AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/graphics/tests/test_tsaplots.py
2024-10-02 22:15:59 +04:00

391 lines
11 KiB
Python

from statsmodels.compat.pandas import MONTH_END
from statsmodels.compat.python import lmap
import calendar
from io import BytesIO
import locale
import numpy as np
from numpy.testing import assert_, assert_equal
import pandas as pd
import pytest
from statsmodels.datasets import elnino, macrodata
from statsmodels.graphics.tsaplots import (
month_plot,
plot_accf_grid,
plot_acf,
plot_ccf,
plot_pacf,
plot_predict,
quarter_plot,
seasonal_plot,
)
from statsmodels.tsa import arima_process as tsp
from statsmodels.tsa.ar_model import AutoReg
from statsmodels.tsa.arima.model import ARIMA
try:
from matplotlib import pyplot as plt
except ImportError:
pass
@pytest.mark.matplotlib
def test_plot_acf(close_figures):
# Just test that it runs.
fig = plt.figure()
ax = fig.add_subplot(111)
ar = np.r_[1.0, -0.9]
ma = np.r_[1.0, 0.9]
armaprocess = tsp.ArmaProcess(ar, ma)
rs = np.random.RandomState(1234)
acf = armaprocess.generate_sample(100, distrvs=rs.standard_normal)
plot_acf(acf, ax=ax, lags=10)
plot_acf(acf, ax=ax)
plot_acf(acf, ax=ax, alpha=None)
@pytest.mark.matplotlib
def test_plot_acf_irregular(close_figures):
# Just test that it runs.
fig = plt.figure()
ax = fig.add_subplot(111)
ar = np.r_[1.0, -0.9]
ma = np.r_[1.0, 0.9]
armaprocess = tsp.ArmaProcess(ar, ma)
rs = np.random.RandomState(1234)
acf = armaprocess.generate_sample(100, distrvs=rs.standard_normal)
plot_acf(acf, ax=ax, lags=np.arange(1, 11))
plot_acf(acf, ax=ax, lags=10, zero=False)
plot_acf(acf, ax=ax, alpha=None, zero=False)
@pytest.mark.matplotlib
def test_plot_pacf(close_figures):
# Just test that it runs.
fig = plt.figure()
ax = fig.add_subplot(111)
ar = np.r_[1.0, -0.9]
ma = np.r_[1.0, 0.9]
armaprocess = tsp.ArmaProcess(ar, ma)
rs = np.random.RandomState(1234)
pacf = armaprocess.generate_sample(100, distrvs=rs.standard_normal)
plot_pacf(pacf, ax=ax)
plot_pacf(pacf, ax=ax, alpha=None)
@pytest.mark.matplotlib
def test_plot_pacf_kwargs(close_figures):
# Just test that it runs.
fig = plt.figure()
ax = fig.add_subplot(111)
ar = np.r_[1.0, -0.9]
ma = np.r_[1.0, 0.9]
armaprocess = tsp.ArmaProcess(ar, ma)
rs = np.random.RandomState(1234)
pacf = armaprocess.generate_sample(100, distrvs=rs.standard_normal)
buff = BytesIO()
plot_pacf(pacf, ax=ax)
fig.savefig(buff, format="rgba")
buff_linestyle = BytesIO()
fig_linestyle = plt.figure()
ax = fig_linestyle.add_subplot(111)
plot_pacf(pacf, ax=ax, ls="-")
fig_linestyle.savefig(buff_linestyle, format="rgba")
buff_with_vlines = BytesIO()
fig_with_vlines = plt.figure()
ax = fig_with_vlines.add_subplot(111)
vlines_kwargs = {"linestyles": "dashdot"}
plot_pacf(pacf, ax=ax, vlines_kwargs=vlines_kwargs)
fig_with_vlines.savefig(buff_with_vlines, format="rgba")
buff.seek(0)
buff_linestyle.seek(0)
buff_with_vlines.seek(0)
plain = buff.read()
linestyle = buff_linestyle.read()
with_vlines = buff_with_vlines.read()
assert_(plain != linestyle)
assert_(with_vlines != plain)
assert_(linestyle != with_vlines)
@pytest.mark.matplotlib
def test_plot_acf_kwargs(close_figures):
