Example
-------
mu=.00 # deterministic drift
sig=.20 # Gaussian component
l=3.45 # Poisson process arrival rate
a=0 # drift of log-jump
D=.2 # st.dev of log-jump
X = JumpDiffusionMerton().simulate(mu,sig,lambd,a,D,ts,nrepl)
plt.figure()
plt.plot(X.T)
plt.title('Merton jump-diffusion')
'''
def __init__(self):
pass
def simulate(self, m,s,lambd,a,D,ts,nrepl):
T = ts[-1] # time points
# simulate number of jumps
n_jumps = np.random.poisson(lambd*T, size=(nrepl, 1))
jumps=[]
nobs=len(ts)
jumps=np.zeros((nrepl,nobs))
for j in range(nrepl):
# simulate jump arrival time
t = T*np.random.rand(n_jumps[j])#,1) #uniform
t = np.sort(t,0)
# simulate jump size
S = a + D*np.random.randn(n_jumps[j],1)
# put things together
CumS = np.cumsum(S)
jumps_ts = np.zeros(nobs)
for n in range(nobs):
Events = np.sum(t<=ts[n])-1
#print n, Events, CumS.shape, jumps_ts.shape
jumps_ts[n]=0
if Events > 0:
jumps_ts[n] = CumS[Events] #TODO: out of bounds see top
#jumps = np.column_stack((jumps, jumps_ts)) #maybe wrong transl
jumps[j,:] = jumps_ts
D_Diff = np.zeros((nrepl,nobs))
for k in range(nobs):
Dt=ts[k]
if k>1:
Dt=ts[k]-ts[k-1]
D_Diff[:,k]=m*Dt + s*np.sqrt(Dt)*np.random.randn(nrepl)
x = np.hstack((np.zeros((nrepl,1)),np.cumsum(D_Diff,1)+jumps))
return x
class JumpDiffusionKou:
def __init__(self):
pass
def simulate(self, m,s,lambd,p,e1,e2,ts,nrepl):
T=ts[-1]
# simulate number of jumps
N = np.random.poisson(lambd*T,size =(nrepl,1))
jumps=[]
nobs=len(ts)
jumps=np.zeros((nrepl,nobs))
for j in range(nrepl):
# simulate jump arrival time
t=T*np.random.rand(N[j])
t=np.sort(t)
# simulate jump size
ww = np.random.binomial(1, p, size=(N[j]))
S = ww * np.random.exponential(e1, size=(N[j])) - \
(1-ww) * np.random.exponential(e2, N[j])
# put things together
CumS = np.cumsum(S)
jumps_ts = np.zeros(nobs)
for n in range(nobs):
Events = sum(t<=ts[n])-1
jumps_ts[n]=0
if Events:
jumps_ts[n]=CumS[Events]
jumps[j,:] = jumps_ts
D_Diff = np.zeros((nrepl,nobs))
for k in range(nobs):
Dt=ts[k]
if k>1:
Dt=ts[k]-ts[k-1]
D_Diff[:,k]=m*Dt + s*np.sqrt(Dt)*np.random.normal(size=nrepl)
x = np.hstack((np.zeros((nrepl,1)),np.cumsum(D_Diff,1)+jumps))
return x
class VG:
'''variance gamma process
'''
def __init__(self):
pass
def simulate(self, m,s,kappa,ts,nrepl):
T=len(ts)
dXs = np.zeros((nrepl,T))
for t in range(T):
dt=ts[1]-0
if t>1:
dt = ts[t]-ts[t-1]
#print dt/kappa
#TODO: check parameterization of gamrnd, checked looks same as np
d_tau = kappa * np.random.gamma(dt/kappa,1.,size=(nrepl))
#print s*np.sqrt(d_tau)
# this raises exception:
#dX = stats.norm.rvs(m*d_tau,(s*np.sqrt(d_tau)))
