5095 lines
214 KiB
Python
5095 lines
214 KiB
Python
|
"""
|
||
|
State Space Model
|
||
|
|
||
|
Author: Chad Fulton
|
||
|
License: Simplified-BSD
|
||
|
"""
|
||
|
from statsmodels.compat.pandas import is_int_index
|
||
|
|
||
|
import contextlib
|
||
|
import warnings
|
||
|
|
||
|
import datetime as dt
|
||
|
from types import SimpleNamespace
|
||
|
import numpy as np
|
||
|
import pandas as pd
|
||
|
from scipy.stats import norm
|
||
|
|
||
|
from statsmodels.tools.tools import pinv_extended, Bunch
|
||
|
from statsmodels.tools.sm_exceptions import PrecisionWarning, ValueWarning
|
||
|
from statsmodels.tools.numdiff import (_get_epsilon, approx_hess_cs,
|
||
|
approx_fprime_cs, approx_fprime)
|
||
|
from statsmodels.tools.decorators import cache_readonly
|
||
|
from statsmodels.tools.eval_measures import aic, aicc, bic, hqic
|
||
|
|
||
|
import statsmodels.base.wrapper as wrap
|
||
|
|
||
|
import statsmodels.tsa.base.prediction as pred
|
||
|
|
||
|
from statsmodels.base.data import PandasData
|
||
|
import statsmodels.tsa.base.tsa_model as tsbase
|
||
|
|
||
|
from .news import NewsResults
|
||
|
from .simulation_smoother import SimulationSmoother
|
||
|
from .kalman_smoother import SmootherResults
|
||
|
from .kalman_filter import INVERT_UNIVARIATE, SOLVE_LU, MEMORY_CONSERVE
|
||
|
from .initialization import Initialization
|
||
|
from .tools import prepare_exog, concat, _safe_cond, get_impact_dates
|
||
|
|
||
|
|
||
|
def _handle_args(names, defaults, *args, **kwargs):
|
||
|
output_args = []
|
||
|
# We need to handle positional arguments in two ways, in case this was
|
||
|
# called by a Scipy optimization routine
|
||
|
if len(args) > 0:
|
||
|
# the fit() method will pass a dictionary
|
||
|
if isinstance(args[0], dict):
|
||
|
flags = args[0]
|
||
|
# otherwise, a user may have just used positional arguments...
|
||
|
else:
|
||
|
flags = dict(zip(names, args))
|
||
|
for i in range(len(names)):
|
||
|
output_args.append(flags.get(names[i], defaults[i]))
|
||
|
|
||
|
for name, value in flags.items():
|
||
|
if name in kwargs:
|
||
|
raise TypeError("loglike() got multiple values for keyword"
|
||
|
" argument '%s'" % name)
|
||
|
else:
|
||
|
for i in range(len(names)):
|
||
|
output_args.append(kwargs.pop(names[i], defaults[i]))
|
||
|
|
||
|
return tuple(output_args) + (kwargs,)
|
||
|
|
||
|
|
||
|
def _check_index(desired_index, dta, title='data'):
|
||
|
given_index = None
|
||
|
if isinstance(dta, (pd.Series, pd.DataFrame)):
|
||
|
given_index = dta.index
|
||
|
if given_index is not None and not desired_index.equals(given_index):
|
||
|
desired_freq = getattr(desired_index, 'freq', None)
|
||
|
given_freq = getattr(given_index, 'freq', None)
|
||
|
if ((desired_freq is not None or given_freq is not None) and
|
||
|
desired_freq != given_freq):
|
||
|
raise ValueError('Given %s does not have an index'
|
||
|
' that extends the index of the'
|
||
|
' model. Expected index frequency is'
|
||
|
' "%s", but got "%s".'
|
||
|
% (title, desired_freq, given_freq))
|
||
|
else:
|
||
|
raise ValueError('Given %s does not have an index'
|
||
|
' that extends the index of the'
|
||
|
' model.' % title)
|
||
|
|
||
|
|
||
|
class MLEModel(tsbase.TimeSeriesModel):
|
||
|
r"""
|
||
|
State space model for maximum likelihood estimation
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
endog : array_like
|
||
|
The observed time-series process :math:`y`
|
||
|
k_states : int
|
||
|
The dimension of the unobserved state process.
|
||
|
exog : array_like, optional
|
||
|
Array of exogenous regressors, shaped nobs x k. Default is no
|
||
|
exogenous regressors.
|
||
|
dates : array_like of datetime, optional
|
||
|
An array-like object of datetime objects. If a Pandas object is given
|
||
|
for endog, it is assumed to have a DateIndex.
|
||
|
freq : str, optional
|
||
|
The frequency of the time-series. A Pandas offset or 'B', 'D', 'W',
|
||
|
'M', 'A', or 'Q'. This is optional if dates are given.
|
||
|
**kwargs
|
||
|
Keyword arguments may be used to provide default values for state space
|
||
|
matrices or for Kalman filtering options. See `Representation`, and
|
||
|
`KalmanFilter` for more details.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
ssm : statsmodels.tsa.statespace.kalman_filter.KalmanFilter
|
||
|
Underlying state space representation.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
statsmodels.tsa.statespace.mlemodel.MLEResults
|
||
|
statsmodels.tsa.statespace.kalman_filter.KalmanFilter
|
||
|
statsmodels.tsa.statespace.representation.Representation
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This class wraps the state space model with Kalman filtering to add in
|
||
|
functionality for maximum likelihood estimation. In particular, it adds
|
||
|
the concept of updating the state space representation based on a defined
|
||
|
set of parameters, through the `update` method or `updater` attribute (see
|
||
|
below for more details on which to use when), and it adds a `fit` method
|
||
|
which uses a numerical optimizer to select the parameters that maximize
|
||
|
the likelihood of the model.
|
||
|
|
||
|
The `start_params` `update` method must be overridden in the
|
||
|
child class (and the `transform` and `untransform` methods, if needed).
|
||
|
"""
|
||
|
|
||
|
def __init__(self, endog, k_states, exog=None, dates=None, freq=None,
|
||
|
**kwargs):
|
||
|
# Initialize the model base
|
||
|
super().__init__(endog=endog, exog=exog,
|
||
|
dates=dates, freq=freq,
|
||
|
missing='none')
|
||
|
|
||
|
# Store kwargs to recreate model
|
||
|
self._init_kwargs = kwargs
|
||
|
|
||
|
# Prepared the endog array: C-ordered, shape=(nobs x k_endog)
|
||
|
self.endog, self.exog = self.prepare_data()
|
||
|
|
||
|
# Dimensions
|
||
|
self.nobs = self.endog.shape[0]
|
||
|
self.k_states = k_states
|
||
|
|
||
|
# Initialize the state-space representation
|
||
|
self.initialize_statespace(**kwargs)
|
||
|
|
||
|
# Setup holder for fixed parameters
|
||
|
self._has_fixed_params = False
|
||
|
self._fixed_params = None
|
||
|
self._params_index = None
|
||
|
self._fixed_params_index = None
|
||
|
self._free_params_index = None
|
||
|
|
||
|
def prepare_data(self):
|
||
|
"""
|
||
|
Prepare data for use in the state space representation
|
||
|
"""
|
||
|
endog = np.require(
|
||
|
np.array(self.data.orig_endog, copy=True), requirements="CW"
|
||
|
).copy()
|
||
|
exog = self.data.orig_exog
|
||
|
if exog is not None:
|
||
|
exog = np.array(exog)
|
||
|
|
||
|
# Base class may allow 1-dim data, whereas we need 2-dim
|
||
|
if endog.ndim == 1:
|
||
|
endog.shape = (endog.shape[0], 1) # this will be C-contiguous
|
||
|
|
||
|
return endog, exog
|
||
|
|
||
|
def initialize_statespace(self, **kwargs):
|
||
|
"""
|
||
|
Initialize the state space representation
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
**kwargs
|
||
|
Additional keyword arguments to pass to the state space class
|
||
|
constructor.
|
||
|
"""
|
||
|
# (Now self.endog is C-ordered and in long format (nobs x k_endog). To
|
||
|
# get F-ordered and in wide format just need to transpose)
|
||
|
endog = self.endog.T
|
||
|
|
||
|
# Instantiate the state space object
|
||
|
self.ssm = SimulationSmoother(endog.shape[0], self.k_states,
|
||
|
nobs=endog.shape[1], **kwargs)
|
||
|
# Bind the data to the model
|
||
|
self.ssm.bind(endog)
|
||
|
|
||
|
# Other dimensions, now that `ssm` is available
|
||
|
self.k_endog = self.ssm.k_endog
|
||
|
|
||
|
def _get_index_with_final_state(self):
|
||
|
# The index we inherit from `TimeSeriesModel` will only cover the
|
||
|
# data sample itself, but we will also need an index value for the
|
||
|
# final state which is the next time step to the last datapoint.
|
||
|
# This method figures out an appropriate value for the three types of
|
||
|
# supported indexes: date-based, Int64Index, or RangeIndex
|
||
|
if self._index_dates:
|
||
|
if isinstance(self._index, pd.DatetimeIndex):
|
||
|
index = pd.date_range(
|
||
|
start=self._index[0], periods=len(self._index) + 1,
|
||
|
freq=self._index.freq)
|
||
|
elif isinstance(self._index, pd.PeriodIndex):
|
||
|
index = pd.period_range(
|
||
|
start=self._index[0], periods=len(self._index) + 1,
|
||
|
freq=self._index.freq)
|
||
|
else:
|
||
|
raise NotImplementedError
|
||
|
elif isinstance(self._index, pd.RangeIndex):
|
||
|
# COMPAT: pd.RangeIndex does not have start, stop, step prior to
|
||
|
# pandas 0.25
|
||
|
try:
|
||
|
start = self._index.start
|
||
|
stop = self._index.stop
|
||
|
step = self._index.step
|
||
|
except AttributeError:
|
||
|
start = self._index._start
|
||
|
stop = self._index._stop
|
||
|
step = self._index._step
|
||
|
index = pd.RangeIndex(start, stop + step, step)
|
||
|
elif is_int_index(self._index):
|
||
|
# The only valid Int64Index is a full, incrementing index, so this
|
||
|
# is general
|
||
|
value = self._index[-1] + 1
|
||
|
index = pd.Index(self._index.tolist() + [value])
|
||
|
else:
|
||
|
raise NotImplementedError
|
||
|
return index
|
||
|
|
||
|
def __setitem__(self, key, value):
|
||
|
return self.ssm.__setitem__(key, value)
|
||
|
|
||
|
def __getitem__(self, key):
|
||
|
return self.ssm.__getitem__(key)
|
||
|
|
||
|
def _get_init_kwds(self):
|
||
|
# Get keywords based on model attributes
|
||
|
kwds = super()._get_init_kwds()
|
||
|
|
||
|
for key, value in kwds.items():
|
||
|
if value is None and hasattr(self.ssm, key):
|
||
|
kwds[key] = getattr(self.ssm, key)
|
||
|
|
||
|
return kwds
|
||
|
|
||
|
def clone(self, endog, exog=None, **kwargs):
|
||
|
"""
|
||
|
Clone state space model with new data and optionally new specification
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
endog : array_like
|
||
|
The observed time-series process :math:`y`
|
||
|
k_states : int
|
||
|
The dimension of the unobserved state process.
|
||
|
exog : array_like, optional
|
||
|
Array of exogenous regressors, shaped nobs x k. Default is no
|
||
|
exogenous regressors.
|
||
|
kwargs
|
||
|
Keyword arguments to pass to the new model class to change the
|
||
|
model specification.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
model : MLEModel subclass
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This method must be implemented
|
||
|
"""
|
||
|
raise NotImplementedError('This method is not implemented in the base'
|
||
|
' class and must be set up by each specific'
|
||
|
' model.')
|
||
|
|
||
|
def _clone_from_init_kwds(self, endog, **kwargs):
|
||
|
# Cannot make this the default, because there is extra work required
|
||
|
# for subclasses to make _get_init_kwds useful.
|
||
|
use_kwargs = self._get_init_kwds()
|
||
|
use_kwargs.update(kwargs)
|
||
|
|
||
|
# Check for `exog`
|
||
|
if getattr(self, 'k_exog', 0) > 0 and kwargs.get('exog', None) is None:
|
||
|
raise ValueError('Cloning a model with an exogenous component'
|
||
|
' requires specifying a new exogenous array using'
|
||
|
' the `exog` argument.')
|
||
|
|
||
|
mod = self.__class__(endog, **use_kwargs)
|
||
|
return mod
|
||
|
|
||
|
def set_filter_method(self, filter_method=None, **kwargs):
|
||
|
"""
|
||
|
Set the filtering method
|
||
|
|
||
|
The filtering method controls aspects of which Kalman filtering
|
||
|
approach will be used.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
filter_method : int, optional
|
||
|
Bitmask value to set the filter method to. See notes for details.
|
||
|
**kwargs
|
||
|
Keyword arguments may be used to influence the filter method by
|
||
|
setting individual boolean flags. See notes for details.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This method is rarely used. See the corresponding function in the
|
||
|
`KalmanFilter` class for details.
|
||
|
"""
|
||
|
self.ssm.set_filter_method(filter_method, **kwargs)
|
||
|
|
||
|
def set_inversion_method(self, inversion_method=None, **kwargs):
|
||
|
"""
|
||
|
Set the inversion method
|
||
|
|
||
|
The Kalman filter may contain one matrix inversion: that of the
|
||
|
forecast error covariance matrix. The inversion method controls how and
|
||
|
if that inverse is performed.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
inversion_method : int, optional
|
||
|
Bitmask value to set the inversion method to. See notes for
|
||
|
details.
|
||
|
**kwargs
|
||
|
Keyword arguments may be used to influence the inversion method by
|
||
|
setting individual boolean flags. See notes for details.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This method is rarely used. See the corresponding function in the
|
||
|
`KalmanFilter` class for details.
|
||
|
"""
|
||
|
self.ssm.set_inversion_method(inversion_method, **kwargs)
|
||
|
|
||
|
def set_stability_method(self, stability_method=None, **kwargs):
|
||
|
"""
|
||
|
Set the numerical stability method
|
||
|
|
||
|
The Kalman filter is a recursive algorithm that may in some cases
|
||
|
suffer issues with numerical stability. The stability method controls
|
||
|
what, if any, measures are taken to promote stability.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
stability_method : int, optional
|
||
|
Bitmask value to set the stability method to. See notes for
|
||
|
details.
|
||
|
**kwargs
|
||
|
Keyword arguments may be used to influence the stability method by
|
||
|
setting individual boolean flags. See notes for details.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This method is rarely used. See the corresponding function in the
|
||
|
`KalmanFilter` class for details.
|
||
|
"""
|
||
|
self.ssm.set_stability_method(stability_method, **kwargs)
|
||
|
|
||
|
def set_conserve_memory(self, conserve_memory=None, **kwargs):
|
||
|
"""
|
||
|
Set the memory conservation method
|
||
|
|
||
|
By default, the Kalman filter computes a number of intermediate
|
||
|
matrices at each iteration. The memory conservation options control
|
||
|
which of those matrices are stored.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
conserve_memory : int, optional
|
||
|
Bitmask value to set the memory conservation method to. See notes
|
||
|
for details.
|
||
|
**kwargs
|
||
|
Keyword arguments may be used to influence the memory conservation
|
||
|
method by setting individual boolean flags.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This method is rarely used. See the corresponding function in the
|
||
|
`KalmanFilter` class for details.
|
||
|
"""
|
||
|
self.ssm.set_conserve_memory(conserve_memory, **kwargs)
|
||
|
|
||
|
def set_smoother_output(self, smoother_output=None, **kwargs):
|
||
|
"""
|
||
|
Set the smoother output
|
||
|
|
||
|
The smoother can produce several types of results. The smoother output
|
||
|
variable controls which are calculated and returned.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
smoother_output : int, optional
|
||
|
Bitmask value to set the smoother output to. See notes for details.
|
||
|
**kwargs
|
||
|
Keyword arguments may be used to influence the smoother output by
|
||
|
setting individual boolean flags.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This method is rarely used. See the corresponding function in the
|
||
|
`KalmanSmoother` class for details.
|
||
|
"""
|
||
|
self.ssm.set_smoother_output(smoother_output, **kwargs)
|
||
|
|
||
|
def initialize_known(self, initial_state, initial_state_cov):
|
||
|
"""Initialize known"""
|
||
|
self.ssm.initialize_known(initial_state, initial_state_cov)
|
||
|
|
||
|
def initialize_approximate_diffuse(self, variance=None):
|
||
|
"""Initialize approximate diffuse"""
|
||
|
self.ssm.initialize_approximate_diffuse(variance)
|
||
|
|
||
|
def initialize_stationary(self):
|
||
|
"""Initialize stationary"""
|
||
|
self.ssm.initialize_stationary()
|
||
|
|
||
|
@property
|
||
|
def initialization(self):
|
||
|
return self.ssm.initialization
|
||
|
|
||
|
@initialization.setter
|
||
|
def initialization(self, value):
|
||
|
self.ssm.initialization = value
|
||
|
|
||
|
@property
|
||
|
def initial_variance(self):
|
||
|
return self.ssm.initial_variance
|
||
|
|
||
|
@initial_variance.setter
|
||
|
def initial_variance(self, value):
|
||
|
self.ssm.initial_variance = value
|
||
|
|
||
|
@property
|
||
|
def loglikelihood_burn(self):
|
||
|
return self.ssm.loglikelihood_burn
|
||
|
|
||
|
@loglikelihood_burn.setter
|
||
|
def loglikelihood_burn(self, value):
|
||
|
self.ssm.loglikelihood_burn = value
|
||
|
|
||
|
@property
|
||
|
def tolerance(self):
|
||
|
return self.ssm.tolerance
|
||
|
|
||
|
@tolerance.setter
|
||
|
def tolerance(self, value):
|
||
|
self.ssm.tolerance = value
|
||
|
|
||
|
def _validate_can_fix_params(self, param_names):
|
||
|
for param_name in param_names:
|
||
|
if param_name not in self.param_names:
|
||
|
raise ValueError('Invalid parameter name passed: "%s".'
|
||
|
% param_name)
|
||
|
|
||
|
@contextlib.contextmanager
|
||
|
def fix_params(self, params):
|
||
|
"""
|
||
|
Fix parameters to specific values (context manager)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : dict
|
||
|
Dictionary describing the fixed parameter values, of the form
|
||
|
`param_name: fixed_value`. See the `param_names` property for valid
|
||
|
parameter names.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> mod = sm.tsa.SARIMAX(endog, order=(1, 0, 1))
|
||
|
>>> with mod.fix_params({'ar.L1': 0.5}):
|
||
|
res = mod.fit()
|
||
|
"""
|
||
|
k_params = len(self.param_names)
|
||
|
# Initialization (this is done here rather than in the constructor
|
||
|
# because param_names may not be available at that point)
|
||
|
if self._fixed_params is None:
|
||
|
self._fixed_params = {}
|
||
|
self._params_index = dict(
|
||
|
zip(self.param_names, np.arange(k_params)))
|
||
|
|
||
|
# Cache the current fixed parameters
|
||
|
cache_fixed_params = self._fixed_params.copy()
|
||
|
cache_has_fixed_params = self._has_fixed_params
|
||
|
cache_fixed_params_index = self._fixed_params_index
|
||
|
cache_free_params_index = self._free_params_index
|
||
|
|
||
|
# Validate parameter names and values
|
||
|
all_fixed_param_names = (
|
||
|
set(params.keys()) | set(self._fixed_params.keys())
|
||
|
)
|
||
|
self._validate_can_fix_params(all_fixed_param_names)
|
||
|
|
||
|
# Set the new fixed parameters, keeping the order as given by
|
||
|
# param_names
|
||
|
self._fixed_params.update(params)
|
||
|
self._fixed_params = {
|
||
|
name: self._fixed_params[name] for name in self.param_names
|
||
|
if name in self._fixed_params}
|
||
|
|
||
|
# Update associated values
|
||
|
self._has_fixed_params = True
|
||
|
self._fixed_params_index = [self._params_index[key]
|
||
|
for key in self._fixed_params.keys()]
|
||
|
self._free_params_index = list(
|
||
|
set(np.arange(k_params)).difference(self._fixed_params_index))
|
||
|
|
||
|
try:
|
||
|
yield
|
||
|
finally:
|
||
|
# Reset the fixed parameters
|
||
|
self._has_fixed_params = cache_has_fixed_params
|
||
|
self._fixed_params = cache_fixed_params
|
||
|
self._fixed_params_index = cache_fixed_params_index
|
||
|
self._free_params_index = cache_free_params_index
|
||
|
|
||
|
def fit(self, start_params=None, transformed=True, includes_fixed=False,
|
||
|
cov_type=None, cov_kwds=None, method='lbfgs', maxiter=50,
|
||
|
full_output=1, disp=5, callback=None, return_params=False,
|
||
|
optim_score=None, optim_complex_step=None, optim_hessian=None,
|
||
|
flags=None, low_memory=False, **kwargs):
|
||
|
"""
|
||
|
Fits the model by maximum likelihood via Kalman filter.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
start_params : array_like, optional
|
||
|
Initial guess of the solution for the loglikelihood maximization.
|
||
|
If None, the default is given by Model.start_params.
|
||
|
transformed : bool, optional
|
||
|
Whether or not `start_params` is already transformed. Default is
|
||
|
True.
|
||
|
includes_fixed : bool, optional
|
||
|
If parameters were previously fixed with the `fix_params` method,
|
||
|
this argument describes whether or not `start_params` also includes
|
||
|
the fixed parameters, in addition to the free parameters. Default
|
||
|
is False.
|
||
|
cov_type : str, optional
|
||
|
The `cov_type` keyword governs the method for calculating the
|
||
|
covariance matrix of parameter estimates. Can be one of:
|
||
|
|
||
|
- 'opg' for the outer product of gradient estimator
|
||
|
- 'oim' for the observed information matrix estimator, calculated
|
||
|
using the method of Harvey (1989)
|
||
|
- 'approx' for the observed information matrix estimator,
|
||
|
calculated using a numerical approximation of the Hessian matrix.
|
||
|
- 'robust' for an approximate (quasi-maximum likelihood) covariance
|
||
|
matrix that may be valid even in the presence of some
|
||
|
misspecifications. Intermediate calculations use the 'oim'
|
||
|
method.
|
||
|
- 'robust_approx' is the same as 'robust' except that the
|
||
|
intermediate calculations use the 'approx' method.
|
||
|
- 'none' for no covariance matrix calculation.
|
||
|
|
||
|
Default is 'opg' unless memory conservation is used to avoid
|
||
|
computing the loglikelihood values for each observation, in which
|
||
|
case the default is 'approx'.
|
||
|
cov_kwds : dict or None, optional
|
||
|
A dictionary of arguments affecting covariance matrix computation.
|
||
|
|
||
|
**opg, oim, approx, robust, robust_approx**
|
||
|
|
||
|
- 'approx_complex_step' : bool, optional - If True, numerical
|
||
|
approximations are computed using complex-step methods. If False,
|
||
|
numerical approximations are computed using finite difference
|
||
|
methods. Default is True.
|
||
|
- 'approx_centered' : bool, optional - If True, numerical
|
||
|
approximations computed using finite difference methods use a
|
||
|
centered approximation. Default is False.
|
||
|
method : str, optional
|
||
|
The `method` determines which solver from `scipy.optimize`
|
||
|
is used, and it can be chosen from among the following strings:
|
||
|
|
||
|
- 'newton' for Newton-Raphson
|
||
|
- 'nm' for Nelder-Mead
|
||
|
- 'bfgs' for Broyden-Fletcher-Goldfarb-Shanno (BFGS)
|
||
|
- 'lbfgs' for limited-memory BFGS with optional box constraints
|
||
|
- 'powell' for modified Powell's method
|
||
|
- 'cg' for conjugate gradient
|
||
|
- 'ncg' for Newton-conjugate gradient
|
||
|
- 'basinhopping' for global basin-hopping solver
|
||
|
|
||
|
The explicit arguments in `fit` are passed to the solver,
|
||
|
with the exception of the basin-hopping solver. Each
|
||
|
solver has several optional arguments that are not the same across
|
||
|
solvers. See the notes section below (or scipy.optimize) for the
|
||
|
available arguments and for the list of explicit arguments that the
|
||
|
basin-hopping solver supports.
|
||
|
maxiter : int, optional
|
||
|
The maximum number of iterations to perform.
|
||
|
full_output : bool, optional
|
||
|
Set to True to have all available output in the Results object's
|
||
|
mle_retvals attribute. The output is dependent on the solver.
|
||
|
See LikelihoodModelResults notes section for more information.
|
||
|
disp : bool, optional
|
||
|
Set to True to print convergence messages.
|
||
|
callback : callable callback(xk), optional
|
||
|
Called after each iteration, as callback(xk), where xk is the
|
||
|
current parameter vector.
|
||
|
return_params : bool, optional
|
||
|
Whether or not to return only the array of maximizing parameters.
|
||
|
Default is False.
|
||
|
optim_score : {'harvey', 'approx'} or None, optional
|
||
|
The method by which the score vector is calculated. 'harvey' uses
|
||
|
the method from Harvey (1989), 'approx' uses either finite
|
||
|
difference or complex step differentiation depending upon the
|
||
|
value of `optim_complex_step`, and None uses the built-in gradient
|
||
|
approximation of the optimizer. Default is None. This keyword is
|
||
|
only relevant if the optimization method uses the score.
|
||
|
optim_complex_step : bool, optional
|
||
|
Whether or not to use complex step differentiation when
|
||
|
approximating the score; if False, finite difference approximation
|
||
|
is used. Default is True. This keyword is only relevant if
|
||
|
`optim_score` is set to 'harvey' or 'approx'.
|
||
|
optim_hessian : {'opg', 'oim', 'approx'}, optional
|
||
|
The method by which the Hessian is numerically approximated. 'opg'
|
||
|
uses outer product of gradients, 'oim' uses the information
|
||
|
matrix formula from Harvey (1989), and 'approx' uses numerical
|
||
|
approximation. This keyword is only relevant if the
|
||
|
optimization method uses the Hessian matrix.
|
||
|
low_memory : bool, optional
|
||
|
If set to True, techniques are applied to substantially reduce
|
||
|
memory usage. If used, some features of the results object will
|
||
|
not be available (including smoothed results and in-sample
|
||
|
prediction), although out-of-sample forecasting is possible.
|
||
|
Default is False.
|
||
|
**kwargs
|
||
|
Additional keyword arguments to pass to the optimizer.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
results
|
||
|
Results object holding results from fitting a state space model.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
statsmodels.base.model.LikelihoodModel.fit
|
||
|
statsmodels.tsa.statespace.mlemodel.MLEResults
|
||
|
statsmodels.tsa.statespace.structural.UnobservedComponentsResults
|
||
|
"""
|
||
|
if start_params is None:
|
||
|
start_params = self.start_params
|
||
|
transformed = True
|
||
|
includes_fixed = True
|
||
|
|
||
|
# Update the score method
|
||
|
if optim_score is None and method == 'lbfgs':
|
||
|
kwargs.setdefault('approx_grad', True)
|
||
|
kwargs.setdefault('epsilon', 1e-5)
|
||
|
elif optim_score is None:
|
||
|
optim_score = 'approx'
|
||
|
|
||
|
# Check for complex step differentiation
|
||
|
if optim_complex_step is None:
|
||
|
optim_complex_step = not self.ssm._complex_endog
|
||
|
elif optim_complex_step and self.ssm._complex_endog:
|
||
|
raise ValueError('Cannot use complex step derivatives when data'
|
||
|
' or parameters are complex.')
