391 lines
11 KiB
Python
391 lines
11 KiB
Python
|
from statsmodels.compat.pandas import MONTH_END
|
||
|
from statsmodels.compat.python import lmap
|
||
|
|
||
|
import calendar
|
||
|
from io import BytesIO
|
||
|
import locale
|
||
|
|
||
|
import numpy as np
|
||
|
from numpy.testing import assert_, assert_equal
|
||
|
import pandas as pd
|
||
|
import pytest
|
||
|
|
||
|
from statsmodels.datasets import elnino, macrodata
|
||
|
from statsmodels.graphics.tsaplots import (
|
||
|
month_plot,
|
||
|
plot_accf_grid,
|
||
|
plot_acf,
|
||
|
plot_ccf,
|
||
|
plot_pacf,
|
||
|
plot_predict,
|
||
|
quarter_plot,
|
||
|
seasonal_plot,
|
||
|
)
|
||
|
from statsmodels.tsa import arima_process as tsp
|
||
|
from statsmodels.tsa.ar_model import AutoReg
|
||
|
from statsmodels.tsa.arima.model import ARIMA
|
||
|
|
||
|
try:
|
||
|
from matplotlib import pyplot as plt
|
||
|
except ImportError:
|
||
|
pass
|
||
|
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_plot_acf(close_figures):
|
||
|
# Just test that it runs.
|
||
|
fig = plt.figure()
|
||
|
ax = fig.add_subplot(111)
|
||
|
|
||
|
ar = np.r_[1.0, -0.9]
|
||
|
ma = np.r_[1.0, 0.9]
|
||
|
armaprocess = tsp.ArmaProcess(ar, ma)
|
||
|
rs = np.random.RandomState(1234)
|
||
|
acf = armaprocess.generate_sample(100, distrvs=rs.standard_normal)
|
||
|
plot_acf(acf, ax=ax, lags=10)
|
||
|
plot_acf(acf, ax=ax)
|
||
|
plot_acf(acf, ax=ax, alpha=None)
|
||
|
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_plot_acf_irregular(close_figures):
|
||
|
# Just test that it runs.
|
||
|
fig = plt.figure()
|
||
|
ax = fig.add_subplot(111)
|
||
|
|
||
|
ar = np.r_[1.0, -0.9]
|
||
|
ma = np.r_[1.0, 0.9]
|
||
|
armaprocess = tsp.ArmaProcess(ar, ma)
|
||
|
rs = np.random.RandomState(1234)
|
||
|
acf = armaprocess.generate_sample(100, distrvs=rs.standard_normal)
|
||
|
plot_acf(acf, ax=ax, lags=np.arange(1, 11))
|
||
|
plot_acf(acf, ax=ax, lags=10, zero=False)
|
||
|
plot_acf(acf, ax=ax, alpha=None, zero=False)
|
||
|
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_plot_pacf(close_figures):
|
||
|
# Just test that it runs.
|
||
|
fig = plt.figure()
|
||
|
ax = fig.add_subplot(111)
|
||
|
|
||
|
ar = np.r_[1.0, -0.9]
|
||
|
ma = np.r_[1.0, 0.9]
|
||
|
armaprocess = tsp.ArmaProcess(ar, ma)
|
||
|
rs = np.random.RandomState(1234)
|
||
|
pacf = armaprocess.generate_sample(100, distrvs=rs.standard_normal)
|
||
|
plot_pacf(pacf, ax=ax)
|
||
|
plot_pacf(pacf, ax=ax, alpha=None)
|
||
|
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_plot_pacf_kwargs(close_figures):