# Just test that it runs.
fig = plt.figure()
ax = fig.add_subplot(111)
ar = np.r_[1.0, -0.9]
ma = np.r_[1.0, 0.9]
armaprocess = tsp.ArmaProcess(ar, ma)
rs = np.random.RandomState(1234)
acf = armaprocess.generate_sample(100, distrvs=rs.standard_normal)
buff = BytesIO()
plot_acf(acf, ax=ax)
fig.savefig(buff, format="rgba")
buff_with_vlines = BytesIO()
fig_with_vlines = plt.figure()
ax = fig_with_vlines.add_subplot(111)
vlines_kwargs = {"linestyles": "dashdot"}
plot_acf(acf, ax=ax, vlines_kwargs=vlines_kwargs)
fig_with_vlines.savefig(buff_with_vlines, format="rgba")
buff.seek(0)
buff_with_vlines.seek(0)
plain = buff.read()
with_vlines = buff_with_vlines.read()
assert_(with_vlines != plain)
@pytest.mark.matplotlib
def test_plot_acf_missing(close_figures):
# Just test that it runs.
fig = plt.figure()
ax = fig.add_subplot(111)
ar = np.r_[1.0, -0.9]
ma = np.r_[1.0, 0.9]
armaprocess = tsp.ArmaProcess(ar, ma)
rs = np.random.RandomState(1234)
acf = armaprocess.generate_sample(100, distrvs=rs.standard_normal)
acf[::13] = np.nan
buff = BytesIO()
plot_acf(acf, ax=ax, missing="drop")
fig.savefig(buff, format="rgba")
buff.seek(0)
fig = plt.figure()
ax = fig.add_subplot(111)
buff_conservative = BytesIO()
plot_acf(acf, ax=ax, missing="conservative")
fig.savefig(buff_conservative, format="rgba")
buff_conservative.seek(0)
assert_(buff.read() != buff_conservative.read())
@pytest.mark.matplotlib
def test_plot_pacf_irregular(close_figures):
# Just test that it runs.
fig = plt.figure()
ax = fig.add_subplot(111)
ar = np.r_[1.0, -0.9]
ma = np.r_[1.0, 0.9]
armaprocess = tsp.ArmaProcess(ar, ma)
rs = np.random.RandomState(1234)
pacf = armaprocess.generate_sample(100, distrvs=rs.standard_normal)
plot_pacf(pacf, ax=ax, lags=np.arange(1, 11))
plot_pacf(pacf, ax=ax, lags=10, zero=False)
plot_pacf(pacf, ax=ax, alpha=None, zero=False)
@pytest.mark.matplotlib
def test_plot_ccf(close_figures):
# Just test that it runs.
fig = plt.figure()
ax = fig.add_subplot(111)
ar = np.r_[1.0, -0.9]
ma = np.r_[1.0, 0.9]
armaprocess = tsp.ArmaProcess(ar, ma)
rs = np.random.RandomState(1234)
x1 = armaprocess.generate_sample(100, distrvs=rs.standard_normal)
x2 = armaprocess.generate_sample(100, distrvs=rs.standard_normal)
plot_ccf(x1, x2)
plot_ccf(x1, x2, ax=ax, lags=10)
plot_ccf(x1, x2, ax=ax)
plot_ccf(x1, x2, ax=ax, alpha=None)
plot_ccf(x1, x2, ax=ax, negative_lags=True)
plot_ccf(x1, x2, ax=ax, adjusted=True)
plot_ccf(x1, x2, ax=ax, fft=True)
plot_ccf(x1, x2, ax=ax, title='CCF')
plot_ccf(x1, x2, ax=ax, auto_ylims=True)
plot_ccf(x1, x2, ax=ax, use_vlines=False)
@pytest.mark.matplotlib
def test_plot_accf_grid(close_figures):
