""" State Space Model Author: Chad Fulton License: Simplified-BSD """ from statsmodels.compat.pandas import is_int_index import contextlib import warnings import datetime as dt from types import SimpleNamespace import numpy as np import pandas as pd from scipy.stats import norm from statsmodels.tools.tools import pinv_extended, Bunch from statsmodels.tools.sm_exceptions import PrecisionWarning, ValueWarning from statsmodels.tools.numdiff import (_get_epsilon, approx_hess_cs, approx_fprime_cs, approx_fprime) from statsmodels.tools.decorators import cache_readonly from statsmodels.tools.eval_measures import aic, aicc, bic, hqic import statsmodels.base.wrapper as wrap import statsmodels.tsa.base.prediction as pred from statsmodels.base.data import PandasData import statsmodels.tsa.base.tsa_model as tsbase from .news import NewsResults from .simulation_smoother import SimulationSmoother from .kalman_smoother import SmootherResults from .kalman_filter import INVERT_UNIVARIATE, SOLVE_LU, MEMORY_CONSERVE from .initialization import Initialization from .tools import prepare_exog, concat, _safe_cond, get_impact_dates def _handle_args(names, defaults, *args, **kwargs): output_args = [] # We need to handle positional arguments in two ways, in case this was # called by a Scipy optimization routine if len(args) > 0: # the fit() method will pass a dictionary if isinstance(args[0], dict): flags = args[0] # otherwise, a user may have just used positional arguments... else: flags = dict(zip(names, args)) for i in range(len(names)): output_args.append(flags.get(names[i], defaults[i])) for name, value in flags.items(): if name in kwargs: raise TypeError("loglike() got multiple values for keyword" " argument '%s'" % name) else: for i in range(len(names)): output_args.append(kwargs.pop(names[i], defaults[i])) return tuple(output_args) + (kwargs,) def _check_index(desired_index, dta, title='data'): given_index = None if isinstance(dta, (pd.Series, pd.DataFrame)): given_index = dta.index if given_index is not None and not desired_index.equals(given_index): desired_freq = getattr(desired_index, 'freq', None) given_freq = getattr(given_index, 'freq', None) if ((desired_freq is not None or given_freq is not None) and desired_freq != given_freq): raise ValueError('Given %s does not have an index' ' that extends the index of the' ' model. Expected index frequency is' ' "%s", but got "%s".' % (title, desired_freq, given_freq)) else: raise ValueError('Given %s does not have an index' ' that extends the index of the' ' model.' % title) class MLEModel(tsbase.TimeSeriesModel): r""" State space model for maximum likelihood estimation Parameters ---------- endog : array_like The observed time-series process :math:`y` k_states : int The dimension of the unobserved state process. exog : array_like, optional Array of exogenous regressors, shaped nobs x k. Default is no exogenous regressors. dates : array_like of datetime, optional An array-like object of datetime objects. If a Pandas object is given for endog, it is assumed to have a DateIndex. freq : str, optional The frequency of the time-series. A Pandas offset or 'B', 'D', 'W', 'M', 'A', or 'Q'. This is optional if dates are given. **kwargs Keyword arguments may be used to provide default values for state space matrices or for Kalman filtering options. See `Representation`, and `KalmanFilter` for more details. Attributes ---------- ssm : statsmodels.tsa.statespace.kalman_filter.KalmanFilter Underlying state space representation. See Also -------- statsmodels.tsa.statespace.mlemodel.MLEResults statsmodels.tsa.statespace.kalman_filter.KalmanFilter statsmodels.tsa.statespace.representation.Representation Notes ----- This class wraps the state space model with Kalman filtering to add in functionality for maximum likelihood estimation. In particular, it adds the concept of updating the state space representation based on a defined set of parameters, through the `update` method or `updater` attribute (see below for more details on which to use when), and it adds a `fit` method which uses a numerical optimizer to select the parameters that maximize the likelihood of the model. The `start_params` `update` method must be overridden in the child class (and the `transform` and `untransform` methods, if needed). """ def __init__(self, endog, k_states, exog=None, dates=None, freq=None, **kwargs): # Initialize the model base super().__init__(endog=endog, exog=exog, dates=dates, freq=freq, missing='none') # Store kwargs to recreate model self._init_kwargs = kwargs # Prepared the endog array: C-ordered, shape=(nobs x k_endog) self.endog, self.exog = self.prepare_data() # Dimensions self.nobs = self.endog.shape[0] self.k_states = k_states # Initialize the state-space representation self.initialize_statespace(**kwargs) # Setup holder for fixed parameters self._has_fixed_params = False self._fixed_params = None self._params_index = None self._fixed_params_index = None self._free_params_index = None def prepare_data(self): """ Prepare data for use in the state space representation """ endog = np.require( np.array(self.data.orig_endog, copy=True), requirements="CW" ).copy() exog = self.data.orig_exog if exog is not None: exog = np.array(exog) # Base class may allow 1-dim data, whereas we need 2-dim if endog.ndim == 1: endog.shape = (endog.shape[0], 1) # this will be C-contiguous return endog, exog def initialize_statespace(self, **kwargs): """ Initialize the state space representation Parameters ---------- **kwargs Additional keyword arguments to pass to the state space class constructor. """ # (Now self.endog is C-ordered and in long format (nobs x k_endog). To # get F-ordered and in wide format just need to transpose) endog = self.endog.T # Instantiate the state space object self.ssm = SimulationSmoother(endog.shape[0], self.k_states, nobs=endog.shape[1], **kwargs) # Bind the data to the model self.ssm.bind(endog) # Other dimensions, now that `ssm` is available self.k_endog = self.ssm.k_endog def _get_index_with_final_state(self): # The index we inherit from `TimeSeriesModel` will only cover the # data sample itself, but we will also need an index value for the # final state which is the next time step to the last datapoint. # This method figures out an appropriate value for the three types of # supported indexes: date-based, Int64Index, or RangeIndex if self._index_dates: if isinstance(self._index, pd.DatetimeIndex): index = pd.date_range( start=self._index[0], periods=len(self._index) + 1, freq=self._index.freq) elif isinstance(self._index, pd.PeriodIndex): index = pd.period_range( start=self._index[0], periods=len(self._index) + 1, freq=self._index.freq) else: raise NotImplementedError elif isinstance(self._index, pd.RangeIndex): # COMPAT: pd.RangeIndex does not have start, stop, step prior to # pandas 0.25 try: start = self._index.start stop = self._index.stop step = self._index.step except AttributeError: start = self._index._start stop = self._index._stop step = self._index._step index = pd.RangeIndex(start, stop + step, step) elif is_int_index(self._index): # The only valid Int64Index is a full, incrementing index, so this # is general value = self._index[-1] + 1 index = pd.Index(self._index.tolist() + [value]) else: raise NotImplementedError return index def __setitem__(self, key, value): return self.ssm.__setitem__(key, value) def __getitem__(self, key): return self.ssm.__getitem__(key) def _get_init_kwds(self): # Get keywords based on model attributes kwds = super()._get_init_kwds() for key, value in kwds.items(): if value is None and hasattr(self.ssm, key): kwds[key] = getattr(self.ssm, key) return kwds def clone(self, endog, exog=None, **kwargs): """ Clone state space model with new data and optionally new specification Parameters ---------- endog : array_like The observed time-series process :math:`y` k_states : int The dimension of the unobserved state process. exog : array_like, optional Array of exogenous regressors, shaped nobs x k. Default is no exogenous regressors. kwargs Keyword arguments to pass to the new model class to change the model specification. Returns ------- model : MLEModel subclass Notes ----- This method must be implemented """ raise NotImplementedError('This method is not implemented in the base' ' class and must be set up by each specific' ' model.') def _clone_from_init_kwds(self, endog, **kwargs): # Cannot make this the default, because there is extra work required # for subclasses to make _get_init_kwds useful. use_kwargs = self._get_init_kwds() use_kwargs.update(kwargs) # Check for `exog` if getattr(self, 'k_exog', 0) > 0 and kwargs.get('exog', None) is None: raise ValueError('Cloning a model with an exogenous component' ' requires specifying a new exogenous array using' ' the `exog` argument.') mod = self.__class__(endog, **use_kwargs) return mod def set_filter_method(self, filter_method=None, **kwargs): """ Set the filtering method The filtering method controls aspects of which Kalman filtering approach will be used. Parameters ---------- filter_method : int, optional Bitmask value to set the filter method to. See notes for details. **kwargs Keyword arguments may be used to influence the filter method by setting individual boolean flags. See notes for details. Notes ----- This method is rarely used. See the corresponding function in the `KalmanFilter` class for details. """ self.ssm.set_filter_method(filter_method, **kwargs) def set_inversion_method(self, inversion_method=None, **kwargs): """ Set the inversion method The Kalman filter may contain one matrix inversion: that of the forecast error covariance matrix. The inversion method controls how and if that inverse is performed. Parameters ---------- inversion_method : int, optional Bitmask value to set the inversion method to. See notes for details. **kwargs Keyword arguments may be used to influence the inversion method by setting individual boolean flags. See notes for details. Notes ----- This method is rarely used. See the corresponding function in the `KalmanFilter` class for details. """ self.ssm.set_inversion_method(inversion_method, **kwargs) def set_stability_method(self, stability_method=None, **kwargs): """ Set the numerical stability method The Kalman filter is a recursive algorithm that may in some cases suffer issues with numerical stability. The stability method controls what, if any, measures are taken to promote stability. Parameters ---------- stability_method : int, optional Bitmask value to set the stability method to. See notes for details. **kwargs Keyword arguments may be used to influence the stability method by setting individual boolean flags. See notes for details. Notes ----- This method is rarely used. See the corresponding function in the `KalmanFilter` class for details. """ self.ssm.set_stability_method(stability_method, **kwargs) def set_conserve_memory(self, conserve_memory=None, **kwargs): """ Set the memory conservation method By default, the Kalman filter computes a number of intermediate matrices at each iteration. The memory conservation options control which of those matrices are stored. Parameters ---------- conserve_memory : int, optional Bitmask value to set the memory conservation method to. See notes for details. **kwargs Keyword arguments may be used to influence the memory conservation method by setting individual boolean flags. Notes ----- This method is rarely used. See the corresponding function in the `KalmanFilter` class for details. """ self.ssm.set_conserve_memory(conserve_memory, **kwargs) def set_smoother_output(self, smoother_output=None, **kwargs): """ Set the smoother output The smoother can produce several types of results. The smoother output variable controls which are calculated and returned. Parameters ---------- smoother_output : int, optional Bitmask value to set the smoother output to. See notes for details. **kwargs Keyword arguments may be used to influence the smoother output by setting individual boolean flags. Notes ----- This method is rarely used. See the corresponding function in the `KalmanSmoother` class for details. """ self.ssm.set_smoother_output(smoother_output, **kwargs) def initialize_known(self, initial_state, initial_state_cov): """Initialize known""" self.ssm.initialize_known(initial_state, initial_state_cov) def initialize_approximate_diffuse(self, variance=None): """Initialize approximate diffuse""" self.ssm.initialize_approximate_diffuse(variance) def initialize_stationary(self): """Initialize stationary""" self.ssm.initialize_stationary() @property def initialization(self): return self.ssm.initialization @initialization.setter def initialization(self, value): self.ssm.initialization = value @property def initial_variance(self): return self.ssm.initial_variance @initial_variance.setter def initial_variance(self, value): self.ssm.initial_variance = value @property def loglikelihood_burn(self): return self.ssm.loglikelihood_burn @loglikelihood_burn.setter def loglikelihood_burn(self, value): self.ssm.loglikelihood_burn = value @property def tolerance(self): return self.ssm.tolerance @tolerance.setter def tolerance(self, value): self.ssm.tolerance = value def _validate_can_fix_params(self, param_names): for param_name in param_names: if param_name not in self.param_names: raise ValueError('Invalid parameter name passed: "%s".' % param_name) @contextlib.contextmanager def fix_params(self, params): """ Fix parameters to specific values (context manager) Parameters ---------- params : dict Dictionary describing the fixed parameter values, of the form `param_name: fixed_value`. See the `param_names` property for valid parameter names. Examples -------- >>> mod = sm.tsa.SARIMAX(endog, order=(1, 0, 1)) >>> with mod.fix_params({'ar.L1': 0.5}): res = mod.fit() """ k_params = len(self.param_names) # Initialization (this is done here rather than in the constructor # because param_names may not be available at that point) if self._fixed_params is None: self._fixed_params = {} self._params_index = dict( zip(self.param_names, np.arange(k_params))) # Cache the current fixed parameters cache_fixed_params = self._fixed_params.copy() cache_has_fixed_params = self._has_fixed_params cache_fixed_params_index = self._fixed_params_index cache_free_params_index = self._free_params_index # Validate parameter names and values all_fixed_param_names = ( set(params.keys()) | set(self._fixed_params.keys()) ) self._validate_can_fix_params(all_fixed_param_names) # Set the new fixed parameters, keeping the order as given by # param_names self._fixed_params.update(params) self._fixed_params = { name: self._fixed_params[name] for name in self.param_names if name in self._fixed_params} # Update associated values self._has_fixed_params = True self._fixed_params_index = [self._params_index[key] for key in self._fixed_params.keys()] self._free_params_index = list( set(np.arange(k_params)).difference(self._fixed_params_index)) try: yield finally: # Reset the fixed parameters self._has_fixed_params = cache_has_fixed_params self._fixed_params = cache_fixed_params self._fixed_params_index = cache_fixed_params_index self._free_params_index = cache_free_params_index def fit(self, start_params=None, transformed=True, includes_fixed=False, cov_type=None, cov_kwds=None, method='lbfgs', maxiter=50, full_output=1, disp=5, callback=None, return_params=False, optim_score=None, optim_complex_step=None, optim_hessian=None, flags=None, low_memory=False, **kwargs): """ Fits the model by maximum likelihood via Kalman filter. Parameters ---------- start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. If None, the default is given by Model.start_params. transformed : bool, optional Whether or not `start_params` is already transformed. Default is True. includes_fixed : bool, optional If parameters were previously fixed with the `fix_params` method, this argument describes whether or not `start_params` also includes the fixed parameters, in addition to the free parameters. Default is False. cov_type : str, optional The `cov_type` keyword governs the method for calculating the covariance matrix of parameter estimates. Can be one of: - 'opg' for the outer product of gradient estimator - 'oim' for the observed information matrix estimator, calculated using the method of Harvey (1989) - 'approx' for the observed information matrix estimator, calculated using a numerical approximation of the Hessian matrix. - 'robust' for an approximate (quasi-maximum likelihood) covariance matrix that may be valid even in the presence of some misspecifications. Intermediate calculations use the 'oim' method. - 'robust_approx' is the same as 'robust' except that the intermediate calculations use the 'approx' method. - 'none' for no covariance matrix calculation. Default is 'opg' unless memory conservation is used to avoid computing the loglikelihood values for each observation, in which case the default is 'approx'. cov_kwds : dict or None, optional A dictionary of arguments affecting covariance matrix computation. **opg, oim, approx, robust, robust_approx** - 'approx_complex_step' : bool, optional - If True, numerical approximations are computed using complex-step methods. If False, numerical approximations are computed using finite difference methods. Default is True. - 'approx_centered' : bool, optional - If True, numerical approximations computed using finite difference methods use a centered approximation. Default is False. method : str, optional The `method` determines which solver from `scipy.optimize` is used, and it can be chosen from among the following strings: - 'newton' for Newton-Raphson - 'nm' for Nelder-Mead - 'bfgs' for Broyden-Fletcher-Goldfarb-Shanno (BFGS) - 'lbfgs' for limited-memory BFGS with optional box constraints - 'powell' for modified Powell's method - 'cg' for conjugate gradient - 'ncg' for Newton-conjugate gradient - 'basinhopping' for global basin-hopping solver The explicit arguments in `fit` are passed to the solver, with the exception of the basin-hopping solver. Each solver has several optional arguments that are not the same across solvers. See the notes section below (or scipy.optimize) for the available arguments and for the list of explicit arguments that the basin-hopping solver supports. maxiter : int, optional The maximum number of iterations to perform. full_output : bool, optional Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. disp : bool, optional Set to True to print convergence messages. callback : callable callback(xk), optional Called after each iteration, as callback(xk), where xk is the current parameter vector. return_params : bool, optional Whether or not to return only the array of maximizing parameters. Default is False. optim_score : {'harvey', 'approx'} or None, optional The method by which the score vector is calculated. 'harvey' uses the method from Harvey (1989), 'approx' uses either finite difference or complex step differentiation depending upon the value of `optim_complex_step`, and None uses the built-in gradient approximation of the optimizer. Default is None. This keyword is only relevant if the optimization method uses the score. optim_complex_step : bool, optional Whether or not to use complex step differentiation when approximating the score; if False, finite difference approximation is used. Default is True. This keyword is only relevant if `optim_score` is set to 'harvey' or 'approx'. optim_hessian : {'opg', 'oim', 'approx'}, optional The method by which the Hessian is numerically approximated. 