|
||
|
# Just test that it runs.
|
||
|
fig = plt.figure()
|
||
|
ax = fig.add_subplot(111)
|
||
|
|
||
|
ar = np.r_[1.0, -0.9]
|
||
|
ma = np.r_[1.0, 0.9]
|
||
|
armaprocess = tsp.ArmaProcess(ar, ma)
|
||
|
rs = np.random.RandomState(1234)
|
||
|
pacf = armaprocess.generate_sample(100, distrvs=rs.standard_normal)
|
||
|
|
||
|
buff = BytesIO()
|
||
|
plot_pacf(pacf, ax=ax)
|
||
|
fig.savefig(buff, format="rgba")
|
||
|
|
||
|
buff_linestyle = BytesIO()
|
||
|
fig_linestyle = plt.figure()
|
||
|
ax = fig_linestyle.add_subplot(111)
|
||
|
plot_pacf(pacf, ax=ax, ls="-")
|
||
|
fig_linestyle.savefig(buff_linestyle, format="rgba")
|
||
|
|
||
|
buff_with_vlines = BytesIO()
|
||
|
fig_with_vlines = plt.figure()
|
||
|
ax = fig_with_vlines.add_subplot(111)
|
||
|
vlines_kwargs = {"linestyles": "dashdot"}
|
||
|
plot_pacf(pacf, ax=ax, vlines_kwargs=vlines_kwargs)
|
||
|
fig_with_vlines.savefig(buff_with_vlines, format="rgba")
|
||
|
|
||
|
buff.seek(0)
|
||
|
buff_linestyle.seek(0)
|
||
|
buff_with_vlines.seek(0)
|
||
|
plain = buff.read()
|
||
|
linestyle = buff_linestyle.read()
|
||
|
with_vlines = buff_with_vlines.read()
|
||
|
|
||
|
assert_(plain != linestyle)
|
||
|
assert_(with_vlines != plain)
|
||
|
assert_(linestyle != with_vlines)
|
||
|
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_plot_acf_kwargs(close_figures):
|
||
|
# Just test that it runs.
|
||
|
fig = plt.figure()
|
||
|
ax = fig.add_subplot(111)
|
||
|
|
||
|
ar = np.r_[1.0, -0.9]
|
||
|
ma = np.r_[1.0, 0.9]
|
||
|
armaprocess = tsp.ArmaProcess(ar, ma)
|
||
|
rs = np.random.RandomState(1234)
|
||
|
acf = armaprocess.generate_sample(100, distrvs=rs.standard_normal)
|
||
|
|
||
|
buff = BytesIO()
|
||
|
plot_acf(acf, ax=ax)
|
||
|
fig.savefig(buff, format="rgba")
|
||
|
|
||
|
buff_with_vlines = BytesIO()
|
||
|
fig_with_vlines = plt.figure()
|
||
|
ax = fig_with_vlines.add_subplot(111)
|
||
|
vlines_kwargs = {"linestyles": "dashdot"}
|
||
|
plot_acf(acf, ax=ax, vlines_kwargs=vlines_kwargs)
|
||
|
fig_with_vlines.savefig(buff_with_vlines, format="rgba")
|
||
|
|
||
|
buff.seek(0)
|
||
|
buff_with_vlines.seek(0)
|
||
|
plain = buff.read()
|
||
|
with_vlines = buff_with_vlines.read()
|
||
|
|
||
|
assert_(with_vlines != plain)
|
||
|
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_plot_acf_missing(close_figures):
|
||
|
# Just test that it runs.
|
||
|
fig = plt.figure()
|
||
|
ax = fig.add_subplot(111)
|
||
|
|
||
|
ar = np.r_[1.0, -0.9]
|
||
|
ma = np.r_[1.0, 0.9]
|
||
|
armaprocess = tsp.ArmaProcess(ar, ma)
|
||
|
rs = np.random.RandomState(1234)
|
||
|
acf = armaprocess.generate_sample(100, distrvs=rs.standard_normal)
|
||
|
acf[::13] = np.nan
|
||
|
|
||
|
buff = BytesIO()
|
||
|
plot_acf(acf, ax=ax, missing="drop")
|
||
|
fig.savefig(buff, format="rgba")
|
||
|
buff.seek(0)
|
||
|
|
||
|
fig = plt.figure()
|
||
|
ax = fig.add_subplot(111)
|
||
|
buff_conservative = BytesIO()
|
||
|
plot_acf(acf, ax=ax, missing="conservative")
|
||
|
fig.savefig(buff_conservative, format="rgba")
|
||
|
buff_conservative.seek(0)
|
||
|
assert_(buff.read() != buff_conservative.read())
|
||
|
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_plot_pacf_irregular(close_figures):
|
||
|
# Just test that it runs.
|
||
|
fig = plt.figure()
|
||
|
ax = fig.add_subplot(111)
|
||
|
|
||
|
ar = np.r_[1.0, -0.9]
|
||
|
ma = np.r_[1.0, 0.9]
|
||
|
armaprocess = tsp.ArmaProcess(ar, ma)
|
||
|
rs = np.random.RandomState(1234)
|
||
|
pacf = armaprocess.generate_sample(100, distrvs=rs.standard_normal)
|
||
|
plot_pacf(pacf, ax=ax, lags=np.arange(1, 11))
|
||
|
plot_pacf(pacf, ax=ax, lags=10, zero=False)
|
||
|
plot_pacf(pacf, ax=ax, alpha=None, zero=False)
|
||
|
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_plot_ccf(close_figures):
