AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/matplotlib/lines.py

1680 lines
55 KiB
Python
Raw Permalink Normal View History

2024-10-02 22:15:59 +04:00
"""
2D lines with support for a variety of line styles, markers, colors, etc.
"""
import copy
from numbers import Integral, Number, Real
import logging
import numpy as np
import matplotlib as mpl
from . import _api, cbook, colors as mcolors, _docstring
from .artist import Artist, allow_rasterization
from .cbook import (
_to_unmasked_float_array, ls_mapper, ls_mapper_r, STEP_LOOKUP_MAP)
from .markers import MarkerStyle
from .path import Path
from .transforms import Bbox, BboxTransformTo, TransformedPath
from ._enums import JoinStyle, CapStyle
# Imported here for backward compatibility, even though they don't
# really belong.
from . import _path
from .markers import ( # noqa
CARETLEFT, CARETRIGHT, CARETUP, CARETDOWN,
CARETLEFTBASE, CARETRIGHTBASE, CARETUPBASE, CARETDOWNBASE,
TICKLEFT, TICKRIGHT, TICKUP, TICKDOWN)
_log = logging.getLogger(__name__)
def _get_dash_pattern(style):
"""Convert linestyle to dash pattern."""
# go from short hand -> full strings
if isinstance(style, str):
style = ls_mapper.get(style, style)
# un-dashed styles
if style in ['solid', 'None']:
offset = 0
dashes = None
# dashed styles
elif style in ['dashed', 'dashdot', 'dotted']:
offset = 0
dashes = tuple(mpl.rcParams[f'lines.{style}_pattern'])
#
elif isinstance(style, tuple):
offset, dashes = style
if offset is None:
raise ValueError(f'Unrecognized linestyle: {style!r}')
else:
raise ValueError(f'Unrecognized linestyle: {style!r}')
# normalize offset to be positive and shorter than the dash cycle
if dashes is not None:
dsum = sum(dashes)
if dsum:
offset %= dsum
return offset, dashes
def _get_inverse_dash_pattern(offset, dashes):
"""Return the inverse of the given dash pattern, for filling the gaps."""
# Define the inverse pattern by moving the last gap to the start of the
# sequence.
gaps = dashes[-1:] + dashes[:-1]
# Set the offset so that this new first segment is skipped
# (see backend_bases.GraphicsContextBase.set_dashes for offset definition).
offset_gaps = offset + dashes[-1]
return offset_gaps, gaps
def _scale_dashes(offset, dashes, lw):
if not mpl.rcParams['lines.scale_dashes']:
return offset, dashes
scaled_offset = offset * lw
scaled_dashes = ([x * lw if x is not None else None for x in dashes]
if dashes is not None else None)
return scaled_offset, scaled_dashes
def segment_hits(cx, cy, x, y, radius):
"""
Return the indices of the segments in the polyline with coordinates (*cx*,
*cy*) that are within a distance *radius* of the point (*x*, *y*).
"""
# Process single points specially
if len(x) <= 1:
res, = np.nonzero((cx - x) ** 2 + (cy - y) ** 2 <= radius ** 2)
return res
# We need to lop the last element off a lot.
xr, yr = x[:-1], y[:-1]
# Only look at line segments whose nearest point to C on the line
# lies within the segment.
dx, dy = x[1:] - xr, y[1:] - yr
Lnorm_sq = dx ** 2 + dy ** 2 # Possibly want to eliminate Lnorm==0
u = ((cx - xr) * dx + (cy - yr) * dy) / Lnorm_sq
candidates = (u >= 0) & (u <= 1)
# Note that there is a little area near one side of each point
# which will be near neither segment, and another which will
# be near both, depending on the angle of the lines. The
# following radius test eliminates these ambiguities.
point_hits = (cx - x) ** 2 + (cy - y) ** 2 <= radius ** 2
candidates = candidates & ~(point_hits[:-1] | point_hits[1:])
# For those candidates which remain, determine how far they lie away
# from the line.
px, py = xr + u * dx, yr + u * dy
line_hits = (cx - px) ** 2 + (cy - py) ** 2 <= radius ** 2
line_hits = line_hits & candidates
points, = point_hits.ravel().nonzero()
lines, = line_hits.ravel().nonzero()
return np.concatenate((points, lines))
def _mark_every_path(markevery, tpath, affine, ax):
"""
Helper function that sorts out how to deal the input
`markevery` and returns the points where markers should be drawn.
Takes in the `markevery` value and the line path and returns the
sub-sampled path.
"""
# pull out the two bits of data we want from the path
codes, verts = tpath.codes, tpath.vertices
def _slice_or_none(in_v, slc):
"""Helper function to cope with `codes` being an ndarray or `None`."""
