""" 2D lines with support for a variety of line styles, markers, colors, etc. """ import copy from numbers import Integral, Number, Real import logging import numpy as np import matplotlib as mpl from . import _api, cbook, colors as mcolors, _docstring from .artist import Artist, allow_rasterization from .cbook import ( _to_unmasked_float_array, ls_mapper, ls_mapper_r, STEP_LOOKUP_MAP) from .markers import MarkerStyle from .path import Path from .transforms import Bbox, BboxTransformTo, TransformedPath from ._enums import JoinStyle, CapStyle # Imported here for backward compatibility, even though they don't # really belong. from . import _path from .markers import ( # noqa CARETLEFT, CARETRIGHT, CARETUP, CARETDOWN, CARETLEFTBASE, CARETRIGHTBASE, CARETUPBASE, CARETDOWNBASE, TICKLEFT, TICKRIGHT, TICKUP, TICKDOWN) _log = logging.getLogger(__name__) def _get_dash_pattern(style): """Convert linestyle to dash pattern.""" # go from short hand -> full strings if isinstance(style, str): style = ls_mapper.get(style, style) # un-dashed styles if style in ['solid', 'None']: offset = 0 dashes = None # dashed styles elif style in ['dashed', 'dashdot', 'dotted']: offset = 0 dashes = tuple(mpl.rcParams[f'lines.{style}_pattern']) # elif isinstance(style, tuple): offset, dashes = style if offset is None: raise ValueError(f'Unrecognized linestyle: {style!r}') else: raise ValueError(f'Unrecognized linestyle: {style!r}') # normalize offset to be positive and shorter than the dash cycle if dashes is not None: dsum = sum(dashes) if dsum: offset %= dsum return offset, dashes def _get_inverse_dash_pattern(offset, dashes): """Return the inverse of the given dash pattern, for filling the gaps.""" # Define the inverse pattern by moving the last gap to the start of the # sequence. gaps = dashes[-1:] + dashes[:-1] # Set the offset so that this new first segment is skipped # (see backend_bases.GraphicsContextBase.set_dashes for offset definition). offset_gaps = offset + dashes[-1] return offset_gaps, gaps def _scale_dashes(offset, dashes, lw): if not mpl.rcParams['lines.scale_dashes']: return offset, dashes scaled_offset = offset * lw scaled_dashes = ([x * lw if x is not None else None for x in dashes] if dashes is not None else None) return scaled_offset, scaled_dashes def segment_hits(cx, cy, x, y, radius): """ Return the indices of the segments in the polyline with coordinates (*cx*, *cy*) that are within a distance *radius* of the point (*x*, *y*). """ # Process single points specially if len(x) <= 1: res, = np.nonzero((cx - x) ** 2 + (cy - y) ** 2 <= radius ** 2) return res # We need to lop the last element off a lot. xr, yr = x[:-1], y[:-1] # Only look at line segments whose nearest point to C on the line # lies within the segment. dx, dy = x[1:] - xr, y[1:] - yr Lnorm_sq = dx ** 2 + dy ** 2 # Possibly want to eliminate Lnorm==0 u = ((cx - xr) * dx + (cy - yr) * dy) / Lnorm_sq candidates = (u >= 0) & (u <= 1) # Note that there is a little area near one side of each point # which will be near neither segment, and another which will # be near both, depending on the angle of the lines. The # following radius test eliminates these ambiguities. point_hits = (cx - x) ** 2 + (cy - y) ** 2 <= radius ** 2 candidates = candidates & ~(point_hits[:-1] | point_hits[1:]) # For those candidates which remain, determine how far they lie away # from the line. px, py = xr + u * dx, yr + u * dy line_hits = (cx - px) ** 2 + (cy - py) ** 2 <= radius ** 2 line_hits = line_hits & candidates points, = point_hits.ravel().nonzero() lines, = line_hits.ravel().nonzero() return np.concatenate((points, lines)) def _mark_every_path(markevery, tpath, affine, ax): """ Helper function that sorts out how to deal the input `markevery` and returns the points where markers should be drawn. Takes in the `markevery` value and the line path and returns the sub-sampled path. """ # pull out the two bits of data we want from the path codes, verts = tpath.codes, tpath.vertices def _slice_or_none(in_v, slc): """Helper function to cope with `codes` being an ndarray or `None`.""" if in_v is None: return None return in_v[slc] # if just an int, assume starting at 0 and make a tuple if isinstance(markevery, Integral): markevery = (0, markevery) # if just a float, assume starting at 0.0 and make a tuple elif isinstance(markevery, Real): markevery = (0.0, markevery) if isinstance(markevery, tuple): if len(markevery) != 2: raise ValueError('`markevery` is a tuple but its len is not 2; ' f'markevery={markevery}') start, step = markevery # if step is an int, old behavior if isinstance(step, Integral): # tuple of 2 int is for backwards compatibility, if not isinstance(start, Integral): raise ValueError( '`markevery` is a tuple with len 2 and second element is ' 'an int, but the first element is not an int; ' f'markevery={markevery}') # just return, we are done here return Path(verts[slice(start, None, step)], _slice_or_none(codes, slice(start, None, step))) elif isinstance(step, Real): if not isinstance(start, Real): raise ValueError( '`markevery` is a tuple with len 2 and second element is ' 'a float, but the first element is not a float or an int; ' f'markevery={markevery}') if ax is None: raise ValueError( "markevery is specified relative to the Axes size, but " "the line does not have a Axes