|
||
|
# Just test that it runs.
|
||
|
fig = plt.figure()
|
||
|
ax = fig.add_subplot(111)
|
||
|
|
||
|
ar = np.r_[1.0, -0.9]
|
||
|
ma = np.r_[1.0, 0.9]
|
||
|
armaprocess = tsp.ArmaProcess(ar, ma)
|
||
|
rs = np.random.RandomState(1234)
|
||
|
x1 = armaprocess.generate_sample(100, distrvs=rs.standard_normal)
|
||
|
x2 = armaprocess.generate_sample(100, distrvs=rs.standard_normal)
|
||
|
plot_ccf(x1, x2)
|
||
|
plot_ccf(x1, x2, ax=ax, lags=10)
|
||
|
plot_ccf(x1, x2, ax=ax)
|
||
|
plot_ccf(x1, x2, ax=ax, alpha=None)
|
||
|
plot_ccf(x1, x2, ax=ax, negative_lags=True)
|
||
|
plot_ccf(x1, x2, ax=ax, adjusted=True)
|
||
|
plot_ccf(x1, x2, ax=ax, fft=True)
|
||
|
plot_ccf(x1, x2, ax=ax, title='CCF')
|
||
|
plot_ccf(x1, x2, ax=ax, auto_ylims=True)
|
||
|
plot_ccf(x1, x2, ax=ax, use_vlines=False)
|
||
|
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_plot_accf_grid(close_figures):
|
||
|
# Just test that it runs.
|
||
|
fig = plt.figure()
|
||
|
|
||
|
ar = np.r_[1.0, -0.9]
|
||
|
ma = np.r_[1.0, 0.9]
|
||
|
armaprocess = tsp.ArmaProcess(ar, ma)
|
||
|
rs = np.random.RandomState(1234)
|
||
|
x = np.vstack([
|
||
|
armaprocess.generate_sample(100, distrvs=rs.standard_normal),
|
||
|
armaprocess.generate_sample(100, distrvs=rs.standard_normal),
|
||
|
]).T
|
||
|
plot_accf_grid(x)
|
||
|
plot_accf_grid(pd.DataFrame({'x': x[:, 0], 'y': x[:, 1]}))
|
||
|
plot_accf_grid(x, fig=fig, lags=10)
|
||
|
plot_accf_grid(x, fig=fig)
|
||
|
plot_accf_grid(x, fig=fig, negative_lags=False)
|
||
|
plot_accf_grid(x, fig=fig, alpha=None)
|
||
|
plot_accf_grid(x, fig=fig, adjusted=True)
|
||
|
plot_accf_grid(x, fig=fig, fft=True)
|
||
|
plot_accf_grid(x, fig=fig, auto_ylims=True)
|
||
|
plot_accf_grid(x, fig=fig, use_vlines=False)
|
||
|
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_plot_month(close_figures):
|
||
|
dta = elnino.load_pandas().data
|
||
|
dta["YEAR"] = dta.YEAR.astype(int).apply(str)
|
||
|
dta = dta.set_index("YEAR").T.unstack()
|
||
|
dates = pd.to_datetime(
|
||
|
["-".join([x[1], x[0]]) for x in dta.index.values], format="%b-%Y"
|
||
|
)
|
||
|
|
||
|
# test dates argument
|
||
|
fig = month_plot(dta.values, dates=dates, ylabel="el nino")
|
||
|
|
||
|
# test with a TimeSeries DatetimeIndex with no freq
|
||
|
dta.index = pd.DatetimeIndex(dates)
|
||
|
fig = month_plot(dta)
|
||
|
|
||
|
# w freq
|
||
|
dta.index = pd.DatetimeIndex(dates, freq="MS")
|
||
|
fig = month_plot(dta)
|
||
|
|
||
|
# test with a TimeSeries PeriodIndex
|
||
|
dta.index = pd.PeriodIndex(dates, freq="M")
|
||
|
fig = month_plot(dta)
|
||
|
|
||
|
# test localized xlabels
|
||
|
try:
|
||
|
with calendar.different_locale("DE_de"):
|
||
|
fig = month_plot(dta)
|
||
|
labels = [_.get_text() for _ in fig.axes[0].get_xticklabels()]
|
||
|
expected = [
|
||
|
"Jan",
|
||
|
"Feb",
|
||
|
("Mär", "Mrz"),
|
||
|
"Apr",
|
||
|
"Mai",
|
||
|
"Jun",
|
||
|
"Jul",
|
||
|
"Aug",
|
||
|
"Sep",
|
||
|
"Okt",
|
||
|
"Nov",
|
||
|
"Dez",
|
||
|
]
|
||
|
for lbl, exp in zip(labels, expected):
|
||
|
if isinstance(exp, tuple):
|
||
|
