503 lines
13 KiB
Python
503 lines
13 KiB
Python
|
""" Diffusion 2: jump diffusion, stochastic volatility, stochastic time
|
||
|
|
||
|
Created on Tue Dec 08 15:03:49 2009
|
||
|
|
||
|
Author: josef-pktd following Meucci
|
||
|
License: BSD
|
||
|
|
||
|
contains:
|
||
|
|
||
|
CIRSubordinatedBrownian
|
||
|
Heston
|
||
|
IG
|
||
|
JumpDiffusionKou
|
||
|
JumpDiffusionMerton
|
||
|
NIG
|
||
|
VG
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
|
||
|
Attilio Meucci, Review of Discrete and Continuous Processes in Finance: Theory and Applications
|
||
|
Bloomberg Portfolio Research Paper No. 2009-02-CLASSROOM July 1, 2009
|
||
|
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1373102
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
this is currently mostly a translation from matlab of
|
||
|
http://www.mathworks.com/matlabcentral/fileexchange/23554-review-of-discrete-and-continuous-processes-in-finance
|
||
|
license BSD:
|
||
|
|
||
|
Copyright (c) 2008, Attilio Meucci
|
||
|
All rights reserved.
|
||
|
|
||
|
Redistribution and use in source and binary forms, with or without
|
||
|
modification, are permitted provided that the following conditions are
|
||
|
met:
|
||
|
|
||
|
* Redistributions of source code must retain the above copyright
|
||
|
notice, this list of conditions and the following disclaimer.
|
||
|
* Redistributions in binary form must reproduce the above copyright
|
||
|
notice, this list of conditions and the following disclaimer in
|
||
|
the documentation and/or other materials provided with the distribution
|
||
|
|
||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
||
|
|
||
|
|
||
|
TODO:
|
||
|
|
||
|
* vectorize where possible
|
||
|
* which processes are exactly simulated by finite differences ?
|
||
|
* include or exclude (now) the initial observation ?
|
||
|
* convert to and merge with diffusion.py (part 1 of diffusions)
|
||
|
* which processes can be easily estimated ?
|
||
|
loglike or characteristic function ?
|
||
|
* tests ? check for possible index errors (random indices), graphs look ok
|
||
|
* adjust notation, variable names, more consistent, more pythonic
|
||
|
* delete a few unused lines, cleanup
|
||
|
* docstrings
|
||
|
|
||
|
|
||
|
random bug (showed up only once, need fuzz-testing to replicate)
|
||
|
File "../diffusion2.py", line 375, in <module>
|
||
|
x = jd.simulate(mu,sigma,lambd,a,D,ts,nrepl)
|
||
|
File "../diffusion2.py", line 129, in simulate
|
||
|
jumps_ts[n] = CumS[Events]
|
||
|
IndexError: index out of bounds
|
||
|
|
||
|
CumS is empty array, Events == -1
|
||
|
|
||
|
|
||
|
"""
|
||
|
|
||
|
|
||
|
import numpy as np
|
||
|
#from scipy import stats # currently only uses np.random
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
class JumpDiffusionMerton:
|
||
|
'''
|
||
|
|
||
|
Example
|
||
|
-------
|
||
|
mu=.00 # deterministic drift
|
||
|
sig=.20 # Gaussian component
|
||
|
l=3.45 # Poisson process arrival rate
|
||
|