as parent") # calc cumulative distance along path (in display coords): fin = np.isfinite(verts).all(axis=1) fverts = verts[fin] disp_coords = affine.transform(fverts) delta = np.empty((len(disp_coords), 2)) delta[0, :] = 0 delta[1:, :] = disp_coords[1:, :] - disp_coords[:-1, :] delta = np.hypot(*delta.T).cumsum() # calc distance between markers along path based on the Axes # bounding box diagonal being a distance of unity: (x0, y0), (x1, y1) = ax.transAxes.transform([[0, 0], [1, 1]]) scale = np.hypot(x1 - x0, y1 - y0) marker_delta = np.arange(start * scale, delta[-1], step * scale) # find closest actual data point that is closest to # the theoretical distance along the path: inds = np.abs(delta[np.newaxis, :] - marker_delta[:, np.newaxis]) inds = inds.argmin(axis=1) inds = np.unique(inds) # return, we are done here return Path(fverts[inds], _slice_or_none(codes, inds)) else: raise ValueError( f"markevery={markevery!r} is a tuple with len 2, but its " f"second element is not an int or a float") elif isinstance(markevery, slice): # mazol tov, it's already a slice, just return return Path(verts[markevery], _slice_or_none(codes, markevery)) elif np.iterable(markevery): # fancy indexing try: return Path(verts[markevery], _slice_or_none(codes, markevery)) except (ValueError, IndexError) as err: raise ValueError( f"markevery={markevery!r} is iterable but not a valid numpy " f"fancy index") from err else: raise ValueError(f"markevery={markevery!r} is not a recognized value") @_docstring.interpd @_api.define_aliases({ "antialiased": ["aa"], "color": ["c"], "drawstyle": ["ds"], "linestyle": ["ls"], "linewidth": ["lw"], "markeredgecolor": ["mec"], "markeredgewidth": ["mew"], "markerfacecolor": ["mfc"], "markerfacecoloralt": ["mfcalt"], "markersize": ["ms"], }) class Line2D(Artist): """ A line - the line can have both a solid linestyle connecting all the vertices, and a marker at each vertex. Additionally, the drawing of the solid line is influenced by the drawstyle, e.g., one can create "stepped" lines in various styles. """ lineStyles = _lineStyles = { # hidden names deprecated '-': '_draw_solid', '--': '_draw_dashed', '-.': '_draw_dash_dot', ':': '_draw_dotted', 'None': '_draw_nothing', ' ': '_draw_nothing', '': '_draw_nothing', } _drawStyles_l = { 'default': '_draw_lines', 'steps-mid': '_draw_steps_mid', 'steps-pre': '_draw_steps_pre', 'steps-post': '_draw_steps_post', } _drawStyles_s = { 'steps': '_draw_steps_pre', } # drawStyles should now be deprecated. drawStyles = {**_drawStyles_l, **_drawStyles_s} # Need a list ordered with long names first: drawStyleKeys = [*_drawStyles_l, *_drawStyles_s] # Referenced here to maintain API. These are defined in # MarkerStyle markers = MarkerStyle.markers filled_markers = MarkerStyle.filled_markers fillStyles = MarkerStyle.fillstyles zorder = 2 _subslice_optim_min_size = 1000 def __str__(self): if self._label != "": return f"Line2D({self._label})" elif self._x is None: return "Line2D()" elif len(self._x) > 3: return "Line2D(({:g},{:g}),({:g},{:g}),...,({:g},{:g}))".format( self._x[0], self._y[0], self._x[1], self._y[1], self._x[-1], self._y[-1]) else: return "Line2D(%s)" % ",".join( map("({:g},{:g})".format, self._x, self._y)) def __init__(self, xdata, ydata, *, linewidth=None, # all Nones default to rc linestyle=None, color=None, gapcolor=None, marker=None, markersize=None, markeredgewidth=None, markeredgecolor=None, markerfacecolor=None, markerfacecoloralt='none', fillstyle=None, antialiased=None, dash_capstyle=None, solid_capstyle=None, dash_joinstyle=None, solid_joinstyle=None, pickradius=5, drawstyle=None, markevery=None, **kwargs ): """ Create a `.Line2D` instance with *x* and *y* data in sequences of *xdata*, *ydata*. Additional keyword arguments are `.Line2D` properties: %(Line2D:kwdoc)s See :meth:`set_linestyle` for a description of the line styles, :meth:`set_marker` for a description of the markers, and :meth:`set_drawstyle` for a description of the draw styles. """ super().__init__() # Convert sequences to NumPy arrays. if not np.iterable(xdata): raise RuntimeError('xdata must be a sequence') if not np.iterable(ydata): raise RuntimeError('ydata must be a sequence') if linewidth is None: linewidth = mpl.rcParams['lines.linewidth'] if linestyle is None: linestyle = mpl.rcParams['lines.linestyle'] if marker is None: marker = mpl.rcParams['lines.marker'] if color is None: color = mpl.rcParams['lines.color'] if markersize is None: markersize = mpl.rcParams['lines.markersize'] if antialiased is None: antialiased = mpl.rcParams['lines.antialiased'] if dash_capstyle is None: dash_capstyle = mpl.rcParams['lines.dash_capstyle'] if dash_joinstyle is None: dash_joinstyle = mpl.rcParams['lines.dash_joinstyle'] if solid_capstyle is None: solid_capstyle = mpl.rcParams['lines.solid_capstyle'] if solid_joinstyle is None: solid_joinstyle = mpl.rcParams['lines.solid_joinstyle'] if drawstyle is None: drawstyle = 'default' self._dashcapstyle = None self._dashjoinstyle = None self._solidjoinstyle = None self._solidcapstyle = None self.set_dash_capstyle(dash_capstyle) self.set_dash_joinstyle(dash_joinstyle) self.set_solid_capstyle(solid_capstyle) self.set_solid_joinstyle(solid_joinstyle) self._linestyles = None self._drawstyle = None self._linewidth = linewidth self._unscaled_dash_pattern = (0, None) # offset, dash self._dash_pattern = (0, None) # offset, dash (scaled by linewidth) self.set_linewidth(linewidth) self.set_linestyle(linestyle) self.set_drawstyle(drawstyle) self._color = None self.set_color(color) if marker is None: marker = 'none' # Default. if not isinstance(marker, MarkerStyle): self._marker = MarkerStyle(marker, fillstyle) else: self._marker = marker self._gapcolor = None self.set_gapcolor(gapcolor) self._markevery = None self._markersize = None self._antialiased = None self.set_markevery(markevery) self.set_antialiased(antialiased) self.set_markersize(markersize) self._markeredgecolor = None self._markeredgewidth = None self._markerfacecolor = None self._markerfacecoloralt = None self.set_markerfacecolor(markerfacecolor) # Normalizes None to rc. self.set_markerfacecoloralt(markerfacecoloralt) self.set_markeredgecolor(markeredgecolor) # Normalizes None to rc. self.set_markeredgewidth(markeredgewidth) # update kwargs before updating data to give the caller a # chance to init axes (and hence unit support) self._internal_update(kwargs) self.pickradius = pickradius self.ind_offset = 0 if (isinstance(self._picker, Number) and not isinstance(self._picker, bool)): self._pickradius = self._picker self._xorig = np.asarray([]) self._yorig = np.asarray([]) self._invalidx = True self._invalidy = True self._x = None self._y = None self._xy = None self._path = None self._transformed_path = None self._subslice = False self._x_filled = None # used in subslicing; only x is needed self.set_data(xdata, ydata) def contains(self, mouseevent): """ Test whether *mouseevent* occurred on the line. An event is deemed to have occurred "on" the line if it is less than ``self.pickradius`` (default: 5 points) away from it. Use `~.Line2D.get_pickradius` or `~.Line2D.set_pickradius` to get or set the pick radius. Parameters ---------- mouseevent : `~matplotlib.backend_bases.MouseEvent` Returns ------- contains : bool Whether any values are within the radius. details : dict A dictionary ``{'ind': pointlist}``, where *pointlist* is a list of points of the line that are within the pickradius around the event position. TODO: sort returned indices by distance """ if self._different_canvas(mouseevent): return False, {} # Make sure we have data to plot if self._invalidy or self._invalidx: self.recache() if len(self._xy) == 0: return False, {} # Convert points to pixels transformed_path = self._get_transformed_path() path, affine = transformed_path.get_transformed_path_and_affine() path = affine.transform_path(path) xy = path.vertices xt = xy[:, 0] yt = xy[:, 1] # Convert pick radius from points to pixels if self.figure is None: _log.warning('no figure set when check if mouse is on line') pixels = self._pickradius else: pixels = self.figure.dpi / 72. * self._pickradius # The math involved in checking for containment (here and inside of # segment_hits) assumes that it is OK to overflow, so temporarily set # the error flags accordingly. with np.errstate(all='ignore'): # Check for collision if self._linestyle in ['None', None]: # If no line, return the nearby point(s) ind, = np.nonzero( (xt - mouseevent.x) ** 2 + (yt - mouseevent.y) ** 2 <= pixels ** 2) else: # If line, return the nearby segment(s) ind = segment_hits(mouseevent.x, mouseevent.y, xt, yt, pixels) if self._drawstyle.startswith("steps"): ind //= 2 ind += self.ind_offset # Return the point(s) within radius return len(ind) > 0, dict(ind=ind) def get_pickradius(self): """ Return the pick radius used for containment tests. See `.contains` for more details. """ return self._pickradius def set_pickradius(self, pickradius): """ Set the pick radius used for containment tests. See `.contains` for more details. Parameters ---------- pickradius : float Pick radius, in points. """ if not isinstance(pickradius, Real) or pickradius < 0: raise ValueError("pick radius should be a distance") self._pickradius = pickradius pickradius = property(get_pickradius, set_pickradius) def get_fillstyle(self): """ Return the marker fill style. See also `~.Line2D.set_fillstyle`. """ return self._marker.get_fillstyle() def set_fillstyle(self, fs): """ Set the marker fill style. Parameters ---------- fs : {'full', 'left', 'right', 'bottom', 'top', 'none'} Possible values: - 'full': Fill the whole marker with the *markerfacecolor*. - 'left', 'right', 'bottom', 'top': Fill the marker half at the given side with the *markerfacecolor*. The other half of the marker is filled with *markerfacecoloralt*. - 'none': No filling. For examples see :ref:`marker_fill_styles`. """ self.set_marker(MarkerStyle(self._marker.get_marker(), fs)) self.stale = True def set_markevery(self, every): """ Set the markevery property to subsample the plot when using markers. e.g., if ``every=5``, every 5-th marker will be plotted. Parameters ---------- every : None or int or (int, int) or slice or list[int] or float or \ (float, float) or list[bool] Which markers to plot. - ``every=None``: every point will be plotted. - ``every=N``: every N-th marker will be plotted starting with marker 0. - ``every=(start, N)``: every N-th marker, starting at index *start*, will be plotted. - ``every=slice(start, end, N)``: every N-th marker, starting at index *start*, up to but not including index *end*, will be plotted. - ``every=[i, j, m, ...]