if in_v is None:
return None
return in_v[slc]
# if just an int, assume starting at 0 and make a tuple
if isinstance(markevery, Integral):
markevery = (0, markevery)
# if just a float, assume starting at 0.0 and make a tuple
elif isinstance(markevery, Real):
markevery = (0.0, markevery)
if isinstance(markevery, tuple):
if len(markevery) != 2:
raise ValueError('`markevery` is a tuple but its len is not 2; '
f'markevery={markevery}')
start, step = markevery
# if step is an int, old behavior
if isinstance(step, Integral):
# tuple of 2 int is for backwards compatibility,
if not isinstance(start, Integral):
raise ValueError(
'`markevery` is a tuple with len 2 and second element is '
'an int, but the first element is not an int; '
f'markevery={markevery}')
# just return, we are done here
return Path(verts[slice(start, None, step)],
_slice_or_none(codes, slice(start, None, step)))
elif isinstance(step, Real):
if not isinstance(start, Real):
raise ValueError(
'`markevery` is a tuple with len 2 and second element is '
'a float, but the first element is not a float or an int; '
f'markevery={markevery}')
if ax is None:
raise ValueError(
"markevery is specified relative to the Axes size, but "
"the line does not have a Axes as parent")
# calc cumulative distance along path (in display coords):
fin = np.isfinite(verts).all(axis=1)
fverts = verts[fin]
disp_coords = affine.transform(fverts)
delta = np.empty((len(disp_coords), 2))
delta[0, :] = 0
delta[1:, :] = disp_coords[1:, :] - disp_coords[:-1, :]
delta = np.hypot(*delta.T).cumsum()
# calc distance between markers along path based on the Axes
# bounding box diagonal being a distance of unity:
(x0, y0), (x1, y1) = ax.transAxes.transform([[0, 0], [1, 1]])
scale = np.hypot(x1 - x0, y1 - y0)
marker_delta = np.arange(start * scale, delta[-1], step * scale)
# find closest actual data point that is closest to
# the theoretical distance along the path:
inds = np.abs(delta[np.newaxis, :] - marker_delta[:, np.newaxis])
inds = inds.argmin(axis=1)
inds = np.unique(inds)
# return, we are done here
return Path(fverts[inds], _slice_or_none(codes, inds))
else:
raise ValueError(
f"markevery={markevery!r} is a tuple with len 2, but its "
f"second element is not an int or a float")
elif isinstance(markevery, slice):
# mazol tov, it's already a slice, just return
return Path(verts[markevery], _slice_or_none(codes, markevery))
elif np.iterable(markevery):
# fancy indexing
try:
return Path(verts[markevery], _slice_or_none(codes, markevery))
except (ValueError, IndexError) as err:
raise ValueError(
f"markevery={markevery!r} is iterable but not a valid numpy "
f"fancy index") from err
else:
raise ValueError(f"markevery={markevery!r} is not a recognized value")
@_docstring.interpd
@_api.define_aliases({
"antialiased": ["aa"],
"color": ["c"],
"drawstyle": ["ds"],
"linestyle": ["ls"],
"linewidth": ["lw"],
"markeredgecolor": ["mec"],
"markeredgewidth": ["mew"],
"markerfacecolor": ["mfc"],
"markerfacecoloralt": ["mfcalt"],
"markersize": ["ms"],
})
class Line2D(Artist):
"""
A line - the line can have both a solid linestyle connecting all
the vertices, and a marker at each vertex. Additionally, the
drawing of the solid line is influenced by the drawstyle, e.g., one
can create "stepped" lines in various styles.
"""
lineStyles = _lineStyles = { # hidden names deprecated
'-': '_draw_solid',
'--': '_draw_dashed',
'-.': '_draw_dash_dot',
':': '_draw_dotted',
'None': '_draw_nothing',
' ': '_draw_nothing',
'': '_draw_nothing',
}
_drawStyles_l = {
'default': '_draw_lines',
'steps-mid': '_draw_steps_mid',
'steps-pre': '_draw_steps_pre',
'steps-post': '_draw_steps_post',
}
_drawStyles_s = {
'steps': '_draw_steps_pre',
}
# drawStyles should now be deprecated.
drawStyles = {**_drawStyles_l, **_drawStyles_s}
# Need a list ordered with long names first:
drawStyleKeys = [*_drawStyles_l, *_drawStyles_s]
# Referenced here to maintain API. These are defined in
# MarkerStyle
markers = MarkerStyle.markers
filled_markers = MarkerStyle.filled_markers
fillStyles = MarkerStyle.fillstyles
zorder = 2
_subslice_optim_min_size = 1000
def __str__(self):
if self._label != "":
return f"Line2D({self._label})"
elif self._x is None:
return "Line2D()"
elif len(self._x) > 3:
return "Line2D(({:g},{:g}),({:g},{:g}),...,({:g},{:g}))".format(
self._x[0], self._y[0],
self._x[1], self._y[1],
self._x[-1], self._y[-1])
else:
return "Line2D(%s)" % ",".join(
map("({:g},{:g})".format, self._x, self._y))
def __init__(self, xdata, ydata, *,
linewidth=None, # all Nones default to rc
linestyle=None,
color=None,
gapcolor=None,
marker=None,
markersize=None,
markeredgewidth=None,
markeredgecolor=None,
markerfacecolor=None,
markerfacecoloralt='none',
fillstyle=None,
antialiased=None,
dash_capstyle=None,
solid_capstyle=None,
dash_joinstyle=None,
solid_joinstyle=None,
pickradius=5,
drawstyle=None,
markevery=None,
**kwargs
):
"""
Create a `.Line2D` instance with *x* and *y* data in sequences of
*xdata*, *ydata*.
Additional keyword arguments are `.Line2D` properties:
%(Line2D:kwdoc)s
See :meth:`set_linestyle` for a description of the line styles,
:meth:`set_marker` for a description of the markers, and
:meth:`set_drawstyle` for a description of the draw styles.
"""
super().__init__()
# Convert sequences to NumPy arrays.
if not np.iterable(xdata):
raise RuntimeError('xdata must be a sequence')
if not np.iterable(ydata):
raise RuntimeError('ydata must be a sequence')
if linewidth is None:
linewidth = mpl.rcParams['lines.linewidth']
if linestyle is None:
linestyle = mpl.rcParams['lines.linestyle']
if marker is None:
marker = mpl.rcParams['lines.marker']
if color is None:
color = mpl.rcParams['lines.color']
if markersize is None:
markersize = mpl.rcParams['lines.markersize']
if antialiased is None:
antialiased = mpl.rcParams['lines.antialiased']
if dash_capstyle is None:
dash_capstyle = mpl.rcParams['lines.dash_capstyle']
if dash_joinstyle is None:
dash_joinstyle = mpl.rcParams['lines.dash_joinstyle']
if solid_capstyle is None:
solid_capstyle = mpl.rcParams['lines.solid_capstyle']
if solid_joinstyle is None:
solid_joinstyle = mpl.rcParams['lines.solid_joinstyle']
if drawstyle is None:
drawstyle = 'default'
self._dashcapstyle = None
self._dashjoinstyle = None
self._solidjoinstyle = None
self._solidcapstyle = None
self.set_dash_capstyle(dash_capstyle)
self.set_dash_joinstyle(dash_joinstyle)
self.set_solid_capstyle(solid_capstyle)
self.set_solid_joinstyle(solid_joinstyle)
self._linestyles = None
self._drawstyle = None
self._linewidth = linewidth
self._unscaled_dash_pattern = (0, None) # offset, dash
self._dash_pattern = (0, None) # offset, dash (scaled by linewidth)
self.set_linewidth(linewidth)
self.set_linestyle(linestyle)
self.set_drawstyle(drawstyle)
self._color = None
self.set_color(color)
if marker is None:
marker = 'none' # Default.