|
||
|
|
||
|
# Standardize starting parameters
|
||
|
start_params = self.handle_params(start_params, transformed=True,
|
||
|
includes_fixed=includes_fixed)
|
||
|
|
||
|
# Unconstrain the starting parameters
|
||
|
if transformed:
|
||
|
start_params = self.untransform_params(start_params)
|
||
|
|
||
|
# Remove any fixed parameters
|
||
|
if self._has_fixed_params:
|
||
|
start_params = start_params[self._free_params_index]
|
||
|
|
||
|
# If all parameters are fixed, we are done
|
||
|
if self._has_fixed_params and len(start_params) == 0:
|
||
|
mlefit = Bunch(params=[], mle_retvals=None,
|
||
|
mle_settings=None)
|
||
|
else:
|
||
|
# Remove disallowed kwargs
|
||
|
disallow = (
|
||
|
"concentrate_scale",
|
||
|
"enforce_stationarity",
|
||
|
"enforce_invertibility"
|
||
|
)
|
||
|
kwargs = {k: v for k, v in kwargs.items() if k not in disallow}
|
||
|
# Maximum likelihood estimation
|
||
|
if flags is None:
|
||
|
flags = {}
|
||
|
flags.update({
|
||
|
'transformed': False,
|
||
|
'includes_fixed': False,
|
||
|
'score_method': optim_score,
|
||
|
'approx_complex_step': optim_complex_step
|
||
|
})
|
||
|
if optim_hessian is not None:
|
||
|
flags['hessian_method'] = optim_hessian
|
||
|
fargs = (flags,)
|
||
|
mlefit = super().fit(start_params, method=method,
|
||
|
fargs=fargs,
|
||
|
maxiter=maxiter,
|
||
|
full_output=full_output,
|
||
|
disp=disp, callback=callback,
|
||
|
skip_hessian=True, **kwargs)
|
||
|
|
||
|
# Just return the fitted parameters if requested
|
||
|
if return_params:
|
||
|
return self.handle_params(mlefit.params, transformed=False,
|
||
|
includes_fixed=False)
|
||
|
# Otherwise construct the results class if desired
|
||
|
else:
|
||
|
# Handle memory conservation option
|
||
|
if low_memory:
|
||
|
conserve_memory = self.ssm.conserve_memory
|
||
|
self.ssm.set_conserve_memory(MEMORY_CONSERVE)
|
||
|
|
||
|
# Perform filtering / smoothing
|
||
|
if (self.ssm.memory_no_predicted or self.ssm.memory_no_gain
|
||
|
or self.ssm.memory_no_smoothing):
|
||
|
func = self.filter
|
||
|
else:
|
||
|
func = self.smooth
|
||
|
res = func(mlefit.params, transformed=False, includes_fixed=False,
|
||
|
cov_type=cov_type, cov_kwds=cov_kwds)
|
||
|
|
||
|
res.mlefit = mlefit
|
||
|
res.mle_retvals = mlefit.mle_retvals
|
||
|
res.mle_settings = mlefit.mle_settings
|
||
|
|
||
|
# Reset memory conservation
|
||
|
if low_memory:
|
||
|
self.ssm.set_conserve_memory(conserve_memory)
|
||
|
|
||
|
return res
|
||
|
|
||
|
def fit_constrained(self, constraints, start_params=None, **fit_kwds):
|
||
|
"""
|
||
|
Fit the model with some parameters subject to equality constraints.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
constraints : dict
|
||
|
Dictionary of constraints, of the form `param_name: fixed_value`.
|
||
|
See the `param_names` property for valid parameter names.
|
||
|
start_params : array_like, optional
|
||
|
Initial guess of the solution for the loglikelihood maximization.
|
||
|
If None, the default is given by Model.start_params.
|
||
|
**fit_kwds : keyword arguments
|
||
|
fit_kwds are used in the optimization of the remaining parameters.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
results : Results instance
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> mod = sm.tsa.SARIMAX(endog, order=(1, 0, 1))
|
||
|
>>> res = mod.fit_constrained({'ar.L1': 0.5})
|
||
|
"""
|
||
|
with self.fix_params(constraints):
|
||
|
res = self.fit(start_params, **fit_kwds)
|
||
|
return res
|
||
|
|
||
|
@property
|
||
|
def _res_classes(self):
|
||
|
return {'fit': (MLEResults, MLEResultsWrapper)}
|
||
|
|
||
|
def _wrap_results(self, params, result, return_raw, cov_type=None,
|
||
|
cov_kwds=None, results_class=None, wrapper_class=None):
|
||
|
if not return_raw:
|
||
|
# Wrap in a results object
|
||
|
result_kwargs = {}
|
||
|
if cov_type is not None:
|
||
|
result_kwargs['cov_type'] = cov_type
|
||
|
if cov_kwds is not None:
|
||
|
result_kwargs['cov_kwds'] = cov_kwds
|
||
|
|
||
|
if results_class is None:
|
||
|
results_class = self._res_classes['fit'][0]
|
||
|
if wrapper_class is None:
|
||
|
wrapper_class = self._res_classes['fit'][1]
|
||
|
|
||
|
res = results_class(self, params, result, **result_kwargs)
|
||
|
result = wrapper_class(res)
|
||
|
return result
|
||
|
|
||
|
def filter(self, params, transformed=True, includes_fixed=False,
|
||
|
complex_step=False, cov_type=None, cov_kwds=None,
|
||
|
return_ssm=False, results_class=None,
|
||
|
results_wrapper_class=None, low_memory=False, **kwargs):
|
||
|
"""
|
||
|
Kalman filtering
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : array_like
|
||
|
Array of parameters at which to evaluate the loglikelihood
|
||
|
function.
|
||
|
transformed : bool, optional
|
||
|
Whether or not `params` is already transformed. Default is True.
|
||
|
return_ssm : bool,optional
|
||
|
Whether or not to return only the state space output or a full
|
||
|
results object. Default is to return a full results object.
|
||
|
cov_type : str, optional
|
||
|
See `MLEResults.fit` for a description of covariance matrix types
|
||
|
for results object.
|
||
|
cov_kwds : dict or None, optional
|
||
|
See `MLEResults.get_robustcov_results` for a description required
|
||
|
keywords for alternative covariance estimators
|
||
|
low_memory : bool, optional
|
||
|
If set to True, techniques are applied to substantially reduce
|
||
|
memory usage. If used, some features of the results object will
|
||
|
not be available (including in-sample prediction), although
|
||
|
out-of-sample forecasting is possible. Default is False.
|
||
|
**kwargs
|
||
|
Additional keyword arguments to pass to the Kalman filter. See
|
||
|
`KalmanFilter.filter` for more details.
|
||
|
"""
|
||
|
params = self.handle_params(params, transformed=transformed,
|
||
|
includes_fixed=includes_fixed)
|
||
|
self.update(params, transformed=True, includes_fixed=True,
|
||
|
complex_step=complex_step)
|
||
|
|
||
|
# Save the parameter names
|
||
|
self.data.param_names = self.param_names
|
||
|
|
||
|
if complex_step:
|
||
|
kwargs['inversion_method'] = INVERT_UNIVARIATE | SOLVE_LU
|
||
|
|
||
|
# Handle memory conservation
|
||
|
if low_memory:
|
||
|
kwargs['conserve_memory'] = MEMORY_CONSERVE
|
||
|
|
||
|
# Get the state space output
|
||
|
result = self.ssm.filter(complex_step=complex_step, **kwargs)
|
||
|
|
||
|
# Wrap in a results object
|
||
|
return self._wrap_results(params, result, return_ssm, cov_type,
|
||
|
cov_kwds, results_class,
|
||
|
results_wrapper_class)
|
||
|
|
||
|
def smooth(self, params, transformed=True, includes_fixed=False,
|
||
|
complex_step=False, cov_type=None, cov_kwds=None,
|
||
|
return_ssm=False, results_class=None,
|
||
|
results_wrapper_class=None, **kwargs):
|
||
|
"""
|
||
|
Kalman smoothing
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : array_like
|
||
|
Array of parameters at which to evaluate the loglikelihood
|
||
|
function.
|
||
|
transformed : bool, optional
|
||
|
Whether or not `params` is already transformed. Default is True.
|
||
|
return_ssm : bool,optional
|
||
|
Whether or not to return only the state space output or a full
|
||
|
results object. Default is to return a full results object.
|
||
|
cov_type : str, optional
|
||
|
See `MLEResults.fit` for a description of covariance matrix types
|
||
|
for results object.
|
||
|
cov_kwds : dict or None, optional
|
||
|
See `MLEResults.get_robustcov_results` for a description required
|
||
|
keywords for alternative covariance estimators
|
||
|
**kwargs
|
||
|
Additional keyword arguments to pass to the Kalman filter. See
|
||
|
`KalmanFilter.filter` for more details.
|
||
|
"""
|
||
|
params = self.handle_params(params, transformed=transformed,
|
||
|
includes_fixed=includes_fixed)
|
||
|
self.update(params, transformed=True, includes_fixed=True,
|
||
|
complex_step=complex_step)
|
||
|
|
||
|
# Save the parameter names
|
||
|
self.data.param_names = self.param_names
|
||
|
|
||
|
if complex_step:
|
||
|
kwargs['inversion_method'] = INVERT_UNIVARIATE | SOLVE_LU
|
||
|
|
||
|
# Get the state space output
|
||
|
result = self.ssm.smooth(complex_step=complex_step, **kwargs)
|
||
|
|
||
|
# Wrap in a results object
|
||
|
return self._wrap_results(params, result, return_ssm, cov_type,
|
||
|
cov_kwds, results_class,
|
||
|
results_wrapper_class)
|
||
|
|
||
|
_loglike_param_names = ['transformed', 'includes_fixed', 'complex_step']
|
||
|
_loglike_param_defaults = [True, False, False]
|
||
|
|
||
|
def loglike(self, params, *args, **kwargs):
|
||
|
"""
|
||
|
Loglikelihood evaluation
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : array_like
|
||
|
Array of parameters at which to evaluate the loglikelihood
|
||
|
function.
|
||
|
transformed : bool, optional
|
||
|
Whether or not `params` is already transformed. Default is True.
|
||
|
**kwargs
|
||
|
Additional keyword arguments to pass to the Kalman filter. See
|
||
|
`KalmanFilter.filter` for more details.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
update : modifies the internal state of the state space model to
|
||
|
reflect new params
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
[1]_ recommend maximizing the average likelihood to avoid scale issues;
|
||
|
this is done automatically by the base Model fit method.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Koopman, Siem Jan, Neil Shephard, and Jurgen A. Doornik. 1999.
|
||
|
Statistical Algorithms for Models in State Space Using SsfPack 2.2.
|
||
|
Econometrics Journal 2 (1): 107-60. doi:10.1111/1368-423X.00023.
|
||
|
"""
|
||
|
transformed, includes_fixed, complex_step, kwargs = _handle_args(
|
||
|
MLEModel._loglike_param_names, MLEModel._loglike_param_defaults,
|
||
|
*args, **kwargs)
|
||
|
|
||
|
params = self.handle_params(params, transformed=transformed,
|
||
|
includes_fixed=includes_fixed)
|
||
|
self.update(params, transformed=True, includes_fixed=True,
|
||
|
complex_step=complex_step)
|
||
|
|
||
|
if complex_step:
|
||
|
kwargs['inversion_method'] = INVERT_UNIVARIATE | SOLVE_LU
|
||
|
|
||
|
loglike = self.ssm.loglike(complex_step=complex_step, **kwargs)
|
||
|
|
||
|
# Koopman, Shephard, and Doornik recommend maximizing the average
|
||
|
# likelihood to avoid scale issues, but the averaging is done
|
||
|
# automatically in the base model `fit` method
|
||
|
return loglike
|
||
|
|
||
|
def loglikeobs(self, params, transformed=True, includes_fixed=False,
|
||
|
complex_step=False, **kwargs):
|
||
|
"""
|
||
|
Loglikelihood evaluation
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : array_like
|
||
|
Array of parameters at which to evaluate the loglikelihood
|
||
|
function.
|
||
|
transformed : bool, optional
|
||
|
Whether or not `params` is already transformed. Default is True.
|
||
|
**kwargs
|
||
|
Additional keyword arguments to pass to the Kalman filter. See
|
||
|
`KalmanFilter.filter` for more details.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
update : modifies the internal state of the Model to reflect new params
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
[1]_ recommend maximizing the average likelihood to avoid scale issues;
|
||
|
this is done automatically by the base Model fit method.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Koopman, Siem Jan, Neil Shephard, and Jurgen A. Doornik. 1999.
|
||
|
Statistical Algorithms for Models in State Space Using SsfPack 2.2.
|
||
|
Econometrics Journal 2 (1): 107-60. doi:10.1111/1368-423X.00023.
|
||
|
"""
|
||
|
params = self.handle_params(params, transformed=transformed,
|
||
|
includes_fixed=includes_fixed)
|
||
|
|
||
|
# If we're using complex-step differentiation, then we cannot use
|
||
|
# Cholesky factorization
|
||
|
if complex_step:
|
||
|
kwargs['inversion_method'] = INVERT_UNIVARIATE | SOLVE_LU
|
||
|
|
||
|
self.update(params, transformed=True, includes_fixed=True,
|
||
|
complex_step=complex_step)
|
||
|
|
||
|
return self.ssm.loglikeobs(complex_step=complex_step, **kwargs)
|
||
|
|
||
|
def simulation_smoother(self, simulation_output=None, **kwargs):
|
||
|
r"""
|
||
|
Retrieve a simulation smoother for the state space model.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
simulation_output : int, optional
|
||
|
Determines which simulation smoother output is calculated.
|
||
|
Default is all (including state and disturbances).
|
||
|
**kwargs
|
||
|
Additional keyword arguments, used to set the simulation output.
|
||
|
See `set_simulation_output` for more details.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
SimulationSmoothResults
|
||
|
"""
|
||
|
return self.ssm.simulation_smoother(
|
||
|
simulation_output=simulation_output, **kwargs)
|
||
|
|
||
|
def _forecasts_error_partial_derivatives(self, params, transformed=True,
|
||
|
includes_fixed=False,
|
||
|
approx_complex_step=None,
|
||
|
approx_centered=False,
|
||
|
res=None, **kwargs):
|
||
|
params = np.array(params, ndmin=1)
|
||
|
|
||
|
# We cannot use complex-step differentiation with non-transformed
|
||
|
# parameters
|
||
|
if approx_complex_step is None:
|
||
|
approx_complex_step = transformed
|
||
|
if not transformed and approx_complex_step:
|
||
|
raise ValueError("Cannot use complex-step approximations to"
|
||
|
" calculate the observed_information_matrix"
|
||
|
" with untransformed parameters.")
|
||
|
|
||
|
# If we're using complex-step differentiation, then we cannot use
|
||
|
# Cholesky factorization
|
||
|
if approx_complex_step:
|
||
|
kwargs['inversion_method'] = INVERT_UNIVARIATE | SOLVE_LU
|
||
|
|
||
|
# Get values at the params themselves
|
||
|
if res is None:
|
||
|
self.update(params, transformed=transformed,
|
||
|
includes_fixed=includes_fixed,
|
||
|
complex_step=approx_complex_step)
|
||
|
res = self.ssm.filter(complex_step=approx_complex_step, **kwargs)
|
||
|
|
||
|
# Setup
|
||
|
n = len(params)
|
||
|
|
||
|
# Compute partial derivatives w.r.t. forecast error and forecast
|
||
|
# error covariance
|
||
|
partials_forecasts_error = (
|
||
|
np.zeros((self.k_endog, self.nobs, n))
|
||
|
)
|
||
|
partials_forecasts_error_cov = (
|
||
|
np.zeros((self.k_endog, self.k_endog, self.nobs, n))
|
||
|
)
|
||
|
if approx_complex_step:
|
||
|
epsilon = _get_epsilon(params, 2, None, n)
|
||
|
increments = np.identity(n) * 1j * epsilon
|
||
|
|
||
|
for i, ih in enumerate(increments):
|
||
|
self.update(params + ih, transformed=transformed,
|
||
|
includes_fixed=includes_fixed,
|
||
|
complex_step=True)
|
||
|
_res = self.ssm.filter(complex_step=True, **kwargs)
|
||
|
|
||
|
partials_forecasts_error[:, :, i] = (
|
||
|
_res.forecasts_error.imag / epsilon[i]
|
||
|
)
|
||
|
|
||
|
partials_forecasts_error_cov[:, :, :, i] = (
|
||
|
_res.forecasts_error_cov.imag / epsilon[i]
|
||
|
)
|
||
|
elif not approx_centered:
|
||
|
epsilon = _get_epsilon(params, 2, None, n)
|
||
|
ei = np.zeros((n,), float)
|
||
|
for i in range(n):
|
||
|
ei[i] = epsilon[i]
|
||
|
self.update(params + ei, transformed=transformed,
|
||
|
includes_fixed=includes_fixed, complex_step=False)
|
||
|
_res = self.ssm.filter(complex_step=False, **kwargs)
|
||
|
|
||
|
partials_forecasts_error[:, :, i] = (
|
||
|
_res.forecasts_error - res.forecasts_error) / epsilon[i]
|
||
|
|
||
|
partials_forecasts_error_cov[:, :, :, i] = (
|
||
|
_res.forecasts_error_cov -
|
||
|
res.forecasts_error_cov) / epsilon[i]
|
||
|
ei[i] = 0.0
|
||
|
else:
|
||
|
epsilon = _get_epsilon(params, 3, None, n) / 2.
|
||
|
ei = np.zeros((n,), float)
|
||
|
for i in range(n):
|
||
|
ei[i] = epsilon[i]
|
||
|
|
||
|
self.update(params + ei, transformed=transformed,
|
||
|
includes_fixed=includes_fixed, complex_step=False)
|
||
|
_res1 = self.ssm.filter(complex_step=False, **kwargs)
|
||
|
|
||
|
self.update(params - ei, transformed=transformed,
|
||
|
includes_fixed=includes_fixed, complex_step=False)
|
||
|
_res2 = self.ssm.filter(complex_step=False, **kwargs)
|
||
|
|
||
|
partials_forecasts_error[:, :, i] = (
|
||
|
(_res1.forecasts_error - _res2.forecasts_error) /
|
||
|
(2 * epsilon[i]))
|
||
|
|
||
|
partials_forecasts_error_cov[:, :, :, i] = (
|
||
|
(_res1.forecasts_error_cov - _res2.forecasts_error_cov) /
|
||
|
(2 * epsilon[i]))
|
||
|
|
||
|
ei[i] = 0.0
|
||
|
|
||
|
return partials_forecasts_error, partials_forecasts_error_cov
|
||
|
|
||
|
def observed_information_matrix(self, params, transformed=True,
|
||
|
includes_fixed=False,
|
||
|
approx_complex_step=None,
|
||
|
approx_centered=False, **kwargs):
|
||
|
"""
|
||
|
Observed information matrix
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : array_like, optional
|
||
|
Array of parameters at which to evaluate the loglikelihood
|
||
|
function.
|
||
|
**kwargs
|
||
|
Additional keyword arguments to pass to the Kalman filter. See
|
||
|
`KalmanFilter.filter` for more details.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This method is from Harvey (1989), which shows that the information
|
||
|
matrix only depends on terms from the gradient. This implementation is
|
||
|
partially analytic and partially numeric approximation, therefore,
|
||
|
because it uses the analytic formula for the information matrix, with
|
||
|
numerically computed elements of the gradient.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
Harvey, Andrew C. 1990.
|
||
|
Forecasting, Structural Time Series Models and the Kalman Filter.
|
||
|
Cambridge University Press.
|
||
|
"""
|
||
|
params = np.array(params, ndmin=1)
|
||
|
|
||
|
# Setup
|
||
|
n = len(params)
|
||
|
|
||
|
# We cannot use complex-step differentiation with non-transformed
|
||
|
# parameters
|
||
|
if approx_complex_step is None:
|
||
|
approx_complex_step = transformed
|
||
|
if not transformed and approx_complex_step:
|
||
|
raise ValueError("Cannot use complex-step approximations to"
|
||
|
" calculate the observed_information_matrix"
|
||
|
" with untransformed parameters.")
|
||
|
|
||
|
# Get values at the params themselves
|
||
|
params = self.handle_params(params, transformed=transformed,
|
||
|
includes_fixed=includes_fixed)
|
||
|
self.update(params, transformed=True, includes_fixed=True,
|
||
|
complex_step=approx_complex_step)
|
||
|
# If we're using complex-step differentiation, then we cannot use
|
||
|
# Cholesky factorization
|
||
|
if approx_complex_step:
|
||
|
kwargs['inversion_method'] = INVERT_UNIVARIATE | SOLVE_LU
|
||
|
res = self.ssm.filter(complex_step=approx_complex_step, **kwargs)
|
||
|
dtype = self.ssm.dtype
|
||
|
|
||
|
# Save this for inversion later
|
||
|
inv_forecasts_error_cov = res.forecasts_error_cov.copy()
|
||
|
|
||
|
partials_forecasts_error, partials_forecasts_error_cov = (
|
||
|
self._forecasts_error_partial_derivatives(
|
||
|
params, transformed=transformed, includes_fixed=includes_fixed,
|
||
|
approx_complex_step=approx_complex_step,
|
||
|
approx_centered=approx_centered, res=res, **kwargs))
|
||
|
|
||
|
# Compute the information matrix
|
||
|
tmp = np.zeros((self.k_endog, self.k_endog, self.nobs, n), dtype=dtype)
|
||
|
|
||
|
information_matrix = np.zeros((n, n), dtype=dtype)
|
||
|
d = np.maximum(self.ssm.loglikelihood_burn, res.nobs_diffuse)
|
||
|
for t in range(d, self.nobs):
|
||
|
inv_forecasts_error_cov[:, :, t] = (
|
||
|
np.linalg.inv(res.forecasts_error_cov[:, :, t])
|
||
|
)
|
||
|
for i in range(n):
|
||
|
tmp[:, :, t, i] = np.dot(
|
||
|
inv_forecasts_error_cov[:, :, t],
|
||
|
partials_forecasts_error_cov[:, :, t, i]
|
||
|
)
|
||
|
for i in range(n):
|
||
|
for j in range(n):
|
||
|
information_matrix[i, j] += (
|
||
|
0.5 * np.trace(np.dot(tmp[:, :, t, i],
|
||
|
tmp[:, :, t, j]))
|
||
|
)
|
||
|
information_matrix[i, j] += np.inner(
|
||
|
partials_forecasts_error[:, t, i],
|
||
|
np.dot(inv_forecasts_error_cov[:, :, t],
|
||
|
partials_forecasts_error[:, t, j])
|
||
|
)
|
||
|
return information_matrix / (self.nobs - self.ssm.loglikelihood_burn)
|
||
|
|
||
|
def opg_information_matrix(self, params, transformed=True,
|
||
|
includes_fixed=False, approx_complex_step=None,
|
||
|
**kwargs):
|
||
|
"""
|
||
|
Outer product of gradients information matrix
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : array_like, optional
|
||
|
Array of parameters at which to evaluate the loglikelihood
|
||
|
function.
|
||
|
**kwargs
|
||
|
Additional arguments to the `loglikeobs` method.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
Berndt, Ernst R., Bronwyn Hall, Robert Hall, and Jerry Hausman. 1974.
|
||
|
Estimation and Inference in Nonlinear Structural Models.
|
||
|
NBER Chapters. National Bureau of Economic Research, Inc.
|
||
|
"""
|
||
|
# We cannot use complex-step differentiation with non-transformed
|
||
|
# parameters
|
||
|
if approx_complex_step is None:
|
||
|
approx_complex_step = transformed
|
||
|
if not transformed and approx_complex_step:
|
||
|
raise ValueError("Cannot use complex-step approximations to"
|
||
|
" calculate the observed_information_matrix"
|
||
|
" with untransformed parameters.")
|
||
|
|
||
|
score_obs = self.score_obs(params, transformed=transformed,
|
||
|
includes_fixed=includes_fixed,
|
||
|
approx_complex_step=approx_complex_step,
|
||
|
**kwargs).transpose()
|
||
|
return (
|
||
|
np.inner(score_obs, score_obs) /
|
||
|
(self.nobs - self.ssm.loglikelihood_burn)
|
||
|
)
|
||
|
|
||
|
def _score_complex_step(self, params, **kwargs):
|
||
|
# the default epsilon can be too small
|
||
|
# inversion_method = INVERT_UNIVARIATE | SOLVE_LU
|
||
|
epsilon = _get_epsilon(params, 2., None, len(params))
|
||
|
kwargs['transformed'] = True
|
||
|
kwargs['complex_step'] = True
|
||
|
return approx_fprime_cs(params, self.loglike, epsilon=epsilon,
|
||
|
kwargs=kwargs)
|
||
|
|
||
|
def _score_finite_difference(self, params, approx_centered=False,
|
||
|
**kwargs):
|
||
|
kwargs['transformed'] = True
|
||
|
return approx_fprime(params, self.loglike, kwargs=kwargs,
|
||
|
centered=approx_centered)
|
||
|
|
||
|
def _score_harvey(self, params, approx_complex_step=True, **kwargs):
|
||
|
score_obs = self._score_obs_harvey(
|
||
|
params, approx_complex_step=approx_complex_step, **kwargs)
|
||
|
return np.sum(score_obs, axis=0)
|
||
|
|
||
|
def _score_obs_harvey(self, params, approx_complex_step=True,
|
||
|
approx_centered=False, includes_fixed=False,
|
||
|
**kwargs):
|
||
|
"""
|
||
|
Score
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : array_like, optional
|
||
|
Array of parameters at which to evaluate the loglikelihood
|
||
|
function.
|
||
|
**kwargs
|
||
|
Additional keyword arguments to pass to the Kalman filter. See
|
||
|
`KalmanFilter.filter` for more details.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This method is from Harvey (1989), section 3.4.5
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
Harvey, Andrew C. 1990.
|
||
|
Forecasting, Structural Time Series Models and the Kalman Filter.
|
||
|
Cambridge University Press.
|
||
|
"""
|
||
|
params = np.array(params, ndmin=1)
|
||
|
n = len(params)
|
||
|
|
||
|
# Get values at the params themselves
|
||
|
self.update(params, transformed=True, includes_fixed=includes_fixed,
|
||
|
complex_step=approx_complex_step)
|
||
|
if approx_complex_step:
|
||
|
kwargs['inversion_method'] = INVERT_UNIVARIATE | SOLVE_LU
|
||
|
if 'transformed' in kwargs:
|
||
|
del kwargs['transformed']
|
||
|
res = self.ssm.filter(complex_step=approx_complex_step, **kwargs)
|
||
|
|
||
|
# Get forecasts error partials
|
||
|
partials_forecasts_error, partials_forecasts_error_cov = (
|
||
|
self._forecasts_error_partial_derivatives(
|
||
|
params, transformed=True, includes_fixed=includes_fixed,
|
||
|
approx_complex_step=approx_complex_step,
|
||
|
approx_centered=approx_centered, res=res, **kwargs))
|
||
|
|
||
|
# Compute partial derivatives w.r.t. likelihood function
|
||
|
partials = np.zeros((self.nobs, n))
|
||
|
k_endog = self.k_endog
|
||
|
for t in range(self.nobs):
|
||
|
inv_forecasts_error_cov = np.linalg.inv(
|
||
|
res.forecasts_error_cov[:, :, t])
|
||
|
|
||
|
for i in range(n):
|
||
|
partials[t, i] += np.trace(np.dot(
|
||
|
np.dot(inv_forecasts_error_cov,
|
||
|
partials_forecasts_error_cov[:, :, t, i]),
|
||
|
(np.eye(k_endog) -
|
||
|
np.dot(inv_forecasts_error_cov,
|
||
|
np.outer(res.forecasts_error[:, t],
|
||
|
res.forecasts_error[:, t])))))
|
||
|
# 2 * dv / di * F^{-1} v_t
|
||
|
# where x = F^{-1} v_t or F x = v
|
||
|
partials[t, i] += 2 * np.dot(
|
||
|
partials_forecasts_error[:, t, i],
|
||
|
np.dot(inv_forecasts_error_cov, res.forecasts_error[:, t]))
|
||
|
|
||
|
return -partials / 2.
|
||
|
|
||
|
_score_param_names = ['transformed', 'includes_fixed', 'score_method',
|
||
|
'approx_complex_step', 'approx_centered']
|
||
|
_score_param_defaults = [True, False, 'approx', None, False]
|
||
|
|
||
|
def score(self, params, *args, **kwargs):
|
||
|
"""
|
||
|
Compute the score function at params.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : array_like
|
||
|
Array of parameters at which to evaluate the score.
|
||
|
*args
|
||
|
Additional positional arguments to the `loglike` method.
|
||
|
**kwargs
|
||
|
Additional keyword arguments to the `loglike` method.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
score : ndarray
|
||
|
Score, evaluated at `params`.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This is a numerical approximation, calculated using first-order complex
|
||
|
step differentiation on the `loglike` method.
|
||
|
|
||
|
Both args and kwargs are necessary because the optimizer from
|
||
|
`fit` must call this function and only supports passing arguments via
|
||
|
args (for example `scipy.optimize.fmin_l_bfgs`).