``: only markers at the given indices will be plotted. - ``every=[True, False, True, ...]``: only positions that are True will be plotted. The list must have the same length as the data points. - ``every=0.1``, (i.e. a float): markers will be spaced at approximately equal visual distances along the line; the distance along the line between markers is determined by multiplying the display-coordinate distance of the Axes bounding-box diagonal by the value of *every*. - ``every=(0.5, 0.1)`` (i.e. a length-2 tuple of float): similar to ``every=0.1`` but the first marker will be offset along the line by 0.5 multiplied by the display-coordinate-diagonal-distance along the line. For examples see :doc:`/gallery/lines_bars_and_markers/markevery_demo`. Notes ----- Setting *markevery* will still only draw markers at actual data points. While the float argument form aims for uniform visual spacing, it has to coerce from the ideal spacing to the nearest available data point. Depending on the number and distribution of data points, the result may still not look evenly spaced. When using a start offset to specify the first marker, the offset will be from the first data point which may be different from the first the visible data point if the plot is zoomed in. If zooming in on a plot when using float arguments then the actual data points that have markers will change because the distance between markers is always determined from the display-coordinates axes-bounding-box-diagonal regardless of the actual axes data limits. """ self._markevery = every self.stale = True def get_markevery(self): """ Return the markevery setting for marker subsampling. See also `~.Line2D.set_markevery`. """ return self._markevery def set_picker(self, p): """ Set the event picker details for the line. Parameters ---------- p : float or callable[[Artist, Event], tuple[bool, dict]] If a float, it is used as the pick radius in points. """ if not callable(p): self.set_pickradius(p) self._picker = p def get_bbox(self): """Get the bounding box of this line.""" bbox = Bbox([[0, 0], [0, 0]]) bbox.update_from_data_xy(self.get_xydata()) return bbox def get_window_extent(self, renderer=None): bbox = Bbox([[0, 0], [0, 0]]) trans_data_to_xy = self.get_transform().transform bbox.update_from_data_xy(trans_data_to_xy(self.get_xydata()), ignore=True) # correct for marker size, if any if self._marker: ms = (self._markersize / 72.0 * self.figure.dpi) * 0.5 bbox = bbox.padded(ms) return bbox def set_data(self, *args): """ Set the x and y data. Parameters ---------- *args : (2, N) array or two 1D arrays See Also -------- set_xdata set_ydata """ if len(args) == 1: (x, y), = args else: x, y = args self.set_xdata(x) self.set_ydata(y) def recache_always(self): self.recache(always=True) def recache(self, always=False): if always or self._invalidx: xconv = self.convert_xunits(self._xorig) x = _to_unmasked_float_array(xconv).ravel() else: x = self._x if always or self._invalidy: yconv = self.convert_yunits(self._yorig) y = _to_unmasked_float_array(yconv).ravel() else: y = self._y self._xy = np.column_stack(np.broadcast_arrays(x, y)).astype(float) self._x, self._y = self._xy.T # views self._subslice = False if (self.axes and len(x) > self._subslice_optim_min_size and _path.is_sorted_and_has_non_nan(x) and self.axes.name == 'rectilinear' and self.axes.get_xscale() == 'linear' and self._markevery is None and self.get_clip_on() and self.get_transform() == self.axes.transData): self._subslice = True nanmask = np.isnan(x) if nanmask.any(): self._x_filled = self._x.copy() indices = np.arange(len(x)) self._x_filled[nanmask] = np.interp( indices[nanmask], indices[~nanmask], self._x[~nanmask]) else: self._x_filled = self._x if self._path is not None: interpolation_steps = self._path._interpolation_steps else: interpolation_steps = 1 xy = STEP_LOOKUP_MAP[self._drawstyle](*self._xy.T) self._path = Path(np.asarray(xy).T, _interpolation_steps=interpolation_steps) self._transformed_path = None self._invalidx = False self._invalidy = False def _transform_path(self, subslice=None): """ Put a TransformedPath instance at self._transformed_path; all invalidation of the transform is then handled by the TransformedPath instance. """ # Masked arrays are now handled by the Path class itself if subslice is not None: xy = STEP_LOOKUP_MAP[self._drawstyle](*self._xy[subslice, :].T) _path = Path(np.asarray(xy).T, _interpolation_steps=self._path._interpolation_steps) else: _path = self._path self._transformed_path = TransformedPath(_path, self.get_transform()) def _get_transformed_path(self): """Return this line's `~matplotlib.transforms.TransformedPath`.""" if self._transformed_path is None: self._transform_path() return self._transformed_path def set_transform(self, t): # docstring inherited self._invalidx = True self._invalidy = True super().set_transform(t) @allow_rasterization def draw(self, renderer): # docstring inherited if not self.get_visible(): return if self._invalidy or self._invalidx: self.recache() self.ind_offset = 0 # Needed for contains() method. if self._subslice and self.axes: x0, x1 = self.axes.get_xbound() i0 = self._x_filled.searchsorted(x0, 'left') i1 = self._x_filled.searchsorted(x1, 'right') subslice = slice(max(i0 - 1, 0), i1 + 1) self.ind_offset = subslice.start