From e4995bded05359dffec1fe6cb68cb271107b00b4 Mon Sep 17 00:00:00 2001 From: Andrey Baygulov Date: Fri, 22 Nov 2024 19:48:48 +0400 Subject: [PATCH] lab1 done --- .flake8 | 2 + .gitattributes | 1 + .gitignore | 278 ++ .vscode/extensions.json | 13 + .vscode/launch.json | 16 + .vscode/settings.json | 38 + README.md | 3 +- assets/lec2-split.png | Bin 0 -> 64794 bytes assets/quantile.png | Bin 0 -> 113581 bytes backend/__init__.py | 52 + backend/api.py | 57 + backend/service.py | 59 + data/dollar.csv | 244 ++ data/orders/customers.csv | 101 + data/orders/order_items.csv | 116 + data/orders/orders.csv | 101 + data/orders/products.csv | 101 + data/orders/sellers.csv | 88 + data/titanic.csv | 892 +++++ docs/path1.png | Bin 0 -> 22640 bytes docs/path2.png | Bin 0 -> 76078 bytes docs/path3.png | Bin 0 -> 132359 bytes docs/path4.png | Bin 0 -> 39117 bytes lab1.ipynb | 2399 +++++++++++++ labs/lab1/healthcareDataset.csv | 5111 ++++++++++++++++++++++++++++ labs/lab1/lab1.ipynb | 2875 ++++++++++++++++ labs/lab1/newHealthcareDataset.csv | 5111 ++++++++++++++++++++++++++++ labs/lab2/lab2.ipynb | 58 + lec1.ipynb | 713 ++++ lec2.ipynb | 959 ++++++ lec3.ipynb | 4278 +++++++++++++++++++++++ poetry.lock | 3267 ++++++++++++++++++ poetry.toml | 2 + pyproject.toml | 29 + run.py | 16 + 35 files changed, 26978 insertions(+), 2 deletions(-) create mode 100644 .flake8 create mode 100644 .gitattributes create mode 100644 .gitignore create mode 100644 .vscode/extensions.json create mode 100644 .vscode/launch.json create mode 100644 .vscode/settings.json create mode 100644 assets/lec2-split.png create mode 100644 assets/quantile.png create mode 100644 backend/__init__.py create mode 100644 backend/api.py create mode 100644 backend/service.py create mode 100644 data/dollar.csv create mode 100644 data/orders/customers.csv create mode 100644 data/orders/order_items.csv create mode 100644 data/orders/orders.csv create mode 100644 data/orders/products.csv create mode 100644 data/orders/sellers.csv create mode 100644 data/titanic.csv create mode 100644 docs/path1.png create mode 100644 docs/path2.png create mode 100644 docs/path3.png create mode 100644 docs/path4.png create mode 100644 lab1.ipynb create mode 100644 labs/lab1/healthcareDataset.csv create mode 100644 labs/lab1/lab1.ipynb create mode 100644 labs/lab1/newHealthcareDataset.csv create mode 100644 labs/lab2/lab2.ipynb create mode 100644 lec1.ipynb create mode 100644 lec2.ipynb create mode 100644 lec3.ipynb create mode 100644 poetry.lock create mode 100644 poetry.toml create mode 100644 pyproject.toml create mode 100644 run.py diff --git a/.flake8 b/.flake8 new file mode 100644 index 0000000..79a16af --- /dev/null +++ b/.flake8 @@ -0,0 +1,2 @@ +[flake8] +max-line-length = 120 \ No newline at end of file diff --git a/.gitattributes b/.gitattributes new file mode 100644 index 0000000..a550b61 --- /dev/null +++ b/.gitattributes @@ -0,0 +1 @@ +* text=crlf \ No newline at end of file diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..d9d355f --- /dev/null +++ b/.gitignore @@ -0,0 +1,278 @@ + +# Created by https://www.toptal.com/developers/gitignore/api/python,pycharm+all +# Edit at https://www.toptal.com/developers/gitignore?templates=python,pycharm+all + +### PyCharm+all ### +# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio, WebStorm and Rider +# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839 + +# User-specific stuff +.idea/**/workspace.xml +.idea/**/tasks.xml +.idea/**/usage.statistics.xml +.idea/**/dictionaries +.idea/**/shelf + +# AWS User-specific +.idea/**/aws.xml + +# Generated files +.idea/**/contentModel.xml + +# Sensitive or high-churn files +.idea/**/dataSources/ +.idea/**/dataSources.ids +.idea/**/dataSources.local.xml +.idea/**/sqlDataSources.xml +.idea/**/dynamic.xml +.idea/**/uiDesigner.xml +.idea/**/dbnavigator.xml + +# Gradle +.idea/**/gradle.xml +.idea/**/libraries + +# Gradle and Maven with auto-import +# When using Gradle or Maven with auto-import, you should exclude module files, +# since they will be recreated, and may cause churn. Uncomment if using +# auto-import. +# .idea/artifacts +# .idea/compiler.xml +# .idea/jarRepositories.xml +# .idea/modules.xml +# .idea/*.iml +# .idea/modules +# *.iml +# *.ipr + +# CMake +cmake-build-*/ + +# Mongo Explorer plugin +.idea/**/mongoSettings.xml + +# File-based project format +*.iws + +# IntelliJ +out/ + +# mpeltonen/sbt-idea plugin +.idea_modules/ + +# JIRA plugin +atlassian-ide-plugin.xml + +# Cursive Clojure plugin +.idea/replstate.xml + +# SonarLint plugin +.idea/sonarlint/ + +# Crashlytics plugin (for Android Studio and IntelliJ) +com_crashlytics_export_strings.xml +crashlytics.properties +crashlytics-build.properties +fabric.properties + +# Editor-based Rest Client +.idea/httpRequests + +# Android studio 3.1+ serialized cache file +.idea/caches/build_file_checksums.ser + +### PyCharm+all Patch ### +# Ignores the whole .idea folder and all .iml files +# See https://github.com/joeblau/gitignore.io/issues/186 and https://github.com/joeblau/gitignore.io/issues/360 + +.idea/* + +# Reason: https://github.com/joeblau/gitignore.io/issues/186#issuecomment-249601023 + +*.iml +modules.xml +.idea/misc.xml +*.ipr + +# Sonarlint plugin +.idea/sonarlint + +### Python ### +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +# C extensions +*.so + +# Distribution / packaging +.Python +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +share/python-wheels/ +*.egg-info/ +.installed.cfg +*.egg +MANIFEST + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt + +# Unit test / coverage reports +htmlcov/ +.tox/ +.nox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*.cover +*.py,cover +.hypothesis/ +.pytest_cache/ +cover/ + +# Translations +*.mo +*.pot + +# Django stuff: +*.log +local_settings.py +db.sqlite3 +db.sqlite3-journal + +# Flask stuff: +instance/ +.webassets-cache + +# Scrapy stuff: +.scrapy + +# Sphinx documentation +docs/_build/ + +# PyBuilder +.pybuilder/ +target/ + +# Jupyter Notebook +.ipynb_checkpoints + +# IPython +profile_default/ +ipython_config.py + +# pyenv +# For a library or package, you might want to ignore these files since the code is +# intended to run in multiple environments; otherwise, check them in: +# .python-version + +# pipenv +# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. +# However, in case of collaboration, if having platform-specific dependencies or dependencies +# having no cross-platform support, pipenv may install dependencies that don't work, or not +# install all needed dependencies. +#Pipfile.lock + +# poetry +# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control. +# This is especially recommended for binary packages to ensure reproducibility, and is more +# commonly ignored for libraries. +# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control +#poetry.lock + +# PEP 582; used by e.g. github.com/David-OConnor/pyflow +__pypackages__/ + +# Celery stuff +celerybeat-schedule +celerybeat.pid + +# SageMath parsed files +*.sage.py + +# Environments +.env +.venv +env/ +venv/ +ENV/ +env.bak/ +venv.bak/ + +# Spyder project settings +.spyderproject +.spyproject + +# Rope project settings +.ropeproject + +# mkdocs documentation +/site + +# mypy +.mypy_cache/ +.dmypy.json +dmypy.json + +# Pyre type checker +.pyre/ + +# pytype static type analyzer +.pytype/ + +# Cython debug symbols +cython_debug/ + +# PyCharm +# JetBrains specific template is maintainted in a separate JetBrains.gitignore that can +# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore +# and can be added to the global gitignore or merged into this file. For a more nuclear +# option (not recommended) you can uncomment the following to ignore the entire idea folder. +#.idea/ + +### VisualStudioCode ### +.vscode/* +!.vscode/settings.json +!.vscode/tasks.json +!.vscode/launch.json +!.vscode/extensions.json +!.vscode/*.code-snippets + +# Local History for Visual Studio Code +.history/ + +# Built Visual Studio Code Extensions +*.vsix + +### VisualStudioCode Patch ### +# Ignore all local history of files +.history +.ionide + +# End of https://www.toptal.com/developers/gitignore/api/python,pycharm+all + +# JS +node_modules/ + +test.csv \ No newline at end of file diff --git a/.vscode/extensions.json b/.vscode/extensions.json new file mode 100644 index 0000000..37c2cc0 --- /dev/null +++ b/.vscode/extensions.json @@ -0,0 +1,13 @@ +{ + "recommendations": [ + "ms-python.black-formatter", + "ms-python.flake8", + "ms-python.isort", + "ms-toolsai.jupyter", + "ms-toolsai.datawrangler", + "ms-python.python", + "donjayamanne.python-environment-manager", + // optional + "usernamehw.errorlens" + ] +} \ No newline at end of file diff --git a/.vscode/launch.json b/.vscode/launch.json new file mode 100644 index 0000000..a43b215 --- /dev/null +++ b/.vscode/launch.json @@ -0,0 +1,16 @@ +{ + // Use IntelliSense to learn about possible attributes. + // Hover to view descriptions of existing attributes. + // For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387 + "version": "0.2.0", + "configurations": [ + { + "name": "mai-service", + "type": "debugpy", + "request": "launch", + "program": "run.py", + "console": "integratedTerminal", + "justMyCode": true + } + ] +} \ No newline at end of file diff --git a/.vscode/settings.json b/.vscode/settings.json new file mode 100644 index 0000000..06082f2 --- /dev/null +++ b/.vscode/settings.json @@ -0,0 +1,38 @@ +{ + "files.autoSave": "onFocusChange", + "files.exclude": { + "**/__pycache__": true + }, + "editor.detectIndentation": false, + "editor.formatOnType": false, + "editor.formatOnPaste": true, + "editor.formatOnSave": true, + "editor.tabSize": 4, + "editor.insertSpaces": true, + "editor.codeActionsOnSave": { + "source.organizeImports": "explicit", + "source.sortImports": "explicit" + }, + "editor.stickyScroll.enabled": false, + "diffEditor.ignoreTrimWhitespace": false, + "debug.showVariableTypes": true, + "workbench.editor.highlightModifiedTabs": true, + "git.suggestSmartCommit": false, + "git.autofetch": true, + "git.openRepositoryInParentFolders": "always", + "git.confirmSync": false, + "errorLens.gutterIconsEnabled": true, + "errorLens.messageEnabled": false, + "[python]": { + "editor.defaultFormatter": "ms-python.black-formatter", + }, + "python.languageServer": "Pylance", + "python.analysis.typeCheckingMode": "basic", + "python.analysis.autoImportCompletions": true, + "isort.args": [ + "--profile", + "black" + ], + "notebook.lineNumbers": "on", + "notebook.output.minimalErrorRendering": true, +} \ No newline at end of file diff --git a/README.md b/README.md index b13c18f..90f420d 100644 --- a/README.md +++ b/README.md @@ -1,2 +1 @@ -# ISEbd-31_Baygulov_A.A._MAI - +Лабораторные работы по МИИ diff --git a/assets/lec2-split.png b/assets/lec2-split.png new file mode 100644 index 0000000000000000000000000000000000000000..fad816002d2a8e70511aba4576d76473857b6434 GIT binary patch literal 64794 zcmeFYWmud`(=dnycXv%l(81lE;O_43?gV#8aCe75aCZsr?(PuWcOdWkob&9r`+t8d z*UelreYaFsSC?0)th6WsEG{ev2nd3>n2eK6z~2#}0neQ{Tim@yp1rqg|KK5z5B5enD3uZ4fp* zV-&4ilL#5=jt^1D7rcQFY?2=l84O3)myZ}ko>;`Y3Z$CbaQRd91v!{~kHjZ1LY=;I zL1~o4PV}l1OYEqds2h-o%)vpKmna^)S>lJC166A%kW*o?7*+xU9B|uB9FS?GDf+GY z0p|sX7qE_DMTZdPqnBm)0eL};@-a9;@F+{a2%^OIM!;#javWwK-Vx?7@RZ+c z9Qg|K0W4RSLGs(RE~6{vG2~3u0=kMq6d}_Yer|DLbm#s=@#OU6@bra0QupgQu@DMdKz_hTz;ggg7jqYg z-j5<_rqAvuTOr9k%suw{WEWf)Bo_psLJXvh-*;mn@@DevC-o+U<%td$)xKE@BN7+J z?QBbJr6W$X93ee}?$;*FX_)Y$mV265#e&;)^Qm=GiahIH0zI^dynZ4FdEhYbq z;*5+_wt1U*@}b;}MM>o}w7Ic4s5y0Qym`F&=jqd;$RdRqg6Z7pUo)&FbEP`+MAIE+ zNoEjcwoI^0H)d%w`-M40ebXS6sZCK$neG`JeBG17W|HdU4o)8lF7$ytp; zzvM6T3jCvTQYVrfNxT@Jp`Tfvhu~Xrycru9S%yv1?7aF!%ahgH)HTaV%gM_%)OBib z7Wo&|7By-$YKRW9oXQ+`52$As${n=#W+WFS$C8heg&CuVTPop>)DQahX{S~SJ(OI8 zWOM*RGG+A&XJxBYUQKP4-UZ&pFBH!t;3aouKlLFC=hB!)j2N9ltQoDc*N zc7i+*nh``Jha)#5XK|TvxEaWCn{iCA6LDQ|ky5dfgi@$k&FC6!zS21{?xdd5oiIF` z8e1or)~%NHT8?WDrI}^etm?ju`|EEQ#9GK%*-fEZ92h4XH4atx!`9i?ZE7f~YyAo; z*DCuk+g#>hMaOc=LYiux%2{Wq!Mnt@1i8e+*`yV)qTYnJ}-v&fJ!uu)af=Lzyq(1{dLuGr?kBw;NhbK!5|S5xPap`+mvHZflzDnt(& z&(a5XYj!IKq{DpvV{5}CrNH8hfp|GbWh}! z1&I^juD#P@LXSv4WYDBvTotZ=WWd{V-)|M=foy{Uh(42)l@gOGlDJF4PEw645=)7% zAwBq7EnQ9A$owHOF2EsehK3xG$!3IF5^V6_1Kac}15Ke|xUaLplkqO~@ zLXvXkO*}?#iE(5e<5cNn@B-*D!EqwKjx>cy$WbrN2G7{}?=OSc+in+i7eRMCPYf?q z{JvQN=j4n`4l=v_WkqEvW%PPEKPm7s(-XV|@<@K8rVmYwsl`oE)nQ_VVKfppE;$5$ z+K2;}7i;2Mq|7DR-78rZc=^@>7~`yDIGfrG=oL*Y0-(?|Hcgu!1m%xie!KKh3)1e> zo^4#Vy-(TkqIyz3)`BUQ)LCf!?W)vS;x|K5YB7gAXIOskRsOsfS9>=1sltM4oJv(| z{8exO2_cX&Fs_U9hPqNz+nCQ~Ak>%wuaO6W^Qi)yz_% zui$iqHr2(Z(;CI9v3178!Yb5V+*|y$Zoq0JKVmXx@^%T!s$G$#*>VhV6Y(BV*iFdo zNcwxahO>A1y2^6NRi$OgWci}(wH=np-1SOZGv4j~3B~H=j!Ea3%WcrHRRv2a?Nabc zV*S~|OTe>Md&9H53*R2!g`W*`4z943gpAzEPHFBfML6c#i(JcHHgYxO^*0&NoD&PX z3(ilh&1>e12uoBl<{8VLVXh_X)AI*UQ)C32Q7R^`CJ&rgPCRU>jyJoFZhK8*!I|x@ zBzIj4wCxpBSgo{mI)54*H>;O+5~yfZQYtxgxL=wt&-$CSno=tpwJlEU&diR|r#udu z#;zGz!E7`e23y>AW|uWu>$hyyTEDxC+9f);oM)V`rarpeiV~H1hq$R;iJizT7_9Wq z_^7^2n)lpSSlEc8pidN6iM&F3m)yfvA>4Jc8xpDx%S{XU&5xZJhT03yK za+ALI-~fJqYX*=Kzjtx8;3id-k|h?ju{R=Sre&g~Bjtf5CMM>xH#Fvu7ZUlO;lN+q zq^6FJwj2O}i;D}b3nQ(Ky$OJxot+&(#{ghppaJ%vad5MC)N`e=b|CvZ$^XtHWaMCA zZ)WRgW@AnKHm{z(jguocDe2on|M~k1r;)4KKPy=~{Li+48w9+)0npRZ0sfzcIhq;& zzYKeO^LN<$zWy%9^)?xYteLBkrJ9hLm65dr5HucoCMG(r_jUe{SN}lzuc4~{3}s+u z`LCh>diAfNZ?JI4*qa#v(e#E49(pdo|Izk8{kZ^dnEDsy{vOMFEAU)+V7UPQIb$B! z&7L!95D-2PaUp(1SJ2~DIL#kQFa575ejA%0hrZybU}0E}GeWPfB+nk=A8DGB7E3hL zEp8ben^RI7o$V}^mYt~_n)h!cmY5h1jMbZV%?~LH3S6NSg#ut=9*vS-_P7|q9kz@$ zA$J|L0VWxHX_sk3k2t|&o|$L&8Hnv65ag)Dp#OUOj>y-YS5*E8{HyKleIST1GcWW< zKCpkDb1E2F#n-RCEol&9zW+SSq3=J`Q#xXbsWh4-ZuUqa5N*`gNf~#T#C;*sB0+>} zf32WI1w&{C@agu*VkJ`)F33aJPa@VTsvHNuO>_)B{@jfS!}#xM#j@-mzLenght~op z`R7GP6mU8MRO1*Bn13F=EofOq)+j8C@BeP~B>)XG=lnSQ-}~)D$ttqO2h5WH8w;SE zVCXZ>VoCh}+AbehBpILF3Y&JB)PJ=)1Hn3pq5JkPpnM^4MSXLc>{?V)|Eu*F2-Xsb z9^}731%Y7#?!alwwTk7xTIYda)d_aN|JN~?;)8}A_Fd>(y|tPefmw$j%JHxK&egsB zdn&UK%jGg|BJbdh|9~JBz3N?Zfy7BIW5|+3YA9XK^1N5Z*t|C4)wgi#_K<7=U`Aiv z^8M-aQnmkCy@6Ft{tg1)FH|5(lv^x;=h`s?v%L>%d)$IYIRt-xa2V~aj=?Z$vSpr( z$0h53ECOvl_~-bbbYOoLhJszGA}ZnX^BW!uN%`bX6zjizBLTu`0|7f`te<`N`MbL+ z6N}VQh?RwmUaq*LC=y)f@^3Eu>;15$2ak>O8^w=C&O%-L*4XHq;7DE{qzg4W`_Q*O zP?$JW%@soP=HdNd*}3kf^68uFeQ5x&fDjsex^wq{jD!23-}d+LYmk8m!UP+!ej^a# z@vF!q3W6M|9CtCvj|I1m-HvD()`=CQH=TGWTMFG&v@Gymv!~r~6!9Suh}~D>pdAyI zd50id*R3U$i7LGaH{A+j1;qIUFod!1bi~96N~>sT++msVcB+S@ve~Q;!bj3+-Q58E z9$v%*vYkTsme*OH9>8+sUHzmSIW9I=^{=YruNyxQxG5zgQ!2;Acs?DTbp}ldl$SCk z@yvHCezW;|bTs_F35N+;!#r=0XDNeC*2P9AzQl(rDy09AD()gJ@BF6Vxqh^hA7T!; zU9==7@S`NqeqhsRd^pOTqXT*~o}RboII$Q~V*W(FL6?#aq^e(J#!zq5%VPN<3ZNfh zY*?1%cWo9L&?!^3X9(BCpngN85K=G2i}N(cSVL$`ae7^MFI zlNP-I^kL5Bp6#4@W5)z|Wg8b*Yicf_PW&&W83J!WD*PurQsB}1krT`6ArnsdCbkoy z=KQ9+s%yjk!o?M4NRIYST)tDNMI+*4W>CX^Z%E~9CYOx~L=c7BsDSBuasx-kns2B) zKy9U;*3P#j(0iK^NI~pi1l}mcJ52^MZx9i8bx3K2c7$XL$zg%ULy^u{lUiob-(*B| zsi>-WC6IhRK?d?0KGb*UDIxY>CMf3@DBf0|7R+ivEiO=|)eah3((W)Q?3N z$OEKSXb}_sH9-dskZE#mX>BC^XCdI1MRXwDvN$!fsRH+_LP|&523TzYpf4Jy)hv!7 zFhH{WMP5fGSqIxpdlXS6kXzZ3fW?wMY@Tp_i(sq(UT{l-(+c}5()vntXN@j2?z#zuV(!#LB@FiG&u3 zdFq=fwY|MV-hNICb`t%XJzEsZ)l9h}Q@Ab0TT|e!yHRTM;i87Z=&I@|! zVlR`p?r#!qEnQ*U4m8*TyLj5no!6KO>&_iOndrjEhm-cU1G#k3C~}w6Aei}(z4^So zI`n1sPG2(yuev%sHU}-iMvorph&o|vduPMFm)u~1@MHZBqDY5De)vw^8^_# zgi(U55sCG(>KGCWLoeGY*!1M6G6w~KdrTPxE-Hj-vpI$k|4t^P;{b|cjpT!qqUQ{_YlUD%s&Q^VofcSD=@fb@63Tq}3KRkcV&{_ET zDt=h=PNByKd?l^-adr{% z=1!Ka+vV(|~3B3KdM!`njpej)$A*(MiuByn{?U{%rhd#o(4!p7ziPsiFt3q#z zqBYgc2(DU9UNIBnpu(v8DIE;8*(kTVzimc+`R7_*;6OauMvpY<4LNtGh;$6VgrgLHU$rg3ikr!pc5l!gf94qrMRnEUAZN z6dhEG2)tXai8(h+AO!cg+qzZgiUD9ky~wKPGtHE%s6ge*?#Rx7aF>#1d#t15!_g2+T3W7T%-Z-Nfp8K>gpI<6;UL^pJW#IAWU={j48(PpN zO31f?>E1_$;HFpdFH#<0*jOB#{ zogKdoG82YVTT` zW(r@hj*z_>SQ-})cj0K*3{IcG$b#xz+i9k_rAHw1U`u~`#qAKplKqZ&87AEi z%7pdP$1yPXL!O$<&wZK;J515uAr;S5@5{NOnpH`7(u|_UGjNfDv)cReS4@pNLk`Er zfxy&IfjPdKs?>k~{-!c{fyqnG<;xm1)|%2%|D5m0hxt%z7^~E;`okNqWzb zCzi@-h<`PsQZyhVyp{pklL4dQTTj&S?z~;|iS{^a#ZoU<4mot78K-LgAKS$*foy%% zUaRW!o4P<|docOQ^Sl#Ewb_|QUO}O>(C1s7&NV&KU#TgU#f=QqS&&>}9f(0clgesq zN6~21>5il@-<>v}>C$1BiOiL2u--v9*8kpuc?ShZj!tjnc;phZ^%?XtiS6CF9@ovh z0W>0FUjz>0Pp?O3PJWtT4ztOR7mL|SBHR|U#4YT#;l(x>yQBNzGcs!-b0((QFY#ny zgcEQ?)L|n2Yn7HoFtl@sr-6Bi26R$W5Ru6#vZeU7JAO&FXXehKjQZy@acv>ait%pm zY;p9BSB=`x6^eq5i1QUr={-MOhbcYGR~aB2Qj(B>_VY9@XEjNwQP>MH86*AauNpD= zVT@)B-*bg+leG-es)M!cOP%)=h6r_q6rel>+L_UwgQA30rp*C@LJ1znO4JkQwUa}S zkpKwowB^+UKTtJ*5?}S~P_$mk#5-;N1fl()i9ZMWKN=P_W$3*!=;@cf5)58_6H~Sq z=Fjlj43)XX>Y<2800}?G`3XeC{xy>z5aGdre|R^|d`p2e=p4^E;ugn; zh89yn$mx76`&59pcy+$fJ<<3}){`ck$y_fKvx$LI2ilZ10B--JRXX&I5XiYGmNn?3=oj?_-Q%qATM8)+V!JDVFD5xj`t@#cQ(s@;UocG zls-#A^Jr~HSHmU7DiTvKgt1ii6#DQ+Mb5+zLkTRy#riml;? z8)hiHEZCKBSfSBW+7H%wIKldIbTWo(~_EHP&YlORZA9b-ydMiY9)4J&%*mMV+ zun|$Q8tDy^TFB9qHb1%uL=<4>cWtN1r^c&KA7O1!c~ft1J^pe||AOOCc!Qi^23}`1 zR9!TVlKssKg~riU&6-}m*ONxUHn08s#I_s3U(GxpfXTb8QDcWN)^0{JD~0t$-1Bst zfqMmy#;ZQ64v??4{NDe5i&udTkNSGf-}f~k4!JJi9zbg3vD<`cIN8}r+7 zx-wPt0>eXzKNq8TT_;_mw&h(}x^iljqS_-n%%a}>A!iiJihmd`mQohq8mSqGzfb3o``#jV3N6%(Y;b$j5 z9x8%M7dRdGY~h`8N~)bw$(_6N*C;YE)x@FR=p;Eil#nA7U(sD*{k_SsFd z@*kg3u{gSYD1mXps;F z0_x8X+Gb(KMqq+ZO*vY&f;Vgm_DOFu*#eVae=FlkwyJ*Y1He)ey!z5P4Y9uIbEYnD zdtRa02@uQLf!+@kz5+^`zSUNbqZ7rT$)oXXCxL?*PPQrap)_iVA#)u2Uh`IHA0kt# zh!^DAgmA=R(%RKFOG=?Wa}>(Ur>4#8V6gRyKeCvJB2fgs7+O<5w}(7G7KVHXE2y~~ zU~YNPr-poRC6V1;2s8hlJ+Ha4$qk}lRD-sG`=`pt5b+|{)S`CjD^Hy^9q~c27{nU! zH+WpPWA3=f*7Lq20HUvoIOdD@B3w8m&iRf8lr6nA9U%^Sgj|f1P)!UU;CsH7dPnlR zy5$6Yt}*6x%53r#OzJD2H8+pTsb+6w6A40n%8{rbqzUXdtciYolzehzFVBEzJ7>`9 zLn<3FBFg$h*U^L-iLX?$irN${#jUo2KLP&WfyL^1(&;n%gzE#R8!)wTCk51EHI@>D zi6P^zQSy?WNu;ZcH#%iYN}oCuPTS|*5GmgEUmH^ol z{Qxs)+3~{7jJUL@*J|fOgk*Tk9pn?XVbP5D!A0y9go{m#x}=P$0c^<@2X6(c59qw9C$V7;V z`NB9%q~cZUC_k9MA%tL~hl&;mlXms{e)otr2;Ib$({V!^l~Aq0un4A*b{efk-Jf|0 z$sEV~WrHC4gRa0N4H*t*ZYD%~XcZ})UOmbNS9J?Ihj3Y|Av{ENx)87s&`8z4Fl=w? zZfdtz-b$|pedt?ae|*0w+7fGR%?wg0i5AXuDP-D4Bf_8IM2GM?IB9T~4sK^6qx;^8E4kjG3kHyIQK-cc?lc)F{wj(N= zibm7k2G2um6{mJ@Ts@3vOyvv4F3MF|85>q1^E_x);u%`aOehiI$IahvC|k`fO;|g8 zQ7~PfIfv3JCv~60C-$d{+RB%nm`&Ktf^A)={B@=vD&Kr$z<>hZZS;{yKb&~SHMHeo z4Ga?ZRZMs2>kh!D3U#`A(iar`hj4^Fzk!B$;D@N*8n>tG_|zljYmWqMm2YvjJM-k2 zc+zKX;HZjf^NU$Sc}W%J`k!tJuxY02o|mG`6uS@@PNC{f=tRJ(%Euhu4}a{9{ami> zEQ@8qz#K0(DlF{x>i*R3Aa8a(EH3!6rWSe)I3*Tt?^ zHu6MLDs3^?`Qa3+{(* zmVe>;W2-5u!i4b6rl?T?(=3|TKBL|f2AdPls;)+LS#iR;IaxB96R5Xdc{3>>prDrG zYm4EPu&7hXg&ajns?7!mpb>I<$jP;0{DMTBD_q(r0avpn+0p1Z?k;w%Gv!pS>zz-IW-7AfaLx1U? z4-nt~$QFU$3+I@M=P+++GDL=S#xzpuy*nr3)z>PZ-;}u82fbS=*Rr*|1f^d7ys1Dm z7-(($g?t6opYQz^YP;XXYZl<;<^9yI zQmO51WJO~zd(6{CS>C_Kd8+ES+FKD zN49@FX{EIX`imt*HZtjQE0L#n=36fCC)dM0PMH?YdXdUuxb^^zEU-7>|A=S~Cf7@Hd zUX(Z{RE-a}nW6~-+!Vqfp7}2YTdY?Cx^J6lbJTNT}5HvhuwOB zp|V%vQEqXD9o&rb(MH898HVW{hy}gdBVUSC<)X9BQa`pV>h@ujI+n;rv=bs+yWjsr-USgJC5kDn7496f>lm=8Su_w=|RH|ojo1cYmYt?=V}45&^a}wVCN)Td^}>C;3Oa@ zc#@+#ASF+$-2#n-gcJ}E&>=V92xz+lOQhB6B8%p-fBt5bL-l%9$h#5Ay86?i+@L?| z?rtlZ-gp?hxwUT6bhqQ^O+`lW38BgeLwb^d(< z8p`9*>f?ZSU4LC3$aJ+1ogJ#LQP>>!k%JKMj8$l8Xb^VOLG$NNC-cL#(rYc|C@ava zJLJ+gH}&uCroS*Q%vsg16j0w;Sjn}zUz=0wv@KgpGi_4(e>kE|TOPK#?lHX8qW9VDKr&(CS7np80=Zl(sv4Q3rEDE&_u7~nELi`;s zI2ST-91;26{h({IWBY)XdPa6Dws1J}`s?xQCUyeM+F7{(_SzC7x{n95^fdkY{Jpd) zT_@4KsLaL*Jm4ezO;@xitcB+o9ITyi#BC7d&4~HCA*2m6Uf9&Ssy13W0pa~{P-xE2 zZ8}bDIsX&X=YB}1Y%!Ln-UGZrZpdbsJvxF z98eZxd_il#UvC^&RY2r*B^N9hbD4N){#u-CTR*<>iKHkWef6Q&NbGD|8ni1S{A=0L zk1#==7gyV_*qHFw@}89|D>Usq2*6+ocHQCc*f{ILID+-kp5Jpf#NHRt&IvjTYfG6X zu+cUy@a;~-tJ+NP(UP$AuqIG6*sq}}5PG>^zT|?S( zV)voY3-UH!>Z7*0ZKOBu+X+OCYB1Bk+E*1)V-ry~pHZy1r`eP+s& z=&v&9|G~kaLr$S?G!5^7%i&mLe+QJx>S~oEJ2clXK=RR>EmMoBpsX{y*z8rtw;Wo! zc5|b*54cvsP8XKfyO^TKE{)eo)TcKHW<$Dm_+rz{1RSPp+3iEkB(ut?0NTd0_fTb38T2expUrxyFuByzhs+wfqX167R z&+U#b-y@Sm*I6Phk%7Bxrd6^CA6=Myy>O0}5P9wPm;_p!&V4U~-=#{p{f-5bp6nVbgr=3CRS7}g`nXga%)uEW&JWhw`){Q%u=okyB zD*2hWKo{v;&X(EpXkNZ{r0@_F$zdw~RWrLL%82Oq-l>qV(Jl-@RsZMb7-XfO?E26c z2LanTeJ1O5MXsNYgU~%rw0$Ke-(w98bfp_w0ex=q>+AQZjz?1j3Xm|JX^Elr1j48j zI9@4aikLck0{f$_jZ|EeD-&9V9xGYBTNm12+ETtT7r&^se*{Yorrp}#fepAhi>l%l z?mC%Zg)4>4G z^F6FQN2+^4bF7ZGXDQwh=Nr*M^4)Rj=QSV!?EdNg($>L2A)vZUWo`HK?W#v*^|_45 zC|w~?4V4NI!YfYu9T;8RIxA*hf%aKCKw70dt0b7Dd~Y&w*?xH@@Z=syWmwvRBBDOa zZiVd(Q)Or-Kew|Ko7LuRnXqq>V1Y4s{;u1_Ri)jBi4gDn_&E_p4`+FUtbLoTLAyq= z#K`!{%u+Rc(;1+5O&I%o(KufOTI$^K4zO__(BAa1>o z{^N%t4NHD_aQ+ustO-IxYLnzVCw28w9j|MpGM#q9mzNjU%MsR#wbvJw1A~QXqu)`1 z;7}=_5Oi_0gv|1iwY^{NO_m*}q}bg4Kwej9HUGF+#9*=O1Ew;eVC!8`*=!b6 z{$jre@Bflei;LkYBo?K(MCbBV(~K2GWwFRN|5sqm28#y6wTk=~XWAN+l{znxXe>?w z=|fV1)ss?g+PV|rf*UzGie2+(L4Ldnk+Cp_AwKXlqOm2#o;iTTJlOF7^IjfarBGbb2XkyrQ~vlU&~)L zK@HaY;4A6(8cm<83DFo7LBqJN=EgY9h%Z>5I8dj7L5@(#NqPUK#@+qJlU;+E-SByz zY)Q-ZReSLhH9tX7z$Q^s2Eq9oJwbgX|Qm< z+EHt<8^$SX4LNT1!0adnEi!79jqEU*j4C4Tkcu^)Pqgq&w9H>z9ZY>~Z1%XMwu`~M zS@>ll77B zJuhMunB}q9cnT#t^%X+jz#u-uNQ_G&yoy~uShM3Z&CITF1cQ$CI_Y=x@?GpXi3Do7 zKf{1YFQF!vfYhfNqqfS*N_opV=hRAOQA~QBCB?I7-WN7QY~H2qlaunE>AI_vy7KOK ztM)DQ;}?XICF9i1R+RvU90PZ4h|QI}-PObGaiiE@F*-27cYC^m0cwSVBN(=Gb>+B& zd#`_BK_grr91N{Q9=C(JV-M9kJ}ztIfKAc$dLGRC#p%$VM2=Fkf9Tg3Pk5rX`{3zU zGmO{cUt>Sq7BTAhAiYX7K&s)K`7_P2S`N|}VAxPV)l1U%jcvb_ORNJu_cNF#W>pEP zonp7pILU&*h<%=gC_lfSzFWecF+Yu0dA@C(<1;p|cS~80rPArvRxbV!)C^xJD=C*TMa2$*3Rj9i2sQ~u@Ss2cbZ_!S1!fZz$G* zz(&xlJMxk3t3R%DL2Nr80gdBCeY1Lk8E_;nUo0KZ36>@1F(s{^mMO^1IK^U0kNUPq zK2Py!jy-_8c1|eo;L@D# zpG8*Znu#$hD{G_KME5Pr;qJ?1c50oeMRnjwWa5XgIV>sd+>I5Ao>y0Y%bS<8>x*pQ z?fX(JtnXKE0W*&kUs&<<^%a%W$5O&9lvE9BUb?wD$kT2Rj#k<_#O$+CN4!O z8WGws$7j<)HNAw8mzSq=`(xN!zvRroAaZ>;Q)=}~>&ElV9(FJ5-_3*10^1aOn$kF< zyer)ZfXJyI?>0JU6f<))=mLAXiVVvdWlQ%%Sj!`0&qaAEFiRnupC(#V_m5j4-c(^ADkp<>!WCk_h{jNFlckGtdX$^;dCk9Oc~ zt(1wL)(zkPJ+U!Yjm0<#Q}B6Nwl&+u2!>}NJ^Jx96y3iLxw34O$yxWY#1f6R?rC-* z-0ftY5PKD8VBQ1%)@G1ZyKyVW3a-EbDFW|H+3y{Wr@7^Lkx05sc}r~{!qx&rUwYW) z;-;T0(Pt!W4^B8qjf4ZNYpOfsfl42jO9E>zOH8(1}2eN$8-m-PNQoBfE`3#^38W!bc zhh)9##807etZ6Xo5FSR>@W$!_ zr%H(ClavC%>gf&29$WNs9~@1BL5H?y8R)C$Cq&=*eK zQN8X0rHZ92jU-%DYJp9Rc*P*&_)1fD2$`2gQ-^$?5P46k34LCDiHT|VZrH+V1gaFO z&wiNJ^X^)NPvds1Z6apBrwj`yiVFE7I(o_wyY?YguEXw$G^*4$gT$5pM{KWE+;1zw5378~`&+Z6=HxR>&zdv^fk|tL#6*G{5S?QTx|&$MjftF z<5%@crKIO+=-~?Me0-fY2V|SHcq2^ltw0dFMcLc<4&7c7h=;HD3SB<};3C*DV5y!4 z{~$-Cv*H>E8@Ji=;y8K$94W_oFNt>ame*;&j1BZ_!@)hySO~aUv`&b+`sQ(@MK?PA z4O>2b0){QU&uC0$M`08d75N^%4r$?8DTs+d*V(K^Wn~dBk!H*ZWbHeqAWw@3->ni7 z=v&W(1O~108B@$!eHAvWfkcwN@T*M3%A=VZS~*^`M4nZ%;c^iT8KCJ)abYw+=wxU{ zrP5jY7N4M|++S_QElnua|2epVpOF~svd^*e$5PjM(9aBwPb48bSZ<4<7Rn2?8H$g^ zN&Pk&zpyWL*g|?#t85iMACH1RZpQMsAK$k@$WTWrL9}Qx-4j)r{xK>Q{(dSeQEwh* zu93wB%+Iq$0S4S@?Q_{jZiM;z23}5Ve8LGho#&+_gZ_NiyYA|>j+TrhktJhjZHWv& z{Yn{$xz#JvuUn?86hCaLdgN_UrJkVoc!A3r2`eRP@xAUff{-IQcNLr!; z6T8bKRiS$~3X)6t5rWj!{E>wrnW)N_QHdVu%&(}{J2Qh*u7n(>G-G;O|afd2J@h6(}2IcimO4YJOuX=$fst~aIxibX1WsnQcjK2jXV zr}6pxyc=n2N`|*KHE6lI&FZ_B-Dj@)$AzIK;I;M1ESwyJ6r{$(dZ9|MHWAk z3^&NLmdmJ>kK3bBsVr7qAt+>j_dpU+3rqulsqY%D8a`SQ=L zpnxJy(CRD}I478JSjAPx=7HYVd5)Da$l*vNLEm7)HJ{YbZH~x3Le(Zih)oVGgPC80 z&a)@wua7vlw@97oNbr0+^&D4sKBUN$B0rq^7)V3Sq`QQ-!p7H8D8nlq;sLv>%NT_5 zr~9D>r z%)*FSdwQK)o|RZ^BR)?V7nH}vu0X_JBcTK02dQYU{Vh%D(V{|ctI&dha7ut&v1ek&}zEOHA1=Z6e7ZL;HrOan360r z^C$7zfNX-%w6mf!EA&Op+)gWMf4#ClTdD_En* z2@i1RbKxNfXG!ilQma)8Q$*?O;bubK8ot-JGta^9Pe<#4WZi@U@dTq2j6DdY5Lg(+im23N_ir8OEI4C&KETh?xFUo0kEAo2?Y6 z+Wu)tb$t%UtJgD}c1PWc%Yb^D>VIeeQJ=~HhcOhGX5BFeQ>Iam*#5Y3hHuSF+k1m1 z!?m%^ScJ3sZhz6&kmtrnPwSVScG>H>Dd~$glZdKV6XA|3CQ$x1WLT_Dbz3jsk$@eF zRWcB&J7RKw0(r8M$2!(&M;a=_L|Rm;{XK53c#h(|S=@9u6W(WEg>l~?%X%zXwW2qP z5StR^FJr`j^`vobe>`Jm-J&no>r8t`H+8DrM2>v054G5uxw8ZTf(c zmv2b&xEy#iAJ+N-YOvxhh@JJ}Ex-g~=*$l`C$WBav6aMN1pD>tu|ALP;dC+3u%5YQ z897?Sd9!@PtS{J=!mw9O)LT@X-{VuGVjcFqk&IE%z=%@frL9VQzF;{oAVGhA&olkFt_X35wNPvg1tkb30=BTQ&;SfL$0nP>w(5c!?~iBC zR~v=To92>NR14E1{in7^-49s5K*eX0_*T5&?++%K!UVH7n*OVFwor!1a-|6)onx?^ zJ?XP8+sBaJuet-Vhe!f z(}xfk0WZ?x`4<%5flxTCVnvmtqurhPyoMi46$)0)EsZFK9ppj*qs1KfXH;U=$3p0~1`C z&_K;&jlqVD?ON5hn}lk&39#vZ%!_A=;xne{o-*qhh6W^eB@elQvVVk#;))-_MY?PjYul1syV zE*ydA|CDTGoxIg+c-%&iS$~7bGjgBI6OTzSU;4=E6r0*SAf^2e0WFdP13qHk{8(tZPRt))|_p?(By#CzUSx4PoQBb;w-(Oi@v;ne{ST3iL%tDZ zXKEiwJpvfe3m&jcKf&VW?!F1M&b!C6BeD#Jg7)6L=D=rM`K|8^XTKdMvmY>56sNNF zCS?WNsG-H_XjZQ)0LIzqpF%g&W+3%0owjZbr2pthVYWCQW*lR~Unx-n7DTMLa8eum zE&O`R5np=K_?*uOL{9@C>MR%h-7a_8@fRcjtpQL(p5uBrjQ_czi!5(w@Oou)|4jPR zVvcs%VT`+|q@)^e2FSJjK1n3Z|BG(2yxww9iEd+m0n65SU+&0I(a=Z?XmP>UA>6|Wg{{YOC(9v+$=6cyCYbu3h zF4&T-G&36pwL6OIyR(H?VQi^U((JXg$i<3g%SzPnr2q~}rpLd*y0qs?;gCn&1YO9BF>f{NTDnoCcAaAXWzUt5_WO~QI~&{pl} zVuivtKcBM}k2fdKFfdjB3z9Dts;pk`AJra3qm7NdG2$68KMoF5qA{4>1puP{ z%c*=g>QQ$LFc9zFlnciYlRvTfT<8wIH>UgNkox~3>#L)(==N|0N$KwH?k?$Wq`Nz$ zyQNXOJEf8CZjkPh?(XysdcJeMd+%B<{&K;*Gkf0sdvYIz52xTj!0!k6fHZYR3qkJ8 zX)Gb?If;YEvdD55uHBYb?rFdQBu-CHm8~v=sDfGg&)%eUvtRiYA5slAG)2mon6_MG^&{G4w4hKs%laIq7c<8CbhC(`zv*6e;gKD#&M4ncCVnDp zQSd6s8F=Mel&CH_iqcSSCU*3NM_h$7>Tb0^35P#B9TXk2lR_YkJpCd_#D6}a_RDD) z&02;jYFt#H>?h+1I1D=Fa^!NfXn_(D6&1Ab7uagL&A+dUUj&K-cXm$(Uo9qoE6kb% z2D&lXgP{|{Mvr1_u>4f;?*Er^(iN8<8IgAQHHc>Lou0jpWbJvz&EAkB$PLThO`e|G z#@c&wQV^5i1TqSdHwDA-V$$|I#|opR2xCA#^31;iRJgSWXoY={dA`{c*Thc8Il^jH zY^&yrsv%BY-oh)@M!rm62Eg;gDc=9YZ;y1QFV@i3QYmfLFIL4ox?;XitI1~f7MZth zj_ehUfr>uI;OfIfMxhd^$0Fz<1OsfhdH4bMHM$Qp~o5Gj8$c;XI?Nn0!b(| z$5PO^V824Dt(pjxl+dY5l+0Whac@Qs{w0DxVC?~fW_%74&q`|fEXJzEx0r8Ia%DO9 z7!(Gk`oL681(TpAbby)p(|(kps_P~$zRw2XtAm1i)Xo)}L73_a<8y$065@;r)zX^HbP~Pu!Wls0ISk;ra{h1c_*fj7Q4}1F22zN@mML7#o0=rpk z8%SU;Y)=UHa*!PD%@iBUZOs3`7M~Qg*LP2_mP{2NQx)(P;WOj?ZN|=0Zu1gV6A`9y zhF9x#rA$70JaIwi?R=7;S7>iY$-@4Y3N3%UGueX%19!%kgv$#FcYc@Q0m@U;YMn6W zG$n_@0RjX$=$?Qa-SA=;SGz&Zqr(J~dEs9G2=4>NmgDoOx6K%V_uQ|C+4S$~`sSC? zIY&?tF3i!}8&0uu-oM}8eM53a%^&lHBj>%UZF4xju+VwqeT&HnR?uF z%#wqHHMZ5s^Gt6$&m|PaLpMJy=fD3BV)g2bI}r2~QjIII=!!&xplYymuRz<#hxt0C zPWfCOW!Xn)+$LcN(mt`II^@>&!2!uI{Zo^AUEhAaQgWuh&0g@P;&-MMYkZ6k`_ry+ z29@7fze6$zO5r&ER*kB^LQzYvnWak*;><2hLPnSO!7Wv$kS`rz^jkoxl(Kt7RGly3 zqNMBvpZqA3)h?mAhN8>Q94kTPLQw8~;a?|#exgQ!hAw~?Sgq;q*$dgxo9)GEr5CH< zO@xq|+zD*yL=9LRn8&`PlD`i{Bhc9#zFPm0wt%P#G9{{2o?K!`uAT~_VeT;M{MVWx zwJ7;vIvvjZxe1P$&|P=}dBM_^XD6Ll6d{dJoSM!EEP;14++N@PqfVO7wMg|$VrlwLw9*^%qgdPYPpK46cuRK&=;S` zOk;VANDTg<#f#3@>G8S1G#jdctX6ylwXsHiRr*Vz$hpVIH69Zx(fT;E*K^Hv@PiHw z4K=>pE-UKN`+Q!`Uw=7uy+6|XZ5cPB{GVaGIO-!+eFpLub^^Fpd->2}mFU%{$O`Pd z&1M>UT+ca}hVecDLZnZyH9+?JV+Yb`G#C0rzY?f70Ci*Sn&S&N{i@(kNhf@utydk<5a2$D`z^semcd%Hir!JuBn+eN&y~{j zySr_!wP2rqP0u6>@<3q2cPry)#-AbCm{SnV#-O6ZRv?`HY$ktAfc{SQPGMzTT%yAg zT&E)R(x317!gIqVR_|K~M>Hiys_t<0i#pMluS#1))tEnyk`-qrg0whHL7o*#J2~mYTGvmz%H8~A%i^{8-safTR;9Lf( z-isOD^zpKf6gC(#Sr}1@b=t+1bYF}G(b;k7f?C{gS$)^u^@2A)+mrN!e^ht>!3tz>>6DF)bI%h;W}-(`^R*GN zO|g_lfnb#|RB_q&b;RQJnxc0s*cab94bCJ$MPh2&wbiQ%mMRL0Rnt(>imQ?kScpX9 z`!(3Xbtd^P2Xe?{)iiyL>b=JQbblWFUft}GZHbbc8bKsnujV`Vmj3payjz!PvAX@4 z1ji}(jq^hAa_;_>740`sT|!c_8fT!>|NRB9L`Vof(lh^)?w18UQH&^lQGr5jAO6ma z8E~yd-=H_HjN@20!RX(e#r=sQE4n4D&JY4-?AI5GDDk>>MVLE8B4^rI+Otqx2b*&4 zo_t9u>L9UZd|9K(G!}waY`V>G0aDAhBn|QlO{-w;4^kiUBieBadD)PAYI^f9kwSGy zP@DNlwjROij!U%xSIPav{G(u{kv6R*r$69LlgZ>=%*l?9jO+!FrLf?teR|n{x(*~j zgTZ&$a_f--G+mS_S!JT+s!(TssDz(j3mVWBkL}z*x#7qXR~r5R0zWomTg~G?qSL#S zH$g_Ob95%g)Ogi~CO3-WG~A?*V+XgN!Ki6yn4Aw)j@LWZZL3zBoqGUBED|oR^}k_1 z@;3m0q@6o{`%H>5(koC{FZ$8r<0@c!2`5`}*#=w~5!5Tp;u)z_u z6FLDjmSfFg%j3(yz~J@zu!qU(Rt0F=|HW|p?u$Np5G8xe^Lo015ScT#=H|gHd3WlauVP z>m!T8pH?EHQst3a8d@clt@TIRw7-Er*>}8HW5Bo&g7DZw@ah)~gVBtMB$xE3VFB1Z zCd7g_$0(i*)Ac;lGp@$I>xlnOzWrFX5Uni2i6N<15Tbhq!4O9Yq--Eu+mb#F;5i68 zHF6ABplbDnSKNTsF+fDv@ULzl9Mf0SY3hK7HHaIXQo>!k7+v*GQ9u&Y&v0U>By0&} z;dhNdjxkXj(NvbI%~L-CmXZ*jvsM%|H0Fv%=h(ReHC^{U?l`l5z`6?9GcY4s=$YU+ zVDV@&7%4{Jd92Fv;F8<%`;k43`Yz)+l_(LBFTj~iNz)lB@f4d4UqZuwR55?o&1Y4q ztR*=bD#6P{1*S=m$5crxAJWm07?4r8@jY1I*ISiS$cn16eDyY6FJ!UiME>dX(m1EP zX2>>56LCOo3vuzZoEgc36MeKcb*X0nHJq+DD+G+8tWf>wlHY{+XJy5!`plb84fJaN zNU3ec{$uhPOscny#&tzUOCD?9FAMz_ndC!73cYL38Q!n@oJyV`JIOrJ4x@$J^m*90W+hcbBWUDVkbmZne%}`gSCam zfrisdJVRG;a_wd(XkaVo1&q_y;zpy%OmEI#A`&0Qf8V0sk+TBKG&S&zX^bc0o8>t5 z&kDA5wlas`-aWhILlEiOHYO_j*}0eyiK>T?kuY{fQ>6_Pjg;q7ZL@zTSx>G-Y%s?&gCW^COC}XcTNn<)kK<7Qjj*VNi&AE z#EQ`D&o})~dchx^gm6W%0P5;Iu~JMCk1LmBt$o@UP8A|o^m#$QwS80E32z(ECfksr z$-4S_Om{Mwu;4pk-N>SUmSWi3=h1z|tu1@}Xpx6SPh4_xCb!9_2w;|$J5K!NSQuwF z$~8|`WF{2P+>x3AB;TfYlJYm*1$MC)3-EbgovuSm7s!3sDpq0`uvHA25Qlp_v3%=N zd|a1Y^S3dxX%NvZKY>$Y-)>bmXLRc4EljIP?IA1waEn&fYkELd^G>S3pV|>__E{*@ zZS$aNA$xpayXH!@fqBz1|JW1?iGM|ahbbvUP|VwrZDk!mM7DS%qDNg0csE!udfy;$ z(nfmvw#*{nyw(#~^-eny4KW@4M}ppoyFF(l<-?BdBH?*YwRi(NO8M=^1U@r+S)0q& z5@9gLKEPUV;fI~}EMd}4{-PY-3kn)jsrDQbPyGf}sC+DCa2W7Ci+5s0E(B+A;`MC$ zvFqAY4R@?OtA5mPHeZ(dn$K;%>gu`c*fd-*H(@H$OT|Z^*eKiEGroz=wyVvH=okM~ zj%jB4*@MHO%a2FM=_!EK;dcI{`<~2xD7G>&YpzejVi6nup$4&{w^{akXyn|lE-LO^Xk$aX5L-=?>b4nX6$jL3 zz(A>53wP%8ef}{@kMaRMY%|@hV~N5BIt9H`gl@t7@AQc`MtwL_1|k zn@6NH-~RxN&7>uo&7{?BGvCfs$6T>M-^4~iIsrRp^1#VbDfNyqD!}p|stqavw{Q7V z$Vmoq8zpH5#l5()^^q8Z=NnGTAe^psTtfp#`~4;i5IpMmFF^&6EBGLBU9`Dh?N=Eo zWCMtkyjtLvMexxDqzr-hq&R;dS0ty~soF*^+S@32lm%1Y^lEgPF5kKQA(cm{^1oRERJZ(1$~hp)Na9GC|U>%+Ux`|)q6^GaNw z*mh2yO;z96!w>i08|iO;q&-IzeCM(5SKaMge;gnwtZ}!^Y({VOeXV7OvpwDc4Um!f z=&+4EJxBydP{xx5)WJ3GkAvL6@=gP&jJg>mj5-1Q@u9Suqc9Y6@-P0lpBY9-7cJqD ztLr=&1bmz%4l4Zi?;r)PaY$C)-j(~AQ-m?QpYKqG2hYH5H z8EcXfd%<#2fl|{l+1w_25WY7HW@2zsz%1;A$n!M$3)Ci8wXV|i>2 zXkKrnV^M9RTt_q)d8-P<-JgvYzcizes6Krc!EBexAKu54`YfE^|DG&3w;i!=sz4aG zUSjG^aekG0Q=G$8Ux4Z9(;~DyPyCVQRU zdDH38|5I51_v=gJQALY_hJ{_1FCa6XPf0Uyjq7tE|A+h_^mma26fm7N)%lbeK$t-l zIEY1lLd*MW1k{0q0HW0Y49S)N%+Z45<9V$Eqt|ZqdlQy-u{qAGt?iB%s_*ynzD`u< zjY%nuNb&x!tI?nQP0SG?T$C9>9vm9#>J3A2c(^oai4K9q3dqkV1=tp$@`X=k|5c0L zK|fmp;%Emp5stY9XfW{)FCih&pXppi^Ui=iLWDtABAP7puNpUVD&T+9iKf1=Li>NN zUflswCehp5#x1wau4mDJu1vznIPrf0q>1!5v=&FdY^wwc5hxfY+~&9^*W$wCdKzi7 zT%RNU760Gj5~2U@TQkH;(4tQqlG}bx$oWB0)>7Tx)>hz~6!r3S*YJ-_^Ovax0}20A z6X?U{FYtQt^)2>$vUG8N-dQM{#%S0J)x!L*D$I}4Z|W!2)bU<3bnENmk$SaZ@aheq zpLKS;-Y}R<=IRjrPXz{?0dJBbp|#7b8|cwoc~1a146ZI^->seRlU9hy|I}qd|3p&Y znqzAh)$*Vu1P-_yci-A-s#|OirV89P!zhj~Q~p()SuO}H0Jh?qaS!O@)fNobb#IPq zk2W2hCjEAT`5WMEf9h-NgDs37>;Z% z3p|-}$t>?>BnfG0VJ|OUK+HQCCYMQmcVKj~+yAv35BGofqLvz@Bu=$&{3jjs{zwF) z!={LK)8{^BEiQa^YfS#9V-`0LkEMSZ1pL4>)BHTG5d2=^{7ADaDf^rF&azp5|G@hO z=)s$S?L(|cE(0*-{Og1M{0QVH%^G3o`5^+^K?Qv3dvmhk;o$lJNS`xluAPotB>&G^ z|1}CMl8lGb#=(VaG_r{#w573ntNDuX?DmZ>IRDRY6#)Qu%ITMg=)P%+cRi-h?=$%` zN}&h)LUGuwKX&-Mlw7$1Z|k3b;Naj3HD(BcKxP?u@Gi|-n;!2UcQD@nJatDvBXggP z4$j&Fk;4P(Mhhfgy!3 zG#6U(b#~iIufcwdt!{?-WI5NwM6af@pfE+CoK}le$dH$ z{;jRN7O&z=FkW6>+sY&R`{t|eb>@?x!0K$EAIFjDRDr6J=2LD$M(2k&yL)$klN?Fo zTOnp^TLBUUh>)5dzunH-?qG+xdccz30l)Mnq!Y-bRRIykiQmsNGsun~cd+0w8Q;NS zvnrrFW}_tOI%~s-{+aOPW$5(qVoB#mi63xw5pG|wK&SsP{8J; z_n6#FK#`-12;EyTAYdy=tDpvvFp zSjbs(2P{JRKhy|Mu8Qt|`$DEk`gz(wQG9b0%We!_%xp?3SmXZirK9RLbwMvbTQ}qU zbfS=xYUwAcjjU+IVArP&py{X1F;qazLxX7Joa`8Jeju+P4rpMi*nvEkvqt-=*%V>s zSc~E+*_5P&SWrg8lJ(VbFK)7XOcTl?=0k5tel-oZn|jwzxvMVA)7^LB?~`5lz#R;a z*-3pIrxjD>BQjUD!f!kMstcPm4BliM-eW5M8*L*6F?x}EmNJd^j?y=qy#c{vqc2D7TXEwhz z1hSbWTk>h_aN8Y^U62GSvkw2fmA*4Uf)=%j0+kE#p2MOd2PNq(aF~`%dFe-M%dkid%$<# zIQC`i9t@_XDscsQdHr6a3Uu*k*|%BBM(`%NjJ@!@P#8WT=&qn;0RR1TU1n+RBPiSF zzGJlB4|aUE3`+7IuK-Iz;a&#{1LOkKn%4=9ZxrKP|?UMx5})c1Vh_( ztQVLB3)W+p_K9pVqu{IZ$$Vv&51Jjz+qZGD9~P4R=g-~1-nR4m`mFt_LWrc2XBxqC zWs3pT*x-XtbRV91j8biQGI-Y17!r6AgW;M35Sf2(Wc6NPPe_Eqs<*r%oqZ*J=AvJuM>ya&r836pArU5u*C@5$p(WF4?RX9I&2hd1%&NJis>cVq_gmj|_PA3KyKvzUoMz z7U`FJZRea66SWHABE^&QJ5gzb&Y}ERLQi!SzYoPZpE4Vby7~RJF``zSK;E;L1N7&> z?tZVc5;NVs6?OY_CsnA6p%{)0--Sm<|0d>M1i?srB;kg3>it4Xp3XPS-q)bmaPB3| zT5}}87+hsKh8>7Bk=Om^c3N-u-UnQaf_P^CYynWLmNQUC^OYerH8tA#>T82XKNED} zeV)1SIZmcyNFlh&>{^DckciUN5(_`U?~yPw!*{$WENy4fp+h@PD}?ZtxxG|%1tl9N zdchg#6?)rT%$XaZO3!~7p7X&=8>Tqkqo*oDVx!}0e#~n@T~&j1igPxisFtIF;WFH0 zE^$lLJXI`XO$(>E(T!H6lo%BqKi9uTSK69rR-OVC^o1=f6ull$U8~m!J&d#pbMr3W zRUuY=^*5S=7y!pv;|rSYrZ-#2w^dTm3*`(pV=wAl9DvD^yAs}iu|cZ+jamWrAStNx zE!{6g`X>wug6C)!*|G1^y@BQg8||7~wT#>%_*CQj#ex-HOILWfJ9JmukE1yw9;T$m z5Qf3$7n`QpjRuzm=B zo|udb9B{nlfy9iC%1j8Tg_odVVwx)qVEt#;ApqSLI$LRS+<{M?n+XaEieIiM#6Die zDMyL1D$N!J#s5I5T-sW*))+dQE{_yD9n48;yAScab& zPI@)GQ0+qeiCpfF+{A`F*ioj5FN3J>4bgKo-RYYiuqWN0*xQzgN7Y6@MqnMG2`MNK zhei!lNUsS=@Z_~HI{H<06~Z*RzK6Dy;<`8YWp4iJ6cU0nrfX$dW0DY)6hvZ%ME^Q0 zcZ=!DkaA&WFfvZ27rAeQQB~H7~7?=0R zU{2&+hnX2FbFTqQZ+qqm??twH_Jp@N;uk!O`so7=x7QmIOtE^!Aw!vrWg|;{5cucB zr~}7lG+-G7=I914DDh zM(^J#ZdWAxqm1SxHrAtnt}Zj1nn%Jkas9qRv}zdjWU-jS_EtuLAzn&MYB*{_IU1~I zV^Q7&?BzkdLDOhhU&?Rf<`Tl!4|9k8X(2#EI$5S829Z3kJJ3uVQN>=7{1`-VOBarg z;x(E4gBR{4C_!*EWf}9?&5YBeNMFlV+KVY7nrvzxb=2numDr^Jx;7M76v zuYnlU;|Qsq=s*Xz!!2{JpNZvtH7F!utmPRIkGe&*uPBDoRXc8}$G#`Klx6&~u8DKz z@45N{~DMB>QG-VnNM$LDuZN_G16lNtu zJF(1teSMM!-dDS_CTM#pZ^N)mXArc)zJq46oXaelq_f$hV$3931C?;ZAo|X%+NMH+ zg=U57#1Sn+!}Vg_(0k3{p^kN5c2?!ENU1LP9LHNcj6`q(`~k^WVt5yG-4#2bGRBD2 zG^iwg5GZH#2)_CLyz=C8X&$8D$q^$(LK!3S!=^J9QM%la;+ZiIqLP~6Ay8agMME(C zVAXEh5PUr-*@(P7i`{t$9bt1-%{cB69;T(aQ4b7^q{m(Da9`0e_-oEy9cy&`_0wLZ zr*CK#QQMGH#bM&rh_(l%s4Hk^>lz+-L~)2Oq|dVaWcWj&39U7~*6rmw?@@cnBQ&09 zpOH%McB-94N|8k#@n#-efP{55;E1iYSyp9B1Y*bf=fAoJhliE^H|LQ1W3ib20s=cq za6jkf&;dxnjf>kW^T{E%C=met^QN+wZM<|!y50{IWQKC_PdGaHDY!I!kt&|BTbhE( zp7+QviR?ineB1N#^!VM;D`LFZ7*-j%!&7omzi9U$f+<+rUNQooFIw$E((Uijh3NS>~>8E z`^%9*XTI@EOES4>$m)c2OrJKF zCQCUTZrEG7>xJwdJ7Ll+s?F7s$YBW9LAqzhzI+|Gv`!3)u7|e{HUJU*oFm%Rw8q#7u+T3CRBNdM1PXbk<$T({mj z#nOv3lPZ_^Mc{0?p)#E@XFr_Je>e)?j~QBg>9|8gl~v0<$UMXjd(w7Ne!Hxwmw*ZuWl6J6{DS6((sl;??EoH9{bNt zSzpWaCLlkVDN14=tiH0}pPa*y?y?HqG1^)1WO`8x+IgoySzjd=p>Ef($A(!W8TMN7 zY_R4Q)ron;mGY;^Xh)bsSUi8qS&QUgzL^RgE2w=%>PeXuCBW`eiipff3pPY=c6waVk6Z;Zoy zjPacj0n&#%7{Sm)?jknOyt<6Dvy|&Gl#ul)+)DaHfB{2t5pGh$jr%}*g`I;9yi{Ov zi3~bxjp!uUrU}mQRwP_BBUNnuG_0@cqp!gkDrtY5|2Vsq>3kq}<50_R1ct0@|NQv4 z{7?0}!&#UHTdbwbxL=u^4!O@E)+V1A@VhDb3DQmeAaMczPo=5`rz=fj^4ob|`C|i8 zsU;<*HL*37jo=Fjb}V8p52HX8(Zbi+Q_EE=h)~y*zpU;lGqW833MYEej&VO_SIwf* zquD1Q--v{Qpy2)7a7t)O;cV5>`&f4?WQ~&UIa>n$Cc}t+8;eg>AaJ7t*u|;q-lGu3!&HUsz<FDW}uy+QR@-J#_>U4vn>KUx1jeuWulC%`EYbC0gKgS-Xserl3Q7$vy}Ih88Cj z%Ur&(vkU?Pfmv-^MntI9hZ9kwA873jH?`8AqRTN~@l0s)MB^b#^rqe2g;c^LEVLD- zzsDv2EHx3-Y1$GyiNbK4`FPh}ZaxrRuz5B2Tj9_}1|w(nQ$VUE8wa|kAe=l>uC`2J zQAVRCMSv#9+6UX9;9$v0!nwJ_5IP#wvQ8j8MZJK+Vf3~b82y(BKURZNx+O6Qz5tbt zm}oPs^aKP13E34<7pf1Ke^x`O*RRhmw9+(`E-$tMd|kGY8y*pmXtFAcK~7U@mV&Zy zD26OEz$!AA@d#L2sfEf2@F~&D)%-m=>cRs@!``!)UT_=hn77R7K@5N9TVxig z;~7#p74roikNQPDPQc1Uv(cVtT$LurKJ)DkD~N*;laMfZ-P>>Qeza(KXHnnabTGw@ zjYTkr=^sRrR7J!LVpi)w8_8DU&+Iru{D?U-?e$pKszU)rjL?t%WLehMW7bPX>=&zrvJlE0k?t3{`J{i!R;avcC|)v)qluw z8t~g1Sbr9o59K)Y`^c|aDWG>Wz@|o*3*N^vtBL$JZnCpKLDLw({+pg)eCkA4T3&< zvn_OK@s7avnMo`XGe<~J&|nZxStXuaqOAnvpX;bY9{l;U{~M98{o}R8r;hga_Dkqo zi>C}#xHOpLk4<2sVk+{-~59B8jt8BD)Z^hXawa|TKoz;DhmnDzr1Ckh@P%Pi&b ziC!0eaH1Nmlq>~$2y7`PTO%GCA=o_k8*B+xd%Ji-oz0r2P?~oF?ybN#g{9=e%1nl` zjEmy$%w5a{xR8+ zO9ilWr=Mt|VGhMS6~484UMx0RqVhW53o=IphohF88QL2mO)6lH@o z>m7JD9g^}mTf-wXK$uf`(W+8GR}1V3oFL8h>ms=;qI{}uiD>k-Q2&g8(saORN}y61 z03jlADVSMBBhf|0Cyt9RsOx4^mSvxr8CkR^N~Fm#_~Ypg>Y~eYtIY&8fArpM)Qds0 z;jCu-rW3J}7b)YQD)OgDj%3l7=B;Xcreq5z>*m1JV~F5})gLA>9(SivKxqM1B#Umk zz(YMb!Mv^Q%@&NceL%Xw+p9Oj1oFX~3FvcwYs+Lq#=yYPsJP}Rw=^dQmk&4Z%UBIs zUXp&W-`}MMZD{H)D#7mF=UV=U;rni1pQc|cYZ1(z%u58-6XY`W<%2w@H_~`nQ(=Ux zL8IADZHVJHggM?_I36VMrDg*M`9-qF{LLj2gd|bznA02^#`6&4V@C1_SV+sMCgcRO zA3aX}(j>v}h9!E%Aw{#lF8hW4pu_Dd#T!t2LA9Qoj1$r_BT|(gRIL^0s4z5j-&j>r znC53^|DtX~dF<9hoX(XI$&#dGzww!wJ`vrkf9yS<2x4B))5w4PBd+ ztfo(DGSW-POpjF|Uj~3$T^}C?^ZUaO%1d>n>I^lvaGF(*SDlXiI$DByut>T0{>>(W zDy|NDco=s2@SW3O8WzE+wx@b^@_t$1-D)tL$aaI7b52)6(rnKdK0Fq2WMfQAv8Qla z5BCOkJNKSn*j*E~Yj9L!#0Z}^{&*#oUUf)#`+mh`Z&>Z7k2TV<)z{?En)?x9uP|?w z)uhP|INV;d>+Us7uNH#Fh7O)%n_i6dzV|hv_fsn)lgUkb0>lOo@Y>XVcFX9PrZ`0? z%ZDVXK4C2_Je1a4<@6oo-7`l;dE#HCe7_64T%%yKmCRXyzx155|G^%)P_4I1R`Cb&cabY^K)?AI>|j3_ZN zeL?zDY$PCRv39?LUF`@2)P)=q6RdZ*eppY0Ep{6z zQCcD)q1G7f0S;yUnrOd9pfxPhd`L*Hq5qi6O@byM7LG8psKxEas(gY?x!DJ48NqvA zDd&LMprQ>+ggO7yvdD8qkj^87Z6F|tEvKO+=+VGhizbq8t*$SjG<1Bt*MGfY+6f%dDPiTfd?R$y0K0EO^giv+I_+nNb?jaEE zQq(&OYuPa^`{ZzEK@`J(+5$%n1_Ujg{n=6s;7AI%=mys_-ADofT``l|AIx4q^e4Wt z{2gBu=>36;C_{jd7h5jZtozXO1&&42tRh$v1I6K&2>C7E{5%|cGG}?|X?!!JXRc$7 z1aAiijCa3tUzq}*JVoy5tIHnK;WSuhIW&H&Je2t=pEwfzS(E?F$b6N-z>X5d(;(~Z zKNMYuo-ZzIkQY&Lop5zmPfqHr@*-D$_RM$7rMy369qH~nN97+P#v(mFG!=YP_PjYz zx?^|~+D8EFm&NbdI98GPYFJSzBm?_;@d>%xL-B zQzF*k#f|n<4fu)pjl9LyqcngQvJWye6m59PY3gabhrsNL zvA_t?g$}i4Z?$`@zI~sr%)&>*75_U(#XiYT-}T^F9t%_ftjpU%D%-Y8rLVS2KyKPO z);8_&?hHXQsv_%cas;x00Y0#tOn-RYkF!wUDi18C3$a!o04H#-(N{jx+Mnq#EEQy% zH+6?BloGQ2Qw55gQ&TWjg%3Hxm2>CIp6Jj?cKT{c+-r-{@;MfCDjZICt|-wU$cWA@ z5|*$$Ob0H%mQmDQ>!215FX;^Oa&8sz>9owjr4|pv%rs7kWR#N-9Fu$i@5m_^7kbTC zOe<})6Tvt|RVV_2aC>*w$(J{VF4nq(rjpNg1-X9_{}u{$swY|W;{}n-t1Knwl}yT> zAy96+lH%<_h?OI}8YI}!2-BMQ#g*OEKp#Q=+Qt-4jbkj>?uhQtP?A)MAI=WS=w&}V z)5C+ge|$x6axUD({r+%7*&d@_)xCQr+bp@Vs?DWuhT^#jIA8ZLdURnxXEKLa%jNfa z1y^J#(dl^|LuZPXT=G*gLacmmH-9V58l7$_$Ii7zq@FOl>}C&c5>@+LuFz7*5OIxf z6HwG=;s=sSMMe2akQONxQY^bJ37&;>V zjPXYf?eErok%PTSWevBgdDb9Fg74l}%Y2A|+(O*hjAZg|`?Vuefeyw{%^pd9Oc{eY zf|h%IL!!Z~_Ye0bC9Bckz(*w=dMI{|7Jz2Emb^{^eP!;QO8iOHQ-q+!&jdVraD+O* z#s~uz=NE~L_{;g{^)y3Me#nGb{L~F~VGn9$xn`Pv%VCWgv{`J2GC?ad23s4EVREAV z-Du~Ur8rttQ&ht*O@1P^K9<>3^9&^$CxgYPt4Oza9l;IgF2ZJzJb7Qaq%?%Gm)94> z++W0TQ&1+fsC_JbFdpO|J|O z%HII7fjZmmnKj+Q{i66eP07r%QX{JX1eEMNW_h; z{gxYMN3I6nhwjL#KEL-y)o>SzW33IwXj(j4f{uWIYUm_J+eXXo)HFv4Ci_B6v%EGW zEu?~*iR2qUs5PLuQJ(kY$9~S^rpoqR-Qt9ZzlFz%yvAa|p$SS$_gr{n?iy=0^mf=B zflGqvz~XcyJw9C7QP=d`a&JL`L+b11ZlukU+i*wLF`sOt=@ z3a<9FmwY7q@Fg#=MjkC$0~#gKhK4&&wU*85-9VKzhXci6v9XybwQ$aSN4JRf^|kzD z39<%|sM5;qdB_N~wiDU@UDLG`SzgGpY3$(O z(nOVFwO^TIzL9I0UiRsw9ROZ^=Hf&qc_|rIt+INqTNT+-7@f<>xHLg zav;n>J?6X?)M2-lI&r24g3k>?Sv#duz~-K6O!)*C7mSS|FIJ+N$ZD_i6oyBI_sw04 z(FqZ*@Wg#W<|1_oAFI)jSmZFRs&9N@hfac(`kt9+?CjDABu?g!?zvBK{TU=PR(Q8%WHH5-_7 z`>|-F&FKVJ4RUf}>x*Ns=lwp6D{6vo6sO$~ndBk9Do-hj7NMw5YW39r(M41hlM)}} zA%bRSRpxkM0za<1E%>U#`rsnJNxfJ>_cy-IvVl}K+$M?Krct$hS6;#{Q-+zi8ZVZN z-nG-S=Ch#fCUFNkr@P{dn*^IS3vKqI`QwE~mA-%1eqH;g14!#%o&FHcf5&x|pm$+r zQm9l_j(b0wbtv~y$3(19_}H|XoxYC(7R-ojKgu@&Z#0f(A~_k8l#Fa6PM+W2rOO$p zTHofs?vUm=l3in;nwmQAMUnUG_L*00{=5@@{g9Pjruwm#(F@pwOBNrOu(ek4#IIVg z+1qi@-F14M8&s!C)lYX=FSPW6oKoSerl9azn!C#rlI~^EJL*(iASG)QCS{Rugr{@# zD&_9Yi}{EV^hD#UPGL`TCh?o9zhus^meZ8-F`ut5=A2^`R{xhG{IG1}kQoxhRl)vA z+jGHu1>0rU!?-X2SDQaRP@?4lU2CJ_w<&h^1b;Lqk$yvdfV`vINgfVS?aUkO?}H)r8wM!bGA zZoC~DTZIf860kl8v#4$2mahj{D_F|Ul!G7cf*Zq)*1EY?OAKPl&B9EbZC4tJdQy+F zuotzy;`3n({C;K`gik|x8&k8X!Q?WyKNV7aaoNCssXPF*Ro-48Knlx%Bu&W9uIfQE zl^XmFG7oU(y!D5FivU4EK`EFhbkVfKsb$ZvpBhW!K*Gm|N1huN;V&M-U>lp#(w!QG zH7i6XzHWE9yoO;`I$tYsYihG}#1#s9==;WW-J%r~Gz02JNgEJf)9TvINF~?!edJ2q zoI@Z8-8CNF7w#%b23E=0q;3FwqrcKq93j%0cmzw?2k`B>in~6&|+g}`LQ!} ztb@lsx7%L`o%DueEX^BSB5pY#qSN&ETQbsOa4^x}lbZI8M`$=~SQZ6*zkaouU>QW3 z4>oey3D;bL?4}P-?;bHe`r-@|_)BHTNXZg4IYqio(bGsbemR(zK^O7_CMl;hx>0de?~nUsJND~d3S;9pief$ZaEEIOj8v2iiFm=(rNoyD}+ zEM1C&0`W%q&CxSZ%rWus(OnnnYZ><& z4uyfSk$o3X0eC+Nuf*q5%VlL**@8%?D7mTM_mMGJtP*V$vD|#PNOr~d##y=EYa>VG4QI4*eAi%mDmum#T_=}BK)+(ADDg6zpV~OuW|WhY15Tw2(e|#y z?F8az+qr$$*GuhfiqSz=Z@UR(y{n4EV+bvIhWf90Q`H*C;4xF17|td~3g@PMvl9jt0tI2F6GBhJp@}P<63UQ(2MA9|u#vT{IEaLAarVMl>Rc?Daw|N0QSW`!#KLohH0_PdY z{LG~};v5H~O?ek#Dc%0)bqWC%5D@TYA(hmU2>cN90JLUVUSE`4x}}=|-@QJF6RuUF z%e9Gt$nFmcg+K&-C>P{C1g6SlfcTH;!fRmo-bWXp#^Aw@Xf&TtBx7c+;rD)Y%JZC{ zeFlzpFszM+N%12?0a()^wXAU+Q9n>xFQC1)s(MnakJ>_rg=Og-99cnY-8{7)eDO!Us(`bvPQv#zw(V> z%OPad>P z+vmp{BR^gpfs}9V9aomG0FsZ!MZH@8rLJbVZ2eZr_8WwR~=Jsy5wGLBS*tma>p_V$N;jPxLDk7o@Ni46uXL-ezw@xgUXWf zpM7*1rPscSRC?~ue>n#}VReK0`Snni7}?C;m0xwsA|UD_f>{4u7XCO${d#;4k@SN1 zTKc&@of9qlC*52LJs&KngrtDFwAyh^JTfc8)_BzV?zcv&*ws_?~61i4ldq@nB=M;!7s zzb^8Kg-kHXlkJ8YAPKv)NGUddtr}62dIeEgO2nWs1BKCZ+bdi zwbMdyV{@?_1_bnZb{trT!{3P(xkb8|jjalok&_<*Hj2A`C2t9Z9n=P!To1A?AFPpm<39UOHRN^oxX)BD+N2 zi;{UN-4L|JaX8bEOlE26?^)RNU2mQ=zM3%(2%Y|_e5(0!cWI(pFr8L3Ef(DWWsJDe z&D-0H>F_;9P2Z#&x#~|GU9ifc*`de78{hO<=a#zi_1QfrlEp;O{XNVM*U$ewjKVdJYTAGoKO1cN?C6Z96z7=P|8IF1X zckG1BaR2cWAqniVrD9jKBrno_q-|=4E=4Kqs_Q zVq%Gm^CYB+?aV{i$uZD#awhb!!OO@)Saa1Ns-y4vqH_=UW?j_MbqpTiDbcHu91uaH&E6 zzx*(TrF)v7{^6oNz_U&gEp*f)=A+Rp`bfjn^FN4PNN;aeN%ElIHJZzi&u4k7tf(A>@wAeV| zQZ3cq{3lnhPltX$x;;8}BB<({+q;~>G}}zl-w*#MEzF7g^aX2K+F03{^P9Y8Pc2tQ zuXA_`y%eJ>7~$7^ZFoq^X~A7xyjQ2Md83BS!X>I2$iWaDnMP(g>dzu9*0mmMq9sqX z(b-k$=@WGa=9f{ZYM66bXL~)7NqSz(|3X4L8vLKtE*j$D67BTzb3`c zTtWp=lf{c5fpAm;PDH>2sT#=(M)y7ZT&Pe^QS>^=S`>ggG0%CiFHv75P8uz9$~%$p zmF|5{-RY*#t?7e93EHD&@$&8alr}Of8E4dlcB|t_i>N8HbnhAnfG9Z ztI=UpO^p-R$MX3mF&jDWnOJT>H})%?@}JB7quU+*77Y1wOUFO}K`U9`PT)c{S%AW&I+X864%qOXmN_hj`R>kms3(a#l=6{iPnKhxDx zp#(tZjyMU${*8%jLS)4)(q1|{IC>ms67UHTlu$5F$=GqLi64h zB6e?@y#02-?eKB>A*)5&aAWRohZ?e$Gu(JS=0E2#NeK@00}6ew-YcuqS=ZYjN;zwm z$SZ4xB|M(}w7L>qEBtCJeH*!|Vy1-qDMGa}T*`Lsi!T)4Kc??5PP;f1d*VEHe zofr=>eAG6K;>g+VQ1t+d0>MOn1S?Bek|i3K22bRjLFp3hJT~(}Ygrm??hRswH~zb} z=*GB~Pj09fO}99baTeZxs7%aw-!R%ek9qLk06SETteL1B*#<$x3llC+?NYKjUeI{9uK==!P^V3EH3ak;=S| ziS|q+Y30vV|EON3E23X{iKl=3__UqTJxVUL&^tVd|T;E6{#BwE7MR8-R6 zi7_#Q0h8y3=HY$)iV6wm$&>D(O#p&dkBn}NjnQp7l2cUU*YOjDZN3#>p@OMAoFv|V z9cvPjr9~6c_1Zbq#Tl2T;D^~rvK~|D!Uh~xW=cFc&CXkS#GrDoY(ERz_zr~zf%MI8 zd=?t?UfBno?k@_w3evop2}nB$9QCPp$>pqMRfMn{!@9-zv|}07eUnNHXtGM=Jx)`! z$Lz3PIqYfi6gP3!i5SDWpvX*HPtUBBBF&rB@IT5ZeLv!%Y`QCD7n3xrvUqaH1KBfiz9hfrKaKfx% z5{{^?z>s_F5SE_F{o_q;o&I4Q3^kAae&VHqaR@zcAJni0up%8WZGe$y&> zGo$XSNUD?vCnJio8CN~d&v|)`K>NnVXkpx!_s45kXOB#d3_pIc!cyd=IiSdg*XK7L zhKUT55;cHDmX6sHY<(Nela7cR7ufBbWLh!)aza0W+Xp!xe()V~mCDkNaULrdJrhWj zD+zlDkMtkkkY}vqS#q0@g(KFq#Hqp>6lBhQ@<@=@f2~qx1}XHr z5kEru=5AJs>91qI8p}j_y^%s-w<^l`3ge}aF@0HBSbpl`SNt|DSQ=-VnH>WZL@&L1LQ?n(b5E;{}Jqi|=3G_R0Ylcg-InJfO0(Q_M4q6@^ zh@nicyS!-iuK6V>4C4%NnB=>*=L=IERW&5W?4nYnT5Z z(v$wyUOWFn32*)f7F(6T*_d#}MYhsty|sL$!!{=A^Qmtp$y$UOODkb-DNZFS;Z=5@ zj4~j)hN!-JH7ed%u~-sZ^~ijs$2ywAY^49S6vqZ*mp;KyU8~|(pHEB%%~L3~Qcj2T zRj7?r2S)nSsz0K03z&zLvPH6H6Z(H7;-a{Gxfq;e37&nkdm|M|f@u4J+K*4FsL{j=zINq%tEAJ(5d7!E zok;>k?uJN|cV)(gF3+UDdHg;4`EG@5r+|p{gtnD(?qu;k!u2T~8l|%lEi{|kqw=*u(^kr95IU67PcEnR|%^;7`+J{-XlByPc7@a1&QiWY}eFz8c$vFOJJ%d(Ub z(-<%m;qLNfNq*+$`qCWZ5&IM4zp7WU0IShDir5IsNm`9wl{Q+d)^D!N(201J)H@NL zkY}FjKPFsw9Nx&hT(8TpSx5QTB?TiHa7)P(WSMGe)>a>3wRA6ktMPiv=q8=XIVj?R zmJ;Hr1j;DUDW{T8W8O9sigZi9ao9errf z*MTO{QC1D{Z;x&C94*ICQ$9z!ZzZw7ZC9J%^|hHmM3=B*m+7x?a5rAqdAtl@{!nE! zH?Hedl)1FN()#U3R2X+)avw-=i#n#3->Y=&q`#|@a?@^Q|Azwr@=7ly&w&%fk``C9eI6F@q;B&-r%6b0Q zBI9{GAd*fSe8pQ&O)XfT`uRk*!z)z1{?IF+szcuJM=bu;uVQ+i=pDuxD9`Kn$TsBi zh4jI~kLN%4^X)oWsNtu-IkL!$c6IP^s1BY=a-JV{l8VN5YLpu=Q5GfawCh53?%;aL z3Xff#Mo?std{kjK#SUuW^H#)o8gGJre-E^vEczNx#sNWgUyN^&z zJOVjoQdXKN=v~rO?&_YJK*R13j%m2OxQUBHB1;ih1EIe?^VO;KES1Pv{%K;Fr@2@b zaR5#>pG>8ud9_sAZ@Qf$WKl0dbUC8JO-7m{MvHB@PVKx?E3(v1TRUW&pxz#jr`KpH zm-DI`aRjBVxY7LVT^cVhqH12KxTG(a$-*1BRZ6&$*W`5DzO!P%qZ{8S=-HqB*{|V+ zNRQQA)?0h&=8Wx`F1kE$+*o_eICt~XpOfLNE{x^(?y~DRSB2;xnUr1&)s-KE!$Sdh z%GEV;QC(&~n{r)z_sY3chc?yNFtb<;8E`Z9xO*O4ff!|{%Nf$Dl!-y7wE z)j?;sn`B+mlUaz-Bu;wt{+|3xH3_Vs~icYm_uH;(FXRAiqk2@?vhR zM)Opa_WYR*x_8-+bgs+1^u!oiBcW-r?n{tn)t*+96_v+1dK1J+QBe4dQc#hyz??rN zx9l>WtV1U+GmrfJSYrb--uE(lTh!5h1x>S^6NGVo%Q@!r&`=c=n<52_2)9={tG;M< zfGs9)=2OAUC!QXfp>jjvp`GYT7*xlW>zd)t67#=Z)pz^9MSTFW9AH{4Dd)2Szy|TM z3TJdow!p`SQdIus7J5#cWy*r}?tWQKlSMgSKxy`A%(_p%lC0H08+-LT?e|-JHydMT zOPb}v45>W};y#h2-3Ksr^o6`s6g*}1Mg%FM}64jPm%Y?55$Vo+G7-lMD8)qfN7ff*IHMn7dk%?oT}MO zTsTR!2_F@`>x4!o$9(wk3Q$@}xO*rH9Kv_mA`1Gf-StcqFu_$;R{k2ZEDH6@m-D|o zZLfFVju0|etyyaf!7$o&?!-&6EZWB>_iTmdgtq|mk^#4Pu@e}dVgeA4WTfNwdFX0U zGB!3$0DSM{s!Y;P-UDOJ?B*M_A6Bc3I|B%2a1qG0>AQP0(qaST&XW^#;j4-w0UjRB ziwdEDtJsQe2-}`h%hAyhxWo{E zR1o@Qbg8`%Bzz1fC#P1>Ha84%f3ID7+S=N>+QqD`Q;YA2g)ozC}Z$+^%;afIuy7k#${o&+OIKP85@lc*T;k8K};M5D0<H@C^UcWE){0mm1)9x^2_kU#Uz<&~#m<+&Ej8i)}Sl^u%L-KJs_}r(z{> zaq)P97}2q$dx7R+WOkK8Gt0(Ql!^dy;5$%{&)vr?IEjh-_{VgIa`r*?7?Hy3IYg~gi0Pw zXj|u?MR=6=qLJcXWP%jq*~NDGaD}m$dN?R;<2g1SzWuKyx&!g*=5imO--8hu8Ch+N zDsR0nIp^6rlE|UZc|G5j52B74)y;>J8s`3Tt?WMgvhp!4_ zlYJ=l5docjgF){ci{Jr3+qg)qxW+jRRFlNsp@me23{ZXT-ubD5Ws50W_v^QF`r|iD zw1loHoz=_A{jK51yuN{Y_dum>S&$zxpE^&%jGmBDDXv$*C9U(-^cP`Dzf*VFAPM)mqxBqJ)?na9n=H45fk^=tUS|hO zp%D@PP>hK$7XeNJpVbJ)Do-bwt^mawE1Qf3x~BzDi~V+#AnDW(Bu=X#m}1THj>Ye< z)v4Io*;$3S>n0BJU zKYaMC7*q<9M2IoLn@BC5SICKE1Qi!EfI=&Rp`jtTOa1_xjQW%v9*nBEhh%5oU_lfu zbSByCT%em$`0C&Rq@nKHoeIPtp%;cMIp ziYc7kR?;TwrVu{7)edP0?l%O(knC(RX-5_SNJq)-+8D^kpa!CGI6odv4tg&FW;6v{ z9ZF43O%-m@^_>H9{`~uszV#>=)Q(reXwzAJ*um|1m=3H_j=NqLv^|iX{W}pP)e5f$ z500l0G&l1xA-CF?|H1c1S^$i2f0bAr;eeK7Ao1BC2dcbC!R+E>GfB|5=HLG%1|pGP z*Ex_*3W5zb{`uB;tVsQ#`E(y>t*>xdld(^PFi)(maDmr<@HY4rg$fg_ug(s&Ky%KQ zq`RUSKG3x^9->~nU~^gl1nn&Va;vsTe-pHy=Gj!FCk*e_?x64!e2z)j;sVE}l zy8{V}O&gP#Nb{P%y{)Z4a=K8J)^4Gh7!3{We$QJufvN=qRet1{z&(RAGrVqnfL_qU z!NI`>=0B$j`fB`p6`J7GRHCP&o1na=@p!1SQ|jSsn_r*9{=JDl^d^6&54wOrVUOUy z0A|jUt+C$BRCWM+I>I~x2ud|~$a(}>W75&lwE`25iHVs-kkru7fC{&^xmkG6av=8! z6v#%Jg#`F$j6{O`G~>{1kIYNus0x1m{OSBZ9ek{qaFF`uTmyruGt?+uJUlw0i1{%v zFf#wGk^!yKA}R0!tdi-x(!suE0)}Qj?xA-De8ASo9}*J&u_|n(w}NYImgKx9ZD(&^ zY2J$qw7kTi z_`@Tgrw@@80VumY-|Mwl$gWxgxiCaVc!CWVZM|zaYN)R-dU$d?C~OLp8`(GCJH6!# z2k~zK-ceIGGMuik#xuw@YHfseW`Dag=bIB8U*Zt)fX90b?7t{3&( z*~)413daQ@r6gxl#mKH^A3%Ok&4D3=3{EMR0?@~il)oRa2B*-nnss6LolaRwiaiB) zYx@k0_OcDY@Ph}&2^CRXQqlxy>8{>h4!Zn4P=kE+Z6QEceE?FnNi5*D{Px}TT9s=J z644g^HIlFR5hV-NV-d=ka!D?Np~3jPPGmq!t98V;5{uX%m&Ql~D6CIoYs=rq zX@W;b)rJhM!va{Xxu0=! ziY7$Kn%T(5o?Ew(oyq$85xOLpXy;D!_7Z%hNVJIdLiraxqb>LEpCFO40g+nx9eQnW zi3M3C(qp`?6z3SAs-ce!+<>$U;K^aXoivT^PPXkCTBef0QSm!JT64J!!83^2KY771 zqu=0>;LT^?p8w_5ODoG?fcmZIvSOALyFv@@gvtu!RwOgv6P}cGn*<+*aRmEFgL5F* zSl}n)DVYhp^<0k%(7dQE^(w_8hgLr2%}QtVYg`g#pTl;%wae}}+T0BiJ~z5Ng|uhA zz;$C<*j!8Z-HV;U`P}~fyQro?8licJAan2UD!$HEe>PZIvP}Id$Uz(11aM!iht@VT zHKq58rN9s}JLTKmmagyMyE>jTF+D~XJc&sS(eTK350=jHGM<8xZYDDT4;bwFB4q!3=_xXcuE z3}kNo~dUgSfuFgx@!e%K%{04Hn0e*LE_;hbh*QSl<-_J@df(FJP zw&hKEz1xl@I@L0sab<=BGvGLl8iK2~yrDMl%F$6$s}@YR?K#f-g-j4PJ5)&myM8`}yZom>{SmE_&ATMvV}_#^GLe^O|;@PvF+TteoMeyP@;x3Ar7u(LDWtPeJpZYhWPrE@xnV(2$Si?Eg z;{yh9kI+l;^ZmOVQhotHB;0qbG1l`jGL;w#LiJ5iH40vJ)!ejyb-Dy9U%_|OI@nJf zmQh=XZe^S+r@;OcLS$H4&mbPGu7edG$9XmKOj>Q=!hA%DQ%|@v|LssKAKS+i#jlKT z(+IDpJ#C7)rZTOpro}NwzJ|Ss8?oc?J|kNgkN^7J&`MX>CfkGNQ;)S|xC#)DDEUye zft0k@gojRr5iH~tju~6;pbMRmfv^kxE|Qg{6nSw0La0Ybw&oP7Z0}QLgbJU77|du2 z=n>u1KkHTHFaU}*PQ$({t*H2sV^A%xx}8RMyQGBi!ALY#nG=s)0B_woGeSC#Oe>7UCdgmC2gVGKO4po?(aD4Z|f}y0Wo3ryj zzYB$GNJL=kx)W~jlVUQGS}2UaUg z`)L(ILI{IX41f`)Ai64|!Qp&s*H!FF)6~1+$?B>$)!eN9U7%me8P3#*@iYa6C|JKhFLY97o{vtv zRtosn)(j3jS7eAD+zqhiwV*SM&Nc>U4;p!OENtw@5PR4b2W-7H%{T83crGUCJR=## zg6(74putEawR8~d_i(HTCW$mrEv~M<0Ygg3SXq_a1MpZ3+Q694&zs>zA3)cnAeBh4 zK3!`#`_#;gDd6pc_!#5WA)Hg|58&a{9H7Hw2w@M=F8==gcCNwmCz$>Nf~8x4?Q@AW zH!w(tEP;qW1*_+to)V&qc{Z)=g8yIQA3uKFFA{_lB*7Jk2*N*Bvc=t9rV#fki+2jy^n;p(Y(BY=Pz18TWC0I_%Rz?;5mDE&D>QgD|ofTbY=n*Mh*MDp|u4x%4~ zDDnOjmM$29iy}F9u=#Dtp2jE&zAOI<#3`0;8$cN(aF0te)Pb<(|NLu7B)9GH$6z+- zhk5z<#}I8_B0e|79LdNJ%x8_45+Xyi zBIHv*MfqP-%$)-53CywK#!=&U_`XOO34pKPT~#$mmW(0_1Mc{<@aG`P1VWPmfrv6A z6kP=g1%s@`QuTzv2+M~VoYuD%M_ujsv@}Kz@XUtI5nx!@=g*%D-p)68I{IDznXsCy z$hx=EMsOWKe%z8Fy_|eqp78tWMGs7=kc|oJ33IE~4 z2a(_MP&oZK3rG?gu!y?%`Cq9=gdSYgk8p3pf&Z$6O~!%YQkXCI{P}Zy;87@~@)|2i ztWiovv_cj5yYu-0W^VN{5iiF2V20-79N^agSAAe$;J;?&cnRRTXuH)$fsJ|qhx6eY zVCUjF{2o4`aNQnfdg{)`$ETx_o15G10V0IBSb~IIAeXIIFbFIJLVmoUty=w^<5*F` z$?$xmx9fejtQEe85(KgWFZ6%}LA*mqNVsVet+z+73aC1v#-;bolf{}WM7&NS+*4JS z(aM9!J=b7Wn-3z&%9tI|q|qP`S%@|QOf(qjhyuKpfB68pObYPrns2baL3NZM7=)0l zMOGXt$z-d%6g!{+FCF#OeSG);!q?4v-U!ZJbg?i${Ra?mIp5dUuU}sYfay`n_wgEQ z@O#LaP*$1!_u(CWfA{7xD}FzD$?vgKAkE?M6W-=cD`?1m1^5jLFY;(vKx`=vP~i7* z8c3#~0v9tOtKA-oBghul)~G|O0pv)ut`are##F7ggd34jw+1yFmq~@V2#_3VRar#p zeJ%KJ7pb8P9u=#@01y#*FzCmC23)-jk#sRb!y+Yh{QNdNNu(cB3k;97=u0v_fuX7) z4LCEt5A(r~GeSR3-LZT3;|G9;b7f4^kc*Ci>1WkgZtT)g3YmzIX(!+-h>gVKY-Q2zXZzQ)hl#* zY$h!|kT$rF>sf>O!EL&TIyfAFfL4rpwHTmHK_wTa!nR3fX}Lq4N+eGbj5mWtAXTBk zng)2||9;a6%8x9tz1RZ=kR}+K;01bBh%ZieQFIQ}W5r{4zBU&#{7Ro;4er4T4GRJ%Mg!DlZyw-`!U9DahU3v+EkNSWn@1c6L@NSaderK}Y+hM6dvTTSrGC zl87nXva-b|A7$(9@GQ!PpD)wpFy9}Agvp5!l5cQY;(2aJiMN@Jg{yKU#L;#2#w!by z8@7}YsDNfiXl`Yua*pJGcSG$FY_onj+WXl@cbX@}0i5y7Ru)j$Pf*_8+1-s)sl;#C z`XQ%>J+H95vV!4xjca83z>JoHnHlYHVkI`Uu;vdJasc#xbRGszh|(EMuEjtk9# z0T-LJyw9y2oYfxR^J6MKh9?MBAKo$_9vfow{0@15*tPE4xDY*LjAsn!JQ#tI>=bo9 z=z(|Vlzc7uhu(BIJQm$UN~MkFisWNHKgTvr>CpEEYH}*hX((6wM=vZ+ z%sEexMYd_Uvv0Bs6hm^}3BU4tV|Y+P7<$3~Fs07HWiFo+M1Y9{K6i1?}1BIM92*+B_gv(6L@5+5dj)|UMYWvY6a z^h0c7YD&)KE%qxuVNBmPyPJoHo>W4FHB9_JGTb~x$&aYh?NTqyv74s?P^TyqU-2FG z1suW~@td%RNQ5<@>kN;E8eAS<29A#Dave(X<4q|y1voo9e+L26(rRAa%d9weC#M)1 zQer->p?=+_<{m#6xz-aXPjPMAMrj83=WS4A1p^7toU>PZr9A6ux!BHj5gjgD)428x z9#VsQbHgvnGO8r7c~r(sG<2`l+B4b~kW4K21#!DMzo(H#Kj+4&RHzMSV#-p#*$ksS%dIh|V0A;sXO0Dp{<|I_a?$d?3LkREh;>)KBm7JXL_ zF@ht2TNY;NUdV1Uo&2IXsl=dqxKs5-OW1KI<6ESDSm%>RzLBjpZ<6Cc9)d{7Pm45q zR>GXg|Yc)@Ku6t(A% za)5>2`1M^^OB(N~*B0F`jyYD0HS?h=+bLN6*Zv_~?j!?JS5a@+r^oZ30TvX%L5qqk z^H~nWM_lQFH{RxK_iS5ZGC|jOWvvL10)CIN0T^ofh{nE9$Zz`-+UiP8BI`!IYGhnh zAN!kDDl8ebgWM)zq}s;C%QsD-SesOAPUe!l0@_|yL#LHtg7inDHaxECXG7NDyBz( z&H{Ymk+0Sx2XmeaPa%H>JldLu!CDh^rEsz059}4RZ#76bRAkHRY1RH}aYFN8IxYMW z@{6V3KdQh100huMH1a8#Ah&*@-q;Tv-C9aG0absgGcQYMIbd(q;ecKJkS-j*(%^r| z4fsleDW#(5?g|6optA$xs4m&bf46N(LG;*GLz%Fkdr?*3p!GqKv4w?&$xx;!ukUHe zfBu;|IdE8>je6aE8CV|$4kXRnfDiR~=EYi2TwI(pXb+$i5;C|?eI|+ILgt&3eLfhH zW-EMO7|eNDUcq~iS1K|#taFh--Ui(+MgPc;L5~EmtYYCa|6WKN%WAfk4dQGD{YXU} zfgtIMN+O_DPobvnaz~^JdWnIbgMsspRtNT&W(brdcIKN1L8M=V{oL=Y0x^>V>wgLp zpoJDBW4GQbEpz|dUlzo(^YiYfwkdTQG+47>lns2{+{%5$_y2Gmz*e-DAi3?$J_XL* z>!zlrEdeX#6)>&1_`cMTB;pM@n^K|M|MqPj6A=X^&Oo%Jbc}5X%8~-^@X-d>-`F4@ zn`r^bM7w#GAKGG&gQE-15_=~jJia=plZ?x(7Yg``8UA_IbP3>fRfe4q?jIfXgqld` z<^wM6bMl{qP7P4DfY23p@`?wqzz}xN0+D%1yaz- zLI#3ow`a2YR7=) z`>+A}^|5mcb8};GIzr#S|BvoX1XSIs6X9F_5vNLE1J9luGR#+CZj^>Is8>Pm3P=(D z=NgiMw>WqGr~BkGlY&Z1nIModvwnR+Qd?)|3W&g^TwK2VclyB79REEn5*-vCjsm8e z1_uSfG^zCe26Hv5WE*2KKbI_9vZUl9#ka&=^nbbfGK(A zo8v#~?Osq+nszA{%y@qPc)VyUs7}<6*h1BbvH2!nHjqAvnYkAXEO75qgdg1>qE>hr z@*$`m0!AQ1^$=X(0k?s`UVRNpRkYqZ?mH}I7aiRO2a0zrX}4i2OTAH68Xk?*i*@_Kl;m~`s$CFxwgf5d7sUk-b7E&mq+?DUl(+Ki;X`^)SyWgu5Lvn^&V1^5*JZ2 zGHbnk?un288|^*s4*|b{Z3K?LslJ1P>;ATXdpBoY8&!iut38E0PgCGlpD$aSa-(82Aoe274|=nscl)U=;m)d@XG=adZRlC}koUygQ_MG*rS`mWBX z^Hn-w5EWUewE-Sq&3EG1!jWDC7Fj7X7|sRl4+xF-4z_61z2HEq#tjTb1JCh8&vm+5 zu-rY@iUbEd>P{4v#>}G4A0a47fEf7(9ET#nC=ZM5^$zB>&A!*b4mAQDSe5ss5gF-QATVf<6A8V?7DjGP=6DtfY8CMv&Djc=+^BpAsVW@XNa^OG!-}l?qyc~LCrA$ny0Sg*{ z=(anp?*0uF#*IP8Al`17%4tcD{J;0+eqk z0Um@V?&ba3Rgmn)kIfwK*G7WqxMJhu-&9nvj?J}P?(xsMPv{pE6e!)VO$4od%s7R8 zzxIpZ+FD-ov@H-MsWXh1>2Etd6&eeJWH+k;WH%$k$DMj7J3V>GXq;Ug4+6e^HF?lY zO`jfcVXZF20e*K7!$@iO>0oRVbRtAx@i1e0H?P5tz18y=6k^h!)EZQHyg)^Cx5^ucsGEd;rd^*>~QZMR%*pY*lRpiU^Hl) zG@eNJKh*}2exLDE4)E<0Sm2oH48AVSx;thpI9{Oee)z5By5D#Z)P@5f%l7X{OzTR3*k% zvzMy`>RP(fCVFDvNn3$OHLvcTqzeMvbfRTfkZDVh1kRO1-5M_BV&922a}$V`=bFO^ z<=;6UgCmH12%$nida~%a#1J$!h5;q90;aNzGX{XIVx|CRLV^VT6Hs!{y{|w90R}{a z`T}G|O0>r^w6(RRrKLqcbE-Q@3wT1Fr8TpDGXqu^QYzpNl#ssKj3K{#`4Yl+7wtgZ zq=4#ESx2YnnJG}*L!97}eCkN^%)OHyvYtvN&^(ik-W=0kt#kNzoCJeODnC5Lu!6Yph1pcy3UzT$K2aCZSkf_rgm z0nt>#W23J+rCZY=w#DbL=u=wb0P4+352&EX?fwR3=y<{)5K!G!caOSht>zo+wtVWE z-Szp|ixe!tJ3Fbvr-a>_wcT2{sat8&BhV>*Y^^pmEG`Z`$El?V&d~I|3Ec(d&(PcR zj9cf86R@ij+P@Frcm`H)qiPR-x*q27oCHew={FkMk$}S%4EOk&lo9>2(MLL`DL7C~ zYzL6L!#<9|f-(riF{QB*?PX-AJ`;)oVOD4@B8vF zlelbg)4i6F#`+l;7!vFU0DHu}oSodk&Kv3*j^FDooZ4q_pntPX@b7F+(To|pF(`0? zK_t<4ceQm4+epd(kDWHh{o!9MLgKU?M+K$+pZ4G8^6I6Wogv1+U{I00w|;uWKzN#+ z3DtLZ8wR1QKB&B$1xogU)*os2atO`{YT>*dJ4yG-;269N|3W<1zvl_$TNf5c!E}^X zt_i)I`gOqS5)%^>bamyY{uI*W>&QTNl+oJe-0wPPy@-_+9mtu2L6D{Oe*tjwE%=M< z&!5Hb^@le&Bx#o2DgWtmnxQg%et=GV3KWfcwJ|^#)~-bHD;XG+-5sh$$odR8n=$>9 zA`RZguUr&v`{_3^F&OH)W;Z}VeivL&AP%!{7K+7JF|kX(3&#zRQ}O}iBZIdt`1pY76bPzwLfSOqgc zA~z3cymxiz7C*oNhzpdTC#u;6N$WNMW+6&sivtHW3Fh_I+q%PNceg7us24>pnH}L4 z=yRePS8!*}KwAaz-IKL`;JZFLb};;tg99Zi=!p~noGwMD8X6kUW>N!>`+4qF|3`3Z zFOK@X5dOVvDg5uj4D{zV_89{i!qLLF=Yx~gwjcd5fw2tk#W`r|JND+ge-xNRIsgrm?DSYt{iLDlOJ#UCp8sY%>Kc-PR6Hr?Al!ZTd zga&{kl1#5aLY!Vzw8mlXeQRs0j=6vn8*C}M8Akr$#}+2hYGV<`d1CA=&QZpI%TtHw zr6%;1DC*AO)7`^!Y<-N+@o?9^+n8tO%#!o?Wvk*Rp+5u#gT&}CMBS~&w6AK3U=?m_ ziI~!5?=|!ROfZN_O~9eFnkY*v;<^1Bc$?qYNM~qb=0Y26)F+JtTV063(m(rlrfsnE zksRXIEK*!s*`K$}#xf#lU%d#i#HV%=d=JMIFJlibjN`)`NT$C^bqAWEJlJ|G|TUY~NOc z%+6$m@q?@DYjwQtNMjQ3RZMU(_0&YJ-XT0C%JC+vf2xyJb%j(YZv6cz5kpB3+ZyX{ zNA~QY3DRrF_dlh|Z(zer;B{$w^^6{l;liEHdc(l5EWH#LRf~LkYoRpf#BcEOUfcz^ zXFvxO_K793Jea=es_SO=s*zU|{1fk@05a0#fj@r!ggSqc`en2}r(OW?85tuZ>hSO| zA`((?V}}p`7sG-!T8V&wW`E_T=tqwUKJS!lFeF-3DT1LM%m!Xd2$yyw4cQ_nvQBnF zF8C|!yKQG5+Xfr;mua8$eqn+=9%p*Qc9U$MbQ^iLp6ku(uxER2Ds!W{p5NE+(H>Q& z_z8GlgHp`ZA*9vz!ubo zQF<+)Boi}1!s`U{MZr6Ax8NI57BeGb8^Ah8+m_Yk)!)4JdkR3hiOl*%@TaE}Eua+W zb-DWuIA}X?a9n|}!a7#dBxQmTOZeTte?any*uZ}4E9Lo9O3@=&6es%AEM9S5r%7s8 zw2is;KrH}EIS5X5`vj*ZvhULdMHu##VTU896*w! zA9?4t+#G#u5h>GTdf?S%Re2Z_R1`d&w;fP|ayAy?he=w&0N9-rR@~ z!vXwa59i}^mn>9C`#AUHdO(UaWx=qp#)+0}CX$wvRN!~J8mAaP2%*o<<6BnsY?EL>sJ%@umiBtA~d zW4;Nv>0P3(gh0}XdNHy1t(H{zcG0EFF~|x=-Ci%;wgV1jwU0dsl925JRH%2JlOryO z2>KN>{PXWTn|!3M+|AXLK^JSm^SFeBkihG0Lz!!Kkp#lR$-&5)rn*!e@;G;)>Qqan zZCL=C-Xi4pC{eiqMJxzE6$6eeG9|m$$D9cleQQgaQjOxi{bu0ss*m-!SDG8y+ZS)a zTPU@n0O!khNzC%&-AT)IhF|UVAE%OvFNG~aeYHE%4yX2%)e(ebNZIBG%u+3Dy^yID zJl$U?SNj8!7&DsQ?VTX)8AG`-o_k}*5HEW@2YeZK2RTz;<`&gfLMZhAscJ!bzx+#h zJ43bj1>LV0vh1N$n&%aYM+l06n3>97{}c5Mm^dJjE~OTXQW zyj{ue45+yuE$61r{}6}$f42pZNH{?6seB@=18{TVNuSUCtj9@54K01i96}p6+b8j` z@Tijyi)r1ccX1{Kmr*NonoBvc_amM;2D72k*Je48c(&U%*IcUt&e0j*!?^?I-h!M- zCm`1O++!&@f-K&)ad>*-fKTx2>+V5f0}poK;kbeLh_2576oo;jKb4N`f!<}^FPAr( z3R5u|H7_6by3`5GP(9cJ_(Dy~?zAUA0RqJI^0pY#T_3=fY7)n?aB)k1a4lIwY}ETU zE!5p=uy-?wzd2o5o+W?c9_h@mK1WGK#E`N7Fipjjx{rpfo<+mwuzH6eO3>EBUu~m8hmmYCR58q z(@KrbEu!$FPbTA1BX^(X%AA)-WjncBoEm;EWL9gl@6q2duAskDQj0fmE|J#fsu@%t zON$x0Gr4*k-pt(S%@k6cnrj|wIT*NtZUwmvA$|8xP`(j(nH`^B#;KVbWEel|C??gg zPtAGUxnAxj_Iu)z)mO8>AkgVjY1Y39ZTH&G>9-mtx4)%$Jw7pa+XicW@zr|!qw9BD z!`Wv7%`+du<*ZmuoODkdNMRz+1<*ccwB{eZ^7)LICJgspHnxzj31`3Y7Uc;2$mU07{(wA4(Mg2Ev3uEX) zobNs6n9}&a&>Z_N5lY{+Q)E?9+l4>15<%@Vd72C-=kEryY@b($zJ(W7b~_#Xal{tR z{T&lxSnINO32SpN&pg{)>;W;SGE?soym`?@?ERQaD#2@2^lB{!I-t^l2D-CUbjA`%EmW zE8%b24A_)MrboMcC0a+6>60-mJ^fmL>KSj9lWEg#Y|#>#=d)5XDtL8~d@l7Cib$*y zVb1NQ+VfMp-oK67g`Z+yDVJnpk1E=v>c_;Vl4YX5PC~8VLUdef%F6wFI(wlAEBw#0 z<5*P$=@AUo&*a!sgMWIsx2>(MYo@LYJ_a%4@3x_YTcQ(v_nk@<@!YPLGYdO@t#e7Q znLzLQSwhKoo&fQqY5SJk4w_ZiBY-gPa1W4C+TGTTJ}9F@$Cg+Wx)JMzkFHM%Ns^Y^ zrOEf2CTGyE|dj179ablpjN&%f|@dO>+zhdWKb}N$&ezkEA!a&Jh`Gc6S z+JRn^^(DyaxVRiqufLn9A0k9Anx_#k|Ef?JgJ|Bx0-LS-kdCt52A3(_o1H|A!i-ll z?8^rkbD6Nz?4|h6;jKNFIg7M;J|)^8-mezP=+X_ZAf)o^x_cM(e?;MzbT|VtCQ=qY+sj| zAl5Q|E7%GV?L}BG?e*T!F%3d27_=b59TBdfbRJ;-tQo3)VYl5h>B&~!FfhjV!cFT! ztwigloXD`bMJytHLM=XllER;DEXNbQw?ph`t(&l3=eKtF7)cZN*vy=5$fWas2c4N7 z0|y7b?(LsU(brCZ&r@fe6eQE80|L)LNq~^z(W;ILK3L@LL>uqGT2(lPzzA@~@hzOHf`AjOBUAXN~qm zS@o9ol&Rvjl&Js;GDSU?*|JGel=O(#24xxgWWU`#BY$u-wKw@Q#9qjAbKm$OoAcC& zm$w-tWt|g;?uL?^9PWOhq^&Th{t&7^M&j2MYl9w8yK|rGRLW#SaN{H9cAQ6TGAOU# zg#g)h1g7lX&ZFk}D!yh_M6UBMJIO0)+}s==kdRo4xQS4oQs;+J|7EmD=67|HM#b9p zl`=7F@z_vuXe$~uIotYicy=wwRuCEYgU_DqM=8Vm&_9L$tGcg@s;XF!4G-8?tk;~DQ5-}t`2-}$}Q9_y^S z=9+U}`;wg}4W%<9Yot4jCM9S1<^lbCbr9)rWCEdv2C2V!JGj_saM1L_$Xa01NG%wNDz|pK{6QuYls5Tum2Q1!E+f26qg38IW>x zN1rW1?qrDF(6YvdJ2+v&vp3ilj`rz&R?k+f&w$)q6XUOxy+>va^J?vx7|#sV07{t+ zOa%1kpNIxXWaM2z=meT#K-pk8kPH%)l%!YqYOR;)0{9T~YqoS$LPu$!Ms`Csph@sUJM=E5 zvlVqO=WelU3qYTc(A#Sg1b82yFfLo}2jFl5adB0Pr*;xLvH~qRPX#AQ?^~`v=~6OX zLHjYw*a7a2-U4j>#6Vh(t*aXFbM-S!?dBo`SQMbmnZzXJeH#I^ACNh60He!TSXeaH z^|I2Qnk~sIfdCF0{m{eq;i)GNVnw_KK-0<7rwz5=(bgA_56H&9i%Fdj*^a2wtplOzX_)C8@^RS$0> z0kZZU-xYWVvRy`D0g|qb3GV6y=-hb_diVLb`zh&1C~Y{x0PZ=Pz4VJCp7C&a423T6 zB8I@@_xCTtcm%Ktgm($CKtf+8AcUUMN6*9p`beYE`Vk|>b3j|%>L6afxu*vS{nFEE z_L{CCUBl~u`}@wF2uR{}Uomt23_e3yo<{?ZGY72OKSZ(bXf9i$=s^CM|Lg@oUU4J{ zI?)643Dpt6)pq@SMRKRUA>jBc{iD8Ns6Og>9tGF~%-~@}f=)|F^WNu%e-0yki=<=X z;(~!2Mxz!r4rmbr7+1sJtlzO7{=_IgkfO;%{oz0oD0D)=88u-`i7}n3p0SAp<{z)K5 zsZh1^xQss=;i4RHG8{SoGxh%v&fIxx;)o9&y4%JzFMxHVjn>usFc=5ek6#)i#wiQ5 zsE*C~2WB61Ff^8(MC)LV8fE(P6Fx};ih$Elx_=}RT0Syq5Igtmqj1bgEq@Cecj|fz z#R$sW;>YvG)cI>8E=s<9VURp+aKyH*S-)a#n*A_6z%x8lflQFp@1Fk3DE`!u&hbwtn^$x25>&LsV0x&vg`Ad|D<-p#9sKH!7X;&xNA zDA;qe7Xo;y$=}z0nP0R~89GiRpcT1a*Weco;ytbuV$ny>c{L1N8ijE8Z1it zrNIf;KWR6lm5l9T)JloTd29^NW+X+MLV}wvy*;cT>qxDS$r-$(ZF9Py8m@kF#U^>aKWX!hZ6Qt)I+6M^pR`}4lsrc(tdPE+o99%D zW&`mZgbaoGq$5hpOw-4boPYY032`-#td; zU#!nt7}!Om=+i#f^I;LU$n%DUo#0&%0n0fM{9kszb+<4C2V|dII3_(lY!hLC=#!i6 zh1FVL+WvK-Y}dOo4sDf|Uxsq|~-_EO9+~R-@6-H|eWMiLdcKU#78in{G|xWw@P)!qRFVg$w=4z$F!1 z!Hn(C&cDh8=Do4pmDc|Lfmu9x8X)SX1;65BUbU38&}(9nC1#%T^vZovNHS2co9XhR zyod^%#I(;eGWns;hZD=|3*s|{{vML*Yo@=Hrhvx(FgZ2qk7LLzt6V|7U9Xpl(5zxz z@||aFQ!nNc456p2A19NHphVjvWjg{w7`w1>v!_sR-q45>6@6EOrpKwJ ztIwgNs7&>meJM+Pu!pUS;MLYX28mV$b$EakMBF~sE> z7u^!0X{||KfC>|JY|$gO13Ka5J{_seOO4q+P&{N=oRv($W_9$@Ld3WBw894E>En8a z+cCey4YobL^F2hVnp8jZT$9En=#pshA0_d9z9lh!~)$KhOOl;@7< ziI}hn6f**DLu=-bM%Sjp)lLO*rtx$_zvL(WMtTA@UG++PG>D1>@(WI8chAeibYZ*gonddm|#ap1-M@heSR8!tj~OF z-2c@!JefSinkV@7Pz1FQ;pm;tu{WL7oOR2SRCs`wZ2952VO-f(&7N=$O$g3JWyJg4 zv$_$riYN57>VcEQ|3VB$R)5>hreOZz3B#=)9bDSuF=vvYI^Wu?n@>{h`g3|pwP1yN zu;bOPFKnR(jAB(~=r8Hlr--G4tnp~qtkZj*<;QKqpcpdi$Ch$nBeCu_ z=X|>ut)fQzUunU!GgVaDS2vpDkUtHcGJyrZOS_>zS;a^<^koTUeTnvY%DG3e`toXiOC1{9g@T>gap0lp;)3USX-Ns44%axQ0r*=@;56+~+DpmH*!P!flrBKY>f)@;H zi%Xwu2Ar05n5PVQoI5ulenmM{yG7H2WW#5tCd@aHSmsAP`kQx>F0z&^V-67>rnA8i z@cnsZ#g`E3KkLC8;v(d^Qk4pIO-hY_zA>M}bkanG_ENdn5R=Or2Wu~tFr2oN5Fm_u|^*d z=vQ3xm-evd3$bLW5E3heYrdBeO^yjngz*-Zdb?ab3Li~wABYl(O=XURRyJIBy8VP! zdQ9q^7kr4{D}R#G8f`=3j%J7Oum<)RaM@*CJ2$*dW)n@(k$P9Hp2iC9_i_Gk2-GR_ zGShwE)c=0rw86iGqXXu5wG(Z?$V6dE*lHsc$?0BII+-@BHX?1}Hz_fk@L9u^i{@1l zWn|ScHL<9#E70vn>IkOT7^973v9vT)`N|AXkf%b`L|HB$J^8O?O@nFxcjw zKT@?*rCN!U4-}@AkxG#ri7?ewQ1UP^5DbQYlwjc$^Lb8_Zr58%&PO~EZujYzI0@}V zCeVf$_odSqxzg!Y?u!I2Etm(@ z<6GXHikUIhmG;hRHJKk88czx#+0y&gz7|aTom_ZJIMBQTyX_ElX(6!jmtd7*kFj(x z8t&m?CWr2Y3x(rN|L=ndsJQS8dTxEYRHOHd1kb9+Y6x@JL!BRd+`sLq6TRAXHn%kd&zg;Af*1lSyVG#*%?v-%g7mHh<@LhYL@sMVnSBgOxX6 zx`(%8mbjK}<~U0cIG_AVi1r%PkcI^GU~En+$uS^7XUal;>Q*h=s<~X?a0YAy!QK?_ zmk#Z#cB5G0V1Cn{{wQvp`c~ZWUy_OwE5Y@$s0c(KFK(mw>It8%+i7EWDD9f{|G2ip z_D+{*4;5@+|C=&t)9~I&F8r(ZSkP%J1+74z zRu8FYNZM@APa~lsn>nGBq=$U}|LLzMgHxq_O{?viW25h2`_^M{V`X-^qU?8`O*%(y#aT2FaA2zob zBUwoy%E%x6aN25<)c76qJ3LK$7TQu1&afoQT&vfKQKl#RS6{gGySeYF0_Aw}=;2jXrOwS;Uejex+Y^20C)uZEx9Et| zu3vt=Vwd!CR^a^nJ5s=C6TKOqftc!`t!O^>!ue2{l4=wc=NuB^AGNL%gQF+tdP->9 z`01Rrb3gF`8UhD@iJU~Bbs(SU7%j6wxW3kxCDmwRf?%j$-4f>7AYffdyT_ zbbjr9H{w7aA1CS<8{kqF|3qLGjGQzvP(A-uDsC+L)e-WmXm&QQQ73ilCpjWkJXerp zV95vW={*~7aKo(!Qe_>%&6L}}R{Az2T#742UD3h9O9U?!(<(%ufEzd zLj7P;x^D$8c>Upa9GrH0k=^Lgf-K~XqWPpM{SmV9S)z6``awtERT(h}-&ISC`%W7X z5Xqi=BDxu+W%1yeC*V?&arsVKxsMly>e(yK8+MTDT!$jo{*)QS^SeE#es|;zKBfNYGtod^PenTli?b>zBL_i>MJ()XqrQXNk5_trto~*{sUX6O)oI>W!8{lgP^s% zKdEz!0UaZa{^uh{Irim=W?7^TmxAf-vY$b_f0f$wr^b(8^7y8J*t%Mmx7mA7$lNS{ z&$OD7^2(4yD+>fHbrJqVX>BmyJ`(bxU65>XC>|68CmZ5+izW4FJzS6^9>eb3n=g|$ zwhe+`Hd$!1ql5>({9*ko3qR2eIdWRQh^_cnhExipfO%P(@ipZ-HFAixl>Uc;ecd;^ zbizfRU~C^U)aV*1_G9f*i_OSC43cx&SSTIHOF@%_9X@=KXulD8SoF!eEXZEtw5hPU znJ9-fCa$J*{PBKjE8t@!mMvMm^1r}X9$wVr%2#k{Y<_b!1&ae+*UzG*YlZ5bd_F`Z zu@eq+Z+K!E&Zp z0L~1^)Xb>s-taL0cXLQQR=G1ov#NZ)dEf{EYR#G#pw^UR1}QZDk-b5SRS46n>-!>*byBA&7`q0DYm4MUgOp42pwaV%XLxwTP>?9Lv z^Ltk7bY~a^ug=QaZR*s24vm0eb-La?m z{UMEzOk3C?eFi_p@u7wdc;F}M)qGjPjO_S2?It~U29e3D?tDG2Y1A0z&gE=Y`i!a> zWkVzTjTx-SUcb5;T=@k`X|2$l+h&|&k{oi;vp0CEB&2078k_+qo}$lNcrB>@gVM}k zM_695etP4Uv#yxBOBEBR_N$rtED@UZr_1Kc53tl(Zn8D>14aE7{ z9yy{x!+rBcLk?^))i~t%gJqtID40`BAAxlXO$^-hiFYX_$z~2&4K_b~+odocX-wZv zgR55McG_wmxJntV-tesXso=aCbCpn}^sDqLw0UQQ$MnJAA52fuA&4c-LX@}UhqAJA zNLCAkVdV^o3AM!?(mNcXyJS{UZV;H%?(mk$%vr?VQL1ERy(nuHVA1_&HOJ!$x(bra zXbhU!D(rGp?V)2=slz6X9=ZsJuK3>pb`q7nFm8OXq%IyB<$mvu%9TWXuJta z*&FsZD?E7d!Pr}g)oNg>Bt-;bLsD=19BRkJEKEpfl3V#!8o3Mfcu5~Q(|l}d7n9y^ zVKXqI-@orjLiAXbJ-`u#t1;DFo8}-JZEb(E=;gYc+CH7o)_z*3WTh8apz7Y4EaA_L z51=)+_cWRdvj$Ni9|6BdVJdZRF4>T`qbzCFPRL=GJY(w9pSJoda^H#Hy*YpRms9xA zISp@fW`z5FE@dee{Bvz1?%W^BaR)9qwFduLo`Y$OxlE!UZ@l4Cv@x@-bc-QKM=4nq zL;H9^d!CC39(Gbc=)2X}as_*}+>iMrAa(}WAZds3Cmt;O5bSN^g?!bPO54O#c8lo1 z<*B*Z?Fj@y(c!921LH6G?emjj@yS?2YV41S$LhOT0&N65RPC4_j=>UklaBTMT=PQ8 z#{PlUwG>b|oî$QmZGHB#w01qUA`pU%k2jOw4Y24#HCL)+EJ_{V`M?P6iH^-|| zUr;m_Bafc{g$5W%4tdG{1zqC3~jVfSi81y|ZOn@nt>hLH0h^pdT-g5JCC z153myy6lf;vg-k)-yd1kx)l3^eP0+i7**DFc{lHNwy)OqTqep6hD8|@g5Ld#Wv~7N z&zR<*p`f_8HD>tPq8qe$BnuD?CQ2>N8a!z8pqH!rSb4+t?9D3WP=#XtL;? zd>wei823SGrF;t)J)VN94Wt+D4GGg~DX>Jd0(ryyhzXKyVZ-k8Cnp+l@R&mHuHo~& z9_wnAF&kQm{|7h*9eXi-(TX26jk2Wxhn)5{>hEif+Oa>3Z5msKXc7M%zonHscNURe&8wpF!N5_Y|0c*O&iD7hG(BkZArD^;#{Wc=*X<`(+}5DJSqV} zY%VAXVn1@N`%=!$nBufhLH*aCY9&mANQVgD5r{l1%(XA%z*W!;VGl#$ z&nMndL#znr;dpR*%iXESDUqUH{~)v58nm((a@f?yZ*;#6*04QUz{YNi;u(=Bdfmuc zXmc`)DsUD()1K1mKkZ8aTCe?8YDFUDoQqOX{4krUi}yY^PDHxul{hX+lo0FTZ_-S> z$2+n~-X=qDRq2&^dyWeR+(NN~Hrn&tQbBH;9&He)4>BT-aasW+sQfwsxAs(dY)? z);!{h?&bdf80i)7xV6o|H`Nb8{El0@OFaDl?zs<*KNfcQAI1Q}2_#NcC!hQEpELRc zE9U4cb{W^dE9MS=+5y=S)^<+wkq?0!NGn*r^R&(~Scd#NwSWaqfAKFO-*mB<_E%$) QN5D^BT3M>(g-O8w08bq~IRF3v literal 0 HcmV?d00001 diff --git a/assets/quantile.png b/assets/quantile.png new file mode 100644 index 0000000000000000000000000000000000000000..d44e6ff80502a6b1aef1dcef58380fcd0402ebca GIT binary patch literal 113581 zcmd?RXH-*P*Dsnv2@skfM5=U9s?ww?NC`y*lwN{}AT@N97P?9`^dg9Wh*arP0}&Ar z6sb~!2q-mxNQbk-|9zhKIrqysFrxuwA5_WAP|Ta zseRK31R@76$-Q9|z^_yzOa}0a%<+c)4G`#EBF&K<>8}^=B+1N2D~>B4+1>^L!q#k!8QkHhdMME->u_fSq%bZCHKhjw*0v^VX{DzAq{6Yu{a2G>e9%NR6 z`nrhauv;L_k3GAdzpEe84$Uxj$O+=xuT%{2NFB9gx1VlASA!})p!MO7w&29~8Ujcx zn^r7O5C z(u@hu<_vIz;jz#}!WXHj8kkKYDuAYpwF8V3!VLEKbVEuxX(_GAHXM(79!cfgJ#nCk zi?@?Qt^F+RU_1(dv|J?**+>JXVha!i0d#o11}UZpoIdD6uQKoHM)lZ2Ub7I2aokjO z6yU$Pl#Wd2BFsO(fY_G)i9vqdlILK>dpz4sXUws|^i2>r8!|}TsHUpoM;aw?(DGq) zf9svJj)A#<^X~7ex)IsXl4$GY6?>uU`3)=5R0@Ll_qbhS+r$Jr+kd`#6)cRzrtod6 z#kcwz*#;j|H!AkExK*JTf;a+d_N>Wf3%r#QXB1+-ZEE?UV*wSTRbo10gp|lsb1=`& z2vc_SgN96NYLAaZ{IDted4+89T^*x7$?2c|ahCd6{)dE25FokUr`;$T)bWoc#ECqW z!dvTGidJNw4a6LSI8AFt!~i}Fo9Tgcu>1?%6~E~jkLuE*tjImU{;$(&ER{{xCCz9M zsTS)r?pKi5!Z1h3Z7jct5bwCk&gKi*fTmH0F0}3P{DBtk*Gz>iWzL*x; z7_@;o)vYFqXQXu~r{3t0eJN6Hh;eAQ?yF9SX560B^?V2+R>(AM zYI>_<`gSDyjL7$b4`LCT8dX19BquiB4Cm###NdBxgc|{Z+_68SM>V==M&eh0xB@C9 z<$wcE3)ectsU)kfQ#HJ6hX|5H1f0PVZrFr*ICmQ#u$eQ!V8PE^Brj=i5qTYLxCAZ^Utco z)L{h-vrQ65A^b<=dy)(qXg~0}TLk5_bLNX1zvegf9!oXV09qw5N)q3(oub;QC$}_n zYm;X)-;NYS<@Wq5Uewa?(xKoDt@0IL<@yUOSX9n}f;)%O@%v&eu3iR_H{F%e)5StMotMC6VR8 z0=tVMs#;n=ZRTHgTp}jJ+Kbx`M&(_=fLhWD|MQru>}?cN*$2yCrO;o<5L!`Ta@3L! zAV<>CD`9gzV;kL)o6Z>{l%;#q!-4;NPcrW#Nvl8aNSi}?$QMYN(8$U}u;v-ZIqBPu<0r8$VlEhoc(Zu#3 z9+P;J25KXT;HQE9I{$ z;2a81n#Tb7Eql*WwrOaCf;-WFUO?dBk05)6mjwdDEr(v48&XH^I&V1NeB9#A|GUVA zyMyOJVwZc)Jf?mjEel9ONCH!N3**2i555>~z)Fah-Afn*WMOe-oRTCA?^wP)J$SP5 zY;ZG3=mHz?P=N?4(jo-MDAo)S3_m{(kE!OtnBo(F!P_+?clYhwOIj8V8p{6YyU%86 zqoXu6vHT_bXTHWlEr(l^He^5>&<`tgvmq)8MjTzrJQB-0J}m%_GtB#YiDCdVB{->~@1K#Fz;&q(wS=ZS+= z>=1=rEwDIAI6$C;JnYFofqMAEnZF~ErvI6wk-!D^|DKy?A^o7^63&buhRT{tVyU?% zNfyAC;U@pjO8)=zvoMVD0tAV@6OXqm@*9_leuv9IEP^XFh*R)J`%9v4yEm9opHK+H zqZWo4j|g&iuuL_iR*j zO!{3bXw5V=pgB1teMi)B*>U34duEsSbDVvmztEe{ zDR!<_He=o7IY08WIa7`dc%))XXA>v-0*^@g2!s$Pn{iY7u}>+3vsnD9-4!N`vo;f9 zg)xT$UU{!R#)3fXn|liH?vBMd-xWPS;OM0E$VPSa4_VOH*{4SE8_Z0Y%8!zDYqc?^&EA(8anyJ!g>^3YXFW+ zNWOCPGZq&tHO1P|iVMcM_)JfkvE4Rw%F4cVqWle<*TTEnzEC00*e1htE1nS86TG*D z^PRUVy*w9H5h4`r(a@=!jxU%l8yFMnEWRht?nEA4kNb@aa~DBk?~}avolUNM25cy| zj!HLUkn@$C$)PyP&NumJK4KW)P7R`0nzD*P_7k1gsTO7%hB8656ffC6k|9_-#7d60 zJ36YC1c-jokLY6wUm|aE;?{7D^;PY=eysxu1n-`1@@>?gI>~M^LF6}VztA!Oz@(Ve zjA!m`CBg=Jut!jBO&(7A&zAmKo@&O$X0`z-He#%0RS@Tfrv0`+k$<h}-itc#+-IDAF7Kc64 zt8?Y~e#T9C1d%$?rMHrM-NV4MMNNBKVSc*7EyqRytsmJpFZZTRmfHWkjvxm~1v1xD;_%?b9^V11lHDl16FZVUyEmWy^gebcgnd(SxMloI(8{Bfqdk$;_4Nc(; z%;Y5NyM@_QpSz{t0#cz1>Lbwrq99p*3JZSx&Q7~2_J*?a&Yc5w#W->ssovgqsmPI} zHH?sp_18MdV$e`nU2^4Py(EK3=)FCM<!2Np2nPSHic-$JzI@?=EagVJi-)bJ#ol!)&d{X{IayEbL3q z2dEXVb+(hc2McpY&YvauKZb$}CV{^<-;Jx-MEp78yQBFNL-jKNZ5CcdN2mu4Arx0MCQk zXbW1>?ycOE|3Kma?(F+a>9U8M)7cKbDgCn(eS%#^(2UFzhMg@$KAryhB_+N z$FYrw7eiI@+Qyt>V&f~aZjdd3JvZ&igzh%S;ZdnD>XOQe=E9KR`>ziLau!(ri}-K% zEaq5C67iVX=gx1(lOe8Lcvd6ZX)p3Am-{2|34$l#BQU#4uy(5cf+8V3k}(MUWUhP1 ztRdJ=xGKysvZ!pM|COiYo2(r+s$}i>qe;7=KqNNu48BC!<(to+ zY6`>?XviD=l*+z$i5i0G$k!=GZv~%5_01Xby?x+yO$i(%wKLL-<76T*B{wy8bJ5!i z;T9Nk(hd#=*RvQB!@Pw$PdOo${tYVRW{)5_&>*p$op!m1_U1YONuA*Ne9iP0MK|7ZEnv2 zdv=Ej?jX|ecIl(mKk_*nCf}|eHJ^4Mh>hiM?P~m7e%kFJ zKUfuSkqm5z1=65NT)TkY@+CG|0b01?QH-MW4*sN3w-$%(_Hu zAjHJ-yFX>f^VfFYtdgF~Ka`;Axq(h_){%}onS^Mn+- zZ3=Dya1}$+kvo)8NrXmtM$*B-Pg(iCU)r}Z^dPyR?{UYTs0P`LhdzLaZO`EL@+*cc zVH=tt;r+LK;dmkZ{Q|y@oAMWT?Kgr-T6;M&Ytd^+)=BvRrfQ7Tlcqy4i>kUSYZ=#M3w6aFHQA%y>vA>?L~EwM+3 zNr~{EHtB-IeGcK{_50v6&&K^w3cz6`(v7yyyd~-Sf0?oT@8>rEpN)KXBl_h&2fU9y z+!~W=ZzdIf4HpN?jh&ly`)ZRodx0{-B+Rhu3(efItQmpjmk(K-cv~Lrb|vlPt98K} zeM41xb=z*B4ZZM$2eWkKPMmPv;=d#QrOI^Fk{sjb&1Aw;6*{3QV-|$e_h`$y$@-ud zmmZNn08(QvfFB|f36VvtICorckIM}*573Z(V}aa46d&pjWW1XEqaTi1tV&d}0csOZ z2$KzfJej6GZJxDyfHwN=$Rp|+v3pQ3l{|v=sjf#{+@i4?4u8^ z3T8uY!wzY%hHsd>w-{uc+xu-Kwo>x(0i^2DO>%iM`3vJzPUKIFnD|XQ8w7E-6dk(~ z5f4ZBFDsx5VD)ZcYxl-k#+`XYQ?phPgjWK4kY-KzBzRJ@=ajW`tE-(pMinIVr^`c? zq7*D~M{zc}O7`w5<)aa>r9@=lvph?bH(^k8n+u{?kCVd$cRql38>J{zM0ZRPDW@Rpc-9*C@M*FS_v_FP2HW$&Q1^^8c~r* zC_=DkR-GeupoLE=ss3tFcC5|M@tK;8sjXJPY;;mJqR(Z)JZ?A|&#@4;J)IW(A}ue4 z>VX!`cxsQ^8O@3Uaz3IL(HX;C8h^&f$Eo-Ds`R~3+}nNuSNy!9^MYs_EBBnE0w?jv zu4Ca0S|tXd&8GyLPA07K;Une6hN#82Z`T@~1%`j=37uAeRVLHkHsyKE1Ry4<+bQU7 zwM}|5THVEX-j!C}AN`qBEAb9EWdL_;q6H;+uerAe2wQnwo7y0uFKB9^Q`8Dl;Pl?! z5QBVOY?l8LGfJ6Yg|d<|mtsA+`R2TtA*G%Rl{M}36iY9kby_?|70RvCHet^jU%yycG1>fNBAABF!35WoF_M7N|&AfnR_1fQKWfuBSDNHfDSN+t1l{3qoYy z+;8e+TOWoT1w;r1M|x0$;bp5(kZXEf-WF^ihXcD9n;L&l_$FEwxog76p~85gbWQrQ zX+lP0PbEw~@y-_gUS|p#rNr=&mNuAbcEmwSSf!aJ% zUs)ttnm-c72+ghLnJf6AwpoKnx%t~QtS^g{rK6-sP@Uou($fUaK4gyAA51}Wk64@k z%vAezx~hXc`Nf+d&*+}RaV{+OJ>*0;U=UyJ$UzlFZZ~m0*_X{gRRAtZbzfx+PZXE62zp_EbMy2xr5nS6;;ZN!>02#$qLV{kYHoGe7_B-rt>#jt*qz z%U7l9)jNA?+DWX59q}<85*UM>2fAj&qrIup6gi27RukX(T)) zyoQNuTl~Fa%<}yu^yE8TLmYko=;6payZf`;MQx8gRX8TBw<=f14_JyKVsp?=myomU z#+@j!Q=MQ3bN(2>n(kOl+~1vU>^;GWN0{>N-B>Qw#}<1U^;6rC{p1$nZkLwgPph#( zH*COI%N)YWSvw3U2zkT{Msj&lL9*(n8K+lelpK!LmP_r*?J{>1*15HVt-dSY0(QD1 zVYgn@Y~gqbH6x!x^?xZWm6lYRWEmH~ek-Q?3CC?Q6<~IiTFlGhp8S>Q?HWOFY>%oM zO|!4X-0pGf$wr4^BsG}61S#5ccFX9_8vylxGU^aqGw;;POfU_%zS)` z+A1u)WK57H3=T(CyLaE!eR##|O<)eNIqfm8W;}*Bww?Y;@nx*)jR-DoIN08LJ@ei; zzc2USHN4 zyGKe^8WO%)ydJbd{IE%v_zTYX5?@bK^3#o36ZY1E{j+E!leJW4W9gt9wINsqfgfNj zI~R4rdhesuW{Da0O)L3z`qRVGu{=dOVeOs?!4~O z_4;yWX5>%f*(NxO!_u3mX-i=)ntKqE8H`@KBpbZ!q4$gs&bBl$uJq6na#t_l=H|ys;kI7EG=*731)n23!4!o2ox7@sTt?SoNAnDp^^| zkxP{F1jTEmmb*p?E57E1oa=5P@y7#yu7KsaK7Px*Q!9!!mIV(iY51oOcaK%9cQLFm zDw+F%ZM$G{bvL9qzJqsJ3AnbSd|7$EXph3bb(JjGNR(HHn8Atib%b)j;&n1XI@UVz z#P~}FWdhrNf3_Mg;U0@gUh^Gr_xRoYd;!4jO~SE0KDeRQ#?!~IvK>sNdH$^Yb=}G` z!8}@%RDKwI1$$do;gQa7oV#<*5x(1kuuesMsv;hnlNWc#(v|LLvzw5Zj6M8K-P68g zVVBrP=+YF9tsQHxTy+;7 zbIzjnI%4fFJ=5HDPphlIkh=NLmO@c4_wi}@zn)L%!}5G^VujdHIBKghz^X`9Vp+qy zkam%!^HYa3d-{al_f2Hq4yH?u$NQ6nXxj9#kQYD@3$$b?kP&c65R-y@0Xb zz530KR_esii2RhYN9FGhqV49=MHYJT@YYIdIe5I6)uxw3Lb(Isc(>WyPrx&3aQju4 zP&P}4>7<$)kRlgarE9QstuYlh7ucU|VkZWx8mw$BpT_ z^k3^ge;8>bFd%1D=DA65?(a8B5Ry4Bg-2ki5=4b>|O`pSGBi{>TZy5rV zT~!}GSuC$W6tYn3dh+A%e9mmfnj^5)H-n?p&QkNj{Qo{eV1mNYM>e=dx6+2!py`Va9NIELPaoz8Ic z+g5JNa!^~4rsOEqS$z~1OF4@F!IVb((_WbSHRsBL=+xh)O!lmYy110!NZLB~6 zM)naY3Gx0iTw49arx)cp<2HxF9g|Mpa;H z#0%GR_2oGfn}I_WDUmzZ8!L*fi)lj?!HXI%B5FigqY4R$hhE2m_&h8%)e`?g z`zfHAVAa=hou22#>I47uzEJ=e4pGg3x9^H(*aF^L-SD@D>w6n<7oYD>m)!WKrZn*e zn1>~me^-i+{|cgPzWe)2t8G<&Ynz>jwJ$ANZRDMdUuw9QVHTu8%oKJl{h>ei2_Y_m zYnYA|Kz;-1%#OwBX-bqM1HUU9>(V+r-?p2%-&jDaqJb!UnXx(!lOO6IF?)@BR7lbI z`D04fvXhk^e7p> zjeLZn#Rci8<|Dl2%X~yyZ2H1^$IHqNCXM6w=o97)JDJ#bzFn(ALypA4zX;g6jf}Nt z!uLG+ih{Km@Qy;AQ$1+s2u{=5Xce8@(#;2cHE#~)m${7z71XT6Azpd8M{j9~(-5U^ z6sGUxfQ@Hxo8vQuPURse5M+AS^K)1GpVf7!3gYN__YAj249WL&JhCATIB!nn6pecb z<_@9c#7b!B?}zVc*lTz0+Qt%=5%n9D)t`8(REYE}8#Eh9!f}YB&6z(A=EWI$iMqSR z`X%oq`dG%x3J$72SsP#a(`|;?V4(0i@~XDU%Yr59McW2m`pgXggJGcNBbg=^rA5dB zN*3^RC5b~56ljL%T=B&oq~*?L(DHGHN*lr5RF=>U9MK>I_{h2eu<)dqpEWhC8n({H zktI>fzf#AS-;T9dz5O_26D9HYm^=!7^*!~A;GP_BhNJCe8#)N!jqj*?%?{pv?K)Kw?D8-ss{>R1epQYz1gsAQSp6I036Y+4j|IURURcsqfS`f;@wx$v;=#Vu_ zmXEkj`Rp_Ix{u!sEm)pv?HWER1g!}4wBJpx%msg}>$re>${!&l__TbRI{)+&_&NW? zy53p?r2ullqA;;1z2cXKL*y$z`KW9?jkIN<(h(2WP!1XEJN)Q$}SR0lA>QLZI#cdPE4C77F8l1Yn zuao_@Q6A_DPIygwYk;H8ycsk>fc3OuBAmRMnbds zkm(wl#Z92Mi?glJD&ytGrbq?&<45OPZY*IEKA`t_l;h&cqm}-q4AJiP4R_n!`F>%E zr^*m+3s6#7Pko$Nvd;l7D7bU)a(MH~F?&p>tWWaM+ zsaUeJKN9A^ci^|=gkVhN%JyK)LJVtgoGa{VyBFdx2UuFb#w zW%Cwvxj2~$XPiA;5<35;rjHq9p-3rp8#>M!{ZSIwfp0&2DOxSgv)^E`br-oMahGM^ z7~Y-C54M+I90cn@1~8>anbLT|pG`^Gm7^Z1y=+jFYMU?z`>1_1toVp`79*M}#HiYSh1g2IjV}U~GrhbW#7WI=npM$DbEj6=iaAXz zgfWIjf0_f>0i)v+!1>cx@ZUX@ z2sfS}v_3AkW&ixdh;#iTI=qf_CKsxEaH7*NHSVs5(97=@Owo!A{Lo&st~C!+Q7x$v zH0fz|k=bnm4ondtNe9cReSw3g-?8qHpfWR-->=gg?^-X$QPUreEdxO(zsg-J`lsz% zQ7#=Qq$#o!8NY2dux!-pMtcKQZ|v$%_VCbmPb)P0YH+LpH7i6eT!3 zfA7$J9N+?8jHSYH#NvDAeh+8v#*#NKOPaNoJ`(J_Q9dWq*Hltz@ScO~$}3t&ZL;Lp zN(5bn^q_r}2KYnK-(^izull#x70ZFM%VUs?QR--$GvlA^uzw*Nnd3qYEpar7!Ra7WNG~dF0gy8#`<~y)X&^_Ozg`6nd{} z|Bf=^W@)PIDdvqEc zqRxNGuVF#m7sCa4G7~slB6jH_S|{fyP{}`6A|~ukAxBrk73~9*>12*a6Hx7q(wk$X zYR#BSN7Gp_TQS|QcP3&&EX`V;ZN|D)In;Q>LRNJa2D>y_W&{U&abt?8vz zmSoMe5%0+xRl~Iu3FWZGn^kHYxnyg4zm30-DH1+Co?-3}V~y^>XN)f+{cp9qU+n0kQURs=QTPgV4?&pz^HG*E9J}%zVhln|r=+ zTV%*eB%ToWSY;YOG|N4A%0F)qo6dKgdKJbB~Q@RG=|uNGl4_x8~6?4oqW4hf<3 zzf{&eA936)(bXR#dV<&4#pbxYFQ7)`;~rb&1{_^3dYbY;JhqJTsQBnm{!ffqtpWIf zNyags+xf-vZ?cS5k_aH(!!RW>SX6wbNQ+f}gx*C&7cOQ_LzpBsIDS@)J;1G8?wt1g z#jR?*Rq1raN|I-4_LS<^FU$(1b6^`-s2qfUHL&&Jv7vT_>Mh|zgGBZAr3St*-3^tbHgjXvGiuEzOI=p*o?ukm_}ZC$(BQf%V~z&h~nI(j%35tu#pI|RVKX3 zSBDp?th{@}_Zy|=4QPvFirph=K0m46n6W-ruTB;*pF4jwW#GZs>5#>2RwF*l`rf#} zatqOP>oyI?48@m`t8`1lS>Nhme7M6&zf-kwULUkb3bPkU$3ykc1I#7!k{6%^jH13Ev3jZ2cErYzd z$`(_2GyPfu>{c#3-DJ}{B5cimTxI!0^D@OiFnt?37-8;<{F;?tCfoQ;+B4W2q7I9= zy?T9j^4E7d`D)trN=Js*ov)bYKA97};HrIDfX9ZgvZ$Ry-(o* z!{*ne(j$kou}}9&TT<@>yP{ZfZ}?hjUWPCR=2$)AqjFyl-dHynYn&`^u6@mOGCgJDF`fN)DCo zULQ<3$9t$qc=cGtO}ANC+Tb{-eA_^T^Jam#MW@D}wQp6s0akU;S$X)tZ;V8@ozLt@ zbLN6IYP;vVi+6qTSV_?{As;tMzH2k8*{h*U)Wl=ijJXSjq#89BJ33;C`kd(++L`PS za@p@{Uu=)^km7|jWq)3daWJKT%!|>riYZ3?2;H#NH1O*)#)C-)?JM_G3|KK>SN-uQB5*;DC4 zh@ZSwtt5vjC8P6WKL={RvJB$VI$@dtEtv^eZsjKYRl@>0%d#3@M zCdEbE=)*6H*`YB~*8|D8#a0g26y07>mSuh5cX~uN>KygXvvDus>D-zyeDVY}c@CSj zcA0!!GFrwG)kTMxf~Zb`$Cxhs#Y0SH+{}>&?Oe z{zgtl#V50}65vuupdPipP|?&(q6#>>Hioj;-r}N8)~}Go&`jFB>6GE6GP;=aEFGFi zInln4JWv1Jx~$YHrF69~KK_)?aPv8g_o3m=yH!V!)nJzz}R?ox!YF0RFPt ziwqCzFa7eeCc9X1sY3;6WMdI01IoUQ4GO>vKQSe5jJ&IXm}7DpWT=ZPKWnwkr)ke0~zh#4_ln^fH8 zkgMTM{P&_Sb^#b6D${PK8revBVD zgWVJDoHm<*BV?Il)r;|L8B{od?Vpl-M+Qc%{Ku|VcKoF67_rzENAsI+n;U5>q~Oa5 z`WT=N9k^d8_<&T1L%MdpcUGkTf7VT)2O`BFneYT=k~nvOBvvs3HG9}$1Bd5OzH#~J zNx_a6nm3(;fV%Cil@Ex4C#XPmpd6RKgqt%hMdR-kW+RmhQb{*yfms=(GicIv$&=o9f9^IOPAj@Q4#1LecjheK!<0A5bXLD~6Tvyr7)Wgg9oSqC&#{iTmOg7B9cj_A5 z8YdNzkjDP+*~HF!A(TI6$xf?)q-pe~3Y6uD< zwWy0U{{k)nX?~wcoo4|k{T68#1Sf|n(?