|
||
|
"""
|
||
|
(transformed, includes_fixed, method, approx_complex_step,
|
||
|
approx_centered, kwargs) = (
|
||
|
_handle_args(MLEModel._score_param_names,
|
||
|
MLEModel._score_param_defaults, *args, **kwargs))
|
||
|
# For fit() calls, the method is called 'score_method' (to distinguish
|
||
|
# it from the method used for fit) but generally in kwargs the method
|
||
|
# will just be called 'method'
|
||
|
if 'method' in kwargs:
|
||
|
method = kwargs.pop('method')
|
||
|
|
||
|
if approx_complex_step is None:
|
||
|
approx_complex_step = not self.ssm._complex_endog
|
||
|
if approx_complex_step and self.ssm._complex_endog:
|
||
|
raise ValueError('Cannot use complex step derivatives when data'
|
||
|
' or parameters are complex.')
|
||
|
|
||
|
out = self.handle_params(
|
||
|
params, transformed=transformed, includes_fixed=includes_fixed,
|
||
|
return_jacobian=not transformed)
|
||
|
if transformed:
|
||
|
params = out
|
||
|
else:
|
||
|
params, transform_score = out
|
||
|
|
||
|
if method == 'harvey':
|
||
|
kwargs['includes_fixed'] = True
|
||
|
score = self._score_harvey(
|
||
|
params, approx_complex_step=approx_complex_step, **kwargs)
|
||
|
elif method == 'approx' and approx_complex_step:
|
||
|
kwargs['includes_fixed'] = True
|
||
|
score = self._score_complex_step(params, **kwargs)
|
||
|
elif method == 'approx':
|
||
|
kwargs['includes_fixed'] = True
|
||
|
score = self._score_finite_difference(
|
||
|
params, approx_centered=approx_centered, **kwargs)
|
||
|
else:
|
||
|
raise NotImplementedError('Invalid score method.')
|
||
|
|
||
|
if not transformed:
|
||
|
score = np.dot(transform_score, score)
|
||
|
|
||
|
if self._has_fixed_params and not includes_fixed:
|
||
|
score = score[self._free_params_index]
|
||
|
|
||
|
return score
|
||
|
|
||
|
def score_obs(self, params, method='approx', transformed=True,
|
||
|
includes_fixed=False, approx_complex_step=None,
|
||
|
approx_centered=False, **kwargs):
|
||
|
"""
|
||
|
Compute the score per observation, evaluated at params
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : array_like
|
||
|
Array of parameters at which to evaluate the score.
|
||
|
**kwargs
|
||
|
Additional arguments to the `loglike` method.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
score : ndarray
|
||
|
Score per observation, evaluated at `params`.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This is a numerical approximation, calculated using first-order complex
|
||
|
step differentiation on the `loglikeobs` method.
|
||
|
"""
|
||
|
if not transformed and approx_complex_step:
|
||
|
raise ValueError("Cannot use complex-step approximations to"
|
||
|
" calculate the score at each observation"
|
||
|
" with untransformed parameters.")
|
||
|
|
||
|
if approx_complex_step is None:
|
||
|
approx_complex_step = not self.ssm._complex_endog
|
||
|
if approx_complex_step and self.ssm._complex_endog:
|
||
|
raise ValueError('Cannot use complex step derivatives when data'
|
||
|
' or parameters are complex.')
|
||
|
|
||
|
params = self.handle_params(params, transformed=True,
|
||
|
includes_fixed=includes_fixed)
|
||
|
kwargs['transformed'] = transformed
|
||
|
kwargs['includes_fixed'] = True
|
||
|
|
||
|
if method == 'harvey':
|
||
|
score = self._score_obs_harvey(
|
||
|
params, approx_complex_step=approx_complex_step, **kwargs)
|
||
|
elif method == 'approx' and approx_complex_step:
|
||
|
# the default epsilon can be too small
|
||
|
epsilon = _get_epsilon(params, 2., None, len(params))
|
||
|
kwargs['complex_step'] = True
|
||
|
score = approx_fprime_cs(params, self.loglikeobs, epsilon=epsilon,
|
||
|
kwargs=kwargs)
|
||
|
elif method == 'approx':
|
||
|
score = approx_fprime(params, self.loglikeobs, kwargs=kwargs,
|
||
|
centered=approx_centered)
|
||
|
else:
|
||
|
raise NotImplementedError('Invalid scoreobs method.')
|
||
|
|
||
|
return score
|
||
|
|
||
|
_hessian_param_names = ['transformed', 'hessian_method',
|
||
|
'approx_complex_step', 'approx_centered']
|
||
|
_hessian_param_defaults = [True, 'approx', None, False]
|
||
|
|
||
|
def hessian(self, params, *args, **kwargs):
|
||
|
r"""
|
||
|
Hessian matrix of the likelihood function, evaluated at the given
|
||
|
parameters
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : array_like
|
||
|
Array of parameters at which to evaluate the hessian.
|
||
|
*args
|
||
|
Additional positional arguments to the `loglike` method.
|
||
|
**kwargs
|
||
|
Additional keyword arguments to the `loglike` method.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
hessian : ndarray
|
||
|
Hessian matrix evaluated at `params`
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This is a numerical approximation.
|
||
|
|
||
|
Both args and kwargs are necessary because the optimizer from
|
||
|
`fit` must call this function and only supports passing arguments via
|
||
|
args (for example `scipy.optimize.fmin_l_bfgs`).
|
||
|
"""
|
||
|
transformed, method, approx_complex_step, approx_centered, kwargs = (
|
||
|
_handle_args(MLEModel._hessian_param_names,
|
||
|
MLEModel._hessian_param_defaults,
|
||
|
*args, **kwargs))
|
||
|
# For fit() calls, the method is called 'hessian_method' (to
|
||
|
# distinguish it from the method used for fit) but generally in kwargs
|
||
|
# the method will just be called 'method'
|
||
|
if 'method' in kwargs:
|
||
|
method = kwargs.pop('method')
|
||
|
|
||
|
if not transformed and approx_complex_step:
|
||
|
raise ValueError("Cannot use complex-step approximations to"
|
||
|
" calculate the hessian with untransformed"
|
||
|
" parameters.")
|
||
|
|
||
|
if approx_complex_step is None:
|
||
|
approx_complex_step = not self.ssm._complex_endog
|
||
|
if approx_complex_step and self.ssm._complex_endog:
|
||
|
raise ValueError('Cannot use complex step derivatives when data'
|
||
|
' or parameters are complex.')
|
||
|
|
||
|
if method == 'oim':
|
||
|
hessian = self._hessian_oim(
|
||
|
params, transformed=transformed,
|
||
|
approx_complex_step=approx_complex_step,
|
||
|
approx_centered=approx_centered, **kwargs)
|
||
|
elif method == 'opg':
|
||
|
hessian = self._hessian_opg(
|
||
|
params, transformed=transformed,
|
||
|
approx_complex_step=approx_complex_step,
|
||
|
approx_centered=approx_centered, **kwargs)
|
||
|
elif method == 'approx' and approx_complex_step:
|
||
|
hessian = self._hessian_complex_step(
|
||
|
params, transformed=transformed, **kwargs)
|
||
|
elif method == 'approx':
|
||
|
hessian = self._hessian_finite_difference(
|
||
|
params, transformed=transformed,
|
||
|
approx_centered=approx_centered, **kwargs)
|
||
|
else:
|
||
|
raise NotImplementedError('Invalid Hessian calculation method.')
|
||
|
return hessian
|
||
|
|
||
|
def _hessian_oim(self, params, **kwargs):
|
||
|
"""
|
||
|
Hessian matrix computed using the Harvey (1989) information matrix
|
||
|
"""
|
||
|
return -self.observed_information_matrix(params, **kwargs)
|
||
|
|
||
|
def _hessian_opg(self, params, **kwargs):
|
||
|
"""
|
||
|
Hessian matrix computed using the outer product of gradients
|
||
|
information matrix
|
||
|
"""
|
||
|
return -self.opg_information_matrix(params, **kwargs)
|
||
|
|
||
|
def _hessian_finite_difference(self, params, approx_centered=False,
|
||
|
**kwargs):
|
||
|
params = np.array(params, ndmin=1)
|
||
|
|
||
|
warnings.warn('Calculation of the Hessian using finite differences'
|
||
|
' is usually subject to substantial approximation'
|
||
|
' errors.', PrecisionWarning)
|
||
|
|
||
|
if not approx_centered:
|
||
|
epsilon = _get_epsilon(params, 3, None, len(params))
|
||
|
else:
|
||
|
epsilon = _get_epsilon(params, 4, None, len(params)) / 2
|
||
|
hessian = approx_fprime(params, self._score_finite_difference,
|
||
|
epsilon=epsilon, kwargs=kwargs,
|
||
|
centered=approx_centered)
|
||
|
|
||
|
return hessian / (self.nobs - self.ssm.loglikelihood_burn)
|
||
|
|
||
|
def _hessian_complex_step(self, params, **kwargs):
|
||
|
"""
|
||
|
Hessian matrix computed by second-order complex-step differentiation
|
||
|
on the `loglike` function.
|
||
|
"""
|
||
|
# the default epsilon can be too small
|
||
|
epsilon = _get_epsilon(params, 3., None, len(params))
|
||
|
kwargs['transformed'] = True
|
||
|
kwargs['complex_step'] = True
|
||
|
hessian = approx_hess_cs(
|
||
|
params, self.loglike, epsilon=epsilon, kwargs=kwargs)
|
||
|
|
||
|
return hessian / (self.nobs - self.ssm.loglikelihood_burn)
|
||
|
|
||
|
@property
|
||
|
def start_params(self):
|
||
|
"""
|
||
|
(array) Starting parameters for maximum likelihood estimation.
|
||
|
"""
|
||
|
if hasattr(self, '_start_params'):
|
||
|
return self._start_params
|
||
|
else:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@property
|
||
|
def param_names(self):
|
||
|
"""
|
||
|
(list of str) List of human readable parameter names (for parameters
|
||
|
actually included in the model).
|
||
|
"""
|
||
|
if hasattr(self, '_param_names'):
|
||
|
return self._param_names
|
||
|
else:
|
||
|
try:
|
||
|
names = ['param.%d' % i for i in range(len(self.start_params))]
|
||
|
except NotImplementedError:
|
||
|
names = []
|
||
|
return names
|
||
|
|
||
|
@property
|
||
|
def state_names(self):
|
||
|
"""
|
||
|
(list of str) List of human readable names for unobserved states.
|
||
|
"""
|
||
|
if hasattr(self, '_state_names'):
|
||
|
return self._state_names
|
||
|
else:
|
||
|
names = ['state.%d' % i for i in range(self.k_states)]
|
||
|
return names
|
||
|
|
||
|
def transform_jacobian(self, unconstrained, approx_centered=False):
|
||
|
"""
|
||
|
Jacobian matrix for the parameter transformation function
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
unconstrained : array_like
|
||
|
Array of unconstrained parameters used by the optimizer.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
jacobian : ndarray
|
||
|
Jacobian matrix of the transformation, evaluated at `unconstrained`
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
transform_params
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This is a numerical approximation using finite differences. Note that
|
||
|
in general complex step methods cannot be used because it is not
|
||
|
guaranteed that the `transform_params` method is a real function (e.g.
|
||
|
if Cholesky decomposition is used).
|
||
|
"""
|
||
|
return approx_fprime(unconstrained, self.transform_params,
|
||
|
centered=approx_centered)
|
||
|
|
||
|
def transform_params(self, unconstrained):
|
||
|
"""
|
||
|
Transform unconstrained parameters used by the optimizer to constrained
|
||
|
parameters used in likelihood evaluation
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
unconstrained : array_like
|
||
|
Array of unconstrained parameters used by the optimizer, to be
|
||
|
transformed.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
constrained : array_like
|
||
|
Array of constrained parameters which may be used in likelihood
|
||
|
evaluation.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This is a noop in the base class, subclasses should override where
|
||
|
appropriate.
|
||
|
"""
|
||
|
return np.array(unconstrained, ndmin=1)
|
||
|
|
||
|
def untransform_params(self, constrained):
|
||
|
"""
|
||
|
Transform constrained parameters used in likelihood evaluation
|
||
|
to unconstrained parameters used by the optimizer
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
constrained : array_like
|
||
|
Array of constrained parameters used in likelihood evaluation, to
|
||
|
be transformed.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
unconstrained : array_like
|
||
|
Array of unconstrained parameters used by the optimizer.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This is a noop in the base class, subclasses should override where
|
||
|
appropriate.
|
||
|
"""
|
||
|
return np.array(constrained, ndmin=1)
|
||
|
|
||
|
def handle_params(self, params, transformed=True, includes_fixed=False,
|
||
|
return_jacobian=False):
|
||
|
"""
|
||
|
Ensure model parameters satisfy shape and other requirements
|
||
|
"""
|
||
|
params = np.array(params, ndmin=1)
|
||
|
|
||
|
# Never want integer dtype, so convert to floats
|
||
|
if np.issubdtype(params.dtype, np.integer):
|
||
|
params = params.astype(np.float64)
|
||
|
|
||
|
if not includes_fixed and self._has_fixed_params:
|
||
|
k_params = len(self.param_names)
|
||
|
new_params = np.zeros(k_params, dtype=params.dtype) * np.nan
|
||
|
new_params[self._free_params_index] = params
|
||
|
params = new_params
|
||
|
|
||
|
if not transformed:
|
||
|
# It may be the case that the transformation relies on having
|
||
|
# "some" (non-NaN) values for the fixed parameters, even if we will
|
||
|
# not actually be transforming the fixed parameters (as they will)
|
||
|
# be set below regardless
|
||
|
if not includes_fixed and self._has_fixed_params:
|
||
|
params[self._fixed_params_index] = (
|
||
|
list(self._fixed_params.values()))
|
||
|
|
||
|
if return_jacobian:
|
||
|
transform_score = self.transform_jacobian(params)
|
||
|
params = self.transform_params(params)
|
||
|
|
||
|
if not includes_fixed and self._has_fixed_params:
|
||
|
params[self._fixed_params_index] = (
|
||
|
list(self._fixed_params.values()))
|
||
|
|
||
|
return (params, transform_score) if return_jacobian else params
|
||
|
|
||
|
def update(self, params, transformed=True, includes_fixed=False,
|
||
|
complex_step=False):
|
||
|
"""
|
||
|
Update the parameters of the model
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : array_like
|
||
|
Array of new parameters.
|
||
|
transformed : bool, optional
|
||
|
Whether or not `params` is already transformed. If set to False,
|
||
|
`transform_params` is called. Default is True.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
params : array_like
|
||
|
Array of parameters.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Since Model is a base class, this method should be overridden by
|
||
|
subclasses to perform actual updating steps.
|
||
|
"""
|
||
|
return self.handle_params(params=params, transformed=transformed,
|
||
|
includes_fixed=includes_fixed)
|
||
|
|
||
|
def _validate_out_of_sample_exog(self, exog, out_of_sample):
|
||
|
"""
|
||
|
Validate given `exog` as satisfactory for out-of-sample operations
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
exog : array_like or None
|
||
|
New observations of exogenous regressors, if applicable.
|
||
|
out_of_sample : int
|
||
|
Number of new observations required.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
exog : array or None
|
||
|
A numpy array of shape (out_of_sample, k_exog) if the model
|
||
|
contains an `exog` component, or None if it does not.
|
||
|
"""
|
||
|
k_exog = getattr(self, 'k_exog', 0)
|
||
|
if out_of_sample and k_exog > 0:
|
||
|
if exog is None:
|
||
|
raise ValueError('Out-of-sample operations in a model'
|
||
|
' with a regression component require'
|
||
|
' additional exogenous values via the'
|
||
|
' `exog` argument.')
|
||
|
exog = np.array(exog)
|
||
|
required_exog_shape = (out_of_sample, self.k_exog)
|
||
|
try:
|
||
|
exog = exog.reshape(required_exog_shape)
|
||
|
except ValueError:
|
||
|
raise ValueError('Provided exogenous values are not of the'
|
||
|
' appropriate shape. Required %s, got %s.'
|
||
|
% (str(required_exog_shape),
|
||
|
str(exog.shape)))
|
||
|
elif k_exog > 0 and exog is not None:
|
||
|
exog = None
|
||
|
warnings.warn('Exogenous array provided, but additional data'
|
||
|
' is not required. `exog` argument ignored.',
|
||
|
ValueWarning)
|
||
|
|
||
|
return exog
|
||
|
|
||
|
def _get_extension_time_varying_matrices(
|
||
|
self, params, exog, out_of_sample, extend_kwargs=None,
|
||
|
transformed=True, includes_fixed=False, **kwargs):
|
||
|
"""
|
||
|
Get updated time-varying state space system matrices
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : array_like
|
||
|
Array of parameters used to construct the time-varying system
|
||
|
matrices.
|
||
|
exog : array_like or None
|
||
|
New observations of exogenous regressors, if applicable.
|
||
|
out_of_sample : int
|
||
|
Number of new observations required.
|
||
|
extend_kwargs : dict, optional
|
||
|
Dictionary of keyword arguments to pass to the state space model
|
||
|
constructor. For example, for an SARIMAX state space model, this
|
||
|
could be used to pass the `concentrate_scale=True` keyword
|
||
|
argument. Any arguments that are not explicitly set in this
|
||
|
dictionary will be copied from the current model instance.
|
||
|
transformed : bool, optional
|
||
|
Whether or not `start_params` is already transformed. Default is
|
||
|
True.
|
||
|
includes_fixed : bool, optional
|
||
|
If parameters were previously fixed with the `fix_params` method,
|
||
|
this argument describes whether or not `start_params` also includes
|
||
|
the fixed parameters, in addition to the free parameters. Default
|
||
|
is False.
|
||
|
"""
|
||
|
# Get the appropriate exog for the extended sample
|
||
|
exog = self._validate_out_of_sample_exog(exog, out_of_sample)
|
||
|
|
||
|
# Create extended model
|
||
|
if extend_kwargs is None:
|
||
|
extend_kwargs = {}
|
||
|
|
||
|
# Handle trend offset for extended model
|
||
|
if getattr(self, 'k_trend', 0) > 0 and hasattr(self, 'trend_offset'):
|
||
|
extend_kwargs.setdefault(
|
||
|
'trend_offset', self.trend_offset + self.nobs)
|
||
|
|
||
|
mod_extend = self.clone(
|
||
|
endog=np.zeros((out_of_sample, self.k_endog)), exog=exog,
|
||
|
**extend_kwargs)
|
||
|
mod_extend.update(params, transformed=transformed,
|
||
|
includes_fixed=includes_fixed)
|
||
|
|
||
|
# Retrieve the extensions to the time-varying system matrices and
|
||
|
# put them in kwargs
|
||
|
for name in self.ssm.shapes.keys():
|
||
|
if name == 'obs' or name in kwargs:
|
||
|
continue
|
||
|
original = getattr(self.ssm, name)
|
||
|
extended = getattr(mod_extend.ssm, name)
|
||
|
so = original.shape[-1]
|
||
|
se = extended.shape[-1]
|
||
|
if ((so > 1 or se > 1) or (
|
||
|
so == 1 and self.nobs == 1 and
|
||
|
np.any(original[..., 0] != extended[..., 0]))):
|
||
|
kwargs[name] = extended[..., -out_of_sample:]
|
||
|
|
||
|
return kwargs
|
||
|
|
||
|
def simulate(self, params, nsimulations, measurement_shocks=None,
|
||
|
state_shocks=None, initial_state=None, anchor=None,
|
||
|
repetitions=None, exog=None, extend_model=None,
|
||
|
extend_kwargs=None, transformed=True, includes_fixed=False,
|
||
|
pretransformed_measurement_shocks=True,
|
||
|
pretransformed_state_shocks=True,
|
||
|
pretransformed_initial_state=True, random_state=None,
|
||
|
**kwargs):
|
||
|
r"""
|
||
|
Simulate a new time series following the state space model
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : array_like
|
||
|
Array of parameters to use in constructing the state space
|
||
|
representation to use when simulating.
|
||
|
nsimulations : int
|
||
|
The number of observations to simulate. If the model is
|
||
|
time-invariant this can be any number. If the model is
|
||
|
time-varying, then this number must be less than or equal to the
|
||
|
number of observations.
|
||
|
measurement_shocks : array_like, optional
|
||
|
If specified, these are the shocks to the measurement equation,
|
||
|
:math:`\varepsilon_t`. If unspecified, these are automatically
|
||
|
generated using a pseudo-random number generator. If specified,
|
||
|
must be shaped `nsimulations` x `k_endog`, where `k_endog` is the
|
||
|
same as in the state space model.
|
||
|
state_shocks : array_like, optional
|
||
|
If specified, these are the shocks to the state equation,
|
||
|
:math:`\eta_t`. If unspecified, these are automatically
|
||
|
generated using a pseudo-random number generator. If specified,
|
||
|
must be shaped `nsimulations` x `k_posdef` where `k_posdef` is the
|
||
|
same as in the state space model.
|
||
|
initial_state : array_like, optional
|
||
|
If specified, this is the initial state vector to use in
|
||
|
simulation, which should be shaped (`k_states` x 1), where
|
||
|
`k_states` is the same as in the state space model. If unspecified,
|
||
|
but the model has been initialized, then that initialization is
|
||
|
used. This must be specified if `anchor` is anything other than
|
||
|
"start" or 0 (or else you can use the `simulate` method on a
|
||
|
results object rather than on the model object).
|
||
|
anchor : int, str, or datetime, optional
|
||
|
First period for simulation. The simulation will be conditional on
|
||
|
all existing datapoints prior to the `anchor`. Type depends on the
|
||
|
index of the given `endog` in the model. Two special cases are the
|
||
|
strings 'start' and 'end'. `start` refers to beginning the
|
||
|
simulation at the first period of the sample, and `end` refers to
|
||
|
beginning the simulation at the first period after the sample.
|
||
|
Integer values can run from 0 to `nobs`, or can be negative to
|
||
|
apply negative indexing. Finally, if a date/time index was provided
|
||
|
to the model, then this argument can be a date string to parse or a
|
||
|
datetime type. Default is 'start'.
|
||
|
repetitions : int, optional
|
||
|
Number of simulated paths to generate. Default is 1 simulated path.
|
||
|
exog : array_like, optional
|
||
|
New observations of exogenous regressors, if applicable.
|
||
|
transformed : bool, optional
|
||
|
Whether or not `params` is already transformed. Default is
|
||
|
True.
|
||
|
includes_fixed : bool, optional
|
||
|
If parameters were previously fixed with the `fix_params` method,
|
||
|
this argument describes whether or not `params` also includes
|
||
|
the fixed parameters, in addition to the free parameters. Default
|
||
|
is False.
|
||
|
pretransformed_measurement_shocks : bool, optional
|
||
|
If `measurement_shocks` is provided, this flag indicates whether it
|
||
|
should be directly used as the shocks. If False, then it is assumed
|
||
|
to contain draws from the standard Normal distribution that must be
|
||
|
transformed using the `obs_cov` covariance matrix. Default is True.
|
||
|
pretransformed_state_shocks : bool, optional
|
||
|
If `state_shocks` is provided, this flag indicates whether it
|
||
|
should be directly used as the shocks. If False, then it is assumed
|
||
|
to contain draws from the standard Normal distribution that must be
|
||
|
transformed using the `state_cov` covariance matrix. Default is
|
||
|
True.
|
||
|
pretransformed_initial_state : bool, optional
|
||
|
If `initial_state` is provided, this flag indicates whether it
|
||
|
should be directly used as the initial_state. If False, then it is
|
||
|
assumed to contain draws from the standard Normal distribution that
|
||
|
must be transformed using the `initial_state_cov` covariance
|
||
|
matrix. Default is True.
|
||
|
random_state : {None, int, Generator, RandomState}, optional
|
||
|
If `seed` is None (or `np.random`), the
|
||
|
class:``~numpy.random.RandomState`` singleton is used.
|
||
|
If `seed` is an int, a new class:``~numpy.random.RandomState``
|
||
|
instance is used, seeded with `seed`.
|
||
|
If `seed` is already a class:``~numpy.random.Generator`` or
|
||
|
class:``~numpy.random.RandomState`` instance then that instance is
|
||
|
used.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
simulated_obs : ndarray
|
||
|
An array of simulated observations. If `repetitions=None`, then it
|
||
|
will be shaped (nsimulations x k_endog) or (nsimulations,) if
|
||
|
`k_endog=1`. Otherwise it will be shaped
|
||
|
(nsimulations x k_endog x repetitions). If the model was given
|
||
|
Pandas input then the output will be a Pandas object. If
|
||
|
`k_endog > 1` and `repetitions` is not None, then the output will
|
||
|
be a Pandas DataFrame that has a MultiIndex for the columns, with
|
||
|
the first level containing the names of the `endog` variables and
|
||
|
the second level containing the repetition number.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
impulse_responses
|
||
|
Impulse response functions
|
||
|
"""
|
||
|
# Make sure the model class has the current parameters
|
||
|
self.update(params, transformed=transformed,
|
||
|
includes_fixed=includes_fixed)
|
||
|
|
||
|
# Get the starting location
|
||
|
if anchor is None or anchor == 'start':
|
||
|
iloc = 0
|
||
|
elif anchor == 'end':
|
||
|
iloc = self.nobs
|
||
|
else:
|
||
|
iloc, _, _ = self._get_index_loc(anchor)
|
||
|
if isinstance(iloc, slice):
|
||
|
iloc = iloc.start
|
||
|
|
||
|
if iloc < 0:
|
||
|
iloc = self.nobs + iloc
|
||
|
if iloc > self.nobs:
|
||
|
raise ValueError('Cannot anchor simulation outside of the sample.')
|
||
|
|
||
|
if iloc > 0 and initial_state is None:
|
||
|
raise ValueError('If `anchor` is after the start of the sample,'
|
||
|
' must provide a value for `initial_state`.')
|
||
|
|
||
|
# Get updated time-varying system matrices in **kwargs, if necessary
|
||
|
out_of_sample = max(iloc + nsimulations - self.nobs, 0)
|
||
|
if extend_model is None:
|
||
|
extend_model = self.exog is not None or not self.ssm.time_invariant
|
||
|
if out_of_sample and extend_model:
|
||
|
kwargs = self._get_extension_time_varying_matrices(
|
||
|
params, exog, out_of_sample, extend_kwargs,
|
||
|
transformed=transformed, includes_fixed=includes_fixed,
|
||
|
**kwargs)
|
||
|
|
||
|
# Standardize the dimensions of the initial state
|
||
|
if initial_state is not None:
|
||
|
initial_state = np.array(initial_state)
|
||
|
if initial_state.ndim < 2:
|
||
|
initial_state = np.atleast_2d(initial_state).T
|
||
|
|
||
|
# Construct a model that represents the simulation period
|
||
|
end = min(self.nobs, iloc + nsimulations)
|
||
|
nextend = iloc + nsimulations - end
|
||
|
sim_model = self.ssm.extend(np.zeros((nextend, self.k_endog)),
|
||
|
start=iloc, end=end, **kwargs)
|
||
|
|
||
|
# Simulate the data
|
||
|
_repetitions = 1 if repetitions is None else repetitions
|
||
|
sim = np.zeros((nsimulations, self.k_endog, _repetitions))
|
||
|
simulator = None
|
||
|
|
||
|
for i in range(_repetitions):
|
||
|
initial_state_variates = None
|
||
|
if initial_state is not None:
|
||
|
if initial_state.shape[1] == 1:
|
||
|
initial_state_variates = initial_state[:, 0]
|
||
|
else:
|
||
|
initial_state_variates = initial_state[:, i]
|
||
|
|
||
|
# TODO: allow specifying measurement / state shocks for each
|
||
|
# repetition?
|
||
|
|
||
|
out, _, simulator = sim_model.simulate(
|
||
|
nsimulations, measurement_shocks, state_shocks,
|
||
|
initial_state_variates,
|
||
|
pretransformed_measurement_shocks=(
|
||
|
pretransformed_measurement_shocks),
|
||
|
pretransformed_state_shocks=pretransformed_state_shocks,
|
||
|
pretransformed_initial_state=pretransformed_initial_state,
|
||
|
simulator=simulator, return_simulator=True,
|
||
|
random_state=random_state)
|
||
|
|
||
|
sim[:, :, i] = out
|
||
|
|
||
|
# Wrap data / squeeze where appropriate
|
||
|
use_pandas = isinstance(self.data, PandasData)
|
||
|
index = None
|
||
|
if use_pandas:
|
||
|
_, _, _, index = self._get_prediction_index(
|
||
|
iloc, iloc + nsimulations - 1)
|
||
|
# If `repetitions` isn't set, we squeeze the last dimension(s)
|
||
|
if repetitions is None:
|
||
|
if self.k_endog == 1:
|
||
|
sim = sim[:, 0, 0]
|
||
|
if use_pandas:
|
||
|
sim = pd.Series(sim, index=index, name=self.endog_names)
|
||
|
else:
|
||
|
sim = sim[:, :, 0]
|
||
|
if use_pandas:
|
||
|
sim = pd.DataFrame(sim, index=index,
|
||
|
columns=self.endog_names)
|
||
|
elif use_pandas:
|
||
|
shape = sim.shape
|
||
|
endog_names = self.endog_names
|
||
|
if not isinstance(endog_names, list):
|
||
|
endog_names = [endog_names]
|
||
|
columns = pd.MultiIndex.from_product([endog_names,
|
||
|
np.arange(shape[2])])
|
||
|
sim = pd.DataFrame(sim.reshape(shape[0], shape[1] * shape[2]),
|
||
|
index=index, columns=columns)
|
||
|
|
||
|
return sim
|
||
|
|
||
|
def impulse_responses(self, params, steps=1, impulse=0,
|
||
|
orthogonalized=False, cumulative=False, anchor=None,
|
||
|
exog=None, extend_model=None, extend_kwargs=None,
|
||
|
transformed=True, includes_fixed=False, **kwargs):
|
||
|
"""
|
||
|
Impulse response function
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : array_like
|
||
|
Array of model parameters.