self._transform_path(subslice) else: subslice = None if self.get_path_effects(): from matplotlib.patheffects import PathEffectRenderer renderer = PathEffectRenderer(self.get_path_effects(), renderer) renderer.open_group('line2d', self.get_gid()) if self._lineStyles[self._linestyle] != '_draw_nothing': tpath, affine = (self._get_transformed_path() .get_transformed_path_and_affine()) if len(tpath.vertices): gc = renderer.new_gc() self._set_gc_clip(gc) gc.set_url(self.get_url()) gc.set_antialiased(self._antialiased) gc.set_linewidth(self._linewidth) if self.is_dashed(): cap = self._dashcapstyle join = self._dashjoinstyle else: cap = self._solidcapstyle join = self._solidjoinstyle gc.set_joinstyle(join) gc.set_capstyle(cap) gc.set_snap(self.get_snap()) if self.get_sketch_params() is not None: gc.set_sketch_params(*self.get_sketch_params()) # We first draw a path within the gaps if needed. if self.is_dashed() and self._gapcolor is not None: lc_rgba = mcolors.to_rgba(self._gapcolor, self._alpha) gc.set_foreground(lc_rgba, isRGBA=True) offset_gaps, gaps = _get_inverse_dash_pattern( *self._dash_pattern) gc.set_dashes(offset_gaps, gaps) renderer.draw_path(gc, tpath, affine.frozen()) lc_rgba = mcolors.to_rgba(self._color, self._alpha) gc.set_foreground(lc_rgba, isRGBA=True) gc.set_dashes(*self._dash_pattern) renderer.draw_path(gc, tpath, affine.frozen()) gc.restore() if self._marker and self._markersize > 0: gc = renderer.new_gc() self._set_gc_clip(gc) gc.set_url(self.get_url()) gc.set_linewidth(self._markeredgewidth) gc.set_antialiased(self._antialiased) ec_rgba = mcolors.to_rgba( self.get_markeredgecolor(), self._alpha) fc_rgba = mcolors.to_rgba( self._get_markerfacecolor(), self._alpha) fcalt_rgba = mcolors.to_rgba( self._get_markerfacecolor(alt=True), self._alpha) # If the edgecolor is "auto", it is set according to the *line* # color but inherits the alpha value of the *face* color, if any. if (cbook._str_equal(self._markeredgecolor, "auto") and not cbook._str_lower_equal( self.get_markerfacecolor(), "none")): ec_rgba = ec_rgba[:3] + (fc_rgba[3],) gc.set_foreground(ec_rgba, isRGBA=True) if self.get_sketch_params() is not None: scale, length, randomness = self.get_sketch_params() gc.set_sketch_params(scale/2, length/2, 2*randomness) marker = self._marker # Markers *must* be drawn ignoring the drawstyle (but don't pay the # recaching if drawstyle is already "default"). if self.get_drawstyle() != "default": with cbook._setattr_cm( self, _drawstyle="default", _transformed_path=None): self.recache() self._transform_path(subslice) tpath, affine = (self._get_transformed_path() .get_transformed_points_and_affine()) else: tpath, affine = (self._get_transformed_path() .get_transformed_points_and_affine()) if len(tpath.vertices): # subsample the markers if markevery is not None markevery = self.get_markevery() if markevery is not None: subsampled = _mark_every_path( markevery, tpath, affine, self.axes) else: subsampled = tpath snap = marker.get_snap_threshold() if isinstance(snap, Real): snap = renderer.points_to_pixels(self._markersize) >= snap gc.set_snap(snap) gc.set_joinstyle(marker.get_joinstyle()) gc.set_capstyle(marker.get_capstyle()) marker_path = marker.get_path() marker_trans = marker.get_transform() w = renderer.points_to_pixels(self._markersize) if cbook._str_equal(marker.get_marker(), ","): gc.set_linewidth(0) else: # Don't scale for pixels, and don't stroke them marker_trans = marker_trans.scale(w) renderer.draw_markers(gc, marker_path, marker_trans, subsampled, affine.frozen(), fc_rgba) alt_marker_path = marker.get_alt_path() if alt_marker_path: alt_marker_trans = marker.get_alt_transform() alt_marker_trans = alt_marker_trans.scale(w) renderer.draw_markers( gc, alt_marker_path, alt_marker_trans, subsampled, affine.frozen(), fcalt_rgba) gc.restore() renderer.close_group('line2d') self.stale = False def get_antialiased(self): """Return whether antialiased rendering is used.""" return self._antialiased def get_color(self): """ Return the line color. See also `~.Line2D.set_color`. """ return self._color def get_drawstyle(self): """ Return the drawstyle. See also `~.Line2D.set_drawstyle`. """ return self._drawstyle def get_gapcolor(self): """ Return the line gapcolor. See also `~.Line2D.set_gapcolor`. """ return self._gapcolor def get_linestyle(self): """ Return the linestyle. See also `~.Line2D.set_linestyle`. """ return self._linestyle def get_linewidth(self): """ Return the linewidth in points. See also `~.Line2D.set_linewidth`. """ return self._linewidth def get_marker(self): """ Return the line marker. See also `~.Line2D.set_marker`. """ return self._marker.get_marker() def get_markeredgecolor(self): """ Return the marker edge color. See also `~.Line2D.set_markeredgecolor`. """ mec = self._markeredgecolor if cbook._str_equal(mec, 'auto'): if mpl.rcParams['_internal.classic_mode']: if self._marker.get_marker() in ('.', ','): return self._color if (self._marker.is_filled() and self._marker.get_fillstyle() != 'none'): return 'k' # Bad hard-wired default... return self._color else: return mec def get_markeredgewidth(self): """ Return the marker edge width in points. See also `~.Line2D.set_markeredgewidth`. """ return self._markeredgewidth def _get_markerfacecolor(self, alt=False): if self._marker.get_fillstyle() == 'none': return 