if not isinstance(marker, MarkerStyle):
self._marker = MarkerStyle(marker, fillstyle)
else:
self._marker = marker
self._gapcolor = None
self.set_gapcolor(gapcolor)
self._markevery = None
self._markersize = None
self._antialiased = None
self.set_markevery(markevery)
self.set_antialiased(antialiased)
self.set_markersize(markersize)
self._markeredgecolor = None
self._markeredgewidth = None
self._markerfacecolor = None
self._markerfacecoloralt = None
self.set_markerfacecolor(markerfacecolor) # Normalizes None to rc.
self.set_markerfacecoloralt(markerfacecoloralt)
self.set_markeredgecolor(markeredgecolor) # Normalizes None to rc.
self.set_markeredgewidth(markeredgewidth)
# update kwargs before updating data to give the caller a
# chance to init axes (and hence unit support)
self._internal_update(kwargs)
self.pickradius = pickradius
self.ind_offset = 0
if (isinstance(self._picker, Number) and
not isinstance(self._picker, bool)):
self._pickradius = self._picker
self._xorig = np.asarray([])
self._yorig = np.asarray([])
self._invalidx = True
self._invalidy = True
self._x = None
self._y = None
self._xy = None
self._path = None
self._transformed_path = None
self._subslice = False
self._x_filled = None # used in subslicing; only x is needed
self.set_data(xdata, ydata)
def contains(self, mouseevent):
"""
Test whether *mouseevent* occurred on the line.
An event is deemed to have occurred "on" the line if it is less
than ``self.pickradius`` (default: 5 points) away from it. Use
`~.Line2D.get_pickradius` or `~.Line2D.set_pickradius` to get or set
the pick radius.
Parameters
----------
mouseevent : `~matplotlib.backend_bases.MouseEvent`
Returns
-------
contains : bool
Whether any values are within the radius.
details : dict
A dictionary ``{'ind': pointlist}``, where *pointlist* is a
list of points of the line that are within the pickradius around
the event position.
TODO: sort returned indices by distance
"""
if self._different_canvas(mouseevent):
return False, {}
# Make sure we have data to plot
if self._invalidy or self._invalidx:
self.recache()
if len(self._xy) == 0:
return False, {}
# Convert points to pixels
transformed_path = self._get_transformed_path()
path, affine = transformed_path.get_transformed_path_and_affine()
path = affine.transform_path(path)
xy = path.vertices
xt = xy[:, 0]
yt = xy[:, 1]
# Convert pick radius from points to pixels
if self.figure is None:
_log.warning('no figure set when check if mouse is on line')
pixels = self._pickradius
else:
pixels = self.figure.dpi / 72. * self._pickradius
# The math involved in checking for containment (here and inside of
# segment_hits) assumes that it is OK to overflow, so temporarily set
# the error flags accordingly.
with np.errstate(all='ignore'):
# Check for collision
if self._linestyle in ['None', None]:
# If no line, return the nearby point(s)
ind, = np.nonzero(
(xt - mouseevent.x) ** 2 + (yt - mouseevent.y) ** 2
<= pixels ** 2)
else:
# If line, return the nearby segment(s)
ind = segment_hits(mouseevent.x, mouseevent.y, xt, yt, pixels)
if self._drawstyle.startswith("steps"):
ind //= 2
ind += self.ind_offset
# Return the point(s) within radius
return len(ind) > 0, dict(ind=ind)
def get_pickradius(self):
"""
Return the pick radius used for containment tests.
See `.contains` for more details.
"""
return self._pickradius
def set_pickradius(self, pickradius):
"""
Set the pick radius used for containment tests.
See `.contains` for more details.
Parameters
----------
pickradius : float
Pick radius, in points.
"""
if not isinstance(pickradius, Real) or pickradius < 0:
raise ValueError("pick radius should be a distance")
self._pickradius = pickradius
pickradius = property(get_pickradius, set_pickradius)
def get_fillstyle(self):
"""
Return the marker fill style.
See also `~.Line2D.set_fillstyle`.
"""
return self._marker.get_fillstyle()
def set_fillstyle(self, fs):
"""
Set the marker fill style.
Parameters
----------
fs : {'full', 'left', 'right', 'bottom', 'top', 'none'}
Possible values:
- 'full': Fill the whole marker with the *markerfacecolor*.
- 'left', 'right', 'bottom', 'top': Fill the marker half at
the given side with the *markerfacecolor*. The other
half of the marker is filled with *markerfacecoloralt*.
- 'none': No filling.
For examples see :ref:`marker_fill_styles`.
"""
self.set_marker(MarkerStyle(self._marker.get_marker(), fs))
self.stale = True
def set_markevery(self, every):
"""
Set the markevery property to subsample the plot when using markers.
e.g., if ``every=5``, every 5-th marker will be plotted.
Parameters
----------
every : None or int or (int, int) or slice or list[int] or float or \
(float, float) or list[bool]
Which markers to plot.
- ``every=None``: every point will be plotted.
- ``every=N``: every N-th marker will be plotted starting with
marker 0.