|
||
|
steps : int, optional
|
||
|
The number of steps for which impulse responses are calculated.
|
||
|
Default is 1. Note that for time-invariant models, the initial
|
||
|
impulse is not counted as a step, so if `steps=1`, the output will
|
||
|
have 2 entries.
|
||
|
impulse : int, str or array_like
|
||
|
If an integer, the state innovation to pulse; must be between 0
|
||
|
and `k_posdef-1`. If a str, it indicates which column of df
|
||
|
the unit (1) impulse is given.
|
||
|
Alternatively, a custom impulse vector may be provided; must be
|
||
|
shaped `k_posdef x 1`.
|
||
|
orthogonalized : bool, optional
|
||
|
Whether or not to perform impulse using orthogonalized innovations.
|
||
|
Note that this will also affect custum `impulse` vectors. Default
|
||
|
is False.
|
||
|
cumulative : bool, optional
|
||
|
Whether or not to return cumulative impulse responses. Default is
|
||
|
False.
|
||
|
anchor : int, str, or datetime, optional
|
||
|
Time point within the sample for the state innovation impulse. Type
|
||
|
depends on the index of the given `endog` in the model. Two special
|
||
|
cases are the strings 'start' and 'end', which refer to setting the
|
||
|
impulse at the first and last points of the sample, respectively.
|
||
|
Integer values can run from 0 to `nobs - 1`, or can be negative to
|
||
|
apply negative indexing. Finally, if a date/time index was provided
|
||
|
to the model, then this argument can be a date string to parse or a
|
||
|
datetime type. Default is 'start'.
|
||
|
exog : array_like, optional
|
||
|
New observations of exogenous regressors for our-of-sample periods,
|
||
|
if applicable.
|
||
|
transformed : bool, optional
|
||
|
Whether or not `params` is already transformed. Default is
|
||
|
True.
|
||
|
includes_fixed : bool, optional
|
||
|
If parameters were previously fixed with the `fix_params` method,
|
||
|
this argument describes whether or not `params` also includes
|
||
|
the fixed parameters, in addition to the free parameters. Default
|
||
|
is False.
|
||
|
**kwargs
|
||
|
If the model has time-varying design or transition matrices and the
|
||
|
combination of `anchor` and `steps` implies creating impulse
|
||
|
responses for the out-of-sample period, then these matrices must
|
||
|
have updated values provided for the out-of-sample steps. For
|
||
|
example, if `design` is a time-varying component, `nobs` is 10,
|
||
|
`anchor=1`, and `steps` is 15, a (`k_endog` x `k_states` x 7)
|
||
|
matrix must be provided with the new design matrix values.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
impulse_responses : ndarray
|
||
|
Responses for each endogenous variable due to the impulse
|
||
|
given by the `impulse` argument. For a time-invariant model, the
|
||
|
impulse responses are given for `steps + 1` elements (this gives
|
||
|
the "initial impulse" followed by `steps` responses for the
|
||
|
important cases of VAR and SARIMAX models), while for time-varying
|
||
|
models the impulse responses are only given for `steps` elements
|
||
|
(to avoid having to unexpectedly provide updated time-varying
|
||
|
matrices).
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
simulate
|
||
|
Simulate a time series according to the given state space model,
|
||
|
optionally with specified series for the innovations.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Intercepts in the measurement and state equation are ignored when
|
||
|
calculating impulse responses.
|
||
|
|
||
|
TODO: add an option to allow changing the ordering for the
|
||
|
orthogonalized option. Will require permuting matrices when
|
||
|
constructing the extended model.
|
||
|
"""
|
||
|
# Make sure the model class has the current parameters
|
||
|
self.update(params, transformed=transformed,
|
||
|
includes_fixed=includes_fixed)
|
||
|
|
||
|
# For time-invariant models, add an additional `step`. This is the
|
||
|
# default for time-invariant models based on the expected behavior for
|
||
|
# ARIMA and VAR models: we want to record the initial impulse and also
|
||
|
# `steps` values of the responses afterwards.
|
||
|
# Note: we don't modify `steps` itself, because
|
||
|
# `KalmanFilter.impulse_responses` also adds an additional step in this
|
||
|
# case (this is so that there isn't different behavior when calling
|
||
|
# this method versus that method). We just need to also keep track of
|
||
|
# this here because we need to generate the correct extended model.
|
||
|
additional_steps = 0
|
||
|
if (self.ssm._design.shape[2] == 1 and
|
||
|
self.ssm._transition.shape[2] == 1 and
|
||
|
self.ssm._selection.shape[2] == 1):
|
||
|
additional_steps = 1
|
||
|
|
||
|
# Get the starting location
|
||
|
if anchor is None or anchor == 'start':
|
||
|
iloc = 0
|
||
|
elif anchor == 'end':
|
||
|
iloc = self.nobs - 1
|
||
|
else:
|
||
|
iloc, _, _ = self._get_index_loc(anchor)
|
||
|
if isinstance(iloc, slice):
|
||
|
iloc = iloc.start
|
||
|
|
||
|
if iloc < 0:
|
||
|
iloc = self.nobs + iloc
|
||
|
if iloc >= self.nobs:
|
||
|
raise ValueError('Cannot anchor impulse responses outside of the'
|
||
|
' sample.')
|
||
|
|
||
|
time_invariant = (
|
||
|
self.ssm._design.shape[2] == self.ssm._obs_cov.shape[2] ==
|
||
|
self.ssm._transition.shape[2] == self.ssm._selection.shape[2] ==
|
||
|
self.ssm._state_cov.shape[2] == 1)
|
||
|
|
||
|
# Get updated time-varying system matrices in **kwargs, if necessary
|
||
|
# (Note: KalmanFilter adds 1 to steps to account for the first impulse)
|
||
|
out_of_sample = max(
|
||
|
iloc + (steps + additional_steps + 1) - self.nobs, 0)
|
||
|
if extend_model is None:
|
||
|
extend_model = self.exog is not None and not time_invariant
|
||
|
if out_of_sample and extend_model:
|
||
|
kwargs = self._get_extension_time_varying_matrices(
|
||
|
params, exog, out_of_sample, extend_kwargs,
|
||
|
transformed=transformed, includes_fixed=includes_fixed,
|
||
|
**kwargs)
|
||
|
|
||
|
# Special handling for matrix terms that are time-varying but
|
||
|
# irrelevant for impulse response functions. Must be set since
|
||
|
# ssm.extend() requires that we pass new matrices for these, but they
|
||
|
# are ignored for IRF purposes.
|
||
|
end = min(self.nobs, iloc + steps + additional_steps)
|
||
|
nextend = iloc + (steps + additional_steps + 1) - end
|
||
|
if ('obs_intercept' not in kwargs and
|
||
|
self.ssm._obs_intercept.shape[1] > 1):
|
||
|
kwargs['obs_intercept'] = np.zeros((self.k_endog, nextend))
|
||
|
if ('state_intercept' not in kwargs and
|
||
|
self.ssm._state_intercept.shape[1] > 1):
|
||
|
kwargs['state_intercept'] = np.zeros((self.k_states, nextend))
|
||
|
if 'obs_cov' not in kwargs and self.ssm._obs_cov.shape[2] > 1:
|
||
|
kwargs['obs_cov'] = np.zeros((self.k_endog, self.k_endog, nextend))
|
||
|
# Special handling for matrix terms that are time-varying but
|
||
|
# only the value at the anchor matters for IRF purposes.
|
||
|
if 'state_cov' not in kwargs and self.ssm._state_cov.shape[2] > 1:
|
||
|
tmp = np.zeros((self.ssm.k_posdef, self.ssm.k_posdef, nextend))
|
||
|
tmp[:] = self['state_cov', :, :, iloc:iloc + 1]
|
||
|
kwargs['state_cov'] = tmp
|
||
|
if 'selection' not in kwargs and self.ssm._selection.shape[2] > 1:
|
||
|
tmp = np.zeros((self.k_states, self.ssm.k_posdef, nextend))
|
||
|
tmp[:] = self['selection', :, :, iloc:iloc + 1]
|
||
|
kwargs['selection'] = tmp
|
||
|
|
||
|
# Construct a model that represents the simulation period
|
||
|
sim_model = self.ssm.extend(np.empty((nextend, self.k_endog)),
|
||
|
start=iloc, end=end, **kwargs)
|
||
|
|
||
|
# Compute the impulse responses
|
||
|
|
||
|
# Convert endog name to index
|
||
|
use_pandas = isinstance(self.data, PandasData)
|
||
|
if type(impulse) is str:
|
||
|
if not use_pandas:
|
||
|
raise ValueError('Endog must be pd.DataFrame.')
|
||
|
impulse = self.endog_names.index(impulse)
|
||
|
|
||
|
irfs = sim_model.impulse_responses(
|
||
|
steps, impulse, orthogonalized, cumulative)
|
||
|
|
||
|
# IRF is (nobs x k_endog); do not want to squeeze in case of steps = 1
|
||
|
if irfs.shape[1] == 1:
|
||
|
irfs = irfs[:, 0]
|
||
|
|
||
|
# Wrap data / squeeze where appropriate
|
||
|
if use_pandas:
|
||
|
if self.k_endog == 1:
|
||
|
irfs = pd.Series(irfs, name=self.endog_names)
|
||
|
else:
|
||
|
irfs = pd.DataFrame(irfs, columns=self.endog_names)
|
||
|
return irfs
|
||
|
|
||
|
@classmethod
|
||
|
def from_formula(cls, formula, data, subset=None):
|
||
|
"""
|
||
|
Not implemented for state space models
|
||
|
"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
|
||
|
class MLEResults(tsbase.TimeSeriesModelResults):
|
||
|
r"""
|
||
|
Class to hold results from fitting a state space model.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
model : MLEModel instance
|
||
|
The fitted model instance
|
||
|
params : ndarray
|
||
|
Fitted parameters
|
||
|
filter_results : KalmanFilter instance
|
||
|
The underlying state space model and Kalman filter output
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
model : Model instance
|
||
|
A reference to the model that was fit.
|
||
|
filter_results : KalmanFilter instance
|
||
|
The underlying state space model and Kalman filter output
|
||
|
nobs : float
|
||
|
The number of observations used to fit the model.
|
||
|
params : ndarray
|
||
|
The parameters of the model.
|
||
|
scale : float
|
||
|
This is currently set to 1.0 unless the model uses concentrated
|
||
|
filtering.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
MLEModel
|
||
|
statsmodels.tsa.statespace.kalman_filter.FilterResults
|
||
|
statsmodels.tsa.statespace.representation.FrozenRepresentation
|
||
|
"""
|
||
|
def __init__(self, model, params, results, cov_type=None, cov_kwds=None,
|
||
|
**kwargs):
|
||
|
self.data = model.data
|
||
|
scale = results.scale
|
||
|
|
||
|
tsbase.TimeSeriesModelResults.__init__(self, model, params,
|
||
|
normalized_cov_params=None,
|
||
|
scale=scale)
|
||
|
|
||
|
# Save the fixed parameters
|
||
|
self._has_fixed_params = self.model._has_fixed_params
|
||
|
self._fixed_params_index = self.model._fixed_params_index
|
||
|
self._free_params_index = self.model._free_params_index
|
||
|
# TODO: seems like maybe self.fixed_params should be the dictionary
|
||
|
# itself, not just the keys?
|
||
|
if self._has_fixed_params:
|
||
|
self._fixed_params = self.model._fixed_params.copy()
|
||
|
self.fixed_params = list(self._fixed_params.keys())
|
||
|
else:
|
||
|
self._fixed_params = None
|
||
|
self.fixed_params = []
|
||
|
self.param_names = [
|
||
|
'%s (fixed)' % name if name in self.fixed_params else name
|
||
|
for name in (self.data.param_names or [])]
|
||
|
|
||
|
# Save the state space representation output
|
||
|
self.filter_results = results
|
||
|
if isinstance(results, SmootherResults):
|
||
|
self.smoother_results = results
|
||
|
else:
|
||
|
self.smoother_results = None
|
||
|
|
||
|
# Dimensions
|
||
|
self.nobs = self.filter_results.nobs
|
||
|
self.nobs_diffuse = self.filter_results.nobs_diffuse
|
||
|
if self.nobs_diffuse > 0 and self.loglikelihood_burn > 0:
|
||
|
warnings.warn('Care should be used when applying a loglikelihood'
|
||
|
' burn to a model with exact diffuse initialization.'
|
||
|
' Some results objects, e.g. degrees of freedom,'
|
||
|
' expect only one of the two to be set.')
|
||
|
# This only excludes explicitly burned (usually approximate diffuse)
|
||
|
# periods but does not exclude exact diffuse periods. This is
|
||
|
# because the loglikelihood remains valid for the initial periods in
|
||
|
# the exact diffuse case (see DK, 2012, section 7.2) and so also do
|
||
|
# e.g. information criteria (see DK, 2012, section 7.4) and the score
|
||
|
# vector (see DK, 2012, section 7.3.3, equation 7.15).
|
||
|
# However, other objects should be excluded in the diffuse periods
|
||
|
# (e.g. the diffuse forecast errors, so in some cases a different
|
||
|
# nobs_effective will have to be computed and used)
|
||
|
self.nobs_effective = self.nobs - self.loglikelihood_burn
|
||
|
|
||
|
P = self.filter_results.initial_diffuse_state_cov
|
||
|
self.k_diffuse_states = 0 if P is None else np.sum(np.diagonal(P) == 1)
|
||
|
|
||
|
# Degrees of freedom (see DK 2012, section 7.4)
|
||
|
k_free_params = self.params.size - len(self.fixed_params)
|
||
|
self.df_model = (k_free_params + self.k_diffuse_states
|
||
|
+ self.filter_results.filter_concentrated)
|
||
|
self.df_resid = self.nobs_effective - self.df_model
|
||
|
|
||
|
# Setup covariance matrix notes dictionary
|
||
|
if not hasattr(self, 'cov_kwds'):
|
||
|
self.cov_kwds = {}
|
||
|
if cov_type is None:
|
||
|
cov_type = 'approx' if results.memory_no_likelihood else 'opg'
|
||
|
self.cov_type = cov_type
|
||
|
|
||
|
# Setup the cache
|
||
|
self._cache = {}
|
||
|
|
||
|
# Handle covariance matrix calculation
|
||
|
if cov_kwds is None:
|
||
|
cov_kwds = {}
|
||
|
self._cov_approx_complex_step = (
|
||
|
cov_kwds.pop('approx_complex_step', True))
|
||
|
self._cov_approx_centered = cov_kwds.pop('approx_centered', False)
|
||
|
try:
|
||
|
self._rank = None
|
||
|
self._get_robustcov_results(cov_type=cov_type, use_self=True,
|
||
|
**cov_kwds)
|
||
|
except np.linalg.LinAlgError:
|
||
|
self._rank = 0
|
||
|
k_params = len(self.params)
|
||
|
self.cov_params_default = np.zeros((k_params, k_params)) * np.nan
|
||
|
self.cov_kwds['cov_type'] = (
|
||
|
'Covariance matrix could not be calculated: singular.'
|
||
|
' information matrix.')
|
||
|
self.model.update(self.params, transformed=True, includes_fixed=True)
|
||
|
|
||
|
# References of filter and smoother output
|
||
|
extra_arrays = [
|
||
|
'filtered_state', 'filtered_state_cov', 'predicted_state',
|
||
|
'predicted_state_cov', 'forecasts', 'forecasts_error',
|
||
|
'forecasts_error_cov', 'standardized_forecasts_error',
|
||
|
'forecasts_error_diffuse_cov', 'predicted_diffuse_state_cov',
|
||
|
'scaled_smoothed_estimator',
|
||
|
'scaled_smoothed_estimator_cov', 'smoothing_error',
|
||
|
'smoothed_state',
|
||
|
'smoothed_state_cov', 'smoothed_state_autocov',
|
||
|
'smoothed_measurement_disturbance',
|
||
|
'smoothed_state_disturbance',
|
||
|
'smoothed_measurement_disturbance_cov',
|
||
|
'smoothed_state_disturbance_cov']
|
||
|
for name in extra_arrays:
|
||
|
setattr(self, name, getattr(self.filter_results, name, None))
|
||
|
|
||
|
# Remove too-short results when memory conservation was used
|
||
|
if self.filter_results.memory_no_forecast_mean:
|
||
|
self.forecasts = None
|
||
|
self.forecasts_error = None
|
||
|
if self.filter_results.memory_no_forecast_cov:
|
||
|
self.forecasts_error_cov = None
|
||
|
if self.filter_results.memory_no_predicted_mean:
|
||
|
self.predicted_state = None
|
||
|
if self.filter_results.memory_no_predicted_cov:
|
||
|
self.predicted_state_cov = None
|
||
|
if self.filter_results.memory_no_filtered_mean:
|
||
|
self.filtered_state = None
|
||
|
if self.filter_results.memory_no_filtered_cov:
|
||
|
self.filtered_state_cov = None
|
||
|
if self.filter_results.memory_no_gain:
|
||
|
pass
|
||
|
if self.filter_results.memory_no_smoothing:
|
||
|
pass
|
||
|
if self.filter_results.memory_no_std_forecast:
|
||
|
self.standardized_forecasts_error = None
|
||
|
|
||
|
# Save more convenient access to states
|
||
|
# (will create a private attribute _states here and provide actual
|
||
|
# access via a getter, so that we can e.g. issue a warning in the case
|
||
|
# that a useless Pandas index was given in the model specification)
|
||
|
self._states = SimpleNamespace()
|
||
|
|
||
|
use_pandas = isinstance(self.data, PandasData)
|
||
|
index = self.model._index
|
||
|
columns = self.model.state_names
|
||
|
|
||
|
# Predicted states
|
||
|
# Note: a complication here is that we also include the initial values
|
||
|
# here, so that we need an extended index in the Pandas case
|
||
|
if (self.predicted_state is None or
|
||
|
self.filter_results.memory_no_predicted_mean):
|
||
|
self._states.predicted = None
|
||
|
elif use_pandas:
|
||
|
extended_index = self.model._get_index_with_final_state()
|
||
|
self._states.predicted = pd.DataFrame(
|
||
|
self.predicted_state.T, index=extended_index, columns=columns)
|
||
|
else:
|
||
|
self._states.predicted = self.predicted_state.T
|
||
|
if (self.predicted_state_cov is None or
|
||
|
self.filter_results.memory_no_predicted_cov):
|
||
|
self._states.predicted_cov = None
|
||
|
elif use_pandas:
|
||
|
extended_index = self.model._get_index_with_final_state()
|
||
|
tmp = np.transpose(self.predicted_state_cov, (2, 0, 1))
|
||
|
self._states.predicted_cov = pd.DataFrame(
|
||
|
np.reshape(tmp, (tmp.shape[0] * tmp.shape[1], tmp.shape[2])),
|
||
|
index=pd.MultiIndex.from_product(
|
||
|
[extended_index, columns]).swaplevel(),
|
||
|
columns=columns)
|
||
|
else:
|
||
|
self._states.predicted_cov = np.transpose(
|
||
|
self.predicted_state_cov, (2, 0, 1))
|
||
|
|
||
|
# Filtered states
|
||
|
if (self.filtered_state is None or
|
||
|
self.filter_results.memory_no_filtered_mean):
|
||
|
self._states.filtered = None
|
||
|
elif use_pandas:
|
||
|
self._states.filtered = pd.DataFrame(
|
||
|
self.filtered_state.T, index=index, columns=columns)
|
||
|
else:
|
||
|
self._states.filtered = self.filtered_state.T
|
||
|
if (self.filtered_state_cov is None or
|
||
|
self.filter_results.memory_no_filtered_cov):
|
||
|
self._states.filtered_cov = None
|
||
|
elif use_pandas:
|
||
|
tmp = np.transpose(self.filtered_state_cov, (2, 0, 1))
|
||
|
self._states.filtered_cov = pd.DataFrame(
|
||
|
np.reshape(tmp, (tmp.shape[0] * tmp.shape[1], tmp.shape[2])),
|
||
|
index=pd.MultiIndex.from_product([index, columns]).swaplevel(),
|
||
|
columns=columns)
|
||
|
else:
|
||
|
self._states.filtered_cov = np.transpose(
|
||
|
self.filtered_state_cov, (2, 0, 1))
|
||
|
|
||
|
# Smoothed states
|
||
|
if self.smoothed_state is None:
|
||
|
self._states.smoothed = None
|
||
|
elif use_pandas:
|
||
|
self._states.smoothed = pd.DataFrame(
|
||
|
self.smoothed_state.T, index=index, columns=columns)
|
||
|
else:
|
||
|
self._states.smoothed = self.smoothed_state.T
|
||
|
if self.smoothed_state_cov is None:
|
||
|
self._states.smoothed_cov = None
|
||
|
elif use_pandas:
|
||
|
tmp = np.transpose(self.smoothed_state_cov, (2, 0, 1))
|
||
|
self._states.smoothed_cov = pd.DataFrame(
|
||
|
np.reshape(tmp, (tmp.shape[0] * tmp.shape[1], tmp.shape[2])),
|
||
|
index=pd.MultiIndex.from_product([index, columns]).swaplevel(),
|
||
|
columns=columns)
|
||
|
else:
|
||
|
self._states.smoothed_cov = np.transpose(
|
||
|
self.smoothed_state_cov, (2, 0, 1))
|
||
|
|
||
|
# Handle removing data
|
||
|
self._data_attr_model = getattr(self, '_data_attr_model', [])
|
||
|
self._data_attr_model.extend(['ssm'])
|
||
|
self._data_attr.extend(extra_arrays)
|
||
|
self._data_attr.extend(['filter_results', 'smoother_results'])
|
||
|
|
||
|
def _get_robustcov_results(self, cov_type='opg', **kwargs):
|
||
|
"""
|
||
|
Create new results instance with specified covariance estimator as
|
||
|
default
|
||
|
|
||
|
Note: creating new results instance currently not supported.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
cov_type : str
|
||
|
the type of covariance matrix estimator to use. See Notes below
|
||
|
kwargs : depends on cov_type
|
||
|
Required or optional arguments for covariance calculation.
|
||
|
See Notes below.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
results : results instance
|
||
|
This method creates a new results instance with the requested
|
||
|
covariance as the default covariance of the parameters.
|
||
|
Inferential statistics like p-values and hypothesis tests will be
|
||
|
based on this covariance matrix.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The following covariance types and required or optional arguments are
|
||
|
currently available:
|
||
|
|
||
|
- 'opg' for the outer product of gradient estimator
|
||
|
- 'oim' for the observed information matrix estimator, calculated
|
||
|
using the method of Harvey (1989)
|
||
|
- 'approx' for the observed information matrix estimator,
|
||
|
calculated using a numerical approximation of the Hessian matrix.
|
||
|
Uses complex step approximation by default, or uses finite
|
||
|
differences if `approx_complex_step=False` in the `cov_kwds`
|
||
|
dictionary.
|
||
|
- 'robust' for an approximate (quasi-maximum likelihood) covariance
|
||
|
matrix that may be valid even in the presence of some
|
||
|
misspecifications. Intermediate calculations use the 'oim'
|
||
|
method.
|
||
|
- 'robust_approx' is the same as 'robust' except that the
|
||
|
intermediate calculations use the 'approx' method.
|
||
|
- 'none' for no covariance matrix calculation.
|
||
|
"""
|
||
|
from statsmodels.base.covtype import descriptions
|
||
|
|
||
|
use_self = kwargs.pop('use_self', False)
|
||
|
if use_self:
|
||
|
res = self
|
||
|
else:
|
||
|
raise NotImplementedError
|
||
|
res = self.__class__(
|
||
|
self.model, self.params,
|
||
|
normalized_cov_params=self.normalized_cov_params,
|
||
|
scale=self.scale)
|
||
|
|
||
|
# Set the new covariance type
|
||
|
res.cov_type = cov_type
|
||
|
res.cov_kwds = {}
|
||
|
|
||
|
# Calculate the new covariance matrix
|
||
|
approx_complex_step = self._cov_approx_complex_step
|
||
|
if approx_complex_step:
|
||
|
approx_type_str = 'complex-step'
|
||
|
elif self._cov_approx_centered:
|
||
|
approx_type_str = 'centered finite differences'
|
||
|
else:
|
||
|
approx_type_str = 'finite differences'
|
||
|
|
||
|
k_params = len(self.params)
|
||
|
if k_params == 0:
|
||
|
res.cov_params_default = np.zeros((0, 0))
|
||
|
res._rank = 0
|
||
|
res.cov_kwds['description'] = 'No parameters estimated.'
|
||
|
elif cov_type == 'custom':
|
||
|
res.cov_type = kwargs['custom_cov_type']
|
||
|
res.cov_params_default = kwargs['custom_cov_params']
|
||
|
res.cov_kwds['description'] = kwargs['custom_description']
|
||
|
if len(self.fixed_params) > 0:
|
||
|
mask = np.ix_(self._free_params_index, self._free_params_index)
|
||
|
else:
|
||
|
mask = np.s_[...]
|
||
|
res._rank = np.linalg.matrix_rank(res.cov_params_default[mask])
|
||
|
elif cov_type == 'none':
|
||
|
res.cov_params_default = np.zeros((k_params, k_params)) * np.nan
|
||
|
res._rank = np.nan
|
||
|
res.cov_kwds['description'] = descriptions['none']
|
||
|
elif self.cov_type == 'approx':
|
||
|
res.cov_params_default = res.cov_params_approx
|
||
|
res.cov_kwds['description'] = descriptions['approx'].format(
|
||
|
approx_type=approx_type_str)
|
||
|
elif self.cov_type == 'oim':
|
||
|
res.cov_params_default = res.cov_params_oim
|
||
|
res.cov_kwds['description'] = descriptions['OIM'].format(
|
||
|
approx_type=approx_type_str)
|
||
|
elif self.cov_type == 'opg':
|
||
|
res.cov_params_default = res.cov_params_opg
|
||
|
res.cov_kwds['description'] = descriptions['OPG'].format(
|
||
|
approx_type=approx_type_str)
|
||
|
elif self.cov_type == 'robust' or self.cov_type == 'robust_oim':
|
||
|
res.cov_params_default = res.cov_params_robust_oim
|
||
|
res.cov_kwds['description'] = descriptions['robust-OIM'].format(
|
||
|
approx_type=approx_type_str)
|
||
|
elif self.cov_type == 'robust_approx':
|
||
|
res.cov_params_default = res.cov_params_robust_approx
|
||
|
res.cov_kwds['description'] = descriptions['robust-approx'].format(
|
||
|
approx_type=approx_type_str)
|
||
|
else:
|
||
|
raise NotImplementedError('Invalid covariance matrix type.')