'none' fc = self._markerfacecoloralt if alt else self._markerfacecolor if cbook._str_lower_equal(fc, 'auto'): return self._color else: return fc def get_markerfacecolor(self): """ Return the marker face color. See also `~.Line2D.set_markerfacecolor`. """ return self._get_markerfacecolor(alt=False) def get_markerfacecoloralt(self): """ Return the alternate marker face color. See also `~.Line2D.set_markerfacecoloralt`. """ return self._get_markerfacecolor(alt=True) def get_markersize(self): """ Return the marker size in points. See also `~.Line2D.set_markersize`. """ return self._markersize def get_data(self, orig=True): """ Return the line data as an ``(xdata, ydata)`` pair. If *orig* is *True*, return the original data. """ return self.get_xdata(orig=orig), self.get_ydata(orig=orig) def get_xdata(self, orig=True): """ Return the xdata. If *orig* is *True*, return the original data, else the processed data. """ if orig: return self._xorig if self._invalidx: self.recache() return self._x def get_ydata(self, orig=True): """ Return the ydata. If *orig* is *True*, return the original data, else the processed data. """ if orig: return self._yorig if self._invalidy: self.recache() return self._y def get_path(self): """Return the `~matplotlib.path.Path` associated with this line.""" if self._invalidy or self._invalidx: self.recache() return self._path def get_xydata(self): """Return the *xy* data as a (N, 2) array.""" if self._invalidy or self._invalidx: self.recache() return self._xy def set_antialiased(self, b): """ Set whether to use antialiased rendering. Parameters ---------- b : bool """ if self._antialiased != b: self.stale = True self._antialiased = b def set_color(self, color): """ Set the color of the line. Parameters ---------- color : :mpltype:`color` """ mcolors._check_color_like(color=color) self._color = color self.stale = True def set_drawstyle(self, drawstyle): """ Set the drawstyle of the plot. The drawstyle determines how the points are connected. Parameters ---------- drawstyle : {'default', 'steps', 'steps-pre', 'steps-mid', \ 'steps-post'}, default: 'default' For 'default', the points are connected with straight lines. The steps variants connect the points with step-like lines, i.e. horizontal lines with vertical steps. They differ in the location of the step: - 'steps-pre': The step is at the beginning of the line segment, i.e. the line will be at the y-value of point to the right. - 'steps-mid': The step is halfway between the points. - 'steps-post: The step is at the end of the line segment, i.e. the line will be at the y-value of the point to the left. - 'steps' is equal to 'steps-pre' and is maintained for backward-compatibility. For examples see :doc:`/gallery/lines_bars_and_markers/step_demo`. """ if drawstyle is None: drawstyle = 'default' _api.check_in_list(self.drawStyles, drawstyle=drawstyle) if self._drawstyle != drawstyle: self.stale = True # invalidate to trigger a recache of the path self._invalidx = True self._drawstyle = drawstyle def set_gapcolor(self, gapcolor): """ Set a color to fill the gaps in the dashed line style. .. note:: Striped lines are created by drawing two interleaved dashed lines. There can be overlaps between those two, which may result in artifacts when using transparency. This functionality is experimental and may change. Parameters ---------- gapcolor : :mpltype:`color` or None The color with which to fill the gaps. If None, the gaps are unfilled. """ if gapcolor is not None: mcolors._check_color_like(color=gapcolor) self._gapcolor = gapcolor self.stale = True def set_linewidth(self, w): """ Set the line width in points. Parameters ---------- w : float Line width, in points. """ w = float(w) if self._linewidth != w: self.stale = True self._linewidth = w self._dash_pattern = _scale_dashes(*self._unscaled_dash_pattern, w) def set_linestyle(self, ls): """ Set the linestyle of the line. Parameters ---------- ls : {'-', '--', '-.', ':', '', (offset, on-off-seq), ...} Possible values: - A string: ========================================== ================= linestyle description ========================================== ================= ``'-'`` or ``'solid'`` solid line ``'--'`` or ``'dashed'`` dashed line ``'-.'`` or ``'dashdot'`` dash-dotted line ``':'`` or ``'dotted'`` dotted line ``'none'``, ``'None'``, ``' '``, or ``''`` draw nothing ========================================== ================= - Alternatively a dash tuple of the following form can be provided:: (offset, onoffseq) where ``onoffseq`` is an even length tuple of on and off ink in points. See also :meth:`set_dashes`. For examples see :doc:`/gallery/lines_bars_and_markers/linestyles`. """ if isinstance(ls, str): if ls in [' ', '', 'none']: ls = 'None' _api.check_in_list([*self._lineStyles, *ls_mapper_r], ls=ls) if ls not in self._lineStyles: ls = ls_mapper_r[ls] self._linestyle = ls else: self._linestyle = '--' self._unscaled_dash_pattern = _get_dash_pattern(ls) self._dash_pattern = _scale_dashes( *self._unscaled_dash_pattern, self._linewidth) self.stale = True @_docstring.interpd def set_marker(self, marker): """ Set the line marker. Parameters ---------- marker : marker style string, `~.path.Path` or `~.markers.MarkerStyle` See `~matplotlib.markers` for full description of possible arguments. """ self._marker = MarkerStyle(marker, self._marker.get_fillstyle()) self.stale = True def _set_markercolor(self, name, has_rcdefault, val): if val is None: val = mpl.rcParams[f"lines.