- ``every=(start, N)``: every N-th marker, starting at index
*start*, will be plotted.
- ``every=slice(start, end, N)``: every N-th marker, starting at
index *start*, up to but not including index *end*, will be
plotted.
- ``every=[i, j, m, ...]``: only markers at the given indices
will be plotted.
- ``every=[True, False, True, ...]``: only positions that are True
will be plotted. The list must have the same length as the data
points.
- ``every=0.1``, (i.e. a float): markers will be spaced at
approximately equal visual distances along the line; the distance
along the line between markers is determined by multiplying the
display-coordinate distance of the Axes bounding-box diagonal
by the value of *every*.
- ``every=(0.5, 0.1)`` (i.e. a length-2 tuple of float): similar
to ``every=0.1`` but the first marker will be offset along the
line by 0.5 multiplied by the
display-coordinate-diagonal-distance along the line.
For examples see
:doc:`/gallery/lines_bars_and_markers/markevery_demo`.
Notes
-----
Setting *markevery* will still only draw markers at actual data points.
While the float argument form aims for uniform visual spacing, it has
to coerce from the ideal spacing to the nearest available data point.
Depending on the number and distribution of data points, the result
may still not look evenly spaced.
When using a start offset to specify the first marker, the offset will
be from the first data point which may be different from the first
the visible data point if the plot is zoomed in.
If zooming in on a plot when using float arguments then the actual
data points that have markers will change because the distance between
markers is always determined from the display-coordinates
axes-bounding-box-diagonal regardless of the actual axes data limits.
"""
self._markevery = every
self.stale = True
def get_markevery(self):
"""
Return the markevery setting for marker subsampling.
See also `~.Line2D.set_markevery`.
"""
return self._markevery
def set_picker(self, p):
"""
Set the event picker details for the line.
Parameters
----------
p : float or callable[[Artist, Event], tuple[bool, dict]]
If a float, it is used as the pick radius in points.
"""
if not callable(p):
self.set_pickradius(p)
self._picker = p
def get_bbox(self):
"""Get the bounding box of this line."""
bbox = Bbox([[0, 0], [0, 0]])
bbox.update_from_data_xy(self.get_xydata())
return bbox
def get_window_extent(self, renderer=None):
bbox = Bbox([[0, 0], [0, 0]])
trans_data_to_xy = self.get_transform().transform
bbox.update_from_data_xy(trans_data_to_xy(self.get_xydata()),
ignore=True)
# correct for marker size, if any
if self._marker:
ms = (self._markersize / 72.0 * self.figure.dpi) * 0.5
bbox = bbox.padded(ms)
return bbox
def set_data(self, *args):
"""
Set the x and y data.
Parameters
----------
*args : (2, N) array or two 1D arrays
See Also
--------
set_xdata
set_ydata
"""
if len(args) == 1:
(x, y), = args
else:
x, y = args
self.set_xdata(x)
self.set_ydata(y)
def recache_always(self):
self.recache(always=True)
def recache(self, always=False):
if always or self._invalidx:
xconv = self.convert_xunits(self._xorig)
x = _to_unmasked_float_array(xconv).ravel()
else:
x = self._x
if always or self._invalidy:
yconv = self.convert_yunits(self._yorig)
y = _to_unmasked_float_array(yconv).ravel()
else:
y = self._y
self._xy = np.column_stack(np.broadcast_arrays(x, y)).astype(float)
self._x, self._y = self._xy.T # views
self._subslice = False
if (self.axes
and len(x) > self._subslice_optim_min_size
and _path.is_sorted_and_has_non_nan(x)
and self.axes.name == 'rectilinear'
and self.axes.get_xscale() == 'linear'
and self._markevery is None
and self.get_clip_on()
and self.get_transform() == self.axes.transData):
self._subslice = True
nanmask = np.isnan(x)
if nanmask.any():
self._x_filled = self._x.copy()
indices = np.arange(len(x))
self._x_filled[nanmask] = np.interp(
indices[nanmask], indices[~nanmask], self._x[~nanmask])
else:
self._x_filled = self._x
if self._path is not None:
interpolation_steps = self._path._interpolation_steps
else:
interpolation_steps = 1
xy = STEP_LOOKUP_MAP[self._drawstyle](*self._xy.T)
self._path = Path(np.asarray(xy).T,
_interpolation_steps=interpolation_steps)
self._transformed_path = None
self._invalidx = False
self._invalidy = False
def _transform_path(self, subslice=None):
"""
Put a TransformedPath instance at self._transformed_path;
all invalidation of the transform is then handled by the
TransformedPath instance.
"""
# Masked arrays are now handled by the Path class itself
if subslice is not None:
xy = STEP_LOOKUP_MAP[self._drawstyle](*self._xy[subslice, :].T)
_path = Path(np.asarray(xy).T,
_interpolation_steps=self._path._interpolation_steps)
else:
_path = self._path
self._transformed_path = TransformedPath(_path, self.get_transform())
def _get_transformed_path(self):
"""Return this line's `~matplotlib.transforms.TransformedPath`."""
if self._transformed_path is None:
self._transform_path()
return self._transformed_path
def set_transform(self, t):
# docstring inherited
self._invalidx = True
self._invalidy = True
super().set_transform(t)
@allow_rasterization
def draw(self, renderer):
# docstring inherited
if not self.get_visible():
return
if self._invalidy or self._invalidx:
self.recache()
self.ind_offset = 0 # Needed for contains() method.