$Vp5V8`;qgI&91zO}aw2=|ZwGX$o_a%YG zj`us#lIH@3fEI%kkMb%8Cr)bbxadNT0Io**fDvE}&}Y$G$wV7g*b;DI)ckw~*aboR z&{Ma=68F}!W5|@94mcpr?)lfscHWQKv18=yy#GxvU=&}<$#$V-phN^Mu!fS*GZP7R zzZ*b@g6qk#0lY9e1?n;u#_Di-1Yy9+jM`c$FGHs6uRcQVqul{o|4oM>&I$D6=gP8S zy$IPz^Plw5YP~T)C2Ox34GimLZwQ=o@S62HX~()mMS=P{I0|?~D02;LuwI>{()*Gx zZct;8Y;-%oxqnkn5@A+`KBnkM0b<74$Q3Y-2KZ-7gZjWg*uO80LOP=-!Tg<)4QYqU{?n!5^R6p~CI*#ItX+cD$VtDX%er9fi@9GB47n3)>h*KD#v1X#W^v)d!pEUeSHo^ro8j~FtUE9b= zq`-~#V6I_@3AeO+c~xZq{|YoUq}bMwG!Frx!LlbtX{uXT(fIIp>ok+-+7OaJ?!O-+ zEd}@tmz|XgsqE6lQ3PS;r0xU{iNs>}53V{nm^4`X>P5s-pA~4$fzI141bmG}UFrm=Ea;jZ+V6-}( zVAEFts|1w&8u|i}0iB(nwADcdEF~QQRI6p-lO(eit6lKyn(9V$R>>{=3z7eih`IB= z*iHz;iempS8_EXh?$?P)vITG)(g6IKi5LMb;><{LW`tiLYXKLK>~$P&b|HWzUr19dSTEZHYXI?@MSheB5R^3lAL$SzCjf{8CM7P}| zYXQ`)OXKVFshkFOU=_p=BbH1T;liLQs;U%Q%70ezN%COh?IfNr^eP9IZI+7U0L-AI z{*Cw7Bq1m+Q3q*2D1|2uXFVP7g_2Kn@?wQ7# z!X_-9q=_Ap^r+M%SW2O$zntF+&%!g3bd2%>*=5NBC`V=ftyh2nO=b05yjW^x36!-V zm;GhIXbHwJV{M6x%$=0H|J$ zq!5!q2y!Ak4iJ_Xfe0j6fc0;6sDO%sY<*N=N34zAXl>{F^!PSQ&<1V~NvvnQfM8rj z_^b9*A&E46Bd09cKXdC?Z@b@2+R3q)0qx<8Um>YUM-#aw!E)Wq>W zl>f)ihfhbHVTDr`h33bAXzp&FilyU*}LAS9k&HOUe=YMn5I_1tK z@t17q3H(_K$;k(l!BlXm>=Z#=@`^Rt{{GpWbpEBXAyPz1Ahm8C;P2vwaJtcI|MA2# z$9cxU|GHVIvSUoJA*cb`2xvtm3jhp9GjaVmEqGKRhZ!qyHu>qc_Ic|ptFZ=YW?+fz zJ=a#WNvb=WMg0Ni39yAOj!Y9;0FSye7~A6;{6EuC4ustD1{e}IiQUBxe_{b`V^4K0 zrr2@uIBT3Mo~NXvAF>W|C%2K|_!p71FG;PZg&|esRlG!TA~&8y81Ruvzf2WOo=G|x z!yaS?17=hwRwa^eAa+QN9sZRDwV^nnopP5i>{_L81+~1eniME`?xy)>nw#kW3V`z4sZ)hB&Ag}-|P;Tljsk=PbD;s0Qh1tf=B zkKz_d(@4}9ZF>T<0Hx!Yn`Z^C5kOA@E~wK9clPHJ%5=yV2sw#K>(kGz#{AD1mkuy) zn`Av&fYWdht)i={1yIf10#G(o9kkfN1nlx`J*10CW$ADRl@muDB>O+@l*qs~x!i>T zg!c?Uc)<97q6%H2%yz=MduRaO|qsy8-^AsQmYNh+6i4!rZjLu-4UN9*XPCLT*7e0A}MT7-n zIN9u?EY#)}zW(tqM~kEHjXH2pxYXgHcAhU3P`U&=x#qX%YygGuB??L)uMOTiYxWC3 z>?zW!P@~CWxInrNFWUHqpKXWe09>K%KLb{(dd|e1*f5ycW2ZMI0iMy1ULg`hvfCei zAo|eMGM?D&Hqwwp0l*ZI_5_d#WkvUc2iRdte^4{XklA@>Cj*oN;wBrtr7}aeI;scG zgoFyT46CZp#6iT#Ujw+5cKtfaUTv5B41;~YukmjT#=mn5ZUFTc;NBIDWHb--a$PVvD_~O8_+7emR~REq zdmYZg^Ox>sD{Ll%a@Ur|d%5aply1D~yoqkw=@nug1-Iw5(soE6^s16I;BuRjgF5H` z6|(gKui|x|TR{u#K1@bfz)6J7F$Qt$@mLEH1R1cH4`@5eJ12ODP*D0w+!<6tbAVGw#eM+JME)VYaPo4;;)#$@W}_Gs#-Z#H0Hc2A=I z3AYy7uC85%(NBo~eVZQks1)T2SLL8M<)Sa$srux^o5PORxZ|#-a8BM+aw_}XqpOT? zDBx`7-8D7WF|!ayNZ{8U{6Yr~EQSuuj|oN@e&S3JZ`14~K&;MpNWg+;(=0DNo%bb2 z{KyA7Zfeh3o=a4f;76Q$27HzGttQfE-=)63#?L?QXP`0zY`5OoW@kcK!Q~jU0wFCI zIx-nKI688BPD3>u%iH@c=Uzjbke%mIM)2<9w#OI4nfS(K!j;23z?I;YbIuBM>k&j{ zs+{w9A$wpuJMaVgHnVe3TaMmU*j_s%sPLKFmbV%$ewS}A7|xwImn1w43%V%tyAjs5 z{10^`)F*T4TJ#cVn>L1jXXXKMx0|2=H04oi;aSDQcZY^*BNsau=Tw(WYmN#Zt#skO z{w!U=@Cn9D#5^?RrgroP{Hg`+Bc5=G6Itj}VwPQjLA5~)`1c;2j>Vm?hVP#$afGxB zi+U6*#H@LU5$pQqPQ*`6(hKHdw$;i6`QII0u(N)=IxiW{grN*O7V;N72NuRv+Bfot zKkaEhE)1R%8e7_KYSbHV&Cvf{pIoRZ9e#V|vAE=ye_>E-n$KhjSAal);?GAez0tJk zL4JKMT|kbIq5qhE+!`f$9fmvHep#NiAQ346Ddp$pMu1~##d43JgsrbP10XMsX>tQ@ zKCycWREjvpw^8!$eIBN!D%73pH<5o*9r?hcuETtq{}j{+n+cV$s?61Go2X4vX52Tq zygFu*cBC89tV|uebpG(fGK7B>J7oWJ5HRr4Vj2LLyL$~BRR7~b0qjQ4Do7q>$rh|( zseYAkufNuQC^QiMkBQ`0=^Hd&r{NCIJHY4^6vE82Cw;S?z1{hPAit8J3f zx18GxGA#-}G`Pn&FQDJp%K3Nmr3#!}-Gc%WgbB<0MZ zUHr2k4Zx$`Fh{DMG9mV0jpQtUz$JBaj%E@g?xf0XnJuqK? zm87)ZqgdkB;BzbS`R`moAb_xwQiHRtvP(=c6C;jbJXJ(UP$+`=M`67+ob}f7YPLkF zRLO2OboW7~$faYm8A^gz$!_HX^BGdZUrp~~`S-c1Z@lvK;|;y$>AhD5l>#b@A6lr* z#&@}~zNZ92MCw^r$DP--Ga|UVk?Sm@BDi%=$L(2p>R>h#foO-7q|8h2{bLofPt}&L zBg{YN(^26H>^`)7J)QYjQpx?4uud0HARz4b-Cn&$S=4(cGMICP{L!>2+ z*q`;Zo7&6!P*07H{9$^@cLhA2dKD(4^o9SAx(G6UH2@VzV7u~X{%!r**iftrf0(k4^{n?u_OqndEc67MBBBN6A4Bla++FdA1soS)YMw9DC5 z(SsK8v=<&s4yxztwj(Q6=qPwa=qvOG%uQ}4k+w{XLXKw`w0oatZ#8}^N8g|fdNC0B zJ#`GXYLQmQF|{q*qVKeLO_;8~IOJRQjwKgYup<1|J5kB|DjeDY*N0!IuP|mmFDh93 z*!MT-4hOw`7=56y&u<@+){6I|Tb~bKFC&#v4+DL3zh#{sMhHLRG+wD52#dl2XG45@ zAAv%G^RZ8ab*q6M6u!p7y=&1!z?*1F$vGe^W2N+MgFKs!ZyMdVQ7h}OJ)&&C_BR30 ztz_d&L6?PS)X%wEY5D7JUBO+Fnz8~?Uv|C#x&R3}{l{Yz^y4>yQ=A%ji3Of=zOWwaV}?x1m3voEh={CWSggibkC(Vz@lMfNH*Bx+#8Y zXjB=E=o3PV{2%g?F1K56c=n}bWUrs*ScYJZGa3|;fl_OW)xTkZMdrV!rh%bK38m~oj^To*qngR?+ zo_qF`n2k`$4yqF*_Gfe{kmb;DaI0Sy1T}kc0&^>4N}|<`A`W?gYY*tG9FR-_Z=V1* zcc@kO#MopDT!*h+LR?Hphxbb;}0O2GllIh)EWI+qxH^EYn}>91z4*2TmtLdCJ=N+?ro`NI`8a`G?XYPL16c_X8!ie1ODn z#$do4NB~mkpOap2#Ab$^eY66$hxK2deF((YPTe}u4WNjDPx=en44p(BE_4!g!}e71 z?Bz@^=nx!HzM*ZjGu|WwOG*-ej}iAf3ZNrznVuUm3VFbg6-k1^z{i=_^xT2hA+V7| z`mac~H;l72^fM_kM1)mBx=A_R3U=k7o|Ii3NnUg0^Z>R65ch#papIx~e;En@?wJ0N zqIEaAGK#pfX#1~CkgueC@-a;Y^;B95uzkP3LxJW)vr0~q6tM=Qh_MU3P6i`vHoL4f*IZ@J>zZ@@SMh+7XzrCncfJ+^EEJ%$*L4&Cr~zl4 z;5?>=+uqneg;&({xV%lj04az;awPyGZEgAr>Zy3$DS9(LHnGBTM#O_yRJ(dqDL#919E|yRiu#LG5 zV6gELa#3F3$j$&3uUoDKLiwf+wSHbh41iY+C&DUZ*GRP_mBp8JzPVESU)zi<_IpNLl9$a{n80)@k_E*sHB(lU+@DcOq?X)>XfyvM_0^W*ki9_@*lg@ z?V)B1!PV3znIf-O1bY7HAU;k(zcN){-?n*Lw^u)xT^_Xr6&Va6cX{eHI}H2dE0B$6K=nRyr>=CWDQs&oj5kRZB56FuS+%DBh z)68+1tud%UjfntPG7x-tM7G`IZIrv;mNlUoJ)}HVvr87&`hZ4~?u_1({{Z(O408RM zVwN;pm2OULTa~ny>cCA}If8Fbn;BXU&5KOn7*jK?#AO0P8cxj=j|4)iFn&WZBciT$;P;+NP6<^2&>11*%@=s!-EMvnKMlgUz{=j zj;LjabW&Wu9{Jh6WNc#TWk#0INBl*=sM6#iB!f`UXGRjFJ}jTA)ohlVZpHAFrj} zmsuZ?eG8XjTp&Y*HlJ@49eA>d?ei4}rwUy5GHZjJ{U#8w0!7s&daEb$yAoq;&)IW*NCGlo6;X>J+Jl<_P8H;~4Ytd{rS5f>=k$3=fy zU~K`qO+6%~t#>hEORt1DIMJ>~VyApCh-i*OJLtatMy3J)q>ckCB3c{?4$K&z{TP|* z-VbZxHeu=MgSDafekqq^K%~5n89mu*S>pUlsBlpv+5nhnQxV#*OW|Gf=FAw40VmDt1>*AL&W_CJ*zoBkByW%~{0$u8O zp~7mjnv8|Md^gfGe%B$!yUVo}9HT`opuHBW+tr8nrMwB8FTNm6Uu+qB;K^obr@sBs zXwf5OBEov2mZyNG`wY}OVc}wjTWf2f?KlS0jDP`}(fLYassO)^uK0?u%w_q5ewN~EcgS>;Q+u@lycuX>h0Crwj4MXP$ivOLQ9E=b zk*7eo@FeRxJw)OompbUyz>;+M>!Dj!;VMpC4S~#QG6a%%lk_I(2jA}@b%rswA+crW zvPLI?kCvS6jg%s*BE*sc>o3^zhjGNxPl>hD-iv*iD7U3&C#H}xB1jvO9BzZ!$5`95 zDH`JjQxP!JDV=byA#k~k&x2`k{HZQ%4c$&k>KiA5>En?Kw=W#tN312i9$CPgg@`gX z!!?T@GEzZ0_EntvMKfLJY<`3M9)@TlFY1O}?p*j({0fS8Ko$_g;_92_c$FaiJZ**r z)RO{JHEEo|{&L2*S-$h;O|Y$|-IFc7(#%Pd!IO*_p+(X3cTE2C0d>XGPb~1~7p^EV z{UkS0KlP?1Idm!dDs><>aOfh46>|u22-ce>cADru)QZ01TOY60?npV5xOMMQ$;=2W zg+E-&4VhJ*u@6#Q;EIDxmbgFK(JZhM1NjrOR2{a`f~~#v$==4fNQM^@rkp!dZ)BN6 zWEW<49LlFY0W(o5fk}GMILIPrgrlb5mp6=jk4DoiwQd)i{{dC?cynTLjp4K+lq}S8 zCpEji(Rncx()R)7MwG1-;AFLX1&_q;ted8!q`n9Lc1^vQc?7A!2@p6?6W(h$^&9gM zXN7S4JTy0O!S#G(`>6c5y`D%Z_WGSpkF6gC{=ZTS0P>K^cC$(#pP-XtbS#K8)bS-NkA+J5Dos(VW#!s82U|6h*{tbei(=>QmdZ zG490CncxC4R7h?5n{7Jf*sAm^2K;6Q?xIGN%S+_N@>56+*n6k3OzE|^?san)pd<0ftYYF<3_a|oI+ zN-QQQzq~&1QE;FUV=Jej@OE_QLtMlCTWs)hlTSJ`$K7?#>%}J}{n67_kXs#^pgn7& z#Vd&-ZRt39HK!M5*?Vu`z8?D=x`kI=LNHagWU7Zlr#W!hu^>rc}9!7hci*sL=0_6>h^y{Uvs;)i-%Ri4XmbIxd-AZ9uli)HGkA_eEw2ej-s)N zDj#jwy8Mg7#zj$r2GIWfTqD2SARga%X+$joCXwVl@rk@no|V7NzuzlI_M5A9Aj=uk zeR?_R^XqiecD)e=Jq+AF0ua)#DAFL*e=W>KU^;5!ULOU7*RPENA80nf5d#O&(e6-@?3>6+R_mueH4F4m2Ra z!#ME+wUq?}Cq1HDK`$q@(==s%X#P3=y2{0Cd3(Ps?+^*iv0+;CrWrVfVxlFP{A(k3#UQ^%0MQ1fr zX(b<^FSrg|)XXQpJGLuN=ex4DmuF$VS`HS=!8HHey-J#P^aCa`XM=RmY^$rnIsTl& zWHXQ0uEvqnbLBiIb^LWGNqCJoPV=22?S#%0Tjo)Tw&6C_%;$ll)$QSZ*X;0lWPhE# z1Vi|??FCVQv=}zf{e7`iZ~=WkR{P!9^|36xMVu6_WdDCehUdxx zha@gFJ)9N8_j=u|%GNboe41p1$GojSFBE>S>$}}Ef46bBc&Cv^we;mya&78}UWMd- z75&L47aq4K`5~A9Nbpr-oO7|RC9cR^_pw83HJQQjlZ*36NCW*ZN+{uljU3Atq^|d` zF;kgsue#HOi5#j;*Un>(I0@eB)p(>fVyAT!@%#>i zg*H^qGWyuWiB*1VehF-Z{Mt^W{K&LJ~ zchP*Fa%16js1Fy3u|%|H)tkh^DIQ-TnGYj5kByCrz7HdZsWMajH@KuRYRno=?pLKt z9*`<%EOA48-hHyoKdIPFjk`nava1#&Jx3lI12I;oM;>biQ`_UKoy|>+#q~6{ga>a{ zujMQ;qZ2lVpDK~%(|C)S$FNOz*5V^4zrisnJk;+x#`p6ow6DW71I$K}{Rf0BDDS^3 znCE_e@wMk50oUVY#-6)cmfyLayq_m=R= z){gv&p<~WFyfXcU%dV}|AUHOtQ#YrQc<1v)h!Oclrcux2ceZYoie4Ja z-mqzwe>^>m+Y^EkT`g5L_%W^v4X~v*b(l*U8_Vv0hRp9=yuLK^vYd$>L91})sdjWl zxC&lcd4@w6x{AFMKMwyvDIE%oN)lHdC(V(! z@5nqeewpn71gny1T#XMpDH`qtF=oGNz19m{Ely6#`Uv!x_ml5LMh%NP*_yu8dt~`_ z>%%G~o;*WA&Lp%r4H)HF&I;N_uPa9hF$Pt%Zv-Qe#G01(j*Y!Rafp9-Pwz`-b+@ay zVTEDd#ySJ@Wv7V5-5fC7@G{qm)Uo$o;y75P}v-FO;}~f zQw}cL^T=fj{>VQp1`}rcUaE>%l@VJB^=>6CMY&vt4(p@+i9IFr)syy5$2>Y!RoIN{ z6z+d+ve26ca-5_s%#v(mbp*9&!~9Vj6Sh8$YAvrX(3&}&h|Y&AvOT<^(D@BS*Ap=& z&rn@+%42B!zamba$2@sYxQR$&waSNP`&dVh}ogw*|Y>p3ZUAJfp)qBWl{V!^1gcow`0I8ce-S^ptONZJpb! z6gU#{Ot5d_{Pobs?^--A*WBK|fvqTN&AtO+l|B^f@QQh_A=tnT_kdh6b^5B-bQ>!z z$CR;FfVNO^B+m-wb<1tB-NsTGR%!OW{G_zuLC;+2Pyb}ZV>1O_6baO(+|g+?FoT?@R~@j9LP67-P*(MhuDCs!v7u$Y?#&J17FEazUOt!op+zz}J0-V^1yNhI z83J88FAgh~_|atxgJUWwI!?ZL8yp3`tdYtOITN>iI{!5fTw-8)OCa<4$xE1g+3B^X z=_T1NAgC+BhyVk2B(#jSg?{*A_$0sLLwB~!caD}Nd z5t3$pVYy)8{C*-AnJgwxz1yV?Sm1{Y$E-XAE zfEYxg~v`Y)ZEui!4d0+y>+Nz)-tz8=f_@FfSpwcmmOZ@ zIZ@Ay)1SGXCkgM8MW0rJUjwnp8!wdFf2vrIb&kP&-qfMyHpvEalQP4~^Q*PQh@r{) zV}f75w>q@YbW;^9A8X?%k)PhN->3^k>Qfh=n{V%557hqNFDlM^;!NHR2_caLPtL<0 zEgGr2i;NK`Ya)HVodYWWJeq;3cZ=1gzjCglu#^*LQn8fMEPH>JrFh|;4ppTjmYXcN zhwl02cj-YG4>V72?5Ziwd6YsZEYFsitE4!51f^*iD%Vn7GX_HHx!@jb*J0N8?g$T3 zU8wSDh3B_D9+NEFxjGMlXm_X5Rt9fh+2|_@jxHbfHA`LmUIOg*VS+a9yqxK)u2K=$ zupTgm_4w}8!jDOLm@6K`+{}IjSEEH&$wsvbk0bXcVp^rgIY1I@$IQCfCk`~MPw^C~ z+I@`tgo}+B8qvixq$@Um)4|lavd2=RiM6Pq?Me|# z0Le_T@E-OPJ&}&@-4!j#di~G5JtC|6P77^u@n=m$e+duoX3?;OOpDZZdBE_4YQRXC zz*{7?KYeQ1@L@7>WGV1f>jsdbQtvAJv18Rx#=*!J2?`P;Ui10$IgPekMHDYR^1l%> z{%%|DcxK(`a6y#nQe*ruO=qR189PHPwlv6W;Fo*hBQZFeJQ}^c<$l6B@TiUxR8SXu zOm7fo@&`BM-ROkX!h_%A6ool&Mjxs% zFfzXmyLwTWn7xLs5=v{)pL&>A?8D(j1S@ps%i6<}P#%-~Fj8Z7?xJgYR5JP~6=LeD z=ci>(bcvIZF>4WC-hJi6ol^ip^rZUSsw|uq)ZFSRYl>ix{L#MC9>?e1ghHv`<*)MIZ-qtwTrkMELch$*)IGt5w1x+j zU7iOBpHx&22`cNGu~)VsTI?md(IO99Oj*~~cN?mBt3K(trX4>l3caAtlBk;RISR8} zJ6{)de_j0Tx$ux!uD8Z&EZ1#4Avi<8yAoh zYcs~xz(jx7-_0l4&$4t)aU{~Ff6g#pe6;4?7+8b=r^FA9}lEHQ2Gi{cRw2EO7g83y< zyPEo}Wh0Aol&?b)u`>(vG6oB&5Am;IbY(mx@{8*!l(N*VIYBs$YI_B3S>fXOQ|BTQ z&&D!{G-_V32F34K3NULpS9Gb>&=QL=Yr+LSU!}ILhu&Y2jRkA_eN%vOz%LkUJHzHa z^=R%l_LGl{Msv?;b8=INl{`_!SqDd#z>&9~2gi(@j=QMlZ|_Ir*@zjb3mLRgWfD+m zrk&E|6aN-e{b3GUxz`%rJ(&{-ZJ;MP#|K8F)a2J=jL{`C2wQKpaR-4V+bOl^;-9^! zc?+fFHssWNbo60sG((ywk>-LBp}V%bWc{?H)WS}p^uq6Z$7QSM&l~7I&pIY>a$u~$ zEL^f53{j@B1EJOSXivRc$bs97j}?=LeUmY#{=^MFSD$C~JJuYWq;qu*#)#VB1 zS%4QbtMw`FB#AW{nocliZnipmDAq4f_MdM#D|YotaGWCb8pQ9B-Kvw#@BU}7KWtil zgfO`<#O%#Mv^T-hyApse>q`uF?a&T*$X5nuP>nn>)cB? z(oxTo$Ax=hqrf3N`HBwTM2}hO{l^=)*8k2$MlirB|DW)}f8z{)58x$Q_*~!;0L8hv zs!ocknf~nU4P_9ZnfmUJ0<@!|o4*zSkWu*t^t_mW7mEB#k456n;4=Q-qaJ4D09NTi znH15)xepLnJILEf+MRg{-_L{G@%C^XZYYlKG@gW>E?%Jky!&tYz?^^S#;hOk2*7c* zem4YJ;0Nx*g!dFUV7Pa3Lt>V+3APc+r?{mGc?mc-ujR-r9B;U?+H^Pp1R^)&Xiphj z8SZ^YfP|cMF=PO+Mv@90mTsiLhCHVgU z+iK#^Lv@=t)_Q(G37{3wH!(_PzpW$JBI$1+yjjhExMcxuFHo%i#+7&ehEv2gMb1Pr zMsoj8T-k;k;KV-1VJFhup1%1{OCwqB-CCke5g-_2mdNJiQP`({VfbEMAbJ5p1E?Xd z_6_;xGr;Kv+VqDwdMSt4FvfWDR!nG^91in^&B{bQT}hJe8vZR!K(v3)okC)8@%&|MnsO!!p?zf4dCVsv$qvt#WNzr zJcbX+nrY7n^ZmLw#4dcXp9=+Ez{36yrTbU)|3CaLjJZvZ>-<0vDh?Hbra?_?L=IRE zm^=v&By6k{s>h0@|g}JA~2CIN$6B~13IE7k~}gs88!51Q5ahFSXrT}Ppx0dv27JQvT71W-z+M% z|9j8j>hQ6PaM<-U!|=DLh^T=*k1O)_$(|5KaF*e@xoDDPX{WeKeB?6P-Onqum7$sZ zEyh{y7gry&u|J4Riy7?C(YF#j_gf)9{dCHh8!-YQ*Q)N_TId7^aQ1}$;xfFNKtj7_ z?Tc8dNJB(;tt*Miw5wm$a3M;&xcc2cM!`G%x0&A139SshoCL}Z#egs&|IEs!lccnuAeR52Ak#i zC*itk|Ki3k+e`B$tPM+j^KmRm(ae9)jZg^R$j3ODrv8zq6-D1jltEr$`2{oq-(0M6rE0Iyw?W`wgXKk-$1fL4k4hqo6pQ*+ z^YnA*gE;|5UEzdCdl!pqHOx`p!{4VJ3=@Z3{^n)sNYDZyuw{<`jBseH_f_6F-QsJq zjV65PH~O?DDbHYv!63>r&s1a}k%*kq>=oE`x0*|}yjMwV_VViE0lZR}Njcym&)2eX z*EZ0aTULs{3p!k>qZ25xg6~VTRAztP`dd8>WA&y>j-qmDj|)3oDm0|9Zy+hYaT_vq z@}??MqFiz#q$LO1E8RE+}E)G}%%@twjN~9NrVsJ)=SGaIvOJ(nR!|3el z>;v-rBMGvO$8>Lo`bs=qM_)&e0El2U_!AY)RdLNG8yQ4sfanh#FjFuCYpdAd&EsYq7N?hADg~O+V(=BH5yV z;zM_l{Le$e#F}?vsWQPHpDsJB#5IQq2f6cTx%#$Jqo+wdxWi{;r6}U}Z37j!gYS6o zczSK4^2$25>_`v#RxQM3q+-XnBR{k7z^^*mLVh?z-s%1}b-Q9z0y*y!!WgP$m)$Tup z&)5MmF==FDScIkV!0Os+(1rG5|LSa`Y(DxA?N;Snm!H>lhhT#*&Pb|Y5^~zB3^jva z<`Qyo+2|32nhAPrzAY;%%1dRDmh#ywA}0cHodmEiHuXytw8c8EM6edhcjczsuV&+5 zR2{JE<6Qfg-|u^^*R2GVm>cI%HJwYJ-SPO-<6{@8%p1zrV9SiKvs7~#p3QEx@wYcs zr0Q0Sp@dKsW>E@_!MX%3*RG7^?oK=EnvsVGNQ~vFZc(-6%&iq(b9TqoP_;@47bY~- zZ#UnHN=7NRp6F_C{IG?V`(9v`24B=V171sBvFqyse=$(_iu+WJyhUS&{Cuwuqu%uR zPi^2XCElvYGsPIJr-|O}s#rUoD&Bf4^1(ANiN41Tz&%Uuyy$6RV&X1}F>Fsnel(s@ zT5zNp84inat!#3^WUW)W zRSW5925H&XHOH-%C@u~QhmfN@GJdiXRCCKddIT(!N-Q3H7?p4Js9p&w%z}4n)7g|s z81eIiL(5{f`t+tb0u*V-p4pGt2mXT^h98Ifrzdlui`w*QbK;QSf5Qgdr~S)%9$u%I z&4cNSJ@UV^)(-nVnEPRmYz>LAUr5coLWo@j$J`+xGAY?f=PM0dnv#Wh>`sC}h83pD2En^L$D&>I5#8|w=M4=&j7vU!x zb*Y1m*I@u=m^t*+n2gD=WcNTCY#jGeP7SjmS3GcTzPS^9-LYzxk&gET;axUHUuJi( zCN1bKVq3TrBp;%UFmdOeiOS&DLw)!44%5zS;(BSaw^g>qT6MTEmYHHZQFdU~*&XQg zwym5)@bf5by$evyYjr`?m9(I!oHRm;exoHaH%~DvdYdX@i}GW=_yU9CrosVaQLG%P z5h!%xTmH-UZc&3ts&_)L3dKu>J&m(NO0STEsCeqQ)A-lw{ko zg|`@9ekSn&JOs`yzKAsQ^ENijH5EyNr0-pqTjd;vOQNp^fLhLl+f3XV8_U`B6Jt2Q zMstVvej;hg$8eGM5Q{Oz?e*8Pu!4l{!wE`zdsKgzLY|rz%`2#sPQjC9h*aD5;$ddP zQcYAzJ3yL%v!~mryV5e}LodjsSvh1?HXXm~x~XrjIAa+$!rzbhRD4c|3{J*{q}eU@ zg!+(a6m^2*jtf&qViO+=Sm}q4LuZ08t3g&SsO>&tVzYj)XKou!;eW8u zFjK*WL9bpS#U}iO6ird#bN4v7FX}znMk-{0x&k1f1W%lK?5pfa6wU(V`Eds^n>P4{ z46^q3ANw~w%MXnSJ$XtU3&79 z7%n{36v=#sxgyBu=4UB8wZnJ-sja2#)~hx_!QMvCkBLskbO{% zk4#UtTNI`y*^`@!8j-O57PIknmF~=Vn=a$=DY0eE2E>oG!c%Cws=E3x7K};HS$K~) z%WWmiG*@c*8j=XrY?Dm5BsjA?y85|_QnwWF_K>Cu+=cE3o5YSM*NsEU_V-kVG;26F zupPt&?fz?B@EX5j4qoLjW#{Caphxu6Iiq~*6`&HG>HF^IF1HStTlZJ4ip_aj=!#{87v2n+Mc&RmxsDlvV7-Y9_k;QFc4nFF^+2Cf7rSVZ@NW5HzqFNj zvB_ng(bI2C6}yHnRHh?Egc~XglCu_Q+oU#pIPjx`$T~e$AuZb6ZxSozKV>$xuUmU$ zfliNGAMif1|8`46RBS&vWg=P#a{mL}=c^oST7=!bQ0$reuRwVnni6#IAts7vH`bf& zKJTd-MIY4OV8Nmz$;X&&oNIg(wh(S`(ljrQ6CZqbYOP!vnbmud5^r-wm#S>ye*c&} z`>Ki}@bk!>zad!on+McV&mINI0UCozJ4D&@_;+H5b93T zA`%9K9@pH4FdJ+W?k~HO3?~l=!P$dN62u0tLLby>ON`Y#F4f8tdJ4m_QVA38$Zp#T zyu18XM-=d>uR!bOG!#CJK2c}-p&$65DhBmWt9>7wFz67oRt>Jxkg4YCMqfxomP$2W0CCTvRxhNORb0LbzW~doQWG~ z@~=NEKU*4FjcH(s-(4=ooRH9#=Md%06$=-0`+l3P8Z5?GQ6OK1y!SC8V-oAB5LI|4C`4Q;VK+%_=P3|x=A_8#yGES22f^Jlq?y@$ zSlMR^w_+Da7!~VKFz)r0>|plW@7=E%>wO?1*Fsa|QeUGQFqxLySw-80<%H~KU&p{Z zx|@Zn`x`hwc?6x>0kyRn+jJ&TBgRW$`@v8-Df!kTTQ$PEDZZYdLKmFr9b=d~QBf2c z#u2N}u=koa268%g*Wi)!tptT17?2yF%b?yZ}v&QDt=12Dd z>ID7iK3iiWz|+6-j(%OLT)>@u)^J<^FzG+;6m+zI+b^#@EMVARR#JIUl^7D1qmvV6 z%j|)xGUutJBC-ct#xi2F4)FG@eYgm<**UrgWZs8Ij98RRmh?&_{p^|Qe)HsKuwnmYix5lQp`!(o{+V*9SS8w;|vuLhC1>DZ0OSkh?)RLtDs=f@^Rr$`_@$5k( zlkPnw#x=TtxRH%LQv2}WND($HCR(2R{v*wq$nEEO0v7;2-|!M>8LBeHeb(e|f4S_> zvtR>hf?_HbkOkRg%Fv$}V-60o1emAXwdmA^)^SiZ=QDm=j%iE1jYhkqm8$u*_si#Q z4qjndMkh^M(S(-!l&!QN$&3S$FPA?qE>}ZznWB+V{aq{d)C2bj^;_(<{5N(jlTfhM zvV8{*TI#EceUU|Qdp9!SRAWx+>F7f0i-n1UHknlHy0Yj{ zy8G1?iKWDo>LLOgBg&#sA3?RSn%TM(Kk_>LUu&$&&M5gZ`UVcfu+Lzg9rBW~!a%Ys zG(R>ljScQDtQD?BJJx{Plp=@`Q|y{u;5c>(p)CqM*DToJg0|gmrBq8-_A5P@A-u!K zSU5~w;rH!#Y*}Z;o1TgQMO`zUadCF75i|O%4sANqPn-3U*WRU^1ZIr;>!Gk?O3Gr}`*@4`1`43= zV*A1QR@&?NBECxG0R6hU#Gl~em<23#ktR{SUqPZ)JM)y%>tY~>5@V|1bt%ahup7&% z>C2iTKQ%~aFfg;ZGmM``nabZD;_5iV{t=kpnDYXj;xBV(Lf#duH5IBlfn}e&3{{jE zL)+ut?goz>ACUq8rOEcb$0xThARcC$MJ-`Xad{Px24 z6xf(K3smt5+d@I|*t;S-j3fVi=cMeM;;YBSXMPX1Gn-%MEWlR5T!;prSeRWYeTwB3FatVXs@G)f;Dd9Y1&2bi1#rOnOJ| zjuP0HtX*mIMZu)3t8{)$xL6<5%)~6(!NcKV47I- zJUF;IL^M@nbBpfGhfHz~1d0HuK7C@~@3j+1rg9Jm?+}S*@V-V6c8SWg3<;;U(gxPY zZ#10}Ve$8sOQkwwibB^k*^l|J>Q`B8d*KVYRkiJ4{VwCmj~%74USo)e!Q^39_4T~8 zOb2f1Hp8H-kzwbCjr?o9uDx6!Re>w7qFdcE)t5l1^2NbvTK+Nbcn!d*%!12~bHHM# zGLh~E`OpvsImCgg#5;MJ6^~+<-k;PYUWmdgzvsW~pQp$hW-nG(WUC->2c)+b-lfDZ zBFz1hcU8lu&+1kJw)n#KJs}kxzPHh3AEm0aX7)Pa5BaHQh02yLO$40oZpio%OA?HN z2QS4|WUmuO845elHjqGy@n%+vs^!yBSi4MVwrs`fh%_@;d)#?OF4Js%nD4Sf5PfQG z@NL%lWyKc%+8=uRz7>DW+36^v9O(C=-&~o~2P7A4x}&l`nzVDF-R%b}9|epEmv%a! ziKGc7%6x{-UVOAKRM$sgr{|1dg}t{`sL8n>HPEMrSY=q;_So!M2#Fo#8ZZ@Z-YRjc zuQ=;yiJrcteJA&JaS`ScSsr!mBl;Tg@X8@D&uEP~q{fIQLBNmu_!Uw9yF-Q9&{V1| z##y(`5Vg4+A8W}3L?CmFW47bV?NGvT-w!z~XN%R+SVn^Ghh?X!5dCp4p_#OympU?N z#zhX{KBylsvgOB}69Oypy!JXZiU@E12C)Ko0XKUL}zX3#A2WJ^`{s1 z6NoJ*j}cOhX{Z^+x~5z+m4JKK9C3(3t#tlkDgwlIwZ*3firLe_>K|wx;}0Bgh(PPS zr7`R$7j$$v=FY{ZNf}?NAjy0`GwU{9L&-^z71^z;UaRsRX;&2|cVnL?v}3TnulEug zpgLtEBUU{h2l~rSjT5WR)8ItzsvXwxBTug*-HQ_<9XO}%z)Dqi<747;rUQy zW!*hnrt6`J@0y(Wii$**nGr;<)oSC&gZDd5g9O!eb=xPuef|34$NP>i1W0QB(tB@@ z*<$V}2Gz-&CQLoPgUgW^owItLovd_6yuNLC=l2d~rfH-$P-nONLSC~sbH&U2nVfP} z=!{9<WrRbl}^x5-zwiww|^egw&L_fFuK?e@zqbZ4|v+OYddMfSS|;% z7U?o3RQf7ZB%8s_4b#J?cI4J>@qWEq`TL^Zq-pO;EM6LkbvrmB$sLU_=PgyU)t-dY z)Ity%fu`~5Qjfm(-jlLo0}nGBQL%5|?z~{Bv{f1B4wEaR-|xD(J@v3r;eI%mnDLZM z2_;KU+jyfydey1gMeX!%XU#?<7S5z+*`|Bo+;E*|l(5VE7&b0>I-+jk>VPxDqGmQ1 z24_+nqvQY77ZcxG?v~q}Gs9?tpIJWB1&_d#hh5Sd1xL+IW(H9vK5z~Hl-^X1y>>)T zuHP1?up@bac6BEwtDL_#!vH)ezX8b9OO$Z`Qzog|$JwD>W;jzh))l;mbcYDtq8fkN zB93Oe*FfuxH0X0H?@BM%1_xP-Ye(JrX(p*r$k|*pad^aoMjkHEEtj=`7QUe+xs9#A z?3_OjAVV0;SV?6CpHKMNRf+3_$TjBZ^Uq)#KVhXC7tVQ8Gb_fd3({-estm3X%ojU6 z+4}H&dXH+n^SSFvqfq5n^KrWXFPWKKMcDYeWWS?t@#Vhv!($mP72kGsCz3_%uo)QQi!4bdy5(N#5cJGfz$elx;N^>fII9PjG6A-9T} z=aR87Qa1QnrCA@=79Em%3o^8ecBOKd9>KNYLg(FC(}B>$g-s9ax>x%OZZ+m$YOL^r z^HZ6@<3K)x$LUqGLs8?&Rh=k@d5c}TW-pnh(3ngV$lXP&i`1o~^H%8w%176`bGo?Q zLF_vyV=ChHPhArwYgBy7KR`X{f3UV##b}b{OukddpZ&ahE;w#yQjj0@ac8l znMtd=6W_@Uo3P|nSNv?FUpuUjY!4`1w2Ci6(9^&C*dcDG3NwLB%7|8MK;sTC?MF26 zi%{-6^NbbBbFX|Yn8+)sBNu8`GzS_vY(g`Qu-(BlV#YMp4>L0Jcru|+d}pgA#JEvd z7UWp-bo@^S1_R$VYp2%vr)-+MUyTkODa}uI;(8h8twNU~Isj1%SIk|-?ans3ZJt%l z+X;5Wqkc-kcLdKg!3+-x$EB}Mox3#{%|MsJ6WPxsUI?l!PpU;Ohe1x7Z`Im+MDgXg zP^*R&ty?@by!DGg-n0XhH8Kz%=>(zqMFW4O`LSf3O&13;gm03*O*-pZLuf`YQQN%T z#J9GY@F|w(C)L9eaPvgtgk>8q{gYj5tF< zauyt1?Xu!WP%SB$-lyZ84n}b4M)pRONmps=REK$B_(E=G#|O8cOFWzNte)G>vOXN2iaiS@srV}hg zEIZ9kaPLr|vZVo{kXHuxh##SXh!OlAX|(R$Har#(3wDKZNkn3 z))>4waY7a@hi|Z z)X6}-i9#%HFml9qw|_*e=8KV$#DrZIIWOq7*rVzTbfx66zhU3wUBr*~1XjW26r_1` zKLhtvaB5F{Pt!*NH(ekn^Ho>AQ^2!LnENIw@{#B4`AC2Cb)NcMMb!JrKP5Y}@8@P( ze~A}@h$i3!4K;_X#xh-kmA(rVr5L3OzId~yYubu`t__*@Y0KkxzX!<*W~H8dAZbO9L?kN1 z>LrHCb>Db+Ll+m=|AmG~I#-Z1$sAKoCMUch-nd~usEyvfAOUIXdsDxpY?FSQsWjc> zclqIKSZ_U`VHG6zT#&DJuxhYpBHQ{Oc-(9b9UOODaXf>quV0|y^DGkPCjvD{emd!d zzQ!ZFMUm~R$K@Bs&*WntY+QORtJ6?LAhhtD-BYa!6Ih=+!wj;x8-%jLE;rJ+WX$)N zx*AGhNzXgI^OlEv4Th!La zQL{b|ClY%?%cKbVtWEOFRn$Md9xqsbS~;#*QQ61Ptw4E}pF6|QyMB(hVIv6D zWp#^GuO-1)R&;3dkmtBqk%i(j9JHSlIcVqee+#00L@g|~@uw}XYFM9O0umJ*+j;UM zvqGR~0&QdI#5kt7fm$Yz&0UE=edFSjc6|$CP>304)G6d_A$NgfF*j79 zeojL6sls~9vdiVC$6J5t?=o0pFOBkCE)R6tmhV;O29L|IS35cpCy05kvYB zPh6#b2dHiy$}3?NR+&Damj?6Umry}r`13%V3db)hamBb_-iAK4MYEa2jWdTiCSc(s zT@{RziBl|u6PI#_Cf@OtecR`?q6uR76+{`aVhZn6)HjH!m5vyf0v0~^B{E2_Pdqvb zWSf;z+F&-`WHOpmnbG{gr?dX27FW$>mAvC>!j7DIF17D5Z&qy47TshEGSJIu;i>}J z@{dq>p04l5VV7u>xvY`!e6eJsoze_N^gJ!~?&=BP**pWHYTe$w{r}G=n!beX_O~h~ zn|nIAtNgbpiM=}_Y#%?W)qC~Ub;dO%qJDPjpt4xkp{$XnN;1_$lJBM9nsFMV_fM+OPID7i`q76 zI9+riqAXz@xC7rMZm#amB8gx-S?kI4FQ60ae9Ce8443k;lun@}!=9FtIWb{|2$PH9 z+K})3$l3!{*h5w1>b-A*9F1UWwx1k|FUg+vx}8f<+v}JSJv-N_r4hd*J+HX$LBC#( z|Aalf!H%Dz;_ew`22MyW(L(9H=ALB`VJ&5;0TbJu^{+S-I(J%WfHu;{(fQfw6=@3% zgmU!WXR~!D1LE?TJR6rw7ck%d)H>dd$9)b8byOdUKf4aW|BJ9UkB9Po+s9{& zCHuawjqJtPMV9O&vV?3QDM=*Rml^AXmMKLcgd}81*%?bHvX`Baow1dD{av@-pZD{5 zp4a#F`u*h(v)$KuoyU2c$9Y`$jTpMd>VJY+k0@0T9&dQY=61ogCs_xta3q;vWo*kYbxdQW}BRi}>r)nRtjUYvjs zcP2&QYg3@3a#wI};=2jRzXRbHUGZlx}fR zbHbI{B4yvHmG)0d&sWverwcmaPd<6dT5E#5L>U%JpJ1*P5be_H0f4`M>o)Cgqu0zyzNoaxP%bI@&6NR=b z&2nTPRXJ7p33nwqe`ExW`uF+__VYQ1XVfEqn{ChB-zG?J{~2C5`XlQ_zgjsiP6PdH zeL*uQ{vXIHNjeeZ$2oRcVlXsDe*fc-Roi=?$4;csYir)z7!xe?@#+d-c-EzSm619$ z+-#_~n0k^p>L3UxJy2CU009D(seZ?VScZ~teHWyG!g zyT>foR){}WBUi$wyvxb*TCS49I90=W!ahcX7?UL07E+<*+XzdPtKH9puYb9`a&Z>n z2Qxn?$k8Ln z=fUntVTwDHz$#dajsr)1C12k3nrI~F^`nRx3-@4Rr8uC+Xi3U>RXR>c2|s7`Ku@AG zqZ@zOZCA0LVubIX2!3SQ$AVj(g|kHtA>&w}%b|x-9H&d5pzxxzG{MTjdaB6JdgM3q z1oA{@l-X~X6_GpCQH+H(WmT7omztp64_2#40BA9~Db+Bug1>_XnNDc}=T5961Wul5 z&CTTH@lsH-r@E<^e}ztJ6yBSLkUepU@*I3*Ip#ieFEs@?_bsr6j^do7cU&K7k&_A=5~#^*7}PQ9ZQ3TD_21=s_9hr{0=9)H+bIbD2wsnk z{F`tktWd@mP+o&cF?OHtsO@*+3zP=oH+6D4P+#57UR_GQT=#Mk-Fv5hodYB&GI=gF z4@x=SW=&n8bM#Xh@A}7oJfk&J5l`_-P$A>1>dW$vfG2Q!RZ&hJ*oZ;csC`^aa6|iE zJgcXkpxdr_H>Z*d7Q(f9MPfe5w@uW4oampwT({FemNQNz!SV=ve5osd)u!6lq{}c% z1VlR`E8;LM7+;M$EC>NJbFaJ+(1k=N{8;DwE4iDemihai&w}6%=O+ZIh=Y zS0=MY|+@ zIu;l{(09?>QxjAOnlQQw2EP5T>DR6ER1r|g7@kn>!`n@HkP{}y z>*)4rpFq-#u!48x)_r|wPCMjlrgY|OPA7gc@l`@17ru@>#fKs|!x752PhC7{2vx;L zDRa;J(LdbHN37#oBM>5Q6)lTym+9u1yoPaZRc zr>MA86vsb0p>Z{T=P35mNAMA}B+-$z{ngn>h4jm49by~35!t3W#QsF0JFX-W8=k#w zr1wi+MKTx^hFs*^9t34#NTmSl#NpNB;k7u-FfUtdS-f9QAK|yA6?EDse!b6uiIKZp z#-~FWkk)|+h_%S`Z&O-lLj21TeCP$=FR72q0{Lp;Bc%8Y_WGoG^1EM$WD9=0*29O@ zDaLoRZlKR0Ht4O}&T$OBOBF;a6p8wD*kp@p6VKm+s;GY4OpGtSN+YasLhkz? zew5O_44L4Ihl`FQcTs!PuwJyOAO0rZLJ10t*-bhKh24txyC}9v=5({9S_?c?IDBKn zao?+PC?bn>9o6CCAk5o4-JGsEjT%mN3R-Op`03!?$cNzw%wx36kPB(W;ynu0Xi<*A zr{IQ~k4Q~UwIA}J_FzG?_)3( z!?SgO_S%e!aJ_~eVHH8B>GV6Gst0dFs_4X_u><{8cx8gzG1p83thD=WZKkQ$N6Jo; zJNF(p5|%m1Dcyz;X6ixwj{|0JkV{hvcjYnFZfF&{md}oBwX}{6QG&RcfaahdY7QkqsyZRHJ^L9q5PWuw#7D}l*%Lz@P>}he=$&o z{iQ?&4`b$#{s<+Gn8v9$dbD&k`t|ygqC>E2kHg1rz%01DI(S#Z!$AxgRl1Q77jm`@ z#TFJ>?(#nB_3%DuBi~EQb>u_bDZZd+BcyB~%aTN|HTlU8&WUJT6oot#wb}3H4QR9`HrQUxqoMhJc-<1;Jf3 zGsXa@Aq9N)+C>hv8#fdc*m@#X$-3g+4G3IQyWi!WWcK3iq?aR|GF7IRYWoqNV;v8+ z{Znk$!wFY{m*dGI2TYuPk_x91?Fo{@IS>cm28BB1>WoHsukKwr777J zHK1^Qd4J@5BF51ARf-b_ig4)!IpMJse6s_iQ1KJBp1L7}BJocawieaX&ccn7*pco( z4AhDn2!|5xIm<19VDi)E5Px^ZkPzGn{k)@Ce&uT$`)x=-BStIeN&+S9-5f$T5nva; zqAR*Vmo-GKTswqm{=w-(d?P>vCS9GAPrc?x5Xdsau+kDIMW;qTUS=HJV&_-#|xAnML<1x6O z$@9;t`LDw~h9oXhN~P{)IT-v>&gRL&< zlClOCMs9y`pN>k0f4~okWb$p+V9&qY(R*|FtId*PacVej_4Cn{A93iM4vax)%{U-m zIMiSCr6@-`ryD^HaU3ZU?VWzpR&iZR0fo3}a!ZePk9BXyhiRs9)~bMRzm#9najy|G zSri+^-R-5!NEz0RrVxc2LL|Bu6r|0|e3b*Y4%HcpBffQ=bx;0tv~!ZVl}yHedhGKo|mjmABt{@0<0H?=SQ zX*H0oYTHZ&Wa>kHR?a;#>l{?k@VaRd8g9BT6{{Y+Wx+H`%t?qTF(p7btVsHuFWRE4 zAj(l-DC~UoEPhQx@0fDP`gCwvA0$o|7&MJj>@u=)yAXXSUaCHSQF>Zr9Ikhj0!_KK zJ@H2Q&VBzm4g*U^0GAOU?xPU%gSK$U^J^P#Uc&P&p?ng@1XwrnACdT!|k>UhAw_X7iwPRPDldmipr7gXM=qk)ELMD z@`A<6mE{sr5ayU`UI9kS{+*6n2-f)0+pY}4DewyO_gtMV+Y_o}Q0c#TQ56PQLskW+ z>Vz191r)uCyYK7qjR~=(;a0WqAU=3pXcX(8RDAc@)ytBnO^@qdg4}WX$w{b>AX2Vz zkI5md_0pD>6OSWJqb0I3+z0 z{cw)iLv~%ee3vZNT7+M{LknIi4ZnMtQ8?a?wyj@-t4PhqgB@g14O$IN2?Q?OY7QUR zfg4u|=7dX71iaW*=k3bL(UYFhxPDPqx0*N3PJMb^A0#vuWc*M1*stVy0djDMGWDY| z;2xXM9ttTSVIv^}3QdFkjhl%uS2_IoS*O>bIhu?QE<{W7YdNdP!tIJLy?)QAjC7_y ziXK8Pvi_q>fl_Z4$`StKfT z9|A(1SM3~g@M>!93gwm8of}el+ahMRmY(GY_KjXa;Tj#v{@sOJ^U&+D>vVR|>zl0g z>GA9uHrl>^vNOwDVUiE@zgfs2@9TG*`gq~nH`=SA3~_GD=J3I^t0%m-QoB~rnlAR zFkB&$J8NgVu~@Zl<7BSg(2L0U+Yxir_o4TelUQ} zI04opOFBM0?qbr3C!rhGLp))j-(P5Ecs37}v^p6YX59&4`ZL2BJy@_X>uA78EvfqI zsrn6gK8$>?K(`Fq=n*%Mn>nJKI?tVkM%Y&o`*NK%6K!9@!$23g!O5#ly$ZdgJ(#V7 zSG$mE;yV=*g#@A>E>)U~999VH*q+eqT9&EPWOO_AA&aF%q}ruCculyA!vBEMOM(+% zn%jx*kf@{wJF9WB$nq`#MHHJdDdC=gbmbPGYs=kdw2d{_J)G-Du6{k3`}DhnN>)rw z{zCnOJ{c81stc|r^rv#NTeNk*^lhtK1v8n}Y@vRu2lSren6o&sckp zl=)`=G%S08;HkjdtlK&uZSQeY+?`(Ke6nDJdf?*OvEa?+Q>ZyL z|Evb)-0R=oHEtiqxk)2p_>2sPMWDqX?~Tq zegP_u$Gc`sgK<^5NCWz+K$4Li6fFmF{R@SP>hBkg&nh>5g#0@8*fmZosHpBoGmiRo`5x(l|J=4+x{NM!9Za<2(r32%$|nu_WDPkPCK0>*v1(ZbO0U zk^F=t`tz)VNyGUTQ5M|HjQ6wqTeAKiD`BOS_#i*6V*-jRFoi>av2b0EMs6YikMn9> z%Ss7(s0mgoMf$GGxFVTV@KZ`3sfhkGSlLsk!c~HAaK2h$&Ab9>&{??;qv8ds5!yOi zyxPs*nNjh(CPMo?&nCyVNhC-)BNWvOtqcC+wNCkLM6H3=_KUREGA9mE4wU+C^!U_3qc^oNYfqS3QOIC!B7amr)tps}{UfcBoRy`&f}g_Wi;5^AF{xv&BoY zv2#k5SvvcR-W5Z{)^WWpZq30SvINQfUf81ndbMp5ONlFtZb+Ss&-%G<7>X%q;Sg_9 zepoWYQNt#1FjPf5jt^mt)lZV4iDu_jKkRvt9lRJ>kP;1=9q{C-E7tZaiDF=pPG3tmXHX+^ z4vyH$Z1kXyD884**|EPM=#cDFR#sZtl=z~iN|P=3`tDS6($0L`hj!vJV{Lg8@7NE>(gh$>4c!pfEWK~oo7k{n)u2n)~xiVFqN)aYe^?_6z4STF{p zIHluqUtT3XfQd)tC}1MIqV9KFqUUG({b8D@(`GS)73N86Yl~}(KZ*OLA&jX(Pv^th zPp~eVaFUgYIx)Jr>_rVB51^WOOkn~r>S#O1Y|yu*%Cn~A5ojH;vI-{$cDl=Wma`Ic z2Ym%D8Dvk`zWCv(ZD;6e5_QJx!gU=^)k>FwMRk9Fmw2hr+3{08bMcLf*{d;9aBpwI zmR(X_mQEJVA58|T3Xou!4*!lrV4>SmUJoa{Uk=jO+-V}#T4mk|3-}K}+x!neOP5vn ztY6PRnv*ZGB#sQz*NMAfY8-5^If68k z#{lN5p+EpMqa?FgGe)4A(myz8=1J)EJK>77hVWp^Gq0IVOHZ0)#PvC8jhR`VwkJqR zNqDS#R6R9ot-Mh(0azO*W04>&B#BfJ`?vP#XlN4`?Hx&06<6cH8b@={cVAzn?D{%f zoB8s9V9_}7@b=Taz>wdFbJ8;@n_swpAHy(v?)6{SYy9`3_Lz6+cys{_>yFo|h_QOQ zid<`CUm;oNrX#CZRTq*%s?6nfSuw7H_)&&|kp*B9%A7i@JVjNqL+nKV@wjMNVdGqE zspDGXV}XqncR0#vUsTB&Lb%eWibt^;plEKaH7?;r8z)dIV~Sr^X~zn`u9zPqsd+w$ zU9#J&(>t93w_8K#9aT{S^nae$0`P5n3wRvJhIsx*#fO;BiDTWTzo;`((nmWz2^enF z_F1OGP81WpDrV}Ll$j{9pa9Omsk2$rIT>prgIUgA z?XmbyD+w;4r10-AyT7WHEMSCie&f4%<8$4bS`@O!u%dV9+5Oqx=n0>fc*I`}lgLliYKJaw>&{BQH{Vi&N|0-XiODdH9i>NnxTiW9$5TYubc5#*H`0v0%<;Pj zkM=ArqwS?*MhxSDWq}du;OomMILESAPP!S zMMrxIFFCGmIoLiX-n4H7%z@<=QBg@) zM*QuS6&2r0bUJmxdOPZEqryCa0@dqhS=@S2Z(ROB3jXvfEse}PSykvT){Ndb$8^RQZ=J6ip5|1c+>Ix-3uC_*msd- zXgSZo7{{LjBGM_6pq;U09sH!oc@)r!N5MMy$=D@8Rl>c1biHG7Q?&k7gqC*JE~PUQ zs)3P{mAJl|OlNXy&wkhch2;LT6>oKMNotO-#RfK2`dOcM)T>(->T1PI42}N)3h6sI ziEUkebj3lpo45j}`-b7HDAEqn*S^I`N<$fvmZPNIkOrx!iTp`a#2iqVDowrQy`tSX zT*jok8M}*zCBuxanuH}M@>d6!@sFjw<2_{-vnA}%-gr&Qv&?6r+Wydb$iZK>IEWWU zAb0o!p3(jU+vk1#-5KwEs477t6n8Z+)z&q|>OVIvs-xT@$x6L<=I$OJ7u#cr;)`6l zFGm%cb9}mtnR2ym#f-VQZizmOkEM%X3y)|wWnOc2L1e)^FQWCAgcx&OP2Zh)!;03q zt$9p_N*O|1$z4edz=s*eRHc1EHO!h70@e1jht&rXyTp<&VQc*XF-e$Tnuw%dF}{lqt|5r)^=o-iUxA^Gk@QA z>#X}h0)1>1M*q>8f3PhwZ(Hk}>`~sy$O8|QeYA~ugxo1@YuqemyVHK7@zrxi9q!+y zliCYKCq2d75A7!aywi5-YFW@+nS9+iA18|$v+kw4`NkCYQ{rEEkNb=bp*>;mH4Bpf z0?VQ|{k9L;tBzE(Sdji(xJ+3Sq`vcEk%{;?)EWH-xYvyYA?_xe}pQbCf4Km5PyzsC6p&<<#PyQ4KqM@lNwp6)! zY?Z3$aW6YRalJK}&dNEtC=@SUyr!MKanQ@yD|w;H#O1=881Gzv!IHXzr?xeJ``9M$ zUH@v9!&M>tD$lkw`(Y0si`)G}+D|&ak2~b!?&tgVgo0z%gx4$HX0_?n(l!fGWY6uV zCN=S3x!&KpV8n^APk_?i9}Hx*wVQPJy-s;iXbfNQR18LJT?Q}Cr)d30tsE&BDH+3c9l^s%fj`4WP2Gn=4Tk(hulB+>anvcfMeWAVqwTqZ8xhy1 zF_Brm3#U(+4b$@*xs0`MeJ|a-(%mgRQCFKd;mfRYQ)!34<_>wAp}Ba5o}|%_*DP-G zk4SY%go}Ve_77*GM&HG2fN1}I7@FH{kqV!wsk8Jm!q`}_o0`_ z``Zhjssfe<_nul6T01AV5Zw|DW|Bl`dFar%Q1?I*MmJt#s!uwb!1=P74yhN<$)@1F z-QR4HXI}C1JYVHPHE||#5cfe4ZUnz6c-Q3BAn?Q{ke9) z#=!jJn%~ERjje&*orJ{aW=UzY;!#%Z2$dqq ztVF|6peoVhtP?YYWc*it@Wb54yTxi|U4Kc{A>+?EM>M?2+|IR?;^a@XUkn3WX(U)P zCWHT6=u6)seO_UQpK%{`*XPdp{WJ=)BHg9U02lgxhO_Pqeap?2*iwBHP+B3c6Eye$ z*Vx{UQNcveCbqR#E^@}GR1|13G7jIow;ynd&sWBpn$CDrODY?zUWvOKtLr>8(u3m1}?eb*aW#&VL}?Y|FAaatK7w7`aoRj(TtC- z6*eM?ZxS?dm;Ry-d#o6qv^`}Ay3_?WMqa(!c4p~9EJrY!$Ne@er=$l-l@sgR%q6U@y^4L-i}`1s&NDeul`(ETEcRbhg$@+Oa2XJzFVwSJBCr-qGXr}M_K!*7 zfS;R-$t#@&z0RxGpf3d-h^)H5IN`oPV``6N5@5+^YC$z8VfgV;eaVyK>JQ3^Z>C;v zj~R2|F%OfgqrlYAKJJHVd5pw)bEgOTi#Y!QgVM8y!7wBL5pXye+9GeW&mKEKo{(9< zzJTA&r+YYn z;{2*q&m8XTZjL0rxiW5Ed+Q}N$6bNy{j)5+cQcujnCOtgkWdx3$GRnMYSis1A4HC*|_Hh5N2>TRH&Uvz9$_O~b`WgHd-RpGA( z1i%C^6Dq)w)C37fw1}$2z{a2nPe)R@WnzRSoNe&)&mt->dxhXbx;W1&m=QDLLpg%) zXWn^0zwhQkQoKI11Ud%;f7CkXxVg=4dmZ$(F7CfJRh}lu7Lwv4DKj0*kAr6SH)to- zM_?(=9MOYLeUo&amh2$4%`Oc8xpT^QB?4wAT&>V-;|RFDHrIn=D7fgt!b3Ge_9U?W zyY9QY5=f+NsUZ)bwK#142bclef0$mH3aH6hILS}Yj0=qO^f|Z@qelLeUd=0EEMhn8 zy5IlVp8Gz_5#&&JSRu8u@rxn1k>%*b2jvj!n7X5sAGc(^bob`K9!jZIVxB`7>E3%0 z7b#Ida@tuI0t727M_3o&y^-wdO%#q?4E%!?IWO1JD5T?mjz-&;&G1`FrOvh;`8{wD zK;E~mnNoZqnZj*qX4m)r-l~gBuT%RoaykmUbSA;KMp?VTtmTqzRsqDRkIl1R@DzAO zjaq=D^yc+1DLhFc?AIRDcRa41_WC07Y1i)msLP8{V6Dsot-LomOG@<8FlwIK7I_^F z$*-eiWuhO--h)R^<2@@-R)tKsq7t5M(j@p4aFDL%NN#|V@UWGB60=B?*aiWluFrTq zRrdSrOaGMPrwqBaX-(Au(N4bROfRyp6*?YJ6q2xzXdR$zq1K1UajZM%X)>+6E7zjtmR&z($0DT#3E~%pg@7MXH-GwsEdhIdgF{;E=$B6O)S3U zeAg}>*=Of(@)gYO_7D_+U>QOL3+iPS4G1y>D*`*P>$)4ETV=L6=4RXyIf?58cRD?n z((v5r%(B;$-@(m6NFtUa^u!r(HgDsV<5%jE*krxt>a$9}UlRBME@R?ir;I|oKfj{} zUHC76pxVmhap}SKr4yt)e05ONrZv$HE)&67NH+$LT3VS#kEapuTA= z4C(7u4lH4eINr$^Ta0uxcoItWRzRcTltxquE$}|M43|=^`jSSRuH3mzRl9q_v4)v^ zlsrs~1H5JF*t&<~CB$4qcf&lSYA*xj11IcRp)}{!lBw-8Mk{aGZ!vD$;c@n&kO{Jrqb(TxYRNAL{Ho$JpK)8$7|N8qGd3IpyJCwIzgx;CP z--Gr;&&@dmB`taG76Ovuru+Icr_1O;{)AV>MFQb0>O8cqZXf%9HzbSblrEZL<>=M5 zVV-c#<-T>tpXIYOklMSkx_gh_Yt&RsYdp-TMo4EtX068|#rIN92aqHRQ41$4R|I-I z%gb)5{gKeEk22KBx}wT@E6xsd!Nl{xAOR>4CE5ynHZ>xNl*U(EoBU%-9l=XTSmJr0 zxRg|Oepc6IQ_Fmm_QEBbYRs=U4?8pj(oqXyYpdq^XQ!D!9T}kC6Jy1>GV|Vw(-x;< z+>>+FZhBqm%nDD042Al=Tx4Z0Q9~%2kB#MDbw|`FBofH20W7$7+HQQr4HSe08@?c6 z%)JiI;eMTp5w*;nM!~K zrBmmjFd~cpoH%0m%`H(Pfw!o-OYxe=l_`|aNwYGw2LXR*8i{XDaS2=7wO(cCGoBy6 z2cHRWDol2&c?ufYL8D_54IXb31bYS-Tq}BJvCqs%Sw?=*f`)e`1YY(@#;Z)mf9dax z2Y0Lg0#wq?6xB;9-oj10LnvN?(pv~}x8X^S2RZNZ%iA1x9#azQsQ65wR8Kz33fyY; zCwS;@<6i}7X>;NDozW)f4d{jMGrRQ7V;mFrLT@iX7QT=9&Fn_1c})!T7q+eGMmU-$V?(@bCJ?XG~yx zlY#QpY^ZO+1^)a2OG1UR@MKtki6Fl%&7|Zk z^(=Km>VUx+9s}?#ic^T^8Wq172JiZ5-h!!7^dPI&!DK`63+kK$Sud7~`uCMmmoE!F z=~Xo%nyFsew}zjTu~@A=4ac^=Bh6{c*5G;|kwJ?a-R0Qn9hZ^*zN~RuGC1Ew+t-Hb z3D<6|#lPtLucACC9g3y0d078?S;4K|n0eg0Tn-+V8T5YyWhi_8x1dZz)`P8HQu$?Q zq(D`>!{S)T)7lorpAg?_93Z}ane-p@#m8aw^QOx_L`cDcl#!X?gUk-z0JH%R;@E`U zrZ}@wybXRlrr&Xj1pEZ|QyUr}CDMDrzi2=kK&kFW+~zIdNlLRsZP@kIek6* zbo*rTL*1TBpd1dGfzGh9<%12wWZV+b=hg|YXD7(71TR8*Gk-e6Knu|RIdHs8wEk!& zNI+maR!0>`7ERYoTw>zGFJSWEJ%u&4U+RQs)^r(|)9iA8rRk3%-%Mg3UZ8rn-JfuV zpMrNeN#COL5GIY^yLNuEK*!ezssg{#u=bJ>kOpd#Z0Z$BNlyY1O#{8OT#&0aaM1O( z1YN}se*o6EyvVJV^C{4_cwr1}3%ARUS<@&@_4}jA*RnK;L&4uC7Uw->r@M#W zT!^L4?5(1)5CFoo;+k`9pyyM?ybC6tcADH|Jx!ogXm4@eoC@20;YLm}81>{Ob#Fqv zevLh)9W^PY0&-JBd@^Jj)`H+=jcVN-B{RTNXuMYxR7twu`6qf}O+3l9#AhOHf2VhS ziuF&}B@X2Mq@%{5{q64}wc#7?th%xfmQ|ACZTS^YJg^(PP6=j=xn<`;g5UX9oBoF3 zM|0wDfx>^ES)gP<{BYwQxNoS6N$~K5v9USo`%ZM@bOU4W9jBJV7?D$-7T;)S-?|%s z9H`m46A(ha%*@NnoTu^102m~AaHcFBDR9(j3d^a6PEh)*#L-tYB>$>7TA&K*UzjNi ztg0jDx#lkzZZB+nPkVE~zMe?ZMjayi^MwwbITJ8PJWEpSM77^Be6v%Kp%r%;r-gd4%U~&SjebjnhGlSx7QZ#jvGMC&HP)AEeA#SZ7 zCr@>UR1$GBtg%Ly*o9yPxY5@w?%h*=#L-r)e)Nm9{UEAX_ZjDrnlKvaRs@{i@?GF~%X!xVd4fs6drsxsjbZ=e9ETaTS?e$TT% z)68ySm+YI}efKMsRu12qx{Q9^=bcg-MrHQ zj@dKK9CJ))PxRE>>x1vam~lBCMjVx}5jZJ^^XL`FPh_v=6khTF{`Kt@(>pM8wCp|u zFw7vG^^V6`XBtww6kz;_uVd}T^^dk{vOwNqiA7*q|14lnkUSbeu+X^20eFyy8zT_R zid8|2;iTL(`aFS)D6{4flXvlbIHl}=R1Aot-*Q>AX-t3k^aMZS;ON~iLPcv;ov_Vs zm=e2fo3G%5Mvn*opFumMI0Au~ z9pKaV(k*Jys!Dl7*QS^PtyetrCFPhN&-{;DC+oQk=phAZb0A&IP0u1t^|@h^_()P`w7i61tilwu zFK)NmetQ*WRo>QS$f~R4;6)Pwil>%c$AshkH~s-EG*&V_vDx5=3MJSUY7a#ii*w)^ z)XO|zI{f5kGyN9A>Sgr#m|^~t6NE_?LykRYfA24?4371wg_y|%K^*_Z{u-+X?}fyT zITe&3L`oVGu9$W-xSM3GwiLn?NcMIn^n?TpE=d6=H@7u7)z^>)^{CD&q2;_BWdHbf zYBh^7{~1DwQQ|5$4BC@#aJVW8F^+|QiP{hOa+jrZhs^OI^JWe0j5u)CP~JE$?Vn|+ zBttF$XXGdz7P1%mzxPKEgtt7W6C&V#6iDKYD&=mW*+ z3rg-;l>O)_Geon5{xsI&xxv`3%S$;vkcVdhe@D@6{))?e{&Kam_Y|W}n#Ht_ zZobtUKmSF#_%2nWD^htQee$4?<5BBPW{wlUMj)GV121uR&vIH?Gj12d#eV&0}U1?G@y!1sgju? zvP$`cq1#PSb`O&qEjyIs2;!E%L%yOnGmt~mI4_40w5pFY|FrrB7?0tQLEu#Wc7}V` zD|6w&8LmINj@ z#%2u>;N1HD>@}D}wsO;1fdbu2QoTNzw?%a&JcU}ZpDqfg<384li)(AuccqZ11oJ+?+}HG`tP@mqrw-V zPV$UUyb>;+yCuR2mVz+Sjzh&_TP5F6Kf#84LLkxS95a70sBlyBiaU{a)dTTwV5iuR z2lNnBZ^^_?x87Lpc{pyReVs1$(FIFDEdUM}`cB10iMh=W@_9y*xSju5yGGL{GD7l} z64gzg=(Lf-RQ!=efZUpYmkEc;p>zYo%fF7DrjGq5oTbsFH!6m+fKgH5`-EF!uA>dd ze|vUL{8E^<+_H()g1Oiljtw*OMB zi<#A3$nv)Klea%NCJ!3ampaPU?PB|dN0-i=IkT31edPmSGcVP4gk3{--$=+-1w~3p znqo>X0dnvwJ~nrZ8FiLj%|gamYZlJ#{QbsGBBbyiGr&hMNm!)>Rq-?FE?iei*oUk> zM|RdDn<%n-Vbh6H4YI3rFvcKR;0m`NvI3?bWP9MJKms)GQcJr=o zaoPb8j}QN4W7T+m>nQN#S1lr*KK0_FeDb{E9rum>-lB2KlML^&dREW0Ehr)-g+As$ zy;jMacs~1*pBwz=&KMTrjeT&+z_3|v2Zc>3_ORCQmK+aia1dBlsvM!@GPP)Gb`Uy@q^H{6q zeL`bFG99bcfa8x&T9tk>_kDqj_W*xLef!>co&X5H$l+-w(fp$QW^^l*Wk{ zFr_j$`yggq_k-|4H96_;d_q5~(Vo+qQ9U@+bCRs+TB*yB7ZJ?RiHkx6PXejV$%&gR zMEYQoCOzLJ58u~H-zN+WO;H7XDuw4d?AeLZbGT4?%x0M@6BR2hH(bBqed4Tn#tQcvX8Uo|L|FQ5@fo8pid<$>i^2+t2n zQ{>?*q@+Q-9Vat@c!=){0JUH#?M~aW z*@snfib~3%)zK0AMP`8iv_69T-i&T?nFKTD*A#Zedpw$(k%^aq=)vfgJ{PLh8ahSW z$jR+VqKYX5AP9l5%5k^s#u8dS8mR}Jqk7)gp<(OOP z@K&L7nP5Y>=p7R+l`r&k>gQXkp4QMwp9{b3Cet)|vT2Zx)bcjS2 zOaq`6EZSQf9Om4W@=|?5arzQZiNtn2D8(s=C%$8}r8QHQG+O5Eh8NT7j;J~>mJ5G) zhfZ{V-X^0s#%_420Me?k2x z;So`@3|59XPf+}iYEnxMqkzrFYWhY6;VG)=Q(Sj7FxRX7P1I6w7S7qXCKjp;Tz2pduK z*aOgoyjIxd!K?N9H7p51i3y}5R}8^t<>J1$(?%#5YJUFe#h|jTK@;<=;c6|}fFQkZ zC&te^LlX{4y#4X9guXUWCFK)oa1W%i52bI&u9lw5>?jKmxmzWl1a8W^jGTiX7jul% zemX0JE5^sN(^7lfA2k#6;;rI|cdrn_CjYS)NU5V(2TV-$&0kU(tDhqsp;!7v z&tb5sRmf?4wYmXEz7x1RT)j`2t~yvf)P^|Je>sKDMV+Mm#a+#x${*I^C6t|{;R~zf zrG4dj`PI;K(2^BH(0*)3+`*gRxpYomtf!a0NAMtcqZ4`y1@84t0{swt#f96?bZ@zq zJp>*PmS}xmGnI8=*(yCZ7mLz{C**O&p=3#uFc)oCKSfNFK=3&#W5Der*}#a{25#LX ze0*fQ{pElDeoiYt!&(mG&xT)Hy@@q>)v%b|B^mEAJx0lh^Z*cNSJ)npOS;Z&x z$CVpj#4~sIRP~Xxh4@Jz6kUK&ZP0}!<)%$zDDycF+3-~UfHuY-AM3(#x*31Vwdli! z3236_rMn}#zjlGSmw1_+Vj7%9D>4PUrL?Cl0&+;;R~v5vDF%6MmrkL|Xt!zN`@$Qr zE3|Km?o7qCR?Y^1ae)U30`oGnAPnqP*5i8>{Bw+JkTVp!*2s>TaS_eIjX6>*?P!l&lfR;JQ7*A|&{bkbB8? zN*NMDp`lkIy*{iO;6(y|3C0tXNgLC9+i#jf=1whtA4iDbi%#W^Np;qLX!NZn_l~CoAk@Cn$;!P{!Ds?b#A`hoPYLo(EK0$;pU=sWxn1x zhEuxMpA7l1uq1qX>nP@v=fw}Z-&^ovp?U0y`dS+#J?J_Nm{9{o3E0Scs5%cq%lXQw zy#ha0l0#PQMqprliWC0yS4+=&-;T8H7LoRR?UXc{5Gj}a$y2@a8)aEi{WmH^p8vgg zephe;0{7w~q@~+1*2#~LTM+p0oQe08>_tM3dwP8doZN33W!2wrCyb30Fvj?@Oo9t2 zE7r_U5AhS9s#LdLHY(mMZ@{^3 zEN)d8h27WOR~>P})Um z!#~RFgX+pPacX4@xgJa3>TV{!D!K{2((^`JhiHurb;Dk ztpB%YAnqSMvu~bQW2!qcEq9(2+g+3Br6Ky)C8etNK^P#PghfId|pZ_9@=>#SgFEZCZ7;``QSc%|lpzm5U^`Mgg6RDH8`xL4Oa zYloMNeZXwBh8Va!CHIt0<*TS|ab$_k9~#FMO(jtZwa%yw!*@U8$elIEt;C@@vL8FJ zIsP5il{$oCw;Cmc&rvjK`!4Yk6?X1H)JcMeQlii#6rF4`hgy$lkurxgTK_9j9bDa+ ze@3pzvPMUmT$2`lkzZ`mefXC0avmu?Nhl{-jzp^E3WPv`0D+#}s|4U!oYRe>Ng_+R z$r1h1`=*NMPAP4RnBA{{?hNcTofPBgd1d2rd zJCqGZ>5m0vl#>D$wOmH!DR0T}`@`N1&e!KY0uaseXu$A%g`a@|J~jK4_QDIUE7d>X>=Sm;Y1FAY; zjE>+=;K?P~VJhgF3xuQtLXMPU6w|HZ4^6KgE1&qA#gKVQf+UZ0ZGJCB z2F6~$Cxap15+5nFq{cbjJP>P&kpQkZlU(Ew~8`}|{*EuLy?toc{-P))ve z2Dv_fKg!$*;<#Z1o-@xD>ACNf#{VYaQkNTu5v^pF;*Va`(=(nW zC_2e>jRElJEnMYZDy-`FYQFVBy}0my8>=9L!natNK%cKR{b8%CtsGaYNf>Qoi9OFE zwH}oPA|!3+V9_v$#~OGN-i6-IFHSz>A!Mq8j2nYrmcvh}pF;%G`P^@A zBA2~Wkw%PhumV;cKsLk<3D@QizbWeO*SCcKSewfCPEw&V*5fq=&a70(nMG7?7FALK zx1Y#BGlmhm!EvxJ*ku*#dj|$_ng2{JFIa_Anq5l~uM8fg%Q?vj>{;Wf z!jyUm^%FEwf5M$pQ8DGTrtboFnusDH;GtH!QN`_)oj1EA3zS@n2ze z3A+Mom{j)WBD9xi5A`C510@YKVP*}Xuo0Q!Zo=uM{_(X?_QLxmOm5&)OS}3%9Oaq1 z%X`^-G}RKR+%)n>{fQIRlIZE7reiapwL_UQCBgllU^^>V2(1} z5Wg^Iv8G&TB8)ljrY1OJo1C=$pd{3DH#-N9cJw-_{q9@^z%Ug+P7miqN?C;!6mU0V@pAW?fT3L3(*hf=@E5`QXVbJVn{Pw4Mk?RBxav>N z-Sg<`cKs|lu{zG2NVjG%MM>$h2wEdLbk~0R%vRzbbSCgj+7f*$XbTlTK{(y@ZYMrj zlcyI*`CIoizn-o~R!btprhD7gmbWXb7M1$91oxNfLpCB)>n3EZny7z#)K)j+Jt-Cu zs#seVTiWZ=h!<<#FK!o5xw&@ZF$o~<=2`PAWv%upbAU>{$(0=57jDXuxp!(uKgr~I ze|AhkaJblfpR<$Y`KPhu4;!a5@6PYf*8Ze2inUh@G=zV}YqI!xI11mD+>xD=k9xTE z-r}Uoh#cp?jh8IgFCo@KoqXL-BuhjnBPTI7xA8QA?qTSrJQBQCQe z7o~l55oxhgi5YthLS?9TMBICm7D_`0%Odocqln>=85?_TAJ9EW$^}P7r$Qex&^-u} zJwK)}PUZ1*bcs8ds}EVhO5t}$zSe+Z9CVx{Q!o3gzYRUT{|UwWoZE1GWc{$d(LZRe z3)|ZrBu{&4+2_JU1J-wGug)YniP|YwV~mRD^SPXDP|2`$V>7y8;W$AOg-e6mZN1Pe zmU;>(>;m2ZK+lH86M&s|=%m0JibP36HJ;{GSU@T)8T&@|CS^E{>|IW#>vkXnLb`;O zgm$bjJCR2l@LWk{zp}(~d9ow-cdiHg>Ij6<7<<1HIMeAmCPgV*!q8`I!Qw-L-e`_#;4EF7WB$|hsbijGN zJkcO3LpG2Os1wI`8Sl*w%29?w8%&V{%eYlr)$+7AGU)T|oMn5L2jPci2P-x19Q?LB zT%r3(W^;San_QE{4~-Dv3(1>xMTSplQI|4$wX@W)B%2DfEf-;jPT}?C(~3>{u3#Gg zGd6sDobCrh`p+g}9EmuL>z97BOuxLnTv3P@sZHnSX0x=Bdr3hq;(cUHe`{}_Q_YcC z^W|cL`dizLH-5kDfOfTd=flwkBvv&gs>jDBzdW7Uk_+OP>ZA_I>kT*tc(uYN0NFy+*t^K=( zBOk19hnb?g9?I8=rI)uOg+1N_&Vc40u1WR#-MSH0S_A-Aqo_-I3PX(q=b}y|C+8*{ z$2q;?Hgh+E2p3acm0&pgF$7kIcJ4Nnmex=iD^WBz9oKoEWTmTFU&oW7QjEKu&Bcxh z%Q-K;q=1;vsXexg5om+L6!+*-`k0>JV7@q|XHk0e)X=N77n_s@2aXnRuHo2FxGaC~ zZ(3%S4%o8lp{-3$rBrT`jF&goQ+mHW=Lb}eMK208`!MdKGhQU zJj}~D{v~kVcR^wO8a7|e(4Dn-cZ?aqaa}fjKDdRzGLWA2XGXI@By;ItkF8o4iGM4`*;)>AN zn=@i!wceMR6xfQN9XPjgjU)eb3F+h!({=EtzCqbc3h{2=EylFdWF7Ky9wf_*4dknp zQEe@a0?h2@*_?k4aGz^|`#X`G}%BBIzaE@MQ zQ!g1rN}=QgObsbbd}_JSU3BF3kuAGL+sQ>WM{v5gV9S5|!6MtH6Y(kp_1*9yJZ}nf zZC-87=VtTWAqKR;2IB(hENts^+DWcga5L{^Dr#e7tZPGb$rRXnb1;n!cxPaG3ccnW zTxd&`K3&d%F1ioDC8y}~AYwsF3VSDW7P0Ys&6{&*yW@4mv)=Gog?On3N=V6xWBa`w z=?Hlv zZo2NWZu<`_{)eoAJuom)97+4D{1Of#zjZl~^bo@9xzoI+2^Uu!r_De}PyE-PxLps->o} z2rY~BOH=&AckNo6#39R9x>8sPoMrWYD4ts-x+$>DCsZO|IngC3egWN^Ko1&(59Nuv zCl#t&V*IdZjO)r+)+Ufp-(4OFauu^+!CS;)8pxq>ei8^5Ykc=5OddOx+;>X{s4>3r zL6J+VHC-VMu-^O3z*Tr3S8O24B6tI)B!rZJ2O5l%H0|F!^xr`oSw5TCYl}fB?jjmH z%?KPEAys;)YwcEG>Az89vhNqC4wyP?-8Yt_5;ybZpv62=L(Mv5=i8a~qW3Xx#k{I3 zF3`UNNB+3&S=<*EMSp57SQW9_c|Fun$5A9y%#_fS<;BC7GLBr?k47Fky~JOiG%bm@|l zQ1Edlp)r_Q>{3GM?_BwgTI^no+N*~H@%_gs9l7NId2O&SFLC;Dq|L+EBK|?{S-u%^ zTR@uOe_62TEGW4gF-F9XF9OnW+AuB!+MadK@K;+xgae#k<@!I1fKKP9F>@N9JF<=$>=ZcWaM-dPh%HY20TkzNbqW13+Q5FYpxB{@t)GN z?s~eBCg8V)At3O;!Cy}eBKVrqs^ffv(|>i)oti~uy3Lk}=ZUx1$~pwn)!b;7H`l$d zM(+($a^hUDQ)?VJ-`wKM^qsSEuh`C~77}V2^wH#3(QTd)W3jQ;nOj6}yt`_+-el6s z@fni0jh0b%_&UwQZKpLD!NQpN54O14Pl$S6BOF8`f|tG*DL?qOWt^e4FBCw(ssEwh z|FsIblF3|9V_;=ypLt*h0h$4dj1vMH6K%u)s%mclxJR+%Bn5F6D|lqDV*FrW5sV_? znwBt(8(R7~39s7zj?OMu8ES|)TrCNagtOs|7?x`zFrt(yTAe9!Nw;&!RAcZU4rZ94 zus-k{&8OpfcG1ng-E47o{#Nn$R4))Cwp*w7(;V+gaG2Wid+M@|E9Xo1;Li>RpIRrO-I zgJVvCTy>Y@_lJVW{ZoDM+aSgde;2Dm^rQt=BF%0OY5b8pyT`e{X6m}*Hu~CjPqE`f zR+mC(&t}K>nLIenU)vW)f}|nE*&@e1`M#$~smyhQC+@yC1VTVVCsM*ixZf?{8YS&h zk7$6sU6vnE%(F?dz5xGKdhhU0W^pBAP-flF5iIPhO-A9ic%t}}>PkBC+XIn~5e zdJr%@-c%}(kJoeGQy3bQhD+;ztxL?n3$z66@0$Bj{q6l`9Bks{=Xsxt)8*M+8qSqr z+&-q+gNueeR!*LkHkkaNl(xD?Pwqykk8$bgZR@W-(@hcjVjLVrnen!Yn&0$?!nr=e zTtlSP^p*)PHf}fK=IzZzDloKh@qn`kD(+6(8^+gC$S~DZV5pPLeoR=jMOsiWI-JQm z0nB=HN1`n)IL@iZ%YxQ~*3?C$h6=wkYmWc?>{|xl%%3gdb_%NWeCy)sdQf##*W0DK4RH#4G^?^0@Gqr5h+# z%FiJuv#e>zbVq{%;}#R3!Py?8^|2g#%hc6$b)WaE#>C>kEKmk~`!7cmWb|Ln@|`B% zqWXae6f&}bVlwXODf`E@f5Cz8R0fOvDf)+f$vi`z8Q!`_`h~AH1RHT*g8Lfh-cnyR zSc`tFw4Q9dxJEJ;h0ZF~yuQ>JGSIF^p?u~jnVR@kx3lHMvBIF?_CD-a22yy7%-*T% zXSj499r@T=n`vY(s-woCSG?~=ZMq7cV0PfKT)sudBYK2%AQYkNcU4}>r?z{LqWWmG z^NT$31AgK+t>zUU0my(r<>7S3tZE4J&1MJ?y+?idx#lK7^EHv&^y|0&1`RYN}Ubr0e4ZEu{$Cm!RV2MR!g-cm*R<#2jau(9PNV3qgKwJ{jfS$WiD7l zMbT*5Fk|j#3%xV}2~YSA^fs!b$@BuQUOUrTlEm|4$^KWoY$aS`^iG&E%!|Guf=cHB zv0tw}AsZwqH`6vjL>Kvnsjnf}jK!9Ie*W^e@Y&HjNKutxi@g}&H0}Ix3P@*)yUF(N8wOjcApyyx!W1 z!d%fY>h(lNwO22S92juz^@$erh0X3vTEq&2ORsLc*NPo8n3cgo8M1+T2|k^@AEJNG z`JI2qvS8)ni;5$1U6Pd*Q)ujFe?ljhwkO3e79aSn)Yva*c5x?}Vf4KBK43^)Bko`s zs4egUwT1s_^N>a*>%x_-bsKo=YxQ{u`zy*iKqY7ty{3^r$Jw)YNx<|rZ%YW&(Ia>P zfo^A&H?BdCa>=w4!~xwiiR&+$)_!fW)WQ^JF}So}ItAmWh|x>%u7}x*00S#wZ0|ky z&+bb?Ol*89y)S! z%jx@)>#bl_sf{ml$;ihrO=0aDF-Xl)xf*C-`zV?9`Cm+wsPocNpgdJ?ub-cr z`xRTWkCZ7Zn-I2kYdNIky(4>mQ6nBN04GgNp(m$xXX(*(41ijQBJVRZH* zP7HBhtPCkkW&prUYGF#wyOFV;+bR|M1J10|&D2=proFPO!e5oGUS>dQOyj1{2a=%g zU)FOPmllhz;7+N~J2oA&*f&%E|&xKuqDFn-||al1>4j z$Fm`B4IaT8FN6Y+;iz9ww7{z za5vjBhDN5$E;^U93g6ruD;WDrWYlRKy0o3U3$$KU=IJ0?s8=2N(f%b-B&TP5Ua6To zvBD+;Nz-UqULIy~a>w!@xjOG)yxt(ZsukUWw7Dr+?$unX-)(Cv0AK>l#*tKM7NaVw zZ6X;nTpXx65{d_2|C1Z6e9+x*NND&dUlQN}pX1QQ%k4zz4A8#P57s#i8Obee&C~8E z!057raIFm|XGR*~*E+5r&gcEYP91Lm4xxOLyWu=^n+eg>M$4730I%74{ne`s^vxp< zxTAbTjI%R{8ENy?B4s9hg2r=E291!f0d2$7f7*tkr;yUg^^?p^R@^H))enTOw}Fjo zNuWo1r&aLmPp#{}27fAIHD`?3AU|)s*1s_saJsrLoH21`?U|2yoNZTom}bCW*-|;) z1#ROm#tB(yd>wG!!FjA8Qe+;g^0nsCNhPQ7vqR;>{@l*-?i&M(X88UUrNKT;z>;h@ z05|z~Xb8xLV+M{l`WjFXQoe5cg7&N=$fAKwS zmLpq)=IiQ@#0|y|&m}69u`~qv9wMJk2Vye?KB%rH%l}3?WB|=Be(5k`=LuHtnXnQ> zjjHYO*VeZtFU?5+qYV3Nm z-Mc^{I=!B#t;RJ<1Q4|bAQ$c4(7vt@e2B$vLQss%Q zbOsaB99f)3e_uYWVNRbo(bp^ZkELObeDbS+gCKkw4u<<^a< z4AKT8#UZXs{P+v-Ckyt4v;4KJ^b+5`u9D^3f#qIrS(SV5yLbPXC4U42vw4;YkuwL3 zb=IPzw{r(p-V6N>4bCrBN(vWDFK5p(rIe#$gqrtr5XS-7AA!XhGLj0BDTlzBgoREw zNj)l6mkU4`6l)*hTSF(>zdbC3oS{WH>BWK-@M*7?q6gbt(p@gCD%=a>A9pVaQJr$X zPM}+u-@Xt`oXB(b8~>BQutF0}!b=>HEuIWu~H%%)zUZ%qd0Zt}cv zV`mqj^fN*fZBj{u8iB88={V;VwI5=g+~76wblok71`Hsd36ob z&3Z)EJ*C_J2FVMk@8#r;p2B?!sPD#>UuV`E) z*dGO#)9B@ST?{#`OBws6uu@$&Jg6bi^a+FG?b~SWV0Jd9AzKPz<<87wjv|R@@F_q4A0$hOu7x$=M&i^BR z`-d_Hk03u^WxT_|tr39KeU6OFZ_=iOx>6t%&hV{6(W{=9%XCR0{#afsPdjbB>yE^F zRjZnt2Ix)Z!L0}FXdKiZ-&I#=m%yC-a6c^54INlr9UQ(k9oby#RNA=rsyvOPL3f<0 zJXIkv?iBun;5S{z7CCehxfL4v>$I{vNF>Zd^>VDFVrG5(a8r2fe(x+}`L$H;_!aA; z8kjl8Dz?IH&BcZs*t|Z{yiuhV7^_?3tV`C<>h?|q{dABwaW*A%p&LQ5RcjJEXkCD3 zhTMBOK@<}@$nX~@sH}}zZ{VlwEY)g_zS?vWb%g_wd_)OxE1wY5Qu)b$61Lr-ffvGK zME5%^&)US;^m$GyVTHxhC$7?xYu|SiI(<1;FF8q~(73UC9Hd8Ky@~-aR<38Z(Ljp! zjohAHM84ZBAYB_LHpn1YKpyB+{YPX7bS(aJmh-#slKy9n=Oo0$+vl^xQE_uR=84fj z3WUr7!V+cMW3lC*Ollxo{Lge(&oWaRSXRnypM*9_?`h?tk_kqnai!N^$Znw%R*RxS zmlwt7uWz<=;Kk7=YEqq1H-%#aqZITB-S{CRj<4@F{9Orw;3O9}Uc5f)qPiA094Nkd zgY1%x*IU!gx=!vvkGHwu9uu>BW!h~Vj&Eq&3u{gs1(I!huoCoo{kJqL=t8v~AAK&e zg8XRAuP#RpFjlU^rU&1={ag!uUOn@$Txk0Vs11QFXaW&-*`0wwwuGrZjsM6>woVauTat2oaS%yfWa zxnnigLtkRpbjy&9jGXO#Y6@hR|4>g~I8O=EcxO2Pi7Dn@hZ_#+B$buv$nb_bpvd=6 z{$t8K9(c)JgLyWo1=@b%op*GNbZJO`p|+@W22SZT|0j|QZpXvNs6sLRM3Z^@0#C$` zFbnAz4tGmbXb<>IYngR_uW~3x!5cW4CmattHl6Zp!*gkR;NEm zFc}C{I88P!Zxbsivd-rnokkIY^JAGjP94WT29q7shsvvec?u3H6&E@No`^#RU%g;! zvc(u4`23lv1Ou>F!efd}0mtzm{-;4DkM>-MZ?nyb0Cc)6GGTIPdcs-$NBr}etA@QK z62Q;T&o%#4m>jMj?mx?NciO5Hy9IjUVRv{$M92IHe8Scnb=o&q$r%l|e$)5_-74ii znPD?yYiViv9C-3`7P!*{KC_MA8n+V8AkS-VybkX}C(ykbR6hp#liUpiwa5Rw^~%9s zxNx>_*qVB2|Kr<={@ETM3D2?Y#!^u>s2zkWc}HkhcVAY)+qAbUV*Oy69h$A$Bk?ZAvr1>ZMiPCFZepf5{{u0!t}cG z*@kX0I6&4Ml@#N%J+8|>OwfUx8VQz9Wq@utuT#4+biBaQ=x}&pzv>(BaoSFUPfA{h zCXBg`Dedpn^@?QmJXET=b=)FS0YeJR|-$DD<6Bwrd? zzY&McOymBgU~Gs#`lz;5iWu~&6EV?ygY0wCFZ<<%bakSGph8ME2+Dvot&Nwjcol+l zYiu1r$oCSmuWX>1-p30@R*D*3LF3Ey2fxM0QQhudr+@s^zz&NC?LExr>z;cxgiHTy z=qzU*#`?S3njgPsHP!Bgv9{x@*F3Yx8n?y1vs09uLfXPU9OHo^xE-foNhs??) zxETiBiyzu#DB0r?xvi+|)Efw+hZYL_H@riHW8FIHPL-G@9s#SM_hb5+v$xP=q5T=~ z2#HL!-9_7@@Q;z>M1%kAm7*6S(C@LBEcG^)OMcC1-W< zS)as%AdrcZ`nVm1El8=xrPEkEeRzk|RXoxE6@n;U2v|oRt$6uU?>uy!P5kx~pI)SX zjq~CtY~$%Qdp(9&UeT}cMufip=O3iWVJgqVr(S+F_X?9NQp5H`iIG!qp!AcKjR2Pq$Q6FKe=ct^@yU2Oi zrlwE%NaH8{RVE1Y#IW^MMeAXHm7qx2p#c;}#HqE)`KqEr+SZ(ArRBU;39g&8R&S61 zJM*R?hhlhFV))#;FW!s)dsW=rNbatB(BhqR3ToGX4xm`y1BhoZA!kP+!$9`YgT9SB zbZ1mpxL^DXUph*%SQT9SkRlg1vwt0X9Y$GE#cGx2QF&Z9|3l9RE}Dh-!6%G=dof>$)IMG9) zi;QgWd42!SS)&apZ}CV;!q3gnnLYk`y~e_hYe7?3i|`Ad+wX>(ilUv5q4V7P*VRg~ zdf|;PLs3wIP!!+Gd}R@GYBk%7arOud@x z{nY(frT*T~k-t*kJ}E%zo2s#$4*t@YXGVUN*df=Q>BOL31mf3FKFg`iYP)dl&8_^_nXZF?vlBrUZ8-b7@A@?>=U>YgcOouH zGcv$h&b&|#Rk7O;@A5L|wf5*2W)aqI*~c-p}2Q1FUuNDAFfAMEHzz-eM^qR7tb(4jTZ_nSipC|Okw zZK|igQj5`4_?#R>6KBQ(y%!`_2RWh$L$AhH7Qb6giD`V zszCbpI@NOvw>^Pu$J^a<*ja@GD;I>gnQzROe$}__5&2^)6SN^2hl-sUW)&B%>+ONz$S+HQJ*+ufFcHXH=w2uN}Y! zO4Z8^3%~F6+Pmo8%FM;EIqSimkkFR48*Xycu5@$A^=Hi`N@Nb9>Ref>yf~#u`Pj~$ z*Jl5vH^KH!Jeg_u6yxIM%v{ytn268y4fl%q$;~nA(C;FLv-+38irnG#wpjWKf43UQxIwTrg?46X z4UE^ZwZ7xd!2 ztEFr^Kg!sFU#QJV3;8QIh$DRyS1Lp3B9UKIs>^XBOmt)?P9GApVmkPG_?kP(hz4;G zVz>~wjT*P!4c}L6lEb|37(8^PF)+~~s65s~Ubw|QH7?Q_DGtdmsJMaD*l!ZN}Qq$6z6GhTgqv-6FsNc_j@5B&N7}5*q+X>#?C?) zy7%+^rnlBe)`UP1`(9UB z9nxy^c~9H zwD`o_Og+odOaC{2!VcfV70s$QTUxEbEJU~YxFvr!*XCU6Se$#op6AmU3>{9i&+o}2 zCp>RhLE`=Bq)Jh%F(LKl|^$?+|Dfhq#RYj(U~ zw7%HdbFYTL>Y%PXC2w;kY&(DB-C2Q!PX}!tSz-Z+W>TbrXDpDt0Uu;@ub*SW9>sCJ zk2>zQOF<}-ABf9iC{1@dg}29ohvBiIKV)W?Ee2qt^QeM=#; zxvj(Immb|Mi@fkYt&E`X0rqPwo8#6^Ww|z{A=t(H%z9>bmdo?^s!syhvb)E#TFPZ# zl^0u$MzX4^x(b}>6dN4|J=}dvR(y@CW@P%v^T_x@xJ${@;ez!0)Xv+N7xc}s7zxW{ z<==%%f}A~vPEHQnx?9l;lK%CZtF7Z>Tqnfhwp$}zn1Z`Sw|OhMuQO# zWfG;hEYL6TU_Kmj{E}&N9@S1(S>j>M{lz0n21XaYkD!Rf;51m`y&P+(`#hXyCP?#r zcgGrT%qU*7~zMbr4s09qKb zd#oW(DjR(e>rp{sw79Dlt?!)gUd7_1Q?% zMRNx1d6M4;Gp!grt8g81@P*I(F$dfc@?<@+pP(9(Q;&4xyS(PajZ=H?2L>=nkPHe- zcJo(hn)&eW^wyf~?CXv8c+{gp%M06JZRfx0N(P1?N0o)m`zs24={YN_ZXinO*#<)c z{%p_L;{ve|xt^Yi8sb|;z8cp(ed8B#5bO2>#O>x--6*|gwlpoRRf~AHo|C7_ZA95GPmG# zLc2Tf0;2DRG?Y<3(1zf=DcfqH_D&%5K6l2vtPYpls)0)^5a>#F8GKEl<)M@QR+kMY z9QIrtNex&sy%u#BeZZVMpLbKzRuh@}WaZYw&2hVN7P~)JaJ#+6%xLd@I;OwtKkF-3 zU=OFf_xF3gCg$*5&)((J<6aR{g)ZGkLn?dM&4dBptIC~Ucofd7WmcT&)V93EFTz$v zRi(T(^uejA_|&5DT%KZ|ue-)PPgcIe>wj#mZwZ@O;SxyR6GUbc;kCkx?M47w{_<$I z6_#0?#>PrW;$)wM$dp7kZsBQ@K70CiiX(h&uJ)rQ0Z4+pBjEbW-JUCPJyycP`0LLO zJ6^x_5r0CeRyc;^0#p05=Od$s+llm2rg%cJH7WQ~>R z%u~!Pin??J9%(QixA$b5Tg1F)T{1_LHBinwtsal!%zVVfqw7ovPgtWixw;+YG>sHF zLdl{CPYCiuZ>oNhBZ8XhRRg+bt)cYpC*bkGZ!G@yYt;xFBi2;j)XNlzF3wP*NK^Vg zKyqo=ptd|88Z+N(yL^{XVmzZ9^$t9)mudF-CB|=I4}_Fs!|$_;E0ii`7a7yIZ~!*| zKCe9OT1vKIkMCbU)^YQB=r`OQi>~qad1I^hCHS5Ff_bafc5BfT0o8>C9VIqXXL1|gY#kHMKk-6%3V9*o$m zF@OcBPr7x9waIghdJ{+mpp#ET>Z*wRmP0<{^`{;hH)_3-x;urr?U8kLcRE6SrTm1C zRwa-lu-0oD>`bk@V_QX=F5HP6p2R*Q! zg!5;vMNzJ_eiQ$U2H%PfM2`pGk>mi(%hx1|5~X>{0!XR#MWs&B z^6RQ%vGrcB`rE%N4%UG=V~FNw<_%xd=u4Ue#wVZ6epzbEh>>crr_F>SjfSXsb`!JF zS(Nn_ig6mO+tS7WC&_<*!C6(cRBOG>3@!z+Wz4B@N4YH zP8dI~G`0j~_`aO7h95sFYuU;QzTRns#jOf++cC;E3r~`?_q6VQ-wGoWRHgXyg(G&I z!&go#F_IvSktK0dRyN65?(~r!8+x;|dZPNj&4cE(OtDlp2R6^*X>Sy0=%RZl8%#OXF3A6}R zbl+desIgij?0TQ~OJ*Z6iJD`{;V{p#JUe8w(ktJ2dp91&?P0D&&b6McMj>rtBw`B9 zucO0!Z)drYrS@Ed*IsVI7#z91yF>l7Ea|6FTM!eE^w?%vj_Gf_gh8EvM;A?xYoeeM zbnlmF69_)#r%sD10{qGf;=Y20E=7w(tBFzPCaNP|a@XIsql{ivOHC8*!1nqiR-dY5B+%J(C* zU!F^M2PvTC`HnlJwjoHBjKL8_)e^J@qK8SvnAchFM0#OvF5cwcY`98u7xJya&gARU zLAFk8Y!9M;QwuTkCutYhU7%D8#h7#Hdwd!nNja!mRSG{J36Um1<9pP%&`AOkUny$b z|K9(T$qnRVX_7=3QJ(@Yn3PPwsZ5}@uDbc0xN0DE->lUoGDV6U<$CKm3S=p4_oEnN zuNP6aJrCEC`*hIe04#*L`d^B!U6+NB8m%>NQ`4=TO_?{wYcjQ)V~z2o@ryA%V~xe8 zL(Z+2AM8j5QIhp{DT5N1etPbk1H19{$f|#I5vX%?3Sw+$r|}FsDG-Flg9X#4G3E*p zRtqbVQ$L^q97^^Z(sM>$F+z*2n&-UalvwWecDGqhWDOVvjYI4-wW8sSgX$u75_&~D zm>N@Je5kAqqfhb*J;)LU^{y7>IsNtoQ&j>}tWMhoVu)5_`n9V*v$Ij6OFdb|UME=^&# z@=QCy)YNDNo}K?Lb@ftvBqm|aX7L_WhiDh>f!>4q%}3JYGJN`p*NselpL#L{2%}Bg zZ)~y7P<|}40Gj%TCSLYsIwBy6 zHT~;YU6H7xDAw=Sf%9)Jpdalmi!QCuK7Qa=kFtEXMn##GyiJ|h^;p8I9V+7xUTY>n)eIh1>?}6@DShqD@Oq}Nq-jjs>evy4=Bxo#bJ8_ zKZ6D%9C4+qD`0U3PY`dg>@sx=N)(D;I4=T_AF#GRf}2D7_A42E=O8dW28?_+G_dEq z88xlXHYh{+aY(}WLtu|zP^@=*zO41WE#Po897p4HG*utM@|Dd4(O~xV78*;Ne%utQ z!F2u6A1s_2h*GQfQNXD@`)})X&h{0x@@kOT_T>pZ4w~D2;?zh9|LV?48vV&PlhuSu zxDcI&#c8KEQEbO;+qOX@Jrp*a^UCqfw~&{(@{TearCd}JG$sv+WV!xbKPRkfHtQ3< zyTPy89{O3_L&FPt=sq-e6-Pr4e3fZ*pUnmDK8xqN;e+X+&<}1TVUNalSE$2MxUh?^ zMxNx&NQKnr-LwCF7EI^z7vu8FJEER#G(FZ=^yu_h8*4=M>%E#A zZtE~`=S7lcn=G%g1w5x&El%@4iI*DyAip{N6)GKT!t20+D~d zCVQr2FH7JGJ%88DY{81|N&h-z8M)#ihXV zN2OA=r*pH>#qS(RJJ76A>w|gFZisJQ6Pn1Hs&ZD)gP(^3N0Qod1q?>Kv0DoNScBd2 zzURAZ>p(BMHeBS>Q|2?@r_9%PXzy(O-aZ`mbsvM*FHodj{88>evChI)GBD^qp78hZ zL&0ikc;)dV{@=sEhr;CX$|b~vM&QSuRV5cixYRRBnsWNhQhGDj8k0@!sR4*Fb{o3? zyO(U({~nE1-7g4JKf+pnc; zZz3|kXi^%Dtkzkhw?&RzGFU1sj>nhzQ4agi4Jv4?wxt~&4Ued~KU?lw>sN&DVO+t1 zK0vc4PTKI*A^1u4*Qb}&2SNU5Faw<)${Mtz(TKVHPN)DZF@Z<5)RkS@G(c||y9!qH1*7{Pk7xV{kquWW4TuZI( z>7H+yAQczIX4G%Vb5hx7+&t3vL(V-_ZSBy&v>7uuFb%I?4N2XG>u!vNy~p_9XcR(ilZ-4@7DgxoY_|r+ldYV z$>j4^v>w#ea0jQcBFHVfd-Qb;aq-kXe|lpb#csNn3-IDwPrSm4z8C)T>`mEo9_i#Z zU*0YdS=T`d0A`Wmu|^s&JXyAZ&7pi-ER;_b_l>NxANh0q{}KiP-unCX!*~QY#}7_4 zrf9@lTNGKBzr=6!+Bzuo6*sl#N>7a8f$Ez90aW02?|i9j2POjQj*6E@w{s#cBAtJb zzj4Mam9VKd1hi?xCIoHt+OB@o%_#&mo?B6~$U|RgtJxdo{bkW|`MziUMCM;{-H zSnHeHs{X-P;f7uoUoHB)zivB(fi9puJTAa=M7ui{wa>nH+fai1Q9)-QuLU!8;DvE^ zdbceOXN-&k6Xyddd8c8ZM}g#aiC!?&c-M1(&P~ru-Q`7M@@|aMFx%mrpRA0F&(nm# zH0oz%KN6k5v2HKVyq$~#;sMijGTh=`QrhIcI>i*LO-$IEtgcFk z{}$<}_C~x>R4e&4CRdTLFfeUNTNcys=syNBisgv59# zTo7C5X{^-R*^0HVcz;h_TB&l_eXz^WgU2ujJmJXjnIKcCs4tF&CkX0W*A5B+mP9d8 zESaX~Bsi{>eYeh9XBff!$fK~~(JV0fKJiAn`uoI;MtPP)#<+IlbpRI_>0x`8YKNE4 z)CGneCv2p;ud#?(;&sXY7%6znVfydu=00XOaS4)A_jJX>UWgyOV&Fj+M?s=Ku6GoB zI+NAlIb*J`f3hRedK0+Lx~|y!!y}ofExSoN*qPbY*2n>KSy6;^kUZku@jAmgqR;0J zLJ+yseHxUjyO-o4pAnp)F@%DzY8BO+7Q};siRDl;@^|pb55j+u4@?1yuRHhS6r~E%*ItT)-n1oL_wAQO~Nb1 zVM8GD`0ox1@vYH5{_mTn|3BYcq`h-`_6a^_%d2=ZdNg5FII3WTA{*sY zX~iP`kfH?q6^!d$p%4|pQN}`v9Ewq}e$V&UCX87t@Xj|4KQwUfm=Bzw=%YVqU2YSo`lXhKNfGuP9}oA3!vH&a$Mde(ct1{DB60OrCgoi z;oxKR2Tu>&drbmovX6EPGcg81R+UF;CC`gh9sSlrwXeUW5tD(+L_1$75B>T@FKM2h zoL|-TJd8q0Q*`1He_^7gj0^(#anhIwL$mELn-*)Tj0PXN_tu>mK}U(!p5*DjZvFmX zEsKYh#6ggmapsP9ui}Q2C5%&T_+jjOPLE<0PS?0ST20#@piu*c%UkkiYwc+xO-hEV z9OAMN+V$Bs0aQH1N-lY|D00N;9GjmkqJ zw6zjisKtv%5@h=$*_ozN#4He5$%k4xlTy;O%s|yh?msqJh686&}V?@&^W`x4kMkk@JOC(%okcDL^8x zzqa=tMf39lZcX)z8L_2G^%cjE7wR$BDodbo6$zmvd?gfXudazUJTnUMpiUOm4?^~l zS8~J{eb-?YJIRoZ_qW1fW6LQ%Irf)l+f!QZi8tU=<7o)She-okRMR_R0DGz4>W zZbc7Q>^v+t(0i=zs*S!!$M#cht4ZBa@tN{7SS_uL!8Y)B#JYTO^}B|gB^%CBKOW7H z1^anouKiVnCu4TN!xHrYr}cT7=GwWl8Q$Jh?uK%0cG=0C_H8uyXI72Yiy5Mn$t*8@ z5pMQ}6x1}9lZhwAjax0k7@lYYOxI;PS^xX(^Zh;lKl(rVKk&%?e&5%9 z&DV9^*ZVq;4y6AebM-8`vD4noT~RMN@1?P=@Rc@j zdU~Cs>*cq%4(nE?R7go7&b@-F#Sz9BWykmCl$dZ#*iHAnl~NBQ`R?mpro(c9V%=i` z$sAXlk?HaV&Cg{tg6m-yc-IGyUhPHrkHC7I(Y(+~F;Qt8<0N;;z<0$rVaz^$+1qT=?;pKlN=@S!~0KR+Jc@ z@WQymj)HZGckKP}6Frn#SZzy%hB8@ocH_eOHNL_x?{5qr|1R;bCy-&q$pjz#eOb-E zmyoGsJGRD@nGEYNxHUc2@FldnM!Zh|C&y0XT65{QfQvMqSbo2JM^^6liH~UeujeH` z&)h@u zg&Q;OVHi7tDkaOr~5m#B2;fqp9&KU6)U%0FoIEkOBJ@swso7Ms`9KA z2d$(QZ{5&_=@+zf^nZx^+}}b*)=DQVe0oBy%is3X#>EGlKxiuIInfB&&rCl4>Qre% z)*3K&g+F@iD2njrQC>4fmCWU-jmG%;Vk>B^7Z98En_=RG^PF92&f}t{L+XJXGmsduq9TF|M&J* zzQ9TKc1hth4uO46v-;)cAHTl-L^tONO0-?Q@$6A{jIzXqha>4SxUdo7Q!|(gqrXn| z>TfzeH#{L=g)#ghjtEP{7q>0!{Pv-|f{Tay0XjTx-XQ7S1m*E`~#`tdo)ELp6? zUf_K=gUGb1QJ4-lx7)eh zMD!b~kXTb~RIYZ4h_L?sSU+x(+nK&J$M^4iNEZ6BA516bap+JSgr|->tbZSZib^oP z86uw^9c50HR;9;++msLbT5V;~AWz*Yc^m&w(9u^vy zHW`=JHiCJ+8nAoo7au>Y%_%auxpAT>_3pHOp)7GPt^Zz7Z@3#SsbulKC-1s$y`&A= zhrH)?dGPU0iS{j%0r&R?yRt_d%7wLZHdj;opJj?^sJgyC=@{Nwi<^jIaY)-wJn?v$ zQ1{jbU9BHuGt$;x@W5HS?5xyzsemV*x%&>r`%< zEraECMXP%r>Ku0#s>k-(`>zj69abw!sk9c(t=Mj}OTT{Zoa}Z>{}`+H%&VuR>qTIw zkozh^iP!5(Mex^|OR9{1Fs0o0Yh@_QsrxJf#J^nhl;%c>?8ynv!&_OU1U5+ns}nAH ztxpHsU-w(9`PLdcf+<$}9^85t`aUC4pT=Q-aN%jD%+yJgdB{q`U-GI8b2$VtznQJ9 z#@fer>_P=$9=)=|EdnqD?V$C??EW_%YUf`+TyuyCD_)seX1y%hJ;tTpWhqzp!lKl? zcNI7p|yH-Wo_)8FO`_QNR?OvXAPbdI0Xw_)Rh0oZ$l)6>nl-E_q6x!c$MaQe8zct+;8E9Ww+^_ecIY9Dnp;|K0_g+EBszy1cT+PL*1 z?REa6wGiBaS!OLABH~1w*N8y$@z8bdSYIRZ(D2ZNX+^pq2EfMx7WS|s5lI= zF)U4}3azny%avjG|9Z&f@SrMlTJzXYMKjKE{4hqP_=ix^!}>Ux*RK?&udN8@#nJo! z$;-m3n2xRZR^m5?D9DA)D9NlT8*g;QbzW-2?NVB8M$86g$2&x&eSa(Ot_P#x&)q5d zunt!m|2Y3BYCgh=e(&9>=vRZK*>kE|En!z2Qp+y;uy~opGX*+?u`x_=FXvZkP+#+R5DMvnUAs}??Y^8M=5V;nEN z*9^mYrK~jk(Zz1))mPoxN!I>%>Whu?6+0Yh*f3e&NZqY5P}bYF$r_FQP`C>&u<-`C_G4ZT0k!OO#aFiih8nADx3nb++`o+vJ>j*$I{@8Z+zuxNf-( zlMMr|sVgIP<0{Yho{!=0t@IoRhmU*;%FlYuI9hKwU^!=}G$RbZ!o`}`6effZ)LebT zLS21pF8k+dYR`<-lfI6?Wd>Y!Tr}5orfgjwwG)y>)=L`_#q{~(bA1y zCnH|&`L}w)!uL3yivPW>_=D3#l3MDEq{WaIJlpgVw%4AF`bF0Rx4Le?{@kJ!9+=tvbWU0j?;HJ33;i8)0{PW%X&X zUTN0_n3sd;lJKK17D84o8b3(<9+>}cL~qDrwq)1KVRB`i`iM&`ZA10h&j$#0nwa&< zeGc>aS&DLh9Vz{mjKTlKPZ2_ba81fCX4lcQxR)paGz0>2{9#b ze2TG3H+sq9m*lu$86|P8+CVJ1o%*QkTkVt(*H!aWD;)_k4u)n`KexY8%7^FUw)2Wz z^W(Ffqta;WcW(#7cB@F_dz<}%i^_+!x??_T&n)HK=x6l1^fo(BBg8ynA5EF|lA}J8 zxrSV8KYy?By9YO4y=BhS%BsKB;3e$a4rNB+3pZ-+BBcM8EJVvy27kG(OX5^3PTs?L z-@sj2+Lyo0!gws=5g*=3rux;vKfnpi{qn?(gpXClpZPc^3kGsT+dTw!C5+~y9DQBq zEwf+aMg(_^xzesYikX$V@bLXh!F-pF48S7nIX1w7x100>R5s?{K153MWq%&hw>F%U zXp1Qg-niuKJA5n^{&1Qq4@(^tx7Z@H*jo7F|YCH8xGP51B5ACKur0_GE+1r7dK;QTHeC2@PKVvVM@&|i1jI74Z#*YT1rj7GoZ z^wHDRe*U%dCQJ07x$mwD-c9fKebb-U-h1RvR>nD}x(pvlcklj^n=G3tn;cyG=#_15 zvyyzV)HW%;sz1mzX-ZTM6M`%_GI zbvDDtpQ==m?EY!iIa|L>`#CQAyv)15KgT0H(~(~qOJdyPYyb1WXl!|b4;zJhBUkC@ zK2Wz!CLCSilbnNXnNrv=DK5{y!Amp!AiF-Pr+ov{D7Vw>uh0l7Hgwzo_(b`G5SiD_)w9lM!yEUetTGm}q?AAxUY?ks-US+d&227uH|~ znkYMY(Jv-ZPFgXUlsg)q84*sX zhP~Ae@_00SyufKP_+!_0oUhEvrh*oajNZjk}jA`x?7tr1L;XamuX|iuy6zVCyeiLXI}i-sepX|5)!V8B@;DnAmX|-ZH(EOKrq8#vS+B zYo;OOMGPZDefNIasEJOOErVY9JzwtKVEG$m#*_CB?Pfm8WC<#ts#7cuM15>G-+y64 zy3ix1K>*h1{(jB$>jf5gsgMK*6Pq zlKCMK>@C|rqu(XqkYy(Jvv2XMx<^t%eFHgW?y|z*iLGpZ2AzLlg|!EqT3Fn;r=Ej4 zEo?B=YW3$Yx8ZyF_g#(O8e=nK{QBGVj)~5%WH;PfR65y<#|+sCU*gwPUQm8Xo8%Qa;A%Zf%_s`wQm& za1JceIMyh3)*W$*u_kv>Z$o?DKlsF)$7?in8WU4>{%2HG<%xX^2QS(zJ-c!}j{Wj+AXR~9>v_ktXXK}Jh>*JMr6YOu z?&UgNlljAq>3jJvD35sX33(ytxVU4{D-Jv4)Gmr9LCZSXANAhiJZA4b=VCXtP$~PH z8FYAgQl9%2z6lL;j@uG!ZfnNqJ);l0Y?36qvf%G-c_IdK z!fSdL<729R3Ac*MVC52%_~XfY0(E!WUN^@t8w?Td941@T{TQW*n$H#DS-Rc={&&heI)lS{IYmsuta(HCD|L!Q;P))a)jpdFf zsEuCu6SlP-R_LR@mR_E8JNEcZ^D!<#u5w;W_vBUG@x5^_(d#IaZKU2Ubf#R|Yc0u# zCu7$hZQnEoL$khZXIaiVCBRn=M=xc)pNfvL`C;7>q8|v?c#aodtx>%!KSC1~*Zpa6 zs3%Gy8%%&%J!sjkSfAl!bFgAO>^qO;6S+G~h_KjNcee8Q7OKlw{fN3LuIAaNti+eW zm!DlVT#`u}VMJTT<*L6~obju?Vw7(@GD^f7g=CzY!IG2-jEbx}CG0!)fr~)qJ3sG# zis+cC_b*yPa_@M*ii&Y;w4C+jUgZZ3d=Dxct*-DW)MZe#D7@UwfJM~=d^}?aO+SElk8u}MS>THGD(r zU|zZ(o%1V)GT*7p*nc&aMBi3n+On`h%azvvoj zAH~GTdWp%pb+sf?2k|%r%>CLqpL=v~^V;(<2`}4Y*Pm_2pRPT6^<_BE^Uibfs4g-p z9k;`^YcuOP;IHqa3PF!!^aGp21596Bo0>yW?msjEJ6<1kwdl2vSn&z=pSN*-cUzRF z(uf|Jl&^%|+KuE^)&DnD`~QE<|IdN{Z#j@IAWa1BkDjmI7O^B&o;T!<_2y*}@pwO8 zgsLPu2irzh7uR5y0Zq;%jA*csYnn~EhD46i-icEV9s@(7L)AL1-um+qu1GT;kOfMi z1AY>MF6lC8rwWuug1$Aa)RFL9q_epF`5NUKi5ljiS3g+JWvHu*E-YvmJvyF$2Wo6& zW)ifgZ!KPY?m1uzqz|MCER}CNFnR623fc!=37>82dVyjBLu7AYZw}hb>OVy&ld7LS z8+wS^;U-Zg)!08Vw1qn>^QLA@a+p;|McZ{vOWAKM5q|U#x?`nRl@AsqEOzuvs;wxL zm@!wq4(ympTNl9v+HfqnnpSGbB_BSf3lSgC$ncPR)7a`Z#C5$W`l&9VDNKr&p+$>> z%Jh*GK9U80%!12v!5uH<+`kNd_gfs%*o~VI`8fRsu!SS}zc+cxI_bsEpf?e72yHXf z=XOLn1~Fc((P4+ly7{!WCR{>9c44fxk6^RGDr;u9H+^tIxJi*Vd}gMA)+7Nmex(Yy zU;A$FDRIP#qFAo`7dO07a~zI$uhUA&nY-9N^s|}p^8?|_I$;G_^QO}YTTSBW$9;6T zj~CzvL`=f|dxO2v6QY_MoT2Kd20J1$>woTHbhkp~-F|0f%)IMZuGJ(==Mly`@Vhs7 z+gpSQ#<)59rnO6f-<35|1ze9orFcL6P{!GY*hX3yJ7x<{t46l=PMovEcI zya0EerV@$N3~7KJMYS@~pC4B`#?W=)*2Vhl=Yf*EJtMtJ*hqvViBuof0yi8*?i~}a z`MCvl$R6&vH*I5U;yu5HZ0`nM8H)P9IrrAiL5-G|-vRErB0&KryRYMRZ}3Bn>15 zB^;bV-l$J@9_{e^@sI2XKk&CrJTInGF3#py2FP%pvfh!Nh~ z4juDd3wB1$a4VL&*~qYC?w74~8_!;0EN$=+^A4||$F#w%BGAzKGrh`Z)VDAq!F;@m zi(OLhwnvV~$WtYH?hogFdZC-)NB?}A2B3{De?5DOq6ja*a|(+=N{7-O{9PRKN$H$moeiWq z*<#E-c9`McN2r1ZS&|z-L-@|PAkjp$^(%V*=$NFpsD$I_Kx2H7l*Gl+x}Ni`D%VB} z+5HEwU!;Wo@A#ldey!A7|IsE}ioJXBKwkPBdYy*M`Z&X!HP?5mQ^)h$Gs479%MA~b zq(rO|w4TT^Mh$2(wK`KMb8HT}ohhSpuo}%j7;|)|IL)JFH+&|E#+s;oUx|)~`f&h5 zn;Eezb&7!2%8qa&^kDg{<&Y!uZR8p;COZ#5Hl{WhPEy7nIRCEZGEP1p{t@jH{=LZ1 z(Gzgk1@srD3W)MiWJJyP?DC0oBt60Mb;Lf&6H-VAzs5+e@v^;szQzPE3z4P( zZYRMG-{Um|&}sA1#JxpJYN$WgS>Ju={N20Jfq47RZ~QXrFNEq7YzWEqQ~^IZNKK8) z&PBh)_+e(%P~Un^kC9J-Bz2{?^-%j$guksYFWeU+x?{N!c1~bNmf%A~0j<2zTjS?R z8sU+B1L4I3g6*f(WC(+2GM}Fc60-8K^YSCgTlSKiUfSbg5dHI43KGHj(@QY{^Pa*( zk#9qA?}P1oHnWfVuT3;d3_{2*FZdurKVIVtP_GhQCl-5fBvJ5LT~CMO04b5B8x|ymoPN3SP(Qi<6(;C8XejPcFZ5CAYFd~x!aNiX=;+O zD2e({h8FDld+)xUkX(0Xxn^JSflr=iHjv3)spgU3v?cLn5@73om(El%R-RcdKDw_X z-1j%JixL%ogS@nre6c^7Fv+7o+)sM0!xY!a1C*%5sguAiH*<+VSn#`Nlnt9k`WEgR zX8+^eVZUQP5^CE9O{+~rY*bvd&QqW=iGMBEOUxf1x+==)}LkvFn<*X7d#&q?kY!UMDc z+NPLL82(H^>$l_`G9bDevcxpWT@q^C^Zt~r$1je)|C4j#%smwF-K3SK3p`IzOqBq< zZoq%9mLU#hja@}^HXNIwrXGeq3;!1LE#SK}`FJp^+QR}diutp}F8?jQNF2%@+kv!P z^JUF_EWWV7#_DdNOp3jdeD(AhOc{Nns3zl#j?a+KT%ju>#G{U=pGg0`dGNJ^Pkah< zZ+>}_bl`1-x+A;=L2D50P7P6V=Ifzrz+X$ky6UT#&Fg1aGuv%=D+(nrJ^ty?} zcSf2x1S5fe89oaa>7zx23e;^XqP4#!KRcQj5C#tELfS2z&yz7V5^!xt&kijRRMI^V zSApse|6n@kxV8o65oI0>O7fE_g&470wZQaes8t@5+Zz$>DN(4KWlEw|H)wd;$ZF`ul_{iHfzH2w_vjq7O8-v7T!+!v`hHW#^COd<8Yh(_ zFZlz4Gn$xweD_k|1O}LQVxO!lAj7N_Lp$$zIgVTv&^o-3uaMcjjRO~6pDFL+Ae!9*U`HqCdOyoa zuN?duh)4^Fnc#sxMyxSK8$j}yOgS^0L@^3Q_&$<2VGgPPfzo@6DnX`aOco!Y*a;#; zo545(K?f3t924mepn4p7Obv()5(?Hj#$4~#K2_(JFC%dYu?1}idlOuEU12<=7aUI| zfU6(AP9JTAnO6&tn_wRZWTnudPLLV<0tRxxv%Zi9(u_+`=s-GWH3z;#0Pk-Sp+ayI zwaD6E(*2tcUfizk$QQ)3z=Cumoem`*UoZtYuJWk!+FnsqsHeVUy&5y22ctnAJhLVcd%?`4NnN5!X~yDpyoOTHw%lKU?iOyt5xx567LqjJRp zM<6-wc0$^3wdoO4dBszZqkR_A$=@zt_7h(SYAUjM4eU5Yt z=3SY=hy_IB4TrX~rT*;>z;_J)lZIT)6#By6q2SR1L*)5-r*4LWE~mg#VzgA9J(dUW z2uXc31Hx=08%5IaKvog^*sJ)GQ#Jb@WVtEj5=M&=A5ROLMfyL%%0phPigNHHi14j1 zNV>vL5yT1LhwMVC`cy?tot5oBAA__eZf-c*&>lpc;TD41Z2<0aWDASVosjxE;#g6; z`n_M}rH!qDXv$`gf4gB*QV|>;{#zVnsdOalW5+*@#m`${o^ahyY2L_LvyU7Dd9Q9?s9JiIzazuk>^d$ z0XR-EEUNDY8&i26v0vZrS26fjcx!2=AwQtOSS24yUR~XFqt_h?WQLfMO~%vR%ML{v z!~fp-!gEn@m0(ivJGj}N6ki}0R(`nw0!QxWqWLa1QHt2tX`@ayg-%O$t6p>JcQktV zuj`q2u4k#egzOPCxd98CTyR@POjGU@%#ooM{d)&4OAp5wUSvHvuN;dOA-c?v}?55p2)&ow)THA&cC4A*!2 z8g=l_#4GkSASd~DYh31Bl9buC#elec&pg=^?cYv)k5OKT$0w4QoyXaPV2gV|^NhI$ zXMv8^6%COF!k7Dd$vr>ur{p}eFY%Qe#k>ci{1 zNeY~F&APxr3xzFY+kI!cc@+QZ0ajMPs@=&2?UW|ENsFX7{k3`!=%Jdm;} z$e%&%a8XYb!G#yMOzDud$-z|4&nC}yw~eH3HXe3pisdqu9s~YmX=lyOG3le%x zH7pI#c+6L$UI@te=|k$yz@ni}Jx#s?P!H;_S?|C_Y2zEfS^2V7^bO#)Co+HgQt41W6pRa*B1g&k<1kYXg zp&3@fRG;EJNGtFcFo0ZRBUVZ!Y9`s=ho0Dau+~Y31sgZj<+2HDgX<<>8GyMP|MG!s zQlYS}fYg)4@C(5m&tlHbB>J5>qq96f-HU}x3U)i58UcU}6C{6QVISg!3sJ4%ULdP> zQ8Lb=OG*C?5J=4*!pB6qY1n@oL4XA)+6BwO0aNzJIj?PolY^8$=x) zVH~&!N9T#**Tu3uptWZW*(=wI2z3Nn!s-M2qnBW1!gV)NAC+jfYGRB^E9OITr#Zxi zFALzSI{`liqjB;kB6OrdL|(GAh_Q?R^ql4hOvB1N?jv;yn5C zFr|Jo(wh?I|B{-81L(F)vdbxWd4v7=+oZasuQ>-Ev$pJB7E4|6TSWp$SQh|uvmvjm zz&W3>7J@6rBsmCSWDg^x+|l$?;3W^(mCl)6hz`hyj~6q%d4n^7*50k51a`}IpJI(M zRu*<}!dCNRmPFHdJ4t~QGuY3-|pp6I%U)3IOYg^nV9)!@9f+WOW z=M?R15>7pTnp}T*s@ds+oA+Bo`FY83U&YWi;`rxc*$zOuE7=f`NariX6k-I`Fc-sO zxZ2$f1*+-~mh;H&w!`x~IN*C#QPvgq?I1{$&wHr>@G673HGbio|2OeFjXa%y%mLe0 zJ^tP~Sl=W3o`O9@Fc#H(gv{sNnS18C&D8Pdc?cLIl@`Gi03WA1 z5SBZiB2eD-4q`Bu1ygOfBD!jMQZaXjzw)(?@uA3XimRVG8Ra#URNgR{nRcc@T9$NX zY+M$CxulPi*KR*Kq5YREBa%94x9O0QLkm)7X;+4}+r&H&GFCXNpZXb^;94>HFi<9` zS#P9zTCyvo;*IF6+{dLgBJ4M{n~EuZv9kdHoj)G{2#13b4uQ!KGuxxEkzYdXxF`cT z=OYF1!-f7v7En^H{ZJnPOqtZ@+z!lxl!EmGKj*efEHe$t296NHs!3yffM99nhNP}V*jj*+t_twElLw(*#8guZ1@F&oD3N}q zdI~bO9tfdn`?zRmUT!1Wajeq@>7&yUVCHX!fih3*XbtWGIyn5em`)aW-B+~Mkp6sn zi_X2@M7(@sFr3huqj#dEEu~B%kfnDBGogmw*$wHhwxf0DD-55ytxD&6(t>^I$n&Dd zJDk_lACX^{Qi0XX3j|hB%tFEJ6)B{@ugXO|FG*9|zI{8)65Oy*E?e|Cu1R02O7X==GnTY--6}Vb}k1lLBVAR?o#Pfp2yx(RXl3 z0P-6>6L6h}>LJE2u7Hm4M);#{>-C$P^C$NV1^md=J-8zW{*g}D1S6=d$>pcrs-bKG zbg=_sp6T#bvwIN#Ti9d66u6qxJ2``}$8}wQP=!im^?rn>af)(T*YoSZSQGmzyr2i% z@eeU@^-#X9lgF~nAtaTd8x@P1C{Vcc&B(XWd9KW{ z1vfvFsq5234z#?;-C%}AhM!*R4A&FXn#4e^;XS=3A5Rn4Yw&SycDTt234QExM*5Z7 zR#WNawJ>#kNsJTjaq)Sr;TUJ?tKjUf8QzlYB{7|o-AT3Xt6Cmgs|AK4nkQ(07`D(K zoL$&k?k*DMfsK1Ge0d!qpYQ@?U@?#voV-~?5XX@c!I39{qJJY}f$Z2SR@-k39j6q- zpL8*sI6OGp#Q~K5N)qk0jpdu3^1M`=7=Tost$Op12{fBRO`Xa^l~F7KsN8BkWJz*0 zuF@!)Q+TaTz;v3e>c1-WXCqgfmZT59bfkT+;8E+i-*lOx8FDJn=e2;Cp}&T=C<72P z+a&H-%y+5CC$WxNc{j`+$&=)7OPzm2>}5}iV}K|LQaND<&R#Ct{`?WgxL`#|fCSmE3kL?@d0LSiZwSSq#6MU97C~Zm_&y71a_2q^IYWM z32Ah3Pvh@hAj?;EpeF>r6`R1@?tMjPE)Z_Nul@Q>gh65n$SMX^KsDDLW@6ug(j{I# zt}_vt@L&NR^}CK3txx#W0Qv+{z&#g;NxN?B2??<_Vf>4&TsM<9Pe1@*P!os`H<1#q zJ~c$YyzII3Uxssk>FQg)6hPG#j+POujhZX?2A$3Gb2m}=OrT)7zL^(Wst2zeuN$|+#Ivqr~5u%dF+su~Jb;225p>z*#+h{Q||*N4z%LgY@*t+rzNIf}6$^5xfPbqG6@>-@n2>qg#s%J)8g3NnSAZgiQ<5jpAtOZmcB8erA%YL6xy&k3RY_ zcEK)xS_R1(_-T$$5hNeR9E)Z<&O?@`ykz}D%B8W6Z$NTTzmRbWBsN-tM~vg*#)cn< zbRP0I2AulabflqgYP+l|kl%D{{_yV^7`~-xpbV=C5qxY+T+If`FO&bBgO@@W-of`o z+H*1kj8|x%nFCP}sM##J8XAjtEVp@&cK&V$AAi6SxNz}c`kqeeh@3w>Q^1u=FFXWY z2M^-%VQ^Ml2d<$!Z|6!Vg`o8&Q3^}s)Zl+Q(*UJA!wOHZuTj&mYo7y-&nYJ#WvD+Z z@n>>!mi3%81s}mv4ONhABxn=@ARy`oamz}_MO_}(@t?*JVs*$6t;^cR!Tn+qE` z&rEMIkbXj*VlUEz_;YM=A0+elTR~CQA^V6UADj~yjJBC&*6zQTp#CbFSCxDbmgbxl zP;8&}t@9{$6CLK1(MHu*#IPTyiFE#v+(V9cS3XTc1TAxLr`(*sijK4VfXh%@v8nD)qt z6+b_w8!eFtoQA|%XyDKdpFzjNf&`d5v}QEzp6rGCP-#y zc&b-&v!PQp_DpFw?l7c$s%_ol4eRZ-@9YYI|G79o1=4`CokpHk;kxgjgJ10vbCZ@O1e+2vt*@n)1nt>?B%Rm@1xLj|hQVTjn(Px26rI^Y9a*$& z1QSJ>Yn@zVZU9JH;Kvz*WJ@ujm`5;XRi$vrRvsrq0a3kO#Xm|<8?s@Bbdie1(ijkJ zn4l|7W5!bKFRv!4&sdDnk)I`W;8O4S#euRqKM8 z_aTjT&fpSA$c86Ay&!H91%W!{dlgIk%OIHjlommcxoz1Dq$*}-QTBC|51NOu?+#(& z6q<74y89Q1RNLiuI*dq!6BKekGhYaqCq~Z*cj}lD3azzMN7x`-B4AI!iOeM$+8lE+ ztUY#$Jg>!ddo%wyy!LYltajehgz3{6eNMn@kNnnj*hk$a89JWo8Cu8jurXa z1uwI?-r4I#H$e8-faxE=V#Z~P0wDevyPS)@i216f|C^@u`~HC_NET$uv1xXglZ}h@4DniN2rGB_fchuIMgPPgABdCyeKYo4iFo>6+IzF74YGP2*#kRx>lw z;$)?r4y>Cm)JavK2f(L9UzDQzho`(WZ)1^EFOFJ`6H(KG>Q=nvS;<x~%F_A)UhU)$U%YTzT zuvSy-j#&1_xpV<%nN}DeHAB?%yeFr++G*NAnbT?>z_ETZ%sod*lEIwD<~%KO6pSDu zh^9eK#E;zsr|5-ZDfk&HJmfdW53SWuryDv=j~C@ug%`k@#3^z>GGJT^spJY%DR#iC ziG-|W?U?I-3M_nXVL^I1H|!bUfm#5rU1aAHV6ZMEzw|#v(qbe5ut(ifYhTcFc4~B} z%$EXw{+8X&RPBW8-Yw=ZD&mbRJWmr61Vq0>)gf|{E!$p-ev*`#SOPvdp+ptcV?3;h-*6-7^Kw$fc>uye29r~D2BDb_VeM$!~}tI z{xcOI6iM^Z$Rj6SDQ;+Wqzwp@af%zHzE8?{_0u@!_70DCFfDA^8cBPtuoXl`zb3~Q zfbD)x-)eM5mDL=+{hGRXZ-tr2asr}25(3UUKXZD24=dA9k#59myn~(*fZPk$=p|Mv zC77=$tK8GhB|DvztcM_RTNi6Qr30#PHO16|leB?k16<+*<@xX0ZY8B?sNx(q5y(oo zKBmN1}IPxB+l}#IE^cws?rx)tqo#q zA2UwOh=D?j>j$w}Z&DK7W+h$*I4V%#HXOBFDImK3s2jMk!fSiW zee`XdzP)jZT`xo@zSk@7*I^DUJ$*ny2SHZ=pjfZig}Z+!O<{~;g)I~>eWg+aUWr4} zrNQ6reF5EEQ`Y*hKAx>-O3oiIzhe)@vsK+QEowM#YuzYm-ml1_hukHbyk;)s%iw(4NbMQ^GoIyqcjD0F8Yzup@+^ zv>zCuNDnTn&DrH^H6lZYTpiB>?`kEvS_FES%ipEDXY-x+FH(9OT08I+g^Fi2IA;74 zpfIm0L?lA?7jjF!fK#dI{zU{zoD!Nl_Bh>ERk<4! zL5FQqvIcS6)x}^iCQS2UlN7}iE1TBvC+O-2x*WU+%0WZx1;xw9{ZLdH@e;Ej)};DC zxK42+0VzVfkxyX_t-r3U!Un=n%M+}TR}&{01Q$ZWd}!2hB`iR6W_@Ck&b{68&s5zm zsb#S$F-5<-em(X5w`$Cn7*U%3{?W9hvPgy}@*c3~vB|6HB~J^`WG&2n*uHR!kd0`(+O!3`=f6ix)7 zt;wNE8<3s75#c1cP3e@eUaN}K@1Qzw35+nE9zZ7h@mGz{#==C@hzZM=SX}`C;YbC7 zAHEJQs!30%oia=}`Z1zm{Lqyo@G#I!+`_CGeUDQ<7;`-#TMI0WfgJvOBi(QS0J&03 z&6;T=OKm;241kCBZrQ&x4!*X87yFZD3b^w^=FKt9bl?%P_0Wz)?*pRN2bi2_@#4<% z3@EWiP+ z@*y}Wmo0Jx@>^IfgxHa~C!lszmYRt{O)Jxtx8o|701g;8r zI?Ns@41IUbItEWtnSBYAN31E5XPS1(UcZt0z5$ZhWOuWnF){!dOl)aMbujySVQs6bBl_bSHDhITb|5vz-z1p7tA}0K@-<|Iq2!p3D6}as6?hq<-N@s z`0GddW^G5fE7S@Bk-mO`OyqeJ#~)L1i+`UeVT!jjHs^6+jcU^{kVRr45#{B=kriF% z$Q}7L1*tyZg0vg*oa{%D|3^Fv5gg=&x&qZ;G@&wi%_1kO58d>x>g&s(ka-INPgV8h zHJ0umf6JYDrFix9F=e!4gN*cQ98j3wUx;x3OfLCzcn9w}e3PXG_toB4bf+0N9$)sjPqHH?0`CY_!dKPDj+5*GtQJVk;vp5PLcftMYy^Sv z6-0FT*HTR9JI^m2TSpGX6AMp+LE->Gp7-1t8%@GjCEG=NB_$J)^KbCaU8SdcZ>Cy- zF^>Q)nBcO!n#g;lKvuwOX?5 zL`~J129mo3)y)3BC6!*la>OxZL3Lrd0x+I#9Bkdkqr_RjK_D=phQLNI<^_P=nrZTN zFq}{y5f${{dxlR-w#jSjs0T_wivE+iSJUhZU~3jtKH}*-s{i&e97o!KCe`tqORLqH(9e2!J$fg?;&-SL~<9xKcachVbg)2 zWCCz?@9)`o%|T_vp98`Q=*v?!tr-W;L+wWIV?;d#9JZ>hPjGlQ?;ockob}OAjXKfq zaCDz-t8BGT>_QT9K76Sxg49zBa<#@EM6MNi>T{kDFJ!uz^a+_yU-j5L0h(SyQvfD* zQnhZ)@_MaputW;y@mZuoJ!uRu(5C8vNFsqy9-HSs=WAP(RQfN#heJjQ%xzpu30J~6Ce1sg*wzow3 z@LFx*jZYu}5GV_licI_Te>7Onq6^bEn#^ksx_ioPE_I-2=5mMtDiSQ_*Ln`Mbo$8{ zvBHjM$76X5mW(=zPB$faQ?nj=4(I-7!}kCBH-;0zuP0zZjs5PA%IB6Cl?>?u2JTAl z+iF^$@133EIU+5bG+ggINTPGSuguV%&=Uz|D1fmtXFf2AFEz^`Ylc?9*5>Q5yd7*D zG45j?NHDUv7bPGn3*1P_0N)erW_TE)8&vr&?hG~>wsr4aFGc=O5NkJGi0QQ(X5%6X z`7Mst`2Pg@`OUFDu4b^Ujz|W5bk5vhqjY?cp)I*QT$S{^v*PAg9OYZ#Mi-vQ@0}pj zL7vnf<1Tm4zqQ%j0+K6PXIoabzhSyQT6}%pR3?Hzpgi4ONApvNFKhTH|$;ufj z9V%%zJzjSHM*okSilu8?9=tvsdXA!B}6|E=~-`ndSNMMaNeQ6 zgB##zR`1z*--&s9M9<-B&HugQEw6Camd&1UYe{amlrsF?c#RdRh{5(XsObW=cnlaS z+68*`6*0S*hv92K|1h%sTgvIhYh?2-)?yySs9(#4&K z?8qnpNH+oeq>LKV`7~S!>NcrwKd1t9E*-_cJ>-Umj|Is@gTnkPS!>wcq?@5|sETZ6 zbWz9l5&NBYg_wPDe3jV25Wu}XkhfK60$HpFX(+-e!%Z=+kY(oD$Pzw#D+u=|H#Uc8lx)xD{O0zwAlK|2wB-ICRxnEfw>LR&tuE@loFb| zV!8>PmobKDkGX#;AxZh#B?Ut`rzZJdyS&`{LlUCO8B0}8_J1^x&+uj;f5`Lo|AJcm z?Y#Y9UXCOc=DTcMTH1D?>!pO|CqwVlxq*Z(Q?ph)?QB3_Dla_i$nxX6r`!N1cJ zL~X0DJSy+W|3u`k(mxxLXi#<%ks+)4I(WI^HfoQlha|n^y(6U>xOg+_t%~{{9tQtV z_f+S1z|TiJS2mLU|E@><9|_xiz_WWCa;v-jpa27NDd>1iIT}cgN+@RKG*Z)5Dm8B! zzj#4m-GjStFN;oH7yf=45O%%{vNtWDM8*nr#P&-KJG)DNcPj1Pt<tX$fC!g>|V1zE8)?^J-Kjtu}i!MgDqRG_^+j}~xluzft$l=e+ui>Eh zr0wDlH;ZJMqR2dAaW#Vx{`-#nqoCmS8fjA8iOSm+FY0 zU5HpvYc}Vv8y>m3SQ} zx`AxZabil!q&3iiuST`TT(HfExGn)S(3O3D&6iTL`%uh{EmDW9=P!TRjfek^WV8Wr zVG<^Rre?oWpJ!OC3L)~;U`gIzrX_8fW)R(1`q!w<5Ceyb>fsv9mEoA*(SD269Q zSDJSY1`Ns%@YQilOl-XM|AUnUqo3Y@Da8K|V{aW5Wz@9~(@3kdlmY@ucY}fmNJ)1K zNDkdFgoGe1U4nE=4V@}6gn)DmJv2izF!39o_j$g*zq1x=hPCFNx$k|>xz66#K4)KZ zg<7^#X*ct-&2$nZZ4$)X7zl2mz;tgj^P3`pFv!mh_HT6Gykl1P@4+v&uUTxunhpMI zlNP>=E|^3UD)=S0Txjn}Q8qRL<=sXf%kT`7_nBj5uVhkshQo-jj(>-HXnL48^b_UAF=5Ez~+LhWk*+vxHM>MRH;wyjB)-4}UfPkxCMTbhyc@ zEri{n!H>;vq$8d>uX5a0)P`%>f4CTlS=2L(QSvj+q+34u+uA=@7{HVCJf77xaD4d3 zET)wD%*k2YuXT)CO~BTUnH-!e*G>&*(}U|};tWuQ%(k_{9&yb*;$+uR)o!Wm4`1wR zsc-O2_%WWyZEA*&^rQYKR>5QX@~>9|&3}r6%rv^}ul(BL z-Glq~QA_NV#~3V}mWqp}49dejdhl?YcKV{BaQY&s_ozRFCecpoN8648{nn>3eI%^-gxV`wRW58p1;l9`j?Ko*%EDv*2Uh)E4_ZFo4d&H1O5FR|A-2Wi7n}0al6?qB9XrlNw~#KV%ON2r z=WiuEzh6U4-zHhKbRnJiZXm{eN0W_NfeMneC}(Ck{h#u~DYEP;Z?k31lq7Su;ve^OH8^JhD^9 zkGAXly%TtDuCJP+e@uKM#vz86X+E<6HzyQV5?TSLi-W84fIA8|Df*jXSvUfEAn;?s&+0!CFc`5kExE5lYFf~!p}gEmADHq|_=t_T|1M7!mL&gV(W;Wrl1y27Luehr z6}-j&E;Z-hz8D=UGD;v2kNjEQQDiDn=hQuC?{`f0Vd<*-9oW_dBZCy3P+`3n>l961 zU({vl;$xV5-LU1xoh$pp((rU|2hL>R(<6*mMgKz0N&4Rsq>mV+_<70v{y9MFl(2B8#>fS zW_m6AME#Ru`b>C{tAQ1I=OK2(ZlWA~7;AS)|NfBTg$8d93A(#k4leF45)Az+N~wYW z>rXAkm$f1}>-ju~6RWGP^Zdlfp=F`)UfFg0XX4dj&b;- z<$<4yIhqU9RD-)|R%40Q^UI(@VwOT#HW#Ay0O76Ogq-9%Wg{61W~3hyZF)3!=?Re4 zW~t8aSrve1r4cT(Jaj8O(BEkLVtTT88OYqpoWX-R5qf+@d2{Hkhv^A7S!a5w;^?A5 zXN+up&OosQC%T#Bv}aL{7q{2vR><>0?5O02pM@pR<-|f8yqGy@X&c;sUMEN{9r&XA ze%ABsYlC~XG^b4Bkw;%n?TWICLH@Z>>=_-|{2-U85uBMz$t@zg*wQ{lfUbI&cL(wd|6MY>uQ205Mj~Nbs&S0iLiL& z{@C4&iVuttBn_8DO|v^{{3A4|ry8nHEBnIP9|JLoTlG`hP-RTOJr53IzU{VS%nJVz ze7JMh{`_-160?%IpLN^4r69sI2J)q+xXJ&{OqkCXc|Z zW@lAr%CNEECKQUMvqk3Y*Ed1y_?8=s2WX6rxDQ&h6J2q2hIp#}n+3*wdz3Hmh}hbB zczoG<^UFM@x?HL~bijUGJzDO5@NQDb|3b8oMXCpds-eiy#0r(fwdfN6KY1xIQi_QQ zJ)}f`lb^vylyw#w(&B_3%m7KW4^ITuU}Vlovf^x9qPvnY0h$ph!i^dsL!60AiwOjP9;tf#7zU%#QPIB;Yo1B34U;3OQ z6EglM9$*0&=~XwFKfqFPT))zIJIgN&Jn3L*EbtcqUh#|?FTQVgm?7#@A~}FmtKF1w zd#naVCk@#)_;2K_&J_d;6oM>k0Zda8uPZKptULQd7w^zFGG$lWmd;L9hm>(x-7zhw z9J$=T5KAH8YOi4^!!G&oNMwpC?|l#4WfdaN95c^chX!t6TUQTqP;z}P`W@FPB0Hk2 znt5jsu11T&OEhFHM0rR%KZFtOrdyv8G)T7tK-#uUXya?^w`In ziPh}($(8$+%u`WWiJ;5K7v+@}U_KepajcyDv1sF!MNm*uB9Cs*_bn(0WD&QLvL`Pw zT;XvBQN*0|o@48OxL0s}O4(h{$vpf$IEKOUx0|NxhOe&onB$k=O<4l;F0&9J1@16z zD0vNERHvGCtW!m7Y!P!9E9;b*c)tgY8AGGP)vp~^;I#Lhg?mCoDAU($S8a1U&`DZs zjB%n}YIZ_{Xp_Ykkz@|$=~voGw+V$Mjqh7vzD~|&GB!7fSpt7O!wWSc*6P@3wH#EKHF&f? z@fY{~8$7P4FS+XxIz}I}Er2nbp1S_qpGkqY8qsTVy8XRW?$`cCJ#AOdx;H-TVhs*? zy9lLH$A{FI)3=|df4t>?_1dFE(4dtURq1(ea1jJzAdV|G4bqa!Qd{($k>1>N7CBRP z03CpbFSOHAou7h!??hlHGKVl^fO;nGN>iW{K7Q%M%5ybc#fgAZ66Mq0O*wme$Q#dN zw4ph(yuXe<&B$byDI*fp;goe18z6W7RQRjO2g8^9)J_M~%yN)sdpK+T)(YL;A9Ufx zTN>2cPQOmVvWbryh+VpzF19K7c!3MgHHWc8ixL-J2qB*2)rw}u(!g=i?Vc_@>QP(gi-J7?K~~g?JcpM@TQcHu-h`>T-|%9ULulaw#R(nidZ{cjMru zxu+9*8EOR>C+0uxE}(C5Qy%jqO?t^kBxtR(X%V0pL+IW<4qM}w2d`)87Nh+XyW^EC zbNJo{9Z|==3+=Iw$}}txTm@-Lc4ma)ieijPLz=bXVU2q{BJ{F#fEJLmZuLuS<~vXQ zf;zd7TUE9yNR%)S>+s0J(Q+apQZp6r6i1TH&H)Ukz$?&LV$h+t*&HA0Q-rNERzg+g3RbTS|EQr_w1RnIlRUh%o=QE`+JpUjn)|Pc) z&yMB))8oot=5r=L7x51W_AWX^jI*h-i01lScu_+!o5FAVQ8SPK`Xn4L(!LBlGckif zhSh5_4ogcT%-MmFc=sDS*hH@eR=rKNvD>jBY)u!2;hJ}V645stRi`oip)*HPMidn2 zX*}w~DmJiQWM?!ew0QH%Yi*%tcDyB%>SE(a{os%lIyKH9JJuzh6oj&} z$MS98XtdPRo~}lUuNd%Nyw!L$t#j%d=0SyT~p0`}|3mapzX>#8KpTd!}rxtKt8d zliE&+0i3vo(N<2kH`$Rl#ZW)~qME0XgoTKX^B#W-eI z`qXaBU2KJR@xf*xw$J(e4p0y>kUnh8REPxa?&oBCu8VLaP;h>JgE?gXC#j zq?pefm~m^npNDpocwYA#$uMraJ4i`8Ag_V2U1V5f|u$Mk-NyjPyfS5b)FiSw`9N+i;VtiWKo ztN;LCu6RzJe~Vy3bL!f&iJs=1!NjUl7&-_n2p_8O2*m{TAx0+!L4>z(-t?6KUF_L( zHx$z9@@o}t3|`yDbzIqEh;x;>jBnCDlc0wuE+O-i)d$O6Q-cHT^m+zu!xOD^f^!g; zz4W8NiR?h^HQ?M@FWdSp_qW3DY_MxG*a5P^rXZj@5PJ+ot1d5pc8x(}3EW^~fgldO z<5)CM?QXF7;(HM2m^k4IwtdPPJ{<8_0(G9~>ILrD3y!8t)O72%<%{lkdFw=810R)P z#V3l%BTZv!x(_|G-$sw!KJ#aCoL6|=gvt;tE4R1ir;}p#JlBWL=)cyEeKEs;aZkd# zqY1fQ3i`DuJTvMZ1Lui1`CqlWJYg7X-|e1n+MDJ4DVbTym$h?coQFV~czW`nF5LM< zXZd*Ihqnz|t=Vw%yaI+IfvC5%r`?ZK(*>^WUk)xG0X+rLM^|S zL)XyBZ$pD^?Pd=3)w;V-T|^=Up`pCp_ezC|hJ0s@m)tB@SA6#Q7ui@?QVFVWUh5GP z^ZwRwacNa|*f?A*3^iPNRY(&0Zt-xk;dr00(z08GQi2l?`gK5tcE!2BSFOkd!t+R# zlaD$)w&XiH%pqmu>RfSMq7Qd{g8Lf=74`#`D25qjYQQ0NG3bmTbb&}WRZP;^#Sr1> z(%b^Ty=95J76b05K;z+5{FJ#%G_o~9F;RV7z17*kzkN#_zs8iwv6L$P)84XtESStx zEHH;-0c%fOU|6&?ecbcWbLSZX3d3MfiDTQm{=A{*_Spy_HMq4i;C_cEBjosd&xDe; zYHSFnnCHS2nSV%1V=yc+7z3=iU)1A!kW9=Pq7oskcXpX z(N4}ZM|)9r`+xJ_#mj#x4`o4i_9$))$Sb@xxY$vAeLJsFmiZ)WCCpI%<2ml{Cbvg2 zHx68o$8d9NEv_Tiz=q?6kLUBE$Wz&kW^|-Qq%X>Wf?$0FGH~9WGU<6T&M|4N+=Y7o zVc1Pm4skiPw{GTaFfIunp7CTpu2^=rIqw{%?7ht{(fbfJvPerho zE24oMn1V6tQpQ)I4lhPstdhFod~1VNOEIhC4rX<%)1c%se)a&*{5F`k5HeSL?s*}q zqyeQ%qCG*~_}-DLXfzzmNM^5G+y}n|vq2kra3j865^vlLMz^e0Fn_*R|G0es(Q6HQ z0K0E$yuGL=$+3W3{Uj$KS4I7vUP`xE3*e0h7z7dFee;7nC1hIbL!~|WK6;&*Nz-)X z%z`AqhaZkHY3y{lHswkKUTz=qfA3xA6K4#uVWPFvW%4OF`oaS)wqGN33A!%Sn+PD| zUeKd`8O|9-_|CeZXO%UT{GVGq{q6-uZo~)=imS1I-4v5ly8ZRyh1{Lq%3}L!Yj7%k zs>yq*%{zI0*!QMDk)7S3oyEMbcv$oGXP*DOgzjh8Pw3Y-tE=fG`J~!F!6`|Er^B|3 z^Kw1rryKKz)Mv{`))%)9 z#;}+}V)&-5aEa4;GFDI$af5Y!jGg6u7TTCV98rDOioj3ET{wqM1o@^{!5(T{f6F}awKC7BV@ zt`f-J9d}JKk@n31zu=))m?gGonJ7^Bxb}2D3k#L5Bq(gs)p;2cgoV6)1d!g?{peQ; z1Ym-n1o;>!7T9Gky$I*9GS#(?NbAQ^mo)d0&u?2<_X35IGRcVa@uT1O^Ygvj_Jg-PKEZd24zlf|h0;{2{!@QA3sMt?8HwGcNmUiljj z+?J3>65tu1rzZh=&tP{Ki+UNI@L#pm`JE?iX4}W|QC-OLbx32%F~7`2B5h$`ud6P$ zJH5McWwyw65vl*C6xWQn=9`X}8aS-1<`yrgz79l{!k8OKZ>a_P^7GY3K062_istE2 z!#wXar9h^H=q1+rr$5ge-gqwa8t=uAn*X)%L-O^$xD|K#5C%bZ*BHYn#>OIhkwF17 zkb^@r#Bl~rjaX}v!m}*oJN5x#yTFi9T-OZz8%Ti`*N4Esyg)a0quU8*W6V?SLn^oG zh5cY#4BY>0krz@)kK18g8-tdq32g8DNpMFT*vgE@eZr8@g>7CA~x5 zLmC)&yWI*{?pF5@5&Ube5x_N43ACTP?~A-U;kI*@KS2~tV@JULM1cNHXSMZr#L;OM zzFZ#W7)DjK*@~C*Yh4&%>Ff%zITu&4&XV*kDB;Sy_cjCgQqR{flaxnqay2@l9=Ly)E7-fEU@iG($pqKCYk=luB$yZDi z*twsQ&JIRs+GkcW^sFKGgGO4u+?|?5BQ_qLb7~A~K9*dI=wz_6eIa8^JcJx#HfCj= zPUphnVl~%!;jgyQrXwt4O9^}E&b2I{iy z2U%DuKdrZMzUbvIWMKM`<59V9m#Jcpsmf)&eRY7}VCQ-uUvJk>;x{mV8pHOOV}7Hp zvT_kc3wT>_!(tyTQhtZ*MfhDbL9ryZzYars%`#;;oIwSa+zH{>F9EE)qD8c|V$_2DH zqWx6{hxa{YP?Ij#k_fy0c)$MOp@*yVnSDQPb(@f*#|_gdFPt4NQMva|T+FO{Z@|S4 zRu<5`&-4I}oo-Hr))14}d1u{@DR`~&w!fL_7VAPkJc~wpLSs<*egq8YE{DGva_R2J z;<3y_NcIs=i7?3aZL?vt(^XwhuQ8NM*O|N*x$G99=;Z-ryV`%^Wxc*_$MG4bub1S4 z_QAF@?Y-QP_46xwjLQW4JzOqtSKoo)X+R-ZZr%jUKA zFth$lM{(*y>DKHhZthgbQ2LIWTnG?Ko^&@K5}?t|#@8Vwm827pof`%T-n9tX0)+O|_1ss?Fqhdi@Aq}u*UN@49#KL=?f&Er)J2;lKewR`1fBbZA0+h(^RR}j*;N-l&}p4YD%tM#7070p|gRB3{O>9L~4wZ>vwRwI9ImVtkLT9HtExp->Pxq)&DjeP>Ze56oee{K_+AVxi!E#@Y z-kw|R;5+a7W_Zyn9rSqaxnysc-D^cxgsXRjAfUhcW)NEcHdOq0WpAUY@|MMNEUt^$ zN5z|eL=VHS5!Kj#=oh3FMF;gw^@~rj^KA%`iBzolonDxh3|Xk2CK8tA4c&g21kCCm z_l}4ima5>h2uRS0XSykOo%OmH@U(KGZXNZTvV$2I%xeoEd4-&-6M&N=#<(QO{7qX; z&IViV9YFUhcn!1?e&E$mLzF>JgNV@)4uUoHd6hQ2fyg{sT>TgPX>RZ*o8!;$N_afV zdmwTJafb^H%fsB`%JSdz7Y%KWj2ng@f57gIH!Mha!xBwOl5F_r$6K8?@i52RHlwBi zaI!V;jXx$VoB8^I@f!fWJ@lx1=i^f*fzqPI6yL|H1AHFoY_pIcMgY3ltWk63zQ{^ep20k0UW`^f-ryp?z!Focq{EhCOB-Y?B%tF5U~4& zR@Zr7j0C0J0Jn*J+H~kFt9g>t5gx-SWJf_(7w046@xiT)Ohgj^)78Wa>$?I-mu%qF z#h3W~fZxAF+}2*fP5IxSU85_^5zme0@YDrhex(g`{{5lBCd5+v@xyiU_LUFbeDH(w zl0F#lpvikrG!tGHo5n319}$^U;(l;Or78Es&mx?-CK3~7{{gxml6|pyh(g5#i`B*B zm75&M8X6vMo|v-TLx;Bx7l1k!1cM7mhBJT1(H4;lmH;!LX}~~HUxt!ysH}kG#kK6y z_UNT^CAqoUxV+7>a)1B7HJOdM93t)87~ZdEm#lkW^C7;{vzOr28WS3{cc-W7_D$r? zGz_v@ieBT0r6oV;h708Run{rL0_4fDJ6{Hd2<-mZ1s{pZb@26GWo0{xr@Vi-7WmgA zJOexEh!VJ{#3I3QhNXGm`;-3RS}>hl;Is3<(S3od`%3;ne#SH>svA*ZhVpk@AENn9 zGl<5RgLM!)fnrGNx}H`K#?b`c=|2lqrf6le zXP4`(HQC)+9AZt`X#yHC-NB*0%Mk+q7&_<|hI5)mwQG9uf?vCK}TE!IQNt z@{1hq9ump@?+*qr(SjdkashAboM=PI4L(u{5Z^v;Xs5F9><80y857UmabP<48`ihj zBcYq{Q`0OwMv}1yeLb&c^xHrcgzy+frH!JYRN$XSZB31xuEzMduvyx1hc2I8L}jI~ zFuDn2(ssYFh~izcA_kz|SePshW1t@HJ=5O>9)OkrmSt#0zb?g2W3cuIf4$!D*YlU=R{dO%>GQNeoo5y%P{z;jB z&+6(WJUa1#w|{Jl_t@pdM&W!;^kL)Vdaqv=kx(NOQzFCR#&I?b?wkT)a%ZIay`Nw( z&GMERPfbp+9+PDuRVwsl-u}5V$px{&F>~&TL!9(&QBv5hHu7;`-Cp2@M{sULLKzdT zwe5>j^es6IIf9N9b=s#6oUNu}60L?sbe7omFAUifo0B?u&Vq=wiXVRzx&JsIICW}! za+t#KaF9YTA7cJ*2wSWLbI$20`_8qFpG^X6uP?+I5>50sHXDTlg&dt^(-J>g9evtO z6AV|_-@`fh3{hbc~COYOUeB4Zi32FKp&G1 zR6_rXF|c;JwPXgljXNN7ROs_OeKn>b^w4dCdzR_s>6JhXoCt!~P=5Rss{RwlGxEdV zWO0L=mcW?cTHy;E8k7jSxnfeOZ{qttZ=CsPp(iTt#Wn>xG z%)z43zx{m}<6yVRz7$b+ufOC};^k|yuH`%t>b=ud8X!4|@)FL8X4=^`zTBf`XPeos zUT&V6;nC8uHv>5cYP!1W{X4bG{N&%(~ zIJ;*%EjvEf#6Mp&SJf%M)S z#1;4(@|w+h3H})*xg{iQ>sl&%#4$jKoiwpomL0W6zFHd%#Tn~enxp>?{<%kK^ zk;cYd0G9jscM4S0F);sep59z>|Kc87te^x^_gS*aY{#LUh-$Zr?K^OMWvz#G)OxnE zXTW|XA?HsMdLlTM6y0H`V6p1MND4s7FFW-;gX?5VOhhe%KWb$r`*3)kj)TTCG?zV zdhnb?aV6N09@ts>ts%VI*_FIXY}`ME>K;c3X;{I~SGfCfb(J&5hm` zel_HmnS)KuI_=ig@nZfE9*gAu=_t8YfRC>BuG<0ihHq|{9NQ3F^1LnZn)w(oACxas z8}31A%IxWETqeGGWY~!5&Y?20DOvgZO9~;InnE`FzfBnC)b)wxp36^6@^y18UT3Cr zf*8X%o%F{&w;&)T_k?aqo47uW;w?Dc!a!%Ey9Ggi7?C z?q8p(1ppQu8ZKvs4=L+n<+rbq4&Pk7?!g;b@sBAK-R@BHeYr_*ERtjyqmR;ZkPU7> z=ra=R0v$M{ojtxil0&hK1+fVUs@f-JAMM08ZE2CSR%(A;>|+k#9pap;yF4EiK8|-s zuU8$kHBGn~L9Ndaq%`9kd+FNSt4sSYdKl*a8bfu3pD)m&nDp__7oR5MG6$F8JZw|MBlixc=gBO((FUon) zmP*;VEFtxuFb;@6-#qW=>$37c<4Xee6Gpe|oo$wCwjy&x>VOt9|fDbtzSz2L^vPj~B*i_cqG%`B0oipY5>o?&NCa_K#g zvfhv7vTUR6wtz;=12T7O%NV9mPAEekV9rqJqiwy&&a*YlL{M;tXUi*7mfh zK71A@i5-=>tlh1s2M^+y|GAzJG?tSRJ-|wi9KOS3Gt%UU2DP#~uCqq>4is*07@h!PBzp31m7<^I@*CnF=qm_0(YuwM_~s->JD_ZJhbXspV(mgt2yNHI&75)I+tK zJ~FphPL}$fW#aj|B!DXLYjAqpv-2WIWE$29jH-30Q~^#(u_b3WomAIYZ*lIiY>$WN zz6Ee_XU30VD-N#(u{0_lt6j&2jL=JxYlWt~(&kA;LWG?5f7y6oyNpZTlfY4~5> z0Q@hVby4=_uJx#^1!*n?pkS(uXg_kxdy6FO7p zmFJiTho6Y$YC8;!R4a2C&Y4>_Q!i?vZ z=1~KyN4~Ef8f}K}uvxA8jgS3gomQ%#em0H&RiS|4x>@}jAPYapw%`<>)M>vnZ^{8H zTQNFK)J0@*@NHW6JeSZ7T_U*Lx{K930b{V~>=#&E)1vs!RTY*$V(-%9D^1TteX2A5 zG}zPkkDg~3IR7MlZh_6?