# Just test that it runs.
fig = plt.figure()
ar = np.r_[1.0, -0.9]
ma = np.r_[1.0, 0.9]
armaprocess = tsp.ArmaProcess(ar, ma)
rs = np.random.RandomState(1234)
x = np.vstack([
armaprocess.generate_sample(100, distrvs=rs.standard_normal),
armaprocess.generate_sample(100, distrvs=rs.standard_normal),
]).T
plot_accf_grid(x)
plot_accf_grid(pd.DataFrame({'x': x[:, 0], 'y': x[:, 1]}))
plot_accf_grid(x, fig=fig, lags=10)
plot_accf_grid(x, fig=fig)
plot_accf_grid(x, fig=fig, negative_lags=False)
plot_accf_grid(x, fig=fig, alpha=None)
plot_accf_grid(x, fig=fig, adjusted=True)
plot_accf_grid(x, fig=fig, fft=True)
plot_accf_grid(x, fig=fig, auto_ylims=True)
plot_accf_grid(x, fig=fig, use_vlines=False)
@pytest.mark.matplotlib
def test_plot_month(close_figures):
dta = elnino.load_pandas().data
dta["YEAR"] = dta.YEAR.astype(int).apply(str)
dta = dta.set_index("YEAR").T.unstack()
dates = pd.to_datetime(
["-".join([x[1], x[0]]) for x in dta.index.values], format="%b-%Y"
)
# test dates argument
fig = month_plot(dta.values, dates=dates, ylabel="el nino")
# test with a TimeSeries DatetimeIndex with no freq
dta.index = pd.DatetimeIndex(dates)
fig = month_plot(dta)
# w freq
dta.index = pd.DatetimeIndex(dates, freq="MS")
fig = month_plot(dta)
# test with a TimeSeries PeriodIndex
dta.index = pd.PeriodIndex(dates, freq="M")
fig = month_plot(dta)
# test localized xlabels
try:
with calendar.different_locale("DE_de"):
fig = month_plot(dta)
labels = [_.get_text() for _ in fig.axes[0].get_xticklabels()]
expected = [
"Jan",
"Feb",
("Mär", "Mrz"),
"Apr",
"Mai",
"Jun",
"Jul",
"Aug",
"Sep",
"Okt",
"Nov",
"Dez",
]
for lbl, exp in zip(labels, expected):
if isinstance(exp, tuple):
assert lbl in exp
else:
assert lbl == exp
except locale.Error:
pytest.xfail(reason="Failure due to unsupported locale")
@pytest.mark.matplotlib
def test_plot_quarter(close_figures):
dta = macrodata.load_pandas().data
dates = lmap(
"-Q".join,
zip(
dta.year.astype(int).apply(str), dta.quarter.astype(int).apply(str)
),
)
# test dates argument
quarter_plot(dta.unemp.values, dates)
# test with a DatetimeIndex with no freq
dta.set_index(pd.DatetimeIndex(dates, freq="QS-OCT"), inplace=True)
quarter_plot(dta.unemp)
# w freq
# see pandas #6631
dta.index = pd.DatetimeIndex(dates, freq="QS-OCT")
quarter_plot(dta.unemp)
# w PeriodIndex
dta.index = pd.PeriodIndex(dates, freq="Q")
quarter_plot(dta.unemp)
@pytest.mark.matplotlib
def test_seasonal_plot(close_figures):
rs = np.random.RandomState(1234)
data = rs.randn(20, 12)
data += 6 * np.sin(np.arange(12.0) / 11 * np.pi)[None, :]
data = data.ravel()
months = np.tile(np.arange(1, 13), (20, 1))
months = months.ravel()
df = pd.DataFrame([data, months], index=["data", "months"]).T
grouped = df.groupby("months")["data"]
labels = [
"Jan",
"Feb",
"Mar",
"Apr",
"May",
"Jun",
"Jul",
"Aug",
"Sep",
"Oct",
"Nov",
"Dec",
]
fig = seasonal_plot(grouped, labels)
ax = fig.get_axes()[0]
output = [tl.get_text() for tl in ax.get_xticklabels()]
assert_equal(labels, output)
@pytest.mark.matplotlib
@pytest.mark.parametrize(
"model_and_args",
[(AutoReg, dict(lags=2, old_names=False)), (ARIMA, dict(order=(2, 0, 0)))],
)
@pytest.mark.parametrize("use_pandas", [True, False])
@pytest.mark.parametrize("alpha", [None, 0.10])
def test_predict_plot(use_pandas, model_and_args, alpha):
model, kwargs = model_and_args
rs = np.random.RandomState(0)
y = rs.standard_normal(1000)
for i in range(2, 1000):
y[i] += 1.8 * y[i - 1] - 0.9 * y[i - 2]
y = y[100:]
if use_pandas:
index = pd.date_range(
"1960-1-1", freq=MONTH_END, periods=y.shape[0] + 24
)
start = index[index.shape[0] // 2]
end = index[-1]
y = pd.Series(y, index=index[:-24])
else:
start = y.shape[0] // 2
end = y.shape[0] + 24
res = model(y, **kwargs).fit()
fig = plot_predict(res, start, end, alpha=alpha)
assert isinstance(fig, plt.Figure)
@pytest.mark.matplotlib
def test_plot_pacf_small_sample():
idx = [pd.Timestamp.now() + pd.Timedelta(seconds=i) for i in range(10)]
df = pd.DataFrame(
index=idx,
columns=["a"],
data=list(range(10))
)
plot_pacf(df)