if self._subslice and self.axes:
x0, x1 = self.axes.get_xbound()
i0 = self._x_filled.searchsorted(x0, 'left')
i1 = self._x_filled.searchsorted(x1, 'right')
subslice = slice(max(i0 - 1, 0), i1 + 1)
self.ind_offset = subslice.start
self._transform_path(subslice)
else:
subslice = None
if self.get_path_effects():
from matplotlib.patheffects import PathEffectRenderer
renderer = PathEffectRenderer(self.get_path_effects(), renderer)
renderer.open_group('line2d', self.get_gid())
if self._lineStyles[self._linestyle] != '_draw_nothing':
tpath, affine = (self._get_transformed_path()
.get_transformed_path_and_affine())
if len(tpath.vertices):
gc = renderer.new_gc()
self._set_gc_clip(gc)
gc.set_url(self.get_url())
gc.set_antialiased(self._antialiased)
gc.set_linewidth(self._linewidth)
if self.is_dashed():
cap = self._dashcapstyle
join = self._dashjoinstyle
else:
cap = self._solidcapstyle
join = self._solidjoinstyle
gc.set_joinstyle(join)
gc.set_capstyle(cap)
gc.set_snap(self.get_snap())
if self.get_sketch_params() is not None:
gc.set_sketch_params(*self.get_sketch_params())
# We first draw a path within the gaps if needed.
if self.is_dashed() and self._gapcolor is not None:
lc_rgba = mcolors.to_rgba(self._gapcolor, self._alpha)
gc.set_foreground(lc_rgba, isRGBA=True)
offset_gaps, gaps = _get_inverse_dash_pattern(
*self._dash_pattern)
gc.set_dashes(offset_gaps, gaps)
renderer.draw_path(gc, tpath, affine.frozen())
lc_rgba = mcolors.to_rgba(self._color, self._alpha)
gc.set_foreground(lc_rgba, isRGBA=True)
gc.set_dashes(*self._dash_pattern)
renderer.draw_path(gc, tpath, affine.frozen())
gc.restore()
if self._marker and self._markersize > 0:
gc = renderer.new_gc()
self._set_gc_clip(gc)
gc.set_url(self.get_url())
gc.set_linewidth(self._markeredgewidth)
gc.set_antialiased(self._antialiased)
ec_rgba = mcolors.to_rgba(
self.get_markeredgecolor(), self._alpha)
fc_rgba = mcolors.to_rgba(
self._get_markerfacecolor(), self._alpha)
fcalt_rgba = mcolors.to_rgba(
self._get_markerfacecolor(alt=True), self._alpha)
# If the edgecolor is "auto", it is set according to the *line*
# color but inherits the alpha value of the *face* color, if any.
if (cbook._str_equal(self._markeredgecolor, "auto")
and not cbook._str_lower_equal(
self.get_markerfacecolor(), "none")):
ec_rgba = ec_rgba[:3] + (fc_rgba[3],)
gc.set_foreground(ec_rgba, isRGBA=True)
if self.get_sketch_params() is not None:
scale, length, randomness = self.get_sketch_params()
gc.set_sketch_params(scale/2, length/2, 2*randomness)
marker = self._marker
# Markers *must* be drawn ignoring the drawstyle (but don't pay the
# recaching if drawstyle is already "default").
if self.get_drawstyle() != "default":
with cbook._setattr_cm(
self, _drawstyle="default", _transformed_path=None):
self.recache()
self._transform_path(subslice)
tpath, affine = (self._get_transformed_path()
.get_transformed_points_and_affine())
else:
tpath, affine = (self._get_transformed_path()
.get_transformed_points_and_affine())
if len(tpath.vertices):
# subsample the markers if markevery is not None
markevery = self.get_markevery()
if markevery is not None:
subsampled = _mark_every_path(
markevery, tpath, affine, self.axes)
else:
subsampled = tpath
snap = marker.get_snap_threshold()
if isinstance(snap, Real):
snap = renderer.points_to_pixels(self._markersize) >= snap
gc.set_snap(snap)
gc.set_joinstyle(marker.get_joinstyle())
gc.set_capstyle(marker.get_capstyle())
marker_path = marker.get_path()
marker_trans = marker.get_transform()
w = renderer.points_to_pixels(self._markersize)
if cbook._str_equal(marker.get_marker(), ","):
gc.set_linewidth(0)
else:
# Don't scale for pixels, and don't stroke them
marker_trans = marker_trans.scale(w)
renderer.draw_markers(gc, marker_path, marker_trans,
subsampled, affine.frozen(),
fc_rgba)
alt_marker_path = marker.get_alt_path()
if alt_marker_path:
alt_marker_trans = marker.get_alt_transform()
alt_marker_trans = alt_marker_trans.scale(w)
renderer.draw_markers(
gc, alt_marker_path, alt_marker_trans, subsampled,
affine.frozen(), fcalt_rgba)
gc.restore()
renderer.close_group('line2d')
self.stale = False
def get_antialiased(self):
"""Return whether antialiased rendering is used."""
return self._antialiased
def get_color(self):
"""
Return the line color.
See also `~.Line2D.set_color`.
"""
return self._color
def get_drawstyle(self):
"""
Return the drawstyle.
See also `~.Line2D.set_drawstyle`.
"""
return self._drawstyle
def get_gapcolor(self):
"""
Return the line gapcolor.
See also `~.Line2D.set_gapcolor`.
"""
return self._gapcolor
def get_linestyle(self):
"""
Return the linestyle.
See also `~.Line2D.set_linestyle`.
"""
return self._linestyle
def get_linewidth(self):
"""
Return the linewidth in points.
See also `~.Line2D.set_linewidth`.
"""
return self._linewidth
def get_marker(self):
"""
Return the line marker.
See also `~.Line2D.set_marker`.
"""
return self._marker.get_marker()
def get_markeredgecolor(self):
"""
Return the marker edge color.
See also `~.Line2D.set_markeredgecolor`.
"""
mec = self._markeredgecolor
if cbook._str_equal(mec, 'auto'):
if mpl.rcParams['_internal.classic_mode']:
if self._marker.get_marker() in ('.', ','):
return self._color
if (self._marker.is_filled()
and self._marker.get_fillstyle() != 'none'):
return 'k' # Bad hard-wired default...
return self._color
else:
return mec
def get_markeredgewidth(self):
"""
Return the marker edge width in points.