'opg' uses outer product of gradients, 'oim' uses the information matrix formula from Harvey (1989), and 'approx' uses numerical approximation. This keyword is only relevant if the optimization method uses the Hessian matrix. low_memory : bool, optional If set to True, techniques are applied to substantially reduce memory usage. If used, some features of the results object will not be available (including smoothed results and in-sample prediction), although out-of-sample forecasting is possible. Default is False. **kwargs Additional keyword arguments to pass to the optimizer. Returns ------- results Results object holding results from fitting a state space model. See Also -------- statsmodels.base.model.LikelihoodModel.fit statsmodels.tsa.statespace.mlemodel.MLEResults statsmodels.tsa.statespace.structural.UnobservedComponentsResults """ if start_params is None: start_params = self.start_params transformed = True includes_fixed = True # Update the score method if optim_score is None and method == 'lbfgs': kwargs.setdefault('approx_grad', True) kwargs.setdefault('epsilon', 1e-5) elif optim_score is None: optim_score = 'approx' # Check for complex step differentiation if optim_complex_step is None: optim_complex_step = not self.ssm._complex_endog elif optim_complex_step and self.ssm._complex_endog: raise ValueError('Cannot use complex step derivatives when data' ' or parameters are complex.') # Standardize starting parameters start_params = self.handle_params(start_params, transformed=True, includes_fixed=includes_fixed) # Unconstrain the starting parameters if transformed: start_params = self.untransform_params(start_params) # Remove any fixed parameters if self._has_fixed_params: start_params = start_params[self._free_params_index] # If all parameters are fixed, we are done if self._has_fixed_params and len(start_params) == 0: mlefit = Bunch(params=[], mle_retvals=None, mle_settings=None) else: # Remove disallowed kwargs disallow = ( "concentrate_scale", "enforce_stationarity", "enforce_invertibility" ) kwargs = {k: v for k, v in kwargs.items() if k not in disallow} # Maximum likelihood estimation if flags is None: flags = {} flags.update({ 'transformed': False, 'includes_fixed': False, 'score_method': optim_score, 'approx_complex_step': optim_complex_step }) if optim_hessian is not None: flags['hessian_method'] = optim_hessian fargs = (flags,) mlefit = super().fit(start_params, method=method, fargs=fargs, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, skip_hessian=True, **kwargs) # Just return the fitted parameters if requested if return_params: return self.handle_params(mlefit.params, transformed=False, includes_fixed=False) # Otherwise construct the results class if desired else: # Handle memory conservation option if low_memory: conserve_memory = self.ssm.conserve_memory self.ssm.set_conserve_memory(MEMORY_CONSERVE) # Perform filtering / smoothing if (self.ssm.memory_no_predicted or self.ssm.memory_no_gain or self.ssm.memory_no_smoothing): func = self.filter else: func = self.smooth res = func(mlefit.params, transformed=False, includes_fixed=False, cov_type=cov_type, cov_kwds=cov_kwds) res.mlefit = mlefit res.mle_retvals = mlefit.mle_retvals res.mle_settings = mlefit.mle_settings # Reset memory conservation if low_memory: self.ssm.set_conserve_memory(conserve_memory) return res def fit_constrained(self, constraints, start_params=None, **fit_kwds): """ Fit the model with some parameters subject to equality constraints. Parameters ---------- constraints : dict Dictionary of constraints, of the form `param_name: fixed_value`. See the `param_names` property for valid parameter names. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. If None, the default is given by Model.start_params. **fit_kwds : keyword arguments fit_kwds are used in the optimization of the remaining parameters. Returns ------- results : Results instance Examples -------- >>> mod = sm.tsa.SARIMAX(endog, order=(1, 0, 1)) >>> res = mod.fit_constrained({'ar.L1': 0.5}) """ with self.fix_params(constraints): res = self.fit(start_params, **fit_kwds) return res @property def _res_classes(self): return {'fit': (MLEResults, MLEResultsWrapper)} def _wrap_results(self, params, result, return_raw, cov_type=None, cov_kwds=None, results_class=None, wrapper_class=None): if not return_raw: # Wrap in a results object result_kwargs = {} if cov_type is not None: result_kwargs['cov_type'] = cov_type if cov_kwds is not None: result_kwargs['cov_kwds'] = cov_kwds if results_class is None: results_class = self._res_classes['fit'][0] if wrapper_class is None: wrapper_class = self._res_classes['fit'][1] res = results_class(self, params, result, **result_kwargs) result = wrapper_class(res) return result def filter(self, params, transformed=True, includes_fixed=False, complex_step=False, cov_type=None, cov_kwds=None, return_ssm=False, results_class=None, results_wrapper_class=None, low_memory=False, **kwargs): """ Kalman filtering Parameters ---------- params : array_like Array of parameters at which to evaluate the loglikelihood function. transformed : bool, optional Whether or not `params` is already transformed. Default is True. return_ssm : bool,optional Whether or not to return only the state space output or a full results object. Default is to return a full results object. cov_type : str, optional See `MLEResults.fit` for a description of covariance matrix types for results object. cov_kwds : dict or None, optional See `MLEResults.get_robustcov_results` for a description required keywords for alternative covariance estimators low_memory : bool, optional If set to True, techniques are applied to substantially reduce memory usage. If used, some features of the results object will not be available (including in-sample prediction), although out-of-sample forecasting is possible. Default is False. **kwargs Additional keyword arguments to pass to the Kalman filter. See `KalmanFilter.filter` for more details. """ params = self.handle_params(params, transformed=transformed, includes_fixed=includes_fixed) self.update(params, transformed=True, includes_fixed=True, complex_step=complex_step) # Save the parameter names self.data.param_names = self.param_names if complex_step: kwargs['inversion_method'] = INVERT_UNIVARIATE | SOLVE_LU # Handle memory conservation if low_memory: kwargs['conserve_memory'] = MEMORY_CONSERVE # Get the state space output result = self.ssm.filter(complex_step=complex_step, **kwargs) # Wrap in a results object return self._wrap_results(params, result, return_ssm, cov_type, cov_kwds, results_class, results_wrapper_class) def smooth(self, params, transformed=True, includes_fixed=False, complex_step=False, cov_type=None, cov_kwds=None, return_ssm=False, results_class=None, results_wrapper_class=None, **kwargs): """ Kalman smoothing Parameters ---------- params : array_like Array of parameters at which to evaluate the loglikelihood function. transformed : bool, optional Whether or not `params` is already transformed. Default is True. return_ssm : bool,optional Whether or not to return only the state space output or a full results object. Default is to return a full results object. cov_type : str, optional See `MLEResults.fit` for a description of covariance matrix types for results object. cov_kwds : dict or None, optional See `MLEResults.get_robustcov_results` for a description required keywords for alternative covariance estimators **kwargs Additional keyword arguments to pass to the Kalman filter. See `KalmanFilter.filter` for more details. """ params = self.handle_params(params, transformed=transformed, includes_fixed=includes_fixed) self.update(params, transformed=True, includes_fixed=True, complex_step=complex_step) # Save the parameter names self.data.param_names = self.param_names if complex_step: kwargs['inversion_method'] = INVERT_UNIVARIATE | SOLVE_LU # Get the state space output result = self.ssm.smooth(complex_step=complex_step, **kwargs) # Wrap in a results object return self._wrap_results(params, result, return_ssm, cov_type, cov_kwds, results_class, results_wrapper_class) _loglike_param_names = ['transformed', 'includes_fixed', 'complex_step'] _loglike_param_defaults = [True, False, False] def loglike(self, params, *args, **kwargs): """ Loglikelihood evaluation Parameters ---------- params : array_like Array of parameters at which to evaluate the loglikelihood function. transformed : bool, optional Whether or not `params` is already transformed. Default is True. **kwargs Additional keyword arguments to pass to the Kalman filter. See `KalmanFilter.filter` for more details. See Also -------- update : modifies the internal state of the state space model to reflect new params Notes ----- [1]_ recommend maximizing the average likelihood to avoid scale issues; this is done automatically by the base Model fit method. References ---------- .. [1] Koopman, Siem Jan, Neil Shephard, and Jurgen A. Doornik. 1999. Statistical Algorithms for Models in State Space Using SsfPack 2.2. Econometrics Journal 2 (1): 107-60. doi:10.1111/1368-423X.00023. """ transformed, includes_fixed, complex_step, kwargs = _handle_args( MLEModel._loglike_param_names, MLEModel._loglike_param_defaults, *args, **kwargs) params = self.handle_params(params, transformed=transformed, includes_fixed=includes_fixed) self.update(params, transformed=True, includes_fixed=True, complex_step=complex_step) if complex_step: kwargs['inversion_method'] = INVERT_UNIVARIATE | SOLVE_LU loglike = self.ssm.loglike(complex_step=complex_step, **kwargs) # Koopman, Shephard, and Doornik recommend maximizing the average # likelihood to avoid scale issues, but the averaging is done # automatically in the base model `fit` method return loglike def loglikeobs(self, params, transformed=True, includes_fixed=False, complex_step=False, **kwargs): """ Loglikelihood evaluation Parameters ---------- params : array_like Array of parameters at which to evaluate the loglikelihood function. transformed : bool, optional Whether or not `params` is already transformed. Default is True. **kwargs Additional keyword arguments to pass to the Kalman filter. See `KalmanFilter.filter` for more details. See Also -------- update : modifies the internal state of the Model to reflect new params Notes ----- [1]_ recommend maximizing the average likelihood to avoid scale issues; this is done automatically by the base Model fit method. References ---------- .. [1] Koopman, Siem Jan, Neil Shephard, and Jurgen A. Doornik. 1999. Statistical Algorithms for Models in State Space Using SsfPack 2.2. Econometrics Journal 2 (1): 107-60. doi:10.1111/1368-423X.00023. """ params = self.handle_params(params, transformed=transformed, includes_fixed=includes_fixed) # If we're using complex-step differentiation, then we cannot use # Cholesky factorization if complex_step: kwargs['inversion_method'] = INVERT_UNIVARIATE | SOLVE_LU self.update(params, transformed=True, includes_fixed=True, complex_step=complex_step) return self.ssm.loglikeobs(complex_step=complex_step, **kwargs) def simulation_smoother(self, simulation_output=None, **kwargs): r""" Retrieve a simulation smoother for the state space model. Parameters ---------- simulation_output : int, optional Determines which simulation smoother output is calculated. Default is all (including state and disturbances). **kwargs Additional keyword arguments, used to set the simulation output. See `set_simulation_output` for more details. Returns ------- SimulationSmoothResults """ return self.ssm.simulation_smoother( simulation_output=simulation_output, **kwargs) def _forecasts_error_partial_derivatives(self, params, transformed=True, includes_fixed=False, approx_complex_step=None, approx_centered=False, res=None, **kwargs): params = np.array(params, ndmin=1) # We cannot use complex-step differentiation with non-transformed # parameters if approx_complex_step is None: approx_complex_step = transformed if not transformed and approx_complex_step: raise ValueError("Cannot use complex-step approximations to" " calculate the observed_information_matrix" " with untransformed parameters.") # If we're using complex-step differentiation, then we cannot use # Cholesky factorization if approx_complex_step: kwargs['inversion_method'] = INVERT_UNIVARIATE | SOLVE_LU # Get values at the params themselves if res is None: self.update(params, transformed=transformed, includes_fixed=includes_fixed, complex_step=approx_complex_step) res = self.ssm.filter(complex_step=approx_complex_step, **kwargs) # Setup n = len(params) # Compute partial derivatives w.r.t. forecast error and forecast # error covariance partials_forecasts_error = ( np.zeros((self.k_endog, self.nobs, n)) ) partials_forecasts_error_cov = ( np.zeros((self.k_endog, self.k_endog, self.nobs, n)) ) if approx_complex_step: epsilon = _get_epsilon(params, 2, None, n) increments = np.identity(n) * 1j * epsilon for i, ih in enumerate(increments): self.update(params + ih, transformed=transformed, includes_fixed=includes_fixed, complex_step=True) _res = self.ssm.filter(complex_step=True, **kwargs) partials_forecasts_error[:, :, i] = ( _res.forecasts_error.imag / epsilon[i] ) partials_forecasts_error_cov[:, :, :, i] = ( _res.forecasts_error_cov.imag / epsilon[i] ) elif not approx_centered: epsilon = _get_epsilon(params, 2, None, n) ei = np.zeros((n,), float) for i in range(n): ei[i] = epsilon[i] self.update(params + ei, transformed=transformed, includes_fixed=includes_fixed, complex_step=False) _res = self.ssm.filter(complex_step=False, **kwargs) partials_forecasts_error[:, :, i] = ( _res.forecasts_error - res.forecasts_error) / epsilon[i] partials_forecasts_error_cov[:, :, :, i] = ( _res.forecasts_error_cov - res.forecasts_error_cov) / epsilon[i] ei[i] = 0.0 else: epsilon = _get_epsilon(params, 3, None, n) / 2. ei = np.zeros((n,), float) for i in range(n): ei[i] = epsilon[i] self.update(params + ei, transformed=transformed, includes_fixed=includes_fixed, complex_step=False) _res1 = self.ssm.filter(complex_step=False, **kwargs) self.update(params - ei, transformed=transformed, includes_fixed=includes_fixed, complex_step=False) _res2 = self.ssm.filter(complex_step=False, **kwargs) partials_forecasts_error[:, :, i] = ( (_res1.forecasts_error - _res2.forecasts_error) / (2 * epsilon[i])) partials_forecasts_error_cov[:, :, :, i] = ( (_res1.forecasts_error_cov - _res2.forecasts_error_cov) / (2 * epsilon[i])) ei[i] = 0.0 return partials_forecasts_error, partials_forecasts_error_cov def observed_information_matrix(self, params, transformed=True, includes_fixed=False, approx_complex_step=None, approx_centered=False, **kwargs): """ Observed information matrix Parameters ---------- params : array_like, optional Array of parameters at which to evaluate the loglikelihood function. **kwargs Additional keyword arguments to pass to the Kalman filter. See `KalmanFilter.filter` for more details. Notes ----- This method is from Harvey (1989), which shows that the information matrix only depends on terms from the gradient. This implementation is partially analytic and partially numeric approximation, therefore, because it uses the analytic formula for the information matrix, with numerically computed elements of the gradient. References ---------- Harvey, Andrew C. 1990. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press. """ params = np.array(params, ndmin=1) # Setup n = len(params) # We cannot use complex-step differentiation with non-transformed # parameters if approx_complex_step is None: approx_complex_step = transformed if not transformed and approx_complex_step: raise ValueError("Cannot use complex-step approximations to" " calculate the observed_information_matrix" " with untransformed parameters.") # Get values at the params themselves params = self.handle_params(params, transformed=transformed, includes_fixed=includes_fixed) self.update(params, transformed=True, includes_fixed=True, complex_step=approx_complex_step) # If we're using complex-step differentiation, then we cannot use # Cholesky factorization if approx_complex_step: kwargs['inversion_method'] = INVERT_UNIVARIATE | SOLVE_LU res = self.ssm.filter(complex_step=approx_complex_step, **kwargs) dtype = self.ssm.dtype # Save this for inversion later inv_forecasts_error_cov = res.forecasts_error_cov.copy() partials_forecasts_error, partials_forecasts_error_cov = ( self._forecasts_error_partial_derivatives( params, transformed=transformed, includes_fixed=includes_fixed, approx_complex_step=approx_complex_step, approx_centered=approx_centered, res=res, **kwargs)) # Compute the information matrix tmp = np.zeros((self.k_endog, self.k_endog, self.nobs, n), dtype=dtype) information_matrix = np.zeros((n, n), dtype=dtype) d = np.maximum(self.ssm.loglikelihood_burn, res.nobs_diffuse) for t in range(d, self.nobs): inv_forecasts_error_cov[:, :, t] = ( np.linalg.inv(res.forecasts_error_cov[:, :, t]) ) for i in range(n): tmp[:, :, t, i] = np.dot( inv_forecasts_error_cov[:, :, t], partials_forecasts_error_cov[:, :, t, i] ) for i in range(n): for j in range(n): information_matrix[i, j] += ( 0.5 * np.trace(np.dot(tmp[:, :, t, i], tmp[:, :, t, j])) ) information_matrix[i, j] += np.inner( partials_forecasts_error[:, t, i], np.dot(inv_forecasts_error_cov[:, :, t], partials_forecasts_error[:, t, j]) ) return information_matrix / (self.nobs - self.ssm.loglikelihood_burn) def opg_information_matrix(self, params, transformed=True, includes_fixed=False, approx_complex_step=None, **kwargs): """ Outer product of gradients information matrix Parameters ---------- params : array_like, optional Array of parameters at which to evaluate the loglikelihood function. **kwargs Additional arguments to the `loglikeobs` method. References ---------- Berndt, Ernst R., Bronwyn Hall, Robert Hall, and Jerry Hausman. 1974. Estimation and Inference in Nonlinear Structural Models. NBER Chapters. National Bureau of Economic Research, Inc. """ # We cannot use complex-step differentiation with non-transformed # parameters if approx_complex_step is None: approx_complex_step = transformed if not transformed and approx_complex_step: raise ValueError("Cannot use complex-step approximations to" " calculate the observed_information_matrix" " with untransformed parameters.") score_obs = self.score_obs(params, transformed=transformed, includes_fixed=includes_fixed, approx_complex_step=approx_complex_step, **kwargs).transpose() return ( np.inner(score_obs, score_obs) / (self.nobs - self.ssm.loglikelihood_burn) ) def _score_complex_step(self, params, **kwargs): # the default epsilon can be too small # inversion_method = INVERT_UNIVARIATE | SOLVE_LU epsilon = _get_epsilon(params, 2., None, len(params)) kwargs['transformed'] = True kwargs['complex_step'] = True return approx_fprime_cs(params, self.loglike, epsilon=epsilon, kwargs=kwargs) def _score_finite_difference(self, params, approx_centered=False, **kwargs): kwargs['transformed'] = True return approx_fprime(params, self.loglike, kwargs=kwargs, centered=approx_centered) def _score_harvey(self, params, approx_complex_step=True, **kwargs): score_obs = self._score_obs_harvey( params, approx_complex_step=approx_complex_step, **kwargs) return np.sum(score_obs, axis=0) def _score_obs_harvey(self, params, approx_complex_step=True, approx_centered=False, includes_fixed=False, **kwargs): """ Score Parameters ---------- params : array_like, optional Array of parameters at which to evaluate the loglikelihood function. **kwargs Additional keyword arguments to pass to the Kalman filter. See `KalmanFilter.filter` for more details. Notes ----- This method is from Harvey (1989), section 3.4.5 References ---------- Harvey, Andrew C. 1990. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press. """ params = np.array(params, ndmin=1) n = len(params) # Get values at the params themselves self.update(params, transformed=True, includes_fixed=includes_fixed, complex_step=approx_complex_step) if approx_complex_step: kwargs['inversion_method'] = INVERT_UNIVARIATE | SOLVE_LU if 'transformed' in kwargs: del kwargs['transformed'] res = self.ssm.filter(complex_step=approx_complex_step, **kwargs) # Get forecasts error partials partials_forecasts_error, partials_forecasts_error_cov = ( self._forecasts_error_partial_derivatives( params, transformed=True, includes_fixed=includes_fixed, approx_complex_step=approx_complex_step, approx_centered=approx_centered, res=res, **kwargs)) # Compute partial derivatives w.r.t. likelihood function partials = np.zeros((self.nobs, n)) k_endog = self.k_endog for t in range(self.nobs): inv_forecasts_error_cov = np.linalg.inv( res.forecasts_error_cov[:, :, t]) for i in range(n): partials[t, i] += np.trace(np.dot( np.dot(inv_forecasts_error_cov, partials_forecasts_error_cov[:, :, t, i]), (np.eye(k_endog) - np.dot(inv_forecasts_error_cov, np.outer(res.forecasts_error[:, t], res.forecasts_error[:, t]))))) # 2 * dv / di * F^{-1} v_t # where x = F^{-1} v_t or F x = v partials[t, i] += 2 * np.dot( partials_forecasts_error[:, t, i], np.dot(inv_forecasts_error_cov, res.forecasts_error[:, t])) return -partials / 2. _score_param_names = ['transformed', 'includes_fixed', 'score_method', 'approx_complex_step', 'approx_centered'] _score_param_defaults = [True, False, 'approx', None, False] def score(self, params, *args, **kwargs): """ Compute the score function at params. Parameters ---------- params : array_like Array of parameters at which to evaluate the score. *args Additional positional arguments to the `loglike` method. **kwargs Additional keyword arguments to the `loglike` method. Returns ------- score : ndarray Score, evaluated at `params`. Notes ----- This is a numerical approximation, calculated using first-order complex step differentiation on the `loglike` method. Both args and kwargs are necessary because the optimizer from `fit` must call this function and only supports passing arguments via args (for example `scipy.optimize.fmin_l_bfgs`). """ (transformed, includes_fixed, method, approx_complex_step, approx_centered, kwargs) = ( _handle_args(MLEModel._score_param_names, MLEModel._score_param_defaults, *args, **kwargs)) # For fit() calls, the method is called 'score_method' (to distinguish # it from the method used for fit) but generally in kwargs the method # will just be called 'method' if 'method' in kwargs: method = kwargs.pop('method') if approx_complex_step is None: approx_complex_step = not self.ssm._complex_endog if approx_complex_step and self.ssm._complex_endog: raise ValueError('Cannot use complex step derivatives when data' ' or parameters are complex.') out = self.handle_params( params, transformed=transformed, includes_fixed=includes_fixed, return_jacobian=not transformed) if transformed: params = out else: params, transform_score = out if method == 'harvey': kwargs['includes_fixed'] = True score = self._score_harvey( params, approx_complex_step=approx_complex_step, **kwargs) elif method == 'approx' and approx_complex_step: kwargs['includes_fixed'] = True score = self._score_complex_step(params, **kwargs) elif method == 'approx': kwargs['includes_fixed'] = True score = self._score_finite_difference( params, approx_centered=approx_centered, **kwargs) else: raise NotImplementedError('Invalid score method.') if not transformed: score = np.dot(transform_score, score) if self._has_fixed_params and not includes_fixed: score = score[self._free_params_index] return score def score_obs(self, params, method='approx', transformed=True, includes_fixed=False, approx_complex_step=None, approx_centered=False, **kwargs): """ Compute the score per observation, evaluated at params Parameters ---------- params : array_like Array of parameters at which to evaluate the score. **kwargs Additional arguments to the `loglike` method. Returns ------- score : ndarray Score per observation, evaluated at `params`. Notes ----- This is a numerical approximation, calculated using first-order complex step differentiation on the `loglikeobs` method. """ if not transformed and approx_complex_step: raise ValueError("Cannot use complex-step approximations to" " calculate the score at each observation" " with untransformed parameters.") if approx_complex_step is None: approx_complex_step = not self.ssm._complex_endog if approx_complex_step and self.ssm._complex_endog: raise ValueError('Cannot use complex step derivatives when data' ' or parameters are complex.') params = self.handle_params(params, transformed=True, includes_fixed=includes_fixed) kwargs['transformed'] = transformed kwargs['includes_fixed'] = True if method == 'harvey': score = self._score_obs_harvey( params, approx_complex_step=approx_complex_step, **kwargs) elif method == 'approx' and approx_complex_step: # the default epsilon can be too small epsilon = _get_epsilon(params, 2., None, len(params)) kwargs['complex_step'] = True score = approx_fprime_cs(params, self.loglikeobs, epsilon=epsilon, kwargs=kwargs) elif method == 'approx': score = approx_fprime(params, self.loglikeobs, kwargs=kwargs, centered=approx_centered) else: raise NotImplementedError('Invalid scoreobs method.') return score _hessian_param_names = ['transformed', 'hessian_method', 'approx_complex_step', 'approx_centered'] _hessian_param_defaults = [True, 'approx', None, False] def hessian(self, params, *args, **kwargs): r""" Hessian matrix of the likelihood function, evaluated at the given parameters Parameters ---------- params : array_like Array of parameters at which to evaluate the hessian. *args Additional positional arguments to the `loglike` method. **kwargs Additional keyword arguments to the `loglike` method. Returns ------- hessian : ndarray Hessian matrix evaluated at `params` Notes ----- This is a numerical approximation. Both args and kwargs are necessary because the optimizer from `fit` must call this function and only supports passing arguments via args (for example `scipy.optimize.fmin_l_bfgs`). """ transformed, method, approx_complex_step, approx_centered, kwargs = ( _handle_args(MLEModel._hessian_param_names, MLEModel._hessian_param_defaults, *args, **kwargs)) # For fit() calls, the method is called 'hessian_method' (to # distinguish it from the method used for fit) but generally in kwargs # the method will just be called 'method' if 'method' in kwargs: method = kwargs.pop('method') if not transformed and approx_complex_step: raise ValueError("Cannot use complex-step approximations to" " calculate the hessian with untransformed" " parameters.") if approx_complex_step is None: approx_complex_step = not self.ssm._complex_endog if approx_complex_step and self.ssm._complex_endog: raise ValueError('Cannot use complex step derivatives when data' ' or parameters are complex.') if method == 'oim': hessian = self._hessian_oim( params, transformed=transformed, approx_complex_step=approx_complex_step, approx_centered=approx_centered, **kwargs) elif method == 'opg': hessian = self._hessian_opg( params, transformed=transformed, approx_complex_step=approx_complex_step, approx_centered=approx_centered, **kwargs) elif method == 'approx' and approx_complex_step: hessian = self._hessian_complex_step( params, transformed=transformed, **kwargs) elif method == 'approx': hessian = self._hessian_finite_difference( params, transformed=transformed, approx_centered=approx_centered, **kwargs) else: raise NotImplementedError('Invalid Hessian calculation method.') return hessian def _hessian_oim(self, params, **kwargs): """ Hessian matrix computed using the Harvey (1989) information matrix """ return -self.observed_information_matrix(params, **kwargs) def _hessian_opg(self, params, **kwargs): """ Hessian matrix computed using the outer product of gradients information matrix """ return -self.opg_information_matrix(params, **kwargs) def _hessian_finite_difference(self, params, approx_centered=False, **kwargs): params = np.array(params, ndmin=1) warnings.warn('Calculation of the Hessian using finite differences' ' is usually subject to substantial approximation' ' errors.', PrecisionWarning) if not approx_centered: epsilon = _get_epsilon(params, 3, None, len(params)) else: epsilon = _get_epsilon(params, 4, None, len(params)) / 2 hessian = approx_fprime(params, self._score_finite_difference, epsilon=epsilon, kwargs=kwargs, centered=approx_centered) return hessian / (self.nobs - self.ssm.loglikelihood_burn) def _hessian_complex_step(self, params, **kwargs): """ Hessian matrix computed by second-order complex-step differentiation on the `loglike` function. """ # the default epsilon can be too small epsilon = _get_epsilon(params, 3., None, len(params)) kwargs['transformed'] = True kwargs['complex_step'] = True hessian = approx_hess_cs( params, self.loglike, epsilon=epsilon, kwargs=kwargs) return hessian / (self.nobs - self.ssm.loglikelihood_burn) @property def start_params(self): """ (array) Starting parameters for maximum likelihood estimation. """ if hasattr(self, '_start_params'): return self._start_params else: raise NotImplementedError @property def param_names(self): """ (list of str) List of human readable parameter names (for parameters actually included in the model). """ if hasattr(self, '_param_names'): return self._param_names else: try: names = ['param.%d' % i for i in range(len(self.start_params))] except NotImplementedError: names = [] return names @property def state_names(self): """ (list of str) List of human readable names for unobserved states. """ if hasattr(self, '_state_names'): return self._state_names else: names = ['state.%d' % i for i in range(self.k_states)] return names def transform_jacobian(self, unconstrained, approx_centered=False): """ Jacobian matrix for the parameter transformation function Parameters ---------- unconstrained : array_like Array of unconstrained parameters used by the optimizer. Returns ------- jacobian : ndarray Jacobian matrix of the transformation, evaluated at `unconstrained` See Also -------- transform_params Notes ----- This is a numerical approximation using finite differences. Note that in general complex step methods cannot be used because it is not guaranteed that the `transform_params` method is a real function (e.g. if Cholesky decomposition is used). """ return approx_fprime(unconstrained, self.transform_params, centered=approx_centered) def transform_params(self, unconstrained): """ Transform unconstrained parameters used by the optimizer to constrained parameters used in likelihood evaluation Parameters ---------- unconstrained : array_like Array of unconstrained parameters used by the optimizer, to be transformed. Returns ------- constrained : array_like Array of constrained parameters which may be used in likelihood evaluation. Notes ----- This is a noop in the base class, subclasses should override where appropriate. """ return np.array(unconstrained, ndmin=1) def untransform_params(self, constrained): """ Transform constrained parameters used in likelihood evaluation to unconstrained parameters used by the optimizer Parameters ---------- constrained : array_like Array of constrained parameters used in likelihood evaluation, to be transformed. Returns ------- unconstrained : array_like Array of unconstrained parameters used by the optimizer. Notes ----- This is a noop in the base class, subclasses should override where appropriate. """ return np.array(constrained, ndmin=1) def handle_params(self, params, transformed=True, includes_fixed=False, return_jacobian=False): """ Ensure model parameters satisfy shape and other requirements """ params = np.array(params, ndmin=1) # Never want integer dtype, so convert to floats if np.issubdtype(params.dtype, np.integer): params = params.astype(np.float64) if not includes_fixed and self._has_fixed_params: k_params = len(self.param_names) new_params = np.zeros(k_params, dtype=params.dtype) * np.nan new_params[self._free_params_index] = params params = new_params if not transformed: # It may be the case that the transformation relies on having # "some" (non-NaN) values for the fixed parameters, even if we will # not actually be transforming the fixed parameters (as they will) # be set below regardless if not includes_fixed and self._has_fixed_params: params[self._fixed_params_index] = ( list(self._fixed_params.values())) if return_jacobian: transform_score = self.transform_jacobian(params) params = self.transform_params(params) if not includes_fixed and self._has_fixed_params: params[self._fixed_params_index] = ( list(self._fixed_params.values())) return (params, transform_score) if return_jacobian else params def update(self, params, transformed=True, includes_fixed=False, complex_step=False): """ Update the parameters of the model Parameters ---------- params : array_like Array of new parameters. transformed : bool, optional Whether or not `params` is already transformed. If set to False, `transform_params` is called. Default is True. Returns ------- params : array_like Array of parameters. Notes ----- Since Model is a base class, this method should be overridden by subclasses to perform actual updating steps. """ return self.handle_params(params=params, transformed=transformed, includes_fixed=includes_fixed) def _validate_out_of_sample_exog(self, exog, out_of_sample): """ Validate given `exog` as satisfactory for out-of-sample operations Parameters ---------- exog : array_like or None New observations of exogenous regressors, if applicable. out_of_sample : int Number of new observations required. Returns ------- exog : array or None A numpy array of shape (out_of_sample, k_exog) if the model contains an `exog` component, or None if it does not. """ k_exog = getattr(self, 'k_exog', 0) if out_of_sample and k_exog > 0: if exog is None: raise ValueError('Out-of-sample operations in a model' ' with a regression component require' ' additional exogenous values via the' ' `exog` argument.') exog = np.array(exog) required_exog_shape = (out_of_sample, self.k_exog) try: exog = exog.reshape(required_exog_shape) except ValueError: raise ValueError('Provided exogenous values are not of the' ' appropriate shape. Required %s, got %s.' % (str(required_exog_shape), str(exog.shape))) elif k_exog > 0 and exog is not None: exog = None warnings.warn('Exogenous array provided, but additional data' ' is not required. `exog` argument ignored.', ValueWarning) return exog def _get_extension_time_varying_matrices( self, params, exog, out_of_sample, extend_kwargs=None, transformed=True, includes_fixed=False, **kwargs): """ Get updated time-varying state space system matrices Parameters ---------- params : array_like Array of parameters used to construct the time-varying system matrices. exog : array_like or None New observations of exogenous regressors, if applicable. out_of_sample : int Number of new observations required. extend_kwargs : dict, optional Dictionary of keyword arguments to pass to the state space model constructor. For example, for an SARIMAX state space model, this could be used to pass the `concentrate_scale=True` keyword argument. Any arguments that are not explicitly set in this dictionary will be copied from the current model instance. transformed : bool, optional Whether or not `start_params` is already transformed. Default is True. includes_fixed : bool, optional If parameters were previously fixed with the `fix_params` method, this argument describes whether or not `start_params` also includes the fixed parameters, in addition to the free parameters. Default is False. """ # Get the appropriate exog for the extended sample exog = self._validate_out_of_sample_exog(exog, out_of_sample) # Create extended model if extend_kwargs is None: extend_kwargs = {} # Handle trend offset for extended model if getattr(self, 'k_trend', 0) > 0 and hasattr(self, 'trend_offset'): extend_kwargs.setdefault( 'trend_offset', self.trend_offset + self.nobs) mod_extend = self.clone( endog=np.zeros((out_of_sample, self.k_endog)), exog=exog, **extend_kwargs) mod_extend.update(params, transformed=transformed, includes_fixed=includes_fixed) # Retrieve the extensions to the time-varying system matrices and # put them in kwargs for name in self.ssm.shapes.keys(): if name == 'obs' or name in kwargs: continue original = getattr(self.ssm, name) extended = getattr(mod_extend.ssm, name) so = original.shape[-1] se = extended.shape[-1] if ((so > 1 or se > 1) or ( so == 1 and self.nobs == 1 and np.any(original[..., 0] != extended[..., 0]))): kwargs[name] = extended[..., -out_of_sample:] return kwargs def simulate(self, params, nsimulations, measurement_shocks=None, state_shocks=None, initial_state=None, anchor=None, repetitions=None, exog=None, extend_model=None, extend_kwargs=None, transformed=True, includes_fixed=False, pretransformed_measurement_shocks=True, pretransformed_state_shocks=True, pretransformed_initial_state=True, random_state=None, **kwargs): r""" Simulate a new time series following the state space model Parameters ---------- params : array_like Array of parameters to use in constructing the state space representation to use when simulating. nsimulations : int The number of observations to simulate. If the model is time-invariant this can be any number. If the model is time-varying, then this number must be less than or equal to the number of observations. measurement_shocks : array_like, optional If specified, these are the shocks to the measurement equation, :math:`\varepsilon_t`. If unspecified, these are automatically generated using a pseudo-random number generator. If specified, must be shaped `nsimulations` x `k_endog`, where `k_endog` is the same as in the state space model. state_shocks : array_like, optional If specified, these are the shocks to the state equation, :math:`\eta_t`. If unspecified, these are automatically generated using a pseudo-random number generator. If specified, must be shaped `nsimulations` x `k_posdef` where `k_posdef` is the same as in the state space model. initial_state : array_like, optional If specified, this is the initial state vector to use in simulation, which should be shaped (`k_states` x 1), where `k_states` is the same as in the state space model. If unspecified, but the model has been initialized, then that initialization is used. This must be specified if `anchor` is anything other than "start" or 0 (or else you can use the `simulate` method on a results object rather than on the model object). anchor : int, str, or datetime, optional First period for simulation. The simulation will be conditional on all existing datapoints prior to the `anchor`. Type depends on the index of the given `endog` in the model. Two special cases are the strings 'start' and 'end'. `start` refers to beginning the simulation at the first period of the sample, and `end` refers to beginning the simulation at the first period after the sample. Integer values can run from 0 to `nobs`, or can be negative to apply negative indexing. Finally, if a date/time index was provided to the model, then this argument can be a date string to parse or a datetime type. Default is 'start'. repetitions : int, optional Number of simulated paths to generate. Default is 1 simulated path. exog : array_like, optional New observations of exogenous regressors, if applicable. transformed : bool, optional Whether or not `params` is already transformed. Default is True. includes_fixed : bool, optional If parameters were previously fixed with the `fix_params` method, this argument describes whether or not `params` also includes the fixed parameters, in addition to the free parameters. Default is False. pretransformed_measurement_shocks : bool, optional If `measurement_shocks` is provided, this flag indicates whether it should be directly used as the shocks. If False, then it is assumed to contain draws from the standard Normal distribution that must be transformed using the `obs_cov` covariance matrix. Default is True. pretransformed_state_shocks : bool, optional If `state_shocks` is provided, this flag indicates whether it should be directly used as the shocks. If False, then it is assumed to contain draws from the standard Normal distribution that must be transformed using the `state_cov` covariance matrix. Default is True. pretransformed_initial_state : bool, optional If `initial_state` is provided, this flag indicates whether it should be directly used as the initial_state. If False, then it is assumed to contain draws from the standard Normal distribution that must be transformed using the `initial_state_cov` covariance matrix. Default is True. random_state : {None, int, Generator, RandomState}, optional If `seed` is None (or `np.random`), the class:``~numpy.random.RandomState`` singleton is used. If `seed` is an int, a new class:``~numpy.random.RandomState`` instance is used, seeded with `seed`. If `seed` is already a class:``~numpy.random.Generator`` or class:``~numpy.random.RandomState`` instance then that instance is used. Returns ------- simulated_obs : ndarray An array of simulated observations. If `repetitions=None`, then it will be shaped (nsimulations x k_endog) or (nsimulations,) if `k_endog=1`. Otherwise it will be shaped (nsimulations x k_endog x repetitions). If the model was given Pandas input then the output will be a Pandas object. If `k_endog > 1` and `repetitions` is not None, then the output will be a Pandas DataFrame that has a MultiIndex for the columns, with the first level containing the names of the `endog` variables and the second level containing the repetition number. See Also -------- impulse_responses Impulse response functions """ # Make sure the model class has the current parameters self.update(params, transformed=transformed, includes_fixed=includes_fixed) # Get the starting location if anchor is None or anchor == 'start': iloc = 0 elif anchor == 'end': iloc = self.nobs else: iloc, _, _ = self._get_index_loc(anchor) if isinstance(iloc, slice): iloc = iloc.start if iloc < 0: iloc = self.nobs + iloc if iloc > self.nobs: raise ValueError('Cannot anchor simulation outside of the sample.') if iloc > 0 and initial_state is None: raise ValueError('If `anchor` is after the start of the sample,' ' must provide a value for `initial_state`.') # Get updated time-varying system matrices in **kwargs, if necessary out_of_sample = max(iloc + nsimulations - self.nobs, 0) if extend_model is None: extend_model = self.exog is not None or not self.ssm.time_invariant if out_of_sample and extend_model: kwargs = self._get_extension_time_varying_matrices( params, exog, out_of_sample, extend_kwargs, transformed=transformed, includes_fixed=includes_fixed, **kwargs) # Standardize the dimensions of the initial state if initial_state is not None: initial_state = np.array(initial_state) if initial_state.ndim < 2: initial_state = np.atleast_2d(initial_state).T # Construct a model that represents the simulation period end = min(self.nobs, iloc + nsimulations) nextend = iloc + nsimulations - end sim_model = self.ssm.extend(np.zeros((nextend, self.k_endog)), start=iloc, end=end, **kwargs) # Simulate the data _repetitions = 1 if repetitions is None else repetitions sim = np.zeros((nsimulations, self.k_endog, _repetitions)) simulator = None for i in range(_repetitions): initial_state_variates = None if initial_state is not None: if initial_state.shape[1] == 1: initial_state_variates = initial_state[:, 0] else: initial_state_variates = initial_state[:, i] # TODO: allow specifying