{name}"] if has_rcdefault else "auto" attr = f"_{name}" current = getattr(self, attr) if current is None: self.stale = True else: neq = current != val # Much faster than `np.any(current != val)` if no arrays are used. if neq.any() if isinstance(neq, np.ndarray) else neq: self.stale = True setattr(self, attr, val) def set_markeredgecolor(self, ec): """ Set the marker edge color. Parameters ---------- ec : :mpltype:`color` """ self._set_markercolor("markeredgecolor", True, ec) def set_markerfacecolor(self, fc): """ Set the marker face color. Parameters ---------- fc : :mpltype:`color` """ self._set_markercolor("markerfacecolor", True, fc) def set_markerfacecoloralt(self, fc): """ Set the alternate marker face color. Parameters ---------- fc : :mpltype:`color` """ self._set_markercolor("markerfacecoloralt", False, fc) def set_markeredgewidth(self, ew): """ Set the marker edge width in points. Parameters ---------- ew : float Marker edge width, in points. """ if ew is None: ew = mpl.rcParams['lines.markeredgewidth'] if self._markeredgewidth != ew: self.stale = True self._markeredgewidth = ew def set_markersize(self, sz): """ Set the marker size in points. Parameters ---------- sz : float Marker size, in points. """ sz = float(sz) if self._markersize != sz: self.stale = True self._markersize = sz def set_xdata(self, x): """ Set the data array for x. Parameters ---------- x : 1D array See Also -------- set_data set_ydata """ if not np.iterable(x): raise RuntimeError('x must be a sequence') self._xorig = copy.copy(x) self._invalidx = True self.stale = True def set_ydata(self, y): """ Set the data array for y. Parameters ---------- y : 1D array See Also -------- set_data set_xdata """ if not np.iterable(y): raise RuntimeError('y must be a sequence') self._yorig = copy.copy(y) self._invalidy = True self.stale = True def set_dashes(self, seq): """ Set the dash sequence. The dash sequence is a sequence of floats of even length describing the length of dashes and spaces in points. For example, (5, 2, 1, 2) describes a sequence of 5 point and 1 point dashes separated by 2 point spaces. See also `~.Line2D.set_gapcolor`, which allows those spaces to be filled with a color. Parameters ---------- seq : sequence of floats (on/off ink in points) or (None, None) If *seq* is empty or ``(None, None)``, the linestyle will be set to solid. """ if seq == (None, None) or len(seq) == 0: self.set_linestyle('-') else: self.set_linestyle((0, seq)) def update_from(self, other): """Copy properties from *other* to self.""" super().update_from(other) self._linestyle = other._linestyle self._linewidth = other._linewidth self._color = other._color self._gapcolor = other._gapcolor self._markersize = other._markersize self._markerfacecolor = other._markerfacecolor self._markerfacecoloralt = other._markerfacecoloralt self._markeredgecolor = other._markeredgecolor self._markeredgewidth = other._markeredgewidth self._unscaled_dash_pattern = other._unscaled_dash_pattern self._dash_pattern = other._dash_pattern self._dashcapstyle = other._dashcapstyle self._dashjoinstyle = other._dashjoinstyle self._solidcapstyle = other._solidcapstyle self._solidjoinstyle = other._solidjoinstyle self._linestyle = other._linestyle self._marker = MarkerStyle(marker=other._marker) self._drawstyle = other._drawstyle @_docstring.interpd def set_dash_joinstyle(self, s): """ How to join segments of the line if it `~Line2D.is_dashed`. The default joinstyle is :rc:`lines.dash_joinstyle`. Parameters ---------- s : `.JoinStyle` or %(JoinStyle)s """ js = JoinStyle(s) if self._dashjoinstyle != js: self.stale = True self._dashjoinstyle = js @_docstring.interpd def set_solid_joinstyle(self, s): """ How to join segments if the line is solid (not `~Line2D.is_dashed`). The default joinstyle is :rc:`lines.solid_joinstyle`. Parameters ---------- s : `.JoinStyle` or %(JoinStyle)s """ js = JoinStyle(s) if self._solidjoinstyle != js: self.stale = True self._solidjoinstyle = js def get_dash_joinstyle(self): """ Return the `.JoinStyle` for dashed lines. See also `~.Line2D.set_dash_joinstyle`. """ return self._dashjoinstyle.name def get_solid_joinstyle(self): """ Return the `.JoinStyle` for solid lines. See also `~.Line2D.set_solid_joinstyle`. """ return self._solidjoinstyle.name @_docstring.interpd def set_dash_capstyle(self, s): """ How to draw the end caps if the line is `~Line2D.is_dashed`. The default capstyle is :rc:`lines.dash_capstyle`. Parameters ---------- s : `.CapStyle` or %(CapStyle)s """ cs = CapStyle(s) if self._dashcapstyle != cs: self.stale = True self._dashcapstyle = cs @_docstring.interpd def set_solid_capstyle(self, s): """ How to draw the end caps if the line is solid (not `~Line2D.is_dashed`) The default capstyle is :rc:`lines.solid_capstyle`. Parameters ---------- s : `.CapStyle` or %(CapStyle)s """ cs = CapStyle(s) if self._solidcapstyle != cs: self.stale = True self._solidcapstyle = cs def get_dash_capstyle(self): """ Return the `.CapStyle` for dashed lines. See also `~.Line2D.set_dash_capstyle`. """ return self._dashcapstyle.name def get_solid_capstyle(self): """ Return the `.CapStyle` for solid