See also `~.Line2D.set_markeredgewidth`.
"""
return self._markeredgewidth
def _get_markerfacecolor(self, alt=False):
if self._marker.get_fillstyle() == 'none':
return 'none'
fc = self._markerfacecoloralt if alt else self._markerfacecolor
if cbook._str_lower_equal(fc, 'auto'):
return self._color
else:
return fc
def get_markerfacecolor(self):
"""
Return the marker face color.
See also `~.Line2D.set_markerfacecolor`.
"""
return self._get_markerfacecolor(alt=False)
def get_markerfacecoloralt(self):
"""
Return the alternate marker face color.
See also `~.Line2D.set_markerfacecoloralt`.
"""
return self._get_markerfacecolor(alt=True)
def get_markersize(self):
"""
Return the marker size in points.
See also `~.Line2D.set_markersize`.
"""
return self._markersize
def get_data(self, orig=True):
"""
Return the line data as an ``(xdata, ydata)`` pair.
If *orig* is *True*, return the original data.
"""
return self.get_xdata(orig=orig), self.get_ydata(orig=orig)
def get_xdata(self, orig=True):
"""
Return the xdata.
If *orig* is *True*, return the original data, else the
processed data.
"""
if orig:
return self._xorig
if self._invalidx:
self.recache()
return self._x
def get_ydata(self, orig=True):
"""
Return the ydata.
If *orig* is *True*, return the original data, else the
processed data.
"""
if orig:
return self._yorig
if self._invalidy:
self.recache()
return self._y
def get_path(self):
"""Return the `~matplotlib.path.Path` associated with this line."""
if self._invalidy or self._invalidx:
self.recache()
return self._path
def get_xydata(self):
"""Return the *xy* data as a (N, 2) array."""
if self._invalidy or self._invalidx:
self.recache()
return self._xy
def set_antialiased(self, b):
"""
Set whether to use antialiased rendering.
Parameters
----------
b : bool
"""
if self._antialiased != b:
self.stale = True
self._antialiased = b
def set_color(self, color):
"""
Set the color of the line.
Parameters
----------
color : :mpltype:`color`
"""
mcolors._check_color_like(color=color)
self._color = color
self.stale = True
def set_drawstyle(self, drawstyle):
"""
Set the drawstyle of the plot.
The drawstyle determines how the points are connected.
Parameters
----------
drawstyle : {'default', 'steps', 'steps-pre', 'steps-mid', \
'steps-post'}, default: 'default'
For 'default', the points are connected with straight lines.
The steps variants connect the points with step-like lines,
i.e. horizontal lines with vertical steps. They differ in the
location of the step:
- 'steps-pre': The step is at the beginning of the line segment,
i.e. the line will be at the y-value of point to the right.
- 'steps-mid': The step is halfway between the points.
- 'steps-post: The step is at the end of the line segment,
i.e. the line will be at the y-value of the point to the left.
- 'steps' is equal to 'steps-pre' and is maintained for
backward-compatibility.
For examples see :doc:`/gallery/lines_bars_and_markers/step_demo`.
"""
if drawstyle is None:
drawstyle = 'default'
_api.check_in_list(self.drawStyles, drawstyle=drawstyle)
if self._drawstyle != drawstyle:
self.stale = True
# invalidate to trigger a recache of the path
self._invalidx = True
self._drawstyle = drawstyle
def set_gapcolor(self, gapcolor):
"""
Set a color to fill the gaps in the dashed line style.
.. note::
Striped lines are created by drawing two interleaved dashed lines.
There can be overlaps between those two, which may result in
artifacts when using transparency.
This functionality is experimental and may change.
Parameters
----------
gapcolor : :mpltype:`color` or None
The color with which to fill the gaps. If None, the gaps are
unfilled.
"""
if gapcolor is not None:
mcolors._check_color_like(color=gapcolor)
self._gapcolor = gapcolor
self.stale = True
def set_linewidth(self, w):
"""
Set the line width in points.
Parameters
----------
w : float
Line width, in points.
"""
w = float(w)
if self._linewidth != w:
self.stale = True
self._linewidth = w
self._dash_pattern = _scale_dashes(*self._unscaled_dash_pattern, w)
def set_linestyle(self, ls):
"""
Set the linestyle of the line.
Parameters
----------
ls : {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
Possible values:
- A string:
========================================== =================
linestyle description
========================================== =================
``'-'`` or ``'solid'`` solid line
``'--'`` or ``'dashed'`` dashed line
``'-.'`` or ``'dashdot'`` dash-dotted line
``':'`` or ``'dotted'`` dotted line
``'none'``, ``'None'``, ``' '``, or ``''`` draw nothing
========================================== =================
- Alternatively a dash tuple of the following form can be
provided::
(offset, onoffseq)
where ``onoffseq`` is an even length tuple of on and off ink
in points. See also :meth:`set_dashes`.
For examples see :doc:`/gallery/lines_bars_and_markers/linestyles`.
"""
if isinstance(ls, str):
if ls in [' ', '', 'none']:
ls = 'None'
_api.check_in_list([*self._lineStyles, *ls_mapper_r], ls=ls)
if ls not in self._lineStyles:
ls = ls_mapper_r[ls]
self._linestyle = ls
else:
self._linestyle = '--'
self._unscaled_dash_pattern = _get_dash_pattern(ls)
self._dash_pattern = _scale_dashes(
*self._unscaled_dash_pattern, self._linewidth)
self.stale = True
@_docstring.interpd
def set_marker(self, marker):
"""
Set the line marker.
Parameters
----------
marker : marker style string, `~.path.Path` or `~.markers.MarkerStyle`
See `~matplotlib.markers` for full description of possible
arguments.