measurement / state shocks for each # repetition? out, _, simulator = sim_model.simulate( nsimulations, measurement_shocks, state_shocks, initial_state_variates, pretransformed_measurement_shocks=( pretransformed_measurement_shocks), pretransformed_state_shocks=pretransformed_state_shocks, pretransformed_initial_state=pretransformed_initial_state, simulator=simulator, return_simulator=True, random_state=random_state) sim[:, :, i] = out # Wrap data / squeeze where appropriate use_pandas = isinstance(self.data, PandasData) index = None if use_pandas: _, _, _, index = self._get_prediction_index( iloc, iloc + nsimulations - 1) # If `repetitions` isn't set, we squeeze the last dimension(s) if repetitions is None: if self.k_endog == 1: sim = sim[:, 0, 0] if use_pandas: sim = pd.Series(sim, index=index, name=self.endog_names) else: sim = sim[:, :, 0] if use_pandas: sim = pd.DataFrame(sim, index=index, columns=self.endog_names) elif use_pandas: shape = sim.shape endog_names = self.endog_names if not isinstance(endog_names, list): endog_names = [endog_names] columns = pd.MultiIndex.from_product([endog_names, np.arange(shape[2])]) sim = pd.DataFrame(sim.reshape(shape[0], shape[1] * shape[2]), index=index, columns=columns) return sim def impulse_responses(self, params, steps=1, impulse=0, orthogonalized=False, cumulative=False, anchor=None, exog=None, extend_model=None, extend_kwargs=None, transformed=True, includes_fixed=False, **kwargs): """ Impulse response function Parameters ---------- params : array_like Array of model parameters. steps : int, optional The number of steps for which impulse responses are calculated. Default is 1. Note that for time-invariant models, the initial impulse is not counted as a step, so if `steps=1`, the output will have 2 entries. impulse : int, str or array_like If an integer, the state innovation to pulse; must be between 0 and `k_posdef-1`. If a str, it indicates which column of df the unit (1) impulse is given. Alternatively, a custom impulse vector may be provided; must be shaped `k_posdef x 1`. orthogonalized : bool, optional Whether or not to perform impulse using orthogonalized innovations. Note that this will also affect custum `impulse` vectors. Default is False. cumulative : bool, optional Whether or not to return cumulative impulse responses. Default is False. anchor : int, str, or datetime, optional Time point within the sample for the state innovation impulse. Type depends on the index of the given `endog` in the model. Two special cases are the strings 'start' and 'end', which refer to setting the impulse at the first and last points of the sample, respectively. Integer values can run from 0 to `nobs - 1`, or can be negative to apply negative indexing. Finally, if a date/time index was provided to the model, then this argument can be a date string to parse or a datetime type. Default is 'start'. exog : array_like, optional New observations of exogenous regressors for our-of-sample periods, if applicable. transformed : bool, optional Whether or not `params` is already transformed. Default is True. includes_fixed : bool, optional If parameters were previously fixed with the `fix_params` method, this argument describes whether or not `params` also includes the fixed parameters, in addition to the free parameters. Default is False. **kwargs If the model has time-varying design or transition matrices and the combination of `anchor` and `steps` implies creating impulse responses for the out-of-sample period, then these matrices must have updated values provided for the out-of-sample steps. For example, if `design` is a time-varying component, `nobs` is 10, `anchor=1`, and `steps` is 15, a (`k_endog` x `k_states` x 7) matrix must be provided with the new design matrix values. Returns ------- impulse_responses : ndarray Responses for each endogenous variable due to the impulse given by the `impulse` argument. For a time-invariant model, the impulse responses are given for `steps + 1` elements (this gives the "initial impulse" followed by `steps` responses for the important cases of VAR and SARIMAX models), while for time-varying models the impulse responses are only given for `steps` elements (to avoid having to unexpectedly provide updated time-varying matrices). See Also -------- simulate Simulate a time series according to the given state space model, optionally with specified series for the innovations. Notes ----- Intercepts in the measurement and state equation are ignored when calculating impulse responses. TODO: add an option to allow changing the ordering for the orthogonalized option. Will require permuting matrices when constructing the extended model. """ # Make sure the model class has the current parameters self.update(params, transformed=transformed, includes_fixed=includes_fixed) # For time-invariant models, add an additional `step`. This is the # default for time-invariant models based on the expected behavior for # ARIMA and VAR models: we want to record the initial impulse and also # `steps` values of the responses afterwards. # Note: we don't modify `steps` itself, because # `KalmanFilter.impulse_responses` also adds an additional step in this # case (this is so that there isn't different behavior when calling # this method versus that method). We just need to also keep track of # this here because we need to generate the correct extended model. additional_steps = 0 if (self.ssm._design.shape[2] == 1 and self.ssm._transition.shape[2] == 1 and self.ssm._selection.shape[2] == 1): additional_steps = 1 # Get the starting location if anchor is None or anchor == 'start': iloc = 0 elif anchor == 'end': iloc = self.nobs - 1 else: iloc, _, _ = self._get_index_loc(anchor) if isinstance(iloc, slice): iloc = iloc.start if iloc < 0: iloc = self.nobs + iloc if iloc >= self.nobs: raise ValueError('Cannot anchor impulse responses outside of the' ' sample.') time_invariant = ( self.ssm._design.shape[2] == self.ssm._obs_cov.shape[2] == self.ssm._transition.shape[2] == self.ssm._selection.shape[2] == self.ssm._state_cov.shape[2] == 1) # Get updated time-varying system matrices in **kwargs, if necessary # (Note: KalmanFilter adds 1 to steps to account for the first impulse) out_of_sample = max( iloc + (steps + additional_steps + 1) - self.nobs, 0) if extend_model is None: extend_model = self.exog is not None and not time_invariant if out_of_sample and extend_model: kwargs = self._get_extension_time_varying_matrices( params, exog, out_of_sample, extend_kwargs, transformed=transformed, includes_fixed=includes_fixed, **kwargs) # Special handling for matrix terms that are time-varying but # irrelevant for impulse response functions. Must be set since # ssm.extend() requires that we pass new matrices for these, but they # are ignored for IRF purposes. end = min(self.nobs, iloc + steps + additional_steps) nextend = iloc + (steps + additional_steps + 1) - end if ('obs_intercept' not in kwargs and self.ssm._obs_intercept.shape[1] > 1): kwargs['obs_intercept'] = np.zeros((self.k_endog, nextend)) if ('state_intercept' not in kwargs and self.ssm._state_intercept.shape[1] > 1): kwargs['state_intercept'] = np.zeros((self.k_states, nextend)) if 'obs_cov' not in kwargs and self.ssm._obs_cov.shape[2] > 1: kwargs['obs_cov'] = np.zeros((self.k_endog, self.k_endog, nextend)) # Special handling for matrix terms that are time-varying but # only the value at the anchor matters for IRF purposes. if 'state_cov' not in kwargs and self.ssm._state_cov.shape[2] > 1: tmp = np.zeros((self.ssm.k_posdef, self.ssm.k_posdef, nextend)) tmp[:] = self['state_cov', :, :, iloc:iloc + 1] kwargs['state_cov'] = tmp if 'selection' not in kwargs and self.ssm._selection.shape[2] > 1: tmp = np.zeros((self.k_states, self.ssm.k_posdef, nextend)) tmp[:] = self['selection', :, :, iloc:iloc + 1] kwargs['selection'] = tmp # Construct a model that represents the simulation period sim_model = self.ssm.extend(np.empty((nextend, self.k_endog)), start=iloc, end=end, **kwargs) # Compute the impulse responses # Convert endog name to index use_pandas = isinstance(self.data, PandasData) if type(impulse) is str: if not use_pandas: raise ValueError('Endog must be pd.DataFrame.') impulse = self.endog_names.index(impulse) irfs = sim_model.impulse_responses( steps, impulse, orthogonalized, cumulative) # IRF is (nobs x k_endog); do not want to squeeze in case of steps = 1 if irfs.shape[1] == 1: irfs = irfs[:, 0] # Wrap data / squeeze where appropriate if use_pandas: if self.k_endog == 1: irfs = pd.Series(irfs, name=self.endog_names) else: irfs = pd.DataFrame(irfs, columns=self.endog_names) return irfs @classmethod def from_formula(cls, formula, data, subset=None): """ Not implemented for state space models """ raise NotImplementedError class MLEResults(tsbase.TimeSeriesModelResults): r""" Class to hold results from fitting a state space model. Parameters ---------- model : MLEModel instance The fitted model instance params : ndarray Fitted parameters filter_results : KalmanFilter instance The underlying state space model and Kalman filter output Attributes ---------- model : Model instance A reference to the model that was fit. filter_results : KalmanFilter instance The underlying state space model and Kalman filter output nobs : float The number of observations used to fit the model. params : ndarray The parameters of the model. scale : float This is currently set to 1.0 unless the model uses concentrated filtering. See Also -------- MLEModel statsmodels.tsa.statespace.kalman_filter.FilterResults statsmodels.tsa.statespace.representation.FrozenRepresentation """ def __init__(self, model, params, results, cov_type=None, cov_kwds=None, **kwargs): self.data = model.data scale = results.scale tsbase.TimeSeriesModelResults.__init__(self, model, params, normalized_cov_params=None, scale=scale) # Save the fixed parameters self._has_fixed_params = self.model._has_fixed_params self._fixed_params_index = self.model._fixed_params_index self._free_params_index = self.model._free_params_index # TODO: seems like maybe self.fixed_params should be the dictionary # itself, not just the keys? if self._has_fixed_params: self._fixed_params = self.model._fixed_params.copy() self.fixed_params = list(self._fixed_params.keys()) else: self._fixed_params = None self.fixed_params = [] self.param_names = [ '%s (fixed)' % name if name in self.fixed_params else name for name in (self.data.param_names or [])] # Save the state space representation output self.filter_results = results if isinstance(results, SmootherResults): self.smoother_results = results else: self.smoother_results = None # Dimensions self.nobs = self.filter_results.nobs self.nobs_diffuse = self.filter_results.nobs_diffuse if self.nobs_diffuse > 0 and self.loglikelihood_burn > 0: warnings.warn('Care should be used when applying a loglikelihood' ' burn to a model with exact diffuse initialization.' ' Some results objects, e.g. degrees of freedom,' ' expect only one of the two to be set.') # This only excludes explicitly burned (usually approximate diffuse) # periods but does not exclude exact diffuse periods. This is # because the loglikelihood remains valid for the initial periods in # the exact diffuse case (see DK, 2012, section 7.2) and so also do # e.g. information criteria (see DK, 2012, section 7.4) and the score # vector (see DK, 2012, section 7.3.3, equation 7.15). # However, other objects should be excluded in the diffuse periods # (e.g. the diffuse forecast errors, so in some cases a different # nobs_effective will have to be computed and used) self.nobs_effective = self.nobs - self.loglikelihood_burn P = self.filter_results.initial_diffuse_state_cov self.k_diffuse_states = 0 if P is None else np.sum(np.diagonal(P) == 1) # Degrees of freedom (see DK 2012, section 7.4) k_free_params = self.params.size - len(self.fixed_params) self.df_model = (k_free_params + self.k_diffuse_states + self.filter_results.filter_concentrated) self.df_resid = self.nobs_effective - self.df_model # Setup covariance matrix notes dictionary if not hasattr(self, 'cov_kwds'): self.cov_kwds = {} if cov_type is None: cov_type = 'approx' if results.memory_no_likelihood else 'opg' self.cov_type = cov_type # Setup the cache self._cache = {} # Handle covariance matrix calculation if cov_kwds is None: cov_kwds = {} self._cov_approx_complex_step = ( cov_kwds.pop('approx_complex_step', True)) self._cov_approx_centered = cov_kwds.pop('approx_centered', False) try: self._rank = None self._get_robustcov_results(cov_type=cov_type, use_self=True, **cov_kwds) except np.linalg.LinAlgError: self._rank = 0 k_params = len(self.params) self.cov_params_default = np.zeros((k_params, k_params)) * np.nan self.cov_kwds['cov_type'] = ( 'Covariance matrix could not be calculated: singular.' ' information matrix.') self.model.update(self.params, transformed=True, includes_fixed=True) # References of filter and smoother output extra_arrays = [ 'filtered_state', 'filtered_state_cov', 'predicted_state', 'predicted_state_cov', 'forecasts', 'forecasts_error', 'forecasts_error_cov', 'standardized_forecasts_error', 'forecasts_error_diffuse_cov', 'predicted_diffuse_state_cov', 'scaled_smoothed_estimator', 'scaled_smoothed_estimator_cov', 'smoothing_error', 'smoothed_state', 'smoothed_state_cov', 'smoothed_state_autocov', 'smoothed_measurement_disturbance', 'smoothed_state_disturbance', 'smoothed_measurement_disturbance_cov', 'smoothed_state_disturbance_cov'] for name in extra_arrays: setattr(self, name, getattr(self.filter_results, name, None)) # Remove too-short results when memory conservation was used if self.filter_results.memory_no_forecast_mean: self.forecasts = None self.forecasts_error = None if self.filter_results.memory_no_forecast_cov: self.forecasts_error_cov = None if self.filter_results.memory_no_predicted_mean: self.predicted_state = None if self.filter_results.memory_no_predicted_cov: self.predicted_state_cov = None if self.filter_results.memory_no_filtered_mean: self.filtered_state = None if self.filter_results.memory_no_filtered_cov: self.filtered_state_cov = None if self.filter_results.memory_no_gain: pass if self.filter_results.memory_no_smoothing: pass if self.filter_results.memory_no_std_forecast: self.standardized_forecasts_error = None # Save more convenient access to states # (will create a private attribute _states here and provide actual # access via a getter, so that we can e.g. issue a warning in the case # that a useless Pandas index was given in the model specification) self._states = SimpleNamespace() use_pandas = isinstance(self.data, PandasData) index = self.model._index columns = self.model.state_names # Predicted states # Note: a complication here is that we also include the initial values # here, so that we need an extended index in the Pandas case if (self.predicted_state is None or self.filter_results.memory_no_predicted_mean): self._states.predicted = None elif use_pandas: extended_index = self.model._get_index_with_final_state() self._states.predicted = pd.DataFrame( self.predicted_state.T, index=extended_index, columns=columns) else: self._states.predicted = self.predicted_state.T if (self.predicted_state_cov is None or self.filter_results.memory_no_predicted_cov): self._states.predicted_cov = None elif use_pandas: extended_index = self.model._get_index_with_final_state() tmp = np.transpose(self.predicted_state_cov, (2, 0, 1)) self._states.predicted_cov = pd.DataFrame( np.reshape(tmp, (tmp.shape[0] * tmp.shape[1], tmp.shape[2])), index=pd.MultiIndex.from_product( [extended_index, columns]).swaplevel(), columns=columns) else: self._states.predicted_cov = np.transpose( self.predicted_state_cov, (2, 0, 1)) # Filtered states if (self.filtered_state is None or self.filter_results.memory_no_filtered_mean): self._states.filtered = None elif use_pandas: self._states.filtered = pd.DataFrame( self.filtered_state.T, index=index, columns=columns) else: self._states.filtered = self.filtered_state.T if (self.filtered_state_cov is None or self.filter_results.memory_no_filtered_cov): self._states.filtered_cov = None elif use_pandas: tmp = np.transpose(self.filtered_state_cov, (2, 0, 1)) self._states.filtered_cov = pd.DataFrame( np.reshape(tmp, (tmp.shape[0] * tmp.shape[1], tmp.shape[2])), index=pd.MultiIndex.from_product([index, columns]).swaplevel(), columns=columns) else: self._states.filtered_cov = np.transpose( self.filtered_state_cov, (2, 0, 1)) # Smoothed states if self.smoothed_state is None: self._states.smoothed = None elif use_pandas: self._states.smoothed = pd.DataFrame( self.smoothed_state.T, index=index, columns=columns) else: self._states.smoothed = self.smoothed_state.T if self.smoothed_state_cov is None: self._states.smoothed_cov = None elif use_pandas: tmp = np.transpose(self.smoothed_state_cov, (2, 0, 1)) self._states.smoothed_cov = pd.DataFrame( np.reshape(tmp, (tmp.shape[0] * tmp.shape[1], tmp.shape[2])), index=pd.MultiIndex.from_product([index, columns]).swaplevel(), columns=columns) else: self._states.smoothed_cov = np.transpose( self.smoothed_state_cov, (2, 0, 1)) # Handle removing data self._data_attr_model = getattr(self, '_data_attr_model', []) self._data_attr_model.extend(['ssm']) self._data_attr.extend(extra_arrays) self._data_attr.extend(['filter_results', 'smoother_results']) def _get_robustcov_results(self, cov_type='opg', **kwargs): """ Create new results instance with specified covariance estimator as default Note: creating new results instance currently not supported. Parameters ---------- cov_type : str the type of covariance matrix estimator to use. See Notes below kwargs : depends on cov_type Required or optional arguments for covariance calculation. See Notes below. Returns ------- results : results instance This method creates a new results instance with the requested covariance as the default covariance of the parameters. Inferential statistics like p-values and hypothesis tests will be based on this covariance matrix. Notes ----- The following covariance types and required or optional arguments are currently available: - 'opg' for the outer product of gradient estimator - 'oim' for the observed information matrix estimator, calculated using the method of Harvey (1989) - 'approx' for the observed information matrix estimator, calculated using a numerical approximation of the Hessian matrix. Uses complex step approximation by default, or uses finite differences if `approx_complex_step=False` in the `cov_kwds` dictionary. - 'robust' for an approximate (quasi-maximum likelihood) covariance matrix that may be valid even in the presence of some misspecifications. Intermediate calculations use the 'oim' method. - 'robust_approx' is the same as 'robust' except that the intermediate calculations use the 'approx' method. - 'none' for no covariance matrix calculation. """ from statsmodels.base.covtype import descriptions use_self = kwargs.pop('use_self', False) if use_self: res = self else: raise NotImplementedError res = self.