a=0 # drift of log-jump
|
||
|
D=.2 # st.dev of log-jump
|
||
|
|
||
|
X = JumpDiffusionMerton().simulate(mu,sig,lambd,a,D,ts,nrepl)
|
||
|
|
||
|
plt.figure()
|
||
|
plt.plot(X.T)
|
||
|
plt.title('Merton jump-diffusion')
|
||
|
|
||
|
|
||
|
'''
|
||
|
|
||
|
def __init__(self):
|
||
|
pass
|
||
|
|
||
|
|
||
|
def simulate(self, m,s,lambd,a,D,ts,nrepl):
|
||
|
|
||
|
T = ts[-1] # time points
|
||
|
# simulate number of jumps
|
||
|
n_jumps = np.random.poisson(lambd*T, size=(nrepl, 1))
|
||
|
|
||
|
jumps=[]
|
||
|
nobs=len(ts)
|
||
|
jumps=np.zeros((nrepl,nobs))
|
||
|
for j in range(nrepl):
|
||
|
# simulate jump arrival time
|
||
|
t = T*np.random.rand(n_jumps[j])#,1) #uniform
|
||
|
t = np.sort(t,0)
|
||
|
|
||
|
# simulate jump size
|
||
|
S = a + D*np.random.randn(n_jumps[j],1)
|
||
|
|
||
|
# put things together
|
||
|
CumS = np.cumsum(S)
|
||
|
jumps_ts = np.zeros(nobs)
|
||
|
for n in range(nobs):
|
||
|
Events = np.sum(t<=ts[n])-1
|
||
|
#print n, Events, CumS.shape, jumps_ts.shape
|
||
|
jumps_ts[n]=0
|
||
|
if Events > 0:
|
||
|
jumps_ts[n] = CumS[Events] #TODO: out of bounds see top
|
||
|
|
||
|
#jumps = np.column_stack((jumps, jumps_ts)) #maybe wrong transl
|
||
|
jumps[j,:] = jumps_ts
|
||
|
|
||
|
|
||
|
D_Diff = np.zeros((nrepl,nobs))
|
||
|
for k in range(nobs):
|
||
|
Dt=ts[k]
|
||
|
if k>1:
|
||
|
Dt=ts[k]-ts[k-1]
|
||
|
D_Diff[:,k]=m*Dt + s*np.sqrt(Dt)*np.random.randn(nrepl)
|
||
|
|
||
|
x = np.hstack((np.zeros((nrepl,1)),np.cumsum(D_Diff,1)+jumps))
|
||
|
|
||
|
return x
|
||
|
|
||
|
class JumpDiffusionKou:
|
||
|
|
||
|
def __init__(self):
|
||
|
pass
|
||
|
|
||
|
def simulate(self, m,s,lambd,p,e1,e2,ts,nrepl):
|
||
|
|
||
|
T=ts[-1]
|
||
|
# simulate number of jumps
|
||
|
N = np.random.poisson(lambd*T,size =(nrepl,1))
|
||
|
|
||
|
jumps=[]
|
||
|
nobs=len(ts)
|
||
|
jumps=np.zeros((nrepl,nobs))
|
||
|
for j in range(nrepl):
|
||
|
# simulate jump arrival time
|
||
|
t=T*np.random.rand(N[j])
|
||
|
t=np.sort(t)
|
||
|
|
||
|
# simulate jump size
|
||
|
ww = np.random.binomial(1, p, size=(N[j]))
|
||
|
S = ww * np.random.exponential(e1, size=(N[j])) - \
|
||
|
(1-ww) * np.random.exponential(e2, N[j])
|
||
|
|
||
|
# put things together
|
||
|
CumS = np.cumsum(S)
|
||
|
jumps_ts = np.zeros(nobs)
|
||
|
for n in range(nobs):
|
||
|
Events = sum(t<=ts[n])-1
|
||
|
jumps_ts[n]=0
|
||
|
if Events:
|
||
|
jumps_ts[n]=CumS[Events]
|
||
|
|
||
|
jumps[j,:] = jumps_ts
|
||
|
|
||
|
D_Diff = np.zeros((nrepl,nobs))
|
||
|
for k in range(nobs):
|
||
|
Dt=ts[k]
|
||
|
if k>1:
|
||
|
Dt=ts[k]-ts[k-1]
|
||
|
|
||
|
D_Diff[:,k]=m*Dt + s*np.sqrt(Dt)*np.random.normal(size=nrepl)
|
||
|
|
||
|
x = np.hstack((np.zeros((nrepl,1)),np.cumsum(D_Diff,1)+jumps))
|
||
|
return x
|
||
|
|
||
|
|
||
|
class VG:
|
||
|
'''variance gamma process
|
||
|
'''
|
||
|
|
||
|
def __init__(self):
|
||
|
pass
|
||
|
|
||
|
def simulate(self, m,s,kappa,ts,nrepl):
|
||
|
|
||
|
T=len(ts)
|
||
|
dXs = np.zeros((nrepl,T))
|
||
|
for t in range(T):