"""
self._marker = MarkerStyle(marker, self._marker.get_fillstyle())
self.stale = True
def _set_markercolor(self, name, has_rcdefault, val):
if val is None:
val = mpl.rcParams[f"lines.{name}"] if has_rcdefault else "auto"
attr = f"_{name}"
current = getattr(self, attr)
if current is None:
self.stale = True
else:
neq = current != val
# Much faster than `np.any(current != val)` if no arrays are used.
if neq.any() if isinstance(neq, np.ndarray) else neq:
self.stale = True
setattr(self, attr, val)
def set_markeredgecolor(self, ec):
"""
Set the marker edge color.
Parameters
----------
ec : :mpltype:`color`
"""
self._set_markercolor("markeredgecolor", True, ec)
def set_markerfacecolor(self, fc):
"""
Set the marker face color.
Parameters
----------
fc : :mpltype:`color`
"""
self._set_markercolor("markerfacecolor", True, fc)
def set_markerfacecoloralt(self, fc):
"""
Set the alternate marker face color.
Parameters
----------
fc : :mpltype:`color`
"""
self._set_markercolor("markerfacecoloralt", False, fc)
def set_markeredgewidth(self, ew):
"""
Set the marker edge width in points.
Parameters
----------
ew : float
Marker edge width, in points.
"""
if ew is None:
ew = mpl.rcParams['lines.markeredgewidth']
if self._markeredgewidth != ew:
self.stale = True
self._markeredgewidth = ew
def set_markersize(self, sz):
"""
Set the marker size in points.
Parameters
----------
sz : float
Marker size, in points.
"""
sz = float(sz)
if self._markersize != sz:
self.stale = True
self._markersize = sz
def set_xdata(self, x):
"""
Set the data array for x.
Parameters
----------
x : 1D array
See Also
--------
set_data
set_ydata
"""
if not np.iterable(x):
raise RuntimeError('x must be a sequence')
self._xorig = copy.copy(x)
self._invalidx = True
self.stale = True
def set_ydata(self, y):
"""
Set the data array for y.
Parameters
----------
y : 1D array
See Also
--------
set_data
set_xdata
"""
if not np.iterable(y):
raise RuntimeError('y must be a sequence')
self._yorig = copy.copy(y)
self._invalidy = True
self.stale = True
def set_dashes(self, seq):
"""
Set the dash sequence.
The dash sequence is a sequence of floats of even length describing
the length of dashes and spaces in points.
For example, (5, 2, 1, 2) describes a sequence of 5 point and 1 point
dashes separated by 2 point spaces.
See also `~.Line2D.set_gapcolor`, which allows those spaces to be
filled with a color.
Parameters
----------
seq : sequence of floats (on/off ink in points) or (None, None)
If *seq* is empty or ``(None, None)``, the linestyle will be set
to solid.
"""
if seq == (None, None) or len(seq) == 0:
self.set_linestyle('-')
else:
self.set_linestyle((0, seq))
def update_from(self, other):
"""Copy properties from *other* to self."""
super().update_from(other)
self._linestyle = other._linestyle
self._linewidth = other._linewidth
self._color = other._color
self._gapcolor = other._gapcolor
self._markersize = other._markersize
self._markerfacecolor = other._markerfacecolor
self._markerfacecoloralt = other._markerfacecoloralt
self._markeredgecolor = other._markeredgecolor
self._markeredgewidth = other._markeredgewidth
self._unscaled_dash_pattern = other._unscaled_dash_pattern
self._dash_pattern = other._dash_pattern
self._dashcapstyle = other._dashcapstyle
self._dashjoinstyle = other._dashjoinstyle
self._solidcapstyle = other._solidcapstyle
self._solidjoinstyle = other._solidjoinstyle
self._linestyle = other._linestyle
self._marker = MarkerStyle(marker=other._marker)
self._drawstyle = other._drawstyle
@_docstring.interpd
def set_dash_joinstyle(self, s):
"""
How to join segments of the line if it `~Line2D.is_dashed`.
The default joinstyle is :rc:`lines.dash_joinstyle`.
Parameters
----------
s : `.JoinStyle` or %(JoinStyle)s
"""
js = JoinStyle(s)
if self._dashjoinstyle != js:
self.stale = True
self._dashjoinstyle = js
@_docstring.interpd
def set_solid_joinstyle(self, s):
"""
How to join segments if the line is solid (not `~Line2D.is_dashed`).
The default joinstyle is :rc:`lines.solid_joinstyle`.
Parameters
----------
s : `.JoinStyle` or %(JoinStyle)s
"""
js = JoinStyle(s)
if self._solidjoinstyle != js:
self.stale = True
self._solidjoinstyle = js
def get_dash_joinstyle(self):
"""
Return the `.JoinStyle` for dashed lines.
See also `~.Line2D.set_dash_joinstyle`.
"""
return self._dashjoinstyle.name
def get_solid_joinstyle(self):
"""
Return the `.JoinStyle` for solid lines.
See also `~.Line2D.set_solid_joinstyle`.
"""
return self._solidjoinstyle.name
@_docstring.interpd
def set_dash_capstyle(self, s):
"""
How to draw the end caps if the line is `~Line2D.is_dashed`.
The default capstyle is :rc:`lines.dash_capstyle`.
Parameters
----------
s : `.CapStyle` or %(CapStyle)s
"""
cs = CapStyle(s)
if self._dashcapstyle != cs:
self.stale = True
self._dashcapstyle = cs
@_docstring.interpd
def set_solid_capstyle(self, s):
"""
How to draw the end caps if the line is solid (not `~Line2D.is_dashed`)
The default capstyle is :rc:`lines.solid_capstyle`.
Parameters
----------
s : `.CapStyle` or %(CapStyle)s
"""
cs = CapStyle(s)
if self._solidcapstyle != cs:
self.stale = True
self._solidcapstyle = cs
def get_dash_capstyle(self):
"""
Return the `.CapStyle` for dashed lines.
See also `~.Line2D.set_dash_capstyle`.