assert lbl in exp
|
||
|
else:
|
||
|
assert lbl == exp
|
||
|
except locale.Error:
|
||
|
pytest.xfail(reason="Failure due to unsupported locale")
|
||
|
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_plot_quarter(close_figures):
|
||
|
dta = macrodata.load_pandas().data
|
||
|
dates = lmap(
|
||
|
"-Q".join,
|
||
|
zip(
|
||
|
dta.year.astype(int).apply(str), dta.quarter.astype(int).apply(str)
|
||
|
),
|
||
|
)
|
||
|
# test dates argument
|
||
|
quarter_plot(dta.unemp.values, dates)
|
||
|
|
||
|
# test with a DatetimeIndex with no freq
|
||
|
dta.set_index(pd.DatetimeIndex(dates, freq="QS-OCT"), inplace=True)
|
||
|
quarter_plot(dta.unemp)
|
||
|
|
||
|
# w freq
|
||
|
# see pandas #6631
|
||
|
dta.index = pd.DatetimeIndex(dates, freq="QS-OCT")
|
||
|
quarter_plot(dta.unemp)
|
||
|
|
||
|
# w PeriodIndex
|
||
|
dta.index = pd.PeriodIndex(dates, freq="Q")
|
||
|
quarter_plot(dta.unemp)
|
||
|
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_seasonal_plot(close_figures):
|
||
|
rs = np.random.RandomState(1234)
|
||
|
data = rs.randn(20, 12)
|
||
|
data += 6 * np.sin(np.arange(12.0) / 11 * np.pi)[None, :]
|
||
|
data = data.ravel()
|
||
|
months = np.tile(np.arange(1, 13), (20, 1))
|
||
|
months = months.ravel()
|
||
|
df = pd.DataFrame([data, months], index=["data", "months"]).T
|
||
|
grouped = df.groupby("months")["data"]
|
||
|
labels = [
|
||
|
"Jan",
|
||
|
"Feb",
|
||
|
"Mar",
|
||
|
"Apr",
|
||
|
"May",
|
||
|
"Jun",
|
||
|
"Jul",
|
||
|
"Aug",
|
||
|
"Sep",
|
||
|
"Oct",
|
||
|
"Nov",
|
||
|
"Dec",
|
||
|
]
|
||
|
fig = seasonal_plot(grouped, labels)
|
||
|
ax = fig.get_axes()[0]
|
||
|
output = [tl.get_text() for tl in ax.get_xticklabels()]
|
||
|
assert_equal(labels, output)
|
||
|
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
@pytest.mark.parametrize(
|
||
|
"model_and_args",
|
||
|
[(AutoReg, dict(lags=2, old_names=False)), (ARIMA, dict(order=(2, 0, 0)))],
|
||
|
)
|
||
|
@pytest.mark.parametrize("use_pandas", [True, False])
|
||
|
@pytest.mark.parametrize("alpha", [None, 0.10])
|
||
|
def test_predict_plot(use_pandas, model_and_args, alpha):
|
||
|
model, kwargs = model_and_args
|
||
|
rs = np.random.RandomState(0)
|
||
|
y = rs.standard_normal(1000)
|
||
|
for i in range(2, 1000):
|
||
|
y[i] += 1.8 * y[i - 1] - 0.9 * y[i - 2]
|
||
|
y = y[100:]
|
||
|
if use_pandas:
|
||
|
index = pd.date_range(
|
||
|
"1960-1-1", freq=MONTH_END, periods=y.shape[0] + 24
|
||
|
)
|
||
|
start = index[index.shape[0] // 2]
|
||
|
end = index[-1]
|
||
|
y = pd.Series(y, index=index[:-24])
|
||
|
else:
|
||
|
start = y.shape[0] // 2
|
||
|
end = y.shape[0] + 24
|
||
|
res = model(y, **kwargs).fit()
|
||
|
fig = plot_predict(res, start, end, alpha=alpha)
|
||
|
assert isinstance(fig, plt.Figure)
|
||
|
|
||
|
|
||
|
@pytest.mark.matplotlib
|
||
|
def test_plot_pacf_small_sample():
|
||
|
idx = [pd.Timestamp.now() + pd.Timedelta(seconds=i) for i in range(10)]
|
||
|
df = pd.DataFrame(
|
||
|
index=idx,
|
||
|
columns=["a"],
|
||
|
data=list(range(10))
|
||
|
)
|
||
|
plot_pacf(df)
|