|
||
|
|
||
|
return res
|
||
|
|
||
|
@cache_readonly
|
||
|
def aic(self):
|
||
|
"""
|
||
|
(float) Akaike Information Criterion
|
||
|
"""
|
||
|
return aic(self.llf, self.nobs_effective, self.df_model)
|
||
|
|
||
|
@cache_readonly
|
||
|
def aicc(self):
|
||
|
"""
|
||
|
(float) Akaike Information Criterion with small sample correction
|
||
|
"""
|
||
|
return aicc(self.llf, self.nobs_effective, self.df_model)
|
||
|
|
||
|
@cache_readonly
|
||
|
def bic(self):
|
||
|
"""
|
||
|
(float) Bayes Information Criterion
|
||
|
"""
|
||
|
return bic(self.llf, self.nobs_effective, self.df_model)
|
||
|
|
||
|
def _cov_params_approx(self, approx_complex_step=True,
|
||
|
approx_centered=False):
|
||
|
evaluated_hessian = self.nobs_effective * self.model.hessian(
|
||
|
params=self.params, transformed=True, includes_fixed=True,
|
||
|
method='approx', approx_complex_step=approx_complex_step,
|
||
|
approx_centered=approx_centered)
|
||
|
# TODO: Case with "not approx_complex_step" is not hit in
|
||
|
# tests as of 2017-05-19
|
||
|
|
||
|
if len(self.fixed_params) > 0:
|
||
|
mask = np.ix_(self._free_params_index, self._free_params_index)
|
||
|
(tmp, singular_values) = pinv_extended(evaluated_hessian[mask])
|
||
|
neg_cov = np.zeros_like(evaluated_hessian) * np.nan
|
||
|
neg_cov[mask] = tmp
|
||
|
else:
|
||
|
(neg_cov, singular_values) = pinv_extended(evaluated_hessian)
|
||
|
|
||
|
self.model.update(self.params, transformed=True, includes_fixed=True)
|
||
|
if self._rank is None:
|
||
|
self._rank = np.linalg.matrix_rank(np.diag(singular_values))
|
||
|
return -neg_cov
|
||
|
|
||
|
@cache_readonly
|
||
|
def cov_params_approx(self):
|
||
|
"""
|
||
|
(array) The variance / covariance matrix. Computed using the numerical
|
||
|
Hessian approximated by complex step or finite differences methods.
|
||
|
"""
|
||
|
return self._cov_params_approx(self._cov_approx_complex_step,
|
||
|
self._cov_approx_centered)
|
||
|
|
||
|
def _cov_params_oim(self, approx_complex_step=True, approx_centered=False):
|
||
|
evaluated_hessian = self.nobs_effective * self.model.hessian(
|
||
|
self.params, hessian_method='oim', transformed=True,
|
||
|
includes_fixed=True, approx_complex_step=approx_complex_step,
|
||
|
approx_centered=approx_centered)
|
||
|
|
||
|
if len(self.fixed_params) > 0:
|
||
|
mask = np.ix_(self._free_params_index, self._free_params_index)
|
||
|
(tmp, singular_values) = pinv_extended(evaluated_hessian[mask])
|
||
|
neg_cov = np.zeros_like(evaluated_hessian) * np.nan
|
||
|
neg_cov[mask] = tmp
|
||
|
else:
|
||
|
(neg_cov, singular_values) = pinv_extended(evaluated_hessian)
|
||
|
|
||
|
self.model.update(self.params, transformed=True, includes_fixed=True)
|
||
|
if self._rank is None:
|
||
|
self._rank = np.linalg.matrix_rank(np.diag(singular_values))
|
||
|
return -neg_cov
|
||
|
|
||
|
@cache_readonly
|
||
|
def cov_params_oim(self):
|
||
|
"""
|
||
|
(array) The variance / covariance matrix. Computed using the method
|
||
|
from Harvey (1989).
|
||
|
"""
|
||
|
return self._cov_params_oim(self._cov_approx_complex_step,
|
||
|
self._cov_approx_centered)
|
||
|
|
||
|
def _cov_params_opg(self, approx_complex_step=True, approx_centered=False):
|
||
|
evaluated_hessian = self.nobs_effective * self.model._hessian_opg(
|
||
|
self.params, transformed=True, includes_fixed=True,
|
||
|
approx_complex_step=approx_complex_step,
|
||
|
approx_centered=approx_centered)
|
||
|
|
||
|
no_free_params = (self._free_params_index is not None and
|
||
|
len(self._free_params_index) == 0)
|
||
|
|
||
|
if no_free_params:
|
||
|
neg_cov = np.zeros_like(evaluated_hessian) * np.nan
|
||
|
singular_values = np.empty(0)
|
||
|
elif len(self.fixed_params) > 0:
|
||
|
mask = np.ix_(self._free_params_index, self._free_params_index)
|
||
|
(tmp, singular_values) = pinv_extended(evaluated_hessian[mask])
|
||
|
neg_cov = np.zeros_like(evaluated_hessian) * np.nan
|
||
|
neg_cov[mask] = tmp
|
||
|
else:
|
||
|
(neg_cov, singular_values) = pinv_extended(evaluated_hessian)
|
||
|
|
||
|
self.model.update(self.params, transformed=True, includes_fixed=True)
|
||
|
if self._rank is None:
|
||
|
if no_free_params:
|
||
|
self._rank = 0
|
||
|
else:
|
||
|
self._rank = np.linalg.matrix_rank(np.diag(singular_values))
|
||
|
return -neg_cov
|
||
|
|
||
|
@cache_readonly
|
||
|
def cov_params_opg(self):
|
||
|
"""
|
||
|
(array) The variance / covariance matrix. Computed using the outer
|
||
|
product of gradients method.
|
||
|
"""
|
||
|
return self._cov_params_opg(self._cov_approx_complex_step,
|
||
|
self._cov_approx_centered)
|
||
|
|
||
|
@cache_readonly
|
||
|
def cov_params_robust(self):
|
||
|
"""
|
||
|
(array) The QMLE variance / covariance matrix. Alias for
|
||
|
`cov_params_robust_oim`
|
||
|
"""
|
||
|
return self.cov_params_robust_oim
|
||
|
|
||
|
def _cov_params_robust_oim(self, approx_complex_step=True,
|
||
|
approx_centered=False):
|
||
|
cov_opg = self._cov_params_opg(approx_complex_step=approx_complex_step,
|
||
|
approx_centered=approx_centered)
|
||
|
|
||
|
evaluated_hessian = self.nobs_effective * self.model.hessian(
|
||
|
self.params, hessian_method='oim', transformed=True,
|
||
|
includes_fixed=True, approx_complex_step=approx_complex_step,
|
||
|
approx_centered=approx_centered)
|
||
|
|
||
|
if len(self.fixed_params) > 0:
|
||
|
mask = np.ix_(self._free_params_index, self._free_params_index)
|
||
|
cov_params = np.zeros_like(evaluated_hessian) * np.nan
|
||
|
|
||
|
cov_opg = cov_opg[mask]
|
||
|
evaluated_hessian = evaluated_hessian[mask]
|
||
|
|
||
|
tmp, singular_values = pinv_extended(
|
||
|
np.dot(np.dot(evaluated_hessian, cov_opg), evaluated_hessian))
|
||
|
|
||
|
cov_params[mask] = tmp
|
||
|
else:
|
||
|
(cov_params, singular_values) = pinv_extended(
|
||
|
np.dot(np.dot(evaluated_hessian, cov_opg), evaluated_hessian))
|
||
|
|
||
|
self.model.update(self.params, transformed=True, includes_fixed=True)
|
||
|
if self._rank is None:
|
||
|
self._rank = np.linalg.matrix_rank(np.diag(singular_values))
|
||
|
return cov_params
|
||
|
|
||
|
@cache_readonly
|
||
|
def cov_params_robust_oim(self):
|
||
|
"""
|
||
|
(array) The QMLE variance / covariance matrix. Computed using the
|
||
|
method from Harvey (1989) as the evaluated hessian.
|
||
|
"""
|
||
|
return self._cov_params_robust_oim(self._cov_approx_complex_step,
|
||
|
self._cov_approx_centered)
|
||
|
|
||
|
def _cov_params_robust_approx(self, approx_complex_step=True,
|
||
|
approx_centered=False):
|
||
|
cov_opg = self._cov_params_opg(approx_complex_step=approx_complex_step,
|
||
|
approx_centered=approx_centered)
|
||
|
|
||
|
evaluated_hessian = self.nobs_effective * self.model.hessian(
|
||
|
self.params, transformed=True, includes_fixed=True,
|
||
|
method='approx', approx_complex_step=approx_complex_step)
|
||
|
# TODO: Case with "not approx_complex_step" is not
|
||
|
# hit in tests as of 2017-05-19
|
||
|
|
||
|
if len(self.fixed_params) > 0:
|
||
|
mask = np.ix_(self._free_params_index, self._free_params_index)
|
||
|
cov_params = np.zeros_like(evaluated_hessian) * np.nan
|
||
|
|
||
|
cov_opg = cov_opg[mask]
|
||
|
evaluated_hessian = evaluated_hessian[mask]
|
||
|
|
||
|
tmp, singular_values = pinv_extended(
|
||
|
np.dot(np.dot(evaluated_hessian, cov_opg), evaluated_hessian))
|
||
|
|
||
|
cov_params[mask] = tmp
|
||
|
else:
|
||
|
(cov_params, singular_values) = pinv_extended(
|
||
|
np.dot(np.dot(evaluated_hessian, cov_opg), evaluated_hessian))
|
||
|
|
||
|
self.model.update(self.params, transformed=True, includes_fixed=True)
|
||
|
if self._rank is None:
|
||
|
self._rank = np.linalg.matrix_rank(np.diag(singular_values))
|
||
|
return cov_params
|
||
|
|
||
|
@cache_readonly
|
||
|
def cov_params_robust_approx(self):
|
||
|
"""
|
||
|
(array) The QMLE variance / covariance matrix. Computed using the
|
||
|
numerical Hessian as the evaluated hessian.
|
||
|
"""
|
||
|
return self._cov_params_robust_approx(self._cov_approx_complex_step,
|
||
|
self._cov_approx_centered)
|
||
|
|
||
|
def info_criteria(self, criteria, method='standard'):
|
||
|
r"""
|
||
|
Information criteria
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
criteria : {'aic', 'bic', 'hqic'}
|
||
|
The information criteria to compute.
|
||
|
method : {'standard', 'lutkepohl'}
|
||
|
The method for information criteria computation. Default is
|
||
|
'standard' method; 'lutkepohl' computes the information criteria
|
||
|
as in Lütkepohl (2007). See Notes for formulas.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The `'standard'` formulas are:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
AIC & = -2 \log L(Y_n | \hat \psi) + 2 k \\
|
||
|
BIC & = -2 \log L(Y_n | \hat \psi) + k \log n \\
|
||
|
HQIC & = -2 \log L(Y_n | \hat \psi) + 2 k \log \log n \\
|
||
|
|
||
|
where :math:`\hat \psi` are the maximum likelihood estimates of the
|
||
|
parameters, :math:`n` is the number of observations, and `k` is the
|
||
|
number of estimated parameters.
|
||
|
|
||
|
Note that the `'standard'` formulas are returned from the `aic`, `bic`,
|
||
|
and `hqic` results attributes.
|
||
|
|
||
|
The `'lutkepohl'` formulas are (Lütkepohl, 2010):
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
AIC_L & = \log | Q | + \frac{2 k}{n} \\
|
||
|
BIC_L & = \log | Q | + \frac{k \log n}{n} \\
|
||
|
HQIC_L & = \log | Q | + \frac{2 k \log \log n}{n} \\
|
||
|
|
||
|
where :math:`Q` is the state covariance matrix. Note that the Lütkepohl
|
||
|
definitions do not apply to all state space models, and should be used
|
||
|
with care outside of SARIMAX and VARMAX models.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [*] Lütkepohl, Helmut. 2007. *New Introduction to Multiple Time*
|
||
|
*Series Analysis.* Berlin: Springer.
|
||
|
"""
|
||
|
criteria = criteria.lower()
|
||
|
method = method.lower()
|
||
|
|
||
|
if method == 'standard':
|
||
|
out = getattr(self, criteria)
|
||
|
elif method == 'lutkepohl':
|
||
|
if self.filter_results.state_cov.shape[-1] > 1:
|
||
|
raise ValueError('Cannot compute Lütkepohl statistics for'
|
||
|
' models with time-varying state covariance'
|
||
|
' matrix.')
|
||
|
|
||
|
cov = self.filter_results.state_cov[:, :, 0]
|
||
|
if criteria == 'aic':
|
||
|
out = np.squeeze(np.linalg.slogdet(cov)[1] +
|
||
|
2 * self.df_model / self.nobs_effective)
|
||
|
elif criteria == 'bic':
|
||
|
out = np.squeeze(np.linalg.slogdet(cov)[1] +
|
||
|
self.df_model * np.log(self.nobs_effective) /
|
||
|
self.nobs_effective)
|
||
|
elif criteria == 'hqic':
|
||
|
out = np.squeeze(np.linalg.slogdet(cov)[1] +
|
||
|
2 * self.df_model *
|
||
|
np.log(np.log(self.nobs_effective)) /
|
||
|
self.nobs_effective)
|
||
|
else:
|
||
|
raise ValueError('Invalid information criteria')
|
||
|
|
||
|
else:
|
||
|
raise ValueError('Invalid information criteria computation method')
|
||
|
|
||
|
return out
|
||
|
|
||
|
@cache_readonly
|
||
|
def fittedvalues(self):
|
||
|
"""
|
||
|
(array) The predicted values of the model. An (nobs x k_endog) array.
|
||
|
"""
|
||
|
# This is a (k_endog x nobs array; do not want to squeeze in case of
|
||
|
# the corner case where nobs = 1 (mostly a concern in the predict or
|
||
|
# forecast functions, but here also to maintain consistency)
|
||
|
fittedvalues = self.forecasts
|
||
|
if fittedvalues is None:
|
||
|
pass
|
||
|
elif fittedvalues.shape[0] == 1:
|
||
|
fittedvalues = fittedvalues[0, :]
|
||
|
else:
|
||
|
fittedvalues = fittedvalues.T
|
||
|
return fittedvalues
|
||
|
|
||
|
@cache_readonly
|
||
|
def hqic(self):
|
||
|
"""
|
||
|
(float) Hannan-Quinn Information Criterion
|
||
|
"""
|
||
|
# return (-2 * self.llf +
|
||
|
# 2 * np.log(np.log(self.nobs_effective)) * self.df_model)
|
||
|
return hqic(self.llf, self.nobs_effective, self.df_model)
|
||
|
|
||
|
@cache_readonly
|
||
|
def llf_obs(self):
|
||
|
"""
|
||
|
(float) The value of the log-likelihood function evaluated at `params`.
|
||
|
"""
|
||
|
return self.filter_results.llf_obs
|
||
|
|
||
|
@cache_readonly
|
||
|
def llf(self):
|
||
|
"""
|
||
|
(float) The value of the log-likelihood function evaluated at `params`.
|
||
|
"""
|
||
|
return self.filter_results.llf
|
||
|
|
||
|
@cache_readonly
|
||
|
def loglikelihood_burn(self):
|
||
|
"""
|
||
|
(float) The number of observations during which the likelihood is not
|
||
|
evaluated.
|
||
|
"""
|
||
|
return self.filter_results.loglikelihood_burn
|
||
|
|
||
|
@cache_readonly
|
||
|
def mae(self):
|
||
|
"""
|
||
|
(float) Mean absolute error
|
||
|
"""
|
||
|
return np.mean(np.abs(self.resid))
|
||
|
|
||
|
@cache_readonly
|
||
|
def mse(self):
|
||
|
"""
|
||
|
(float) Mean squared error
|
||
|
"""
|
||
|
return self.sse / self.nobs
|
||
|
|
||
|
@cache_readonly
|
||
|
def pvalues(self):
|
||
|
"""
|
||
|
(array) The p-values associated with the z-statistics of the
|
||
|
coefficients. Note that the coefficients are assumed to have a Normal
|
||
|
distribution.
|
||
|
"""
|
||
|
pvalues = np.zeros_like(self.zvalues) * np.nan
|
||
|
mask = np.ones_like(pvalues, dtype=bool)
|
||
|
mask[self._free_params_index] = True
|
||
|
mask &= ~np.isnan(self.zvalues)
|
||
|
pvalues[mask] = norm.sf(np.abs(self.zvalues[mask])) * 2
|
||
|
return pvalues
|
||
|
|
||
|
@cache_readonly
|
||
|
def resid(self):
|
||
|
"""
|
||
|
(array) The model residuals. An (nobs x k_endog) array.
|
||
|
"""
|
||
|
# This is a (k_endog x nobs array; do not want to squeeze in case of
|
||
|
# the corner case where nobs = 1 (mostly a concern in the predict or
|
||
|
# forecast functions, but here also to maintain consistency)
|
||
|
resid = self.forecasts_error
|
||
|
if resid is None:
|
||
|
pass
|
||
|
elif resid.shape[0] == 1:
|
||
|
resid = resid[0, :]
|
||
|
else:
|
||
|
resid = resid.T
|
||
|
return resid
|
||
|
|
||
|
@property
|
||
|
def states(self):
|
||
|
if self.model._index_generated and not self.model._index_none:
|
||
|
warnings.warn('No supported index is available. The `states`'
|
||
|
' DataFrame uses a generated integer index',
|
||
|
ValueWarning)
|
||
|
return self._states
|
||
|
|
||
|
@cache_readonly
|
||
|
def sse(self):
|
||
|
"""
|
||
|
(float) Sum of squared errors
|
||
|
"""
|
||
|
return np.sum(self.resid**2)
|
||
|
|
||
|
@cache_readonly
|
||
|
def zvalues(self):
|
||
|
"""
|
||
|
(array) The z-statistics for the coefficients.
|
||
|
"""
|
||
|
return self.params / self.bse
|
||
|
|
||
|
def test_normality(self, method):
|
||
|
"""
|
||
|
Test for normality of standardized residuals.
|
||
|
|
||
|
Null hypothesis is normality.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
method : {'jarquebera', None}
|
||
|
The statistical test for normality. Must be 'jarquebera' for
|
||
|
Jarque-Bera normality test. If None, an attempt is made to select
|
||
|
an appropriate test.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
statsmodels.stats.stattools.jarque_bera
|
||
|
The Jarque-Bera test of normality.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Let `d` = max(loglikelihood_burn, nobs_diffuse); this test is
|
||
|
calculated ignoring the first `d` residuals.
|
||
|
|
||
|
In the case of missing data, the maintained hypothesis is that the
|
||
|
data are missing completely at random. This test is then run on the
|
||
|
standardized residuals excluding those corresponding to missing
|
||
|
observations.
|
||
|
"""
|
||
|
if method is None:
|
||
|
method = 'jarquebera'
|
||
|
|
||
|
if self.standardized_forecasts_error is None:
|
||
|
raise ValueError('Cannot compute test statistic when standardized'
|
||
|
' forecast errors have not been computed.')
|
||
|
|
||
|
if method == 'jarquebera':
|
||
|
from statsmodels.stats.stattools import jarque_bera
|
||
|
d = np.maximum(self.loglikelihood_burn, self.nobs_diffuse)
|
||
|
output = []
|
||
|
for i in range(self.model.k_endog):
|
||
|
resid = self.filter_results.standardized_forecasts_error[i, d:]
|
||
|
mask = ~np.isnan(resid)
|
||
|
output.append(jarque_bera(resid[mask]))
|
||
|
else:
|
||
|
raise NotImplementedError('Invalid normality test method.')
|
||
|
|
||
|
return np.array(output)
|
||
|
|
||
|
def test_heteroskedasticity(self, method, alternative='two-sided',
|
||
|
use_f=True):
|
||
|
r"""
|
||
|
Test for heteroskedasticity of standardized residuals
|
||
|
|
||
|
Tests whether the sum-of-squares in the first third of the sample is
|
||
|
significantly different than the sum-of-squares in the last third
|
||
|
of the sample. Analogous to a Goldfeld-Quandt test. The null hypothesis
|
||
|
is of no heteroskedasticity.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
method : {'breakvar', None}
|
||
|
The statistical test for heteroskedasticity. Must be 'breakvar'
|
||
|
for test of a break in the variance. If None, an attempt is
|
||
|
made to select an appropriate test.
|
||
|
alternative : str, 'increasing', 'decreasing' or 'two-sided'
|
||
|
This specifies the alternative for the p-value calculation. Default
|
||
|
is two-sided.
|
||
|
use_f : bool, optional
|
||
|
Whether or not to compare against the asymptotic distribution
|
||
|
(chi-squared) or the approximate small-sample distribution (F).
|
||
|
Default is True (i.e. default is to compare against an F
|
||
|
distribution).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
output : ndarray
|
||
|
An array with `(test_statistic, pvalue)` for each endogenous
|
||
|
variable. The array is then sized `(k_endog, 2)`. If the method is
|
||
|
called as `het = res.test_heteroskedasticity()`, then `het[0]` is
|
||
|
an array of size 2 corresponding to the first endogenous variable,
|
||
|
where `het[0][0]` is the test statistic, and `het[0][1]` is the
|
||
|
p-value.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
statsmodels.tsa.stattools.breakvar_heteroskedasticity_test
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The null hypothesis is of no heteroskedasticity.
|
||
|
|
||
|
For :math:`h = [T/3]`, the test statistic is:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
H(h) = \sum_{t=T-h+1}^T \tilde v_t^2
|
||
|
\Bigg / \sum_{t=d+1}^{d+1+h} \tilde v_t^2
|
||
|
|
||
|
where :math:`d` = max(loglikelihood_burn, nobs_diffuse)` (usually
|
||
|
corresponding to diffuse initialization under either the approximate
|
||
|
or exact approach).
|
||
|
|
||
|
This statistic can be tested against an :math:`F(h,h)` distribution.
|
||
|
Alternatively, :math:`h H(h)` is asymptotically distributed according
|
||
|
to :math:`\chi_h^2`; this second test can be applied by passing
|
||
|
`use_f=True` as an argument.
|
||
|
|
||
|
See section 5.4 of [1]_ for the above formula and discussion, as well
|
||
|
as additional details.
|
||
|
|
||
|
TODO
|
||
|
|
||
|
- Allow specification of :math:`h`
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Harvey, Andrew C. 1990. *Forecasting, Structural Time Series*
|
||
|
*Models and the Kalman Filter.* Cambridge University Press.
|
||
|
"""
|
||
|
if method is None:
|
||
|
method = 'breakvar'
|
||
|
|
||
|
if self.standardized_forecasts_error is None:
|
||
|
raise ValueError('Cannot compute test statistic when standardized'
|
||
|
' forecast errors have not been computed.')
|
||
|
|
||
|
if method == 'breakvar':
|
||
|
from statsmodels.tsa.stattools import (
|
||
|
breakvar_heteroskedasticity_test
|
||
|
)
|
||
|
# Store some values
|
||
|
resid = self.filter_results.standardized_forecasts_error
|
||
|
d = np.maximum(self.loglikelihood_burn, self.nobs_diffuse)
|
||
|
# This differs from self.nobs_effective because here we want to
|
||
|
# exclude exact diffuse periods, whereas self.nobs_effective only
|
||
|
# excludes explicitly burned (usually approximate diffuse) periods.
|
||
|
nobs_effective = self.nobs - d
|
||
|
h = int(np.round(nobs_effective / 3))
|
||
|
|
||
|
test_statistics = []
|
||
|
p_values = []
|
||
|
for i in range(self.model.k_endog):
|
||
|
test_statistic, p_value = breakvar_heteroskedasticity_test(
|
||
|
resid[i, d:],
|
||
|
subset_length=h,
|
||
|
alternative=alternative,
|
||
|
use_f=use_f
|
||
|
)
|
||
|
test_statistics.append(test_statistic)
|
||
|
p_values.append(p_value)
|
||
|
|
||
|
output = np.c_[test_statistics, p_values]
|
||
|
else:
|
||
|
raise NotImplementedError('Invalid heteroskedasticity test'
|
||
|
' method.')
|
||
|
|
||
|
return output
|
||
|
|
||
|
def test_serial_correlation(self, method, df_adjust=False, lags=None):
|
||
|
"""
|
||
|
Ljung-Box test for no serial correlation of standardized residuals
|
||
|
|
||
|
Null hypothesis is no serial correlation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
method : {'ljungbox', 'boxpierce', None}
|
||
|
The statistical test for serial correlation. If None, an attempt is
|
||
|
made to select an appropriate test.
|
||
|
lags : None, int or array_like
|
||
|
If lags is an integer then this is taken to be the largest lag
|
||
|
that is included, the test result is reported for all smaller lag
|
||
|
length.
|
||
|
If lags is a list or array, then all lags are included up to the
|
||
|
largest lag in the list, however only the tests for the lags in the
|
||
|
list are reported.
|
||
|
If lags is None, then the default maxlag is min(10, nobs // 5) for
|
||
|
non-seasonal models and min(2*m, nobs // 5) for seasonal time
|
||
|
series where m is the seasonal period.
|
||
|
df_adjust : bool, optional
|
||
|
If True, the degrees of freedom consumed by the model is subtracted
|
||
|
from the degrees-of-freedom used in the test so that the adjusted
|
||
|
dof for the statistics are lags - model_df. In an ARMA model, this
|
||
|
value is usually p+q where p is the AR order and q is the MA order.
|
||
|
When using df_adjust, it is not possible to use tests based on
|
||
|
fewer than model_df lags.
|
||
|
Returns
|
||
|
-------
|
||
|
output : ndarray
|
||
|
An array with `(test_statistic, pvalue)` for each endogenous
|
||
|
variable and each lag. The array is then sized
|
||
|
`(k_endog, 2, lags)`. If the method is called as
|
||
|
`ljungbox = res.test_serial_correlation()`, then `ljungbox[i]`
|
||
|
holds the results of the Ljung-Box test (as would be returned by
|
||
|
`statsmodels.stats.diagnostic.acorr_ljungbox`) for the `i` th
|
||
|
endogenous variable.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
statsmodels.stats.diagnostic.acorr_ljungbox
|
||
|
Ljung-Box test for serial correlation.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Let `d` = max(loglikelihood_burn, nobs_diffuse); this test is
|
||
|
calculated ignoring the first `d` residuals.
|
||
|
|
||
|
Output is nan for any endogenous variable which has missing values.
|
||
|
"""
|
||
|
if method is None:
|
||
|
method = 'ljungbox'
|
||
|
|
||
|
if self.standardized_forecasts_error is None:
|
||
|
raise ValueError('Cannot compute test statistic when standardized'
|
||
|
' forecast errors have not been computed.')
|
||
|
|
||
|
if method == 'ljungbox' or method == 'boxpierce':
|
||
|
from statsmodels.stats.diagnostic import acorr_ljungbox
|
||
|
d = np.maximum(self.loglikelihood_burn, self.nobs_diffuse)
|
||
|
# This differs from self.nobs_effective because here we want to
|
||
|
# exclude exact diffuse periods, whereas self.nobs_effective only
|
||
|
# excludes explicitly burned (usually approximate diffuse) periods.
|
||
|
nobs_effective = self.nobs - d
|
||
|
output = []
|
||
|
|
||
|
# Default lags for acorr_ljungbox is 40, but may not always have
|
||
|
# that many observations
|
||
|
if lags is None:
|
||
|
seasonal_periods = getattr(self.model, "seasonal_periods", 0)
|
||
|
if seasonal_periods:
|
||
|
lags = min(2 * seasonal_periods, nobs_effective // 5)
|
||
|
else:
|
||
|
lags = min(10, nobs_effective // 5)
|
||
|
|
||
|
model_df = 0
|
||
|
if df_adjust:
|
||
|
model_df = max(0, self.df_model - self.k_diffuse_states - 1)
|
||
|
|
||
|
cols = [2, 3] if method == 'boxpierce' else [0, 1]
|
||
|
for i in range(self.model.k_endog):
|
||
|
results = acorr_ljungbox(
|
||
|
self.filter_results.standardized_forecasts_error[i][d:],
|
||
|
lags=lags, boxpierce=(method == 'boxpierce'),
|
||
|
model_df=model_df)
|
||
|
output.append(np.asarray(results)[:, cols].T)
|
||
|
|
||
|
output = np.c_[output]
|
||
|
else:
|
||
|
raise NotImplementedError('Invalid serial correlation test'
|
||
|
' method.')