__class__( self.model, self.params, normalized_cov_params=self.normalized_cov_params, scale=self.scale) # Set the new covariance type res.cov_type = cov_type res.cov_kwds = {} # Calculate the new covariance matrix approx_complex_step = self._cov_approx_complex_step if approx_complex_step: approx_type_str = 'complex-step' elif self._cov_approx_centered: approx_type_str = 'centered finite differences' else: approx_type_str = 'finite differences' k_params = len(self.params) if k_params == 0: res.cov_params_default = np.zeros((0, 0)) res._rank = 0 res.cov_kwds['description'] = 'No parameters estimated.' elif cov_type == 'custom': res.cov_type = kwargs['custom_cov_type'] res.cov_params_default = kwargs['custom_cov_params'] res.cov_kwds['description'] = kwargs['custom_description'] if len(self.fixed_params) > 0: mask = np.ix_(self._free_params_index, self._free_params_index) else: mask = np.s_[...] res._rank = np.linalg.matrix_rank(res.cov_params_default[mask]) elif cov_type == 'none': res.cov_params_default = np.zeros((k_params, k_params)) * np.nan res._rank = np.nan res.cov_kwds['description'] = descriptions['none'] elif self.cov_type == 'approx': res.cov_params_default = res.cov_params_approx res.cov_kwds['description'] = descriptions['approx'].format( approx_type=approx_type_str) elif self.cov_type == 'oim': res.cov_params_default = res.cov_params_oim res.cov_kwds['description'] = descriptions['OIM'].format( approx_type=approx_type_str) elif self.cov_type == 'opg': res.cov_params_default = res.cov_params_opg res.cov_kwds['description'] = descriptions['OPG'].format( approx_type=approx_type_str) elif self.cov_type == 'robust' or self.cov_type == 'robust_oim': res.cov_params_default = res.cov_params_robust_oim res.cov_kwds['description'] = descriptions['robust-OIM'].format( approx_type=approx_type_str) elif self.cov_type == 'robust_approx': res.cov_params_default = res.cov_params_robust_approx res.cov_kwds['description'] = descriptions['robust-approx'].format( approx_type=approx_type_str) else: raise NotImplementedError('Invalid covariance matrix type.') return res @cache_readonly def aic(self): """ (float) Akaike Information Criterion """ return aic(self.llf, self.nobs_effective, self.df_model) @cache_readonly def aicc(self): """ (float) Akaike Information Criterion with small sample correction """ return aicc(self.llf, self.nobs_effective, self.df_model) @cache_readonly def bic(self): """ (float) Bayes Information Criterion """ return bic(self.llf, self.nobs_effective, self.df_model) def _cov_params_approx(self, approx_complex_step=True, approx_centered=False): evaluated_hessian = self.nobs_effective * self.model.hessian( params=self.params, transformed=True, includes_fixed=True, method='approx', approx_complex_step=approx_complex_step, approx_centered=approx_centered) # TODO: Case with "not approx_complex_step" is not hit in # tests as of 2017-05-19 if len(self.fixed_params) > 0: mask = np.ix_(self._free_params_index, self._free_params_index) (tmp, singular_values) = pinv_extended(evaluated_hessian[mask]) neg_cov = np.zeros_like(evaluated_hessian) * np.nan neg_cov[mask] = tmp else: (neg_cov, singular_values) = pinv_extended(evaluated_hessian) self.model.update(self.params, transformed=True, includes_fixed=True) if self._rank is None: self._rank = np.linalg.matrix_rank(np.diag(singular_values)) return -neg_cov @cache_readonly def cov_params_approx(self): """ (array) The variance / covariance matrix. Computed using the numerical Hessian approximated by complex step or finite differences methods. """ return self._cov_params_approx(self._cov_approx_complex_step, self._cov_approx_centered) def _cov_params_oim(self, approx_complex_step=True, approx_centered=False): evaluated_hessian = self.nobs_effective * self.model.hessian( self.params, hessian_method='oim', transformed=True, includes_fixed=True, approx_complex_step=approx_complex_step, approx_centered=approx_centered) if len(self.fixed_params) > 0: mask = np.ix_(self._free_params_index, self._free_params_index) (tmp, singular_values) = pinv_extended(evaluated_hessian[mask]) neg_cov = np.zeros_like(evaluated_hessian) * np.nan neg_cov[mask] = tmp else: (neg_cov, singular_values) = pinv_extended(evaluated_hessian) self.model.update(self.params, transformed=True, includes_fixed=True) if self._rank is None: self._rank = np.linalg.matrix_rank(np.diag(singular_values)) return -neg_cov @cache_readonly def cov_params_oim(self): """ (array) The variance / covariance matrix. Computed using the method from Harvey (1989). """ return self._cov_params_oim(self._cov_approx_complex_step, self._cov_approx_centered) def _cov_params_opg(self, approx_complex_step=True, approx_centered=False): evaluated_hessian = self.nobs_effective * self.model._hessian_opg( self.params, transformed=True, includes_fixed=True, approx_complex_step=approx_complex_step, approx_centered=approx_centered) no_free_params = (self._free_params_index is not None and len(self._free_params_index) == 0) if no_free_params: neg_cov = np.zeros_like(evaluated_hessian) * np.nan singular_values = np.empty(0) elif len(self.fixed_params) > 0: mask = np.ix_(self._free_params_index, self._free_params_index) (tmp, singular_values) = pinv_extended(evaluated_hessian[mask]) neg_cov = np.zeros_like(evaluated_hessian) * np.nan neg_cov[mask] = tmp else: (neg_cov, singular_values) = pinv_extended(evaluated_hessian) self.model.update(self.params, transformed=True, includes_fixed=True) if self._rank is None: if no_free_params: self._rank = 0 else: self._rank = np.linalg.matrix_rank(np.diag(singular_values)) return -neg_cov @cache_readonly def cov_params_opg(self): """ (array) The variance / covariance matrix. Computed using the outer product of gradients method. """ return self._cov_params_opg(self._cov_approx_complex_step, self._cov_approx_centered) @cache_readonly def cov_params_robust(self): """ (array) The QMLE variance / covariance matrix. Alias for `cov_params_robust_oim` """ return self.cov_params_robust_oim def _cov_params_robust_oim(self, approx_complex_step=True, approx_centered=False): cov_opg = self._cov_params_opg(approx_complex_step=approx_complex_step, approx_centered=approx_centered) evaluated_hessian = self.nobs_effective * self.model.hessian( self.params, hessian_method='oim', transformed=True, includes_fixed=True, approx_complex_step=approx_complex_step, approx_centered=approx_centered) if len(self.fixed_params) > 0: mask = np.ix_(self._free_params_index, self._free_params_index) cov_params = np.zeros_like(evaluated_hessian) * np.nan cov_opg = cov_opg[mask] evaluated_hessian = evaluated_hessian[mask] tmp, singular_values = pinv_extended( np.dot(np.dot(evaluated_hessian, cov_opg), evaluated_hessian)) cov_params[mask] = tmp else: (cov_params, singular_values) = pinv_extended( np.dot(np.dot(evaluated_hessian, cov_opg), evaluated_hessian)) self.model.update(self.params, transformed=True, includes_fixed=True) if self._rank is None: self._rank = np.linalg.matrix_rank(np.diag(singular_values)) return cov_params @cache_readonly def cov_params_robust_oim(self): """ (array) The QMLE variance / covariance matrix. Computed using the method from Harvey (1989) as the evaluated hessian. """ return self._cov_params_robust_oim(self._cov_approx_complex_step, self._cov_approx_centered) def _cov_params_robust_approx(self, approx_complex_step=True, approx_centered=False): cov_opg = self._cov_params_opg(approx_complex_step=approx_complex_step, approx_centered=approx_centered) evaluated_hessian = self.nobs_effective * self.model.hessian( self.params, transformed=True, includes_fixed=True, method='approx', approx_complex_step=approx_complex_step) # TODO: Case with "not approx_complex_step" is not # hit in tests as of 2017-05-19 if len(self.fixed_params) > 0: mask = np.ix_(self._free_params_index, self._free_params_index) cov_params = np.zeros_like(evaluated_hessian) * np.nan cov_opg = cov_opg[mask] evaluated_hessian = evaluated_hessian[mask] tmp, singular_values = pinv_extended( np.dot(np.dot(evaluated_hessian, cov_opg), evaluated_hessian)) cov_params[mask] = tmp else: (cov_params, singular_values) = pinv_extended( np.dot(np.dot(evaluated_hessian, cov_opg), evaluated_hessian)) self.model.update(self.params, transformed=True, includes_fixed=True) if self._rank is None: self._rank = np.linalg.matrix_rank(np.diag(singular_values)) return cov_params @cache_readonly def cov_params_robust_approx(self): """ (array) The QMLE variance / covariance matrix. Computed using the numerical Hessian as the evaluated hessian. """ return self._cov_params_robust_approx(self._cov_approx_complex_step, self._cov_approx_centered) def info_criteria(self, criteria, method='standard'): r""" Information criteria Parameters ---------- criteria : {'aic', 'bic', 'hqic'} The information criteria to compute. method : {'standard', 'lutkepohl'} The method for information criteria computation. Default is 'standard' method; 'lutkepohl' computes the information criteria as in Lütkepohl (2007). See Notes for formulas. Notes ----- The `'standard'` formulas are: .. math:: AIC & = -2 \log L(Y_n | \hat \psi) + 2 k \\ BIC & = -2 \log L(Y_n | \hat \psi) + k \log n \\ HQIC & = -2 \log L(Y_n | \hat \psi) + 2 k \log \log n \\ where :math:`\hat \psi` are the maximum likelihood estimates of the parameters, :math:`n` is the number of observations, and `k` is the number of estimated parameters. Note that the `'standard'` formulas are returned from the `aic`, `bic`, and `hqic` results attributes. The `'lutkepohl'` formulas are (Lütkepohl, 2010): .. math:: AIC_L & = \log | Q | + \frac{2 k}{n} \\ BIC_L & = \log | Q | + \frac{k \log n}{n} \\ HQIC_L & = \log | Q | + \frac{2 k \log \log n}{n} \\ where :math:`Q` is the state covariance matrix. Note that the Lütkepohl definitions do not apply to all state space models, and should be used with care outside of SARIMAX and VARMAX models. References ---------- .. [*] Lütkepohl, Helmut. 2007. *New Introduction to Multiple Time* *Series Analysis.* Berlin: Springer. """ criteria = criteria.lower() method = method.lower() if method == 'standard': out = getattr(self, criteria) elif method == 'lutkepohl': if self.filter_results.state_cov.shape[-1] > 1: raise ValueError('Cannot compute Lütkepohl statistics for' ' models with time-varying state covariance' ' matrix.') cov = self.filter_results.state_cov[:, :, 0] if criteria == 'aic': out = np.squeeze(np.linalg.slogdet(cov)[1] + 2 * self.df_model / self.nobs_effective) elif criteria == 'bic': out = np.squeeze(np.linalg.slogdet(cov)[1] + self.df_model * np.log(self.nobs_effective) / self.nobs_effective) elif criteria == 'hqic': out = np.squeeze(np.linalg.slogdet(cov)[1] + 2 * self.df_model * np.log(np.log(self.nobs_effective)) / self.nobs_effective) else: raise ValueError('Invalid information criteria') else: raise ValueError('Invalid information criteria computation method') return out @cache_readonly def fittedvalues(self): """ (array) The predicted values of the model. An (nobs x k_endog) array. """ # This is a (k_endog x nobs array; do not want to squeeze in case of # the corner case where nobs = 1 (mostly a concern in the predict or # forecast functions, but here also to maintain consistency) fittedvalues = self.forecasts if fittedvalues is None: pass elif fittedvalues.shape[0] == 1: fittedvalues = fittedvalues[0, :] else: fittedvalues = fittedvalues.T return fittedvalues @cache_readonly def hqic(self): """ (float) Hannan-Quinn Information Criterion """ # return (-2 * self.llf + # 2 * np.log(np.log(self.nobs_effective)) * self.df_model) return hqic(self.llf, self.nobs_effective, self.df_model) @cache_readonly def llf_obs(self): """ (float) The value of the log-likelihood function evaluated at `params`. """ return self.filter_results.llf_obs @cache_readonly def llf(self): """ (float) The value of the log-likelihood function evaluated at `params`. """ return self.filter_results.llf @cache_readonly def loglikelihood_burn(self): """ (float) The number of observations during which the likelihood is not evaluated. """ return self.filter_results.loglikelihood_burn @cache_readonly def mae(self): """ (float) Mean absolute error """ return np.mean(np.abs(self.resid)) @cache_readonly def mse(self): """ (float) Mean squared error """ return self.sse / self.nobs @cache_readonly def pvalues(self): """ (array) The p-values associated with the z-statistics of the coefficients. Note that the coefficients are assumed to have a Normal distribution. """ pvalues = np.zeros_like(self.zvalues) * np.nan mask = np.ones_like(pvalues, dtype=bool) mask[self._free_params_index] = True mask &= ~np.isnan(self.zvalues) pvalues[mask] = norm.sf(np.abs(self.zvalues[mask])) * 2 return pvalues @cache_readonly def resid(self): """ (array) The model residuals. An (nobs x k_endog) array. """ # This is a (k_endog x nobs array; do not want to squeeze in case of # the corner case where nobs = 1 (mostly a concern in the predict or # forecast functions, but here also to maintain consistency) resid = self.forecasts_error if resid is None: pass elif resid.shape[0] == 1: resid = resid[0, :] else: resid = resid.T return resid @property def states(self): if self.model._index_generated and not self.model._index_none: warnings.warn('No supported index is available. The `states`' ' DataFrame uses a generated integer index', ValueWarning) return self._states @cache_readonly def sse(self): """ (float) Sum of squared errors """ return np.sum(self.resid**2) @cache_readonly def zvalues(self): """ (array) The z-statistics for the coefficients. """ return self.params / self.bse def test_normality(self, method): """ Test for normality of standardized residuals. Null hypothesis is normality. Parameters ---------- method : {'jarquebera', None} The statistical test for normality. Must be 'jarquebera' for Jarque-Bera normality test. If None, an attempt is made to select an appropriate test. See Also -------- statsmodels.stats.stattools.jarque_bera The Jarque-Bera test of normality. Notes ----- Let `d` = max(loglikelihood_burn, nobs_diffuse); this test is calculated ignoring the first `d` residuals. In the case of missing data, the maintained hypothesis is that the data are missing completely at random. This test is then run on the standardized residuals excluding those corresponding to missing observations. """ if method is None: method = 'jarquebera' if self.standardized_forecasts_error is None: raise ValueError('Cannot compute test statistic when standardized' ' forecast errors have not been computed.') if method == 'jarquebera': from statsmodels.stats.stattools import jarque_bera d = np.maximum(self.loglikelihood_burn, self.nobs_diffuse) output = [] for i in range(self.model.k_endog): resid = self.filter_results.standardized_forecasts_error[i, d:] mask = ~np.isnan(resid) output.append(jarque_bera(resid[mask])) else: raise NotImplementedError('Invalid normality test method.') return np.array(output) def test_heteroskedasticity(self, method, alternative='two-sided', use_f=True): r""" Test for heteroskedasticity of standardized residuals Tests whether the sum-of-squares in the first third of the sample is significantly different than the sum-of-squares in the last third of the sample. Analogous to a Goldfeld-Quandt test. The null hypothesis is of no heteroskedasticity. Parameters ---------- method : {'breakvar', None} The statistical test for heteroskedasticity. Must be 'breakvar' for test of a break in the variance. If None, an attempt is made to select an appropriate test. alternative : str, 'increasing', 'decreasing' or 'two-sided' This specifies the alternative for the p-value calculation. Default is two-sided. use_f : bool, optional Whether or not to compare against the asymptotic distribution (chi-squared) or the approximate small-sample distribution (F). Default is True (i.e. default is to compare against an F distribution). Returns ------- output : ndarray An array with `(test_statistic, pvalue)` for each endogenous variable. The array is then sized `(k_endog, 2)`. If the method is called as `het = res.test_heteroskedasticity()`, then `het[0]` is an array of size 2 corresponding to the first endogenous variable, where `het[0][0]` is the test statistic, and `het[0][1]` is the p-value. See Also -------- statsmodels.tsa.stattools.breakvar_heteroskedasticity_test Notes ----- The null hypothesis is of no heteroskedasticity. For :math:`h = [T/3]`, the test statistic is: .. math:: H(h) = \sum_{t=T-h+1}^T \tilde v_t^2 \Bigg / \sum_{t=d+1}^{d+1+h} \tilde v_t^2 where :math:`d` = max(loglikelihood_burn, nobs_diffuse)` (usually corresponding to diffuse initialization under either the approximate or exact approach). This statistic can be tested against an :math:`F(h,h)` distribution. Alternatively, :math:`h H(h)` is asymptotically distributed according to :math:`\chi_h^2`; this second test can be applied by passing `use_f=True` as an argument. See section 5.4 of [1]_ for the above formula and discussion, as well as additional details. TODO - Allow specification of :math:`h` References ---------- .. [1] Harvey, Andrew C. 1990. *Forecasting, Structural Time Series* *Models and the Kalman Filter.* Cambridge University Press. """ if method is None: method = 'breakvar' if self.standardized_forecasts_error is None: raise ValueError('Cannot compute test statistic when standardized' ' forecast errors have not been computed.') if method == 'breakvar': from statsmodels.tsa.stattools import ( breakvar_heteroskedasticity_test ) # Store some values resid = self.filter_results.standardized_forecasts_error d = np.maximum(self.loglikelihood_burn, self.nobs_diffuse) # This differs from self.nobs_effective because here we want to # exclude exact diffuse periods, whereas self.nobs_effective only # excludes explicitly burned (usually approximate diffuse) periods. nobs_effective = self.nobs - d h = int(np.round(nobs_effective / 3)) test_statistics = [] p_values = [] for i in range(self.model.k_endog): test_statistic, p_value = breakvar_heteroskedasticity_test( resid[i, d:], subset_length=h, alternative=alternative, use_f=use_f ) test_statistics.append(test_statistic) p_values.append(p_value) output = np.c_[test_statistics, p_values] else: raise NotImplementedError('Invalid heteroskedasticity test' ' method.') return output def test_serial_correlation(self, method, df_adjust=False, lags=None): """ Ljung-Box test for no serial correlation of standardized residuals Null hypothesis is no serial correlation. Parameters ---------- method : {'ljungbox', 'boxpierce', None} The statistical test for serial correlation. If None, an attempt is made to select an appropriate test. lags : None, int or array_like If lags is an integer then this is taken to be the largest lag that is included, the test result is reported for all smaller lag length. If lags is a list or array, then all lags are included up to the largest lag in the list, however only the tests for the lags in the list are reported. If lags is None, then the default maxlag is min(10, nobs // 5) for non-seasonal models and min(2*m, nobs // 5) for seasonal time series where m is the seasonal period. df_adjust : bool, optional If True, the degrees of freedom consumed by the model is subtracted from the degrees-of-freedom used in the test so that the adjusted dof for the statistics are lags - model_df. In an ARMA model, this value is usually p+q where p is the AR order and q is the MA order. When using df_adjust, it is not possible to use tests based on fewer than model_df lags. Returns ------- output : ndarray An array with `(test_statistic, pvalue)` for each endogenous variable and each lag. The array is then sized `(k_endog, 2, lags)`. If the method is called as `ljungbox = res.test_serial_correlation()`, then `ljungbox[i]` holds the results of the Ljung-Box test (as would be returned by `statsmodels.stats.diagnostic.acorr_ljungbox`) for the `i` th endogenous variable. See Also -------- statsmodels.stats.diagnostic.acorr_ljungbox Ljung-Box test for serial correlation. Notes ----- Let `d` = max(loglikelihood_burn, nobs_diffuse); this test is calculated ignoring the first `d` residuals. Output is nan for any endogenous variable which has missing values. """ if method is None: method = 'ljungbox' if self.standardized_forecasts_error is None: raise ValueError('Cannot compute test statistic when standardized' ' forecast errors have not been computed.') if method == 'ljungbox' or method == 'boxpierce': from statsmodels.stats.diagnostic import acorr_ljungbox d = np.maximum(self.loglikelihood_burn, self.nobs_diffuse) # This differs from self.nobs_effective because here we want to # exclude exact diffuse periods, whereas self.nobs_effective only # excludes explicitly burned (usually approximate diffuse) periods. nobs_effective = self.nobs - d output = [] # Default lags for acorr_ljungbox is 40, but may not always have # that many observations if lags is None: seasonal_periods = getattr(self.model, "seasonal_periods", 0) if seasonal_periods: lags = min(2 * seasonal_periods, nobs_effective // 5) else: lags = min(10, nobs_effective // 5) model_df = 0 if df_adjust: model_df = max(0, self.df_model - self.k_diffuse_states - 1) cols = [2, 3] if method == 'boxpierce' else [0, 1] for i in range(self.model.k_endog): results = acorr_ljungbox( self.filter_results.standardized_forecasts_error[i][d:], lags=lags, boxpierce=(method == 'boxpierce'), model_df=model_df) output.append(np.asarray(results)[:, cols].T) output = np.c_[output] else: raise NotImplementedError('Invalid serial correlation test' ' method.') return output def get_prediction(self, start=None, end=None, dynamic=False, information_set='predicted', signal_only=False, index=None, exog=None, extend_model=None, extend_kwargs=None, **kwargs): r""" In-sample prediction and out-of-sample forecasting Parameters ---------- start : int, str, or datetime, optional Zero-indexed observation number at which to start forecasting, i.e., the first forecast is start. Can also be a date string to parse or a datetime type. Default is the the zeroth observation. end : int, str, or datetime, optional Zero-indexed observation number at which to end forecasting, i.e., the last forecast is end. Can also be a date string to parse or a datetime type. However, if the dates index does not have a fixed frequency, end must be an integer index if you want out of sample prediction. Default is the last observation in the sample. dynamic : bool, int, str, or datetime, optional Integer offset relative to `start` at which to begin dynamic prediction. Can also be an absolute date string to parse or a datetime type (these are not interpreted as offsets). Prior to this observation, true endogenous values will be used for prediction; starting with this observation and continuing through the end of prediction, forecasted endogenous values will be used instead. information_set : str, optional The information set to condition each prediction on. Default is "predicted", which computes predictions of period t values conditional on observed data through period t-1; these are one-step-ahead predictions, and correspond with the typical `fittedvalues` results attribute. Alternatives are "filtered", which computes predictions of period t values conditional on observed data through period t, and "smoothed", which computes predictions of period t values conditional on the entire dataset (including also future observations t+1, t+2, ...). signal_only : bool, optional Whether to compute predictions of only the "signal" component of the observation equation. Default is False. For example, the observation equation of a time-invariant model is :math:`y_t = d + Z \alpha_t + \varepsilon_t`, and the "signal" component is then :math:`Z \alpha_t`. If this argument is set to True, then predictions of the "signal" :math:`Z \alpha_t` will be returned. Otherwise, the default is for predictions of :math:`y_t` to be returned. **kwargs Additional arguments may required for forecasting beyond the end of the sample. See `FilterResults.predict` for more details. Returns ------- predictions : PredictionResults PredictionResults instance containing in-sample predictions / out-of-sample forecasts and results including confidence intervals. See Also -------- forecast Out-of-sample forecasts. predict In-sample predictions and out-of-sample forecasts. get_forecast Out-of-sample forecasts and results including confidence intervals. """ if start is None: start = 0 # Handle start, end, dynamic start, end, out_of_sample, prediction_index = ( self.model._get_prediction_index(start, end, index)) # Handle `dynamic` if isinstance(dynamic, (str, dt.datetime, pd.Timestamp)): dynamic, _, _ = self.model._get_index_loc(dynamic) # Convert to offset relative to start dynamic = dynamic - start # If we have out-of-sample forecasting and `exog` or in general any # kind of time-varying state space model, then we need to create an # extended model to get updated state space system matrices if extend_model is None: extend_model = (self.model.exog is not None or not self.filter_results.time_invariant) if out_of_sample and extend_model: kwargs = self.model._get_extension_time_varying_matrices( self.params, exog, out_of_sample, extend_kwargs, transformed=True, includes_fixed=True, **kwargs) # Make sure the model class has the current parameters self.model.update(self.params, transformed=True, includes_fixed=True) # Perform the prediction # This is a (k_endog x npredictions) array; do not want to squeeze in # case of npredictions = 1 prediction_results = self.filter_results.predict( start, end + out_of_sample + 1, dynamic, **kwargs) # Return a new mlemodel.PredictionResults object return PredictionResultsWrapper(PredictionResults( self, prediction_results, information_set=information_set, signal_only=signal_only, row_labels=prediction_index)) def get_forecast(self, steps=1, signal_only=False, **kwargs): r""" Out-of-sample forecasts and prediction intervals Parameters ---------- steps : int, str, or datetime, optional If an integer, the number of steps to forecast from the end of the sample. Can also be a date string to parse or a datetime type. However, if the dates index does not have a fixed frequency, steps must be an integer. Default is 1. signal_only : bool, optional Whether to compute forecasts of only the "signal" component of the observation equation. Default is False. For example, the observation equation of a time-invariant model is :math:`y_t = d + Z \alpha_t + \varepsilon_t`, and the "signal" component is then :math:`Z \alpha_t`. If this argument is set to True, then forecasts of the "signal" :math:`Z \alpha_t` will be returned. Otherwise, the default is for forecasts of :math:`y_t` to be returned. **kwargs Additional arguments may required for forecasting beyond the end of the sample. See `FilterResults.predict` for more details. Returns ------- forecasts : PredictionResults PredictionResults instance containing out-of-sample forecasts and results including confidence intervals. See also -------- forecast Out-of-sample forecasts. predict In-sample predictions and out-of-sample forecasts. get_prediction In-sample predictions / out-of-sample forecasts and results including confidence intervals. """ if isinstance(steps, int): end = self.nobs + steps - 1 else: end = steps return self.get_prediction(start=self.nobs, end=end, signal_only=signal_only, **kwargs) def predict(self, start=None, end=None, dynamic=False, information_set='predicted', signal_only=False, **kwargs): r""" In-sample prediction and out-of-sample forecasting Parameters ---------- start : {int, str,datetime}, optional Zero-indexed observation number at which to start forecasting, i.e., the first forecast is start. Can also be a date string to parse or a datetime type. Default is the zeroth observation. end : {int, str,datetime}, optional Zero-indexed observation number at which to end forecasting, i.e., the last forecast is end. Can also be a date string to parse or a datetime type. However, if the dates index does not have a fixed frequency, end must be an integer index if you want out of sample prediction. Default is the last observation in the sample. dynamic : {bool, int, str,datetime}, optional Integer offset relative to `start` at which to begin dynamic prediction. Can also be an absolute date string to parse or a datetime type (these are not interpreted as offsets). Prior to this observation, true endogenous values will be used for prediction; starting with this observation and continuing through the end of prediction, forecasted endogenous values will be used instead. information_set : str, optional The information set to condition each prediction on. Default is "predicted", which computes predictions of period t values conditional on observed data through period t-1; these are one-step-ahead predictions, and correspond with the typical `fittedvalues` results attribute. Alternatives are "filtered", which computes predictions of period t values conditional on observed data through period t, and "smoothed", which computes predictions of period t values conditional on the entire dataset (including also future observations t+1, t+2, ...). signal_only : bool, optional Whether to compute predictions of only the "signal" component of the observation equation. Default is False. For example, the observation equation of a time-invariant model is :math:`y_t = d + Z \alpha_t + \varepsilon_t`, and the "signal" component is then :math:`Z \alpha_t`. If this argument is set to True, then predictions of the "signal" :math:`Z \alpha_t` will be returned. Otherwise, the default is for predictions of :math:`y_t` to be returned. **kwargs Additional arguments may be required for forecasting beyond the end of the sample. See ``FilterResults.predict`` for more details. Returns ------- predictions : array_like In-sample predictions / Out-of-sample forecasts. (Numpy array or Pandas Series or DataFrame, depending on input and dimensions). Dimensions are `(npredict x k_endog)`. See Also -------- forecast Out-of-sample forecasts. get_forecast Out-of-sample forecasts and results including confidence intervals. get_prediction In-sample predictions / out-of-sample forecasts and results including confidence intervals. """ # Perform the prediction prediction_results = self.get_prediction( start, end, dynamic, information_set=information_set, signal_only=signal_only, **kwargs) return prediction_results.predicted_mean def forecast(self, steps=1, signal_only=False, **kwargs): r""" Out-of-sample forecasts Parameters ---------- steps : int, str, or datetime, optional If an integer, the number of steps to forecast from the end of the sample. Can also be a date string to parse or a datetime type. However, if the dates index does not have a fixed frequency, steps must be an integer. Default is 1. signal_only : bool, optional Whether to compute forecasts of only the "signal" component of the observation equation. Default is False. For example, the observation equation of a time-invariant model is :math:`y_t = d + Z \alpha_t + \varepsilon_t`, and the "signal" component is then :math:`Z \alpha_t`. If this argument is set to True, then forecasts of the "signal" :math:`Z \alpha_t` will be returned. Otherwise, the default is for forecasts of :math:`y_t` to be returned. **kwargs Additional arguments may required for forecasting beyond the end of the sample. See `FilterResults.predict` for more details. Returns ------- forecast : array_like Out-of-sample forecasts (Numpy array or Pandas Series or DataFrame, depending on input and dimensions). Dimensions are `(steps x k_endog)`. See Also -------- predict In-sample predictions and out-of-sample forecasts. get_forecast Out-of-sample forecasts and results including confidence intervals. get_prediction In-sample predictions / out-of-sample forecasts and results including confidence intervals. """ if isinstance(steps, int): end = self.nobs + steps - 1 else: end = steps return self.predict(start=self.nobs, end=end, signal_only=signal_only, **kwargs) def simulate(self, nsimulations, measurement_shocks=None, state_shocks=None, initial_state=None, anchor=None, repetitions=None, exog=None, extend_model=None, extend_kwargs=None, pretransformed_measurement_shocks=True, pretransformed_state_shocks=True, pretransformed_initial_state=True, random_state=None, **kwargs): r""" Simulate a new time series following the state space model Parameters ---------- nsimulations : int The number of observations to simulate. If the model is time-invariant this can be any number. If the model is time-varying, then this number must be less than or equal to the number measurement_shocks : array_like, optional If specified, these are the shocks to the measurement equation, :math:`\varepsilon_t`. If unspecified, these are automatically generated using a pseudo-random number generator. If specified, must be shaped `nsimulations` x `k_endog`, where `k_endog` is the same as in the state space model. state_shocks : array_like, optional If specified, these are the shocks to the state equation, :math:`\eta_t`. If unspecified, these are automatically generated using a pseudo-random number generator. If specified, must be shaped `nsimulations` x `k_posdef` where `k_posdef` is the same as in the state space model. initial_state : array_like, optional If specified, this is the initial state vector to use in simulation, which should be shaped (`k_states` x 1), where `k_states` is the same as in the state space model. If unspecified, but the model has been initialized, then that initialization is used. This must be specified if `anchor` is anything other than "start" or 0. anchor : int, str, or datetime, optional Starting point from which to begin the simulations; type depends on the index of the given `endog` model. Two special cases are the strings 'start' and 'end', which refer to starting at the beginning and end of the sample, respectively. If a date/time index was provided to the model, then this argument can be a date string to parse or a datetime type. Otherwise, an integer index should be given. Default is 'start'. repetitions : int, optional Number of simulated paths to generate. Default is 1 simulated path. exog : array_like, optional New observations of exogenous regressors, if applicable. pretransformed_measurement_shocks : bool, optional If `measurement_shocks` is provided, this flag indicates whether it should be directly used as the shocks. If False, then it is assumed to contain draws from the standard Normal distribution that must be transformed using the `obs_cov` covariance matrix. Default is True. pretransformed_state_shocks : bool, optional If `state_shocks` is provided, this flag indicates whether it should be directly used as the shocks. If False, then it is assumed to contain draws from the standard Normal distribution that must be transformed using the `state_cov` covariance matrix. Default is True. pretransformed_initial_state : bool, optional If `initial_state` is provided, this flag indicates whether it should be directly used as the initial_state. If False, then it is assumed to contain draws from the standard Normal distribution that must be transformed using the `initial_state_cov` covariance matrix. Default is True. random_state : {None, int, Generator, RandomState}, optional If `seed` is None (or `np.random`), the class:``~numpy.random.RandomState`` singleton is used. If `seed` is an int, a new class:``~numpy.random.RandomState`` instance is used, seeded with `seed`. If `seed` is already a class:``~numpy.random.Generator`` or class:``~numpy.random.RandomState`` instance then that instance is used. Returns ------- simulated_obs : ndarray An array of simulated observations. If `repetitions=None`, then it will be shaped (nsimulations x k_endog) or (nsimulations,) if `k_endog=1`. Otherwise it will be shaped (nsimulations x k_endog x repetitions). If the model was given Pandas input then the output will be a Pandas object. If `k_endog > 1` and `repetitions` is not None, then the output will be a Pandas DataFrame that has a MultiIndex for the columns, with the first level containing the names of the `endog` variables and the second level containing the repetition number. See Also -------- impulse_responses Impulse response functions """ # Get the starting location if anchor is None or anchor == 'start': iloc = 0 elif anchor == 'end': iloc = self.nobs else: iloc, _, _ = self.model._get_index_loc(anchor) if isinstance(iloc, slice): iloc = iloc.start if iloc < 0: iloc = self.nobs + iloc if iloc > self.nobs: raise ValueError('Cannot anchor simulation outside of the sample.') # GH 9162 from statsmodels.tsa.statespace import simulation_smoother random_state = simulation_smoother.check_random_state(random_state) # Setup the initial state if initial_state is None: initial_state_moments = ( self.predicted_state[:, iloc], self.predicted_state_cov[:, :, iloc]) _repetitions = 1 if repetitions is None else repetitions initial_state = random_state.multivariate_normal( *initial_state_moments, size=_repetitions).T scale = self.scale if self.filter_results.filter_concentrated else None with self.model.ssm.fixed_scale(scale): sim = self.model.simulate( self.params, nsimulations, measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state, anchor=anchor, repetitions=repetitions, exog=exog, transformed=True, includes_fixed=True, extend_model=extend_model, extend_kwargs=extend_kwargs, pretransformed_measurement_shocks=( pretransformed_measurement_shocks), pretransformed_state_shocks=pretransformed_state_shocks, pretransformed_initial_state=pretransformed_initial_state, random_state=random_state, **kwargs) return sim def impulse_responses(self, steps=1, impulse=0, orthogonalized=False, cumulative=False, **kwargs): """ Impulse response function Parameters ---------- steps : int, optional The number of steps for which impulse responses are calculated. Default is 1. Note that for time-invariant models, the initial impulse is not counted as a step, so if `steps=1`, the output will have 2 entries. impulse : int, str or array_like If an integer, the state innovation to pulse; must be between 0 and `k_posdef-1`. If a str, it indicates which column of df the unit (1) impulse is given. Alternatively, a custom impulse vector may be provided; must be shaped `k_posdef x 1`. orthogonalized : bool, optional Whether or not to perform impulse using orthogonalized innovations. Note that this will also affect custum `impulse` vectors. Default is False. cumulative : bool, optional Whether or not to return cumulative impulse responses. Default is False. anchor : int, str, or datetime, optional Time point within the sample for the state innovation impulse. Type depends on the index of the given `endog` in the model. Two special cases are the strings 'start' and 'end', which refer to setting the impulse at the first and last points of the sample, respectively. Integer values can run from 0 to `nobs - 1`, or can be negative to apply negative indexing. Finally, if a date/time index was provided to the model, then this argument can be a date string to parse or a datetime type. Default is 'start'. exog : array_like, optional New observations of exogenous regressors, if applicable. **kwargs If the model has time-varying design or transition matrices and the combination of `anchor` and `steps` implies creating impulse responses for the out-of-sample period, then these matrices must have updated values provided for the out-of-sample steps. For example, if `design` is a time-varying component, `nobs` is 10, `anchor=1`, and `steps` is 15, a (`k_endog` x `k_states` x 7) matrix must be provided with the new design matrix values. Returns ------- impulse_responses : ndarray Responses for each endogenous variable due to the impulse given by the `impulse` argument. For a time-invariant model, the impulse responses are given for `steps + 1` elements (this gives the "initial impulse" followed by `steps` responses for the important cases of VAR and SARIMAX models), while for time-varying models the impulse responses are only given for `steps` elements (to avoid having to unexpectedly provide updated time-varying matrices). See Also -------- simulate Simulate a time series according to the given state space model, optionally with specified series for the innovations. Notes ----- Intercepts in the measurement and state equation are ignored when calculating impulse responses. """ scale = self.scale if self.filter_results.filter_concentrated else None with self.model.ssm.fixed_scale(scale): irfs = self.model.impulse_responses(self.params, steps, impulse, orthogonalized, cumulative, **kwargs) # These are wrapped automatically, so just return the array if isinstance(irfs, (pd.Series, pd.DataFrame)): irfs = irfs.values return irfs def _apply(self, mod, refit=False, fit_kwargs=None): if fit_kwargs is None: fit_kwargs = {} if refit: fit_kwargs.setdefault('start_params', self.params) if self._has_fixed_params: fit_kwargs.setdefault('includes_fixed', True) res = mod.fit_constrained(self._fixed_params, **fit_kwargs) else: res = mod.fit(**fit_kwargs) else: if 'cov_type' in fit_kwargs: raise ValueError('Cannot specify covariance type in' ' `fit_kwargs` unless refitting' ' parameters (not available in extend).') if 'cov_kwds' in fit_kwargs: raise ValueError('Cannot specify covariance keyword arguments' ' in `fit_kwargs` unless refitting' ' parameters (not available in extend).') if self.cov_type == 'none': fit_kwargs['cov_type'] = 'none' else: fit_kwargs['cov_type'] = 'custom' fit_kwargs['cov_kwds'] = { 'custom_cov_type': self.cov_type, 'custom_cov_params': self.cov_params_default, 'custom_description': ( 'Parameters and standard errors were estimated using a' ' different dataset and were then applied to this' ' dataset. %s' % self.cov_kwds.get('description', 'Unknown.'))