*Y9Z+h0lH8FP<4;`J8*Y{ogMVeN`YAz@ys~3h#NAwb2>0 zBp=k$hFzaDhKd|nu>~|nlZtoWUo*bmWgc{gZdZmWO@I2|Po`SnNVn?r+SC6VYM{Uu zWX_p04Q{2`;R}r>CZZ2qu;vz$X8DX zP*3Vc^}QOqc>PMX+R~sf=}Tzj2x9|hc4SPd;76`(2sh9D^%qzjH8CFI z{upL_?=vf0`H0k5YHZ!jVqWafW*URy)f(;%KCi7PIaF?W8z$@u0L|+R6fVP2SMpI( z>8&aU|DKoJ_kBI^&*j+RafI9}0J!TU2DubkU`8ubpZR4CcX&@c_TMe+Nhf0%#$1d0 zz-xSvX%zo-0>;GuH#}`b#s1tLOFijDM*r409G?WtXAhNK;k5!B!Mme^;RChTlNx*r zPW=S5F0EEg$a~&WdzHr6=2x{3_OBt~rbWu%_rvEY_cnwkgN&}VzDXd&)x+vJlUK{o zn^&9M`w8`iz~Jutw5e+To;6(9)lp>q=_{eTENGkT5*ur3^8bv_TKnV4f#XUSGrE=c z7UY7-I8dT$b726nNd|EMJBA)HDr$A>AYH(5A@u#k!na_(*z48rn+Z2&{&ZZ*(Z@CI zim`^dLFGuUVOaLl?|&j#zx74f&~BS1C+&wAGFnWajIpR}GWgwY7~DJ0XwuhtPdX7)=o$k zmPK^8`m^MYvj#rewc^Jz_`m$mNzQ0!ws^UI>%RX~-axp9P>_j|g;8Di&3`x4UDs0d zRQh13^S>MaVA%BJ;23Lz24`oP$l&Pdd+oQF<>-|iW*!MeP}||X934A6c&9L%F1=Oz z6`Sl8FNdGC?E6Ui95Y9>9O5HZmH9eI9VWOfbQp6qpWs$Oq|~ZRpx5^FFP47k!#@R? z*YCMmRe=JsVSLu2T%gS7^f+GWuYV$gWZEtUkaQCIx$NB zD_82GC8r3{Sq&h`Yz}l6(1KSz>UUFK!6~Hr4r_)@kcTmh)EXx)(LIWYYw4vRW#gxG z+>QNw26K+E#Y=Qema4H?3VP4m=Th-FNEws88t+e!{huJfFg=NN|)LnslRh3jej)t$CT# z-C%uqGFYj*JNP>i^foj8t(gdyJ16VvPFvM_VXXIgbkwq4<=h?{Fxh5mgPZp6gh65M*$cuo^ zP0f*r$O|1wgqJuhO`_|VQ;L*@rUAYC!Fu3Uo9s=FR=6I^#S(o7#V?-IU_f}*jj`5t zMwnMOOlkun+HD9Ha^5p}|K>lfL}MkZ$e-_?^Lo<#6?^2~x=O2UH|fx6Q|x7Q95Od^ z?^(D-air3O&*uPs&Fr5Pe?KHkgr#BUbNtDkO(eI?UO(%5&4tzG)kWBpF#wav>J~>d z)gIpWTT;%1h|-g-*Sj#Q#XFbo4^%Z6&U+BLb78966H&*M^pW&ottfFJ>950xOnIbmqmf ztly)uC%Oug(UOkvk4lC*DRVZ}uk+9TsqTtzzUeY=Cf9Q%5F3n37tkFNR1J5R3kQU? zza+=JgRbmU>89dL#24WA5m0~jet)|uQDOVFWLWNc(rNaEYKq47q-&LKv6$tJzG_5C zgh$QF72wqV8?8CJSoI5arT??tn>W*07_|Feb5zG*|9@MG2*weK{clrw@^480x3T{R zsQ-IS>Tk?S@xNx6Zz4>tN&AmUhFF)*CT*b2GkOsCUZZwXpK$9IGb^*a|6{cFe zWMAmDhdrynfLuLxFo9VeYpU4GAIpw}Sl^Gg(pVPA#|YQ(S(wEM9NovRtp+trXh+?P44z#ol_!pDslg4#-Ky#5RiepZT~F;|D{ z>V24wP|bQecFlgE`}{ret)9ztT<6i2mfF?+{L3;oS1l_|Zl7(RZ@qEvOxzzed`mwp z2I;A%mYA&*t3Tz)`sp(T?F)Y?=J+e*RYvhWCW=AKt&ZWj}<)(unz5Gc=>q$ z+mlW?^9NrBS7P@F)j{?Byg`!uum=Zy&v>gFChg=Kmz`_{2g7b!mp#R8r%yiR+gSqR zo0XVh4>^8~dP>_r&40xKYYEw0c)%DJi1qILZL%2(j69-LZL?{L|@^D`7G%_Ru;35{!QdNSRMP*Z?XEQ0}n>c(Z=36 zm-5C<3NNe|)QEt@ZqGfjw&dqs85zob%5nNFHf^~Mm?l6uLuHM#boLk5=la5A?2p|3 zld9!5gl*q!qLdKM!gL}!ck10T@0{;gvX1I$D?^qw^f<+qrMxlKER=0(|9gq^NWVH_ zW8kMxoyJCM{IM5AF6*nU5-*RbCcEr_v&VrKC@nm@a;%ZWAq;t+c#V~Z(d$`Gi;qro zH(sqAXM_Eh{@>Kyp@M?J)CFiRO}wq^Cem zXBM}C?pAo5GgalL)4;a`amkT}-ffVXT?{!S^jaGHhCOaicWHFYj@V`08J z)eNdK_KCtkn&q@&VP?rRF$DP`^)N39v-NIG$|osK*0qEctIcu@U*q-%?hLm=Liq$Z zpy|9`weI4JZGL&05vq%v8GtHU{YsQB6wQWFGvS@46NWBEJfIael|8&;*( z7%KYyjyZm(7&e66+g#Wi-@Y}Y4P>7_W>g2{L2yp3qZ|CgY>(n8pyam{9R0jpSXmRl zr4AVTTvcnl8dn#HDT=BI3vlIrUN+M|2%dBc;}p_TDr^n3nI@HBxTu9cpK8YeAKCsf z>kK7pVmMOND`zJPvW}*@{9$RhaCIoCt|chYeOUkNa*1g9fy~|v(X(Ks)WaH; zhESP#9AK@k zowSMG{Z&15`fxSAy*y5u*QbQ=Tkc+VMKAW-)&>Mp(5EUh4hR}ek_6;^-44u@o^yO5 zKkq0wlnWJTce2^Bam%W5D*<6< zFFkkMVl+7k>?Cay_HFds>6VPYT@TVe&Cw$+ni~*n zf(bYA`rD3`Y}kEZ#>2U3PpuC}B+k$?mt+SUIn*UF;VP`GYV zRC}vU8>P31np;zw7%oW+RdWSjsf(%_LbQfxWinPvDMd6~M2QY+C@N+(=bCa=%xa!h zLSvp4_4!}^wf={Ht?&JNIxl;_opaXS`H)%t)Fm+iA=OMO@&ngu?T2iW;IX)Pu;6YDv4^iHf;Is3_n6)V#~jWJq) zr0&(V#g{IX=f|xTZ$ux>)(N;cz^mjs{dsjI=7 z%!H!!1CDy{m;rCz<~{?uf=^a?Z~oH-1KuaJQgCf&{fr~1%0UQ~t8TmF57n~1Kx(q~?(E(+;Vg_3|u zAtZ#iQa0&U-uP{|*buV;Fzuo?zaW0%OrOtz$`ly2Gv!oS)J4Z@HC$31b@UR3XQbpR zd}Ni;99giG3Cy(9$BQHO7R$V+XtHwJ zE}X1B-e^xvOLqaeu6I{_4>GWN=PiZka*&EaKS+6f@ZxE2KvGNDcnMTK#b~%Vu5^)! zVm+i94365KUl96|4EVP6z{7p#$0g%-zfC@>g>{yM zyNay0u`fT#czyS+mB&|$T|4uSR7BNrI0mG{8RDPS9WhA7%_kc~pCki12QoqcHpHtsAq@Yg(ah$`#J(}$Y1WV)Gf{MAdDdMdc zOcg76RWI1&(aSw5X2&YcIzxTV0{$q$EvNUl?u|c|(*JAVyzXkR_)DY(!XcVvFd)M5 z_wEo&`XxMkNqz^s01Jd*hL%gH?(wm3d1ce}P|d{b&`c>yB%F%WogV>pR<9G+)Qyli)FD6wh-%rD zPG30dVl3~jHnrLvT-j-ThR2eo(b7%$Xmw1(30(=5pX?KF_yJd2nt2kI2vb=Q5b zQTC(;(CeG!f8}?$IKrFGJvyDPX(Hf5bNGMa2#?%M)ZDj0Y@yvS3s_BO2 zGKfc}WZJl)f8<1n^%ybcvo&Ic5EA~#VI)`HAm^|;!UWKL89idOo++O`I8sV%dGdAq zEU65Ksc{S15__5YjgJKhv)u|=_>-ua!I6D`ty;DIh0C0OdOKm_8uE zj%<$c8H!{+sRj0NuU_^zZUVg~b=hA5bY)Kc8L_UnRxsjkozX+*O#Eo!-~y1GrPUEJ zy(yiUmUXST9>0j#zs20xiJG*wsm^X=97S!u**hV4;ANJP5Bwij=NcIrS@*&5eT739 zB55(e_aQ65b`7vFUv)#5tyykXSdPSj7#=21=NTE);ozo18E{9uIevN3QwJLDQxl!B z9)J-&cQHZyBs{}6ZiB=Th-qWHRgbJ4Ov-39<>RqBsMQr-<2p@{e@WbEG_6=Q6_KQe z2QTfHBb(pD*jqQ9^%c44QEe0+Igc?Og;tAcbE&pfP_gJY!e_N~ntt*`)LxC@<~Ro8 z`!Q1ltX3kpU@SAJ!qC0@;t?7wX97OQU@^xel)Yw&BRE<}WaclMcWHK>HL``)!=~5` z1u0sN&bz&{>I)(ReHEK%)o2uJ_jkE(ckM#La85T+@tgrGv4gj>yI)T7C5^fj%t{SN zsT3kJ(!|nkVEDVpkV$RA(++D_59&p$KwA-HR8Cns@;ZAzXyG~l#T3fsa@ zZ$|8RX@2q!@*#QWt3}VzaY_wm6HBdn`>dGtzX%CjH`ym*((Fce8hWoGcL*8xfQoFN z4#8m++b5^&Dq>BZinxjxPrG9+X0#7f*#6c9;|a;jxJ6EdKwC)8S#H(y6tVVD%v;MW zZrZbj2%(9}7)acFMKzpVW;RD{7Yo4>=`@m(9x0S+-@@K#XGcXVW!0$ z7)jJiZ2wS0S&1akvzCi?7+(HG75y?j*FgV(O{?Gq#7Eh0?s^e;MLYH416(@9}%>k7Dulye&7Y)&i{>ptP$B!bgK!itE0W1(Vk8P!jOk zgNS4O^;sKu6Z+_6BiF}gTJsyfsx`rXIH~MuCW@%cS;L&|cM_Qts?#kFFv zca2Rw7E^{JkVpA-Kt?Zh!{vj~YtU{EdN>f(ZBku-7*$WH`fI*l&PQD?due+^IJtu% z06%x5CV4)!JBvFUv#UX$c>>&N?N70uRU+MCsaW3|!dyXl(pF1uc%|SKy-cnH=6SwG z*S}AqI1jHejJ|y$KQaS!yRV$*tRFE1C~MBu$(Awj06T`G0=sNg0CTF*5_Xz3%g2L* z=@$sM^gn+I_Qr*UP(&XrOV3QsX{lzzwk6w0$dpbm3`#oyfU~`t%KXARs&y5UX4w-w z6w_76>_jH0n(8o=X`|DO&>1a-=z1@RZ>m3G3JD{4o|RiM0cKz7JYS;&4+{5b8dIZm zy01`I4)+Z>YiDk3l%rE2GRvPxMAW!HqI0eF%zeR)(4(wb^Lz8DQ<^2c#dM9Uc9^%k zadV!`YIR1J7@@4WzV+U`o!qHl+Zrk5SV_dLE%t3_Lf!QriSL%SBhYE(%^;-}b3Ca3 z-UpAMq{0Q^{Wn<`1@Dtn8kKmcdYc`cj~x^z0`e}&f!zJ8Yz(?YAb+T{?Y_Jr^Oa_C z?e+bDH>2u-7?;RbmMwUN^x zE`xbMjm~*E?Z08l+O8Pllp7rT6GE-2XgKn5L29ydn#Y9@bXk_MY>#Pome;-u{|{@k zx_$C1cwq!oL-&`b?gV)+NQjco>Mb7!TN{f&^}p&?jQTpc_(7NhSwdy$D@WCuqahbm z5!@96ep-`;h4CX29_eMG1E9v8{wW(&8G`#A_CyW@w;FZk#mmsmcdGnU93MI zMD4=#gB{Ee>4uv{9my4>l)BoFFa4~p0Gf3qS(dJ%HjEqpvP{R9s-AfE03|;5Q+Pm` zIrevd(PZa}9}1L`{G*YW&~Ec_)_kY@7~(AFvRe^B;Gw473-Y}5F^MJw;7xR>l8p8V zHahrAyI0+Dk{r0n+g+2iRQ;^Rv{1EMl{(Shdsra32aurl2*>xXn-`TcWEZp3D;NBL zDG=N{CvT^Vm91yRUR33)ombt&DYD6biyC0S$(t7@I85hAzD50w_ttX^EmUV36I#kA zyC3pXe3fSkDy3I{9;3O&rB1UI%SC&?(#k@wkz_F^a}9!t(nm_HxVY6KeqHv-)_fvu zByapR@iw%{ZxoGH3|)y>xD4xjI`OQ{a9xt!YWw+BL;LUKHp^fIian^QDK(>U({wP3#?m!0$JV~RfP z5o&~cxdtnv@>^oz3~!A^gip(6_MQes%_2dk)irY0qJr*tQZS^nRCpJx>dL)?6n zKph)57Nl8|k{mBxX^tIBSa#THlotQP73(dFzV`UTVd*7|R7D)ao0S{GSpIplI$Y5; za3_K}VVhmFHrk})>@6Eu9YEO@rw3g~ZPqhrmhaP9@owT>!q;A);FIGPe5@l=UszVh zE7dHqOGmLb@*~)cy7ABQn(_Y|tpBI+_kRa&QSAtnk`e!;ec7Z2007A14eju5E_inY z+Ry#C092qVYRXUzWf<%(R0E*~N2tLRp-==ADq$I_{(lHQzHW~&0slYY4wxBzOaPb~ LS{M}Gat`}9E=kmY literal 0 HcmV?d00001 diff --git a/backend/__init__.py b/backend/__init__.py new file mode 100644 index 0000000..2ef306b --- /dev/null +++ b/backend/__init__.py @@ -0,0 +1,52 @@ +import importlib +import os +import traceback + +import matplotlib +from apiflask import APIBlueprint, APIFlask +from flask_cors import CORS + +matplotlib.use("agg") + +cors = CORS() +api_bp = APIBlueprint("api", __name__, url_prefix="/api/v1") +dataset_path: str | None = None + + +class Config: + SECRET_KEY = "secret!" + SEND_FILE_MAX_AGE_DEFAULT = -1 + + +def create_app(): + global dataset_path + + # Create and configure app + app = APIFlask( + "MAI Service", + title="MAI Service API", + docs_path="/", + version="1.0", + static_folder="", + template_folder="", + ) + app.config.from_object(Config) + + dataset_path = os.path.join(app.instance_path, "dataset") + os.makedirs(dataset_path, exist_ok=True) + + @app.errorhandler(Exception) + def my_error_processor(error): + traceback.print_exception(error) + return {"message": str(error), "detail": "No details"}, 500 + + # Import custom REST methods + importlib.import_module("backend.api") + + # Enable REST API + app.register_blueprint(api_bp) + + # Enable app extensions + cors.init_app(app) + + return app diff --git a/backend/api.py b/backend/api.py new file mode 100644 index 0000000..2f6d2be --- /dev/null +++ b/backend/api.py @@ -0,0 +1,57 @@ +from apiflask import FileSchema, Schema, fields +from flask import send_file + +from backend import api_bp, dataset_path +from backend.service import Service + + +class FileUpload(Schema): + file = fields.File(required=True) + + +class ColumnInfoDto(Schema): + datatype = fields.String() + items = fields.List(fields.String()) + + +class TableColumnDto(Schema): + name = fields.String() + datatype = fields.String() + items = fields.List(fields.String()) + + +service = Service(dataset_path) + + +@api_bp.post("/dataset") +@api_bp.input(FileUpload, location="files") +def upload_dataset(files_data): + uploaded_file = files_data["file"] + return service.upload_dataset(uploaded_file) + + +@api_bp.get("/dataset") +def get_all_datasets(): + return service.get_all_datasets() + + +@api_bp.get("/dataset/") +@api_bp.output(TableColumnDto(many=True)) +def get_dataset_info(name: str): + return service.get_dataset_info(name) + + +@api_bp.get("/dataset//") +@api_bp.output(ColumnInfoDto) +def get_column_info(name: str, column: str): + return service.get_column_info(name, column) + + +@api_bp.get("/dataset/draw/hist//") +@api_bp.output( + FileSchema(type="string", format="binary"), content_type="image/png", example="" +) +def get_dataset_hist(name: str, column: str): + data = service.get_hist(name, column) + data.seek(0) + return send_file(data, download_name=f"{name}.hist.png", mimetype="image/png") diff --git a/backend/service.py b/backend/service.py new file mode 100644 index 0000000..c4a3935 --- /dev/null +++ b/backend/service.py @@ -0,0 +1,59 @@ +import io +import os +import pathlib +from typing import BinaryIO, Dict, List + +import pandas as pd +from matplotlib.figure import Figure +from werkzeug.datastructures import FileStorage +from werkzeug.utils import secure_filename + + +class Service: + def __init__(self, dataset_path: str | None) -> None: + if dataset_path is None: + raise Exception("Dataset path is not defined") + self.__path: str = dataset_path + + def __get_dataset(self, filename: str) -> pd.DataFrame: + full_file_name = os.path.join(self.__path, secure_filename(filename)) + return pd.read_csv(full_file_name) + + def upload_dataset(self, file: FileStorage) -> str: + if file.filename is None: + raise Exception("Dataset upload error") + file_name: str = file.filename + full_file_name = os.path.join(self.__path, secure_filename(file_name)) + file.save(full_file_name) + return file_name + + def get_all_datasets(self) -> List[str]: + return [file.name for file in pathlib.Path(self.__path).glob("*.csv")] + + def get_dataset_info(self, filename) -> List[Dict]: + dataset = self.__get_dataset(filename) + dataset_info = [] + for column in dataset.columns: + items = dataset[column].astype(str) + column_info = { + "name": column, + "datatype": dataset.dtypes[column], + "items": items, + } + dataset_info.append(column_info) + return dataset_info + + def get_column_info(self, filename, column) -> Dict: + dataset = self.__get_dataset(filename) + datatype = dataset.dtypes[column] + items = sorted(dataset[column].astype(str).unique()) + return {"datatype": datatype, "items": items} + + def get_hist(self, filename, column) -> BinaryIO: + dataset = self.__get_dataset(filename) + bytes = io.BytesIO() + plot: Figure | None = dataset.plot.hist(column=[column], bins=80).get_figure() + if plot is None: + raise Exception("Can't create hist plot") + plot.savefig(bytes, dpi=300, format="png") + return bytes diff --git a/data/dollar.csv b/data/dollar.csv new file mode 100644 index 0000000..3f87c92 --- /dev/null +++ b/data/dollar.csv @@ -0,0 +1,244 @@ +"my_date","my_value","bullet","bulletClass","label" +"28.03.2023","76.5662","","","" +"31.03.2023","77.0863","","","" +"01.04.2023","77.3233","","","" +"04.04.2023","77.9510","","","" +"05.04.2023","79.3563","","","" +"06.04.2023","79.4961","","","" +"07.04.2023","80.6713","","","" +"08.04.2023","82.3988","","","" +"11.04.2023","81.7441","","","" +"12.04.2023","82.1799","","","" +"13.04.2023","82.0934","","","" +"14.04.2023","81.6758","","","" +"15.04.2023","81.5045","","","" +"18.04.2023","81.6279","","","" +"19.04.2023","81.6028","","","" +"20.04.2023","81.6549","","","" +"21.04.2023","81.6188","","","" +"22.04.2023","81.4863","","","" +"25.04.2023","81.2745","","","" +"26.04.2023","81.5499","","","" +"27.04.2023","81.6274","","","" +"28.04.2023","81.5601","","","" +"29.04.2023","80.5093","","","" +"03.05.2023","79.9609","","","" +"04.05.2023","79.3071","","","" +"05.05.2023","78.6139","","","" +"06.05.2023","76.8207","","","" +"11.05.2023","76.6929","","","" +"12.05.2023","75.8846","round","min-pulsating-bullet","мин" +"13.05.2023","77.2041","","","" +"16.05.2023","79.1004","","","" +"17.05.2023","79.9798","","","" +"18.05.2023","80.7642","","","" +"19.05.2023","80.0366","","","" +"20.05.2023","79.9093","","","" +"23.05.2023","79.9379","","","" +"24.05.2023","80.1665","","","" +"25.05.2023","79.9669","","","" +"26.05.2023","79.9841","","","" +"27.05.2023","79.9667","","","" +"30.05.2023","80.0555","","","" +"31.05.2023","80.6872","","","" +"01.06.2023","80.9942","","","" +"02.06.2023","80.9657","","","" +"03.06.2023","80.8756","","","" +"06.06.2023","81.3294","","","" +"07.06.2023","81.2502","","","" +"08.06.2023","81.4581","","","" +"09.06.2023","82.0930","","","" +"10.06.2023","82.6417","","","" +"14.06.2023","83.6405","","","" +"15.06.2023","84.3249","","","" +"16.06.2023","83.9611","","","" +"17.06.2023","83.6498","","","" +"20.06.2023","83.9866","","","" +"21.06.2023","84.2336","","","" +"22.06.2023","84.2467","","","" +"23.06.2023","83.6077","","","" +"24.06.2023","84.0793","","","" +"27.06.2023","84.6642","","","" +"28.06.2023","85.0504","","","" +"29.06.2023","85.6192","","","" +"30.06.2023","87.0341","","","" +"01.07.2023","88.3844","","","" +"04.07.2023","89.3255","","","" +"05.07.2023","89.5450","","","" +"06.07.2023","90.3380","","","" +"07.07.2023","92.5695","","","" +"08.07.2023","91.6879","","","" +"11.07.2023","91.4931","","","" +"12.07.2023","90.5045","","","" +"13.07.2023","90.6253","","","" +"14.07.2023","90.1757","","","" +"15.07.2023","90.1190","","","" +"18.07.2023","90.4217","","","" +"19.07.2023","90.6906","","","" +"20.07.2023","91.2046","","","" +"21.07.2023","90.8545","","","" +"22.07.2023","90.3846","","","" +"25.07.2023","90.4890","","","" +"26.07.2023","90.0945","","","" +"27.07.2023","90.0468","","","" +"28.07.2023","90.0225","","","" +"29.07.2023","90.9783","","","" +"01.08.2023","91.5923","","","" +"02.08.2023","91.7755","","","" +"03.08.2023","92.8410","","","" +"04.08.2023","93.7792","","","" +"05.08.2023","94.8076","","","" +"08.08.2023","96.5668","","","" +"09.08.2023","96.0755","","","" +"10.08.2023","97.3999","","","" +"11.08.2023","97.2794","","","" +"12.08.2023","98.2066","","","" +"15.08.2023","101.0399","","","" +"16.08.2023","97.4217","","","" +"17.08.2023","96.7045","","","" +"18.08.2023","93.7460","","","" +"19.08.2023","93.4047","","","" +"22.08.2023","94.1424","","","" +"23.08.2023","94.1185","","","" +"24.08.2023","94.4421","","","" +"25.08.2023","94.4007","","","" +"26.08.2023","94.7117","","","" +"29.08.2023","95.4717","","","" +"30.08.2023","95.7070","","","" +"31.08.2023","95.9283","","","" +"01.09.2023","96.3344","","","" +"02.09.2023","96.3411","","","" +"05.09.2023","96.6199","","","" +"06.09.2023","97.5383","","","" +"07.09.2023","97.8439","","","" +"08.09.2023","98.1961","","","" +"09.09.2023","97.9241","","","" +"12.09.2023","96.5083","","","" +"13.09.2023","94.7035","","","" +"14.09.2023","95.9794","","","" +"15.09.2023","96.1609","","","" +"16.09.2023","96.6338","","","" +"19.09.2023","96.6472","","","" +"20.09.2023","96.2236","","","" +"21.09.2023","96.6172","","","" +"22.09.2023","96.0762","","","" +"23.09.2023","96.0419","","","" +"26.09.2023","96.1456","","","" +"27.09.2023","96.2378","","","" +"28.09.2023","96.5000","","","" +"29.09.2023","97.0018","","","" +"30.09.2023","97.4147","","","" +"03.10.2023","98.4785","","","" +"04.10.2023","99.2677","","","" +"05.10.2023","99.4555","","","" +"06.10.2023","99.6762","","","" +"07.10.2023","100.4911","","","" +"10.10.2023","101.3598","round","max-pulsating-bullet","макс" +"11.10.2023","99.9349","","","" +"12.10.2023","99.9808","","","" +"13.10.2023","96.9948","","","" +"14.10.2023","97.3075","","","" +"17.10.2023","97.2865","","","" +"18.10.2023","97.3458","","","" +"19.10.2023","97.3724","","","" +"20.10.2023","97.3074","","","" +"21.10.2023","95.9053","","","" +"24.10.2023","94.7081","","","" +"25.10.2023","93.5224","","","" +"26.10.2023","93.1507","","","" +"27.10.2023","93.5616","","","" +"28.10.2023","93.2174","","","" +"31.10.2023","93.2435","","","" +"01.11.2023","92.0226","","","" +"02.11.2023","93.2801","","","" +"03.11.2023","93.1730","","","" +"04.11.2023","93.0351","","","" +"08.11.2023","92.4151","","","" +"09.11.2023","92.1973","","","" +"10.11.2023","91.9266","","","" +"11.11.2023","92.0535","","","" +"14.11.2023","92.1185","","","" +"15.11.2023","91.2570","","","" +"16.11.2023","89.4565","","","" +"17.11.2023","88.9466","","","" +"18.11.2023","89.1237","","","" +"21.11.2023","88.4954","","","" +"22.11.2023","87.8701","","","" +"23.11.2023","88.1648","","","" +"24.11.2023","88.1206","","","" +"25.11.2023","88.8133","","","" +"28.11.2023","88.7045","","","" +"29.11.2023","88.6102","","","" +"30.11.2023","88.8841","","","" +"01.12.2023","88.5819","","","" +"02.12.2023","89.7619","","","" +"05.12.2023","90.6728","","","" +"06.12.2023","91.5823","","","" +"07.12.2023","92.7826","","","" +"08.12.2023","92.5654","","","" +"09.12.2023","91.6402","","","" +"12.12.2023","90.9846","","","" +"13.12.2023","90.2158","","","" +"14.12.2023","89.8926","","","" +"15.12.2023","89.6741","","","" +"16.12.2023","89.6966","","","" +"19.12.2023","90.4162","","","" +"20.12.2023","90.0870","","","" +"21.12.2023","90.4056","","","" +"22.12.2023","91.7062","","","" +"23.12.2023","91.9389","","","" +"26.12.2023","91.9690","","","" +"27.12.2023","91.7069","","","" +"28.12.2023","91.7051","","","" +"29.12.2023","90.3041","","","" +"30.12.2023","89.6883","","","" +"10.01.2024","90.4040","","","" +"11.01.2024","89.3939","","","" +"12.01.2024","88.7818","","","" +"13.01.2024","88.1324","","","" +"16.01.2024","87.6772","","","" +"17.01.2024","87.6457","","","" +"18.01.2024","88.3540","","","" +"19.01.2024","88.6610","","","" +"20.01.2024","88.5896","","","" +"23.01.2024","87.9724","","","" +"24.01.2024","87.9199","","","" +"25.01.2024","88.2829","","","" +"26.01.2024","88.6562","","","" +"27.01.2024","89.5159","","","" +"30.01.2024","89.6090","","","" +"31.01.2024","89.2887","","","" +"01.02.2024","89.6678","","","" +"02.02.2024","90.2299","","","" +"03.02.2024","90.6626","","","" +"06.02.2024","91.2434","","","" +"07.02.2024","90.6842","","","" +"08.02.2024","91.1514","","","" +"09.02.2024","91.2561","","","" +"10.02.2024","90.8901","","","" +"13.02.2024","91.0758","","","" +"14.02.2024","91.2057","","","" +"15.02.2024","91.4316","","","" +"16.02.2024","91.8237","","","" +"17.02.2024","92.5492","","","" +"20.02.2024","92.4102","","","" +"21.02.2024","92.3490","","","" +"22.02.2024","92.4387","","","" +"23.02.2024","92.7519","","","" +"27.02.2024","92.6321","","","" +"28.02.2024","92.0425","","","" +"29.02.2024","91.8692","","","" +"01.03.2024","90.8423","","","" +"02.03.2024","91.3336","","","" +"05.03.2024","91.3534","","","" +"06.03.2024","91.1604","","","" +"07.03.2024","90.3412","","","" +"08.03.2024","90.7493","","","" +"12.03.2024","90.6252","","","" +"13.03.2024","90.8818","","","" +"19.03.2024","91.9829","","","" +"20.03.2024","92.2243","","","" +"21.03.2024","92.6861","","","" +"22.03.2024","91.9499","","","" +"23.03.2024","92.6118","","","" +"26.03.2024","92.7761","","","" diff --git a/data/orders/customers.csv b/data/orders/customers.csv new file mode 100644 index 0000000..f3427ae --- /dev/null +++ b/data/orders/customers.csv @@ -0,0 +1,101 @@ +customer_id,customer_unique_id,customer_zip_code_prefix,customer_city,customer_state +41ce2a54c0b03bf3443c3d931a367089,3a653a41f6f9fc3d2a113cf8398680e8,75265,vianopolis,GO +7f8c8b9c2ae27bf3300f670c3d478be8,634f09f6075fe9032e6c19609ffe995a,44024,feira de santana,BA +569cf68214806a39acc0f39344aea67f,c2551ea089b7ebbc67a2ea8757152514,44380,cruz das almas,BA +d3e3b74c766bc6214e0c830b17ee2341,e97109680b052ee858d93a539597bba7,35400,ouro preto,MG +d2b091571da224a1b36412c18bc3bbfe,d699688533772c15a061e8ce81cb56df,4001,sao paulo,SP +3b6828a50ffe546942b7a473d70ac0fc,ccafc1c3f270410521c3c6f3b249870f,74820,goiania,GO +148348ff65384b4249b762579532e248,db979bdfe0bbba29ecd3df3f6c50bea2,87711,paranavai,PR +4f28355e5c17a4a42d3ce2439a1d4501,4acce2834231e13b1514915adda5ec2b,21910,rio de janeiro,RJ +3187789bec990987628d7a9beb4dd6ac,6087cfc70fd833cf2db637a5e6e9d76b,88780,imbituba,SC +8628fac2267e8c8804525da99c10ed0e,7973a6ba9c81ecaeb3d628c33c7c7c48,85555,palmas,PR +4fa1cd166fa598be6de80fa84eaade43,68954feaafe4dd638f3bd3e2afa174ec,8473,sao paulo,SP +cf8ffeddf027932e51e4eae73b384059,6cbe8a392b76916e84c2faf69d0d0da0,13454,santa barbara d'oeste,SP +48558a50a7ba1aab61891936d2ca7681,42f80af2e6c585667e4eb416859ae153,39370,jequitai,MG +8b212b9525f9e74e85e37ed6df37693e,f4a7ef6bd931f83d75d83b71c94e90df,13568,sao carlos,SP +c77ee2d8ba1614a4d489a44166894938,9c9cef121cb812cb301babddc2d8331e,38067,uberaba,MG +be8c14c16a4d47194ccdfe10f1fc5b1a,c86a25b8f5f6c203bb3471553bdc3200,13157,cosmopolis,SP +f5618502bee8eafdee72fb6955e2ebdf,fa0ee7ceb94193fb02aa78ce3a55695a,6395,carapicuiba,SP +3df704f53d3f1d4818840b34ec672a9f,04cf8185c71090d28baa4407b2e6d600,5271,sao paulo,SP +67407057a7d5ee17d1cd09523f484d13,7cfba6e55439cae3fd2479d62fafe67f,22240,rio de janeiro,RJ +afb19a4b667cb708caab312757ec3d3f,a7e7b19ff34ab885f7b7331de2417cf3,78043,cuiaba,MT +caded193e8e47b8362864762a83db3c5,08fb46d35bb3ab4037202c23592d1259,13215,jundiai,SP +241e78de29b3090cfa1b5d73a8130c72,c63e44efa43f3947087aee96b388d949,4658,sao paulo,SP +62b423aab58096ca514ba6aa06be2f98,9c9242ad7f1b52d926ea76778e1c0c57,18052,sorocaba,SP +494dded5b201313c64ed7f100595b95c,f2a85dec752b8517b5e58a06ff3cd937,20780,rio de janeiro,RJ +e28dd4261bed9c7ba89ecaf411b88f7c,b6aa1d5781553afaa244c3e42246d93c,88302,itajai,SC +4afc1dcca5fe8926fc97d60a4497f8ab,a464f750556546a0989d9326ec003ccf,8220,sao paulo,SP +761df82feda9778854c6dafdaeb567e4,1428917cd397d4f9ac0fde76dd6f2266,69317,boa vista,RR +82f0b75bb50fcb30711e5277e36b3983,4a8c8f751984985cd49f74249da95aae,8485,sao paulo,SP +f5458ddc3545711efa883dd7ae7c4497,661a5e18a28b34880ccc60112f2b8e8e,62360,ibiapina,CE +295ae9b35379e077273387ff64354b6f,f1f4f45c8602d0db1329eed1c8e935d4,19780,quata,SP +3a874b4d4c4b6543206ff5d89287f0c3,a25d5f94840d3c6a1a49f271ed83f4ec,21715,rio de janeiro,RJ +f54a9f0e6b351c431402b8461ea51999,39382392765b6dc74812866ee5ee92a7,99655,faxinalzinho,RS +456dc10730fbdba34615447ea195d643,1974875b4a1d2e2ee6d586e3ba4d7602,5634,sao paulo,SP +f178c1827f67a8467b0385b7378d951a,9d9ab3b77f0416765b3fbedf94a942a4,12070,taubate,SP +0bf19317b1830a69e55b40710576aa7a,5ddb4fdd9cef2450d17ae20639815885,13218,jundiai,SP +8644be24d48806bc3a88fd59fb47ceb1,4ca5f90433afb5493247f0bafb583483,73350,brasilia,DF +3391c4bc11a817e7973e498b0b023158,1b542f810484d8c042aed33a7c61a218,4561,sao paulo,SP +fee181bf648906d1c57f84f216976286,4754e3b66497719a91b36268ed9c5718,13760,tapiratiba,SP +74805bc388861fa350ed2fade8444e0b,5d710d9a48ebb7fe5ffc2940ff29f346,38401,uberlandia,MG +6772a0a230a2667d16c3620f000e1348,c7a9a76a4b24a7e7b2caff982409b7ee,58600,santa luzia,PB +4632eb5a8f175f6fe020520ae0c678f3,6da92ae920ab16fc4eceb8fcd7bd43ce,8280,sao paulo,SP +d9ef95f98d8da3b492bb8c0447910498,a2649503b92028291f011a976619b322,26572,mesquita,RJ +059f7fc5719c7da6cbafe370971a8d70,d0ff1a7468fcc46b8fc658ab35d2a12c,13186,hortolandia,SP +ddaff536587109b89777e0353215e150,c796780c7daeab9e94cc052b1f103b21,26600,paracambi,RJ +dd5095632e3953fc0947b8ab5176b0be,da45a9a1df408c39f013b9b0b505042c,70680,brasilia,DF +df9b032b2ad0fd6bf37dfb48e5f83845,410979f3cfd34e467d4fad78bd0f0219,89440,irineopolis,SC +684fa6da5134b9e4dab731e00011712d,ddf60e20e6e262e2136801ce5cd628b0,49030,aracaju,SE +2b56e94c2f66f2d97cfa63356f69cee8,cc1a30280651daf2d918ed7868575771,95270,flores da cunha,RS +9f6618c17568ac301465fe7ad056c674,e3bcfea9bab07b492391664fc1ffc28a,44180,antonio cardoso,BA +29cb486c739f9774c8eb542e07b56cd2,2ae3c67452283d5a0d30b32e0d33296e,71505,brasilia,DF +5f16605299d698660e0606f7eae2d2f9,92fd8aa5948e20c43a014c44c025c5e1,77480,alvorada,TO +f88197465ea7920adcdbec7375364d82,7c142cf63193a1473d2e66489a9ae977,59296,sao goncalo do amarante,RN +5dda11942d4f77bee3a46d71e442aec4,6a0e43f0d7e1b5539e4c58a26ebe35da,46740,boninal,BA +a90391a47de936d56c66a5366cba1462,32de2a7a93dbfc527b3f584744b9c6ce,37310,bom jardim de minas,MG +9916715c2ab6ee1710c9c32f0a534ad2,bf0303939d54b8df5da4762bbaab1955,22631,rio de janeiro,RJ +636e15840ab051faa13d3f781b6e4233,65e5aaf9f721945f29cdba45c206cb83,14090,ribeirao preto,SP +8ab97904e6daea8866dbdbc4fb7aad2c,72632f0f9dd73dfee390c9b22eb56dd6,9195,santo andre,SP +388025bec8128ff20ec1a316ed4dcf02,f9effeed3df9ae063a58c0759b96f8b2,85804,cascavel,PR +c7340080e394356141681bd4c9b8fe31,3e4fd73f1e86b135b9b121d6abbe9597,19400,presidente venceslau,SP +503740e9ca751ccdda7ba28e9ab8f608,80bb27c7c16e8f973207a5086ab329e2,86320,congonhinhas,PR +816f8653d5361cbf94e58c33f2502a5c,37363700139c1aef873bbcd916e57dfd,5778,sao paulo,SP +9ef432eb6251297304e76186b10a928d,7c396fd4830fd04220f754e42b4e5bff,3149,sao paulo,SP +68451b39b1314302c08c65a29f1140fc,781ae350edb16842380e81d7c7feb431,20740,rio de janeiro,RJ +b673f0597cb0c4d12778f731045f361a,04e495a3f45df8b41be2e934bbc16961,94055,gravatai,RS +3a897024068ed42a183de61d5727d866,adeefbe14d26d3bf90facfeaae35d605,4845,sao paulo,SP +52142aa69d8d0e1247ab0cada0f76023,a6fefcd9f434474cf6fcd8ed1102fd63,55540,palmares,PE +55e6b290205c84ddd23ddf5eb134efd4,7f2eb9cf900070f2e7a7f0e95719f85b,13145,paulinia,SP +ed0271e0b7da060a393796590e7b737a,36edbb3fb164b1f16485364b6fb04c73,98900,santa rosa,RS +a9d37ddc8ba4d9f6dbac7d8ec378cc95,3c0402bcc3ec3b33fc4430eb6c08720a,89225,joinville,SC +b0830fb4747a6c6d20dea0b8c802d7ef,af07308b275d755c9edb36a90c618231,47813,barreiras,BA +bb2f5e670f7155dc622c57e4b31d0a69,31b8fa2573bde01af4737e8ed29c348b,2346,sao paulo,SP +756fb9391752dad934e0fe3733378e57,394b2ce444baae9ae609f5d32000de0f,47850,luis eduardo magalhaes,BA +5bb39c890c91b1d26801aa19a9336eac,a71cac9f356cfeb9db35061020806212,2407,sao paulo,SP +7e20bf5ca92da68200643bda76c504c6,576ea0cab426cd8a00fad9a9c90a4494,41213,salvador,BA +2a1dfb647f32f4390e7b857c67458536,5f7d7732b351ce851a158528581af05f,54330,jaboatao dos guararapes,PE +cce89a605105b148387c52e286ac8335,bd13608b9c6033892ce62269b50a0afc,9182,santo andre,SP +738b086814c6fcc74b8cc583f8516ee3,6e26bbeaa107ec34112c64e1ee31c0f5,21381,rio de janeiro,RJ +81e08b08e5ed4472008030d70327c71f,0e764fc1a13e47e900c3d59a989753e8,36045,juiz de fora,MG +911e4c37f5cafe1604fe6767034bf1ae,51838d41add414a0b1b989b7d251d9ee,13068,campinas,SP +f26a435864aebedff7f7c84f82ee229f,bb4d84a2b45b22ed710ac8c0dec63d1a,8552,poa,SP +9bdf08b4b3b52b5526ff42d37d47f222,932afa1e708222e5821dac9cd5db4cae,26525,nilopolis,RJ +64fb950e760ec8b0db79154a1fa9c1bf,b11b7871c2b8be2d11fab954f58542f2,18017,sorocaba,SP +bf141bf67fbe428d558bcf0e018eab60,c756e1910755edd88c00ac3f46baba4b,31255,belo horizonte,MG +3135962ee745ef39b85576df7ddbaa99,00b2ca23369b68c4d4105ecea9c0cb93,62970,alto santo,CE +1833a0540067becaf59368fe4cd4303a,ca73adc05ad5d0d880de79b5ea3253b3,4053,sao paulo,SP +7f2178c5d771e17f507d3c1637339298,12e7a2c201751ddc979e7a45cef500f3,1038,sao paulo,SP +c622b892a190735ef81c0087973fa16d,439ced9aafa171a1ac88efa951c7db0a,85618,flor da serra do sul,PR +79183cd650e2bb0d475b0067d45946ac,c77154776ead8e798c2d684205938f71,90620,porto alegre,RS +332df68ccac2f2f7d9e11299188f8bce,bb7ef994cc22b1fc694ac59fb377b824,39135,presidente kubitschek,MG +a166da34890074091a942054b36e4265,451e48381edab7f1f6dbfa6d728616ff,89070,blumenau,SC +f5afca14dfa9dc64251cf2b45c54c363,38cad70d154a4dcc42b598d5c01f7ef1,25211,duque de caxias,RJ +31ad1d1b63eb9962463f764d4e6e0c9d,299905e3934e9e181bfb2e164dd4b4f8,18075,sorocaba,SP +7711cf624183d843aafe81855097bc37,782987b81c92239d922aa49d6bd4200b,4278,sao paulo,SP +72ae281627a6102d9b3718528b420f8a,b8df986511d928829c3192c2ed081eba,3323,sao paulo,SP +12fd2740039676063a874b9567dfa651,372e0fc66eacb8698e4f9997d366d961,12230,sao jose dos campos,SP +19402a48fe860416adf93348aba37740,e2dfa3127fedbbca9707b36304996dab,4812,sao paulo,SP +9b18f3fc296990b97854e351334a32f6,b2cac0b16835dabf811b204127f58afa,6330,carapicuiba,SP +05e996469a2bf9559c7122b87e156724,5229b8e4d7d2b9b676c2083c17b1ecd0,93180,portao,RS +2932d241d1f31e6df6c701d52370ae02,f7603d34c795584792a484186233e6e5,3942,sao paulo,SP +93ada7a24817edda9f4ab998fa823d16,cd148470c375939669971e8a032b16b4,14091,ribeirao preto,SP diff --git a/data/orders/order_items.csv b/data/orders/order_items.csv new file mode 100644 index 0000000..fa664bb --- /dev/null +++ b/data/orders/order_items.csv @@ -0,0 +1,116 @@ +order_id,order_item_id,product_id,seller_id,shipping_limit_date,price,freight_value +0a4a2fccb27bd83a892fa503987a595b,1,f7d7b5c58704fb359a74580622800051,4a3ca9315b744ce9f8e9374361493884,2017-04-28 20:55:09,38.5,24.84 +0e782c3705510e717d28907746cbda82,1,79da264732f717f10ebf5d102aa6c32a,562fc2f2c2863ab7e79a9e4388a58a14,2018-05-07 08:52:58,29.99,7.39 +10c320f977c6a18f91b2d14be13128c6,1,b3be1f83cef05668c25e134852d44545,3b15288545f8928d3e65a8f949a28291,2017-05-16 21:02:45,110.99,21.27 +116f0b09343b49556bbad5f35bee0cdf,1,a47295965bd091207681b541b26e40a5,ea8482cd71df3c1969d7b9473ff13abc,2018-01-02 23:50:22,27.99,15.1 +136cce7faa42fdb2cefd53fdc79a6098,1,a1804276d9941ac0733cfd409f5206eb,dc8798cbf453b7e0f98745e396cc5616,2017-04-19 13:25:17,49.9,16.05 +138849fd84dff2fb4ca70a0a34c4aa1c,1,304fad8dc4d2012dc4062839972f2d96,6860153b69cc696d5dcfe1cdaaafcf62,2018-02-08 02:53:07,39.47,13.37 +1790eea0b567cf50911c057cf20f90f9,1,2d8f2be4f08788ee3bf5356af2b2ee6c,d91fb3b7d041e83b64a00a3edfb37e4f,2018-04-22 22:10:26,186.9,38.0 +1e7aff52cdbb2451ace09d0f848c3699,1,8c591ab0ca519558779df02023177f44,a1043bafd471dff536d0c462352beb48,2017-05-25 19:05:17,119.99,34.2 +203096f03d82e0dffbc41ebc2e2bcfb7,1,5ac9d9e379c606e36a8094a6046f75dc,633ecdf879b94b5337cca303328e4a25,2017-09-25 04:04:09,109.9,8.96 +20e0101b20700188cadb288126949685,1,64d0feb1bcf9c7fe7b5dad3271c10910,e5a38146df062edaf55c38afa99e42dc,2018-01-26 19:36:35,89.18,16.38 +23f553848a03aaab35bb3f9f87725125,1,cac9e5692471a0700418aa3400b9b2b1,36890be00bbfc1cdb9a4a38a6af05a69,2018-06-15 09:31:23,99.2,18.57 +25f4376934e13d3508486352e11a5db0,1,aca2eb7d00ea1a7b8ebd4e68314663af,955fee9216a65b617aa5c0531780ce60,2018-05-22 01:17:39,69.9,12.43 +2711a938db643b3f0b62ee2c8a2784aa,1,ad1128daf194f4b6ac4256e16233497c,1ca7077d890b907f89be8c954a02686a,2017-12-29 02:15:31,45.0,14.1 +2807d0e504d6d4894d41672727bc139f,1,6893767814d1ac82a81bcd365e1cc918,8b321bb669392f5163d04c59e235e066,2018-02-08 20:50:22,9.5,7.78 +2ce1ad82022c1ba30c2079502ac725aa,1,f35927953ed82e19d06ad3aac2f06353,669ae81880e08f269a64487cfb287169,2017-08-17 04:15:29,115.0,15.56 +2edfd6d1f0b4cd0db4bf37b1b224d855,1,30469bb5ea377eae7121981e2f0778e4,80e6699fe29150b372a0c8a1ebf7dcc8,2017-06-21 03:05:45,113.0,28.15 +34513ce0c4fab462a55830c0989c7edb,1,f7e0fa615b386bc9a8b9eb52bc1fff76,87142160b41353c4e5fca2360caf6f92,2017-07-19 20:10:08,98.0,16.13 +3bc77ce8be27211bac313c2daa402d1a,1,f497ba62f1d6b4f6a3a3266fa8623ad3,6df688df543f90e9b38f4319e75a9d88,2017-04-12 22:50:24,58.2,8.78 +403b97836b0c04a622354cf531062e5f,1,638bbb2a5e4f360b71f332ddfebfd672,c4af86330efa7a2620772227d2d670c9,2018-01-12 19:09:04,1299.0,77.45 +40c5e18f7d112b59b3e5113a59a905b3,1,595fac2a385ac33a80bd5114aec74eb8,ef0ace09169ac090589d85746e3e036f,2018-06-15 10:58:32,119.9,8.78 +41bb5cee06dbf170878a9ef93ac7e7f5,1,43ee88561093499d9e571d4db5f20b79,23613d49c3ac2bd302259e55c06c050c,2018-05-28 08:52:24,10.9,12.79 +432aaf21d85167c2c86ec9448c4e42cc,1,72d3bf1d3a790f8874096fcf860e3eff,0bae85eb84b9fb3bd773911e89288d54,2018-03-07 15:10:47,38.25,16.11 +434d158e96bdd6972ad6e6d73ddcfd22,1,c7df652246ed7b3300aaf46960c141e4,a5cba26a62b8b4d0145b68b841e62e7f,2018-06-13 03:35:15,445.0,63.17 +47770eb9100c2d0c44946d9cf07ec65d,1,aa4383b373c6aca5d8797843e5594415,4869f7a5dfa277a7dca6462dcf3b52b2,2018-08-13 08:55:23,159.9,19.22 +47aa4816b27ba60ec948cd019cc1afc1,1,1501b0033c68a37fa9560033a440e529,33cbbec1e7e1044aaf11d152172c776f,2018-06-29 03:31:40,53.44,18.47 +53cdb2fc8bc7dce0b6741e2150273451,1,595fac2a385ac33a80bd5114aec74eb8,289cdb325fb7e7f891c38608bf9e0962,2018-07-30 03:24:27,118.7,22.76 +5820a1100976432c7968a52da59e9364,1,1deda1acffb44ed38494667d7e49a9f3,f52c2422904463fdd7741f99045fecb6,2018-07-31 11:44:19,33.9,18.34 +5acce57f8d9dfd55fa48e212a641a69d,1,0cd9f302c8a5b076ffa5c3567c6705fd,85d9eb9ddc5d00ca9336a2219c97bb13,2017-08-08 02:56:02,27.9,15.1 +5ff96c15d0b717ac6ad1f3d77225a350,1,10adb53d8faa890ca7c2f0cbcb68d777,1900267e848ceeba8fa32d80c1a5f5a8,2018-07-27 17:55:14,19.9,12.8 +60550084e6b4c0cb89a87df1f3e5ebd9,1,9b37a918bcf2c8e1064e867cf1df4637,f27e33c6d29b5138fa9967bcd445b6d5,2018-03-01 02:10:52,39.9,26.89 +634e8f4c0f6744a626f77f39770ac6aa,1,69d980b4120a76616d7b237d731d6156,744dac408745240a2c2528fb1b6028f3,2017-08-15 18:45:18,219.0,15.28 +641fb0752bf5b5940c376b3a8bb9dc52,1,60184212dae4e6b0da32bf54271a8c4a,b33e7c55446eabf8fe1a42d037ac7d6d,2017-12-21 00:14:55,369.0,17.33 +6514b8ad8028c9f2cc2374ded245783f,1,4520766ec412348b8d4caa5e8a18c464,16090f2ca825584b5a147ab24aa30c86,2017-05-22 13:22:11,59.99,15.17 +66e4624ae69e7dc89bd50222b59f581f,1,b37b72d5a56f887725c2862184b8cab8,db4350fd57ae30082dec7acbaacc17f9,2018-03-15 15:30:45,22.99,22.85 +66e4624ae69e7dc89bd50222b59f581f,2,b37b72d5a56f887725c2862184b8cab8,db4350fd57ae30082dec7acbaacc17f9,2018-03-15 15:30:45,22.99,22.85 +686541986ecfb7d9296eb67719973bf0,1,3014e35fd70fce29095ced5cdc89f4ce,5656537e588803a555b8eb41f07a944b,2018-02-15 13:35:31,24.89,15.1 +688052146432ef8253587b930b01a06d,1,d1c427060a0f73f6b889a5c7c61f2ac4,a1043bafd471dff536d0c462352beb48,2018-04-26 09:31:11,119.0,24.97 +688052146432ef8253587b930b01a06d,2,db56f6d2b04c89eae4daba188842fd7b,2a84855fd20af891be03bc5924d2b453,2018-04-26 09:31:11,199.0,3.12 +68873cf91053cd11e6b49a766db5af1a,1,15a9e834e89eab39d973492882c658d6,a673821011d0cec28146ea42f5ab767f,2017-12-07 02:51:18,79.9,11.76 +68e48e68da1f50f7c5838ea75e3a20dd,1,a659cb33082b851fb87a33af8f0fff29,817245bcc3badd82bbd222e0366951a6,2018-06-22 17:00:57,84.9,13.25 +68e48e68da1f50f7c5838ea75e3a20dd,2,a659cb33082b851fb87a33af8f0fff29,817245bcc3badd82bbd222e0366951a6,2018-06-22 17:00:57,84.9,13.25 +68e48e68da1f50f7c5838ea75e3a20dd,3,a659cb33082b851fb87a33af8f0fff29,817245bcc3badd82bbd222e0366951a6,2018-06-22 17:00:57,84.9,13.25 +68e48e68da1f50f7c5838ea75e3a20dd,4,a659cb33082b851fb87a33af8f0fff29,817245bcc3badd82bbd222e0366951a6,2018-06-22 17:00:57,84.9,13.25 +6a0a8bfbbe700284feb0845d95e0867f,1,f8a8f05a35976a91aed5cccc3992c357,4a3ca9315b744ce9f8e9374361493884,2017-11-28 11:46:50,83.9,17.84 +6abaad69b8b349c3a529b4b91ce18e46,1,3dd6c9d499e7c311a29e08afe1fd8fc6,537eb890efff034a88679788b647c564,2018-02-21 09:47:59,42.9,14.1 +6b860b35691d486e45dc98e3514ec5f6,1,c827fb43ad0fb8708f34c2911fdc164b,76d5af76d0271110f9af36c92573f765,2017-12-14 02:49:54,544.0,30.36 +6d25592267349b322799e2beb687871e,1,c3ba4e8d3cb30049213b682e751e9d00,6560211a19b47992c3666cc44a7e94c0,2018-08-30 04:10:18,93.0,7.91 +6d25592267349b322799e2beb687871e,2,c3ba4e8d3cb30049213b682e751e9d00,6560211a19b47992c3666cc44a7e94c0,2018-08-30 04:10:18,93.0,7.91 +6ea2f835b4556291ffdc53fa0b3b95e8,1,be021417a6acb56b9b50d3fd2714baa8,f5f46307a4d15880ca14fab4ad9dfc9b,2017-11-30 00:21:09,339.0,17.12 +6ebaec694d7025e2ad4a05dba887c032,1,e251ebd2858be1aa7d9b2087a6992580,001cca7ae9ae17fb1caed9dfb1094831,2017-05-24 14:05:17,139.0,14.72 +7206b86ea789983f7a273ea7fa0bc2a8,1,9a469eaf45dfbc43d39ba1977a3c07af,d2374cbcbb3ca4ab1086534108cc3ab7,2018-03-30 17:27:57,36.9,12.79 +734e7d1bbaeb2ff82521ca0fe6fb6f79,1,278b3c6462e86b4556b99989513ddf73,d1ef48b38baca7e831711c4a0aeb398f,2018-06-13 08:31:12,29.99,13.47 +76c6e866289321a7c93b82b54852dc33,1,ac1789e492dcd698c5c10b97a671243a,63b9ae557efed31d1f7687917d248a8d,2017-01-27 18:29:09,19.9,16.05 +77e9941864fc840be8e4b1ba5347c0f7,1,a01d1cbb398e386a4a8f8364401a7584,d566c37fa119d5e66c4e9052e83ee4ea,2018-08-07 09:10:14,65.9,37.37 +82566a660a982b15fb86e904c8d32918,1,72a97c271b2e429974398f46b93ae530,094ced053e257ae8cae57205592d6712,2018-06-18 03:13:12,31.9,18.23 +82bce245b1c9148f8d19a55b9ff70644,1,a5a0e71a81ae65aa335e71c06261e260,c8417879a15366a17c30af34c798c332,2017-04-27 05:15:56,38.0,15.56 +82bce245b1c9148f8d19a55b9ff70644,2,a5a0e71a81ae65aa335e71c06261e260,c8417879a15366a17c30af34c798c332,2017-04-27 05:15:56,38.0,15.56 +82bce245b1c9148f8d19a55b9ff70644,3,a5a0e71a81ae65aa335e71c06261e260,c8417879a15366a17c30af34c798c332,2017-04-27 05:15:56,38.0,15.56 +82bce245b1c9148f8d19a55b9ff70644,4,a5a0e71a81ae65aa335e71c06261e260,c8417879a15366a17c30af34c798c332,2017-04-27 05:15:56,38.0,15.56 +82bce245b1c9148f8d19a55b9ff70644,5,a5a0e71a81ae65aa335e71c06261e260,c8417879a15366a17c30af34c798c332,2017-04-27 05:15:56,38.0,15.56 +83018ec114eee8641c97e08f7b4e926f,1,c35498fbb4358837ae16850f50c3fd22,70a12e78e608ac31179aea7f8422044b,2017-11-01 16:07:35,76.0,16.97 +8447ff843b2616c50c0ced28ab1dae03,1,7a10781637204d8d10485c71a6108a2e,4869f7a5dfa277a7dca6462dcf3b52b2,2017-12-29 02:37:45,219.9,18.79 +8563039e855156e48fccee4d611a3196,1,bff2010b28e8fbcff5a9db9d3fea5ac4,955fee9216a65b617aa5c0531780ce60,2018-02-22 15:15:34,78.0,28.95 +85ce859fd6dc634de8d2f1e290444043,1,cce679660c66e6fbd5c8091dfd29e9cd,d2374cbcbb3ca4ab1086534108cc3ab7,2017-11-29 00:14:22,17.9,11.85 +86f21bf63784876b9fd6d35f46581d72,1,5526b1ae9ab2688cf600783cece249df,0b90b6df587eb83608a64ea8b390cf07,2018-04-23 22:49:32,98.44,22.4 +8f06cc6465925031568537b815f1198d,1,12087840651e83b48206b82c213b76fd,5b925e1d006e9476d738aa200751b73b,2017-11-21 11:46:42,299.0,18.34 +91b2a010e1e45e6ba3d133fa997597be,1,ba74c6b75d2ad7503175809688d5a03c,7d13fca15225358621be4086e1eb0964,2018-05-09 12:55:01,178.99,13.69 +948097deef559c742e7ce321e5e58919,1,cd935d283d47f1050c505e1c39c48b67,a3a38f4affed601eb87a97788c949667,2017-08-10 17:25:11,69.9,25.77 +949d5b44dbf5de918fe9c16f97b45f8a,1,d0b61bfb1de832b15ba9d266ca96e5b0,66922902710d126a0e7d26b0e3805106,2017-11-23 19:45:59,45.0,27.2 +95266dbfb7e20354baba07964dac78d5,1,bb7181410b4e02f93f3697f765db53c7,855668e0971d4dfd7bef1b6a4133b41b,2018-01-26 08:07:31,129.99,57.58 +974c1993ab8024d3ed16229183c2308d,1,5e2ba75ad255ff60b1c76c5bf526ae9b,f84a00e60c73a49e7e851c9bdca3a5bb,2017-02-24 11:45:39,69.9,14.66 +989225ba6d0ebd5873335f7e01de2ae7,1,6b64362e89896be7589621df54be089e,77530e9772f57a62c906e1c21538ab82,2017-12-20 13:54:13,49.0,14.1 +9defaf92cff22420e4e8ef7784815a55,1,cf944645d4ff2a3eed3ae17f641ea861,a6fe7de3d16f6149ffe280349a8535a0,2018-05-23 13:30:30,49.9,12.79 +9faeb9b2746b9d7526aef5acb08e2aa0,1,f48eb5c2fde13ca63664f0bb05f55346,f7ba60f8c3f99e7ee4042fdef03b70c4,2018-07-30 14:55:10,60.0,15.52 +9faeb9b2746b9d7526aef5acb08e2aa0,2,f48eb5c2fde13ca63664f0bb05f55346,f7ba60f8c3f99e7ee4042fdef03b70c4,2018-07-30 14:55:10,60.0,15.52 +a4591c265e18cb1dcee52889e2d8acc3,1,060cb19345d90064d1015407193c233d,8581055ce74af1daba164fdbd55a40de,2017-07-13 22:10:13,147.9,27.36 +a685d016c8a26f71a0bb67821070e398,1,ebd7c847c1e1cb69ec374ae0ebee1f4c,391fc6631aebcf3004804e51b40bcf1e,2017-03-17 18:14:36,84.9,14.36 +a6aeb116d2cb5013eb8a94585b71ffef,1,163e6400e6dadd0fe04775c5e9331fda,855668e0971d4dfd7bef1b6a4133b41b,2017-09-19 14:44:39,50.0,9.34 +a910f58086d58b3ae6f37aa712d377b9,1,75d6b6963340c6063f7f4cfcccfe6a30,cc419e0650a3c5ba77189a1882b7556a,2017-09-22 09:35:18,56.99,15.84 +a910f58086d58b3ae6f37aa712d377b9,2,75d6b6963340c6063f7f4cfcccfe6a30,cc419e0650a3c5ba77189a1882b7556a,2017-09-22 09:35:18,56.99,15.84 +acce194856392f074dbf9dada14d8d82,1,d70f38e7f79c630f8ea00c993897042c,977f9f63dd360c2a32ece2f93ad6d306,2018-06-13 00:35:10,90.9,48.64 +acce194856392f074dbf9dada14d8d82,2,9451e630d725c4bb7a5a206b48b99486,d673a59aac7a70d8b01e6902bf090a11,2018-06-13 00:35:10,39.5,48.64 +ad21c59c0840e6cb83a9ceb5573f8159,1,65266b2da20d04dbe00c5c2d3bb7859e,2c9e548be18521d1c43cde1c582c6de8,2018-02-19 20:31:37,19.9,8.72 +b276e4f8c0fb86bd82fce576f21713e0,1,c6c1f263e076bd9c1f1640250a5d0c29,fe2032dab1a61af8794248c8196565c9,2018-08-02 23:45:15,179.0,9.41 +b52cc4919de82b4d696a4380d10804a3,1,7564c1759c04fc0a38f2aa84f7a370ee,6860153b69cc696d5dcfe1cdaaafcf62,2018-06-19 02:30:26,42.99,12.03 +b8801cccd8068de30112e4f49903d74a,1,154e7e31ebfa092203795c972e5804a6,cc419e0650a3c5ba77189a1882b7556a,2017-08-08 03:25:08,19.99,7.78 +bd4bd0194d6d29f83b8557d4b89b572a,1,7f457254a89d62960399e075711b3deb,ea8482cd71df3c1969d7b9473ff13abc,2018-08-02 03:50:24,24.99,12.84 +cadbb3657dac2dbbd5b84b12e7b78aad,1,9d2ff462feaaf88912539b8647e17ab4,00fc707aaaad2d31347cf883cd2dfe10,2018-03-13 02:48:54,394.9,14.89 +ccbabeb0b02433bd0fcbac46e70339f2,1,89321f94e35fc6d7903d36f74e351d40,16090f2ca825584b5a147ab24aa30c86,2018-02-27 03:31:34,27.9,15.1 +d17dc4a904426827ca80f2ccb3a6be56,1,ba4bfbf74dbe7ab37e263b9326da0523,f8db351d8c4c4c22c6835c19a46f01b0,2017-05-18 20:42:45,36.9,17.92 +d22e9fa5731b9e30e8b27afcdc2f8563,1,f410090aec61f7c73748ca894286edcd,980640c45d7a4635885491d077167e4d,2018-08-07 23:35:13,99.0,22.62 +d3d6788577c9592da441752e8a1dd5e3,1,7c1bd920dbdf22470b68bde975dd3ccf,cc419e0650a3c5ba77189a1882b7556a,2017-09-27 07:55:14,58.99,17.66 +d887b52c6516beb39e8cd44a5f8b60f7,1,39a9942865c056ed2006a5e8c11d9537,ba5daa4041e1f15cdf34b76e3e18a450,2018-02-08 12:50:30,84.9,15.35 +dcb36b511fcac050b97cd5c05de84dc3,1,009c09f439988bc06a93d6b8186dce73,89a51f50b8095ea78d5768f34c13a76f,2018-06-18 18:59:02,132.4,14.05 +dd78f560c270f1909639c11b925620ea,1,00baba5b58e274d0332a0c8a0a66f877,d3f39f05462b79a4562d35893a28f159,2018-03-16 02:30:56,47.9,12.79 +e425680f760cbc130be3e53a9773c584,1,9ecadb84c81da840dbf3564378b586e9,1025f0e2d44d7041d6cf58b6550e0bfa,2017-09-08 08:30:17,38.4,11.85 +e481f51cbdc54678b7cc49136f2d6af7,1,87285b34884572647811a353c7ac498a,3504c0cb71d7fa48d967e0e4c94d59d9,2017-10-06 11:07:15,29.99,8.72 +e4de6d53ecff736bc68804b0b6e9f635,1,90b58782fdd04cb829667fcc41fb65f5,7c67e1448b00f6e969d365cea6b010ab,2017-10-27 03:49:34,179.99,51.13 +e69bfb5eb88e0ed6a785585b27e16dbf,1,9a78fb9862b10749a117f7fc3c31f051,7c67e1448b00f6e969d365cea6b010ab,2017-08-11 12:05:32,149.99,19.77 +e6ce16cb79ec1d90b1da9085a6118aeb,1,08574b074924071f4e201e151b152b4e,001cca7ae9ae17fb1caed9dfb1094831,2017-05-22 19:50:18,99.0,30.53 +e6ce16cb79ec1d90b1da9085a6118aeb,2,08574b074924071f4e201e151b152b4e,001cca7ae9ae17fb1caed9dfb1094831,2017-05-22 19:50:18,99.0,30.53 +ec341c54a5ebf8ee0a67a8632aa7579b,1,22f5b63060a1185e5ec7721efd622321,4c8b8048e33af2bf94f2eb547746a916,2017-08-31 17:04:12,14.82,15.1 +ecab90c9933c58908d3d6add7c6f5ae3,1,c0db539123a403f670c50237d970b215,f7720c4fa8e3aba4546301ab80ea1f1b,2018-03-01 14:28:03,30.1,33.24 +ee64d42b8cf066f35eac1cf57de1aa85,1,c50ca07e9e4db9ea5011f06802c0aea0,e9779976487b77c6d4ac45f75ec7afe9,2018-06-13 04:30:33,14.49,7.87 +f169bd689fb8b32ccd62df9050aebc0b,1,20a8603c265d777e25da064113d556f5,e70053bf73d1b5863932e53a9fa47496,2018-04-29 23:31:10,759.0,13.08 +f271576bed568e896f99eb710cd3a6f8,1,d457916b4fdc60154ed93b5dd3e6fd69,76d64c4aca3a7baf218bf93ef7fa768d,2018-01-11 21:51:28,329.9,82.48 +f271576bed568e896f99eb710cd3a6f8,2,d457916b4fdc60154ed93b5dd3e6fd69,76d64c4aca3a7baf218bf93ef7fa768d,2018-01-11 21:51:28,329.9,82.48 +f346ad4ee8f630e5e4ddaf862a34e6dd,1,4ce99ff9dcb7821acd8e599d5d4a6531,70125af26c2d6d4ef401a1d02ae7701f,2018-08-07 13:24:34,39.9,13.76 +f3e7c359154d965827355f39d6b1fdac,1,e99d69efe684efaa643f99805f7c81bc,55c26bcb609f480eb7868594245febb5,2018-08-14 03:24:51,89.9,14.21 +f70a0aff17df5a6cdd9a7196128bd354,1,cafd558df4c3c9d1c338ba6930ea9a62,5dceca129747e92ff8ef7a997dc4f8ca,2017-08-17 02:45:24,279.0,34.19 +f7959f8385f34c4f645327465a1c9fc4,1,c1234c80dafde7ef3311b3eabd5069ed,dc4a0fc896dc34b0d5bfec8438291c80,2017-04-11 08:05:08,17.9,10.96 +f848643eec1d69395095eb3840d2051e,1,2b4609f8948be18874494203496bc318,cc419e0650a3c5ba77189a1882b7556a,2018-03-23 09:09:31,79.99,8.91 +fa516182d28f96f5f5c651026b0749ee,1,e932008cf0ea7c93a077dd8d7e5f49eb,fcdd820084f17e9982427971e4e9d47f,2018-04-19 13:30:02,190.0,19.41 +fbf9ac61453ac646ce8ad9783d7d0af6,1,7b717060aa783eb7f23a747a3a733dd7,c0563dd588b775f2e37747ef6ad6c92c,2018-02-28 02:30:44,109.9,15.53 +fdf128b3630c21adc9ca4fb8a51b68ec,1,89321f94e35fc6d7903d36f74e351d40,16090f2ca825584b5a147ab24aa30c86,2018-07-18 14:31:10,27.9,18.3 diff --git a/data/orders/orders.csv b/data/orders/orders.csv new file mode 100644 index 0000000..608714f --- /dev/null +++ b/data/orders/orders.csv @@ -0,0 +1,101 @@ +order_id,customer_id,order_status,order_purchase_timestamp,order_approved_at,order_delivered_carrier_date,order_delivered_customer_date,order_estimated_delivery_date +e481f51cbdc54678b7cc49136f2d6af7,9ef432eb6251297304e76186b10a928d,delivered,2017-10-02 10:56:33,2017-10-02 11:07:15,2017-10-04 19:55:00,2017-10-10 21:25:13,2017-10-18 00:00:00 +53cdb2fc8bc7dce0b6741e2150273451,b0830fb4747a6c6d20dea0b8c802d7ef,delivered,2018-07-24 20:41:37,2018-07-26 03:24:27,2018-07-26 14:31:00,2018-08-07 15:27:45,2018-08-13 00:00:00 +47770eb9100c2d0c44946d9cf07ec65d,41ce2a54c0b03bf3443c3d931a367089,delivered,2018-08-08 08:38:49,2018-08-08 08:55:23,2018-08-08 13:50:00,2018-08-17 18:06:29,2018-09-04 00:00:00 +949d5b44dbf5de918fe9c16f97b45f8a,f88197465ea7920adcdbec7375364d82,delivered,2017-11-18 19:28:06,2017-11-18 19:45:59,2017-11-22 13:39:59,2017-12-02 00:28:42,2017-12-15 00:00:00 +ad21c59c0840e6cb83a9ceb5573f8159,8ab97904e6daea8866dbdbc4fb7aad2c,delivered,2018-02-13 21:18:39,2018-02-13 22:20:29,2018-02-14 19:46:34,2018-02-16 18:17:02,2018-02-26 00:00:00 +a4591c265e18cb1dcee52889e2d8acc3,503740e9ca751ccdda7ba28e9ab8f608,delivered,2017-07-09 21:57:05,2017-07-09 22:10:13,2017-07-11 14:58:04,2017-07-26 10:57:55,2017-08-01 00:00:00 +136cce7faa42fdb2cefd53fdc79a6098,ed0271e0b7da060a393796590e7b737a,invoiced,2017-04-11 12:22:08,2017-04-13 13:25:17,,,2017-05-09 00:00:00 +6514b8ad8028c9f2cc2374ded245783f,9bdf08b4b3b52b5526ff42d37d47f222,delivered,2017-05-16 13:10:30,2017-05-16 13:22:11,2017-05-22 10:07:46,2017-05-26 12:55:51,2017-06-07 00:00:00 +76c6e866289321a7c93b82b54852dc33,f54a9f0e6b351c431402b8461ea51999,delivered,2017-01-23 18:29:09,2017-01-25 02:50:47,2017-01-26 14:16:31,2017-02-02 14:08:10,2017-03-06 00:00:00 +e69bfb5eb88e0ed6a785585b27e16dbf,31ad1d1b63eb9962463f764d4e6e0c9d,delivered,2017-07-29 11:55:02,2017-07-29 12:05:32,2017-08-10 19:45:24,2017-08-16 17:14:30,2017-08-23 00:00:00 +e6ce16cb79ec1d90b1da9085a6118aeb,494dded5b201313c64ed7f100595b95c,delivered,2017-05-16 19:41:10,2017-05-16 19:50:18,2017-05-18 11:40:40,2017-05-29 11:18:31,2017-06-07 00:00:00 +34513ce0c4fab462a55830c0989c7edb,7711cf624183d843aafe81855097bc37,delivered,2017-07-13 19:58:11,2017-07-13 20:10:08,2017-07-14 18:43:29,2017-07-19 14:04:48,2017-08-08 00:00:00 +82566a660a982b15fb86e904c8d32918,d3e3b74c766bc6214e0c830b17ee2341,delivered,2018-06-07 10:06:19,2018-06-09 03:13:12,2018-06-11 13:29:00,2018-06-19 12:05:52,2018-07-18 00:00:00 +5ff96c15d0b717ac6ad1f3d77225a350,19402a48fe860416adf93348aba37740,delivered,2018-07-25 17:44:10,2018-07-25 17:55:14,2018-07-26 13:16:00,2018-07-30 15:52:25,2018-08-08 00:00:00 +432aaf21d85167c2c86ec9448c4e42cc,3df704f53d3f1d4818840b34ec672a9f,delivered,2018-03-01 14:14:28,2018-03-01 15:10:47,2018-03-02 21:09:20,2018-03-12 23:36:26,2018-03-21 00:00:00 +dcb36b511fcac050b97cd5c05de84dc3,3b6828a50ffe546942b7a473d70ac0fc,delivered,2018-06-07 19:03:12,2018-06-12 23:31:02,2018-06-11 14:54:00,2018-06-21 15:34:32,2018-07-04 00:00:00 +403b97836b0c04a622354cf531062e5f,738b086814c6fcc74b8cc583f8516ee3,delivered,2018-01-02 19:00:43,2018-01-02 19:09:04,2018-01-03 18:19:09,2018-01-20 01:38:59,2018-02-06 00:00:00 +116f0b09343b49556bbad5f35bee0cdf,3187789bec990987628d7a9beb4dd6ac,delivered,2017-12-26 23:41:31,2017-12-26 23:50:22,2017-12-28 18:33:05,2018-01-08 22:36:36,2018-01-29 00:00:00 +85ce859fd6dc634de8d2f1e290444043,059f7fc5719c7da6cbafe370971a8d70,delivered,2017-11-21 00:03:41,2017-11-21 00:14:22,2017-11-23 21:32:26,2017-11-27 18:28:00,2017-12-11 00:00:00 +83018ec114eee8641c97e08f7b4e926f,7f8c8b9c2ae27bf3300f670c3d478be8,delivered,2017-10-26 15:54:26,2017-10-26 16:08:14,2017-10-26 21:46:53,2017-11-08 22:22:00,2017-11-23 00:00:00 +203096f03d82e0dffbc41ebc2e2bcfb7,d2b091571da224a1b36412c18bc3bbfe,delivered,2017-09-18 14:31:30,2017-09-19 04:04:09,2017-10-06 17:50:03,2017-10-09 22:23:46,2017-09-28 00:00:00 +f848643eec1d69395095eb3840d2051e,4fa1cd166fa598be6de80fa84eaade43,delivered,2018-03-15 08:52:40,2018-03-15 09:09:31,2018-03-15 19:52:48,2018-03-19 18:08:32,2018-03-29 00:00:00 +2807d0e504d6d4894d41672727bc139f,72ae281627a6102d9b3718528b420f8a,delivered,2018-02-03 20:37:35,2018-02-03 20:50:22,2018-02-05 22:37:28,2018-02-08 16:13:46,2018-02-21 00:00:00 +95266dbfb7e20354baba07964dac78d5,a166da34890074091a942054b36e4265,delivered,2018-01-08 07:55:29,2018-01-08 08:07:31,2018-01-24 23:16:37,2018-01-26 17:32:38,2018-02-21 00:00:00 +f3e7c359154d965827355f39d6b1fdac,62b423aab58096ca514ba6aa06be2f98,delivered,2018-08-09 11:44:40,2018-08-10 03:24:51,2018-08-10 12:29:00,2018-08-13 18:24:27,2018-08-17 00:00:00 +fbf9ac61453ac646ce8ad9783d7d0af6,3a874b4d4c4b6543206ff5d89287f0c3,delivered,2018-02-20 23:46:53,2018-02-22 02:30:46,2018-02-26 22:25:22,2018-03-21 22:03:54,2018-03-12 00:00:00 +acce194856392f074dbf9dada14d8d82,7e20bf5ca92da68200643bda76c504c6,delivered,2018-06-04 00:00:13,2018-06-05 00:35:10,2018-06-05 13:24:00,2018-06-16 15:20:55,2018-07-18 00:00:00 +dd78f560c270f1909639c11b925620ea,8b212b9525f9e74e85e37ed6df37693e,delivered,2018-03-12 01:50:26,2018-03-12 03:28:34,2018-03-12 21:06:37,2018-03-21 14:41:50,2018-03-28 00:00:00 +91b2a010e1e45e6ba3d133fa997597be,cce89a605105b148387c52e286ac8335,delivered,2018-05-02 11:45:38,2018-05-03 12:55:01,2018-05-10 16:16:00,2018-05-16 20:56:24,2018-05-23 00:00:00 +ecab90c9933c58908d3d6add7c6f5ae3,761df82feda9778854c6dafdaeb567e4,delivered,2018-02-25 13:50:30,2018-02-25 14:47:35,2018-02-26 22:28:50,2018-03-27 23:29:14,2018-04-13 00:00:00 +f70a0aff17df5a6cdd9a7196128bd354,456dc10730fbdba34615447ea195d643,delivered,2017-08-10 11:58:33,2017-08-12 02:45:24,2017-08-17 15:35:07,2017-08-18 14:28:02,2017-08-23 00:00:00 +1790eea0b567cf50911c057cf20f90f9,52142aa69d8d0e1247ab0cada0f76023,delivered,2018-04-16 21:15:39,2018-04-16 22:10:26,2018-04-18 13:05:09,2018-05-05 12:28:34,2018-05-15 00:00:00 +989225ba6d0ebd5873335f7e01de2ae7,816f8653d5361cbf94e58c33f2502a5c,delivered,2017-12-12 13:56:04,2017-12-14 13:54:13,2017-12-16 00:18:57,2018-01-03 18:03:36,2018-01-08 00:00:00 +d887b52c6516beb39e8cd44a5f8b60f7,d9ef95f98d8da3b492bb8c0447910498,delivered,2018-02-03 12:38:58,2018-02-03 12:50:30,2018-02-05 21:26:53,2018-02-22 00:07:55,2018-03-07 00:00:00 +b276e4f8c0fb86bd82fce576f21713e0,cf8ffeddf027932e51e4eae73b384059,delivered,2018-07-29 23:34:51,2018-07-29 23:45:15,2018-07-30 14:43:00,2018-07-31 22:48:50,2018-08-06 00:00:00 +8563039e855156e48fccee4d611a3196,5f16605299d698660e0606f7eae2d2f9,delivered,2018-02-17 15:59:46,2018-02-17 16:15:34,2018-02-20 23:03:56,2018-03-20 00:59:25,2018-03-20 00:00:00 +60550084e6b4c0cb89a87df1f3e5ebd9,f5458ddc3545711efa883dd7ae7c4497,delivered,2018-02-21 18:15:12,2018-02-23 02:10:52,2018-02-27 18:52:09,2018-03-13 23:58:43,2018-03-29 00:00:00 +5acce57f8d9dfd55fa48e212a641a69d,295ae9b35379e077273387ff64354b6f,delivered,2017-07-31 21:37:10,2017-08-02 02:56:02,2017-08-03 18:32:48,2017-08-08 21:24:41,2017-08-22 00:00:00 +434d158e96bdd6972ad6e6d73ddcfd22,2a1dfb647f32f4390e7b857c67458536,delivered,2018-06-01 12:23:13,2018-06-05 03:35:15,2018-06-08 11:49:00,2018-06-18 21:32:52,2018-07-17 00:00:00 +7206b86ea789983f7a273ea7fa0bc2a8,3391c4bc11a817e7973e498b0b023158,delivered,2018-03-26 17:12:18,2018-03-26 17:28:27,2018-03-28 17:22:53,2018-04-05 22:11:18,2018-04-12 00:00:00 +1e7aff52cdbb2451ace09d0f848c3699,ddaff536587109b89777e0353215e150,delivered,2017-05-19 18:53:40,2017-05-19 19:05:17,2017-05-22 10:16:07,2017-05-31 13:58:46,2017-06-12 00:00:00 +6ea2f835b4556291ffdc53fa0b3b95e8,c7340080e394356141681bd4c9b8fe31,delivered,2017-11-24 21:27:48,2017-11-25 00:21:09,2017-12-13 21:14:05,2017-12-28 18:59:23,2017-12-21 00:00:00 +948097deef559c742e7ce321e5e58919,8644be24d48806bc3a88fd59fb47ceb1,delivered,2017-08-04 17:10:39,2017-08-04 17:25:11,2017-08-07 17:52:01,2017-08-12 14:08:40,2017-09-01 00:00:00 +d22e9fa5731b9e30e8b27afcdc2f8563,756fb9391752dad934e0fe3733378e57,delivered,2018-08-04 23:25:30,2018-08-04 23:35:13,2018-08-06 15:03:00,2018-08-13 23:34:42,2018-09-13 00:00:00 +ee64d42b8cf066f35eac1cf57de1aa85,caded193e8e47b8362864762a83db3c5,shipped,2018-06-04 16:44:48,2018-06-05 04:31:18,2018-06-05 14:32:00,,2018-06-28 00:00:00 +6ebaec694d7025e2ad4a05dba887c032,4f28355e5c17a4a42d3ce2439a1d4501,delivered,2017-05-18 13:55:47,2017-05-18 14:05:17,2017-05-19 12:01:38,2017-05-29 12:47:20,2017-06-09 00:00:00 +d17dc4a904426827ca80f2ccb3a6be56,569cf68214806a39acc0f39344aea67f,delivered,2017-05-14 20:28:25,2017-05-14 20:42:45,2017-05-16 08:17:46,2017-05-25 09:14:31,2017-06-12 00:00:00 +25f4376934e13d3508486352e11a5db0,12fd2740039676063a874b9567dfa651,delivered,2018-05-17 16:59:11,2018-05-18 01:17:39,2018-05-18 13:02:00,2018-05-21 15:22:11,2018-05-25 00:00:00 +5820a1100976432c7968a52da59e9364,2b56e94c2f66f2d97cfa63356f69cee8,delivered,2018-07-29 11:24:17,2018-07-29 11:44:19,2018-07-30 13:47:00,2018-08-02 22:09:11,2018-08-13 00:00:00 +2ce1ad82022c1ba30c2079502ac725aa,7f2178c5d771e17f507d3c1637339298,delivered,2017-08-09 20:19:05,2017-08-11 04:15:29,2017-08-11 17:52:32,2017-08-16 17:16:44,2017-08-31 00:00:00 +138849fd84dff2fb4ca70a0a34c4aa1c,9b18f3fc296990b97854e351334a32f6,delivered,2018-02-01 14:02:19,2018-02-03 02:53:07,2018-02-06 19:13:26,2018-02-14 13:41:59,2018-02-23 00:00:00 +47aa4816b27ba60ec948cd019cc1afc1,148348ff65384b4249b762579532e248,delivered,2018-06-26 13:42:52,2018-06-27 08:35:32,2018-06-27 13:20:00,2018-07-03 18:37:46,2018-07-20 00:00:00 +9faeb9b2746b9d7526aef5acb08e2aa0,79183cd650e2bb0d475b0067d45946ac,delivered,2018-07-26 14:39:59,2018-07-26 14:55:10,2018-07-27 12:04:00,2018-07-31 22:26:55,2018-08-16 00:00:00 +641fb0752bf5b5940c376b3a8bb9dc52,f5afca14dfa9dc64251cf2b45c54c363,delivered,2017-12-15 00:06:10,2017-12-15 00:14:55,2017-12-19 01:58:00,2018-01-03 15:09:32,2018-01-16 00:00:00 +e425680f760cbc130be3e53a9773c584,f178c1827f67a8467b0385b7378d951a,delivered,2017-08-31 08:15:24,2017-08-31 08:30:17,2017-08-31 20:06:14,2017-09-04 20:59:55,2017-09-20 00:00:00 +40c5e18f7d112b59b3e5113a59a905b3,67407057a7d5ee17d1cd09523f484d13,delivered,2018-06-11 10:25:52,2018-06-11 10:58:32,2018-06-14 13:03:00,2018-06-19 00:31:13,2018-07-16 00:00:00 +734e7d1bbaeb2ff82521ca0fe6fb6f79,2932d241d1f31e6df6c701d52370ae02,delivered,2018-06-11 08:18:19,2018-06-11 08:31:50,2018-06-11 14:54:00,2018-06-14 21:32:21,2018-07-05 00:00:00 +66e4624ae69e7dc89bd50222b59f581f,684fa6da5134b9e4dab731e00011712d,delivered,2018-03-09 14:50:15,2018-03-09 15:40:39,2018-03-15 00:31:19,2018-04-03 13:28:46,2018-04-02 00:00:00 +a685d016c8a26f71a0bb67821070e398,911e4c37f5cafe1604fe6767034bf1ae,delivered,2017-03-13 18:14:36,2017-03-13 18:14:36,2017-03-22 14:03:09,2017-04-06 13:37:16,2017-03-30 00:00:00 +2edfd6d1f0b4cd0db4bf37b1b224d855,241e78de29b3090cfa1b5d73a8130c72,delivered,2017-06-13 21:11:26,2017-06-15 03:05:45,2017-06-16 14:55:37,2017-06-19 18:51:28,2017-07-06 00:00:00 +68873cf91053cd11e6b49a766db5af1a,4632eb5a8f175f6fe020520ae0c678f3,delivered,2017-11-30 22:02:15,2017-12-02 02:51:18,2017-12-04 22:07:01,2017-12-05 20:28:40,2017-12-18 00:00:00 +f346ad4ee8f630e5e4ddaf862a34e6dd,dd5095632e3953fc0947b8ab5176b0be,delivered,2018-08-05 13:09:48,2018-08-05 13:24:34,2018-08-06 13:41:00,2018-08-10 18:35:40,2018-08-15 00:00:00 +8f06cc6465925031568537b815f1198d,9916715c2ab6ee1710c9c32f0a534ad2,delivered,2017-11-15 11:31:41,2017-11-15 11:46:42,2017-11-16 22:03:00,2017-11-22 22:41:07,2017-12-05 00:00:00 +ccbabeb0b02433bd0fcbac46e70339f2,c77ee2d8ba1614a4d489a44166894938,delivered,2018-02-19 20:31:09,2018-02-21 06:15:25,2018-02-22 21:04:23,2018-03-09 22:22:25,2018-03-13 00:00:00 +688052146432ef8253587b930b01a06d,81e08b08e5ed4472008030d70327c71f,delivered,2018-04-22 08:48:13,2018-04-24 18:25:22,2018-04-23 19:19:14,2018-04-24 19:31:58,2018-05-15 00:00:00 +f271576bed568e896f99eb710cd3a6f8,5dda11942d4f77bee3a46d71e442aec4,delivered,2018-01-07 21:44:54,2018-01-07 21:51:28,2018-01-10 21:56:09,2018-01-17 20:26:31,2018-02-14 00:00:00 +686541986ecfb7d9296eb67719973bf0,74805bc388861fa350ed2fade8444e0b,delivered,2018-02-10 13:26:59,2018-02-10 13:35:31,2018-02-14 20:47:38,2018-02-20 22:13:08,2018-03-12 00:00:00 +68e48e68da1f50f7c5838ea75e3a20dd,4afc1dcca5fe8926fc97d60a4497f8ab,delivered,2018-06-18 16:02:23,2018-06-18 17:00:57,2018-06-19 15:55:00,2018-06-22 21:18:51,2018-07-13 00:00:00 +b52cc4919de82b4d696a4380d10804a3,be8c14c16a4d47194ccdfe10f1fc5b1a,delivered,2018-06-13 13:47:39,2018-06-15 02:37:29,2018-06-15 14:22:00,2018-06-18 22:32:44,2018-06-26 00:00:00 +fdf128b3630c21adc9ca4fb8a51b68ec,a9d37ddc8ba4d9f6dbac7d8ec378cc95,delivered,2018-07-15 08:33:19,2018-07-16 14:31:10,2018-07-17 15:33:00,2018-07-24 16:41:18,2018-08-02 00:00:00 +a6aeb116d2cb5013eb8a94585b71ffef,bb2f5e670f7155dc622c57e4b31d0a69,delivered,2017-09-13 14:27:11,2017-09-13 14:44:39,2017-09-15 18:42:29,2017-09-16 15:40:08,2017-09-25 00:00:00 +fa516182d28f96f5f5c651026b0749ee,55e6b290205c84ddd23ddf5eb134efd4,delivered,2018-04-13 08:44:17,2018-04-13 13:30:02,2018-04-13 22:19:21,2018-04-19 20:41:45,2018-05-08 00:00:00 +6abaad69b8b349c3a529b4b91ce18e46,f5618502bee8eafdee72fb6955e2ebdf,delivered,2018-02-15 10:33:30,2018-02-15 10:47:59,2018-02-20 14:15:09,2018-02-24 19:15:56,2018-03-07 00:00:00 +974c1993ab8024d3ed16229183c2308d,a90391a47de936d56c66a5366cba1462,delivered,2017-02-20 11:45:39,2017-02-22 03:10:20,2017-02-23 06:47:35,2017-03-09 14:27:58,2017-03-21 00:00:00 +82bce245b1c9148f8d19a55b9ff70644,388025bec8128ff20ec1a316ed4dcf02,delivered,2017-04-20 17:15:46,2017-04-21 05:15:56,2017-04-24 09:34:13,2017-05-10 09:17:55,2017-05-12 00:00:00 +a910f58086d58b3ae6f37aa712d377b9,afb19a4b667cb708caab312757ec3d3f,delivered,2017-09-15 09:19:48,2017-09-15 09:35:18,2017-09-18 18:20:00,2017-09-25 20:14:48,2017-10-11 00:00:00 +bd4bd0194d6d29f83b8557d4b89b572a,636e15840ab051faa13d3f781b6e4233,delivered,2018-07-28 16:52:55,2018-07-31 03:50:24,2018-08-01 16:01:00,2018-08-06 18:44:46,2018-08-08 00:00:00 +634e8f4c0f6744a626f77f39770ac6aa,05e996469a2bf9559c7122b87e156724,delivered,2017-08-09 18:32:47,2017-08-09 18:45:18,2017-08-10 20:21:53,2017-08-16 18:17:54,2017-08-31 00:00:00 +6d25592267349b322799e2beb687871e,5bb39c890c91b1d26801aa19a9336eac,delivered,2018-08-26 22:04:34,2018-08-28 04:10:18,2018-08-28 12:56:00,2018-08-29 12:40:53,2018-08-30 00:00:00 +b8801cccd8068de30112e4f49903d74a,f26a435864aebedff7f7c84f82ee229f,delivered,2017-07-30 03:06:35,2017-07-30 03:25:08,2017-07-31 16:42:54,2017-08-01 14:27:31,2017-08-16 00:00:00 +2711a938db643b3f0b62ee2c8a2784aa,29cb486c739f9774c8eb542e07b56cd2,delivered,2017-12-22 00:17:37,2017-12-23 02:15:31,2017-12-27 19:54:46,2018-01-09 19:52:32,2018-01-19 00:00:00 +3bc77ce8be27211bac313c2daa402d1a,bf141bf67fbe428d558bcf0e018eab60,delivered,2017-04-06 22:39:29,2017-04-06 22:50:24,2017-04-07 14:54:18,2017-04-11 12:31:36,2017-04-27 00:00:00 +10c320f977c6a18f91b2d14be13128c6,b673f0597cb0c4d12778f731045f361a,delivered,2017-05-09 20:48:59,2017-05-09 21:02:45,2017-05-10 11:22:15,2017-05-18 13:22:35,2017-06-01 00:00:00 +0a4a2fccb27bd83a892fa503987a595b,6772a0a230a2667d16c3620f000e1348,delivered,2017-04-20 20:42:44,2017-04-20 20:55:09,2017-04-25 08:23:08,2017-05-11 13:07:46,2017-05-25 00:00:00 +e4de6d53ecff736bc68804b0b6e9f635,9f6618c17568ac301465fe7ad056c674,delivered,2017-10-16 14:56:50,2017-10-17 03:49:34,2017-10-27 22:14:21,2017-11-08 21:25:24,2017-11-21 00:00:00 +6b860b35691d486e45dc98e3514ec5f6,fee181bf648906d1c57f84f216976286,delivered,2017-12-08 09:42:43,2017-12-09 02:49:54,2017-12-11 15:19:04,2017-12-19 18:43:35,2018-01-03 00:00:00 +ec341c54a5ebf8ee0a67a8632aa7579b,df9b032b2ad0fd6bf37dfb48e5f83845,delivered,2017-08-26 16:53:30,2017-08-27 17:04:12,2017-08-30 13:26:32,2017-09-08 20:39:56,2017-09-21 00:00:00 +cadbb3657dac2dbbd5b84b12e7b78aad,93ada7a24817edda9f4ab998fa823d16,delivered,2018-02-27 12:55:42,2018-03-01 02:48:54,2018-03-03 02:27:03,2018-03-16 14:59:01,2018-03-29 00:00:00 +9defaf92cff22420e4e8ef7784815a55,64fb950e760ec8b0db79154a1fa9c1bf,delivered,2018-05-11 13:10:51,2018-05-11 13:36:50,2018-05-16 14:43:00,2018-05-21 16:09:55,2018-06-05 00:00:00 +20e0101b20700188cadb288126949685,48558a50a7ba1aab61891936d2ca7681,delivered,2018-01-22 19:22:22,2018-01-22 19:36:35,2018-01-24 23:32:21,2018-02-15 20:08:15,2018-02-19 00:00:00 +0e782c3705510e717d28907746cbda82,3a897024068ed42a183de61d5727d866,delivered,2018-05-01 08:12:37,2018-05-01 08:52:58,2018-05-02 19:01:00,2018-05-04 14:02:26,2018-05-16 00:00:00 +d3d6788577c9592da441752e8a1dd5e3,8628fac2267e8c8804525da99c10ed0e,delivered,2017-09-19 22:17:15,2017-09-20 07:55:14,2017-09-22 17:23:09,2017-10-10 18:43:53,2017-10-13 00:00:00 +86f21bf63784876b9fd6d35f46581d72,332df68ccac2f2f7d9e11299188f8bce,delivered,2018-04-11 22:32:31,2018-04-11 22:49:32,2018-04-14 00:02:39,2018-04-27 23:14:42,2018-05-21 00:00:00 +8447ff843b2616c50c0ced28ab1dae03,e28dd4261bed9c7ba89ecaf411b88f7c,delivered,2017-12-20 23:45:07,2017-12-22 02:37:45,2017-12-23 13:10:45,2018-01-09 18:14:02,2018-01-22 00:00:00 +f169bd689fb8b32ccd62df9050aebc0b,82f0b75bb50fcb30711e5277e36b3983,delivered,2018-04-22 23:23:18,2018-04-24 19:24:14,2018-04-27 13:46:00,2018-04-30 17:57:25,2018-05-07 00:00:00 +77e9941864fc840be8e4b1ba5347c0f7,3135962ee745ef39b85576df7ddbaa99,delivered,2018-08-03 08:59:39,2018-08-03 09:31:36,2018-08-03 10:10:00,2018-08-17 00:49:41,2018-08-27 00:00:00 +41bb5cee06dbf170878a9ef93ac7e7f5,1833a0540067becaf59368fe4cd4303a,delivered,2018-05-14 08:35:33,2018-05-14 08:52:24,2018-05-16 14:46:00,2018-05-18 14:48:38,2018-06-08 00:00:00 +6a0a8bfbbe700284feb0845d95e0867f,68451b39b1314302c08c65a29f1140fc,delivered,2017-11-22 11:32:22,2017-11-22 11:46:50,2017-11-27 13:39:35,2017-12-28 19:43:00,2017-12-11 00:00:00 +f7959f8385f34c4f645327465a1c9fc4,0bf19317b1830a69e55b40710576aa7a,delivered,2017-03-30 07:50:33,2017-03-30 08:05:08,2017-03-30 10:55:54,2017-04-10 02:59:52,2017-04-26 00:00:00 +23f553848a03aaab35bb3f9f87725125,c622b892a190735ef81c0087973fa16d,delivered,2018-06-05 09:10:34,2018-06-05 09:32:22,2018-06-06 15:37:00,2018-06-18 12:36:54,2018-07-23 00:00:00 diff --git a/data/orders/products.csv b/data/orders/products.csv new file mode 100644 index 0000000..22db433 --- /dev/null +++ b/data/orders/products.csv @@ -0,0 +1,101 @@ +product_id,product_category_name,product_name_lenght,product_description_lenght,product_photos_qty,product_weight_g,product_length_cm,product_height_cm,product_width_cm +278b3c6462e86b4556b99989513ddf73,eletroportateis,58.0,587.0,3.0,350.0,20.0,20.0,20.0 +3014e35fd70fce29095ced5cdc89f4ce,telefonia,51.0,244.0,1.0,125.0,17.0,10.0,14.0 +15a9e834e89eab39d973492882c658d6,cama_mesa_banho,52.0,530.0,6.0,949.0,30.0,20.0,26.0 +db56f6d2b04c89eae4daba188842fd7b,malas_acessorios,56.0,450.0,3.0,12450.0,40.0,25.0,57.0 +154e7e31ebfa092203795c972e5804a6,beleza_saude,48.0,575.0,1.0,100.0,20.0,15.0,15.0 +20a8603c265d777e25da064113d556f5,telefonia,59.0,474.0,3.0,475.0,17.0,14.0,14.0 +87285b34884572647811a353c7ac498a,utilidades_domesticas,40.0,268.0,4.0,500.0,19.0,8.0,13.0 +7c1bd920dbdf22470b68bde975dd3ccf,beleza_saude,59.0,492.0,2.0,200.0,22.0,10.0,18.0 +b37b72d5a56f887725c2862184b8cab8,telefonia,59.0,566.0,1.0,150.0,19.0,4.0,11.0 +ac1789e492dcd698c5c10b97a671243a,moveis_decoracao,41.0,432.0,2.0,300.0,35.0,35.0,15.0 +f410090aec61f7c73748ca894286edcd,papelaria,60.0,1847.0,3.0,450.0,35.0,50.0,12.0 +e251ebd2858be1aa7d9b2087a6992580,ferramentas_jardim,34.0,511.0,4.0,8875.0,40.0,14.0,43.0 +1501b0033c68a37fa9560033a440e529,eletroportateis,58.0,1160.0,6.0,410.0,24.0,22.0,17.0 +43ee88561093499d9e571d4db5f20b79,moveis_decoracao,39.0,161.0,3.0,200.0,20.0,20.0,20.0 +f8a8f05a35976a91aed5cccc3992c357,moveis_decoracao,63.0,418.0,1.0,1500.0,45.0,15.0,35.0 +7564c1759c04fc0a38f2aa84f7a370ee,construcao_ferramentas_construcao,59.0,2432.0,3.0,1200.0,16.0,11.0,11.0 +ebd7c847c1e1cb69ec374ae0ebee1f4c,moveis_decoracao,50.0,228.0,3.0,1200.0,40.0,15.0,30.0 +2b4609f8948be18874494203496bc318,beleza_saude,59.0,492.0,3.0,250.0,22.0,10.0,18.0 +c7df652246ed7b3300aaf46960c141e4,beleza_saude,28.0,1455.0,1.0,683.0,29.0,15.0,22.0 +2d8f2be4f08788ee3bf5356af2b2ee6c,climatizacao,52.0,331.0,4.0,100.0,27.0,13.0,17.0 +f7d7b5c58704fb359a74580622800051,cama_mesa_banho,53.0,223.0,1.0,950.0,45.0,15.0,35.0 +304fad8dc4d2012dc4062839972f2d96,construcao_ferramentas_construcao,59.0,1775.0,2.0,1700.0,16.0,11.0,11.0 +60184212dae4e6b0da32bf54271a8c4a,relogios_presentes,59.0,476.0,2.0,394.0,17.0,11.0,14.0 +d1c427060a0f73f6b889a5c7c61f2ac4,informatica_acessorios,59.0,1893.0,1.0,6550.0,20.0,20.0,20.0 +cf944645d4ff2a3eed3ae17f641ea861,fashion_underwear_e_moda_praia,52.0,579.0,1.0,450.0,42.0,4.0,14.0 +6893767814d1ac82a81bcd365e1cc918,eletronicos,26.0,511.0,1.0,200.0,25.0,7.0,16.0 +d70f38e7f79c630f8ea00c993897042c,bebes,53.0,233.0,1.0,10950.0,41.0,40.0,40.0 +4520766ec412348b8d4caa5e8a18c464,automotivo,59.0,956.0,1.0,50.0,16.0,16.0,17.0 +5ac9d9e379c606e36a8094a6046f75dc,beleza_saude,46.0,2345.0,6.0,525.0,21.0,16.0,13.0 +9d2ff462feaaf88912539b8647e17ab4,informatica_acessorios,42.0,315.0,1.0,813.0,32.0,16.0,16.0 +72d3bf1d3a790f8874096fcf860e3eff,brinquedos,57.0,341.0,2.0,583.0,20.0,21.0,20.0 +64d0feb1bcf9c7fe7b5dad3271c10910,moveis_decoracao,58.0,696.0,7.0,750.0,25.0,15.0,35.0 +08574b074924071f4e201e151b152b4e,ferramentas_jardim,36.0,450.0,1.0,9000.0,42.0,12.0,39.0 +30469bb5ea377eae7121981e2f0778e4,esporte_lazer,57.0,574.0,4.0,5950.0,20.0,30.0,80.0 +9b37a918bcf2c8e1064e867cf1df4637,eletronicos,57.0,1710.0,6.0,1207.0,20.0,10.0,20.0 +65266b2da20d04dbe00c5c2d3bb7859e,papelaria,38.0,316.0,4.0,250.0,51.0,15.0,15.0 +00baba5b58e274d0332a0c8a0a66f877,perfumaria,27.0,406.0,4.0,200.0,18.0,7.0,12.0 +aa4383b373c6aca5d8797843e5594415,automotivo,46.0,232.0,1.0,420.0,24.0,19.0,21.0 +f497ba62f1d6b4f6a3a3266fa8623ad3,beleza_saude,45.0,1276.0,1.0,83.0,13.0,8.0,12.0 +a5a0e71a81ae65aa335e71c06261e260,utilidades_domesticas,57.0,698.0,3.0,705.0,34.0,22.0,28.0 +c0db539123a403f670c50237d970b215,ferramentas_jardim,56.0,1313.0,2.0,850.0,20.0,20.0,20.0 +aca2eb7d00ea1a7b8ebd4e68314663af,moveis_decoracao,44.0,903.0,6.0,2600.0,50.0,10.0,30.0 +c6c1f263e076bd9c1f1640250a5d0c29,perfumaria,32.0,102.0,1.0,425.0,24.0,12.0,16.0 +6b64362e89896be7589621df54be089e,moveis_decoracao,57.0,2435.0,2.0,3000.0,69.0,11.0,11.0 +f7e0fa615b386bc9a8b9eb52bc1fff76,informatica_acessorios,59.0,2574.0,1.0,325.0,21.0,21.0,21.0 +7a10781637204d8d10485c71a6108a2e,relogios_presentes,42.0,236.0,1.0,342.0,18.0,13.0,15.0 +9451e630d725c4bb7a5a206b48b99486,bebes,52.0,300.0,1.0,350.0,31.0,10.0,12.0 +ba4bfbf74dbe7ab37e263b9326da0523,esporte_lazer,60.0,521.0,1.0,650.0,24.0,10.0,20.0 +90b58782fdd04cb829667fcc41fb65f5,moveis_escritorio,34.0,794.0,1.0,7417.0,102.0,46.0,11.0 +79da264732f717f10ebf5d102aa6c32a,telefonia,59.0,675.0,5.0,150.0,17.0,8.0,14.0 +c827fb43ad0fb8708f34c2911fdc164b,esporte_lazer,53.0,699.0,1.0,10600.0,26.0,30.0,26.0 +ba74c6b75d2ad7503175809688d5a03c,relogios_presentes,59.0,1088.0,2.0,292.0,17.0,8.0,12.0 +c1234c80dafde7ef3311b3eabd5069ed,cama_mesa_banho,55.0,122.0,1.0,300.0,20.0,2.0,15.0 +5e2ba75ad255ff60b1c76c5bf526ae9b,beleza_saude,47.0,1346.0,2.0,500.0,20.0,8.0,20.0 +ad1128daf194f4b6ac4256e16233497c,telefonia,32.0,580.0,2.0,100.0,16.0,3.0,11.0 +163e6400e6dadd0fe04775c5e9331fda,bebes,29.0,462.0,1.0,500.0,47.0,10.0,36.0 +009c09f439988bc06a93d6b8186dce73,perfumaria,39.0,991.0,3.0,150.0,20.0,20.0,20.0 +7b717060aa783eb7f23a747a3a733dd7,cool_stuff,46.0,595.0,2.0,500.0,16.0,12.0,22.0 +9ecadb84c81da840dbf3564378b586e9,moveis_decoracao,41.0,789.0,1.0,950.0,20.0,35.0,20.0 +060cb19345d90064d1015407193c233d,automotivo,49.0,608.0,1.0,7150.0,65.0,10.0,65.0 +7f457254a89d62960399e075711b3deb,automotivo,60.0,558.0,6.0,300.0,17.0,4.0,12.0 +72a97c271b2e429974398f46b93ae530,perfumaria,59.0,685.0,1.0,450.0,16.0,17.0,16.0 +a47295965bd091207681b541b26e40a5,telefonia,60.0,818.0,6.0,300.0,17.0,4.0,12.0 +bb7181410b4e02f93f3697f765db53c7,bebes,36.0,1058.0,1.0,14950.0,77.0,20.0,53.0 +595fac2a385ac33a80bd5114aec74eb8,perfumaria,29.0,178.0,1.0,400.0,19.0,13.0,19.0 +22f5b63060a1185e5ec7721efd622321,cama_mesa_banho,32.0,606.0,2.0,400.0,90.0,6.0,12.0 +bff2010b28e8fbcff5a9db9d3fea5ac4,ferramentas_jardim,58.0,769.0,6.0,850.0,90.0,20.0,20.0 +c35498fbb4358837ae16850f50c3fd22,telefonia,59.0,973.0,1.0,325.0,19.0,8.0,22.0 +4ce99ff9dcb7821acd8e599d5d4a6531,esporte_lazer,51.0,192.0,2.0,450.0,35.0,10.0,11.0 +b3be1f83cef05668c25e134852d44545,cama_mesa_banho,52.0,413.0,1.0,1750.0,42.0,11.0,36.0 +c3ba4e8d3cb30049213b682e751e9d00,relogios_presentes,58.0,737.0,3.0,350.0,16.0,2.0,20.0 +a1804276d9941ac0733cfd409f5206eb,,,,,600.0,35.0,35.0,15.0 +cafd558df4c3c9d1c338ba6930ea9a62,bebes,45.0,1009.0,1.0,16450.0,44.0,70.0,32.0 +d457916b4fdc60154ed93b5dd3e6fd69,construcao_ferramentas_construcao,57.0,424.0,1.0,10000.0,30.0,20.0,30.0 +638bbb2a5e4f360b71f332ddfebfd672,construcao_ferramentas_construcao,38.0,143.0,2.0,20850.0,100.0,25.0,50.0 +75d6b6963340c6063f7f4cfcccfe6a30,perfumaria,51.0,999.0,2.0,400.0,18.0,11.0,20.0 +a659cb33082b851fb87a33af8f0fff29,automotivo,60.0,380.0,1.0,150.0,16.0,6.0,11.0 +e932008cf0ea7c93a077dd8d7e5f49eb,climatizacao,60.0,3270.0,4.0,7350.0,105.0,10.0,40.0 +89321f94e35fc6d7903d36f74e351d40,alimentos,59.0,982.0,1.0,150.0,17.0,13.0,13.0 +0cd9f302c8a5b076ffa5c3567c6705fd,informatica_acessorios,22.0,716.0,2.0,200.0,36.0,2.0,28.0 +c50ca07e9e4db9ea5011f06802c0aea0,beleza_saude,59.0,1782.0,1.0,125.0,25.0,14.0,18.0 +e99d69efe684efaa643f99805f7c81bc,papelaria,56.0,115.0,1.0,600.0,33.0,13.0,25.0 +be021417a6acb56b9b50d3fd2714baa8,utilidades_domesticas,48.0,664.0,6.0,14300.0,38.0,34.0,34.0 +cce679660c66e6fbd5c8091dfd29e9cd,cama_mesa_banho,43.0,125.0,1.0,250.0,40.0,4.0,30.0 +3dd6c9d499e7c311a29e08afe1fd8fc6,cool_stuff,60.0,396.0,4.0,250.0,19.0,12.0,12.0 +9a469eaf45dfbc43d39ba1977a3c07af,cama_mesa_banho,44.0,192.0,1.0,700.0,40.0,4.0,30.0 +cac9e5692471a0700418aa3400b9b2b1,bebes,57.0,2440.0,1.0,375.0,29.0,14.0,20.0 +5526b1ae9ab2688cf600783cece249df,informatica_acessorios,49.0,385.0,1.0,200.0,16.0,16.0,16.0 +9a78fb9862b10749a117f7fc3c31f051,moveis_escritorio,45.0,527.0,1.0,9750.0,42.0,41.0,42.0 +1deda1acffb44ed38494667d7e49a9f3,esporte_lazer,53.0,891.0,2.0,1150.0,27.0,12.0,17.0 +10adb53d8faa890ca7c2f0cbcb68d777,cama_mesa_banho,52.0,155.0,1.0,200.0,16.0,10.0,16.0 +d0b61bfb1de832b15ba9d266ca96e5b0,pet_shop,59.0,468.0,3.0,450.0,30.0,10.0,20.0 +8c591ab0ca519558779df02023177f44,ferramentas_jardim,47.0,1893.0,1.0,6050.0,20.0,20.0,20.0 +cd935d283d47f1050c505e1c39c48b67,esporte_lazer,32.0,658.0,5.0,281.0,30.0,14.0,25.0 +a01d1cbb398e386a4a8f8364401a7584,esporte_lazer,58.0,757.0,2.0,500.0,50.0,5.0,30.0 +12087840651e83b48206b82c213b76fd,esporte_lazer,27.0,521.0,1.0,1813.0,30.0,13.0,28.0 +f48eb5c2fde13ca63664f0bb05f55346,esporte_lazer,60.0,1153.0,2.0,100.0,20.0,11.0,11.0 +69d980b4120a76616d7b237d731d6156,relogios_presentes,60.0,1362.0,3.0,600.0,16.0,11.0,12.0 +39a9942865c056ed2006a5e8c11d9537,brinquedos,47.0,556.0,5.0,800.0,37.0,14.0,37.0 +f35927953ed82e19d06ad3aac2f06353,livros_interesse_geral,39.0,724.0,1.0,450.0,20.0,20.0,20.0 diff --git a/data/orders/sellers.csv b/data/orders/sellers.csv new file mode 100644 index 0000000..6585ba2 --- /dev/null +++ b/data/orders/sellers.csv @@ -0,0 +1,88 @@ +seller_id,seller_zip_code_prefix,seller_city,seller_state +669ae81880e08f269a64487cfb287169,89160,rio do sul,SC +817245bcc3badd82bbd222e0366951a6,17056,bauru,SP +7d13fca15225358621be4086e1eb0964,14050,ribeirao preto,SP +a3a38f4affed601eb87a97788c949667,89204,joinville,SC +744dac408745240a2c2528fb1b6028f3,83408,colombo,PR +8b321bb669392f5163d04c59e235e066,1212,sao paulo,SP +76d64c4aca3a7baf218bf93ef7fa768d,80215,curitiba,PR +537eb890efff034a88679788b647c564,20270,rio de janeiro,RJ +955fee9216a65b617aa5c0531780ce60,4782,sao paulo,SP +ba5daa4041e1f15cdf34b76e3e18a450,4363,sao paulo,SP +d3f39f05462b79a4562d35893a28f159,13730,mococa,SP +d1ef48b38baca7e831711c4a0aeb398f,86800,apucarana,PR +f7ba60f8c3f99e7ee4042fdef03b70c4,9628,sao bernardo do campo,SP +f84a00e60c73a49e7e851c9bdca3a5bb,20756,rio de janeiro,RJ +e5a38146df062edaf55c38afa99e42dc,1233,sao paulo,SP +ef0ace09169ac090589d85746e3e036f,24451,sao goncalo,RJ +87142160b41353c4e5fca2360caf6f92,90230,porto alegre,RS +289cdb325fb7e7f891c38608bf9e0962,31570,belo horizonte,SP +3504c0cb71d7fa48d967e0e4c94d59d9,9350,maua,SP +23613d49c3ac2bd302259e55c06c050c,13660,porto ferreira,SP +391fc6631aebcf3004804e51b40bcf1e,14940,ibitinga,SP +33cbbec1e7e1044aaf11d152172c776f,95705,bento goncalves,RS +e9779976487b77c6d4ac45f75ec7afe9,11701,praia grande,SP +db4350fd57ae30082dec7acbaacc17f9,3126,sao paulo,SP +70125af26c2d6d4ef401a1d02ae7701f,74435,goiania,GO +6560211a19b47992c3666cc44a7e94c0,5849,sao paulo,SP +0b90b6df587eb83608a64ea8b390cf07,87025,maringa,PR +55c26bcb609f480eb7868594245febb5,14910,tabatinga,SP +6df688df543f90e9b38f4319e75a9d88,31230,belo horizonte,MG +d673a59aac7a70d8b01e6902bf090a11,14940,ibitinga,SP +f52c2422904463fdd7741f99045fecb6,9230,santo andre/sao paulo,SP +ea8482cd71df3c1969d7b9473ff13abc,4160,sao paulo,SP +5b925e1d006e9476d738aa200751b73b,4567,sao paulo,SP +fe2032dab1a61af8794248c8196565c9,13030,campinas,SP +2a84855fd20af891be03bc5924d2b453,30111,belo horizonte,MG +c4af86330efa7a2620772227d2d670c9,8840,mogi das cruzes,SP +001cca7ae9ae17fb1caed9dfb1094831,29156,cariacica,ES +d91fb3b7d041e83b64a00a3edfb37e4f,11704,praia grande,SP +e70053bf73d1b5863932e53a9fa47496,5059,sao paulo,SP +7c67e1448b00f6e969d365cea6b010ab,8577,itaquaquecetuba,SP +980640c45d7a4635885491d077167e4d,13501,rio claro,SP +d2374cbcbb3ca4ab1086534108cc3ab7,14940,ibitinga,SP +0bae85eb84b9fb3bd773911e89288d54,88301,itajai,SP +6860153b69cc696d5dcfe1cdaaafcf62,13360,capivari,SP +76d5af76d0271110f9af36c92573f765,3194,sao paulo,SP +cc419e0650a3c5ba77189a1882b7556a,9015,santo andre,SP +977f9f63dd360c2a32ece2f93ad6d306,14910,tabatinga,SP +2c9e548be18521d1c43cde1c582c6de8,8752,mogi das cruzes,SP +855668e0971d4dfd7bef1b6a4133b41b,13257,itatiba,SP +77530e9772f57a62c906e1c21538ab82,80310,curitiba,PR +f7720c4fa8e3aba4546301ab80ea1f1b,81350,curitiba,PR +8581055ce74af1daba164fdbd55a40de,7112,guarulhos,SP +c8417879a15366a17c30af34c798c332,4445,sao paulo,SP +16090f2ca825584b5a147ab24aa30c86,12940,atibaia,SP +4c8b8048e33af2bf94f2eb547746a916,14940,ibitinga,SP +00fc707aaaad2d31347cf883cd2dfe10,87025,maringa,PR +562fc2f2c2863ab7e79a9e4388a58a14,13070,campinas,SP +85d9eb9ddc5d00ca9336a2219c97bb13,31255,belo horizonte,MG +a673821011d0cec28146ea42f5ab767f,3809,sao paulo,SP +dc4a0fc896dc34b0d5bfec8438291c80,14940,ibitinga,SP +a6fe7de3d16f6149ffe280349a8535a0,14401,franca,SP +f5f46307a4d15880ca14fab4ad9dfc9b,89165,rio do sul,SC +fcdd820084f17e9982427971e4e9d47f,14075,ribeirao preto,SP +36890be00bbfc1cdb9a4a38a6af05a69,6040,osasco,SP +f27e33c6d29b5138fa9967bcd445b6d5,4273,sao paulo,SP +c0563dd588b775f2e37747ef6ad6c92c,9220,santo andre,SP +633ecdf879b94b5337cca303328e4a25,4438,sao paulo,SP +80e6699fe29150b372a0c8a1ebf7dcc8,83323,pinhais,PR +5656537e588803a555b8eb41f07a944b,72015,brasilia,DF +5dceca129747e92ff8ef7a997dc4f8ca,13450,santa barbara d´oeste,SP +dc8798cbf453b7e0f98745e396cc5616,5455,sao paulo,SP +4a3ca9315b744ce9f8e9374361493884,14940,ibitinga,SP +b33e7c55446eabf8fe1a42d037ac7d6d,14850,pradopolis,SP +3b15288545f8928d3e65a8f949a28291,14940,ibitinga,SP +4869f7a5dfa277a7dca6462dcf3b52b2,14840,guariba,SP +094ced053e257ae8cae57205592d6712,14095,ribeirao preto,SP +a5cba26a62b8b4d0145b68b841e62e7f,87303,campo mourao,PR +1025f0e2d44d7041d6cf58b6550e0bfa,3204,sao paulo,SP +a1043bafd471dff536d0c462352beb48,37175,ilicinea,MG +f8db351d8c4c4c22c6835c19a46f01b0,13324,salto,SP +1ca7077d890b907f89be8c954a02686a,6506,santana de parnaiba,SP +89a51f50b8095ea78d5768f34c13a76f,71931,brasilia,DF +d566c37fa119d5e66c4e9052e83ee4ea,4131,sao paulo,SP +70a12e78e608ac31179aea7f8422044b,12327,jacarei,SP +66922902710d126a0e7d26b0e3805106,31842,belo horizonte,MG +1900267e848ceeba8fa32d80c1a5f5a8,14940,ibitinga,SP +63b9ae557efed31d1f7687917d248a8d,13720,sao jose do rio pardo,SP diff --git a/data/titanic.csv b/data/titanic.csv new file mode 100644 index 0000000..5cc466e --- /dev/null +++ b/data/titanic.csv @@ -0,0 +1,892 @@ +PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked +1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S +2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C +3,1,3,"Heikkinen, Miss. Laina",female,26,0,0,STON/O2. 