|
||
|
return output
|
||
|
|
||
|
def get_prediction(self, start=None, end=None, dynamic=False,
|
||
|
information_set='predicted', signal_only=False,
|
||
|
index=None, exog=None, extend_model=None,
|
||
|
extend_kwargs=None, **kwargs):
|
||
|
r"""
|
||
|
In-sample prediction and out-of-sample forecasting
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
start : int, str, or datetime, optional
|
||
|
Zero-indexed observation number at which to start forecasting,
|
||
|
i.e., the first forecast is start. Can also be a date string to
|
||
|
parse or a datetime type. Default is the the zeroth observation.
|
||
|
end : int, str, or datetime, optional
|
||
|
Zero-indexed observation number at which to end forecasting, i.e.,
|
||
|
the last forecast is end. Can also be a date string to
|
||
|
parse or a datetime type. However, if the dates index does not
|
||
|
have a fixed frequency, end must be an integer index if you
|
||
|
want out of sample prediction. Default is the last observation in
|
||
|
the sample.
|
||
|
dynamic : bool, int, str, or datetime, optional
|
||
|
Integer offset relative to `start` at which to begin dynamic
|
||
|
prediction. Can also be an absolute date string to parse or a
|
||
|
datetime type (these are not interpreted as offsets).
|
||
|
Prior to this observation, true endogenous values will be used for
|
||
|
prediction; starting with this observation and continuing through
|
||
|
the end of prediction, forecasted endogenous values will be used
|
||
|
instead.
|
||
|
information_set : str, optional
|
||
|
The information set to condition each prediction on. Default is
|
||
|
"predicted", which computes predictions of period t values
|
||
|
conditional on observed data through period t-1; these are
|
||
|
one-step-ahead predictions, and correspond with the typical
|
||
|
`fittedvalues` results attribute. Alternatives are "filtered",
|
||
|
which computes predictions of period t values conditional on
|
||
|
observed data through period t, and "smoothed", which computes
|
||
|
predictions of period t values conditional on the entire dataset
|
||
|
(including also future observations t+1, t+2, ...).
|
||
|
signal_only : bool, optional
|
||
|
Whether to compute predictions of only the "signal" component of
|
||
|
the observation equation. Default is False. For example, the
|
||
|
observation equation of a time-invariant model is
|
||
|
:math:`y_t = d + Z \alpha_t + \varepsilon_t`, and the "signal"
|
||
|
component is then :math:`Z \alpha_t`. If this argument is set to
|
||
|
True, then predictions of the "signal" :math:`Z \alpha_t` will be
|
||
|
returned. Otherwise, the default is for predictions of :math:`y_t`
|
||
|
to be returned.
|
||
|
**kwargs
|
||
|
Additional arguments may required for forecasting beyond the end
|
||
|
of the sample. See `FilterResults.predict` for more details.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
predictions : PredictionResults
|
||
|
PredictionResults instance containing in-sample predictions /
|
||
|
out-of-sample forecasts and results including confidence intervals.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
forecast
|
||
|
Out-of-sample forecasts.
|
||
|
predict
|
||
|
In-sample predictions and out-of-sample forecasts.
|
||
|
get_forecast
|
||
|
Out-of-sample forecasts and results including confidence intervals.
|
||
|
"""
|
||
|
if start is None:
|
||
|
start = 0
|
||
|
|
||
|
# Handle start, end, dynamic
|
||
|
start, end, out_of_sample, prediction_index = (
|
||
|
self.model._get_prediction_index(start, end, index))
|
||
|
|
||
|
# Handle `dynamic`
|
||
|
if isinstance(dynamic, (str, dt.datetime, pd.Timestamp)):
|
||
|
dynamic, _, _ = self.model._get_index_loc(dynamic)
|
||
|
# Convert to offset relative to start
|
||
|
dynamic = dynamic - start
|
||
|
|
||
|
# If we have out-of-sample forecasting and `exog` or in general any
|
||
|
# kind of time-varying state space model, then we need to create an
|
||
|
# extended model to get updated state space system matrices
|
||
|
if extend_model is None:
|
||
|
extend_model = (self.model.exog is not None or
|
||
|
not self.filter_results.time_invariant)
|
||
|
if out_of_sample and extend_model:
|
||
|
kwargs = self.model._get_extension_time_varying_matrices(
|
||
|
self.params, exog, out_of_sample, extend_kwargs,
|
||
|
transformed=True, includes_fixed=True, **kwargs)
|
||
|
|
||
|
# Make sure the model class has the current parameters
|
||
|
self.model.update(self.params, transformed=True, includes_fixed=True)
|
||
|
|
||
|
# Perform the prediction
|
||
|
# This is a (k_endog x npredictions) array; do not want to squeeze in
|
||
|
# case of npredictions = 1
|
||
|
prediction_results = self.filter_results.predict(
|
||
|
start, end + out_of_sample + 1, dynamic, **kwargs)
|
||
|
|
||
|
# Return a new mlemodel.PredictionResults object
|
||
|
return PredictionResultsWrapper(PredictionResults(
|
||
|
self, prediction_results, information_set=information_set,
|
||
|
signal_only=signal_only, row_labels=prediction_index))
|
||
|
|
||
|
def get_forecast(self, steps=1, signal_only=False, **kwargs):
|
||
|
r"""
|
||
|
Out-of-sample forecasts and prediction intervals
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
steps : int, str, or datetime, optional
|
||
|
If an integer, the number of steps to forecast from the end of the
|
||
|
sample. Can also be a date string to parse or a datetime type.
|
||
|
However, if the dates index does not have a fixed frequency, steps
|
||
|
must be an integer. Default is 1.
|
||
|
signal_only : bool, optional
|
||
|
Whether to compute forecasts of only the "signal" component of
|
||
|
the observation equation. Default is False. For example, the
|
||
|
observation equation of a time-invariant model is
|
||
|
:math:`y_t = d + Z \alpha_t + \varepsilon_t`, and the "signal"
|
||
|
component is then :math:`Z \alpha_t`. If this argument is set to
|
||
|
True, then forecasts of the "signal" :math:`Z \alpha_t` will be
|
||
|
returned. Otherwise, the default is for forecasts of :math:`y_t`
|
||
|
to be returned.
|
||
|
**kwargs
|
||
|
Additional arguments may required for forecasting beyond the end
|
||
|
of the sample. See `FilterResults.predict` for more details.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
forecasts : PredictionResults
|
||
|
PredictionResults instance containing out-of-sample forecasts and
|
||
|
results including confidence intervals.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
forecast
|
||
|
Out-of-sample forecasts.
|
||
|
predict
|
||
|
In-sample predictions and out-of-sample forecasts.
|
||
|
get_prediction
|
||
|
In-sample predictions / out-of-sample forecasts and results
|
||
|
including confidence intervals.
|
||
|
"""
|
||
|
if isinstance(steps, int):
|
||
|
end = self.nobs + steps - 1
|
||
|
else:
|
||
|
end = steps
|
||
|
return self.get_prediction(start=self.nobs, end=end,
|
||
|
signal_only=signal_only, **kwargs)
|
||
|
|
||
|
def predict(self, start=None, end=None, dynamic=False,
|
||
|
information_set='predicted', signal_only=False, **kwargs):
|
||
|
r"""
|
||
|
In-sample prediction and out-of-sample forecasting
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
start : {int, str,datetime}, optional
|
||
|
Zero-indexed observation number at which to start forecasting,
|
||
|
i.e., the first forecast is start. Can also be a date string to
|
||
|
parse or a datetime type. Default is the zeroth observation.
|
||
|
end : {int, str,datetime}, optional
|
||
|
Zero-indexed observation number at which to end forecasting, i.e.,
|
||
|
the last forecast is end. Can also be a date string to
|
||
|
parse or a datetime type. However, if the dates index does not
|
||
|
have a fixed frequency, end must be an integer index if you
|
||
|
want out of sample prediction. Default is the last observation in
|
||
|
the sample.
|
||
|
dynamic : {bool, int, str,datetime}, optional
|
||
|
Integer offset relative to `start` at which to begin dynamic
|
||
|
prediction. Can also be an absolute date string to parse or a
|
||
|
datetime type (these are not interpreted as offsets).
|
||
|
Prior to this observation, true endogenous values will be used for
|
||
|
prediction; starting with this observation and continuing through
|
||
|
the end of prediction, forecasted endogenous values will be used
|
||
|
instead.
|
||
|
information_set : str, optional
|
||
|
The information set to condition each prediction on. Default is
|
||
|
"predicted", which computes predictions of period t values
|
||
|
conditional on observed data through period t-1; these are
|
||
|
one-step-ahead predictions, and correspond with the typical
|
||
|
`fittedvalues` results attribute. Alternatives are "filtered",
|
||
|
which computes predictions of period t values conditional on
|
||
|
observed data through period t, and "smoothed", which computes
|
||
|
predictions of period t values conditional on the entire dataset
|
||
|
(including also future observations t+1, t+2, ...).
|
||
|
signal_only : bool, optional
|
||
|
Whether to compute predictions of only the "signal" component of
|
||
|
the observation equation. Default is False. For example, the
|
||
|
observation equation of a time-invariant model is
|
||
|
:math:`y_t = d + Z \alpha_t + \varepsilon_t`, and the "signal"
|
||
|
component is then :math:`Z \alpha_t`. If this argument is set to
|
||
|
True, then predictions of the "signal" :math:`Z \alpha_t` will be
|
||
|
returned. Otherwise, the default is for predictions of :math:`y_t`
|
||
|
to be returned.
|
||
|
**kwargs
|
||
|
Additional arguments may be required for forecasting beyond the end
|
||
|
of the sample. See ``FilterResults.predict`` for more details.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
predictions : array_like
|
||
|
In-sample predictions / Out-of-sample forecasts. (Numpy array or
|
||
|
Pandas Series or DataFrame, depending on input and dimensions).
|
||
|
Dimensions are `(npredict x k_endog)`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
forecast
|
||
|
Out-of-sample forecasts.
|
||
|
get_forecast
|
||
|
Out-of-sample forecasts and results including confidence intervals.
|
||
|
get_prediction
|
||
|
In-sample predictions / out-of-sample forecasts and results
|
||
|
including confidence intervals.
|
||
|
"""
|
||
|
# Perform the prediction
|
||
|
prediction_results = self.get_prediction(
|
||
|
start, end, dynamic, information_set=information_set,
|
||
|
signal_only=signal_only, **kwargs)
|
||
|
return prediction_results.predicted_mean
|
||
|
|
||
|
def forecast(self, steps=1, signal_only=False, **kwargs):
|
||
|
r"""
|
||
|
Out-of-sample forecasts
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
steps : int, str, or datetime, optional
|
||
|
If an integer, the number of steps to forecast from the end of the
|
||
|
sample. Can also be a date string to parse or a datetime type.
|
||
|
However, if the dates index does not have a fixed frequency, steps
|
||
|
must be an integer. Default is 1.
|
||
|
signal_only : bool, optional
|
||
|
Whether to compute forecasts of only the "signal" component of
|
||
|
the observation equation. Default is False. For example, the
|
||
|
observation equation of a time-invariant model is
|
||
|
:math:`y_t = d + Z \alpha_t + \varepsilon_t`, and the "signal"
|
||
|
component is then :math:`Z \alpha_t`. If this argument is set to
|
||
|
True, then forecasts of the "signal" :math:`Z \alpha_t` will be
|
||
|
returned. Otherwise, the default is for forecasts of :math:`y_t`
|
||
|
to be returned.
|
||
|
**kwargs
|
||
|
Additional arguments may required for forecasting beyond the end
|
||
|
of the sample. See `FilterResults.predict` for more details.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
forecast : array_like
|
||
|
Out-of-sample forecasts (Numpy array or Pandas Series or DataFrame,
|
||
|
depending on input and dimensions).
|
||
|
Dimensions are `(steps x k_endog)`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
predict
|
||
|
In-sample predictions and out-of-sample forecasts.
|
||
|
get_forecast
|
||
|
Out-of-sample forecasts and results including confidence intervals.
|
||
|
get_prediction
|
||
|
In-sample predictions / out-of-sample forecasts and results
|
||
|
including confidence intervals.
|
||
|
"""
|
||
|
if isinstance(steps, int):
|
||
|
end = self.nobs + steps - 1
|
||
|
else:
|
||
|
end = steps
|
||
|
return self.predict(start=self.nobs, end=end, signal_only=signal_only,
|
||
|
**kwargs)
|
||
|
|
||
|
def simulate(self, nsimulations, measurement_shocks=None,
|
||
|
state_shocks=None, initial_state=None, anchor=None,
|
||
|
repetitions=None, exog=None, extend_model=None,
|
||
|
extend_kwargs=None,
|
||
|
pretransformed_measurement_shocks=True,
|
||
|
pretransformed_state_shocks=True,
|
||
|
pretransformed_initial_state=True,
|
||
|
random_state=None, **kwargs):
|
||
|
r"""
|
||
|
Simulate a new time series following the state space model
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
nsimulations : int
|
||
|
The number of observations to simulate. If the model is
|
||
|
time-invariant this can be any number. If the model is
|
||
|
time-varying, then this number must be less than or equal to the
|
||
|
number
|
||
|
measurement_shocks : array_like, optional
|
||
|
If specified, these are the shocks to the measurement equation,
|
||
|
:math:`\varepsilon_t`. If unspecified, these are automatically
|
||
|
generated using a pseudo-random number generator. If specified,
|
||
|
must be shaped `nsimulations` x `k_endog`, where `k_endog` is the
|
||
|
same as in the state space model.
|
||
|
state_shocks : array_like, optional
|
||
|
If specified, these are the shocks to the state equation,
|
||
|
:math:`\eta_t`. If unspecified, these are automatically
|
||
|
generated using a pseudo-random number generator. If specified,
|
||
|
must be shaped `nsimulations` x `k_posdef` where `k_posdef` is the
|
||
|
same as in the state space model.
|
||
|
initial_state : array_like, optional
|
||
|
If specified, this is the initial state vector to use in
|
||
|
simulation, which should be shaped (`k_states` x 1), where
|
||
|
`k_states` is the same as in the state space model. If unspecified,
|
||
|
but the model has been initialized, then that initialization is
|
||
|
used. This must be specified if `anchor` is anything other than
|
||
|
"start" or 0.
|
||
|
anchor : int, str, or datetime, optional
|
||
|
Starting point from which to begin the simulations; type depends on
|
||
|
the index of the given `endog` model. Two special cases are the
|
||
|
strings 'start' and 'end', which refer to starting at the beginning
|
||
|
and end of the sample, respectively. If a date/time index was
|
||
|
provided to the model, then this argument can be a date string to
|
||
|
parse or a datetime type. Otherwise, an integer index should be
|
||
|
given. Default is 'start'.
|
||
|
repetitions : int, optional
|
||
|
Number of simulated paths to generate. Default is 1 simulated path.
|
||
|
exog : array_like, optional
|
||
|
New observations of exogenous regressors, if applicable.
|
||
|
pretransformed_measurement_shocks : bool, optional
|
||
|
If `measurement_shocks` is provided, this flag indicates whether it
|
||
|
should be directly used as the shocks. If False, then it is assumed
|
||
|
to contain draws from the standard Normal distribution that must be
|
||
|
transformed using the `obs_cov` covariance matrix. Default is True.
|
||
|
pretransformed_state_shocks : bool, optional
|
||
|
If `state_shocks` is provided, this flag indicates whether it
|
||
|
should be directly used as the shocks. If False, then it is assumed
|
||
|
to contain draws from the standard Normal distribution that must be
|
||
|
transformed using the `state_cov` covariance matrix. Default is
|
||
|
True.
|
||
|
pretransformed_initial_state : bool, optional
|
||
|
If `initial_state` is provided, this flag indicates whether it
|
||
|
should be directly used as the initial_state. If False, then it is
|
||
|
assumed to contain draws from the standard Normal distribution that
|
||
|
must be transformed using the `initial_state_cov` covariance
|
||
|
matrix. Default is True.
|
||
|
random_state : {None, int, Generator, RandomState}, optional
|
||
|
If `seed` is None (or `np.random`), the
|
||
|
class:``~numpy.random.RandomState`` singleton is used.
|
||
|
If `seed` is an int, a new class:``~numpy.random.RandomState``
|
||
|
instance is used, seeded with `seed`.
|
||
|
If `seed` is already a class:``~numpy.random.Generator`` or
|
||
|
class:``~numpy.random.RandomState`` instance then that instance is
|
||
|
used.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
simulated_obs : ndarray
|
||
|
An array of simulated observations. If `repetitions=None`, then it
|
||
|
will be shaped (nsimulations x k_endog) or (nsimulations,) if
|
||
|
`k_endog=1`. Otherwise it will be shaped
|
||
|
(nsimulations x k_endog x repetitions). If the model was given
|
||
|
Pandas input then the output will be a Pandas object. If
|
||
|
`k_endog > 1` and `repetitions` is not None, then the output will
|
||
|
be a Pandas DataFrame that has a MultiIndex for the columns, with
|
||
|
the first level containing the names of the `endog` variables and
|
||
|
the second level containing the repetition number.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
impulse_responses
|
||
|
Impulse response functions
|
||
|
"""
|
||
|
# Get the starting location
|
||
|
if anchor is None or anchor == 'start':
|
||
|
iloc = 0
|
||
|
elif anchor == 'end':
|
||
|
iloc = self.nobs
|
||
|
else:
|
||
|
iloc, _, _ = self.model._get_index_loc(anchor)
|
||
|
if isinstance(iloc, slice):
|
||
|
iloc = iloc.start
|
||
|
|
||
|
if iloc < 0:
|
||
|
iloc = self.nobs + iloc
|
||
|
if iloc > self.nobs:
|
||
|
raise ValueError('Cannot anchor simulation outside of the sample.')
|
||
|
|
||
|
# GH 9162
|
||
|
from statsmodels.tsa.statespace import simulation_smoother
|
||
|
random_state = simulation_smoother.check_random_state(random_state)
|
||
|
|
||
|
# Setup the initial state
|
||
|
if initial_state is None:
|
||
|
initial_state_moments = (
|
||
|
self.predicted_state[:, iloc],
|
||
|
self.predicted_state_cov[:, :, iloc])
|
||
|
|
||
|
_repetitions = 1 if repetitions is None else repetitions
|
||
|
|
||
|
initial_state = random_state.multivariate_normal(
|
||
|
*initial_state_moments, size=_repetitions).T
|
||
|
|
||
|
scale = self.scale if self.filter_results.filter_concentrated else None
|
||
|
with self.model.ssm.fixed_scale(scale):
|
||
|
sim = self.model.simulate(
|
||
|
self.params, nsimulations,
|
||
|
measurement_shocks=measurement_shocks,
|
||
|
state_shocks=state_shocks, initial_state=initial_state,
|
||
|
anchor=anchor, repetitions=repetitions, exog=exog,
|
||
|
transformed=True, includes_fixed=True,
|
||
|
extend_model=extend_model, extend_kwargs=extend_kwargs,
|
||
|
pretransformed_measurement_shocks=(
|
||
|
pretransformed_measurement_shocks),
|
||
|
pretransformed_state_shocks=pretransformed_state_shocks,
|
||
|
pretransformed_initial_state=pretransformed_initial_state,
|
||
|
random_state=random_state, **kwargs)
|
||
|
|
||
|
return sim
|
||
|
|
||
|
def impulse_responses(self, steps=1, impulse=0, orthogonalized=False,
|
||
|
cumulative=False, **kwargs):
|
||
|
"""
|
||
|
Impulse response function
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
steps : int, optional
|
||
|
The number of steps for which impulse responses are calculated.
|
||
|
Default is 1. Note that for time-invariant models, the initial
|
||
|
impulse is not counted as a step, so if `steps=1`, the output will
|
||
|
have 2 entries.
|
||
|
impulse : int, str or array_like
|
||
|
If an integer, the state innovation to pulse; must be between 0
|
||
|
and `k_posdef-1`. If a str, it indicates which column of df
|
||
|
the unit (1) impulse is given.
|
||
|
Alternatively, a custom impulse vector may be provided; must be
|
||
|
shaped `k_posdef x 1`.
|
||
|
orthogonalized : bool, optional
|
||
|
Whether or not to perform impulse using orthogonalized innovations.
|
||
|
Note that this will also affect custum `impulse` vectors. Default
|
||
|
is False.
|
||
|
cumulative : bool, optional
|
||
|
Whether or not to return cumulative impulse responses. Default is
|
||
|
False.
|
||
|
anchor : int, str, or datetime, optional
|
||
|
Time point within the sample for the state innovation impulse. Type
|
||
|
depends on the index of the given `endog` in the model. Two special
|
||
|
cases are the strings 'start' and 'end', which refer to setting the
|
||
|
impulse at the first and last points of the sample, respectively.
|
||
|
Integer values can run from 0 to `nobs - 1`, or can be negative to
|
||
|
apply negative indexing. Finally, if a date/time index was provided
|
||
|
to the model, then this argument can be a date string to parse or a
|
||
|
datetime type. Default is 'start'.
|
||
|
exog : array_like, optional
|
||
|
New observations of exogenous regressors, if applicable.
|
||
|
**kwargs
|
||
|
If the model has time-varying design or transition matrices and the
|
||
|
combination of `anchor` and `steps` implies creating impulse
|
||
|
responses for the out-of-sample period, then these matrices must
|
||
|
have updated values provided for the out-of-sample steps. For
|
||
|
example, if `design` is a time-varying component, `nobs` is 10,
|
||
|
`anchor=1`, and `steps` is 15, a (`k_endog` x `k_states` x 7)
|
||
|
matrix must be provided with the new design matrix values.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
impulse_responses : ndarray
|
||
|
Responses for each endogenous variable due to the impulse
|
||
|
given by the `impulse` argument. For a time-invariant model, the
|
||
|
impulse responses are given for `steps + 1` elements (this gives
|
||
|
the "initial impulse" followed by `steps` responses for the
|
||
|
important cases of VAR and SARIMAX models), while for time-varying
|
||
|
models the impulse responses are only given for `steps` elements
|
||
|
(to avoid having to unexpectedly provide updated time-varying
|
||
|
matrices).
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
simulate
|
||
|
Simulate a time series according to the given state space model,
|
||
|
optionally with specified series for the innovations.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Intercepts in the measurement and state equation are ignored when
|
||
|
calculating impulse responses.
|
||
|
"""
|
||
|
scale = self.scale if self.filter_results.filter_concentrated else None
|
||
|
with self.model.ssm.fixed_scale(scale):
|
||
|
irfs = self.model.impulse_responses(self.params, steps, impulse,
|
||
|
orthogonalized, cumulative,
|
||
|
**kwargs)
|
||
|
# These are wrapped automatically, so just return the array
|
||
|
if isinstance(irfs, (pd.Series, pd.DataFrame)):
|
||
|
irfs = irfs.values
|
||
|
return irfs
|
||
|
|
||
|
def _apply(self, mod, refit=False, fit_kwargs=None):
|
||
|
if fit_kwargs is None:
|
||
|
fit_kwargs = {}
|
||
|
|
||
|
if refit:
|
||
|
fit_kwargs.setdefault('start_params', self.params)
|
||
|
if self._has_fixed_params:
|
||
|
fit_kwargs.setdefault('includes_fixed', True)
|
||
|
res = mod.fit_constrained(self._fixed_params, **fit_kwargs)
|
||
|
else:
|
||
|
res = mod.fit(**fit_kwargs)
|
||
|
else:
|
||
|
if 'cov_type' in fit_kwargs:
|
||
|
raise ValueError('Cannot specify covariance type in'
|
||
|
' `fit_kwargs` unless refitting'
|
||
|
' parameters (not available in extend).')
|
||
|
if 'cov_kwds' in fit_kwargs:
|
||
|
raise ValueError('Cannot specify covariance keyword arguments'
|
||
|
' in `fit_kwargs` unless refitting'
|
||
|
' parameters (not available in extend).')
|
||
|
|
||
|
if self.cov_type == 'none':
|
||
|
fit_kwargs['cov_type'] = 'none'
|
||
|
else:
|
||
|
fit_kwargs['cov_type'] = 'custom'
|
||
|
fit_kwargs['cov_kwds'] = {
|
||
|
'custom_cov_type': self.cov_type,
|
||
|
'custom_cov_params': self.cov_params_default,
|
||
|
'custom_description': (
|
||
|
'Parameters and standard errors were estimated using a'
|
||
|
' different dataset and were then applied to this'
|
||
|
' dataset. %s'
|
||
|
% self.cov_kwds.get('description', 'Unknown.'))}
|
||
|
|
||
|
if self.smoother_results is not None:
|
||
|
func = mod.smooth
|
||
|
else:
|
||
|
func = mod.filter
|
||
|
|
||
|
if self._has_fixed_params:
|
||
|
with mod.fix_params(self._fixed_params):
|
||
|
fit_kwargs.setdefault('includes_fixed', True)
|
||
|
res = func(self.params, **fit_kwargs)
|
||
|
else:
|
||
|
res = func(self.params, **fit_kwargs)
|
||
|
|
||
|
return res
|
||
|
|
||
|
def _get_previous_updated(self, comparison, exog=None,
|
||
|
comparison_type=None, **kwargs):
|
||
|
# If we were given data, create a new results object
|
||
|
comparison_dataset = not isinstance(
|
||
|
comparison, (MLEResults, MLEResultsWrapper))
|
||
|
if comparison_dataset:
|
||
|
# If `exog` is longer than `comparison`, then we extend it to match
|
||
|
nobs_endog = len(comparison)
|
||
|
nobs_exog = len(exog) if exog is not None else nobs_endog
|
||
|
|
||
|
if nobs_exog > nobs_endog:
|
||
|
_, _, _, ix = self.model._get_prediction_index(
|
||
|
start=0, end=nobs_exog - 1)
|
||
|
# TODO: check that the index of `comparison` matches the model
|
||
|
comparison = np.asarray(comparison)
|
||
|
if comparison.ndim < 2:
|
||
|
comparison = np.atleast_2d(comparison).T
|
||
|
if (comparison.ndim != 2 or
|
||
|
comparison.shape[1] != self.model.k_endog):
|
||
|
raise ValueError('Invalid shape for `comparison`. Must'
|
||
|
f' contain {self.model.k_endog} columns.')
|
||
|
extra = np.zeros((nobs_exog - nobs_endog,
|
||
|
self.model.k_endog)) * np.nan
|
||
|
comparison = pd.DataFrame(
|
||
|
np.concatenate([comparison, extra], axis=0), index=ix,
|
||
|
columns=self.model.endog_names)
|
||
|
|
||
|
# Get the results object
|
||
|
comparison = self.apply(comparison, exog=exog,
|
||
|
copy_initialization=True, **kwargs)
|
||
|
|
||
|
# Now, figure out the `updated` versus `previous` results objects
|
||
|
nmissing = self.filter_results.missing.sum()
|
||
|
nmissing_comparison = comparison.filter_results.missing.sum()
|
||
|
if (comparison_type == 'updated' or (comparison_type is None and (
|
||
|
comparison.nobs > self.nobs or
|
||
|
(comparison.nobs == self.nobs and
|
||
|
nmissing > nmissing_comparison)))):
|
||
|
updated = comparison
|
||
|
previous = self
|
||
|
elif (comparison_type == 'previous' or (comparison_type is None and (
|
||
|
comparison.nobs < self.nobs or
|
||
|
(comparison.nobs == self.nobs and
|
||
|
nmissing < nmissing_comparison)))):
|
||
|
updated = self
|
||
|
previous = comparison
|
||
|
else:
|
||
|
raise ValueError('Could not automatically determine the type'
|
||
|
' of comparison requested to compute the'
|
||
|
' News, so it must be specified as "updated"'
|
||
|
' or "previous", using the `comparison_type`'
|
||
|
' keyword argument')
|
||
|
|
||
|
# Check that the index of `updated` is a superset of the
|
||
|
# index of `previous`
|
||
|
# Note: the try/except block is for Pandas < 0.25, in which
|
||
|
# `PeriodIndex.difference` raises a ValueError if the argument is not
|
||
|
# also a `PeriodIndex`.
|
||
|
diff = previous.model._index.difference(updated.model._index)
|
||
|
if len(diff) > 0:
|
||
|
raise ValueError('The index associated with the updated results is'
|
||
|
' not a superset of the index associated with the'
|
||
|
' previous results, and so these datasets do not'
|
||
|
' appear to be related. Can only compute the'
|
||
|
' news by comparing this results set to previous'
|
||
|
' results objects.')
