AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/scipy/sparse/_matrix_io.py

168 lines
5.8 KiB
Python
Raw Normal View History

2024-10-02 22:15:59 +04:00
import numpy as np
import scipy as sp
__all__ = ['save_npz', 'load_npz']
# Make loading safe vs. malicious input
PICKLE_KWARGS = dict(allow_pickle=False)
def save_npz(file, matrix, compressed=True):
""" Save a sparse matrix or array to a file using ``.npz`` format.
Parameters
----------
file : str or file-like object
Either the file name (string) or an open file (file-like object)
where the data will be saved. If file is a string, the ``.npz``
extension will be appended to the file name if it is not already
there.
matrix: spmatrix or sparray
The sparse matrix or array to save.
Supported formats: ``csc``, ``csr``, ``bsr``, ``dia`` or ``coo``.
compressed : bool, optional
Allow compressing the file. Default: True
See Also
--------
scipy.sparse.load_npz: Load a sparse matrix from a file using ``.npz`` format.
numpy.savez: Save several arrays into a ``.npz`` archive.
numpy.savez_compressed : Save several arrays into a compressed ``.npz`` archive.
Examples
--------
Store sparse matrix to disk, and load it again:
>>> import numpy as np
>>> import scipy as sp
>>> sparse_matrix = sp.sparse.csc_matrix([[0, 0, 3], [4, 0, 0]])
>>> sparse_matrix
<Compressed Sparse Column sparse matrix of dtype 'int64'
with 2 stored elements and shape (2, 3)>
>>> sparse_matrix.toarray()
array([[0, 0, 3],
[4, 0, 0]], dtype=int64)
>>> sp.sparse.save_npz('/tmp/sparse_matrix.npz', sparse_matrix)
>>> sparse_matrix = sp.sparse.load_npz('/tmp/sparse_matrix.npz')
>>> sparse_matrix
<Compressed Sparse Column sparse matrix of dtype 'int64'
with 2 stored elements and shape (2, 3)>
>>> sparse_matrix.toarray()
array([[0, 0, 3],
[4, 0, 0]], dtype=int64)
"""
arrays_dict = {}
if matrix.format in ('csc', 'csr', 'bsr'):
arrays_dict.update(indices=matrix.indices, indptr=matrix.indptr)
elif matrix.format == 'dia':
arrays_dict.update(offsets=matrix.offsets)
elif matrix.format == 'coo':
arrays_dict.update(row=matrix.row, col=matrix.col)
else:
msg = f'Save is not implemented for sparse matrix of format {matrix.format}.'
raise NotImplementedError(msg)
arrays_dict.update(
format=matrix.format.encode('ascii'),
shape=matrix.shape,
data=matrix.data
)
if isinstance(matrix, sp.sparse.sparray):
arrays_dict.update(_is_array=True)
if compressed:
np.savez_compressed(file, **arrays_dict)
else:
np.savez(file, **arrays_dict)
def load_npz(file):
""" Load a sparse array/matrix from a file using ``.npz`` format.
Parameters
----------
file : str or file-like object
Either the file name (string) or an open file (file-like object)
where the data will be loaded.
Returns
-------
result : csc_array, csr_array, bsr_array, dia_array or coo_array
A sparse array/matrix containing the loaded data.
Raises
------
OSError
If the input file does not exist or cannot be read.
See Also
--------
scipy.sparse.save_npz: Save a sparse array/matrix to a file using ``.npz`` format.
numpy.load: Load several arrays from a ``.npz`` archive.
Examples
--------
Store sparse array/matrix to disk, and load it again:
>>> import numpy as np
>>> import scipy as sp
>>> sparse_array = sp.sparse.csc_array([[0, 0, 3], [4, 0, 0]])
>>> sparse_array
<Compressed Sparse Column sparse array of dtype 'int64'
with 2 stored elements and shape (2, 3)>
>>> sparse_array.toarray()
array([[0, 0, 3],
[4, 0, 0]], dtype=int64)
>>> sp.sparse.save_npz('/tmp/sparse_array.npz', sparse_array)
>>> sparse_array = sp.sparse.load_npz('/tmp/sparse_array.npz')
>>> sparse_array
<Compressed Sparse Column sparse array of dtype 'int64'
with 2 stored elements and shape (2, 3)>
>>> sparse_array.toarray()
array([[0, 0, 3],
[4, 0, 0]], dtype=int64)
In this example we force the result to be csr_array from csr_matrix
>>> sparse_matrix = sp.sparse.csc_matrix([[0, 0, 3], [4, 0, 0]])
>>> sp.sparse.save_npz('/tmp/sparse_matrix.npz', sparse_matrix)
>>> tmp = sp.sparse.load_npz('/tmp/sparse_matrix.npz')
>>> sparse_array = sp.sparse.csr_array(tmp)
"""
with np.load(file, **PICKLE_KWARGS) as loaded:
sparse_format = loaded.get('format')
if sparse_format is None:
raise ValueError(f'The file {file} does not contain '
f'a sparse array or matrix.')
sparse_format = sparse_format.item()
if not isinstance(sparse_format, str):
# Play safe with Python 2 vs 3 backward compatibility;
# files saved with SciPy < 1.0.0 may contain unicode or bytes.
sparse_format = sparse_format.decode('ascii')
if loaded.get('_is_array'):
sparse_type = sparse_format + '_array'
else:
sparse_type = sparse_format + '_matrix'
try:
cls = getattr(sp.sparse, f'{sparse_type}')
except AttributeError as e:
raise ValueError(f'Unknown format "{sparse_type}"') from e
if sparse_format in ('csc', 'csr', 'bsr'):
return cls((loaded['data'], loaded['indices'], loaded['indptr']),
shape=loaded['shape'])
elif sparse_format == 'dia':
return cls((loaded['data'], loaded['offsets']),
shape=loaded['shape'])
elif sparse_format == 'coo':
return cls((loaded['data'], (loaded['row'], loaded['col'])),
shape=loaded['shape'])
else:
raise NotImplementedError(f'Load is not implemented for '
f'sparse matrix of format {sparse_format}.')