3101282,7.925,,S +4,1,1,"Futrelle, Mrs. Jacques Heath (Lily May Peel)",female,35,1,0,113803,53.1,C123,S +5,0,3,"Allen, Mr. William Henry",male,35,0,0,373450,8.05,,S +6,0,3,"Moran, Mr. James",male,,0,0,330877,8.4583,,Q +7,0,1,"McCarthy, Mr. Timothy J",male,54,0,0,17463,51.8625,E46,S +8,0,3,"Palsson, Master. Gosta Leonard",male,2,3,1,349909,21.075,,S +9,1,3,"Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)",female,27,0,2,347742,11.1333,,S +10,1,2,"Nasser, Mrs. Nicholas (Adele Achem)",female,14,1,0,237736,30.0708,,C +11,1,3,"Sandstrom, Miss. Marguerite Rut",female,4,1,1,PP 9549,16.7,G6,S +12,1,1,"Bonnell, Miss. Elizabeth",female,58,0,0,113783,26.55,C103,S +13,0,3,"Saundercock, Mr. William Henry",male,20,0,0,A/5. 2151,8.05,,S +14,0,3,"Andersson, Mr. Anders Johan",male,39,1,5,347082,31.275,,S +15,0,3,"Vestrom, Miss. Hulda Amanda Adolfina",female,14,0,0,350406,7.8542,,S +16,1,2,"Hewlett, Mrs. (Mary D Kingcome) ",female,55,0,0,248706,16,,S +17,0,3,"Rice, Master. Eugene",male,2,4,1,382652,29.125,,Q +18,1,2,"Williams, Mr. Charles Eugene",male,,0,0,244373,13,,S +19,0,3,"Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)",female,31,1,0,345763,18,,S +20,1,3,"Masselmani, Mrs. Fatima",female,,0,0,2649,7.225,,C +21,0,2,"Fynney, Mr. Joseph J",male,35,0,0,239865,26,,S +22,1,2,"Beesley, Mr. Lawrence",male,34,0,0,248698,13,D56,S +23,1,3,"McGowan, Miss. Anna ""Annie""",female,15,0,0,330923,8.0292,,Q +24,1,1,"Sloper, Mr. William Thompson",male,28,0,0,113788,35.5,A6,S +25,0,3,"Palsson, Miss. Torborg Danira",female,8,3,1,349909,21.075,,S +26,1,3,"Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)",female,38,1,5,347077,31.3875,,S +27,0,3,"Emir, Mr. Farred Chehab",male,,0,0,2631,7.225,,C +28,0,1,"Fortune, Mr. Charles Alexander",male,19,3,2,19950,263,C23 C25 C27,S +29,1,3,"O'Dwyer, Miss. Ellen ""Nellie""",female,,0,0,330959,7.8792,,Q +30,0,3,"Todoroff, Mr. Lalio",male,,0,0,349216,7.8958,,S +31,0,1,"Uruchurtu, Don. Manuel E",male,40,0,0,PC 17601,27.7208,,C +32,1,1,"Spencer, Mrs. William Augustus (Marie Eugenie)",female,,1,0,PC 17569,146.5208,B78,C +33,1,3,"Glynn, Miss. Mary Agatha",female,,0,0,335677,7.75,,Q +34,0,2,"Wheadon, Mr. Edward H",male,66,0,0,C.A. 24579,10.5,,S +35,0,1,"Meyer, Mr. Edgar Joseph",male,28,1,0,PC 17604,82.1708,,C +36,0,1,"Holverson, Mr. Alexander Oskar",male,42,1,0,113789,52,,S +37,1,3,"Mamee, Mr. Hanna",male,,0,0,2677,7.2292,,C +38,0,3,"Cann, Mr. Ernest Charles",male,21,0,0,A./5. 2152,8.05,,S +39,0,3,"Vander Planke, Miss. Augusta Maria",female,18,2,0,345764,18,,S +40,1,3,"Nicola-Yarred, Miss. Jamila",female,14,1,0,2651,11.2417,,C +41,0,3,"Ahlin, Mrs. Johan (Johanna Persdotter Larsson)",female,40,1,0,7546,9.475,,S +42,0,2,"Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott)",female,27,1,0,11668,21,,S +43,0,3,"Kraeff, Mr. Theodor",male,,0,0,349253,7.8958,,C +44,1,2,"Laroche, Miss. Simonne Marie Anne Andree",female,3,1,2,SC/Paris 2123,41.5792,,C +45,1,3,"Devaney, Miss. Margaret Delia",female,19,0,0,330958,7.8792,,Q +46,0,3,"Rogers, Mr. William John",male,,0,0,S.C./A.4. 23567,8.05,,S +47,0,3,"Lennon, Mr. Denis",male,,1,0,370371,15.5,,Q +48,1,3,"O'Driscoll, Miss. Bridget",female,,0,0,14311,7.75,,Q +49,0,3,"Samaan, Mr. Youssef",male,,2,0,2662,21.6792,,C +50,0,3,"Arnold-Franchi, Mrs. Josef (Josefine Franchi)",female,18,1,0,349237,17.8,,S +51,0,3,"Panula, Master. Juha Niilo",male,7,4,1,3101295,39.6875,,S +52,0,3,"Nosworthy, Mr. Richard Cater",male,21,0,0,A/4. 39886,7.8,,S +53,1,1,"Harper, Mrs. Henry Sleeper (Myna Haxtun)",female,49,1,0,PC 17572,76.7292,D33,C +54,1,2,"Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson)",female,29,1,0,2926,26,,S +55,0,1,"Ostby, Mr. Engelhart Cornelius",male,65,0,1,113509,61.9792,B30,C +56,1,1,"Woolner, Mr. Hugh",male,,0,0,19947,35.5,C52,S +57,1,2,"Rugg, Miss. Emily",female,21,0,0,C.A. 31026,10.5,,S +58,0,3,"Novel, Mr. Mansouer",male,28.5,0,0,2697,7.2292,,C +59,1,2,"West, Miss. Constance Mirium",female,5,1,2,C.A. 34651,27.75,,S +60,0,3,"Goodwin, Master. William Frederick",male,11,5,2,CA 2144,46.9,,S +61,0,3,"Sirayanian, Mr. Orsen",male,22,0,0,2669,7.2292,,C +62,1,1,"Icard, Miss. Amelie",female,38,0,0,113572,80,B28, +63,0,1,"Harris, Mr. Henry Birkhardt",male,45,1,0,36973,83.475,C83,S +64,0,3,"Skoog, Master. Harald",male,4,3,2,347088,27.9,,S +65,0,1,"Stewart, Mr. Albert A",male,,0,0,PC 17605,27.7208,,C +66,1,3,"Moubarek, Master. Gerios",male,,1,1,2661,15.2458,,C +67,1,2,"Nye, Mrs. (Elizabeth Ramell)",female,29,0,0,C.A. 29395,10.5,F33,S +68,0,3,"Crease, Mr. Ernest James",male,19,0,0,S.P. 3464,8.1583,,S +69,1,3,"Andersson, Miss. Erna Alexandra",female,17,4,2,3101281,7.925,,S +70,0,3,"Kink, Mr. Vincenz",male,26,2,0,315151,8.6625,,S +71,0,2,"Jenkin, Mr. Stephen Curnow",male,32,0,0,C.A. 33111,10.5,,S +72,0,3,"Goodwin, Miss. Lillian Amy",female,16,5,2,CA 2144,46.9,,S +73,0,2,"Hood, Mr. Ambrose Jr",male,21,0,0,S.O.C. 14879,73.5,,S +74,0,3,"Chronopoulos, Mr. Apostolos",male,26,1,0,2680,14.4542,,C +75,1,3,"Bing, Mr. Lee",male,32,0,0,1601,56.4958,,S +76,0,3,"Moen, Mr. Sigurd Hansen",male,25,0,0,348123,7.65,F G73,S +77,0,3,"Staneff, Mr. Ivan",male,,0,0,349208,7.8958,,S +78,0,3,"Moutal, Mr. Rahamin Haim",male,,0,0,374746,8.05,,S +79,1,2,"Caldwell, Master. Alden Gates",male,0.83,0,2,248738,29,,S +80,1,3,"Dowdell, Miss. Elizabeth",female,30,0,0,364516,12.475,,S +81,0,3,"Waelens, Mr. Achille",male,22,0,0,345767,9,,S +82,1,3,"Sheerlinck, Mr. Jan Baptist",male,29,0,0,345779,9.5,,S +83,1,3,"McDermott, Miss. Brigdet Delia",female,,0,0,330932,7.7875,,Q +84,0,1,"Carrau, Mr. Francisco M",male,28,0,0,113059,47.1,,S +85,1,2,"Ilett, Miss. Bertha",female,17,0,0,SO/C 14885,10.5,,S +86,1,3,"Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson)",female,33,3,0,3101278,15.85,,S +87,0,3,"Ford, Mr. William Neal",male,16,1,3,W./C. 6608,34.375,,S +88,0,3,"Slocovski, Mr. Selman Francis",male,,0,0,SOTON/OQ 392086,8.05,,S +89,1,1,"Fortune, Miss. Mabel Helen",female,23,3,2,19950,263,C23 C25 C27,S +90,0,3,"Celotti, Mr. Francesco",male,24,0,0,343275,8.05,,S +91,0,3,"Christmann, Mr. Emil",male,29,0,0,343276,8.05,,S +92,0,3,"Andreasson, Mr. Paul Edvin",male,20,0,0,347466,7.8542,,S +93,0,1,"Chaffee, Mr. Herbert Fuller",male,46,1,0,W.E.P. 5734,61.175,E31,S +94,0,3,"Dean, Mr. Bertram Frank",male,26,1,2,C.A. 2315,20.575,,S +95,0,3,"Coxon, Mr. Daniel",male,59,0,0,364500,7.25,,S +96,0,3,"Shorney, Mr. Charles Joseph",male,,0,0,374910,8.05,,S +97,0,1,"Goldschmidt, Mr. George B",male,71,0,0,PC 17754,34.6542,A5,C +98,1,1,"Greenfield, Mr. William Bertram",male,23,0,1,PC 17759,63.3583,D10 D12,C +99,1,2,"Doling, Mrs. John T (Ada Julia Bone)",female,34,0,1,231919,23,,S +100,0,2,"Kantor, Mr. Sinai",male,34,1,0,244367,26,,S +101,0,3,"Petranec, Miss. Matilda",female,28,0,0,349245,7.8958,,S +102,0,3,"Petroff, Mr. Pastcho (""Pentcho"")",male,,0,0,349215,7.8958,,S +103,0,1,"White, Mr. Richard Frasar",male,21,0,1,35281,77.2875,D26,S +104,0,3,"Johansson, Mr. Gustaf Joel",male,33,0,0,7540,8.6542,,S +105,0,3,"Gustafsson, Mr. Anders Vilhelm",male,37,2,0,3101276,7.925,,S +106,0,3,"Mionoff, Mr. Stoytcho",male,28,0,0,349207,7.8958,,S +107,1,3,"Salkjelsvik, Miss. Anna Kristine",female,21,0,0,343120,7.65,,S +108,1,3,"Moss, Mr. Albert Johan",male,,0,0,312991,7.775,,S +109,0,3,"Rekic, Mr. Tido",male,38,0,0,349249,7.8958,,S +110,1,3,"Moran, Miss. Bertha",female,,1,0,371110,24.15,,Q +111,0,1,"Porter, Mr. Walter Chamberlain",male,47,0,0,110465,52,C110,S +112,0,3,"Zabour, Miss. Hileni",female,14.5,1,0,2665,14.4542,,C +113,0,3,"Barton, Mr. David John",male,22,0,0,324669,8.05,,S +114,0,3,"Jussila, Miss. Katriina",female,20,1,0,4136,9.825,,S +115,0,3,"Attalah, Miss. Malake",female,17,0,0,2627,14.4583,,C +116,0,3,"Pekoniemi, Mr. Edvard",male,21,0,0,STON/O 2. 3101294,7.925,,S +117,0,3,"Connors, Mr. Patrick",male,70.5,0,0,370369,7.75,,Q +118,0,2,"Turpin, Mr. William John Robert",male,29,1,0,11668,21,,S +119,0,1,"Baxter, Mr. Quigg Edmond",male,24,0,1,PC 17558,247.5208,B58 B60,C +120,0,3,"Andersson, Miss. Ellis Anna Maria",female,2,4,2,347082,31.275,,S +121,0,2,"Hickman, Mr. Stanley George",male,21,2,0,S.O.C. 14879,73.5,,S +122,0,3,"Moore, Mr. Leonard Charles",male,,0,0,A4. 54510,8.05,,S +123,0,2,"Nasser, Mr. Nicholas",male,32.5,1,0,237736,30.0708,,C +124,1,2,"Webber, Miss. Susan",female,32.5,0,0,27267,13,E101,S +125,0,1,"White, Mr. Percival Wayland",male,54,0,1,35281,77.2875,D26,S +126,1,3,"Nicola-Yarred, Master. Elias",male,12,1,0,2651,11.2417,,C +127,0,3,"McMahon, Mr. Martin",male,,0,0,370372,7.75,,Q +128,1,3,"Madsen, Mr. Fridtjof Arne",male,24,0,0,C 17369,7.1417,,S +129,1,3,"Peter, Miss. Anna",female,,1,1,2668,22.3583,F E69,C +130,0,3,"Ekstrom, Mr. Johan",male,45,0,0,347061,6.975,,S +131,0,3,"Drazenoic, Mr. Jozef",male,33,0,0,349241,7.8958,,C +132,0,3,"Coelho, Mr. Domingos Fernandeo",male,20,0,0,SOTON/O.Q. 3101307,7.05,,S +133,0,3,"Robins, Mrs. Alexander A (Grace Charity Laury)",female,47,1,0,A/5. 3337,14.5,,S +134,1,2,"Weisz, Mrs. Leopold (Mathilde Francoise Pede)",female,29,1,0,228414,26,,S +135,0,2,"Sobey, Mr. Samuel James Hayden",male,25,0,0,C.A. 29178,13,,S +136,0,2,"Richard, Mr. Emile",male,23,0,0,SC/PARIS 2133,15.0458,,C +137,1,1,"Newsom, Miss. Helen Monypeny",female,19,0,2,11752,26.2833,D47,S +138,0,1,"Futrelle, Mr. Jacques Heath",male,37,1,0,113803,53.1,C123,S +139,0,3,"Osen, Mr. Olaf Elon",male,16,0,0,7534,9.2167,,S +140,0,1,"Giglio, Mr. Victor",male,24,0,0,PC 17593,79.2,B86,C +141,0,3,"Boulos, Mrs. Joseph (Sultana)",female,,0,2,2678,15.2458,,C +142,1,3,"Nysten, Miss. Anna Sofia",female,22,0,0,347081,7.75,,S +143,1,3,"Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck)",female,24,1,0,STON/O2. 3101279,15.85,,S +144,0,3,"Burke, Mr. Jeremiah",male,19,0,0,365222,6.75,,Q +145,0,2,"Andrew, Mr. Edgardo Samuel",male,18,0,0,231945,11.5,,S +146,0,2,"Nicholls, Mr. Joseph Charles",male,19,1,1,C.A. 33112,36.75,,S +147,1,3,"Andersson, Mr. August Edvard (""Wennerstrom"")",male,27,0,0,350043,7.7958,,S +148,0,3,"Ford, Miss. Robina Maggie ""Ruby""",female,9,2,2,W./C. 6608,34.375,,S +149,0,2,"Navratil, Mr. Michel (""Louis M Hoffman"")",male,36.5,0,2,230080,26,F2,S +150,0,2,"Byles, Rev. Thomas Roussel Davids",male,42,0,0,244310,13,,S +151,0,2,"Bateman, Rev. Robert James",male,51,0,0,S.O.P. 1166,12.525,,S +152,1,1,"Pears, Mrs. Thomas (Edith Wearne)",female,22,1,0,113776,66.6,C2,S +153,0,3,"Meo, Mr. Alfonzo",male,55.5,0,0,A.5. 11206,8.05,,S +154,0,3,"van Billiard, Mr. Austin Blyler",male,40.5,0,2,A/5. 851,14.5,,S +155,0,3,"Olsen, Mr. Ole Martin",male,,0,0,Fa 265302,7.3125,,S +156,0,1,"Williams, Mr. Charles Duane",male,51,0,1,PC 17597,61.3792,,C +157,1,3,"Gilnagh, Miss. Katherine ""Katie""",female,16,0,0,35851,7.7333,,Q +158,0,3,"Corn, Mr. Harry",male,30,0,0,SOTON/OQ 392090,8.05,,S +159,0,3,"Smiljanic, Mr. Mile",male,,0,0,315037,8.6625,,S +160,0,3,"Sage, Master. Thomas Henry",male,,8,2,CA. 2343,69.55,,S +161,0,3,"Cribb, Mr. John Hatfield",male,44,0,1,371362,16.1,,S +162,1,2,"Watt, Mrs. James (Elizabeth ""Bessie"" Inglis Milne)",female,40,0,0,C.A. 33595,15.75,,S +163,0,3,"Bengtsson, Mr. John Viktor",male,26,0,0,347068,7.775,,S +164,0,3,"Calic, Mr. Jovo",male,17,0,0,315093,8.6625,,S +165,0,3,"Panula, Master. Eino Viljami",male,1,4,1,3101295,39.6875,,S +166,1,3,"Goldsmith, Master. Frank John William ""Frankie""",male,9,0,2,363291,20.525,,S +167,1,1,"Chibnall, Mrs. (Edith Martha Bowerman)",female,,0,1,113505,55,E33,S +168,0,3,"Skoog, Mrs. William (Anna Bernhardina Karlsson)",female,45,1,4,347088,27.9,,S +169,0,1,"Baumann, Mr. John D",male,,0,0,PC 17318,25.925,,S +170,0,3,"Ling, Mr. Lee",male,28,0,0,1601,56.4958,,S +171,0,1,"Van der hoef, Mr. Wyckoff",male,61,0,0,111240,33.5,B19,S +172,0,3,"Rice, Master. Arthur",male,4,4,1,382652,29.125,,Q +173,1,3,"Johnson, Miss. Eleanor Ileen",female,1,1,1,347742,11.1333,,S +174,0,3,"Sivola, Mr. Antti Wilhelm",male,21,0,0,STON/O 2. 3101280,7.925,,S +175,0,1,"Smith, Mr. James Clinch",male,56,0,0,17764,30.6958,A7,C +176,0,3,"Klasen, Mr. Klas Albin",male,18,1,1,350404,7.8542,,S +177,0,3,"Lefebre, Master. Henry Forbes",male,,3,1,4133,25.4667,,S +178,0,1,"Isham, Miss. Ann Elizabeth",female,50,0,0,PC 17595,28.7125,C49,C +179,0,2,"Hale, Mr. Reginald",male,30,0,0,250653,13,,S +180,0,3,"Leonard, Mr. Lionel",male,36,0,0,LINE,0,,S +181,0,3,"Sage, Miss. Constance Gladys",female,,8,2,CA. 2343,69.55,,S +182,0,2,"Pernot, Mr. Rene",male,,0,0,SC/PARIS 2131,15.05,,C +183,0,3,"Asplund, Master. Clarence Gustaf Hugo",male,9,4,2,347077,31.3875,,S +184,1,2,"Becker, Master. Richard F",male,1,2,1,230136,39,F4,S +185,1,3,"Kink-Heilmann, Miss. Luise Gretchen",female,4,0,2,315153,22.025,,S +186,0,1,"Rood, Mr. Hugh Roscoe",male,,0,0,113767,50,A32,S +187,1,3,"O'Brien, Mrs. Thomas (Johanna ""Hannah"" Godfrey)",female,,1,0,370365,15.5,,Q +188,1,1,"Romaine, Mr. Charles Hallace (""Mr C Rolmane"")",male,45,0,0,111428,26.55,,S +189,0,3,"Bourke, Mr. John",male,40,1,1,364849,15.5,,Q +190,0,3,"Turcin, Mr. Stjepan",male,36,0,0,349247,7.8958,,S +191,1,2,"Pinsky, Mrs. (Rosa)",female,32,0,0,234604,13,,S +192,0,2,"Carbines, Mr. William",male,19,0,0,28424,13,,S +193,1,3,"Andersen-Jensen, Miss. Carla Christine Nielsine",female,19,1,0,350046,7.8542,,S +194,1,2,"Navratil, Master. Michel M",male,3,1,1,230080,26,F2,S +195,1,1,"Brown, Mrs. James Joseph (Margaret Tobin)",female,44,0,0,PC 17610,27.7208,B4,C +196,1,1,"Lurette, Miss. Elise",female,58,0,0,PC 17569,146.5208,B80,C +197,0,3,"Mernagh, Mr. Robert",male,,0,0,368703,7.75,,Q +198,0,3,"Olsen, Mr. Karl Siegwart Andreas",male,42,0,1,4579,8.4042,,S +199,1,3,"Madigan, Miss. Margaret ""Maggie""",female,,0,0,370370,7.75,,Q +200,0,2,"Yrois, Miss. Henriette (""Mrs Harbeck"")",female,24,0,0,248747,13,,S +201,0,3,"Vande Walle, Mr. Nestor Cyriel",male,28,0,0,345770,9.5,,S +202,0,3,"Sage, Mr. Frederick",male,,8,2,CA. 2343,69.55,,S +203,0,3,"Johanson, Mr. Jakob Alfred",male,34,0,0,3101264,6.4958,,S +204,0,3,"Youseff, Mr. Gerious",male,45.5,0,0,2628,7.225,,C +205,1,3,"Cohen, Mr. Gurshon ""Gus""",male,18,0,0,A/5 3540,8.05,,S +206,0,3,"Strom, Miss. Telma Matilda",female,2,0,1,347054,10.4625,G6,S +207,0,3,"Backstrom, Mr. Karl Alfred",male,32,1,0,3101278,15.85,,S +208,1,3,"Albimona, Mr. Nassef Cassem",male,26,0,0,2699,18.7875,,C +209,1,3,"Carr, Miss. Helen ""Ellen""",female,16,0,0,367231,7.75,,Q +210,1,1,"Blank, Mr. Henry",male,40,0,0,112277,31,A31,C +211,0,3,"Ali, Mr. Ahmed",male,24,0,0,SOTON/O.Q. 3101311,7.05,,S +212,1,2,"Cameron, Miss. Clear Annie",female,35,0,0,F.C.C. 13528,21,,S +213,0,3,"Perkin, Mr. John Henry",male,22,0,0,A/5 21174,7.25,,S +214,0,2,"Givard, Mr. Hans Kristensen",male,30,0,0,250646,13,,S +215,0,3,"Kiernan, Mr. Philip",male,,1,0,367229,7.75,,Q +216,1,1,"Newell, Miss. Madeleine",female,31,1,0,35273,113.275,D36,C +217,1,3,"Honkanen, Miss. Eliina",female,27,0,0,STON/O2. 3101283,7.925,,S +218,0,2,"Jacobsohn, Mr. Sidney Samuel",male,42,1,0,243847,27,,S +219,1,1,"Bazzani, Miss. Albina",female,32,0,0,11813,76.2917,D15,C +220,0,2,"Harris, Mr. Walter",male,30,0,0,W/C 14208,10.5,,S +221,1,3,"Sunderland, Mr. Victor Francis",male,16,0,0,SOTON/OQ 392089,8.05,,S +222,0,2,"Bracken, Mr. James H",male,27,0,0,220367,13,,S +223,0,3,"Green, Mr. George Henry",male,51,0,0,21440,8.05,,S +224,0,3,"Nenkoff, Mr. Christo",male,,0,0,349234,7.8958,,S +225,1,1,"Hoyt, Mr. Frederick Maxfield",male,38,1,0,19943,90,C93,S +226,0,3,"Berglund, Mr. Karl Ivar Sven",male,22,0,0,PP 4348,9.35,,S +227,1,2,"Mellors, Mr. William John",male,19,0,0,SW/PP 751,10.5,,S +228,0,3,"Lovell, Mr. John Hall (""Henry"")",male,20.5,0,0,A/5 21173,7.25,,S +229,0,2,"Fahlstrom, Mr. Arne Jonas",male,18,0,0,236171,13,,S +230,0,3,"Lefebre, Miss. Mathilde",female,,3,1,4133,25.4667,,S +231,1,1,"Harris, Mrs. Henry Birkhardt (Irene Wallach)",female,35,1,0,36973,83.475,C83,S +232,0,3,"Larsson, Mr. Bengt Edvin",male,29,0,0,347067,7.775,,S +233,0,2,"Sjostedt, Mr. Ernst Adolf",male,59,0,0,237442,13.5,,S +234,1,3,"Asplund, Miss. Lillian Gertrud",female,5,4,2,347077,31.3875,,S +235,0,2,"Leyson, Mr. Robert William Norman",male,24,0,0,C.A. 29566,10.5,,S +236,0,3,"Harknett, Miss. Alice Phoebe",female,,0,0,W./C. 6609,7.55,,S +237,0,2,"Hold, Mr. Stephen",male,44,1,0,26707,26,,S +238,1,2,"Collyer, Miss. Marjorie ""Lottie""",female,8,0,2,C.A. 31921,26.25,,S +239,0,2,"Pengelly, Mr. Frederick William",male,19,0,0,28665,10.5,,S +240,0,2,"Hunt, Mr. George Henry",male,33,0,0,SCO/W 1585,12.275,,S +241,0,3,"Zabour, Miss. Thamine",female,,1,0,2665,14.4542,,C +242,1,3,"Murphy, Miss. Katherine ""Kate""",female,,1,0,367230,15.5,,Q +243,0,2,"Coleridge, Mr. Reginald Charles",male,29,0,0,W./C. 14263,10.5,,S +244,0,3,"Maenpaa, Mr. Matti Alexanteri",male,22,0,0,STON/O 2. 3101275,7.125,,S +245,0,3,"Attalah, Mr. Sleiman",male,30,0,0,2694,7.225,,C +246,0,1,"Minahan, Dr. William Edward",male,44,2,0,19928,90,C78,Q +247,0,3,"Lindahl, Miss. Agda Thorilda Viktoria",female,25,0,0,347071,7.775,,S +248,1,2,"Hamalainen, Mrs. William (Anna)",female,24,0,2,250649,14.5,,S +249,1,1,"Beckwith, Mr. Richard Leonard",male,37,1,1,11751,52.5542,D35,S +250,0,2,"Carter, Rev. Ernest Courtenay",male,54,1,0,244252,26,,S +251,0,3,"Reed, Mr. James George",male,,0,0,362316,7.25,,S +252,0,3,"Strom, Mrs. Wilhelm (Elna Matilda Persson)",female,29,1,1,347054,10.4625,G6,S +253,0,1,"Stead, Mr. William Thomas",male,62,0,0,113514,26.55,C87,S +254,0,3,"Lobb, Mr. William Arthur",male,30,1,0,A/5. 3336,16.1,,S +255,0,3,"Rosblom, Mrs. Viktor (Helena Wilhelmina)",female,41,0,2,370129,20.2125,,S +256,1,3,"Touma, Mrs. Darwis (Hanne Youssef Razi)",female,29,0,2,2650,15.2458,,C +257,1,1,"Thorne, Mrs. Gertrude Maybelle",female,,0,0,PC 17585,79.2,,C +258,1,1,"Cherry, Miss. Gladys",female,30,0,0,110152,86.5,B77,S +259,1,1,"Ward, Miss. Anna",female,35,0,0,PC 17755,512.3292,,C +260,1,2,"Parrish, Mrs. (Lutie Davis)",female,50,0,1,230433,26,,S +261,0,3,"Smith, Mr. Thomas",male,,0,0,384461,7.75,,Q +262,1,3,"Asplund, Master. Edvin Rojj Felix",male,3,4,2,347077,31.3875,,S +263,0,1,"Taussig, Mr. Emil",male,52,1,1,110413,79.65,E67,S +264,0,1,"Harrison, Mr. William",male,40,0,0,112059,0,B94,S +265,0,3,"Henry, Miss. Delia",female,,0,0,382649,7.75,,Q +266,0,2,"Reeves, Mr. David",male,36,0,0,C.A. 17248,10.5,,S +267,0,3,"Panula, Mr. Ernesti Arvid",male,16,4,1,3101295,39.6875,,S +268,1,3,"Persson, Mr. Ernst Ulrik",male,25,1,0,347083,7.775,,S +269,1,1,"Graham, Mrs. William Thompson (Edith Junkins)",female,58,0,1,PC 17582,153.4625,C125,S +270,1,1,"Bissette, Miss. Amelia",female,35,0,0,PC 17760,135.6333,C99,S +271,0,1,"Cairns, Mr. Alexander",male,,0,0,113798,31,,S +272,1,3,"Tornquist, Mr. William Henry",male,25,0,0,LINE,0,,S +273,1,2,"Mellinger, Mrs. (Elizabeth Anne Maidment)",female,41,0,1,250644,19.5,,S +274,0,1,"Natsch, Mr. Charles H",male,37,0,1,PC 17596,29.7,C118,C +275,1,3,"Healy, Miss. Hanora ""Nora""",female,,0,0,370375,7.75,,Q +276,1,1,"Andrews, Miss. Kornelia Theodosia",female,63,1,0,13502,77.9583,D7,S +277,0,3,"Lindblom, Miss. Augusta Charlotta",female,45,0,0,347073,7.75,,S +278,0,2,"Parkes, Mr. Francis ""Frank""",male,,0,0,239853,0,,S +279,0,3,"Rice, Master. Eric",male,7,4,1,382652,29.125,,Q +280,1,3,"Abbott, Mrs. Stanton (Rosa Hunt)",female,35,1,1,C.A. 2673,20.25,,S +281,0,3,"Duane, Mr. Frank",male,65,0,0,336439,7.75,,Q +282,0,3,"Olsson, Mr. Nils Johan Goransson",male,28,0,0,347464,7.8542,,S +283,0,3,"de Pelsmaeker, Mr. Alfons",male,16,0,0,345778,9.5,,S +284,1,3,"Dorking, Mr. Edward Arthur",male,19,0,0,A/5. 10482,8.05,,S +285,0,1,"Smith, Mr. Richard William",male,,0,0,113056,26,A19,S +286,0,3,"Stankovic, Mr. Ivan",male,33,0,0,349239,8.6625,,C +287,1,3,"de Mulder, Mr. Theodore",male,30,0,0,345774,9.5,,S +288,0,3,"Naidenoff, Mr. Penko",male,22,0,0,349206,7.8958,,S +289,1,2,"Hosono, Mr. Masabumi",male,42,0,0,237798,13,,S +290,1,3,"Connolly, Miss. Kate",female,22,0,0,370373,7.75,,Q +291,1,1,"Barber, Miss. Ellen ""Nellie""",female,26,0,0,19877,78.85,,S +292,1,1,"Bishop, Mrs. Dickinson H (Helen Walton)",female,19,1,0,11967,91.0792,B49,C +293,0,2,"Levy, Mr. Rene Jacques",male,36,0,0,SC/Paris 2163,12.875,D,C +294,0,3,"Haas, Miss. Aloisia",female,24,0,0,349236,8.85,,S +295,0,3,"Mineff, Mr. Ivan",male,24,0,0,349233,7.8958,,S +296,0,1,"Lewy, Mr. Ervin G",male,,0,0,PC 17612,27.7208,,C +297,0,3,"Hanna, Mr. Mansour",male,23.5,0,0,2693,7.2292,,C +298,0,1,"Allison, Miss. Helen Loraine",female,2,1,2,113781,151.55,C22 C26,S +299,1,1,"Saalfeld, Mr. Adolphe",male,,0,0,19988,30.5,C106,S +300,1,1,"Baxter, Mrs. James (Helene DeLaudeniere Chaput)",female,50,0,1,PC 17558,247.5208,B58 B60,C +301,1,3,"Kelly, Miss. Anna Katherine ""Annie Kate""",female,,0,0,9234,7.75,,Q +302,1,3,"McCoy, Mr. Bernard",male,,2,0,367226,23.25,,Q +303,0,3,"Johnson, Mr. William Cahoone Jr",male,19,0,0,LINE,0,,S +304,1,2,"Keane, Miss. Nora A",female,,0,0,226593,12.35,E101,Q +305,0,3,"Williams, Mr. Howard Hugh ""Harry""",male,,0,0,A/5 2466,8.05,,S +306,1,1,"Allison, Master. Hudson Trevor",male,0.92,1,2,113781,151.55,C22 C26,S +307,1,1,"Fleming, Miss. Margaret",female,,0,0,17421,110.8833,,C +308,1,1,"Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo)",female,17,1,0,PC 17758,108.9,C65,C +309,0,2,"Abelson, Mr. Samuel",male,30,1,0,P/PP 3381,24,,C +310,1,1,"Francatelli, Miss. Laura Mabel",female,30,0,0,PC 17485,56.9292,E36,C +311,1,1,"Hays, Miss. Margaret Bechstein",female,24,0,0,11767,83.1583,C54,C +312,1,1,"Ryerson, Miss. Emily Borie",female,18,2,2,PC 17608,262.375,B57 B59 B63 B66,C +313,0,2,"Lahtinen, Mrs. William (Anna Sylfven)",female,26,1,1,250651,26,,S +314,0,3,"Hendekovic, Mr. Ignjac",male,28,0,0,349243,7.8958,,S +315,0,2,"Hart, Mr. Benjamin",male,43,1,1,F.C.C. 13529,26.25,,S +316,1,3,"Nilsson, Miss. Helmina Josefina",female,26,0,0,347470,7.8542,,S +317,1,2,"Kantor, Mrs. Sinai (Miriam Sternin)",female,24,1,0,244367,26,,S +318,0,2,"Moraweck, Dr. Ernest",male,54,0,0,29011,14,,S +319,1,1,"Wick, Miss. Mary Natalie",female,31,0,2,36928,164.8667,C7,S +320,1,1,"Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone)",female,40,1,1,16966,134.5,E34,C +321,0,3,"Dennis, Mr. Samuel",male,22,0,0,A/5 21172,7.25,,S +322,0,3,"Danoff, Mr. Yoto",male,27,0,0,349219,7.8958,,S +323,1,2,"Slayter, Miss. Hilda Mary",female,30,0,0,234818,12.35,,Q +324,1,2,"Caldwell, Mrs. Albert Francis (Sylvia Mae Harbaugh)",female,22,1,1,248738,29,,S +325,0,3,"Sage, Mr. George John Jr",male,,8,2,CA. 2343,69.55,,S +326,1,1,"Young, Miss. Marie Grice",female,36,0,0,PC 17760,135.6333,C32,C +327,0,3,"Nysveen, Mr. Johan Hansen",male,61,0,0,345364,6.2375,,S +328,1,2,"Ball, Mrs. (Ada E Hall)",female,36,0,0,28551,13,D,S +329,1,3,"Goldsmith, Mrs. Frank John (Emily Alice Brown)",female,31,1,1,363291,20.525,,S +330,1,1,"Hippach, Miss. Jean Gertrude",female,16,0,1,111361,57.9792,B18,C +331,1,3,"McCoy, Miss. Agnes",female,,2,0,367226,23.25,,Q +332,0,1,"Partner, Mr. Austen",male,45.5,0,0,113043,28.5,C124,S +333,0,1,"Graham, Mr. George Edward",male,38,0,1,PC 17582,153.4625,C91,S +334,0,3,"Vander Planke, Mr. Leo Edmondus",male,16,2,0,345764,18,,S +335,1,1,"Frauenthal, Mrs. Henry William (Clara Heinsheimer)",female,,1,0,PC 17611,133.65,,S +336,0,3,"Denkoff, Mr. Mitto",male,,0,0,349225,7.8958,,S +337,0,1,"Pears, Mr. Thomas Clinton",male,29,1,0,113776,66.6,C2,S +338,1,1,"Burns, Miss. Elizabeth Margaret",female,41,0,0,16966,134.5,E40,C +339,1,3,"Dahl, Mr. Karl Edwart",male,45,0,0,7598,8.05,,S +340,0,1,"Blackwell, Mr. Stephen Weart",male,45,0,0,113784,35.5,T,S +341,1,2,"Navratil, Master. Edmond Roger",male,2,1,1,230080,26,F2,S +342,1,1,"Fortune, Miss. Alice Elizabeth",female,24,3,2,19950,263,C23 C25 C27,S +343,0,2,"Collander, Mr. Erik Gustaf",male,28,0,0,248740,13,,S +344,0,2,"Sedgwick, Mr. Charles Frederick Waddington",male,25,0,0,244361,13,,S +345,0,2,"Fox, Mr. Stanley Hubert",male,36,0,0,229236,13,,S +346,1,2,"Brown, Miss. Amelia ""Mildred""",female,24,0,0,248733,13,F33,S +347,1,2,"Smith, Miss. Marion Elsie",female,40,0,0,31418,13,,S +348,1,3,"Davison, Mrs. Thomas Henry (Mary E Finck)",female,,1,0,386525,16.1,,S +349,1,3,"Coutts, Master. William Loch ""William""",male,3,1,1,C.A. 37671,15.9,,S +350,0,3,"Dimic, Mr. Jovan",male,42,0,0,315088,8.6625,,S +351,0,3,"Odahl, Mr. Nils Martin",male,23,0,0,7267,9.225,,S +352,0,1,"Williams-Lambert, Mr. Fletcher Fellows",male,,0,0,113510,35,C128,S +353,0,3,"Elias, Mr. Tannous",male,15,1,1,2695,7.2292,,C +354,0,3,"Arnold-Franchi, Mr. Josef",male,25,1,0,349237,17.8,,S +355,0,3,"Yousif, Mr. Wazli",male,,0,0,2647,7.225,,C +356,0,3,"Vanden Steen, Mr. Leo Peter",male,28,0,0,345783,9.5,,S +357,1,1,"Bowerman, Miss. Elsie Edith",female,22,0,1,113505,55,E33,S +358,0,2,"Funk, Miss. Annie Clemmer",female,38,0,0,237671,13,,S +359,1,3,"McGovern, Miss. Mary",female,,0,0,330931,7.8792,,Q +360,1,3,"Mockler, Miss. Helen Mary ""Ellie""",female,,0,0,330980,7.8792,,Q +361,0,3,"Skoog, Mr. Wilhelm",male,40,1,4,347088,27.9,,S +362,0,2,"del Carlo, Mr. Sebastiano",male,29,1,0,SC/PARIS 2167,27.7208,,C +363,0,3,"Barbara, Mrs. (Catherine David)",female,45,0,1,2691,14.4542,,C +364,0,3,"Asim, Mr. Adola",male,35,0,0,SOTON/O.Q. 3101310,7.05,,S +365,0,3,"O'Brien, Mr. Thomas",male,,1,0,370365,15.5,,Q +366,0,3,"Adahl, Mr. Mauritz Nils Martin",male,30,0,0,C 7076,7.25,,S +367,1,1,"Warren, Mrs. Frank Manley (Anna Sophia Atkinson)",female,60,1,0,110813,75.25,D37,C +368,1,3,"Moussa, Mrs. (Mantoura Boulos)",female,,0,0,2626,7.2292,,C +369,1,3,"Jermyn, Miss. Annie",female,,0,0,14313,7.75,,Q +370,1,1,"Aubart, Mme. Leontine Pauline",female,24,0,0,PC 17477,69.3,B35,C +371,1,1,"Harder, Mr. George Achilles",male,25,1,0,11765,55.4417,E50,C +372,0,3,"Wiklund, Mr. Jakob Alfred",male,18,1,0,3101267,6.4958,,S +373,0,3,"Beavan, Mr. William Thomas",male,19,0,0,323951,8.05,,S +374,0,1,"Ringhini, Mr. Sante",male,22,0,0,PC 17760,135.6333,,C +375,0,3,"Palsson, Miss. Stina Viola",female,3,3,1,349909,21.075,,S +376,1,1,"Meyer, Mrs. Edgar Joseph (Leila Saks)",female,,1,0,PC 17604,82.1708,,C +377,1,3,"Landergren, Miss. Aurora Adelia",female,22,0,0,C 7077,7.25,,S +378,0,1,"Widener, Mr. Harry Elkins",male,27,0,2,113503,211.5,C82,C +379,0,3,"Betros, Mr. Tannous",male,20,0,0,2648,4.0125,,C +380,0,3,"Gustafsson, Mr. Karl Gideon",male,19,0,0,347069,7.775,,S +381,1,1,"Bidois, Miss. Rosalie",female,42,0,0,PC 17757,227.525,,C +382,1,3,"Nakid, Miss. Maria (""Mary"")",female,1,0,2,2653,15.7417,,C +383,0,3,"Tikkanen, Mr. Juho",male,32,0,0,STON/O 2. 3101293,7.925,,S +384,1,1,"Holverson, Mrs. Alexander Oskar (Mary Aline Towner)",female,35,1,0,113789,52,,S +385,0,3,"Plotcharsky, Mr. Vasil",male,,0,0,349227,7.8958,,S +386,0,2,"Davies, Mr. Charles Henry",male,18,0,0,S.O.C. 14879,73.5,,S +387,0,3,"Goodwin, Master. Sidney Leonard",male,1,5,2,CA 2144,46.9,,S +388,1,2,"Buss, Miss. Kate",female,36,0,0,27849,13,,S +389,0,3,"Sadlier, Mr. Matthew",male,,0,0,367655,7.7292,,Q +390,1,2,"Lehmann, Miss. Bertha",female,17,0,0,SC 1748,12,,C +391,1,1,"Carter, Mr. William Ernest",male,36,1,2,113760,120,B96 B98,S +392,1,3,"Jansson, Mr. Carl Olof",male,21,0,0,350034,7.7958,,S +393,0,3,"Gustafsson, Mr. Johan Birger",male,28,2,0,3101277,7.925,,S +394,1,1,"Newell, Miss. Marjorie",female,23,1,0,35273,113.275,D36,C +395,1,3,"Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson)",female,24,0,2,PP 9549,16.7,G6,S +396,0,3,"Johansson, Mr. Erik",male,22,0,0,350052,7.7958,,S +397,0,3,"Olsson, Miss. Elina",female,31,0,0,350407,7.8542,,S +398,0,2,"McKane, Mr. Peter David",male,46,0,0,28403,26,,S +399,0,2,"Pain, Dr. Alfred",male,23,0,0,244278,10.5,,S +400,1,2,"Trout, Mrs. William H (Jessie L)",female,28,0,0,240929,12.65,,S +401,1,3,"Niskanen, Mr. Juha",male,39,0,0,STON/O 2. 3101289,7.925,,S +402,0,3,"Adams, Mr. John",male,26,0,0,341826,8.05,,S +403,0,3,"Jussila, Miss. Mari Aina",female,21,1,0,4137,9.825,,S +404,0,3,"Hakkarainen, Mr. Pekka Pietari",male,28,1,0,STON/O2. 3101279,15.85,,S +405,0,3,"Oreskovic, Miss. Marija",female,20,0,0,315096,8.6625,,S +406,0,2,"Gale, Mr. Shadrach",male,34,1,0,28664,21,,S +407,0,3,"Widegren, Mr. Carl/Charles Peter",male,51,0,0,347064,7.75,,S +408,1,2,"Richards, Master. William Rowe",male,3,1,1,29106,18.75,,S +409,0,3,"Birkeland, Mr. Hans Martin Monsen",male,21,0,0,312992,7.775,,S +410,0,3,"Lefebre, Miss. Ida",female,,3,1,4133,25.4667,,S +411,0,3,"Sdycoff, Mr. Todor",male,,0,0,349222,7.8958,,S +412,0,3,"Hart, Mr. Henry",male,,0,0,394140,6.8583,,Q +413,1,1,"Minahan, Miss. Daisy E",female,33,1,0,19928,90,C78,Q +414,0,2,"Cunningham, Mr. Alfred Fleming",male,,0,0,239853,0,,S +415,1,3,"Sundman, Mr. Johan Julian",male,44,0,0,STON/O 2. 3101269,7.925,,S +416,0,3,"Meek, Mrs. Thomas (Annie Louise Rowley)",female,,0,0,343095,8.05,,S +417,1,2,"Drew, Mrs. James Vivian (Lulu Thorne Christian)",female,34,1,1,28220,32.5,,S +418,1,2,"Silven, Miss. Lyyli Karoliina",female,18,0,2,250652,13,,S +419,0,2,"Matthews, Mr. William John",male,30,0,0,28228,13,,S +420,0,3,"Van Impe, Miss. Catharina",female,10,0,2,345773,24.15,,S +421,0,3,"Gheorgheff, Mr. Stanio",male,,0,0,349254,7.8958,,C +422,0,3,"Charters, Mr. David",male,21,0,0,A/5. 13032,7.7333,,Q +423,0,3,"Zimmerman, Mr. Leo",male,29,0,0,315082,7.875,,S +424,0,3,"Danbom, Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren)",female,28,1,1,347080,14.4,,S +425,0,3,"Rosblom, Mr. Viktor Richard",male,18,1,1,370129,20.2125,,S +426,0,3,"Wiseman, Mr. Phillippe",male,,0,0,A/4. 34244,7.25,,S +427,1,2,"Clarke, Mrs. Charles V (Ada Maria Winfield)",female,28,1,0,2003,26,,S +428,1,2,"Phillips, Miss. Kate Florence (""Mrs Kate Louise Phillips Marshall"")",female,19,0,0,250655,26,,S +429,0,3,"Flynn, Mr. James",male,,0,0,364851,7.75,,Q +430,1,3,"Pickard, Mr. Berk (Berk Trembisky)",male,32,0,0,SOTON/O.Q. 392078,8.05,E10,S +431,1,1,"Bjornstrom-Steffansson, Mr. Mauritz Hakan",male,28,0,0,110564,26.55,C52,S +432,1,3,"Thorneycroft, Mrs. Percival (Florence Kate White)",female,,1,0,376564,16.1,,S +433,1,2,"Louch, Mrs. Charles Alexander (Alice Adelaide Slow)",female,42,1,0,SC/AH 3085,26,,S +434,0,3,"Kallio, Mr. Nikolai Erland",male,17,0,0,STON/O 2. 3101274,7.125,,S +435,0,1,"Silvey, Mr. William Baird",male,50,1,0,13507,55.9,E44,S +436,1,1,"Carter, Miss. Lucile Polk",female,14,1,2,113760,120,B96 B98,S +437,0,3,"Ford, Miss. Doolina Margaret ""Daisy""",female,21,2,2,W./C. 6608,34.375,,S +438,1,2,"Richards, Mrs. Sidney (Emily Hocking)",female,24,2,3,29106,18.75,,S +439,0,1,"Fortune, Mr. Mark",male,64,1,4,19950,263,C23 C25 C27,S +440,0,2,"Kvillner, Mr. Johan Henrik Johannesson",male,31,0,0,C.A. 18723,10.5,,S +441,1,2,"Hart, Mrs. Benjamin (Esther Ada Bloomfield)",female,45,1,1,F.C.C. 13529,26.25,,S +442,0,3,"Hampe, Mr. Leon",male,20,0,0,345769,9.5,,S +443,0,3,"Petterson, Mr. Johan Emil",male,25,1,0,347076,7.775,,S +444,1,2,"Reynaldo, Ms. Encarnacion",female,28,0,0,230434,13,,S +445,1,3,"Johannesen-Bratthammer, Mr. Bernt",male,,0,0,65306,8.1125,,S +446,1,1,"Dodge, Master. Washington",male,4,0,2,33638,81.8583,A34,S +447,1,2,"Mellinger, Miss. Madeleine Violet",female,13,0,1,250644,19.5,,S +448,1,1,"Seward, Mr. Frederic Kimber",male,34,0,0,113794,26.55,,S +449,1,3,"Baclini, Miss. Marie Catherine",female,5,2,1,2666,19.2583,,C +450,1,1,"Peuchen, Major. Arthur Godfrey",male,52,0,0,113786,30.5,C104,S +451,0,2,"West, Mr. Edwy Arthur",male,36,1,2,C.A. 34651,27.75,,S +452,0,3,"Hagland, Mr. Ingvald Olai Olsen",male,,1,0,65303,19.9667,,S +453,0,1,"Foreman, Mr. Benjamin Laventall",male,30,0,0,113051,27.75,C111,C +454,1,1,"Goldenberg, Mr. Samuel L",male,49,1,0,17453,89.1042,C92,C +455,0,3,"Peduzzi, Mr. Joseph",male,,0,0,A/5 2817,8.05,,S +456,1,3,"Jalsevac, Mr. Ivan",male,29,0,0,349240,7.8958,,C +457,0,1,"Millet, Mr. Francis Davis",male,65,0,0,13509,26.55,E38,S +458,1,1,"Kenyon, Mrs. Frederick R (Marion)",female,,1,0,17464,51.8625,D21,S +459,1,2,"Toomey, Miss. Ellen",female,50,0,0,F.C.C. 13531,10.5,,S +460,0,3,"O'Connor, Mr. Maurice",male,,0,0,371060,7.75,,Q +461,1,1,"Anderson, Mr. Harry",male,48,0,0,19952,26.55,E12,S +462,0,3,"Morley, Mr. William",male,34,0,0,364506,8.05,,S +463,0,1,"Gee, Mr. Arthur H",male,47,0,0,111320,38.5,E63,S +464,0,2,"Milling, Mr. Jacob Christian",male,48,0,0,234360,13,,S +465,0,3,"Maisner, Mr. Simon",male,,0,0,A/S 2816,8.05,,S +466,0,3,"Goncalves, Mr. Manuel Estanslas",male,38,0,0,SOTON/O.Q. 3101306,7.05,,S +467,0,2,"Campbell, Mr. William",male,,0,0,239853,0,,S +468,0,1,"Smart, Mr. John Montgomery",male,56,0,0,113792,26.55,,S +469,0,3,"Scanlan, Mr. James",male,,0,0,36209,7.725,,Q +470,1,3,"Baclini, Miss. Helene Barbara",female,0.75,2,1,2666,19.2583,,C +471,0,3,"Keefe, Mr. Arthur",male,,0,0,323592,7.25,,S +472,0,3,"Cacic, Mr. Luka",male,38,0,0,315089,8.6625,,S +473,1,2,"West, Mrs. Edwy Arthur (Ada Mary Worth)",female,33,1,2,C.A. 34651,27.75,,S +474,1,2,"Jerwan, Mrs. Amin S (Marie Marthe Thuillard)",female,23,0,0,SC/AH Basle 541,13.7917,D,C +475,0,3,"Strandberg, Miss. Ida Sofia",female,22,0,0,7553,9.8375,,S +476,0,1,"Clifford, Mr. George Quincy",male,,0,0,110465,52,A14,S +477,0,2,"Renouf, Mr. Peter Henry",male,34,1,0,31027,21,,S +478,0,3,"Braund, Mr. Lewis Richard",male,29,1,0,3460,7.0458,,S +479,0,3,"Karlsson, Mr. Nils August",male,22,0,0,350060,7.5208,,S +480,1,3,"Hirvonen, Miss. Hildur E",female,2,0,1,3101298,12.2875,,S +481,0,3,"Goodwin, Master. Harold Victor",male,9,5,2,CA 2144,46.9,,S +482,0,2,"Frost, Mr. Anthony Wood ""Archie""",male,,0,0,239854,0,,S +483,0,3,"Rouse, Mr. Richard Henry",male,50,0,0,A/5 3594,8.05,,S +484,1,3,"Turkula, Mrs. (Hedwig)",female,63,0,0,4134,9.5875,,S +485,1,1,"Bishop, Mr. Dickinson H",male,25,1,0,11967,91.0792,B49,C +486,0,3,"Lefebre, Miss. Jeannie",female,,3,1,4133,25.4667,,S +487,1,1,"Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby)",female,35,1,0,19943,90,C93,S +488,0,1,"Kent, Mr. Edward Austin",male,58,0,0,11771,29.7,B37,C +489,0,3,"Somerton, Mr. Francis William",male,30,0,0,A.5. 18509,8.05,,S +490,1,3,"Coutts, Master. Eden Leslie ""Neville""",male,9,1,1,C.A. 37671,15.9,,S +491,0,3,"Hagland, Mr. Konrad Mathias Reiersen",male,,1,0,65304,19.9667,,S +492,0,3,"Windelov, Mr. Einar",male,21,0,0,SOTON/OQ 3101317,7.25,,S +493,0,1,"Molson, Mr. Harry Markland",male,55,0,0,113787,30.5,C30,S +494,0,1,"Artagaveytia, Mr. Ramon",male,71,0,0,PC 17609,49.5042,,C +495,0,3,"Stanley, Mr. Edward Roland",male,21,0,0,A/4 45380,8.05,,S +496,0,3,"Yousseff, Mr. Gerious",male,,0,0,2627,14.4583,,C +497,1,1,"Eustis, Miss. Elizabeth Mussey",female,54,1,0,36947,78.2667,D20,C +498,0,3,"Shellard, Mr. Frederick William",male,,0,0,C.A. 6212,15.1,,S +499,0,1,"Allison, Mrs. Hudson J C (Bessie Waldo Daniels)",female,25,1,2,113781,151.55,C22 C26,S +500,0,3,"Svensson, Mr. Olof",male,24,0,0,350035,7.7958,,S +501,0,3,"Calic, Mr. Petar",male,17,0,0,315086,8.6625,,S +502,0,3,"Canavan, Miss. Mary",female,21,0,0,364846,7.75,,Q +503,0,3,"O'Sullivan, Miss. Bridget Mary",female,,0,0,330909,7.6292,,Q +504,0,3,"Laitinen, Miss. Kristina Sofia",female,37,0,0,4135,9.5875,,S +505,1,1,"Maioni, Miss. Roberta",female,16,0,0,110152,86.5,B79,S +506,0,1,"Penasco y Castellana, Mr. Victor de Satode",male,18,1,0,PC 17758,108.9,C65,C +507,1,2,"Quick, Mrs. Frederick Charles (Jane Richards)",female,33,0,2,26360,26,,S +508,1,1,"Bradley, Mr. George (""George Arthur Brayton"")",male,,0,0,111427,26.55,,S +509,0,3,"Olsen, Mr. Henry Margido",male,28,0,0,C 4001,22.525,,S +510,1,3,"Lang, Mr. Fang",male,26,0,0,1601,56.4958,,S +511,1,3,"Daly, Mr. Eugene Patrick",male,29,0,0,382651,7.75,,Q +512,0,3,"Webber, Mr. James",male,,0,0,SOTON/OQ 3101316,8.05,,S +513,1,1,"McGough, Mr. James Robert",male,36,0,0,PC 17473,26.2875,E25,S +514,1,1,"Rothschild, Mrs. Martin (Elizabeth L. Barrett)",female,54,1,0,PC 17603,59.4,,C +515,0,3,"Coleff, Mr. Satio",male,24,0,0,349209,7.4958,,S +516,0,1,"Walker, Mr. William Anderson",male,47,0,0,36967,34.0208,D46,S +517,1,2,"Lemore, Mrs. (Amelia Milley)",female,34,0,0,C.A. 34260,10.5,F33,S +518,0,3,"Ryan, Mr. Patrick",male,,0,0,371110,24.15,,Q +519,1,2,"Angle, Mrs. William A (Florence ""Mary"" Agnes Hughes)",female,36,1,0,226875,26,,S +520,0,3,"Pavlovic, Mr. Stefo",male,32,0,0,349242,7.8958,,S +521,1,1,"Perreault, Miss. Anne",female,30,0,0,12749,93.5,B73,S +522,0,3,"Vovk, Mr. Janko",male,22,0,0,349252,7.8958,,S +523,0,3,"Lahoud, Mr. Sarkis",male,,0,0,2624,7.225,,C +524,1,1,"Hippach, Mrs. Louis Albert (Ida Sophia Fischer)",female,44,0,1,111361,57.9792,B18,C +525,0,3,"Kassem, Mr. Fared",male,,0,0,2700,7.2292,,C +526,0,3,"Farrell, Mr. James",male,40.5,0,0,367232,7.75,,Q +527,1,2,"Ridsdale, Miss. Lucy",female,50,0,0,W./C. 14258,10.5,,S +528,0,1,"Farthing, Mr. John",male,,0,0,PC 17483,221.7792,C95,S +529,0,3,"Salonen, Mr. Johan Werner",male,39,0,0,3101296,7.925,,S +530,0,2,"Hocking, Mr. Richard George",male,23,2,1,29104,11.5,,S +531,1,2,"Quick, Miss. Phyllis May",female,2,1,1,26360,26,,S +532,0,3,"Toufik, Mr. Nakli",male,,0,0,2641,7.2292,,C +533,0,3,"Elias, Mr. Joseph Jr",male,17,1,1,2690,7.2292,,C +534,1,3,"Peter, Mrs. Catherine (Catherine Rizk)",female,,0,2,2668,22.3583,,C +535,0,3,"Cacic, Miss. Marija",female,30,0,0,315084,8.6625,,S +536,1,2,"Hart, Miss. Eva Miriam",female,7,0,2,F.C.C. 13529,26.25,,S +537,0,1,"Butt, Major. Archibald Willingham",male,45,0,0,113050,26.55,B38,S +538,1,1,"LeRoy, Miss. Bertha",female,30,0,0,PC 17761,106.425,,C +539,0,3,"Risien, Mr. Samuel Beard",male,,0,0,364498,14.5,,S +540,1,1,"Frolicher, Miss. Hedwig Margaritha",female,22,0,2,13568,49.5,B39,C +541,1,1,"Crosby, Miss. Harriet R",female,36,0,2,WE/P 5735,71,B22,S +542,0,3,"Andersson, Miss. Ingeborg Constanzia",female,9,4,2,347082,31.275,,S +543,0,3,"Andersson, Miss. Sigrid Elisabeth",female,11,4,2,347082,31.275,,S +544,1,2,"Beane, Mr. Edward",male,32,1,0,2908,26,,S +545,0,1,"Douglas, Mr. Walter Donald",male,50,1,0,PC 17761,106.425,C86,C +546,0,1,"Nicholson, Mr. Arthur Ernest",male,64,0,0,693,26,,S +547,1,2,"Beane, Mrs. Edward (Ethel Clarke)",female,19,1,0,2908,26,,S +548,1,2,"Padro y Manent, Mr. Julian",male,,0,0,SC/PARIS 2146,13.8625,,C +549,0,3,"Goldsmith, Mr. Frank John",male,33,1,1,363291,20.525,,S +550,1,2,"Davies, Master. John Morgan Jr",male,8,1,1,C.A. 33112,36.75,,S +551,1,1,"Thayer, Mr. John Borland Jr",male,17,0,2,17421,110.8833,C70,C +552,0,2,"Sharp, Mr. Percival James R",male,27,0,0,244358,26,,S +553,0,3,"O'Brien, Mr. Timothy",male,,0,0,330979,7.8292,,Q +554,1,3,"Leeni, Mr. Fahim (""Philip Zenni"")",male,22,0,0,2620,7.225,,C +555,1,3,"Ohman, Miss. Velin",female,22,0,0,347085,7.775,,S +556,0,1,"Wright, Mr. George",male,62,0,0,113807,26.55,,S +557,1,1,"Duff Gordon, Lady. (Lucille Christiana Sutherland) (""Mrs Morgan"")",female,48,1,0,11755,39.6,A16,C +558,0,1,"Robbins, Mr. Victor",male,,0,0,PC 17757,227.525,,C +559,1,1,"Taussig, Mrs. Emil (Tillie Mandelbaum)",female,39,1,1,110413,79.65,E67,S +560,1,3,"de Messemaeker, Mrs. Guillaume Joseph (Emma)",female,36,1,0,345572,17.4,,S +561,0,3,"Morrow, Mr. Thomas Rowan",male,,0,0,372622,7.75,,Q +562,0,3,"Sivic, Mr. Husein",male,40,0,0,349251,7.8958,,S +563,0,2,"Norman, Mr. Robert Douglas",male,28,0,0,218629,13.5,,S +564,0,3,"Simmons, Mr. John",male,,0,0,SOTON/OQ 392082,8.05,,S +565,0,3,"Meanwell, Miss. (Marion Ogden)",female,,0,0,SOTON/O.Q. 392087,8.05,,S +566,0,3,"Davies, Mr. Alfred J",male,24,2,0,A/4 48871,24.15,,S +567,0,3,"Stoytcheff, Mr. Ilia",male,19,0,0,349205,7.8958,,S +568,0,3,"Palsson, Mrs. Nils (Alma Cornelia Berglund)",female,29,0,4,349909,21.075,,S +569,0,3,"Doharr, Mr. Tannous",male,,0,0,2686,7.2292,,C +570,1,3,"Jonsson, Mr. Carl",male,32,0,0,350417,7.8542,,S +571,1,2,"Harris, Mr. George",male,62,0,0,S.W./PP 752,10.5,,S +572,1,1,"Appleton, Mrs. Edward Dale (Charlotte Lamson)",female,53,2,0,11769,51.4792,C101,S +573,1,1,"Flynn, Mr. John Irwin (""Irving"")",male,36,0,0,PC 17474,26.3875,E25,S +574,1,3,"Kelly, Miss. Mary",female,,0,0,14312,7.75,,Q +575,0,3,"Rush, Mr. Alfred George John",male,16,0,0,A/4. 20589,8.05,,S +576,0,3,"Patchett, Mr. George",male,19,0,0,358585,14.5,,S +577,1,2,"Garside, Miss. Ethel",female,34,0,0,243880,13,,S +578,1,1,"Silvey, Mrs. William Baird (Alice Munger)",female,39,1,0,13507,55.9,E44,S +579,0,3,"Caram, Mrs. Joseph (Maria Elias)",female,,1,0,2689,14.4583,,C +580,1,3,"Jussila, Mr. Eiriik",male,32,0,0,STON/O 2. 3101286,7.925,,S +581,1,2,"Christy, Miss. Julie Rachel",female,25,1,1,237789,30,,S +582,1,1,"Thayer, Mrs. John Borland (Marian Longstreth Morris)",female,39,1,1,17421,110.8833,C68,C +583,0,2,"Downton, Mr. William James",male,54,0,0,28403,26,,S +584,0,1,"Ross, Mr. John Hugo",male,36,0,0,13049,40.125,A10,C +585,0,3,"Paulner, Mr. Uscher",male,,0,0,3411,8.7125,,C +586,1,1,"Taussig, Miss. Ruth",female,18,0,2,110413,79.65,E68,S +587,0,2,"Jarvis, Mr. John Denzil",male,47,0,0,237565,15,,S +588,1,1,"Frolicher-Stehli, Mr. Maxmillian",male,60,1,1,13567,79.2,B41,C +589,0,3,"Gilinski, Mr. Eliezer",male,22,0,0,14973,8.05,,S +590,0,3,"Murdlin, Mr. Joseph",male,,0,0,A./5. 3235,8.05,,S +591,0,3,"Rintamaki, Mr. Matti",male,35,0,0,STON/O 2. 3101273,7.125,,S +592,1,1,"Stephenson, Mrs. Walter Bertram (Martha Eustis)",female,52,1,0,36947,78.2667,D20,C +593,0,3,"Elsbury, Mr. William James",male,47,0,0,A/5 3902,7.25,,S +594,0,3,"Bourke, Miss. Mary",female,,0,2,364848,7.75,,Q +595,0,2,"Chapman, Mr. John Henry",male,37,1,0,SC/AH 29037,26,,S +596,0,3,"Van Impe, Mr. Jean Baptiste",male,36,1,1,345773,24.15,,S +597,1,2,"Leitch, Miss. Jessie Wills",female,,0,0,248727,33,,S +598,0,3,"Johnson, Mr. Alfred",male,49,0,0,LINE,0,,S +599,0,3,"Boulos, Mr. Hanna",male,,0,0,2664,7.225,,C +600,1,1,"Duff Gordon, Sir. Cosmo Edmund (""Mr Morgan"")",male,49,1,0,PC 17485,56.9292,A20,C +601,1,2,"Jacobsohn, Mrs. Sidney Samuel (Amy Frances Christy)",female,24,2,1,243847,27,,S +602,0,3,"Slabenoff, Mr. Petco",male,,0,0,349214,7.8958,,S +603,0,1,"Harrington, Mr. Charles H",male,,0,0,113796,42.4,,S +604,0,3,"Torber, Mr. Ernst William",male,44,0,0,364511,8.05,,S +605,1,1,"Homer, Mr. Harry (""Mr E Haven"")",male,35,0,0,111426,26.55,,C +606,0,3,"Lindell, Mr. Edvard Bengtsson",male,36,1,0,349910,15.55,,S +607,0,3,"Karaic, Mr. Milan",male,30,0,0,349246,7.8958,,S +608,1,1,"Daniel, Mr. Robert Williams",male,27,0,0,113804,30.5,,S +609,1,2,"Laroche, Mrs. Joseph (Juliette Marie Louise Lafargue)",female,22,1,2,SC/Paris 2123,41.5792,,C +610,1,1,"Shutes, Miss. Elizabeth W",female,40,0,0,PC 17582,153.4625,C125,S +611,0,3,"Andersson, Mrs. Anders Johan (Alfrida Konstantia Brogren)",female,39,1,5,347082,31.275,,S +612,0,3,"Jardin, Mr. Jose Neto",male,,0,0,SOTON/O.Q. 3101305,7.05,,S +613,1,3,"Murphy, Miss. Margaret Jane",female,,1,0,367230,15.5,,Q +614,0,3,"Horgan, Mr. John",male,,0,0,370377,7.75,,Q +615,0,3,"Brocklebank, Mr. William Alfred",male,35,0,0,364512,8.05,,S +616,1,2,"Herman, Miss. Alice",female,24,1,2,220845,65,,S +617,0,3,"Danbom, Mr. Ernst Gilbert",male,34,1,1,347080,14.4,,S +618,0,3,"Lobb, Mrs. William Arthur (Cordelia K Stanlick)",female,26,1,0,A/5. 3336,16.1,,S +619,1,2,"Becker, Miss. Marion Louise",female,4,2,1,230136,39,F4,S +620,0,2,"Gavey, Mr. Lawrence",male,26,0,0,31028,10.5,,S +621,0,3,"Yasbeck, Mr. Antoni",male,27,1,0,2659,14.4542,,C +622,1,1,"Kimball, Mr. Edwin Nelson Jr",male,42,1,0,11753,52.5542,D19,S +623,1,3,"Nakid, Mr. Sahid",male,20,1,1,2653,15.7417,,C +624,0,3,"Hansen, Mr. Henry Damsgaard",male,21,0,0,350029,7.8542,,S +625,0,3,"Bowen, Mr. David John ""Dai""",male,21,0,0,54636,16.1,,S +626,0,1,"Sutton, Mr. Frederick",male,61,0,0,36963,32.3208,D50,S +627,0,2,"Kirkland, Rev. Charles Leonard",male,57,0,0,219533,12.35,,Q +628,1,1,"Longley, Miss. Gretchen Fiske",female,21,0,0,13502,77.9583,D9,S +629,0,3,"Bostandyeff, Mr. Guentcho",male,26,0,0,349224,7.8958,,S +630,0,3,"O'Connell, Mr. Patrick D",male,,0,0,334912,7.7333,,Q +631,1,1,"Barkworth, Mr. Algernon Henry Wilson",male,80,0,0,27042,30,A23,S +632,0,3,"Lundahl, Mr. Johan Svensson",male,51,0,0,347743,7.0542,,S +633,1,1,"Stahelin-Maeglin, Dr. Max",male,32,0,0,13214,30.5,B50,C +634,0,1,"Parr, Mr. William Henry Marsh",male,,0,0,112052,0,,S +635,0,3,"Skoog, Miss. Mabel",female,9,3,2,347088,27.9,,S +636,1,2,"Davis, Miss. Mary",female,28,0,0,237668,13,,S +637,0,3,"Leinonen, Mr. Antti Gustaf",male,32,0,0,STON/O 2. 3101292,7.925,,S +638,0,2,"Collyer, Mr. Harvey",male,31,1,1,C.A. 31921,26.25,,S +639,0,3,"Panula, Mrs. Juha (Maria Emilia Ojala)",female,41,0,5,3101295,39.6875,,S +640,0,3,"Thorneycroft, Mr. Percival",male,,1,0,376564,16.1,,S +641,0,3,"Jensen, Mr. Hans Peder",male,20,0,0,350050,7.8542,,S +642,1,1,"Sagesser, Mlle. Emma",female,24,0,0,PC 17477,69.3,B35,C +643,0,3,"Skoog, Miss. Margit Elizabeth",female,2,3,2,347088,27.9,,S +644,1,3,"Foo, Mr. Choong",male,,0,0,1601,56.4958,,S +645,1,3,"Baclini, Miss. Eugenie",female,0.75,2,1,2666,19.2583,,C +646,1,1,"Harper, Mr. Henry Sleeper",male,48,1,0,PC 17572,76.7292,D33,C +647,0,3,"Cor, Mr. Liudevit",male,19,0,0,349231,7.8958,,S +648,1,1,"Simonius-Blumer, Col. Oberst Alfons",male,56,0,0,13213,35.5,A26,C +649,0,3,"Willey, Mr. Edward",male,,0,0,S.O./P.P. 751,7.55,,S +650,1,3,"Stanley, Miss. Amy Zillah Elsie",female,23,0,0,CA. 2314,7.55,,S +651,0,3,"Mitkoff, Mr. Mito",male,,0,0,349221,7.8958,,S +652,1,2,"Doling, Miss. Elsie",female,18,0,1,231919,23,,S +653,0,3,"Kalvik, Mr. Johannes Halvorsen",male,21,0,0,8475,8.4333,,S +654,1,3,"O'Leary, Miss. Hanora ""Norah""",female,,0,0,330919,7.8292,,Q +655,0,3,"Hegarty, Miss. Hanora ""Nora""",female,18,0,0,365226,6.75,,Q +656,0,2,"Hickman, Mr. Leonard Mark",male,24,2,0,S.O.C. 14879,73.5,,S +657,0,3,"Radeff, Mr. Alexander",male,,0,0,349223,7.8958,,S +658,0,3,"Bourke, Mrs. John (Catherine)",female,32,1,1,364849,15.5,,Q +659,0,2,"Eitemiller, Mr. George Floyd",male,23,0,0,29751,13,,S +660,0,1,"Newell, Mr. Arthur Webster",male,58,0,2,35273,113.275,D48,C +661,1,1,"Frauenthal, Dr. Henry William",male,50,2,0,PC 17611,133.65,,S +662,0,3,"Badt, Mr. Mohamed",male,40,0,0,2623,7.225,,C +663,0,1,"Colley, Mr. Edward Pomeroy",male,47,0,0,5727,25.5875,E58,S +664,0,3,"Coleff, Mr. Peju",male,36,0,0,349210,7.4958,,S +665,1,3,"Lindqvist, Mr. Eino William",male,20,1,0,STON/O 2. 3101285,7.925,,S +666,0,2,"Hickman, Mr. Lewis",male,32,2,0,S.O.C. 14879,73.5,,S +667,0,2,"Butler, Mr. Reginald Fenton",male,25,0,0,234686,13,,S +668,0,3,"Rommetvedt, Mr. Knud Paust",male,,0,0,312993,7.775,,S +669,0,3,"Cook, Mr. Jacob",male,43,0,0,A/5 3536,8.05,,S +670,1,1,"Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright)",female,,1,0,19996,52,C126,S +671,1,2,"Brown, Mrs. Thomas William Solomon (Elizabeth Catherine Ford)",female,40,1,1,29750,39,,S +672,0,1,"Davidson, Mr. Thornton",male,31,1,0,F.C. 12750,52,B71,S +673,0,2,"Mitchell, Mr. Henry Michael",male,70,0,0,C.A. 24580,10.5,,S +674,1,2,"Wilhelms, Mr. Charles",male,31,0,0,244270,13,,S +675,0,2,"Watson, Mr. Ennis Hastings",male,,0,0,239856,0,,S +676,0,3,"Edvardsson, Mr. Gustaf Hjalmar",male,18,0,0,349912,7.775,,S +677,0,3,"Sawyer, Mr. Frederick Charles",male,24.5,0,0,342826,8.05,,S +678,1,3,"Turja, Miss. Anna Sofia",female,18,0,0,4138,9.8417,,S +679,0,3,"Goodwin, Mrs. Frederick (Augusta Tyler)",female,43,1,6,CA 2144,46.9,,S +680,1,1,"Cardeza, Mr. Thomas Drake Martinez",male,36,0,1,PC 17755,512.3292,B51 B53 B55,C +681,0,3,"Peters, Miss. Katie",female,,0,0,330935,8.1375,,Q +682,1,1,"Hassab, Mr. Hammad",male,27,0,0,PC 17572,76.7292,D49,C +683,0,3,"Olsvigen, Mr. Thor Anderson",male,20,0,0,6563,9.225,,S +684,0,3,"Goodwin, Mr. Charles Edward",male,14,5,2,CA 2144,46.9,,S +685,0,2,"Brown, Mr. Thomas William Solomon",male,60,1,1,29750,39,,S +686,0,2,"Laroche, Mr. Joseph Philippe Lemercier",male,25,1,2,SC/Paris 2123,41.5792,,C +687,0,3,"Panula, Mr. Jaako Arnold",male,14,4,1,3101295,39.6875,,S +688,0,3,"Dakic, Mr. Branko",male,19,0,0,349228,10.1708,,S +689,0,3,"Fischer, Mr. Eberhard Thelander",male,18,0,0,350036,7.7958,,S +690,1,1,"Madill, Miss. Georgette Alexandra",female,15,0,1,24160,211.3375,B5,S +691,1,1,"Dick, Mr. Albert Adrian",male,31,1,0,17474,57,B20,S +692,1,3,"Karun, Miss. Manca",female,4,0,1,349256,13.4167,,C +693,1,3,"Lam, Mr. Ali",male,,0,0,1601,56.4958,,S +694,0,3,"Saad, Mr. Khalil",male,25,0,0,2672,7.225,,C +695,0,1,"Weir, Col. John",male,60,0,0,113800,26.55,,S +696,0,2,"Chapman, Mr. Charles Henry",male,52,0,0,248731,13.5,,S +697,0,3,"Kelly, Mr. James",male,44,0,0,363592,8.05,,S +698,1,3,"Mullens, Miss. Katherine ""Katie""",female,,0,0,35852,7.7333,,Q +699,0,1,"Thayer, Mr. John Borland",male,49,1,1,17421,110.8833,C68,C +700,0,3,"Humblen, Mr. Adolf Mathias Nicolai Olsen",male,42,0,0,348121,7.65,F G63,S +701,1,1,"Astor, Mrs. John Jacob (Madeleine Talmadge Force)",female,18,1,0,PC 17757,227.525,C62 C64,C +702,1,1,"Silverthorne, Mr. Spencer Victor",male,35,0,0,PC 17475,26.2875,E24,S +703,0,3,"Barbara, Miss. Saiide",female,18,0,1,2691,14.4542,,C +704,0,3,"Gallagher, Mr. Martin",male,25,0,0,36864,7.7417,,Q +705,0,3,"Hansen, Mr. Henrik Juul",male,26,1,0,350025,7.8542,,S +706,0,2,"Morley, Mr. Henry Samuel (""Mr Henry Marshall"")",male,39,0,0,250655,26,,S +707,1,2,"Kelly, Mrs. Florence ""Fannie""",female,45,0,0,223596,13.5,,S +708,1,1,"Calderhead, Mr. Edward Pennington",male,42,0,0,PC 17476,26.2875,E24,S +709,1,1,"Cleaver, Miss. Alice",female,22,0,0,113781,151.55,,S +710,1,3,"Moubarek, Master. Halim Gonios (""William George"")",male,,1,1,2661,15.2458,,C +711,1,1,"Mayne, Mlle. Berthe Antonine (""Mrs de Villiers"")",female,24,0,0,PC 17482,49.5042,C90,C +712,0,1,"Klaber, Mr. Herman",male,,0,0,113028,26.55,C124,S +713,1,1,"Taylor, Mr. Elmer Zebley",male,48,1,0,19996,52,C126,S +714,0,3,"Larsson, Mr. August Viktor",male,29,0,0,7545,9.4833,,S +715,0,2,"Greenberg, Mr. Samuel",male,52,0,0,250647,13,,S +716,0,3,"Soholt, Mr. Peter Andreas Lauritz Andersen",male,19,0,0,348124,7.65,F G73,S +717,1,1,"Endres, Miss. Caroline Louise",female,38,0,0,PC 17757,227.525,C45,C +718,1,2,"Troutt, Miss. Edwina Celia ""Winnie""",female,27,0,0,34218,10.5,E101,S +719,0,3,"McEvoy, Mr. Michael",male,,0,0,36568,15.5,,Q +720,0,3,"Johnson, Mr. Malkolm Joackim",male,33,0,0,347062,7.775,,S +721,1,2,"Harper, Miss. Annie Jessie ""Nina""",female,6,0,1,248727,33,,S +722,0,3,"Jensen, Mr. Svend Lauritz",male,17,1,0,350048,7.0542,,S +723,0,2,"Gillespie, Mr. William Henry",male,34,0,0,12233,13,,S +724,0,2,"Hodges, Mr. Henry Price",male,50,0,0,250643,13,,S +725,1,1,"Chambers, Mr. Norman Campbell",male,27,1,0,113806,53.1,E8,S +726,0,3,"Oreskovic, Mr. Luka",male,20,0,0,315094,8.6625,,S +727,1,2,"Renouf, Mrs. Peter Henry (Lillian Jefferys)",female,30,3,0,31027,21,,S +728,1,3,"Mannion, Miss. Margareth",female,,0,0,36866,7.7375,,Q +729,0,2,"Bryhl, Mr. Kurt Arnold Gottfrid",male,25,1,0,236853,26,,S +730,0,3,"Ilmakangas, Miss. Pieta Sofia",female,25,1,0,STON/O2. 3101271,7.925,,S +731,1,1,"Allen, Miss. Elisabeth Walton",female,29,0,0,24160,211.3375,B5,S +732,0,3,"Hassan, Mr. Houssein G N",male,11,0,0,2699,18.7875,,C +733,0,2,"Knight, Mr. Robert J",male,,0,0,239855,0,,S +734,0,2,"Berriman, Mr. William John",male,23,0,0,28425,13,,S +735,0,2,"Troupiansky, Mr. Moses Aaron",male,23,0,0,233639,13,,S +736,0,3,"Williams, Mr. Leslie",male,28.5,0,0,54636,16.1,,S +737,0,3,"Ford, Mrs. Edward (Margaret Ann Watson)",female,48,1,3,W./C. 6608,34.375,,S +738,1,1,"Lesurer, Mr. Gustave J",male,35,0,0,PC 17755,512.3292,B101,C +739,0,3,"Ivanoff, Mr. Kanio",male,,0,0,349201,7.8958,,S +740,0,3,"Nankoff, Mr. Minko",male,,0,0,349218,7.8958,,S +741,1,1,"Hawksford, Mr. Walter James",male,,0,0,16988,30,D45,S +742,0,1,"Cavendish, Mr. Tyrell William",male,36,1,0,19877,78.85,C46,S +743,1,1,"Ryerson, Miss. Susan Parker ""Suzette""",female,21,2,2,PC 17608,262.375,B57 B59 B63 B66,C +744,0,3,"McNamee, Mr. Neal",male,24,1,0,376566,16.1,,S +745,1,3,"Stranden, Mr. Juho",male,31,0,0,STON/O 2. 3101288,7.925,,S +746,0,1,"Crosby, Capt. Edward Gifford",male,70,1,1,WE/P 5735,71,B22,S +747,0,3,"Abbott, Mr. Rossmore Edward",male,16,1,1,C.A. 2673,20.25,,S +748,1,2,"Sinkkonen, Miss. Anna",female,30,0,0,250648,13,,S +749,0,1,"Marvin, Mr. Daniel Warner",male,19,1,0,113773,53.1,D30,S +750,0,3,"Connaghton, Mr. Michael",male,31,0,0,335097,7.75,,Q +751,1,2,"Wells, Miss. Joan",female,4,1,1,29103,23,,S +752,1,3,"Moor, Master. Meier",male,6,0,1,392096,12.475,E121,S +753,0,3,"Vande Velde, Mr. Johannes Joseph",male,33,0,0,345780,9.5,,S +754,0,3,"Jonkoff, Mr. Lalio",male,23,0,0,349204,7.8958,,S +755,1,2,"Herman, Mrs. Samuel (Jane Laver)",female,48,1,2,220845,65,,S +756,1,2,"Hamalainen, Master. Viljo",male,0.67,1,1,250649,14.5,,S +757,0,3,"Carlsson, Mr. August Sigfrid",male,28,0,0,350042,7.7958,,S +758,0,2,"Bailey, Mr. Percy Andrew",male,18,0,0,29108,11.5,,S +759,0,3,"Theobald, Mr. Thomas Leonard",male,34,0,0,363294,8.05,,S +760,1,1,"Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards)",female,33,0,0,110152,86.5,B77,S +761,0,3,"Garfirth, Mr. John",male,,0,0,358585,14.5,,S +762,0,3,"Nirva, Mr. Iisakki Antino Aijo",male,41,0,0,SOTON/O2 3101272,7.125,,S +763,1,3,"Barah, Mr. Hanna Assi",male,20,0,0,2663,7.2292,,C +764,1,1,"Carter, Mrs. William Ernest (Lucile Polk)",female,36,1,2,113760,120,B96 B98,S +765,0,3,"Eklund, Mr. Hans Linus",male,16,0,0,347074,7.775,,S +766,1,1,"Hogeboom, Mrs. John C (Anna Andrews)",female,51,1,0,13502,77.9583,D11,S +767,0,1,"Brewe, Dr. Arthur Jackson",male,,0,0,112379,39.6,,C +768,0,3,"Mangan, Miss. Mary",female,30.5,0,0,364850,7.75,,Q +769,0,3,"Moran, Mr. Daniel J",male,,1,0,371110,24.15,,Q +770,0,3,"Gronnestad, Mr. Daniel Danielsen",male,32,0,0,8471,8.3625,,S +771,0,3,"Lievens, Mr. Rene Aime",male,24,0,0,345781,9.5,,S +772,0,3,"Jensen, Mr. Niels Peder",male,48,0,0,350047,7.8542,,S +773,0,2,"Mack, Mrs. (Mary)",female,57,0,0,S.O./P.P. 3,10.5,E77,S +774,0,3,"Elias, Mr. Dibo",male,,0,0,2674,7.225,,C +775,1,2,"Hocking, Mrs. Elizabeth (Eliza Needs)",female,54,1,3,29105,23,,S +776,0,3,"Myhrman, Mr. Pehr Fabian Oliver Malkolm",male,18,0,0,347078,7.75,,S +777,0,3,"Tobin, Mr. Roger",male,,0,0,383121,7.75,F38,Q +778,1,3,"Emanuel, Miss. Virginia Ethel",female,5,0,0,364516,12.475,,S +779,0,3,"Kilgannon, Mr. Thomas J",male,,0,0,36865,7.7375,,Q +780,1,1,"Robert, Mrs. Edward Scott (Elisabeth Walton McMillan)",female,43,0,1,24160,211.3375,B3,S +781,1,3,"Ayoub, Miss. Banoura",female,13,0,0,2687,7.2292,,C +782,1,1,"Dick, Mrs. Albert Adrian (Vera Gillespie)",female,17,1,0,17474,57,B20,S +783,0,1,"Long, Mr. Milton Clyde",male,29,0,0,113501,30,D6,S +784,0,3,"Johnston, Mr. Andrew G",male,,1,2,W./C. 6607,23.45,,S +785,0,3,"Ali, Mr. William",male,25,0,0,SOTON/O.Q. 3101312,7.05,,S +786,0,3,"Harmer, Mr. Abraham (David Lishin)",male,25,0,0,374887,7.25,,S +787,1,3,"Sjoblom, Miss. Anna Sofia",female,18,0,0,3101265,7.4958,,S +788,0,3,"Rice, Master. George Hugh",male,8,4,1,382652,29.125,,Q +789,1,3,"Dean, Master. Bertram Vere",male,1,1,2,C.A. 2315,20.575,,S +790,0,1,"Guggenheim, Mr. Benjamin",male,46,0,0,PC 17593,79.2,B82 B84,C +791,0,3,"Keane, Mr. Andrew ""Andy""",male,,0,0,12460,7.75,,Q +792,0,2,"Gaskell, Mr. Alfred",male,16,0,0,239865,26,,S +793,0,3,"Sage, Miss. Stella Anna",female,,8,2,CA. 2343,69.55,,S +794,0,1,"Hoyt, Mr. William Fisher",male,,0,0,PC 17600,30.6958,,C +795,0,3,"Dantcheff, Mr. Ristiu",male,25,0,0,349203,7.8958,,S +796,0,2,"Otter, Mr. Richard",male,39,0,0,28213,13,,S +797,1,1,"Leader, Dr. Alice (Farnham)",female,49,0,0,17465,25.9292,D17,S +798,1,3,"Osman, Mrs. Mara",female,31,0,0,349244,8.6833,,S +799,0,3,"Ibrahim Shawah, Mr. Yousseff",male,30,0,0,2685,7.2292,,C +800,0,3,"Van Impe, Mrs. Jean Baptiste (Rosalie Paula Govaert)",female,30,1,1,345773,24.15,,S +801,0,2,"Ponesell, Mr. Martin",male,34,0,0,250647,13,,S +802,1,2,"Collyer, Mrs. Harvey (Charlotte Annie Tate)",female,31,1,1,C.A. 31921,26.25,,S +803,1,1,"Carter, Master. William Thornton II",male,11,1,2,113760,120,B96 B98,S +804,1,3,"Thomas, Master. Assad Alexander",male,0.42,0,1,2625,8.5167,,C +805,1,3,"Hedman, Mr. Oskar Arvid",male,27,0,0,347089,6.975,,S +806,0,3,"Johansson, Mr. Karl Johan",male,31,0,0,347063,7.775,,S +807,0,1,"Andrews, Mr. Thomas Jr",male,39,0,0,112050,0,A36,S +808,0,3,"Pettersson, Miss. Ellen Natalia",female,18,0,0,347087,7.775,,S +809,0,2,"Meyer, Mr. August",male,39,0,0,248723,13,,S +810,1,1,"Chambers, Mrs. Norman Campbell (Bertha Griggs)",female,33,1,0,113806,53.1,E8,S +811,0,3,"Alexander, Mr. William",male,26,0,0,3474,7.8875,,S +812,0,3,"Lester, Mr. James",male,39,0,0,A/4 48871,24.15,,S +813,0,2,"Slemen, Mr. Richard James",male,35,0,0,28206,10.5,,S +814,0,3,"Andersson, Miss. Ebba Iris Alfrida",female,6,4,2,347082,31.275,,S +815,0,3,"Tomlin, Mr. Ernest Portage",male,30.5,0,0,364499,8.05,,S +816,0,1,"Fry, Mr. Richard",male,,0,0,112058,0,B102,S +817,0,3,"Heininen, Miss. Wendla Maria",female,23,0,0,STON/O2. 3101290,7.925,,S +818,0,2,"Mallet, Mr. Albert",male,31,1,1,S.C./PARIS 2079,37.0042,,C +819,0,3,"Holm, Mr. John Fredrik Alexander",male,43,0,0,C 7075,6.45,,S +820,0,3,"Skoog, Master. Karl Thorsten",male,10,3,2,347088,27.9,,S +821,1,1,"Hays, Mrs. Charles Melville (Clara Jennings Gregg)",female,52,1,1,12749,93.5,B69,S +822,1,3,"Lulic, Mr. Nikola",male,27,0,0,315098,8.6625,,S +823,0,1,"Reuchlin, Jonkheer. John George",male,38,0,0,19972,0,,S +824,1,3,"Moor, Mrs. (Beila)",female,27,0,1,392096,12.475,E121,S +825,0,3,"Panula, Master. Urho Abraham",male,2,4,1,3101295,39.6875,,S +826,0,3,"Flynn, Mr. John",male,,0,0,368323,6.95,,Q +827,0,3,"Lam, Mr. Len",male,,0,0,1601,56.4958,,S +828,1,2,"Mallet, Master. Andre",male,1,0,2,S.C./PARIS 2079,37.0042,,C +829,1,3,"McCormack, Mr. Thomas Joseph",male,,0,0,367228,7.75,,Q +830,1,1,"Stone, Mrs. George Nelson (Martha Evelyn)",female,62,0,0,113572,80,B28, +831,1,3,"Yasbeck, Mrs. Antoni (Selini Alexander)",female,15,1,0,2659,14.4542,,C +832,1,2,"Richards, Master. George Sibley",male,0.83,1,1,29106,18.75,,S +833,0,3,"Saad, Mr. Amin",male,,0,0,2671,7.2292,,C +834,0,3,"Augustsson, Mr. Albert",male,23,0,0,347468,7.8542,,S +835,0,3,"Allum, Mr. Owen George",male,18,0,0,2223,8.3,,S +836,1,1,"Compton, Miss. Sara Rebecca",female,39,1,1,PC 17756,83.1583,E49,C +837,0,3,"Pasic, Mr. Jakob",male,21,0,0,315097,8.6625,,S +838,0,3,"Sirota, Mr. Maurice",male,,0,0,392092,8.05,,S +839,1,3,"Chip, Mr. Chang",male,32,0,0,1601,56.4958,,S +840,1,1,"Marechal, Mr. Pierre",male,,0,0,11774,29.7,C47,C +841,0,3,"Alhomaki, Mr. Ilmari Rudolf",male,20,0,0,SOTON/O2 3101287,7.925,,S +842,0,2,"Mudd, Mr. Thomas Charles",male,16,0,0,S.O./P.P. 3,10.5,,S +843,1,1,"Serepeca, Miss. Augusta",female,30,0,0,113798,31,,C +844,0,3,"Lemberopolous, Mr. Peter L",male,34.5,0,0,2683,6.4375,,C +845,0,3,"Culumovic, Mr. Jeso",male,17,0,0,315090,8.6625,,S +846,0,3,"Abbing, Mr. Anthony",male,42,0,0,C.A. 5547,7.55,,S +847,0,3,"Sage, Mr. Douglas Bullen",male,,8,2,CA. 2343,69.55,,S +848,0,3,"Markoff, Mr. Marin",male,35,0,0,349213,7.8958,,C +849,0,2,"Harper, Rev. John",male,28,0,1,248727,33,,S +850,1,1,"Goldenberg, Mrs. Samuel L (Edwiga Grabowska)",female,,1,0,17453,89.1042,C92,C +851,0,3,"Andersson, Master. Sigvard Harald Elias",male,4,4,2,347082,31.275,,S +852,0,3,"Svensson, Mr. Johan",male,74,0,0,347060,7.775,,S +853,0,3,"Boulos, Miss. Nourelain",female,9,1,1,2678,15.2458,,C +854,1,1,"Lines, Miss. Mary Conover",female,16,0,1,PC 17592,39.4,D28,S +855,0,2,"Carter, Mrs. Ernest Courtenay (Lilian Hughes)",female,44,1,0,244252,26,,S +856,1,3,"Aks, Mrs. Sam (Leah Rosen)",female,18,0,1,392091,9.35,,S +857,1,1,"Wick, Mrs. George Dennick (Mary Hitchcock)",female,45,1,1,36928,164.8667,,S +858,1,1,"Daly, Mr. Peter Denis ",male,51,0,0,113055,26.55,E17,S +859,1,3,"Baclini, Mrs. Solomon (Latifa Qurban)",female,24,0,3,2666,19.2583,,C +860,0,3,"Razi, Mr. Raihed",male,,0,0,2629,7.2292,,C +861,0,3,"Hansen, Mr. Claus Peter",male,41,2,0,350026,14.1083,,S +862,0,2,"Giles, Mr. Frederick Edward",male,21,1,0,28134,11.5,,S +863,1,1,"Swift, Mrs. Frederick Joel (Margaret Welles Barron)",female,48,0,0,17466,25.9292,D17,S +864,0,3,"Sage, Miss. Dorothy Edith ""Dolly""",female,,8,2,CA. 2343,69.55,,S +865,0,2,"Gill, Mr. John William",male,24,0,0,233866,13,,S +866,1,2,"Bystrom, Mrs. (Karolina)",female,42,0,0,236852,13,,S +867,1,2,"Duran y More, Miss. Asuncion",female,27,1,0,SC/PARIS 2149,13.8583,,C +868,0,1,"Roebling, Mr. Washington Augustus II",male,31,0,0,PC 17590,50.4958,A24,S +869,0,3,"van Melkebeke, Mr. Philemon",male,,0,0,345777,9.5,,S +870,1,3,"Johnson, Master. Harold Theodor",male,4,1,1,347742,11.1333,,S +871,0,3,"Balkic, Mr. Cerin",male,26,0,0,349248,7.8958,,S +872,1,1,"Beckwith, Mrs. Richard Leonard (Sallie Monypeny)",female,47,1,1,11751,52.5542,D35,S +873,0,1,"Carlsson, Mr. Frans Olof",male,33,0,0,695,5,B51 B53 B55,S +874,0,3,"Vander Cruyssen, Mr. Victor",male,47,0,0,345765,9,,S +875,1,2,"Abelson, Mrs. Samuel (Hannah Wizosky)",female,28,1,0,P/PP 3381,24,,C +876,1,3,"Najib, Miss. Adele Kiamie ""Jane""",female,15,0,0,2667,7.225,,C +877,0,3,"Gustafsson, Mr. Alfred Ossian",male,20,0,0,7534,9.8458,,S +878,0,3,"Petroff, Mr. Nedelio",male,19,0,0,349212,7.8958,,S +879,0,3,"Laleff, Mr. Kristo",male,,0,0,349217,7.8958,,S +880,1,1,"Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)",female,56,0,1,11767,83.1583,C50,C +881,1,2,"Shelley, Mrs. William (Imanita Parrish Hall)",female,25,0,1,230433,26,,S +882,0,3,"Markun, Mr. Johann",male,33,0,0,349257,7.8958,,S +883,0,3,"Dahlberg, Miss. Gerda Ulrika",female,22,0,0,7552,10.5167,,S +884,0,2,"Banfield, Mr. Frederick James",male,28,0,0,C.A./SOTON 34068,10.5,,S +885,0,3,"Sutehall, Mr. Henry Jr",male,25,0,0,SOTON/OQ 392076,7.05,,S +886,0,3,"Rice, Mrs. William (Margaret Norton)",female,39,0,5,382652,29.125,,Q +887,0,2,"Montvila, Rev. Juozas",male,27,0,0,211536,13,,S +888,1,1,"Graham, Miss. Margaret Edith",female,19,0,0,112053,30,B42,S +889,0,3,"Johnston, Miss. Catherine Helen ""Carrie""",female,,1,2,W./C. 6607,23.45,,S +890,1,1,"Behr, Mr. Karl Howell",male,26,0,0,111369,30,C148,C +891,0,3,"Dooley, Mr. Patrick",male,32,0,0,370376,7.75,,Q diff --git a/docs/path1.png b/docs/path1.png new file mode 100644 index 0000000000000000000000000000000000000000..a94aff4e59161e7abd4c8c20923a5596f7094c49 GIT binary patch literal 22640 zcmeFZc|6qb_dl#nNm443ElJ2QT9CbXQ&EWQ%rr5|GKB2Lv{=eEh(WfLlEjQ{h75`r zj4a7IjO@!8%#3x$@_VWG=X-y@_h0wp{^!2$$Nl?*@tV2jdY$WB&vVZ6I_JE+G&R1? zckt9fE-o&YS3%Tw;+sKfBNq3^*5;^}d_`T)P_pp%3lPaDt~TcvVw}mW!%pU;8;Q z&NnUPW@ShnOS>9>_T-U$Cyq#eKJf9h(w^Oyl%9W=e17o7!7m3>xtrBwWuF;w+hBix za{FrGKT*A$F`qXzMLB5zhF&%~ zU0uf-V}y?d1qWX`CS%-s>-A;1TWJ?};Nb8C=N==fc9FMn?|tC%MG-$)AfAMlkT_?O zMeP5UK=<~wX-b|vDrMk=q_TSmyScdD@IFRZV;1FMeG!g4t&XI)AG5^gz+6w}fBM2~ ziVmYiR6R^@V4i?