|
||
|
|
||
|
return previous, updated, comparison_dataset
|
||
|
|
||
|
def _news_previous_results(self, previous, start, end, periods,
|
||
|
revisions_details_start=False,
|
||
|
state_index=None):
|
||
|
# Compute the news
|
||
|
out = self.smoother_results.news(
|
||
|
previous.smoother_results, start=start, end=end,
|
||
|
revisions_details_start=revisions_details_start,
|
||
|
state_index=state_index)
|
||
|
return out
|
||
|
|
||
|
def _news_updated_results(self, updated, start, end, periods,
|
||
|
revisions_details_start=False, state_index=None):
|
||
|
return updated._news_previous_results(
|
||
|
self, start, end, periods,
|
||
|
revisions_details_start=revisions_details_start,
|
||
|
state_index=state_index)
|
||
|
|
||
|
def _news_previous_data(self, endog, start, end, periods, exog,
|
||
|
revisions_details_start=False, state_index=None):
|
||
|
previous = self.apply(endog, exog=exog, copy_initialization=True)
|
||
|
return self._news_previous_results(
|
||
|
previous, start, end, periods,
|
||
|
revisions_details_start=revisions_details_start,
|
||
|
state_index=state_index)
|
||
|
|
||
|
def _news_updated_data(self, endog, start, end, periods, exog,
|
||
|
revisions_details_start=False, state_index=None):
|
||
|
updated = self.apply(endog, exog=exog, copy_initialization=True)
|
||
|
return self._news_updated_results(
|
||
|
updated, start, end, periods,
|
||
|
revisions_details_start=revisions_details_start,
|
||
|
state_index=state_index)
|
||
|
|
||
|
def news(self, comparison, impact_date=None, impacted_variable=None,
|
||
|
start=None, end=None, periods=None, exog=None,
|
||
|
comparison_type=None, revisions_details_start=False,
|
||
|
state_index=None, return_raw=False, tolerance=1e-10, **kwargs):
|
||
|
"""
|
||
|
Compute impacts from updated data (news and revisions)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
comparison : array_like or MLEResults
|
||
|
An updated dataset with updated and/or revised data from which the
|
||
|
news can be computed, or an updated or previous results object
|
||
|
to use in computing the news.
|
||
|
impact_date : int, str, or datetime, optional
|
||
|
A single specific period of impacts from news and revisions to
|
||
|
compute. Can also be a date string to parse or a datetime type.
|
||
|
This argument cannot be used in combination with `start`, `end`, or
|
||
|
`periods`. Default is the first out-of-sample observation.
|
||
|
impacted_variable : str, list, array, or slice, optional
|
||
|
Observation variable label or slice of labels specifying that only
|
||
|
specific impacted variables should be shown in the News output. The
|
||
|
impacted variable(s) describe the variables that were *affected* by
|
||
|
the news. If you do not know the labels for the variables, check
|
||
|
the `endog_names` attribute of the model instance.
|
||
|
start : int, str, or datetime, optional
|
||
|
The first period of impacts from news and revisions to compute.
|
||
|
Can also be a date string to parse or a datetime type. Default is
|
||
|
the first out-of-sample observation.
|
||
|
end : int, str, or datetime, optional
|
||
|
The last period of impacts from news and revisions to compute.
|
||
|
Can also be a date string to parse or a datetime type. Default is
|
||
|
the first out-of-sample observation.
|
||
|
periods : int, optional
|
||
|
The number of periods of impacts from news and revisions to
|
||
|
compute.
|
||
|
exog : array_like, optional
|
||
|
Array of exogenous regressors for the out-of-sample period, if
|
||
|
applicable.
|
||
|
comparison_type : {None, 'previous', 'updated'}
|
||
|
This denotes whether the `comparison` argument represents a
|
||
|
*previous* results object or dataset or an *updated* results object
|
||
|
or dataset. If not specified, then an attempt is made to determine
|
||
|
the comparison type.
|
||
|
revisions_details_start : bool, int, str, or datetime, optional
|
||
|
The period at which to beging computing the detailed impacts of
|
||
|
data revisions. Any revisions prior to this period will have their
|
||
|
impacts grouped together. If a negative integer, interpreted as
|
||
|
an offset from the end of the dataset. If set to True, detailed
|
||
|
impacts are computed for all revisions, while if set to False, all
|
||
|
revisions are grouped together. Default is False. Note that for
|
||
|
large models, setting this to be near the beginning of the sample
|
||
|
can cause this function to be slow.
|
||
|
state_index : array_like, optional
|
||
|
An optional index specifying a subset of states to use when
|
||
|
constructing the impacts of revisions and news. For example, if
|
||
|
`state_index=[0, 1]` is passed, then only the impacts to the
|
||
|
observed variables arising from the impacts to the first two
|
||
|
states will be returned. Default is to use all states.
|
||
|
return_raw : bool, optional
|
||
|
Whether or not to return only the specific output or a full
|
||
|
results object. Default is to return a full results object.
|
||
|
tolerance : float, optional
|
||
|
The numerical threshold for determining zero impact. Default is
|
||
|
that any impact less than 1e-10 is assumed to be zero.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
NewsResults
|
||
|
Impacts of data revisions and news on estimates
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Bańbura, Marta, and Michele Modugno.
|
||
|
"Maximum likelihood estimation of factor models on datasets with
|
||
|
arbitrary pattern of missing data."
|
||
|
Journal of Applied Econometrics 29, no. 1 (2014): 133-160.
|
||
|
.. [2] Bańbura, Marta, Domenico Giannone, and Lucrezia Reichlin.
|
||
|
"Nowcasting."
|
||
|
The Oxford Handbook of Economic Forecasting. July 8, 2011.
|
||
|
.. [3] Bańbura, Marta, Domenico Giannone, Michele Modugno, and Lucrezia
|
||
|
Reichlin.
|
||
|
"Now-casting and the real-time data flow."
|
||
|
In Handbook of economic forecasting, vol. 2, pp. 195-237.
|
||
|
Elsevier, 2013.
|
||
|
"""
|
||
|
# Validate input
|
||
|
if self.smoother_results is None:
|
||
|
raise ValueError('Cannot compute news without Kalman smoother'
|
||
|
' results.')
|
||
|
|
||
|
if state_index is not None:
|
||
|
state_index = np.sort(np.array(state_index, dtype=int))
|
||
|
if state_index[0] < 0:
|
||
|
raise ValueError('Cannot include negative indexes in'
|
||
|
' `state_index`.')
|
||
|
if state_index[-1] >= self.model.k_states:
|
||
|
raise ValueError(f'Given state index {state_index[-1]} is too'
|
||
|
' large for the number of states in the model'
|
||
|
f' ({self.model.k_states}).')
|
||
|
|
||
|
if not isinstance(revisions_details_start, (int, bool)):
|
||
|
revisions_details_start, _, _, _ = (
|
||
|
self.model._get_prediction_index(
|
||
|
revisions_details_start, revisions_details_start))
|
||
|
|
||
|
# Get the previous and updated results objects from `self` and
|
||
|
# `comparison`:
|
||
|
previous, updated, comparison_dataset = self._get_previous_updated(
|
||
|
comparison, exog=exog, comparison_type=comparison_type, **kwargs)
|
||
|
|
||
|
# Handle start, end, periods
|
||
|
start, end, prediction_index = get_impact_dates(
|
||
|
previous_model=previous.model, updated_model=updated.model,
|
||
|
impact_date=impact_date, start=start, end=end, periods=periods)
|
||
|
|
||
|
# News results will always use Pandas, so if the model's data was not
|
||
|
# from Pandas, we'll create an index, as if the model's data had been
|
||
|
# given a default Pandas index.
|
||
|
if prediction_index is None:
|
||
|
prediction_index = pd.RangeIndex(start=start, stop=end + 1)
|
||
|
|
||
|
# For time-varying models try to create an appended `updated` model
|
||
|
# with NaN values. Do not extend the model if this was already done
|
||
|
# above (i.e. the case that `comparison` was a new dataset), because
|
||
|
# in that case `exog` and `kwargs` should have
|
||
|
# been set with the input `comparison` dataset in mind, and so would be
|
||
|
# useless here. Ultimately, we've already extended `updated` as far
|
||
|
# as we can. So raise an exception in that case with a useful message.
|
||
|
# However, we still want to try to accommodate extending the model here
|
||
|
# if it is possible.
|
||
|
# Note that we do not need to extend time-invariant models, because
|
||
|
# `KalmanSmoother.news` can itself handle any impact dates for
|
||
|
# time-invariant models.
|
||
|
time_varying = not (previous.filter_results.time_invariant or
|
||
|
updated.filter_results.time_invariant)
|
||
|
if time_varying and end >= updated.nobs:
|
||
|
# If we the given `comparison` was a dataset and either `exog` or
|
||
|
# `kwargs` was set, then we assume that we cannot create an updated
|
||
|
# time-varying model (because then we can't tell if `kwargs` and
|
||
|
# `exog` arguments are meant to apply to the `comparison` dataset
|
||
|
# or to this extension)
|
||
|
if comparison_dataset and (exog is not None or len(kwargs) > 0):
|
||
|
if comparison is updated:
|
||
|
raise ValueError('If providing an updated dataset as the'
|
||
|
' `comparison` with a time-varying model,'
|
||
|
' then the `end` period cannot be beyond'
|
||
|
' the end of that updated dataset.')
|
||
|
else:
|
||
|
raise ValueError('If providing an previous dataset as the'
|
||
|
' `comparison` with a time-varying model,'
|
||
|
' then the `end` period cannot be beyond'
|
||
|
' the end of the (updated) results'
|
||
|
' object.')
|
||
|
|
||
|
# Try to extend `updated`
|
||
|
updated_orig = updated
|
||
|
# TODO: `append` should fix this k_endog=1 issue for us
|
||
|
# TODO: is the + 1 necessary?
|
||
|
if self.model.k_endog > 1:
|
||
|
extra = np.zeros((end - updated.nobs + 1,
|
||
|
self.model.k_endog)) * np.nan
|
||
|
else:
|
||
|
extra = np.zeros((end - updated.nobs + 1,)) * np.nan
|
||
|
updated = updated_orig.append(extra, exog=exog, **kwargs)
|
||
|
|
||
|
# Compute the news
|
||
|
news_results = updated._news_previous_results(
|
||
|
previous, start, end + 1, periods,
|
||
|
revisions_details_start=revisions_details_start,
|
||
|
state_index=state_index)
|
||
|
|
||
|
if not return_raw:
|
||
|
news_results = NewsResults(
|
||
|
news_results, self, updated, previous, impacted_variable,
|
||
|
tolerance, row_labels=prediction_index)
|
||
|
return news_results
|
||
|
|
||
|
def get_smoothed_decomposition(self, decomposition_of='smoothed_state',
|
||
|
state_index=None):
|
||
|
r"""
|
||
|
Decompose smoothed output into contributions from observations
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
decomposition_of : {"smoothed_state", "smoothed_signal"}
|
||
|
The object to perform a decomposition of. If it is set to
|
||
|
"smoothed_state", then the elements of the smoothed state vector
|
||
|
are decomposed into the contributions of each observation. If it
|
||
|
is set to "smoothed_signal", then the predictions of the
|
||
|
observation vector based on the smoothed state vector are
|
||
|
decomposed. Default is "smoothed_state".
|
||
|
state_index : array_like, optional
|
||
|
An optional index specifying a subset of states to use when
|
||
|
constructing the decomposition of the "smoothed_signal". For
|
||
|
example, if `state_index=[0, 1]` is passed, then only the
|
||
|
contributions of observed variables to the smoothed signal arising
|
||
|
from the first two states will be returned. Note that if not all
|
||
|
states are used, the contributions will not sum to the smoothed
|
||
|
signal. Default is to use all states.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
data_contributions : pd.DataFrame
|
||
|
Contributions of observations to the decomposed object. If the
|
||
|
smoothed state is being decomposed, then `data_contributions` is
|
||
|
shaped `(k_states x nobs, k_endog x nobs)` with a `pd.MultiIndex`
|
||
|
index corresponding to `state_to x date_to` and `pd.MultiIndex`
|
||
|
columns corresponding to `variable_from x date_from`. If the
|
||
|
smoothed signal is being decomposed, then `data_contributions` is
|
||
|
shaped `(k_endog x nobs, k_endog x nobs)` with `pd.MultiIndex`-es
|
||
|
corresponding to `variable_to x date_to` and
|
||
|
`variable_from x date_from`.
|
||
|
obs_intercept_contributions : pd.DataFrame
|
||
|
Contributions of the observation intercept to the decomposed
|
||
|
object. If the smoothed state is being decomposed, then
|
||
|
`obs_intercept_contributions` is
|
||
|
shaped `(k_states x nobs, k_endog x nobs)` with a `pd.MultiIndex`
|
||
|
index corresponding to `state_to x date_to` and `pd.MultiIndex`
|
||
|
columns corresponding to `obs_intercept_from x date_from`. If the
|
||
|
smoothed signal is being decomposed, then
|
||
|
`obs_intercept_contributions` is shaped
|
||
|
`(k_endog x nobs, k_endog x nobs)` with `pd.MultiIndex`-es
|
||
|
corresponding to `variable_to x date_to` and
|
||
|
`obs_intercept_from x date_from`.
|
||
|
state_intercept_contributions : pd.DataFrame
|
||
|
Contributions of the state intercept to the decomposed
|
||
|
object. If the smoothed state is being decomposed, then
|
||
|
`state_intercept_contributions` is
|
||
|
shaped `(k_states x nobs, k_states x nobs)` with a `pd.MultiIndex`
|
||
|
index corresponding to `state_to x date_to` and `pd.MultiIndex`
|
||
|
columns corresponding to `state_intercept_from x date_from`. If the
|
||
|
smoothed signal is being decomposed, then
|
||
|
`state_intercept_contributions` is shaped
|
||
|
`(k_endog x nobs, k_states x nobs)` with `pd.MultiIndex`-es
|
||
|
corresponding to `variable_to x date_to` and
|
||
|
`state_intercept_from x date_from`.
|
||
|
prior_contributions : pd.DataFrame
|
||
|
Contributions of the prior to the decomposed object. If the
|
||
|
smoothed state is being decomposed, then `prior_contributions` is
|
||
|
shaped `(nobs x k_states, k_states)`, with a `pd.MultiIndex`
|
||
|
index corresponding to `state_to x date_to` and columns
|
||
|
corresponding to elements of the prior mean (aka "initial state").
|
||
|
If the smoothed signal is being decomposed, then
|
||
|
`prior_contributions` is shaped `(nobs x k_endog, k_states)`,
|
||
|
with a `pd.MultiIndex` index corresponding to
|
||
|
`variable_to x date_to` and columns corresponding to elements of
|
||
|
the prior mean.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Denote the smoothed state at time :math:`t` by :math:`\alpha_t`. Then
|
||
|
the smoothed signal is :math:`Z_t \alpha_t`, where :math:`Z_t` is the
|
||
|
design matrix operative at time :math:`t`.
|
||
|
"""
|
||
|
(data_contributions, obs_intercept_contributions,
|
||
|
state_intercept_contributions, prior_contributions) = (
|
||
|
self.smoother_results.get_smoothed_decomposition(
|
||
|
decomposition_of=decomposition_of, state_index=state_index))
|
||
|
|
||
|
# Construct indexes
|
||
|
endog_names = self.model.endog_names
|
||
|
if self.model.k_endog == 1:
|
||
|
endog_names = [endog_names]
|
||
|
|
||
|
if decomposition_of == 'smoothed_state':
|
||
|
contributions_to = pd.MultiIndex.from_product(
|
||
|
[self.model.state_names, self.model._index],
|
||
|
names=['state_to', 'date_to'])
|
||
|
else:
|
||
|
contributions_to = pd.MultiIndex.from_product(
|
||
|
[endog_names, self.model._index],
|
||
|
names=['variable_to', 'date_to'])
|
||
|
contributions_from = pd.MultiIndex.from_product(
|
||
|
[endog_names, self.model._index],
|
||
|
names=['variable_from', 'date_from'])
|
||
|
obs_intercept_contributions_from = pd.MultiIndex.from_product(
|
||
|
[endog_names, self.model._index],
|
||
|
names=['obs_intercept_from', 'date_from'])
|
||
|
state_intercept_contributions_from = pd.MultiIndex.from_product(
|
||
|
[self.model.state_names, self.model._index],
|
||
|
names=['state_intercept_from', 'date_from'])
|
||
|
prior_contributions_from = pd.Index(self.model.state_names,
|
||
|
name='initial_state_from')
|
||
|
|
||
|
# Construct DataFrames
|
||
|
shape = data_contributions.shape
|
||
|
data_contributions = pd.DataFrame(
|
||
|
data_contributions.reshape(
|
||
|
shape[0] * shape[1], shape[2] * shape[3], order='F'),
|
||
|
index=contributions_to, columns=contributions_from)
|
||
|
|
||
|
shape = obs_intercept_contributions.shape
|
||
|
obs_intercept_contributions = pd.DataFrame(
|
||
|
obs_intercept_contributions.reshape(
|
||
|
shape[0] * shape[1], shape[2] * shape[3], order='F'),
|
||
|
index=contributions_to, columns=obs_intercept_contributions_from)
|
||
|
|
||
|
shape = state_intercept_contributions.shape
|
||
|
state_intercept_contributions = pd.DataFrame(
|
||
|
state_intercept_contributions.reshape(
|
||
|
shape[0] * shape[1], shape[2] * shape[3], order='F'),
|
||
|
index=contributions_to, columns=state_intercept_contributions_from)
|
||
|
|
||
|
shape = prior_contributions.shape
|
||
|
prior_contributions = pd.DataFrame(
|
||
|
prior_contributions.reshape(shape[0] * shape[1], shape[2],
|
||
|
order='F'),
|
||
|
index=contributions_to, columns=prior_contributions_from)
|
||
|
|
||
|
return (data_contributions, obs_intercept_contributions,
|
||
|
state_intercept_contributions, prior_contributions)
|
||
|
|
||
|
def append(self, endog, exog=None, refit=False, fit_kwargs=None,
|
||
|
copy_initialization=False, **kwargs):
|
||
|
"""
|
||
|
Recreate the results object with new data appended to the original data
|
||
|
|
||
|
Creates a new result object applied to a dataset that is created by
|
||
|
appending new data to the end of the model's original data. The new
|
||
|
results can then be used for analysis or forecasting.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
endog : array_like
|
||
|
New observations from the modeled time-series process.
|
||
|
exog : array_like, optional
|
||
|
New observations of exogenous regressors, if applicable.
|
||
|
refit : bool, optional
|
||
|
Whether to re-fit the parameters, based on the combined dataset.
|
||
|
Default is False (so parameters from the current results object
|
||
|
are used to create the new results object).
|
||
|
copy_initialization : bool, optional
|
||
|
Whether or not to copy the initialization from the current results
|
||
|
set to the new model. Default is False
|
||
|
fit_kwargs : dict, optional
|
||
|
Keyword arguments to pass to `fit` (if `refit=True`) or `filter` /
|
||
|
`smooth`.
|
||
|
copy_initialization : bool, optional
|
||
|
**kwargs
|
||
|
Keyword arguments may be used to modify model specification
|
||
|
arguments when created the new model object.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
results
|
||
|
Updated Results object, that includes results from both the
|
||
|
original dataset and the new dataset.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The `endog` and `exog` arguments to this method must be formatted in
|
||
|
the same way (e.g. Pandas Series versus Numpy array) as were the
|
||
|
`endog` and `exog` arrays passed to the original model.
|
||
|
|
||
|
The `endog` argument to this method should consist of new observations
|
||
|
that occurred directly after the last element of `endog`. For any other
|
||
|
kind of dataset, see the `apply` method.
|
||
|
|
||
|
This method will apply filtering to all of the original data as well
|
||
|
as to the new data. To apply filtering only to the new data (which
|
||
|
can be much faster if the original dataset is large), see the `extend`
|
||
|
method.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
statsmodels.tsa.statespace.mlemodel.MLEResults.extend
|
||
|
statsmodels.tsa.statespace.mlemodel.MLEResults.apply
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> index = pd.period_range(start='2000', periods=2, freq='Y')
|
||
|
>>> original_observations = pd.Series([1.2, 1.5], index=index)
|
||
|
>>> mod = sm.tsa.SARIMAX(original_observations)
|
||
|
>>> res = mod.fit()
|
||
|
>>> print(res.params)
|
||
|
ar.L1 0.9756
|
||
|
sigma2 0.0889
|
||
|
dtype: float64
|
||
|
>>> print(res.fittedvalues)
|
||
|
2000 0.0000
|
||
|
2001 1.1707
|
||
|
Freq: A-DEC, dtype: float64
|
||
|
>>> print(res.forecast(1))
|
||
|
2002 1.4634
|
||
|
Freq: A-DEC, dtype: float64
|
||
|
|
||
|
>>> new_index = pd.period_range(start='2002', periods=1, freq='Y')
|
||
|
>>> new_observations = pd.Series([0.9], index=new_index)
|
||
|
>>> updated_res = res.append(new_observations)
|
||
|
>>> print(updated_res.params)
|
||
|
ar.L1 0.9756
|
||
|
sigma2 0.0889
|
||
|
dtype: float64
|
||
|
>>> print(updated_res.fittedvalues)
|
||
|
2000 0.0000
|
||
|
2001 1.1707
|
||
|
2002 1.4634
|
||
|
Freq: A-DEC, dtype: float64
|
||
|
>>> print(updated_res.forecast(1))
|
||
|
2003 0.878
|
||
|
Freq: A-DEC, dtype: float64
|
||
|
"""
|
||
|
start = self.nobs
|
||
|
end = self.nobs + len(endog) - 1
|
||
|
_, _, _, append_ix = self.model._get_prediction_index(start, end)
|
||
|
|
||
|
# Check the index of the new data
|
||
|
if isinstance(self.model.data, PandasData):
|
||
|
_check_index(append_ix, endog, '`endog`')
|
||
|
|
||
|
# Concatenate the new data to original data
|
||
|
new_endog = concat([self.model.data.orig_endog, endog], axis=0,
|
||
|
allow_mix=True)
|
||
|
|
||
|
# Handle `exog`
|
||
|
if exog is not None:
|
||
|
_, exog = prepare_exog(exog)
|
||
|
_check_index(append_ix, exog, '`exog`')
|
||
|
|
||
|
new_exog = concat([self.model.data.orig_exog, exog], axis=0,
|
||
|
allow_mix=True)
|
||
|
else:
|
||
|
new_exog = None
|
||
|
|
||
|
# Create a continuous index for the combined data
|
||
|
if isinstance(self.model.data, PandasData):
|
||
|
start = 0
|
||
|
end = len(new_endog) - 1
|
||
|
_, _, _, new_index = self.model._get_prediction_index(start, end)
|
||
|
|
||
|
# Standardize `endog` to have the right index and columns
|
||
|
columns = self.model.endog_names
|
||
|
if not isinstance(columns, list):
|
||
|
columns = [columns]
|
||
|
new_endog = pd.DataFrame(new_endog, index=new_index,
|
||
|
columns=columns)
|
||
|
|
||
|
# Standardize `exog` to have the right index
|
||
|
if new_exog is not None:
|
||
|
new_exog = pd.DataFrame(new_exog, index=new_index,
|
||
|
columns=self.model.exog_names)
|
||
|
|
||
|
if copy_initialization:
|
||
|
init = Initialization.from_results(self.filter_results)
|
||
|
kwargs.setdefault('initialization', init)
|
||
|
|
||
|
mod = self.model.clone(new_endog, exog=new_exog, **kwargs)
|
||
|
res = self._apply(mod, refit=refit, fit_kwargs=fit_kwargs)
|
||
|
|
||
|
return res
|
||
|
|
||
|
def extend(self, endog, exog=None, fit_kwargs=None, **kwargs):
|
||
|
"""
|
||
|
Recreate the results object for new data that extends the original data
|
||
|
|
||
|
Creates a new result object applied to a new dataset that is assumed to
|
||
|
follow directly from the end of the model's original data. The new
|
||
|
results can then be used for analysis or forecasting.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
endog : array_like
|
||
|
New observations from the modeled time-series process.
|
||
|
exog : array_like, optional
|
||
|
New observations of exogenous regressors, if applicable.
|
||
|
fit_kwargs : dict, optional
|
||
|
Keyword arguments to pass to `filter` or `smooth`.
|
||
|
**kwargs
|
||
|
Keyword arguments may be used to modify model specification
|
||
|
arguments when created the new model object.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
results
|
||
|
Updated Results object, that includes results only for the new
|
||
|
dataset.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
statsmodels.tsa.statespace.mlemodel.MLEResults.append
|
||
|
statsmodels.tsa.statespace.mlemodel.MLEResults.apply
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The `endog` argument to this method should consist of new observations
|
||
|
that occurred directly after the last element of the model's original
|
||
|
`endog` array. For any other kind of dataset, see the `apply` method.
|
||
|
|
||
|
This method will apply filtering only to the new data provided by the
|
||
|
`endog` argument, which can be much faster than re-filtering the entire
|
||
|
dataset. However, the returned results object will only have results
|
||
|
for the new data. To retrieve results for both the new data and the
|
||
|
original data, see the `append` method.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> index = pd.period_range(start='2000', periods=2, freq='Y')
|
||
|
>>> original_observations = pd.Series([1.2, 1.5], index=index)
|
||
|
>>> mod = sm.tsa.SARIMAX(original_observations)
|
||
|
>>> res = mod.fit()
|
||
|
>>> print(res.params)
|
||
|
ar.L1 0.9756
|
||
|
sigma2 0.0889
|
||
|
dtype: float64
|
||
|
>>> print(res.fittedvalues)
|
||
|
2000 0.0000
|
||
|
2001 1.1707
|
||
|
Freq: A-DEC, dtype: float64
|
||
|
>>> print(res.forecast(1))
|
||
|
2002 1.4634
|
||
|
Freq: A-DEC, dtype: float64
|
||
|
|
||
|
>>> new_index = pd.period_range(start='2002', periods=1, freq='Y')
|
||
|
>>> new_observations = pd.Series([0.9], index=new_index)
|
||
|
>>> updated_res = res.extend(new_observations)
|
||
|
>>> print(updated_res.params)
|
||
|
ar.L1 0.9756
|
||
|
sigma2 0.0889
|
||
|
dtype: float64
|
||
|
>>> print(updated_res.fittedvalues)
|
||
|
2002 1.4634
|
||
|
Freq: A-DEC, dtype: float64
|
||
|
>>> print(updated_res.forecast(1))
|
||
|
2003 0.878
|
||
|
Freq: A-DEC, dtype: float64
|
||
|
"""
|
||
|
start = self.nobs
|
||
|
end = self.nobs + len(endog) - 1
|
||
|
_, _, _, extend_ix = self.model._get_prediction_index(start, end)
|
||
|
|
||
|
if isinstance(self.model.data, PandasData):
|
||
|
_check_index(extend_ix, endog, '`endog`')
|
||
|
|
||
|
# Standardize `endog` to have the right index and columns
|
||
|
columns = self.model.endog_names
|
||
|
if not isinstance(columns, list):
|
||
|
columns = [columns]
|
||
|
endog = pd.DataFrame(endog, index=extend_ix, columns=columns)
|
||
|
# Extend the current fit result to additional data
|
||
|
mod = self.model.clone(endog, exog=exog, **kwargs)
|
||
|
mod.ssm.initialization = Initialization(
|
||
|
mod.k_states, 'known', constant=self.predicted_state[..., -1],
|
||
|
stationary_cov=self.predicted_state_cov[..., -1])
|
||
|
res = self._apply(mod, refit=False, fit_kwargs=fit_kwargs)
|
||
|
|
||
|
return res
|
||
|
|
||
|
def apply(self, endog, exog=None, refit=False, fit_kwargs=None,
|
||
|
copy_initialization=False, **kwargs):
|
||
|
"""
|
||
|
Apply the fitted parameters to new data unrelated to the original data
|
||
|
|
||
|
Creates a new result object using the current fitted parameters,
|
||
|
applied to a completely new dataset that is assumed to be unrelated to
|
||
|
the model's original data. The new results can then be used for
|
||
|
analysis or forecasting.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
endog : array_like
|
||
|
New observations from the modeled time-series process.
|
||
|
exog : array_like, optional
|
||
|
New observations of exogenous regressors, if applicable.