} if self.smoother_results is not None: func = mod.smooth else: func = mod.filter if self._has_fixed_params: with mod.fix_params(self._fixed_params): fit_kwargs.setdefault('includes_fixed', True) res = func(self.params, **fit_kwargs) else: res = func(self.params, **fit_kwargs) return res def _get_previous_updated(self, comparison, exog=None, comparison_type=None, **kwargs): # If we were given data, create a new results object comparison_dataset = not isinstance( comparison, (MLEResults, MLEResultsWrapper)) if comparison_dataset: # If `exog` is longer than `comparison`, then we extend it to match nobs_endog = len(comparison) nobs_exog = len(exog) if exog is not None else nobs_endog if nobs_exog > nobs_endog: _, _, _, ix = self.model._get_prediction_index( start=0, end=nobs_exog - 1) # TODO: check that the index of `comparison` matches the model comparison = np.asarray(comparison) if comparison.ndim < 2: comparison = np.atleast_2d(comparison).T if (comparison.ndim != 2 or comparison.shape[1] != self.model.k_endog): raise ValueError('Invalid shape for `comparison`. Must' f' contain {self.model.k_endog} columns.') extra = np.zeros((nobs_exog - nobs_endog, self.model.k_endog)) * np.nan comparison = pd.DataFrame( np.concatenate([comparison, extra], axis=0), index=ix, columns=self.model.endog_names) # Get the results object comparison = self.apply(comparison, exog=exog, copy_initialization=True, **kwargs) # Now, figure out the `updated` versus `previous` results objects nmissing = self.filter_results.missing.sum() nmissing_comparison = comparison.filter_results.missing.sum() if (comparison_type == 'updated' or (comparison_type is None and ( comparison.nobs > self.nobs or (comparison.nobs == self.nobs and nmissing > nmissing_comparison)))): updated = comparison previous = self elif (comparison_type == 'previous' or (comparison_type is None and ( comparison.nobs < self.nobs or (comparison.nobs == self.nobs and nmissing < nmissing_comparison)))): updated = self previous = comparison else: raise ValueError('Could not automatically determine the type' ' of comparison requested to compute the' ' News, so it must be specified as "updated"' ' or "previous", using the `comparison_type`' ' keyword argument') # Check that the index of `updated` is a superset of the # index of `previous` # Note: the try/except block is for Pandas < 0.25, in which # `PeriodIndex.difference` raises a ValueError if the argument is not # also a `PeriodIndex`. diff = previous.model._index.difference(updated.model._index) if len(diff) > 0: raise ValueError('The index associated with the updated results is' ' not a superset of the index associated with the' ' previous results, and so these datasets do not' ' appear to be related. Can only compute the' ' news by comparing this results set to previous' ' results objects.') return previous, updated, comparison_dataset def _news_previous_results(self, previous, start, end, periods, revisions_details_start=False, state_index=None): # Compute the news out = self.smoother_results.news( previous.smoother_results, start=start, end=end, revisions_details_start=revisions_details_start, state_index=state_index) return out def _news_updated_results(self, updated, start, end, periods, revisions_details_start=False, state_index=None): return updated._news_previous_results( self, start, end, periods, revisions_details_start=revisions_details_start, state_index=state_index) def _news_previous_data(self, endog, start, end, periods, exog, revisions_details_start=False, state_index=None): previous = self.apply(endog, exog=exog, copy_initialization=True) return self._news_previous_results( previous, start, end, periods, revisions_details_start=revisions_details_start, state_index=state_index) def _news_updated_data(self, endog, start, end, periods, exog, revisions_details_start=False, state_index=None): updated = self.apply(endog, exog=exog, copy_initialization=True) return self._news_updated_results( updated, start, end, periods, revisions_details_start=revisions_details_start, state_index=state_index) def news(self, comparison, impact_date=None, impacted_variable=None, start=None, end=None, periods=None, exog=None, comparison_type=None, revisions_details_start=False, state_index=None, return_raw=False, tolerance=1e-10, **kwargs): """ Compute impacts from updated data (news and revisions) Parameters ---------- comparison : array_like or MLEResults An updated dataset with updated and/or revised data from which the news can be computed, or an updated or previous results object to use in computing the news. impact_date : int, str, or datetime, optional A single specific period of impacts from news and revisions to compute. Can also be a date string to parse or a datetime type. This argument cannot be used in combination with `start`, `end`, or `periods`. Default is the first out-of-sample observation. impacted_variable : str, list, array, or slice, optional Observation variable label or slice of labels specifying that only specific impacted variables should be shown in the News output. The impacted variable(s) describe the variables that were *affected* by the news. If you do not know the labels for the variables, check the `endog_names` attribute of the model instance. start : int, str, or datetime, optional The first period of impacts from news and revisions to compute. Can also be a date string to parse or a datetime type. Default is the first out-of-sample observation. end : int, str, or datetime, optional The last period of impacts from news and revisions to compute. Can also be a date string to parse or a datetime type. Default is the first out-of-sample observation. periods : int, optional The number of periods of impacts from news and revisions to compute. exog : array_like, optional Array of exogenous regressors for the out-of-sample period, if applicable. comparison_type : {None, 'previous', 'updated'} This denotes whether the `comparison` argument represents a *previous* results object or dataset or an *updated* results object or dataset. If not specified, then an attempt is made to determine the comparison type. revisions_details_start : bool, int, str, or datetime, optional The period at which to beging computing the detailed impacts of data revisions. Any revisions prior to this period will have their impacts grouped together. If a negative integer, interpreted as an offset from the end of the dataset. If set to True, detailed impacts are computed for all revisions, while if set to False, all revisions are grouped together. Default is False. Note that for large models, setting this to be near the beginning of the sample can cause this function to be slow. state_index : array_like, optional An optional index specifying a subset of states to use when constructing the impacts of revisions and news. For example, if `state_index=[0, 1]` is passed, then only the impacts to the observed variables arising from the impacts to the first two states will be returned. Default is to use all states. return_raw : bool, optional Whether or not to return only the specific output or a full results object. Default is to return a full results object. tolerance : float, optional The numerical threshold for determining zero impact. Default is that any impact less than 1e-10 is assumed to be zero. Returns ------- NewsResults Impacts of data revisions and news on estimates References ---------- .. [1] Bańbura, Marta, and Michele Modugno. "Maximum likelihood estimation of factor models on datasets with arbitrary pattern of missing data." Journal of Applied Econometrics 29, no. 1 (2014): 133-160. .. [2] Bańbura, Marta, Domenico Giannone, and Lucrezia Reichlin. "Nowcasting." The Oxford Handbook of Economic Forecasting. July 8, 2011. .. [3] Bańbura, Marta, Domenico Giannone, Michele Modugno, and Lucrezia Reichlin. "Now-casting and the real-time data flow." In Handbook of economic forecasting, vol. 2, pp. 195-237. Elsevier, 2013. """ # Validate input if self.smoother_results is None: raise ValueError('Cannot compute news without Kalman smoother' ' results.') if state_index is not None: state_index = np.sort(np.array(state_index, dtype=int)) if state_index[0] < 0: raise ValueError('Cannot include negative indexes in' ' `state_index`.') if state_index[-1] >= self.model.k_states: raise ValueError(f'Given state index {state_index[-1]} is too' ' large for the number of states in the model' f' ({self.model.k_states}).') if not isinstance(revisions_details_start, (int, bool)): revisions_details_start, _, _, _ = ( self.model._get_prediction_index( revisions_details_start, revisions_details_start)) # Get the previous and updated results objects from `self` and # `comparison`: previous, updated, comparison_dataset = self._get_previous_updated( comparison, exog=exog, comparison_type=comparison_type, **kwargs) # Handle start, end, periods start, end, prediction_index = get_impact_dates( previous_model=previous.model, updated_model=updated.model, impact_date=impact_date, start=start, end=end, periods=periods) # News results will always use Pandas, so if the model's data was not # from Pandas, we'll create an index, as if the model's data had been # given a default Pandas index. if prediction_index is None: prediction_index = pd.RangeIndex(start=start, stop=end + 1) # For time-varying models try to create an appended `updated` model # with NaN values. Do not extend the model if this was already done # above (i.e. the case that `comparison` was a new dataset), because # in that case `exog` and `kwargs` should have # been set with the input `comparison` dataset in mind, and so would be # useless here. Ultimately, we've already extended `updated` as far # as we can. So raise an exception in that case with a useful message. # However, we still want to try to accommodate extending the model here # if it is possible. # Note that we do not need to extend time-invariant models, because # `KalmanSmoother.news` can itself handle any impact dates for # time-invariant models. time_varying = not (previous.filter_results.time_invariant or updated.filter_results.time_invariant) if time_varying and end >= updated.nobs: # If we the given `comparison` was a dataset and either `exog` or # `kwargs` was set, then we assume that we cannot create an updated # time-varying model (because then we can't tell if `kwargs` and # `exog` arguments are meant to apply to the `comparison` dataset # or to this extension) if comparison_dataset and (exog is not None or len(kwargs) > 0): if comparison is updated: raise ValueError('If providing an updated dataset as the' ' `comparison` with a time-varying model,' ' then the `end` period cannot be beyond' ' the end of that updated dataset.') else: raise ValueError('If providing an previous dataset as the' ' `comparison` with a time-varying model,' ' then the `end` period cannot be beyond' ' the end of the (updated) results' ' object.') # Try to extend `updated` updated_orig = updated # TODO: `append` should fix this k_endog=1 issue for us # TODO: is the + 1 necessary? if self.model.k_endog > 1: extra = np.zeros((end - updated.nobs + 1, self.model.k_endog)) * np.nan else: extra = np.zeros((end - updated.nobs + 1,)) * np.nan updated = updated_orig.append(extra, exog=exog, **kwargs) # Compute the news news_results = updated._news_previous_results( previous, start, end + 1, periods, revisions_details_start=revisions_details_start, state_index=state_index) if not return_raw: news_results = NewsResults( news_results, self, updated, previous, impacted_variable, tolerance, row_labels=prediction_index) return news_results def get_smoothed_decomposition(self, decomposition_of='smoothed_state', state_index=None): r""" Decompose smoothed output into contributions from observations Parameters ---------- decomposition_of : {"smoothed_state", "smoothed_signal"} The object to perform a decomposition of. If it is set to "smoothed_state", then the elements of the smoothed state vector are decomposed into the contributions of each observation. If it is set to "smoothed_signal", then the predictions of the observation vector based on the smoothed state vector are decomposed. Default is "smoothed_state". state_index : array_like, optional An optional index specifying a subset of states to use when constructing the decomposition of the "smoothed_signal". For example, if `state_index=[0, 1]` is passed, then only the contributions of observed variables to the smoothed signal arising from the first two states will be returned. Note that if not all states are used, the contributions will not sum to the smoothed signal. Default is to use all states. Returns ------- data_contributions : pd.DataFrame Contributions of observations to the decomposed object. If the smoothed state is being decomposed, then `data_contributions` is shaped `(k_states x nobs, k_endog x nobs)` with a `pd.MultiIndex` index corresponding to `state_to x date_to` and `pd.MultiIndex` columns corresponding to `variable_from x date_from`. If the smoothed signal is being decomposed, then `data_contributions` is shaped `(k_endog x nobs, k_endog x nobs)` with `pd.MultiIndex`-es corresponding to `variable_to x date_to` and `variable_from x date_from`. obs_intercept_contributions : pd.DataFrame Contributions of the observation intercept to the decomposed object. If the smoothed state is being decomposed, then `obs_intercept_contributions` is shaped `(k_states x nobs, k_endog x nobs)` with a `pd.MultiIndex` index corresponding to `state_to x date_to` and `pd.MultiIndex` columns corresponding to `obs_intercept_from x date_from`. If the smoothed signal is being decomposed, then `obs_intercept_contributions` is shaped `(k_endog x nobs, k_endog x nobs)` with `pd.MultiIndex`-es corresponding to `variable_to x date_to` and `obs_intercept_from x date_from`. state_intercept_contributions : pd.DataFrame Contributions of the state intercept to the decomposed object. If the smoothed state is being decomposed, then `state_intercept_contributions` is shaped `(k_states x nobs, k_states x nobs)` with a `pd.MultiIndex` index corresponding to `state_to x date_to` and `pd.MultiIndex` columns corresponding to `state_intercept_from x date_from`. If the smoothed signal is being decomposed, then `state_intercept_contributions` is shaped `(k_endog x nobs, k_states x nobs)` with `pd.MultiIndex`-es corresponding to `variable_to x date_to` and `state_intercept_from x date_from`. prior_contributions : pd.DataFrame Contributions of the prior to the decomposed object. If the smoothed state is being decomposed, then `prior_contributions` is shaped `(nobs x k_states, k_states)`, with a `pd.MultiIndex` index corresponding to `state_to x date_to` and columns corresponding to elements of the prior mean (aka "initial state"). If the smoothed signal is being decomposed, then `prior_contributions` is shaped `(nobs x k_endog, k_states)`, with a `pd.MultiIndex` index corresponding to `variable_to x date_to` and columns corresponding to elements of the prior mean. Notes ----- Denote the smoothed state at time :math:`t` by :math:`\alpha_t`. Then the smoothed signal is :math:`Z_t \alpha_t`, where :math:`Z_t` is the design matrix operative at time :math:`t`. """ (data_contributions, obs_intercept_contributions, state_intercept_contributions, prior_contributions) = ( self.smoother_results.get_smoothed_decomposition( decomposition_of=decomposition_of, state_index=state_index)) # Construct indexes endog_names = self.model.endog_names if self.model.k_endog == 1: endog_names = [endog_names] if decomposition_of == 'smoothed_state': contributions_to = pd.MultiIndex.from_product( [self.model.state_names, self.model._index], names=['state_to', 'date_to']) else: contributions_to = pd.MultiIndex.from_product( [endog_names, self.model._index], names=['variable_to', 'date_to']) contributions_from = pd.MultiIndex.from_product( [endog_names, self.model._index], names=['variable_from', 'date_from']) obs_intercept_contributions_from = pd.MultiIndex.from_product( [endog_names, self.model._index], names=['obs_intercept_from', 'date_from']) state_intercept_contributions_from = pd.MultiIndex.from_product( [self.model.state_names, self.model._index], names=['state_intercept_from', 'date_from']) prior_contributions_from = pd.Index(self.model.state_names, name='initial_state_from') # Construct DataFrames shape = data_contributions.shape data_contributions = pd.DataFrame( data_contributions.reshape( shape[0] * shape[1], shape[2] * shape[3], order='F'), index=contributions_to, columns=contributions_from) shape = obs_intercept_contributions.shape obs_intercept_contributions = pd.DataFrame( obs_intercept_contributions.reshape( shape[0] * shape[1], shape[2] * shape[3], order='F'), index=contributions_to, columns=obs_intercept_contributions_from) shape = state_intercept_contributions.shape state_intercept_contributions = pd.DataFrame( state_intercept_contributions.reshape( shape[0] * shape[1], shape[2] * shape[3], order='F'), index=contributions_to, columns=state_intercept_contributions_from) shape = prior_contributions.shape prior_contributions = pd.DataFrame( prior_contributions.reshape(shape[0] * shape[1], shape[2], order='F'), index=contributions_to, columns=prior_contributions_from) return (data_contributions, obs_intercept_contributions, state_intercept_contributions, prior_contributions) def append(self, endog, exog=None, refit=False, fit_kwargs=None, copy_initialization=False, **kwargs): """ Recreate the results object with new data appended to the original data Creates a new result object applied to a dataset that is created by appending new data to the end of the model's original data. The new results can then be used for analysis or forecasting. Parameters ---------- endog : array_like New observations from the modeled time-series process. exog : array_like, optional New observations of exogenous regressors, if applicable. refit : bool, optional Whether to re-fit the parameters, based on the combined dataset. Default is False (so parameters from the current results object are used to create the new results object). copy_initialization : bool, optional Whether or not to copy the initialization from the current results set to the new model. Default is False fit_kwargs : dict, optional Keyword arguments to pass to `fit` (if `refit=True`) or `filter` / `smooth`. copy_initialization : bool, optional **kwargs Keyword arguments may be used to modify model specification arguments when created the new model object. Returns ------- results Updated Results object, that includes results from both the original dataset and the new dataset. Notes ----- The `endog` and `exog` arguments to this method must be formatted in the same way (e.g. Pandas Series versus Numpy array) as were the `endog` and `exog` arrays passed to the original model. The `endog` argument to this method should consist of new observations that occurred directly after the last element of `endog`. For any other kind of dataset, see the `apply` method. This method will apply filtering to all of the original data as well as to the new data. To apply filtering only to the new data (which can be much faster if the original dataset is large), see the `extend` method. See Also -------- statsmodels.tsa.statespace.mlemodel.MLEResults.extend statsmodels.tsa.statespace.mlemodel.MLEResults.apply Examples -------- >>> index = pd.period_range(start='2000', periods=2, freq='Y') >>> original_observations = pd.Series([1.2, 1.5], index=index) >>> mod = sm.tsa.SARIMAX(original_observations) >>> res = mod.fit() >>> print(res.params) ar.L1 0.9756 sigma2 0.0889 dtype: float64 >>> print(res.fittedvalues) 2000 0.0000 2001 1.1707 Freq: A-DEC, dtype: float64 >>> print(res.forecast(1)) 2002 1.4634 Freq: A-DEC, dtype: float64 >>> new_index = pd.period_range(start='2002', periods=1, freq='Y') >>> new_observations = pd.Series([0.9], index=new_index) >>> updated_res = res.append(new_observations) >>> print(updated_res.params) ar.L1 0.9756 sigma2 0.0889 dtype: float64 >>> print(updated_res.fittedvalues) 2000 0.0000 2001 1.1707 2002 1.4634 Freq: A-DEC, dtype: float64 >>> print(updated_res.forecast(1)) 2003 0.878 Freq: A-DEC, dtype: float64 """ start = self.nobs end = self.nobs + len(endog) - 1 _, _, _, append_ix = self.model._get_prediction_index(start, end) # Check the index of the new data if isinstance(self.model.data, PandasData): _check_index(append_ix, endog, '`endog`') # Concatenate the new data to original data new_endog = concat([self.model.data.orig_endog, endog], axis=0, allow_mix=True) # Handle `exog` if exog is not None: _, exog = prepare_exog(exog) _check_index(append_ix, exog, '`exog`') new_exog = concat([self.model.data.orig_exog, exog], axis=0, allow_mix=True) else: new_exog = None # Create a continuous index for the combined data if isinstance(self.model.data, PandasData): start = 0 end = len(new_endog) - 1 _, _, _, new_index = self.model._get_prediction_index(start, end) # Standardize `endog` to have the right index and columns columns = self.model.endog_names if not isinstance(columns, list): columns = [columns] new_endog = pd.DataFrame(new_endog, index=new_index, columns=columns) # Standardize `exog` to have the right index if new_exog is not None: new_exog = pd.DataFrame(new_exog, index=new_index, columns=self.model.exog_names) if copy_initialization: init = Initialization.from_results(self.filter_results) kwargs.setdefault('initialization', init) mod = self.model.clone(new_endog, exog=new_exog, **kwargs) res = self._apply(mod, refit=refit, fit_kwargs=fit_kwargs) return res def extend(self, endog, exog=None, fit_kwargs=None, **kwargs): """ Recreate the results object for new data that extends the original data Creates a new result object applied to a new dataset that is assumed to follow directly from the end of the model's original data. The new results can then be used for analysis or forecasting. Parameters ---------- endog : array_like New observations from the modeled time-series process. exog : array_like, optional New observations of exogenous regressors, if applicable. fit_kwargs : dict, optional Keyword arguments to pass to `filter` or `smooth`. **kwargs Keyword arguments may be used to modify model specification arguments when created the new model object. Returns ------- results Updated Results object, that includes results only for the new dataset. See Also -------- statsmodels.tsa.statespace.mlemodel.MLEResults.append statsmodels.tsa.statespace.mlemodel.MLEResults.apply Notes ----- The `endog` argument to this method should consist of new observations that occurred directly after the last element of the model's original `endog` array. For any other kind of dataset, see the `apply` method. This method will apply filtering only to the new data provided by the `endog` argument, which can be much faster than re-filtering the entire dataset. However, the returned results object will only have results for the new data. To retrieve results for both the new data and the original data, see the `append` method. Examples -------- >>> index = pd.period_range(start='2000', periods=2, freq='Y') >>> original_observations = pd.Series([1.2, 1.5], index=index) >>> mod = sm.tsa.SARIMAX(original_observations) >>> res = mod.fit() >>> print(res.params) ar.L1 0.9756 sigma2 0.0889 dtype: float64 >>> print(res.fittedvalues) 2000 0.0000 2001 1.1707 Freq: A-DEC, dtype: float64 >>> print(res.forecast(1)) 2002 1.4634 Freq: A-DEC, dtype: float64 >>> new_index = pd.period_range(start='2002', periods=1, freq='Y') >>> new_observations = pd.Series([0.9], index=new_index) >>> updated_res = res.extend(new_observations) >>> print(updated_res.params) ar.L1 0.9756 sigma2 0.0889 dtype: float64 >>> print(updated_res.fittedvalues) 2002 1.4634 Freq: A-DEC, dtype: float64 >>> print(updated_res.forecast(1)) 2003 0.878 Freq: A-DEC, dtype: float64 """ start = self.nobs end = self.nobs + len(endog) - 1 _, _, _, extend_ix = self.model._get_prediction_index(start, end) if isinstance(self.model.data, PandasData): _check_index(extend_ix, endog, '`endog`') # Standardize `endog` to have the right index and columns columns = self.model.endog_names if not isinstance(columns, list): columns = [columns] endog = pd.DataFrame(endog, index=extend_ix, columns=columns) # Extend the current fit result to additional data mod = self.model.clone(endog, exog=exog, **kwargs) mod.ssm.initialization = Initialization( mod.k_states, 'known', constant=self.predicted_state[..., -1], stationary_cov=self.predicted_state_cov[..., -1]) res = self._apply(mod, refit=False, fit_kwargs=fit_kwargs) return res def apply(self, endog, exog=None, refit=False, fit_kwargs=None, copy_initialization=False, **kwargs): """ Apply the fitted parameters to new data unrelated to the original data Creates a new result object using the current fitted parameters, applied to a completely new dataset that is assumed to be unrelated to the model's original data. The new results can then be used for analysis or forecasting. Parameters ---------- endog : array_like New observations from the modeled time-series process. exog : array_like, optional New observations of exogenous regressors, if applicable. refit : bool, optional Whether to re-fit the parameters, using the new dataset. Default is False (so parameters from the current results object are used to create the new results object). copy_initialization : bool, optional Whether or not to copy the initialization from the current results set to the new model. Default is False fit_kwargs : dict, optional Keyword arguments to pass to `fit` (if `refit=True`) or `filter` / `smooth`. **kwargs Keyword arguments may be used to modify model specification arguments when created the new model object. Returns ------- results Updated Results object, that includes results only for the new dataset. See Also -------- statsmodels.tsa.statespace.mlemodel.MLEResults.append statsmodels.tsa.statespace.mlemodel.MLEResults.apply Notes ----- The `endog` argument to this method should consist of new observations that are not necessarily related to the original model's `endog` dataset. For observations that continue that original dataset by follow directly after its last element, see the `append` and `extend` methods. Examples -------- >>> index = pd.period_range(start='2000', periods=2, freq='Y') >>> original_observations = pd.Series([1.2, 1.5], index=index) >>> mod = sm.tsa.SARIMAX(original_observations) >>> res = mod.fit() >>> print(res.params) ar.L1 0.9756 sigma2 0.0889 dtype: float64 >>> print(res.fittedvalues) 2000 0.0000 2001 1.1707 Freq: A-DEC, dtype: float64 >>> print(res.forecast(1)) 2002 1.4634 Freq: A-DEC, dtype: float64 >>> new_index = pd.period_range(start='1980', periods=3, freq='Y') >>> new_observations = pd.Series([1.4, 0.3, 1.2], index=new_index) >>> new_res = res.apply(new_observations) >>> print(new_res.params) ar.L1 0.9756 sigma2 0.0889 dtype: float64 >>> print(new_res.fittedvalues) 1980 1.1707 1981 1.3659 1982 0.2927 Freq: A-DEC, dtype: float64 Freq: A-DEC, dtype: float64 >>> print(new_res.forecast(1)) 1983 1.1707 Freq: A-DEC, dtype: float64 """ mod = self.model.clone(endog, exog=exog, **kwargs) if copy_initialization: init = Initialization.from_results(self.filter_results) mod.ssm.initialization = init res = self._apply(mod, refit=refit, fit_kwargs=fit_kwargs) return res def plot_diagnostics(self, variable=0, lags=10, fig=None, figsize=None, truncate_endog_names=24, auto_ylims=False, bartlett_confint=False, acf_kwargs=None): """ Diagnostic plots for standardized residuals of one endogenous variable Parameters ---------- variable : int, optional Index of the endogenous variable for which the diagnostic plots should be created. Default is 0. lags : int, optional Number of lags to include in the correlogram. Default is 10. fig : Figure, optional If given, subplots are created in this figure instead of in a new figure. Note that the 2x2 grid will be created in the provided figure using `fig.add_subplot()`. figsize : tuple, optional If a figure is created, this argument allows specifying a size. The tuple is (width, height). auto_ylims : bool, optional If True, adjusts automatically the y-axis limits to ACF values. bartlett_confint : bool, default True Confidence intervals for ACF values are generally placed at 2 standard errors around r_k. The formula used for standard error depends upon the situation. If the autocorrelations are being used to test for randomness of residuals as part of the ARIMA routine, the standard errors are determined assuming the residuals are white noise. The approximate formula for any lag is that standard error of each r_k = 1/sqrt(N). See section 9.4 of [1] for more details on the 1/sqrt(N) result. For more elementary discussion, see section 5.3.2 in [2]. For the ACF of raw data, the standard error at a lag k is found as if the right model was an MA(k-1). This allows the possible interpretation that if all autocorrelations past a certain lag are within the limits, the model might be an MA of order defined by the last significant autocorrelation. In this case, a moving average model is assumed for the data and the standard errors for the confidence intervals should be generated using Bartlett's formula. For more details on Bartlett formula result, see section 7.2 in [1].+ acf_kwargs : dict, optional Optional dictionary of keyword arguments that are directly passed on to the correlogram Matplotlib plot produced by plot_acf(). Returns ------- Figure Figure instance with diagnostic plots See Also -------- statsmodels.graphics.gofplots.qqplot statsmodels.graphics.tsaplots.plot_acf Notes ----- Produces a 2x2 plot grid with the following plots (ordered clockwise from top left): 1. Standardized residuals over time 2. Histogram plus estimated density of standardized residuals, along with a Normal(0,1) density plotted for reference. 3. Normal Q-Q plot, with Normal reference line. 4. Correlogram References ---------- [1] Brockwell and Davis, 1987. Time Series Theory and Methods [2] Brockwell and Davis, 2010. Introduction to Time Series and Forecasting, 2nd edition. """ from statsmodels.graphics.utils import _import_mpl, create_mpl_fig _import_mpl() fig = create_mpl_fig(fig, figsize) # Eliminate residuals associated with burned or diffuse likelihoods d = np.maximum(self.loglikelihood_burn, self.nobs_diffuse) # If given a variable name, find the index if isinstance(variable, str): variable = self.model.endog_names.index(variable) # Get residuals if hasattr(self.data, 'dates') and self.data.dates is not None: ix = self.data.dates[d:] else: ix = np.arange(self.nobs - d) resid = pd.Series( self.filter_results.standardized_forecasts_error[variable, d:], index=ix) if resid.shape[0] < max(d, lags): raise ValueError( "Length of endogenous variable must be larger the the number " "of lags used in the model and the number of observations " "burned in the log-likelihood calculation." ) # Top-left: residuals vs time ax = fig.add_subplot(221) resid.dropna().plot(ax=ax) ax.hlines(0, ix[0], ix[-1], alpha=0.5) ax.set_xlim(ix[0], ix[-1]) name = self.model.endog_names[variable] if len(name) > truncate_endog_names: name = name[:truncate_endog_names - 3] + '...' ax.set_title(f'Standardized residual for "{name}"') # Top-right: histogram, Gaussian kernel density, Normal density # Can only do histogram and Gaussian kernel density on the non-null # elements resid_nonmissing = resid.dropna() ax = fig.add_subplot(222) ax.hist(resid_nonmissing, density=True, label='Hist', edgecolor='#FFFFFF') from scipy.stats import gaussian_kde, norm kde = gaussian_kde(resid_nonmissing) xlim = (-1.96*2, 1.96*2) x = np.linspace(xlim[0], xlim[1]) ax.plot(x, kde(x), label='KDE') ax.plot(x, norm.pdf(x), label='N(0,1)') ax.set_xlim(xlim) ax.legend() ax.set_title('Histogram plus estimated density') # Bottom-left: QQ plot ax = fig.add_subplot(223) from statsmodels.graphics.gofplots import qqplot qqplot(resid_nonmissing, line='s', ax=ax) ax.set_title('Normal Q-Q') # Bottom-right: Correlogram ax = fig.add_subplot(224) from statsmodels.graphics.tsaplots import plot_acf if acf_kwargs is None: acf_kwargs = {} plot_acf(resid, ax=ax, lags=lags, auto_ylims=auto_ylims, bartlett_confint=bartlett_confint, **acf_kwargs) ax.set_title('Correlogram') return fig def summary(self, alpha=.05, start=None, title=None, model_name=None, display_params=True, display_diagnostics=True, truncate_endog_names=None, display_max_endog=None, extra_top_left=None, extra_top_right=None): """ Summarize the Model Parameters ---------- alpha : float, optional Significance level for the confidence intervals. Default is 0.05. start : int, optional Integer of the start observation. Default is 0. model_name : str The name of the model used. Default is to use model class name. Returns ------- summary : Summary instance This holds the summary table and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary.Summary """ from statsmodels.iolib.summary import Summary from statsmodels.iolib.table import SimpleTable from statsmodels.iolib.tableformatting import fmt_params # Model specification results model = self.model if title is None: title = 'Statespace Model Results' if start is None: start = 0 if self.model._index_dates: ix = self.model._index d = ix[start] sample = ['%02d-%02d-%02d' % (d.month, d.day, d.year)] d = ix[-1] sample += ['- ' + '%02d-%02d-%02d' % (d.month, d.day, d.year)] else: sample = [str(start), ' - ' + str(self.nobs)] # Standardize the model name as a list of str if model_name is None: model_name = model.__class__.__name__ # Truncate endog names if truncate_endog_names is None: truncate_endog_names = False if self.model.k_endog == 1 else 24 endog_names = self.model.endog_names if not isinstance(endog_names, list): endog_names = [endog_names] endog_names = [str(name) for name in endog_names] if truncate_endog_names is not False: n = truncate_endog_names endog_names = [name if len(name) <= n else name[:n] + '...' for name in endog_names] # Shorten the endog name list if applicable if display_max_endog is None: display_max_endog = np.inf yname = None if self.model.k_endog > display_max_endog: k = self.model.k_endog - 1 yname = '"' + endog_names[0] + f'", and {k} more' # Create the tables if not isinstance(model_name, list): model_name = [model_name] top_left = [('Dep. Variable:', None)] top_left.append(('Model:', [model_name[0]])) for i in range(1, len(model_name)): top_left.append(('', ['+ ' + model_name[i]])) top_left += [ ('Date:', None), ('Time:', None), ('Sample:', [sample[0]]), ('', [sample[1]]) ] top_right = [ ('No. Observations:', [self.nobs]), ('Log Likelihood', ["%#5.3f" % self.llf]), ] if hasattr(self, 'rsquared'): top_right.append(('R-squared:', ["%#8.3f" % self.rsquared])) top_right += [ ('AIC', ["%#5.3f" % self.aic]), ('BIC', ["%#5.3f" % self.bic]), ('HQIC', ["%#5.3f" % self.hqic])] if (self.filter_results is not None and self.filter_results.filter_concentrated): top_right.append(('Scale', ["%#5.3f" % self.scale])) if hasattr(self, 'cov_type'): cov_type = self.cov_type if cov_type == 'none': cov_type = 'Not computed' top_left.append(('Covariance Type:', [cov_type])) if extra_top_left is not None: top_left += extra_top_left if extra_top_right is not None: top_right += extra_top_right summary = Summary() summary.add_table_2cols(self, gleft=top_left, gright=top_right, title=title, yname=yname) table_ix = 1 if len(self.params) > 0 and display_params: summary.add_table_params(self, alpha=alpha, xname=self.param_names, use_t=False) table_ix += 1 # Diagnostic tests results if display_diagnostics: try: het = self.test_heteroskedasticity(method='breakvar') except Exception: # FIXME: catch something specific het = np.zeros((self.model.k_endog, 2)) * np.nan try: lb = self.test_serial_correlation(method='ljungbox', lags=[1]) except Exception: # FIXME: catch something specific lb = np.zeros((self.model.k_endog, 2, 1)) * np.nan try: jb = self.test_normality(method='jarquebera') except Exception: # FIXME: catch something specific jb = np.zeros((self.model.k_endog, 4)) * np.nan if self.model.k_endog <= display_max_endog: format_str = lambda array: [ # noqa:E731 ', '.join([f'{i:.2f}' for i in array]) ] diagn_left = [ ('Ljung-Box (L1) (Q):', format_str(lb[:, 0, -1])), ('Prob(Q):', format_str(lb[:, 1, -1])), ('Heteroskedasticity (H):', format_str(het[:, 0])), ('Prob(H) (two-sided):', format_str(het[:, 1]))] diagn_right = [('Jarque-Bera (JB):', format_str(jb[:, 0])), ('Prob(JB):', format_str(jb[:, 1])), ('Skew:', format_str(jb[:, 2])), ('Kurtosis:', format_str(jb[:, 3])) ] summary.add_table_2cols(self, gleft=diagn_left, gright=diagn_right, title="") else: columns = ['LjungBox\n(L1) (Q)', 'Prob(Q)', 'Het.(H)', 'Prob(H)', 'Jarque\nBera(JB)', 'Prob(JB)', 'Skew', 'Kurtosis'] data = pd.DataFrame( np.c_[lb[:, :2, -1], het[:, :2], jb[:, :4]], index=endog_names, columns=columns) try: data = data.map( lambda num: '' if pd.isnull(num) else '%.2f' % num ) except AttributeError: data = data.applymap( lambda num: '' if pd.isnull(num) else '%.2f' % num ) data.index.name = 'Residual of\nDep. variable' data = data.reset_index() params_data = data.values params_header = data.columns.tolist() params_stubs = None title = 'Residual diagnostics:' table = SimpleTable( params_data, params_header, params_stubs, txt_fmt=fmt_params, title=title) summary.tables.insert(table_ix, table) # Add warnings/notes, added to text format only etext = [] if hasattr(self, 'cov_type') and 'description' in self.cov_kwds: etext.append(self.cov_kwds['description']) if self._rank < (len(self.params) - len(self.fixed_params)): cov_params = self.cov_params() if len(self.fixed_params) > 0: mask = np.ix_(self._free_params_index, self._free_params_index) cov_params = cov_params[mask] etext.append("Covariance matrix is singular or near-singular," " with condition number %6.3g. Standard errors may be" " unstable." % _safe_cond(cov_params)) if etext: etext = [f"[{i + 1}] {text}" for i, text in enumerate(etext)] etext.insert(0, "Warnings:") summary.add_extra_txt(etext) return summary class MLEResultsWrapper(wrap.ResultsWrapper): _attrs = { 'zvalues': 'columns', 'cov_params_approx': 'cov', 'cov_params_default': 'cov', 'cov_params_oim': 'cov', 'cov_params_opg': 'cov', 'cov_params_robust': 'cov', 'cov_params_robust_approx': 'cov', 'cov_params_robust_oim': 'cov', } _wrap_attrs = wrap.union_dicts(tsbase.TimeSeriesResultsWrapper._wrap_attrs, _attrs) _methods = { 'forecast': 'dates', 'impulse_responses': 'ynames' } _wrap_methods = wrap.union_dicts( tsbase.TimeSeriesResultsWrapper._wrap_methods, _methods) wrap.populate_wrapper(MLEResultsWrapper, MLEResults) # noqa:E305 class PredictionResults(pred.PredictionResults): """ Prediction result from MLE models Parameters ---------- model : MLEModel The models used to make the prediction prediction_results : kalman_filter.PredictionResults instance Results object from prediction after fitting or filtering a state space model. row_labels : iterable Row labels for the predicted data. information_set : str Name of information set signal_only : bool Whether the prediction is for the signal only Attributes ---------- model : MLEModel The models used to make the prediction prediction_results : kalman_filter.PredictionResults instance Results object from prediction after fitting or filtering a state space model. information_set : str Name of information set signal_only : bool Whether the prediction is for the signal only """ def __init__(self, model, prediction_results, row_labels=None, information_set='predicted', signal_only=False): if model.model.k_endog == 1: endog = pd.Series(prediction_results.endog[0], name=model.model.endog_names) else: endog = pd.DataFrame(prediction_results.endog.T, columns=model.model.endog_names) self.model = Bunch(data=model.data.__class__( endog=endog, predict_dates=row_labels)) self.prediction_results = prediction_results self.information_set = information_set self.signal_only = signal_only # Get required values k_endog, nobs = prediction_results.endog.shape res = self.prediction_results.results if information_set == 'predicted' and not res.memory_no_forecast_mean: if not signal_only: predicted_mean = self.prediction_results.forecasts else: predicted_mean = self.prediction_results.predicted_signal elif information_set == 'filtered' and not res.memory_no_filtered_mean: if not signal_only: predicted_mean = self.prediction_results.filtered_forecasts else: predicted_mean = self.prediction_results.filtered_signal elif information_set == 'smoothed': if not signal_only: predicted_mean = self.prediction_results.smoothed_forecasts else: predicted_mean = self.prediction_results.smoothed_signal else: predicted_mean = np.zeros((k_endog, nobs)) * np.nan if predicted_mean.shape[0] == 1: predicted_mean = predicted_mean[0, :] else: predicted_mean = predicted_mean.transpose() if information_set == 'predicted' and not res.memory_no_forecast_cov: if not signal_only: var_pred_mean = self.prediction_results.forecasts_error_cov else: var_pred_mean = self.prediction_results.predicted_signal_cov elif information_set == 'filtered' and not res.memory_no_filtered_mean: if not signal_only: var_pred_mean = ( self.prediction_results.filtered_forecasts_error_cov) else: var_pred_mean = self.prediction_results.filtered_signal_cov elif information_set == 'smoothed': if not signal_only: var_pred_mean = ( self.prediction_results.smoothed_forecasts_error_cov) else: var_pred_mean = self.prediction_results.smoothed_signal_cov else: var_pred_mean = np.zeros((k_endog, k_endog, nobs)) * np.nan if var_pred_mean.shape[0] == 1: var_pred_mean = var_pred_mean[0, 0, :] else: var_pred_mean = var_pred_mean.transpose() # Initialize super().__init__(predicted_mean, var_pred_mean, dist='norm', row_labels=row_labels) @property def se_mean(self): # Replace negative values with np.nan to avoid a RuntimeWarning var_pred_mean = self.var_pred_mean.copy() var_pred_mean[var_pred_mean < 0] = np.nan if var_pred_mean.ndim == 1: se_mean = np.sqrt(var_pred_mean) else: se_mean = np.sqrt(var_pred_mean.T.diagonal()) return se_mean def conf_int(self, method='endpoint', alpha=0.05, **kwds): # TODO: this performs metadata wrapping, and that should be handled # by attach_* methods. However, they do not currently support # this use case. _use_pandas = self._use_pandas self._use_pandas = False conf_int = super().conf_int(alpha, **kwds) self._use_pandas = _use_pandas # Create a dataframe if self._row_labels is not None: conf_int = pd.DataFrame(conf_int, index=self.row_labels) # Attach the endog names ynames = self.model.data.ynames if type(ynames) is not list: ynames = [ynames] names = ([f'lower {name}' for name in ynames] + [f'upper {name}' for name in ynames]) conf_int.columns = names return conf_int def summary_frame(self, endog=0, alpha=0.05): # TODO: finish and cleanup # import pandas as pd # ci_obs = self.conf_int(alpha=alpha, obs=True) # need to split ci_mean = np.asarray(self.conf_int(alpha=alpha)) _use_pandas = self._use_pandas self._use_pandas = False to_include = {} if self.predicted_mean.ndim == 1: yname = self.model.data.ynames to_include['mean'] = self.predicted_mean to_include['mean_se'] = self.se_mean k_endog = 1 else: yname = self.model.data.ynames[endog] to_include['mean'] = self.predicted_mean[:, endog] to_include['mean_se'] = self.se_mean[:, endog] k_endog = self.predicted_mean.shape[1] self._use_pandas = _use_pandas to_include['mean_ci_lower'] = ci_mean[:, endog] to_include['mean_ci_upper'] = ci_mean[:, k_endog + endog] # pandas dict does not handle 2d_array # data = np.column_stack(list(to_include.values())) # names = .... res = pd.DataFrame(to_include, index=self._row_labels, columns=list(to_include.keys())) res.columns.name = yname return res class PredictionResultsWrapper(wrap.ResultsWrapper): _attrs = { 'predicted_mean': 'dates', 'se_mean': 'dates', 't_values': 'dates', } _wrap_attrs = wrap.union_dicts(_attrs) _methods = {} _wrap_methods = wrap.union_dicts(_methods) wrap.populate_wrapper(PredictionResultsWrapper, PredictionResults) # noqa:E305