168 lines
5.8 KiB
Python
168 lines
5.8 KiB
Python
import numpy as np
|
|
import scipy as sp
|
|
|
|
__all__ = ['save_npz', 'load_npz']
|
|
|
|
|
|
# Make loading safe vs. malicious input
|
|
PICKLE_KWARGS = dict(allow_pickle=False)
|
|
|
|
|
|
def save_npz(file, matrix, compressed=True):
|
|
""" Save a sparse matrix or array to a file using ``.npz`` format.
|
|
|
|
Parameters
|
|
----------
|
|
file : str or file-like object
|
|
Either the file name (string) or an open file (file-like object)
|
|
where the data will be saved. If file is a string, the ``.npz``
|
|
extension will be appended to the file name if it is not already
|
|
there.
|
|
matrix: spmatrix or sparray
|
|
The sparse matrix or array to save.
|
|
Supported formats: ``csc``, ``csr``, ``bsr``, ``dia`` or ``coo``.
|
|
compressed : bool, optional
|
|
Allow compressing the file. Default: True
|
|
|
|
See Also
|
|
--------
|
|
scipy.sparse.load_npz: Load a sparse matrix from a file using ``.npz`` format.
|
|
numpy.savez: Save several arrays into a ``.npz`` archive.
|
|
numpy.savez_compressed : Save several arrays into a compressed ``.npz`` archive.
|
|
|
|
Examples
|
|
--------
|
|
Store sparse matrix to disk, and load it again:
|
|
|
|
>>> import numpy as np
|
|
>>> import scipy as sp
|
|
>>> sparse_matrix = sp.sparse.csc_matrix([[0, 0, 3], [4, 0, 0]])
|
|
>>> sparse_matrix
|
|
<Compressed Sparse Column sparse matrix of dtype 'int64'
|
|
with 2 stored elements and shape (2, 3)>
|
|
>>> sparse_matrix.toarray()
|
|
array([[0, 0, 3],
|
|
[4, 0, 0]], dtype=int64)
|
|
|
|
>>> sp.sparse.save_npz('/tmp/sparse_matrix.npz', sparse_matrix)
|
|
>>> sparse_matrix = sp.sparse.load_npz('/tmp/sparse_matrix.npz')
|
|
|
|
>>> sparse_matrix
|
|
<Compressed Sparse Column sparse matrix of dtype 'int64'
|
|
with 2 stored elements and shape (2, 3)>
|
|
>>> sparse_matrix.toarray()
|
|
array([[0, 0, 3],
|
|
[4, 0, 0]], dtype=int64)
|
|
"""
|
|
arrays_dict = {}
|
|
if matrix.format in ('csc', 'csr', 'bsr'):
|
|
arrays_dict.update(indices=matrix.indices, indptr=matrix.indptr)
|
|
elif matrix.format == 'dia':
|
|
arrays_dict.update(offsets=matrix.offsets)
|
|
elif matrix.format == 'coo':
|
|
arrays_dict.update(row=matrix.row, col=matrix.col)
|
|
else:
|
|
msg = f'Save is not implemented for sparse matrix of format {matrix.format}.'
|
|
raise NotImplementedError(msg)
|
|
arrays_dict.update(
|
|
format=matrix.format.encode('ascii'),
|
|
shape=matrix.shape,
|
|
data=matrix.data
|
|
)
|
|
if isinstance(matrix, sp.sparse.sparray):
|
|
arrays_dict.update(_is_array=True)
|
|
if compressed:
|
|
np.savez_compressed(file, **arrays_dict)
|
|
else:
|
|
np.savez(file, **arrays_dict)
|
|
|
|
|
|
def load_npz(file):
|
|
""" Load a sparse array/matrix from a file using ``.npz`` format.
|
|
|
|
Parameters
|
|
----------
|
|
file : str or file-like object
|
|
Either the file name (string) or an open file (file-like object)
|
|
where the data will be loaded.
|
|
|
|
Returns
|
|
-------
|
|
result : csc_array, csr_array, bsr_array, dia_array or coo_array
|
|
A sparse array/matrix containing the loaded data.
|
|
|
|
Raises
|
|
------
|
|
OSError
|
|
If the input file does not exist or cannot be read.
|
|
|
|
See Also
|
|
--------
|
|
scipy.sparse.save_npz: Save a sparse array/matrix to a file using ``.npz`` format.
|
|
numpy.load: Load several arrays from a ``.npz`` archive.
|
|
|
|
Examples
|
|
--------
|
|
Store sparse array/matrix to disk, and load it again:
|
|
|
|
>>> import numpy as np
|
|
>>> import scipy as sp
|
|
>>> sparse_array = sp.sparse.csc_array([[0, 0, 3], [4, 0, 0]])
|
|
>>> sparse_array
|
|
<Compressed Sparse Column sparse array of dtype 'int64'
|
|
with 2 stored elements and shape (2, 3)>
|
|
>>> sparse_array.toarray()
|
|
array([[0, 0, 3],
|
|
[4, 0, 0]], dtype=int64)
|
|
|
|
>>> sp.sparse.save_npz('/tmp/sparse_array.npz', sparse_array)
|
|
>>> sparse_array = sp.sparse.load_npz('/tmp/sparse_array.npz')
|
|
|
|
>>> sparse_array
|
|
<Compressed Sparse Column sparse array of dtype 'int64'
|
|
with 2 stored elements and shape (2, 3)>
|
|
>>> sparse_array.toarray()
|
|
array([[0, 0, 3],
|
|
[4, 0, 0]], dtype=int64)
|
|
|
|
In this example we force the result to be csr_array from csr_matrix
|
|
>>> sparse_matrix = sp.sparse.csc_matrix([[0, 0, 3], [4, 0, 0]])
|
|
>>> sp.sparse.save_npz('/tmp/sparse_matrix.npz', sparse_matrix)
|
|
>>> tmp = sp.sparse.load_npz('/tmp/sparse_matrix.npz')
|
|
>>> sparse_array = sp.sparse.csr_array(tmp)
|
|
"""
|
|
with np.load(file, **PICKLE_KWARGS) as loaded:
|
|
sparse_format = loaded.get('format')
|
|
if sparse_format is None:
|
|
raise ValueError(f'The file {file} does not contain '
|
|
f'a sparse array or matrix.')
|
|
sparse_format = sparse_format.item()
|
|
|
|
if not isinstance(sparse_format, str):
|
|
# Play safe with Python 2 vs 3 backward compatibility;
|
|
# files saved with SciPy < 1.0.0 may contain unicode or bytes.
|
|
sparse_format = sparse_format.decode('ascii')
|
|
|
|
if loaded.get('_is_array'):
|
|
sparse_type = sparse_format + '_array'
|
|
else:
|
|
sparse_type = sparse_format + '_matrix'
|
|
|
|
try:
|
|
cls = getattr(sp.sparse, f'{sparse_type}')
|
|
except AttributeError as e:
|
|
raise ValueError(f'Unknown format "{sparse_type}"') from e
|
|
|
|
if sparse_format in ('csc', 'csr', 'bsr'):
|
|
return cls((loaded['data'], loaded['indices'], loaded['indptr']),
|
|
shape=loaded['shape'])
|
|
elif sparse_format == 'dia':
|
|
return cls((loaded['data'], loaded['offsets']),
|
|
shape=loaded['shape'])
|
|
elif sparse_format == 'coo':
|
|
return cls((loaded['data'], (loaded['row'], loaded['col'])),
|
|
shape=loaded['shape'])
|
|
else:
|
|
raise NotImplementedError(f'Load is not implemented for '
|
|
f'sparse matrix of format {sparse_format}.')
|