lines. See also `~.Line2D.set_solid_capstyle`. """ return self._solidcapstyle.name def is_dashed(self): """ Return whether line has a dashed linestyle. A custom linestyle is assumed to be dashed, we do not inspect the ``onoffseq`` directly. See also `~.Line2D.set_linestyle`. """ return self._linestyle in ('--', '-.', ':') class AxLine(Line2D): """ A helper class that implements `~.Axes.axline`, by recomputing the artist transform at draw time. """ def __init__(self, xy1, xy2, slope, **kwargs): """ Parameters ---------- xy1 : (float, float) The first set of (x, y) coordinates for the line to pass through. xy2 : (float, float) or None The second set of (x, y) coordinates for the line to pass through. Both *xy2* and *slope* must be passed, but one of them must be None. slope : float or None The slope of the line. Both *xy2* and *slope* must be passed, but one of them must be None. """ super().__init__([0, 1], [0, 1], **kwargs) if (xy2 is None and slope is None or xy2 is not None and slope is not None): raise TypeError( "Exactly one of 'xy2' and 'slope' must be given") self._slope = slope self._xy1 = xy1 self._xy2 = xy2 def get_transform(self): ax = self.axes points_transform = self._transform - ax.transData + ax.transScale if self._xy2 is not None: # two points were given (x1, y1), (x2, y2) = \ points_transform.transform([self._xy1, self._xy2]) dx = x2 - x1 dy = y2 - y1 if np.allclose(x1, x2): if np.allclose(y1, y2): raise ValueError( f"Cannot draw a line through two identical points " f"(x={(x1, x2)}, y={(y1, y2)})") slope = np.inf else: slope = dy / dx else: # one point and a slope were given x1, y1 = points_transform.transform(self._xy1) slope = self._slope (vxlo, vylo), (vxhi, vyhi) = ax.transScale.transform(ax.viewLim) # General case: find intersections with view limits in either # direction, and draw between the middle two points. if np.isclose(slope, 0): start = vxlo, y1 stop = vxhi, y1 elif np.isinf(slope): start = x1, vylo stop = x1, vyhi else: _, start, stop, _ = sorted([ (vxlo, y1 + (vxlo - x1) * slope), (vxhi, y1 + (vxhi - x1) * slope), (x1 + (vylo - y1) / slope, vylo), (x1 + (vyhi - y1) / slope, vyhi), ]) return (BboxTransformTo(Bbox([start, stop])) + ax.transLimits + ax.transAxes) def draw(self, renderer): self._transformed_path = None # Force regen. super().draw(renderer) def get_xy1(self): """ Return the *xy1* value of the line. """ return self._xy1 def get_xy2(self): """ Return the *xy2* value of the line. """ return self._xy2 def get_slope(self): """ Return the *slope* value of the line. """ return self._slope def set_xy1(self, x, y): """ Set the *xy1* value of the line. Parameters ---------- x, y : float Points for the line to pass through. """ self._xy1 = x, y def set_xy2(self, x, y): """ Set the *xy2* value of the line. Parameters ---------- x, y : float Points for the line to pass through. """ if self._slope is None: self._xy2 = x, y else: raise ValueError("Cannot set an 'xy2' value while 'slope' is set;" " they differ but their functionalities overlap") def set_slope(self, slope): """ Set the *slope* value of the line. Parameters ---------- slope : float The slope of the line. """ if self._xy2 is None: self._slope = slope else: raise ValueError("Cannot set a 'slope' value while 'xy2' is set;" " they differ but their functionalities overlap") class VertexSelector: """ Manage the callbacks to maintain a list of selected vertices for `.Line2D`. Derived classes should override the `process_selected` method to do something with the picks. Here is an example which highlights the selected verts with red circles:: import numpy as np import matplotlib.pyplot as plt import matplotlib.lines as lines class HighlightSelected(lines.VertexSelector): def __init__(self, line, fmt='ro', **kwargs): super().__init__(line) self.markers, = self.axes.plot([], [], fmt, **kwargs) def process_selected(self, ind, xs, ys): self.markers.set_data(xs, ys) self.canvas.draw() fig, ax = plt.subplots() x, y = np.random.rand(2, 30) line, = ax.plot(x, y, 'bs-', picker=5) selector = HighlightSelected(line) plt.show() """ def __init__(self, line): """ Parameters ---------- line : `~matplotlib.lines.Line2D` The line must already have been added to an `~.axes.Axes` and must have its picker property set. """ if line.axes is None: raise RuntimeError('You must first add the line to the Axes') if line.get_picker() is None: raise RuntimeError('You must first set the picker property ' 'of the line') self.axes = line.axes self.line = line self.cid = self.canvas.callbacks._connect_picklable( 'pick_event', self.onpick) self.ind = set() canvas = property(lambda self: self.axes.figure.canvas) def process_selected(self, ind, xs, ys): """ Default "do nothing" implementation of the `process_selected` method. Parameters ---------- ind : list of int The indices of the selected vertices. xs, ys : array-like The coordinates of the selected vertices. """ pass def onpick(self, event): """When the line is picked, update the set of selected indices.""" if event.artist is not self.line: return self.ind ^= set(event.ind) ind = sorted(self.ind) xdata, ydata = self.line.get_data() self.process_selected(ind, xdata[ind], ydata[ind]) lineStyles = Line2D._lineStyles lineMarkers = MarkerStyle.markers drawStyles = Line2D.drawStyles fillStyles = MarkerStyle.fillstyles