|
||
|
dt=ts[1]-0
|
||
|
if t>1:
|
||
|
dt = ts[t]-ts[t-1]
|
||
|
|
||
|
#print dt/kappa
|
||
|
#TODO: check parameterization of gamrnd, checked looks same as np
|
||
|
|
||
|
d_tau = kappa * np.random.gamma(dt/kappa,1.,size=(nrepl))
|
||
|
#print s*np.sqrt(d_tau)
|
||
|
# this raises exception:
|
||
|
#dX = stats.norm.rvs(m*d_tau,(s*np.sqrt(d_tau)))
|
||
|
# np.random.normal requires scale >0
|
||
|
dX = np.random.normal(loc=m*d_tau, scale=1e-6+s*np.sqrt(d_tau))
|
||
|
|
||
|
dXs[:,t] = dX
|
||
|
|
||
|
x = np.cumsum(dXs,1)
|
||
|
return x
|
||
|
|
||
|
class IG:
|
||
|
'''inverse-Gaussian ??? used by NIG
|
||
|
'''
|
||
|
|
||
|
def __init__(self):
|
||
|
pass
|
||
|
|
||
|
def simulate(self, l,m,nrepl):
|
||
|
|
||
|
N = np.random.randn(nrepl,1)
|
||
|
Y = N**2
|
||
|
X = m + (.5*m*m/l)*Y - (.5*m/l)*np.sqrt(4*m*l*Y+m*m*(Y**2))
|
||
|
U = np.random.rand(nrepl,1)
|
||
|
|
||
|
ind = U>m/(X+m)
|
||
|
X[ind] = m*m/X[ind]
|
||
|
return X.ravel()
|
||
|
|
||
|
|
||
|
class NIG:
|
||
|
'''normal-inverse-Gaussian
|
||
|
'''
|
||
|
|
||
|
def __init__(self):
|
||
|
pass
|
||
|
|
||
|
def simulate(self, th,k,s,ts,nrepl):
|
||
|
|
||
|
T = len(ts)
|
||
|
DXs = np.zeros((nrepl,T))
|
||
|
for t in range(T):
|
||
|
Dt=ts[1]-0
|
||
|
if t>1:
|
||
|
Dt=ts[t]-ts[t-1]
|
||
|
|
||
|
lfrac = 1/k*(Dt**2)
|
||
|
m = Dt
|
||
|
DS = IG().simulate(lfrac, m, nrepl)
|
||
|
N = np.random.randn(nrepl)
|
||
|
|
||
|
DX = s*N*np.sqrt(DS) + th*DS
|
||
|
#print DS.shape, DX.shape, DXs.shape
|
||
|
DXs[:,t] = DX
|
||
|
|
||
|
x = np.cumsum(DXs,1)
|
||
|
return x
|
||
|
|
||
|
class Heston:
|
||
|
'''Heston Stochastic Volatility
|
||
|
'''
|
||
|
|
||
|
def __init__(self):
|
||
|
pass
|
||
|
|
||
|
def simulate(self, m, kappa, eta,lambd,r, ts, nrepl,tratio=1.):
|
||
|
T = ts[-1]
|
||
|
nobs = len(ts)
|
||
|
dt = np.zeros(nobs) #/tratio
|
||
|
dt[0] = ts[0]-0
|
||
|
dt[1:] = np.diff(ts)
|
||
|
|
||
|
DXs = np.zeros((nrepl,nobs))
|
||
|
|
||
|
dB_1 = np.sqrt(dt) * np.random.randn(nrepl,nobs)
|
||
|
dB_2u = np.sqrt(dt) * np.random.randn(nrepl,nobs)
|
||
|
dB_2 = r*dB_1 + np.sqrt(1-r**2)*dB_2u
|
||
|
|
||
|
vt = eta*np.ones(nrepl)
|
||
|
v=[]
|
||
|
dXs = np.zeros((nrepl,nobs))
|
||
|
vts = np.zeros((nrepl,nobs))
|
||
|
for t in range(nobs):
|
||
|
dv = kappa*(eta-vt)*dt[t]+ lambd*np.sqrt(vt)*dB_2[:,t]
|
||
|
dX = m*dt[t] + np.sqrt(vt*dt[t]) * dB_1[:,t]
|
||
|
vt = vt + dv
|
||
|
|
||
|
vts[:,t] = vt
|
||
|
dXs[:,t] = dX
|
||
|
|
||
|
x = np.cumsum(dXs,1)
|
||
|
return x, vts
|
||
|
|
||
|
class CIRSubordinatedBrownian:
|
||
|
'''CIR subordinated Brownian Motion
|
||
|
'''
|
||
|
|
||
|
def __init__(self):
|
||
|
pass
|
||
|
|
||
|
def simulate(self, m, kappa, T_dot,lambd,sigma, ts, nrepl):
|
||
|
T = ts[-1]
|
||
|
nobs = len(ts)
|
||
|
dtarr = np.zeros(nobs) #/tratio
|
||
|
dtarr[0] = ts[0]-0
|
||
|
dtarr[1:] = np.diff(ts)
|
||
|
|
||
|
DXs = np.zeros((nrepl,nobs))
|
||
|
|
||
|
dB = np.sqrt(dtarr) * np.random.randn(nrepl,nobs)
|
||
|
|
||
|
yt = 1.