# np.random.normal requires scale >0
dX = np.random.normal(loc=m*d_tau, scale=1e-6+s*np.sqrt(d_tau))
dXs[:,t] = dX
x = np.cumsum(dXs,1)
return x
class IG:
'''inverse-Gaussian ??? used by NIG
'''
def __init__(self):
pass
def simulate(self, l,m,nrepl):
N = np.random.randn(nrepl,1)
Y = N**2
X = m + (.5*m*m/l)*Y - (.5*m/l)*np.sqrt(4*m*l*Y+m*m*(Y**2))
U = np.random.rand(nrepl,1)
ind = U>m/(X+m)
X[ind] = m*m/X[ind]
return X.ravel()
class NIG:
'''normal-inverse-Gaussian
'''
def __init__(self):
pass
def simulate(self, th,k,s,ts,nrepl):
T = len(ts)
DXs = np.zeros((nrepl,T))
for t in range(T):
Dt=ts[1]-0
if t>1:
Dt=ts[t]-ts[t-1]
lfrac = 1/k*(Dt**2)
m = Dt
DS = IG().simulate(lfrac, m, nrepl)
N = np.random.randn(nrepl)
DX = s*N*np.sqrt(DS) + th*DS
#print DS.shape, DX.shape, DXs.shape
DXs[:,t] = DX
x = np.cumsum(DXs,1)
return x
class Heston:
'''Heston Stochastic Volatility
'''
def __init__(self):
pass
def simulate(self, m, kappa, eta,lambd,r, ts, nrepl,tratio=1.):
T = ts[-1]
nobs = len(ts)
dt = np.zeros(nobs) #/tratio
dt[0] = ts[0]-0
dt[1:] = np.diff(ts)
DXs = np.zeros((nrepl,nobs))
dB_1 = np.sqrt(dt) * np.random.randn(nrepl,nobs)
dB_2u = np.sqrt(dt) * np.random.randn(nrepl,nobs)
dB_2 = r*dB_1 + np.sqrt(1-r**2)*dB_2u
vt = eta*np.ones(nrepl)
v=[]
dXs = np.zeros((nrepl,nobs))
vts = np.zeros((nrepl,nobs))
for t in range(nobs):
dv = kappa*(eta-vt)*dt[t]+ lambd*np.sqrt(vt)*dB_2[:,t]
dX = m*dt[t] + np.sqrt(vt*dt[t]) * dB_1[:,t]
vt = vt + dv
vts[:,t] = vt
dXs[:,t] = dX
x = np.cumsum(dXs,1)
return x, vts
class CIRSubordinatedBrownian:
'''CIR subordinated Brownian Motion
'''
def __init__(self):
pass
def simulate(self, m, kappa, T_dot,lambd,sigma, ts, nrepl):
T = ts[-1]
nobs = len(ts)
dtarr = np.zeros(nobs) #/tratio
dtarr[0] = ts[0]-0
dtarr[1:] = np.diff(ts)
DXs = np.zeros((nrepl,nobs))
dB = np.sqrt(dtarr) * np.random.randn(nrepl,nobs)
yt = 1.
dXs = np.zeros((nrepl,nobs))
dtaus = np.zeros((nrepl,nobs))
y = np.zeros((nrepl,nobs))
for t in range(nobs):
dt = dtarr[t]
dy = kappa*(T_dot-yt)*dt + lambd*np.sqrt(yt)*dB[:,t]
yt = np.maximum(yt+dy,1e-10) # keep away from zero ?
dtau = np.maximum(yt*dt, 1e-6)
dX = np.random.normal(loc=m*dtau, scale=sigma*np.sqrt(dtau))
y[:,t] = yt
dtaus[:,t] = dtau
dXs[:,t] = dX
tau = np.cumsum(dtaus,1)
x = np.cumsum(dXs,1)
return x, tau, y
def schout2contank(a,b,d):
th = d*b/np.sqrt(a**2-b**2)
k = 1/(d*np.sqrt(a**2-b**2))
s = np.sqrt(d/np.sqrt(a**2-b**2))
return th,k,s
if __name__ == '__main__':
#Merton Jump Diffusion
#^^^^^^^^^^^^^^^^^^^^^
# grid of time values at which the process is evaluated
#("0" will be added, too)
nobs = 252.#1000 #252.