{sk?yTS6630;XtcWlz7mvXL+~f{8L~XxxSnMk-Nuvj-5Lc=2W@) zEFRe5CuhVYFcU&+OI-@%Sx!7{)Th8WuKQwQnCob9tw+i>MIayL9dvY0_u)Vis~@h} z%->$|69?XD>Pmq1L+)U()nfaB%c#fp)|lWVo)+NmkCAZ)$xPBeOJGLx1DRlrL%Evk z9SolCxd5}-K0o~Z<*|BN%Qtdcq~;j@%d`k=37-5lqI~DgMSm!u~Ugp#1!J%K0 z_ovDM0K($t`u5bd#FD}@QA=spo(AT*tsb_Er4D5B#{S(FJRg}^*&>kCfEy~X=V`$X zu2(#LlMy~4HP7!kHe_hzaWL z!a-z99zb~7qi*46c_c_nQJhXRA^hG(sI!g&whoe3#)?bKORF(MReOk75>BWBCg9_Q12~2_>A!y!GG$p z#rh8kO|W}aNW)cYJn`#i?tPP8{D-PE1MCBO9h1Lqw91sAlUb7njypbc=c^^5c;+MO zGX@h`bLB`9)c1Eetf!6R1nVEryn^imfhZls(dvZ*6o=(z91V@;T?n1~h$A;5>n)|$ zqQidZ{sBDx5Sf|6J_{lv$y8(I0TCH64_Iqs{~lN%Z8cLAqiC1)at~`V$EF54!tGof z(!B+XT)^hczM(g@`&W8_lSaP&tB8 z(7EDSLd@nPQ$n49&5m1!MM`8G_X~dLn~Ll^=+F02=dV)X)))%-ENFFUsY0XsAr=z2 z_6DcvMyjq$M5OS^3T345A8d8)7q5!gH>{-qs`5ehF}7aS5yz+_MLEKs7-%dF#mxH zHc0k{Hy9Dbj$_E-&g)-HL{q1bp$O}Mt~A(sCasRR99-r0Fv8XFyi?;YRmJ?TpBs1w zyl%!yQdovW=XLFJ3BZSHl*6sFGy}Z_F@yovfY9|HykyJu-^AvUPyx&XNQHK5e*i=< z^+Dn0o2m%sj>LoSbg=_Ll3fvlYlcPD1GHGIKIsLAa(eEEST99w+)b=^B^g^?yyIdwoAc()O{4=w#Z%&<~vBPURVpTE^~5e z<+9aopN7HJ1rY9@#&oZLZDC$93xuf80BXy}O$QhkYMi z-;vWu0j75Nt(@(sTG{dC)ya0=5z9fVt=Lt7EId{X{f0FFqqg7gfvqnbX8WaqyaSy9aqrfA$M~_|ATh%c^&`4QRot9IC4m=ah_d_ zyVp5-tN*v=yqE+(YMG%?dI941YjeaCT`N!YYTyj2rQZb9WkVp>`UTtAMzP66h=zin z-O>L{h>>p*z)biZ^2~cZW1%6gC9A|+Dec&DI9MoRaz=v)Cc0$%)ES`z?wM}aq84mM z6zmQUSGO4M%*lS3KQUXP0IBY%eE;3|)Y}4{+8v!8aUbF0+RI zHO@bQJrO)*{XW34NyTNXyMMI2_?lYHCs1y+peMo%%c7~Q54iCHing+gfM0;sg@Hh5 zQMH|02KlsCEPfJ01FmT_RCVJZPdf@Zjqn&c9jS8?;{E-(!qL?70GQ=OI9!qv9i>_$ zC=ykjDCB{-XMBPJt!WbhjQ(*p5JS9cy$c4Ta>m6cYuVHO8%Hw6;E{u(TOO#SmNKw7OV<&G5Pop#1sylh;lV?1 zk*d6{sM3YrIvqcodp&9@?TTmY0b_w?G+b@=|_#6x|VH+Xkq z-Jv}EVe;>4~jk0Uuw@isK{KL0~|<-Yp>yP{}8s9zV7g^yV)OHH_F` zW{0>&_@4&GJ+UT5!XZ5mgBH>V*ELYU-@UB@cL>LZ*h^K71#{tDa=V3}*^y<2@rB9tqs<1=c# zJ(12l`dD{&nSC-woB9-3-qooYHqQO#BMc{Xx$6=zzGLVBna5k&rbyN(KyZiGAISx% z^_TtsKR7}isyh0P6d}AnTR_mGLK##uU4z@0g@&CN-nwlaID`tPdmgSgm`w2nRnCpL zJCxL{%Rt3~8sq#|-*qjmtVG;=buPU5l}zMJS6-y>CFiiTOAjIfS(Cf?WZIPj+is^_ zlny@J;^S2p#smBQ;^;i9yz9|c4yY};Fdx6}Q;u1DsK+PiF2>RKDr$BOExwQA44ox^a0-Tef3en`pO_DAc< zCrGphf;E|M%@>4(-%yugJGK3%TGL*2m)E1S)V4c78S=~5tPRGNVh)wY^&PPcVfA|8 z=A0-Q_zO!h!c!6{Fu~fzMebO?bM5fJ!;~o&a5l12Iq+x;R`IClR~#-T;-oU%(#rm3 zTj|E^R9$L+^w8KP(eZr=sxFVua|Q*OgYz>pUhUx{fUuU|D$TU&F3x&Pl8k-o9SN@k z`)uaDT+gi|VC$XfNUtTxktco+hMgwV!0pI|jECpibjr@OB{L6@KNjqJK%M4p^pKIz zAS^3wel#+Ej2ubW&LM$!UzI7jcC}`;E!H`{5?D~n6|1PDm^(sJGRC~oU?PbxYPxjo z?Ly=o^9NNV?9uV-Hq6Rb>`^K33u-i1N51=kc%Pg!9oNYXJ&h6j=Ihpt9m_F?jIaT} z_+FfJ@3+wT5tkAyO1q^EElq}oJaNWJUJcEqWy;3_>+!3vOf;}=j92)wsI7Xkjxe6c z(KC6j^QwOfoXL^uq>qbsu&%Z7RVGeksxH?7<4sE-XA zMS7C8H$Q{5H>QP7wr-``XxDdZL`FPg@n^p6oQjI+H=a5O6IPya*zi;3daFKWSwq&U zDUYw+#7b1wizxr@I-=x1KRB1cXnSu9z`N^Fkvo8)+k&Y1U8);7>SXMe{>eLeoRsD3 z4~Td6tdBe9FWLV)_L%aheJ3Z0G6SsPohv1SEvCAbqvE5Dd>NckAc-ou3keDHf4k@8 zt@f0ljTdQvL@_?$I89Ji2(vlHs&{tB6!%C({Epae+tRG?Cz2B-UNuMaTa`cYUNT(# zY*QMsG;{K2F9gY&+&z%Cncr-xjk0M=_CsRNfK=1MoaE@IFzZXvjj1SR_dG-Kd4cU! z#O3ig2_32yq2>36o@$2=T-GWDp5doub%1>P*Zeh`EyHY~C8fvms#}sVX{Fz_<^#u3 z>lA~O4;s9;awyY2p{=PG<^xA&!ggf6nhBhE>wG+X z>K&@9$ECqHgEp7ou%#`x!O+b6TLaiC((pT-9@p{hU(gUn!{dYKYv__&<9gmwb?&VMAJ3K~x%n$!O}oA2BbMBjDw)*_NYCG!t^;K*9_f8IWipR% zO`*1AXg*!HRpC}`)qc-#gQqi(CpF-qp@V$>%ah^bsbS7oPZ?`Q;cx|MSjzK782sL} z>pH{xQk#yxwLt-}LF}a&Kzx_RN`UKav9h-_%2RZ$#kn&DldiYh|K_eT=(wuMX|>}< zq%26E_1C*M?|{qXT(M?SnwX25j*;A4y zFv)za5Ts1%@=Ko~(zn-2Fx{2WuIXVA9@bxgzNsM>1}{r@4J8hKW|&HNIMI8D?5=1Y8K1$lC6Q|eyb#V_F* zM&8EFtR9Uikjrq)f2ISDnXLLml^<8EKJk!)IN^K8^Rj}@)2>^4BpUOz-0uuu{gP93 zG^(z|9qigQj|rLIwd#c%=X-@a^vgsUR%tVpeFpR{xoou33`kedh1xY)w|d&RAM8NO z+f>j99Nfg`8*6$zj0~~CY~c%K*_UHoDXJ~Zf^2_@{RP6cN|Li;7+=lGS{sUyot={% zVMyVAiA_kg1@2&APnm zFXd<4-FK~f*u*1l3vMgl9m%T@jqW+TE6pSm%sQis2pe77lP*r__v7JBDik8cAKafHzWrvcX{m+DG}9(ZQG zEq8MnPp|FZGCc=UrEQomA0)%kzOGrn)aNP~8v~?>->Gy@bUxqfz|C;JNi#D^^Wjo+ z>25TRcvC)09$r@>6vIQlZTk49a>?aO83bKx%!2aXscnt@NXCP&lpCW*khxK9tV%|Oy+HVtRj;0)NxK2F@k^R9NTH-f^l7si0#J1a6iT*Qs zVJt|*X(`|)gRPX=I4i1EOzNU~s{IRTMWRBz`9vBs06mbpLB;uBx%oJbw>ZMgP5y;OE_ z;KHb{syc`kI_oIV?$|rIOjwQ$VOe<_|H#zn)tdV3oQe7*4zr=X9~U!1LRpQB9@uv2 zt5a5#+}*FZ>jSnQSM3$H2|jrmO2Z_KZvOQVA0Rc)m$^Yx2o&CKSAE_ zb~``V|3tyFLLD7ahyWF?_L$NK#e)aU5Qz9+Dt->|XC?GkLb(xNOags!XXmyiw7|?~ zr(u<7@pnW=)8iOcT_Wd&Tl=-)dT|q>+YNoL7}A+VQ+Kg}&k?f2xanaV^y)Q%GD{$xuS% z#n{x#vM%3TU1!KWg4rfHtk)oH;x2>jBVsV@(;6}Hi!Kzkg7p29q16%O=lKEF2WDRkZrke>WEf|BEbzVNM!X+ak-MCCq2{rLR z(rIjFPqJ1V;Jl4GUxWBiD&zemss?7@`fP4tt3>4YEABvgrUWj#IZ=_DB?8#B*;%fE zz}I5H>E50JWRd7XpKe)Wbghft8S}LYP>H6!2Tt8$?HIIMC7bdI7TElrzY_giS|(IA zY$6~dpsISaE-s&S`3xwpvCNEyZhlR#V3#j-3G5d%no2l>jQZ}_zXgvX2v&vWmySRw z7&USIzrID)H;tt62idyAR^xpWVtdp=nbrYx=By?lePd_h>PFd|g_VOI)dCKyFWIDW z_g_TJ`K8sytQB_yQ}#l;$5aljAGnMJ&0YC%kX#s0^c~h8dMm?T*jS9ej;S>B{VQ?$ zEobmQOQ=TbQuroXyi0W-*<@~9zxkLL6h2}5tdQ>`^;C3Y3?bNzMwnAC%XCO7(lb0C zKdosN)iW+vY79d^7;Nk5N0xXR!zYU+?WXcqR-Wc`aGhoaO=UR1~wE&(r}BR-)9wGa0~`i#SG4S7&3rId@{+j<>MIM8Fo zVBgAqm`%?_rUa%8U=(j*Hl768FPpl_JmkTM&eNHKsX`tV-9Yd=5_u2JNA?R&tGVEr zF@m4os2T(U^RddzdhgDF{I9NhDSIz%s%HU;SA|tMJbYtRSp3jK4x%Hk9Kn26;@*p3 zBh#)5tmYe}9g&{{Y@lD=!E>&iQ7x||B3&H$=>eEmB~U$ z`(S~ozGnBbyqbc5(50L9wE!_HU&pK_XqhM=Pa)FVLwk{;pQ%*p+`fk^bN$ba=YzV0 zGXB^`(p}k~jNBXdVrcph+43BtXw|qjDbFS^hdYmq_Bn_=s`j#=vh~l)@(y_r`oCrn zsK2(x<sg1i{%hQ>qu*c7t36PrZFH?3RrAp2fJxSI7M~FP z#qJ;DC=DIUw$Z&4pbscd{GH0J=%Gh2Kw_!edDmiE-+h4O9i_tEFgfy5-G;hEQ?#PR?vWOKa51EwOoKl?}@ChHTRvUT3k(@9^6qjt4^&mF2=9x2@4 zgN4_78V(X}WjlvYz@f+X0?J_?^8-p8Jgb`FDU zSviF)5EuJcWRX&FcWXrv0FssAk9F^5`PU_TR1~O!KiV>qM~=J5>>|9b`KdiGHB7Sl zDB=Q8)k@OvC6B?1xqTlKbf`atBzP`Dkhk<6oe!A_@D8_l7_9IUeByFAADLm{uw!oY zfb`acUV6J;bu*YvmQV@CRx?|nJ9II>pm;JbRsg-=Sh(1J{Ppj_th*6(nulmVJY zzP3NZ?!uSusD%xcm<-b`($}}bI@C`Gia`I zG?PE@lyA{xURY)GfSOXf_Uswe@f>ZzOrP}NLDuCl%a|a5=65$$N=?Ow&@&x@!CStr z)_6j9ncKrz=b)k{pB4=XW*H^eA_k{UB6S=2NTImXSwCeFvy!Z9j0_ zewVpLGPX95Phc7R@_v7-oO7bopzC*0cyKc1RhB%n++RGYvu!8$U?Hp)>fJZb)~S5T zUoN8TD6$%mq70n1=kz~zZ|_V|&{1IjwsorELld%%9@6l+bLo6#(p!@!SKWS2t!AkC zM1&NzzE&_bQ6mLOTS=s6Y8Ow?3L_-VL1kWyW^W5eDR1 z22o_gH1j<)Cf-4=7v7VitiaWZ!}^|{o-4b*i>Tn#kSrnQ*u4eOQwKRx&Oj>bQd{!31LTv5 z;ZxKR?rYqok3XO}&p$Q9Pko4i9 zdoR9?Us;Y3TaX~Bmx6;fZk!xy*}7uW_R^qsT^^7}q%HX}kd3?ltE{qLqGxgU88&EZ za1U&0PJf=^ws&3g7N^#ait9worPpTg>aEB0xdK^|%tuAzQlNJp20+4)x4rTQU(}HC zJbhl+ZX22?t7p7q8G3a0scYI8!|YY2!QkftrwcZ`QxdkqQ-&9IGJicIB7zGdbJQR?N5Zqe4gD99>#Jx1@Hmc7``_9>{IgNMqwpjBMy>Ju14qwUa!w zj-mJwaEo*4^*`msefK;pu=Ap0>jt}1B3(Fz2kp=gH@7oWBv(H-N7p6EnX3d}*lqig zDA|%+TpHBt<|@_B8=vqT;bF+~Wb zL3@gU{JIk@arws;CuG;w$EHV#+YKhEN|M3X643&QLehbq%Uf3bm!E0&j;pC6*-LY3 zvh583F~JkhTPn2a+&c3)wc^(<6xBj`xHC;XGryz#}4JoUYUuZjA{zAS{33hi;QkM$#9f%oQlQL z7(Gd=Yc@aIXkcRCn6h9p&}f!4Z{Obg}UVgN|vd~c6#M7SZD(%c)=|@#jb`ORxPq^7V=)XVQ ziYTTl*o~gP7cC^&ntL&2=Y9{Og_wWtH@Yb0mU1DiFnZPHBa(GvyQ1l&AqnG$hZ4otsVmXZborLH z0)2dcjXpwwE(4{U8I#SACcV^qt%_bD_^Ri{6-4#qvu@T_^!cgBmAzUKut!uY{Osv* zkpK>NWv|pvprwW>V|R{Y;4xQXNI<7V%NOmV5+=JZah2__^X9<^ET0LLilZSC@LttO zsbp14y9d!j9{q{EIz6yvDl>*&Uc9TlNG_}1&hr!Yd{x_(e}Wt*iZ|ie=B&QuAS)!|G-eD=YUU-EP_M`u z75jWg=d&!QEWjqaSJ{1gQK zJHkC59%5%kAp^K7P{4bNbFL)OrQ8{DPvOz{LTBnl1l-=vEa!YE^?ekO0MK7h22HxBF${gQXWJ(E$>u#u~xw^;|hr4_<(f&7=|p`ZX36U>&^NB^1e9{XUKsPdTszB z3}J;w$E)^MRDZsXzqw-tE9KGvinYs!XelI&D+d71o&I9Pi=U3OH?^EEq80Eat(af- zjDY-m@ZMKJp##WLgnLE7@&(yaV-el=zb;y7)s@6onj=O{vHCT57LYh7$y7STmH8BB z{}p4an{+)Isn;e_b;xd1>3+1(UBI9Tlrf}n_-PlRUcUF930J0*X21w{2Kzf=lmyD^ z?FmExa{i;)Yg$)=aO`y_7~K?;aY^|kUu7(!1o#rmYQS|g#vO|cQefEU<3v|Y_Bp%A zaIy#Xb6s_l1Zj-_&^)YcM#P^#EDjNwh;={&yyzD|!=pc6ayGhCEoSwdb7t7BwxTEt z$@;#_I7-aUXb_xbZs@ATL=M)@5p9{`tbosVaV29d_CMRBrjil(S_1S7wW7`LdCUVN z*Gw-BIco9EWvnuY=5>Uj-Q4RZ3I+u~)i{9}Q*G@biSJ_- z@=YfSyX5tKde|qE9P*@dE^Di(n|wlP)t9tRETika(}2bwo6ol8=T`$TYQ|hodaeTH zCaN~;5}u{djx}+EqVqr~EK{lT zKK5PGCTim?x>pbwQ1~1-xYzy;5DFif{C~D-y~6@lnU^OMBciJKr$anbUHMkFwivKH zv0E3jooWF#2jUG9zF=Y%HnGzXzW?D)nef`5)|6Ku*|ZLFw4B3HjEr%{w73%Rt;Z6T zU0=yDS#kViX6^ok(*Ut}qtSfA8LS$lt`0(mzVH>e;DY!q{h=ZqzQnodo!(-uH?)BM zPQ4vQae5a#`>q}gUnAV?-dMpOq{m-)p)9U}Po=}$l zA>HGkEitJ5i!Y5G9QL`k7g*<;{y%GfS7uvR@~3gJ1x5^ zjy__30)<7OI`)4WT2~@C^Uf-j2WWqPWAR6Y1};FRJi>9^s;2i(uUBE+AJrMkAH&e; zLSJr23t`}PA)cj4cX4>P4yCL-_h1`;;^7&2O7)7a5kw@jHp?eP*!{o<^?Qm!EtvqoMOtza%AXs+dWmBF3IL}JIodTi3$j*leWC<3-n0HfcDy7#Awxg6-W?@7+T zBDk9_&Q9DmiP~@@xFu})RfT{N)pT3tEFcAD?`gYHUml0j;~JKtS;W&Hq)+?|De32XlXv|#h*yOqzzF$G zIwR_N4)<+e4 zsV@x&X!*5Wkrhf%^W7qDmgRI5n23QL(vhuZtfc*M}E7A<>wIP85Noq0}Hf2*95EI6~!O?s>e+_UJ~ zR`=D(9|iQ>*ibP-S721nd+EcDwxe`QsY&Bl;VuCzcJB3M>xNB4MKQ%Oe@pJCv5~T5 zbNY3lYIf1`Jg$NMIM@cxCc!$~q#lck2q3I`Do2qxdM*|jGUi7WEhauH@XbGi94%%w z9$T3$DeFX;)Al?G`s0vdelFd%Hl*TH1zl*}lnZ4|>F@b;yzIn`hV94vY{%W`Qiy65 zxDheS)lh3{CC&=+5=i9oyS$@Z&VBggC5N_BB0Zmdf3@KCoAJUfNM_Q4`O_Z}wYGI> zt@*4xwpB0@$a~^vLK}SgmB+)oTzf{B2_$)J0OxmX-dsf>o$F23U-xiX#CbfJ&)ST+ zJ7GsN6fXp0z|F3(Yhi*9|5`;i+8tcKQocz}s;I>T#2u$tt>(GElt^C-$Q8d14jZ5| zPMNoGOH>uP)|nBF`I7uH?%tC>HqLCyQ27{yi0~#pMtZwDRS^Ipn^g4v7K1G$2G&|J z+u7qj6*K0*uB%#rkJqy{aPewNMA28}Y;$X^BuYmV=HI#DDCM~|=w2~`d{t2@=E^PG z*i;Q==UYa^nu^*Dd1;7|sO}iO{IeFi$Ovek}RF z<|2<*@6?*&yIb>}jOp341wOqOYkGS-s?WeZc1I`T*1^9~82WhP5znDaOa@-g_Z*ruIL|O)-0|=(a zJAG%j0+6iTb_zb{`%#%X-M#pidLc(02%64*A;Km-1swP1aB9tfZ*EU|Z>{WFPuUAC9{yAb0Kc?e#Si*y3jHVa`%`k;vGyEas>wW$toQj9)I$@nQT;dN!Xy z{-_w?%th#(;$4Qla{9U{Vn!3;nvy;PUPQBBSlM66S`a@`2Y;eN?lWg<%?Gx1;AVNz z$3BMn*bHNFvY8ifpx}QUD4$I}*F>klei`BVxO{!8<`~|P61@D=#E|H~xq-CLBbMLb z5VdWYar%H5mp*g|VB6c034VO?fe2=g_OB;Wl17ci`jb(;?`W;*m%v=M@Tt2c4pZRL z+HP^M17YbUP1(JX!dfZsgxR2z=~J;&4o~AI!d?F3x&VUmf0K-4wH+p3dJw+vdWNti zWYgYxq*Dk^A?^W)!jt)tKip{|kRvLHuT?u#ve?8L{2!mZe=uBOV+{#ykec5m;=#<} zu%_Did4)g+q6HN{%M1H_Q=wF_fG7GMOZ_Emq-!>T``s&UnuZPsuO8YzSL=CY@!kGk z$uX6~k=oO3KudE+>>qE_dvAU)5H{s7d~}7=^lfBO%Bs8JXtuh#XlP%~$cuVyLG8fr zBscGtfmd~EB5emrA?&7WP;zRdSkQ~A9fmm6v_n3;`2<1s$5*zeC1FEpQ<3sDH5W#z zEGoyNp?n3FVj^)+~ zsaiQG(YO6(F+uOJ#G|j0kqGZa*hqcCCOyy*c;bc@5^m4sGH}|6^1|-v$F&^+i>+GIQQb3>YUG%u9J0 zt;k1l2yn3u{3cWv#o}bHhT}E{+ao8YUbKh9MYM(RT2-T;jq30ZAOe^yFE8sLb_1;0 zMJQaX2XP=$G|*|SjZk}HYhy~sYQleeId8Fpg*q@CGDjGZ=iff3$;n0?LamK`2oeU` zzyLP=a);SYoN7v*7^0Rx5KNlVW-P$k#@Zv)(Apx-I!yP}WltTxQt_gI={(pZI-BQG z=+fgapj%&-iSIl|6gQZwDA9+1NdL*!zc@JyT41-Wh9wKxzjnBt zwRw!E1t}TW_}t`y)hmuJ(>ytTWS&{JD8 zzex2-yjcfjsO)HW&ceHUxBt5UCD6rJxDe{p{&^!ze1^l#dHxoG#QjC*9;`}}6@*R@ zET1v2-Uz)MQ#F#HG|#?X_Zd4}X=9CfL}a`i4$rJ*m*Q5-b@+vJ7HRGjG-^xt$|@Ba zQJJDCM)e*TgE1>jB1#vw-~qoMfSsa_}BN`+zv|%>s!sR6v`m7SFsPQqD`h|GVkN)X;4HfNWS9JT{PVx< z!1Zr%t5>KFi9`7#wHC|+k3f+!hPp_kmyzn+j6=@G=+GFCHu&1ZuV*h*y>;L7Kko>D&K`K2 zIIww-v3Ce22tdOuyhIDv1Ls3f`yahy3D3z!{Mv z*O7Hg;30AClG(LuFq<0(FiIg^$7=ZsJOdOzuMKvMh^6Qpi{nt+>o?oCv^UOs(Zc_S zV!7*>!b1G^x7)PA>-d`XTUoLMdnbaOruuXZfOSX2jT$^y7R_$dgAE9I`T)DS$yQr{F;yOZo;rNq87TTrrbj4V-Z^TJH3nDzw-+cT=_-grKbhfwZOqBL-U& zIBEB**pOp{FL9S!mAAs1Md5MSw$ji|_8dpVlh{d5vCWf4A`-l!*o{cysF(~r#s83F z`O>Z@#{Vu`05c5XAxHN(^!Y2Vvkk8ng^d^6+=vT(iq$!bW*bPKeE@j2-QL^X01)g@ z>yaY}C>z$tW^(ivqzREcLR8UnSt!TUN05d})dj<7 zFswEI1P#mkuGc}x;N>gThy*wJo)FbmjR1sn$AUNpduePHxceji#?=?3 z_;|Cs#Cy4tCQ-y@q1aakt;*XxqX|%qLqXCnTPGc6RIdpMQ{$ESURwN}`!>+ivThr# z+GDEgkhbVTDuY!{dv#tFdxh-qA|?_f0O&l_{&PN1p5`Sl9O5;pJRS4uO~#OSr%>X4 zhubOu+O1xd0@fxSNCR)n@-}-`jYh%>$Px$aAeM}9PQ9HDlu;=W2Efa!bG3fE8aKMJ z5UHB&5A7QrjN)4jSItCvu1#H9;Mopo)EbG+8xq@^DLs)#J+b9A(2`XAf^QiWZl)i_=+6R&(Jr$enswYjnM{ql&ZBpErWj3o zpUqe2)l{~8F~Y%z8Z@fHAmZC-c1DYZ@AAELCVLI9S7GcK0y5W2R5#`6lNC9H%wS-V3Adk_%75MZDR#6&@=61G8k5C=5 z{2|&B(Nh95<=l|-nYiL%e*7wneGs4~m$UzJq^0l)tvVIAHZoApek0$!XI0v2H}g&W zMtzN);dQ9XfoSRQuB@C=_)8PcJ_zKt6qt30KY5iZtN?W>*v7FOR@8I)BTasGYF}`IP?*Ih zEbtFfuCo3Hfo~ax)>N+)Lu+jY@tb7-V9KCR^4gt~Fwe^P_>lEI$ZKj<6Qlb_3IV_L zNO}EP%^PAv<*KDFvl?lY$k`bLvU)Xv;pJ(uxd8;{AmvJdBxrCQeWX0QQj0jbMyXrl z&mIKQ3VN@PyEt;J@qKiB?QuIHps2&=8>+x8pMU3nD0h0zcGPcRSX=@vNP(_Oc}j#~ z0_IDA-d>=wcSYV)6Xr?kNOVn?0mn~vE}vNLdLyS#X;v>srPY+6y)=L%7q|;-k&E6N zKmmJda!sH6OC8_90=IakmQlwuswYNC{osY0H^lGkIG22ZB)}K}RnrgGA3M^a+}vGb+J~ek# znjRt8z4Jl@uqErZc%x#D%;UpDMbg@q-I!lqvgV_ekpobm1yIiGi2OlvU0iyvqDg;; zNLOf}RYW*no_gq=d$G|%X1<3!hXP0NbAu{MQ?dKGhQ9wLqa`>ZYaT{rOaUs_+u?-Z zg@#pWPw7=@8IQ_<(m`*@YwN^?)nV`A8AETuB$Ha1stMf%qaHg&Dz0ZQy!tgrGH|)j z#x!*K0wK(cQ&bo>L9d_d4}BHG(qolSmdOGAN8oN9CBJe=VG4-OPfa-j0t`3F2q4H`S^RR|R9n)*d z$trRGP>Q=A^NpP%`ww*uQnpzzng@WCJ(03n5! zssIGJq%dNUT_e2|iW9(Cl{s7Yd^PzE#}`B}dH>Sh~Ld@V6g(gt7*KtMjhyz{8Pd%PwXp!+426Ze0=`+fde;Lh)nKB_kW zAgnUMextq^Y4u9_Y%TMKm(NMgQ)Spq-bgql?+|6D(v>@~1MYmpmthFcpspJ;G5U^nr{iKYY{boizg;ERl zPHX{3jN9TB;Qm4H&h0yoJT*%fjw!N>&e5i%0pjhyv=7eH+=*<)wt4)oX0AOP%5{rt z+ZBo0?Hy%ENQ%i&kz9su+GtahaT{_gVMrO*hK{gziAfoe&1f6KxP=+F!N$&{A@}Pr zYA`YkX55Z(JMRq7bI$qq?0?R`-}8R!d%yR6*Lv4lzu#JwIhu+qIDFps<7Pi^R4c1V z)oDEskC=+~m~@LRJJ@M)>Gz}xKS$VyCDOcE!YnF6D{+O?kKzV%wK|yc>eWsu>b{v% zrl{qmwoWVWO-k__#Jf@Rgd%iUo~4>QYiE~|UiMFRPtvTLaFt9n=n|wN)e_heTyU|e zON-zH5PgCZISfO>$JjZjdP&j_Byy@q=^$#xY$?D|37X%Cc8eZ=x|Y~1`*P6>#3wVW zE$$$Gtow6f<~MBDa9>wof9FJcQR1YgIavy z_kYj-HehkO=!?^?rfJX7!u)CoM#r4XCapEd?ZjrjY926$e`1<(kB1aqmJ*w1uGTLi zP09EN2|LF#eP`;%nc4p!HW%sU!%l2+sJ>#G6V8SEG8thPZ7Dt;v}g|%G`ZlX6|jD8 z^!>^lE4Q)Md$;sKcDT9>$8064p!1`;O`RRw<*Tq-sMI`!J+qRwBtVz7t}S+O$DB_& ztyaX9$18PG^~oitq@Gs6#c@3g^FJTLEdd$<7k*Y5N_*qsRP75?W;*M9sJFP(kFMzGvQknBg(r7pa>n{p4lk{`|S zHBIGi`hVeTa{olTG+gD&-#5FnwxN0#{~8*)jD&<5b>E%d-4~^$kkdawm}ZQ1Ffppp zH^S0v{Vz% z{smTOOYCnla*k=z4zkX>`fk?!klR)oKp+45q7l0XZ;$Cb`m0>HyRB93D=cRIW5L1b zJFPRx8BkCic?>LVfP&DUYxJBX(;5Rwzs0Gbz3Virk@pBU;;8`pSH(==Y zJgaRVEvZOMpMrTex0Dt*S^lv9Jrfx=bI`&u!bW$U(zZ{D&R9vWDS@ZR2koJAirs9< zt{%xo5viIFZ6+MGG-827*?4e74><|1bcjz|4MU;#_fV4xrgvXd5i$(JJ zsz4v13P_>}AS`a*QsZ;|7S+?zQU(jZ6|)KGuTj<(ZI4)EU8ji_jxti~-S5A?P=*`+ z=A+L)ql)0?@1v%l=#5q`4NJl9sh;7^6yNVS5TpSTdWl;Wub%Z8uOO{~1hK~m9EyB@ zsVN*OIjQQ_oXl_pqfTtyMNbx^#}8`nc8?XL;I1od{pvM%6KZA+)v$(=?x}Bpo}f{C zLmmo1a5>=~fVYKNUeIB}sp>1MHIm1J8L_sI^L=0hfW+HYzo_a+&|+R0Bi9fFn zHQ-T-dF+YPcGqVzjCM$Z_;e8DAiD-!2F?r6_s4>x0s>)?{~h7ZGF+Q$yjA%%1~TLi z1jVEZMJBR#G7SWh+w+8GGxMxuy;B;x`^HsaqbhS@4(NHOAWxBDy$v-8ho9UUUKSed zkz2RMqwQ|$B9{z%7ojM6ikK|M6pUWx)I5|6EO!VKp3CWJ*Rq;AP^C~}GMv5s?5|OF z;EEplxlfq+AY%TXh70YNo($UOhI}%R0*G>dzO$F}vtCx5ilB-#A3lTcvm9g(F(|K* zfdj^vYrX0A5+WJ3+w;X-T4qBfC3sB=eFI08oz;g~(Gmr*h9EKiZc%ewDwKo7IxlsF1YA(XS<3> z^+}=t;2WHtPJib5{#^9IR%C$BWd@harntGS{^bIL*?J){UY-0Qgd{m zR74!gs5(B_pg>s=5NxkD-(+SRlljUXbE#>8 z9LB*dB=Ehkx$Qa(_(z=qqqh$UgYUk}9UiIBnDw7)Qr}aP%LR3ND0;U)Oi#KKMv@jW z#%zOxygM2cJz6a{4DDa>au)UNnP?1Zq9c@US$^`XK2GW&9e7K!faSxst6 z-mk(Lvgno)`V~g-5knKb^d&4ds|01pc>lwd^~*yheMy5dD22B1Xa_}30EU|!LOlh8 zQXk5g7W{&%lx+02{wXQzbMKVS`6ECnJ*9-E2w>%3Kq*u$m(B^PZR!&DH$%xH2 z*rZd!bI}BHtbOlWjC(}D2qjR-&-bf5W7cScor{b_++FQQCAIvxT|DlUGG z5h$D4ESI# z)C#+Ny|Ls4iMnpRzQABrU<*eefKYZwXomqILbT{}iQk%knopNMvuJTu_qHdby47s4 z3w=WW*Ah3+v^8()4S#%ab-W9;ljDz98bplkM4?7|#F1Co$xTyG`yfZZy58B*%Coj! z5c5@U4o1RvN$2+9A!;HY7ln^&V?7j zr8H%Cp~K{km8A{e$>NI-WFtIrWmwUic*V`oQ85mF@W?#tB&~3Oh`55XqBbqf$6K-w ziOE|}!n0W=^{0kZGLcBjpRCH45`0i27?qcX@k|eFFbxN5-u;?|j-SwCyq@(OD zJ1Y6eKRI9KutP8!n14~>78^^vd;xXQL8H+*z%oDf-I}21g#+#o^esC9MQHf5&`hr6Z5#xyG{8aQfwnipPXtW(8P*n->Ob04xm(b2bhwokpB^to%QT5& z+5i_o#HVTNK_pQC4i=BO=Dmg(g8rr-2&S)wM0W~gD9c#aw0xUKwDdW zqlfmob-^y+imi?E)%d-jK&`FttYxZBtKn}z&^Ni4E5}w%e-`x9IpdmMxJMw}SX+n* h{GFnL`zZMhqoN(-Pibk=Wk95e=@pC1g%@u}{tJ06F!cZc literal 0 HcmV?d00001 diff --git a/docs/path2.png b/docs/path2.png new file mode 100644 index 0000000000000000000000000000000000000000..3b22399aa4a6871783030d686eb1a4b19a9bed13 GIT binary patch literal 76078 zcmd42cTkgG^zaD+A}AmzNC&9`0)q68NSEHEMtYOpqy|AnrS}qgF9J#nEd)e*ClsaE zKrbPXvqTxHMy=#&X!`V#kF!`j;6{0@vg==jfbkqvV0Zed?{Qfw<4S@T{w*~*xd3u)5$BX?Z9XNMSpz2k0TT|vGk+14BSk8#F3%sdF!v_GjEH}tm+ZD^4AC* zRG&Onk4WzL7nx_r^}a_{r%D9l`sLNt)i~T!Vq1C{9T!CQR|fCRckEG=e8Tc!nF8zm zIlH`jA!_+Z^j2P#0{4uf;C>M78&L4}EiUfdOhs$87{ZbYw9W%5P6EF8(hU9{coQD&I7d6IHiG=;?I9^rB%n`;h#Qi}MTk!b+3K zzf80Pq@<+Vwb-3n!vx!~;#f@WOPQ01Z)u;1{&qfGMTop^dP}F3BV||lVqPQpC-=|)%*4X$V-SAV ze+?6(LbcJq@0@PwPq!JzByGI^GW@@~D@vqXvG5+?OyN_KyoFEx??EvtD&g!uv}(Rd zuu}ARNibrD{w3oTMG3wBn|`don3?gP__MkG2Nfot=)0wY!*sLS+$1zxr|rGPWaN`+sEx`i}%`?*}ZEwB6+0 za96XcMu76LQ8xiO6qf@$TJ-Eb zMJ-DTuG3{J@vP&IvS5#hU0hrW+YVZzxn5=5p9?#RWEm%*kWuh}oTlZT{A@mG-8BsS z<}j99eHIW9up9hOX#sZ=t3b}{6X?x(N+hGJCvr{x8uq<^a2B0Fqp#|>>&bx-2`k$Qpn{K5R;EHc(f}5 z!qA+e;^HuzN;g&|ExNcVqHORnZctqY+-S$nwIBVwTRGeoa5!V|uinES|6$#FK`hSZ zIGQb~h+Zp6x6+rMoS2v>P?4``-Qjg{b?ts~=dTV5G+!TeT5PX43?y;-9xSvB$E-A4 z2%HK=F#Nq6zDMoK;m8rQKzo~MrN13CCU+TQTy2)>?a6+ZoHqLYYw=8!U|=8Hp=FD= zz0(BVx~y*9v`0#vU57lsA@&uptUNo5Q?o&0oJ*#xB zorkWEZ#z@$u8}3lEq3U)pHO z4Dn2McAucVTQrE3QIL52+5Wt$va&L2T#2IM9CdnHK}61R^m(?RF)0pV8!uZ5e557S zDSx#}G0jF|0tjs+g~tfvdN7PPwq>ubJR-sTZ1}Rad5yGjnH4cyJ9MtkT>)zB7RYgM zj#psKpVY{SMcsWQP<(@yzbVTV7IJ2AW_PYy?~AXxD%RE)uUJ=Q2`w&*(K>miaJZmV~)Gg%-AHKR->vFSG_ zfGOx9^rmA@@O>X{GC&3V;$}K-JM562YH3Q+t|z29X$|4O%O!)}NZxtp9a2Q#o?_lq zZ4Rysr3%SBH&<=u$U*xJm`m-iO`8CWZs<4Il6oj(J~9-KCRx#_CQyo)K6z{^%**D+ zfgjb7xxww1)DHGot||Mf6Tu+q{>@(#PCFzqDZV2BYDj+uj-E2;55(+3v95lvoQW&i zyq17S&~mwm%Dm}-D5a~Rat*+?NB(a&q`eky`f65cq8d&8jE>0)F>W4@-uD2S`@JiH z@v{q0@@Q{#5wjTPIJ78_#7#Jd9rrv!z(F3y0EUeVl|bQ=@85NAc#{a8oI1^HE9*Um~zEgbFx3Hn`$QXo$*iT z)VswKxaj`SvF9tb5FmM1t>#h1-M^}F^hs?wU{DO}H8o<{!Za&(NmoXT7ktpG=_OWh zlKL|?rmffbslKHi&};uwze4ls;%+{6<)l2{)@r*CDpI||w-Q{UWSG2VY&V>b*LrpU z&q;n44-3;jMrzxoymWWe>=_b-e#2Tqf*LX6M&9lm<;nRgU$}F}&sFI6g!X9J1AAK< zlQ^M0Q7mEQSkdQmC(vu~O(|A187YVl19zPAhf@62^Or3+zY_}yP7c!^)g5{ro;=L4 z_ZkZWVsr}Bm+A%p8=GPxB;I=}{C4iDGQDoLxc*^qGne>A(Y-z?t~EyZHyW0QEyhCj zo93sWnOt38T9$<4U&1NX@7t2C*crZr=k=>aHl)WSd^S{NmbUdY}Ea{l)HP=l6?)o{iZue!7*9v}D#myN7R-RqxkXx{zRmNwR= zI*rEFuko(+IDQ=EtKW;*gdy5^o`Xmub>V(IBgxzqr>jR6-9x+%N`E3Zmok zAbMLu^T+giO#eE`c)L4&MIzhq;{sSLu+3>EsVE zobSQ#x)8i5^$xMQyo@q~Y6g|y;+~|P z&mcmJIySR*bJ(}r&nq8AH@t5g83rwW&P!lbiJ-GJk|WXBpnnZ^&%wx1wh=w%7*7rt zSt51&tI!|TKU)hiA6Ol6wXvY>;ES@;R%=y^OT9XkmzM{Gx($~kYFGMxw}1F}1~9UD zQFkk|xc+jeeL>EC`0*D%*DULkjRBJQbmv|T*Is_7pLc%$HFQpEP21;>_GrQ9kc+kG zon^c0t(&X7Y3Q-L*7M@vn0GOWKf4GYPz}>YleM4Cxw_;nT9nz9NC*A3+MZ=`Ff7mt z_$DMLN=lqO3bhS{OZvcnFV%3pk6Li&@{ve-jM&T+Toc5u2~I)Rw&ZVGFeb*mb+?&L zm`Un5ehW{U4(zxLEM;*q1tO2XA^A5hei#EZ)4lE?>v~kSuzwu$aPy1ZhmGStmRYFg z=vdg53}nE_;Tg?{)%j`tT6l zu$yl$`f~su2Tt8ir!*H&+vWsCZIxS$2#!HFY44%*tB)2^KZPmHBgp=22x966Qy1JF z#HrYrtk|o6415S0&`fg{BW61>d56f*c*a@8G;`h`7Km$SRs9Y-cdZBT^#Q^Fg}&qPCgn*6E`^O6@{+8;BLEYm#n+~x(*v-5tp%N5m*75Z5)4uqC-ArG#?x7cWJ-;i#RS265Zm&?bVkS0|+DS#^qUeUnK z_3X02gci(z-2I+Pf)8?-4t1$>qt^9C7ihn|f%64anR?!h{xel@t;imoH*iOd5a;0GJ_(}tSN{D_m{Is2`_`1;e@sO?vj4v_dE&y=~-=t6ArPfq?=|ftC-Wxw2J<_;}%O?LwB~>7J`B zKbIIv7cBGH8nqYbMDJA9Zhz&g(f#YtsHI;O?CAh85419#DK6ujgg^Zk?a;ltA(U*S zEujQmo3a+^=M~&!a$7SjeZ~E+u_cuKg5fBwy{;U}!8Q3$og;2|jT1 z;#-8=Us14O65aW-_P|97#pEwlt}=Nr^JiJz1Z4x_rAd zyUCq@#vkV;{CeP2e94R`#3y$*K0wDRpv{9JCA*G2#D^pWad23M&5@~vz;IEdLYlp3trtvcZ+dxaMY+O-QCQG>$AC5P@7A^~xAEuv=E)iiTIT_ zhflLQ6|KymLd_6&sE~Uw+U;b2uK87PJQlL;vZSWzQC{GW^q7om^xcfrtQhFqoC3N@ap)IHXNX<9Wjx9h1M+3c(94eE)2&cQjAwvVYe>1o%^(grmk}E z*XvgU!#WpQ7whS9%~xT|qTj*Z$xo5%09ep*qVt@fR33xUu?*&jbGSR_6Mt)Uh7a ze8BhsQhkbAAn1-KtJXpb#F0HfG}?Jru=0u5yYAMr#94YG!gf0r0^f0ek{7Sh9p`KZ z)mU#p%UoU@UI2epiEP2roi1VBMA*gCz2oFxoQvj?`sEWW6oh3&M!tVT=@zF3c%%V@wVrwQEf+g& zMx#cz08V+ahlgdYbi!*5po1_49eFP~ejfN(arUF_6>Ebs3r0CL!K1kMg`6VtfXVGk z0v4}3U3maLt73WYrQWUiuvyx{dekr`w?l`BpmI;JW5j-T5;|s|H}IuoPuaEQX_}LD zPc*Q2>{Z_4;p|AUP>ZDR6}!7~YD(mn)gd-3kF6*OH;uDS)|9uJo;aRYaI%Z6^PHyT`cUMZ-?}WC?Ru!{+GI zAXp<|T>0{;o|Ut5f2#Oyrwf1R1spoW?^cbt!lQm*n&L8O5&Y_Ox7=QmXP<6B;>3!wOmnz`WWm6Q|WC{lP^PI7K2v# zG*SFYg#B;-Q~N@3kY#iLd7( z+2?cdK2P80CKh!LGS;_xDZ>4pVz%+d5j7OYYo^=QyZ8P(?s_)E**z5D~Z^}8(_U@PBDN^u$O{co)_|ad6>+L^{L1;#v`2dQ= zQo&Q>(VT<+l}|+4dhu6$_CKohJB-5)^bHL2q&8biY6C06@>+iMWE`@!iY=9wtOiv9 z2o1QE;~Uf=UpK@*YeCjl&vuMj#9(#f_1wd_X;n`pKmq{u*HOPUhaUZr#y+mt=JM0W z)4h51w%h!6^c5cuUW}YDTep1w7huXMC8+!ZA7Zpc?7a>)q*e1)A^6-NI9&SY4)QCa z=!qUv-c=yx&OM;j=^v)Puky8DFOY-TVFx)45qFaqyg*rA!E>YnWfk?Kn5!$2L64_d z*(~zg2&6%617&(>Zg**oaF8KK;Q5IozjDg;$F@dEf!?i?)7|(V^yV69)`#1si@~JsHr;(CB#JHaS)zZE_^nQZm%6HPS5W){`SLON&2A zB&RQ4u2&H0YG=+B{UVAt*jIxmn$R2r{=#@@1U~z8aI_X~dw{ZU=n8$6=VVbszm zn5n_v^mzr3oOujds&>LPgnYWGmJJQq#(Va219rvfeF>XyfG*}82_Dz2nWbOZ1Bjl~ zai8(KdQ~Ws?vc~50&9H_lBXR(VeTUi(3uTt+I3m{#f9 zK*Eg9wuLpU64}K+l}k#vjE+j9C<1Cr;=)WNR-VaviUUW_D8{uwR>k0H#_U1^zn z>7&>m+IJ?Y-K3a>0@U0tO(uTRB0dU1;T|p~$x7}dQ|GEYb1(aDE?S)B68wU5T)5&% z79H-qA;u>!Ua=3&B_+OFp&~vggZc6GR?}n+c_>lS35)8ofI||?yUd`CgoQ+MEfF1C zs<7k9#vKW?5p-zlWh!Y%~dv#UM7QOA&)|*9<9&% zVC^OkUeuE;6 zwklsC{qR`%`Ujnq7ZAY9M39qP+pGLpz;~(kIQO96s@KBAB|!q4l~(-3Y5~+f;p|16 zR8O4Lm2U0(D#+=$Cz($+voo0$E4Z89)t}Nbd{4fQQkH4m0W?>;rA*ztB$Twm&=?5<0!UJ+RvxLra|$DKEXgDe6^|GUh97 z-Z_?6pY1r|5LD_N_AYlK;oV1nnYE(#P&B8kq{qF?!-Tse)2HG7uGUkcUHE^%wWS_f zua(@kgrRi|c8_r5xE=1`H*bWN14%wr&nhbn7nlPZajj_HyU$(LDIn@ms(Gt&R=F! zZiiKN9m;ToH72@$L*$Pu#1DHU&XaBKThzAjTsy3v&HZG$=UmI+QD(VcI<9^K38fPq z@+dozcFyHou8BSOj_PG0Z;}Wdfl%xgiHc_DF5f4WI8O$5i-=H<=e5;;8-S;?;Kk6R zQ&D?x8|v?SR$ zUPt@mt>VsAl~!9!x9=+z&a~mO5bFCQB`)ixQsRq>ZS8QBjt?f5H`H_UXSw-6oV+(n z_4*iJU`z7&3m$zzx`K^~t`p?TU1?&^F+j3tpy1)A% zA3(hAsLn6*EZxOW+Urkr@gDc|cEa|0-B@bfP~CtxgN620JBD2IjXf!&M1IELVZutq z_4k-!gdpm4Vzt-Lx9@~YD$hwrOg4-1|7>TeGH0Z>Ia0f^x*E zJONO$T-lq04E{ORL=t<@k1Y}Z0KZ!JZb;#7_mIbG)1chEwUCA`!EwHS3y4;!jFB9E zthh)M+SpLyTZDkPC}_JcuLqT2hS;Dxl5>S=0q`?38h63e+ONig&WC4cF|@xPvW}q} zSy@bu@rI2dG<7xc{J6zS33Vxa<~)}$K3`GGfq2h?HcdKScz9Ig(=l?iLxLr>pc5!` zul%kiYHPkcb$I6COYC$WL9wHltK!hXCJbSYvBNN=z18iCiqVkaL&~7eH)_K^$=7=G zh;K>AQYD6kKDnOP83AWL^3L{Omdz<;py+B3BWa00H8|oLST49F@_ap0!h=OT7ik-I zMnzG z#%gUKIs8V}TjekYKACCbn4$$S@#=iQN#Iu|4tytEW06imL`Q~cdDQPW(^61w+ByU= zN8cfOZpnbi9e+kne5)2m3!2glei*+b0~&Pru|U#2AMy;e+9&BXy~HOa_N#@o#W$(E za^i*4zT8PY_?+F8f(*WVx?i$&DX=BIT&mk+em*HDpnActg5ed`nau=W-wg_IC90qu zd^2SNr(Qj0=qyhMpdUg`$bn);!z+1yNHtYT>gt6T!AsW>R#i=e;;mPM-KaAw@&t#Y z%b3~duTGn3IG*9^TFxrWrayG=a1mZecU3@@ik%h}87M_sHlUT~y6r)fyr2|5|Db~c z7$%ibM(vRIp_-FmiB6i2*x+cNNNVUutFs8g_mQ85I&3H)5Qxabdn2JI@u<-mqdBDS z6f+mv9Uju+W;@cQZaPuQ@rY)n)!#Go%q!C&W2bTu%Lcg~BsY7;C6h#aUlX@a>SGwb zG&x!5U%ZP#zr&{yDpKks=2SP3AtcowQNR)S!NpNPFV zm4N7{&V2>+2H(K*unJ@)@PQ-Yi2CfTu^X~$7z;zWVJ@HuN>!i(J>BcQ(dYwI)KL`U z)qM_G!fonqVge%TL(tw*0SAo#QB7f`;Af7WD~@_&9r)p^IKG6VZ*Rsi+efXN4Z-<& zr5-guo+{wsb(8$Vn+kK7ZA6R71h}R>H?8@y0{Dig8o&g>d;g8Gv`Xbifbe%EF( zmy4^Wv^y_U8_;f*v#~&r_x;5`OqxKV%(vYWKwtjwJxM1~>KPls)>vMdM+cg#-CYXL zLd5P5?0CHo_WOtJsVrXRM`awX6ChXm(XTLvKZ@HIRmNSSo0X0C@mFlvfWI%gS+M!J zI(W|>{-v=Nj4D&SE|Xn~o&=s=NtBE+OStfoPPGqr{tI@fQ<(#o4@An=w!rDHrSY17 zUt!Oov(Q`N(O+U#tZ;z|zGr);xVsc^$tvi7 z6jFui|0Mg{bLPB~I78WuIX(AZs0^M8+kdw`-=9vvkTs>!{vj{7h-0=28B2*fLPe(= za*D!af=Kkk@%nljZbe~@c&|3x%8QezU=}$^RF!X!PWTd&GItFo@1NEbBhwqm;J*GK zXXZq`+-+N75Bn)s70h;p+Uhzz!k~6{eD--Jk6}gA7p~O0?vIrDaX7Yi>GojC;CJJ` zSZlSzqefyB2VTN7d2QR*4!=#pR=+;=9hUKcIUGe2usp5ibAEC9*dU7G)9A}ApotLV zI?rE!y#k;9&e_B&@s87ZEKt=5dGbVDRp)jBAr8E_^wuH#Vt8@rrNZ$9=hZ83aLk_ARNO<{n+;Sn0?fT6dW7HqeQE&)Kzo zKE}OxWrSJ!g?9Xup8NfaJELe$>3Xo5bZfLssj%OS6T3q}kksygtw2C+)J{pE#h7;+ zWvX>`83Z*(c`yAhI9U}SfAe+7`S5>8tHiZ^Vw?29a0W8E@!kd?Vb{5=b+1^ zD|Q$@yo8*!__a5v+ix0_!XK=aB`;#qD~|FwPQ|vo&72<5O43YvPq*!tCL#v_Y)G z`hJr$rRGG7p9qcIq zcFfjrkq4EKY!ywrz1lOgUDvMD%e1U{$}quu_2qimM}eQEgJ9<(BM^-?f2G+ZXLFzJ zkPT5-K*r3X7x7|P$yt3>Nn5JBWqopc*|%AB9BnlLvDl4>H&p)^CEh9O)~PL$-q;#= zw_FXL%*wHn>OrvS%i+*4eD`36iA4{3`cv*7vGsFRdKUp)h9S3isw5!J0JUtCD>>)u z`wGC?sm<)%XQ-v}9>Ru?#5HTJf6}_i^NIpZ0MwU^143*n`1(gd3f<-7nDZ{LM4(39Shsb8~dzZ#fqmque)MG7BFmvY(6(MVEl_hN>0vE%qSo=}rV`&Rz!mZq@W?=S(s zz~-Tvb=E+gGKTcxya16=WE`TwH&QE?La>OzW4S~s!oT$lY{0tn4&P;YnOZ*ly@0w1tD0~LCg7^InH=O(`vOe+Mn5Tho6D@JORF!W z^bO*|D`<6fQ{?(A$JbjI4S4rIXgA7}NR%Z1t04oktb=p6>VdJ_1tl@_YPTz*OfWEa zNyZOGE zab5EoJBKGi(iJ4Wc`-s?WJVGnR~3xraY}Rd4`&3g1vPL%{Oi{gDrU_-eXdTv&7j&M zlO_{<+M;-%WtX#-tPi@^Eg5l-WKSQcH;rBMBj9%w*sm| zhT2dEk9xD2{wx)_QB&O!g>}WPHkVXK(u)o9`(wa3lgk7Vt=n>@M|5**xFEIR9C^f8 zG&>{FtZil)aW((W{#)zDUTHc7H+lZg_r^kQe=ckM^JF{@_vcl#o!b|OoZN_^%+J{m z6y)Bruznz5k@bLNAMVEw2e0jzAdtFDXR1^4PsUtbxhkOT#Po;jE2+q*ONDSNx>_K5 zDQphDaqcJk>U;ojv_ClCm^Vj|CPvZ#!*&s7J@d{`@!H9qQSqW0g^+~&S|!Q5Nfn%A z(UNz(w6uL9Sg6{=wA#9uy@gl(`$`OA+bRaVIti`x+4PD!C6apgdrF<02ge|R4z0a` z^M{2(iNq^)OJ!0w1mbR`kCw4ASEfhUuu9MX8hU+aarvFbw5zYwD{1DU~X@71plidj9)&j#NaT`5AWQ zWsbC5`@Y{SdkY>01U04jI1bOPYp65}NZU+*Jk8zF)O|$WAR(dWlerX{S_$_#DuyP> z*Ctsln$%#|7Wv$$x~(hj29Ou-+7QZRpGyZVVTRB?$wSgv8;Ero$&0{}uW+v(CDq}) zA-59&x12=HJ{I@UdFpM@q-&x4LVsZ(h-K80C1 zty##ONr$+_7X&b;1`V)~spNH2T&4J*FDn3{&YYX35pBcol!!ru5Vnm<^QB$!*+ffXxmD5s_kcM7hk%Xlw%;{XJ1J_ zlhrmr@;d-}!Sa$P&5W2ZHS$}GJ(|27UNf*ro`5M$greIQ!Akz81-Ct#qjt~5bk(i- zp+7C6CG4dp2LRAT_s`N(2g0VWJC$=4RmIu-Wm^iTblLiBl=O5)0nr`?mT!JOo0`S5 zvk0SxU_Ktt)}C+69>_@haP+t6F@%mM^Smc_v0%sr{|ys#npZ(c>^gta?=v%-d1csu zmaOEZ-Kdp-2!MCbW6Lbk!}Ee9EWf`aNrhKk2uv>QFBDw9h|T?dMn<7&8DWv`Xk^Kj zM5wJtal;1A8c^<=iCW^Ja`Nbr@NqJyUcpYrzW)O7y| z$jG${AYQBi0A~R}$k}u7>T8rth9L@#u1wuMA!@yJX_Hi(g<*<>S<2I|PQ+~_!7U_Xf;Htan+Mg6-c-cE0eITzqUKC4y-oZf`0~SkHnVmiN z+!LccAh|Y1C#iZY_Y|{%d_S+NqIMCY%9$gPcfgyp8$SO%en=pXJKJLz6(FOYhduTY z6@Jbo`0>`V7kBjvtF-uJWNdfTFZ(cPvuZ+fNnf9y!s ze18Ryo4Zqb+hnX<`L+ZwHGX%Z!2`&!*c9)B`v5{jni{klT^DXUK*ox`$~a1!<4(a>D6s5KHoEQt4ZTWV=T}j zKy{&XA91FQd=q7fC;(jdi?p^T+#rmX`p(GXpM|&B6Jyr;Wj=%BS+?T5t|ma8s(nTc z&!&Zh!nRBqtyF!=kYm}GwCE|uJT_k5Ng(_J!j4sCHLwdCJOOQ2y0lF5W$r@%W8C6c zSy=fZ6E}EtGZ}A`-nAH)oFN2t==r39HKjda zRw`cOcOifI>w1TB-nGF&9~DW6WU!L zp%uHl3{ZW(NmKP`XWJPFwPy8wDnubyZr}V{?o8?OhSEf-mPlre z*+1&Bq9uAv=Ig8Jy#xa6DPq0v_%p9GD}+#HMb}Ora&Jrx9Ob4@J}@si&pOAOhFPbK zap?+qc`{R;%FL_hSS)$QMOHaZIr!v$I$-Sj*u@mmSgxS8XEcT~FD`EmKbbxcyT0T{ zSxmQ&x2LWajRlzgNT-LBozy}K%!h89riTz~ZJxt@_ql5q&I%976F1{qa*EQ!W<2)S zTHmI({$>JDJmWm{2l58?bp_I#$n)y#+Tagbn^n0pRT}g4D?{bd!`hRU$C&DS&nz4K z0upW;FQ{95Oc{+Demqz19=TH(ub=sXu=`iWSY3owh*ee z8uKkiyyiQ@Mbbkh26L~5+ySnE@MsxW$tT>_SCQFZ<2!X8Vu_QX7-{55oiAMa)++f6 zRt2WEnaTa3tfWJyGV62U%ou3InaHr_L2bfu2El{*RuS&N-6@&MKWx!_z7yTzOWJLA zR$s6h`9+EDfXYn+3H6Vk9~bbcsoW72FV8?P#k z&q}7Az8@K6fmt}STyxg9@cxw4zT7>lnvXGF8u0tBMF&a&5UFoIjKEhzOJ=djLBY|*C5&S!$ z+CexwM2YEUE4Oxkq=!+YT`T_KapS%$9hNRFP~M`9t0tLn!^cOTiD=+kN4JiFW&J{s z(MuwdoztH>K#h^Dn=Gs}aTd>r?F6K5T~AK+8dX2XF-p0pI1T#BBY5Z*)bLJVU*?xv z`B?N$@TPNCFs$1b#Yi0G4WdowG?~1?ZHmXgLgW<$4uKF0X#D+|<`nq`?#cGHjSwus zbnTLg7GsJw)RlRY`y0Wp2pq{1AVoGEmUwgDRBo@aZmA$Y{9)L>eIQe1J~4PcSyh03 ztfKoXXWd@>6Zi3wCjtNB@8U7rAK+lqjSv2&pUg1KUgyhA&vy!vd(3CNd4!L5V|VM4 zkcn{}ZkB6?y=>4E$vLy9Ii3CO?yp-Fha5|;pJ*MY(P#BZuTQI-Ea^Xmj-R&2_S{eV zH71>VHR$LZ{ak8{MEq$1SqN2R51+F~d#CF`yfY{C@?HAyPc!uZE};-xOFM;BfYb}V zS%Z>q8)+}l)=rF8jxxH)+h#yRa~JdV%Q8YWhwHKVSkJ)vcQ8lrSYqUOHM|+?yMI1AI z^d+$2dODzy8pZ~H=e5<=oZWN~8gJ$HOrBUZqEK*q(T$qJOHa*9DAi+8^UzyPX->}w zoIJp*fH}tnGhA+=4vZ_Jd6a6RgRt?HnsvlUoMp?K=bl#ZPl@dte?%8P=^+D~1qS$^ zvIatx4i9u5AAXP+Gig4Uk+DxCBF|U~ZF~>!gM{|enkKn$kWaq-I0(p6L0gyOaQmyn zb~EK<{R6|kfIb6YaX?e6({dQsI zbBWLk*6b1HpvzPyLn*4XM`==rfgrj0$M0W6OnNFLj{dxbSQp!q&<+Nh&gl+5^(nKm zR7&p482gxp&AG1HhG(Xs1ewdm=xN3|5iiAU)~*fPgmv!58Ba}KGu|Wjd7EYQHx9N4 z`+58?T<7=)*GEKWx0mrdd*J8L8`;0d4>17=O$tT+!4?w^2XB4)ZZo~1CBmH*i;mvj z0;qVV8NkptYS627f8N;bqb!uHmQR^Sv8_1PL<*|`C*b<5s^WRUm~-ihIRviwh=}#7 zQQ|0yG6ig6_a-hRs=90FL-jU>G!z5zX7##qWZn`M5~f($A5gb;gAlNOJ_JAVQ4r zZz8S#0|fR=e%uidq7LZjNT$(-uiWM{up`7x^?yJ8^#9k>b>ZLM8%^P{^4EQ($K6*b zrK=J-J3p@iCfk22{Pb_*01r>)gO2=l3hwY*euuXB|5D(8&v@zouVT2_zozr{#TI$3 z^P>516&HTDI;XO>IYxjfK%PlvR!1>Zuv0B92R{y+6iG<_kas%KGkam6D)>E{bxpUeI&*f}Cw`_Z)c?7zd0;j0gRtAnv`=u@xP_@#oLswu*BwYBdj!ugkGK08);v&LZ*{g6jBXB{BOwQEnoldpC2ShDi?+Y3r z6%vg1fI0sB*{_HsC21?(>yhEd@yiD?@Un09rKITEN2UXQB!>if@I{G_1_h0;mVDB1 zBi9{9^;#5qaZcS&)%!N9|FmsEz_Gag&oDCCX3X@&ATq3-%D_4XHFNC%7n$%W)t9B1 zP;tp*Kl%J4RV16VglTNqBnXx_=e%JZz-XJiPN#Y#KCF+>q$hVi6)LNG%UWv*yMP#q zR{ippJw6vhK#bP+huGaV$wsi@%TwP|9rsrF(tNk3Y{+CF5^}}T$ z^Gzo02M~41=9^Na!6iAU)$5P8Dg9J`n_aN^&L+HJb@z&91dk5h~RjxcNKT}i_~OukG{A3N5TOAExU8{i{J_oC$N(QM)G z21BY$eP)gVhnwktAT-}cZmjLwVZt6vU{i0C$C&PZAn^zL}hS4qiITXM%P-G=W9I0Ok?R;R=4OOect zi#NhKupzqNfmJT&mjF4(;DZsV%G#AP`mz$H@c`k0byCRy9qjWQadA6UQA;mLaEmiE z@eG>|{nD?*cTQcozzfmquqz&+YdA-Ug`D< zl<1*4LTGeYE|R?!S}LP-i^*6IXh&ont9dD{L+d6@S2gOB!xyJC>U6$!I5b{{xKGQ5tA(rr? zhqGqmUgoODlQOd*3pT#xTrrUCWrds0H*s<|OBLHpK|;X3O|=~6{O49pN!?G4wT^eR z#0%?XX%oo45K3psMxIcryxd7+djsb*-=0BDs^(PgkCY<$U|e99(Aunnc2JbEs|8{A*&ZqZaxPj9$2JP5|tWNgaW@t=!87P7^% zTcca|CIPHe3a{2NjImE_9WDZzon!$fGY)S7-F+LbJKK74rHICw8ZI;7tRXp@d>y2w z^^BPfICb|5*)Z0J{++rs_P&$C=~xN+Ia_mbx@YS`AWO_uI%mV`+oE(b`}Qr00{`}9cqu6$vc`|B6GKrazS8TA}7wVd3-_)!ot zJ?@5LTfjN8s8m7P0W-n#-G|yu#$V1lA@y~*|DwOFmN|;?8qTj7%-@nLP%ERh>=|rN zxYYteW_K%kKIu%#-^KKx_B@vK^Q>2QjU2uIikr^ORv0V&NJewJVNT$7r(Cf zHh$RpTG6WJBF5#lXx>oe)f`1t_D)j;<^_0M-%C;s z3Sse*uK1NC4%kl$$O&DN6gr7}n5m;vhc3^f2sF5xBl#dKUbQ5?8*E}JofycZKdXJ^ zofU{sZ^=&rDt(o>IXy#15wLJiH=;g_>eX%uWj*FDcNQ`VBz^+Le6FyRY2Y=PD~T}c zAkUi}Z6w;s&XVLaE8iNX+Yg0Qqki8D1Uvv3Sark|D=>a2cjZ;1_FK%Jk@)l$g8E%) zFx7^vXa5wG5-Sqs8;EE(5;IF72zoI~6wJ_NB^kA5Xc z^B(%J%hjqGMx+1aTvM2yAt$sU{0z;wu^#5em<~1`6i)3 zJsS{pNnRMs(ULeJmbM zz27N>vK-PZ?GDU6pWQ&N=~^*hb~qZh6NONE0?=S9udH<}e)al%!HQaTVnT;F7*%W6N^ zA(W0#1v5z=)ti$3F*eg7Cr>FP?t4?ux`5qo>ZNv!e&7Sx2mk%lYb4NfFvg+@TX3K0 z48+dKzFD(uG zP~fxg7EZj<**Y2!6YG;KwgDKiE{;fUEv$;xB+~wrEIB5xusIeb?W8B7QId> zjT$j_R(8ZRGA~;lo7Zhgz#1c>JA5`Pp&9T7cX*{Ma87?q;vt=B|ByUc0~72cd=tGo zZ1&d+Qv!(?@0T;=S>wVn=Zp7#JP-@A@FZ@+)ZXcjyOq3(7_M5$ZdKo;HT^Jm?QGtO zBp>3b*j4Mwey7--^j2=#1 zjZX99f%GKm8u{y}ehoT>?nC1HxKD%DkUB_EgKw-Bek^^-ZVU-#cBkQ6-Gup@QBP=z zODH{=KQ5&LGK{}EXvVH7-Wa~%_Y+JG{Y`ZWEyfTewYBX`By`|G97U`Rc9sY($mNtAF<~W zuINqYXzuTy*y?Uu(q>8+)vwWs2BTkX%+)*s?Uz_z+!=@UyU&;6k75(_*!-w$bg!!LDup- zNc%}n=m+^MU=u%aIJTk#%D|?5gB_SezZFpgEgj=U!t+32P;|kRo zaS9*0Q0Ei|VGe?D%+AQqB69tSX2YzD`_2MlJ(x#G;HT?Qu(Rp3cdi@il&maQIPy9m zxJ?<^%{XqJ{|R`UDmlnOKDWv}mv*-0G#S!l$1DY1bXXx87>!3; zbBaW}WrbBRj^b&?l{4F+7bnvg_(*6cni)RX{7CRa(rxijAGl=zRIt5TN zyZXdDzMDAiy8an=d$q3_x|g7l+C2Jss~{-9M4z#s&+hAc6+-#)9+33LL&JMxENil!M z>B+O2-^1e)_P3cy`CfNR_4663$TbU;xFLy4GtaYWokqQPaLop&6EefMDo}`qjyP$3 zEQR?!4+fArO&4lGxJZrUzsCLc>C2`<{JITa1ZUoYJUDCQneIm#ZLr_Am}S*tB>g<5 zx;nB{)P?FE+ShNIGjR+3oOu-U)s8IjDBvOX8Vsl@LJBlnBWzq7a7^iiicz{0NLw(b zj#5g7-664v$<<_%CBJ#W)E7=sjk`6G_|x zy7O|G-uN;|+9;m`vzYe`K4u*=(xR*?Wz9N>fjhpx(gQ}F+leeu&ka(am>jB~JJuBl z@Z5WQik9)|KBZ`-Me7oTjE^*0d4K)E6dICx#O~FzXm8~gf-_YoTz%c-OkbAw?dGa3 zlRV^};P~-|8(2on-pyH-Tg`(v@n19nDX1*RsM$N#ijgx`C!N*9nkg|^hFs$&^Iu2Y z*9(Vrf^pxXr{2V7hA)>w8Kf*$EX|cICz5vcC*Ibj`dK&!sA_Pr$~#?`)X}iJqAKak zviOW6DieRJ=Oocw2EDI#|7t{=Le_=;`7JBxZ63@wvXRHPUCq<{a|S%lC)i7XB^O!) z+{V**9L@M}T4US1cdO|#QYfG0{M~Kl0j;)LSF4{k+5+fR2nof#=nbO&!yTUG{t(Gv zMWe?&{yG-&^DP!9g@8Jr>m29JD3;q#pOOH`uLi$)pF+t6wCJk{vWi%JvtK)>C^GL> z9ET`d`!ck0db*)n@&WfQq%>znx_38j5V!<^I#U$B#lMvdyI3f%>XfI`o5|7}@!_63 zP;hipa$K&C`*Bj-q>usHMvVRDnoc!L zFE6?3`nlAd9m1z`&oMeawPVcF+P&b=uT_H(Pu5nYLokD4!;qO1ru6;3iWl|HHk_9B zXeyG2=hMV$<5I=;*!pNTLvY|apwX5d^FVp1Lk|axbQ?fpYW^Zh>fcpL8qvZIAnNR^g+rl%hK1j!etNf{)6-0Z2>;=vY zzWCHa&3UJ@K1IO0i6~#6xXZTfy(dIV;?Z4i^sG|<__MjpP?jQ6=ev1jj#9%K&Z^(+ zNSZmit*npf0pEp1kx+=I4Ck0=$m1Tj{2PmLmXV;*!V0@Y5p6WY3E;o>s#@C1I4u&> za+er4bkL!NZc%?#$m*HATs5V}YjQq`we0?UIf%?S<-J>s0?ir1Q0KmlcRg-cer55A zmEI7So^#?8&KuIaU5V0_Av9{>v0%dH5ytXb#p}AAVJKwB!GhvK7W-0O7qyC(&nKW- z^`e$Gjfa2K3M!1+8ffF}AR&LDydtkmG33rfWW0$j}Q0N2ncw{z%p0$Zx~d>W@R1 zMxp}Myw2%oP2>91(M*FI!g;-9AHWmxm6$Z+3sFYdfNIp~&%CrIQA4*7YzrJ7Bo;h9U zv{t@dp$1hB@#*T#sBd|%pAcw5uLif5<$MTq4>E|^#)8Elle<#G zLvlKdA?=v@p?#*@=Q7yrAv^3g)VeF)36Lg+H^qs;hMfAW z=>YS?Tp;-$7nlf@=e9-St+G;U8KUWVT%!sCyW1`A z-@nb|eScy7@Q(@(UbF(ZV0F^%{O}~a({`|+24xulx0FC>kdtbU$Zq^muA9Tl<}6$L z^IR<0zg5V19+h^mC$RqV+moxbkO)-e*$R4OZd4=a{S}{HT+-3eeD)^tz%Ges=ySvF z<5;bE#bf&VG3QCyxTiSaT;fH}n^*S!(lFK+kmIFea9(o`3A${;%kA1QER{eUwvs%8oAL@kV zP2*198Y*qhHE~mZWx4y^b@pJFow*;VS9&MfJ*!?|W_C1+?lj4AxZW;7yXefcD0rRN zYANn?|6P~aJXtP94S_P;2EUwfSdJ|U3{UeQjE58i={l|to%~wgCM%NIV8`Nr$9H$T z2~>`xq4=o?*}>fY^Bgwy*#7X7R$1m#=_Rqs!{D^vRfqi^xrx5-awSVQ(r*S^j&`v6OqeR?JwA&rV_a+ z{LW4XJfN!Ph?6^`ZNlJ``F3su!V4jvadcXcFZ1*mHry(;xw2B_Re6Rp^PK2EX z`tsdsfqJK{v_#vd{AyU zc?!t57}L(}dAGqCVAlV}W0F~|5j6{HPz;QT=|t<)Ehg%jEBI)u$95n2joR0tObr#{ zzxB1_i)p`oi6GhEc2#c*ea?px7ipjx>fufGVqME0uBk?SZx!heGOg2AvG+Ri*mMj* zHBeEQ;>xQ^W`LAK*-n60LK0(FHvn)oGE$!`o!0)g9{vljzKeB*)v9IR8mrgsPrfJB zijtSum9tv10~2rRm5Ws&NJ+QyvxachN7H=soIa+iNevRr!#Ohxc*?bQ8~Dw>LWeFi zY+^`WAl!*DiZ*GfV*1y$a7Wd^YD3(~_$)}^Y{yq11Ko`%!SYNpqdwn=ajecTMwISxLaJ0rIeq(X>CEg3e}Paez-$$ycw$sz5@Hxi5{Af@kL; z(^%lYJ(k{3{L4tnmh!*JlFXAeO7$wza;c|G#I;g_UA*hAbfN+~G;@9gs=hcpcG_=+=G)k&F2C9^V_XHM^%e=DE$g*NxI zM{EifojR1B8ikNU)#RxD{K~dBM?b!!@i0V4{7LHIzZ;3+xU&;{`7)2q~9!dcbHG}AYDOX<%+6rbTL8x?+gbbvBG ziL{LH>uwT@d*1qSioqFD_ho5P6S8KW?TzmqcKg^NI>CX=nF!$dGWAO6Qx(d&I?O#n zfhEph#?mTQN8XC;XK{B6txlKZE8(C`I+uW~y`2Um5mnMB1$LWC(INr5Jzx8Oq!*{Y z)2(Dm4B0izZ>i$ucC~of|3bZ^<_CXr~l)$v9Sbq;wV1wO&hYVQs5=#*d zd?qFNMc^n~BDKsyU42V>1$@LQ=fAX{@1o(_Vz}MEXp9=4cAIYk2Qa@1z+X|?bJw?O z+6a8RdXZ>xgCi(#?Tgs2-MTSL;Kw&h?j?Eno+GhVT2qi#Ph$1Zf{ka>tG}ZvN=#y^ zYg#3|ET$>!cAk0z86x?IKExGLHF9v>IX_nguHb-rKYs@2-z>SD#e zBsE-047R=fAX=E-^}6NWm0LNQR<2TFqK1hNn-?hp-Fe2e;Vb^84vjy$sTzws5JbSL?l`!m32X*51BEet6=ISlV4? zpRsfe;_F?bfG+v-gfod|g!+2LN=H>5+6A>_k(B^>3+-0-If=WuK+ij@(kdNqDgOAT zs7%rjf3XS^Q3{F4``~n(=Hxm03(fQE^WR<|7i_SC?W5%WOm;SYJbU*xn~Bn@!4sMJ zl6{3UUx8JSC=TZ~C@IOu&0Am!7@5xSO+=KsZ=4wZF^_V>R9Pf>ofxmtin~ASBX=k6 z{vAyuuyv2j!9LL2Y3({pAcyc=v3TOOV?Azp-1XW_2x)6MOZ{8uC7%OhbX0#Fs;bR} zpKM~2$wA%rX;|`8jFS?qRE_daew-^hEi~1jA8Ckal1*^x#Knno{J5VvS&TXreqh`7 z!A!-Gj9zVF@tedd!du?~+Uj|x&nWrbGAjFGX&>h|F8hK;ifPG%(n|VhZjy6ry=g6B zW355xaS-3f)!sjD#D7~t10U(-182ExP+JV_axui+tbkbi74L*VPowF&2_hAxedl@D z^3z9nRr7fk=bu;-&z_fYUtb%m#B^MWSs*=7z4zWLh{1V1gj!B9#iYsBM{)k>LyUbe zg;w+JozMMj<^G-~@QvRNjm%MB2HX4%yA%P^R8?gt7O%}z@A0fGZJa0EG56z(I)lEo zEGK|=?ZSRe^5+&nCSr+&u$k6Qd z3-Z+l24SoG->;=ysGzY=ax5|is6bJ&HigZvE}jv>LC5~;eg zOOzlz!hGX1IK=Hzt^3UFi)9X+Y8Evl1KFY+uUbx30@rYEOvMCAy@4=?FsbLUjxuK^ z!se;3bDXVQBhGw!-90Ad^GF^SpHdd3x8)luO9G~U2E_Nz;FI7)Q~09&=Q${Nx2u>B ztyns%4m8{+pLb+KH09;j>mP$p>w%qi!YL15Bv7h0tN$^w z{adN&v2Fk2A&Y)!z1p}6aj-jGOo$jwD&PF&6DJ1k)+Nt> zUL%!Fq~^e67TMCSj>PJl7RK`^*XEp?KThFH{eygC5ck6?J+@tq3y^c_QxsG3;ukI6 znvw48x9^e4a*5MdX%h-laGihIx_=N~3A%t(=8aV#e_X@xNO{nvVNTpTBdP4_AW>4O zVy|AYybp{z^FLh_45f(n6Hf!xC?i=GHx>4%yVVSDyUKHD>JcT~?P_6HRL4@+u;{t+ zOc$!9m5_9z;(*chI%&qhf@cPoBjb7n&>B7<&ykwPBhIbq?rmZVj+dqDc^KxQDoRM{ zjLgr?xK~~&?OxQnl%<`OD*lkzeIWoHC-%CWS=6%(kxti#&uBmSF=rY(^1I3=y*htW zw4e7dBf(~aT~TPa#^Yl=#za}EVt$v=n63HbE3>#9C>LfH*GPsb7hOHDa zXer73gv`II?&-<~NY;WSS2^$BtBVlgnFJeykJq81Z+_jt`-FzJ9ZQ(}M{;@N(re(# zm1@%e9pmud8KJdOJKMh`@|QM{|9tO1UH^%^#DB97t8f1APWAufppq+G^mohL|GC2} zD(vjV9k>3SL;oN9!nWVT87THi@;L2m&XWlkff-d(EYHj?&m4BQZ}>`&nfh}5^&AgH z%0PNa$3-tLf-~e1U-vFS-P|?*HJhBMrwrNq+Fcr zkQmePzuI3_?*1P6wz4-m_0z$|J&yhbJwG^8WkYnj(*-302hC-rF^oFs+9QwkA!C;=QK``6#>!S16lfkm%ZKou=>-PW6d=Y z2vWoaf#mSbQJyA+q5RZaiomd8P%lT-Zm3*-utVujPSA&F1Ulc6U7INAuhA+U9ADRc zebb7M#x(rK#ce*1>Otc@N0OL({qrWexpN-VF9Rem_C8(>C%OZ~(?-I`Epm5Us`1X` zYOT}^Pq*`?{~6H2+ztnSr<_x+#`hHbce*lpe7yYm>kFP~AEX5|v}=X7TDb09TNcjk z_Qa<2YJ+m=m%wju25{4PSVG$k5}tfnWKnD<`BwU&ufAc>SE%3Qp{ev-_X*p;8^M0+ zGr*f*_YcCo6^;=#OoOk%G)8oBsOciC_%vIH3E_&fXu%|1$ZVxtO;AHD9#K*|iQ-g5 zM2_J{>Fq?2GA(Ct9q{>V@9sJj0{?iMdK`Inc1Cpc<}<5} zC02crIKGzs={aXAeU5MV{B}|8UiGNee4tDXM~q^QCPP8( z3-~)zh1i95K+DC)NoB|@!Erecitpl{g&kM5aBAz=lg3i9Rc_|@=u6X(u#fyp$~T!r zm9;z9ijz`rsh)pe6|!O%CACdD7d=mC*X3%$3k)^tcHjE*7tVM>jI&dK=GgD))1086 ztQCT*<@GErf|N%vdFcImQ#$9-Cl+&}Gyn8?WVbTY!jU>-bGpjsn*vNlV*4fHD8*VJ zoS7t>42R7ZZ$hG9ahaeVC5`i_ zV-RHYfJ36}zDy{$u449qciKA8_N@xpTgREv{%x^qt&ZV*?q3fsuN#&R)Z?eNc-@<$ zTT$me^VuiO1fIsw(NQ4eF5xvUx~VAvj51!`RBDkJc6|O~nknx^ftCt^52tuPRlyCa zA2F&z7u$C@dE8ICn|Usq_L`s>VB4;!Jsq#t=kbVk=4I`hGK{w%TDw^8@@m$O=GjDR zmoi8Eo;gDkI@nbW6u_^E8ZHYb`dE}AmlIdssJBP}xY8z;y_|7j56&}XPR7dPoa}bS zXOa~*vfvxGzE46k+TQlb8|KnuGxn9vh*O3mC&G>81DXsb2iW4Mg zdqcI2{F&vKv;+9i|c0T)KeM73n)0jyS3ds{Ynf%t@rEgI@MZ z`_umxt+J^G^$?}Gk&r2p%VA6mhIIemBiO$S9k59wN_6`v#$8tkwjwps zt3B)lR?!4L@{@J@X2Zifnt6dJvqgz4v83U1hpo zv3q5ZzS&4LM7FJN?;Z*DlQ?DO7~B^dW%~}~-nU)T*;*I$on>54Pp;U2VTcn%F=0Kn zdB_Lm#s<-1>p$ejAgJ{^RrH#2OiQ_uQi zB*sDX^l0d=J>_bsUj2Jr22--9Y0c0fCwTzUR!SNZ^V{2PzV!!%D7nZmxE2tTtt}TCK{< zna3xamonRY6xPzt&kk{ytY|g3Jz6>Qi;x}j?h!r3PlpkT{sUr-iXzwW6`){_lrwi0&;c6V&+p&=q=5%7aa(i~^V zv$e5##yMGqG|&*kx9y2T2BON<1h-B;DT9S)h#OegOd#Au;F+7u)B9eTR+`f8Gr;6L zmf>UTDyew-tR6d@rOnS(Drt$*cf~-lbXkyAKuII!Pa#5r-%s~x#pJM5^SsGCbxnNs z;$}fzNMx&XY@vpP`WegAI7HoF+d?!f)htp@CD1fGTw9o-s&vYY-Dt)sYj83a5 zi&42o4Skp)jHCqDFkX$OBekj%pCG;JH8V8?JNW-ZfdQ_s)MIx=Imuu2~Sbmb$V)zK_(LPR*@6|1>;%O^oM#wJlmAp4av51Tg z_nAF4bqsYTaA{e2J~}db+L9`6f1*@06q8fyZ?<#YK&p@#=S2-$HZBI$&Ls(+og-F# z)qPF`kB)|jrno#KQStNHd9n|9=MLVN20ytF^2CMCCtjr26ViaeZNfDpEgeDu4dUyu zafl0b&5Oll`4!mh{#N|if)jsJLT%6mY;(^YTkikhn~Bn;Cj|95 z4V{EONEm^%Mngs-{#<*1B@`Un?A7-_V69ot9%i1(j$7c2Cf;KKvgJEOokLIXb4t8; z>c;KmT{v|%AT!N$wtAkp0Xz380MLSGsum;)81zE}{CEq|8>x~KHKwGz%@xgQQfY`6 zQ9+ADPMR}i!$#m|ndRcML%SMu^ z+AQ+qs7cbN>U->Ddf%rBL$~HUgmUh%ig4vS)gdY@z_!LSqaNBxQj{vPXyZMp_3&|$ zK+FCLs4{%)Dbbeg&IACJRMeQ7`*JE!4lk;>v0|xZG}qe}?G=?%kD%8m7a!r#*S21o z*Xux9NV*rafaKzx0!}6o;~D^CJ@nGPoP!qDWd-8q0$S%FXf1k7nNt|0_P~OI1JNSN z&(x~XwdWm);deCWL=3ZzbUu0&GiS}3TWujGeGGJ!7!Tk!1iJe^MgZB4fp1jubA^nB4a^JKOO~MVYo9ZGY&%!J?lJ51lm4GR{&8FWF zy~mG0Wr8(|wgHWN=*4|)zp;l^-^7cc=uM|EgqtQC_9i5VncWq6^Y|)K#7jw$9owt$ zTB!k8#EjgjDTCwibw%n;=e5D@PBqOn6=^JOs;dT~V*}Xr_@x`Z&d4O5i;xCd*j~_| zW67c9zBQr#5rw;+_iT75-7607kurkr#I3X~zLqC{;979Tx-*jHSrPn4gX#4pS^kpZ z-qM;7J#dI1wOYqaszDH1n)SiQ6D0~nf2I>+-ATgap^;f+Xs&!=&o;ASKm(Bk80A}O z3qNxj)(vb)*tQvqSSg!@f~(e$q5P-XDN6u$xh_;-y>Bz7OH1vy?9)w zPT>>$8^Zl#p4QkJ!!zywR~C`A|8vUKG||Q%k8b|6`dFdtbf9O&S|T|U0Vq)}Wb)$|P3cl7 zieq}xo3=Hnurl`R{msz605w*<2@C0i#GZuLKA2%wY|`)GBggwF4?_oXHx)+riML*w zs^5l-q)~5F7TB+LQJFSbC$?H;LL#zHfP;5e>wu{lmrMx%UPEuQ7MSRa99 z!^*7)79(Toa3rFI83_jZvkji0E5+Bw>L zA4XX9P9l@YBIF+IZj4yZmKlT8P*BMClkgzSAs#awmRh;VwG+1zM!++ zt4+Ej^=|9gt^nQqy|(;m4&$ol=ci&DvZarp83UbEFQhT*1ECz)3nOyA?7@Kb3H0^R zOsn01OsPmBc|JKL_g8dXi>|xJiPq}E^A_bI`RC<(l1~%%Zg2zxwq+`=MLS3eCe$Xw z-aikU;ZiFiF+JJeY0#(&W+SreIs7iXr<-d&?D4)wjV`v^7Tn-ehT&VR#-?SsqRx-L z$h(uDZG=lVW?ZkyUQL^jil$le_L#~Vo|jy!_8a$Lw0*=%&jf4E!16ddlp3G;%&Klp z|2hIH?-NT=28&G4E5uavN(n}saze`iULQ-m6N+qjf8{JIPg<7FYm%odN=ZgUL`>Vu zWG1utnbZ$DClT%ntu`LjSFpkRi^)^|R1eLBEPd_{O@xj9*0x(E#;zBx-dr8O?twFP ze84ruhx&HSvavRev_Wd(D(%X1$`ciA49wLx$J`PyT`kiUO#$exv4D1Pti}(jqgH$=)F7!-El)yWDpk@EiHW{aZ z+g4I0J{Y&U6+9wYQh zXiOU7TB{CrxKEgCTMQ1>2%#{P5g)TiQ_k)DuK zgN!FFZvqrtsTdfUZ4g+yZmiSf@DHso0z^=(PPYmFS#!gCBkMTi)6tW)X9d4LKD$w< zu*bjr$m!{xPTIxCxz_cavD;E@;X~n}?3j>s$=5Z!pQ>`Bco$xFxoA zYf-H%_=X4lX0+1jjp;0)b9!b2nW#MxHMh?$OT&ZWUdFo7cdJ!Ii57`9PD@Tnz5EpM z86mJcv-#Ft_+&^%p%eCgelYn^#w!)dv!$n2q4#+o7;8N4mQA{SMj+hTm^?l3mrQW+Hj8 zE%GOw@_wriZ|;t(o%6@uWj5%Dc1=XW$P{<*OUknSTdGZRL+W_S%uYrDqtpf?=#+{3 z;QHDnD}7)g`(YZFxqVGvZ))?xoYG{|VKzPi7duW1<(+J{tNge@KefXA{(66Jfa+vL zQewPB+{~>w?IvZ{-%E{$O3BDZ&)H5t2d8mYr=0OYnt=qWyt0mYHMH~R<{tAb%rAj@ z2?Y4@5m~@q>jtcaS}LiOx&h*IBS13 zt9!fs2w0TZjp5Gwz*T-FXJhd!TuzVadz-s#OqXw9(j*5yh?bwS&Y@lwYuNH}1{xX` zUAqOPtPdVmf{n;AG{kAFw)e_@g}9n4Cat8(1-Io8Ya~<%>#j0Sw|J8?OV6{8brUIb zP{icsVNsydU-~TJL*o1Ci%~n{?UGbIx0pW7fw-1@z1DE1HxDTzI@daO>hVF;nK;M^ zBM*KP*~uo|t^&3Dgh%}GA>{_nOhuF%F?U`^uEllTToD&*3kfuJ^t_s*$1mn(n~4x& zV(NaH1dvW3KDZZIkq_A2*%$V)KVpLzVrPcf!d1%a2MkYU9OEClWvGzAzk|6!qjs&X zf>g`3FSxWBv{5moZ=3s2^qcWr?}Op!H@P*MYtvCIJq*sFg*fw1>;^aW@`s^(q1@+ zm#93O(S3p#`j}8B^8gY`xZXC7e`)yW>2#^aZ1K-biqbZFN@};|7Ozc5kB8ccz2+%N z7uY3;O_P@?;&O&BeE$|L@cwXXCq^RuY4FLz;Purc(JxgNy5mJ>u^d^Gz8UXI z9q5R2d)dg8lH?h{jgC*w;hP)Y##yOKRMv{ip#IdrsA&zERCDbrR+c2(!0CP{02)Nt zBw#$wEuA21-GyRlRw`-WCJ2S8^hIr2RI@GdZi4N1~)$Kc&}7 z$$K0Z98Mfnoi^(1&?87UoI%}}B4CykagInv)Wpxc+^F1^@W}eREY9%K^;bm9Q!5$Q zG=hx$j3zmmZ3juPU;lmt$rDz$>rF>wk#sr=_fO|;@^Fv8YE8VoFgarFm%+=Mr~NR# zYfUZw*$+Tk_ehmo{s{hiNIOxeM7uazyr;c!04rIJk_Mv2Bpm)CAqj6~w!3t>-o>Y} zv9AeBZ!mMid$z3)dTGWV>rAG}mdjqa%AV3I_2%|!qvU=dJIXF0Kq(t{Oj;wW zRX*do^r=^k&uO5BTCH{3%K#8W!Bc~yy`zN~QUrXLqI7MQMYiauSl4eE*o<4ifwP#N zQ|0Bn%vI?``W|C5g^XCwLjJ6VE7hiH*-Z~ZkzHs@Uh08oC3eP6*#*P;#|?F9LclND00W~w3%FZZ4pS+ z+h{3NSX}SM1!}-B3Y5^fki4kX!-pMTh9Af>FS!VfH!O@i z!k^Nd-_`J=5iIBQIUiULlfL-TF9q4;dDh}-0Ues$c*tWQgH7*}XTATYq|yH1Sk$|s zDvt-?wg%hrB!cwi;{0WSVH!n><^9}9xFI^I6cpwVkD$AB%++R-y0xD*R zEa&~f$4*gGG3x;tuwlZ0RNCHejjH}md5P+1q-aCl5lG(&7>~HA(UkzxSNl>KgijT?ORj(o;?70wPW3X0qVObczNzTH<;bjJ3Fs?J+X~fKfmRx zx9jVoY0MKMl=Q`6*5gDiP~#+7<3ug2Z#!}LBHy>6JGS|{=?Mxiiw7QeI9gVJ95@o0 zZYmJ1n5n*oHT{x)?v$yzSu0KS-jZ}}ena6Z-|Jf9K)d!w9T@VR=*8R9@rDpTAtme= zl$F;1;mSqAfoSh3WWVY6Vo*K#z1i5i{uC7Mw;}8W?x_x6=|?;g_%<2@^hSczPyaH^ zIP@sVigfMC(gfpv2ZCc-odOs~M#m(YFu(uEx_6uF&J1x@5Ph^{Nx4?-S8^tS9)EM$ zAGCD2w&|TPW%o8Rjx-C&llC-QZ8(Lvfopg1iR?WdBxbxLs4skrBEVROp+5l99%}QV zy;Kl~Wt98@&dnczi$_6@fgWrSh64B1X2mKzCqb5>0-W!yH_{`thw=R$K%ryU+D)sG zmB-XvWbDQl{1vmHCKZcmd!jXvB`eTvuDa!*^q0)lGdJ93#pZ8(isgjZ*5wHYs9i+B zj6PaZEAk%`it@%pzD1AY1DvC zh?~x4i%q?(__|gW7H40dLtMGz#pSqqPC?%=vn3VyxrNuIP^VDh-M=KXj^f@%ZW5~k zn~vk$Brh}#&-;iEu9s^mKtf=auAg+IL*2C#=n?r@>o+g}R9Yv}eVSQFOZz22qGhGj z&okthKL@d{KVrQO8|Zw4D(f+_X3xt#CdD0#^(`qlPp1(Tr}A-^@jWUJuF0p8UcB3!^}` z{QY->)4o*qiCEt>63^I%EAqvA&aKvBnxAc$m0)_O*JfbZG=|70z{s0pk5ta{tFs2E zGO7%~J$PBRXI&AN!bQeOh2Du(gE>E*)$z4<^T513qO`bY@nZOKVqwWcMnXT+r;hO% zEw^w@=Qmd?HyO=~UujyzRkJ!3l4Pq#YS0wbZ(XUWw=X#u1?vs|xWSqxugm71pXlX_ z8)c>`s5W7C0oDXPOJN+51sO^M*y`ccsUbIq9? z?`g`Ch)sr+)R{6UkWag|)M2;wy0`U&R%W03sAY;5>w*^$giz}^&9Txuv@us5W``M% zG&R{7ZBWk@^y&}Hp8m9PQeCDu&;4)%r?Z4e^-9Hg|CEJ1HNOpZr5Ghu%`J`)2TDiR zVUg2ZhVF7_jBvo>-r&4vX5;2|QPz;%N_E;mHisLeBi8)s#zCDZE$yuYuWcx$@2u3P z&jeItRa@1to)Tjj$ZIYLT6zEk6B zrpx|zWKR!ks20+~FXw!=OVQ0e37u=lcK-7BeL??jDX+<%TZTzrKFg}m2^huADb z7`ru($s5HG~}Qil8Le8KjsC+*_U23k;mz zN!OLpZBvNz16P_Mt~?4Lo-wGwJVYiDfnRGr7vB35*)!E@Md(HJ`D2nE_r+39W@4nsbpFJVJY^!71dn z!*gnk?n%vx>u(3sB{ryq`sRpa^Gae>-sSGy!&G6%Up}83GQiAD+Fv7P*f;X@cj&7K zHMJsX>cix9PKN#Ic0c6he>@4~XDb}-UOlx*QH94!>@D6Y<=WdgO?BaZi$JI}%Xhzm zduWX4YMKS~20iG&in|0ot-u>y-g?5#t2(j()`o#QNq_I98C2+AbVvTfp&@QvE&Yo^ z!$C!-x{D$sA)u7aq(G|%qMZYSA4_J&;UqKUin|ly>(PnU;i&I28aj< zC`c0TorasaFsQHo4f#dqiCBj(6w@XxP}YydHv z*SnJ&NY#qCpo*~Sty#@{e1Wdtr+fQi%j$mrRI#C`76dFLE}F~6jH~LBPPo_Hh8M~4 z9`P56Ef??NQkwus?g~7!gqX!#w6VMIoTz@$Cj~*yh01rnQY-66Bla&dE0P}&;Zf3i z2W|<1`)M{g3^d6f=0|~?@oV%rxPr)mHsi3?vm*kS_gsAdaQ8w~Z&D7u`m(Puk#9x? z;}MOCiuJGEjZ#qV@DvU;4$vFZYRTXPjJY1}ofbDNLqzvfe6*Xjx$V0r95PI!9-A*C zw`CPY@rr#kMUtn7?T_u+1(tnBbh#p7UUnIiZ}6fcm(DH%=fa7VheGOi61pQp9}3WN z#z~eW*eRCWy~b-->EOE&R-16IS-T87o9i@>w8{9f5=28B@jdS?B~404tajokV?qtU zUsFT=NKH5aZMp>tyVd#Ih*(JCyQ=WGGKr5M=jUz%IZFx+K}1?nz9c+_7t1yP?j$eN z^1{f1h=R1Pz;$h0-{J=Dd?0lVcV_F4!xb4jj^I;y1Gse1!g?5RZC53_+1g*_s1bjU zD;3-pC_G5W_L!=dED05@>h!0g|AFJyOyUCS&*9!oWl9!vnyPMZapVb^c68N<{enm< z)bDwucP(5OOaN36Xj*nA>WE3}7=#c-dQOxIpwI{T8z%XsiNv-9%Ju$0*`{3jycpYC zTj4=(;h19|zUyCT=I3U833Bgn^lrl*yvm`8Bdmd&LRB6NJDG2P&-Gdx0{de~#|(9? z8-0A>YhkSOonEr9Z`)$VDJ|`VuAvH0gk!}Z2Aa^?_32h8ogH3u>e_Q0+zFLO0;^#k zoUs&=vXqOTe>qG9v=p)}XY%uBGgoub;hjf*Me!mn!y8^>oM*$ObDk0HLW=Jk#N2Rs>*oVsK@C6o0tvq>=%#>Gnwubpz zjB(mgUhJW3!b2qYeV0X-#E!;$@>$f2NYy5hiN*NO%fl@BwwkeHw_=UO!AkuV@Jy@b z3>J^Hlt{C$tG95m!nk^tb3Pz=CtM%9^l~=Jozgg+S0Y9~K4;ria z*xR)0G>l4eELp%pjE!$CXX+Q>&Uskx?waH`AV@$84UoFUYu2j6c1yB(%)j=BGL`%^ zGYli-&9PVl%g@Y6xfaosML)q&YymreBDyI{za<;txY%C{Oh(GzcTv2C*767s#>CG) zjvl#9v<(veE=05mVrue>J&=mDUOXL|ZZ%^`hQLaC}Lj+1&0HC|+2p?}ew?Kdcb@(L5 z9Fs6F3aLn)vN6%OL6_1;@|jQK_eM5)^<{FuV8^#NY8Ke5#zPfEL01gRI$U_BgUcfR%4H_*#_%dnGl z*9?^;#RZ2YsHg3M@S8uG=DrH%nF6FGHXMJiUk_;jaTd(;8?Zszd>#ohGL_UOhEeZK zbhqJR{)LBq{5KZa&FPY3|APc}<1YrFcK(lHvNu<1E%e^VODV?v$5kSImpWr~$p4Wv zJUwCuFB6jSSUvpb2N#z|CRa(1tD}x8+tiGWqr!N zA}>8%apkKJ;Wx#9a_XQ{v)*u}wSf#NK-Krwtw%9;1q38cu5x-v;rXf5foUxPOisb? z7xpJX80f2(Gt!F-dq@FoNqNrst_4F^_wg+(iSO4vb#<`0((&~;&Ke48*(PJI-+^wN zqYgG>nn-#f!*9>4B+jZLj^Ti%+NaBN=+$}1xxt?E74EDz>MW>4uJ2a6bVvr(6`o71Qhj;0C5}PzXpn2>wP@K`%l~CC~w|d zFdfip_Pdeuxp;q>(GhZn+#$LB#zp3A^uqxF)6;R_Ca^H570Xz6_k+9yvC!QFMyVd@31AkUsLf^*Te81@1Zj zs`b9|=0Eze5K@*sHmn13`HFn!^qX8TgqL&)m5H!|IlE zT!7gsvhATcl(*DTEbLDturT=R?=6m;uhto=XOhUbo;&Be_(U7!B60D8(o;fK0^}x9 zb99n+Y#%LN9Uh2mbw9M<`AS{^{4F<6!dV`QiirVTL33bf6tmNBFf>%NH*#v5oz(^z z_Tt9922fNN7PD1{2$Qti1vxU^7YEY3dCN?~KH`RRnv?;Bk;Gzqtj)GX2id!>lmkbw zk2q?WSbuwE3)F23!KMcX*S_iHof5f3YXdOUV0wl|^~EJuVj6-$#gEhM!!J(QsQlG= z)MciIWA#O{Xiu*zESs5QH$lMV(%|r%x(X_xg4_+Kz`z!2NSV4FM=Lrq{>Bep3CQ*g zJV2wI1$Rkf;?}aDt_GW(>Xu99lz!pNUg_C^fd{|&AlX%hUS+Id>z6+bb=>0C`UE_b zIhHD@zY_9U+vfMSd#*NVwS-msg9j|_@%CGWNEiP$f;rD=1&M6?$*ngiux>-k(i9Ww zc{pZKEiK{??uJyG_9*Ujt*GvH-_qL^N$bYwjk6|Jf0=nql`5EZ;QM)pG(iUJgzxF1 z+Wz)#8ERAy{RSD-Dt?tt(G7{Iis^$NO_(3HH?dER6VID6oa>uR8~d`X=b}5c)r>R2 zX_Lw^5{JaNhdQxqI(#117%4O1N}7|Gpv-yG+>&EgWa=AJb*_V-#=c7+5%9n;v%{ij z*#IF0*q|shv|;G!-@D=Rd~JTKG+mm0MlA(QpTMA$9TIYzS@$G=o8s#P!_bM9+oJ@S z0^?c8!dF>nP_ohGPpU4BAF;`<#x3E&ukp>kqzwP+&cF5MFeBSo+%$GZlm8O%Afz@= zdu=bWf|6+V=rOE)={|U3Wdjg}`r{HBx6~UfN{b$HldR9n*xj|IYx~hR z$GX7GWaj=mmW!%X+V=Nd74TdE`11CAz+)eBU77%o;&IV0ZK#xsS8T62m$=T(JAZcv zEvAM6=m2)Ux>^_@sm!WL~#b{_8g$z=F zsy`CndXXFQIeq*pcDh4wZs8kk^Z6Q#Mu&Zc-}!q61%-oeU@*FuWXK=SHya5O{QSUD zv(xGA?T?{l`%5+sbIpg`Sd^p@Y`Ft6^tw#Ba)xW~o}>#p$Anhp96|#dxs9Lx zEnGf4yN`!;PXjEI>F$9~iA00j%TDUgfH);X-;dsRAE92-F3!Q%8r+mBSbq$WX;#Se z)VO?h(E!P^5>Swe|G%nM(o z2L>2#o9UNBY6s~#W!nZPdrSGl;uv*Cx=OOcIp|LLnM&xaNcKOHe4m}QxNgb51eJ*xjC4t))JCrJiX0w>OAGv%LYjjER zYb|3uh>7_&RdY0eX$ij3uq-KN(dhRNwsFh$g8XB6fV41ri zbGVGH_xL5e|7`rjah8Hv5b|$RWc{O(!hX1Cva+a;#H<U|> zUQAVvFybNi1AlM)!Wzk(bYIqM&{%C<_tW4z;KHw&^TVl20uPiOF2vRFPHL`w&7CWw z9u|Pk$feMgp6p$Jb=|C>nPp~j|Dv>PVg(2W{3~s}oiN!f7RE9@%OLbsgBwm;8^${6aQP@$azJ>1I&zzRnZId z`)-myx9^xOrkV_qYOOKpfm?6=?~{|eegAW^0^~KVAA|q5ImU0-(LA3+6bJ)2?cQ@* zK@;5N4fsp$zuNJeYa7}*91TB@Yq`kSEhL~Yr&}{aoj@@(^Bdk8TDKZ&?kO=y7td^;^y|o`1j$zv4dsBE9T>oGrJPoK6Yi)aat)Kt@ zd5!R&RvVm~QPdK~j{gg_P;IxQqDB3m3yJ^I6X9<)!JF3o$CKU+0Anrmzb+z|2HmXO zZf&4@vHhe>Y0ym@B*!9PflewH-O1})ik4q`;h$-lidI`IBxd@)9ousUeP=Y~^2r%j z$emlXVL7Y!k49DoTWptv<~ec!bolW5e7n>S>(|tp_{3R^=w2ynXl4``5Me+105nU` z&TA-+2Mx8gru|16g<*Rk9gQWuP2I1sFDU3}Lt5!X%N9Wt5 zsNd7s2Xc9AJX#!nffacaP2DJ)AIfmN5P$sHqRBhq2IVqE@Y8VK zp)|#Le1)H7*4>Wg`PE}(0QG}b`!-+8M6rms2$mLs0l2lU)Ka{f>mg)jtx62-MisKLRAWEmQFW4Y?oSIX-A5l0 z>OH=ktEYl(9w~qdI@qdG*RuGr6*03Q*M;A+A0gMp96EdqWr}O{jwm4!K+hw8%cYfo zi`mozouRqAfeYQ;A32~}Ey)9T-@8OL`ZA;Ob-iElmP;8`Dq5}_ID8B%VKOx;bYxz8 z!$jCQ`0VB{oC9EZu^%jub!(;gbqY;O`BTYnLyJ-USHO0_O{JHK&-0HomAN>M zGa#L=sn1k(7cXv{+<8-YO~4Jr;x!TV)rHb;-~+6;!!g4g#E^44!Ce26O)S4U{wnev zD$Qr3`$)XE@Db2yN&lM?&Mely=0T4eCz^kwc3Obex$A1XB+ZLjcv5GEHM+z!Hf+ec zBLjw+c1vAtM5LNDg~}rv6K8Bir)BfL@8*Th%Bgja+C<&u9XsqedHXYl{DP{{t=Cb- z(urN>g15MAg;07qCyH|f?a*Tj(=J+b=5PWQI=GNzJA>kk&~lyPi1-j01&f$eyhcdUD_W)Fcg zg6L>5!*hvNjq+KPsOvuc|@lV zdr7DMU?qCLE9rnOu0_}y%<@kCXjA$FOz&M&a^F|7mjbA69vb{&#~bBcd*pri@#Np8 zkZXeJYJb{42&Tko17(zrc+NA*;2J3<-?dRam1e-gT8WaUSqZ#IDe%~EopQaxBI=>gpDC4Zf7|8Z1s&(zOTw^vAd*6b_oD%@RjuIBqApLf9Z$QcCFQt6NK zC564HBbc9Xa~mA8z3UM#X?p2cRWh@(D~Hy=-x;<~s*=*$0;k@{Y# zQ(JfVOl87LHDM`dFhhZ$ehK{9uXm=+sTPxflxqZKKsTKXvgpH+b34K?Il;E8%8XD< znjTjwTQzgpd*)ti5uNO{Eht0<6F3UsU$l4PF>(LnIr95GIn_QkaA&{_Jb_RmV`~h; zixBUwnD`tg9vX?FE|=MUgOBN4co4(=(2~1}; z?u`9m7=BS#Lot<3sb|yLH4SLZ&NBaS1xn(zHzje4oe23920VQ~#m<;HVOkkGb$V3V z>eXxKV-ywu1Y)LIu*ds(T_Mc9kD<(b?pQ5zK^j2zMAjLu)@s59&s>MBM-(1vR6`mX z4QNF=UAsScqsHYlvS}U$EJAt{j??2$KM4mVXijq{T$|5I3;ul5{R=>u4ZC>~Hg4qR z_M3t!^KfVnj&$3cRsgW6JX^CH>-N8WP9w7Ao&u7&^UlBJKCcoUYwMd zu7pp&511#DBBSi%lIPxfn9f!gai6n3k~1h*LB=k9I@nLBb0aFSx)ur_Zud;-UiKpK zA$&s}C>;03CD#8E6l-R{yfMo1Aj`o05tF-TwRNp-mf!Djsdgf?KgH75jl}6pxcyxz zVfSZd?BOOsEs7wK{*?r9pQkb&RehfZZ7-|ikZR@E8Nzq@Y3)jrXdT zRfTO7(sGwo78tk1f)wsA8MAhl1NHRt2RGZ7vO{g5SOoLG^TiT!2j5A4_a(;Ot?iR` z1qivlGVa#VFmileR#uouZF-Bq<7a|}`FaMz6Km`^E0ppjUk{jaxy`|gR%Zskf3+o3 z;`L~X6Bcr=B__&XEUsngb=R%TZ?3SzkhqR+PAm7ubL7?%ZEmU?|J>gz* z+hq5vl4%o-Il}Hfh+xi5p$6^NzXB5OcseEZRX}({n0c2QZ(i`!r9rSuw{;5ajPt^Rv1yGB~@BP zzv1xNG^%{6^R={({(zx$gOYD#(ttW}2RA_rEUJ&MM_DJ1lt$|6+~?5^DXSOE(tW9} zShSo)z*L(jTVSmH=5keXq@1FUsq;Wr=c7W-Ozok4-{Xf#{F!Rdxz8^?#qEAuotFg( zIfFDFgTUIKl+Ar?h?>h1(vsUz)N$uJLl4u={i0+3T)HGxHq#TUqX`3E>fecQBI02#$0A%TWlsK^JR9>hsbsl%Q zedq>P%LTnae+}$Ti6ND@p3|nz#<;-U)=DXMyJqml$uOT?h*-H_WW(fry!%!U{rlnp zM($U%(;t;>E(BGaYNw~OO4&~B_{?Ul>a6+DCQqi*&&0_IiJj!p5ijni`v;~Y^d8MK zZVKrQukB6TL3ZthNO|!v#T6S9sT3n-M;9D1&-iHrc-e1%B^LNrA+lyN1qunZGRe=V zD@5+qHk6qpbwb>uy+oa0mt6@Z)fM1$_NAp+4f6i_O3T$eD*S+D7Y;a1c~SvH-w%0x`g86M$erTLE#Znnf;S z3sd(9NN$Tb_MB;wXDss)$iRJAi~>Q)-WF7ES9zCqBxKjnp$h?k7IaIUT}4YsFNKIo zaAF@IPy1rpIx8S~_;?zA$^Q;e@pwCX9thdKeCbS;a!z-zd*x@45!@G%!JN@+KIPmb zu)6xd*8v&cES*oSd3nvM-QaUX0OVVx-I&6v6+VPj4~MJRi}li7CGN5SN}8!jCk13v zH-GhZd0krX6OYOK6}C-7IwwS?s=mr#lKE_bv*7@R9MsW;q1psF@Dr-TuOLpP6ImU< z6PXE*yo)OG_*{DzRj(gnEtoZjCT*iAsxTr8a34EbKN>}9I-1rAAy_RHVvYHmDVUqB zwL&WEL)febz9LmT5xC;XKhE_pn`7uF*@r**>Mxyzo4aMWxx2Ae(3?c(4(n9kh43ed z2pEHvYykz@VmF;?e@e9-&Epeseho@!>evKFr^lG*0aw&`Jv)yOwLLg83Nd$4lee=! ztV6*$Y7|YnmMV}JRYU6YIIV}Gr>>snU2w0}<)n@!3_)7+!~kIishLY4v14g0dzY5S z3RX{c%x^LXJz2JO)O4L^Q84K2PCGbl)o+>W4B8m_cK%0b?f-=^!v#A zbS&@N|7mli{@P2_Trq;nmKBFmN|5bG2XyInCqrd6W{6OhD%!D=_#Nui#%*% ztN7SsGZ52z$jA6<^~6a?gB z{Cvf7mG)gV^lV<6xu6oRp(|HSJI*;`$=G|C0C{$_$9}*Ud6*h)nb@zRu!1g(%*lso z65|(T?*)Nj)KhR7xLmtVe?mHnpTt> zugT2che`#-2T`ugzpu|BWfs8VDV{N+Mrk#F$eB{|JbxMM=O2nTj4PcUpON0daLV~| zr@D$a1zIIv+*8*k&}#d|)<6?gU)IP!h+n#bg@j%(sDH@l27 zUl)n#1(c7Q4Y|3@`vSDLNChUBs zb~WX8m<@H1_-lHoiKN1cez$FY%5+}9;YId^rDrtemlUMXqHpfW62_yDTh^)+ny{jP zN4##C= z=2(}8B50b5kD$dEk(c&v1ABC7_1Q;}+Pu|?*GW+#$NqvQ+eEe!z4TyV{IciH-hjzk zo0`5Cv8`{53? zH5V6aC(cF_n%V+{4r>yyf%#XrE%wKy_2@o$3Cq*GXPsKC_I!UlPH?Ys=4#Dv2Yiy* zxN3!w(2hX8OULT&2g4680-@mLvjHKvyEYngI^RhQPcB<7;a;QvojD~k3dISY^Uk(I z*M^jH&mD#R{L59r9|&jk@3{|SLGQ=lc(zYg>$hN-gv*G|*PCkAQD%#!SrrJKWZkyB zp{bNhUy|NZ|5=I4C(z0UR8`*0!}~hP>#nP%A0$p~RQ)Z#D~@MSoZ9NQ>|BLbGBe8I zu?l37Q1TieraNcabSxGkO}|x7wJ7zDV=T21^W4X)4X|pvRWth`ZE|Hez|*3h%hAUW z>yPm+pT58>2M_nF&EuYzvoTf|U$(~rDe7tEB^WCl5(sf$Kw2QWV`a@URw)R{qtqvE zE=wLPk55lG$7chgO5YhtR1h4&pe3Z=PQZb->c_KY_E*{t6|lhj$*OhDubPBY*)N?y zxoOWVA%Rw>zdn!K6$riIzWp-LArRDbZuXhZUWD9W>ec4DrjA#Yrbmz-m9bjs`(YtP z_rnGI{4LkFme87B{wqfMsnC2y+&&}kE*yyd3!V<4Uw>1<*+%Hq2=enOKj4$qrCG-Qf`^v2e@>{ zt-|)v>sR3K`Z4R;QEp7tbwmvoQ`Qu}HpiT~rb>Ho+BakESM46IcR1b|-KFO)X}ug~ z>aXLtZ9Q@x;CLL$6MTvq#~+bF2uz-Po3I164(UFCQ=#K%+u-|PcL{Vw4xV0LAn&fM zi-es|logJ?&Or+FKJZ&dL&I3XURLRq-q9Bg<+eA7icgn3JlNQWOJ!3rKR2y9k}gE8 zjs$fjBm}V--%-4lppE@8MqF}fTym+_0kMUZElK8tXkE296u(9NoTxj{6G+W(5NO-Xg^v@S*bKl=Xvx3ampWH z@VrV!I*l=bNdeLSt$fJae>w{b=7mrUu1I_aJC0HAp>p(#w{1jG_$f}?qv6M8f8q-k zI>-uxoO2Y%)ok7w;H5e$9tU*LZ04U0p-X)atBTLK2%ZRh9Qf01sK1M&Lyq%nKysxQ zld_(X{z88T0{JCyt3tQ%?XREFR|j?j*@B_DSw&e?EL3G#2M1HWzfUBlmR-$jb_jMK zBuQv|QG$Hmra~5e~{iMLvANVm#%2ooq;~5Tl`ggW3wZyi()6t%_ zFM>kTPxojit85Gp-8OrcSHC!+knL$l?{GyF@+{M?WRxcF<>S-#7(1tki3d_kAq+4n1-UU(n zA}SYOZ5cKKs`4L;@T@eC*vZ+Uv8Sfj_k2cmTRCVnS>DO&J1Y-V{HJkOd?~Bn&z9XN z-tMm!K^x<1NSMVZK6x)gc}w^Pi~YdEiw#qPy#AlOyf*9IitG8en|Wd{=5P|Y&9=h! z&|d?DCehMEKOD^VNMi6R`+2+vzQ}D5vPtQBW<0fw_2Z|Xi3u=e7*b(P%u74T0xy|n z7X?*QDJFPmTvd&N^<#c=A--3f6j9k$&SSt$M#+<*$)5+var++N=v#jP_x<>#XcmjS zw_)uwpX+#)S+R|k41YX%9FFi_6mgjk<^_;lhB+&aVB40FyO?`#f!C|{?7@LgI3cSq zqV*-*60|@LHKAiE?TtA^EbexP*gWrDUsQh2jXI`0 zfa&}ZkZ;j0H`yMq-TlGdTn(XiajaZeU?ZcUPVUFyrNc)POzDCG?UUcdXC`fPOs1rR z6#5S%N}NIE5T5KK@0JMs|a%m!CIDh8*)o*P==43|=ofDIP>-+s>&#)^LkF)sA(U<76=yh{s} zXO^m?{FN~$Ri&4VAH||YcQbF!v>KA3Tz$PGyDvbb~$$FqJ*bt12#F-hB+wegwD4DN2h z={pzQFp-;1O>2;R$!{WOIzYRV5a&}DILm-Z_&Ep4UrKt zSY76T2g&KH1W@Lv3==!W&kmRf3U|%%+N-Z~yp);bi#s7uJ!UKD4^&(hs7@9ba%f8= zVOy{<%Bo`bNu%2sQrSP%y^hk`{s{Hr!D)$;XM{ z&fQ%w74;jmf?~9;UZB3$bO_@$HDD=TVEGmYwIAwRO~T z8%%r~^5H7~zV$i7o#XS=Y{$x;?sz{zgmmHyRknUh7#FK#GU1!;N|+2#u*!pK0$VF}2zCS+O}>!S2bAd7H&lE7BQPIT zkzG7ii5W)rTRKgdta5W(e<@~3DCvvBFAsdp%*>qk+Z@_y>v|XCYV9ca*hnD~Z7bnZ z6Zjrla#dsBw_=QqcM97|!*!Ts_hhS4*IEE{zs#S#G_ToqR|JpI2j*uU7q^9Pi;|Q$)U-(RNifs+^O0Z3zOW5_4^94LrJHFkxwKpx_`F6A9 z>Rt9MYpXgVj<`=|B$;d7*4FwLBq^7*g$Mln^zEc-qc#=yL4{KmlSvH8;JE<#JFl>v z95Oil2OW2JjEAg1#J!8DE3E1{fXn4h+vhIyAi#U^Oa5EEIKC{py>e~Jcf=sZg*4YA zGn4xpGN{0N+P`dL%kWdvaK8Ez@y!+9*4t|Qlg!%NH!8V2V_a6+%T~?q96=gO7^|AL zWOEe8+a13jK>DMYXLQ$=XI0l)rw2!B4I3o9W;L~f#f}>}J3ervWU_XGmhfZqvrN7; z8>(dNn21>w(EMd7(woMBu=}+s>v7M`L{_Nn(6R@_?^kscF>3fJ zUa(P7C6slXd;C+1kSlmh35U-U=e*c4seKBJ{gFx}SQkV7jB77qRv2#;Yjeh1KM2Tn zjsyZ0Im&Cin#bUWWi9Fs;_lYSx|RxRq9U0VK6H3hU`BaG7QQ>6ZX1MEw`o5H`axq) z6Ewrabf?g)7W^~VxkYw8>RvjshHW)6yw*}Zv$VuZv@^d(c}xYyUE25_73~~T(-P44 zvCO%~XxetQOHsa#qktRg!sWQj9#7)+v0rYZidRo{r}2G9MG8qTS~9#VMVdu%Hn7YS zcA-xB@N2%4PlAVp-K?TPU*ML4l0HIFb{HB1iFw!<_1;H-^j@WFni#e9uz%+yp2sDSl6;Z7qj6K9H&Pi>bJJ^tq9K@VSDM}r}=tK-yh z8QCMLDXJtYS}O_NZQf4Vy-6WQPx57ST2G$Bw2+!c{z3hW+d;qjoM)OSiFb5N4*u0x zBBg(Rbj4P`*CcwL&Ij2;rGtWXVgQbgcs3qY7nTryEKBJ#C* ziN7M4B|)Ui-0Uv4D)uu|V2K5`8ET_2FC=*B_RGYZ_0oDya8pgFF3fs$oe(Wb3ilF? zUoo0o_ZOEd%?n%Wek~f*0XePHpr|pygt@z%LyNhfnb<`NNflH>V^R86DiIe=WN;oc z|B8>|yA1XHb3j`yecd{V!-VrP7vw7g$L6vj5f(k&1 zU7Y7}Fym+r!i)A1JMWV7FMm*(||a7ZI)rRPYLKS%_1u!;fAISja5 zn}6KA_x?nx#H63cK@nvYU^IRenO5vG_g4R^)!pUxG>m>vk>Y?VGvL6LRTK-$^@)Qp zz0%O?o3CJU*VV4CV9F%=fzLhY8XxiAosZ8`ULVz*Kf9W|UDcmC5P#|v>s^^Hqu!V@j%)T!&yYH7GvE96t@EU{_Lm$QcV z*}PJ5One`H2`=Aah94N0>pg#hBXuSm)E+TbmecS4KIFhv@xpiSd@DDt#tH=&@*t^XNc$zin8 zg=S%M`Fsp8fB(8CaF*FmKCx1Q*V0~ngOcq)hjH0-rD>2`DJ{Y{aooh`l~pcXC+c*y zH(RDp?^%puphes=qg&eAPfKLRBHgyaMZ>y?dNS2grRcX9(bcUeRCZW)p4dIDAL%)d!|$#StypjE z5#sD1eajw~TCKR*@2+FKv3rXuR4OAeL%@JP&AQ6JUM;_qj1$oUxh!5$zgh`f;hQ~K zDjlj+L3~226k8s-ogFY*n3oE%o$A&&o_;Z`@z3%Hl!6TS=QtI8GkOO(oFNyrhQ1ql zWHwkPozx;;if>}590O)YM=dYX3Z4Cz$cKl9+9)V)Jyjj+$7cBAN!oNl7+h7POeG*7 zw$2_8LPhgPKYiVI;6_%86^Yy;PshFsoXiR2riq5JtoFAXffFS|E|Md1(nu>Hw}Ckuol&uypZDm{$}UVbe%lu zn4Tae?B=Ld?EW><;g(_OUx$4ECx=g(j5+@5yx)KB{5vEP*|Zwb(<6`g_&P(-^_9AY z#`f+&bdF3+k7bIHRS@t5UA#OzJi4ea_ppRKHxoTPJtr$}1I5LmoRxS5_PB-iu<43J z__Q;GEydWk2w?x5CABS0{5022i<%1@+d=Jfh;8rgehQoMK_idUnKe zOwf7GQ6$M>qzV%N45Fa+-+P}Pbcs6lZk@EgJ+J{Q*xnr^x(!$bNaDvQBy3j%S3xO) z`Yz-t{=36rUa^=ZiJ(1958qzV0#sL}(a?14hjB>u_v;RPif0xY9bz&vGEz%Pt{In; zkMA@ll{6vv+mJNnw691&`M~G|=%v+fyL;yMjQH5+HRKsIMWckb$&nVn_a1}L6Us%# z-Z6^g;;eg_MF&(7x^Tj(^Uj>apk}QWtvU0syebj5%2@Y|Wgn4TT8md|jU$dPl5Ans z#!Sbx`N~N?F}sPxY`qXGSyHa#q8L7dX#qrZ^;DCTS2;^k(+~b#(P6d$JM=hUpIPnU zIn4o>QTmhenSCAo1asB-Z7Ow5&v{z9x!N1PFVK_VcidBw${VtD=v%~L!phSLXB#y# ziXIQxOc{s=ortmdd7AEA=>?$F;pmKLU~-J(>NOz*w@6*Mj}EWirx)K=znBr(=&+m{Jg)=(I+WbW(X`l{Ai*qmqa1#2r0a^bYuv+=gnwg?(lwOo4 za{}UK1M13hd9`}IwLN9~NhOZ#tR+L^;eu-qt_NZ3H{Lfr#zORzWOp--d6kDfIh{Wp zY;SK5kF6$cEV+9;TZ_x5btDX&)r-bVHc}agjkJLKStzz7*BI?6$|dI_<$dI&qB`ya z#n8lb{uMY$vwuuyBE0-hSh7i_Z;fG^zhq{G6O5DST+i>wy%L&6U!o07TDDl@tWq9h zon@Rg`lF6Qz5+j&vfqI+XwTwx=a9X@V>O_yiRR&Kj;m^rGxkAZI#z8w;af$t@Ta+G z8q;&w7Sb-Jlix&~P(8m4hZh+PU}04OcZFdXjGmTOiko=*voIDztp_MJ=XnQ=PG+jP zP0=Dnf=wR<&{q<;q?|@8$zI+5Oligdrva+DwBt;SRO*{1A^Tjjw!>BmkT}lFt!EnC z9X5K-sl6Q@qJ`gcoLAO*OXKO}rjS1z23_{%SDiMPQ|VD;zBE0g3GATNQsruLB3)jG zD2nIp@oU|9xRiI2*%Z?dO1j;N9**u!n9(R-kiWB2<)>7YHvD8sy%?SM$4x~kqI%u0)Ei_y`_be|&VP(88)G zCLJGt(mTv@V6it?T_N;!htV=-JW*{;p!ybCsQq_#FrLT87z{4}IR49f=TLeH59lS&DOS z7Cn6?oo!*oc(5jG6_W4u@B5hMJvDY7g18~X4T1{}w# zWRbQOy;p8%567xc436%okjU`f)nCrsvEmoTla84v4Wtn$i>ic@EcFeDM@eJlr7!be0dtz5 z;v5h7nHyb!MI*&jjV!l%h~|ldH@==Ht!W14FA{6&p+DVqq$C&)WSQ z1TcA2jEyss=vi1;%18)37k^{RDJj)JL`0&g#F$fzyg(O}Kcex)eRKH&B49IwU{`f6#K8Zs1G%wLmU2YIZMMZG~Zj%^7c<{h8 zNATgW0@eywz}5s8shDr|Q4JU+b)DkEW22+-25uhA8`?LK_YK99x`rnwZ6QR0bvLsu z=68((<$F$V)4Ss1}w4LES7v~KR(79$;@4u_Z^`a5=@$oS} zkhZkUJ9?F^oG$phsHo`J+q!coM`oq6m%ZwmOf4uPEG(Q`R@P5uQ1? z6_PP+Uzjj_1kvVJj|E;skb~{(x#z3PS>i1jCM=Rg58;KEh})|FaEUnO9(XDAE6?uwN+tE2^SRx>W>+2ho%Eg( zIuQ=)v*dxn@#J5ti2UZ19gEy4JL4ObX_JK_672)B8q3E7NVQ8T$m~7|vQt?rHe(1rtGVaYTU5jIBG&#y8tfp`4^}-}q)U{saA*s4>R9X3J(b zhI_ZCwB+m=dQ6}8j7xb^tc-jeCa56W=r=T;zZExjX0WA0QEfaFl>9DeBstn+h=#k@6$GBLU$SD+o#6g9L{t~VMTt}tEnWl&P z2*d%S+0>wABOnJJt<>iTXYNN)cy{vJz2ov!_i-hKWhvtHUaa8a5^_5-ayl0{r&RN? zvK;o`tAq&r>QzYNk||A)U(r&lRb$awS%tF#7I8WYQ^SVctPitHa##2hdn1mS$Z2Y|Y<0TECki0?&*kj%DFnV?R_Yi`7&4pG>ek6`uDQlqWz}G1xxno80f8*3&WzRA<*x z>-b5ZGyp8ynpJG&7guw{v824ZY87<+)c4aQV&aWsQcH2=YB&e{YpeMi zOTEhCN+yeGrIs)9?PGS1Y96bsuVw3hn(V4j)8%VZZJRe>?=CU;QE5rJ|43@vdpyOV zlvLus@bfLmLO4V=29ZL7IUq^j;57AX_I*}{uohEG^Y;siciV|uwd$TBK>aO7_PZy4 z=-ImqE;Sa)mXGm{jFg^S0U2ym0kf0iFZI35*U<&cYhOB>+S(qFop~zgl~@?$m>V7F zb&Vy}u>V1v5q--pO6p7&_>duu#J-zVnnZAAx!G z9P7lfH*RsCm2fi5Td?DtvG^q8vDS6vQQkY3!}cut27lAk)|LZ(gdVRQ$#u_NH0O@Lg)c0 zAs{Fsy_Zm=O9_!KEddoNp-4-l1_VM0MM{7WlANILZ?2i|nls;=`Rg41$(3ZYv-eu- zdG>1ey|_MSb-=kK`vAM()4f6(VM@TRo^#^Q93n>f=AU3?ct7j8Z5>{xC2w;;d-ZDc zUn>N9Y8)2Nrm|M7heWO94-XcO%?K zB}ZWCx=_JY*JLjEX=koSFSuT*i~!?DfkAq7Lkf{FcS6_0brv{!y$G!*^`_||?BkT{ z>1@4`@Uxv(6lt&VkgYVg4ETTfBJhVr)|c%?!7$;14-KU;|hm zkG!Q!P_)BjPpqVpBKfc0bCjtG+%{PQ-L6CcTw&YxV?M&5RbX;B+33+Uz%R710R!S~2Rq0^sp5IzV47bw6VRJQMHH53VmUE-o&g&GY%0%!rJDOYz!?%xCmwqyA=s)z@qc(L1;X95|>c58QX7o{VE& z^_Frl5BK@b2~?dLxjqhvBg1-coAX=BoF3#oy_%THkGq)tVcl<4o#*St3!d3G+L_Ix zQsy`3KV;wN=drCZ(K1Sra_$JJAz21mVDr0b?6j`W?*70eo)DbTdfk3Vp_2+oz561E zHgpxP;(H!zd-9z)9r2X@(+SL^A8@z>L2e6x6r3mp=ID+zXRyj`W!}LFqj=1I=G^bG zU>BT~Q~Um@%OOSTybD$r`pF7EV)VMkzSugiV;`VGM@Qb-oAf{xr`xPfg!;twcW5Qo zz0#{`>G99hCx*ubuq*sM*e{ae5Z2+CcKKXo=V8e8Vy$mCNvP11nU_P@GpO5jN#;ZJ z-B0dvx}~k&GG&#{@U&~>$BEVqYVs`G{;-NGKJiS4C9K5s8uKF?F-r6C3fqRx`daa`z>))$sP+rVIKs&tX5??nGBw+70wURsJ}$T)p9oys;k1 z9iK|qZGY6p^q%1gR8PXwVzK)^Nhk7Er{Av{jg5Nr^ywP=v7csJ-ymIb*x@2VpQP-y zw|-J|_?RyD@#p;juRiKoIVtdL9@21I)ngzeLelBg$(@^(epw-s$=ELw0lzfwe0=kE z2FsI&*sqt@nO|dY9U>GmFOa_TT=4PK1q9W>od(mhDE6F8pJHh{LY!G&X3=+(jM}?` zUog>XaCDPAia-93xG;fN(Q2ou{d>$OW z(Y}upQM;c<|MRRX>pkQTl}!5!PU6uYoZ!5NEv1Bheo!EzIe7#M zVg;4N%WCAf7EIsn-|ae)Z1On{c`FzUd_$x!F0N-e+f^Qoz>e~-lKQi+`k+<}nI4ms zbnLNa?_WaQMBZM|KMCH+-WZg!re!&Qd3io-KWnpUe3cTzR-NbY9P4|X)(wK49hQF! zLgbHy_-XV-T~~57GqG3FxcRs|U{5Qtjckngej!CbD)_7hw@BdkW<}A*8qmz>xgbZ4 zgIYsh4m@}L()?GBPbEE{MG;c!CGKHfME2$I?FT{3y{aV~V-|Q8k&x3hKeT~NH6l{7 z3+Ae@`aRBTJ9@K*NN#lFq(aZ?*O^M_d#RVLMCTk+#}zsNUQyx^B%``zPa}k-lyl(#o|}-YEX$7%{GB4b zRq>_w(_F#mH)Bq1=+fZORhm<)%w5&`5N2ysoML8Y$RwXhv3y8!X9X&u9zyKhr#Z71 zHdxdZ{+1e)-h$`3sF-$Il){4tFZ3{`l!b>>oE%yzI-u2yaDB_#VNTeC(*x~yGn|Tl zI9NoxtKnZfJX3ndg<)N1tgcO+5}@f+!V*}ibF!BqXPq;jW`bs~1|`q!>X?yF;a@=R zc`(h)AI8<{x0%aIIBmb&kpS7aDP{(gJV!Y&odrdYisBtd=8? z5qf@B<R0b<=7A1}Cc2<-H+SYs(O1s)B#nIm09 z!8e(9Ps&_`&8k9Rr+#MmFAV?M3WfO0vGCPr1jy;(5l;5(Z*Tt%LMvIIr&NXP^4rx9%@>!FGNJ{8e^Tjh z5Da3U+7JH;P5#ULx@~t59@h93Pxx2jzP`TR`{=;yPXytAFg_Ua=uc$G{eKoVWrzOn zB7y5~8kjJsfWk+;pm?6NDt9>fc4%#EsGUnHs43I%Q>E3lYisEuOv8^6y62=cG+kii z;~BM~_oG7#Y2IUxB*pqo>v#APG9#3NibH(24Y`)f@ zuzFFaLWxbF#$dw!3t`EeG$wB#urb9B91$Fd-maAaKp$n<4UgiRTO5Ltxxe6?`lSsW zJ-Uw86v*a;Ip;2a=qT`egT4>vz2^808%y9i!_sO=T;9jkPe$dKehg)3{|DH6dOBW* zkobL@jJH&QRGKS%nJk`=3GRFWt)Fi3*Vag{4OKAr1gC(nI9P%hl*`Dn4>o4TZw&A< z?$jE@H0yJ_ZZNJfQ2jP%E+7yadGO!|15zZx$^jt9m2Lt~j%l>Bda6wgKLdoHJ?|O# z9yz7+e?k0~`FPj}5J{$0n~j#DyhwccVXb4|q9pac7-1{yP7XcHHv8Nc0_%3DN&Ak+HE@U^?|4p(he+I`h4#pds+Bi?mHK29%S5B zZ=7VqN?76aoP$_AcH_;GFCEttlu6lm;QKC_+yH^Mx=Eii)-BlNyH!|q&7e2|?(i9XlN_VOM`*6{;Q^Y5B^Doi<`TO+C{q@IxZgUYQ0N{OY&f~Ui?~JVL&64@Cs*Sen0yu~ zWa|qzdj2Y?NK@e>73|WVXF4Hhg;(eTbc5(BpXJ*d7vBZm{%Cr~mu~NUD(|k7-teW2 z+IeVWZTZ)uBCGO(7(1QYIr!C@p!|qDx!&7D>qN-RQx^b@(CIZL%xi)%(++v1I(FhV z*w~@}0stWq))muRV{hzW)ZG9LzMT37Ha1bP+-Lqa!P5>olc%hy3saov@@1Xr(%Vxk ze}l6X4xbaM17zJcC4RR1BH82nS0Xn?T%0jGOxt(5?sdy4m3yFa!{8t_lKig;q4Bmm z)&ME6^)qs*O-;FkHXvwMZ~_AYQ$4Vw0Zq)=Fa-~WidrEXlHJc>u24%?`c$`jD<7g) z@NU&6vS6+!T%s)!zGS0RpH91(S=(1{%A#dmi``s(D_xZt#<`E9-k%|-KRCZwtX@2f zR@TlBd;Dyy>j?xlxT*@a2;%%i|3xdUateJ*aNV1B#X1cu5%0zWts+=dv+Lq;?e9!! zd+i{6J*}F-ucs&3k4(sbLW>CL&&T(ke6()a)N9<+LQYKo${wwYFs`qE)WH1~gQzV8 zwRwbcEDN`&WR=&!>r@_2N^8Y~d`kF%9m3mB-XqKFkV%!4z$YXWwyR~c|NKtF`<|NZ zS>fOPw(*t#jsDU%J!|Gtt0HaK&4(VZe-HEtA2q^_REpTZk2}Yrjln!Bjk7Mgv9z zPw#7`R`FQSL+;fh+br_fSl-l0b*=5wjC#*kpopq#i2?(yw*u`gH+9j?u9gI|!{7UE))eHu5WAFGVZEn(PJFz-h>Ot#w73v9O6|)$No^THjoZk3dq@uu52Q#Fzi&~;%GP)6&CaQrKm7S&Igu#59=`3| z4WN?K>vNLy7)DN>D6X$JW=mwB2cKFE2WQkJ7e9N}_@+#CSxfjka6BB_&dxDSIfa<> z3^053fslhpOrk&PC{vX&r(Re~d!5f3^H6dPBIxi}rIBMzUa8DU1nBlUSy3nDZ^-vsiNKaCy}rqtM}1DuObaVVdpXT0 z8EA)D+H4I-Lkcu(wm0cx`y#{TjzhVS4+Qh~1c`i9xxrL^i%RzL`-xRMrVD!p!{@Ga zR{Zfw8n&+Kq)#zhd zd6Yp%4km56sQNxWhoA!W4Q&ZVZWydrgu@RGd#ki95PM@C#^_nV?clD!&(mYBw3hhG z*xCKFOq!Gp0;HrAPt6kuQRX5!NiMKy{ysS)EhwA6l!s5^bxhf%n?VwKdAaaxW)W-GeRW3@)k2gcAK%_ zWMhWyV-fMnJTdkX@qU!u<p-d9!Xf*&|2nw98@hCVdiePF+ZU_Ge~ZAVMWj*DSA0@Dhe zJJ0p#Q&OQg?N#WZ9s6?X*HD;{Z9-*kO{?wYUzQsD;As&ddaVk>Nq=G(3)?`YqD zq_ti}EALp&gH$~i77Wc^;Y@ZWNC!@jCcr%%@2)kHPR-4Io73G5J0mP?3Y*|%Am6BD>tzTB)~(vFK7Wvf%z0b>`g&raGkat_bw%FdMochoc5jI50wB^Zsi+ z-V!zP3y0UI7eI77TTj+2Era^?svCD7Z_uD+r9zJ1ljeI)qd#Sn^BdQXZtsS-1irQ zlD;7J_6R|WtK!<_+Ap||2TSJ(bu6sKU8aQ;yTe{i`~`w0)SU~j;2SN69(;>dFjs+C z*v6^NO10G~+h1SB1U__yiyLrzP^fQfrTUk;TOl=@w6o>>92%_KP?35+mYt6^?N;O9 zbXvR{HfqcjGft)7$h#!3;ewVL8a!tXWExoVY>@T^8?nJ^%TR|Ce~D9dRjo6ptcLgj zAw^bKVrmC#9(v7EDuR9DK2MCUC{}z&^Tw9g9OE`rrgm=u9Ivc2YX!R1uPi-Ku`6N3 zOI`T;0ka*5M^DCSJGkrl;BJ4y#gX?oBYPwRYRH-B za}O&XSk@AEgB%P4Uv+g9`NlE~Wl-m{C-0E@{L#zp-WtwB9cz{SLtjkb&YynOkE!JG z*;tO)ckI6d@i<#=AhiVKsUOb^D-u2!%P3mim^M}6U1S*MFGKR>p&jMl!_Hiau7FuCnA7#u_uP;#|C=L~u_%}mw}TwJv*!8_gP-IMkVb{KXu zKh$kgVk=*ouiaeJ`H476aI;CcuqgSp`WPpurLCWI3frV!}y|XabYr);rhiB zf)`xapU3)hWUYr92^YU!M5{`n`Ua~9_I{&tIuVR6wDQ*lY+j<;C6R{kbS3Y7>)bT{ ziYs03WIIs3ea~}p{*`mAshh6p%tHRmpt5>89=5AM_+Lg@Z>sloRO1jCJ)6(g6<>ax z$(t+K-|x~O1^OK!;s_`KS7SR(fSFDuK@akf91A1Qk-m6E(2y__m~rlP{P+&Z|ExK> z_oFM}OZv1oe5XbzwO&$g|K`Vsne+1td7DN@N=h?7E0-z^oGsPZXi$dBL#7lc&n0t^ zBCF-w!uWN4%U_|FT&)|Qj+uXHZ@w)RS*eLA4M)AqdD_~q;?&V-w)0#UD$Jck!0B6( z<%%BM-Sezu8TET!o=mJ2wns8^!p(^V(_KOKgWO$C3eOXksGRy~x%#tzak>rV+ug-c zKYc&Zoay1~IcC-4#cU&JkoNN;mfv(p*T(CPZ(NKyFRo`)Yg}&;(NOjB3G<^m>EMv0 zUhH)^Pi0DzJdW`V*+QkxJ;Svh)HHw3A<4bJ@Evgb9Y$^GEws~V8ubUEq~i~k zuFCIcuEd9NC?9%=cuta=A$?PPB*J+BKpfs?Bjm5I6&0|@!za~i4m(;ei9L*VFB{zry7XdjUuZ^vgW-8Za-FXR zxZri`UwFIp`6%N!&^>(O6L+%P;A^3YlDwz`P>g9qQ@ywSxL1ZG$W8)vcfCQ(vZd&>xjqo&As|-@WnVN+4Z@VAI@G`qonT?V$iqJ@13d2NSu+P z3xiCz@HN$wkXt`$HF9qqO;VU{^-}>QCzDMziJw=J5^bMrxlW43ngp4eomyL-6S@G} zKG-G?gS&QWLIT%xMgsYPt>1K~=`Y{o#dUqfK^y1SWlk6i=jT;NO|a#j+N-{5qY2$8 zJcTQvL)cY!xigpp;UYa+*h5(m@2o(Nx4u4TmNl`$B7fLu_ z?2}O7TjTh9YA>7i%!x|p>splh zEnqEg7ahfR$b{hkko}HS@-G&@mUcNRz(o7~)19?s-XKy%a6aEHJ;#HKaf)WU??C|; z@8cR~cU(W`r4~$@?SB9@+~k#et(pAVGT7;z?)1s|ZK?0{i?4CtPR2D!o+_$G^Ozl- zv#(B_xMpwe=-yo$Y5}@~!(uyh$bn{9cl^x?)}UJVSDavL)13{56YC%cZtic%i(Z>?M=4D;zw|HCZKieayPg{OyRwC70BFGpq!K`uQ}4! zPgfUglpaFq70m8Lta$w>Q%U#Pt?#?My?)#DF+1kJgiT(rN6!EM?~84Yuw;%bU#~Fj)+b8$-cDT(F6N!-q{|*)b7EY_`HZDq#`mTkmvIgM#qqt%! zd6a(u06LngByxFrdYCK2r?9JFTtf?)MuHF9(GVrGhN?yb1f1F0Xh(43M&ZX$nzzy< ziNw9-93sH{GnU3uMAFH)7}Ps;!}IeZ#*|pxFcRCn!-97*#Cvz?(zY{vax?aN96d!QMyL9%xIS)Ws9 zNE)h7X-zvbE+ZuY)a`WS?h7KEdMLhGW>h+`Iy^CPjXBhaZ|$ep@d$$z2`dp!Ioi*DNmq{6h`-aFrU@!lShHm}Vepq5aP@yJZPDby!EDY-A%)6wVqiW>U|N?$btQNPt8jRAyxH>D6mlzgLo}g1BezkZLw4DbeWecl(ELZ(y8m_v)b|K2zR8ACM`3B{i$z z)#54!*Ch8OH{DLl^41<#A;^t$?~Y+~rvJ#z)RL;|iL`cmN_+7OCR9<`2@2AH+uUGux44+J+QIL1lBukzhkpsoXVc{6J+aQ zfNv%RNoA+^#HQAyv-CEMO~{UScxnMb`K=7DoNx{w(azPr`+F*~xQS|nq@DPSY z(rK@TU&tK4-_6?-FU2DSA=5Vx;)uCjc1XuDRA1qQjQ=cd)-1h4y`?%-ZSqXOrvl67 z=IDic4oExO*elr2h8y?jfC9?UiC3g zZ`xg3y}TU=d2sEp82E)C>0;g%Oq|0kq`p>SoC@km0jH*sizBHxRZ_=AKq~^s(?%<%GG^~ka;I1?`bY~|yM*TqLsacljjoa{Hw(J}fFYqkolYg_^isY|Ym+9hCI+9w*S$t=B; z-GyP{@=j}#(!O`VwKI7%R9OWp&+1k{Ud+<=-R#qUW#3!7a&13@Unq*fmIin7_eX8bcP+N<&m^P7k-_Z`;wDcq=RKw=OKv7$ ziHq3hq-;mNoZ}f@+r#N0@D$)Xq`uvyLV41sb@u-@RFZHop#s1^OEa|W%lyXP<%LGg z&CLa3qBI0j%FXyT$Ad-75~9R+0oBd~6RY83+=24%X@0=7~3?5KM?B z0r6aE0~_5v4+cOBD5Kqg z*vfmf{%hv(rmCmgpC?*(G#lkARsfKhxRK#8Ao6Oz&W^+A+h-;m`d!u+!aGZq2|{?l zADD!(EZ|WL@=5Mgt*Ome(FM*@j1HLiJX4Un3E4`JZ+$5!Ez+CD3li!EgbsqUM;OfL-Qpjd9}H8BSZd3{mD(2G8$TpU#F(j%CR3lhUw#|JBnQ2 zHq{VU8Bd`aF0&_u9xfF%i|#VU*O{VxNClWuuv)c9fH7*oMl>~2p~xsaxn8uwy%|Q< zDSio#_FaK?rL>8Z)@>k~N4uxL)WHmSQw0rlBCWgH_G9BSYEz61%Yf(_n73>2;tMDP z>cy@!Z`>rA0EeWOlnDG5=j{KZ$fZw{4Zz9DcKzdyjH`VUczd;#yFFuJ&6$=-xw&HO z?CeR^&IY6McdCm~5wsqMTmkvv4JJq4mLr#;-gts)ZVbD3McUZ;i<)carHEHDB?d0o z#_U~j8DG zE4t;}|NQ-TU&t|#PG{zT!(qrMXwjJKWe~rHw|7Z*icqujD^JI_xv`16y5PtiJqrrK zj~EnWOu3pV;q>lh((R)10Yn6>O1rmhIthelWS_)0=Lp%|RGZ|y*zjD!C(O}W=*#9z zkKXAwa=%sfo<vldr-lDO$Hsr8meKC;T%wVFpxF_I>8cIC) zTl0ncd#lTfrC)_0y5s&1?uJQjW#!54dU7D+#h>e9Nt1F+OOlcVs z%y-r&0~x+Ocbz~5(;4jr&s-P&W=~Tz@N-_i`qAy#gq6or$i*Wq=Y?qDZdU7}85 zDm;wekJxZzZunCx>CIsvlV+!+FhK2LjP0G0$_Hqxip3z`pw|QI{Ru()zS^dKQBU2o zstD_@HQ!}in^@PN{5MMtFfy*r!!qgO-ETj+iP30iRz@~cr*WAo{Mc0DO7%p3zDtVy z$X#P@R~cFLj{r0VbrSA>^OwTF&EHmdJr%i?a#zK#(P~MtA~BhdKi)kZ$F=i(AhE~X zntyUhFSSfTd%sOw!&|!nm2Vw=vxZybH65MMMXiVTpYrjWnNYqZBeuznCNjE2*PrP; z3o26cLqM^_lTPv%f*Xt7XUZm_<@nRG%R!EVRiz7Or0Bne)HiyYm}-x;;_Kkqz^Wu! zziHulPGDS5UCSzyJb8ghvbD?4?#|A_;$lF*P)~XJZBp^q?Eekm87D0(tK;Zc!rV<# z*i{aikX`7B=nPuSx~x}&pXsi>;y#L)3vBY<;%*95FKqSR{PZ>w(yVT0S4f+Uli^#GvDw1|F@xq%Jr#n_xn5!jc4crZ2oo@f8JqvsYvsY$XuR#WFl=EnL)^Q@}B?l z**~DBLGXr;NqYd5yie3o7`W}z+I9@lrcDUy3tJ?_jx`&RJm&6}o{)3BW z48Ub(BB|ufe>Du!Q0V3%G&B+GAG|jGe>T%2bF@V11H-P@% z2Q|}vlRz4$gGAl&`l6%TzxFot3;!{M=YPfz@Lx7N{tE^6-(((0YPErr`HwG!QBQWt zGyKw(E8f5DJM`aVe9wO)g+?*(&$a&xZ#7uwGE&*X_|(|g{NLfaXe;AQ4VGMNgaeY2 zkCyWEQ2^!D8o=qx=uVbk1_X6q*MHMO7eOh)Fermna7$LVqDyQvKb^2zHsVWKh^r9)z8EYtO^NgMYa&TV9EqQyYnOK?<+CiLMde)_ zv_-g|Rz*%ziVaX4n|^O6^IrW%o1y_PPkfpzeI(FBRa&9Q`yF}wdw|`4Q?!5jRR0`& z1}%Q2`^RXacjs%qixvoyVY+V%d1#ex;MyOt{)VxIO3gR06|a+%x6xZhPtr}f5hh7V zihI3uckcX$b7jf|5X&T+ifxO6w|Il91~8>P{&^qL8e8*|K_UC2rZA$iEU-Kcpj@^& z1V=g#t~a?1Sr8qdro5&58QW~#uqV9`DL2XQo4I?b9;uBhZ++D>MHZ}<-l^aFf_6zy z&y$(FHa6c7;*st%Qt~BnlGyn`tL5d>?!m)mivOy@{9r&0HmI}hUU4m|sbD&7B_BwP z+iP>tY2{U`M{Po?RdEsNJ4t(RJ1T{;0(ViW19SLyi|3B6zsNaB+MDTGWCKoL^ppEw z2AV1ZjS|-DPtHu-!XESmgn55S-yF?FQ+8mh@c5nj4ma1$MMK2^#E~I= zW{1BsQA(F+fPxpMP*YEes(gFD+c^1R!T$o^svmKzAy8DXMjz)iIFNCx6DvLG&G_w0 z!{zmy@c4$sGwZS=X=K_>X6}(q&!M%0oOpp-sXM72ilX$NQAFHL_KFkLd^exEAgQxg zgd|9)AyXuIiB$Y>e_dRmg>&+*1Aw3Z3I1g*9LZYF_eSAZ<5%y}6lF!63v*vV1Qw_8 z$O(BIF0CDvXjAgmZfYI&dz)|D>x@dB2Q;s%6H_4r@er^G?@q zvRt57*&NNA^!Nx~nVi_)94Fyb8t^hkH^+@`_@tvXOSv?`4)`FxRcE-zn8cch)#NiG zY(o*AhAmjM#N)T!wmh|-r6}50<7o}$*PjRu1|w}+r#lU8YE=;mXudGZ^T85;cQ39j z(wp~ePq1*O172IZ?-uiLr7ZD4Zvb|&b?p`q=+R)&&8;K*(pI-K)qce3ux)}9qCR}l z_1B$65}M@@9dFV*rbS4#92m^OwKv3~ss;*XI z5oAUPZbsfuvi7S}$Re=xvUtDg!Bbsft%~*oS^4neg>CEkvQ|9{Cf-~8RRYWV$x4VC zgbZ-hFKi_`@~VyAWxr>xMx!C2_M3=eTg6R?tP2oK*Dc7JZ)Uy&x%5m@`l+z5%n|^E zIbxObF^5Ne?=#l~n;SmjQ3x2MreW-+M_cityv+XOCg5`R$UFe2cv;TqLRBN4x@MV| zAVDDtIaV(reeVg+6#-q)JOO%^1p}r-4Qo<6fxMF!Ki}4Xgv9P)*uEU14ki@vBE8W& zU0T}l{+JPPP^>e%-ge1&3HQAcw<;&^iZoVP-PWTUSU0w z%K=KMh?ZnI$HQ^F06fd8w>!`7rITeIAr$Uu(05oaEFnKG`5!%xJbH>e;HfP|Eh@TEj znNz&)+lnVzm-^ zh_tf4F|%>6$jv4z!YT)sGTV?XD1z86#PH?u)Dgt++c4+A7K$t+@WBLm$H@2W0L1*p zV1vI_-;G0Q;RUu$1)Qk5$VA$1NrRrweED@6$MaZ{c7o=g|JpLmnx2ei7g&MmDfKmQY+I5 zDnlRyxX=n-xcGKx^s+0=i_g}-)w8w!xNtI-b zW85Tnd7M-$T+r>LdsGv1X{^031;hcy*)M*eLoTk$d?XmSlhGIs4I6a;u^T_q$ z6LuhqrBu_frh%VSkqFH6N5P*{N4{P4Gk z-4zdrXK65Ce+=4ORljF>%|tsL1+S-4x>(qH2PHmjHIp_#8pbwj8N^;uY zM{#VVW1ZQlA3r^RRrC}=*Al&)?Hpj{r$A-%ckxCy{cZqH?f8~P8I;o`} zhrI%k@39yNkMn*7dTA4K;E%iVeUC$gwCF_jNeWiS)Vp*4TFl%YBwRD8vbj;Qsm-#R z2Y1`C5w*mypuI}aLsQBVqh8HLH>pz!P$R3MXG$NXewLhQo_gYCp+HsaE zz*{eE2R=8BSehDjPl2lwT}kO7y9H0DykJ%^k6+|IB;^5q@AG|&kb3J7zZhC1%NN%R zar{;|*$R)W6}MZ6Yj4QDuh~cd*246*{k5v@m? z{yht~fJBFW0b*8W!qvF59-yVK-+( z&xgm99SE;4ro}4+>dl4snBPwJ)u(+vkB{pFO`t9G<#kE?D)xz*q;ab<&30b4Kcc@OW-Mo3irq8i00R6szD(Y3VTv?a|8UfTW>*Mc~0k zw*ip64nAcYgJ5g@yrai&m^d7f=XcYQN9tn4KCEV!9>+t&u4Q3G9>EK2G1`e*c`AV1 z!$=89+~>LQW=tH{J;!PL&&#W;H59#3S^zIVE7|ESV)Pwm@jHmmE9qj{diW_(rhw{MRIltM@TW zO;b}-1gF^_l?^MCR}5Ia&;QO^wkIqx%11JD@h)V4`Te!$X;$wLDhX@pZ+b8I;LeRD zPW9vLW~i&x%emLvEm*QXZ4{ve?N{C%#}{;_O*ERilQ&A6nlcl7;%>~+K57RY-EdkR zEz9na@A{o;nbjVUl8?yt`IBI%T4a&OZM>kpKlS_as~jKb2L-iU_70&{Z!UOS#T}nF z^aiZ5QkO<)*EzrS)rv;cw+M%jD}r~R*pz_*eNv7ms}H?WZQk!p#?_0*MX_UQJhJuo z5d#(AYqp)8+_YnR{jEb*_u;WI{(sX($g!++Gw$41CXEmF(kx-k6kJnVTb!RCrZYI; z#RJ|=%vKCY`h680{Si=Fi%SnpxeK)NTDoBF%LmOZE$eyjra&0$?NK8Gb4W*56Dop( z)%%Zd>$2w@*M3x^gQ2u}laUdb9$>tsp}Dybl+V(IUh~2&pk)Hr$8B={UP{=L0Pn*vTmS zrs*b-azwn~OW@MbhAGIwalV?plTDi!tWZeKkX00cy9bQ8e2_m1A}zos!tDIym+xdBLGDl zbAE2)pdP)nY25;OCNdzRL-fmW}#iw3$escKm1E|A@{U zvhNQO6crWS4(B;iJ?42d_4-Hj-I9$l+_Zu+nd|yb+A7+~qQ7ZuY&OxjW~JX*a4N$pM{_LRTb*n=v~~wVo>amu z)`xLCDq@?hJ8{R1P57PJr1|q?iN{^}>;^PW%WZdt-9`$3pY5CF5?=QAF#<8<%_B|g!>|XxYWqst7_b#eG@BZBq zmm$&dgHuJ|);>Lzf%d<_2Xm3$9jDoTU{8SU&ZObQ)4`oyZ^LL!|56{<@Wl=|-2@`) z-gh2>g0z#Uc{d=wbVUJC zgKqHE5T{quu*~5W9NCrAN=#|@k~A(^^)lqb%bl?B?_C|MuwU#=Ju7M)*|JN$L~4^; zI_BS;7tAVkoq-CMH_DnKezYavK!C$mLfV0P&Rtv<35c# zJ97gc=k3ecBQ(iLXRp0EEC2RcaK4Cjvu>I=fE$zv-Dg*dTLYcoINo5QTrI`@ry2*( ziTe2ac5jrH=vZWtrR>(sdLYjmeK)cNF{`s6>`z|v^mYeLfxE=d{Z`{ct+X2(UGXxk zv(NK&eUaHhu3HQ7ep6H`zxM%@y_UqRq+hbS>`T3JD>rTd58rpol;Z1ewvx!L zrjh=4MU_hIc_qC)gwcpjnGEEBhP7kaUNJJfuE|URtP9`N4SHrwLG5@zF~UYhJXdJm z2csPww|1zQCYA4W6uUi|duu1Ymkrgo<*x&R^lHSlVn$A`2UR!B)??Jb_KGZ3e{Yzljv@Z)wybrh&I9?3(Ah zq#v&jH88&Rlsr${;6neZ@8%%ju(~~0N9+(oiLP&SM5^sH-Cm)MM1IA7O_O6w^K-b(`C*BtwtMPkL zb8{WQtB$vX)oQn4#5lMoDmT~DlB6Sx%qQpJL8hkBm2JW_9?0I}nz&jyr-{yahT2j=R^cMKR*Z;fSI!9&E{{aq{%4z7;)7($T7i|2h>Za1 zXeVl|nV)Nt&zR74M(%A!Lo3J73`4C)GJhCRPgbXdV9p`_nntm0LPkUCX zZt6A}4zp_Wx_CS2$6S`hE;Go=8`-}jla=a+=nJkEcnfG|$xGQmIB2}3-{*@;rIfb% ztZN@t>Agr;DxdrsaIqBTSh2R_h+38Qk$x;E`dsw^n`)p7J@CGw52sGEyW6ui^U19Hom@w%eL73euXxJ% z{U{{8!{pn-XZ*|At%o+jX9;v9eroHhb-q#CvH@7Csm|fd%?cUF2Erc({1-XcjmDFz zLi=o=6x~^7Dcr4meyq_x#JazFv7mOl!?UV91sUSdcJb8EDrYTw`3+?u4j@p>NhHpX z8dw$zQLU3>i0#sUSNj493yu$6Q+q9`wuPpF`JhJKljP!|n~Um!N2T-g^=f?C<$lKk z|8l>ekU6NxS3BAj^U)JuGDq^sD=b7B8^^e+d=b|H9royt#;1F6^c1OF@5Wz?f(rq~ zUP4?sN%^z%B^UQ6!b5JY?Q)@!^_nlnPAUe!&vQPVOJyvhSDJ#=fSn^fLC+dMz(}kV zY_FT^QqP;phDJ)EJiL%fc|Rb5fT(0J2*QP4_E0mkNior7ZR;KOvcT+Z8u;8pV`#~o z*gq%5k9%&o?Rpbj%~hv+zvV7G)tc4+s%-t7{Mf1!W_6Z+LHU=R@rfkvU-NH=_I`=X zR)N~V%0%{J;9RLRV+6i4PkI+_vKMczg?8)6P;LO25UJp6vwyf%N4(VYh>2eaB=1{T z{}IacOExlJNU<)fHbCIfeKux;Eaq!5Z&0@pyVs-_?C-F#q<5MDa#Yf+hE;L4j*k~A zgzvT6SyjvGVB@r?j&pZBM_`uJ!k%czZiJ4H=Wk0!H)~akUZw_%3Sbs3@^8&Qy| zcnk;C;L-QuuVj@P0iT~R4eLY6td!se(+W0;w&VBg zLgnwKc$b8bdn27Esr0N)w+fZ+!;QiYed(8Rh)Wxm;i-9lp>DlS`e;jH4VU|NIo(u< zEk(e?fCyZ#$|Dhae%fTkB4cdw2!I;w=6bL)INlRBx9PRERt7)13abmd1@xLlAv)9s z>(vCoBTI0y&fKMakq`GHy?p(hEI#Gil$&aU)CKdMtW}Vy(Ph}cg40y;RBw%2e;5NF z;8W+IWsq8s0CPBQmq^~AXR;fsxHi}s*|&+uvY~tit-YCp1v3?l@HlE0qc#Al1cW>t z6ZPg%-4dZeo`&pR`5uKbpwO2nTH4b^Tm z{F8`2vCh<1vK&B{IWvbD?MloVM8D3nSgDmemX9+{MFpb1=qf(FFrt+cFIk?;f&#&H zY>(o2cxrQ~wtTCteCaDvD5F`kQ+lUFubumfaUJpQnZ2IffDX(-V;HY~`#V<#!c0G*kN$w;E6Y@9DIhEeztM#3& zH3EmQc6IA0i4t!%Q^eEVxjfC~7XnQ)7P-h6{^;VHKkWfl8geDdDY2^v8QKprM4HyP;%!0Oa1EOh@+i zPoy&J>YJl3*7}Yd6@*H|qIE@4XG|J>uP=>%jCx8EAzsw>Aa$6h%*U;*x>jrk@Ur0t zKJ!nMTsOagSGL|`v}eX(b^zs#oY;+P%RF~?!SU^KPozsMy~s~%HK26*h1zl1st)Mb z>38YaZuDw_-DCKD_|!F=oYMF@95C*C)S95+OdtZ6vu^jLE8v%&>Asc0FuKX1(~cU! z#eoK1vvrQ?Sbb&9Ui!h^;ji5jLD$nE?~vtzqH2Nn@}_R6hEd;FBF@9bp?#{!pT(ia zXySEotnbU!`CA(qlVz_mzYAntI`Ex1M7oj1z&^q}62!DVG&~XkVMhpU7qHvq`!2`OH0F8zPxHwc( z=JbGh3k1sIq_vC9#kRG2cYE6|KIXu~cY?AL4fTOzX6-VNb8A;>2}c@U^-Dvu0X^h5 z1Yy|wfr#2oxac5+KUlUPFVE%xRVAa#kXK-;D``Z-drWP2xM>-HaXdr+4PzeUTQm0X zDBN4bQj!2;iB%-H5ucHvGMydS8~PE6As&MbuxU0}#WAg0Bg?CQk@n zR#vu=$XngpGj}nVYL512#iCcQ+IBj)^1KQn3V_!Chyq@5{B+vfClO$(04|c-3GqkO zne0qPiIsx>!#t7~_wS{t@`RpEAQ4-+>j~sd#7Q2C(rn?$*fWQuCG^$_7-lb1Jyg}7@xaH4N_*OswhL#)%cNxNhaK1rG zD|kyf$#h}UiOSlF14I^uGe?B>pB-D4)tnYe)qFgn8nk`&O1GE3%uGWgy1Ns zs+#h?@tg;*_JFf{0}6vFS&uj4ey3bcx9xo>Go3;558wy7O%T%IZ6+Q|Yxwc863b>X zu3wN(D0L`dS1F5=tV0~Q8qGbIm*E4+c3 N7@1uuzjXV_zW^`RWu^cC literal 0 HcmV?d00001 diff --git a/docs/path3.png b/docs/path3.png new file mode 100644 index 0000000000000000000000000000000000000000..557256db46e81b78d13946712b1f107a82f9f9a7 GIT binary patch literal 132359 zcmeFYcTiJb_b&{HA~wE)iYP^?0@4MfC8E-sf`D|Tg^q?MEnr1NX`zRvG?6A>+HSP-fMkUIq|p54UQi< zcZ7|N?YNQQO-nX5&M4Mz^6(*6i~qr&NY)>Fkfp(Ow(3E_71jeMNY_l4jjcB6=>GkK ztY_{AhIT=0Y(g)7|Ja@0@jYf^W0n}*)V=e_8BgcF=Lia4W&%~}plrwg;qyA$a7{ZE zKlhV{@Eqvj{^>dV>z~o{Ftvu-iz9~S%$uo%8IgezlU|N0f4L>KCh-I25rKiV2Oheb z6n)!f1bj)wU+t9>|CZtDE}vF1aJ_%znyU$p*$zta)KEERB!)T{4J6zzR>9?lX@Guc zTA-;Kk4Hu;f$AJdP^E>mqW727Q8g+$ z=ADBYI6=FPh{kqm2Ql5&IsCgbH8HIH24uTPq&HtD68lCS{SleRT^a-2c+B$&ZZ-sG ztik(+Vi-Zx=25A$$ND5P9Yt+jq8r;+%mPzuYn67_!{D;;-GM-CpKMJ7Mjgm=>{w6z z5Wp86qqYkL?(*$+U}!otkX3WcURg|P%x-2(Z43~VmY&|*mo7^HsP=0xr;(kW%&5|A z;&ZPnJ}ysZXJ^-^XG-gb{OmqGcsmn3YPOY6Z8va^CR@`YH=Z1oPtJ6K*fHis7`o>9 z+A9I!p-RZ=U1t@{IE_Mp&d=Yc=Cyo@0-c33$Tb98Ht0f-Rc=29wWLMAA+nd;PK+kj z!;zrXoy~=rSN(W&X?Bw&>t5T8kw}{Y9Dr({YViQ&z%&*O1}Z=!