|
||
|
dXs = np.zeros((nrepl,nobs))
|
||
|
dtaus = np.zeros((nrepl,nobs))
|
||
|
y = np.zeros((nrepl,nobs))
|
||
|
for t in range(nobs):
|
||
|
dt = dtarr[t]
|
||
|
dy = kappa*(T_dot-yt)*dt + lambd*np.sqrt(yt)*dB[:,t]
|
||
|
yt = np.maximum(yt+dy,1e-10) # keep away from zero ?
|
||
|
|
||
|
dtau = np.maximum(yt*dt, 1e-6)
|
||
|
dX = np.random.normal(loc=m*dtau, scale=sigma*np.sqrt(dtau))
|
||
|
|
||
|
y[:,t] = yt
|
||
|
dtaus[:,t] = dtau
|
||
|
dXs[:,t] = dX
|
||
|
|
||
|
tau = np.cumsum(dtaus,1)
|
||
|
x = np.cumsum(dXs,1)
|
||
|
return x, tau, y
|
||
|
|
||
|
def schout2contank(a,b,d):
|
||
|
|
||
|
th = d*b/np.sqrt(a**2-b**2)
|
||
|
k = 1/(d*np.sqrt(a**2-b**2))
|
||
|
s = np.sqrt(d/np.sqrt(a**2-b**2))
|
||
|
return th,k,s
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
|
||
|
#Merton Jump Diffusion
|
||
|
#^^^^^^^^^^^^^^^^^^^^^
|
||
|
|
||
|
# grid of time values at which the process is evaluated
|
||
|
#("0" will be added, too)
|
||
|
nobs = 252.#1000 #252.
|
||
|
ts = np.linspace(1./nobs, 1., nobs)
|
||
|
nrepl=5 # number of simulations
|
||
|
mu=.010 # deterministic drift
|
||
|
sigma = .020 # Gaussian component
|
||
|
lambd = 3.45 *10 # Poisson process arrival rate
|
||
|
a=0 # drift of log-jump
|
||
|
D=.2 # st.dev of log-jump
|
||
|
jd = JumpDiffusionMerton()
|
||
|
x = jd.simulate(mu,sigma,lambd,a,D,ts,nrepl)
|
||
|
plt.figure()
|
||
|
plt.plot(x.T) #Todo
|
||
|
plt.title('Merton jump-diffusion')
|
||
|
|
||
|
sigma = 0.2
|
||
|
lambd = 3.45
|
||
|
x = jd.simulate(mu,sigma,lambd,a,D,ts,nrepl)
|
||
|
plt.figure()
|
||
|
plt.plot(x.T) #Todo
|
||
|
plt.title('Merton jump-diffusion')
|
||
|
|
||
|
#Kou jump diffusion
|
||
|
#^^^^^^^^^^^^^^^^^^
|
||
|
|
||
|
mu=.0 # deterministic drift
|
||
|
lambd=4.25 # Poisson process arrival rate
|
||
|
p=.5 # prob. of up-jump
|
||
|
e1=.2 # parameter of up-jump
|
||
|
e2=.3 # parameter of down-jump
|
||
|
sig=.2 # Gaussian component
|
||
|
|
||
|
x = JumpDiffusionKou().simulate(mu,sig,lambd,p,e1,e2,ts,nrepl)
|
||
|
|
||
|
plt.figure()
|
||
|
plt.plot(x.T) #Todo
|
||
|
plt.title('double exponential (Kou jump diffusion)')
|
||
|
|
||
|
#variance-gamma
|
||
|
#^^^^^^^^^^^^^^
|
||
|
mu = .1 # deterministic drift in subordinated Brownian motion
|
||
|
kappa = 1. #10. #1 # inverse for gamma shape parameter
|
||
|
sig = 0.5 #.2 # s.dev in subordinated Brownian motion
|
||
|
|
||
|
x = VG().simulate(mu,sig,kappa,ts,nrepl)
|
||
|