ts = np.linspace(1./nobs, 1., nobs)
nrepl=5 # number of simulations
mu=.010 # deterministic drift
sigma = .020 # Gaussian component
lambd = 3.45 *10 # Poisson process arrival rate
a=0 # drift of log-jump
D=.2 # st.dev of log-jump
jd = JumpDiffusionMerton()
x = jd.simulate(mu,sigma,lambd,a,D,ts,nrepl)
plt.figure()
plt.plot(x.T) #Todo
plt.title('Merton jump-diffusion')
sigma = 0.2
lambd = 3.45
x = jd.simulate(mu,sigma,lambd,a,D,ts,nrepl)
plt.figure()
plt.plot(x.T) #Todo
plt.title('Merton jump-diffusion')
#Kou jump diffusion
#^^^^^^^^^^^^^^^^^^
mu=.0 # deterministic drift
lambd=4.25 # Poisson process arrival rate
p=.5 # prob. of up-jump
e1=.2 # parameter of up-jump
e2=.3 # parameter of down-jump
sig=.2 # Gaussian component
x = JumpDiffusionKou().simulate(mu,sig,lambd,p,e1,e2,ts,nrepl)
plt.figure()
plt.plot(x.T) #Todo
plt.title('double exponential (Kou jump diffusion)')
#variance-gamma
#^^^^^^^^^^^^^^
mu = .1 # deterministic drift in subordinated Brownian motion
kappa = 1. #10. #1 # inverse for gamma shape parameter
sig = 0.5 #.2 # s.dev in subordinated Brownian motion
x = VG().simulate(mu,sig,kappa,ts,nrepl)
plt.figure()
plt.plot(x.T) #Todo
plt.title('variance gamma')
#normal-inverse-Gaussian
#^^^^^^^^^^^^^^^^^^^^^^^
# (Schoutens notation)
al = 2.1
be = 0
de = 1
# convert parameters to Cont-Tankov notation
th,k,s = schout2contank(al,be,de)
x = NIG().simulate(th,k,s,ts,nrepl)
plt.figure()
plt.plot(x.T) #Todo x-axis
plt.title('normal-inverse-Gaussian')
#Heston Stochastic Volatility
#^^^^^^^^^^^^^^^^^^^^^^^^^^^^
m=.0
kappa = .6 # 2*Kappa*Eta>Lambda^2
eta = .3**2
lambd =.25
r = -.7
T = 20.
nobs = 252.*T#1000 #252.
tsh = np.linspace(T/nobs, T, nobs)
x, vts = Heston().simulate(m,kappa, eta,lambd,r, tsh, nrepl, tratio=20.)
plt.figure()
plt.plot(x.T)
plt.title('Heston Stochastic Volatility')
plt.figure()
plt.plot(np.sqrt(vts).T)
plt.title('Heston Stochastic Volatility - CIR Vol.')
plt.figure()
plt.subplot(2,1,1)
plt.plot(x[0])
plt.title('Heston Stochastic Volatility process')
plt.subplot(2,1,2)
plt.plot(np.sqrt(vts[0]))
plt.title('CIR Volatility')
#CIR subordinated Brownian
#^^^^^^^^^^^^^^^^^^^^^^^^^
m=.1
sigma=.4
kappa=.6 # 2*Kappa*T_dot>Lambda^2
T_dot=1
lambd=1
#T=252*10
#dt=1/252
#nrepl=2
T = 10.
nobs = 252.*T#1000 #252.
tsh = np.linspace(T/nobs, T, nobs)
x, tau, y = CIRSubordinatedBrownian().simulate(m, kappa, T_dot,lambd,sigma, tsh, nrepl)
plt.figure()
plt.plot(tsh, x.T)
plt.title('CIRSubordinatedBrownian process')
plt.figure()
plt.plot(tsh, y.T)
plt.title('CIRSubordinatedBrownian - CIR')
plt.figure()
plt.plot(tsh, tau.T)
plt.title('CIRSubordinatedBrownian - stochastic time ')
plt.figure()
plt.subplot(2,1,1)
plt.plot(tsh, x[0])
plt.title('CIRSubordinatedBrownian process')
plt.subplot(2,1,2)
plt.plot(tsh, y[0], label='CIR')
plt.plot(tsh, tau[0], label='stoch. time')
plt.legend(loc='upper left')
plt.title('CIRSubordinatedBrownian')
#plt.show()