@aZ zgT&O&HRR5vu`A3a=fW6J=dQK}qrRYz1U#D}l3U7P(lN+2;HhLPd<`hR@q>rVL-Iz8 z9U=>p+Nr&p1)X;JBDD<+rVl2eU$Tq=R}gXBgY43&^1Qy=s&ohNSag^V$75b@`9}%+ zb1p6!{E75ykd3Dz`K5bnWO(r7%X=M|o*IJ~akq)>J-GOWXE^Bz2AT>)@tnqIdc5Ww1&-#5u~Pv*4e4QDcXtPHa%oiNx`Tw+ z98?gi)Xz^qp($z_%zaXKp#1TAr?(ucWm|D9?Q2 zuOxCQGN;w=kKPZc?qnU5l{de5@bJ^-c_UhJqn|6_yGc?@fwDos z`-~rhRE#8vTC_{;_X}KQj21AqUym_oiH~6IR6=0t=Ux}Y8vN=-x3aA^i^K9)4F;pv zP~Yu$BzKW~@QfJNcp4c%O#&Id9EO%P!O#KWR)seeUO+{Q!WsUz-o?P--f#DRoJ;42 zY{e|nm=x$Jni=|YLkHKBO3h1CPv3XMVlBuoM2GI_-h!X!XC&@>Zu@V2W$GAoGNG7U z3PYV7gCQ~#)1ITnaCt@6BJ?+CAP&h~(g&Q?ws1xw{4Z^~?SA255?*gJiJe5VE%eVU z&Ov$$Wii3k2tpS*mMe=(-*37b*lx`T`E-*(h=VuLn89=dD^gf{IkOGIq%Jy%T!Pj< z$MyM^{lMOtxG!IRhVv%6{npTzUUlsEg@@sraZ5B(Tv;Pyi9|~b>##-d4Pv0`Kb~wQ zAkoRtg~tw6_byy;i+J;zwTBt)pB;R)h%?W(+V~k6?H=>*_Z{}L<6|u%3cGK{qZyQD z)MH_ignt&ZujA3CD@{bCKI{CTUc#9vB0Ec6v#}K_LdYUDy$B%f`94in3fs-3sO-*L zIA;{BwIVTR>kj~N?JHHhSE*4N%mG|43LTYr`B;8x0sWDo^FGo|nO7u~0{|(C=#QDA zFnqs$=Xbfxl4%*?0?!}zZ07JxXN`+-%*FTn%NXYrb=DeD-YcqzZe=Pk??OU;>FsVN z#axcR`8EHEz~SfDrH6%8qPCi2Xw8JTjz0<*D+SZx7yoj4u#_Dvt)rtuNwZUVj>KxH ze96bM>qxVUsMO(RiI8R?ytINsrbYCsRVeuG-!8d2{f7B*B9ObzkLC|*ZMcE+C2)~4 zb`4&`xPBfu|CITs0p$bz-NT;2&836tLv&DDL&!wz9EhY1vfSOCU1jSj~TI(QSY(3FsM| zl)c~~+;QR$O>E2J5OaU1+hCXTsV;YphO^|dTPoc#cvx@U^A7=AmMogdprUv%%3tz> zhIDM71coCV@al*EHR66JRu2w9AcO>ySe78!wLhw*|2Fn)Y_To410p-ILK{l8`GrOk zeu`hY{I~S+wnA{l|Rr1@Zj5 zub_NXx9BdAxh1pV!8B-W;L90W4=rRDzi4SF8$ zvELQLBwC%=E9Q!1Y_e=6np_<=uzI*4HI(GHeT>2%fxaV@??<>#Ol|8$?9{r5Wb>+N!a2k(6B{zOGb zE|QThQgMF|%C$~O7&=7qsm>239nQ>*{oDHaj>pkGmSToqE&3w7pbp=CBebpI%K`YU znTtzG^Z?s$d8ULw86j&Ey)1F#0+jAQc<>Vf@93Ci%(g>zxMvYy}%S@XV1oGFzZ6Qr{qify}$X2h^Y?xGWvqB!Vv)na6=a1 zhE~^o$pRgJ08e>E1(dm8z^oSpLS`WJH8{gJ4AC->dvr9vtN=0%Q6*e4Z8M{lebur+ ztKLuasOAn5ZVJS#2c)kCI~|qWO~0QQxSD4175sZf*EWrK_OxkurpCe-;UNJYmagcL z0`3}VJpA=6id^B69>c)JWH9$!m=$?9BktY%jQ%n6lD6At+v&>1)=A1EPNHD+e#X+( z7u;;(mttC zhS`~?w^s@a03$W!Td=%ZhOTJp`9-%0;P%fOl$VL_OIJOCL8Adrl!R6Gx+Xg!o1^jW ze>DAE0=Ip!1x~43UH2%Q`dT4+#e{Mx>3afyo3CWn=O+TXt}OW^xG#N*A=}1yF#V>L zGPCc+bLVHx8SL%u%-{eZcn+j5j(<)CCoOma1&sWo!8}T|oRCj8pNi~%hR|m*bSK*B z-y>E8mPmPZZjUg#)l*2>4}Kf~upn%`3v)S%(E~A~vcSg>BzpciKOX5W`O=kx4Kh(_ z=LUzYIbiBsj`KZI(v9D~@TB|b>fG!RvnxP{wC1TA!OY}Ot5D^lm3Cd~dZiTl|F{QIaonam>24Xn zmGQbwwyE%0l~pmFx77mHt^o|@1`qS6(?U&od2h36(2Socs;o8XKAMVBuyr}NLd)j- zF~tj_De0zR>Cnt5`l>Cw&P8f%D7b9ReuE=wiX&~Rzaj9?U_eQJNzO5>1;`<#5XwgF z_%@Wpu7KrOpgwX|4)lW)w4YeezCRI2&u9ygQ5o-k4KRZIO3kLYl^)-H<7bqSJBJM1 zM3}g7m_kqy8qe!`Z89{R<^K#p@}-rP71TEItsmLUd5hfC+%Z7+rkLXFH%gyZIkt>I z29Tz-Grz_5AhhQUev|hKjM)>T#u+`B6PuKorjAO@$8>Li%Xc>Oi_?S+l`NvRv>;ol z`J>a1gOS>x8$WTcxuV)(8!I#0 zIk5>YmQE}yl*GIbm&AD~6=U=>Q5oe4oYQPw~} znjL0FTGA_-FuW$L5Kiji0s2|=Dv5=Gl@?(US$oAerjqHcE-YBXAtW?(y2ex3RZVi| zetxCLU|cw7^xm!_9M**6b5!b{{`9bjUf-fNG6Y>wfUnI5J05k8{eg9pc^0+zS4c}{ zs*?*EP~8F*;SHrC&;DTfpsoP@p)72h2y>^K@O|GeV5DB>OCP5|ztu;UN@v`QD&UD; zzCk%G$aixukV$~IIB2pI&+;*7Fj738LfNFy#>xN^@SX1pGgb6#w=73hXAW#sDJ6?F z@~mi6jo!taVO_}w!D@ol$Xcq&w7si$b|2E&~U+$wL~TZ!$hH(D`f@3nC_XL z7@QVnGtbB4iOG^aN_>#qr<4$WjA{$tv(}na6j0zd@3e|E)iI6kr@XLT>gjpevF;ac z3FU@}Q{#7M$A~BlgHlYmLWH$nS&GVj_6@DnAFk9A-M?H_uI)LSD-{Gt9fE3Pln>#6 z%>R(#qYfu((<-3++QXuvF zI9}V_!Ab$8YdR>?Q=~Nc-%V_6rw;uadHqIhS; z7ym=XfpiRd;{kbuO)GKT>EGE zwG)Cpjrf$1^@+bd{?Yp3b_V<}kL6T$p)zxU@ox{TFM)LGVKMHL;G>Ur)n-N;QB_w& zHcU37uH`^^uZaLR3a>~>B@MO~fX;cWfC*1qk~C62x7ty+ROo7+TYV-9zD*R9C7}iT zO=4FWPwvvn!gq_Lg_UjvDeP{3);hv26s#ZeshB6tzeFB zU!8_S1M$k;>a^l;Bl7X&uS`3b30>Y1HR8y{C#YbMSc>a zSSQ;XPbU)Ozmr7%XMte$*IP@k=(}_DO@$_Cbk&qwr}{Ngx(W*LGYE#5bU6TYuK4? z8g^K0eW8prY zN^SJ)78!$CHq#9xDPem%=62C5jU#vw31cNR*L0W)@%h3?^R9f0Z{~z9ZA_~=|5Tf~ zue=$Lq;!XO=lTZN6lk+t4Q`WjCIK4vc;YoVSOIR60Yb(1Z7Pg zs#+@8;y5vlT4OvG+xqF`i>+Id>JD7y&s>RI=vGB#HF|rbE1ZdJB*Zp6>TcSeq=ecU z&Ux!lauC>7IEnjAaf>Tqx?yXih0I*Fve)-dz6$x9NzjsB4;92?aG5X zO)vCRbuIelkpiZ7`c<~P_8(1$l%R6<(B6X!9^iy9;Sh%);hJd0lrvb^gTh6yUH#gF zi3)cVJ&J+y#eqHD&7|Z0!S$s0y_HAUZ^8-2W)9LX& zr$TbuK6|)6Ev&X}qCjKaBVq=z_!!hMGjqPJe-pX9Nz4T0k1c>^4y-AWC7FX|6MgHp zsKwSz>MVVG2|T+FDyFxNeeLi0fSB-#tPJs{nJE_CorofXTZq|GiwgKB1Mjm{x2zFq z6jn}rNqls$%23zw< zB3{FxQRDswo_V2m%{@pwr3CN6rN2H_7cg8m-HjL_%ekcfWY$<$n|VKL?il57UWx1_ zF3BUZE)lnA1u0VGZx(*aQ?=w}xdiutY6P~ktb^Lvu4j+V%Al&qDJ-wQjjlBuTA7q{ zftHca9e=~`+V{y3@gV7B-(@kaKn$=M(Q1P@5@m%L9(p2;1KFD^7Ih51FB~r&G|2zC z^~64(`@=HsTUC9uAgF88&0}mgLXP^eygux;QP%L4OpJ6Kb6=#<8M!-#82hq~DnI~R z>7GrBMJe)d(nrTo%;?rP|BJIjQ`2Mfux>rZ^1FnYx>-#fRnI`0`*hP_WTp?yOr(t* zvbH@|lG*Dq#ED&4petQO!V#=(cvT0znHaW=S?-M~IsIcm9dr3NOjDpl;=h%1W^1?j1Uw$InQDe0? zI<%|~u>CNdzM9Da81(_2u$o3!!5LR*$YsQ%ze#CnwRTARaKq*LGV z(r(n!7T3&$XKmY3B_ON%jIfes6}HR!N_}`MKK^REMgyK@FD@HZ+== z2NtOkTvlMN`}lhk)d=X5OD*9ZGw(uRhyMwe%pDb-W_$Cd zC#G!!;eDY|aB4^FP*w?YP`sNJ==&_N$x3SVywgkACN_L!zFj&P^(w#^`B*q80rFh? zL1f1HJzw9v?v@yZ>X_*=2dPH8(6;xh3lVqH8!-KSA5u{wKgEPMv-N`u4ML~7tH8F! zId&~U25(U-f)+#ICMbUGiZdVjN+(Z-IqwCn$T!DehrDP&s9>&f$n9~N$ee)`gM#D* zfqGMY@#?sb)tAz@Z~gRBENVSR)O1Z6D<8I6O808+YQ4UW40W&gp@)Q#M3TiKY1@wG z0H>v$$AmgN1)jAnYs(U;tE7*fr&4=W#x4&aoqch@)@_A?oZvodHLeJe5ql?j>RRJ6 zEwHCiwax~~<@^#sRapg!c3G?;PJ2KPjmRH~zJ+>6SM&pOnAO*&^i9l+?qQTa*cOwbp7_+>AvX9q7^4}%&<;K6_@%LsOucygXXE6A1!-_}Q(Q7{myory>UQw265zh_ zz2F))f9Hv_!FnoUgpZg5*f2Bp)BndzyhF7myRy**3bNGi5zKsM#Vt)f-v3GdNJ$>k zou@YkE8ZJw7b86(=XoVnKq)=yj@10-K}llD1a8o&Z3dvI;gmak!3s28Sk;`^fEj)Wi==N67lbcWim=%5;w851fIn&g)@{WvZJYj3Ru@Z;nTM}GRg=NQ1 z(M)yZ!khwlfwa7C*tYgk_Pukgl_nVv14?{F=Y2C47fRMMRMZJ|@~vi!1cCM13WFav z0No;K@WurlYbbidyk^E*e7^Ct7ZCdF(JSsu3tY?Pw3V@`^FrGXnT9TBTK3e52H-p$ z{a@glflf7-oN^;y>c6@iJtrX%+Psxk4d%n^cwhT)?cG!3E0|1uk z9+}L|Y1rMN=(8-RbgewxB@{^dkbCvv^%H_uFK|tx7Ae4qbLI-aR02dFKV%Koqt)8} zqFC3jV;jAJx#NxgKqx3QMi&sWIJ&iQqs<*D57JN`m^bpglOT}Su(~Jh$kiR!sBHxz z?Pf=n`I_cYPgM_Eg{4f)8|_Z1BzXx{r^PzgOR|#=BGr2NB9uyzzqWb@7eq2W6S2GZ zytd}}f17ffl!H<7sg^Wg%bFR9Kp3f3H?_+|jX;~tMcuHv_xoC#CK7jgFs)yb7NV0@ zj}tX_73}!V4t$)E1;{tk{85m$sF@kMr`3D?QMGEIz1Cuar|N zy4PP3%@`$qP{`1lMoF#~BOcqjq=VoOO0?-4P9yIN!pbTaww`5ogSPl|!eNe?YB7D; zqUu8YM$1nlDnFmDGp_mGR2<=cIYO?~0tGI8Y6pI}!nJkc)9Y=tL|bAO=dcB$q9#9? zPbxoM!7eZk5YQ?DThS#lPV4_y)meK*}8b_U6F5JD_PvjU;5r8$p(P`#H)sSS;!cD*R+( zPZ4AYng7}aAcTDEzZ7p85tw~t)>Gdjyt>0F_YOdkr|02{ih9hN4>VN-BxBeD8qrJm zZsd}pwPQIM>MU*@>Mj#>#L2vDCFcQ0bi^tX;m%!6y0=FK2QAosp0jaoNV1)>^T!S< z2=$!1q=9Zm3dJi82PPi)^)1qpv|@_TvwmmYyLOg;HZ(5dy~A{PdM*sVHqgj>RW!_7 zt4%Qk1fFC7%kKJRhwpI_0Lxf+l`K8u8yfGS`^GDIH7pxg$#3+SJ({&sQa^>Sn!*A8c6F3QvQ^K*w%Ll&hal&+=z6^g@$qochomby zW4>H>Ra*C8I=`O1lXTPH$0yTj#sD#%cWaK}?wVH@fUv_-?H7J$9+L~+9o=yZM#Vfd zNOH`PNa}s4@pI-fqdtCHzwxczNSI1esv3`t@~%s&0lL5Pa?<&iijSXjHEURW=*!qZ zT4#ZW3K!63)le}B*!AX7t$e&aK`XCcd}F{d`doGV0*~=il3-Xib`00OU1JohY{VQq z#HVfNyG{wKN?8-`&o%b|X3(q4g6WzqZqciR{Y@@)gnTsa6%8nc91Jf0x(S%7aMHZZ zcqoS=MrCP|rxzuY##+2O&U0=}r%e1qtHm!#J7+ZA7>el}7vkZ4!`0S4hr2NX<#iZY zD=xVW=h@;uwNsBOJRP}Ljo7x|9s&gymgota!T`ZhZTVdO8;ev-J}&&KJW3sAKyb;| zseRCy7}yN;N-|TL+Snw-$ns2uFkU+rX_gj3~Eqt)pP zn6wO4`$Qdksi}v%OX@s5o39Ti8fjN47*z~}UnwXDt+zVb=bO4aCQxdl2E|ybe(RY= zRCPK9B=S!XkH=P4JDq^+Ym9j6&kN2eLuZM1RfJ9PDJicUrydZQk*H9JZVOmjCxt@& z#`Ar}c(h^rlMmevc}NIYprgt%pvbiRuW6C?g5h_XT0-hGeQVO2T~@{AJAbivybW&Z zd-s!&do`cCr&w?ZFqEVTlYou;UJv{vGDbZ&lX6`-ciPr-7e&-ie~6(ucn@P#I4q~( zF2-o|n#=6UD=yQyZ?o$S!xUf;+_8L7xP_$La-k^6?A|pRL4foqq`m{iHL!G&YQ%nu zb~jwJ&bD(b70ngaXB7d`KB;{!MWL$2los<#J4ZQBGkUz*YL&00I=uK?7- z6eH9|gL6Uzo0j@(4gLVIs}(=Zet(q|kbG^Zi*lypM|H>nJNs_(?!h|K6QWv*jg%91 z@T>4Is@aJMb+g?!dv<3>Nu>qPnG>ngF#|D0A*#cP{Awl%LUU)0%1K#HxP5(oAxx+9 zdW27ZRZxCWR$Z&%1g6%8LpP|(Q9hx%%_he*nylGAHv+@%MiLtjsI7Q>Q;)eW-!{jg z!#}8@j$Am%pLKKE4U9nc?T*&_?U{dhzO%om$eO!7*N#%zz{ayx&A8BQ>4$D9r3}`;SddKwyxbm zJ9a>(zT@jiN2fwN-xaEy`QOV(8)CX0>9->h|%bfhElGF<(Yg|9TZxhzTGrT2*gnrpnDEug zPthr8wXE*K=(~56?ra%lXvpj9Ow*{xlcWr4_^-UU|qo(VgYv#-FoXh}Q zozZap(DR`Pe$(?Dd?A`(EVxa+tsorSew;f<&ZppRX3aR+zPr5-aKWY3gofgTk z*Me>kHhYuwDBCeKL4zgIBY8_RH&_C^x^@t-m69|WbAveBhICds?+n@XXxaFBbQUwH z&s997El+#Jg`GNZu;=X)(Fd9=wYW9cnAw+?Y9R2}vvw!s+m_I`c~I=0QxB&gvy0%e zkQ%}8Ej8}NBVVKH_0Ft-=7->vSCBI!9KY4aXTg6vB1cFf7e;5INCR8bzBPF|Vp08f z60-jl@xGc+8k~3azHq!&{htIj8{7AsF0L#-`Bc=2++@C8Q-QW7Cug09PgWc+S@QSp zNySLk2=64!jJCY?oyLM{I%R~AN_oG_JbIr0FM`g8cP6XTL!n$RrGoDZA~{)PZ1>hh z{}Yq`|5?yfaw8=v>YFkU|36Fch%bubv~KZxdTeaZNAFUNG(hv$sm))*7t?Lshu`V( z9_E};eI7&_P)GRIbl3>87eoS3SjOM77sa5M(N-rwG-6fb{06suhJ+_OTW$wr3tI3A z`1|aCUnv99r8na_ME_kV@!!Jw|Jx**z7sBrPm|pOR7M3e_S@HWOYNl z(h?K&xMn{QVt5_%ySnDqeh({y@%_Rbxn|oq@i~U(Me$~$Pp08DjKCw^tf}8yyPt=Z zVJVz^ZtP)qE$WFbtA*{=Y4!qX6T`})i>lH-9wk@4?OSSh7k`0ZjM)5nKd6cSC(>*= zl|swnxfdE0~{9Xi+#|4^O;1;r9KU%qZ`aIX<(#E!Op)NYhri zld|C2w9=c=t|NDO)9!h+eTy!OkZ?yGi3a|Yj;`INl7kwnZrd!=dJD?DA_JFdc~S1q zGx&ajUqmBTf>!4b(xKY5Ao(?)VUS9t4_Af*+*$G?^idHA%s_a8AqRZDUoJfbw%&H1FSxT)M~kNk;@ z#wjXZn3Zd^EG@W!DeP_7Hd?Uuuv|#DCZ?S}J67j|aMz3Lb-)H_`Zklv$c zglC!x$rcY*EWEuDDkN)RBE;IKv3EG5wmdnwR7X@V@OrB=zc;yPYH5W$Onuh`%Q7U{ zGlxYF3`B^1?1x;g8xN!me;2oU(~Q!M>u1d=gLEffehMb>3%Wc--~>b!38{E3tTbF+ zr7Yg0@6GNRA*0L53H}+Ld~>gIZgaKfb#&ORC#!Zwv-SJO`^$=-4K~Q)G%hJ!(P;S; z06&&QHVG=P4r+!e(FG~TlBNo}Y9A@zoGoW ze|Z($cTUBl>TusZL|Mb-s<^gpzh&Rb^Z?(MJI~AtT4lRiLhvHcS2kANkBc==phC18 z?$1^tPqHLvXz*Fe#pv-iWW8Tc<%dA}D(}v$b;~aqd{p(TJiIqhr88xW2sn zxLj;_;T`ya_7uOAm-OK3^>uq`hj~upqhhQBGhNbiI4zjU z8BYg#dW`o8QEuhVjzAfnel@|Yh*-#1>xc_CzG3$zAXIrk$GK^6@ugPX9c)XV(r0V@eFs{7l?rHn( zReZ=;23LO4kmc{~$ri)fo~i$U3VUKzB);a$q;!tGdm^9^l`~+?g}ueUJuSw3CVXbkXsS&Bok>8@D~xD@=xXqF*l=|%}bT0B_w>YWo0 zao7AE=`e?XW@RhnRQmUeMCk9^K5YCKviV~d!9yU}45scOFIA1_X0Z-hL7+a}GONsB z+|ahz=@;EB0_OUNmXNotu6hl+^vfD-VAa@GfTq`U_-G9|IprCFEQo9=A-Y|N;$~Aw) zTGq+!etCrpE7Hs^GZYqvh_#l|Dax~4IPp*bX!FS|B2?ALY-CKH?m)fl%ozXpdkIa$jOaCM72x+oy_WpFJ!`cuJ?jY8T@28)ya z%DvE_W^Xu362un_)DxE~d7x z{nqV3AbrJRF${tW!!sX*s_nog2wN)-HVBQQ{H?x6aI6nCQdl+41I7-4ox7gDbNn|= zKjVfCL>kR=uPXVPh^A~fxx8E?xp=9wR~UV(qP*PYsXSSsvtHfz0r@J2dGEY8vO{uP zpEL{1X4YDML&ywXu?Ji)lznUR_bMKHh0g8Nz{{?s2v!*jd9|WuuTy=rq_p(MUXKC5 zRjEYQqJ$sD6xO-Wroy{`{i0BiDBILxmn0Kvd4K42-_{+>ytcJ(Sd#cQGopXLWcfq! zNww@Fmg|+T5Jv^Xg0<0US43(Ll`91eM?r5NAn9I@7zm5yez+Po(9byk1agAwx1uPx z!8f>h^278+u7O|~gz4JIckTI#7JXxtRG`-Ny*&3+bK(j)`-PhCuR4FHgl*r)Q)OT? z#gJ1P;%yebf6Qd>$&FsC_bUNf_cyNvm9r2Hhp1$;>5UA73?4($^dTdR-26e&?Vd2H zgQA``8Qsx7>D+1|S!IEXhClE!rY-g5ckq$2MltyIa-@BvrhVzN;2Dr+_!i|rP$uM% zs}kJ>xaYi}Nsr2MR40Rxgo_w&^WD**`;+aV2y`cQUxRz49wF`6ne&qnX4GL5`mx0E zoLd)w{j`;5QSi5V>}Gc2dd6m10O7ro#-kas-J=j~_tnYBoIhv<`#9DD{h>q!9e~SQ z{vbULi#09}=3|3NjZPXpYpXk^6yIP%tCQCn((@>3OF~~rn;sU1-jLL2exvlXF7>rk zV88^pPSV%hCJPKoqArJ6!LglJ$o7&1PeZGmn{nq4ze1bk3!iG-p|kJ^MwWtW8Zo<7 zU876dUB>exUKyf3LPbEH{Y6M}eQDfEwOq>S^xL?gvzMW(g9#;#s_#M`sOQznOeu|3 zcc1XGTjV|FgL;P!OYP;k^T7j9<}Vw3sRRv?v4xPz&4f^R&2>lb)w3yvmO^H(Ypa9A z!RvnnG;?^zRPVjf-a^NSuqw9!mwRD_Nvo;rJUfXC(zd;1$Z$XjWTGkWm(2$Ot@1d4 z$|c`i;e`MdcLTkNu~wrDsoO8Xpxf`uU4C`k*1DuRM=9~@_+?Y(4)6m=!U$eGMUl7g z*DZr=+isqhk>FK~Pv*i8>1TG@r@S0%CiiUIg_Ae|VM*DCXCb#`Ry29MQx^4f8EF*`F{9+E{Xr| zMO6Q(e>(P`!l@gdK{nPVWghY0`TkZ_efGZjzbL=@fAq{cfTpj9wf)O+3X7qJN&Iv8 z6a0SZ|JG6ZuQI9suVmSU9(L#H>Za(JP%w-ekSfp7`baF{UwdaL$6L~G78i- z`3M}onEs`Z^IeCs+EfhBM$?-HBW+xawjs;=ik}b@_3z5)k7xE5`a9fac^C}_w6`xA zU51uz`cgVy%6a1fD_)fiL%ZKpPiH*1D$~)mS&wa(bVpeqEf&v;8nC!L|KRRB|D`<< z=t{u^z%DTJWX8nX;a=eH@;FeB_R$@2{51=2?>7y>$NLJam16d@^|qV8e337gmK%p< zhR$wX{x$J1YS{Ye)2AcjBk#z^4U6Y5S181)$ei>YgKa5GS9zxlK4$MYN$mvox9vG0 zJ9K@JO*Ag=>t^7vJAsK|Xept14c^@B(!#ue;u^Vr1jCAPMFza~f z&GptVx_>MYRaw?0)4(QaPCl>Y4myVrS%lJPlv#jZWiWFZaeZhH)HvITHUlcJ^y|3 z-h^<++YrFQAT@4xD)kctsTy@@Zat-Z??(i8&&8>F7x+Qk=In#<4-qM!?@!G_e?o$6 z&peh1f{+4iuWQ<*AzlnZ1RR{D93o$MnAS*>M1=ZPRXsT*H?ywT9BQmk>r3rxsuy3j zy66xll*YiuXf;;5WeDs}TuM)8*JuwaO0!in9$LQh6kuIPN0qq;``uDYgQfVc`>?#F z`u=wAop0xiOTG(_j7n}kHutWk#6Ngu$|f$~aho3gQ7=HF0;lo3p*6y)jO<_k^p2C| zs3JL;Csy>Gdfnol9>|V7qB5i4B&TY*8l-Y=gxD&il|$~h9QI*c-MFJO#A^uBFqre;SoIHVP zA%rf_=9RMVb)S6N1hvm*hN=u~uwd-R&al2w6l?1(J=s0EVbp-=a9WCczkTA0$@-Ve z7t7c2<8o&GxD1VCl%)8;0rTjRHD~Z98_CA>oNZ{lhqd9_gR(m`y@)LvIhcKyXq;Nl zQkH7c4S;nhFe^pY!4!DP%-~M%k1FT3{`dT0A+0y#W{@7!P6{+0H52c_x2!izce=d$ zQYeW2WIi1?L@BpSSfm8{Mw=Lm|8eSY%d9X%tcH&>XB00jOlvn{di^IVE9wqHM(c_4 zrM7{z7Y~)Z4`+Q#8r+tK{xfbAftOD?ImI!h=c;_W&{sN=vk_fB;}|)!i*$TT1?hh2 zRz=&sQtLEDEMqlwtgB3JN9q~Bv+4fX?tQA~+I)a|My4oZp3B0Z7fqJi_hn)Sk zASrcX(kL@eIrnDg?UiAzNKjBgUDteC-HpZyiORedQf<~cv_wqOY-2|1jfCf_1$au> zD(-Z7eDdh3;{A8@UX*@hTzwP9Xt0u2U5y4a)onBnA#e~8GRE>w!9xFEVoUu-hyed;AjVe?WeO-jb`1E-RTu4{WPZ?}?$XGFF&nh=%H!W?I1GmJAMZ9W#yF-8=G(d~)h0X29_M z^H#HKU#o6R85|{7Wj>FXxz?c(u%#w8(mc>Gv^{*2wi>y8cS?&D@wsP75}o4%`ou-L z5A^Nxjo;Bac}hV0T(isQ@kRsuv-d+rci!E0n(?-lQ!V)gtnbr4S#ih5zIB_&i+*Dq z?-r`un;BA&%buZaYU83(QuPC?kaLqP(f-sR#~qvL4&t|GMyRF49%wR{&| z8#!-bvTAF+a=fTbS%G_HstR*F!bKxX`?;@nILUbh)(A7_J1h-72R;1ho%1SzIP#Hm zJJN0F)}FiaZ0Pd<6n;tSLs+L9N8F*3wkA`VAXBkdsu?E!$ZONIQv6nb9gj%HY_CU> zR3OCEwN=^V)pT=AJy4rAj378|e zp7BN&QT!H3jJI8izgs%1RUFgb(B_O1dN|!t=O}|Rz4dK2_}qtpO6awpW9sWDuIRPQ zK4U^#Z)udZ|Fq2fwOc2M4@-M@h1Y8Hrls60!`#w^CLbcF2^Icogf`27s-S89sMU{n z$CjHmSrju%HC8ZEjdWoSn*0{mzb0V`NdNY&#DwrUPFo$zx3ip@F)Ql-5W3xBrKuGn z@KHQKYE((3VuTL>dp4}9^H$rPeOZTVG*9q0u~~q)iqp8r!Z~w_NNE186`;a=uZHfhPeA=)R5hMJI%#%$BX5vA`!E4?GYsm zwOTl|J-loNc|QO>n|?5D`IBuc`SaBZ5d1D(2CG zJ(B_qE0{s%O+Zxa^)TQkD$~{e5FBzJQRSGsN1X?h(}HY;n4EjNom$2Iz| z3tN>kLv6eQ#q-v=hgKR#qf4Az_=0OI1MFHpue2RY@bw6pCWY_WMZ_ffL1|%$ zy_4w<9&U|c0R}A4q3%V~U+j}JSR7l94Gz;HoELhtrr}aZprth>t+2k_yce-#HnMa* z0S(=Cuee3hF_+KVzGviD4^`BhmOUVl)OEy&q~lqm>pg|ny5hBTh-)zw9aZq{bZWZ! zx9(=Z!sx<8*7+OA>;Mrqq%v)3hWg@4+%0I!<0kh)3Au~J%Tj^nf;#RZA$Iy#0OHnf zi+@^S&P?6QSG2*1aluR^vPM29Uzzpi;E!|f%E&@{m5p1$nHdD&rGb)i^;PajY*~g= zhTt#dkv=s~>F|0hE))6e$`dS6Ofy>PBL$80I06Mm%KG*5Vv9SbxkS2(-Xtv^D4(|1 zrZS|*^2geQAK#F?n|i8Y6(w`t?5meQ^~;j7v{4|{$-GTHfWYUgCMsG=6lP{zNzX2~ zS#Pa8V?tQ{XeAOPJhB&53`!Cl(Uf=b=Phqzm(-~_&(#>+ybcXiPecUtnrx8e`Zi=3~bm;8q^#4< zNqFk(U9C`I1kxqHbBzu37QDURq5x9U4oQZlx$yVgAR5_%eRXlCz4W`-tw=q3NB)zpsO zlLeb8+7+p#&+^&F7Ju;U~^3_YN=EVa6;^)<1!z$~29Nelp;yRKdh_?ada--)x zFr58+LZtT2yHD%hYD<^<_gTv2NvlsnkE#;t5GQ=5Wa~3@z8ImSdW1Vtq&r%PC)qJfd?->W(jtd?c7A9(W?XS0aL%!+f(<*Wl>G z!db%#Ze5Zqk>AWG{CE|)WQ#h*oWF*CbuJ*D2^=P#?XWO!tTesec{-RSRs}8IbYb|g z+BA=(LBgpk;q~QRx>Yx7uH0#jf9Z?J(>w;6cv7NfpKKqK3W6!R#IYOUoQ=c4h{&L5B!`G^=iMxGo7i=QM z?;YGGVKlW%sRMRdtp^(e=52g0k=eX|*;HP1UFoQ*uRy>W~6t-y_om{*pzS^5nri-aZ&WN;@CH<*-%67%Ae{gT(u>kNDuf=Q z^cG@6L}?OwM|y7|bg(1669^cob@gwYcXqP&8(T< z@4CJd+W%(q8mPE!@NwT+7YQ*}ImX5dp*|Es+_abT+P(Dqr^gN+M`RL8B@yZ!zg92|8=_!j)GYwP&Gtzq5`i*?Vb)*58Phb^X$( zIeLX@?OHqrKe3b`gf{vRr^W7XEBIN(CTVjDEU{u+QFV+(1H^;(shoLs`s??lJxt9W=9O4u=HuJ>eCC^Wv|iJQJBluYd4cvh_C zRFFhST}!*1GSOJ1x821$ie}$t$`V*ud9bET5;2aFPcm>82X)8hcYAs#QMjYy%@#%N zoa%W647OaMtyXy|+attiHIGUnCFG6yLBJ*kK7~~0?~ec32yfl zL}xI}4knvcqs@nEO*k;$$YQ-k;0Na4QlQBW1K_#T7s2IsjDnPixMr=%UFJPT7!pfB ztHetLp$$DfRTs{^p2(^4@v+u*7PmS! zfs{$z)PsDUxHY3bjcYo6?$b{cgpFfE*6UKHhyT9Ns?`tgxsar9l$yOa)t!f&mAO9@ z-I@VA1-{9hEZ@OZPfXAE0ypduDiy~2*>T27`5|uVz!^zr?gQ=S^#d9Y#FpR z;2Al-yJOI>hYJXjeYN4R>ciLACB=!veau5VZK-yPGS4I_hxHu=K8091#G3qO8Oguz zlT^OV>Za-kEC)3@?%^+A#4cL}#%Av~`y4WtaY(5o!?#>XBP+)D$^}?cN|lN!w`(i4 zI~%}nd75?Aa~z@)^Inp}RD*a7X?8>k$=(CQHwiBh!tkBXpuoF@|4LGCbMT!K4)II& zR#$Y1Z#~Pqk&+xZ=PseXo;9CGd6ouvp z=8lA$YLrPvFf{Y>g(z&h8V<;a%v9pCLfnf}KfBqtqdng)*;S`%c0;9UT2-jo#7$M^-Tg9)AD6X z>B;Hw!n|HhoQ8ZMu+-V@X`x*Oh7Xm|a{79Z)Y;azc9n9hg(b1)xu)eVYfoxc`7)aKrdNN&V_ z;d-ewf5k8Cir^WL7V1b2Q$T*_N_PKw#e_if{yMA`0$2y3dU>OL!X`D zfi}>{DkQ?DiLI(rb5Ev``j@w5e8Atf5B7m6^Cc$0Ir~)AqAzxEzEvhsVMxlNzT8pZ zad435){;_9uUeOoNI>Y;5nrYsbQEn4slZ8#Iy;{jO-y+j(pfedag~QFDW!fc17q1p zPr_DTxH}2xtDf$?{%<8wz-55rzu0w!Hpw+`tf?=+S81*|O9D(^Dd(ixhv`+dC*rJ-;QFP6f1#-|1xr9n>+iQ>5 z(A=_H&f;-4J17ol1MK&76|bLnf{cE)Z}o~Dfl!zj&mNY>WI{V_03coC+=buY*#W-R z0K?7YmEEJX^G#tGrIhx0oW4~B7wu}Sb6Ut!X!9DZY~kG$!H768hW)AKG?l@_uZKxa zJs}&=w6gaXey4dz|M}v9Pp!`H@6cKNO|zJPIj!Be`NPkO{r<)UeQopR!oO%gX)0HL znpuC`9#k>uH}wYOP4uuI{)4Fxv(Wp_{-DmwL|dN&QG{`J&LSgE{USg#tSjgeKL$rN?k(=Rpr!G9!nAIy*b?UD_1 zu9LndVYg`9?qDm8Q90te^!DUwJgDG-(Sjx^q4*-}`jK>j;eqneEiP>CH96@Tb&CzU z=YpZhuN(dV5g4+xfxD{=k^dz879Qp>w?xif{w@=CB&Y&1JK0Ak#%$JgNPd=TQIAux zdXMhVnd3@CsKPZuYYcc!UTWDmK?$St1r+;5s;%w&2)`VZxhuYPnv{fFnD-f;PgFcI zmN49m|EHduRjhh(Wl~Zd*M{1X}z4G`dR8av}Q*v?9oOa9>2vG9)&!NYnc8JrX>fyoyCB@%YpwCYLODfwD$K7xXrlCAgFz!Sx^7r4jZk??X$`Tt<4=zC-PKOl+ zeLlS&uI5;sv$|KbPLHEGzdy zF=O7`E+BE=ky>%2!UG01W}vFQB9=FQ1yonsEG_JKxWh#F^l23&w~_~_XDd?xo( zh8utQ)=#zfSagf;ueRBL3aRn&sP3-*MEnfkKyB}2NmU$taQrC~0>eod*}S+N_ZR=u zKUdfu&or3jD}DwP?dzG`^SA=^-SR`1=%Zc}dbkc^Rba|e|NY8;AAX<|eyWourkBR2 z_S+{Y_o6N-fD!)BC3F<8Caiu7KdP16ef6_^Z~Jz1e!o7ix(6%U?{>l*%NkZ0N?p5{ zBem6GRk$Su7jMfplA+HSm}b-uwOl{kX#dj#K7`*?bnPjnZU5~ z7%|t+eNtWG?2f_tG`ok8nNEX^Js>JJ!?^7t!H|aNY#yf{wM?3`TG%-KVQ9o28vJKG zM7;ZFJWQGJ9sCrzk?}uBNVWex!Ym#2oFnn$(J`p#`)7pt^Wg(WH&D}${-y0yoIkqP zyP3#o0g&Lz(a(SM2Uo0j>;^5qVyo%p3uqU>D}#H|XoKFR%?o#0w&Mp=1xd?}n<-$1YV@^+v_bRD9|%zDwZZ!OI61mreoWqUFf)=Fenw z3)OS3-MNHLjwf3j{{1t+xHE3eD*?^Xe&7b<$!w@8*=c-fg-4&HhRQ4xN;`4p$eMFx za;z*hRNu)ew+`*MLnepphgN4L;oBht?J$su6C9@P1iT|nvg*(ZCvgdAoHE=A&mHV= zFkc0ifjZ&e*K}o22)Szn=vj(q{A|x|GPl}Ev-W?3Jc^_L4fjy2_)p}=f8?AEH;<5H zY5xp}3}3GW<3g6B|3OPJ+~ZCg{pXAS3rfdk@@qMLF!&xoWtF_Y%F{3##2rB@@i}@( zei)_;AInXpG@3Z28lL=4_a z9P|5G-Qy!Vvn1lBG72VSuG;4=S>s|+_=u%hB%yKDCnpLBGCX%Ze1(h2q-cc|Z96)? zMM-V&+$JdT{`I{+ZL40Ji8b+cqrnT5aDX~}U9PZcNJOlZ)EJwZ8=2G4n>Q&oDpZy! zRQOp<+tRI;Al&#qpr3*eS z3rIeT`n;9vYC?u^L4H4v3rBn-WT2X%?Ab_pA*Wm$=kq{1Dhw3q`ij8-a9*W}Pa~d0qr8&aOKw&2dR}w^!tLNJ8)u ztH&~r>sLE(&2_>k`no#KMM=r4L6*x;&$}N62Q<-)YRWM6G73}4RogpPcLV;(c6RLq z1?Vqpl#DaB`z6z1kB+M6!}P}9n)4mU-4LxPCtlVY z#UR@KUA-$un}XKxuIMfUPnqYA(jGS;Bg(G?GbRITNSOBqScuza^BDy+xJ7M%2kDrb zOpGXy`7}zoH>!q4^n`>p9d8JHxH$bHTkiFQs+wE$ z)pw#vsG!sBqU@cre&!wP%j8jvthh7A$`RW^syrn->izgdk_8|}4&xlp;vdKx8v+1291Su`#L;FfVE8QSo_o+%|7QY(9 z?1$$np`!}m)}froSrw7DC)a{focfPm%pYd8KXji-ehXp}R9Z=NPYomLzU2tWS4gJx zdfzd{uEt#A^lkyGsv9)2{d!m35#cQMs2&|xT=`Be@TbFElg*!LtF+OuJO z8)uzx(-83dd4pCpHnUFYi+bA{@hbW&j;ot*ucntpM(unUu`qS;tUk&1H%0GW|ml&MX|mCem!yU3Z1?|zJZUtZ^6aop9TMT6hdmtV=0c!dqUKcxLZ0Rd*yMWO{)Bi*@>@) zG?^~KFCZIPH-~74W2CMgm3MmT7#{-tFv9NyuijX3`>LfG6Ec`T^i+qEJ?=Y4uBsYt zg+qmEG@ zC6|YWc@F&;+4+0$i+{C+#o$NHfgpnp+=omNmy)mqlXdA1*2eyo*ib>^hN|u4-R#ED zvw8vL&|B!p954EyuW>+nWwf>+=Y_VAH=j(QIUkA$lSzb{XL`7!C*$$tgO~9#OkN!$ z^2YXp*NjzN-#kl+VF6vUS=9;`(xy+fzf*C%?i%#+e&~Z6c7MCtr*4~P#R$ghyboiQ z_9(5hlY#^lrame@VI)vQ$@!h+^uz6*tv{{5RZt@E&Wion;m+$fbMA#05qGu~R~uJV zbZ?++%Ytz%?}?3t{=8MUPo!ys3k>LW^%phJ%(`Z`KT5?0M~BQEHnJxSlYm zqL%M=JD$~1BFKM@l$|~5y>-lpa98^UU^_Pmp6$lU6rHY9J(HeZ z;A`UdGioHp^dk8rkWtja#er2A6Ui=gsY+%cc1i?y)|y!M)RFM-SGI^GEaLQSF$d z6#dxU@8n>&l>4{F9_zKJnCga%H74dhy{zsT@69BY-TZ9#xF%ajxX{+F03=0d#<@?W zfe||XBk!QAEe+oxoM7bp0;2w_Cv3dwKyAu`zeq_3^RkHeunTA}+}OwZ3~kyHQm=aG zxeg~V0-Wa=ji40!#f}jsa~LPdX_s6ROiIDpPuGt3F-Mwd!=Y?nmTT&3d)lNLhiCYqu3E8ep@FhXa?psJLI2qf){%fqE& zf0*$z$4q0+yx}hp7@)(j=x4rl5^>y!V#@D8Nh*;HseCZjD#XUBuo3MM=J-lGYrii< z8XZaFKWhIu*7gHx-z?wq3nUA_5J@Y*{n4$#X783DU%%r@w)&V$m8QEa4~C{k3ZlE~ zN>2HGd)Vi>`zurg-BAJQG}y(GPJVw7;Iek0q2DPTW1-e|}UC1SAW zm}|Cdgsn%sY-k zk^XSh9dC$!91Ut#zjoJsk<)F>v~NjOr?&YScZY|GNsDZR_;&F2mjuPVJVY_9CF?^1 zo6FX7ogRgiNcKe6AX^KofpMKR7u95MTyLVkN_J|S$g0QVlDn0+J=?@3nvCQ_wm-2F zeQUCrT8&;IUKolP)My!9$|I<)UNxyyZM!38MIc{I_;|riK%SJ#t0g^nz~zkUwErolwpgr zuoR?JmsbD$v-|=Yw&XJSRQy@Vs_e0MS#RAVwu-MW^0K5n9-^-Xw(tU6=50Tf+B%L1G@o2ks3z>@w-P7|o*S~o+LD$Z{{kGg*b>@W$ z6$&9Jh2juYMR70>rN39BPD3ii5h=$EDj!#<7UFHb97VRC&S`!S7T(tNm1=pCN>|*{ zcraJDG>Ay@{1TF2TJz;}Mnl}}$=$GDmNdi)W zNDzj2qW!30Wl0%9XxQLeaZZx4%yS zGp112OE%K{fud$>N_8tOhSASo7Pi2xZMl#V)Rvh%be_l97s^uTEg0sy!%+J9TMgHO zU`AVhMBP>CcQ*7VkB1`Y5K)4wLF4*xr&q%XSFEYs6~n#tP`pj{i4^nk-S3a#Z(&tO z&Y~M?jNwAyL@qm45(H7I=i+r5lJ#}=LsS7Uzq`w~QaQ+z^(zO!Xr1(JZ&zHJ3W;TW zLP%_BCM{P`nT2bM6j~iwmxg=83MJMAHYc77#X+bay>{2{hH=jm^_*sR$H3mpk{dH3 z`zYDBG>Um-#_2C_c9mhpU18ms&Bmv+q!6DBs%gO?gKVARxx(R#3fX;ZiOChj{+qJ7 zlgXAt(O;#yYa=!Sclv5g;2FdLISz>IZA-S=$CMk*zqUr%cVSfph#NM9226Od(cLWv zh0Hsn z*Q-U_|N9_2@N0&r>9qgeD>7ZMd5*XQaK_P&VX-V~8pVJnSvuON)ujjePgs%TO44ZZ zmK6Xo1`MKFbM-C7+MYrV@`RM5%Q9rafIz29X^L?ltJi3eS<|0$eysl+`~82^dLIoe zK*#+rT+RP&kqr#ng#UD={=vF03_v3qXkvfPWLQ!z_Wu*@`meF||3qQ_%UOH$+Yhr# zUxWW0mi^b-{Ku^o#LS@04Z&xj(?P!GSDly{KCFvUpPIY}U4N$W_mJRqB2$o#o^IF| zXl7y2wIv@f0cdV`R`{2~kGpBwqhTKZtjt9&Gd{rS>Rz9ej7?5vHQd{Htt)^L>i8wz zWE;&~cK(#$U&Q3Po{ewq5Pk^jkdmC@HJ)Ta+xXYW3wD0Z2=_AnQ+`ZYwM* z9v9YSe4u9Vg|kS;TBt})VpQp7oNN3&z*;;-v#r)m3Zu?;A%nWQ0TuIeOY>tHn=8?Tpp@Ys@Ka5vIi;4qBi%=e#~ zQH5bI9CyKjtRC*kKkMo~jl&8}P*qOXk|CO77oSRWI&73*)ZY}_?L+;Z+COXVK0_Ku zrG_sagV5aLP*RA+%X-V>pqgVe5C|_qa=891ZyS(>Z##^f4!<*yEt999+SB(LVq7YO z$!v{ykY|>mNwL#=Kblz&pc!q5J_wImaKi%oE4}Xr*cTf^Erk=G_w#v36OH8++Skpv zOd0cZ1(ijMDlNNqE6VX?GtT;LELM=LZ4vUa?mPa`FDQ)hn+*%aMDZ7AQM_Z&LL zrT_hghot~ZukeCVtBv{EQLQt3UbOFE0Szc z$o<>Uy8(HA&2hv%jz!bv<&iOGDTXrL;dEw?VLJ;qoI+rK1D-G#dJNdr#&yevj7)U9 zR07xCCwJ>-SuF53$kfSv&{7yU0vldjYAYzT6A%p8qu#6vwfAP>%TQw1Kw&$4Vim?4 z5i4wzl{eYD0sZ+AHsWt9P<K%J9jat?*bugD96LYg0Eqy$1E(A_%3LB&8!4c zbB=MbOlK$b)-lf@IUtIvbX=|B!D_i&$f<{{qY*Xf{g;!&EF}UgjVwy-*Q4EE=m`4M z0M_!ag-^h#)|QcgXH~z^sZba?QD0`!^_3ZtFi^J_e!>#GtNCM7d-@SI-(C5=zPt|^ zle~QCy;i*9uNqRrR4i$@-4=ORKHR_?3!i?X% zLc!jm=-+uT6#Fs2xAMW9Wi$Ok(SUD!x|iJ4dj*3*QKyX+-stMlnTmqMp)b{jMfLu@ znlBhGWluSeRw?LP(y^nLwtVdtx(!d9J9UE9Lv~CrD@NWL0!>8` z2%`4&(Mdw8y;T$O=3aDSV$&Mxei&y=TXeUPv3KIR%vIIm^TPR1^U!ZPEWeX@m`jp) z${i#g68p2`zxwBj^GJI;Y&;59(F1d!-Y4Pd~y_#+yq5n&bL+tTP?o?o= zJ-Aw=&9QYw&b;d|ZD^%hcmd_duCEtd!3~lVjTZJnR2az+e^IzIb<06pFZaJr2!)`6 z`a`Ef*OOe9vL}h{&N;Wb_Y-GRvg~K8`pTZ8I2fKXF^0S9k$DEqE2_h0$R_^qx(;CP zl7okE9g4jM;%(o3Hj%SZ$);{6pN8C^Sf}EwZA`m*XA|1Qwi6S05jut>g;R)<$Fagt zoR{!&HjmI>rb2SrCuHv3mm-gpYLQRfxT$y}?A53+VihIkZ-+=7SP(8pLke1n`L_YL z8lso7e*3AlbIZ8vf{ipd)hz|~yLR1JG7Qk3JF|`@+q_8=s$r(f)V3S1)lYnM#njB8 z(kN1?$~E*>ND!n&%NN-N?Lay8=`v{pWf&CR+XCVZTowJX<4D|-!qAb(Q)3H1g!*s8Y*_v^V@ zx9m5BLZ)9L_r3IEG^Pik*jpYv)JEo}3}vlGW|Qfb7|RqZePp-Py%FIi2M0;8oXWz3 z!!+@(#=(OaMH=xPecnW6Oy03W%Q8bguDJ0D!oyk3gx74oCzCI=^N!%S{4qcnVzeEo zlxE)a!z>ECe8B*G*N&oL@MtCq>_P1M-V+c?Oot&sDhd+Gk+HPJ*c|fKPeHkQ`hxNv z66Ua`q|$CCFVUfoiO=p2br9-wiJKOfF@g1BP2wxi4P|{6wyE|eA}1IgU?>|{FA#O5 zU^1Fb*cGBDz}iVTR~LS8jyP%lb>`EOlZ6Eh#z*h87Gykrkcrx=Y-8Pc;*&k$8x|17IzlRDf7(k5ge|%BrrbvGk-bGyEyI zJlmg>552@gmT{-VuAXtJ-u*ID^}16EPz_E6oro`U8ZN^RYtao`LK`Z(`SevHX5W0B z*CP(o#Rd)rQK5*eFJVL6Vg8T!s_ekS;}VtlMh{Y1aM)t-^lG<(gxyyp9}s8dm}#A@ zKTf8RVOgMx<8Gt{%XjZCiAne51<%xO ztT7T+k|-Y|mof#j?mA2wI*_iY`=aFb2m=$Z3O7@y(a(B$^@brxO^?F6%=Ab{0>fgp zLF)Y=h-EbMvLcyQiI`6|vF3@5wTxe_NV*dM+p0t04E!q}Qy&xRk~*I(DC3SV2kVSc zB~durJaYL|==gH*t0ri6Bgw^=M*mVtK8M6%QUho^!5(PWPZ9=N@nr3-I%G`66>Gtz z(25y19+hNjcH-**>$-Deo)~kMk0nmu-5Qot@ z*&4vF{59v(We2%|5m5BYFPzs+*ZP?dVKRJDryk&JfKVD(AHe$DGwTAyKFTY)72rSo zpQ`x~>aLY;`JMdez#YiD3rkGSWRP!d%Q(kX4_=Jg za~iIuz69Me?UOVR?M|^oNgMQJW-D9!_P7MxB=U_@(8Sb(N}{@V6F#f^QWSHKAgxov z$b;ClnBLw(s`F`cA`n;Y*>s-dP%bBI=oLp!knoZdV2{P9442d%8#YyOt|scZ9e9RR zVVBLq&ee1!lsfdN1x5=jlLi-GYMsjY=ehmmyx4Y3LyxvL?{#jq4Bm9y#XdrXkeKT1(QpX^!swTSEP4ZCNP$`Of) zB`#)OhQ_h6Ed5?jOl!EGaV6+2k(Zx1pLz~ zUm}i&qdO9}K2&S9O|@ivh9n+(S4)6*fx%`PDBSMiv82yDv1yDIV^@lgr$u{Jtj$a-T$`)XTFtQo{bfQ)~% zJRBLzE&qhXX9p&IG{9wv?fC*T{wk6Ud48B|z! z5khza6#eW&Eh=CiE2z8ADJE7V!6+xK{@*7~_(PNwu9acwwMvtdfQ z*C<`iEIWKXRAQ(^bpGS@Hpyu<9R>zNlbdLG@@Kv&?!MoWoJ zQ`++d7VVKzB>9_Qj>!)ujd$nt(mDLoNFCFc6nio+_PiQ!-HBy)iLmF0_PqpL0yXA(M)5CYZk&i% zUn4UWn*+dHJ-Wbyw+AUEQlw~fwNXUDix@S;`PrQ+ika`6UDGU2;1(nr_2x?XsUl`WJiGl875Gw&Y_!!D-Lzii0&tP^v}69EXZNR{y;-PX#*#uL z#umI}j=j;Fsf4r>MQv6ZpLF+A`% zNQ5;}b+Y^^pe^KK_T&jI${#h-wYS?Cf2i2Nd>PSr$fic@Dm1*(rcU*pNtOs{P{=kA z6)gldcTtK~E z{l40_Z5bD}%xPw68F9+f9PnbjwV2}lyRsm2ue1ht$UHyhTb2A-=3RiTGbl3MrblxtnXYdN~@1 zo|xbeUCi~+6Y|04eZI^dzF5Zom7<)Tr)Jjxmx4C(;zhpX=IWjsp7jd@SR3ub9pYs~ zr2AHRrt*4k=?es5xpqCLiW1h7ImTO;voc-K;nTA{Mg$tMe0|&p9@7c#D3NZkxoBVPgLO8PTNX$kWp^6M{Rf}j{eG|Hv{`Z z!Vi_lvWh2n2Y>CGv?@8G>g{EXaq9xFOaD`=cf-qg9lIxBYI8jirp_Dd9KF{z$ z;LPtV=6u&Dyi*f`LPPahR?@AfH9lI9t|rRMes%p5e4h&G-1iA!tz-7^&N_2eP&uoN z{T<4i->P01T8$fDixU?`^ad_3-LiRKbHCT_6j@tXyu!<1;NE4cJ5=f;wP%Qz+&qR3 z?4GSNoqHf;J^(jaRq{CxvUDy$E`vS^SWQzC$$#4UFETM#KMNC-JRczoELk( z1pu$tEZe3d_472?=P6-vqj*O+p2M|^JT@iumPJ^7=*_6>DjyG`71mZbz2L)%$8%J< z9xsmH^+=zO%%D&9zB+c888DPzu$n6uv}5<6L^b6}dq8OWNLKguV2@#bA6vcm@% zs{&1^n2C}})QaE13K_`n^p%a+EmqGMbhD`dKQS&tZ>Ph$Afx$cOq#{oQq{D_?(`Q| zp_(D(=_z$lv)*Y{pCw@En;|?G+!`-_3x*9z=YE)Yt@>mJGWxK1!>A(8EI?NtMwMUX zQBF3+eP@GTQ}E9oRjWp*s242%z1rghK(P&gps>HTXxM+X%y4VX|BI;5_}mev>PE zGBu61?%7Q-pE>VSnk>_Cf2X&huY6;iE9-0-X*G4pR05A3xY`<2)CM!>HlxHmqJmf;~#WQyH$s7i%n>F588-C?=x^#-bE zA92*^S$XDq0^;}m42dru*u;jr^<7bUfQV3SV-~#46eV2o!UJA`J;)X_qJ3sH_Jj`$ zaBS=kB7I^&fo%($T3bthB25$ZG7EV2dBYEVv%fPntV4&Z9#wdEEc9*F2@0}~1Zp?p zk})LkgvyRkc#Aivm^iNXUGboh2HC|AF<+`m=>6q|+bQ#5KdVQMi&%96_!2up@TitJ zBwRQ+-VyD!{wlJy%gVKEe7)KFAkfb`9$}NASL>}V?Y(@#*P>{;#FP{B3VBhAQypha z3l=&|lo3%e2dTK7fYOJhDC?} zf_@%je$Wp@D#(~uRi-VqTAllKZ^5^HxkL?+Bu&#s`k_mRDMq|>>bjleUU~TbiyriI z3V7m$?^aUI3wGY5jL37p3%D8X1s|F9z$t9P#{HN?U4d{k`=h;mb_^N1Q5M}4IncFf zi9|d66!TdH#dJ7O1U-$oKh3Be8TBkYLJO!7s5@Z=gVM4%Qsa9L@G%XaU%@pKlYiA+ zKekPmu6z0Up%@0^d?CJtt2{XD%P7rMY*yKOH5Pp3pB1<%l)S=YeM+JRRM1{~xf3L81 zgdMGsFR>}M8&h>^OvjNfDq2a+xkemwthiQ6bH@vkj%<4E9ad5KJs9ZVizbsui+2U| zV~{RfR-2gL6U^mXL}j`1HY?lP*se!}1WIn39-%oS~K=_6Uy?+-ei=Q zoe``(a1z=`p*gba(XxB%@d@~dCl$_jqbKo%)P=7*_m6BIpGda4DX-;hlLgBbFT{Gn z{ed8%RTIg@6~3Y-W|)nItx?j|9?Q#g8${H+AKZ!ZYd<+1ry!XRvCV^&H&C)w7g5u8 z%Z&qWWixKss>%NM=v?BH&DV?g1{!Ue0=iHGHBt`Klo@zG=O`tFCisX@b@?3dP~08L z_L#SrJWlLu?Z(#%m9sTWN{v$uvdO=>95eUbRcdS>B)iWH1Qu*yT$n%ycSye@xUNR4 zRXD?Jx%$a@%MbB&Bgjrt!(?tjz|m6sCJxWWI#Z46tC-q)PS*B4#IR1HD%h3DFo&VC zwn^@7c~TnmyiFYhVt(;&JyB+D0 z6B84YQR@2-#U4BdQRCyncMACAq#EY_JM+c`hMQiGVognF1e-S01+(QM3dEM8)tdNt zgJ}8I%I~2a;-$nS6ZHtw!0|Ml+BQN-5kSr;O&%1J?;AO|A~HmKphx2wr!UbirFPD^ z{OmQhY1$2#zTc*?WC2WD9+VxqWny?wGA#5M;o7%5nGXxUZbxRePw!~D4rVCz z8{t$*L!{|1M!5ZCT9aP5xLof25kG_ieDN7XMiq}?X3%(cq>o)F!$e$1IBhNM73o_} zyk%r283U&-x0nE(We_Ue=p|W^7@zL9HJ;-k49#gn5(ADYJR$ESDx6@ri9g!(ZlNl) zyEG>Dg06w>@uj_DecD3+ZDZT}#>>-gf?^ifCV$DMZK=Nev`KH-eUPw$tMY))Mp@|Q z1*I|wzS;j{yBENnjnw!fr}+P;6E&V$^ia$SWaOJ4o;6vKNu*?wOjho&G&=%#5`>I$ z^Zk^qmy*CHF8|Z{N7=(ShMRu5w5;`6g_Zxg-Q0^9x0Ra}T)Nj4| zOvT}7Edf>t0vDWOR|OCkPrYD$P3fI-33A4v-pNPXwa6R)2ZU;Jwz+2vRds_&|0bq@ zeow2ZNRP;wy~F4R*nc(jpNH}o`5jIp5+GJB0R}C&Y(Z{j1LT1HuCwoC_TZ7z^$tCJ zoRn%-fUxk5u+JbR=KYZXWk*TeQQ^_@dC?L7zk;DCkTxT1nH2AJ(gjk z@6z}`rcXbh=HrM_!7St#un6)uo0&#P?{bp~FJThaZ~VVzE@_Om*!&iZ@gWd>$ zOQ_{98FLJC}=G5dJkM^-F0w|KnYai^JdeHd~#a-++Pm*Dq8-7Wd-bSoim zNBEGY?E3tM>leEMbIVf;n}e~Yj?*_l1+o{ZF*~zTT&<^ExeLpvX-dK-Jvq2$I!Cri zxtgW$vma(#uN~v3wZ|kn>9_YN9}lAa%KPw5H3=sLkClb(+xgb2uZCar?|J1b`+gV; zBwj-LVfyU#=L~Ln9@ld4g{s|7n{xHw81HyLQut0Q7x^-{6%UCplkH%>AC_Ne4nq5IjmruU>8M6BjxV}Y^T5XOimj{|HOh4 zZxm;40`#sDO!dp1^%3}NrE&``-(;#lED(p5j-rC=#H%rqr!Rgh!Wv4c&Ppg$l0ad_ zMHaArHDMFtYNHNrpu!{@)gk#;QVH(}VT7?1I{|dnB>;u{@PEu)g8#`}J_S?;|6S&i z{Qo|4*`wppFzdWzdjYjF5Z}<7s?w_SzG5eEwR8apvzV2MXKxMv&9LpbF1#ZM~(25@VUB;4niTOMr`QQk`uX#l%K5!O3G(vKr~ezOGm({Vb$wRiWzhN}4z?G*zj~ z29qo>(x7u_)KIwbO%$Z9>uEK^!WV|gJ=}oRM?6C*&5CMbmb9FrZdDKCJ38gb8yu9D z784BAUzBEaH+j~YeOOIZ0N9KN(sP>YT_=P9zFS1W{tjTtN#k9GGy<`#JUW-BvU@zM zGV)0@y=_`;HY01OTgB0oD?H9E&CfJ{CVV;zkuG;L)-GxxVqEzp!LG<{iln?9^IaDo z+S2RRm7lcw_@KK6pE3Q-`wALYh<3i$xgVSxbGeyl;@xIcErU*SkaF1JEXTw9-TcvP zzB4W7iUis%;&M2Xzpyp+ObDe@g2UpB1SWVx?i|c{B2;HoTsyo$f%-Dr#)Lqev`L0@ zgr1LqvE;_&qWSF^VCBqsTrH%$^K-iAL;$qypob`hLdR^3sE?CM11${=?Bg#HFj;Ng&NtM34W><<_d6KG!X_2?FXqmNJ~@k5178hf)640L1K`vRjpD^?kB^ zYT?#_!l|H~_C4w7)n4(th6t;u2o7sU;ehG22eL#o#LkeGYLJbNz@pkv_Scm#_$EgH zG*-x10F+@F5gzhL869h}q&=}7(WFI=`n;5pzChLWuS_^X&vX9)T;blmHX|i32G-Ae zla0OmI`D-Tk-hnA+6V=qzoX*5A}~HVPm5p^?V8kXWISQ5F`l0l82Y53_9BZH^h|`r z?1=U+SlGhH@M1gr)5`*)UMY&Oq|kP;MN3lf?c8||AjvqOq{m#^|CG*nv%@C?$xOG6 zvNPg&ZyQyzZm%uYCnkuQXDFe(md@w%81 zm(Ccbxd$noD;!_;YhfVXz$u^AGm{~1vZ^?wjoYx?ZnNxj{Wf4#e=iZ1Cs;@PT#uwU zEi5Q^Q2Ny{IoX*hy`R3(x3q^s_cjwbrz3o`!!ezb zy2<9DpVSW?q=ILv^Z~8eQOpxBt3@s`bi{t@jAVG4+dRR`WPOYt;mO0>u=6cKe~!pv z0KHfBm{2R1((VU+arr!>3_5I%XsLxyeOw{8-uA3}Txw+;>i#~W*uKMNa{giwkGjv- zxnG5WD+kH0a5uXSJ>$6!w>Xe;UHoK~jQiS^NzxK>*Sx*Mw|#wQz9^;Yh<;M}CI;f* zWAltkr*`5`NmpERU$cf1(Io8?@%9`gx{l5ECTRLXUVfNj+%`1=d5b&~~Jk?9UXz_uZlVd)Bt!EY4N3 z`gKeY8{)F{>BhiL43$&0Xd!H1heyFiu5U2u>gCCl0$~KEG{Cl$jF#au5i#?CU6C9{ zL6tK6jq45k?ZFb_Ox6MMUHP!ZYHqh)rxoPGzH=Vk+qkjTjs*KAH7~kSu}>(`!n@8< zcLV=Lp0E}vxDl|*y?uemZt`emBG935;|YO``2VPT&#`m5)na! z7*huv0qwG6U0f=U772YO&nf)Q{W7NFC+Jv34r&b(w6_>_hEzu==c3-eEqFqkIgt3G z=K0K0%caNpCQ1z&Suc}%Z*m{aj4W$qBt0p{Sh-b};b?7PLQx)FKb7lC2YIK4 zW5aoE<1+`^fK6jsUD5p>?;O^@=#=fu3`dWHw3E9N(A0=3bme^V0Jp>aH4DJyjbvjj zjSCD?NjFvvlq2mLpUBmH*^bi-llP0RgHXSN}>R_{7CkGp-xR+J*O@HKUgzEN5gMqj4`#GA1@M}8R@&L!(vPXgk{l$d|AuG;-_ABt2Je0 zGqYr|Cxrh9Q0g~${siu0ujxM0+c%9$tp3vJ;uotn$*VGl;+A2N+J`ql=g#y#SJ=uB z@P%+)Cex*I2WbrNq|nVWCFDUFc}U*amQ`${DKg!L+gkPZSA~a_o1V4HQ(bXIdpXVC zPdE;))R_S!K`%TLo19wHvPD%tTQmwH8GIr2{ObEFA|3_W@bb;hY^PACtCAnLbw*me zkDcPr-##$K;u4Qw+5;Ew8X(r_2Q2}IM=rRez4VuAYBDCz7&80iaXHv~qRCiiT3lT8 z=>Ru}?{RxL)$j$RH#T(4b>NYx-gaWE^y}D$PPd*oZh9A9J-fB#?(mt8qi&mXR}d~F zilfzPEJ`WYsrgKgYBLgSC$CegvVLKMI#ouUQLLy%-Ii_SlB`G^O^cPD`q5{_ULoFC z>}=95$4$)HOyvf(afoN(n#e#~WeJ>49%&^jsCM{DxayVx!*EbJ>YpV+B4bvEp8e!4 zoeO8irTlT#t|gn!8Qy9!xbSfcl*}yTWy5jC8rTzl$i3HMk@0`->%XbYPoEZ}I`0r=5Eu(XfC4-7odZZ;YxI- zOjV;pkK3~_AaVoHshscmHdZBWskSkz_lQ64rN*^OO@}xLU>c6q@P|-|RXHC?onhHj zl0SFllnyS__tBTjc0;1q67t2AZ$G;HA^#_bnz<;qg_av;%FnVLbj__=VSn{~yiS@M z<0(9ck2i(njZ$Sgpu^v2Sf6 znbb&cn0RKVT}9||tL0j$8ZJa=y=ng*G0031WBcaEv}5+&)_9kkxPpt6T?;IoN!jGZ z5M-vvx;p{7p`)buuWjC^*ewf1x7Iy__NQ_?Bk zmzFnh0h8KC>zk2S6p1H@Q-GIu&D}FpH@8zT)G%X!LOZ`6rf?tkDSUuFS^1#6D8>`}Q~z4WSdA*F^fKUOf& z1Lxs+y}|kPn+m2p6IAb7uh@6Ehbz*|mS`GYhwkz48>V@d*C}r!-e!dUV2H_laK_2k z9bGIQz9nKD_(0F{27uG{vY2XFI$TJC$##viT+f`}rOb2W?$po} zW71UYDmi1)4>=Fdsblj5?fSAPj~d5!qQ*4%FIlth-jJitG${0)f0iJSQ7QWPL76Gf zbPD2}USPR_P1x=y|1tK%9eS)(&|aoGd7pFiHVy#|*I`X=`x5t>!BN^H_L~lAZ3@{T z_sWG35V7LFtw=WJYEv*?JJb27G)3H0(*OB6%rk3BhrJT#5=_cH5;>$}FDF{e8;xF_Q>sgwlRwdVp^1a+ zVqjz@| z0})?C(&%O9XOm1072tXtngR61wYjZDAp(3gpu4@>QsI(^!rH)m=U@j5$R}Mk-v!UU1;X396W@-@+2OLkYuXBrKUQ_i`^S_sbiaN4=bSN6<^kN4DW1 zj>nqKo>Y|hwyNI33jXXeZZu>g*B{Q9)uqPH=%GP+iZ#7MP zlOFc%s68h_eCg;2{PsSrHQtlRqL;^!&TD^lQ?78kD~&VP+Rauzitda&v)<&ropVcB zZPn-i%m_l|^vZU8Pb5Duo*UOo*E3|&J+o*}66!?nKbdqYk?%HES z)~TJ{Nzv~iw3FEP%;Vt4%+4@Ea_0L1UQI2K;i>fDTewY`u~=gwIaGDK7V0ci`tz1( zPvMj))C@h9XJM#jrtSRKB-a!l z`u1Xl(Ho&@>dCrlF4^-7DsO=bjV~dVr`xt2gHYx~a;FR0jZZ<*xms>DrG6@5 zd*xcD46Q-nS0hWBYrU4sg4$J+mlF<`rd)8RwtPaG|HQ)@-6s=tpux}JG*iDw%d(nPN0i=#<(NX}7IVykQ>D7NusyYzIM)wIRhg05|$clL1S>Doi%)K>0&bMM=KVt*k&vA?o* zEad^($cPUQzIf(K?KE+kdmzbHJ{Q{K=;P8qpHlHqTb0my_Klux?13w(w|N+Ul%Dqn zRBOk)7IwV=S&e2Zf=tv^mKnSfkHt*hqw{gl-it5wHbUdJ+;JlNo9c=NW2ie8DaTp_ zuji!DY#ubq;GSh9RN#)>ILL{*9>`P>M2RFcM<1=u>c$6;6n(Rp$W@$!4&U0uJkZ85 zEX~R}zLp4$7yjqR!P->J zG8GuT#%JtV;hTkO!Vf_cZ*UxxLwPLHtaj!qxEk-D=Nf8(&$-ZIC{2USt!?FM*x|?W z2!6eNuLmw!xT9~@F4uYoe4CLgHp(~{@G@g{|GYr4jfm`=2x2)m!*>&|U)u42@xr{Q zzqSxvX#)ao^i;tyM&n`K1)jBOQ#%LKjb`rbp&PSi}(+e1w%#K^RM(G6ijbXaKC5iq3^gM*&8 zlOjIvVUoX0x>oAywZ}dz;EhC2#FkX)LI-nq5T5dLm8)^pxJ+ZCt{|I{2ALY_Ds$lq z;FRE%OZNUi2ZZlh?@o?qTj=MMVbNAC+Tv)96 zKO*rX(lPfr%l2U^h8~lrOI^O?;fOn5tS@dAwb=7sr2ol}9$#*H7Z-tqp%1)xaHh&< z1!F@@BinDLa)_h$19<2s+<{eBUA^@F@h{H4ysDJ0Wk|gTC^u5|i1uS^oigrGk8P6b zyEvZdcgU~3dCNwti9(fT)7=ScY&KrHO>#QI&}AIsW1riyC_< zFHi8wqxKe)x18Z+(|xh?GeU|pAHM^H44nT+Zv0j6=Dj|yipOY92!U-}3rTHA1}@l3 zQv3c|5v0-UA|vFkZFHtk>g`MRc>mG!xIo|s+W(GJ%YUxE^Pgm7{{Qf{Up!vFNB8}m z|5tJ+Zg~EQZ}H!9LjUV^f5>o@k-sj9e`^gNbG|0}@E_$?ufdP2s{cz|P(K^~7bv6t zh1*K6io}{sHU9ciT(g`ZG|+Rue=s^&(Vj$8;%88&JqMmgjVl{P_-f;{u5^Eb$jEduo5W7 zXjJIfEPzt5x??uiH93I8^JrQqX>*RsPP4`K4OaT`9twY4dR? zz29SGd-;6Aq?TyZh4;RPYy;od#^aGAH}s=Ao_ebn;eGX};m{WR~Umji|W>+1Qxbwv%yrBfj*1-}S7;kCRGBO)d?tS63$Q}xRmx8+Of$P;f(qe8EF z6A`%$ylP*$>wM%1rRsFUcKS%QeIGhOj7d2Zmd|L&JD2CRZnA?er;8DntemF|PW2wa z^*C>1FRETVv-Y6z*|d>JGidu|ZieK(L0ung({NJ{S)4ND+r6rGBLDH@2N8{(Z@=rU z?BjxVU)kWH;W+{kt--gu15t!a=p?Fj&Uuo#^T^$WvU`4hJd3$4S~`ebH z9qmuqj_E|CmRzwUx`5xNCe$7&xYOCjZ^Adl{h+s+x;-;Y-r035y#ez~J~_J4%{8^M z^463ONe^J#-1tPAniHTrk-L}7@b=kCqo3cPV#$thkU&inEBjt;`sB>m=K&K!TE>^x zo^%+dAwnBTewx`(L5#9pHtFU*a;L}DeAFMJ|Q78Iy!~NOl{i-WJ5Eu(6#Z(4ghW)Tfg_KaQh^X}@%JbH85#_@Ow`$P8R zbZW$2ARcX=!QplKQdHG%+DfmL6cMzmB6g#Q)#FypkmJQcvK;R{yT+fA_*4~1wB;%= z1T_?<4zFkx`E~>BI=bE0-WR{Wkm^r*7_nRfb$#wykQf+mka`m-rL;b+YV<;&PX~^S zak)b!5)UjyM5}59j@xE4--v*7&H=PeH$R^6sfCh-mbAUm*)*n3r|960wjyKV$?iF= z1kIj|Dae%AA>lt3Me7LM@-qget?;O|bVEqO*t$#>vYwwFhzYW5=_t?(r#dg|<`qy< zHcsQi-%AV5=W2vr_rZKlzM$`KQs#yXZqz6nZ1LvaE1alhDPo+0`&Rd2MjHfXk29;# zw6tn8&0}|i_4^g}IWX9>PkNoA8#B;@LiQ({us+v8fI9Z@c^{;94!CA>#;NY1gaN!g zm7dAaOR68YyH>3yB83nbS|Q!b6|7aCcQc&wm7W$Jm6_XQ|8YB=b=!;#yjP=Rl{~Ge zzJCpK4613Y*#_fxO{V#yv~(f0$GV=w<|#lwLroj&DxjcBXS(Qc~R6u9q*J7IO-3Ezg3)KdT6J&~tchHs5yTzuN= zjVJMlkrwd48{S+$F+EVl3FZ{T4ZS+9WO%$L^xUA7~7$ z48JzjnU7dCd?QaM5PC~OPUqtTGNo811#Kw;6Q>!l=Nt*rOw{?J(g<6nK14Usm5x;k zX(Tv+DCbdOYmtmXjm4ME8pwS=2dgj8#Nx_}{2)8u@`AtV7**wS=x5TndcIZHexl9@ z-%s6xaOVh&5U^s*HuxIQ3+g53f+ptMiJv~hUml|mxZE#jFnELzolUy9mns=|;iKTX znmR#CGHM`;*k-!kUL3LE#5B%Kp{Z=^kUSX~u+}vEB_hs}9Cm`Mg%E{FhAp4mYphg~ z3x&{Y?9l1JFh=$#q8|4>Y5KVdMq;~#<>xwyNr)_~&#EfYjmOnr@D^VaMaF%iD+A%i zlvpgG6q|ec-E4*9e2D4olIe7r$(cw6@({sf@6v_tu+_Ox&fe2|$ZrroTNmn8qGo&Z z&5H-h{Y#3)X!(GMR3qKFKaMvt_fK{lupT=l^t@iP0G-+|xUHwv(2ge!ZRR4UyrDZ);~A z)Dys6=J;j^zEwEZ6W8u02 zGZtq>s6)fY9bVT3X6&I;1qPGtZc#S_B9U6W@abvMlL9FB6AlQ%wLZ`|dp|%)Q_ZF9 zV42Eq!fd=Ga5IZ=P>4%Ltp@|nX)#Npn5#Ptz$?K&u#YEd8$?1cv#w@E_8ldT%>6ZYBF=SM7}Mn83Urq_>S}{g4CMXr@W;EsR#iyDsI8}@J}HeP#pb9Xv)!?w^s@(-a(dBt zu7C@Qck!zp(0ORtBSD!EuaanV<&eQN^fdPel`v}c9RCq=CvLrVk?b*UA3#2|{aWSP zSyEj#aE%_ft4jB3C#sJm4!u`=r6mf`+-?(ilfdIaf~&w_ri4RFL}FsdTg?e8n+#z} zxEp)=_rQS7^0YhK;jJ8S0V8@ltt{b5EZH;SR7b?*%SNuZg;nKTDa()OD* z(fW@xt07WxQZG0uWpAlHezwfQ162x^$Ljjwtvx^Onr0_l3r-f_hBAGyWZ7v&R>Q;K z=c~LLFWq?N(Wjbx7oqtX2)2!86UR9}!{YJYZ1T??DqDo~-KR)q^@9rhfG>y|)Qx@n zWn1{i3jFl?B8Yv)Igs+rn*@j4LW%~91& zZv=Dti=YVK1Y!jWoRu94aHTG^$;%Gk<9Sv1P@$V=q{PIg3{L%G(Sq>lys6X(g{nE? zn8sMq0~lLq@k)Kdu`j`9Z+B4dGcWndqM_3L7T_ldOhvld%IzNAz!)x5{f@);;%kiv z@&O6nDAz5YbH>Dt^|q(byDOVXJ&5vc3t{s^Hvr+@y5cw4*B#}1H&3g@P9|K7g+xVj z+Yoac?v|=dZ&+)a>y@GE)Sztri#+3A*xu1gAzHyZHS0~qo~LYg68WR8IC=o`5*ngj zBJS6Km_k+R-BV#QqR9O{r8kcxxv@7T!W%#DTj|E_D~Uu(eLhVIfsGkNZr&-PD0d0pV9)F|{~XDWRJ?Az=?nAW=Tu?0Z3sQ6t<o|ieEr`2ia)m~x# zapQ!2Xj{IpRXDx1!Z^2RIW;h_E3e-A&@e4^mAr?0MZ&o67P7PCDe75oI>*7{6=$J+ zvBVQy{76ad8=)AcjVIpyAUyVZrC_$|WInA|YgPxl)r(I^C*BK!JfsQug+k@_0OD;) z$=wl06Ta@qya{XBta7;IFk~)Ls7{Y$uW_?DjqAhR*JtmGtlUokLAyta23I|AD!)zv zV9zEr4i~s^CD8Bk!9Y@*M{ps;3h!lZf^hp~kxI%`1G7>$9Aey6#Q*1paeQV}#|AR^ z3{^jgPgH_N^sf$w)sFdq*+Zzqqoc>Vm|0t4f`UWB7G$yQ;4>PYsqLogF}prW&$eTM zho~y8YAu45GZJdA@<+Kwl4wG`qt1=&-7%~Pp20S1^~Ak^&+)Q4IA5KLGi;NErHY96F`uO1+0Hlj&U|I+SqTHD zjnYO_ms9HO;feQy4GfbTj{8kCGUz0a56;kg`;RwuTU3P7=-iKWeS(B4j*ng)2+)FJU8QU}|3M4INJV8gl^*iP$DuzD0O{jW)Up>420}a&e!Nf9XYH;vF)XK`q zaXQz%)g432I`eBWv_wA=2J_S{U5mj?m;ju{pbt{+)L$1sy=x!NWZI~3u#rB zi5djD>(6+c4_QhIl2^Q*wf%V(V$SzDoAp)Vt*U~#Ao8)>9U9c%56mspg(*U+=clzD z^hBKINs!$4nJK%&A^MQmb!9r0ZE@MXJAOQ(fzmZ&$*o1xZa+TH&8>eudofJAY*06` z260t^4&5|EIZ}eWxQEk)C)8U9&xBq3wP#y3l*{s;JFM5?tas*3u9i206}C9|bm-&D z1Rs-AbpXIBO4+AZVY2DBJ1^pA_UdB`PHgH=(V{<+Aj?mV;p0Z*(@f4M8v;%~o1Bwd z#RlpU`9gexp~n5PU!urNhzb;2_9jSF6smLI>Y8lBU{)sNEn@YbB$YALWZJI!>98{^ z4qmoV!}a(CANJo#ix&D=}?TDR-;Wbny6}PCsXSNzwkh3B8>brfNMx+u+ZDASY zwv*+Fbc7po0S;P z$)Rt*ec6{vpGCut$Shr>h2y-icPpH)lON(sO@HEJy}VyrSP24iR;oikN}BOz$%Sk= zF{qs^!C(6eO-;k9zs*fWEw!;2ow`v=WuSb^!qrZ~H{!T}WOiUBcXH}5icgD%%eh65 zC=%*$3C#)R>FBM(djX9-=cJ^$snkr6uo;)tMTE!XJ&I4Lu<-@R+}-o#T}EfD7}GWc z0fV>p&kc<%lZ*Op*7A6~r49@3lSyEHT%~_ctfnC68_ehYn71q8!0r3VeB;sKrE`RF zMn{g9KPJ{cW%Khv;aUFos%6GyNpNcQkj}^cA10QqbTQyg&Mc#WLzDWW_uzD|6|bq9 zJ5G@;j{(`2_)C}((xU*VKb;tVbUv?J_QKB6o8@_f`s^p2+LwRY!ke+@JrdTkH$Ouy zSn2!wUOT8V*RrP3GL<@R_aM!=KfPHDFP8F`qdq_GYri_9?d{K5IZ@Qo#(lKDr4@D* zE=3-gG-KkS4QowLIG%nw$!g+Uhr+Xj2d-FA3_hqMvr;Z_%ytiMY2%B5m=lJL_V|Wa z@iG;|I136P;QMf0!ekjHU=PqIZ70jdfDgOxbtz z8Po+qMNu-OxQt(IW%vx!lRgnI$eo~0xg{#-=fld}c95ODpv`>o%!ub) zbv4ReCE43&Z?5>q#*!Mp?eyM2R6f{M>v#u9ks$Auc0hwC8r>Uo>+F1WqOqgpuz2Yc z+2N@PYaYxU4kk^-=hrh9-`shp)_e~Dm@DS(unWS_W;+(d44b--(#)`Eq{D@c& zxiuImm3?Xbh?(lz*jR&Ol5;!T~&U_V`SzLS3b5xKajit|3@_+rj*>`iY{5l@>34dTZ8G z4rYoee*QQjQvdY|rBgaDrYaqV*Les7=mYIFxi*Hva~5N>wa3rR{0nHN%NuwQ6E||^ z;)7>1ujfFrzgT<^u*r8URq7ew0Kl+sd>90WbQw=z16Yuo6b@S8A1m4T&-j8$G6W)M&t2@*(JIT5(t0x^PbN*-=HVG;4 zS2<>hqR)C)_)Pa#ceY=z!B1qzw`_TmZM?}i(%(2N&@?iklLNtOYd-|9=kJC_vp+sB z3e+fDGh2VO|82hP2}O^I1Z?BLN+|K{lA~D%t#=Q3V(s+DVxc;6Li6&>$|V3{O5~0q zF9;-l6rfZSaYa|MVcPz1XQ%a{=`-5b+v!Wndd)P&^37#5Nb${eMbIZ^WDc{(mHgNT z3v>As_kv|78_pbH=oKf?PVSi2)fQQeixZjqy0!lDHGoa!;+ay^PGi6gQ{%_X%s05C z6vU^Q-Ik_8_a3c$W!60|l|7CSBq2F~4_$e$wZC41nOA@;_WyVpvcYQ4{XQEmKD3no z#fti%Fa8mi2%+fdIa5}BT=??P#Z7s|CjYg8U!f8)2Fmcp{kv>{B5}nkA@i;%n~_{) zb8G8p2+2rR`x7ICqK+po&CqshUJFg<%tQ86PA>ssq@4M5IYk{a)8Gpirr7)=L3vuA zdZGKZJOM4UtYiTS73sMagswY9uOuXV3q%P3Vrz~e;?4Goqm=g_4#{2GF+g+N1YPsnggSmKp{qAt1}JV%YDU)s>e zrL2ZZ<+zqG?cUE`sS5Dodl0do-481py>8oU4J6R4Yj3;b%%J`ZvpuyEC&YS96g#DN zzEC-Lg2CW&KP>Mw)SgJ4>}|MxA!8-u%>FtMsCkLcA%)yy%EUAH-t`lmSmv9{)XAJW(cMa|#V z1_avLl37k42WpI*($0Gc5)P$8g{*N(J+5X&<9u~(GG@M0Oi0rcdx6^fNnL!k0fX^A zDBc5s{D>}nOK3l7JRvUf-pB6cKAu7LgUb5el~Z#zhEDJ zFRaE9NS&h_v4Zq+U;P@g*=f3`6*&>i8t81FHwS^<^1_vITY-;4(y zdJ@nM?F#x}gfRQ;SjWktMqE10&83b|irAgaG>PEd)3uax@Xr|I(A$@uhvt4c%avE% zU0hwsGw%^3t+T_!8mW0b2aB!Li^=JR-zy2@GEaA~VV^gAz_JhLji$p4cH7xOL;J}y zXl5DedaQZ$D`()J-SidR81RpxqN2;tH)3L;N&)`zy*}Rl0FbxKV6kGl6a}umx}`9| zM~7sRJ}0d-EIT#OMy?nc8F?b*^0 z&BE(Wr!D9^XS4Q;UBY{SlcjE#@6|tV8+JWkJjkCE4sWe7H~)JYe_vc>a1HKrD$DW~ zE1<=ur#}c@CvE=|VO9J>Cg{onI&Hq;&WF5=2Mn-P{2LOz{)GGLJzo*=YPP>&s!!2g zgV{&J5N`S93{XfaG{z&W_6L*+xrsh-(CABBLhAW z{S70}i5KZXgRp1CSkC#QoSdAd&)5qN(COZo2w>-8AN5GsG^CV{==#$?@g)7~nW3>U zoDA23{D0J|?~-KDA>{MX@(Xp3nKRW5XMp%u;}+EMsyBJOtR|@>L=(6-2qH zi_wcE=}{=8bzoicW^Bso?_M7njOHkwtfz;ExQS1|o~L+!nz60xcjtY9!e~Cy6Lh<- z>uuYxk*g2uL(?>E(@?hHAjm=c`;N{y2}`*WA0K}Lf!0a&wQg!Z6lvYs<+xc&cKb|v z&P()sSByR`3$fi3!#oXDC-AM0|1DLxBgXAoS+Di?>^Q(E;dp02rilz31w!qVqt-l!O?slIKF4w`4h;O4r8Jg}0?~^3NczLeuVp>9n&m|FT@3 zKQ}qF%MrA4GI}RlYX} zE!{q4WIVHJwto+Je-upobN%$o2wVSLoOQ>$%|13+i=@QFpV)yLvL`9n10PxzmOc#u zdn|fH-Z}@v9hQWBG&ffdvb&YZc(UXJ4B{~AFmF!oDyCc5+*ZPzGoc4^D!rl{zP8N*O?N*q>BeIQLqgR2V$neQov9AkDKlP z3MYd-0J9INd;;9m+{B=FIuXT3m<<^vJ=a0_W>JPKLrkZBKH< ztNB*{1hmONQoAo)ZfvHOAQ0{D>S{_B_7ZZOH8wLd+L?#;dEu6h(VwMb?k6oL*N!7G zJ;(EUcbk-@3Dt-NdY^4%cMvZy15SfteV1`(VW#sGY1)teVk(}7Y^ENFVmh(wT#aBE zSn9sZ`GF|5Tq-;nC+MVb^gL>^7pDn2{%C?BIqRu1lj#yRE;E?V#e`34QPEvd%wG5& z8jelox=lQn_7^u%8<=YVu)L}6;=-Nmu}XHn0>IF*0U8SWM~@!*>^%e?6Vs+G{En&N z1Vm2$XkW1#HkBE`Xf28R6AJL2O1ZSao&1I-&@x5{DP^!^50?^AA7 z!$E?h!9V@~pVz0W{{pn3!*zGzb@rL8l2T-qKA$%ZSMhIPiuD1(9lw54u6cr_KhoYP z@()-IEjh@v2`pCo`(6J9^v(YrgZv+1hyEA8zV9aCNkuxe=-R2Y^mm-Sp4F3n+r$1^ zx2}{Nr}lnbH6fE96ufjrBDdp0x^Isg0i4QN0wt^qJaZKihU)EvNsS>NIQ~L)Xcdmb zsbVJUP##Oju0g#>zwX<|sbr-ZwHuEIbZb5_t8czn&(_=AQMccoea!;xoc!>2o^-5z z4tRZ*RD3+vlH4k;^Xlk|Y-^M#V9M^_fIWD^r~`QSSD>KUe{dAs83?T8@Kff{c3v&2 z{YrfW79JcF;m>U^A0KDTn#7Uw54d~zj;X%+>{W88-Gy{3$-aBalN|pyU{RW zbt-6hJHyj%fbCPK8I0}P0LxSS@v$u!2P!LD*wg1!H08q9Yw6@jeDR~T8F|rx&^Uua zm?8qaR+xgO$`@gOolx2qRnzEAiJF8=%g5#;&qq^@k6%?enZ-u6oBdvj}&qdb!YZw)SRbiFM7^+2UJ=l;ZK$hz6^%nRHg#2`l&b zQuY|Lu5^|t?f8U&)PW`abE<5;)ze9hTqCYn>iR3it%K(Hg%h$hv7Lsa%&sH@V=JDN z;DK2;pK7PIV$4C2i{Cd$te4lW8!Dh>G@4P3*r2`2SO49P9Yx2q7ed9 zA%vA>*>9)hr*<@_ioL!KowML24D^6>X}Uq3Jscg@Et(bzC|2iHS6Ta4$J{fO?3HtG zrfi=MP(zS9y>ex9)>GTgxObYx68VOjg&W0KnE+4yN95bAg@TvzX$O@5PU2fk5l03VulguOCRi6nNGA8BgzdG2n{M>Do1^ZY#7TcMIepF2^a-f9 zQU~0oV%UdGLK;6P08F$%MGz0r2>on12%7Q=>=BYsvT^PiT*WEUNOU>nGL@4Zo;!=L zxtAtWu-EMhZZBKj0N@c?sP2Y$#%!rlk#f(4c+XLdum*_DWZwF6O6`>p-R}!oMR{UF9<2=te2EZ^T~1XNw$E=08M|8Z zD9pgvGrn}PVp<_ydPC`{LxU={3p7*zh@RV6f<|Wbb+1E4j~oYS2&J#!YAV-vPnOS( zy^n=fo-nF@x8dDdJH>ZN1~#6%#Gn^PMXGNeGnB#UHhm3j5sPZ-bVx)R;8sOz?L)LgaT z91I!a*9%4P4-hD;yfG{0teCj6<-+Ov8}AwMKycS;6xz`1?qwt)o-cC0-@P}xR}7o` zgwJy=**8|qx#&i?-+)>%I4y)5ii4_X=UH_%$b5fu8A<1^8GJS4kYibf>}{G+yH%YC z2`QRGN{Dr><75h0E%!#oIGt4VnnlfpkJa|$x%NTHCQI*RAuo1h<0i7S zMUoLt$w&19+x*^}`<*=?XcQ+(;#g40@g&E}GRS-NWi?0dZr`G^`U}$As55#K`d@p@ z+9_QKrN|QPNU8G%p3xqG>9Kp02+Lch2&wLm<`U9Xw~h~aqI>U$MT1qa*Wd=+z8uel zVwdmx$lj0IzxD5h5if?4BQj{fg0M+TBtFAC z`lOpCJxdk_tG;;)sa#IpopSl^$}QLh>EWZ1E4>D?mZF!#OdUCTt@T8w6fg;{qbt3o zM_NThAxf_UB9Wfq;^A zV70nrE+_jq^0+~aVt}p=UQru9FCpgC=gS-5*=F04<#lY(Z0rIhn=zmGFn(pyd7!Ry zGE@Lo1}`rIBuwwz$D*n50X8*RuJ_knM)X#>=}<|NatepbozXngqt6;S(O`mGcgq4e7Ilf14=O0eo<9%@B<}=L$eQqlk zXQ+yiED}Qfa=-u3gdxm>;Z7Pgql6=sb)=*nPgR5o)b`he>`aLqQ`m!27MIt)3fQX^ z<=#YCtju*gP>Xtfn^-ai{jrFEs;f8dnqx&oypFAL9_39w3$7u8)aOdu+!kEFSL4vV z8aC;KP}JxR?huwQe^K8wlcJ z$IX9yADlb!?{Mb-NfW<6jp#br|4p#$pF_=eJu)gP^q-IPD70qWkX#tazxzUGM@|e; zIu4raCbpIyF4FSdVM)JyDuhnVY$#3Qlp z%JkppnYd<;Se(cF-AMn3X$XC+#JdjP_=fNj3TcYl45xwu)=d{bq}M*;AIW|?v;>L` zXe*#qsdPMH`#JkVh0EiJ#i%cju{%hU0x5B4uH5-gdmGmo@{6T>XM_pNUx`Uv9!}3r z&l$t_2mX4wEkU(L)AP#`XoMm=p*RMh+Qm6ePg`pt-Y;fga=SK3o^Nj3Lf$NYzLki8 zK||}#4U(guFl3@R;y7Fm1H&WnEJGK|XVx7v)Darc;+yz9rx}Y^_{x6C|N3|nPKp&v zf!}?eX+YB zUe@&hk*AeG!)G-b>tAb&zSai#vM=PzeF2hRYl`0i0acPy>YgvN9_H6ebmX;4Zhq0boDHYS z6$pc%BlC@2qty)9`4P9@@5uRKFIEHm@8dWlTPVJh1ZOC#C zvW=ROG5gG0=BRM<JB-R9+sD6qmDd5ICHsnoOI% zGlsFY55Gcmy|im|jDeNgvutc4eP${s?}zv#IrA6lB%6p}vlpW%d%+;5*#@wOWlBe9 zR+o8>U7A8k1|c_?X+d1*)Wo8 zM>)oPs8+gccB=0xQ~f%eFW^`pxp(6*jF#Z+%T1dcKNK?ola8S@oeVc-v(^3HCPx<# zUpQcShD7T2`ZE^sS`&51>+R|%G>Wk^;u}!^^9_`%=M__%92qT<{odYGRkYq%!fWkj zWlOTW3N{6cGCA5Z)empIY_^|5aJno&d~-7@r%wqV%v|D7cU6Q+j{Md=Wb(Z!q*q+F z=j5aOqc1xKVdMf?xIT8VJ7KANT&D%LX*n46VtYVUDzYBb*98`G`2A2O@oS*vWM@5$ zJ#rRscQIMf6A?rr5*@uqaj8k_`_OZ!K_9j|%Z zL2`=r<~gSILEhrbDk+E`n~obwuZYmS8|g-f-4&*gjA|0|SNb6#Wj>!FDGXO&*;v0M6K-#q@HlO@&|%2N0U#w zVtR%*j=&>@jJka=9pn;Ieq*Psv(fq4L?aJ|=S5+Ap!})k4{_7X^86VM26%>bUB89w z|3lkbMzs~a>%MI%r9de~N{d@5#Y%C97I(LxE$$v9SW8=^SaElU;7M?IcMD!TSdkEd z-t@osKA-L#_l$AISzj0~sJN+KIjr=tRvw6ac z6^G2VHA8#G7WP0Gj|NOb zM24I~NEnMJ`BS?uCfPR)n~zo`GVFNdi68A3U(Gw}4*j_X$o*U8)|{rT-pB@o9C%{Z zUqy*y_j6|jh?76F#5>0U_r618IM;Ue_U`{|P>ERt7YV7Ui01pd>kO*Nm)XS%h}Aqw zmv&|@)d&A-!%~4ArIPVjytF4!PAx>-71#iWb^Z6fPU(pf;A|N*e@PL0`@Bro=xF?XHq^ zJN=~Q>1U>B+t5>mJ8*csZ>*xQf7PJbYj~Ay&&5BGg!+nha7Jo|Nbo1t9Q41Y4}bG^ z=8rKxYWBF{l&5*WjU8XU&}gu%xm5TMH>|UFWzh zTbOkrD8z2*YzMQ7IketAosq6s`KnyvVBX=qsa>c4SbJLBU403` z96k0?o3!3)nN>wg$U9;yAQ>oHfY1kKAmsl&S4baVrisK~HM0yH$I?Cq@uH94Figll z09zGK#6C^B-ZP6;|B>rE1QmT17S_vu`t?PDjIZ`{a?}$4Al=1QZ$h(>>BWWsptdPz z;rK6Ck%=DC-C0Se(pMwDk=MtSl=53PxG1G4B*9U*>w{Ed}o2mRi$QK>SSC zp7O^p;hD77F4NQdr^az+tdmk7#JH61Y2bM=2K=~-FeZ8G2pt>_?1H55e226Hd(i_= zAsG8vX8tLb%z*f6oH->zU9pg#P4DwYi4HYBRQM<}50U)!ah-5!_iTw}+v{NAe+nTH zGU{R0UFfhBCPm{{jdte*2G2>#Gh!lhQg2&(l~bCu*|uj{Ud%ce?z&Z>A^VQMjLF_*7c6NlBQe-V4z;wVWTA9Vvu3^H^ZToA`NOo=!;UX3YUfl zGgw$MGjtRZ(+k+FM!KP=Qht9O?o@<$%LeNh^9*LsbS&xOo2cFoqjT!pV!0F`!mkk1vaI z4INSk#$Rv0nETH%w3xH5pWRqMk**eFOGP?X{riDAB0bUz>}`^3J*xl18T@n-MQOs=?-Flg!75KN} zdLJ+(UgIkBwEz3#msHMYXErmf__cjeJ=8vZ6U#$Wde`q+ybh@4K?MY=ZTnF3xdT`D z-C2~^wXs?PpDNqX7qI&y?2X<*Panbe3A+p6qGl04@mjjRSoW>mzCW#n@o^4`8`p}O zs7bwZegxD{;P8;Ss_ZiilHm)OoK-+;MnPh#GfVvSYW9uNRB0GySux(hAK$R75r z8n~;O-b1UgM3_hA92n5gvk14ztM-BJA`X9O-TS#bDzJ~`GHiAuM|)bY&_-Hgu2UEaCK6z3rPWrAwBrL6i;^w?3CFms*lWK)yU zq0+Ip!t?%N^xuA8I{O^7dgK!4EqKNxyl!;Y(#QtsrROMjXlM;t>&h>7F$d6Hn1A_{ z;jmK~{E+)NXIqJkugrJviESQ>IhV-s%Y9Eb+qp+#T7{w!#|L7OQ#GZ4#M#-A>-=<< z*Jl$$n((Kv{AlGcB@MHB_zqj`i$A9MrCj&xKw|JP3!k#7Zn2kRY(yCe$ z@pUy|<+D_bFyUM%IvgfHSgpe9vuslZwkGZFG(nQi#LR5IK`n-l_|!e~GTKw;<*M#x z-g>B+MD!>nn(a-ORAq^U&(VZ+)HfT1e;mOPtln1bX7_tpl-kI(Ro$as$+>LSuMgMKXbvLl- zxojy?BM{R{x3_qs86u$tsMnMcg24W)W|PYM4tE28Bxd+hhfn)YP1=|nGc>*|S>e_q z8 z%Vgo1LhQc6;ZeDAQJw1}S!8=y$5l(wdITUS5@+-eiLG-j`^>D~Xv;TCt;0!G$`^4) zlO*RU3Gd|`rr?#cYS{%X7cU~b2}hf^I6u5OEV?`FYYch)L&24--h`UmNbv^V z;38B>^XluL%JfBVn4?!X2ywsNLglKry_58^3kh^8A8KXt!4_Modt~}tZ#LWo>qQ^a zU(Eg8P2H$4(XX8(8xj%;k?PYSY$6Jn#B3t$1~&j7i38Ee%_g_H%@{>>Cg+_1t}doc zH%;b`++3rfF{k=Q#e+BrGl7JhcLTY>nkb_Z-`JDHP$w=Rc4*9Xx)#kHVY*n3ijMxRea5(qyb703VCH@3FMEplMZ|9Pu|f8$di*<@1xiQOTyGsp96CJFr)pQF6tuNgz>WLH}3hLQEpifMrKQ0ePWutn*jlE@0MKJ?zSw z%nimw-{}OY+&cnzo0+pa)Z7GZU}f#I9EKEWG_jIv&@3)T0v1jBh@0?8b=H57d#5J^ z_qdIYQVUlgKW+g2F@tP%^6eO586TpK%b&p(qyyfx8eajeTv8In)CrS{)~L}im{*;E zmv+DmVh@!jX_Q^9uwZ30yuF&vAT>J53%$(Ww-orss@a+{Zf4u&cVab(juNbD{l1mR z^XpWS>a#eab+q?V)21Yqy3|oZqZX$+%^*Q0IkSLnI`-))uHA5~@-d*$fFT!TVXR>1%$>@Q86;oCwa!Vhu z_4aXC&&_6NdlTxl_6y4rQMxiZMFk0Bc9fc$TDp{zROb1*u4=cFUv5#6awYp9Zge6) z*()l8V`f4t&Ww=QYE5XC<>&t4RUT|YrjWAv7}+tx>BSEpOxFj_h}agJbqhwloEIS* zKNMv}XL-m^R2f<72Bq?1HOAlzN>Ldk_AW(<%8Oze9>-gy-P3ky1FN=^FrhOKFpL(u z0?sJkJ)KWd)NPSflRebc%}o5Tpx?9gcy>wXxw-YBw7s4HyufL|D|K;zA0gNnsUz_l z7!NA7aIZ_ReceQG4;}?%C0w?vN$%=F zHfHO@zd^kQ&~Y%E3Ah=DruO3N{fZU(Lx&?dxS8XxfC?l`Ka#q9rE7ZWwE`G=R*}HG z;|PpgY`xyVN`I%bGXPG5w@p{d8sj(>_^bcY7Rs#l+U5D0QZ#YC0Sydp>RtXeGehlW z)GIlHb6Fj~>V9B_=5U&0`?tPYPkeegtz)-N!>&TR_L(_adH@50c$8fH;)@ei(|!2D z+!)`{;3)e{^C2`Nv)_I7YM@@qG5--`+^f&D=iJC>)R&g{J(6<;gGd$l&OVn=$$f3u z9#a1p#>t}0#BBV5Tp_X6x8!5I>yjJf$`uC|naHNVlrRh9T10Sg%;69bv^19bpRR3o z$DRW!aPHfSv%~!WTSC2z4{OSO zFD565xzf-9qrN!7!#83mI?c!so)OR^N}UF40Xi#BTs!KAkGmjej!9?61sTr!NFA3q zPw-6~JNH<^tLHC;%tU<2LJZE?tY6mh6i5woe! zIoE$f%D1ZjzOR5k3=qVGXqjHmv1wZ5V!#WQ1w8uO3 zXOs+W@yuSehEzD0n#Vah)Qn7Vz1CCzKDvP|9|ri^V!Yb@r$<(7^r&x&t5)OBF4Opz z%eC($^U$~C_$c7I{n%0G;L{TKuX6^s|G@p8J^)_$wo`+H?*|C!a$c;MB zS%|{)IfnvN5hxq>STESco9@I57M}oCNy$5MLnWQHQAbV*lW;kdSI$|QMEmRlt6Xd~ zmBj3zDcx4qDN7)0tf}q#unh*h(`vweBz`z9C)vYbz$Ca^C(Nk99U(mce8VENP#dubduviSL| zGwMATRRa(wGW$0k?=sOP@2TA_61BG0z~*#~C{a4Qa;SWuC88Kh_Bjg=UVPOMWyr)J zR)n32DGN(7Nev~eYRhRPhjLWPWIV{;!-9_3X=n0y>%+IuQ!S}VX)KXHJmfkRWoT#Yt& ze*NkbWcGPtaP?;@PY&)Jz~1ajXnR)4t-xG@_jC?=!S6kh7O2KHI%BWWf6794KCBNSM&N7zO(Fg2##~%>ocRB#@6H&P+ zV9my^&VO&M^J3gCkXfCHd0A-7M>I1ZM@+ln8tRsYbc=k`2Wp@QAQgZ z;tY7fbMHz@Az=z~V}_dR4KmIb1yPLgZRDw`$^&|8qD*GPUFii;5fqv`i;Gy+nZ0?= zBRwUnbANs~ z>ZwGWyu08BemOOlkUo>MlH6sWy1z6}_ucrS{L~enfu)q=xmc*IZ8)Z(yP+SuBM~j@ z&L61UiS;BI^}PpPn}kWkp@E@aL@j4GBkv}A=7LXW*{fk(a7N=pl?-F=gOH+=7$eTb zNcYo|zMa2j^QaR}>qm!7OntFe?=CVB-J8~1Mt}T4Dc7{v!$CX_?b;A`PV9^bL@u7VpE1V@T%46&=E_x8oGdihDIS}$?4@=!t@`N+JxPDo1doH_FORCSB@vujm%BPf7BcYbh`k~Xq8|0?Yp72}5=wKTYy zBPJh}CS%#*&SZG@Tc2*$xRv8zLS==2vT`3uKwb1@+~WZVziYLXr4^9u#ZI>vg5m5% z6ky$|SbelFu5@k&Ali~Q%KUU4@2EIkrMIVWP)97_=mbrFXyWuh^`LvIsA;0*5;(mr z%g}A!<+2H$vS#!J70tXTel6N&&%^*~1ogia(y!~@4I?=d^(>G0y3C=T7p!eNwRBvG z=`err*6ohCoH-IfpKIkOay_QD5tF>oJI*b!)BZiR)R^hXap&faYMzT{sB>j@Ypg&S zzilGF&p}8ri?VFIp3BY=Kq&d;m&f}?`5cP644PXN+=<02-1a(##oJ*%&zaZ?{KepA znX|P@$QReHUSnQ=zfYFWa~?Onx_@C9m%EwneLyY5G-hrmFaLQ*KWd9yD6yh1;45P3 z-476Na6Hr#_ke!q@9?N_UG@~a!)*ugj~|1ldef&)C0g$@g_gqtZ|-!5b!!XB?f>+Z z-n_rxsx*vvq0<^awMVfdhZ$Hk%aRYX&TJ0Z7|e1;c42L{(EIhzR$qIC>!N_!ERxqd z1}tcLBqze8GtZ)IrR1YlMyl}q%S*u50WbY$SndG4Kt{OH!@@JME{^jrE-h4EnvL=A z{9rL+1RlFoLk z#2l#R5m>lWL)=PSpsChWPEP50p77o3aWZMihB zoyIe>FfkM|Qm0&22yEL&!}ite^u z%T6PH{1oR*@aoTKh`etnCL&03kw%=v(-$#2i+?9r-1nn-3*0_G5UX{`DAvY`G!rG^ zO7rnE`bN(fsCMA@jLx(+`fozPd~xuHL(|Yle6`7z#yI^?+qFw=M33M_Xhbpd zq_~f<8E0u21m8hfXExU_-+$a4hGWei{x}{{HcDjLQzi{In}E9C4~HYSB$nc4oAlC z)f`JK^S8zq*Pu{t9@c1*{RNy-88?gr)-ER^;0u29fqEwHE-I_x_|D+_k zJA2OOq6*CdZEi4p0EQ!fUS4)Jq|&tNrj4#RDO(?Fc`?TDvd0MwT`bz2 zoGg6T7ax)T(fr}bM(nBj{){>1+i)PhKNpsvmbb8*v%Y}E{MQYOsJ5F*acc*u4uP0w zJMwoQ@e>1wQ0*t*@IJpDBA|^gq_bK#Nxy>EUVb`rC1sWyXh7suln%cZakyX7JKbJ; zQLC>e?C9e(qcmFSOjzj>{xu%jJ}97zfzK$`ox*4V74&-hb%v;bJuTX<4!EHufvZ~l zjiT$un}YqYZ|6oYZr8K|YxT6*X$;Dld(N*1k)ty_RXOg`yn@@jh!M(7@treLiPu)D zWcQfq?^;|toPQ(WPx_{>gm#y?1qW5Bqg2K$et&Y0eesXV?utm(lH&k&c6G7X;B0DD z($DJw%#G&!f5P%Jab#PVBkYc;A3jM^-Tg+jL(E82TdkjLY1`lqxrm!Qa;3bm9LJKf zKGAh-nhii$*wlLO(c%oJa~wqYO47Z$^;`5+Sc&+H8J=a#k^$yu-WF@ss5y39t5Ykz zwSMJU@S|@>-`E8L27!;KXXFB$R5Sy7Ki_REf&)!bDlt1jRk!@D^pDVnJlVwjTC)^@3>*`J8Q+&yh!W0-2U#skdrjCUwSHKZpIB?ohw*z~!Mf z$;ng2WuN70MEwZ2ri@Jo(lBd=5sqRVl+;3<4uchD<)QH@Hqii*ndD|v>rKw~>>;0M zKOdy5SEzo$1MWrdvo7xQHL624VSG+ZJ{xXGA%mSn!!k~?eKi+lJb+(a*+j`jne{Oi z@~w|Pt;KFM^|0ua@A|FTES8iVU(0QNf`5?QEzt%iT8(xf&9^vHsI;YkdK3m?BDlaK zwG(Sh*T2b!m}hA`t2JuUttgeEE8-GWL^cYSAsZ>CeP~r_cX1n_?Ma9ZOa3050{w<{ z-o`dG)--9!*C5owaTi$oFx}^^b1UV*nfWFKpA~V_QDiQT?PrniU2vi5`TH=t=C?>Z zi{$u0`o}_KZI)WZqK;v|*$iHBERcqjFd-h$qvR-26$-*^s$%iR`u$aDNYey94<7h6GZ4PljpjJSB>dB%gm~m9TJ8CJqgt>O zD)pb8Oq?e)1F|xW3ABXriE*!$y1|d6?DTtnN?l1gg9l%7uX+EZWgXA9GOzh^A538I zw`3K*=$iYP-%1VrJazMn$H0Em?=mZHZgKt*R?)9a1}=L<-SWP31}eTQ0gte2&8u2V z45PgA#HZrM9;Vg07`GcbXT+caFtz@-9DL_brYd72+bssy6^}@#p#x|>vU)8fpq_Tr zsgmjw4LDXnDJ{LY_UQv?S90@E61kwT_V?H%ozu@^NfA5ZzHE9Ijye^BQ>7qUpMck` zZW*m@Mdp}|-ZGhSxeKTjfu~So2p{1P4zpsl5`2}}=5GgX{I)~;-jS1IA~)*IIPEme zWQ9&y$sAT*7SHkKh}VvMTCsFjrP!}{<8tw^TxcTJ%BjM~dQKjyf^~N0{3U9lWv(Y?7I?6) zR~0hMq$K~2h0p%+P6FG5OW=0Zx_7)RZ9NPn7dV$EaAUwf_p}K5FLsmw0SQ|4sp90UfK{!q-W&Vp zb!YR;$V@O3A@4p1Co-TWQ(DMVi=2H!wHjk@$n?J=JyQ5K-L_LdBQ6$YXkUiGk{8r- zD`6ld)5y?Z1wmaJiEx#n!cI>s34ZqUT&7B7%a}iouMQz)WGY7)Ap8$6ivJdb`4-Nc zAFzILs+~0+H)XIguis6vYSCN&y>)!TU8X*yHHC6_=ivt{_d4iZzp*`Z@7o;k_CB^v zkHY8!))JpI-11l3<-Z(~JEU5Ll>11~q;TuP7n{H#)hG`Ev&818+CKN&=S-8<>%!l8 zSo_xnh-$?h20UeF`j9a7IZvFxfrBsg~2W;AyoPIczHaL^DjGHDr;{+yFdd z3?*kKT(3QaT!R7vhpr5&O#R_Ek8)Q)|u>opJfMVE3L{uii>rNcqFP>+EyNWn})Qdmm1aM(vu3rF21Uk|dB6gVpH)G*gl~RkBes&`KZn zQvbdH0>WeTPqvTw>H1AiubYIq&<#5BvHOzO1$r}k4JA(r(AJeX#(_miw1tCN+Y7p~ z=+*f%XPPYxTpH<7r`|4yE9ay^jnSWqu>&COKSVLscc079$eu|R9M_8Xdb1uRnc-X>Pghnl8q+x@@V%r9+eN zcjQhqSl;uQtTjmpSkI2O%p1|@gFZkU|;i>#B{F39>d(B|iIclu+1=HO(6 zf9*6w{aV)y|CQ1Vo9BS0gQyEx78PeNYarUnD8I#CqIW^Sq`js@3wfO>2cUFaJ75+x zVRtkmPv=Umb-{QvKnmRs+p8K4b~ngzT(tmV$}JjEolz)7uA40Oymm&Raz}gt$RD9A zV{p#vW`6P3ZEG!Ne{-O~?RI_>4zFCELmk@p#P3wBP+yzP`8${Puvn`R$H{ zDayj{EM%nEUz8$8+|gAac4q*}HsoLUHOaihDS(=@AB_|wn`w;}i>4h!`-`$_w^^xz zdvb4$chhgEOaOaAle$Itom~W=}+2vTE%@% zrvw%lou&%>;wr9eStE;9u}M#fQ9CWAeFBzl>%rm=r7 z1_yP39ckA$)Ku3_`tJzW?f-2rrmHIZ+~J1*809sxa=d*(>(9Q!4*J^l7xNe1{dfL@ z)J8Xj;{`ZBzdE_56?ZufzmY7muD z_ad+~BOM%Rao@Uz$sNiyp~$~fT^!cm5| z+#)Sb)uUNqd_;@s7<6Sk_U%vi3&(qa&T_z;}gemB8(Ec^!VLYG&J`gAc zodI`0@|R7%xOK_ktkY}uJeo!=+@s2z z`T8@+S+7I;W|cAo=74mLLhjndkSz@l4oC~!Z;yO(r$P)zw5>*x2&nu{co& z4Cn;GP~));FYUZ{hBWWxOddzPD;6r<%2}a_EQUOa=i}}FUWm@n%i_Dd!^;SM2514h+{?pFV5`p5pZXy&^_gRa-r~(~d z%Cp2g${p1zbj>ut+D*vE4$X~8Gz|`Z!d$2lK2?c}tnxyTvd%hu0-}IVD}?OS(|M@F z7=_!lzbBAv)3rfpmZ!LX$E5rO|9Cu~mRjXI>ixq)$KbIYT)mc?bYn`%wWgJFO4ovp zM=9WLA#EJu`~2+>i=3J%o7K>n`QKkcZf7FrS0<^wMf$OP($Texf?g`{hPY#QkEg^n zus?2d9AtESaPG|+6{)F2`#H1GOZ7L3h9(FE-U{qoJfMks#LYjgFY9*$c9L+&?&YFg zHKW&)!dE8U(3qDG85tUxmdqYzd6Txz(zP8lwrsL=?K#NU>m=Tc$I0cKK9Xj#$b-)_ zxRjiJE*P}?7?59W(@j3Qf!Y$hpu!u(#Kuc|h+(!-C-zR&k0YeEVTzD`lHZM-d#gT3 zFJ=S7vfsBa?{gBSeNw8{NuSfWw;wy-l$`x$k(s9;>|C{r8pIN`e4Ic*sGB`RP9ZhI{Vda2IDapFvo9Ac8Jo|6<>=hdu!`$Zam1JOdvhC)dsw}d~C zt-guXF@&pa5ZDg2SCk1l_#lnr1a5gJ>>y6(w`)0ZhBww4q{onWi>=-nEVcY7mkAoE76Wm+#a$H z$drxvJX*2>I;MMhh9OVhUy;*n*Ly3%bnk=Mohdjw>C4byfcw*zc0M=K4J70zGNvBX^2?# z>o{om0e1mPX=>S4D-+>@fZtIkG>bBHmUCPdaGmVk4|duQbU9R0LY|@TGQ{-@kdXbY z10=mtfKKy)Ooa zqsD-rqv9dIu<_3>IrD6;-u>V|?hqBaiyAfDx(o{qB8lVo4V4a%dRa4VI+R8Et-(8Z z@!w?^kt)^6XZ~CQ|IVRW-mz_WPpJNnE@6E>qksOPqyy7zHO%lU zHfq2ChDTKzgEH9{df&!;4`c}VB+O7LMHshc_Lwep)+{`od5nfxOq&u#MwpxPJ19Q> z9mlI*mG6`z;z z`aaU6U+reXv0SXgBb(*X@5#flzF@EtZh!hew@=)kX^;>V-TB>f!*SuO04kjjEtWn=O;k?KkqUP)A*T4-Oxt5b8!-LXu_hPy} z-f&%2Hy$Yf68$GK8jp;_Q!zf{HAOO!FYUxu^S!i@$RaUxO@fiPvNef6$3 zyWb*;qfPrQ5WAyy0J+hTS*1G?rMXSBcu0#1+nj#}|FlEWS@vl7B6>)>3%8|GLT_1n z5@WReBD)+#0o2%<89XI7nd_Q0&!}*xjJd0V6j1v{P4}aze$lWDB-cq^6u~tKUh*tv zJK`J(#7dj)JIEZCridY13WFsuf$uha@k4%u0BZ<14}O}fC(=-2{Bz<ftyV?S4 zFwuZRT+vjTjv_~MQ7mpqHK@5A=#(a67GW;6l!)(y_B%hdx{5C%EIXev!$9zKPyE>P z5k!Q%CJr-q=eilxKOqm?rt-xB?+BGOM<4RBcN!pb+z!XU=n{CAFyBVfL0&dhq^2b1 zhBfEENiY)PD4lztnGM{JM4ptTwEFFnavnpzFdjWDJHbbe&2+GxDnVNV$jG7u5|Krs z3b{BlM=eTh#jU1*-;H&%XnnJng|&0yuY z8#6s{ac5cSo0HPEV^TbGwNW#u6Q3AuDyZXT1Z<0GdMv zoQZeg=|%55ueHuT$Hi7-6VS%%fU1Rtgcm_5v2lZB+rdJDQ$KXF=Cg9TBa{= zKDbABMqI`IgLw7R1df1N5*GV9#oI$0&AFhgGZXiEN&L4Kqgr#RCUXfnnsb_Y6|%AB zI&9@CAX%>f>eW^@mfuvK+(e7m4bGF-Rg z!^jzo@TvxST=cLZeV-+)z&XQSPo*<`((4wd``LhfK8KXHp{|0VLDr7JOyVh^*Jvhj zyYAD-B~xE!9X_*&d9~lql|=dxmHD$Z>EU_L0p|xLRx@IgiN{xjAF%0sDue?{>Zk(M zUKos=GxcRuB1pem%4QHtrdFc{aJcBN_0`&0ufE*gFc(wlo(814-ffE9_e%o`jkz^f zus}Y?SMdUKwW64!E1CB0Z-^?g(QRw6s)g!#$ku6&x7f90%nj9%Qd#W>liP?$FESWK zIB3dXH{SX+b4_UkcBc^;EoY!Xg4WjXWI*6pY+K6Jd}Z0NBw)(I3Cp^9Of~=$DDNcY za#I??E(8mRUp9DsydxNYmn0{B2N4b@c2G_8bB00t8I!Ad)yrjYRehd%^*Y_byg6O$R`B%{u8@p8mTi^ugGwXH7wA+jO71h&$zR zO~h^SmFyvmLSM34qI*%FQ9bPL4=Hr*i57n%4csGSBV$Ly7n9 zX|ACj@Jc5g(d2wUkCE~--ZOhFsz&WdZhinyO!S8Ke2mc#se zb$7UC-ijlSRMdpX?8M=JVQx{-0tK>POFBXo;vXDQ^hB-#VskebssMA2Hm7*a6S_*N(6L(B75>`?=0=1uOw zkZ_KT(6dsiyatCt1FKn7Ctu}0q&EdK)g(c-V#;a=9aFj*{0kdQkN@jr_)dqF&X^e> z=q$BQ_R2a(bHxgEsx4IGthYSsd#vOrptw4^!-FsDbMZ1HBal1VG$E#G65un?bQ@7~ zIOR9!>5#QY#k6Ay-#!~H6BjuwXucjft++7OW583y`2I__&e}jNH>X3Rk(ly*U>}oR z*Rmx(U1k_C+FTFqMmL$vk`I@amye(an6vZ)_~-TP>`KotA$&<$3eysik@c0V<0b)wRr8}t(W?Y5IFARLQs5^%h!tomv`*p#m(hL|qW0bP z+a+<9VetQw9?!9AUpG8r^&i$o!af6iuFx>IAO`z2>}!Bv8=@f0ope<6kvlmnRu_B6 z9i78Fvj4ik$>$nI|0%P-#Xj4)D5}d&WP!VYG^viM-Dxp$CwwHwf@S>eSWQa^84&!| zHtu_*8`!YUR_kNi>YtTd*3}qDHw2Th;$`026Bqe93^+iAGQk0UZ;Zvo%_^ zrf5{<^3lsNXLS|Tl*VjPYenb{B1CoEQ?N-Eu5Z6BOC`K6B&Kxn%W5NZ5L(cxkFs0E z8as_;WUw@@vy@6~7J6XdzuJp9`8M4B@*A(MQj^_~<7A?VLiS>5K1Y*|VWEN{1quRp z)MuWHv>Wm|?X{Qc1WB*q&LrlHcxyrnyfke~7R5sHok)VsF-t%c8YDpZO|?<(RT`MBB&heF)Nmm2|-v_ua% zR(KD-_z)*>odsIv6Z8E^ab*eKsDH|*$rfNXCY3tKm?udt=HmxCMJY#UW80Kr_xs~{ zd0AEUc-xPEXFi#Sz1I=1o!77sCM$N;Ph38m7F5H1XMFEtD4ze6=> z;VcL7{2ONjke^~G%+k=T?Q@BbqhUwgVNf__A#mmLWOa+ zg?gBh#*Q|&WOGQ^fRM;L$3MgEQ$B7^k#ED&vx9s}E7&xa?ZhmYUR7ny*XPL@PF+b)1(N^D@_|@DuB;!oQ2vf+0*=pewq(n`8hes9bd9Hv)=^W+jl2U zJ3$!nLBIv5FB+_-;}IwFoLW-t@7FEvyg966IC*@|D6f2IY&NhNobYE0^&e;4gzC4@ zq_8qi9d#8WU;mm89u%NhKQQ@5P?l%ZR}kzi)Kp|P1lQg-S4k@y&TPfubFpq>-W&L_hvq-#>m&G<2K+~4;Oc>AB7W>^h&Jf+1>l%<7@_a}=NzQ{UTpB{7M(zeW z-PY2t1u$XrlYu@ISy#G@bn3Xv|K$7wkshuPPWc~5=;l#s9N)m=9;J&S#d- zy`J@zs6&Rn4U=Q|^?CgS7Srf(gFIBmY&6JwUKRP+nhGBEr%GMvF*xCCf3ttFc7s}~ zr}?P2kG!rzc$vYCcsJr(kyc`ho1ctbOPuyvks?#IZi`j#PWE5|9iNOyk)0K^%dN)f zdK$!{priAi0(sW24@Q87b@Y6S`4DhxKGEGnf`-{yRTm}o{S!r*lD0P$t|XhqSH9F3 zNXR1Xqrfluj*8n-fn;hG`?_qn8fPplH6fWxoZ6Dvy!xh}Y5JA)HSWdk`Q}I|vkKi# z1z~xTi=yg01XpZsvc2H5Q!q9EwG&kZP|2wrbjn+tDSGzX;X*zJ=OPg`19ijOe;aJu zXAivd1fFyHxO5|01XB}2$ESQh=v9ROe$0rj&GMX#6Ugd~Th!*v{qzK%>ea-i-B1U= zRn2Uor|l49DaS}@1L$;k2CjKuuvE^$961S6M8hoc6f1z)N``^Sg70nnXxaK!r{YRS zb0pCMB-#7#q8+G+}zyJR!Ew+*+3Sv4u&E5Li*AE?zL~zz6eQa zZdl^@Go`1N>0M6g!&#Ym&?ojpU4Tuu@A#bonE88@fK@?^=_5=S?YO#bFf){1|CVQZ zi)a~<3!$Np#1PwTqYqO48&T3glmMCo0Z0+BCx%8M@7HK?-pn}k-z`H9|9Lqx)^{Gm zNeth!;f~`G$ri@%QBnWoLCMg!$`+VD8B#7B`T4gUXEY6Kj6922SVbbM1v7<0_*7q4 z=5NakkA;JRX~R=1+L~x%W{ngM!c-WZsOi!aN-eCmT|9}R9d27<1=P+fsOtG zP<)yDHc0O3-2{0A&xpEo`YjyNdgE%|G9u|w` zMzsxXTrPUD_br`*Ji42IbiERRwl9`w6^*N#L>1Af#P8<>nhwLL+47s?FvU>w(3G|4 z8;0DD^^9plApaypfB41o=wIo1VjpsDgmy_B2C!ma(La+nh;qVy@FO0c=wId|WLJjR zBy?tJo+S3I^4x$+>1kJdybPdU2yeMCcRWTY610&zQhY&@O#YguD11ZT*vGO~iG9NY3+PR&4_7P|-EM3=N4Yg*cefIKWSY1b}H6zSks?^TK!b>1s zi&nOAFlP%c_c-@BVZW0sBxLJmPip<98E=w^BVk_;$q=h?depRwaGEK+p99^nbJQfm z455}!4(Kb*rabwW?jJ1H@V|0r6P{pk6td{bW0=h6z|@r_p7MsC7|a}YkO;$I)dxbR zPME~D$4yr@LnoRIIf64Zc6whjsRHF9C}_y+sM;t3JQd*{pUqJ>CAL)L`e^VxRv zwk!BJm##a=`jE5?X-Ng(EGS__t=E4~*4{}5(HwqUw?~T;vSH1|gAn?P8E7qE)m=)$}m~DqdQf+$ogBnMPBKFh{cuS%0X)8Ed#3# zH|T$8t~loI-tdG|u_U+jJItOVli2TUVp&>`p^}Y`{+tbT3^~NMGnK0Oma@n^E~Iif7f;0OpO&S5&)O0-IQOoBvJipwK~UHTMv{O zGCE$t;`gdO3g`>o*@ve_u=-r!9+TSh=pm~I>pw514BBuBS6B5q%<7>Zmi?%_J1G3x zyW$M6rC!G=UYR){E6oqahQZ2fD-Ex>3Rr~%3s_A@CEer(e%2SHwB1HC=drf7RQW#Q zPeC*9Coaqn4zawGO#=qc)rL#*4d!V-$&?(bPn zeFKJ(I!BhPe@)KdU`5ycTT8rLjJg#beeFuDTP0m&!bsn%wCctERnGNX)L4i1AVy1F zLli$P;2+9!h=X&2MO%O-?ay*1=z-9 z6(b_fOn}7&NG`w6-l&$~_nQ0<3Z4P^%AcX{BJ-xKALH(HM#Rn4OI2~Y)#HQD;MAsy z=0`k{Ndmp_$GtP(AE~oLwWtv2Li53g26AuJB^LY(ja9PlZ>g#Fk=e@5BC!bsWvk44 zzgWC#^E~N5C5Ah`WSA?1XO&9qNufh_dY}9Ezgcp=l0${$>QC ze?wn^+C3_}+AP=o_78vjxoip7)AxFB3_zs@k81B#R&Ec|>vtCR(Y%dy6BhI zNtzLX=}Ce+FA)~h>tXBS>$w2~lmfb?>lJU*PZf?ny`9>4`YYBzAhbd(x?~s`V04<` zO&a-$`_^}_Kp1h+RnxYk=Tmcij_lxnMs~nEDd1oSTd7~>JosAUii-ZkgateCc2VOJ zIS;woyF$7*IG^MA_@I)i#uxd9HP#+5Mh70ylkM~iMUmOJI_DZ(dUoCIr*4h2e zS85vIxX|v`c>n|B6G^k2rVAMkghz{f*~f za;e8=+{0v5(lJb7Say+p#I$YJQ6Hok*BITd+_@%uZp|aos?fAt{1VR}pFhzrEc5?2VRT-_2CC?82tGEmbb!q08N!k`pK3(=flY zxA#G?H^#G>z4Q@wU$mMT!s*34#7}>(dF^Cj>@kNN8>T^U+a6m-(A%><#E1Uum`*K} z&kZNC{s|tHIJ91_(*|Y0Bbi3s8teFyQc|53G_baq$~ zWwMaLdiXAUfQ=hpxaiA#0Z=ZX#(g~HOI>3EQ-4-+F=a&FPlG$xNU?4l2Z6A9*O^-t z7Ya@DTqC|I9b|Jbxn;8$0Bket&HJ})P>GMMQht+~zaHI8)Q0UaRZsbxTMHBo7b=Q) z57m^qM@J>_3WVPw%aykp3`0`|tG?{p;+#mVZ7q5gM4`0WM#N;&?&HS9*xW=IoHFySli#jeO_a z-cbvzEgwVn#$@~-$^c9MR|cgumO$tM|Z%HCLiaGolm^yrj~IpXEU&Q#ge1jtG8Bt%huXDcu~8&LvSwXnc~P zT0y-Pekya+{aKyefZFlGDzXJ$8fvHIxp+1M2(~xx5X^ouWZ)MPJ?N*(^-AIw_b4{_Drzw1qxm|!M%T4Btz?! z70XttWKd8MG%LuF3OJ=>=oiPsQc?k8=Yt#M)T;&?8t<6RZB68hK&%eL>on~j-|*+H zRxsQ?tSTmgj_FB{Sq}%!__*baxf(VWtn5zDBzb!K45V5BhkE8gN9)M?MhFa~lv49N zY|E&6N{8c8Qsh@|(kDYu5cRf?Y+DO^@eazc#7+rF?w%@qMUa@r&YBvRaBBk9#Z*#52 z`^{2B%OSM{f-FL-lN*ed&Zp$dQgC>yyuB#`JQ@?4yZN6&Fv>3W7pG}A!#!L!^xj#2 z|B>Bn2XR+vfp&ylP*^348jO`zXQB$kG(s$!fzyE%Xw5AJ4`B>zb3ZTcJ@5-UD z1R8`qeFVY^Blw{B$ZQSqf{e2yN%cnyJz3e%GbfjsvQRTKvpykJ`;RmKSL~FC072;3 z|9GWwd8$ZB{ln>fcI4mTDJK8zK#&7;dgSkapFJKAAoTGF989&FKnlDnomOJzPBuoh z2`>NJTZ$oSphKct|K)+?z9_I4Fn(ZgE{y#(((c-Y98{m*YgU)$PXUmJd**+s5cDX* zzGC;{(wFONdz%)E){3Nyk$71U+P^s^1XVK{JZTEAFmi=!$0i2iYD)2qSEKzeFj2bI zAB2Z?n7o$ez?9)hcAfuA|C+4)>Hg2j_rPAq zzSf5B;{vX+8sr3KSS2bNfj#^$>&8d@ANn=0GXulm<`v{%-6CP*QvcUzcv3m?zle;f zf+Go=q#=(@DGM*bV3Ge0;`sl-i!A_o$GXJ-{TSp%ptOKAa{V7b?*GoA_+Oyx-|u9$ z()6|IVoWG>oA5{=8d%x+)S~&}{|!$ExIf}5=Kme-c7NQswbQNf$+Ydozn;DY|9SdO z1?l$Sx*7aWOvKf{IW)PXWpA;*twMhcRXD9Im{wL03+z^@9VbJ;Ys~$^T1!=a)+7?g zDg1MjzZ;O|N>y7=lW4Uze+Fh%+{hHa8I+N7VdR_{x_sL^rPqq=cP5KgGko*z8P;>$ zhKGCGf_Mptq4~JrSY@S4hFPXxW{98Ebqnz>QXoU zp580vl?{G&8o1^y#nCSJ_y6tjzeJrM07Z+Iq4z|)<4HkoK*CI$#p$o;$O@i4NCL?rGn)QBm+B2Jo)g($Llw+@75vXZHuug zQ0T0&FneWNKUvAASBE1&p49-rJbqo5l@J;5}S^q+_ zUQ`6pQAswQgW{c=JEf+!h6et4c6PRed0tUnO>U>I?)N6jEt=ou)88;i-o8Mx@-#~x z0KmRwk!u*8Cx{w;Wh+%cm|d15?jOtDNetJ#UDGKOzl)=(Gmy5Rx%le_eZXtE_aYEV z|MrXrN31$HmUX3G+Ah>;|3PM*nh<|ISKINYG-5}5F)QQ3D|Yxa-PC7r|26tn2(V=V zSHy}rf}%Ph@>}jd+qVYi>uMUZHtdacU3L%ex25E|;;Me}vqqCJS^Z8?ZcGaZ!zUqh zd>6#r&+c%$u`-xgRx|VwMZr!NJkaU~);8xbTZCVSG z=YIRr)gScUR*lbcVEx^#jBl0NJ=XLlmvfB8#FmJDRmAmWb0wJqA~$^MrAQdxbNyQQ z8?Qhuc7%tG17S^FQR_=76r4-DPYdK<)JhrD=2|~#y+@pRCF-LrgaxJL@#9V&SlPPt zQM($_8EpSEaPaRHIaR3}y5_xSc?xJ(%1C1B^v&!RC(Op$C(cpQ$}E#@zg?X^!I~Y= zY3F2~;%E;O@e45}Z#b?zZGQG@8~R!34YWHf_>v?X2KL~~{czVOVwqp;Ff#W&IPsea zSqeY>eDcm&Vv&PLU`R~eWb3&aGqBFOjda)gQ^#OEaQ%D4iIY-vWPHPVa8LcJ_@oc4 z97H>pIG?8&Gpfs};J-wj#bbUf#p64!CoJ)Cd^B*?pVV1PVB7of*z)66qKDRtd|YIS zmfEt{B>o-w;+E7=Wa!uGTFmHHkGwV|e_pqSY-SIFZi%ZeYbDHXdeR`I?1t8Zo<4ui zVZF1$AJr#tN&7weU&)2CuOpaz z@j5m_#je0xS~jvdVwJ)MJKv~9c{HB8j4hdmNDb5z=>nWTb(wcsG;GEeNQVra8GYDl zDdBUtj~O4@>|Db`DG@~7+KJq9v(Bw4pxi;R3#;+`9F}kjw6p8*-Q9yxgDE+8@-$H) zgO9d>ooLd9*_R;d%^md8voCbp)oV9_a{pe!5PC51GpQ#!S4cZ%ERK19 zX7uu;_wcp@X-?c8O^;Lm0bj`OW7T*+Vlhfr7cw8BnL-nXStUSC zkTa^9TUD5sB@$|XcJqMYCVZ7^(x)aYFiW&K*r%f8{}ubZFO+&_9AZu?Q%lu*{u3wN zua-1MWw$!_PhTK}uU1xN&Nn|*#ETTW%jcuUm!6i9Kow!4v1&Bv>!wPwZuRebb!S>7 zsLFs(_NVlCFe~kv!id{XS7}8yo4)O%q}auw18e+h`NzVT<0Dzc>@>LmEm|8Df%LKe z6E3LNsN7LrH21|7EE=-n8A%Sg-^MoFlIG9Hd6JM8(Wr7qnqn5sn>m18F1g=NE-|0U z{1ITJa(7`w;y0>3AQZWpM)s%rLv-<+4mCpGBvMELp~w>t?S6RztrW}`fApA)fB zkgJ)tWD(G%uaLDWW#kIix3`C!uLRF9%_vUMT}=7JPDSF&^36LUZZ376i+zPHE?+OL z81^&fc|eHJdZf!KrDj6mJ;iF`i6cd^#7v!9WRb6OLcYOFC-5#~n7DavnFD>Jnlqe2WR zLF*8ABTS<7s8o-RMF%}<^*Rp^%>e;(n`Mx~3OLuREMgPc>7y-GOFT4=C*2;9{2|hz zMy9e?JUBTtk8fBCH1J;1gs0}wsqqeJN!l2`!To|cAZD}0xzq*zRMG(w)@Jn&;;DHW zIxu+Ya*b%zzIshUGfn(K1$qi7tEkQa*oShTDkx>0c#UoD+}Rz}GW_UVY`xr}K3jIt zUm8=dHC7BfR$yf9Pty0&U+O8jR!arCM%M!HO?iDQ|d~RuauIt(5F|`xoh#(y*Yi6Q({~kV(9QKA97TADXf!4{t(f zjQ{<~tFNm_0;H6rZ!m#h4pQUCUR6QIt;S;w+zj6-YR>q}+SPJWG+W2Mk|le`^U7?B z(%Vpx%#wU^X{rczKhdz|9|g707z`J&xg!09%9as#pQin7u=0lc(f|S zEzZ8w&7LGUjLHpEj0G5xbHvG(Sw9Svp`I+a7@2!DC&qR&U7~`^j$E7oo7^U$p( z6K7qJgMPs8*fpdA9+1CwUAp0Nf-tEjlx^!U{5B&*gCGlwzd!28>o16jx>5UEv%cSa zEDOz~*0Ju$7dInOv9cHTJ>aKhgv)tHJq+%h2-_qKe zS`q8CE@KK`MV5i4b!an39mog3y0y}k0sU?scY*RV=*)jQ9RMBb==T59rh?B%jO zb#EVU@GcS9ChlY_|B;KWeIX~wR?l30w1VXX2!x8#u-b9fkJon3g%Pj#3txr=ujn6M zy*H?covPT;%gmw5GLCV+PDeNJ@f;&9d?^hACT2=K&JgOE)rA_EI$%SFW~z$VbPU*mmI47q>ds@KO)|d-d_O| z*?YV!b>%R-8}?i`{VWb-=ud+dEt$rMR|Fs)m8-I3rcdfUU3_V3Vs766l**TF%s0vH zmdC6zf%n;hPl_@hWTOHWY!x4qx9w(c{H@J4Uh5ZD@;H(Uo%Hu!X60DGd_!jiY7{Bv zm8JB?IE+e-!tWXK&2;-Uwn*{;%B|H-n{Nq>&r_|26WeaXpmMG2{}Ayk&*uvaEQ9ef zs;BdnFE3`=oB{M>p6H$XvSXw?t#kSHh$ebqz>P1{ZgF<<*yeo3}*<;hq zlA<}{-GxNdU5HT+NSThbXR+}8weaF@YJO~etV^m(g> zXdRK@)@+`#PGWVJvNp7(^~P5xvEZ@H?aoPKC&32&_LJh%Zh7OlROj_9Rry%AXM1{} z>DiB(#KDy{)zwFi<+++NPn(>EiTifq(~GU54DX?{>vK(jx|%(hh;AXBxA~;8-c6`A zy5O5VtAfkW>94UHAnTaZb#!S>hI`tmN3&ug*K);G+Cf=Dk=m)YR`dA>`eoCT#g6)c zln=`v045!W8tcPr%i3gC-6{G94H-H029@}}SFncK!)1z#HI*d>^=BoZ$B3U0Of^?M zi$ASIHA&aca{0*7CQ-GO)M{z7t>FNMy7@0p*-WRS=UdJ{IE!C#h)6AWp8A=z&vXc7oQs*+f{Dlu`{jka>pESuh=ocG^DCCj1$HNJ zkmUk*&w6S0;hjbCtF#T_l9K^RvPM9&~z6o(G~2;HyPlEx9!di%(C?4A8(BCdynQGmu9f^Tw09sGlS2B z)ojk9)QW^Z9~`@sPv=GJgvg7`y34jT#Y7(FP?;D9oLO-le90phs?;8CUrl8j;>iyf$rHOC(Eyf>BK9L zU)8Gunx%PyZv;X$sIIS&h$Czk-#!au>{UDnj)`+WTPqA*s!V4ubD`{D?sxultp9E= zqGzu?W_@D?;F`dtC8S!jnuQE5VO{tBSU$cEw^%zy?RXl$D zSggN8&ZV&A`I~x=suHXCb+8~*eaQ>8P{7pRbZMqMglCx8l={hdPs#358zH#Nlmz%RfJ;PWj9God}h{Ev`#S z91RUhcBIZtGCRbuyd8q(V3S2&Gi6ANAkcczVxBZ>#B#{v6dNT~5mK?z)~HP`Q=c#o zAtEk{dS9S*n_20ZMaloDR!iuheUcPq!Jl%fZ(0t_9ElOW(2N`R-E6_K2kqj3e=CZkjkMT#uX~80O+jUP@BfkH{ zsXYDOY@Foi@tV$VZ5ejO{;Qxo91UwRSb5oy)rZB3oJl;@Xm}0S>Y*6qIR72ITw>Ll zLuSkU`Rl?t++HfQrT*KZrtG6NMI%aOMa*2tLh?wCVZ$nsh}WCswq{_c{i%vuIsd0) zk$-Yb=11@=ox~;dipRaqbG*?FKQ5^=CY6+D0q72@COrvBV|gF_W+pxY zC}rv)>ycoFO7lU;n#@|Sx(qw?SE)z~>Z&n^q#)OPgrqZVz@{yvcN`aT+6V3Z{C#m< zRx!=Up$}!Y;X?Z8L~DMS`baK~G0TTiPwHGHeO>TXUeDF$j||p*G?$L^21Vs1k=@LF zv|}4J2-*nLC;i$_OyA#@VXDn0J<^lBm5;$(OOLBVTaR@QuJ?$-Gho;)3Vk`0xL_^gpE<*x?NK*OWTB{l)cb9p`Q7Er?UEWx>Fd#o7t!-L zbOHZRtae?^1|XM^qxOPwjq?t7IHlC!b|yNATa)V+&XvvM&dOfRgo^S zfuD`1RPRsTWLQw|ebdU^x|q20$o42|z2*7SaJg6uJeR$5#!ft>m@(hJr-T#ndg@%U zV7$`jY`Ka}yWF{rkDrZq$bYjMm_eGld#{+Aiz;)u*h$_eS-+&RdeKm>Sii=`Nr5?2 z#k5t9Es8kU5K~s>hyc~ZX8a8N{#qy(6K;%+=s1zABkkX%1Ld~dF5)zPrifh=LOxLY z-1~E1jB|d#gH)1GVM~o}VDM*5BfT?bMf8xGJ4eS;WB13mQR&%*j}1ASw~570$A=rU zN^6cEad@G3=X|U_&Ajbxx5H5;rVN~Wx1IiP*pYleS+ERlU%j2{Fg_lS`jX^RqtBLt zmi}(#B&;iHT7b}S{?6gB8L46=|H%Ae*{3zt-X&jR?ieaa*3)d1-}YAj%etQ)rdU(b zd9nQ<*msZ1o7*?*;QCJI6XJ(g$0HS z`Y$q8ZBen=@Bch~>~6c-(%Sr@t!vR-I8QB&L=pJZ>DGhAw!D~|N|t;sNbQ_ir?%;6 zu(10VeX#XxCA;VTY}Ye+9z3)%k__3c*9*(w$C`L!#hVI4vWRW~We{#4a=q48<8ZSS zd75WAX8Rp$HeO>{1xQpqmhAk2wFKgdS4HUgc@d4%J4|dwq+`BlOCx>-)BFr19sxZa zj2Lpjcg7aKNYi$4Lm_$*p8Q$4qt?Ccu6wJv<%q{}atbt(L4mOtjm=dV^XPl{JieAC z(+JM+%Dtv~A-@RgIG8=S{9CUanDB{d)i_4^MZ!`39aQ?o%+Fp8jl;DXtJv4DUz;D8 z-0^%62J>TI6w|r!UhFV-w71lL5}FjlOE|Bn=p{nuRA?zJi+x>;eHwZ)yDG1%J!e== z7uR)vlvsjpPbL#5&44hg{S@8t4XDW;Jqlni9+EUCLS9dL*LGd@0 z#1xNPBvf%@o_zz!zBDAQOwZv!F)Qd7`5+<^`3@sLQPu#-j>laos&Y#X-L4&b@zQaK zs+P2)qgb%PSNi#bqr)%p&jh-pEK!~lGRr)weRKA{vrqL+3?v{o_YK$0KJ)kL?zs)(yQP%j+N?G(k*cc_Zr?Jw7+qeR}z!`g)w9e7U)YxBkHKIdZIPvG)%#R05goq3zWID9nXFMs2B z&DkPM9JO!trXYNOkSGZkSh5a|+GB$gN@6-B?e%kq2XCoN6`Ch8rehu z5KZ#zL-2U0P9v*Fk>29xVY#k?h8zjSPZ?}e?PQbzXp<%GKrr>JJoXQXB_7J#LQQ`H z;)~jwNh{|Ge5%s#N%~alMrkwOs&aQnc$6U6*{~(K6C*?P$mz%@M|4<0G;ERvGpo(3 znK9|^hD5Ujz^ly=Csca3Pc}?`W>Hx=ZaUwpWlTJGa;Yw`^o{<|U`D=m#1XRIE2wDwSE~FHVF|9)+HMW5!-M6Q_|UTV#KMh$R`Xp9dxPV2<%sXpOdpT4PnZXWeM z-vJ^M5RD;`0xyGx6`COxN|;DCOSoKp;ezc8Fg=lt6mqo;sefZr0eeu} zLMtgapAE}OYN^|SYs!<|n*>kxb)z6HE0m*E{N%pn`DP4(U=T>9nII|jZXq9Xv$*<$ z11PB7%&VaKsQ5G{DYAbssL_8WTbh~1Sl+;;Ox}O}ibE<(AVi4DhU&4v-!`&poyBXf^)KpRC`>xng0qWTktO2*g~#RLX~_ilVa z#r9WbgTqZD`y;tWMg2kE649ge;GS$+H+Mv9GhE_njU@5S)8*3nktTg2mUh*0Es6{x zbkWf*t)xV4=LS#dhslBz4po#C$K$z@Z?4Ms& zs2)b3y17#?N9|Uda|5 zrcOT{$4ww@3k-yRB2~q-cpYAIVyQ&Sm07OE%z&PcUmz1R+Aa^n72TW2VO93i9d1qd zT5KN2w`cjo&_R?rysj=wfXar5c5gB(4;d?V^s{c1v1D%X+>L)Gj7pno>Wr*CZzoUP zk@*=jzXEkC$v!I${Wd+SxTfvTH*N2T#bM20Aj1B8KN{fYcnn}vNpPIZ(n0gw!R`%v zjxL-JEG#D=%r5tcw15*%)DyVpQMwGso}XMA$v-0D00~$vA{6e;z84l*bzW}IUu5Gk zsur1sHi2+$lI#s`gg~K znu|6^tT$g@kyG}~D2n!1dfQhwr{+P+?nPMwRqGM^=m$FmlXqbhC>>_x#D3Kd-Bs3(n86F1oU^hJ%_qHUbxO@o2Ek zLCijfnP~oDKNApk2MmOQai8N!&s>R)(}vW%AKB=qI$2~yr9KO1fVanIE1YS$dBTf! zTq{r)w3?4KoMGYV(=ZTZ;JRnTU)ucK+Ta)ET;o^|E_Ppjltg&8Dkd*~6^r3_dU@pF z^Il#v+hl}zLO;xvl_JUcg^4y=CmF8|ZO|eH9(wMiT`(`%@MQRP1o}d6umZK{gZ(qP z=AW?Q&lQ;*ZY4~lIlNk0e7Txn^62Y0>7Z3x`&4uc>6X&^fHODuu`=((l8Non3mc%n zvFc0mzh5+UcWog9U+|gZb)F-hDa!>`au`5Jf#J!e)UQ}^Zm*ZFXfJwQ;jdjdtQJ2d z&hOFHVeQ?{_Yq30Vpq-_?&m0QV_6RO(1NQQ(T&3ebqC9LP+etykMK^3(K)*l{cIBu zJ^Xe0{??gm5i1gpd_bJ(CtWMuj7Q1C{EGg3t^^Y~fw_+MeM(iT@c7Z!cjFMbw90Nw z%K8?AlNiI%919l(Spk7?&}MxPyG^FEInI5Te8e!(jF}XafUb7 zX2&_yO3L#ats1f^6sNf4{$A{NJLybdA1kVcH-$T%h#J!$>Wwg&lalQ1GQvDf`J!WM zSdz)ZpYL^t+nIa4gv}i<3PEmR#JXPx(;Dk2f_sdDCTYR@l!}V{rFittm|t45(?1%z zz~`*Ep`+~kTpZai$<*80fRQW9zYooedxsnpSgWX7qfyU5PIf)&MJRNlYcY?nJT#Zq zdJ|tQoMiQGpPX)rNz2p7<;7eiyQdp+^```f$KS@_XN@7anag)aKJ4K!i~c2rD{kM7 zpLFTAp8WA&k|WYqJ;e5lx{qhy5<+EGOKrPMGP^waUN^iw-uJo!*~Mr=W-s732_fZs z`l2#OrIL#+3(6~!#& z6O~2w#bRI4ZPQiAV4B?yXTYA&`Zw<~tys4D)ClhZY_YWJ?dw2i`YN1*V9MY@01bom zkR0V>K~t}7qFQF)*vkxugQh=Z?+#h)e>~i|z0qs~WGr=7r8qjV>TUgf_d(dmw`Rxl zi{h;Q9Ft3J9O(Vdpf5KOKSi`{K~=7oEqO-t`7Jqm_Gn%lA~g4#XDs3sRfVS`~|AF6*2NR9j2(xNAKP6=g zh{2jjH4sasw1tghs|B