plt.figure()
|
||
|
plt.plot(x.T) #Todo
|
||
|
plt.title('variance gamma')
|
||
|
|
||
|
|
||
|
#normal-inverse-Gaussian
|
||
|
#^^^^^^^^^^^^^^^^^^^^^^^
|
||
|
|
||
|
# (Schoutens notation)
|
||
|
al = 2.1
|
||
|
be = 0
|
||
|
de = 1
|
||
|
# convert parameters to Cont-Tankov notation
|
||
|
th,k,s = schout2contank(al,be,de)
|
||
|
|
||
|
x = NIG().simulate(th,k,s,ts,nrepl)
|
||
|
|
||
|
plt.figure()
|
||
|
plt.plot(x.T) #Todo x-axis
|
||
|
plt.title('normal-inverse-Gaussian')
|
||
|
|
||
|
#Heston Stochastic Volatility
|
||
|
#^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||
|
|
||
|
m=.0
|
||
|
kappa = .6 # 2*Kappa*Eta>Lambda^2
|
||
|
eta = .3**2
|
||
|
lambd =.25
|
||
|
r = -.7
|
||
|
T = 20.
|
||
|
nobs = 252.*T#1000 #252.
|
||
|
tsh = np.linspace(T/nobs, T, nobs)
|
||
|
x, vts = Heston().simulate(m,kappa, eta,lambd,r, tsh, nrepl, tratio=20.)
|
||
|
|
||
|
plt.figure()
|
||
|
plt.plot(x.T)
|
||
|
plt.title('Heston Stochastic Volatility')
|
||
|
|
||
|
plt.figure()
|
||
|
plt.plot(np.sqrt(vts).T)
|
||
|
plt.title('Heston Stochastic Volatility - CIR Vol.')
|
||
|
|
||
|
plt.figure()
|
||
|
plt.subplot(2,1,1)
|
||
|
plt.plot(x[0])
|
||
|
plt.title('Heston Stochastic Volatility process')
|
||
|
plt.subplot(2,1,2)
|
||
|
plt.plot(np.sqrt(vts[0]))
|
||
|
plt.title('CIR Volatility')
|
||
|
|
||
|
|
||
|
#CIR subordinated Brownian
|
||
|
#^^^^^^^^^^^^^^^^^^^^^^^^^
|
||
|
m=.1
|
||
|
sigma=.4
|
||
|
|
||
|
kappa=.6 # 2*Kappa*T_dot>Lambda^2
|
||
|
T_dot=1
|
||
|
lambd=1
|
||
|
#T=252*10
|
||
|
#dt=1/252
|
||
|
#nrepl=2
|
||
|
T = 10.
|
||
|
nobs = 252.*T#1000 #252.
|
||
|
tsh = np.linspace(T/nobs, T, nobs)
|
||
|
x, tau, y = CIRSubordinatedBrownian().simulate(m, kappa, T_dot,lambd,sigma, tsh, nrepl)
|
||
|
|
||
|
plt.figure()
|
||
|
plt.plot(tsh, x.T)
|
||
|
plt.title('CIRSubordinatedBrownian process')
|
||
|
|
||
|
plt.figure()
|
||
|
plt.plot(tsh, y.T)
|
||
|
plt.title('CIRSubordinatedBrownian - CIR')
|
||
|
|
||
|
plt.figure()
|
||
|
plt.plot(tsh, tau.T)
|
||
|
plt.title('CIRSubordinatedBrownian - stochastic time ')
|
||
|
|
||
|
plt.figure()
|
||
|
plt.subplot(2,1,1)
|
||
|
plt.plot(tsh, x[0])
|
||
|
plt.title('CIRSubordinatedBrownian process')
|
||
|
plt.subplot(2,1,2)
|
||
|
plt.plot(tsh, y[0], label='CIR')
|
||
|
plt.plot(tsh, tau[0], label='stoch. time')
|
||
|
plt.legend(loc='upper left')
|
||
|
plt.title('CIRSubordinatedBrownian')
|
||
|
|
||
|
#plt.show()
|