"""
return self._dashcapstyle.name
def get_solid_capstyle(self):
"""
Return the `.CapStyle` for solid lines.
See also `~.Line2D.set_solid_capstyle`.
"""
return self._solidcapstyle.name
def is_dashed(self):
"""
Return whether line has a dashed linestyle.
A custom linestyle is assumed to be dashed, we do not inspect the
``onoffseq`` directly.
See also `~.Line2D.set_linestyle`.
"""
return self._linestyle in ('--', '-.', ':')
class AxLine(Line2D):
"""
A helper class that implements `~.Axes.axline`, by recomputing the artist
transform at draw time.
"""
def __init__(self, xy1, xy2, slope, **kwargs):
"""
Parameters
----------
xy1 : (float, float)
The first set of (x, y) coordinates for the line to pass through.
xy2 : (float, float) or None
The second set of (x, y) coordinates for the line to pass through.
Both *xy2* and *slope* must be passed, but one of them must be None.
slope : float or None
The slope of the line. Both *xy2* and *slope* must be passed, but one of
them must be None.
"""
super().__init__([0, 1], [0, 1], **kwargs)
if (xy2 is None and slope is None or
xy2 is not None and slope is not None):
raise TypeError(
"Exactly one of 'xy2' and 'slope' must be given")
self._slope = slope
self._xy1 = xy1
self._xy2 = xy2
def get_transform(self):
ax = self.axes
points_transform = self._transform - ax.transData + ax.transScale
if self._xy2 is not None:
# two points were given
(x1, y1), (x2, y2) = \
points_transform.transform([self._xy1, self._xy2])
dx = x2 - x1
dy = y2 - y1
if np.allclose(x1, x2):
if np.allclose(y1, y2):
raise ValueError(
f"Cannot draw a line through two identical points "
f"(x={(x1, x2)}, y={(y1, y2)})")
slope = np.inf
else:
slope = dy / dx
else:
# one point and a slope were given
x1, y1 = points_transform.transform(self._xy1)
slope = self._slope
(vxlo, vylo), (vxhi, vyhi) = ax.transScale.transform(ax.viewLim)
# General case: find intersections with view limits in either
# direction, and draw between the middle two points.
if np.isclose(slope, 0):
start = vxlo, y1
stop = vxhi, y1
elif np.isinf(slope):
start = x1, vylo
stop = x1, vyhi
else:
_, start, stop, _ = sorted([
(vxlo, y1 + (vxlo - x1) * slope),
(vxhi, y1 + (vxhi - x1) * slope),
(x1 + (vylo - y1) / slope, vylo),
(x1 + (vyhi - y1) / slope, vyhi),
])
return (BboxTransformTo(Bbox([start, stop]))
+ ax.transLimits + ax.transAxes)
def draw(self, renderer):
self._transformed_path = None # Force regen.
super().draw(renderer)
def get_xy1(self):
"""
Return the *xy1* value of the line.
"""
return self._xy1
def get_xy2(self):
"""
Return the *xy2* value of the line.
"""
return self._xy2
def get_slope(self):
"""
Return the *slope* value of the line.
"""
return self._slope
def set_xy1(self, x, y):
"""
Set the *xy1* value of the line.
Parameters
----------
x, y : float
Points for the line to pass through.
"""
self._xy1 = x, y
def set_xy2(self, x, y):
"""
Set the *xy2* value of the line.
Parameters
----------
x, y : float
Points for the line to pass through.
"""
if self._slope is None:
self._xy2 = x, y
else:
raise ValueError("Cannot set an 'xy2' value while 'slope' is set;"
" they differ but their functionalities overlap")
def set_slope(self, slope):
"""
Set the *slope* value of the line.
Parameters
----------
slope : float
The slope of the line.
"""
if self._xy2 is None:
self._slope = slope
else:
raise ValueError("Cannot set a 'slope' value while 'xy2' is set;"
" they differ but their functionalities overlap")
class VertexSelector:
"""
Manage the callbacks to maintain a list of selected vertices for `.Line2D`.
Derived classes should override the `process_selected` method to do
something with the picks.
Here is an example which highlights the selected verts with red circles::
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as lines
class HighlightSelected(lines.VertexSelector):
def __init__(self, line, fmt='ro', **kwargs):
super().__init__(line)
self.markers, = self.axes.plot([], [], fmt, **kwargs)
def process_selected(self, ind, xs, ys):
self.markers.set_data(xs, ys)
self.canvas.draw()
fig, ax = plt.subplots()
x, y = np.random.rand(2, 30)
line, = ax.plot(x, y, 'bs-', picker=5)
selector = HighlightSelected(line)
plt.show()
"""
def __init__(self, line):
"""
Parameters
----------
line : `~matplotlib.lines.Line2D`
The line must already have been added to an `~.axes.Axes` and must
have its picker property set.
"""
if line.axes is None:
raise RuntimeError('You must first add the line to the Axes')
if line.get_picker() is None:
raise RuntimeError('You must first set the picker property '
'of the line')
self.axes = line.axes
self.line = line
self.cid = self.canvas.callbacks._connect_picklable(
'pick_event', self.onpick)
self.ind = set()
canvas = property(lambda self: self.axes.figure.canvas)
def process_selected(self, ind, xs, ys):
"""
Default "do nothing" implementation of the `process_selected` method.
Parameters
----------
ind : list of int
The indices of the selected vertices.
xs, ys : array-like
The coordinates of the selected vertices.
"""
pass
def onpick(self, event):
"""When the line is picked, update the set of selected indices."""
if event.artist is not self.line:
return
self.ind ^= set(event.ind)
ind = sorted(self.ind)
xdata, ydata = self.line.get_data()
self.process_selected(ind, xdata[ind], ydata[ind])
lineStyles = Line2D._lineStyles
lineMarkers = MarkerStyle.markers
drawStyles = Line2D.drawStyles
fillStyles = MarkerStyle.fillstyles