aWM+g6rUldQW4vykk*V!69UmIT8 z#FNV1BEuTIc9H-ZdQ{6J(aN=h^~*4YN&{4%5wgTCT8{!-O&~0fC3WN6An8Ljd-;|( zFm>Wt4PwF*&8Fv~)~{!Em{#Fd zjWb_m>OOSsquN^)-F%HGKy?FAF$A^do$E)z2S;jqnUf}n(%U9uMjaHsJ}#5})q}md zx_iStu;&^-V<;UxGabynm62BT$E%DR;YwsGa=1!y1Gi=;CFLF5J8Iy4w0j6O?eVtb zd*_qUR?)G=n^QOQLo*A|6={Eq;Jkgu5t9e=Mm=?W2&ld=P0CryIjx1&5fB=xY}VeZ zZe)-Zso(4APXWfadZR5CK3cUr9Y=dNA4Y-pR@s|ZOnb6K91>c$8tOVnT1Sx!T=U1v zBGG7A|N7(VI_nZGUbv;7A2sFkICiV~?ROyxIDWY(`I?^1f@cp-zw=UooyUHoC;X84+rY5UB4q4 zpL*+waJ6d7(pndwTGNZk!z=gP_$yXcJNe!t4lRw=qZ2QE%H3Gu1oZ-zBpmaxEV2t>hj`C&AUq?x4rCPaxJo ztFTU9*Rl~=C}-)_v=&9F3R~qW+qL~CUV1*ob)Aal-dy7gtAoX{qpW9eZM%rOhrKY- z5%f^&dWpZIy~DUdy+M^p?h{cga?QRv@9CxOH`9N25;NFfN5&HSrOa?Bb7i-#rQ&qJ z`@xZBHO-uk$j+w!q_?o9uE#C*WHkJkA-)0fy46B?Rvy6))?4@Bc z*sWZg9bE@Ut`JF1Wb-1$RK$pC#p@#T>AN}f*k30LYui@^L!SDxDG5cNmi>dP{or7x zz2i^w6i73&GOg17HeNhjntVS10VZ*B!GSrFnwdLCOFc}kVsEG}5XXu(9uL$#i z#eP>tO*!?Du(qdkU#jHMzUpmt?Rp0H1E?=lqob;#_ezxQSRKCEXX9b<3;*6ct$w_y zdOXv^ocL5}2++5CkiVjPB|_|@0~c&w@rf}`0NLD9Mzn%HTqW|z?>yZ`lV1zr37yUM zn-}bgRA)W+JT4@hF^dQXJYNT7)jxM8U?Z+CAxoE3C(X(7C_edTd4+{Ck2dNLCmx+W#GNED2J?b#Z%I}n@gUefY|6R)K(B#k(o82DA4P|a z=X0SZzj72p`8-eCjyKhnjx4^ak7$hmC+Qu$U4MOO#ZiCi5@p*>t?Ji4%@Di`!Xr~! z#6^*4S2V<+x`BImpE1|!l=+>n%FYjnq%YnH zBow?=&MmkK6@AG03u}qozQ}qOUOPDYl}YT8TUIyY3Ep^ky6)^J?)dvd`aQ=Jaljez z%@);j(-7!JxP~U|buil4-OuAFk+3kL^w_rM>++LN0tQe4pj9P_c??+1fxD)*PU-z% znl>5cxCfkYGH*z3?coGlWxrWHDsgmI5IrIc!}6oE|EX-zXMlb$++1py}EtKeHhoE-Mjn!{IQP6{)ZPL1em!*%vofXEbXI9N{j}=}vV}!OE3gB?2P26MKym z*T_2}aS5wTOt&?zq_pz)s=*Kx=(_*Fza#qRKNoT?zZfV8dGcAGd-&p`Qp0R(JL_W%MX2|;f_ktuqHed7pvEz2vcqu1@4YZVjVfP*_3 z;lkj8mWgpOf?*u30<338o}^+5EWh~)bBi@X8iQS}cUhy+wi7x`rD7Md@ySaU6y$YQ zhVP@15;UaI1=0u>rTEvz(>u=$6@Cfo*AM?QPKW|tXZ5ECc-hnBTA8sP z(b|0F{nPJq`Tj`28#TV8oRMW?+?|Go`JL_o(kb@eE!Qfz)NK^|fA?t&a{lw6{qIc! zv;V(d>&SO81hEyN)5m*r)7ZA9YUX3A)B`P+pl97$); zanhBi~rcS>WJ87tVo1{o)&sQd47-DR+t1H4C&t zRP5avhzz_CMoQ=f@6%ML2IsvbT6)*~dmJXR-Ry3H&0Ipp@$+~k)``g#WrY>+)`rP7 z8&SM6y{OXCMDxpuTU$39%&#LRf7zw>!>~fO!GoK->k!dh%1rC#adr1^NGbAvX_JWJ z8#R``9=(Hefo_-4Eg>~=-2opP>-#o#9a7Lk6d)(dE*z**{%Sdb*!3OLx%r1`)uo<2 z&IWmChu^u^E}2@qO51cH_|L}QTvxGZr7*g&f~T^v9i9rNfDbI~fH*3EWou1$zHvaC z5}eh}aI6d=oFu3Trlz=hd6-M1I>9itlQ7msMGeDuE+TEFx$lb`q8aaj>yiDVY4BDy zu|0sX1Gpr))IYK-&aGW1?>8WD*N>~r?9dh?*nVhvzl}d)MI{X{Y_6JtLY?`$z=qr&Zx!0^iKjipR@lG4X8CqlG~ zx~`&%-<|?lUo`0qBsms@?l>qD56|v5E^aLYz{-H8QS4*;|8y+2F*>VgS;nn(PR*CY z#O5D|jO6!p4h!zjtf?Dd*!F{cXtw4T*Beo|Gimq6y^js32hpV;LB@Io6~@>llWrp3yoX+fwZ10AEHu|9dZ zrcaR|=eVn=q-M#Xqal;sT}tiUC=VjjDs(6YWM=WR`PG|C56^l#qzM+F{)y!1c#FjT zYtI!xQmiLbfbG3H{8SdF<^^qVRe=ve^Jh59OTE?%neu~4* zi&1zVXUVmUFC`(jZQo~-RdJ#zS%trieWfzG#pY&@txjVU&drUCT4nU6(&lrP7gGPH z%wL<&>lJ|ppGb+55?Vd1g=y1L2jcELg-!K7iId$X=8ao%tZa{e)4X*|v;v`cqn7n2 z9msrIxxS3Yzk>$uWS%|Y?%!YMXaoxe*;sAp^_#XG8=w33DLp;9eh3+4#+ggst<7Iu zoFw0WEbRXN)rJj)yLb3tUs&Uh8w;_!?XT9&b81#fvN=MEze6TAC2TV0C2a3(qMQa* z;JM;JM(|`7!5O+qASIvotI&QM* z_w10#e=W;tatW=p-}q{wP85x!N*qR_e0(zgSV4Q|M){o9JdD$p9n!`>;bqD8i?sec z7QbN*hkWfHOXdFBpLI+k5|}E4>}Apb@&#?fn|zui$}|0y1A7#%AifxIZPb8#Tpsc& z6{`!h3jdI`GZG@LQ}N#)QzD`9q|Sa^Y|SgIdeP zVwLzQy`D^HvrjPqD(%QjHGcf>$H|T`W8I(~q>p8ec*g!Ny7;~(JNFOs8I#Hy--L$R z+mGLM(kAt%DeZS?7mWphi}CFJw;L))@ehpV2RCv!(I>YkMKec~Uuc;lrO za!^h-H(6i;?z2QtR0f-j(RQ{YX13Vk$eXX^dN!=w+;P!Vl&&#Xv3N&SxmLyNatSLK zsy~>9HBJwZ{%|QaS*_>mk6Xp0+3}V;pt*Vu@1bA(({?HK*o`etch(QX~ z?=DDcW?=!iW8ym;1KYR9eTHwp)HP+s-Xaqtx&2ibCmfm8C?$0{px^!v)$AlU-Y%dG zW~}kX&xF{ZcH|I)5}4>QvmZtClJRUOr#{r1`gLdO8pkr|fa(4>)!j^@l7AC&4YP$k zd)wH&q01uwBNX$k3hR%{7Yie__X-BC1mPcwp(^uxYa7vJgnvIDmJR%o<859FHIijc zWE6<_8))#-_cF2OyxLm;@j zySsCN;K762#oaBqYxb@%;r24isVIs5Fr_Fi+%IhSZ&_vypcbW^TH z0;|eLDAZJ6g~&@lg-1f--c!Ee6II=?#_yFZH{&xD8yv-U-jRai7#ekK=a_p6#kxNf z-Ty8ufH_+>JMnq6$-hZ5HoaBvaeW9s7$IQmPehPAfu72tKAZ=KD#>9<9Xt)5yZtt| z6fT-^T_?UC5C3nel+*-+k^{OthOb|&bk8cZhiZ2jTBfJ{a?G&Sp{mf{on?2W3y@H$ zRC@7zWbutH%P?BPt-n``B4C1W{Q6orEWSp`q_hK~`7}8mWl7%vxy{hrF4xoBrae{V zBq_0+0{V&ok%FbM8AhOM;XD(~)-LZXr^mCrczV~VfQ&$vO!J!|!H|(P1$t*jbhs5OFWe^xBPfn#lBV)^ zcg+z89Sq}Il~b;MMyZ;_(KwL$1{}500Z4|#`R@gk1f->W)l3gZhJQqwJ*B9(#iN>@ z7D=o8L*Sy@+C?~8E1HPCS{EbPn^vuHAr#oXavW&cvQyw zs|s0q5d}cG!@BdcAI68YZ%0uBEC>e!2hTMQ0{-sM1nh5bsX|J0zWulmrwcc3bRgG= z47)U!!vEN=8HWT4zv!UO=n*|%^-ZGmo(n}t-PW&IHr`SWecf(??oV){@#E**`dzmet%#OY2*I zPxN-5$<`n+@Bbw@`f`SUKtl>I7*I1k;Ac+~Z=3xf`aJ%<6bbclQs2dqAdt4nFw-;r zpi(2Ujtz2|1D(r2jb|Bm9b@UP69#j)4wxKs5|BD6RUA;jgMv!apyjNrWx4yc#ShG8 zo0hPZ8pIbOO;D}i7=?S$3~^}`bbrhIb9@X6h0200t1(D)jL^E8uBo-d52^ZX>{mz2 zN`>}@1E-9gySl6)culhPg792q`%i#NKQtUO34$|sPSvxHH1ys^lPAph=0}IDg#!F; zgw}b;puv2ufCaZh5wbhG%SIdAn0u?^`E<(AY*uktsK%ji*!3DEeToo#k_}!4%6@r} zX8oq)w)zF%``^NbhLt@lbzzR|gY2TUCt2X(JBBEBG@f8bb`0>C>>V9>5Uw_VU+o@E zjf0cnHTlH!^E8H;%D@mlzUJ}=^xE;!9B5Hf2i~hr7$IzB~2JsSf2o^T=tJz8gc_Wz$wx?nZDc z-#3yLB45Wro--UmhyBOzb8EohYxyQoD_h(Zo>_L@lIHZpiz&?h6@JzXS?Jx8LG`ib4qn z>@=rYo<1L`+EA7rHFSByXo%Mp8xNU|rrk%gP&Rag_~2=IQN#|VsPAY;)b2mNNmbf` zUrzSQip(;T$}3VF%EfJR-b#hU?#&PnV4w>nLoF7^QFc&qVMcDJ3Y-%1nRBfxLX8v7-iLCIRlVsxBTl&`6 z;&go3PTBQ8{A<$d5FuQx8CVFY-JD6TGM@2KHxW&Y(;2O;V47IfLMVSjfgk7iti~N% zL1*7`Him{p#z1VGG@sB!T(i-2>k%ouHH)t>&6?wQVvf7-)qLRLfz)iP*LDwcEJ&J&b5DuSe*nu_R>pAK%ZMn1 z@0O%J+o^EUFqNGsu+8f8W0BlYWctq^xak~>r_>EUZ7Q@4M@jpO$|*0e79=JT3Q=W? zV+Ve5VKbZEa7n}d{m&)_oAT{`D$C-jJ~b8RD4_SWW%UU~?{VW}gelVDZHj~IX1&Sg zKXV2Rjeig*$O{rBV(I^}^?bg_>gUbipS#$QjZa9#sbWZ9{quZt+x4+Mdqh^<48VW9 zzY9K}MZLWpHwYz)rJenZh-)QAZ`m%N=yCUVq=Qun;XQYPpa?agh1gOr6Ts&e2A^cO zSu^P~wsi$wwpfzf=^&`AyO7tO$=yMiF;Y_Zr2@rwgs8O1wM#>Q@yN@Ejq|1R&Oe_D zrvK}&E8P9&v<$w_Z;AbJ{J^}a^754Kj^Q)7Rz+u@#=Dq{@1Q7^0RXZQ{eU+>i zx$2Dbhe}SeE;R*G7AccDLn?y-ZlJFjV;=46G!>OsWTLXea(#& z0Bv@m{Bx-o8uS~&_@)K_dg~$DwKzMfX2d>wLH&izBL-%E8GV{T8l>A|!uE5*4qUN* zPawf7a7ujq!L-;OBd~Wyz*yVoAzFN82KAlPn8FpzSFFIsK|c-ydel2L#7dMca4#0@ z?}9nC;BQx*Lqxcz^VD%={t{2Qxjtkk60905;lfVCC-Aoax7prazpJu9Tn%vVPuzjk zp5nM2@x0J$3oEbC#cg%r43Q2ZIJ5sOybIjOVmRE3o-?Oqhr| z4;no~*|RuH84{2(!Yiu;X`UI39(sZgea+_IaO5ZokkzQe-1i5q**JA47JzIL#?0j8 z!djE^T225KrkmxKCn1RgzPEmb(3mB#%HXot>w{XqW&9;G|c@vFkrpIg1SyfgcZ{L(QD zX1x>Q<6xqP>0XWXbL3x%G&>gtqkQ~PRyyzKd4<@f@6p2MCzy}@XtnZ-zA)e&N6YO< z;6}plGH>^3hD4kbD(#_=*uQf=G#5uksptLje5DV5od>rS_A(iA4Jx|u1SS)xiQdJi z5KlF4Of})PM3b(-%xRtmGT(2TwRZ~l1!KCpNZcGoa#-x?4+`2-3siPwF=lt3uyazh#-?%0z4QfgscOvb%JOM(>tG4Et`dKdFySSHxnJ!S)U8 zD!lOrigA>Kh6+`L5kw* zKTBm>;VH?);b(z-Du^6(B8H0nw#b%Inliti;dSE7e>%EQSE5!M15vm^k7VdHXZ7Du+TJ4XVHu8x0?|J)O9lH>;X6W>z$!uoBWA2R z*JvmvJx>n&ol%r5Y*fR6P>fE!8|decNJk4&tw)<30q;{^oQaK3yD{4_E)<@imfCdE zq*}XuG(!Jl|N1{B7gRHF6ZYt>dr6}nZ;^Q|^3g3?)uR#aRpK>y%5t`-wL`W>J~DCb z2Ft;^h#Tqk^Qad{@Au+ZmHI4J*?VI%_LvJLBmU6z#3E?O%jra_N*y%EnLw9SQ_i#d zLSY-7eO>05*Gt(CmZH?Tj``CsQS};Q`ebc}j{h70-uM(VA!JiD^2%>q%Hqj21Kca< zP^gEf+!wcgxWy_4wQ%N4KD{YC#L1^aX=2Pn0IPH@%|-2fic?knz5i+SYGy5 z`qyP_Yoyws@sbhp!6ZWpq*)YeNBL`W9U(KjH|$5n#);Vyo?!VsFC+ZN_gMnlUNCj| zrCh||g)LC+byXra0SCWX0*!AC?m-8xf`+u4)gkx`%GdA#G<)^a=F{$sqvlXu=*&F@ zw9X&*o_%=gYM06kw0s9JR4v@jrJt^bpMk2*U#{od$`3@7PZZF#d0s`Y8!m0fMjB5O zS0k@mER6geuMN+eR7fe9f(r*#-u&dnd*ch2FoXdPzd`5 z^3D4Gn^)~>^l!?CThDI$aHi&A(+S)`bmbp+Uac6#T{SJGQ!5!NVn;8~w zo)p0NNP~AtQd^(kTKP_;?n)y|&{!2;f9ud5i-sI>HRq#z^SUjFCsN6Opg#f%s;j-= zW&x)sk^AdE-_pd|!y=FaGFvt3YfkApV_%_UL~ZN=s?MN|er2bI&$#C3u4TCT=7cz9 zxV-hR7ThjD2EP#Qq+i&k_JU;#cE1Y59k8otNrS4do@~};{4B8&4=>9O-@5GQ{d8~4 zRX$#X@HR4YZ-GA1cC+=hC}WG;NgU&<7P**i4DT~5 zu4Uapct6vUh1AjGD7%}3XcmsjM5*`?+uD_hmPw8x*ZeQb`~ppeY8Je zPg2lvJYPc579ouLGg*P(V!GU9E_Mu?a3WW?)@6-Sk&)WQ!?}xiOy+wS!r)mb5`K7g zg`$j?V!xah7mN7X2mNaNAYo?F!w1_6^7>ZI<<{c_hwu$~4|z)w$*tpH%<6^Yvnm)> zhmbNDt6^$rybosON znq7Bxe&U<#a$~-;{I_?jmP{hLv5kv%FMkN7nmta#14SsuI*inpzI1cMT%bX@MX*F# znF_iyLT1}~pH&zy0QWh|Sy}W8iNN5mKPDDGsReR-Cqe?UI=4RUdhAPG7xIUHn)6*y zrxxtIP#ud$pe6+u|q4jaI+D+VvB_rG^BZ zv57>U4+np-t;W@ni7<2IS$9lTnBa*w73~*SE_SmrFF%BQ%y@IH<6cc103hS`Nw&_; zyuUSkm-SdyGQ&E%T!Mg#YSjzdFboWvXSG^e5pVkzPU> zu$AAhdO4QT!<6x^k(Se+V1I|_#6gO<>nU<7kQPc!8CALc6o0FDQt~-sb0DV8X1L+~ zOtiZYla=0S$PG&sN0y18JafXJr{y7TsYA?q6%u==+hVcURQ;eH3+JUw#)p zQZ_&(X!w%9(fmSoXMgo%P^;HKH1xQamq53J_(PlC?CS0;q%=4J*{s?W9{&CRtT7SM zfL?wPndC<2?Z{G}dlmptFEwTql->!DS<6{ex$j{hW?kQlm| z*8yIXO{EMXjfR554o+eJ>v3gkGMCB<|K5Eu?*@O! zWS_2lUKOJBigvN zzJ|GeF=Qx{XtM3$x=GVP6K!6BK!XApz1khi>kstq<6a)i`CpGE^N*ZBzyaQ5ha|Je z_!wY>yPzA!@KJ__4`5ml$s21%?@;tP9Dn@Iaacx$=5>#HFu@6dc5!bfKJt-LBt{MS ze`EwviCnz9dA-P5?yq_^{a9x&jYfp(mD_R7E)$ko@nW{YSo^Pp@TJA4r&m}c9XfjPrK8C8-@DZa)xB)!&((M?9 zpEP=?e)VworI+qs=>BkJAvC8S=fZGANdw1U&NE|(43sN}6LBlh>avN#h9NZuVg7^g zVvW$2W(kb}*|Jl)(kgQ4EWi(ezl;0r(k=*+w>X7{R=nPjwE2(3c0yF?yoFyiO`O#1 z8@qTsVDjM;3%4W|6cy3)ovslw8`UFWso(e!xz8T2mEu@laO4Vk08{Ew3x$5Hm`@~^ zOJW1wA^%voVUp&gE6T?A5A~38%uTAVnsbWwckpZM(1w56*0};PL^v57W_2}q8Lm~y zJ|m>cz+{UkGku$3Au3Xgj4>UthlgN_EFtnXPVs z9ZzIi)q)Iv!*o7GOHbUgSDa51F;Lu!fc4w zK1B|?nvf^%5a{j9S1q3))O;_OriC=a)e3`v`Z3GO?b(TVn`JQWj*3kVeIoBy=uVEE zBgder9hnbDl;n)1q{W|u3yXj8ZyB6mpDfri_>i};JC$tDcihT=Jgca|-@UlvJ!W0} z;$m=LpEx~Xm`r<79y2dbpSz;kpIVMh?I6uc{(MF`hS|deFP!P(_i0F3crE_UcMf(> zkGGSD6tEWbir%_;co?=1Gn?uy?Ksnes(!345!zfds8JengB1r2&6@NoU;WB|uCR$Hjk(5Lfv2A+TP?&0{K463e5c!|&IUwy z-PL0%j@6*LcTW28lo$G~a$p0Ei6vJ5vok3A)6MuyYx@VaGBY=z_ALOh*wU`)$}=`j zym2m72<2|>f+M%lC7LnO#>EB6(*h~?TF~kV=+{?}AB~42LIp;O5RByodpNRVjsjf6 zmH|v{6rnTZCd#n5fQ7omcKy=Oz5W$sPvR3TsJtEDP=Ti9K`^KKp3j;Ux|33Ig_UQ}cfOjK`uH z<|StbU3X6>-cgL6>queeQ3|W~GmWQ!`rqDvERWV#f+={d9Cdzl&M(+Z7qAd*vvD#V zn5Z2#r}gN4=TPn^lgScU{V%c>;~W_1Gz|cCAy8Q$RV>i**B_={cnS0&!I-{MLqWA4 z2GTxidKxoY6-#IhW+Z;(-;FfCeDtNTp#c6%GXm?>&8TTji5tbl>-NVW1{yt<+87&f zWCxe}AN5%dbrUtGHNSg1bdz}|nch&VmZq6A@IA7dVaHZu$6{1kpXV>j3iu|HRNlYL zC$S&sT(EKhZYBW?2}W~PlWNzY3lrlm$n*^=v1Tugx`S2u|0jyn2Cd_r2tqHOEn9Iy ze&E_ga%bmXGf}YS-v-sRzV(IJ{30S)vMDn>;riaROG94~ab6A<6B`CU|IH)REI|MN z?+0PH+ZYs&|ytbUP|SZFC)G3-&3YGhZAEMirT#=E$@uJ zW@*DyHk0%X!M({+Q`#I*hMzW?*8^YhWC zkAkw9he#Zw=|#mnM4D7+qP{w2rIm@Yo~_G=M>G3JJ)gKhYV4B{7IoMZC$Dnru1);R zYLllTs|3?!8F^lJ1=oOD_u$j$s*_nyI)_QQgIR;y(&(7d@b~b%C7_VZ4bzlu2Nt9D z=W*u|DQ<+32)M`XT$+8xaDnkxu=|G><$#c?Zt2pQ^Sss}|LG^OZ~KkNLRKrU_JX%k z!09)=bp;01acAPz-@hleez)8CgbLJ*{>;h!|^r)(26I!;eYn zAee^rsi&Pa&%!F5XzfMzAfh7lbjXFD#LH9paLB<8N6^^zWd4q=UeuRsM-2%=yvJIk zdtDmAj%7`!EsFb6lgiC4ul0$#U#Iic&Lx zMi5I{Tyr_A5$p!`n=k$%mzx>nFoQH<5aOto*R>fpR*#R2|AZAaxXWweITJLUWr#4e z+jb_^MEa`o2$@MAc30(RL-vX*%zYKIKGim_Si1wHIL_yFS~J(A>Dm0mSzJ!a$yIz1 z>Q{CPsl`e_K`BFulW=k!dTS|FC0@@wMKyX;wbMX+v$07nJ=A8VRaQ8K&G>R=ppRDJ z>@uBYuwDwiyh2LBi68!tVCCfcYrG6lH1>(z&%^0lWY@arJ6Uo0-u0`&%nN|^5s_)< z*#26tftV7YEP2vXZ;uELQuNyCmxS<_RO0&IgUJG94pUQhz-1f{r;$#)mz(}8Y8fS-8$uY2D|0b?_l2%8HMo6Q zq3c~J6_vHpBQ#$e$GU%v`i|t`8x@`3|A@%eOztFbNANW(y&}b|%QIYht=1qR*Qw35 zM4Yt}!-0o9YB(4HWKr9Kh2!|5TSUKSrowUXEL?s*9(J3dil=l0zQlaA^1t}y8L}Cv znlON@B`N=i25{AV?MR(pXeUrs^sXX|K8}T#Nwt!&D$ajVOnals@`Tbw6^T>wghPoU z0`TXQRQAO^f^Lx?qXxrG_(o_};C<3~o^GriJ_dKJ{}$eqe2748sCHNW`TqmoY&V5( zNt4&1U!;gd9V1I0)yV%v)QsLAe!}WgonEH(*H18R?8Q%TdtWZTKete@z=~5TF=dly z?MS&_hH(HWQ`i%Lia0VDSmyHa_2jH7uCcR9p1Hx!A+pR){|M)i zkexh|S5oVDfVDJwXiEdbt_>`@Tn=$Z993jyR1Y1teN@36Qi+9}i^I1>&>0tM?{3u4}(sy?vk0RbLlz(Rd~kiz8nLj z`iNM|=#5*m8u3jHe#)KVlwiD($r7LwIYHu@ScfB)q1l`QX@Q@NkYV7zX5XCdO<@3*GT&GkgmaM}PD6LoQ7d@Vpt=7ud| z?@bYH=>%7FL0#p)qn}#;8U5V;7y235g!niSwG2XFNY)T2QBm5U`~qK+dk145i%?}et*5&A4_pV9?Pi*S(vk$<(p~4PRLY!tS_x| zcam-!MVVI3H7AlHBD2R!Q{hhaU}B@&u2kE;?xMcYS6)!CE&%6QLB+qBubTA3r1l1v zN-ku5YwP&tf=g3?znng*qS$miG8w43g0#cdajzep!QY-YEHeoZp zDKN+MK;9IR#jWejz3_J{YF5EHMf(gD{V@!CWqm<^tA2o^f);_^Ij4|fWaca?3KOv{ zsvJoJ;0=!1r}7soV$o^_zRp)7_Kvr7UX-@wz{I@$9DY6_{u+a;neyvERh@)`_3J=h zkV-X(XUGB;YS(T;1ikY|YCX2Y7o7>Ert;Hb)RNyjb0yHztPh7kK6$3i2@+g?1l(#i)IE}YM~ zyYXqd^#sCSMt$a<>Pd;_l;BsEEWa4(Q$N zzN~3U#<@Q1$BQ&*Rie)k3~ey%G=`L@K{28}Dz=vz(tIIyTDuv#di%L8GEeGYZ8k_x z@{OWc^XlZWhsuMFblIWOtYE&)pOZ!nMd(=fbCc=5u9WXdAE5Af2zw`Z2> zBf6N00ftl8q=3m=gOdf-w=y7wRm$!0g&3MfR1r;H3*TOr(4RAHSQ6O#`PY_HH!bCZ zgsV0PQ&akmNsm}3kw$609N#z7EY}HB`&bX!Wl>4rNi5hXg+Qi;_7dGw>33M|9v=`S zu(QlN{7Q%gp~atMq(3$KtSCKi4l2rU8AHD+`kBpI#*Dt!$Bfk&hx;U)d+8D zfDv=@RNkL{1)qi&vZuf3Gk886!&XGtVcE8xw(AP)?$WMEA1qmQ^OLwN3{difMPe|{3Hc9TkP1@P)iA3>w3DTyH zIsHtjDx%w-chyMfPghl*Z!7{0g~UHMn--;Ba)k2gyQThrL#oAg%)SkS`R1aZQ9*qO z=_GF(Hsz@T&AbRJ>+=)U%F<@r>?0NMEKn`1B|?_)C!kevX{S0cDvE0;fiM+S%Q^}c@sy$C-#X6Lqx^X{y+FTc% z-|S3O?>0_%E;><*^wZ>(v>`P(P1cojN;RWeu)Y0>221rHS8c8cn7ExfJwFXBqeAa`b6*vIk z*52f8Bd0qiJS0lEZxBg=(bmq$9tfQ`TAs%S!K4$WRpim9vY_v-)xR1}rCQN3jwt#l zLXkggq06m!>f+`kJ^X-jjdh5av$8dxD#f{kot(TI*~{hmZ;;n{-UjzCqIyrX29BB2 z-ws&k?dB4^1j}CYPJ^j8%>(haQ_woszHm0D;!Ny0cI~s}NiW}FUi zyI~&~P|Noz>r@Ryj^B@tehpe)_aQwxBi}q~!fM6(M5h|yT%wi$L+OWB&Af~y_2^}$ zV>x>)v{uoE5NMi~i7B`82z5_-*I@ngI@Ri?2!3%>2u!BQtGF#dc0{GsB-S($3H}m? zh%#Wg&PzHuKK;$UErn8vcmIg$sG>8h&A#3A(tWTY3!>E4`n8=qlS_?(L&f{t8(@jw z<7UaivcKTmq4obpJ`A`0xS}5=cPN=s$i|vccG^jERjy<;io5kfXnO+Hm+vmyQcG0a#1uz|G( zO|y}1_F4h1IlBBY$G6dX?P|)i_3~)p%kh7DII>x!s>y_q!pZb1+x4WchcJy&2))3u zz1mPoWpEV&f&vN{H8oJk*H%yneqQ)i=UE$)h5=}(sW9xhW(eKg-PovlWjG}UR;nLL zW^oS+qt@gjCqyXXkoe69vMNS)$BXP|!>@Dy!EGsPYX1$kl}Nh_`J!Dc#Gh1h2$D%RA@vAL~*{m`4AIg@CX=TSQ|1#vWhRTS8MJ+^M22X4~K>Q&{= zoG+pD$~4(}$wEWH2QUH$ubn+5qgFF0*J4P9?6<{ac2o7O-MZDOY1$E00rwkjB{A5@ zo$k^nsaArzUmc=NGKV1&9bYpJ`abNg>+M?YOrpGHAnZCr6Xt;T+FKtN%py)76Z}x* zsv4CTH1y$DQfm{`(`+Eq2UM0@Pcx^*XwHoBK*>7@Jt-~?xMy;oWVvPiEa+W@1t=@g zn>h_P9}CmK8$0Z9YND8ggt zAeVd!mPonX)FDYF20Z4`3Sat|O3wP9F?kmf3g7eYfFc%>`2ZDW_xX>})}3*bjdJ?# z&q7%wFyf*}MD5}3#Ye@7!>;Q+7vN!jH;1#Y26VBzqA|?#!pN|t(nym_J+7lqB;zJt z805as7Z#x!{P%&H;B?c0qN$>oimjE#{{RM`a_#1c$so%j8L3;^?xbdxa~CHLs*!%v zJ(x@^lOwnO?GXR~w0+1G_}hF-JzQT);oEAUw=F(Ip4BeccnU|%F=rMch>YAz@|$tf za1<->x$|FL8kJ<-=1oT+vP1uxW34*JNq@dgO?>(0VBnjbT@0nSu~;}>s9l2qu}Wkx zK2zYSzEx2*D|9z^K45|SF|NK|)d>R0iQFjGB*2C%Kd+bAVR0{#AKK?}pl-$|QxM9! zm7s2PI38+6ANlNw?WFW7Q$`1Y(a6Z;KbfWQEX|K$>;tu})?M|Yc0uLY`Orb+bIN(3 zy{+XO&P4CVhd|eWNuPhKeRl2<9VA?68G(^%My(SCq=nv_rdzr)?zfl z(q}qFZQaVRO59)JW5tjeGT)??0o^evOf?I08;+m-hu!!2}wP77E z>hl*riE_$qRVOVSdMC?<&gl!zV2a*PeJcy0l3~~=L4#U(#~FxJ&GlQOS6-%D?ZzFb zs$)n<$*md*E$GvVK!CSYFt8hq*RllhCudd)KP#}h&pW89SGe*SheYjVLU zqpz0Wy+3qeSWCt+kF$dk=O3sU{i;(|uLW2|WEy$YsT}NAu|mtuhkJX|&J5b6M+S;M zY0!O5Pf6{|98&a7gcR(*Y?Ai+KPe-IOdV&C(6VL^)6SQA2fbJ{sJZ<-g zJd+huzRC+CS_(w~u@5US$-sSDSlhJq_de?8QGmQM@2@pqMl0Bc$FE!|y(x+D7$f{5 zScHV*(1No2*rT4ZTV;|J$&iVtvm8~@-B1hydfK|yMx_YF;fVw~Dz^*h8jj6{IWAw# zyMiSs!N+fc!p^)n%JX>u1MSya9QCv+eXDGw2%2j0kGRoZkJWkY-gqMP2^u{6byHFM z)6nvHq)-)jHTTZpVqSBpq_#C1W;c1OW^#F0$gtpMe1b}06|dI-p=?4Ey9&u%u8LEF zH|`!M;Rx)(8D3iI4&>WcZnbbyZ;>)u=iT2CuHtupQerQS8`4n;xQ`SFmnpM1O)Pp` z>&H4g5mu_#p4to6_FKByW1Vwwdn-~wlWb^}T&X=u2{f7#k=?Fi;n@E+q+3KD3-?0{q$tFZCBV5bO$S>Urw zC#SuP-zHoesw1=`nIpv zX-PSqZB%Es)w`2q?n`xWAOa_V3aW|pCuy~_!jgWWn5yA3@N3I2u2*8e!qn2oyq_;z zi|Sr`=q`oSPAYCr2V6X?{vpr1p2mlHj zAfxtJJ@|I{zTe_sh`prDSmYIpF;KR%rsF#?*BMIJB$uxLyh;56V+$Mp+>OELQ)t9J z)*u8KOOfOTtaUkiHC2kqt+bAB(0b^Lh%G1{gIgglQfl{aLb05Tz=3c4oT-fCO(fR~ zQzW3@XN+_RE^E+^>9D);ty&jJE-0bQ6gZeNX<83e`0)fE7c#(hpSPK|zAviyJzc1J zZ4W4lEHMCq33xg^rOQ!SuD#9v1OglB-JvERHJ1GpOJ{RMjcqwjsI#P>eq-iornn5P7?+ndvFym(BT4&&(P?h z>m&p734rhxRf&UleBv{^?@!t;oFwQkKMV!()BJ3KAP|L(wm0AGjy5O-P)V%6|ag06k|kOCfU7p<7MTa1SA zNOWvdUyys_hm@yjGzil3Ox`3vur7IKLL<&QDEvon23*u4zk1~po(#Dpy5H=~`9BA} zMZ3hswJxSp3(6P!_{nzq3nEY4m;^p*VNc+$MD{&&(Yy)_Vy-orMen(}j;WT> zxx`?zkRJ`*w11cbM)Ty_f7Aw`kURmmlJqQl{8JvwMI7RdTb)Niz-OCdN)>8mg;mjT zYYApj{vv(=Zp4&5XX=j(@#GB+e1>pEt`wGa~?)8$D|n=~T_kQ%&Z4WD)&`omhU+ zAL zfbOWlsk-dX3SPIUJ5@hcli{jH80MY*5CK-`?up$O(+YNKZ@G6eH2T#w7Bk_HSyF(y z+Ej-~HPDTn#bare$-okPOu;YY$k$Xo#T)Ilr4Wkn0!h>FhMp9WFW&$qXZjLw=A1ft zHUUU-0)rH-c3?i_?2@yN?DNbh?REtRrA}Tq@hnz`OLSpj5g{@KtN5a>uuJkl!rv*a zUmofscN>X$+{rKiPr++(>ijsZx~}*X)Sy?^nTTxgb+Do&%f*!d8T864D{nS*++ci0+_wy z)r10BsO{@ieJ$xsL;BD*PNeDY-(!mcn5FOp7S4VDJA9l#y`xQBaW)+Bq&qryk$L<1 zy$9s}o3O!e-|DmEbi+vSto-NsVpEa&HA9eTjL?4sXE$>kafLz#?xNAK5Z4S2(t^$Y zNXSPWF<@ZF?JnDVUha{fW)3uO60d0OE^Xbsz0sPMAoc2SE8z}D!Jxvm?v`3!A4dE9 zH)e`yvVTtd7%BN1PsH_S8JxfH3uu@80SgF6?iOy&7?TR5n(xniZ|#4Fd>WPhLdD(b z;Q2wmJ2EvF1`D}LPef_~QFmsCbDZe4B5CA(H|trv#7&y!DcQ_;6hRXGk+v#Z)}fD* zSmaDIJ;jfFqV4n#XbT-m%i4Rh0d0As-#7t|fX%PwMtbB3P+ugQw z=^t+Gx=rj0$=oPNG!@VGHNPWaK}ZQKWNE=yO*8ZFzlXSfF{6kYlYY*05@Q@oX!ZAC z!LU*YV9vxLaS?wPXEOrSglQB3>Pi(Io@8E}kp7(| z>!?$4!8B;XnT~2(2h92sqbF#pL!kvYnN+2j#Cbj+tU6xQQ9ujA-19Ml7jV!Zt7Iga z1`JlSqyix-KYTx`+;(NA26K}#8EpZL5kw{1ci>E=Ya*i@B5f<@!dy!k`>LMGU*2-dCZ}|02bcUIlc|Sk(hM= zwn-4oisze>U7?J!ZtB@_t*}BU>M4?Rzn5WF4N`e`8bf$#aWA|Os#W(!cYMY!$OS}v z=w4E=1ehjlyIpU}pj;5=2K5w@?^~`XHaZB8Je{_K1I+bMIWEc zY5hi4har_KTb_TXt*DqL1}UIzX}L64s{kS4dA$fm&vLU}qlga&bwx#`ejO;Rx>#r` z5t76(F9k!@ASY1CA#Lq_C+6?0L$occ_H78AjqUOHx`S<30?pDSjAzlow~pGhl6D}; zq5Q>!C>n!+J+$A5%oL@RT1#aPo3PU`{MA7lRy=>VJCoV&uw&(i8Jx?v$mRp7et?5+ z&sdlaQb(z(fkhHthq=$c=BBJ_e>?*~d1Vq`{b4Foi3jY(^jgr7qohwnBvOl9Eqov^-^oB?p45XyTmEiH5yB}zsWy>H~ z_badD{Dz9YRXn_RIUP>uad?1bfM?ETVNoNGT4R3CyNU-AMS}0GCMM-}-~s4vl=qOb ziDBdAkHUkH%62TZqrc%Uw;~l!fFY|Uy;-vIx7BcaygOO2coA|1jayV6`bm90Mam1d zpx``=!=(7oT+f8&T+)OtDvB!RiBXxxRRuuGq-YL&OpX_=4F)R1H7H`cmYII3-S>m) zIStEul36Gi*rIX$S?t+{fNiMW6)m9ssT?*QBK4Cgw!%%E#XW7?0jsobgk;-%BV4@! zDI{?Cf~0=)xfAp=EJZtTk|i3>iZO9vrGGw1&z3{hI+c*~#TcpL{NXYU?;c5=gqcl08;pz2a_8WclR9E_5o-1eUDdCf9v5 zB4$e1y6IMPR{F%*c(%tlJ_>Np1Ua+U_Re{V|C8G<{>|;TTV`n=2HIuousM=YCyD_* z2|tiVmptH-`hzWnh{aK;yUw#Hv-X+(k39b6WMq)yeC&uJsq}rTf|@oSqX@ z2M=4G2Pdx#7vWT<{GQ?CAPHybFN?4k0XWd*sZX!~u^Lce28n!I8;bJYM=J@!N!k22 zVp#(D9I3}_`*+zYE6Rt`rH^M`A_wYcUf4&#+N5tsOnPM2BkHf$F|L|ukksk5jL}F7 zV&WJN5XYE{IT`m^MHT#Ad_veSF9kPDJ&{cI!ZVw?*yWNrU&f7oGFpvZjtq?a77hv; z*VG?%$9A_jxf+F6&ab*O4u7S{%VFh$?eyL>VD}3CZiQ3dku5u8>;yHZw3Og!bMw?~ z%hNnaOM;#M$)2%J@2^x}LEvAhsOQRds#HU2*Z;~;?C+wFs(tBnjq0@?`u~zjg6GAN zj4OON(9d)XoPHO$m>UHbatLSUs6 zEAB6eW8(c^?vt6W#W*W}L^0ydme=k2fCSZFYZWjT7+|#!Oa2puL`7*~K>t_EHR(c# zaAYWwr6bM(+Enhg3E;8@(2-jAvLZ=LS|vjvGC+yH5dKo8=4-GS`ww53EG@tHO8gAp zctXrKRTL{X5(M4e78LSm-)_RpAk%x4k*%Sl{xA|q9~F0mBkgkr20-jT2r=7s{ihZ~ zzS~BAwamwzHer=sff6-6ng`t9n2YfByty)T9Z~$z3{PAqkU2EIFq^LUrGV_;nZEPj z)cC@|JI?(a?fY@EkE3KQwvlkEj-%F!b)&uovd z+p!aa{rl!vqJdJsj`VhuAiCc}wT7kCna74tUJjw*R85LAyB*$GV&cywTkN=VcYO*b zS5KRTnux=_=)>fvF!RXDFIn1+Vgk5FE`|B+;YoyvA?U7^(p4?5l@vC6?~;G^By7$# zx}i%#Ts&KKx7+6rdB-_9GM;$#5)30CQcvVdS@n2o)qiSO;>jZUFRB+0Cng$`Z=yCT z@m%pNC0PIpmgKg{dXE|*qhG->w15|r*6kLJ?p-=! zgOP61vTo3|)Op+0xM1thuO5|jp3`(s)S(l9SDpEz;uc3FRK&_653Z{dfgsbU<)1}y zNM|~tQr1@yz~1~e@>V1>Q1~0T*_w%c)Zw=bS#YKJzJwFAD-g8R$maYl9N?^uRc`}> z3NA4ItSFrXzC#3eUMPO-n&M2ILQ9+7 z*<818qTD{@wbiR@ZHTRIfxqbup>DJwo2aimK}7~Rz+t}s5Xy&v&hEc zyCTxh#DvezQyS$HLd#WS!^+{bLQk@0OywE~bHA0h;A`dmW^`8!h z&i@&k+ps+!b1#bDqCqDkKN!bNxW=wrwLgAppG9e=Ga2n)${zx z1SA3y>?;Vu2*fxOV(Zge-3>_M-z7jeIIA-v!U20|SUIOB{N!8!3KGekJk9iuNG ze{YOH*jQv_*4vTCr^NHq&WdL-y~Rp#9?!|M$iQ(;G;izu>0%BOoZh=<;YD$n`}_#< zN@|*nZ{~&;{wdV*wARva7U43xUvmFEm|dU>o_7w^BPSJ15%k(pz3Nzfy&CO!ynRs_ z5qq#4>eY$&9glQPW#3$AY~1R53KPRspZry1x)hBU7t!wdz^*q>`1dw)D&`x5#rE$# z9ksJoWkCavmY(B;DFxqN*Vrr*zm?&S;JK>0w2u_?xF%+gWw)M^O~u z2iTfrq;{FM@}Z)`2>vAQSn}hBM{AT=PANDRPyGPw-{*NhKJWSjY-|kMTIade zI?vU(Ch!!XyYziuj&u#qY`w1PETm&4)!S;3wQ=07BobV!%JnYqvvJIuWlLdu zY#*j%`DXr!@0qIh+M5dASAU@m6y*7%-qi;6zBYFBngu_K_Y#xu3gmKUwyNK7-eJBk z9m?h_FsLAslxHo(&$X(-n}G} zI}cM8M4pIr=TC1$@_MDR1?hYM>jnFj8uU5YEuhzBTz$Mjm5 z(|5n;P3^vX%%vHd?Ngkcsv9P%s%zd=v@0RC%$Ksb&T%5MAtC%BQ+^A0_E=V(5n0S%rk4IPMRqVLv(#~6dH0l3OOru2@0fFLJ@6bsD+dYLb6 zKXzur6k1Zk5CKbp9sce(8R-8oR#0=>t~;3rzcQ^mOC~h==iV{EnfKba0vsUpHi_=TbyHJYE(WW@+}f!JQ4X;hG#M>O^=zJ zUKWQ!c$PE}j*pkyoj1HF91{&!#IXDz~z|4m=!(ygjFW!IU*$om;RjH^yA z)}w2TzDjb0F5@6MV5h!NsVB%vi*#|XbNkkSs{mIfF)1pemjlJelbU&xdm5Q6tRDCO z?#N8q(9$atWRn^GGe>II8!oA^jckcEcI1{<7?ap(*I8wW{w44}sl;m3UYfXQJQcaW z-u>$(M5@m@D*A<9u>$kEK?wsnmA8%gqHBgWgkfUCC8QP>n}T0`g0xz59t{c``Hp24 zVB0ocdb>*vYWP!#Yj44`@Q2Xo_NF~pbCKXC^+w(f{nqNv2f4sB2s%Ph& zty5`p8p7xpdD%viB%xfC6G7MFmi{uqH`X_)#F*Y@3$=pTjXU~q9!|P;j>+7}$E>N{ z2CeX;`b;|aEDGv6=#4YMjjfkX_%rp#`baBHvyrYs0`LeF8$t_LhZR@5SI*1zuJV26 zI7{nXsT|URr6ua-IH+xFyIQn1=*})%jzNxX2vbwK?T2X3zJW}v>$k-`vfnb>jvI0L zvEvifi8kfBHI_^JR&m{N#j;Z?=+M|9e?$2XR-T1PXP{Qyv0|tycW!C&otA1pG~pBq!^F_NTMW z*y{A;YF=gF$ruyc#^+Vd8)lgJV=vk!zPevQ(Ham8`}v^qpLMwy8hIb{#pSBZZKyhp z;gIGa9iPf(p?8v1_X_|)9-c^7RPk5XuMhh5wuNQnU<}6X($F1)UW-sl;OexJ=2mlhLJ=Zu+XQ|Z# z)?NHr49Walwene5mJGvA21|$-yCFu0An8~f;95P{)&{>FS>E$%+W*c#yswzV7?J#^ z4jOj}7ys}aJbAR$G^u6P82hoXFP~ZcsC`m-$o^i-beG?d6u(7lFdP>_CD|TEjl2Hg zAB@3#9QSKn%0v0owiwwt@9VzK+aWSneY`O{+Q?|OCLLcTAhZ?8C)TL@Fy}@wIYU6; zmZfTs#q!yR@qc0ro+`+^--4`32djix#VN-h8{7{$^ioy3AhuuLeDwE=Qq1nhB`3Ad z8S=QZ*S(}gBaasfT7VGXU%M#Gikv*%_MD$QmUU#o`g^(XQgaC7?;KXDFk*fyvm+In z9#^g3CjX8wh-r%4`0-}_C)+Z>BGt4G3e!Mp-;Vismip{IWSljU0J$|3&aAYp05m1% zRh88lINx%YEO!{!U6a32EJ^1mpUXf0qy*?7+n0oZIHs2>%H87Tnkx~05kgzgl91zS zo1#74$URI_nf7vB!dxcnPZxO^9~UWwZ^;4+2OUnfToG<_Grs8y7OJdvZ|J72E(N4v z)2e#!A2=YkrD`$VY2$-f6tua%1Lx(GS4|q~c^sS+Pbr0+Q_4G1T3B<3hnTOOBn6+s zUyNKe=D^;!JP=@av~CoSY80_5fYc{S3a@;(lO{2pT~R&^HN%BiWNV{zgYTiJ^c%=k z80ktd2Y>rWH5ikE=ViY&xzY);vYHorv|3`>zcUSG zV~P>(d2VKnIkzJx+I&t;^0u3f8AbUVIfS>7_b`{sP|gKMsFMOsF6W5KE})afJ^ zIr{l1lYQNkN@ubTu9;hRK$OE@6f%1>YOl}`3%!T>GRnVJwJw#vN^qt@#?=H2LmSEw z64j@g-(PP1)de^^>wl=c#ShII&&&5j%FpkhhUnX>tM*0elbMIUqIY_L#-<3^#d20=50=4G;HeFWc?f7;^oHEimhJ z+9??bZY|`-%1m;(Yp>JX9RhGulDHLUqIQHX#u=49*p6A6j%?fL&V9~&j(<{ujGON~ zJbZF&>qF1H;YQsPss(!GSr%O-6127J%0I&k8P1q)y8ArYu{R30 zn69|>l|^}RD2q$KB)Lrnm9_1LtUt)8U#h9S+%~pF0PqnC=cVySr#Rw8A!ze#&_Po$ zqy`+6)0eg~!)uMwbP)1!w!#q8vQFRV7fm)&^Evxb(lhIcS2 z#)!fa?hXtdXAH4*yUB|i;7$`RIcL+T9Zd&?^2%5UU&mF(Wr{FY5hdOz?-rL3nQU&oWXCu@mX;>du&_NHe$UmNk1r;Hm$FBNolfN!a`OX3xOq8bxh-LcId&Od#jeZNW0G-2fXH;!(niPKt z=c0!ScTjQ7X=5r?m#OFyZci|qN|hRYgItV-XpwligQ=h^m<>BUFjTtPBih z?P)Pr(T(02+{`R)XGB>!v?P`J@X#uAnwGMa6}dE5{LfU;l6P9pQ!<44WMyBb)kOFS|M%r z<#L9G$5CN5dnV78W|EGaQAS?hJ;CEn3g%+P`VF*_RW%+{+zM096p|?wnqs+4m+HL| zT8zH4Wq)eR5Lsf?b(*uVhU51REfNWCGp&VLDWs`_-WBwXbVNq1L-zsSQhFI7O*kU9%m+W5C1wVxF42T z6M|(b19o{j<(Hft54B@qyhK{nuj(LLK^UqfahoM^suEUNgQAGD&-Ig?Ls_XI5Da5? zngT5r?v2QAS=GGI*6J+ihZ@<>s&F`*$A29+Xp9+lW0anKib?J{n+=hWZL$LXeo@3w zM18Jn8BrQ2eo7_AVnER|Y*vvwe6s;zREQ7Tj5W;9 zBypT?^p2AjC_fO)GA@bU(C9*DAz7&FX4ezxSQ{k1*(iEdr}J zhxv2<Ko1RryBfdjFyu$TZE2}IIS6Aol;ZEZ3nflWRQ zd*8|U=oU>%m&;4;IZHJ>C{Jg2@t~Cqk@(@=7MGnY@peD&RJi*G%Aiq70C$nDLG#Sz zrYY@`q?9v2rdUp3vNAWdqaVq6f8Rz!J(MB_zyrkYXbT7wWN3xPTK(J@sP2F3|90{> z0!Yh_A(lg3TKqpzKl=?7CLy|>epNXHrof(*()Gr13BKD(^V|g)5`Ud?cP!o=hzRU6 zH9eHe5~txt?mrKe|NX03LPA$L>kuU&Hl9_ZcCq6dvaW_S7if?59z6LOsqM`+d1#fDk^Heu97<(}>45E+9?Zk;7&mG8FzLIzV1Z~=a_yrHR*NBuk$D7Fm19El`hsA_3 zY8u)hHH-J;=kzm+q6I*u6iHb^AT*3pFWUeD;~r8Rkax?b3zQs&os#>v+ zvPHD1f+u=RET-}O`nFf`(tw`w0)!-o$NNOiF0ni0C{IUB3Bod$SPsN-G66X_>NxRYZ2Euq@nWv4dn7DGeJl=wQR@;u^EI zAzUbUgU{n$d3XpzGNno(aa`lP97;4gXO6!SdiYBeid@SL4 zZ@VhnYActvm}0Xuz64|cT+i@Tm9;h>`*L#7Y$agu$S1-%kBbRU>j#ZwJ$t^)B@n6% z!do0Y;`Xm9tX1=dwVR?{bMYx3z=@z6xpyIAds_=^irdYfTCCp(3b08U_B#C$bA7>v z<7}Q4`6_2xJkc?$mLL9NLP1aEg8pUq!N|n;lM=tHp)cs>iieaoA2E3g*3p#EeHYA$ zQHsf@&(1DTd?PNaK+Nx?j_z4{o_ZQUq%Gh&=KIz~Etzw^`LPKR{&4KB#AcAMv%GEW^OCOZ@* z&Y3kn?ZvhP)JLjEhg{xo-F4}*W{WUKC+R}m_ffwn~xFbTlqac3DhAk+u2f)7WR#k5uT*R@3LbB0A~rv z-o!Rz@-+~FT^d-8K=>bD6YmjuvD7f0t%S7x{a6;sklYnZ7)DI%mcJFc8t^OSdvZ6B zuD7<T37to z_rdy!;#uFHda&j0Roj%df1p3yDOuijh1&3t+{!Zge0+gdW%$w0n3>`5IJWN~E!!Ix ztK;l$M<;V{$eyxS7jKj`NiRcrQdy!iO(e~y3FoOI@B-^x&a6sxy{69ricZO@uY42S z6{Mk?tDfH~NG9BWN>ofMKrr+px0@hMm)%EJGXU?O z8|CxoZgD1HsL?ie>2(FpB*QvZRE4+KW=u1}$8aJ=JcDO1oyX7 zI{|f-+m~5Y43bF-qNncwS7~=O=e|Uo8JKe@tkJk$BrGW8EZ*SUdF0IZ;%->3A%x|h z*(wAcT`%6%dqFoSYp&|J4RB%*0oQT1t6bghZ6ThHW2>qXh1z4uxVuqCa4H!G?9WUn z8G`^%Bg#bVi3tBQ5md?Cr*HfHLlv%eG2XEQd8Yw1g3hPb z@`ARiM;79ox>{rf<>x7-YJ+hH<>pRDBMtFkAb)pVt)>E5t;E$DNWJ~{-|u8> zzpK;FJoRoqYrjcJnUrkCZY}P4FjV#D-L~C)C#rHrlF!bz&nh3E>xN0uvrs+Lp(4$O z!I9BDUn1SPG3%Q9nq`Eyz_hK0hxU!tEsV^Q+VK*Tr;WXskK#(e*6xHt!U(&kiS3i& zzoQ-v*>}vc->)l2H#8GBWZyy|$fb086TNVCgIMwE?XuTyeHpYvJK&&Ei?Mk^l;c*S zKK_J^_M~_IPZNdUpQ&R#-C{=Fsg+YtgbOob&9ez$&M=8@D$uxQhM)5$*g7`o4X*v}L&{iq1~_jFOKPJ)#=kxxtfW*q0Q zSKw1i=HR*;To58%AGmi0yNT&dYR&y&{oINTk%ey@p;|_-KPbojkbd&O*uz5@vtXmu z;}JUWjq%7!a`x~MZ7;9auaD4lR=XwtDje-;BRhp0xAi!Dgr!k8(%96O-|L#glfY?b z*2D4V1eMg9i;KJ=Bxl3g5p$mTt!{SDwXRVRM2R*4Zo-oN3rn2Yk`HFNllSvp()x@S zt4aa8SXD+y^hdQmbwl6L)v^5}@(_Ca?hn-wublaLYe|wgB>vVNn{C#4P@vGz+b|aZ z%V&gOoW86s;_&ZGNH`ZsNNvQ4HW#hiPat9-Z)9=o@BKuFqlApQk#uhq zmpNphrEfqbTTnaG_Up8|ab|}QWni^RhNm?ns-|8Hu01|SGhf%oL4S9Rhqa$HA z9Pu{sQ7_gnnQ3`{@%kfNzd=gmQ25?HU`-BFH1)!2iyJZS&~S5ydCV4Z=W%kcqY`wR zo3WIFC2Z|SkcNlePhCwK-*H5}f52)W(MTzKIdXvey;$ChvMP{81$X^oFcqN8&pbJn zsbn*dlIjcohsOoNt0phLmryl=<-BfQ8hG%xMbIxjYiB~c=7A?9VE!o>9t!3n`tNX7 zL<>oV)|T!*L?DCp$-OlMgZC&Kcy4t+6E|!cN1T*;ORO7+y+(bJUpG1^G4}GlrZg@M zT}8{U{q{Q2$`2_b%?fS$A#Jp*G&l1JWMvxE(sBV5wa7%KbwVQ=MLchpwweY${08zh z4TOf*zAx)N64f3Z?261u8R+(te_=4~YopTQ8|)tV2ZHse_6m)|*rqNGQ1zBAA9nw> z(UjAK?fGIbxSPHe5kp>ePYxDpuGJN5Fc?F{fqStKb0j!U8|H+wk9`DQwlCUV3@Wi8 z!u@6XD!sSx`grY&b55_ZQ2RLsP`Ph7?m8Z=Juv=_<+aM1pgMx(=9#7(Ak*ve1}GHFZl>N!LL z84BwAz}#JwL8h&LBZzN3&debH!Y(86GS*plFnOxCjAv~1MIzSOg~Jff_9oN&>>ZCF z`wp2F?_)|;jZYcem^SXDGS?JpoMj_3qr1$qK1bauZCZh*ze8ne7nR+*WtfZ&=S0qG z2OEN(6_KxPOoNJ>2NHG1E(^+C)>d9~DUl=C-OMOVe4 zyMX+)95uV8Nx;ZLy=VGdkiH4IY|tw_rXMA=`b1^U_Ey9lt_+B%$ze;UcvN*$k9cjzy8IC<2lLCWOduot|pSned*ti~d@9n1>E4I+8MC*Ud z&HAx4P&b7ts8_d$7KOJGS0t{Fr{{d-gv!8{Zr)$|mFAp{;R(piRf~Bstq(-(Y^;FEU6_b}STr(*z8Lw~Kt|T_rSuQ&w+Mi)hM8jO}uOz<}OL%6;q6shreHQT=LhjYn4R{%j3=79X!s z=cPQYQz8}XS_N-`EL&O?&XsAQ7=Y!xl7UIxNm5OyJcTqmXgSwPsw~Y^)6A{~ePQyo z+`qLX<5k8S{y+J2u?&};^!tx8w*w*Tu802-4pc*$38ZtVt+Lm-@k4&0 zAIWFA6P~FjYE0G2j59`fyC>0q_h{t{6lct5IR(F#^=fpTuIVr9pNbMvp`8zG8tLj< z_78#aINd(0zQZGNbl=bsIlg#!P#{_iK~f&sw^yilui+e6ifOy|8hiYMdB3#7j*UOO zbgdunh`E?tPm6R$VH!#%KlHrPeCn(jDSsjs&#d!mdiA-?zByZaVmYaBSoX@hDd@T& z8ri4%%Inrfnw=EP$Xra5r8xO#bCW@k+B=}6)_zszvg%G!v)o_7aUhn(@@ixQ4>#S! zQLYpuBfXjH_#R2rD{VY_#O;Z4%=z&zdfJvGK|5LW=;y7=bDVK`c}BTB2)t5J>usjH zKH~9ycIYO|@h>{7@+Kymtl<2oyDCKe%RC&$bbK`5I|5>HJo*WDQApXi>AZx~vf7|} zlSDW(Al7!Jd4I

^(dk*{it$#T)fU-16+o^LESJ7cscIOb{|&Id?&QS-2qxQlP2h zzY>3opYwuzerQuE7?jy@u@tAa1^v-kkw~olrg0R=>w>?YdRb2-nEwfP>(+M4sryNk z0CS$#>SJ%~=byL^1$3$JpM3nv-9&scJ8~T=m{C^tNIB-`RLi53)6+Go!YXS~|J{aA zAE0KuNWCFd8C_^e4|q1@MZu)6lVq4TwB}8%wb*>J-yD^s3Az(`r*$B%0gRZOvffeE z)JNjCSshYqs1HM2trhYD(d@>&3Uy6g*ix5NJFYYruFb!y9DK~~`b7i6sPtGHlC{35 zz9X+HGV<(pJLiQc)41PU2(Il_4evGA$2Y3T^T8!*VfSi%Hk=9#jLa;|0AziGG>A4P zv-4jbZ>_$D!~yH7!WOv%JotD*+s@NAP;wcnidDY-WL6itdfLnfoiCp!K*s*A`Lr}} zn=eu*oW3pnyNmq6a~o}>S^lSVwoiP=d8wW1syxj%ucG8TtZ8K=Afq=~b9ej8+=mO99}2m(k|#Hh zhOMi|eAnfCma5$?fG3P18oyb?&|Ve_?m|t(WuT{ipi11rMxkLAj+@6;wWF~(<-)n~ zh6h7-VKvAG-KG%y2bzhPU)XPw;Mmh-otIq6a2|gNYn=ONvzWYPGw>!ESE3=E>jfyeLo8EfhQ*mY z?kUfSJLoyCYl{iSXm(;KjZ|HZYc zw`PD`b=nV@3GbG7vhS9T&OcK_eY#V}kdy`DBT$h8}~yi&hoE|Eu#5U>b6Ddk$jy{dKso# zALV_i>_N{85(yXxM}F)vYQtp9xk7ZmedA=^Tf4~JJ!Z{S<(TdlL#m!gHr8Y0F6gJ0 z#nrKBiGs;5H(So{!T+}fxhToli@E$nc3wdEio${ z=vN`TpCCkk{N4f*Rrt^8AjkedU7sk$3G(~7n@n_h@)w+p8QG@qoQEEEbrV$n4A+34 zA)mLON^<5bf2zr3z(^KJ50Y_+>uQ^OI#?8mD{Q}f&h}q%+S+Q}jM3-I#DC}8pEb}u zDA*i+R;m5*&V#}M)PJ-XM+QIm1%m$yKfiRkFDK*9b)kO|Z^(H~K$P@%?<1r`x6W8# zk;n}SjxaayY3MQkx8c{Xk<$wc?3&~5KM>xOMeKpW&Aj6O+c<5c*oM{BZe%h5){Uz4 zJ@)QN1iA(>pc0oqM`yHm?=zW4k@jQnAThnJB>Z-7tKP2{qw*RoQr{TJFm&Z)Z%?e` zM=?gj1{a{dy7an(rehboyL{@{2Y(yH0*qT&*@D*JQnvn*J#S#{V~VxN(vDpkSWex^ zFyLqbk#RZMR*|YmigAT2ndaFUnE#YtKgkp`Mavr|jclCki{!;DlCyJdfLv*O3}97% z0y!y>BrR_}JfSF02;&Za|btsb{GJ9FZtICb6s=!T)80${+r!W>JGrn=U zx|CqC?uZ*SII%vs#rP^xh~|1?ZVPdZ((S&GEz;h--u!S!_m^Mo^O>4L!zrUXsvXF{>veU$rpR#Dua`qP=if@+XoZYnxdp=SGM%NB1P30jShEV{8y7}%&9sozsZ za=4e9*LC5&%N_w08)$d|l*D+Q&}#WT`2IW9?j|Ri){CKqsik_@I@>15?NJSDpyNl3 zsTDG0K*>|-8U=M~XT>-)bpuMD58I-bFbEG8axl$vC!p_pkMs9>n*;Hf zxVk&Sf2F&o4I9VsCtRZHg zB5pVY;c-KlltKDUPbb!1d4*62#o!JC4+CJUMmo`tF#kzg-ERPt%~w|IZ6BnVLRhSs zvfdO&K)flC;feW0Rn4HTAZPTg$IH1YH5%wsO)farUp=R=B{ z?APtv3wsjRjPqKny+#!?wq@9LcT4StH?~g$Ey2g2fLtT#qRPGOFs$WrUev+mitj%G zazKsEWX+D&j~&TnJ`}H(r>QtUZoe%%XZx}fRAn*oaX^ZL@FoaIBlG+R`V}2JO|taH zMaZ>>q^*C38x07St4Q3r2+X|9Q*ueIv-GiB^Od$^ z$?#7-YY&NwINyI4mqzx)YGC(1u=~x;87nH`$~Z-g_ejyubw0N4yTstSnVe;V)}V`7 zO3J8~ijhn8_*&?-4HAR)i+o@Uwdzhb2WWUda|`zv(P0tAho1(w^6+Hz;A0$l!!5W>Bfr~rYR6+R7 z`P!&eKYSk%ME~f@b~SuY)wlhEZdWwL(JzFo{@gnIDFN*RYv%lCC*sKy71VxjulpRO zpMpXjR9P!@98^Cp64d+cRz^2Bko2b!P6yTo@V9}y;urj>#bN;pz|PFPZh&WztWvn2 zQFt>4f>m*0Z5G^J6poJ1OVFk(9=Xc3UmbmSAZv*X|NVXCTdV5~ET#V_O|Oy@uS1J* z-S`s*@K|>yJ*yg17O-u#9@MuyVyJ&VSR(rh-hOphrVEVYjl!3ri?3v1;qd>W=>AnJ ze{!8+1sItBI{xp<#`{^K2+MT(J^m}V5-u9{fAL@GN1S6A_5dI=waP!qXy8QsRkJXx zFn`e7+Z&SmuPXqERrC0|O?dMNt`a&|N74QMg@25zz%NvOiC1L#H{<~IzkU6GL=lW4 zPDt?2$U~*e?4|`V+5Xu7W>H^#W_W6TKHHYifG+{b54hMP&gvnbZRacH+o#A#QcO&p z#ugUaf|uByZy7pPP;=`^UIr$TCPV(SA;^9T$rw;gIhrO$wns~^W*>rYxwW?jsLxo4X3ngU0 zV9I!(7glq+fE~i)z!s%}v3}MT1-?l70*!~kogwbuaz(lEi$>=}Tdl-=oVUl}m^X>I zN~3YNacr?y>DGw4tbN1!&Lz$p%SCYB`4%`U{J~d4_vC7@1CO@YuyqebWo7E2m4K}{ z`dD1`yvMXb$fJi+xQ=PAtNWak6!IG0HG%%l_%=DC1K~8c#QlQVftvRIY6X(^w?0^q z?f*$)w*vGBwY1OUFXn0feOPGs1sD9=5J>*7DO%a~55fBCBc=ZT`1YJ=Gc}tNghjNTsAJ-2`lt| zxZE>4f7=YJ5Zp7;?+VY&ZbU#I-$ z{!#+yIj8&%5!~>_AWmVQQ?kjIDr44iMe8WVjJWSjHkuU$^5D(68rA^x{n zq@67j6cm@y&evIO6x7=235t03)Icbst+p5ft5I^qusNuFIrerhqr6IryeFU%&IZ@JxG5)YaLaB;&!-X-ys3?zttycdiuIQDo$1@FH_gJxVVjLXrtQO&-3$}mX&Y$pSQ9VzPyWHHY^(7GDdpF;n z57r>e9xtPI#9cmlH7YgVKCW@L7b9TCx9TbiaN#MU@>$6sd%bDmVXrI*?7{JaBROL@ z5bLVV&+H+Vs6n$$lp|r9lDV9w&k@;q55`QF3Ug-Qv#he~@xGBBDo)xR9EYT!hkIEEge)eFDu7f_?D>pc%;GR>m}<3j4ATY{m%XQcaf1MiXVuX_T*rTRvfm3f_r6q_ zpgfyJ9iP2BSlwft>PZX%>8s-8yOIDHdyn z3)8?>*HbgE*rvt8gf9?q!s$d6OlD8+Zlvw}Z`IKC$c>X8q*y83fdMo?o+YP#wBL6s zQhA}-z~06E`#jWe25;NzQCv~%^S-$u)GeP5b%Q9im2YoDEj-j_IdRgELGWMC<=AZ4 z-FZzpiYjsQ5dmYWt-K%o)-!u zpNG`ek6dd#Rn4p`vj;A5C3Uno_54?L!BD{VNIZ4Bm z=m*G3OEt<~&WLFRwzrSCxf%VGgIwn8SMTWmEINydr>2+wX?c@`K4js<*{poNq1HtU z{aW`=PC>yv^Mks=9X9M22F52o)G83UTtUo?HUFU72{^SQZoZi_|})=^j1t>XS_2zWNB z8C&Zw)>3?xDDLI?9U0M*4^Z~ihv~Sw(|gSmNN7W20IFHDZH9~EXPSc#6}bW-yfAd1 zFk@8bo6kmC+^>x;={n7#cXgGk=XCq5r8_5twW!!0_u9S46~Zy^Sz?7A*O`>BZ=2Ug zXC#;0?hpTsD!t?Y+}vn1cj8{?+}X({P=9qm%hieReS|L{d!poS~3(h=~V^~{AX1I+y~I_i-x z($lFmAE~l2Z#UFfU$$IOeR*u<2`@HmYXFiSnSw&{<+qZG4dE1{!`v9l>DbNIyww_$ z@Xq^vMLgR*fp!ae#@_5Gg%cbhWP6zQ&=Pk*-njMh-PBQ9`o_;rR9E9MEmEvBA|XdM@=>J9eVO&tbC6O^~G4{@-D>gCb&WMC`mV z8&^fqSfy0;!PkdMnRc&{7@mqK z*Y=h=`oczfneAqwv$C&eJqfV6lM``LfbzV)gxjGr4f!eKQd#?y-B4v=LqI!vsn^-O z)*T&OavRikkqiHtHd`A`u#U`WvWx#Dlzl{Yaio+wk#PRe{r$p;IwT+vlkPlcfvpY&5hrI=-Bn2B`whgAy#=( zt8`ga?9TWLO3YE)Y}<)MjN+6>;9@*!9hDD#pGSo=nNKwdV{&=sny8pj z;eUF3TF0y)SmnjQCN)Ly!Ht>ak*UFHL|x!#lDA*qVgD?0leB3>)HfvtXdlj0xg1mc zc027?T>Kpl?ppGo5RB91@v6P)t0DdU6Zy~nt67lR$w9_mR`XmW{m&jVqY@ukaX1p z@2}alms`sEYD{lJl&sh^7q((Kq2UKovZP24A3A}FDG)c7=cMA1qDqrr+696*?H3xI4f z-#p>Zfprck&Gh`2-pI1fYw=pMoE71#xr7VXO>Pg_pV*LhAu0c z>OS($&^Z3$zn&%zq`O7)KhWiW6)A(BZpMgG5&N6)U8-3LW?pYJ{vus0u4eNhYIRFw z9oqrN-5fm(r)p|{ECvg~ z07-t!0}9U|9_C^Oxo@uXlyuQcDy=N_3#F%;wm74MddHwgX_;eh=#w z_HCH6b*c_4LMp>lYKNQpjW@_Ga1A|beb@Wya#ZPS)-)(ATZZq+{dST7 zvl>){?nof5&%g{uR!_(zkRodpm5W(*1tUUz4Gtc{x;=7`V&1lK2ubl8(&*A!hwdPk ze>fd-)L6F<89$@seOuhHYEv@gk=B>0`fYUcwh1w(Sk{l>zu?1lw-`zzjt!CO3+#B9 zmY{`BN)@|E>2 z%khZS=p{GngO2Op+#Wy{F$+WOcQg04)-#<%@Xw5b1HDFd9khzSaC$v69TceA-WF47 z;P9s2N8YBk@eUi%oi{%IbnjN^=m5Ri%8YENL;zZu&0*xVE2Z&RxD&%xQe;v2w>R2ns1z24_A8UIENOkHaBsgtd>>Gjk*XL?s40;*;Ayc}Bn=$jXMuzXb zW{Z`gM6H*;@(;xGD)gvb9KJp_IE}Li=<#taa=}m|Lv6BHk@M#g>DK_xcO^0(JF02- ze(zHT&AsBpjSEg)`!O4@@uB48Ld#4;_ZV%<-`uMUCv0_Nd%eBDgs<|D684}n_W0UdD*_vJrj&~ zrjtV|VqXhrp@eu1(28oh+E;D;{LCQ{5rVBVzVIURQ6E3BtO;8k(2N}Z%67MfEB=&& z?x1+suU`9_%`1#o*O2GHnXK&HqFV=Zjm^*ixDKBOHFe^&$zP*T4F?ReDAg2mS&!zO zJ_;zD{YaW97LBZ7d6{BAmLTcxPt%fL(JIORe9M)LZa(+6lQgC--9Zl+2*Ym`dEi2* zq(YGnkAdP0an3Y>w{l@`$?WeV=!x%7e9!MYJS}TVoZk^e*=1N2iAEz|(}bp_dleA` z+#jw)1y@?U0l)L_BJX7H+>3x3NPJgIsN%%#RK z`C(DOtH`Ljq{?Ca9xluCiF<-n*u34HLhI?4c@M6`EJ3@;ADL+~ zA^iisvpWw)#!z9F*vEU{tfIIag&3weN*dLz+@_V}G1>pL~k)Q|TNhBJO}g9Op=|&A9?o_*6%#8P=U>F+sW+xco3aA)%|`7(+-ibxqCI z(Q84vAP>r=)DA%yHy*0sGi{)`E#r0-0N{kn33>a>_7{DDVmzeyX)3x$lo_jjlH~ss zrjmAQNDBx0vX~c2u$Q%?VCp}4IR4J6jx4OD=kCvMFiaC+7G%tqHq5{7XZD%#eQLU_ zbaJb-tmOo^azV(`Q4o{6Mv*prYB%T6NGu;7?IZJG8X@=(R_E8lhTO0@P8}(uRtFSyg$SQROiZ9iqPv;U$)6SuxuJ#0 zFBwX2%&%hHeOa{bMwIchA8iOy87gW~iha+}*;j>OckGu`pdjh+;Frc1JltGdTqM_& zTzbtP5psBe*AiCuB00`|2-0;T%;O+a*;b|UC4TKeh3$^V1)u5c>#wg9r5R&@Y8alr z5>{?Y7(hrlsap17tUR(iJ8Oby24B^-GYS%Y{iw482HSo!U6})Gu7vp~$9YuCD74K6 z%`iguy|N+ee%MOVh%u5lE~1loQn_cjjWc_LQ<$NyI}Wn4%A2z#24ms7Ls5iD&l^2B zh!Zhz>Ww!JG>U3>A}ma$!u9k8OIb@`ioWExf?HpY$${!j%3Mi7yrd@tQ3(nj#H`n@lpcGq~KdEXz zNPkWI|0LOC2Of<^9?1KS8T!8s&A%7ZzcC9YwVxS0u$apDUk>r-@~85zUi>ZF|K%Z% zE@?z%OAC%qOg!P(+s9M(-9Y&?+z?>8K}y+5?07^BbHU|I|EQD=EvH65uNFq=K4PG< zg)37Xc^Mh1^+IJY2z}{l$9(4oO(b4l4gOduqMwpqTzq}smxX>tJm}a4yy?wPC&nTA zb&2-V)iDHL+|6toc!2rt@)x*kll_R{0;c_VNZY%q7l2v=+B~rrrO7ET@N!W~g>p@e zkyilZHiQ&?-oMUu1CJJ49QD{Uz7X?vhd*G3=TaRC&et3M?wDH!q|}O6t;&V8=x(u2 zy}j``z4oxKqinTD%^Cr((H~xJiybOF8pR_4GH`HMagpmni z-}K#u==LgmY6a6EasbsPK)TJjm+Tos{g*#u`XAF+M#nC8DhBB@$5z8-m_{&r;q-__Q-Amh(@gh=l zfR~nMGaQb@Iu=q{9`n8WJ?%k5M6)}<_*OksNnk`DGYXilkV_N6hTa_DlkqC3Ce>R& zf3f7GLYm!=1CPB}7QGCK`?jf+)|N~w?XW4yk_CSY4ZuYL(Wr@?tiIFuqtl~%mJ@o6 zsDXT2`}ks^85oe8PzwWDr`jCj5Wv@lY>uyNoW6mxnrW7hXX9~x|Cw9NU3=O-Lg{b{ zp7i_{l0N9(9t~-|)o<^0eq!rk+8GS#(n8u5i{i37+$5w-nHmHpAnY`1M^tpdJ^v{L z&v9x$wx8ZtlsXC?RW968OCV3r%UCSpiQYZ4FfK)nJd#qDoFi_6-f&U3L*atWo3V12 z!5rM-)Sg}lJvIachid!{?pToUqv<7hZv@hWSyuL56Z1utr;J8DIM1?szbg@rFMFmP%( z4C-z3Dv|ANLJPLfeE8NkRr{gPhG+RS_*)e8U`B03*392`|+4C8-Z(m zHd#@d%X+m%aYAMe$*fDTdeE`62^@DrsOsO&(yoNZXxYJt<~i#p6Rl>0@;56PUj4p!QT%Apv$1ED!PeIAoRCL`eu$9Mrt_l zJ^%nyUn*HKHZ`2m5A`^-f9ebUX}q)9K3-$&rgezjT(OL7?94gzk+FwComzon(S4De zX7W29M3t)j3WJTjeSev{a9i>vMZ~Vh*wCQf7QR;7N?1pd9eU!35}T5YEyY(}4aqc} z$nQkTOj7GsU%S8VT%0d#yjoJK;M3MW+0;C@HOb7%%33^R!$1sd!W5Q&?sy40$Hw0E z`;jq)GVLx@FEB)%LNx~CO9W>q%i9)pumZ0)G-Jc1XT|d|oyY1D)ARMkdM+aLca7aP zDvU|n$I4)H@sw&OkW*tehj(4IdY*p31S(0t>OJxJo-eAhm3occLe-x$R;{xpyUFow zk2-~#$~eEe_eO6Us`XND-37BAUpVoC^D}Mb8S-KB7`tGN7#x?P@HN(78$)WIMT5=O za-(}^8@tE71qt6K6vx+y;Dw|r>7Yh2rIS3uO)}0Oth5o*#(GT;xKr73!#ZDq)ehXn zU3n?wv}+#k^e^BUf`hiVyh#N(ZL-?@mOhKLH5`?NJoj@Jxc=1x?~r#UirQO!dZH<* zXx*@SsN>FI?<$uLvA9&MR@i$XaRks5qma@!y@Vutwgl#@qr>aZSSat5F0Yit$Nzy@ z9e*f%8Q1Gi!Yo#+g8>H_TK(O{H>+o(`#+W2-Fe6noh@d*FIsW?NU`mZPSO@qx^P<-SY`8L18H<2kf(p8)mk7Ta;{&vo z)oYbBX1Oj&qd|3FjB0_N4$F@EFB2ZEQX;wT^$g8`-_ZAg>|Ngiu1vzwaj>YUR2O)XU(TJoXE zyIU@--vGcL$(9OD-{CI7{J<>vfP*>w?TVQE^)*-VX88-Lb=Pm2uh?6}!LXoSk-!~| zd?*du?5K}_yJ6m9Z6#ywb8cws8241}DL!GHuC4r850Ti~N^!!-OV8%OcBk=Dzwz_Z zFv69=g#G8!ikiFEhyt);LoTUu3Kv{$B{m>ViTt2I zhHokSwQ_n9X0V3G<+@sGfz+@!|H$qihIz)bCra^Km%&)O?r5ZU^ThC5EyPgaiXu(4 z33M*6S~WbOt?xeeuH0~)!)ma&md{Lhfuiv@V9p#a@^rxLt!UXumnZr;Ic7k}lS0*r zc~QgnBS>zGjBk&%StvTn`jHU{lID<2J1l}LUItntzZbk<;HQUfCKj(c@uZuEhhI67 zqwU~x8fYini#y7s$eUB&Go+Q zD`WmUUB3{eytB%CW!`qg7Pc84F16K1RI4R`-87Oj$g^SH#zpD97=cKvizeZ^5^gt= z-q%*-t49C{`%&$5A(f00SJM)ZcZW3SVY-2U#GB04)H@6WU6rU8sS1fDeWta-%cNrD z3-ysH!G#|x{MJtnvK$=ZpW52Tl~EF{&yFUPc%no;X*N&j7~9#sVvKQb-1xMVp8Udw zbO70udk#@}!@mKN4!UXz@pJ2C$6CI8e4Fpal&;A;pVy7igcdk3mj@;w?msG`%XjjU ze*se4keb4F0{JQrRmCH!JUGzSi*tFQi|}z+o^0eFuPLl;M&?P87BoAY)uSu{x|L>< z^P}22N$I>Lj#uOd)^AqOMTIxtwQS2-U?;mM4db4JWiy?6e2BO#Ua2To^~Ra{{HoPe zDYXe%WlJ#dds4X}6?dh3NzTlL@bnkq!Q&?PJ+Db49$mYk&f1+Yvo>ZuXQ^oIB@raW zH)&r={(N2dw!Fj0`csVpF${`_C12QdW+AvB18aIkNnWeLm0(Q1?k1j#C;4*b*~Bt` z)W}9w4>;=;LAINbYIaVPH!)ae2WYXzjc8gWXjq>}Lken<~Y2-FkF7C7ERVthQ zl&;;biCv=EyatCZvqhK97Nkh8gOW4t$Zk)cE$Qf~gTn{rR)H!*SH;A-=CC8~GxVf` z{_)_%$i(!2?G0s($qZqRP_)!<88c)$^G~`-^|UXYepX_f5wy^92<~PY169$J>Ywvt z3Ga~@v}S-Vz)JapUhb6Wj-rHvV0E_2;!z8diqzI*I6y{0*22$nU4;urbbkYcTgS`2 z;ycvtInyQF`0?XsM_0!sjf0*+h`E5T@3t$O1h_Hmc%^}c2Wx3<>%=Xkm3euk8cN-o z{w2lc-nNhEAliKT`>A0ZWO;LY6s1Cu45B701(`a1Nj79aH}1&yO?w7-Zi00iI-{^> z0HNz!Qx0`IP1M~k{@XmK-=aA!%+cV;qr(KPJP{J6A0vV46o6&$wxvz2bO8IF9Cw`i z`F@74ya0zUxkt;N6zG&4iRjf$xoPg;;P9hGH#Ov5zxH;&=Kl|X#eZ*Q{xi}c#2mb} z)I|Rp&WUjkQxV$Iar<$_e`mA*+Q@?o=W$c#iT)!YW^$1Yr(jvKe>V0}N@v+4&L;!m z%B$Ra8ew7@NuisLRg%Q44%*7hw)`e{WoHhG*p(}+z!UpZLhp<%1*nF_AlCXrlx?QJ z<`|(>Z4SEllYx4v%IC<$G1{hs+^+q_?-<8ZQ14+u%T(nMu^{Sf4#uj=Wo5E`)M%d@ z(@8DIj+6pG?Yb(Q-ktgoATE9)6UYOwe*5|WAW}JUJ&2YVE1R@Ji;ItMCX_gJv{-u7 zn7mQ+H{IRYUSq^bg#LF_$yL&fm|NRLP@)ZAifrf{AIoAql58OeTThp;s(ib*(*3;j z>xXhd8>hLsXX4GQS>OD0uqP@&PEPLhQ3Ql$EZ%;eEx66+vrec^9pgr}@3)W7@b(9? zmfA4j9XfFVb{WD=ZG8=hR24K5U6e$y8UzLgPA}2dC~Ds|frr&>Ew?U1YtnU^l2Zp} ziS}&mqg>F3*P23zUQOrH3%$I&kjf#Ibm|;G?92i8x%%eV%WGYC0W;H`sC1Ij-qYi1 zHhCbf^+X0R>0UKgo)^2bwKWCo>wr;9e#jJD)g~X*b|tVav?)2O2^3M2k#TX0@l`!$ z!B}2u@Iugtk&llL7^tjl?dD)vYMEL zTQ}`}4)S%r#?Z-w7~WN%`C)U}B=O+VwH}(rDRaha1zHzTpJsY;jMh)#D=V6qHErS_KhZEcCB9Y4rdMgVT$WqH?CXRN5*SuSaYB)Y`#>@Y6@3hOE zXCSj;>geu3-#qem_dRgbA+SdU;1Cmj2Y=%zo>aOT(kxKy5TP)6Q)%+|g2K8Ti_FZ- g^s%gn!pqxmzz)+#t{(F}xSL7qww^jh)%Nkf0C0+Za{vGU literal 0 HcmV?d00001 diff --git a/docs/path4.png b/docs/path4.png new file mode 100644 index 0000000000000000000000000000000000000000..4f65865e508744a75e444b5462ed1065aa29069c GIT binary patch literal 39117 zcmc$_2UL?=*Di|Nt!zcWLX#HVZbdpM(u<0UQU#|ksgb;e%x{;o!RH-VxMmhut zDugIV3%y1XDIq`%p#%cSeZ&5~bN_FgbH_RN+&k`d3`|zuMFx87}v3-FOhd%IP|IJy^-;&yRnCUO>80R_E#lTnA;z}c>a5B1NfHaC-eI!e$_uI zc;fcw%j0RM&y{@KVDHQ{tG#(+td)H1eDXGPQ*%1JudO&wY#}ge{=wcHKio6P*vE(F zw(5h&<1NC32dAgSQLXEStqfuUcC4$bi&&@PyEaL^ib5nozUAP?6c&#@wQ;z8`!-nu zm1Yw9Er)7Dc&NURnwpAzhem5QOnR4x>{FaU4gqaYh`rsr`O^Xx*ojVuWZv_VO<=ATd(hFKE$=FUlQRbwnV==-nU&ep0`CY zrVf4RRh{b0n%yXJ`J!N^*dEMaC7bEK*`L8E+>)B7dE`YlsHfn3yuFFM0U`Rz)y3!A zKvy2$^-=)LJ+3`GHimO%?~XC12rO%HJoCki7xnK#89(Q$_qV1{@;M6JH3v6R!6JcW2Wa$+Y2Dryl`Fk>jPW9ea)w{6e6yJ1kF!}yX@MUiDMrK)X z`tyx&0@LY+DCc_?-V1xV+pWdpD;hf3Wh8u$G-=vw8Raz94_o$>tAAyB#xhO?c)Bln zmWF@{I9oa?zy@*zI)cL7gF;=rFI3(FZo@TcSkki}Tj|t>&d5u4xkeQzu!L-Wc+?T3 z%IW!P0pFK~ncyjxLqQsP!g#n-$XqnB^9k)5aP321?5PX!D4)>^FPn$ zynV|$_c!2!3dQ+_2Ul{Q1f3t*HqAjwzX5vjbgfV+XFafc5UZ4P;_Q_I1}FCZ`676w zw?%~)Xf8c}pb0)PMCQC7sC^P;eFb>;@lt(1W8d}jTnw(ZUw4Z7dA6OkiK4x8MJ8=0 zg~D6cyJZVY#gIw|U)?N{c!Aq*-?NI?Ac2r0oa82KS0( z{p;JS0gO>BA7ZUi=nRu7yw>Q9!m0f-myW$fe6Jo?|s&G zJ2EGDvXn8S!Vh%v4{0gZHmp5M>pqMR&!)Fgu|MZJxNW{}ob|{)rP%uOrq>DJTccma zO4Qt5nmVN_fgK#g^jI{c>y%%kyvZTJEQnpv5;f>cQ`NAHsI}%rm+lm4>~sIdBbaY*W%jGd&!sFxJh8_^RyQmEH;b4c95I!SCp^a%TaNLS;TnEQ=wyX zcA4$df7y%TH5JiI@A1VFn|0X*t%-eMnTnO|^oZ5Q;+A) zKC@=}CzT*wXAtXW%$UDr<}8ajPk3xb>8EQc808g{Y;udW3+97#RaYBPYQoMD5J+=R zn!GGvkcgj|^3RX^q= zMh(Gf5f6hH*C8RSokbD_Sal|4h~S+*7{)TJ5ko<>V>YUMq|X)L*O_ZAD2668n z*ss&5<DG)5zY0S$ghvh0am0%RYLmegWYQUdtbWke?lU1fG8cEC$k%`T2Dqa!4U5 zt{)hlLhX9)AA&820Iu-En(r)OJgPnrFk5 ze+yCDYYMMT!Xc?wrqecqbRw8j1cf#S!iyC`R~@}iOIY8jZ1dGtyR07L6MsDFsz;w3 zW~-nzuhzZSz9ny-a7%NR+@$yO<6$ffBg5{(ZzY|*TGZ6Ku7Ls8QX_)BR1P5@p(z7A zkbsSw(0lDQTPIH*FMgS|b}Kk|;f;q-``8S%sfBCrN3xlao~$#$tA&dzWR)ylLTzWK zqvFox_|_@uz}BXTAS{`GS^yEYKG7egnj1olYg$87M)^1qoN#fnlvJ}-XzMnw*KK(W zY-4fE0d`0!GVPa}_IK?2M{JxWgq=bjDa#eCwy{~vmJ@-8rH_yW{?>$bZ=u+`C<%nV z9n(wN(^qaW4;~c*O^x}QER~KKG(Ub7u*1{~w(v5~%v#9lCtf(AWYZXbK4X1*q8$#&|shEkPeJaDIeb*|60NG6{2t_j` z();Z+?*J1FZI@=BKg#uxZh7~jx-)A%-6;R?g=m7n6+CF2y~y6n!w;_&ewbS zuUN~DSpSM03y7j;VaK-cAd2)Cm@t>+<-1d9tk|{I+4ZfWtV3c(#}7$=Ec`w@q>C9X zq-Xnk7QAi~aG5m1)klD#Py~MG-jEiEE%40ZtUDZSv~*pB;Wr|?y) zY^lguD{>Ip8qJjR(?<*8o0oj`x2Pj85&AOk%%;YhhgDa7WOU33_h2hwub;V<>Ad#m z3mOq8Z48+y9-UnC_l2gVrF)APkTO4eFNz5Q5fqT#-rK>a<=aMoi3mLYReGuD`?T)2 zV!|@8fyGmnT9IV6+=Y9GTFb?_kb10;Mz#AKXIq+{7-!CI&n}gwQ*A8IM>i|G2FoPz zB@UTtRWdRSi!GqTtrpUcHU2C*m;BknqlJnIuf8R-|JTgK>x)M5@XN4~IXmz0%xCty z9c_Uxjk>3@4C_^22&i;F!W0Mp$a?<7YQ`0zQN);>a3JiC5`AQ@t;pq!tyLuOr1>(cKu(2dobmu8HVl)BB6XNt3^>M%VPIK4v?~&lmlo zxAWC39_2<>dl>}NFKv5pTXX+H$}?YBVeP!@IP0hZ3=hMv<9QLY&mzJ>J6{aYj&QUo ze)DxyU9G&c_Hhy0PA_Fh39h0Aqh z{_zc5fHUi50BZW!{o{8^SKZ4RvJAhWlP8}Q>6J{`%p1cm7eAeuLR-elpip!mrC4j( zjS}6Jv2r$@ns(4y*S1)F);E+FUO~Pt|z{eha znPw9!YEooR3w-;rw|I=Y*X2|&0L;oi!RefPo}Sj zIVD}sF=S|>+V@{-T8Ui-%eU_jfERt|KTcyV)I6}rL4X6!SLrdwW;RD0ygY#+9$Voo z?k*+9YDZr``TA#B?hM%0w|%9qFX{Y|zNE?)(n!?ON}7Yev}E1})j$#~uQtq4oYB)u~W>bOSXjpHGwpzt7w#lp9__q0(g)1spKV9T zH6{`z$%iOU<*e#W->L4unoNI+7oNv=J_(DrRSrXUm%T|JKe4sK_{ohVAy&m)hI{O3m~syXLY0 zvuh%pXf!GP`x^9CTGU}_xuS;I&`DXOgjNG1^QJqD%}7CpJBJ-Lixez?ui%pswAmRm ze|GQ|!Xygc+WV6nS*sh{FvnTsFiIa*xD}b&aB;s+HAsVttB&mRQei6PFU`vQ;X@NI zwlC)x7AE&0QRIXzzuYNi9(yN`=wmkWx8>qvGIB-WS3HPXx=~#$Gfd|HJ}jh_`nDJ+ z31#VP1Izj9UvgfCYG+mNY_8>|7(L`Jlkl~{V+vgJwkpdF%nBc>dEpE2wg&T}CvuQ* zG@@J0Z4y*Itg4>6TU%DF_TB;Mg7?|B>Wm9j0ZaedR0CwLPSF|5h zwCzP0q83hrZaNpt7vQ|0tfbU_tLEgIEqw3G3kdc19nB^ZeLCztI+i}lS}=Sag`0;K zi22Wl;_tI0(%Gj>nCYw>S!8i=-)g&F_|^*1qtt`GVP~Vp(CiQV`H5Q?q?hI|zOhKq z0ieUqk7C_at-I+^zF{^a&g_=HzCH(%e4I2c*83jL(>8POlT5viT>AH-^HvTf7t>4q zT+9k%?loViDcIX1=N8P*gf8Y_=Np{^cJ(#uKN(-lizM5rBYPCvTgUd7Py#2WKrJc- zdOy{=qJq+HcB0_>6qoUP-4ruF$Dz8lT%&BmZ%FqpzyoBL@uC zeDER5weRRN-}>kUk@wE)fMKCXHGp~1+1#kD-e%5b0TxOk9$}hqxXFS}{5zw*|{@ z|B{7z65|xADG9*iUDV6Ty~0D|+JzS6;W-;`=ho_}F9B5+%++E2#{nY^Lo_3+PnM|l zvXH}E1Dy5lLZy_IJTHr9(QyT!vW|a>>Gug}1K-0Ie@Z8Jy8(|IPW)mwW%;Hjcw8721H=ltY3LysmOc3Jt-oHlG;01Mv2(;&IR{d`!ei6tEFjSaBxcpIkqF z4B7%OFD6x>dzKHZ%MyWUju37#iFF>bO%GrM|4={mv=N! z3}3>jDJy{2^K#+)46sHgT*OWnS-#Z$!Pb#rGuHfE*E9TFTPjohud46WV=hL0SVuv= z&XkiH%+^j`AY|y>Z@<*B0RT*gFmBF*4RDJ6Oy1)|QqFA0Rth^DY~1}U$W701?R&ld ztWH0+&5R{qwX?LP{Kw*LC%&QR4OdzAcVM__+FMV=wRU-*sXQP3N}W-a3~i9M-#r!G zbJji*u-ZeNsS~FJMOtS+SiQ5I*HV4!IH3rH+rNFbIR2thngCD3_6&?b{M)3oobOBB z;!(g0t%3%5Av@GXUh>lwlR%b0yT-nRdH$fv^YJy|ig>hLK-{~Lohtf#PkJNty0s`U z1g_n?{}25}b9_~PstdK&qGs=4Z)mw>%(>q~9VugN^{7a8-k(>5$0Z~5ewW-E*&m#gxevQ!4EU16 z-%`{JK~N+;7cvm%(FNb%Tl4fkdxkm@o)x`2d*ME;!wvB86aKJo@%&NbHBV1XjjEwUaQrARwzICGQ54}XR}y7raCahZ>k6>IRVMSC{Y(meEjXE z7Fwp<8bCGk?G}zvetQ&$*^^Yp_aihzeaop|CcQu0iX=fcxrQJT7}QeQi-P%KrT z=H$4)gx7fFSV_gw6!?We345bh4~s+S%JB@hPre7zs44@Sbk4eT;u4g`G_bGzxXlW| z#l|nWI{6l>Vp^#h5NCbMh#yn!iB|nAITro(5y)&boiyp;6rUHxt~IyZPhe1!b%kLn zRXks`@*pOA401XNre`n84mICpnUQE7)?MtGfV&R_tKz5N`0OKl`1G;vhRwOU%6!r= z3M|fkRY__MoIPV@HRHRnmWPmC+i@5ksdB*8PiV5PRg$y^`~OO!xjl547)e_O)ylhrukWe$O?m z54Y{=yWl#e&=KH0)@qU{2jvU?9_MjuABPdEH9yA&Pl0UBHUtYBNP zT5j}Gpzg{1U=azayb$+2Lb*^^_rikb%>EFqS~*pWmA&E|q5QtES_NPG8Qk%-{X#U{Dm2*O5D8zFVR-@^LA<2(9!2qb$5jcAu-j2aLR8#sxVi`IO1 z*fpKVX)HwGw-6Wfl&7~5>W954i4|3+px|ltvaaWDQ=S%b&SQzo-CAa>&f1R9)Dt{GdnQiXNAM)Rs(p0 zX+*-ay%7uB;-Hws%Ny(BD`>{oq@LREkxv{UL*E$Jix=J5Yt;{~MIJ5>rA9`i3CJ2< zh)n)vGucf06i8?HgZ!oYJb*~}@q0bJ6tY|_lV7%8#`rcENTMkiMz=InT}9Cs*h-n1 zEqouoRqGS4$#US()$rB+(uVsrF3KejuYxZmX%`4EnUM1%K70hDw(c zY0i)7!Oa@;lAnz7Q8j*zGr8(Lwc_xt7aTGDfa-q>ipJwFwg`MehN zbnx2Z;vKN1!*_)jgzoN=z0o*Yb&q6RmrKA5MLQHnrv0TjBf)DTg)1GpbKA`={u6X! z16TWDYGggYk0PO+>f-UKMI;jr_sXWvhrcJ!uuoa?_dE+m9rJtK>Pq#U-H5H!n$&ZV zt%XAFH=sIfOdP|^8M4lFG;b<0lUy_Ci(FDWg9{wodrPwo1g<00@6OG z8^O3Sp`>!hmoR#79Ii8va%2_nt9+idnv23_WR`_|@1Z7{Yl(~CBG-l)#Isk4e@iqV zo}0C*i2i#gsVJH*9WS#D!iT#&hU^TH5{mm{;ku;nD@^^dNcQlB_hrl5kj2k-v_eZg zkgTW}2~3-^jp(ajr29^=9VIba<(}T%pO-oUi9H^9LN>aiBE6Lq$?8o)p16>dniDmYp-DuRlpvRPf_#PDrZ;SMG$%ADojGB+Du(_h11yShhZ z!`$|^sux@Y*BZ^3=6j6r;?5>tEzsrOu|1@7++^_rc1|C?B(2>TUJG!njg3Gm&e*3$ z34=7&zuyomkyXgtS{p52iwvI*U4*Az^3x>q-SKd^*#QMKI%K@UhdlVqOm3m2F7$LvMC)jdg|CyD!8bw~Y zPLrT2@0_do)W`fl7wn>SsbL^~$2J2%p&|DL(}aTef9^n7JH=^tfW`aa_msn%acB5N zAN*zi6-ZG&mMcKxw_GZA=iVrn70b+ieJ6~~XEQDK7GI%E1*u8z#7p#ohu=N_C&;;c zgQV~4u^448Z=H6NrxI2XY95?uPa@SF};}GVCQ4Ny2G_0bA)`DU-u88$VG12pqWX0531?+ z%*;%~ygSBOs`8k~&G(-EYJN(bT##$YoOw>i<%bsOM`>}FRe~_=w;>Rlfg^2A`6G&R zcYEH3m=!p%P>Z8Uw_%~n7%*sk2lvh+FPSkqf;Outn zMBOI`&78@^;uGMzuoDd_nyZ{%fo*P}SMrLYRE3EQ__hsdZUQ z&LYZG!~Ou%jSgA9H0=U~+|_p4ZV3T6*->lCY!q{q)Wjco*&nl(c>}DO^BXYM>)ag; zGM&zp5vLivM9`OaGe^mPSW#HR!=_vDC!zKvhbp6omC^p z^g$mM`9^5$HTd~Vhof*Qi=frR29gqEV+yOPche=pKjVm6gdL{}fWlU}2yBsIHi_dq ztB`H80C=yeG-mCcFzNY)hWKvYyPcfb8TfSZOk+|2JIq85LyZoZ6TCR=@IEvFBN)J9 z&*EKQn$7}64YWBV{C5@szHbwQC&QVI@B}J+n+?s_vVZCA_|0L<(J`CXS=TeGL}8;9 zu2TwVa!~`B%Z;Gm@kfRCvic4HSEFh38o>7qnA_Ya-rJ^!1}VB9(hPoHu-#&It$BvE@ff9CT9~I%J9Q^97_ErPn2}X)-Dy;b)wrCQlMTWSk_1JkC z?kRD1%Gc^_IA)U<@)e?m)oLj3i_$OTf5HG5SbI5$FyJW6DH-XCY1q{20n(1yz%(H%=@7@{J+}5c6<= zq^7;}EGYb+Ao($%&!5CC8FG#_@65Ugj5Fqj#QUBDD6e`q%-GsnvF+k1j+>q<{+y}@ zuiD_;cZugB$IV|JL=cz8fzQ9RoI~nmivjE#+gg;vcZ6BSHm*ug0m9udA81|=I36IT zql?hpUBX`m+5=*K2ev@{+XX~zf=rBxH%>lOd20%Qi^8+5RDU%UAt#UDs!`%Z_K60E5X~Ekynk-PjUQciD1gZ~Q znX8TcY36pjzp4h1y9Vg}dLT2M%?B$@B*gyl;dv$SNoxQqZdr_n(6b2Q0bxT~zj_@_ zz4`9L)}=v?hJ7QtF}kv0QU=c%QR@cYNExt#f)VDC(%rw%)z#H1Y5gzH>&Kt9=ZyJd zSjye28HJQ^edaGG|JMxvA1sy33-ajbD3Mb$GSK#~dXN7$^N*na6oRNl`>Y8SbDRbF zIl0mCOwSJvCA3s~voo3YJs;0ml{c)a57$WL2?1Sr+It)PO)tpvM5!c5SbO?puZ}Lc zQPmyeUtUsLk=X5}hLuf{FC>3>bUeU}9l1QgdHBbN7Fu+M?fAGzZy`kFvSbqAX(vqU zuaX$iNrRW~)t;)0CaVQFM*w{g5%+dopz-7@8{v}|zs1q4tPD?|y&o-Q#Nn)tCQJ?? ze9C8ac6KwugP;$L@FzYHFJ22q!h{Tf%c|k^#aKu}=KJc`HA4l3aWR@(e{e9(&b`dJC9yR59k}<28*3Vjl^)B1z!s{ zXB&SP0%>XTp?}VKdQOfHs!YA$SB!u00+IC9V2wr2xZ-BtpyM^JxK%Fm80YVp$lOTD zu*gp14PO@dXz-101VOJK^!DL>HMn;+6lSSng4SJ-G#_%^Tr;mlC8XLt^tW%2 z6LN|Qbqt=s%RST;O&3@BqwIJBsc3S+b4?%~mn0?}{doi&l{PHjtQs||t=fg?dA1Zr zF)bX$VLuo0DlhDDlje6@T<1PRDLGk{+pGyo*R_CJzscB8bnrrqt9eJbt8uZPIAnP` z14ee6*eaMaqOC0t_eCHxbYM|l_Nw0|ua%YmO)mKPYX8LniqC4f<};cy>-X340&ci= z4N+8d53=7H2XtGXd`kJz=Q-soM#&QSbFmpApLNZfqfYw=662ILm@8R}im|xNOf9Q` zswAHNW~odTxdYf|OSz2WR&br}_4`p551NF{4IeK+dbGs~CgvZG%RsodIwwFEb zv-GmWJ|NdznO?j(Xa#c3skfr~$0nm%{Csbm4ZMra69VBN_^rfmX@f(%IFnp)%N~g^=(PynMuoCB$b_%h zzV1;riy`-MOK4?TNL&afUx9p)j7l)N#CP_iL3C1r89b~Ty*d%lUSePUdzEHzzxvYq znD@ydfgORJ3zN>cF*Bi<|gq>sC z+^0`(&Is(7s=GfCkZC`=s2C!bndx98fi#H^G?fsv0{efA6}g7~T}Gx0d(7jTVkIi; z(WrT~k5%z?-L=2fU0HigL2cB$GwhJ-iWg~i19`!tGlS#mrM7M1U#{y0wKRcwM*YV6 zql7k*PU74FRuZy(%}P<@>z9?YvVaYFf` zRfkiv%(A^hi$YHBpLZhs2xSZ`zkh;NZ#i+)2QJy0jEFy`lX4n4?dSMFz`C>E$oe)t ztUr0yRx;s;Wj~@tOw1L3-I}`gHTDAW@5maG+LxgsPR8h4l!lw|P>e4sQr<6_1q(y# zkp@1(?;5JMikfPGG}r){cuG)kMy__4vK+FG#oakn8ToVdB%w<#8zSSxLaRU&3H*{^=E~v2sUt+gd0g6>Z0q zw?Cn9Ed4UlGHE-$vTQqnHe?!SS!9Mh%vTb(ylk!v`LsW%^j!jGBFR{uaqB@P@pxp5 z=Jjqp3KQkiR(i3bDI2wG=$g1cc@`299Kr3AH^<4_KJ18&5te5zkTOsvNi?QSSG-_? z>)`w7>ObddY*pQT6LZ4!D_Fv%c7pyY{^JVI?l=l{6?ZBXs>2&ttH=UWt_3W z+a9N7M!4|e1d-d$X8K8weC3;QID6mdzt5OP`DNzY^ZK){Di)b(NXsw>|J;m|%8eb& zH-I%qh{#!2IiA&8t+QOCL`>AUVF_#I5>rzXhNy?ua*=5g%QPh06Ghk;Z*CEl$2bKeC>>FAw(Ke#;Z>OWrzn* z+{;5VPz~Tl(W6!;FaHlR$B^}}Qk>g8u(s|3$o(@~)Yd=%ucj9*)cQ`;czSsOg}w$k ztv1S6JcW{~}oyyJYzL z`N<=I3tVlM9H9U2gz!Ib!T+>jH620kt$d>nln(vBmUaV0WG##Xtpz|$)t`fo^y2Z}uik>!|K;(wHIkLn!+r{qQa33u}D>;Q)AUse<-f=_Y0jBBGzq{v2* zc@M&o(U!nMMK-v6e%8Bxz)8``cCct;Hz%JT@Q8NPvwPK+=qGkyc&n!QuPg1Yuz-Ix zW5=a0t?88={4S`tzP?^vz-8sUG9cTR0>8eFI_?UCd;Fsl3rFv}9RyaPQtJk=4{|MK z-6V7TW$D6y@ekGOU@&;^XAIq?>r-A*0>~?IVHD4O!kaUo6TbsR=hAKYvQTKfazNK7 z$bA#&0~_l*ZV(X=372f<^u5Rn%v9a5$dqc$U&%FWgbLCEwsGxzQhOC0aF2&RT zRY9Y`KleIFRr2%E8G7`Wb zo^8C#Cw=RQ5;AeUgv}O{M7-!KvTg9Sn}&{o2RZlwDIaIaUxDZr^uRfBJB#zf1WPCj zxOX`4DI>A2PPkL!6^E{wYTvne$WFxt(wDdku8-gS{$okr;9b4h2q5%wshZVa-Hz`k zjGQ!aUF-~q3bV_GY-r_Q;lW5GW}FO!uiu~6j=cMT01GzG+4fWk_TF<0pVNStSy~#S z*AN+@8~zl<=kj;D2Msx3=u^3WRCarbbY_+mZWHz`5$q!qepyHI)R_e*&`?=92~%6# z)oL&WyJRh!%8|D6A>mg=FMu|Cr?&411kr*zO^N2T& zXQR94Y5P;wm6ZDxYt^3C-6RmRHQdW}d@|>^s^I2m;74h1em!SsCwcIsyb5@{jsM z6pB!Ndtm(m`^_)wo_-QyQl=3GdF5_qK$5aG({0Q8S>`EyWI&)BK0AH71?LAD&jrN~ zDf-2>nE|;}vD^8^C$}qXBdo<+aEBm+9lWcCwG@}HJ03V-qY;E9ofS(iGEMTD*p{uO zDk=iX7$h*#wJrq%e$aT1Zzc?>?(Oct?U8(`Fto^x(uAr*944h?iPk)H+>Med2hy?d zC{Jt0$)Ba_q3d-SX-CN2g0e2O>U`2$9uQ*p(qCb35BBH_i->;uHmPG1}Za>(l zkE4H?ad8xC<&m|y4fgSgL3|O)iwstQZ>H0>Usx=?PX1t_*C`2J&BZRt2mJPGDQ8%(f{x5ZoXW zc;84)g2rEp5L`4)3T^lMEi~*QXCPc{p0acPagadC#Js*q9dAt?ws&Wu7IC+K`0@<#$wEFinbfCMcGb+jMFOvy`$>SuTE04u~W4 zm9WQ&B}9&$KFUZym0J^{ZEw{&K{8$wF`A5bTs69Y=&?c_f$m#0d z0R=tMo*pPj3AuWavyD6-jg2b}3lwtd$D9L_>$<37Fy&r2Nt0B24+$qf2`)ukB4ZN;9gbv1Nr z0Ly|B(4%!G7l^TEEQ=qPCV!ZEUz%n5dD)*Cwbxpx(Y2=fWWQkw$Zjtp)f&T9#x(1N zbIZ3KNvLAc7q;%)tm(c(A>te>cCcEC}f=EqvO>V5o1rHhBNeGGGQ;f7P|WpCGuIlp^0^=xt22r zDcXrAXI$1K__5L4!?#A_v5@Jd%9`sMx?MwQB& zmfpQtb`ur3Hxdc#M*2Q3?OsE~6!H-1X=dj5W+2S{MxgIEyCC}&dvGqy$}wawSGfQ! z<6yHjV_AgTAag$^pb%gwh1lH}$~j?ceGT+a0i7(Y$4#oBe$0w6sW_*`Ut&H~G8<&z zPOww_mc+D=@I$fVkr;fCNw+1NqnNJqjsvQP0Bvg!DVMM_mh^XLw)dMe}dIi zx-)PvMl|jKf*ra8EFw;bn1JR#ia;OWiHa4mf<4r@@U^d>U3{mx ze`KanI#+3%TD`ttN&0wL#uYmPz?9F?)fJ(}i8&DfM41O53Nq8y=B>^Z#Li@jNIQIM zMy^xQzD`L13svX-hBWRu+-F7$H><=a^b!39XhJLrZ#6ur;2CtZQ*jaCc-5fs=*c@$V1v>Gl6$TL1fost@2$1ZTtxw>+fI#*h87e+c=1 zG3Nj?yZ(FzAUvP0rP6EvuP~J6Wr5=W5A7)W{FBGIssK*rxAeBC=#n+csWRW?XeDrf z=R8N-6QzI-t~~@&WvtTvN^QT)JNNtd#^^(4dJ-IZ+P7u3!5sLv`$zkMiLT8+G=ZaK zoXoxMYEH8lkYR!;GQXw#7um65#d*ih($Z3U=SQ+($=L@ova+sOehqOsuvv|=@^T|f zx*a;mi>7uSSP?(Ed%M2ydh0Wb%W4urYfJWifa<|4w*2+mP`@_a7yxy0vy3ja;Ire8 z0=Iz!KDY!$j0i_kc;ZZ&SE}pi5-?%r)#tZ;9yM)V^-9=E;sH^1>AimA3}&EDT_y2zNJURS@6qR<9x92PKy`7o zYNi;&T#55!P`(>v_Y3~--sy)^KuzgWlmDn2Eqx0Ie2T&n+v=*p$ z^>3Pc0o1z!{uX~mt0jaSsQIH;p6V#&62jVWd*8te0`su=tHQ#tyNy!AhU zu_tcUE7PG4w@v05P2cBUcq-_gZ1RE9`I9PR9^e=}lJPHcF~6<;lVJY0yd1K1L@%+c zC=I{S=S}(?n0DK8sDME%&3|8pudOGGai<FdD1Yh0M&#?@nynRX?d6+uU>BPjSD{XSIt5}hWR-aVMV%<%w7Uq4;E7Ue2G;F&Ab$okY#Qi8SVy#JETh%8daiwQ>7s_|kK2&Ts3XCbM zA?-}9gdn;R9_O`kBYiYf{?NVph^Zdluh#ixYs@=1Qemezk5n?btE(V|@*}2QC7d=` z8wi%qeFavt*F5y0u$k)va>awvkXl}0jTbcG)FH+wi@2rs+ zOFHW3_7TXi^$5jKz{jJDq8k+2x?bu-qVgaBdM}zR|MmY|;}yYZ6?=Po)sEL>7f)}V z^TKc{teUWGje8xU|1GoL$g$29IAhor&UE<=yxxX6n&wAr68I%~FkmUX^pTK=MTtD$ z#L^du8oynJ!r<;#ze!zc_lv&TV9a@C+RHfrmCg{WfpTEd6lUW2>{j(VlBOZWYshQ& zDsLfqbzc3&VW=*9`%Omem2e52R>}@~D9X8JP&el}W)hOsw3OV^>3U{2%$0cU53O8h zMTveM<`Zp825VUXvUA?=26|sPiMZLkzhL!CUQP>-(V}U&G}rjIdf6Nd&7gO1x~dAc zYLZY(TgcdZ#~&O%^e%XT;^JxIwiR0ZXflar=(-qBf|_fw>(m)+uG zvw^tg&lrj zSDnf9E=^6q$N;$q^|DaxG81uJI_X&F}BjKPb`6LUTfW26yKO(z<7~%`Dz{Kz^@S=KID)s@ym^I4i?hE z!I4Fj{Ff5AKHLT|l~;@gA_Z!%`HP~nB$w$QrOMFBx(uMm=z$P=_X$T#?N?ve0E7ZkMn*~`91!>>!fZN6 z7RANFjoUSrTaJHRP0Z46_LIQw9M|Zu7y29NERe+8TS!yA0AmLkzj>WD5!LL+yjrL( zFSa#(t?a12{NFYc?m|UI7jtFVlcgy;*e2c7_ibKxV=N~6BWfNbHH>+;yXh12!;AFZ zvPAYH2Aj9=R4E+9+v`VtN7oard0Huide-3bqWn&q44>X`_S6;cKl;8#O(|nn1#t z5v!SB`v;RryM)%$NifBP=yYevbZ~=8nyR*_umm71qIC5Z^wOfY71s7pVIiS)4T(u- z`Z7Rt#okfKL^CaSxy@QCKbLYsMWi#1^#s&`q^% zqi`*8O6QLIvHHa(jo;lL{}oQG8Zlq`i9MxE`#bXe{pQ~#?M7Z7q2qtlFS}R?jXTtS z)b+k~yEv3t66`MCUZN~&nk!LDuo8SiD|f9uF?4}2+`K#ga-3vR*m!%V9418~Z0?G@ zX;TPQN{txBvG*=Tw`z~P&?-j~ij>|M!56$x56Y%`gZcM#gNO6x`G4#@#hqmZtSUW^yxw(t`KMfDapkd(yOeMr$6@U5?i1~Fosm(04E*Ab zevMzK&t5~q{y1tQsbOn;Vq<08x?rF6Lt)TjZ`Og7LS$cVh;!)k(Q~rSjB; zbU>?jt$N&BRFK!oX;IP1X=#Ag=d?fxep3iyaB7TisPOimL% zXvvN8;J0eE!FKdG9|M2SW`_$t;{eOf$_AFqP`EiVy9o9r}aHBWE$)575Uu+ZFuA&CMWq| z5*FN1psAjgy`(>N$AWLA<+peO<``|b9Smm3CbZqG_J*q#Y%<^NpP8SEJ-wX@ht6debVzt(_ zULdrxc#i=mu3c_@%h0)2CPPiYCJ5gSq<^JhEe+gAI(u%_%dc!_Cq-RrmB35&U(|U9 zuky$JAGLjVTvOTFwT{ zmb=KMq?kTTyDyP%QG&q|W?W24_Q!!q4*R0Sc~m^>H!`zxf?;!3^VS<-Jq8W3bQQ8h zTl#j*HH1^G$w9x(T&e0ZzI^QqGoj$#Pt4#9`Rb~`WyuSj#Lr9P)|{$d&jra;WxV*t zlZ!awo0o6yu(8=hT5Tvu&0{Wg-Mom=7K+qt^eK}`3|iu?hw@)N@KEUiQHd?>GCn1 zSb}$BYV!Ds%830-O0&+*hg^jBlNxW=G$72bnn&@tEl0@|ainaY+{n;ql$*hij3&>R zaBpQHJLhB^Jp)W%IQx;l<&K61hBR)>yZR8)l{rU?xg*@XW<<=*a$A(y!tt?6K2)8}r#oG?9bk=;(yd0)=M*d%=Vz5Ur8HBC)1S{UCI9 zndOPL>xghOY_y*5hK*(UM2ra_k(>nNmUgjmC1PbHV|!oMNnk4yS|w5|kC~%x7T+Z_ z$LcG@?_ZAMs4`*e^YHpfAN}Q>jEkkRM7+OQQ-UG$K7$JiBIh*|wMivHT+0KZ+4{Lp zaw3Mr0m~&h)Ae}f%VrU^j2A^({k$Krc>VyIu$zy7rJpZ+#=u|Sb(vw^()B`6>`R@a zs>CEy1FV!@-AuNCV@LA6!UXq=uK5mi&@#Qf&N<^I2Orl=waUvfPAYmOTQrVvOcd90 zKZpArDSGGaXL8f5Hkis-yZ6Oaw+XKOjSky`J+Do>>Uqdl?S0I$8vIBzImKPa%uK{) z6=@qx^SKcJSVed7M>ID-~ z+>o8VL>8Ko4&lcg<120(g0se45VYFVH)9T)}_~scdR~#M?fmTYtZV-m#k1 z(OJ1BQmZ_dmGVlVG}k-YUZte5h)=%LhQfH+NiSZ)lKF4}*D14;1u5&^lT#f7UWA9H zCXp+%$kMC?4@jHMSHwu!EwU#Xqs{nGBocaN`ivdo#YY-c73JV~sN3~vRnbCEg?RO> zOZDR9>uxG-+lW=6d(M1dU}YxJcSFR46(!`_{F8@$$)hr!4^vu-`COqyOiAz{c4xo%V>qw=zU`$F#!cw2|XZ3j{b+L?;h)>+>WJ>W^(kukQJdGj>d;;RfGJM-RDKu-)l&~?1) zODNzTzLVQAtfykL=e^?<(l0YqyNjjNJivuZRSGnakWdeqp5STsxaBfLi}76^YA;_2 z#GO!CTs};?cW*{2|BS#cPwdkr?^}Qab*`l{2U1B2%ys#&=4S1o6Sf8z71#8bxRc>! ztMM|nMrBR6_L?X#`50t>QBR0v*Z1nxgJ)YQ+N@Ft8=3^ouKwlb;5joR#z;p!yLq`=V>uM1Y6>$ z3Rh}HDVb^z`S_}k;uhSkZ3`gK0A1cIS%uX)bOUFAsnpahP_K5Lj-mGNvqE=9-v}VS zjZuK<>W(23yT66^`mM}65OM+P;} zf&OU6;7Z~VH?Qo(`2FZj0t1MoXsZiS_#(VdZ}xDG9gITUBO3UqWx^OlZIklENnv{b zqB|azpuC0a>E0?UCO)%j{>`&`_M!&IFV6VliHJ{?`Yz(NNXooq;YRwFf;HYjm+;!t zc})0BYkqKQks}l?uP^kg=DF^qzU0?&D)}kac5GYX~oH^m^#1G)js+iCe)6$4!lkOUM5z8CjSj zVX^SpBAmgZLMUP&8|E#V57R1(hrArEj65_td3r6!euqp`9AM%(a6CR`P6CC0vdd%+W`>X$&8K=4piw zbe8dsMbt{ID`B(pR^qBeATBvZ?~?HXk-FQmB1pNS%R~CAAGgiHBy{&$Q#o-AaG4&u zc}NMFaNuX69=Bp>DBr<&@42xcyW0zJX(3t3vWABqethSf!jtYTNJe3boxV=M(4+=$ z6}A!!-!upt(k@5nQwG`hqWP_XNaxPr%E5F%g`$Y6D0?jX1fMcb95yx9w|9p!k8dfM zyG+Vk7)fo9+-~G1bWV_$i{*t(*g_+Q6-+W}JsYGJ#LTjfoJ@cQ3K(pY2lsYMQPYGn z^BhNvXXUdMU3}h5D5Y=A=YCaB?>e*uD<(Yr@Pbmxv=b!vH7;L8=(MBCJ=u~&uds=@ zVrO!tasj+Y^f|eB@MiI?Wwdh1gQ~w!tdu^iu-f8E+YXt#F>gz1NTraXoV}i<3TC7V!D<@L&?dIpJ z3$LextQaiP%rjNk{F0GpBb>HBy$!EH?W>?MDkPardZ^qB&=;^AvGjH`@gsRVIcv5X z-SwYo61tCck1mHl%89S#P{|KaoEK@I@1Bucy=S~^LM)syF0V2bw@h99WrXUTe<(uI ztsakfS{0hmTw0|V+BH!3}bY8DV0GNnPPpfr%jPCD|)SjDQ^GEm>gY zs#*JW(JuM`cUj{?Dpr-4LnjywL@Y&vdJ^S$R9oA&hAjqe6A|9ZYHFw<-)wR!;|t-H zgnnd(SLMaNh^A#{E2%L5bj7H9$#5VCb61nP<|PkBTq~RTwcG6$A*$dI>9t&< zNrfC#1y!G!fBUl^0Y%xY@b<8Ib9G8`q@`!!Wi8u)Bzy03b=3i>8qZD73g>Mz-)e(k z4+Gxb!RHB`GaM!At{YC>;(@{<)0qaT2=_gA`5bZ{ng#a0E>uw$Mb*WMNpEerE2F#f zPSAGn)t<%p+(%4`w11 zM+)W6uQ4X4Stu6~`(JRk4giFca0E3_FFa9mF2dgnJ`?y=+ztKe(0jJG-!W@mU^&1N zx#=x7#|%`EsVb<5kb~hd9M%6|+0ks3HjJo7owLbetC0j*#F9K|>jJ`fi3FEl<`jRA zX9koOm5&l858R;>zuHmEeNXE1%JFbjn}>1T#uo>u02RSIpatnaV@l0a32EIo+*Vdk z|*o&8UP5lL1%;7*G5NZ%=mmHrj1C z*Dov$%DV@5?ORMjH)-HO0pQ4Q_LI#8+qyGaij1k4?r4<06d;xg%(L z^XLz>za9C(kspjdo={6M->;9^ttQ)&(+aof)wKslf|z*C4|ldIZsZq~CUz<~%_?;Dh1e5k zyO^IV)AwDX^RE82XP6?@o>LwZ@^Ii0rk#um1MG=M1Q&~|EeDN-`RCcrqab9IrOmpyFKgq1G$f*dd+k7c$vcA4Rx#LSjn`D zfR|20!m6sUZsB=cb(2dM*uq# zk)4w2dvW2}oG))53=so zba%)x->IyB9lrml4$RVxr75E$PIpHF>6SeQfNRXWJ>&_4$Me!$i>-I0m~vdwA~x{|CgIb1#@@z?Prx~~R*QxiFi!X=MM}J#;c}($SMxp1FnOm=!yDyfA=@xvWEgS6%ZN9&SF^;JRw4SWVhG@Wx_?!{PKJzMK>`D2&t7 z{YA^999=yoOzlBqx`A$YPa8X2H9tH_8eRVucK({R^~MD~KqruvaF9b7|4<$Ag%6b$ z0|NX04D1J!?rU(L#IFASX4EyJZ`w%O5}l*h)%H7%9(Oui(qibLjMH>pk+o(hmxW7M zRL8d>!s`N5vScKLjEgQ_yUjesOuviXs2F`o2)r4l=wV+yk(3|4#$5bm!1@IzJMp|` zcvfdRwxmN0GmkMWT+QVOxMRQ_ZT)q%t=(-g_j}=?8R|?}&8&94E~Mz?dD8Q1U3*&> z{BIVL+wb}ol#53@f;6$8UlzlyuT;8YE7wSk3*j=7Y{-Dx%zTVoi^ZIwM45#-xoLGS zCCE-@t+M>y=rfn)r?WDqATr!SsNxk)PD#DA<0B1P5UR%#^|K>S7*tg0yhEjWLMm)| z(8q1cIvQ)8W@%r?=hlA3=#H72hN-s+Od?NsGcR<1Fc15oXsP;`1>UgeX-dT7L!zzY zMx1nJ-k?+BhOK6JMQ!u=RD4Es5;Hz&sb!V2VG)9>V#j@KEQSj=kNeSKikt9U8C!>@ z4d*(-+Ku@2$1&P^tSj)C#Jp{#g0S@Tm&8id^SGn8!c5qZno zYJ+|6knpM5@F!ZSf+;ChrZZBPOf;_ByOSTgEi0(E%S=_46FsV|Kh)5!TsotXpm0tg zXExMBq+0k;^>l&rJlq2|>e4+O6`d>m*!+3(N}Zi4bmX^~jYnBpIxnMorD|M0l*mla z;#Rv#qwDL19vli!}1} zh_6hI^5PR#aKYT36_3yNK^1kF<|_Fr`2mh4hYmn^@ z_=tsT3|x1{SZ}hDrBV={Gny>)4IRP5T6Hh0V$d6US?+oaQD4t&m2}lQ*ZZDc$*aV@WyT@zCY@t1byl}BT4%UzF%5B4piHdi#20f#)pR()HDGZsLHp*A>|?y;77 zg2{;q+r6vBof-JWj{EQTN)}E}A?Qeh)%(0`p;pP$g#i;Mo|V#7g84SEY3kK4+(yztj3OV0q9rxcqf3miQAehhP`&|$+3X$l zpR)1}4&)8j8(1twwO1O$Dah>ASwyXgJd~MVgHHSssaPb*0BDx*oQu_sh8;)iM- zZ3XfshAf_1Y%VHOgRisW4O*+u0CQfEmgt^^R@-Khj3&9sd$TYa-$>bXkY9aiRJidh z+iT#NFlDKK-kh$D+b|K5@ttH_iph->G{9*<$*(r#3i9&8fj+d?W=9$qCZ@nq%G7Bj zmT%7+_SsRnZjsG%1Z3BHeh&KgIo~@Yz;xfJYtxAz|=m;Z*7#+{d! zmv&LC99TB|5aQ6eGr(;im`OBf3OLc}ACP=>yD~8exjyAh%F3_;Y^!iO$%=nX&mXv9 z3lF=*{xO+~#DN3blKVS7=r2iWS$TQFLGJXC`*SiQW9Q}G2FuF14pq_X^i16On0}cNe0r&ixOGJ9nb^5W%^QUnH6N7DnarD5;%GPw#m^C$iC{_p-2oi}i%7yA_a>oTQCY|~$UMQx`sz@%O>5ZUaSAE-C9KYl_U4Tru; z2jAOMBT)7lNt{Eo(1qgKUOp$TkO8DWd z{IG@wjk;ATg#0m%*ghUL*Y;I7bSK|5AmXs)0W0AFp~|NZ3P#~aizC7nj+9^Eaj|2| zM4$SeM~2FVA~{u~hglIrkwG{+f6rT{?swI7^JJjuEq)T5ao8#0$2*&|;5%O*CaMvh zoxQ8Zus@c*tIK&G#8F`qmXmojzf26fFhn5D9sn^2+|^YN9)B6}`eY+Z9b4&zv6luqhUxTtJ*c?3bjf)WAQm7wu-8|gV8C9H z?AEF&ds#w-APJA%7E;xd+x+iV_yFc!n<$+t^o%25yu-Uy$&71(zvtT04NXI%HbtbC zgw5CL)XH+QQfo+Ye!1W*r?}L4^#sn&^zhb?iy?-X)m#}bR4cBT`zI*ZZTj>x`4T*6 z%#~BqvrS1*f%C|GMMaTPgFx5nFo$^l(Z?D&Tx*YkP-7{)y~N2# zsG2rkK2wy|-Zp2~q~Lv%ZJr&kuH+D6WAFQ3*M9;!Vz1s^jgli}em91U@UU$Sq07PP zBf*Ce49=GCYR5zVYx{=(j>Ld@>6NgVZ_8q$+jz%1fPY1B))&jjnIfpMMw66t`?~-H zU6~~EB-Jr{Akr|MM8M<5C|kE_q>K#wtYl<6^+~$JuzdwTcAF*{hsc?)PFqu?j!;J* zrowXEZ)$c|p=#vK*S@U~D;q$f$rgBNYXiHy0MB#zU|BfvS}FA9)&$n@{$iU!@}mF3 zJNL1MKKqOWcZ&&NUS;CdVqzXgpXK_*J}zDs2%cK0HwfJ9j4Aa~*UeXu$jV-MC9~XA zm10TR4r2(E%Q3U#`6Ol*yWGG}+z7NdDrxJ=g}2yxYF_6_mzwv96Z1iWUmDnmftE~s zsX5o*CPtP4mw0giC{2j`ZgsW}DdU)8;>Q8b)GQA@(%3{jAiSqIIA`3Q&VJfjU94D1 zg5?&Mk%k!E=-IASa0jKO=mFA@)RpVZoqE0{Y+Z9pQ+~B!%q{Gc!kd$-;ND`Ca7ViV zPV$q;98#sXaYuQKye#||Dd!qXe>QKwL)L(=A5LVGx>onO7dxov=`J<@+h>TigYnj? z)7oROj#=dhXnRb(AE3jo5YlNuzo*{gBz8p74|mx^N9ts$s11YbC`l^Nh;(>HeJe7v0KxJ7JKEua!f;8H!9B2Lrw7#dZj(<;vGqC4CB`FCmF;kzaac&n|h zVwe#Orba6DMXc;DBO)I!?@C%;X)qn#Nts3niIM>`|By83GU_%M`)kA(=R!F7m(qL@ zW?kKiJbA*?Dr1#|xKX-W9FKy4*F_dN_`@54JBeRFk$g*{@BNea-)|LeZ`o%?kVuQU zQ%TpAJHZ*WH}&OJdZ3259Nc+xb_C8N;z7Cw*j4Io^#^DR>i0@^7f#pj*BTK!kMY8N z)l#^7i&y11m_!SrL{VcagUl-|!HZ#2ZV;Dw#==WWQ8g-XmY>V}5bjApZyyF5S9|)W z3guYm5oHASbrsW70c^)UoCm;v?jD_wx1W4HLB~$s=j=Fm{&gym^^S(Iz}Bp6R_>}H zComhlVXsmTG0aMf9OJ-rteGl68dxH4=~eZhR0V= z12-jAnAqy!`X#!J*dFe#uC97gcTOnz>VF9naUw|f7x`miY zXB_CplKs1D{O^!YU=mbj=i-8N4gyiRTlY)nJGURkO+StVD+Usz+#PeB#W(Rue*hJA zy)nCTUamg`hP6zvhMu{v-=KS`{rL$#259c?)seoaBDmA@>CfDovqnKf4gErfqEwV( zbCif6JMd|WF1 zG|_LiVw5j`JxA=`r)N7oujWC5js+_;K(0%X*#C1hOC}c=mnv-Sm3Rq#Jl$2e{q{r? z=w*}~uy;o!`Cks9-I1pARnVeBZWdTlfox;X;_cl?>$){d_Lihe^8zEOP-dyWmM0*W z>zOs{C)-m~cMmq{AIq~^Amd1>r~oAT?M({W1}H6dAJ7tuPRey94xk(Ytg63`Y;Q&x z>V3Ddrb~$?J7~&f0OBMP9|nVZeqX0H!hu+lhYpDamXq;bI$hGGuhQ$j?4YY$ZM!zh5_lIh6vU3?W<`*?t{BnP z;u&Tv(%WUS#&VucW%+!?RCf83j6=)5`e4z_&8eK-S(J`dUs5kbM%#jfF!07n`L};G zOUeRE=*AxC)ECiR@Y?aT)6j;^yf@a&~3M z27GdyC3*ffokZ?b6O+9*VZ8xda|9u=%A0D=Rpny9!8~4O#&Ory4rT^N*DFY8ySJ zU2vP3?IcDCo%K4V3|s4GuV;!YdS}K-c>_$D{4`ZdJn5!P^U5nvQZ;LZqNKu~-g>Dz zUGoESZRbwIWCVc2kS%r(vM;f4<9ReLK{d{5=5xQ4%|M|=x2P3X zueUz0);Yq=E8*nJUY8YQzik@1rObB7i^3N9Se@CCZu@*Hx^hitG}l_aU1DlIM!Il< zG?a?*4#>@Q4NJFfwE8+0jkgAx>!2VN;){KbMQd#M@KU3@|6~U>Ykz_ZhPVFePy^4< z{sx16?Z9y?B-K8R=9&et??B$lo7hz>dwPBK$ntV|0i({3RY9jcmr7F%*Mdlm&_JR@ zJQpP^KO}^MyLh4{R5i4-$g(G2%S`gVrEh&!LXVM-@x-|W)lNb|u?X8qFH<3!k@8Hy z);_BC=1`$sJ8M4z_~$GEZ21v71c1w-J}9YcC?B~)9hCJpR_g7#48p@j9;0XGRjOm~ zF8nb6_9^7TZRNolJ1x`a&iGc+G_id^@r2)ztT05p?=3)=bE(S7Dc)11;-9=(C`_WpOKJ zt$U4Xs59ZvTk7_qzcFPkN%159yrdHuPHI*(`PI?V~%yjL8VwT_2WQvrZwa_w4B7|;^Ag9_3{ovNY)3AC5&G0%E zeR%wYdYQYh{x@qy#djWSIF$)(aF5m8Y<>C{wLb!45cVmA7vVAsWJxr*C;rJ=h@Gh%vN zBP^EGEa=`n?5QUqje1&;(7s9C@bsc(^E5)20oBi=*e3y$E$_ZGGO6*KiI-V;lKttD9nnv?wYy*pvH{ikkfCW#QZ>qNa0ob`ItS4^0m@!ceHEluuVzea}V1seQ^u z?;Xu}Y$>u54%u>WeZ7-(_*)L~n_dxZrq9t1EbygUGgk)_mfE8q&irG=q@Eomzb7i` zrLzIs?EzOEbV8Q%lS;#-JF3*xgyLRcN>@c(aaWdz9G|?qRtj-$ZN+!+JX|Drbj?r6 z*j)9Rl^zk|ek>X=^@+oX{%o1-AdrS&u$D-1VuDdygU%sD*VC7TjA4P$&@T{f1LF|cB1neB#g4i8$rw@O)9Vvmx`{5SY_&nzJh zFY}M(F{U%QPMZ`|>%)7lAIg6yxbM%yAqXq=!=}le8D!AQU@S!2)`4AdFr(%D{B69e zGrxryV?Q+qP*ic`V}3JngeRgXM^T!k1j2yP{~5=-PLLHJ)}PKspb|W+oBVBumvg}# z5w=$Nrtd&chasVj10eZ#yJ(|_3Max$Qj_D(j2z&Njo)AFiZhr{VpDIZHrywwypDV$YJdSKYS>%RP52tWy1J!jrmN!0e`sB& z71(IUooDo4nswv9Hy{}}hfuXLSdO3h}o${&>gG9=%EANvUuQpO8;ULEmRA*CJkNL!bTSH)Iit~sewLaYFcLNxuEIf~n6CR@ehOU2L7ggZL!(J*AAQZ+M#ua6LsPQs)s(Uk zz1Pji#CF2<%)Fc$NWK&3Ezq87buBq1&N>2k!p(3!W>tD}Zr89&&3|dJu2^g&AnXJv zNkHC?AeIv$#GZTt3ow{zIsrkP;teldosp?p&3yN3{_xPF%7Ktpf=h3_|K%_+??BSB z1!keP1v9G(UCmUe@VFwOuP(Jvk;8+x9HLmP*ZV7&yNhA&Wf9pqiYJ5NTE1p0srw;; zdS3D#@ky2YgR#?PbZx(3g_nt2bO##^DVlo46yt0;ULMpnX1hSU{Vx66AusbMUw2Yqf# z*j{0Ja4Z8yuC0KGY&n66xQK}8j&!pw8?K@ZLve}m+_k|-He1hr9R$C=4*qDT<_XN18&j!a^{F9&-=03?TsbB-k~SyEGy%WcxiWk z$F%rkaR9kLm_O0`%ncL|H!JJDlO10q?~OG?7J`O_W0)2S@Mi_fww;c*dwl-GrRRV2 zHP1U2SU}QWA@TF0*2|_NJNM8P(AhTEyhaW{|Ed7=_W1`*DXV-u)-j~^8545u5%xe_ z$GK>8?unK}*8j0|wpoe2U*T^dF2Qq*AZD)82sHsTNU9jl1rGO3u zV$e;+O}5}OJ-Kj-VLZ@z>tL6r;@aCCHWbY6yMDjI;))!dFLn3mK${q&XWq&5%_6Wi z`8QRN4DA^6?(be$!fFNU&Qv-MFlqL+Vn!(k=@&Raw^nM)`ItR18(wvfju%W8e^i!M zWC;`s2XFS&2-2vii??g@oI!DY&!nCS!#&r5)Kxm9vzR}ZCK_-NBQdp^rUl-=kxtuz zlJ*4rf1s26DLDnm=Rx5LdyKwwzcHGrz-uIiymNk$-`8wd$zIb=0%6@$EoQFpFHvLx z!N{Z!mn%W9*Z+0><_{yU^zqaLuOJ2-9*AQQc0)X3?Jm>!!g!*Td`Ejm)9zcI>5W3ZQqgZ@fSQQfz*#bf}19+ri7+tul7Y_bk^-UF9!b( zlkr?`^cCUpo7CKe5?v2c2eY50fxx_>9LzzQa~08nmPNC#=#`A@mr1vLX?Q}_b?3M)(B@TE>WOJP(+z^vR$VS7UPX9%CJ8P?th4 zy9`O{znT^h#hl93UxjUpSzo*Unxlt(_X%Nl^LzVy9_QRKUU;xIO$&({&>wxf0OpSURtl+HF7e5Z!+e24ZBR!{%r-q{_znh!$1u}?guKf*rU z+!-)8c79TsshxFAB$|2Whmrrq5C6EY`R(Gd8iG35`Wr#_=%MBNV^CsHeOH!_W1ONa zll-b7ZL%fKYGrn)R2W=1{YMN;5mmEB9KFr!UMvTX+<2V0`0Q&if-SDbNI4rj(~Tr$ z*mfSXmv>L^k4L#1kvmzsyDuWQH=&en7y3rbo}+rV4CJ>~J${7P_U!iBCdC5!j*hCH z)Y&5OZi#{9hPMm&;O}_=gY2bG1b-FX-QBlcuQ1JD*V>Kxn&dPRq(!c|I|r{)+wII8;+k+;*<+duv8 z`lk-gk2MO8xy#x##b^yIe)jqD0Y9pO7-p$LQ1YF@E{izjz3&ggTR)b&^q^Dkh#`Mg zm;yZq!%LEtBI#qt6BQGL!e>a)k=aDZgx~fpU`qoU&CvJZAKMKh6l8%{r~c(QyYy+y zeP_TG{r6+^M-+Me=dR2UN(JY^>6IM-yOW6pL}5t{rA<%1|Ks@G9T2+VQ>G#YW*{7U zBJ#DfIChE=x&P69^k)O@RqL3$R+jGWsD1vHG2zmVFYSr3C{YXZi_wh`7%q%(9?a>) zydkn%UBk*KFQN>aUo%F~m!Yad9q$e<^(v35Dj#yYdr~+~JBx*a*>IT|K#O*mKNz-Z zdvk^E3VeYrv{bmCPEBeb9u`U8`v4=zIQ1Dt4wEGYW5d+}A#ERbi3;V}mepiN0XbxQ zxe+nS9_V3wSSjta&Yg_Yo54!7({x5RFrIY)g$#o2m-?tO$_AyD7mAn-qxb2>vvz@d zQS@gpXKvnK%3l?=P*B)f?$CKGQPc2j?^+CW>s7h^$BPix?hP#g+c>_9;o+?TvmS2i zQyGWseIxx91LvZzQEFDq(c?@D1@z724Q^S|@C%v|H0sHHhxi|G;h4gOx3zCSOfE|f zU7qP@1`~v$O#AUgDf>I<($emp2o#u_)=NI@tL9Ew;k@+bDDMmuvyc#evokJj1A&{Iw_3kxJ50#RLjxrCwXb^ z_gY@|Jcjt-UR;P23GTJ21B+31j37e<%;sH7gj7%!#oq}7^Sjb93rlQiSt>1wrnaf zs`Qqa^e|VPg)eCP<8@@|pEVdzVn7IcU7( zA@mKCs`zw|E#sf|oQmstOeLx`YKgRlWSCb&T3kNipEHC9cY9rjg2C7v9|{ zZ1K}jskW_up?y)L8sQ8{4v)b70Q{HDd$CW7C3TcGW9AtG?Qmc*S*Jho+dwP=BPdeBnG=C1LO)Hx&bS zzK9ztmNl=Onz6g@B(3mfsUiux?k?M3;PNyJ8zgeA?NyATc*3jPbBW$am8B;kz%2lYlq%foBjT5lCC{Hg60auqB zD=upzuMOOilS0^CSvnTuxm`=nZVZ*L_LPW2c?bc2(@Ad)^FRJd*u?9a?9-m&8!chL zBpg4}Kh?pa{@DMxPI$Y_LTq_@rLa+pLPi}CJqX$}j_8xlzF^L4#WQm?+{*3kf!-Wl z?SN3j<9Nah2sm8#XOFa2GjBLdsLD!BtMsVrcc>41Im!?dmR)p=jR`Jv4C7ilFQZKG~_w#*dVwR<~j zDNoI(uA;F)_fR~{2oXaLCVlj|M)iqn)Mo+c!a~UW8h&(Yd|BgB#nKwTm9mdhn4{Xq zYUS5ysXYd`7Y57tzN+nuii2pWC?OvipF{(z?XA4RyV~2UO9{R8ADuT+ReXIHo4n_j zYTC=Z%!GWtJ^$uo9ud9b9KONN^kkHXz>hjRD=f&@ypMCmoT%LxqR=0DNhORxTe41? z9J!u)qyF`+(3|$Yk8|=vUO&Dnk6cOVGnezXnHw*sEH7!T$GPJ4rcQU4<}pZ)u%in^ zuMc!<;z(R7H)?~FEm-S_>rmV4$zQw6i5NXC0XU*d#;1D!As9gxTW8bE%VSYXO1Z!y zg^LD&KSr47Id{_P)ZKaF)w{( zPU3;JknSasv+W@ieq!p^UQL__^hlh4!P=CeJ`a~tBEpA-OU}ki@jb%ORfgG7?@LsB^qKc%%wWohf(!ELa#g zGX$KOZ#hL1U_+Jg!tv)Sqb-3-5FhmhT+27X&lV3VM3Npe?YV3rO)GN6u9_+uyTtLf zq7h?r9eRaU_G!Lmq!T(X@5?lpw0@PY<}leh4O$-mytGt!$w!B>N2gMdo0});+B9xp z`?Nl{y$u;<7m*QNYEYo65O6zrpjS>wOnjB-wvs~DawyORXOK)wD2KH?v0MFA(FU(0 z=0c|K*@wGzS6?rj{8De5AS7+ZGjS4`w}Q*D8vb}aFp-1&#a)FK9LiMd<>x5BUA&~_ zQY)888w;m~YccZrgwOVM93KlY_?k@GoG}0>;5~6#&}wV%+hQisaKUkT_JJ2NGVXWK zxR0O3t!`zpuzOJ}yX@~2#3b+-$I5SgW3Y;I9PBWgnw*oob&V|w8|jgR%5zp3$S{Vr zry1b*HU_L_6c$FO%_>EfAZoAKl}?NttwqjP^tEI7^tYUpU)6f}s7>8_RX&@m75==@ zH7rR1&39l3wZQt0udL)PXv36;yyiI57hjDj^~|8()vwjf7Im8vpZ)f}NYHBWTraM8 zfB;PlB~%KGt8ua}^t?)`p$;2LA+ALiP@(Yl@ffAkPm`hsteW0#z;fQC$E6E-U$W5@ zy79G8kT`g&7boso0+$beQz|=-gnKsmSzElq4KbsJ=h{`xxN8^hEQFrfCcUH%KJ+7& z!P)BrYo~r;4(&c%yVVk-XZOT_A|pDUJ9ylgySCph(N9^Zk1(XFpTL^R>G8Z(G&Cdd zd9^-MkjMHeDAhYIBith-FM{;!y;}@tsJTDiY+TIGl#X&M-P*H<&)5HUfEhUOJpD|* zxACNLH2LgX(fBo8C!e)(nT?Lm>+d1(U z?ZS0nW@Lgj7Bkhu*)_w`X}G>V_q$2L(fI4cCO=|U^9HP$uM>9f_%j984!xzPpAJr4 zZ0;P*6^WleT33MTE+}}iQ5)!{CUkaWx=4lCeoobDsIm|;OIq{`kR1;v@g^jCC488h z4m?p%P%d(QN${)^${IW{UR(&6z*A9vydi=NY*6!kaoK~Kf$N>5k(-?vnguQZJ`)Vu z{FVf39SIK$65;VZ%%5^4aN`DT#ANHty0whyTC?;>7+4#{WX6~~cc!aTv7$)G0ulq5 z!WW_&Z~R4)-Vm3}1Xcn?klnS`KO-Lhl*YH&GV(k_4f!>eN=^oNkwLaj_F`M}S0oG! zI6Ag%EY@!cgJqTCbaiJ);oYGPEyYB_1LpVhyec#^AC8uQ9 z_U0yCz3^p{#Q1N1C7CW5c^ghgv1E#TmAH0R)Vs*kStRHrSnpU+<8>dbg-csK|FM?( zJ5rU&*$JSNN;*Ol&~1R3kCfS_Eij3!`Qxb*f8W}RHpRA1zm?fMB)#>-@XXC(FJ4C} zim!AAcYF7L0s3y!)ZZbZ?FmPNvNmgvlP$9jOi$BTV9e%vXGnUe8 z5m>W+9c-#C+L=(2MfhwlnlWUmGy_F@kqNgqW9BwDR`4we&{SOkY+JH2anPf6H?Eko z+|MaFik6xOFFYpC-8I!+|R;$3e>=Sp^Q_D-$!pII-MX)^>79ilLaInF{bz+VUQvoOmbwG#9DjO{npL|- zlh`<0i^r@F@-hS_CN8+iBQ%w4qVUj;0Hz`H+61IpoezL#x}S)!g)*QKmAMwRn7U7% z0k^u9%Ft+o)(nl*N>G~P?3pU7qXbr0ZY&M8cTa4AO`__a&P~W_A;)W+M<%l|>x8wl zYepZR@(0vmYccs-gBzsnB+dEOp#kJLe?wA6Mr|vzH7{ufv*bL5mq_gNNa?(7mVfo`!~X{{3N~v1 literal 0 HcmV?d00001 diff --git a/lab1.ipynb b/lab1.ipynb new file mode 100644 index 0000000..f340c2e --- /dev/null +++ b/lab1.ipynb @@ -0,0 +1,2399 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Лабораторная работа №1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 7. Основные возможности библиотеки Pandas" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "###\tЗагрузка и сохранение данных" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "

\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAgeOutcome
061487235033.60.627501
11856629026.60.351310
28183640023.30.672321
318966239428.10.167210
40137403516843.12.288331
\n", + "
" + ], + "text/plain": [ + " Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \\\n", + "0 6 148 72 35 0 33.6 \n", + "1 1 85 66 29 0 26.6 \n", + "2 8 183 64 0 0 23.3 \n", + "3 1 89 66 23 94 28.1 \n", + "4 0 137 40 35 168 43.1 \n", + "\n", + " DiabetesPedigreeFunction Age Outcome \n", + "0 0.627 50 1 \n", + "1 0.351 31 0 \n", + "2 0.672 32 1 \n", + "3 0.167 21 0 \n", + "4 2.288 33 1 " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv(\"diabetes.csv\")\n", + "\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'df' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[1], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m \u001b[43mdf\u001b[49m\u001b[38;5;241m.\u001b[39mto_csv(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnew.csv\u001b[39m\u001b[38;5;124m\"\u001b[39m, index\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n", + "\u001b[1;31mNameError\u001b[0m: name 'df' is not defined" + ] + } + ], + "source": [ + "df.to_csv(\"new.csv\", index=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Получение сведений о датафрейме с данными" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAgeOutcome
count768.000000768.000000768.000000768.000000768.000000768.000000768.000000768.000000768.000000
mean3.845052120.89453169.10546920.53645879.79947931.9925780.47187633.2408850.348958
std3.36957831.97261819.35580715.952218115.2440027.8841600.33132911.7602320.476951
min0.0000000.0000000.0000000.0000000.0000000.0000000.07800021.0000000.000000
25%1.00000099.00000062.0000000.0000000.00000027.3000000.24375024.0000000.000000
50%3.000000117.00000072.00000023.00000030.50000032.0000000.37250029.0000000.000000
75%6.000000140.25000080.00000032.000000127.25000036.6000000.62625041.0000001.000000
max17.000000199.000000122.00000099.000000846.00000067.1000002.42000081.0000001.000000
\n", + "
" + ], + "text/plain": [ + " Pregnancies Glucose BloodPressure SkinThickness Insulin \\\n", + "count 768.000000 768.000000 768.000000 768.000000 768.000000 \n", + "mean 3.845052 120.894531 69.105469 20.536458 79.799479 \n", + "std 3.369578 31.972618 19.355807 15.952218 115.244002 \n", + "min 0.000000 0.000000 0.000000 0.000000 0.000000 \n", + "25% 1.000000 99.000000 62.000000 0.000000 0.000000 \n", + "50% 3.000000 117.000000 72.000000 23.000000 30.500000 \n", + "75% 6.000000 140.250000 80.000000 32.000000 127.250000 \n", + "max 17.000000 199.000000 122.000000 99.000000 846.000000 \n", + "\n", + " BMI DiabetesPedigreeFunction Age Outcome \n", + "count 768.000000 768.000000 768.000000 768.000000 \n", + "mean 31.992578 0.471876 33.240885 0.348958 \n", + "std 7.884160 0.331329 11.760232 0.476951 \n", + "min 0.000000 0.078000 21.000000 0.000000 \n", + "25% 27.300000 0.243750 24.000000 0.000000 \n", + "50% 32.000000 0.372500 29.000000 0.000000 \n", + "75% 36.600000 0.626250 41.000000 1.000000 \n", + "max 67.100000 2.420000 81.000000 1.000000 " + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 768 entries, 0 to 767\n", + "Data columns (total 9 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Pregnancies 768 non-null int64 \n", + " 1 Glucose 768 non-null int64 \n", + " 2 BloodPressure 768 non-null int64 \n", + " 3 SkinThickness 768 non-null int64 \n", + " 4 Insulin 768 non-null int64 \n", + " 5 BMI 768 non-null float64\n", + " 6 DiabetesPedigreeFunction 768 non-null float64\n", + " 7 Age 768 non-null int64 \n", + " 8 Outcome 768 non-null int64 \n", + "dtypes: float64(2), int64(7)\n", + "memory usage: 54.1 KB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "###\tПолучение сведений о колонках датафрейма" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',\n", + " 'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],\n", + " dtype='object')" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.columns" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "###\tВывод отельных строки и столбцов из датафрейма" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AgeInsulin
0500
1310
2320
32194
433168
.........
76363180
764270
76530112
766470
767230
\n", + "

768 rows × 2 columns

\n", + "
" + ], + "text/plain": [ + " Age Insulin\n", + "0 50 0\n", + "1 31 0\n", + "2 32 0\n", + "3 21 94\n", + "4 33 168\n", + ".. ... ...\n", + "763 63 180\n", + "764 27 0\n", + "765 30 112\n", + "766 47 0\n", + "767 23 0\n", + "\n", + "[768 rows x 2 columns]" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df[[\"Age\", \"Insulin\"]]" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAgeOutcome
318966239428.10.167210
40137403516843.12.288331
55116740025.60.201300
\n", + "
" + ], + "text/plain": [ + " Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \\\n", + "3 1 89 66 23 94 28.1 \n", + "4 0 137 40 35 168 43.1 \n", + "5 5 116 74 0 0 25.6 \n", + "\n", + " DiabetesPedigreeFunction Age Outcome \n", + "3 0.167 21 0 \n", + "4 2.288 33 1 \n", + "5 0.201 30 0 " + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.iloc[3:6]" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAgeOutcome
40137403516843.12.288331
82197704554330.50.158531
131189602384630.10.398591
145166721917525.80.587511
160118844723045.80.551311
..............................
7483187702220036.40.408361
7530181884451043.30.222261
7551128883911036.51.057371
76310101764818032.90.171630
7655121722311226.20.245300
\n", + "

243 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \\\n", + "4 0 137 40 35 168 43.1 \n", + "8 2 197 70 45 543 30.5 \n", + "13 1 189 60 23 846 30.1 \n", + "14 5 166 72 19 175 25.8 \n", + "16 0 118 84 47 230 45.8 \n", + ".. ... ... ... ... ... ... \n", + "748 3 187 70 22 200 36.4 \n", + "753 0 181 88 44 510 43.3 \n", + "755 1 128 88 39 110 36.5 \n", + "763 10 101 76 48 180 32.9 \n", + "765 5 121 72 23 112 26.2 \n", + "\n", + " DiabetesPedigreeFunction Age Outcome \n", + "4 2.288 33 1 \n", + "8 0.158 53 1 \n", + "13 0.398 59 1 \n", + "14 0.587 51 1 \n", + "16 0.551 31 1 \n", + ".. ... ... ... \n", + "748 0.408 36 1 \n", + "753 0.222 26 1 \n", + "755 1.057 37 1 \n", + "763 0.171 63 0 \n", + "765 0.245 30 0 \n", + "\n", + "[243 rows x 9 columns]" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df[df['Insulin'] > 100]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "###\tГруппировка и агрегация данных в датафрейме" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Insulin
Pregnancies
081.675676
198.674074
285.844660
387.453333
469.441176
557.298246
663.580000
784.466667
892.815789
962.428571
1034.791667
1165.454545
12112.555556
1327.900000
1492.000000
15110.000000
17114.000000
\n", + "
" + ], + "text/plain": [ + " Insulin\n", + "Pregnancies \n", + "0 81.675676\n", + "1 98.674074\n", + "2 85.844660\n", + "3 87.453333\n", + "4 69.441176\n", + "5 57.298246\n", + "6 63.580000\n", + "7 84.466667\n", + "8 92.815789\n", + "9 62.428571\n", + "10 34.791667\n", + "11 65.454545\n", + "12 112.555556\n", + "13 27.900000\n", + "14 92.000000\n", + "15 110.000000\n", + "17 114.000000" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "group = df.groupby(['Pregnancies'])['Insulin'].mean()\n", + "group.to_frame()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Сортировка данных в датафрейме" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAgeOutcome
66111997643042.91.394221
5610198663227441.30.502281
2284197703974436.72.329310
82197704554330.50.158531
57921977099034.70.575621
..............................
342106835032.00.389220
349508032041.00.346371
502606841039.00.727411
1821074202327.70.299210
75104820024.70.140220
\n", + "

768 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \\\n", + "661 1 199 76 43 0 42.9 \n", + "561 0 198 66 32 274 41.3 \n", + "228 4 197 70 39 744 36.7 \n", + "8 2 197 70 45 543 30.5 \n", + "579 2 197 70 99 0 34.7 \n", + ".. ... ... ... ... ... ... \n", + "342 1 0 68 35 0 32.0 \n", + "349 5 0 80 32 0 41.0 \n", + "502 6 0 68 41 0 39.0 \n", + "182 1 0 74 20 23 27.7 \n", + "75 1 0 48 20 0 24.7 \n", + "\n", + " DiabetesPedigreeFunction Age Outcome \n", + "661 1.394 22 1 \n", + "561 0.502 28 1 \n", + "228 2.329 31 0 \n", + "8 0.158 53 1 \n", + "579 0.575 62 1 \n", + ".. ... ... ... \n", + "342 0.389 22 0 \n", + "349 0.346 37 1 \n", + "502 0.727 41 1 \n", + "182 0.299 21 0 \n", + "75 0.140 22 0 \n", + "\n", + "[768 rows x 9 columns]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sorted_df = df.sort_values(by='Glucose', ascending = False)\n", + "sorted_df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "###\tУдаление строк/столбцов" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "df_dropped_columns = df.drop(columns=['Insulin', 'BMI']) # Удаление столбцов 'Insulin' и 'BMI'" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PregnanciesGlucoseBloodPressureSkinThicknessDiabetesPedigreeFunctionAgeOutcome
0614872350.627501
118566290.351310
281836400.672321
318966230.167210
4013740352.288331
........................
7631010176480.171630
764212270270.340270
765512172230.245300
76611266000.349471
76719370310.315230
\n", + "

768 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Pregnancies Glucose BloodPressure SkinThickness \\\n", + "0 6 148 72 35 \n", + "1 1 85 66 29 \n", + "2 8 183 64 0 \n", + "3 1 89 66 23 \n", + "4 0 137 40 35 \n", + ".. ... ... ... ... \n", + "763 10 101 76 48 \n", + "764 2 122 70 27 \n", + "765 5 121 72 23 \n", + "766 1 126 60 0 \n", + "767 1 93 70 31 \n", + "\n", + " DiabetesPedigreeFunction Age Outcome \n", + "0 0.627 50 1 \n", + "1 0.351 31 0 \n", + "2 0.672 32 1 \n", + "3 0.167 21 0 \n", + "4 2.288 33 1 \n", + ".. ... ... ... \n", + "763 0.171 63 0 \n", + "764 0.340 27 0 \n", + "765 0.245 30 0 \n", + "766 0.349 47 1 \n", + "767 0.315 23 0 \n", + "\n", + "[768 rows x 7 columns]" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_dropped_columns" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAgeOutcome
28183640023.30.672321
318966239428.10.167210
40137403516843.12.288331
55116740025.60.201300
637850328831.00.248261
..............................
76310101764818032.90.171630
76421227027036.80.340270
7655121722311226.20.245300
7661126600030.10.349471
7671937031030.40.315230
\n", + "

766 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \\\n", + "2 8 183 64 0 0 23.3 \n", + "3 1 89 66 23 94 28.1 \n", + "4 0 137 40 35 168 43.1 \n", + "5 5 116 74 0 0 25.6 \n", + "6 3 78 50 32 88 31.0 \n", + ".. ... ... ... ... ... ... \n", + "763 10 101 76 48 180 32.9 \n", + "764 2 122 70 27 0 36.8 \n", + "765 5 121 72 23 112 26.2 \n", + "766 1 126 60 0 0 30.1 \n", + "767 1 93 70 31 0 30.4 \n", + "\n", + " DiabetesPedigreeFunction Age Outcome \n", + "2 0.672 32 1 \n", + "3 0.167 21 0 \n", + "4 2.288 33 1 \n", + "5 0.201 30 0 \n", + "6 0.248 26 1 \n", + ".. ... ... ... \n", + "763 0.171 63 0 \n", + "764 0.340 27 0 \n", + "765 0.245 30 0 \n", + "766 0.349 47 1 \n", + "767 0.315 23 0 \n", + "\n", + "[766 rows x 9 columns]" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_dropped_rows = df.drop([0, 1]) # Удаление строк с индексами 0 и 1\n", + "df_dropped_rows" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "###\tСоздание новых столбцов на основе данных из существующих столбцов датафрейма" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "df['Glucose-BP'] = df['Glucose'] - df['BloodPressure']\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAgeOutcomeGlucose-BP
061487235033.60.62750176
11856629026.60.35131019
28183640023.30.672321119
318966239428.10.16721023
40137403516843.12.28833197
.................................
76310101764818032.90.17163025
76421227027036.80.34027052
7655121722311226.20.24530049
7661126600030.10.34947166
7671937031030.40.31523023
\n", + "

768 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \\\n", + "0 6 148 72 35 0 33.6 \n", + "1 1 85 66 29 0 26.6 \n", + "2 8 183 64 0 0 23.3 \n", + "3 1 89 66 23 94 28.1 \n", + "4 0 137 40 35 168 43.1 \n", + ".. ... ... ... ... ... ... \n", + "763 10 101 76 48 180 32.9 \n", + "764 2 122 70 27 0 36.8 \n", + "765 5 121 72 23 112 26.2 \n", + "766 1 126 60 0 0 30.1 \n", + "767 1 93 70 31 0 30.4 \n", + "\n", + " DiabetesPedigreeFunction Age Outcome Glucose-BP \n", + "0 0.627 50 1 76 \n", + "1 0.351 31 0 19 \n", + "2 0.672 32 1 119 \n", + "3 0.167 21 0 23 \n", + "4 2.288 33 1 97 \n", + ".. ... ... ... ... \n", + "763 0.171 63 0 25 \n", + "764 0.340 27 0 52 \n", + "765 0.245 30 0 49 \n", + "766 0.349 47 1 66 \n", + "767 0.315 23 0 23 \n", + "\n", + "[768 rows x 10 columns]" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "###\tУдаление строк с пустыми значениями" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pregnancies 0\n", + "Glucose 0\n", + "BloodPressure 0\n", + "SkinThickness 0\n", + "Insulin 0\n", + "BMI 0\n", + "DiabetesPedigreeFunction 0\n", + "Age 0\n", + "Outcome 0\n", + "Glucose-BP 0\n", + "dtype: int64\n" + ] + } + ], + "source": [ + "print(df.isna().sum())" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAgeOutcomeGlucose-BP
061487235033.60.62750176
11856629026.60.35131019
28183640023.30.672321119
318966239428.10.16721023
40137403516843.12.28833197
.................................