|
||
|
refit : bool, optional
|
||
|
Whether to re-fit the parameters, using the new dataset.
|
||
|
Default is False (so parameters from the current results object
|
||
|
are used to create the new results object).
|
||
|
copy_initialization : bool, optional
|
||
|
Whether or not to copy the initialization from the current results
|
||
|
set to the new model. Default is False
|
||
|
fit_kwargs : dict, optional
|
||
|
Keyword arguments to pass to `fit` (if `refit=True`) or `filter` /
|
||
|
`smooth`.
|
||
|
**kwargs
|
||
|
Keyword arguments may be used to modify model specification
|
||
|
arguments when created the new model object.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
results
|
||
|
Updated Results object, that includes results only for the new
|
||
|
dataset.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
statsmodels.tsa.statespace.mlemodel.MLEResults.append
|
||
|
statsmodels.tsa.statespace.mlemodel.MLEResults.apply
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The `endog` argument to this method should consist of new observations
|
||
|
that are not necessarily related to the original model's `endog`
|
||
|
dataset. For observations that continue that original dataset by follow
|
||
|
directly after its last element, see the `append` and `extend` methods.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> index = pd.period_range(start='2000', periods=2, freq='Y')
|
||
|
>>> original_observations = pd.Series([1.2, 1.5], index=index)
|
||
|
>>> mod = sm.tsa.SARIMAX(original_observations)
|
||
|
>>> res = mod.fit()
|
||
|
>>> print(res.params)
|
||
|
ar.L1 0.9756
|
||
|
sigma2 0.0889
|
||
|
dtype: float64
|
||
|
>>> print(res.fittedvalues)
|
||
|
2000 0.0000
|
||
|
2001 1.1707
|
||
|
Freq: A-DEC, dtype: float64
|
||
|
>>> print(res.forecast(1))
|
||
|
2002 1.4634
|
||
|
Freq: A-DEC, dtype: float64
|
||
|
|
||
|
>>> new_index = pd.period_range(start='1980', periods=3, freq='Y')
|
||
|
>>> new_observations = pd.Series([1.4, 0.3, 1.2], index=new_index)
|
||
|
>>> new_res = res.apply(new_observations)
|
||
|
>>> print(new_res.params)
|
||
|
ar.L1 0.9756
|
||
|
sigma2 0.0889
|
||
|
dtype: float64
|
||
|
>>> print(new_res.fittedvalues)
|
||
|
1980 1.1707
|
||
|
1981 1.3659
|
||
|
1982 0.2927
|
||
|
Freq: A-DEC, dtype: float64
|
||
|
Freq: A-DEC, dtype: float64
|
||
|
>>> print(new_res.forecast(1))
|
||
|
1983 1.1707
|
||
|
Freq: A-DEC, dtype: float64
|
||
|
"""
|
||
|
mod = self.model.clone(endog, exog=exog, **kwargs)
|
||
|
|
||
|
if copy_initialization:
|
||
|
init = Initialization.from_results(self.filter_results)
|
||
|
mod.ssm.initialization = init
|
||
|
|
||
|
res = self._apply(mod, refit=refit, fit_kwargs=fit_kwargs)
|
||
|
|
||
|
return res
|
||
|
|
||
|
def plot_diagnostics(self, variable=0, lags=10, fig=None, figsize=None,
|
||
|
truncate_endog_names=24, auto_ylims=False,
|
||
|
bartlett_confint=False, acf_kwargs=None):
|
||
|
"""
|
||
|
Diagnostic plots for standardized residuals of one endogenous variable
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
variable : int, optional
|
||
|
Index of the endogenous variable for which the diagnostic plots
|
||
|
should be created. Default is 0.
|
||
|
lags : int, optional
|
||
|
Number of lags to include in the correlogram. Default is 10.
|
||
|
fig : Figure, optional
|
||
|
If given, subplots are created in this figure instead of in a new
|
||
|
figure. Note that the 2x2 grid will be created in the provided
|
||
|
figure using `fig.add_subplot()`.
|
||
|
figsize : tuple, optional
|
||
|
If a figure is created, this argument allows specifying a size.
|
||
|
The tuple is (width, height).
|
||
|
auto_ylims : bool, optional
|
||
|
If True, adjusts automatically the y-axis limits to ACF values.
|
||
|
bartlett_confint : bool, default True
|
||
|
Confidence intervals for ACF values are generally placed at 2
|
||
|
standard errors around r_k. The formula used for standard error
|
||
|
depends upon the situation. If the autocorrelations are being used
|
||
|
to test for randomness of residuals as part of the ARIMA routine,
|
||
|
the standard errors are determined assuming the residuals are white
|
||
|
noise. The approximate formula for any lag is that standard error
|
||
|
of each r_k = 1/sqrt(N). See section 9.4 of [1] for more details on
|
||
|
the 1/sqrt(N) result. For more elementary discussion, see section
|
||
|
5.3.2 in [2].
|
||
|
For the ACF of raw data, the standard error at a lag k is
|
||
|
found as if the right model was an MA(k-1). This allows the
|
||
|
possible interpretation that if all autocorrelations past a
|
||
|
certain lag are within the limits, the model might be an MA of
|
||
|
order defined by the last significant autocorrelation. In this
|
||
|
case, a moving average model is assumed for the data and the
|
||
|
standard errors for the confidence intervals should be
|
||
|
generated using Bartlett's formula. For more details on
|
||
|
Bartlett formula result, see section 7.2 in [1].+
|
||
|
acf_kwargs : dict, optional
|
||
|
Optional dictionary of keyword arguments that are directly passed
|
||
|
on to the correlogram Matplotlib plot produced by plot_acf().
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Figure
|
||
|
Figure instance with diagnostic plots
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
statsmodels.graphics.gofplots.qqplot
|
||
|
statsmodels.graphics.tsaplots.plot_acf
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Produces a 2x2 plot grid with the following plots (ordered clockwise
|
||
|
from top left):
|
||
|
|
||
|
1. Standardized residuals over time
|
||
|
2. Histogram plus estimated density of standardized residuals, along
|
||
|
with a Normal(0,1) density plotted for reference.
|
||
|
3. Normal Q-Q plot, with Normal reference line.
|
||
|
4. Correlogram
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
[1] Brockwell and Davis, 1987. Time Series Theory and Methods
|
||
|
[2] Brockwell and Davis, 2010. Introduction to Time Series and
|
||
|
Forecasting, 2nd edition.
|
||
|
"""
|
||
|
from statsmodels.graphics.utils import _import_mpl, create_mpl_fig
|
||
|
_import_mpl()
|
||
|
fig = create_mpl_fig(fig, figsize)
|
||
|
# Eliminate residuals associated with burned or diffuse likelihoods
|
||
|
d = np.maximum(self.loglikelihood_burn, self.nobs_diffuse)
|
||
|
|
||
|
# If given a variable name, find the index
|
||
|
if isinstance(variable, str):
|
||
|
variable = self.model.endog_names.index(variable)
|
||
|
|
||
|
# Get residuals
|
||
|
if hasattr(self.data, 'dates') and self.data.dates is not None:
|
||
|
ix = self.data.dates[d:]
|
||
|
else:
|
||
|
ix = np.arange(self.nobs - d)
|
||
|
resid = pd.Series(
|
||
|
self.filter_results.standardized_forecasts_error[variable, d:],
|
||
|
index=ix)
|
||
|
|
||
|
if resid.shape[0] < max(d, lags):
|
||
|
raise ValueError(
|
||
|
"Length of endogenous variable must be larger the the number "
|
||
|
"of lags used in the model and the number of observations "
|
||
|
"burned in the log-likelihood calculation."
|
||
|
)
|
||
|
|
||
|
# Top-left: residuals vs time
|
||
|
ax = fig.add_subplot(221)
|
||
|
resid.dropna().plot(ax=ax)
|
||
|
ax.hlines(0, ix[0], ix[-1], alpha=0.5)
|
||
|
ax.set_xlim(ix[0], ix[-1])
|
||
|
name = self.model.endog_names[variable]
|
||
|
if len(name) > truncate_endog_names:
|
||
|
name = name[:truncate_endog_names - 3] + '...'
|
||
|
ax.set_title(f'Standardized residual for "{name}"')
|
||
|
|
||
|
# Top-right: histogram, Gaussian kernel density, Normal density
|
||
|
# Can only do histogram and Gaussian kernel density on the non-null
|
||
|
# elements
|
||
|
resid_nonmissing = resid.dropna()
|
||
|
ax = fig.add_subplot(222)
|
||
|
|
||
|
ax.hist(resid_nonmissing, density=True, label='Hist',
|
||
|
edgecolor='#FFFFFF')
|
||
|
|
||
|
from scipy.stats import gaussian_kde, norm
|
||
|
kde = gaussian_kde(resid_nonmissing)
|
||
|
xlim = (-1.96*2, 1.96*2)
|
||
|
x = np.linspace(xlim[0], xlim[1])
|
||
|
ax.plot(x, kde(x), label='KDE')
|
||
|
ax.plot(x, norm.pdf(x), label='N(0,1)')
|
||
|
ax.set_xlim(xlim)
|
||
|
ax.legend()
|
||
|
ax.set_title('Histogram plus estimated density')
|
||
|
|
||
|
# Bottom-left: QQ plot
|
||
|
ax = fig.add_subplot(223)
|
||
|
from statsmodels.graphics.gofplots import qqplot
|
||
|
qqplot(resid_nonmissing, line='s', ax=ax)
|
||
|
ax.set_title('Normal Q-Q')
|
||
|
|
||
|
# Bottom-right: Correlogram
|
||
|
ax = fig.add_subplot(224)
|
||
|
from statsmodels.graphics.tsaplots import plot_acf
|
||
|
|
||
|
if acf_kwargs is None:
|
||
|
acf_kwargs = {}
|
||
|
plot_acf(resid, ax=ax, lags=lags, auto_ylims=auto_ylims,
|
||
|
bartlett_confint=bartlett_confint, **acf_kwargs)
|
||
|
ax.set_title('Correlogram')
|
||
|
|
||
|
return fig
|
||
|
|
||
|
def summary(self, alpha=.05, start=None, title=None, model_name=None,
|
||
|
display_params=True, display_diagnostics=True,
|
||
|
truncate_endog_names=None, display_max_endog=None,
|
||
|
extra_top_left=None, extra_top_right=None):
|
||
|
"""
|
||
|
Summarize the Model
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
alpha : float, optional
|
||
|
Significance level for the confidence intervals. Default is 0.05.
|
||
|
start : int, optional
|
||
|
Integer of the start observation. Default is 0.
|
||
|
model_name : str
|
||
|
The name of the model used. Default is to use model class name.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
summary : Summary instance
|
||
|
This holds the summary table and text, which can be printed or
|
||
|
converted to various output formats.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
statsmodels.iolib.summary.Summary
|
||
|
"""
|
||
|
from statsmodels.iolib.summary import Summary
|
||
|
from statsmodels.iolib.table import SimpleTable
|
||
|
from statsmodels.iolib.tableformatting import fmt_params
|
||
|
|
||
|
# Model specification results
|
||
|
model = self.model
|
||
|
if title is None:
|
||
|
title = 'Statespace Model Results'
|
||
|
|
||
|
if start is None:
|
||
|
start = 0
|
||
|
if self.model._index_dates:
|
||
|
ix = self.model._index
|
||
|
d = ix[start]
|
||
|
sample = ['%02d-%02d-%02d' % (d.month, d.day, d.year)]
|
||
|
d = ix[-1]
|
||
|
sample += ['- ' + '%02d-%02d-%02d' % (d.month, d.day, d.year)]
|
||
|
else:
|
||
|
sample = [str(start), ' - ' + str(self.nobs)]
|
||
|
|
||
|
# Standardize the model name as a list of str
|
||
|
if model_name is None:
|
||
|
model_name = model.__class__.__name__
|
||
|
|
||
|
# Truncate endog names
|
||
|
if truncate_endog_names is None:
|
||
|
truncate_endog_names = False if self.model.k_endog == 1 else 24
|
||
|
endog_names = self.model.endog_names
|
||
|
if not isinstance(endog_names, list):
|
||
|
endog_names = [endog_names]
|
||
|
endog_names = [str(name) for name in endog_names]
|
||
|
if truncate_endog_names is not False:
|
||
|
n = truncate_endog_names
|
||
|
endog_names = [name if len(name) <= n else name[:n] + '...'
|
||
|
for name in endog_names]
|
||
|
|
||
|
# Shorten the endog name list if applicable
|
||
|
if display_max_endog is None:
|
||
|
display_max_endog = np.inf
|
||
|
yname = None
|
||
|
if self.model.k_endog > display_max_endog:
|
||
|
k = self.model.k_endog - 1
|
||
|
yname = '"' + endog_names[0] + f'", and {k} more'
|
||
|
|
||
|
# Create the tables
|
||
|
if not isinstance(model_name, list):
|
||
|
model_name = [model_name]
|
||
|
|
||
|
top_left = [('Dep. Variable:', None)]
|
||
|
top_left.append(('Model:', [model_name[0]]))
|
||
|
for i in range(1, len(model_name)):
|
||
|
top_left.append(('', ['+ ' + model_name[i]]))
|
||
|
top_left += [
|
||
|
('Date:', None),
|
||
|
('Time:', None),
|
||
|
('Sample:', [sample[0]]),
|
||
|
('', [sample[1]])
|
||
|
]
|
||
|
|
||
|
top_right = [
|
||
|
('No. Observations:', [self.nobs]),
|
||
|
('Log Likelihood', ["%#5.3f" % self.llf]),
|
||
|
]
|
||
|
if hasattr(self, 'rsquared'):
|
||
|
top_right.append(('R-squared:', ["%#8.3f" % self.rsquared]))
|
||
|
top_right += [
|
||
|
('AIC', ["%#5.3f" % self.aic]),
|
||
|
('BIC', ["%#5.3f" % self.bic]),
|
||
|
('HQIC', ["%#5.3f" % self.hqic])]
|
||
|
if (self.filter_results is not None and
|
||
|
self.filter_results.filter_concentrated):
|
||
|
top_right.append(('Scale', ["%#5.3f" % self.scale]))
|
||
|
|
||
|
if hasattr(self, 'cov_type'):
|
||
|
cov_type = self.cov_type
|
||
|
if cov_type == 'none':
|
||
|
cov_type = 'Not computed'
|
||
|
top_left.append(('Covariance Type:', [cov_type]))
|
||
|
|
||
|
if extra_top_left is not None:
|
||
|
top_left += extra_top_left
|
||
|
if extra_top_right is not None:
|
||
|
top_right += extra_top_right
|
||
|
|
||
|
summary = Summary()
|
||
|
summary.add_table_2cols(self, gleft=top_left, gright=top_right,
|
||
|
title=title, yname=yname)
|
||
|
table_ix = 1
|
||
|
if len(self.params) > 0 and display_params:
|
||
|
summary.add_table_params(self, alpha=alpha,
|
||
|
xname=self.param_names, use_t=False)
|
||
|
table_ix += 1
|
||
|
|
||
|
# Diagnostic tests results
|
||
|
if display_diagnostics:
|
||
|
try:
|
||
|
het = self.test_heteroskedasticity(method='breakvar')
|
||
|
except Exception: # FIXME: catch something specific
|
||
|
het = np.zeros((self.model.k_endog, 2)) * np.nan
|
||
|
try:
|
||
|
lb = self.test_serial_correlation(method='ljungbox', lags=[1])
|
||
|
except Exception: # FIXME: catch something specific
|
||
|
lb = np.zeros((self.model.k_endog, 2, 1)) * np.nan
|
||
|
try:
|
||
|
jb = self.test_normality(method='jarquebera')
|
||
|
except Exception: # FIXME: catch something specific
|
||
|
jb = np.zeros((self.model.k_endog, 4)) * np.nan
|
||
|
|
||
|
if self.model.k_endog <= display_max_endog:
|
||
|
format_str = lambda array: [ # noqa:E731
|
||
|
', '.join([f'{i:.2f}' for i in array])
|
||
|
]
|
||
|
diagn_left = [
|
||
|
('Ljung-Box (L1) (Q):', format_str(lb[:, 0, -1])),
|
||
|
('Prob(Q):', format_str(lb[:, 1, -1])),
|
||
|
('Heteroskedasticity (H):', format_str(het[:, 0])),
|
||
|
('Prob(H) (two-sided):', format_str(het[:, 1]))]
|
||
|
|
||
|
diagn_right = [('Jarque-Bera (JB):', format_str(jb[:, 0])),
|
||
|
('Prob(JB):', format_str(jb[:, 1])),
|
||
|
('Skew:', format_str(jb[:, 2])),
|
||
|
('Kurtosis:', format_str(jb[:, 3]))
|
||
|
]
|
||
|
|
||
|
summary.add_table_2cols(self, gleft=diagn_left,
|
||
|
gright=diagn_right, title="")
|
||
|
else:
|
||
|
columns = ['LjungBox\n(L1) (Q)', 'Prob(Q)',
|
||
|
'Het.(H)', 'Prob(H)',
|
||
|
'Jarque\nBera(JB)', 'Prob(JB)', 'Skew', 'Kurtosis']
|
||
|
data = pd.DataFrame(
|
||
|
np.c_[lb[:, :2, -1], het[:, :2], jb[:, :4]],
|
||
|
index=endog_names, columns=columns)
|
||
|
try:
|
||
|
data = data.map(
|
||
|
lambda num: '' if pd.isnull(num) else '%.2f' % num
|
||
|
)
|
||
|
except AttributeError:
|
||
|
data = data.applymap(
|
||
|
lambda num: '' if pd.isnull(num) else '%.2f' % num
|
||
|
)
|
||
|
data.index.name = 'Residual of\nDep. variable'
|
||
|
data = data.reset_index()
|
||
|
|
||
|
params_data = data.values
|
||
|
params_header = data.columns.tolist()
|
||
|
params_stubs = None
|
||
|
|
||
|
title = 'Residual diagnostics:'
|
||
|
table = SimpleTable(
|
||
|
params_data, params_header, params_stubs,
|
||
|
txt_fmt=fmt_params, title=title)
|
||
|
summary.tables.insert(table_ix, table)
|
||
|
|
||
|
# Add warnings/notes, added to text format only
|
||
|
etext = []
|
||
|
if hasattr(self, 'cov_type') and 'description' in self.cov_kwds:
|
||
|
etext.append(self.cov_kwds['description'])
|
||
|
if self._rank < (len(self.params) - len(self.fixed_params)):
|
||
|
cov_params = self.cov_params()
|
||
|
if len(self.fixed_params) > 0:
|
||
|
mask = np.ix_(self._free_params_index, self._free_params_index)
|
||
|
cov_params = cov_params[mask]
|
||
|
etext.append("Covariance matrix is singular or near-singular,"
|
||
|
" with condition number %6.3g. Standard errors may be"
|
||
|
" unstable." % _safe_cond(cov_params))
|
||
|
|
||
|
if etext:
|
||
|
etext = [f"[{i + 1}] {text}"
|
||
|
for i, text in enumerate(etext)]
|
||
|
etext.insert(0, "Warnings:")
|
||
|
summary.add_extra_txt(etext)
|
||
|
|
||
|
return summary
|
||
|
|
||
|
|
||
|
class MLEResultsWrapper(wrap.ResultsWrapper):
|
||
|
_attrs = {
|
||
|
'zvalues': 'columns',
|
||
|
'cov_params_approx': 'cov',
|
||
|
'cov_params_default': 'cov',
|
||
|
'cov_params_oim': 'cov',
|
||
|
'cov_params_opg': 'cov',
|
||
|
'cov_params_robust': 'cov',
|
||
|
'cov_params_robust_approx': 'cov',
|
||
|
'cov_params_robust_oim': 'cov',
|
||
|
}
|
||
|
_wrap_attrs = wrap.union_dicts(tsbase.TimeSeriesResultsWrapper._wrap_attrs,
|
||
|
_attrs)
|
||
|
_methods = {
|
||
|
'forecast': 'dates',
|
||
|
'impulse_responses': 'ynames'
|
||
|
}
|
||
|
_wrap_methods = wrap.union_dicts(
|
||
|
tsbase.TimeSeriesResultsWrapper._wrap_methods, _methods)
|
||
|
wrap.populate_wrapper(MLEResultsWrapper, MLEResults) # noqa:E305
|
||
|
|
||
|
|
||
|
class PredictionResults(pred.PredictionResults):
|
||
|
"""
|
||
|
Prediction result from MLE models
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
model : MLEModel
|
||
|
The models used to make the prediction
|
||
|
prediction_results : kalman_filter.PredictionResults instance
|
||
|
Results object from prediction after fitting or filtering a state space
|
||
|
model.
|
||
|
row_labels : iterable
|
||
|
Row labels for the predicted data.
|
||
|
information_set : str
|
||
|
Name of information set
|
||
|
signal_only : bool
|
||
|
Whether the prediction is for the signal only
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
model : MLEModel
|
||
|
The models used to make the prediction
|
||
|
prediction_results : kalman_filter.PredictionResults instance
|
||
|
Results object from prediction after fitting or filtering a state space
|
||
|
model.
|
||
|
information_set : str
|
||
|
Name of information set
|
||
|
signal_only : bool
|
||
|
Whether the prediction is for the signal only
|
||
|
"""
|
||
|
def __init__(self, model, prediction_results, row_labels=None,
|
||
|
information_set='predicted', signal_only=False):
|
||
|
if model.model.k_endog == 1:
|
||
|
endog = pd.Series(prediction_results.endog[0],
|
||
|
name=model.model.endog_names)
|
||
|
else:
|
||
|
endog = pd.DataFrame(prediction_results.endog.T,
|
||
|
columns=model.model.endog_names)
|
||
|
self.model = Bunch(data=model.data.__class__(
|
||
|
endog=endog, predict_dates=row_labels))
|
||
|
self.prediction_results = prediction_results
|
||
|
|
||
|
self.information_set = information_set
|
||
|
self.signal_only = signal_only
|
||
|
|
||
|
# Get required values
|
||
|
k_endog, nobs = prediction_results.endog.shape
|
||
|
res = self.prediction_results.results
|
||
|
if information_set == 'predicted' and not res.memory_no_forecast_mean:
|
||
|
if not signal_only:
|
||
|
predicted_mean = self.prediction_results.forecasts
|
||
|
else:
|
||
|
predicted_mean = self.prediction_results.predicted_signal
|
||
|
elif information_set == 'filtered' and not res.memory_no_filtered_mean:
|
||
|
if not signal_only:
|
||
|
predicted_mean = self.prediction_results.filtered_forecasts
|
||
|
else:
|
||
|
predicted_mean = self.prediction_results.filtered_signal
|
||
|
elif information_set == 'smoothed':
|
||
|
if not signal_only:
|
||
|
predicted_mean = self.prediction_results.smoothed_forecasts
|
||
|
else:
|
||
|
predicted_mean = self.prediction_results.smoothed_signal
|
||
|
else:
|
||
|
predicted_mean = np.zeros((k_endog, nobs)) * np.nan
|
||
|
|
||
|
if predicted_mean.shape[0] == 1:
|
||
|
predicted_mean = predicted_mean[0, :]
|
||
|
else:
|
||
|
predicted_mean = predicted_mean.transpose()
|
||
|
|
||
|
if information_set == 'predicted' and not res.memory_no_forecast_cov:
|
||
|
if not signal_only:
|
||
|
var_pred_mean = self.prediction_results.forecasts_error_cov
|
||
|
else:
|
||
|
var_pred_mean = self.prediction_results.predicted_signal_cov
|
||
|
elif information_set == 'filtered' and not res.memory_no_filtered_mean:
|
||
|
if not signal_only:
|
||
|
var_pred_mean = (
|
||
|
self.prediction_results.filtered_forecasts_error_cov)
|
||
|
else:
|
||
|
var_pred_mean = self.prediction_results.filtered_signal_cov
|
||
|
elif information_set == 'smoothed':
|
||
|
if not signal_only:
|
||
|
var_pred_mean = (
|
||
|
self.prediction_results.smoothed_forecasts_error_cov)
|
||
|
else:
|
||
|
var_pred_mean = self.prediction_results.smoothed_signal_cov
|
||
|
else:
|
||
|
var_pred_mean = np.zeros((k_endog, k_endog, nobs)) * np.nan
|
||
|
|
||
|
if var_pred_mean.shape[0] == 1:
|
||
|
var_pred_mean = var_pred_mean[0, 0, :]
|
||
|
else:
|
||
|
var_pred_mean = var_pred_mean.transpose()
|
||
|
|
||
|
# Initialize
|
||
|
super().__init__(predicted_mean, var_pred_mean,
|
||
|
dist='norm',
|
||
|
row_labels=row_labels)
|
||
|
|
||
|
@property
|
||
|
def se_mean(self):
|
||
|
# Replace negative values with np.nan to avoid a RuntimeWarning
|
||
|
var_pred_mean = self.var_pred_mean.copy()
|
||
|
var_pred_mean[var_pred_mean < 0] = np.nan
|
||
|
if var_pred_mean.ndim == 1:
|
||
|
se_mean = np.sqrt(var_pred_mean)
|
||
|
else:
|
||
|
se_mean = np.sqrt(var_pred_mean.T.diagonal())
|
||
|
return se_mean
|
||
|
|
||
|
def conf_int(self, method='endpoint', alpha=0.05, **kwds):
|
||
|
# TODO: this performs metadata wrapping, and that should be handled
|
||
|
# by attach_* methods. However, they do not currently support
|
||
|
# this use case.
|
||
|
_use_pandas = self._use_pandas
|
||
|
self._use_pandas = False
|
||
|
conf_int = super().conf_int(alpha, **kwds)
|
||
|
self._use_pandas = _use_pandas
|
||
|
|
||
|
# Create a dataframe
|
||
|
if self._row_labels is not None:
|
||
|
conf_int = pd.DataFrame(conf_int, index=self.row_labels)
|
||
|
|
||
|
# Attach the endog names
|
||
|
ynames = self.model.data.ynames
|
||
|
if type(ynames) is not list:
|
||
|
ynames = [ynames]
|
||
|
names = ([f'lower {name}' for name in ynames] +
|
||
|
[f'upper {name}' for name in ynames])
|
||
|
conf_int.columns = names
|
||
|
|
||
|
return conf_int
|
||
|
|
||
|
def summary_frame(self, endog=0, alpha=0.05):
|
||
|
# TODO: finish and cleanup
|
||
|
# import pandas as pd
|
||
|
# ci_obs = self.conf_int(alpha=alpha, obs=True) # need to split
|
||
|
ci_mean = np.asarray(self.conf_int(alpha=alpha))
|
||
|
_use_pandas = self._use_pandas
|
||
|
self._use_pandas = False
|
||
|
to_include = {}
|
||
|
if self.predicted_mean.ndim == 1:
|
||
|
yname = self.model.data.ynames
|
||
|
to_include['mean'] = self.predicted_mean
|
||
|
to_include['mean_se'] = self.se_mean
|
||
|
k_endog = 1
|
||
|
else:
|
||
|
yname = self.model.data.ynames[endog]
|
||
|
to_include['mean'] = self.predicted_mean[:, endog]
|
||
|
to_include['mean_se'] = self.se_mean[:, endog]
|
||
|
k_endog = self.predicted_mean.shape[1]
|
||
|
self._use_pandas = _use_pandas
|
||
|
to_include['mean_ci_lower'] = ci_mean[:, endog]
|
||
|
to_include['mean_ci_upper'] = ci_mean[:, k_endog + endog]
|
||
|
|
||
|
# pandas dict does not handle 2d_array
|
||
|
# data = np.column_stack(list(to_include.values()))
|
||
|
# names = ....
|
||
|
res = pd.DataFrame(to_include, index=self._row_labels,
|
||
|
columns=list(to_include.keys()))
|
||
|
res.columns.name = yname
|
||
|
return res
|
||
|
|
||
|
|
||
|
class PredictionResultsWrapper(wrap.ResultsWrapper):
|
||
|
_attrs = {
|
||
|
'predicted_mean': 'dates',
|
||
|
'se_mean': 'dates',
|
||
|
't_values': 'dates',
|
||
|
}
|
||
|
_wrap_attrs = wrap.union_dicts(_attrs)
|
||
|
|
||
|
_methods = {}
|
||
|
_wrap_methods = wrap.union_dicts(_methods)
|
||
|
wrap.populate_wrapper(PredictionResultsWrapper, PredictionResults) # noqa:E305
|