76310101764818032.90.17163025
76421227027036.80.34027052
7655121722311226.20.24530049
7661126600030.10.34947166
7671937031030.40.31523023
\n", + "

768 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \\\n", + "0 6 148 72 35 0 33.6 \n", + "1 1 85 66 29 0 26.6 \n", + "2 8 183 64 0 0 23.3 \n", + "3 1 89 66 23 94 28.1 \n", + "4 0 137 40 35 168 43.1 \n", + ".. ... ... ... ... ... ... \n", + "763 10 101 76 48 180 32.9 \n", + "764 2 122 70 27 0 36.8 \n", + "765 5 121 72 23 112 26.2 \n", + "766 1 126 60 0 0 30.1 \n", + "767 1 93 70 31 0 30.4 \n", + "\n", + " DiabetesPedigreeFunction Age Outcome Glucose-BP \n", + "0 0.627 50 1 76 \n", + "1 0.351 31 0 19 \n", + "2 0.672 32 1 119 \n", + "3 0.167 21 0 23 \n", + "4 2.288 33 1 97 \n", + ".. ... ... ... ... \n", + "763 0.171 63 0 25 \n", + "764 0.340 27 0 52 \n", + "765 0.245 30 0 49 \n", + "766 0.349 47 1 66 \n", + "767 0.315 23 0 23 \n", + "\n", + "[768 rows x 10 columns]" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.dropna() #Тк.пустых строк нет, мы ничего не удалили" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "###\tЗаполнение пустых значений на основе существующих данных" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "df.fillna(df.mean(), inplace=True)\n", + "df.fillna(df.median(), inplace=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Мы обрабатываем пустые значения для каждого столбца отдельно\n", + "\n", + "Мы можем заполнить пропуски средним или медианой, если это числовой столбец\n", + "\n", + "Мы заполняем средним, если в колонке нет выбросов\n", + "\n", + "Если столбец категориальный, то мы можем заполнить пропуски модой (самым часто встречающимся значением)\n", + "\n", + "Если пропусков мало, то их можно просто удалить." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 8. Возможности визуализации" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0cAAAHDCAYAAADvBGFkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9eZwdRbn20+fMkj0QIOw7CILAFVREFoOigIobXj8Vr4obKm5wFS/3ioLojcp1QxF3cQFBFEFBdgIICUuAAGEJSUjIviczmSSznNP9/dGnut+qemvpc87MnJnU8/tB5nRXV1VX1/Lub5QkSYKAgICAgICAgICAgIDtHKXh7kBAQEBAQEBAQEBAQEArIDBHAQEBAQEBAQEBAQEBCMxRQEBAQEBAQEBAQEAAgMAcBQQEBAQEBAQEBAQEAAjMUUBAQEBAQEBAQEBAAIDAHAUEBAQEBAQEBAQEBAAIzFFAQEBAQEBAQEBAQACAwBwFBAQEBAQEBAQEBAQACMxRQEBAQEBAQEBAQEAAgMAcBQQEBIw4LF68GFEU4aqrrhrurhhx1VVXIYoiLF68eEja6+npwdSpU3H11Vc3VM9HPvIR7Lfffs3pVIvgtttuw4QJE7B27drh7kpAQEBAyyMwRwEBAQEtBMFUzJ49e7i7wuLiiy9GFEXZf+PGjcNhhx2Gr371q+ju7m5KG9dccw1++MMfFnrmRz/6ESZOnIj3ve992r2nnnoKZ599Nvbff3+MGTMGEyZMwL/927/hggsuwIsvvtiUPrcyTjvtNBx00EGYPn36cHclICAgoOXRNtwdCAgICAgohn333Rfbtm1De3v7sPXhyiuvxIQJE9DT04M77rgD3/rWt3DPPffgwQcfRBRFDdV9zTXXYO7cufjiF7/oVX5gYAA/+tGPcN5556FcLkv3fvnLX+LTn/40dt55Z5x11lk49NBDUalUMHfuXPz+97/HD3/4Q2zbtk17brThnHPOwZe+9CVccsklmDhx4nB3JyAgIKBlEZijgICAgBGGKIowZsyYYe3De97zHuy8884AgE996lM488wzccMNN+Chhx7CcccdN6R9ufnmm7F27Vq8973vla7PnDkTn/70p3H88cfj5ptv1piC733ve/jWt741lF0dNpx55pn43Oc+h+uvvx4f/ehHh7s7AQEBAS2LYFYXEBAQMMLA+Rx95CMfwYQJE7B8+XK8853vxIQJE7DLLrvgS1/6EqrVqvR8HMf44Q9/iMMPPxxjxozBrrvuinPOOQcbN26su09veMMbAACLFi2ylvvpT3+Kww8/HJ2dndhjjz1w7rnnYtOmTdn9adOm4ZZbbsFLL72Ume65fIBuvPFG7LfffjjwwAOl65dccgmiKMLVV1/NakvGjBmDSy+91Ko1uvfeexFFEe69917pusnv6/nnn8d73/te7LLLLhg7diwOOeQQ/M///I9U5oknnsDpp5+OSZMmYcKECXjjG9+Ihx56SCozMDCASy65BAcffDDGjBmDnXbaCSeccALuvPNOrb33vOc9mDJlCsaMGYNXvepV+Pvf/669x9SpU3HkkUfipptuMr5rQEBAQEDQHAUEBASMGlSrVZx66qk49thj8X//93+466678L3vfQ8HHnggPv3pT2flzjnnHFx11VU4++yz8fnPfx6LFi3CT37yEzzxxBN48MEH6zLXW7hwIQBgp512Mpa5+OKLcckll+CUU07Bpz/9acybNw9XXnklHn300azd//mf/0FXVxeWLVuGH/zgBwCACRMmWNueOXMmjj76aOna1q1bcc8992DatGnYa6+9Cr9PPXjqqadw4oknor29HZ/85Cex3377YeHChfjHP/6RaaieeeYZnHjiiZg0aRIuuOACtLe34+c//zmmTZuG++67D8ceeyyAdKymT5+Oj3/843jNa16D7u5uzJ49G48//jje9KY3ZXUdf/zx2HPPPfFf//VfGD9+PP785z/jne98J/7617/iXe96l9S/Y445BjfeeOOQjEVAQEDASEVgjgICAgJGCXp7e/H//t//w0UXXQQgNXc7+uij8etf/zpjjh544AH86le/wtVXX40PfOAD2bMnn3wyTjvtNFx//fXSdRM2bNgAAJnP0U9/+lPsuuuuOPHEE9nya9euxfTp0/HmN78Zt956K0ql1HDh0EMPxWc/+1n88Y9/xNlnn403velN2HPPPbFx40Z88IMfdPajUqlg4cKFeMc73iFdX7BgASqVCl7xilewfY/jOPs9adIkdHR0ONty4XOf+xySJMHjjz+OffbZJ7v+7W9/O/v7q1/9KgYGBvDAAw/ggAMOAAB86EMfwiGHHIILLrgA9913HwDglltuwVve8hb84he/MLb3hS98Afvssw8effRRdHZ2AgA+85nP4IQTTsBXvvIVjTk64IADsG7dOqxZswZTp05t+H0DAgICRiOCWV1AQEDAKMKnPvUp6feJJ54oRWS7/vrrMXnyZLzpTW/CunXrsv+OOeYYTJgwATNmzPBq55BDDsEuu+yC/fffH+eccw4OOugg3HLLLRg3bhxb/q677kJ/fz+++MUvZowRAHziE5/ApEmTcMstt9TxtimjkyQJdtxxR+m6iJzHaZ0OOOAA7LLLLtl/nBlaUaxduxb3338/PvrRj0qMEYAsQEW1WsUdd9yBd77znRljBAC77747PvCBD+CBBx7I+r3DDjvgmWeewfz589n2NmzYgHvuuQfvfe97sXnz5uw7rl+/Hqeeeirmz5+P5cuXS8+IMVq3bl3D7xsQEBAwWhE0RwEBAQGjBGPGjMEuu+wiXdtxxx0lX6L58+ejq6vLqDlYs2aNV1t//etfMWnSJLS3t2OvvfbS/H1UvPTSSwBSpoqio6MDBxxwQHa/XiRJIv0WPkY9PT1a2ZtuugkDAwN48skn8aUvfamhdgUEA8ppqgTWrl2LrVu3amMAAC9/+csRxzGWLl2Kww8/HN/4xjfwjne8Ay972cvwile8Aqeddhr+4z/+A0ceeSSAVDOWJAkuuuiiTFOoYs2aNdhzzz2z32KMGo0mGBAQEDCaEZijgICAgFECn3DUcRxbk6WqzJUJJ510UhatbjgxZcoURFGkBZM46KCD0NbWhrlz52rPvP71rwcAtLW5j0ATI6EGuWg2TjrpJCxcuBA33XQT7rjjDvzqV7/CD37wA/zsZz/Dxz/+8cws8Etf+hJOPfVUto6DDjpI+i3GqBW+W0BAQECrIjBHAQEBAdsRDjzwQNx11104/vjjMXbs2CFrd9999wUAzJs3TzIp6+/vx6JFi3DKKadk14poNtra2nDggQdqUfLGjx+fBTlYvny5pEEpAmGKRiPqAdA0XeKdOGZMYJdddsG4ceMwb9487d7zzz+PUqmEvffeO7s2ZcoUnH322Tj77LPR09ODk046CRdffDE+/vGPZ+21t7dLY2fDokWLsPPOO3szwAEBAQHbI4LPUUBAQMB2hPe+972oVqu49NJLtXuVSkVjApqFU045BR0dHbj88sslE7hf//rX6Orqwlvf+tbs2vjx49HV1eVd93HHHYfZs2dr17/2ta+hWq3igx/8IGtep5ricdh3331RLpdx//33S9d/+tOfSr932WUXnHTSSfjNb36DJUuWsO2Uy2W8+c1vxk033YTFixdn91evXo1rrrkGJ5xwAiZNmgQAWL9+vVTHhAkTcNBBB6Gvrw9AGpp72rRp+PnPf46VK1dq/V67dq127bHHHhvyHFQBAQEBIw1BcxQQEBDQgvjNb36D2267Tbv+hS98oaF6X//61+Occ87B9OnTMWfOHLz5zW9Ge3s75s+fj+uvvx4/+tGP8J73vKehNjjssssuuPDCC3HJJZfgtNNOw9vf/nbMmzcPP/3pT/HqV79aikx3zDHH4LrrrsP555+PV7/61ZgwYQLOOOMMY93veMc78Ic//AEvvPACXvayl2XXTzzxRPzkJz/B5z73ORx88ME466yzcOihh6K/vx8vvPACrr76anR0dGC33XYz1j158mT8+7//O3784x8jiiIceOCBuPnmm1nfrMsvvxwnnHACjj76aHzyk5/E/vvvj8WLF+OWW27BnDlzAADf/OY3ceedd+KEE07AZz7zGbS1teHnP/85+vr68N3vfjer67DDDsO0adNwzDHHYMqUKZg9ezb+8pe/4LOf/WxW5oorrsAJJ5yAI444Ap/4xCdwwAEHYPXq1Zg1axaWLVuGJ598Miu7Zs0aPPXUUzj33HPtHyogICBge0cSEBAQENAy+O1vf5sAMP63dOnSZNGiRQmA5Le//W323Ic//OFk/PjxWn1f//rXE26r/8UvfpEcc8wxydixY5OJEycmRxxxRHLBBRckK1assPZP1Ld27Vqv91i0aJF0/Sc/+Uly6KGHJu3t7cmuu+6afPrTn042btwolenp6Uk+8IEPJDvssEMCINl3332tbfX19SU777xzcumll7L3n3jiieRDH/pQss8++yQdHR3J+PHjkyOPPDL5z//8z2TBggVS2Q9/+MNae2vXrk3OPPPMZNy4ccmOO+6YnHPOOcncuXO1b5AkSTJ37tzkXe96V7LDDjskY8aMSQ455JDkoosukso8/vjjyamnnppMmDAhGTduXHLyyScnM2fOlMp885vfTF7zmtckO+ywQzJ27Njk0EMPTb71rW8l/f39UrmFCxcmH/rQh5LddtstaW9vT/bcc8/kbW97W/KXv/xFKnfllVcm48aNS7q7u61jGRAQELC9I0oSD7uCgICAgICAFsall16K3/72t5g/f75XYIrtDa985Ssxbdq0LLFuQEBAQACP4HMUEBAQEDDicd5556GnpwfXXnvtcHel5XDbbbdh/vz5uPDCC4e7KwEBAQEtj6A5CggICAgICAgICAgIQNAcBQQEBAQEBAQEBAQEAAjMUUBAQEBAQEBAQEBAAIDAHAUEBAQEBAQEBAQEBAAIzFFAQEBAQEBAQEBAQACAEZoENo5jrFixAhMnTkQURcPdnYCAgICAgICAgICAYUKSJNi8eTP22GMPlEqN6X5GJHO0YsUK7L333sPdjYCAgICAgICAgICAFsHSpUux1157NVTHiGSOJk6cCCAdgEmTJg1zbwICAgICAgICAgIChgvd3d3Ye++9Mx6hEYxI5kiY0k2aNCkwRwEBAQEBAQEBAQEBTXG3CQEZAgICAgICAgICAgICEJijgICAgICAgICAgIAAAIE5CggICAgICAgICAgIABCYo4CAgICAgICAgICAAACBOQoICAgICAgICAgICAAQmKOAgICAgICAgICAgAAAgTkKCAgICAgICAgICAgAEJijgICAgICAgICAgIAAAIE5CggICAgICAgICAgIAFCQOZo+fTpe/epXY+LEiZg6dSre+c53Yt68eVKZ3t5enHvuudhpp50wYcIEnHnmmVi9erVUZsmSJXjrW9+KcePGYerUqfjyl7+MSqXS+NsEBAQEBAQEBAQEBATUiULM0X333Ydzzz0XDz30EO68804MDAzgzW9+M7Zs2ZKVOe+88/CPf/wD119/Pe677z6sWLEC7373u7P71WoVb33rW9Hf34+ZM2fid7/7Ha666ip87Wtfa95bBQQEBAQEBAQEBAQEFESUJElS78Nr167F1KlTcd999+Gkk05CV1cXdtllF1xzzTV4z3veAwB4/vnn8fKXvxyzZs3Ca1/7Wtx6661429vehhUrVmDXXXcFAPzsZz/DV77yFaxduxYdHR3Odru7uzF58mR0dXVh0qRJ9XY/ICAgICAgICAgIGCEo5m8QUM+R11dXQCAKVOmAAAee+wxDAwM4JRTTsnKHHroodhnn30wa9YsAMCsWbNwxBFHZIwRAJx66qno7u7GM888w7bT19eH7u5u6b+AgICAgICAgICAgIBmom7mKI5jfPGLX8Txxx+PV7ziFQCAVatWoaOjAzvssINUdtddd8WqVauyMpQxEvfFPQ7Tp0/H5MmTs//23nvversdEBAQEBAQEBAwghHHCeav3ow4rtv4KSDAiLqZo3PPPRdz587Ftdde28z+sLjwwgvR1dWV/bd06dJBbzMgICAgICAgIKD1cNkd8/CmH9yP794+z104IKAg6mKOPvvZz+Lmm2/GjBkzsNdee2XXd9ttN/T392PTpk1S+dWrV2O33XbLyqjR68RvUUZFZ2cnJk2aJP0XEBAQEBAQENAK6B2o4k+PLMHyTduGuyvbBa68dyEA4Gf3LRzmngSMRhRijpIkwWc/+1n87W9/wz333IP9999fun/MMcegvb0dd999d3Zt3rx5WLJkCY477jgAwHHHHYenn34aa9asycrceeedmDRpEg477LBG3iUgICAgICAgYMhx+d3zceENT+O0H9w/3F0JCAhoEIWYo3PPPRd//OMfcc0112DixIlYtWoVVq1ahW3bUknJ5MmT8bGPfQznn38+ZsyYgcceewxnn302jjvuOLz2ta8FALz5zW/GYYcdhv/4j//Ak08+idtvvx1f/epXce6556Kzs7P5bziM2LilH+dfNwczF6wb7q4EBLQsegeq+PL1T+L2Z3ifw4CA4cAfH3oJl978LBoI6BqwHeG+F9YCADb31Z+z8cYnluO///Y0qsGPJiBgWFGIObryyivR1dWFadOmYffdd8/+u+6667IyP/jBD/C2t70NZ555Jk466STstttuuOGGG7L75XIZN998M8rlMo477jh88IMfxIc+9CF84xvfaN5btQi+fevzuOGJ5fjArx4e7q4EBLQsfvvgYlz/2DKc84fHhrsrAQEZvnrjXPz6gUWY/dLG4e5KwAhAM3joH909H9c8vARzl3c1XllAQEDdaCtS2EeCNmbMGFxxxRW44oorjGX23Xdf/POf/yzS9IjE0o1bCz/z0Ivrcd51c/DNd74Cb3z5ru4HAgKGGI8u3oDP/+kJXPz2w3Hq4byfYBGs7Ao2+qMd5/95Dhas6cFfPvU6dLQ1lEFiyLFp68BwdyFgO0F/JU7/rcbD3JOAgO0bI+uUGmGIouLPfOCXD2FlVy8+9rvZze9QQEAT8JHfPIKVXb1N0/TEwWxp1OOGx5fjqWVdeGDB2uHuSmFU40CoNopVXb0Z4T9a0YxdTAigg1nd4KAaJ1hWh9A6YPtDYI4GEfXQfGFPDGh1NFuqGeb89oONW0aeFqYSJmhDWLxuC1737bvx+T89MdxdGVQ0wzdNTLWQu2dw8Plrn8AJ35mBm59aMdxdCWhxBOYoIGA7wJL1W3HTnOVNOcCjelSiFgRCoLlY1dWLvz2xrCUl9Zu2jTzmKEjx7ejuHcBfH1uG7l7+2760YSviBFi0bssQ92zkQWjRq0GbPii45amVAICfzgjhvwPsKORzFFAMTaYhAwLqxkmXzQAAVKoJzjxmL0dpO8rNZo4CIdBUvOXyf2HDln4s3bANn3/jwcPdHQldW/uHuwuFUamG+WnDedfOwd3Pr8G0p3bBVWe/RrsvBDKVYJ7ohODDA0M+uAhnToALQXMUELAd4cGFjYeVLzWZ6R/qc+rhF9fjwhueNkq6Rzo2bEkZkBnz1jhKDj1aRXMUxwm+efOzXuY1gVC14+7n03l27zzen0yMXhhGNwTRHoj3wUUY3gAXguZoEBEhqI4CWgt9TTC1KjWZOxpqE5L/94uHAADt5QjfeMcrhrTtoUQrEgBdLcIc3f7MKvzqgUUAgLcduYe1bPA5ahDbiTakGestM6sLSrZBRWA+A1wImqOAgO0IzfBDKTXZrG64zqnR7gPRisd/q4TFXtvT5102RKtrDAm2jwhsSRNWnPC/HO1jNdwIzFGAC4E5CgjYjtAMzVG5yZqj4Tqo+ioxNm4ZeT4wIxmtYlZXBIFQbQyCtwzj6IbYCgPxPrgIUzHAhcAcBQRsR+gbqDZcR7N9jobroHpk0Qa88tI7saqrd3g6sB1iRAZkCJRUQxCjN9rHsblmdaN7rIYbgfkMcCEwRwEB2xGaoTlqeijvYT6o7nuh9QIXNAUtSAC0is+RCzTk/Wgn6gcbSQgy4I04aI6GBGF8/bG1v4Kbn1qBzaM0gJEJgTkKCNiO0ByfoyZ0hKAZuZcaQQicMrig37dVzOpcX5xOySDFbwyZ5miURxloxiwJmqOhQXAj9Md//fVpfPaaJ0Z9EmcVgTkaRHAC9pkL1+HSm59FbxPMmwICiqKv0gyzuiZHqxtuQiDwRoMKymgkyfAzwz6gPRzKPEdL1m/F12+ai6Ubtg5Zm4ON3I9mePtRDzZs6cfFf38Gc5d3Ocs2Y16LKoZ9TxzlGAl7UKvg70+m6Q5mGEL1j1aEUN5DjA/88mEAwI7j2vHZN7RWgsaA0Y+mhPJuulldU6srjNHKG7XK8a/2Y0t/FRM6W/vooWY3Qxlq/qxfP4SlG7bh/vnrMONL04as3cHFyNWGXHTjXNzy9EpcNXMxFn/7rdayzdQcBbOvwcUInIoBQ4ygORomvDjKwwgHmLG5dwDvvOJB/Py+hUPednPyHDWhIwTDLcVrtg9VgAyV0BsJ5lW0y0PZ36UbtgEYXWHm4xGsDXnaQ2PUTNSb52igGuP9v3gI3771+UHo1ehDYD4DXAjM0TAhbtGDort3oGX7Nlrwu5mLMWfpJkwfhoOsGT5H5aA5CigAlQ4ZCQEOaM6akUjUtxIyU7ERRJBu6asgjpMh//ZxnWN193NrMOvF9fjZMAjcRiJaiTkaqMbY0lcZlrZHSoCc4UBgjoYJQ2jG7o0Fa3pw5MV34OyrHh3uroxqbO0fPn+zVvQ5Gu6DKiiOBhdqcsyWYDYcHz0EZGgeaBLY4dYS++DFtT04/jv34OyrHkWliOd+g69Gx6aogLJ/BGhjWwmttKRP++H9OPzrtw85o/Krf72Ioy65AzOeH6XRWhtEYI6GCa2Ydf2ah5cAAO57YftyvNue0JxQ3k3oCMFwH1SjlTlqFTpU7cdAKxByjsGRzOqGe4KOcNCxHAlD+bk/PYFNWwdw3wtrC5m3NfpqlAkvypCPBKazlTDcAjmKhWtTE9qHX1w/pO0+u6IbAPDcqu4hbXekIDBHw4QW5I0CtgM040woNzmW93CbcYZQ3kOLkaCJkQIyjID+tjKkyH8tfvBt7h3AMytyYrEIEd0ogxJLTGSYc4OJ4T5zODRDcFkEeYj91huLVkBgjoYJrWh/PVol6K2GkT7Oo82sLmBwoQVkaAXCxGVWR/5uif6OYMjmYsPYEQ9Qk+fJY9uHNBgHXSdF51zYQouhFcdryJmj2iC0hCa/BdHa8VRHOGxRsII0cvtFK27MRTDamKORzqyaoPr6DBe0gAwjQFKZSJqjQDw0Asl/q8U3v0TR3gxldxvxcxvuPXSkoRXHqxn+wEUgRmBgBOzHw4GgORommDa/0UqoBYwe0FDef3tiGd5z5Uys6e6tu75G5QR3PLMK7/rpg3hpfX3hj0Mo78GF+nlb3bQKkOdkPZqj9T19eM+VM3H97KVN7NXIhBT5r8UJsVjSciWF5mqjb6a2XQQtSOu3NFpRNt2MSLJFIMZgJKRWGA4E5qhJiOMEvQP+nL9JchHItIDBRqNqdBrK+7zrnsTslzY2lF+jUVv9T/7hMTyxZBO+fP1TdT0f1tzgQv2+I0Jr3mC0uocXbcDslzbi+tnLmtipkYkRpTkif8dJsW/f6Ks1knjYp3RRGoXDtmGMtNpMtOI8HC6zumA2zCMwR03CWb96GIdedBvW9/R5lW9FAiEQidsHtjV4QHKalu7e+vM0NGsp1BsKtfVWYnPQKue/+n1HghlHI/4fQC6AaEXznaGGHPmvtaXUicKgFGKOGtxJpIAMgxCt7pN/mI3jpt+N7t769sknlmzEy792Gy7++zN1Pd9KaMXofn0DwxOQIYSB5xGYoyZhVi0M423PrPIq34rMUcDoBY0w16j0r8nB6pq2Fuq1jmvFyEX1oK9SxYML1mW/W+b8V/rRCnufa6rQHtZjCibecfjfdPghaWNanA6jayZJkiE1v1IZs0LPepR5YskmbNw6gKUbthbsWYrv3fECAOCqmYvren4wUdxHa5A60gCG2udITJpgVscjBGQYJhjN6qJo2Kia4HoxekHnW+PMkT5RGpk7wy3FGy3S/a/d+Ayua0EfF1Wi3uraA0Cek/VojsQzo2VuNQJZC9fa376RnEyNm9Xlfw8GvSrm5GickpU4RrlU9i7fiutyqM3qxBiMhAA5w4GgORpE2OjFYOcZMFRIlKhLjZrVNTtanWsl3PnsavzOQ1pZb79aQZPRDKiMUau81UiMVicHZChOtAht5Pqefnz/zhfqltaPCkjmYsPXDR8MZ34rKSBDUeLdo7jQEPzlsWX4+5MritXf4iieNHeQOtIAhjxaXW0MBsjY3TRnOf72RPCTBILmaNjQiqY8IWrX0EA2M0lQaradmgJ1qjXMHDVZpOI62D7x+9kAgAN3mYATDt7ZWK5us7pWPClHEdTxHQnMKNV21RPARAi/lmzYisvvno/rHl2Ch//7lKb1byRBilbX4mutkd41NSBDUWLfo+diTl41czGumrkYpx2+GzraRod8fKQKm6mGeuh9jtK2B2oaq/5KjC9d/yTiBDj9FbtjTLu/Jm40YnSsjBYC3SBtxNpgHhKX3f48zr9uTrbwVnX14gO/fAi3e/pDBQwdhoJYUInTRhnz5uc5Mt+jh8c9z6+x1lO/5qiux0YNbpqzHB/81cPYsKV/UOpXP+9IIGTokqkngIRK3K7u9gvUw+H7d76AL1z7xLCbn9YLOX+PvtiumLEAn7n6sZZgmodzjOnQDIYmRF13I1kopJ5hrR4i3gT6GkNvVpf+KzTjlTjGQDUNQtJoVMPRgMAcDSJse4+JIGsG2XnFjIW44YnleGZFNwDgopvmYubC9TjnD481ofaAZqIZBEEcJ1anSrWNRpssGzRdrn6YYCNIaMb6p5ZtstZTL8/W6tLsemEaV1UT8oVr5+CBBevwvTvmDVI/5N8jwQFYirDWgOaoGbj87vm4ac4KPPbSxqbVOZSQglswQ/mbBxbhn0+vwqJ1PUPWJxOGkz9rxKzOVTopGHlvOFBEQ6vu2SNB4MKBfudhM6ur6r5oIyGi6GAjMEfDhKEwqxOSiLWb/aSWwahu6NGMTf3Mn83Ea6ffY5T2qOdso4ekyfzy3VfOxInfnVE4mR3tj0rQb+nLQ4TPXdFlPUDrnb8jVSJfD+at2oyXffVWTL/1Oe3epq31hfh1QQ/IMPzjTacw9/1ls7p6NEfNZwCHWrLcLLhCeYv50BoEWf19aHQfaciszlG8FdacDY+9tBGHXnQbfnbfQq/y6vi0eqAPE+h3G/r1XQvIEOtpBxrNhTgaEJijQcRwmdXlCBGTWh3NkOY9sWQT1vX0Ye7yLr4N5fs3eohziqMIwJylm7CyqxfPr+ouVB+dn2rXNhPmqHcgtucy2s4DMvjgstufR5IAP7/vRWfZJEnw5NJNdedFyeuRf7faeHPLgXaxEZ+jAEUjwgyl2I9a4ZxqpAuN9l6OlNdcnyMuCEorjLfAf9/wNKpx4p1MXGOOWoKxLg5JczTUPkdCc1QR6y+/N1LHs5kIzFGT4UufmQiERt05OMLXmxgJqqMhx1AQippDfIOHYpmZpPQ1ooITifZG7SvVHAGw2kLXG9ei1Yj1VsGdz67GO654EG+7/IGG6lGnW6tJJTkisdFQ3oPhAzFSt2c6EpyEX9xvBeF/q5jVNV9zxIx7C217RU3K1DNsNOzhQ21WJ+bbQG1u0D1voBUW4zAjMEdNhu+GM1hSGzmJnWhrUJoKqBODlffD9JlVE85G5wPHwLvMiJZu2Iqf3ruA1ULQ/ql969GYo+ab1bWSBHWwYXtVVfr8j6dWAkgjrjXUJlqbkOF6I9vft4jmaMRyRw5fmtqlVvD984n6Zny2we43kufI1XSra46KmpSpwoeRqqmVfY6GOlpdCjE3guZIRmHm6P7778cZZ5yBPfbYA1EU4cYbb5TuR1HE/nfZZZdlZfbbbz/t/re//e2GX6bVoJ5liYdkqKjUXYVkoiSujdCNY7SCbuxDozlSfjfYJnem0sOJY57e9dOZ+O5t8/DVv8219k8lTnp6i2iOQrS6ZqJZxJMWkKHF9iOWXm+QUGje2LXWWNUD+gbcWhNj1QpM83AOd0N5jhzgNAHDP9o5ijIG6h7SCnOnHgynz1EekCH4HHEonOdoy5YtOOqoo/DRj34U7373u7X7K1eulH7feuut+NjHPoYzzzxTuv6Nb3wDn/jEJ7LfEydOLNqVEQdZMjQ4i1kiNDPNkb2t6bc+NyT5dgJSVD2Y5Ka21+QQrtzzrjrX9aRBQf41f631WbWaLf0yc2QzPQh5jtywvak6DM0Sqqjj2wrR6qgQijWra1Keo0YhpYYYoaojV0CGJCs3/Ouwkb2gEa0T4Cc8feyljfjxPfNx0dsOw4G7TKAPS/WoQXO4+pLhX4YZ+gqGjla/00gl5oc1Wl3tXzF28jod/rU43CjMHJ1++uk4/fTTjfd322036fdNN92Ek08+GQcccIB0feLEiVrZ0Q66QQ0ecyRvkuo1FT19lcw5+9+P2WtQ+hQgYyjmAYVKdDTaJvc0jTRlY1I4KbzNEbmnTz4wrGZ1dXJHo1WzymtE/N+1WXOz1TVHHBoNyNCssStCrLeqgIvOOT4gQ/pvK0j/GwrI0EyzOkNlZ145EwDw0vrZmPGlaXnbSj1lZRqw+24L6Y62V82RlOfIMyBDkiRIEjS81sW6FGMp+VmOUGazmRhUn6PVq1fjlltuwcc+9jHt3re//W3stNNOeOUrX4nLLrsMlUqFqSFFX18furu7pf9GIrzU5g0HZCB/Z235PTtSQ8WONNCNvVFC0YfYVQ/aRs8R7nk5HLf5Wc68w6Y5KmJWV+/SaQVfh1bEYNEbrUbIOAMy1GFW1yybfd+h+t4d83D0N+/E0gb9wwYDki8DqzmqmdW1wDo0Hssem0ujvZej+tlrW75xm9y2ZDGiP8sx+K20DIueg+r4jASBC4s6zOrO+tXDeMvl/2pcyFl7nPM5ao2w+sOLQWWOfve732HixIma+d3nP/95XHvttZgxYwbOOecc/O///i8uuOACYz3Tp0/H5MmTs//23nvvwez2oEF2xB8KzZF+TQXd81vhcNoeQH2OGtVa+Dyu+Rw1+J1dERFtmza36dqEBnq0OpvmyHjLitGqOeJQ5E2bZebU6pojZyjvOoKmNCvPEV0Ptvn943sWYNPWAfzgzhea0m4zIWs1uPVf+7cFZHMmbUrbEGjk6Ps7CV+lO5yvMQVrVpfkGoO5y7sK56cbTowezVExs7o4TjBz4Xo8v2ozFq5NkybPW7UZ2/qLm+SJuc75HI3UvFHNRGGzuiL4zW9+g7POOgtjxoyRrp9//vnZ30ceeSQ6OjpwzjnnYPr06ejs7NTqufDCC6Vnuru7RwSDRM181AzVg0WQyZuk26yuiLQqoDkYas2RHq2uORInCok5stTPHWJUqOmOVmfTHNVpVjdKpz1H6Fmj1TWZiTb1o9UiIfG9ya/WI0UdDJ8jH7Si/5xTC1e71ArCOVMX6g32UgRFAjLowZ74vwV4oVT6728eXIxLb34Wbz9qD1z+/lf6dndYoQofRioxT79KXyVm/cUo6L5SiiLMmLcGZ//2URw8dQLuPP/1xdquVcUyRy22Rw8HBk1z9K9//Qvz5s3Dxz/+cWfZY489FpVKBYsXL2bvd3Z2YtKkSdJ/Iw1xIhNhprOz0S1YqtdDIkeLj1Tpy2ChGif4w0MvYd6qzU2uNyZ/N8io0L8NVWl5jhrWVtnNNorn6KAnu3xPY44s0rVSnbtZKxBlrQCViWnWdqDWY9OqPL2sC9c+smRInfN5s7r872qcSP3ZtLUfv3lgEdZu7jPW2ay9lM5Nn7NhKGdyX6WKqx5cVOgZW/CLVmDsTH3w0Rw17nPkp31n2yZ/bxtIvws1sWQ1R7WnfvWv1Of470+uKNTmcEK1EhyptItq6eMSxNDypQj42+PLAQDz1/TU3bZghOj8HakBLpqJQWOOfv3rX+OYY47BUUcd5Sw7Z84clEolTJ06dbC6M+yIk0SS4A+apIOhM22HTiJJ7UfmBjNYuO7Rpbjoxrk49Yf3N7Veuv81rjnyaE9po9HP7NQcFbUfb5ZZXb2aoxF6sA42Bisc9YBlvM/4yQP4rxuext3PrWlK2yZQ4azLrA6QiZbzrpuDb9z8LD561aPG+pulOZLN6tzzeyin8hUzFuLifzzrLCczmvr93Kxu+NehqQd+zu+NCp3yv4sK7uka++5tz+PifzyL08i5xYbyrj2y47iOYo21AFT6aaRqOtS9xyb8A+R9pdxwQIb03zwJLN/O9orCZnU9PT1YsGBB9nvRokWYM2cOpkyZgn322QdAavZ2/fXX43vf+572/KxZs/Dwww/j5JNPxsSJEzFr1iycd955+OAHP4gdd9yxgVdpPdCpGyeJJAU08UaNau85nyMbsUqlxSNV+jJYeHr5pkGpt5maIx8CVpfcN7/NRkxGZY2q/KzQHLWXIwxUE7tZXZ1rZ7TOezZaXYHnm2dWJ8NnvOet3oxTDtu1Ke1zkF6NHSeFoavG6GhLZYkz5qXh6J9e3mWsv1mEftFwy0OpcXvoxfVe5ehYsgEZan1uhXVoGj4fQrSZmiPX/LHtdQ8uWAcA2EL8UGxRQneaMPKYI3UajVRiXl2vrvVO/ZVLUdQQOy6eHcgCMuS1Bc1RHczR7NmzcfLJJ2e/hS/Qhz/8YVx11VUAgGuvvRZJkuD973+/9nxnZyeuvfZaXHzxxejr68P++++P8847T/IpGi1QTZ6kyRe77UvrgepzlCSJVZooRxIamRsMh8EY22ahMuRJYFVzqQa1Vcy1RvyoKCFg8jmaMr4Dq7v7rBF96v3eo9Wsjnurlgjl7SHlHcqlywYJUImvgpLpwdAc+WAop7LvXLIJPwA/C4ehgumdvMzqmti2y7KkqJacq0+MdytpjoQAwgX1fZoVAGWoUTRYEn3vhvdIIjxP6UQy/0aoJq6ZKMwcTZs2zbkpfvKTn8QnP/lJ9t7RRx+Nhx56qGizIx5JIh+4SZJOyjY1IUGDoIuta9sAXn/ZvVkCTr5fo09zdPXDL+EHd76A3330NTh8j8kN1DQ4FFo19j8EXfChJ5rOHLmi1RWsnxKSqsRemNXtNL4zZY4GIZR3C9BkLQE9IEOz6pUr8pnzg53wVDKrY+6r87BoTpjByHPkQwwNJYPh+4qSuY5Fg9EKwmrTKzVqwuQDiYksrDEkfzP3+TxHKaaMz5mj3oEqxrSXizXeIOj+0OnJHKnra6QKdnU/T/t7qCkzGtEUy5qiRBGUt8BiHGYMaijv7R02szqAX9CNEgV0sfzt8eVY4sh7MRo1R//zt7lY19OP//zzkw3VQ4mRBWt6mkbw0HFudA/yIYbUfjdKhLjyHFULSp1sOZKEpmjy2HYA9mh19dIvo0Uo0Gw0zTRM+e2zzwyl5ogjMBplFJtFXNB2feigoWT0fRkxSgCqz0gJYltASmHqwmAz64C83lwCJnV90DF2+YSq7Y3vzJmh9Vv6fbraVFBrgM42P8ZMP9OGf+7UA7XbrreoWM7KoqCPV2qWTAKmwBAvri0e+GGkIjBHTYBXOGUlIAMA9A+CqIw24WNmJNmDt4LoromwEdJFccr378NX/vpUU+pqZj4Bn/1RJ/SarzmqFDjY9WfzMdCJp/TfcR3poakGZKBrKpjVyfAh+qV7yu/mBWSQf/swz4NNitI+cXRVo2umeSaJxZiHohquRuDLPNscveXvMPzr0NQHr7FvsP9SQIbCET/J38wcsPmQ0GfXW6xMBgs06E7dmqMRagamzplCmqMGV7vEDFXkuky04Bu+dx9ufGJ5A62OHATmqAlwqbQBEcpbvjswCEnXaBsdbcWcSEeL5kig0aR26uj95bFlDdUn0EyfI7rBmQ5ntY1GiRCuy5U6g0yoPnFq18SWPUYwR0o0H8rY+GiOuDFqhShZrYimmdWpwQ18zOoGmTuSJO1cPqiC5i4qmudzlP/tZ0LblGa9UE9b6lqjv1pB+m8aY5+uNdr7IoywludIqkcvz81H0Qa9tb5n6DVHW0ngCF8GU30fXyGjHKWysS/WV6ni2keWYPmmbXXXoZ13ji5JVidN1BwNxLEitDVX/usHFjXW8AhBYI6aANM0UheiuvlzqstmRqtrL+ufV4uOQpmjESp9MWEwNHPNgOxz1CBz5NOeKp0ahDbrDeXtYtzEmTeuXWiOFOZIer6+iFKtQJQNFYrIGpsV+UylW3zGe7DNmFxMh2buUnAoBiPPkc/3GO78UBxsfq2t5vNqGj+/sW+s7WZpjjjwzJF4Nr+31qI5GiyBxTayp/uehz4uChxoMt9Gp9tP7lmA/7rhaZzeQKqPohrqqmpl0cA7SC4V1UTap+tJfD3aEJijJsDnkHhqWRe+cO0c6dpghEukXeGYI1t0FCp9GcpDdrDQsOZokA4DyYysUUbF4xXVb9novucKyMCthw5mLgJ2MxuKsQazOtpuvQ7rLUCTDQqKvtagBWRAcUJm0H2OJKYj/Xfu8i588donsHzTNqsQyQfNEjTZIjlyGFqfo+Ll1G9fVDM22DB1YShM/ookgVVNiF0+R5yZlJjjtN3h1hz5jrNqmuvLTJbJuDVq0j5jXpqLrbtXzsV3w+PLcNGNc73OdpMZuQnN9DmiFQxUFc2RhTZt0SDATUfhaHUBOnwm6Yd+84h2bTCYIzWDsopKHKNcKrPl1YU30hdBo5qjwZJeN1dz5H5eHYZGGV+X2QZHGLaVI/QzLmCuBLWir2NNmiPyQL1pGlvB12GoUORVBy+U9/BrdBPp7/TX2378AABg8fqt+NoZh0nlC/scDYK/ls9aH8q57LuP2PyKpDx7LbAOGzGraxS2ZNgqNLM6F1HN7MnindQIt0ONrf05c+G752iaI09hBKVpGo2ZYtrGzq8FgnrdgTvh9CN2t9ZRNJIsfc+Gz3Hy90A1luaQLVH39oKgOWoCTIeWa36xZnUN9sUVfc5GjFJmbTQsjVZVDUvBCxr2OXKXUTfcwU4CyxE5pjwhuiSZlyxnmiNFG6gmxXPB1ffhxEA1xtt/8gC+8pfmBP7gYJ8vxQ7qeuFlVjfIkhmZYJfvLVjTU9hRWsVghPIeCr+XIvB9RzkJrPn8aYV1aPrOQ2HSWERzVBS8EE7XHA2Hxcg2IjXzZo7qjFZXaqLmyKUZ2rDVrYVTa3ANvxyQobEALKpg3FdztL0gMEdNgFnaZJ+4g6054qQptsOJlh8N0vRGD5jBos/q9c/h4POd1E280XOXe971Tm0GszqXz5HY/IXmSM1zVFTazPoctchcn7lwPZ5a1oXrZi9tToUNf+fmE/iAp1ldE9pNkgRLN2w1RO0zE4RJkhR2lFYxGElgvdb6EE5lV3+6ewfQtXVAZkRbPFqdqQc+XWu095RWL/odXYF5+CSwojy9NvTfYItkVuf3jLq+fK1ESs3UHDnGymvONGBW13jU2fzvgWqshPYe/rU43AjMURNgmqOuucst6EYlpq4s26qtLpU8DEgq24a6MSowWLLrZjJHPk/b/MzqatPpNFpEcyTPUfVJTXNkCcjgI0Xjut4q/nVDYcVaRNLYNJ8jpR7TnKffoRmCiR/c+QJO/O4M/PTehdo9m69LnDS+ZqqDkOfI59MN5Vy2NVWNExx58R046ht3SOecZuKL5u2FzYBp/Ly+fxOFEc6xKLg+bMl3i2onm42e3uJmdSqT7WtWRzVHjQrFmhHlVN97/M/WOG6MTlMF47TtRv21RwMCc9QE1JsbYTBCCNMqObMym0OsFgklYFDQVJ8jSuSZ2lNNhAbZlI874GhwkFjZ4OW6eUnamHY+IAMdv4Vrt+CfT6+0EoitbFZXJgzkYBG5rmofX7IRMxesA9CYuc2GLf244fFl6B2oavPSpDGXgmsUao3H5fcsAABcdvs87Z7Ec6haIiSMWV2xtpsVkKFwnqMW0RzRCGRruvMIaCrTaDNvHA4Mr89R/nfzo9VxmqNE+reedpsBmufIl2FRz01uT0mSBDc/tQKL120x1NEYA+DUHHnUUVQIo+U5aoQ5In+nPkd2wfr2hsAcNQGm+emauIOxD7nsRm2hVIMqVcZg+T3IPkeNJoF1E0+az1HDjpx1aI7K+VhSSbK6CeuPpheygAxKniPKaC1Y04PPXP14FkWIA88cGYsPKSSpZjOkkkXLJ8C7fzoTH/jVw1jX0yeNbdEp84FfPoTz//wkvnnLs3q0RMO70XUx+D5HZo1jknAazKKao+bspbQaP5+jodvDbf2hX08K162ZzZL6WuD8MfsPezCmjbZdgBFWV0dVelYvzwlKxSOSgG0YhKKbCXPkOwfUcpwVzq1zV+Gz1zyBaf93b/4cHaeGAzI0Y482rwdXm+k+VX8fpCSwVTnf4GhL61IPAnPUBBhzIzgmLrcBNhyQgSx4jtmxEaOjzeeoVdFUszpJBM6XGQqfI/k+wxyVeObIFa1O3B5nMKvj5vicpV2Wvvn1dzhANUeDFUzEVisdh7Wb+2RJdsExen7VZgDAzU+t1No0CWGG6zuo3UkSLsTu8DBHMjHkrnMoBb62d5SiglkEcLGFcRoO1Gsi3wwU0RypwgPXdOPq45LADgd/2gzNEWcG9mBNA05Bn2pUO+LsKinQ3TuA//7b03h08QapiMtyQkWlidY9klldHEt0QqsGsxpKBOaoCTBtKK61NxjEgCsgg75J0oOL5jlqetcCahgsszrjPFQZjobbdG3gHHOUbzX0IHNFqxNtCbM69RAsTIQyxVvRrG5gsKhcy6uqfjjNYOKTRJ8vJqmkrDmqqzlv2KTlCXTVUWGzukEJyFCs/GDDtg+Y9iVbQIZWWIemLvj5MzbW/6LBN0xtc321RR8rarrZbFDmKEn8zifV4oIzq9vG5I6Q5uUQao6+c+vzuObhJfj3n82Srpuis/q0me6t3l3QIEWRVDVHwawuMEdNgZEotc/cwdiHVGmACpvP0cAI0Bx97455OOPHD0gb6mBh8JLA6kTnTXOW443fuxfzV28uVJeU/M8wEV0R4YqiHp8j2jfK4Lij1aUQjINaNXtAFfQ5apW5LjFHw+AQGysEVjOIpjjR7eKNmqMm+xzZIL+req8ZARmaM6eKmjwN5Uy2tWUi9LVv7/F+Nz+1Am/43r2Yt6rY3lgPzAEZPJ5tsO1GfH+c+XGsmqNiDHizsVk5y320R+r4sMzRAMMcGYTB9aCIpnPh2h6vckW+YzPP8f5qrDFLPs+NZgTmqAkwEaWuOcRO7gapAlP0OQGXGVNeT2vix/cswNPLu3Dto+Zwx6bIaCrW9fQNi401lXqJDfYL187BwrVb8IVr5xSqS5X2c9B8Ppoo4eTAm3Dkf9uYI82srnbfFKygGUREqzBHtB/NMGtgQ1hbVnaizCWXH4NfJ/S9xORnJ33LwfY5on8z2kp1nIrSUYOR58inxqHcz2zrxrQvaZojKVodX9dtc1fhxbVb8K/5a+vqZxGYte+DP65FtGjq8nCdAxxzJMrJzw79XqgKOn3Wjh6QQX+GY45kE8L8R9fWgcIR2oqscd95VUTwmKAxOk21MqJtD0aamZGGwBw1AUZVvGOmD05AhvxvVnOkbCLGpHctvjZsmqN2Q04dij89sgSv+uZd+P6dLxjLRIMkv5Y0R8r32OiROI7CR7rf9Gh1jvs2+3agmM+R+EmZo0bMvbjSrWDOA6gOso0vwKJvpWvxzPd8wWqODIxfUf+aRqAyghRxws1DvT82/m248hwNJW1rfUUDEartRXSOmc6i2mXfXDaNwdwH15xsdOyLaHDUqediorn9hNccDf1eSEN5+/ZBLcPNDc6sjg6OeGRdTx+O+sYdmHbZDHdnCdhzzvDhjH7p2t5jf/dKE/dI+nQlju0aXoLBNnluFQTmqAlIDCeta+4OSkAGRRqgwldz1CrSdBNsUp6ONve0vujGuQBSTZQJQ5EEVt2E1IADLkhTz1BGNxEq1ARTn4vpN0spgYJmdbWfVBvYSKAAVnPURJprVVcv7nhmlZMB3bilH/98eqUyFvl9ethv2pqW7asUmxscbMNlC0JQL0OdmqjJz5oO3moT2vOFbI6qw0eiW7JsEIOR56jVfI5s38hEcNuipZrqE88MRe4V2/C5hrbRSIGNCCPqM3XWnx0OhUFPHZojtZ+cGTJ3lnJmdbMWrgcArOjqdbZLwc1XuofRu83THNGADA0y5ORZNVqdTTjX4qRh0xCYoyYgMfzt9jlq/ixzSZ91yZ1BotHcbjUdNkLRhzkaTnA+RwJqHp8iMNrLK200NUIeA5t9OwD0VWL2OqDPO/FOlBCVia1i48X1vZkE5YnfvQef/MNjuHHOcmu5D/76YXzm6sfx43vms/2ggo0P/eYRfObqx/G9O8xaTg7ca9neVM5rpGjo6hwjLheHaf7J7dXVnDckUy/W/FAGV8ZmvdsszZHkaO8lUW9Ks16wrRsTYagxR+Rv0xwT7QwFc2Qbv8FmPOMC602LVqc46qvgQ3mn1xrJZ9YMbOlXNEcen1kwOWIN+vocycFB0n/rFYJy38gnwbV0XStnb5OeC41+Kvr4QDU2nj/bK1qbihwhUImK/LrjuUHY62WzOm7x+jXa6pojGxPRQczqKtUY1z6yBL/614tSGZ8NcbC0x7ZDkNvQrXV5aCobDUuswqkRdZnVVWTpl6kckG/gNE9SI5JOru/NDCEsiJAH5uthZCmeWdENAPjrY8uya3Io1fzFnlqWhib/2xN2hktFUUm25HuARA7tXyfVnSR6P3ySwA6+WZ193fgkgbXlYipicmODj08hxVDu2r6MhC2Xno9Jl3hkSDRHNp8817MNDr6cg6f+tcuBi1YnmjP54QwVVLM6n/1YFOlsS6OYcswfRyNwiU7rNZ93mY/L1/k69H3G/u60zbRs/d9LzYnpmwR2ezGraxvuDowKSAdYwl1m4aNZKpoMkW6qHPfv7XPU2ryRt+aotxLjv254GgBw2it2w147jgMgNsShf8kkSayao+L18X9TqG00nAS2gF20QGwwGXMxbuI+Naurem7iHHizuubPg5JnUBDKDEtBKzgfgSab2mj1KwzDQGxmYgv1QXnWS3M02GZ1jnWjXmuG5qiaJCgVJMQK+4MMpVmdTXNkENJpc1iS5Nul7kPhc1TE7NReTx1nNxX6FPyOct84oShHyOvPDof75ZY++Sz3WftirnS0lbBtoMr7HLFmdaSO2nvXS+xz80ENtZ3/7cc0FfM58uikBfT5AS0gg9/aHs0ImqMmwGQX3mhAhnomoctu1DtaXYuvAJsUsZ1oGahT5sYtA4XaGAwJifrNG1Vfc5u9VkbbgPO/V3Ztwxk/fgB/nm2O/qfCNW9Z+3aT5sgVkKH222RWx/FGtu6xB9ogzHVP3kiSbkrR6pj5XTz3CXfNXIesOZIPyHrHKE5yW3axLn2SwA42keZaN/o85Jgj80dm/RHq0RwVJIaGkri19ccUUVL99vSXifcZWrO6+olCiT2p6+yWv7VNGKLOPNd5PWDZk4czz1FfRWdsvAKP1P7trAlC68lz1OjZy2uH+bKmlrR9pkCbSaKbLBeB6n8lWx21eESuIUBgjpoAk3NvPT5HkYEIpNjcO+AVFYUjQlxJN7N62Kutgz7LQUnV5NQps79apYWcKCr584G66TR6GPmE+rVFq5v+z+fx9PIuXPCXpwCkmbyLtMm2Z5FSAi6zOvm3+EmTyNJIikU3cdasbhDOARvhTEGlm/Q7cZK7ooSvjy+NdE8hkiQTjnrN6pDvjyKKpCkhZTNzeGj9SBJsJnPbVb3aPvf6pm+saod92+T7Ye4TX775O7c6dj5t0TsVS/68xOP9htKszgbn2Cbsn94oknKhaChvzpw+0xyRW0MtE6VaIxGR1EtzVOtoh405UjRHpvH1PeX7K7HEcHHdlAIyGJhOesYWNXmX90h3n21QNUXB50hGYI6aAJP61H0A69fopsfdX7phK464+A584FcPOesUG8ax+0/BK/acBMDuECvX09qLw8Yc0b5T5qivgWAHzYI6/o1KaPxU92aGmIZEv2LGAhx58R244fFlsMEp3eJM16jmiDCpLpvrLCBDiS8z2NqUelEPYy0FU+GImcJ+CMXK07mpaq6aEcpbmEZyUmy1jWabOl7wl6dwzKV3Ycn6rVm/aB9VqFe4/pi0g6au16N98/EppBiMbfvjv5uNIy6+AwvWyIksbXPCFL7bFp3SVJ8o0zfsZnVF6qnnW8u/7WtOCcjgEJKxARlqJYczlLc4f8a2lzPNsh9zlP6baY4q+jPuHHrpv75b9QnfuQcv/9pt1oiyVQPzQts+8uI78NsHF/F9crw6ZXL1bGzFIDNHss9RyHMUmKOmoO6ADE6zO/3+DY+nTtkPvbjB+Yzg/qeM78ilttqGwfehxXkjq88RHQMqPbIxVBwGw+9Q8/+p/a5fSeUmnvRodfnflIi/7PZ5AID/+uvT9hZd89bhqDpQ5Q+QtG7+d9nkc1RQwuWyE28WPFJtMf3I/26GWZ36Wo8u3oClG7Z6lVdNXeqOVpfkM1TsQeaoinxfmoG5K7rRX42xYO3mtA9KH1U0EpDBJPCoy6xOInp9iMbmz+W7n18DALjm4SXSdV9GQgpAYxHOucyCh9usrpDPURPaLtLeSA3IsLkWjGF8ZxvKkT9zJDovAjL4+KOptRYVTK7Z3AcAeGH1ZmMZPWCCfh0ALvnHs2mfLFYdHJqrOZLPUdmsrsUJwCFACMjQBJhMA9w+R82fgBJzVFv8pSgiG4+8IRgJ6hbnjmwHJe06VYNTiY8XLzII3JGmOaoR92Pby9jKJa1zwIcZ1xmQ/AIn/XYRYa6pwYfyJn9TYslhViDmYdnkc8RJ/a1EG8McDcJc9zWrozAxkPn9YvXRsXxh9Wb8+89meZdXtayNaNeyb+gwm6HESrO/iZhz2bg6JO06k66XMmmOjBqQOgiOIsK2wYb6vnb/HHoOWZgjD63FUPoc2aad26rO/S42FNMcKW076A6bmafsH+bdZFOwtRbGe0JnORN4+qx98TrCrM5nbpiZT/de7WsRVDXMe9Mz6mXXm8s+iElD+zJ9ckBNAhvM6oLmqNlwSSThuE+XKW/u4U+4isUZRTlhovsc+fdtuEE3BpsWiHa9Ec3RYOA3DyySfovNdEx7ua76ZCd6/qPZotVxNLzr2zs1ng7Nkc23xORzBDKHuTnuC670oESrq4c5omZtloz23vWR4nOXd2n3bSaN6lppiGiqVSu+n5mJtxN4azb3Yvqtz2WmcUUg5rxYC7R2L7M6ps+mb+yT5NYFUXVRk6fBFGrpfi425ogvp1su5H87zeqakATZBV+Gj7/P/+0LXYtgLlvkWwA8sSueKSLQbTaEsKKtXMr3B4/9WJx1poAM3Huol8SY+GzVUiAESzmTltR0NhfVFg5atLqKGq1u+Gml4UZgjpoAs1mdg4h03ve75upLKYqyPDE2m2+KVmSOKHFh8x8y+RxR6dJwxOpfu7kPl9+zQLomvseYOhPXSsFAPIjO9Hf+N0fguT696z4fypsn8tRDTD1E6BwuMQRj8UzyevnB0BzVM79sZm3p/aLMkZ0JtkmqpeAlKD7OFHnCRqL9Y+qjr8y199mrn8DP73sR//7zmV7tUk2HaE/MTRchq/m+MbPeFK69apC6DlaeI1n7UrgJb6h7ha0tSYDhGZDBHK0u/Xdo8hyZ4RrbRodeHZsi+5IsJNPBRhBlnh1qixExd8tRlPkkFtEcdbaLPEfy3KDCHbFM1TWchfL26Ke8Ds39M/lN+lt12Puhmu3R4kUZW9XKyCbE2B4RmKMmwMQQuaZXoz5JvnWWIqBcEpGizIdTo20PNujGUJ/PETWr81GlF+2hHZw0RmxCYzpyzVERIsqHGdeYI1K/bz4e0/McuMPNSCwpQ2I6hCLkPh60TFGinRU4DALNVY4ifP2muTjvujnsoTWmXd96XWYNqmnip//4GKbf+pyxD/Q7cfPdxjSrCRQb2Q/EozSRL1dfxZFX6ZHFqZ/l6u4+r3YpMS/WmfC9kNu3z1dTf0xLpymao6xdsyAhvw5nmWagSJARkwBDO3/gfj8xj4ciz5Ht0C4Sfbaez1DErE79Eq7AHWyAF0Zz5LudNmueZRHjony9cu99wV+exIU35L6wos+55kh+hgYaElYZPmvaJ6iR7c1NZnVmIbQfPcbV6fM+NtDiep6joDkKzFETYJqTjWqO2Nt11FmiUhmLzbd03drK8EBmjiyaI3KLapiKmtXVa25limbD50WoMUdtOXPEJa8zwYdoVfc5SaPAlC9iPsK2ZzHhsP2t/qa3Iqo5svgwuOCjJWgG4gT43ayX8LcnlmPphm3afWpGKd5H9jmya47mLNuEW+euws/ve9HYB3n8+Psmn48+ZQ42MkbiE9GgGi4mtRnEF31nMU8yzRHTP6kvHuYuJgGLaawazXPkZY5YsG5b5C0VRbShtB9Vy3qXNEcOwnRkBWSQy1bjxGkW6GvVATBmdYovigrWhyQR5f3alB5t0pZJ94bcrE4us3ZzH/48exn+9MiSPKR87TnBHKmMM/XfFUOlMxOCMbPvS4A5uav2PiaGyPCMqU8maJqjOr4d13alGnyOVATmqAmQiL0CNqGuPEes3ayjL6Y6TT5H9TJ2wwHJrM7zoDQ943PQ18MbzZi3BodedBuumLFAu8dLy9NrHcSsrkhghno0R3SDrcc3xjUsfCjv/G+rRM1wnpSiPChDI2Z14tkdx7Xjdx99TV11+KCihFxVMZYwR1trBKqLOaJDxRGKRf0QbIer7nNU/xiJPamt5K85asY34XLGZT5HdJ55NCXeQdK6FtQc1aOh9DHn8TG94/Ch3zyCoy65A11b/ZJjF9kpTGu0vlDe6b/DbVZXhPNUX+Wtl/8Lx1x6l5UZ1fLwFFgDLrM6PkiOLpTxnT/Nog/EekrNpnmzOnkvldsX0erUUNRb+nPNkXh13awu/dfl561fN797Yc2RwdTPBMq0qCWLM0fyeSOf0UFzFJijJsAkIHBHq9OvRY77rvlvMv/INUd+5jItyBvJARksh4yJWbU946rHFxfWwmCLsNgU3GHHXeMye/vA1F0xBpyTNx+tzo5GAzKYckGo5WQNV354SmZ1Bb+RqLO9XMKukzq1dhqBHFDBzoBSEzNhAkL5oWaYENFx4kyikkTRoND2K377hA/EkyWGWTG1we6NBfn4Eqc5qo2rK7KYJtGtDQedb0V9jooFZNAFASZaud4oaQ8sWIe+Sow7n1vtVb6IIEXSCFmYI2n+Gc+i9PpwR6sr4nOknv3Pr9qMnr4KnmYCo5jqL8YcuYhqWyjv4vOnWeSBaK9ENEdF8hwJoWKSqHna9HfS5HCZ5kjvj9aeZ6Jck8+R6RGVB3G9uZTnKFF9juzPJkmCRxZtwIYt/VpbA7GcBDY1s2tBInAIEZijJsBkmlKPT5HPYVG0zlJk3nhMTbTiwqCSGN8ksL7PcGj2GHDfJpdk5/e2DlS0cibIkn9Tu+m/7TW/M1qODcjg3GTt921hYwGL6YHSN3orKvHMHe9obO6geJSGt2+W4oi+N0eMUNBDsafGHEmHE5PUkIJ+NR87eY6sjRP5QJRCeTcxWp2oljKEvKBA7luj4Jix7BsZ5pmpfVXzpNZPMVh5jnwEWfWMm68ZbyGzOpPmSOmfiYmiyDRHQ+AH0YhZnUlIKtVhmQM+ppwCqklnPXtyrjnya9O3b0Ugvnkpcof6B/L3FP92EosLKpCqSvta+q/P+BoFjLQ+Y+/kfd0Wwt5Ul4vmsOU5cn2Tu59bg/f+fBbe9P37tLYq1VjrzGBYVIwkBOaoCTBx726zFqYuh4q7nhw0pVKuOdJDefst2lYAPVgqcWKUJEqaBQNzVDRCTTNAz/YTDtq5dq3GHJFyRczqfBy2xUHBRiysK6qaa16bD2LAvsGbBA0Rckm9y+fIRkOJKqMol8436xAwmYVx9dOyPbVEiPL8thOCVBOUJRJWyoh3/ceTK/C3J5ZrdSRQ96v8b9U/orExSp8VQWHUtvI2aECG5jJHYs6J95CJHTeRJPpL527RPEf1CFt8HqnHLIrCplFXg6L4wrQH674M5r0gv57eGIpUDFbCt8DgmolsW/3yb2tABpsJLfMYt5/84v4X8dCL6+U913OImyU3zHyOiE+pTYCbmbfW/qXMEWWeOaGC2mVR3EdzxDFbHExngA/TBbjHX62zSKTKf85dCQBYz2iO0iSwcgVcrr3tCYWZo/vvvx9nnHEG9thjD0RRhBtvvFG6/5GPfARRFEn/nXbaaVKZDRs24KyzzsKkSZOwww474GMf+xh6enoaepHhhGlfcm0gnBRJft5fspHVyRRIfY7ST20za3DVM9xQpY4m8zOTNLKouVqzx0BsnFMnduK9r95bukbbKtLPxPC3VEYwR1meGUrgNd/nyJZTQ/1bz7XD1xlFBrM6ljlyaxWpNrVZeY7oYTKgMPJ6H/NrWzLNUX6/iJTcZK5VTVIn8M/96Qnc8/wa7b6qObL5HDWWBDb9t0yJEAdT2xyfI72+ukN5F9IcuQksF7hodWZ/CNpP7yYy2PYb+i5FotVRhtM3r5lpHWaao6HIU2cZwEJjyxD06t96/erY+DdYxFdFYPZLG/G+XzxUl+aoecwRsx9bKlctLdrLVHMkm5ypbegCj/QC1cIZGXQPLZDadx/BZdFvbl9L9mfVPZ2+U7/icwTwEQ63JxRmjrZs2YKjjjoKV1xxhbHMaaedhpUrV2b//elPf5Lun3XWWXjmmWdw55134uabb8b999+PT37yk8V73yIwLQK3zxFDRFqk6oCbMGU1R5FZc+QTHrZVoG5K1OmSwpSdvZeG8vY46Js9BGKvKZd0ky66DxULyOCeb2LcxEFC5125HubIMTm2DVTx8d/NxlUPLsqu0U9nMzcwaU5LJNSry6zOqjmq/RuRAA/NynNETekGKnYtCB2DzfWY1UmMhrim5qFJrNK/xBLFUCVEGxkj8WibpDlivptDClp0pkr+m5rPkd4/CvWS6E9VYhb4dk3EU31mdfzfchn/M4eDzayu4vCdMyGWGN38hzUJrIOA7Fec7gcDds1OfcyKSTvrqt+2j+mhvPO/uSZseWvq8zlqznfIfY5gFOByrgriSqkUoaOsJ4KVTXQhPyR+ZmYEfFtyH/K/beuYtmuzkMj7oPw21qy3rQlwHLyMmhuSPs1pjrb3iHVtRR84/fTTcfrpp1vLdHZ2YrfddmPvPffcc7jtttvw6KOP4lWvehUA4Mc//jHe8pa34P/+7/+wxx57FO3SsMMkhXSdhS7mp6k+R7XgWL4+Ry2pOVL6bor8YwrIsI0J72lDXWYwHpFspISmjJlPkfC6PlJjUUaY1VHCpdFkpRzmLN0EALjrudX4yPH769Ixm1md1A4hRMEngbXZ0vN9T+9FUXogA80zqzPl4eIOGeq0v2lrv9Q3ID/offJNmIlKt5TT5COpaq6akQRWNl/Ry6nOxo1CMj2s1cdqjrg1q1zKfZbc36O50ep4IpuiyJnDQc1pRUGlx8VCefMCDFU7ZCpHQSX/lThBe7mOTcsTds1OgXrI37ZQ5hRFzOq09pyaI5s23dwHn2caQe5zFEEogdT9LJYYHfm8jAC0lyP0V/kgDAJJohP/LP1lGCbap2qSeAlA5IAMbqZL9NMGXyaXg2aNQIpXYl3w4PKbHe0YFJ+je++9F1OnTsUhhxyCT3/601i/fn12b9asWdhhhx0yxggATjnlFJRKJTz88MNsfX19feju7pb+ayWYogW5/YP0+/KhzT1j7wu3dmieI93nyNQ3ezvDAXVDMhIhCV+mSP4goD5ixgbR/3IpyvxnquTgz9qt037DJVkWknu60RcxlclaLDg5bIe+zTSA3qFJAqWxcpisqRB9p2YczZrr1JSOEpy8z1F+TSQ1laPdxbj/hbV42VdvdbZre1+bKVICswmqqnFqRFgiHpWEApzmqMlmdSVGu5b7+NnXjU9ABtOQGAmnAmMYKcITrk95P/zPnKwug0ZdBWXsi+wUJobNFpDBR2o/2KZ19WqO9GSeJprAv/5imipzXwC7FqCItUvRcu560n8lawrlI3DMJd1T2plcRxwjpPaYMlim57LrkrVDLAmtTD5LXpojQ3hxE1S/zCJ0g+pbSEsPVBPGrK4FicAhRNOZo9NOOw2///3vcffdd+M73/kO7rvvPpx++umoVtMPs2rVKkydOlV6pq2tDVOmTMGqVavYOqdPn47Jkydn/+29997N7nZDMDE0bs0Rxxzxkgfuvm+dkRQJxs+XoBWZI91h0BSQgW5k+d+qWrloez6wPSLqK5d0/5l6w/E6JeDI55GQuEpO1oOgOdLLm5lam8+R2k/OYZdjkO3StfRfW16NekElbZQR5+qn77C6u7dWLr/fX43x6T8+ZpxP9LOZAjIAds1TnCTKfpX/6tcCMhircYJq62x+BT4JT4ugxGiOBNOXGOZZds1QJyUyjc7bg2RW55PnyLcJydzY5nNE/Thom46GaFclJ3UL020SRtnMPZsNO/NieU65lxju2Rks+bc9IINuQsu3nf7yN6szFlOe8SvnQrZ3RURgaDGrywOqpL9LUW4uTueGOpdSRoI/a7h8aCokpqeaSONJTdONmiOPtZuWy/+uVGM89tJG6b2kPEdJsW+n+RyRZ9U8UaL97RmFzepceN/73pf9fcQRR+DII4/EgQceiHvvvRdvfOMb66rzwgsvxPnnn5/97u7ubikGST5o+b85uMzq6qHZuEVYjqKMCPbWHLVgvDp1rRqlYeQyJUwLa46aPARUcyRMCGJls0/L+dfpM1/yaHW6TXfRYAT1SAxtElGbWQG9FyE/PF028rZ3EsUj5MRzs8zqqLaFmkZyASIowSiYo0Q5gG1aPdrjejVHqlkdHcpmao4E8giBvFmKT9LEYu3pRIv4FrK2RYeX5sjQrsn0rsg7CSdxH7O6enyO6HvYNEemwCIugYJJQGUN5e0htR/scN5FAiZQ6GZc/D1rHRaNiQsyEy1fL0d2c1DObM2JJp2NeUAGPsk3oDIZ4l/BVIH1OeLWr+ms8Yn4plo7UMahXNKFMIAqBOTrtQVkuOz2efj5/S/izKP3wvfee5R2P06KrX09yE7+d4XTHG3nPkeDHsr7gAMOwM4774wFCxYAAHbbbTesWSNHTqpUKtiwYYPRT6mzsxOTJk2S/msV/OGhl/D1v8/NfjcckEE6tPX7runKmtWVSLQ6SyhVVz3DDXWD9yFCJCKAMkceGpP6fI7MyJgjKfJaIv0L6BKn381cjMeXbGTr9JFOict5tLr8nk2iOHPBOlz36BK2riJQn7EHZKA/8j/lgAx8XVmdHkQM1WIAxZlEDnQ+0rmmMvFxLB9Eq4TmSDGrs01RzjSR46VsxGSSmIk4VePUyPjkDGluOsN9Il/fDF9w45H5HEn9Y/ZZ5RKXBLbZmiO+H27CTWIw4gR3PrsaNz+1wtoWnavWaHWSk7vdVFTqk9SWeb1TuKLVAUOgObK8lt3kTq2H/242U221DtuaU+e2ybRSjdLIgd7x1xw1h0DIrCkkzZFcpsqc59meEkWZRYQUkIFhVjUTNqWu9G/3HKzEcqAbOTgO6avHXqHtM+TCz+9/EQDw18eXSW3TsjJjyzaRQbUGoOMxEMeMhUfQHA0qli1bhvXr12P33XcHABx33HHYtGkTHnvsMRxzzDEAgHvuuQdxHOPYY48d7O40HXc+uxqPL9mU/ZY3GtdhaL/GapbqYLgiS7Q604JqxYAM6lo1STakjYyUoZojvzxHzR2DzPmUmNWpm73a7p3PrsbX//4MAGDxt9+q1WngJdh2uWh1NmLlA79KfQAP230yjthrsrUNG+ySQHU+8gdKRPxVTAkmufpNfaFJYIH0ICvVk/SJoCJpjswHtfo78zkil12BGHxDy1p9jhLzWGpJYBtYCzQggymXCeD/Tr7g8hBVWLM6vZx6idMcmWgHc0CG4ueBbDJnIrAoU5vgc396HAPVBNMOmYoJnfwRLwuNLAEZDBHAbMS22leVeTOVM2qOEvO8bDZsFhM+gV7yevh7ReoosgZs5mDVOLEyfS5TfvYZ757ZQU3bTNFDOUEQFQhlZnWGUN5ZeY0RqZUt4Lcr+kMZB9P89jETLkpjSHMi8Z9bgFtzpAkxg+aoGHp6ejBnzhzMmTMHALBo0SLMmTMHS5YsQU9PD7785S/joYcewuLFi3H33XfjHe94Bw466CCceuqpAICXv/zlOO200/CJT3wCjzzyCB588EF89rOfxfve974RGalOPYDlCCV28D5F5H6S4M+zl+IzVz+WSaJda4nVHBHnc99odS3IG2mbpmnxyhsZleYX9TkqVJzFLU+txCd/PxvdvQNZ/8slaMEAJCKV/L1w7RZr/dJ8MUpe0+tZtDpP5khg+aatWl1FYAukYbO5prdMZnAu8ywNtVulKEJEdr9mMMKm4B9qH9Xf63r6MFCVJXf91cTKwctmmBbmyOVzZGASVOasEWaFhhoX33BVdy8+/cfHcM/zq7NyPmYoRcCFns41R3bCRXewrz0v2fzzndS187XrhvI9fRV88vezcdOTJFEvE7jCNCSqZqV3IEY1TrC5d8DwhDzWWy3mxlQAVbX4DqkwjY0tlLePZmw4NUdF5qRpX7Zrn5R9wtKglgSWDIu6pp2Cljo0to3ulz+48wV8/aa5xNTc5hettyvGsRRF6GgTZnWUMVH7axZ4mASTFOqZo/r+cOV8zIRtmiMOqs9jEW07ZY4+etWj0m/1/BHXtmcU1hzNnj0bJ598cvZb+AJ9+MMfxpVXXomnnnoKv/vd77Bp0ybsscceePOb34xLL70UnZ2d2TNXX301PvvZz+KNb3wjSqUSzjzzTFx++eVNeJ2hh3oA0+nlksKwhzLooktwwV+eAgAcu/9SfPh1+zn7wx1KtjxHPg6INsRxkqnDBxsqgWZavLSU5Hg8UCzPUTMCMpx7zeMAgJ/cswDH7j8FgOwDVlU2e0CeN65uunwn0rrTO+1ZHon8XlGit54xsZmL2PyRtIAMjFkgm+fIKp3N66OaI6MzuOf8jmPZDl0yq7Mwh0A6Z9Zu7pOj1VUcZnUMg5v6qch1F/E5sjm+N0ILiUcj5N/wfb94CADwyKINeOyiN6XtO4iJKIoKdYRjjgThJQlgmTpNRIufz5FpT+XLX373fNzx7Grc8exq7Z6rn7RvgBx62yYM4pIQc6hIzBG57jC5MX0mPZS3+V52XRIatGa0Ol1zxDNERfyWilg1Wc9xx5Lx0U6q9xrZD+I4wY/ung8A+NgJ+wOoBcgxmdUxzKUYXxqQgeaW08KBJ1wob3/mSArIECdG/yaJWfEQ9hT95ur+I88t+7M0Wp2aFJyLVufSDo92FGaOpk2bZl3gt99+u7OOKVOm4JprrinadEtC0xwV2EC4hWiS5AopoGu6cgcM3XjUCCSm+v79Z7Pw7Xcfgfe9Zh9jW4vXbcE7f/ogPnr8/vj8Gw929KxxeDNHBoJPMqvz8jkq2EEL1vf0S2Z1qvOpSZvjossl4sJIkKT/tjHR6oraFdczJup+YUv2aZIkN9usLiLaVLVPAtfPXopv3Pwsfv3hV+M1NcaWw4x5a/D5a57Au4/eM7tGpXKqlJ3+3nVSJ1Z392FVd69i1x6zDHw1TlAuRUbbdhVOszpaNyWym5nnKBtzfT5LkZiabFbH+hxxZnXMs6bIVnS9FPU5Ms3LFy3aYdNeJveNP3OsvkSezNGA5GdkJj71PvHXdV8Q9ze3Me3Nhs2szvbK9n3Mb62qdRQxZbUR364t3pdmkWmT+tcnZXAFPVIq5elGbIEpNJ8j8ElgNc1vzAk8xL8eTAz17YkTo1bIpDky+gM7fqtQ9x+fUP8CNpPUShxrc5+LYLc9YdADMox2qASM69CVyzKEnYFw3LBlAMs3bXNuUNz5QglBfRM39/K/bnjaeA8Avn3r89i0dQDfv/MFa7lmoa48R1V542qGHXc9iKK8/20kzxHnFEq76MpK73Ng2aLV+QhiTQy7L2wSKVtSSDV5KB+QQX8Ba54jiLqUUM/MM1/+y1PY3FvBp/74mLE+ADj7t49ic18Fv5v1EntfMwclfd5pfKpR39xbkcr1VxOWuBcEABvAgwvI4PQ5kn/n7ZgJlKLIx1xmSAHgsD3y4Dqmva9e2MzqoGjoAXuSWtbnyJMByK4bHuhmzN9EV3zyKpmu26JzUga9x1NzJMZu6YatWFPzkzPBuBdplgv0b/d+PrwBGWyMjfpebuJZb1tZcxauJlIWu8n8Mk7cAjBfArsIbWMDZY4E/WRLrcAJCCSfo7Yoq3fDln4s3bCVDeqg9jnTHDHXVNg1R3w5n/3M5nPLQd1/igjjbVpXk8/RdswbDX5AhtEOm2TfNdF5szr++d88uAi/eXAR3vuqvaTn1WThXJslIrHVk46NnNnvaxNrk9QNVGOUS+W62msEEekLPQg46ZUaiMAGn5DruVkd53PkJjYS6e/iY2ILyKATFXrDYqwi5vDkgnJYI2KRQ5US6oMpITMx9eUSsZevyFK6AQMROFCNMaa9bA2PTOH2OeKfVYnQxqLV1cYc9vwstuTA9YBbOlwAlITMsywps/KceAeZWTExAPyYm75T9zazb5BMePFlTEOlJn2koATzlr4KkoQPHV9RzIc2bOnHid+dYazX1Vd9bboZBzrO/dVi6RiKoojZm/Sc8slNQgd7tD75t01wpfkcmTQTSeI0j/JJVqq20cj6pHuLeI9yhCy9he6jSfpQ+5uuWZrn6OhL7wQAfP2Mw7S+a4K4RP43Lcf3WfXtUf2dxfqRTE89cqKpl13nkPQtk6TQnmm73V+NtfFJtUnbL4LmqEGo0skiG4jLrI67v2zjNu/naR9FP/XFaO3isGJrfwW/+teLWNmVvrPmu0E2n639FVz14CJNu6ZutEVs1uujB/mHqOYoTQIr98/UZ5dZnZfkVWisyjJDBhSPrFV0TJJEt/W2HcactE0MgRgLlyTWxiyIw6dEzPRM9Qg06lFn8jkql3KTkP5q7BXKWzCDvtLoIklgKZoarU58R8XPCyjmwOzzHapxgj889BLmr97M3hfjwUnBaf0mszra33U9/fjdzMWa+ZoxUIxJc8QwRxEz1318jiismiNlDZrKSnmOqgleXNtjrJPCmJA6kd/Ddd6JZwSKJvIuCrvmyHbPj6nyTcYKFDMtlaacQuy7HOt9iHil2oboBsocZabmknWLeRw4zVFbSbeIeGZFt1QH91651Yb9/Z9Z0YWrH8pTWqRJYBXhUSLXCch7pmm49PPPUFDUqaxbH8bOB5VqrD2f+iG1MIE4yAiaowahOmubJEYcXCZu3PMuSYFJcxRF/MbTyILy8dtpBOdf9yRue2YVZsxbg6s//lpWsiHwv/98Dn98aAl+fM8CqYzmp1TbmH263mxtghj7NAms7P9j0na5+mkiNOR20395szr+IRMxXHRM1A0csGuOZKI1PzgBaGMG8Ae/3XQl/TeKotp/6bVGiP/2cmRNmKfZ0NfKthHNUX9FPpwGqrzPkZDkc0E1uLliszNPYCaGtDxHDSwFOptVZp8OWzNCeV/zyBJcdGOad26fKeO0+6JeTohVivKAFtqcrV1Qiduv//0ZLNmwFRe9LZdUF11T3b1ms7YiAVdU2AIyqO+xubeCcR06OTCgELJcGQ625VSNk9z/kVw3ffJWCchgMyZT75iIVrtWW/2t7o3mc8GU5yhO3KbkkomYp9lfszRHYt/k0ltwbama3VKU+ypRRp4TAutrGlJdaTn9vd56+QPS72qcaPt9nCQoI4I5IAM/Xrbzj4PqxyQxYA18kzjRNd7bu1ld0Bw1CJvmyDWxXMzQZ65+XHvGVT+3t0VRbqHsYshaCbc9swoA8OCC9QC4gAz57/teWAsAWL+lXypjesYvWl3BDsP8zUtE5c7ZVyva8vw5h+kXvVKJE3z5+ifx59lLpTKiDd6szkDINUlzVI3tmiN9DdADuPZHbQgyBt9gukDbNEHVRpWZOotC9aNRoWuO4uw5yhyp787V2s/4HNWf58h8+A1KEthIX3emEPb1bktPvLQx+5sj4PgksHn/smsKuds7EOPzf3oCH/rNI1qdDy5Yx7ahwvSdbD4/kma44Jr01RwBwKatvGlfRQnCIOarC7bvZ/I59AlkMbx5jszPWaPVGbSjyzZuxWeufixL8K37HOW/V3Ztw6f/qNMDXPuqANUmuAFg9J9RUUTwawMbkCGCMd0Ipz2lfoLlsh5sivPlMbkU2LQv3JlbTXSzOs4n0cdcUb3ciM9RIwIsAOhT9vwKkxgWqM+0fiQiMEcNQqWLpEPXMYlsTpwAsGTDVqhwOejymiM+0pepjlYANVU5qpaAlPMfckElVIrE7m92QIbMvK2k+xyZojZRYpIjHuhz/3hyBa5/bFkW/l0tIzRHPgSJaZ4V1xzpIUKpr4v6OWKmLZtZXdGADLmWoFZnSWZS64Ew6zBBlcjRpLwiu7tqVpeAD8hQYczqbPPUHsrbX3PUULQ6EnZXZSRNWsxmrD2b5l0miHJCK78mP/fo4g34+5Mr2HZUhs8n6poLQpzlR/zwN3qtPkfyMxu39rPlBpSADL7r39fMjJYy+xzlfw9rQIYCJnExM78AoErW1ReunYN/Pr0K7/7pTEMd+e8vX/9UJiwEGN896pejMDGugAw++XjUew0xR0yEyjITwVWACyBEc6cJoR+tl/seJs2cqmmjWNujBx5Rk8AC+XiYAzKY5rZKj9kHtt5odT50j7q2BoLmKKARaHmOCnDympTCo72qYdO1oRTlRKCmbm5ACjCYZnWPEQnwXjXzGM2x3ZCIjUI90ITUyqfrjUpiVIiDoFSKIOjpzO6ZlDP5HHESafreG7bwBE5OjPv7HJnN6tjLRlRi3RH2X/PX4eT/uxc9fRVtDn/978/gL48tk9oSa6zEHJ6cVNRqN58xRzVTvdq/p/3wfnzuT094vxdFcc1RThB0tKXBQVSzuvQM1OsdyMzqdIKBe22nz5FhqDizkXqRa+sYszoDc8QRyl7h96V29ToynyNm36N7ufqojdFQu2XWHBmrMEIidC1+PBxsfdY1R/zeIWmOmFwoJtiKFRW8SFEcB5050vsg/AJ9tSpqPab99qX1cgh3tX46Ti9tsCcDN61PNWEpB2/NkfR3/fuBmnwUqKVq8MjFqDI0qcClpNWrvnLMMPa5/xItJz+3dMM2qODGNDO7pcIEB32S9km+5hpVNS2EiQlXYdMiC6hrq1LVw3sDeqTE0YrAHDUI9cDmJJImFLU3TcvYJQWmPEeN+hxt669i2UZdkzVYWEwODi5SFCDn4DCNnbrRig3AL89R8QPA/ERuj1yO7HmOpGh1ZCPiCF2JuDC0LB7LHFc9JFp0E7ZJ1lyoMgcAACxevxU3zVnOjvGXrn8ybVcQ1VlEI465q9fnKP1XEOubeyv4h0Ez4EK7GjJSgeZzRDSINCCDj/N9P8sc6XMoK+8I5e2LhjQ5RDOj+miazIGaIbHk+py1IRHl6b+0Z+qzRTTOpmh13N68ZnOvtS4/n0L+RhHmaKPBrI4yydXE30HbVs4U8c8kkBlKnyOuB+1MfjgVulkdf08WfCkaR4vGRIXuc2Tulyta3UCV/x56XfzfRcEFZChHljxHklZMZmgiRNn36atUtXICScKZsIl75vNtKWO9U4n1MXVpjjhw68llvqxq+Xz3TFvOMwFNcxTzwpBgVhfgBV1zxP/NQb3vc/C48mxw12jyxXoYMgB4w/fuxQnfmYEXSBSowZQgdJEITibizyUR455pxKzOFTnOBmpWVy7lzGr2bgb1OJ1erFkd/ZseXgwBwiaBNYyhKVFr0W0xjs0EVYTIIamsEdWiPDOHi4fyFnXVtFFaQJXiG39jmqOaM3ElVg5W/ySmuTRVh81HIy5A7DZCk+ZjzhCEJs1RE7gjbhpUmL1EDsig9wWwM5nqdzKNlTrWPX0VvOZbd7P1cHPd9K1MVlM2abEqVDCZ1al54nzni20dyeaj9Dpfnn6KoTKro9+izUNzpFmBSHQA2W9JQXXfsOW80c5a5afZbMvMrHOwfl8P4Y0PKIObBWQgghPd1JqsgUxLnj8nxpEGIFGZDGrKzdUroF7imKMq44vj8jniwAkOXUynHq3OjxnzYo5Un6OQBDagEah0Ue7kV5xw94Erz4bJ5yi3Ya+vDyu7Ugnnnc+u9u1qQ6CJEUWfdbM6D58jhXguxBwpRX2COJgQIe9/SYpWB+lfwEwkFDEh62WkaO1FotXRTdjTrpmtx0KAl0v2+kSzulldXoabA/Ys9PmhmvZB/qauA42D2+coUX7HtefMobzjJDGE8q5pjhiCi9UcWeZ7kvgLR4p+d7pUqOmMGspbmvfMQZ8kCf72xDJJKGODrGnR+yyYAk6oQLumzqt+D0GMgG+eozXdstaIjowoSrth+gQmSe62fvO3rycgQ2oia6xS7pNluEzSbh+/jMFmjkQf6DwV+6ZNYq7PNV64ZNMc2fIcuY4eI+OcuAMyyOX97jVLcyTmV4n4HKnrhDt/RBGa58imOeJMiLmzV9McMdYy1dhsgWOKVsehwggbXMNK6ZckMQsxVdRnVsdrjrYXs7oQyrtBaJqj2r8+m0c9WhxXBBSOIJCSwKobhLtJuf0CG20joLk/xCajBVfwGGRdAlzkoJDLNqw5yg5eaAeBSUIsS6IcZnXkx7b+ahZ2V1SRmS1Q5sJEyBkYqKL8fGxQzQNy0k0O2ftkwRPyOgU4ZsbG/4rSqs+RQH8lzg5bX7Q5zOpMvnJqtDqV+OC6IQgdjnnlhtIekKGI5qggc4R8rMU3isBoWQzEhPh77vJunHfdkzh6nx0KtQ8YNEeM5k38SYUfRQK5qO/kmztMF1TRPuXMYX7fxDzw/aICEhVaQAaDv6Lk5F5Ac2SbLnL+F36fMdU1VGZ1NKx7B+OrqT1n+ZYmbYIqU9ECERTYbE1F46TYmW3111S8juqFxBxlmqMo2+80szp6HqrnpUFzpEe8Y8zqLFpkASEUlvoTx1r9WUqOAtrvVDMjXyuSBDbdvyH9NsHGHJVLEapxwpjV8ZqjYFYX4AWTDb2f5kj97X7GFpGFq1P0MU8Cyy9qX5gW/HnXzcFzK7vZe/WAmtXFzMYD2EN3Cpgj3FHnaz+iw0diYqorQkTMqUqa2Qx9yhS1iz/k8mvUx4BuhqIOatN92e3P46oHFxkP/GYxR7YIV6UostanMjI0IMOazb04/89z8NSyLu05n1wdYvxVbWA9kum2gmZ1uc9RKc/urpgwJEnCzrc8ian8fVw+ShwShmAwQSUG/vrYMnz9prnGseZM1CISwp6rlxP8rN+SRovaxCRK5UB7Y/M54srZgp9YzepgfifT9aseXITv3va8sU5RVDW15MvyN3otpjSqY7fRrE4RzjTDrE5OOgryd/qjp6+CL1//ZJaeQfI5GoZode1twqzO/E42Qacs7Mr7r6cBUeokF9SdQP1t0xy5otWZ2tTv0Xq9q9TQX83npdjPyiU9vQXXVp4XMP1diqJMOEVNiFVNL5e2QNQhfyu5DGeWXLGYw9Ht1sWUVmJzeHHjM2pABoclkU9faMRU9Zmi5/1oQtAcNQiNLsoONfMze0wegxVdvTqj4tGemznSr5VqyS65+0Unv8lk5G9PLMfNT63A/G+9pViFBkg+R2Lj0RgdsjEY6jFJgKWcJglvtqCNZYOao8z5tJRLu8Rw+mmOGCkOubSVMESUURJlRFSfzX0VXDFjIQBg7ylj2f6aidaCzLRFc1QuRebcLYTgz4Mn5BLc//nbXKOJp40YUP1LVO1MPZLpomZ1ss9RrjnSzOo4n6OYCciQmMfYpTnyFY6o5f6zFjTjpJftgje+fFetPJW8Z2sOuhkjpy0SfQNy4qSePEvcM1meI0Z1RInVIua4vpojWuXF/3jWWB/tk1yViQDmqyikOTKZ1VVlabzrMyRJgiiy+xKaAo+I7/Xju+fj+seW4frHlmHR9LdIe9yg5zli1kNmVmdljpR6QN8xvy75HFki3QLFtLWmoknijlbnUw9g9m8tCi6UdxTBqDmSU0/IfSlFuXCKnnkDyjyJE97UjtYF+H2DONYT62Y+Rx6aXlq3TXusIkkS6XxSNbm2Z21nYke5hN6BWFtbA1V/YchoRNAcNQizWR0/qa7/1HH4wLH7pGUsjocm9Cs2pwBw05zlOOE79+CZFV285kiKVle8TQqbT0YR22YXurfliREz9bfF1MVoVuBhHuMTJQloiDdCRPpCpWRq9B1APQwIk8L0XZaq5X9v7Wc0R4z5lypBzq6Tyv77b0/j3FpC4qJf2Ga6lZoa8s9t7qtoUcRoUBE1DK7cprk/WZ0Gs7p5qzbjxO/egz8+9JK5EgVFAzJkmqOy3ayOgzALrSrzxag5cuQ58l3+pjXSZdLoSP47giHlfDT5NsQYiQO7ngAN3COZz5HEG8lMeNq+Tij4wieZqQuiT5wzulavYWxsTth6tDp3niObhlIgv20uZwzIUHt42aY8fLLa3KBrjrJ/84bbs/xw5ue8NUdkPG2RG9XfqoZby3NkPMPy/afDw1x420AVJ373Hixep++vvs7/LvQxzFGJhPLWfTT1dqngrI0J5a0KuTifI87KR12i3JnL+Qpx1i0VA91C76t9or/1QC9qm2bfYK0tC20mziCdOdpeDOh4BOaoQajMUde2ASmYgFwWePV+UzIJfj1aHE5z9IVr52DZxm344rVz3D5Hyr2ie5y0AOvkFpIkwbKNW60HLWdWp0X98mDGNPOY2jO06z627kDxPCvys7l/TXoQ1NpmNmiT9IljPs3O2LrmiDP/MmlK1DG55emVqaSqoATfFuGqXIqM97q3DRjN6pIk0dadre8U4lbGcClj8vW/P4OlG7bhqzfONdahwuVzpJmDUs2RIZS3KyCDegjXozlKLBonFXJggPyhNkJwre7uzYgJ2vdcOhxp480FlkjbkPtvYuJVmIjSrD3hc0TWzaquvtqcyfum+jOKfkwZ36HVqX4nVwRIH22dKOJ6H7UMBfXBUCGYxJ0ndAKQAzKs2LSN+HnKmiOXNkPctRWT6pCYfL2s+s6D7XPE+e/l+eHML2VLrk5f16Y5UsdMSgautKcZrBi6Rs3qXCkHBJZu2IaL//GMdl0SKDRANcs+RzWzusgckIHzSxSXSiQEuKQ54pgjgwmbbY1xwmBO4Cd+cn01CXbSvGFmhliFFj4ciXGeaW1ZbmZnkHJWLN+0bdCFEa2MwBw1CJVGu+f5NTjy4jvYTTwn8tLf2nz12HBoRBZ1HfVVeDVoKTL7HBU3kypUnMUP7pqPE74zA1fet9BYhgvlbctzZIImAWbyHJmGwHbg1QNOc5QkOpEqSdOpDbMjIAMF53PEaThMBBS3mdYTyS1OzBGuypGZOeraNpDdU/2DqrGdIbEzR4JBrfVBGZM+j6g+Kor7HJFodTWpnWrCkCR8dMSMOVIYKdM42jQeCfyda01MushOP2fpJhz7v3fj//3ioaxuAcow6RG6dGICyAkKsd9VE94Hy95n/doAQ/z+4K4X8Kk/Pib1WmXGxDufePDOmHXhG6ztGqPVMW2bkGuUyZwwlDUxWzYnbNGXnSekzN6mrf2I4wS3zV2F1337HnzxujkAlKSWHmZ1HMGptW0Q/ojr9Cur7fVbTAWbAa7bWWRR23PKTR8zaZPmSDAxRbSlRs1RnH9Dsdf4oI85F2yBC4qgjw3IkO+jpmAHabt6+2XO50gh6tNzVu6HqMuWx489B6uJMdw4Z45uOo84+sUmONG1YUpwkwKMFQU9gyj+8eQKvP+XDxmfG+0IzFGDMEmwN23RtUecBJzCZ8OhhIlvQIYo4vNm1AN68NdrZnb53fMBAN+9bR4A4IXVmyX/kThOJO1bwmyIgJKB2nB0aQxVIbM6+bfP0EmSHFLBcyu7cc+8NQDSw5ZKDeOEt71P7/FEKXefgvM54qKwmRJF8syR2waZy/lSxJFZoHvbABlL2T8oTpJM+8rBKt2u3VLXooBKsPjA7XOkOLpymiPG54jDlv6cWcjr9z9QKbgM7SrE8NA2KNEtCMfrHl0CAHjspY0A5PmcHcyRLi03aY7E+2eaozqEMtaADMqtO59djXU9uWmZSriIfaOtVMLY9rL8sCOZZ9YfYWaj3Ock+qKED0Fq+vy2JLBirCeNbc/q+MdTK3D+n+cAAP5eS4hcr1mdVQIuJR3Nr+fCkEi7JjBUARloq2XDeU1hN+Xl57i61YhiYj+xWWn4ahxSzVFx5ohDY5RDDvoNxTorlWxmdeRvRWhQiiK0C7M6l+ZIO8/1vaBvIMaNTyzPkjPz0VA5jU9+L7uWaV/NtIlqVWBbXppGOvH3ObLlumpXNEd0Xr60Xg9lvr0gBGRoECZaipMKCBrKGByhYNvcQnJpjurxc6JoRnJGFZ//0xN4ftVm3Pfladh3p/Ho6a9I7ybaVAkkqkkxdcuLOTKa1RVnXqV6SfmHF23I/i4rUbtUx0xjYswCmhtfnyPbxs2VdXWhvVzS8liYxs0WSKBr2wAmj0sJN7HGqFDBpq3xyXOUB3mQ77v8h+qBOuW4aHV9lRidbTnRbRqznt7UF0/1SzOVtyeBdc9p8T1pOYnxFv9aBAlZLhMSGIb2PesP83cWkKGOfYd7RGixXBozUxCNNpLAWUCdMcZodRlhJ19vK5UwUJUZGdF3nzxHPgISrS+1TozryOfcF66do5Wj+6VXQAbGV0qFSRsmtOimssAQmNUZzs/0nv9z0vlFiXtyZmnBSeg+PSA/p5nRae2b+yXmfKPMUbM0R/Qb0lDe4h017Q2jHRGX0hDguuZIFSTGCVCKlGtKcAcA+Om9C/Do4o3Yb6dxuPfLJ7Nrmcvdl5nQMdpv037A5RFS+WF6W2f4ZHrO9k1s/uC5z1E1+20zyd1eEDRHDcIkaeaIcFsyS8DPFp2CWwxcFaWShSEruMcVzXfigw21HBvi3y4lclJuVqc7DAqYeqUSyhyxaBp37fsY2jDVZRqrcimSclzYDgNXQAbT97OF8vYBx2CkoT3to9CpHMBxbD64bZLo7t5cc8RFq7MxMdZwtFmdQhsl11MPc+QKlatpjpg8R6pZXZzwPm6baxrVqnIomj6L1ecIbs1RZ1mXYlPGW7yLTZBQIX5+WgAbRgiSPp/+K8x7qnHipaqmvbBpjlzbmEloUC7rDJ4Wrc5AiJg0RyYT0TT8sJsg9dkDVIj362wrWX0pVZ8jF1Hsc57YNKSc0znFcPhA+Fhd6IJO/h3pvDIFVciSddsG05N2iJPclNQnIIMVpIlGZKT0G+YRXKPMPM4WrlrV/EZRrnl1+hxpjIi+Hh9dvBEAsLimMeH29opF48N9a1tof1sob3V+cO/ky7Da6DahCRd+yg3Pk1GCMAoNwmRWN8AkG9V9juwHgQtceafPkUcdNlQtm3u9EHWKzUSNgCU2frE3CIKSYxa0ug2+A9R/wbRxNOqfZSpP804BjKMl+SmZ1TH99AnIIB5zmX9RmM3q7M+pzFE1MTNAqVkBXw+dA2KsqIlXo5ojVRsloJp9+cAVK8Cc58gcyjsNiazXtVlojiQG2jzXrD5HiZvIETle6JjSuZXnXZKfo68sh+tVTNAMmtHMrK6mUakrlDfzcpzPEQfT3tJe0nM1qXBrjuT7JmIkSRQti6HPpvVlk/5WhZlguWQlhiSzOkZirvcl/deXUFOL6Tlu5N+Db1ZnPrftpnPm35ygAEiTgVOIvZDmoxNwRaezaY6qmeaozBfyhEvw4AvJrI6k1hDmcep+yZmO0X28zEWr03yOzKZwtlfhAsHEcaLt+eIc5s3q+DnLnae2UVWZxgSqVs3yrI05qmmPhTCl0XkyWhCYowZhotH6GMfRjCATDp6GBeYL3udIv5YmX6y1YZFw+aCiEHDNgKhTbJTdCnOUqadr/3Zm0nZ3+6Y8R7Jkj392sLRsZWIKAOgbsIlgFATbrU+vxCnfvw/Pr+o2MhdytLoaMe4ZrcjU9/SafRBUQstmilONE2uI6MwErnaNhj+3aXhskc3EHZPPUT2aI5s9d3pf7o85Wl1eJjYwLkJzJDNHZqbVmefI83tSXmEbI6GltZhyhURgzOoMWtLMrK5G4NcXDES/lrdhr8+s9S0Z93wBs6kq3y+j5kgpS7/5cyu7ccr378OtT680fntrQIZMYBJpAg2KimICRfvwwFdOZvrsZj7lsdX3WDoaiTJ9BzvPETeWkeHslJ8zE/SSdpQ0oCeBTe9xmiOXWZ1NwNcsnyOf4CA+4PIclUkyV5MwCcj3BXElIs9RzREXvEDtc2aiZ+krt5a5xOYq00afNR0Pv7j/xcz/Wu0TB5c2zO7nZ143Y2qaI0FP2faDtI/W26MGgTlqECYpIreJC6YoIkQeRdFJpy4kU96YUkTbVOtwt7G+py/7PRhmdZmEpbY41UM9S5RaK5cvZrfPkTrGebQvc5n8un6tCENoGqtSSSYSVf80iWBkNttPX/04Fqzpwef/9IRxY5fN6tJ/G9YcMTbSKtpVszoiseNs7E1jv60/JqYTsglcktiZGJvmSE0s2wwfI5cCU3cwFlJ7YlZX0U0kOG2J0BxpDLSJObIFZEjcmuP2Nt0ZXdYc6cSwOvxizZVKzBwwao7Sf4vmOXKtT2HK6arOJHhpK+uaI1+fI86MBzCvS1XaTR/73J+ewII1Pfj01Y8b11B/JTZq3MQcTE07zZLiAeX7iK3qqL13wF47jmP6nP5rm1dWzZFFawAMvs9RztzpTIxtzuiCzhwywZz33xWtzqYt1TW15jMsM6Fs0FxKXuP10wH0G2Z7AwnJrRLynOkYFZxxobxVoRAXfCar11PLSa8Zk8Cq1+PEqDm6de4q7ZrRPzdOtD1JFQLa1pxNuDRGCTDjYqK3F+YoBGRoECbTMk5i6zKrKzrpfIl3m7Ojy1zlK399Cn+evSz77TKrExnSi0AsXLGJqF0SfRblxrRz6nf+PfQ8R8IMiCfKuHYpksQv3xHXtkCbEq2O21C5v1W1+pa+qvGQ8g3lbYIpIINtjpYYs6lKNddOtJcjhai3M7XiVh7KO79nNauzzGkxnmKOqgSKzYnd3F4xzdFA5nNUys3qmFDenBllblZH6k/Mh6orz5GLyMmk2KRBVnPEEDAC+bzVGYvYsA4FMyT6H8dJXZEEOXBJHFWY5hA379T9zkQMZf5OSt0mYkTVHlIt35Y+kiTb8i69lSrGdejHPA0w4as5omZ1pk8hemKbV5xvGXcvva/s30MUrY6iLp+jhN7L/5Y1R7R8LnhqY9aceuaoGl/jPhrnARmEoKNe+Jh4+kDOc1SbT6Uoe28umIKAGtSkFOXP0XJc8AKVRhDNGDWv/VVjtDp1nqqm/wKV2Gw6zsHUl0oca/uKzfxQhWk/iyJgjLL+XfmwGjGpHEkImqMGYTokOCLLGZChGWZ1zEJMk8Ca2rSDMkaAW3NUj9lD5nNUNUhfFGmRiOpV8dAcaYRpRd5cgTR55e3PrNLKcnU6be5pWwYpJ81zxJVT/UkE1M2xVDK/dy+rOWqQOaraQ3nTsKp52zlDpd6jxJZNq6QGZKgmdrM6Wx/FHVGXeg7QYAO+cK0Jm89RuyGUN8CbQmzu032O4ti8c9iZI/f672BMfFxmdepwUJ8jnTnKCQuZ+Er/lvMcueGzg1Yt45X3mR+3NsbnyFdzZAoGYVqXCRRtoiF6me1djHnMCINuZ45k5pUSpWyfa/21bZOSabbqkK7t/fKzjTBHSZLg7udWY/mmbcYyvOWF2+dIvyevTwEpCWyJngFJ9m6c8E/N8SXmwoI1mzFz4Tqr5kgwG4062nMM38qubbj9mVWFNEl9SjRTQBasqcImTqMMcjZw60e3kOEiwyXZPQ4bt/YbNUe6Fkquk7bhCtgj9zP/m75Vqjkyj0v6rPkbmGiRCEBnuzwvguYoRdAcNYhCZnWR/K/JbtUXPhnFAZGZHqJRZ3kb5A1bx7b+qqamdUEQXqJuk8+C+LeIz5EplDd973f9dCYA4FvvegXOOnbf7DqrOXK2SNpignIAtQAZ1OdII57zv6WADMr7RoiMDPVWxueo3KDPkUviXiL237QesUS0e8TPplyKlEMwP4AEYZCvG7uJoM2EIM7qzNulsPlpmOBijlQpI+dz1FeJtUOHi3qWR6sjRGti/i52szq35kgclJTA6+3XbfutmqPaRhWBFybFScqk0tcV7yf20SRp3qHs0oAC5ohznM+RLTw5d12PVmcLyJD/NkerM7+MaT5TzZGNGJLDLsdZWybZhOivjf2kc0ntOt0v0vtygUZ8ju58djU++YfHAACLv/1WQ6mE/D+FydJDesqqOZIZzLze/EUrcYzemiBAaPp8zuZTvn+/9X6S5CZgDec5YoQXZ/z4Qazr6cOP3vdveMe/7elVjzSnyF7YbvA54iwpKJPuYxGhamHpO5hGeePWfpaxsZnVcYKwIq4IdIzpOqjEulmdrjky12s08Y8ijFHMal1MdFEh/khF0Bw1CNO6tJnVmf1/ik06X+I9zS9Sn8+R1qZjoW9VDuOrHlyEax9ZYixPN2/BuAhiUmx6okmVOfKRyBiZI+Y97iKJaNN29TLOA4vcNhGmYu8Rc8ekHv/tg4twDRk7VZNQiszfTw7IkP6ram5sMIfyNj8TRTqhR3MZqUloq0n+HVTpX2pyJxNi2XyI7ZqjlJC2E5LicdUkals9miOXiZYWcKNm5lI2h/IG+Plj8jmqx6yOIxhU5Jqj/NrW/tykSzARtBqO4AV4zRG9Lyc/1vvv5XfkUeR3MxfjvhfWWssYTWIZnyPfZzOTIOV+h0VoITES5LqUKNWyDZrmMw2hbNMcifQKQPpNqtn6sdvV+RJqarE4kYVuzdQcPfTiBmcZ3vJC97vTnkvMv+nflOmWrAcqSRZ8ZHwtepjVrM7z4I6T3Ke1udHq0n/X1fyR//n0Su96+iv62RRFUSbwUgUTshmm2G/yPcVlBiae04TRsdwHFRu3DBg1R7p7gvhXZ2CK5IY0+hxVE31clMlqDchgWJBRVNznqKgQf6QiMEcNwmQHz0WrEwQdjbpF0QzJKB/K29ZmsUZdUaPoYbx2cx8u/sez+K8bnjYeanI0NlkqlIU0rfVRlBWLWcq0buiPurn1Z5ojvax2UDNdLjJcJlV2ZtJlzAieYE13Ly75x7NsZB+BKIo8AzLUCJoCq90Uytv2/tSpNmubHCQqc0TvqSG0k4T6HOlCBZeJoDl6U95Xrt16oqLZouNxdbLR6jizOqYvPX0VzVfIFpDBJmnnTE1UtGf2/HnBbcRUiwtwokoWqdM1x9RygQrUJLBA84LBXHb7PGcZm1mdy+fQqDlS9resToOkVg1YYs5lYx4Xkw+dr+ZofU/OHNHQw0azOo8ksGrIegpb1DegsYAMPlbFov+v3X+n7Fruc2R+znaumjVHefn+apx9q3Gdbs2R71JIQ3mnhYuY1XHaATlanXy/h/jAucDRAmUakEEj+vO/c0FK+juKoiyUtw2xxazONM6p5og/B3XzT5lGya7HOlNjg6xxpG3qZnVFNEemPkSIMjNOARcTHXyOArxQxKwu951I/21Yi8Npjpg65IAMSvliTUptcq9OD2NbUjYBusCzgAyxTExnZnW1tjuJE7uAiXDQQ3mbN0QfTV4zmKM2hUnmfI62MBJfVXMUwbxR9XIBGUhIdxeMARksM6bE2H+L6GCALuGTfI6Ue5JZnbZu7JojUTeHbLwUbVQjcDFUJhv6NiUgg0njol7b2l/VQmDXwzekmiP7g+2MWd02JmSuTAzKddAksNyewREW4honZBoK0ES9FOVSpGkbVX8Qp+ZIGXPTHEzN6szjmpXjLwMwM0dZtLpylPlw6u0nWL9FjlSaaV4NlIPorm1a2XKzuKLVqWZK63v68I4rHsTvZy02N1iDz1oXzZ34sp1x1dmvxgNfOTn73rZ30ky2pHv5ry39Fbz357Nw+d3zJW1sJc6ZI05zpLUHt0ksIHxeasxRgwEZaHNJIu8JQqPtA47BLRGrAy0gQ6zPFxoYpN3zu+oJV+3PfO5PT7DfPA2Ao9ef3pNv+AR/4fpELWrSemKNTrjh8eVKH2wCCYNQgdMcuZjo7YM3CsxRozDnObJFq+PV9MUDMnDX9IvUnKXRxKYuKcjq7t7sb6pVM2mO5DCnMpEkfFSyDdGiOfKFUOnzjKX6Pez9HajGmtkKfcYWkAEgAQYcBIGARnRZzOro/Mu0JR4JLAXqCeVdiiLddC7Oo/VoJneEqOfM6mi4VlE/4MkcxQm29leYsLByXT4R0FxD5ox8pjILVHPUlgsA1JDuFG2lXOuyubei+aXVI83z0RyJg5LOPUnoUfOro9WofdlUy1sWGTRHYq5xUtOiZlTNsoenZmcUuWBDLk8l58bol0LqrTJHBqFFAkUjZxBM2YgiU0AGH81Rd29FTgIb02h1Js2Ru0+yWZ3O/FBwS2JLfyXbd3/74GI8uXQTvnbTM8b2BFSmNkkSLeE43R+mHTIVe+04rgk+R/nfz6zoxiOLNuD7d74gEf0DlSTbs4XPEV3jet/9tGhxkmscTEywL+S5CHT35mNXiDkypDkRa0uzpDBo4YAiPkeJdqD7BA/hsLl3gMmjVFvbzFlexBrBpIGqVN311GNWV4qAToU5cg1n0BwFeMGoOWKj1aX/mkKDFpX++mg/RB+pMztF0XnuMm352O9mY+bCdbW687KmjVzSHClaHVVzlOVrKOBzpGLAYNpC2zX9BuT99dQf3I+Xf+02o0mBKWCEIMjFps45cXKzSq2vZDGr46TwpciPGVCfF0jN6niiERA+R2btEGdWZ6qP5qKJFKGCDzOwcesADvva7Xjr5Q/I9SIfC0CPVlcP6tccRZI2zUTIAum8mzgmJZp6+ga0/ED1HFepNZ79SRHJiLZHfY4yAQAlnJTXWLCmJ/ub2y/F8HD5vQY76acJNDklhWDw6Xs8sngDXvH127F0w1bpWVOd6rbF5X8CxBqg65jvq236mQIy5MxfySgpXkfy24l2Mi1gZuqq9kVnlk1tA/pYxImcCiKPUJr38bj/vRuHff02bOuvFmKG1df8yT0LcNQld+BO4mua+bKQcvX4HPmkiqDXeyt52OjxneVanYQZZtrzERzEcd5OowEZ6FeNkwQbt+bM0aquXm8TfZM/tjg7NEuKWN8XqODMZJYq1aHzRk6zOhNeXLsFv7j/RbYuTnNUjzmwWg8XrU6FjRwy+hwh0kJ5u5ju7YM1CsxRwzDl9LElgTVpDIr6/3DluYVOTUEaZchsOSoErpixIC1LChh9jgjBr0aSE+pyVSqjZnQG/Bcsl5dFQD+o9efp+L24bgsA4A+zXsLCtT1avUbNkUJYcNJS7n1UIjuCec5w4U+jJpjVicsq0QgI6Z9ZO6Sa1dGDQ3suSTRGhobUdQlN/1VzuJ+3erN0PdOiKQxXI6Bahkvfcbh2n2o4+ypV/H3Oiqw8JVg4gYpAnCQZc9TdW5H9GBI+YawLqWmOvUwnozna1q+H4pXNv0xSSl5zyZmb5aG8izFHdchLWIj3MmmOuGlz7aNp8BSTCYvJrI4GzKGIE3kPMpk0N+pzpIbyFRD+RlPGd2jPmYQKqpafggtAoxOs6m+dsN/SX0WSAC+s3owdxuZ9c+UoU+fe9+58AQDwjZufwb/mr03nXKKX9QvlrZzllnsC9CzdTLQwuebItjj16GWmfolyrsAFLg2MpDlC6pMjsG2ginXEP23mgnVY1dULDqzPUSk/A2yWFLlZXfpvxPi58n3XBWpi+JpB7Iv+cOkYijBHRs1R7P7eVs2RyeeIMavrswjpXO2MJgTmqEE0N89RMTBWViyxnJrViWfUTbxYqxWJ6Oaf3Xen8QDkBW4icugBkUlWa5faFGdw1efIJ8+RiiyppIPxSevUC3HtfOe25/HG790n9RGwBGRQNEeczxFHYGmhvC1mdZzmKALP1HBgk99VzZoewBCQgUi/uXsZs6XdI5GMlFDeXOQhFaaxz5PA1vrcBJ8jMdYz/nMaXrnPjnqbpK9/nr0Mq2qmp2Pay5LU3kXcTexsBwB0bRuQtSx1mJem/XKvmyyUNykoZ6JPr9N6TFXSfYiCi1YnrhU1q6snoAZbj8XnCOCFYoJpNBEiRrO6UsSvy8SPEKlLc0Tez6Q5Wl/THE2d2Jldo8E1OIjzhOtStp9T5oiRkNOa6f7AaT7oNWrSzYH2eSOJwrd0wzb8x68fwa1zV+V7Je2Eh1mdLbiS6TGTz87YGrFK17gerc5Tc5TkjH5H2WxWF0Xus0ENMrGJMEcAsvxR/5q/Fh/41cN47fS72Xp4n6Ncc6RbUtC/xX6TfyfVWoFDaqXAvw/3fT73hoOcdSq1pe0olXGBdmwQz3PWJFzeO6kHlmZMApsIOnO04/h2ex+HR5k/5CjMHN1///0444wzsMceeyCKItx4443ZvYGBAXzlK1/BEUccgfHjx2OPPfbAhz70IaxYsUKqY7/99kNUk5aJ/7797W83/DLDgWbmOSocyptZdKZQpCan0uJmdXkDJmn13juOq5XN7/tFq4ula2LT0/IcCc2R5ZA1gctzlNWh/OZez9UOHf9+Q56jssIkczbWpig5FKUoMmuOGGlbKYoyB3sXOOaiEsfZGPHMEWNWFxNml9Uq8UQoPcxURiaO3eFRTVI2KnEE/JlFGzLNkSHMM/2Wq4k09d1H74koyk3reh0JW3efPAYAsGLTNs3UpF6fI6dZXSaIyMtxZnWJYnLDIQK/X2bZ5RmttCkgQz2R24qA+oVRtGdmdfoz2wb0BL1cnerSNvlNpElg89+meu0+R3bNUdmiORJmdbtOGpNdE/t4Zland7rWV72+zKeE7k1KGZOAqhRFmRZTIIrkc2V1t2wGqIKO8awX12v3Zzy/xpgKI+2buW71ls96kDVH6dzpbCtleyhd4xpzBD/mKEloQAbz3q+uS67L0vsnaahrCqH5/tf8ddY+cXsz1QDZkqL3V2J8/455WLh2S9ZvW8472nfTXFP3wDHtpcK5Gqf/83ms7NqmneV9ldhLYKNGRFQFXgNVPSCDivp8jvRoddMOmYpzXn+At5XJaEVh5mjLli046qijcMUVV2j3tm7discffxwXXXQRHn/8cdxwww2YN28e3v72t2tlv/GNb2DlypXZf5/73Ofqe4NhRj15jjIir0FGxUf7IdrNGDLlXlGGjJPiqBALnS5IL58jRSok8vKoKmtOc+SLgZr2g3ttn2AVNrORqkK0G8MBl2XmiEt6x0mfuWumryfnjMkJDN9wrjxzlJtv8T5HXECGOM+NojRdJd9BrY6aQaj+DalZnX3emsZe8zlqouaoHEVsFK8qsw4+edIB2KsmRBDfxKU52ntKWn7Jhq0y0RzXF60uSdxmtTRghMA2JgolXSpG5ijiNXV5/h/5ehwnRhMP07bVLM2RKSCDbb6IxMumPpg0R6nwSi+fJMo6pg76hC2xbeGuaHVtpcioURBmUrtOopojef1ofc76pHeKc7g3JfwWiMn+wBH39P1WOTVH+d/PrujW7lNNvGxWx/eVwjcgAwWlEYTf6pj2slFoRhEniWdAhvyctDNHbisSVXO0UdEcZb7BDk02d7aUCZNjM6v71QMv4vJ7Fkj99tIcMQIkU56j8R1tXqZ6FLNf2oiPXTWbZY6MkeIIhJBO9IXTHLnM6mx3jd+EMasrRREuPP3lOPPovdhHthezuraiD5x++uk4/fTT2XuTJ0/GnXfeKV37yU9+gte85jVYsmQJ9tlnn+z6xIkTsdtuuxVtvuVgMsvpZSSeulldPsnWbO7Fv/98VqG2eZ8jpo8RzRHDHz6+kDRHhmc5u1ljtDpJcyQ/p0rQ1DxHcZJGzPnUHx5DtyNaTlspynIFmPqtDiermTOovYF006fv7MpzJKaOKiVKTSEY5ki5FkWR8V24CD+RgcDgwB28lWp+fHKHBx/KW5b+UtA8R1r/Y5LnqPZvmcxh1wbt1BxBZrgaAU1azGmi6MEk1gG1/+9oK2FLf9VoAiUgmKNlG7ZJIvuqh5khBx/zRBHhijKbXJ4jWoupSiqkocjM6hjhRJ/JPDJJUGLCltTje8VBEJRaQIYSr4EHcubIRNRWDO9ZNgRkUOc5JV59fY6ofxjXF5vmSITxppqjimJWFym2vZk0numSGmCHKxcniTy3MzPYiPWZoRYaqw0+LgL0rOYiQ0aIWLO6UmT+5lm/mcAS3N8UdL0Ln6POthJJfk6+tzLX/c3qcr9O294fRZFT4KSaCm7aKmuO8miz9n5xhDplctS9WwpcoQhLIubM4cBFq8vnqnxjXGdZE/L54NmV3Th6nx2ka/2VONsXbCiVIiDO92Pe58itOZrx/BpcMWMBvvueI3HALhOk5zlEgJYEWgynSXtGx+2L183BlPEd+PoZuq/tSMeg+xx1dXUhiiLssMMO0vVvf/vb2GmnnfDKV74Sl112GSoV/1CQrQRztDouIIN4Jv2XztcHF6zTNhsXfM2+qCO+zTbaB5wvi9YvIUHyYI5omYHMuTv9rfoccZGLfnX/i5i5UDeRUEFzIxn77TE2CVJpJXeQqKaUAyazOi1anR7NjDtgVE1ZKbKYF5GiVBrqyxxxfac5GzihQGo3Lte/tT8PHqASgDQgg9panBCmKls3OZHiEsbR+UbHKGfUwPaJh7kMNf/jcuAA8rwSBxyV1ouD2LUW995xLICa5oia1cX8XuBCOsb2MpzmqE/SHOnEsLHOyMAExKI/ClGUJJYUAPnflWqclWtWolhjKG/xrZhnhBbD6HNk0JCVIp6pTqAS2fk9Wtr2ypyQjvalzeJzJMymdhzXkTELQmhiy82UJAnL6Ktm0gCz7g1MhklzRM0u3ZqjvM+cn14UQRPIiOu0LxxsARlMe3QvIZp7enPNkZgLdJx0nyNfzVGuceiwaFhS2tzBHCn1bjBpjhxrkGNMSyRyp3r22fplSg+gIuWN+POd0xz5mp+rUKdVfzXG1j5+DU7ozHUTVPCX1qMziO5Q3sDZVz2K2S9txHl/flJ53uz/zGmOAGBshyn/Wfrv08u7cNOcFfjtg4vrEs61Ogprjoqgt7cXX/nKV/D+978fkyZNyq5//vOfx9FHH40pU6Zg5syZuPDCC7Fy5Up8//vfZ+vp6+tDX19uT9zdravEhwtGszqD6jh9RhB5+YTqMSwgG7hNgzerI5oji4TLBzbmqKNcQn81zkzv6ILsr9rNOwA9lLfYzMVGofocAZDCidrQ2V7Glv5qTXNkIl7U33q5//3nc7jh8eX448eO1e6p0cZMh5eqQdQzXfNmdQNKOZvWg4tWVyr5Z0lnzeqqeRg9XnOkB2T45i3PYY+ar4zKOFDGQh1qKZQ3E5DB7XOU978aJ1rOrGb5HNF+lEv8Qc0JCdpJQkZfKeU+O6Wao6Ubt2b+R4BYQ8UPpzhx+xx1ZGHz83KSQCMbZ7fQJALvk5VrmuXrttDmtI33/GwWlm3chge+cnLTmCOx1lQzyVxzpLfj0hyZNGQlA1OdJPKeVI+flZqHTSAPOFGy5DlK99bxnSnBXiEEuWnZJAA+/rvZuPv5Ndo9zmxK7Xo1SSQtCQ0Aoe5dESJpjriYI7rWub05Ij6cVPjjF61OuUB+m3gYykB2Z8xRKWvbZkWVJGbLBLVcFpDB4XPkIgVkLSbQZdAc2czqqjFv0p763en+jeIZW7999s840dvNfY5kjOsoWxlJaztKX1PNkS74v+nc43HbM6tw5b0LAeTCBtFHlXnnksCqoPsDDTgC6LSDQARgjJL/SiwTNcS3gKiKRiOMk+akxWglDBpzNDAwgPe+971IkgRXXnmldO/888/P/j7yyCPR0dGBc845B9OnT0dnZ6daFaZPn45LLrlksLraEIyhvJmDXfedyCfsNmYBuZCA85PRy5ls2usBJYzUTWvfncZh/pqe3PSMMSey1Sc0I7lUU0Q3kstSx1xf5k4crAMVc/hiTYrJlBNZqb95y7PaPZWYcyaBrb2GFpDBICVSNUfUDESFHJBBSF8jTYVugtHnSDBazIQyRQ5aUdtEVb6BBhLgtAZZzpFI1J9LVF3mUyoxL/Z/1Wym0Wh19NuVS3azMYBqjvLv4GMzD+SBTjZtHZCSV9arOULi1sB1Mpoj7n3o57P6HDHz5oEF67Db5DHaXmbzwcqZ6gRzlm4CkEoyXUyzL6gfGYVKxFBsU3yOyiXZVMlkVpcShnp9aah1npGQzh3LK1PNSu9AFY8v2YhX7zdFyrVl2hMEwT62ow3lmllypZrvJYCuU02ShGWMAD6vm7buGXMi0Z6qlX5uZTdeXJfn0NpqyDcnQIeMO4+ohaCkOWL6urJrG9b39OMVe05m38MnIINsVkc0R7XXFHvcYy9txAaF2E0M76CCCtpsTIQWkIEpI2uHde2gEHTaNBzmMzEXPKiaJdveFsFP+x8nej2ms2dMe31mdUAaLAdIIw5uG6imzBGzj+2149gsVQkAYkqZ/uasSdx5jvL30M5aYyhvPSCDmAtjjJqjtC4aur0SxyiXGksy3GoYFLM6wRi99NJLuPPOOyWtEYdjjz0WlUoFixcvZu9feOGF6Orqyv5bunTpIPS6Ppij1ZmTwGaSKDLXtxg0R99g8qYIUHtiQPig6IuA5hfh7PqLgHP0F2hXQ29TUxyfaHWZzXL6O/M5UjYxKgHzJQqFXb3NrM4nIAPXbwHVhMUkQRP7bqY50nyOTMyRSlSZTZj4gAyN+hzlY8cR9C4pnrpWUqK+Jr3TDi5Gy0MOEBcRTAkHzjRJ9MVPc+Q3D9pKsmYk8ymjmiPGOdrX+Xd8Z1uWc0YkHAX8fLA4pJojOzizuoqkEdYJDPHn2PYyTj181+x6KeI17V+9cS7++29Pa9/UpPUASBAH8sjGLf2DHpDB9q0EMyeIRC4CI6DvWeWIn4eq5sjXHJiCjuF//vlJfOCXD+P/bp8n+xwZ9gThBzOuvaylHTAGZLAMPxeFTRdIyVcGiKZKbfOCvz6FBxfkJtWuiPb0e7DMEUj/pXWsawuPm34P3vbjB/BiLb+dnrOQ/s13jArTevrSsR7TJgdkmLlgHc68ciaWbdym1G82OaWIEzmnlQnq9OPON3WNq2vNx+fI6PsSRazZJaBrYyhKUZQFbrKB86/M8hyp67GkM+K+WL+lH1EEHL5HSvP2V6vsPpZaGZSk32lfdNoJSM9+cf6bviN9RBX6WX2ODGZ1qkZJQNREk0Q3S2PfSmg6cyQYo/nz5+Ouu+7CTjvt5Hxmzpw5KJVKmDp1Knu/s7MTkyZNkv5rFZj2Gz6Ut2xORTcbTvVKy3KgYTrFb24fjiKz3XRRmkqS+imv2K4QUpTY8QvlneBPjyzBnc+uSusTDrzKhkEPOV9bVxopybSOi4wNyxx5mtWJTVEQRKqUKE74A0bb4KLISNxyYZGjIj5HBs2RqJVNAhvZD2AtIh35FiqZTu+Jx2jUKNdmTA8kOelkzigCutkUB1tTtO5SFEmHkrDllgOT6FLcIlJKkQNlC3k/k6mKCykDan9QBGSQNEc0cXNFD8hAmXG6ViOY/QNueHy59k1tASo4AcymrQNNC8ggUMTnSI1WpwUnMUiq7WZ1+jpWYXtlSoDf8vRKAMBVMxdLQW86DUSQ0GaM6+SYI/472qaTIGKrMucglYnjRCLUqabKpSFwBQKgT3OBPqJInrsCYo/g3u3p5V1pvy0WHD5TMgvl3Z4HZKgmCWbM47VwcWI+X6RyxAqhrVTCJW8/3GgSTcER0/Ia18fbx+fIFGGWRqsTEWUfe2kjrpixwGgSBtTyM3lo3tdu7sMP75ovXcvyHCll28ulus3qAGC/ncZj0tg0V5ApIANlBgHCgNd+c4zngEMDSOeg/j35cec0R+JRk8+RaGc9YY6aJZRqJRQ2q+vp6cGCBXkoxUWLFmHOnDmYMmUKdt99d7znPe/B448/jptvvhnVahWrVqWE7pQpU9DR0YFZs2bh4Ycfxsknn4yJEydi1qxZOO+88/DBD34QO+64Y/PebIhQKM+RMKfKiLz8nimiie1AiGN72Evax5w5grO8DRKRpDzbkWl60t90wZg0RzQyzfOrunHd7FwrSCNDJUmSMWNtNd8OmifHhdxEz/yMySaZ7Tez2Xib1SnmlVx0Hi7amp7nSO9z5vdFns8P/AKhvB0BGYxJYC31qwSgZFbH+MKpwRNoxEXXZ+8hwgY56WTeV/qvDdaQuormiDKNnW0lbO2vSt9NzIn2OszqAD5xcL15jlKNk71MJ+NzRIkVzqyOjjGVjqZCGpuwR/5ti/KUZH6NhDna1jzNkYA6P7hIYgKCmTOFu1cTWNI2fPIc0adoaavmiGEwx3e2ZXPSlFwVALprppvjSGjjLJS3KSCDRRfJaQbUz6WeKaKfqdbRxRzZvz29bUq1IYpQv6d83+HqrDEEyn6thr12gYbyzpzzLYK8BL6aozx5aLkc4cOv2w9b+iv47m3zpHKaGRZHTEtzURdQqfkIOdj8cGk0wjgBzrxyprEegcghkBO47PZ52rXsuyjfp1zy82My4WW7Tsjmj4k5UgVHmSmlQXNUJT5Hne0ldl3T19C/J/9NoiilGahJaR6tzsCE1eqiZnX1JiJvZRRmjmbPno2TTz45+y38hz784Q/j4osvxt///ncAwL/9279Jz82YMQPTpk1DZ2cnrr32Wlx88cXo6+vD/vvvj/POO0/yQxpJMO3XqnM+wBN5AiZCwLbu563ejMvvkaUhLHNE5riWj8FcPQtJI6EsOHHIZgvcw+eImh8u3yQ71LZLvkXkoKwRoVX453dpI8EdEsOZ4sNoZmWZzUA1pTSG8q69ViYhZA4ZbjNTGaaI6WN7OUJ/VfU5ysuzWeZrDJWr79U4ySYMn+eomOaIMrfqvJy5cH0WhTBSGJkqIxRQsYX4H0jEmKKO8rJXjxNc9eAiPLhwPa74wNHSGEqaI8XnKJXID7Ah7WkdRQ5ijjnisr/7gJebyqBmdf+avxY/u28h1m7WJYayVDkfY8r3RbDvZ+o3tfkcZUQpIeIGQ3OkMq62UN6czxFFTjzKz5UNzJGq2TNp+WxvzBFR4zrKks+RybRUCLTGdeSaIzF/87NM6YulMz55jlSafKCQ5kiu6zcPLMJDL67HT2prlu6VLrM6SXNksLqg/VWZOnk9WLsNQI5WlwdksPjHJr4+RznjJjR3HJOpaRqY803VYpr8w+yaI/5eSQln7xNsAuCDAPkij5IpX29rkDk6ZLdJWLwuTVLbV4lZf3K1322GnI4ClTjJA2vUozky+Ryhpj1qK2d7hThvTRrlBMDP71uYaaJF/0YbCjNH06ZNs5piuMw0jj76aDz00ENFm21ZmDZsLtu9mt+GTuYtBmdSm7RMlYaY8t7QOtTPUzgJLKOREFDzWJiSwFIpBQ1coUqr2iRJUpLZCGfJNqv+ZoH0YDb5q6gMgm29c6p+XXPEV6BGLVQ3FtVcUkALyMDMDZEzh4sqmIby1je8CWPaNIdfTsJHI/2ZNUc25kgnFk0HFIV4SjKrU77hq/fbEY8u3pj93tzLM0fir0KaoyTBxf9IA3D8/ckVeM8xeXI8GhIZgGJWp/vr5AEZ8nI+NvMCono6tyr1MkcemiPKHP3Hrx/R7gsCLVEIp7SvspkhDIEH8ueKM0d0bDduHdDmBd1r6oGW58gyv8WaoYwHhTlaHS9kU81HpeciuZwKkdeNE9JN6GwjDByXLUrGWNbnqKb9TlmKvC+WetrK+npQy2uaI6KpctHAKkH5jZvTNXvL0yvwrlfu5WaOojxaHf0enM+R2n+VKadFfRj2LFpdW4lo6Sz+sfBjIFL/1bScmLvcMGpafYdZHT2jxBrz0RwZmSPFX9XHZFC0XW8ib6FVU7WdbeVSQ8zRwVMnYGUtMEN/1aQ5kpmjkqI5siWBNZvV5X+r39NsVpf+O4Zoo8R8N/kiJgkw/dbntf6NNgx6nqPRDnOeI94JD8gJKLrvmezriyz8OElYyT51hNZso/32oAz08FL3OVtABnoY0TeiBJC6IbQRorEa5+YBbeWIZJT2W5Q0Z5LpwDHlxrnhM6/TVMzcZqB+Q5NkL5sHmSZEsd0mphAUlViO0hZBf3/1G9C/o4jf8Gi+BQGT5khUa7JbtxH6GnNEvoXNHCcLnkBMmlSC45pPvBb/uuBknHjwzgBykyDRjoDqU1DUrE7VDmbRtJRvCuTfghMSSAEZ6jCro7CZiqr47UdejTcdtmv2nOuxTuYdKHizunyMKXNRiuxmdeo72MzqONPdjVv6tXU5zpDI0Bd6QAb7kUmJRpPmiI1W5xGQwcAbscT3uJq/gI/myLUExnWUJX8QwPwdbfOQ05SrxdX9uRlmdXmI9fwaH8obvFld1je9bhMxS1kJP7O6WkAGojmau7wbV81czJb3zXNE52Mbs0cJqNsKt97VgAxZclllj7AxbZw5OlALgkA6sY5op21IXQbq0x49v2ozjv/OPVowrLZShI624vUJ7DNlXLa/m32OgDJhcrL1XxtiLiBDZlZnDLGdP+PzPdNyaUGa60g8a9IccfPZxHyNZATmqEGY1qQpjwJ9plHNkYpKNT9YqP1uFEUw2U2741UpbVhMIsQmmSeBJVGtKHNE3on6IqlSpXZVcxTnkpMSIZR9IAdkMDNHKzZtw8K1PdI47b/TeI3o5w4AVdLtCuWdS2NVKRG/mVWqskYpdSCWy3BZ6DNJvsG/gGeOuA3QngQ2iuyEvjqVbXmO5AfF8/kcViXM7eUS9p4yLiMKRY4WQJ5XucWX+AaWdkU/SVuqSUOsEB5lhjnihASyz1ERzZE+vmnYcz/sPWVsdhDGiXv9dGbaL5PPoAjIoGsDVE1iBLMJl+gPhS0gAxfVaQPDHI3taCxbhcrguIRVdN9XGaksIINqVlcym4xxGrm5y7skzShH94yvrWkuV9T4zjaS58h9vozraMsk265odTYJslgjtlDeL6zaLJltFjKrM5ggqgk2AbPgitMciX2HW2WifKMBGcR36mwreUXQrMesTuwzXPU+DvySAAR59LQs3L+iOQV0xt2sOZLnoitnFX0OKCZgoljd3Yf7XlgrXWsrRU4hiA17a8yR26xO9WVUx78Sx9nYmXwEpTlfq29VVy9eXNtj9jmq/SszRzXNkcHniDsybLmtRioGNQns9gCTBI0jLnWfo/ye0eeooOYoC3ddLmUbbomYC9g2cR+Y8p0AOTOjRpcDZKKB9kHWHNnM6vKDmRITvv1vI8EiTEKO/mqMN33/Pmzpr+JfF5ycXefyRHGbjaotNIfylplkzteJ9zmKpTFKzUDkMrnfV7pZRkQcWop4e+UJY/w0R2kob1EXrzmyEfqcWR0XklmFeCobL4s5mIjm1r2NEo86MZZpjjzWF/0W6sGUaQmEmRG5rUZvBPiADO0efdhtUpr0lSMQiwQmScP6p38ncPscCumhWXOUXpfMiDICUw5tHkW8SY9AMZ8j/Zl1W/qMe1K9UOesqz6af0qlr/JQ3nIfhfRbhapFSZIEsxaux/t/+ZBWToWqOaKE07iOMtYQ7ZYtxV4UpSY3ueYo34M52Aj2NkarrUI314lr/XAzR3S/pUK33FLDzhyViFk6/R5qElgu95QtlHeRYCljiAmjDQk8o9VRs7pavdxc0/xBLQEmgPQMFe/V2V4Geiusz1ElTtDh4UtENUCVOMFqT+ZI7Cjp/OS+qX62qPnH1G/XVjb7HH3jHYfjstvnScIJFTuOa3dqjvSADDJzxPkcDTBWBxScWd1rp98NAFLScApRbizVsGeaI74djnEejT5HQXPUIFyaHTrBVF8Tn4AMfnlYUtAkndS3RDJJUOZwUXt8O3MkOxVK5kS1w0g15aEEkMpQamZ1meaImNV59pvWZVIB91fiLEQydTaMSpwNr96yb7S6zN9FSFI1Xyfe5yiNfJZfL0W6NJMSbz+770Us27hV8jnyNavjiIe07Rrhy71Xqf6ADLYvqfoHJYxZncBYxpxI1nam/2a5kzzWF21KHb8svHxZr6+Dic5Vj1ndW4/YHX/8+GvSsqzjvr/PUZqoNh9Hl1kql+eIgk0CW5s6qj9AhGLCHp88RxJztFlnjopo3jkU1RxRc05V+lw4CWyim9XdNnelVu7n97+oXVO1lnRvGt/Rlpk3uXwrxrWXJcZEC+WtDIfNpEoIAWxmdSpyzZHdJBMwn6c0kIsAa9kBalaXQ7X04LTyGnNENamFmKOS15yNkwJ5jjLNUY05YsrZzrcbHl+GexXtSkLKqImibTSC60zMNR6+ZnWQnlPBCetM5q7ZM6WSZFan+p+59oAoijJz5P5qzGrANZ+jbE/m+1SlzJHyThNr57dqVkfn3cpaInbT+UzDduc+R7xZHaXTuCThowVBc9QgXGf92I5yJsUSiyx3LM/LcarX01+xm7N+itQnRN6w0vbyEKV6Lp/6J7X6qJCUZxJSsmDEGKjmUKYQ34BM6CcJTYJWv1kdYNboUEZt1sI8uSCVtud1uM3qzHmOZGKfc77k6t/SX5EkehF0zREldr5z2/P47YOLJJ8jX7M6k1mfU3NkZY6UQ4kQ9VbNkaLlUUPYH7X3DtnfYxgfEy4hbuQ4VE1Qxy9jjhQGjpat1NZlFEVZiHR6wNkI1IOnTsAVZx2d/eaYi0rVzeRkz0c0rL+bqVL9CVSIA9uknZOS4paiQsyKNc8RI6Xu7q1oh3SDvFFhn6MuorE0JYFVx7xcMiSBhT6uXCCYtYx/hsocbSZmpp3tZaLBjLD3lHHG9xFmiaJ//VV5/ai9tmuOGObIId6qEGbMpQSkc4GaqXNzlA/IQPzlyGdWfYQ5H0a75sjebwpvzVHiZ1Yn+xyJaHV6OXVai/dZtG4Lzv/zk1p5at2ghvuXNUcxgDL5zQ+GeOf2cgl9ldhbcyT2E5NGt60Uod9xTaUh1FDenW25FU65ZDcNFvDxOaKMm2oJw/kcibGjZ9DbjtwdU8Z34PezXpLmWSmKWPqjXNPMqRjL+hy5dSfjavRt8DkK0OA67KlDMLWfBoDlm7bhm7WIOnQBTR7bjkvefji+854jC0laqdkTXUClkjnPUT2skTjk9TxHlmh1gjnSTGfcZhjiOZqbo3hABsIcGRYy7dqsFylzpEvWuD2+1zOUd+ZzFOnEApCOLyeJ2dJXkbUg0IlildBes7lPYmgaMqsjWj9u2keRPQRqFEW447yT8Jr9pgCQNUc2JpeL8ijKv+mwXfHrD78qKzuOSVzHJcTNom0VpJ4500CABlvJ79GxFt+tnzOrs4yZprkwml+Z+9yp7gU1kvaJJZvwxevmmB9Ebndu0tTFSU0oQ66JMeGY5SK8qN3nSLQlz9MtCiHSbM2RS8tHTWtNSWA57RafBDZRiGxeaMIhNyNOK+gmZkBJkmRMenu5hEN2m4gfv/+V2GvHsVo9Yj2JcaiomiMFNlMvQZzb8hypyAKeRG5BBp2jW4iwUQitJObI0E/VJxEgCdQZzYj4S4s4SvtVQADZ2V728oMEfH2OSCAjq1kdrzla1WVgUpL8HO1QEkXTNamHZrdHTRPz1pc5cgm5OGGduodyprgycyQzDrZ5KJgMQX+lobwNSWBJPXmKAJ12En3kzOpUSwDaT07wXERz5JMwnkt0PloQmKMG4Tp7x5BJ169okADgVw8swopN2yTmaKfxHfjw6/bDpDHthczq4iTfiClhVopg1LTUkzwyMw9RFgT1dwF4cyJ10asMBQVdyNVEDsiQSVo8BRayWZ37nenBw2mOOPiG8s4Jc7k/4nfVYFa3WZGMx7HO3NqSvKahvBswqyOhZXmnXrvZVCkCXrbrRJz12n3S/id+vjK5xjWXronnzj5+P+w8oTMrO5bRHMmawpzYAoqZrYo+U6jMkZwElkhMa30YYPIc2RgIlRjnxpdqjDlMJMxvmczlW+euMj4jwEXcUzFQlSeiYAJUExTVzM7cZlpma5/N54gnIlQUVAxq0EJ5OyqkDJ2JkdZDeZvyHCk+R/B3fBYBZMQeTTVHlNAS3/eMo/bAq2tCCwrBHIl5qAZkUJePzayO1Rx5Mkeq/5qtLCBrjsS+7NIcpdNY398Eo8Sda5kvr6Y5ovu0/xk7tr3szdD7+BxV4zzthBh/VnOkMkfVGHFsjogXJ0lmxdChao6kNANKYAGHH65YX/4BGcRz/LnHmdWpe6iuOSpJ+26HYoVj28MufMuh6TPCrI4EZFDPZimisGCOar81c8Q4zuiJDkXjRC0BBKIoYue42ncxT+m5KepzaY46yvk4BZ+jAA2uw55O5H6D1E3NMUMl3UWCplRig+YoyuVg6mFUj1Wd2PC4BKT0uqw5EuFUVc2RmQCitu5JkjMb5VKk5QXQn5V/0+9UNLJKWpf7wPKNVpdFNlOksRlBk/Bme32VWGqDSxLYbglBGsHfrM4Yyrv2t8mszrYcVN8hmufIhxygmiOqnaBgzeokQqXWXmbj7tEwgTosYq2qppKAHO1HrP1cc0SkhkonJHML5f04Zq6a2CXwE8e0Z3+XSv7aFDW8rgn9Sq6QKmH2KSESQdaQmPZOQbBbzeoMWhgVjWqOVELKtd8LQpwbt5w5UtqI+O96yvfvx0vrt2a/k4TPr8ahTQmOo0a3G2DmIQchURbjmFk/GMahv2LuX7bf1WVW5/6WYnwvv3s+zrxyVnZd7JmSzxFDOKYpAtK/5YAMcl8pvW+yoqjXrG5Cp59ZHSDnCDSB7pUZA8GMo3plS38VJ3znHizdsFUrC5h8juQ9Lr0mv7zJakNlcowaKwNMGl1uLNW1qRL27WXZwkKNKmf6PtPffQQ+eOy+AHJtWnfvQPb9xypWDVK9meCPF/pUqrkGsEPxY1eZd3Gd1RwpZ414ZCwbrc6eBqG9HLHa4NGCwBw1iCKHb55dXH5m09YB6Tcl3ovUTyXIdAFF5GBRD6N6NEfigOTCKYt+pP/mi9NkVmfzOaJSbuqHQwMyuBiQ7DfZPH0TzAn4ao7Ud3GZ1ak+R7k2jNccAXI0LE7zUo/maCJrVqe3P0Dml0lzFFnYHHE2U62f6P/XzzgcO45rxxsPncr2m/5LzcjUg2ocE7qZCx2s+jH5QtccydG7aH30WwxUYyk3iexzZNZO+AQEiB2ao/Gd+SFXjtx5bQSqceJFqFFfNPEcULOrl5yOIfmNmAhzMUdtARlMtvkqivJGbaVIZlwL+hwJhs4UVRDQTYF9v0lK6Pqa1QnNUfpbZo7cCSUFMs1R7X1MZ5iAPSBD7Xyg2jDH8VMolHecYMn6rfj+nS9I14V1ghStjjUbzpl82pLqLE8JfJOkn56zRc7YCZ3t3me+mnONAzXRtmmOuCZXdPXi6oeX8PWSs0f1OZISuyvv7rKmEN+YnnM2iP3WJMThIoGqe7767VSfI8lv0jIPj9hzcla32MPoe6gm33y0uvS3qm3c0lfJ/P3UYD5UaJi/Iy8AMPWdMm6ihEtz1N5WIgLewBwFKHDtY3RhmXJErOuRHWrpYi3iME59ODqUxZ0vIPmZeqa0YFLUc1pNQMolv1QlRzbNEZUW0ghubSTPkSvogYBPQAZzP/yIF11zZDgIFEKaJmQEZBNCFZsocxTrclerz0+JZ57Ge2uOcrM67gCPHExkpByAFVLfQVMn4PGL3oRPTTuQeQ5Sm8LPhevH2A79/ehBo2q+CpvVabbg6b/cOk2zvudMPE2iK5vVKZojyRZdvscGZGDmAcW4dmJWV+L9W0yw2fJTgpkSnvTbqKG8af9Nc1Vc32KJMW2yzVdRVHNUiiJMkjRtZiELh14P5kglGE1mdSqo9tyF9lK+bwJmszqXX8HY2tzRo9Wl91VhiM0PRmi1aVAZl88ojY7nEmRU4wS/m7VYu97HmNVx+2s1zhkgmSCWn6ky9TQrIMP4IpojD58juo8L5pQTYJnWCRcoCkjfL9cc1fxOat/VlrvQlucIyAUmYh25CHTxnEloUWbWq8vnqE1hjmhx21rlTPGE4LujTY9CSPucW8jw+9q6nn42Wh1dF3TOlQxmdSqzKJ6RfI4cDKdAR7kk5Y8cbQjMUYNwHb50zeY+R/IzarQhyayuoM9RFu5aNatT1LYC9USrM4Wk7VCYI3oIGjVHFtMAuhHFcd5uW4lojgxmHOpmWaY+R4U1R37fwT+Ut/xvzvTlm5yJ6aOSKM6sLnXQ5Ptn1Bx5MkcDVRqQgTtg7cKCssKQUHMwMUdZpkvUX+t6QphH9aDifI5kB3BBuOftFoF6BmRBQrjxKOWE/kAlkQhbKSCDYgpJTR/UM5+jzeNY1yDSYaGHdskyPziYCIFyKZIiMtHWKXMkh/KWv69Jyymu232O5LZMRFQpivCbj7wKbzpsV7z76D2N9WV9jNKAOAIqgeBipq3MURZ8RO+jD0FcJCCDqE+02UN8cGhahDbp++gQWkdjKG8FVp+jku6/5utzlJqD2stWkwRrmMh9nFkd+3wcswFnSspYUvlexcDw0p9FztiJY9qayhz1kZcuF/A5EjBpbxPic5Qlik4Ec0RMv1XfGUco7zwXVnqdmgRzEIyeSWihJm8H9LWpMhFt5ZKkPVYZZdMeQGkOsYdt2pq6THCBgmifqfsAoAeaWdfTh9U1U8NdJ+U5i9pKxOeIjHUURaxmURUwCLEaF63OJURrl3yOQrS6AAUu4opKafoqstRNwKY5Kkq8CckMlRBQojVJ+CR2RSA2OGMSWOGYKfkcmczqbJqjnJii2pQ2wjSZmAh1jFMGp9Z/h5RDJbR8nIEB/V1MUlQ1/HMWTYiaYRmYvq6tuX8adSAWsEm2ShFPRHLR6niH5dx8imshHSPzOIluUfNBNXSu7eCmvkriOfWg4nyOOAdwsS6LmtWpRJA4E8yaoxpzFMfSmFImVT3AaV06k88T3eo6PuXlu7LPlD3m8ikvz00bTRLZ9nIpm0t9larUPjWrUwMy0LZNBI0Ym60DZs1Rpp2u7XcmIiqKgDccuit++aFXSUSFCVEETCLMUVkhjFzzRRDibD6q2ufXzOo8tXlUWu+CmHdiv6dmdXSfokI0bunq0erEt41q/8rlbSbL+fmgm6WZUKFmdS6fo2qS+bZScNHq2OdpQAap36WsfkAmBMXerSZN5ULb+2B8Z1tTzeronpNHq9PLmZo0WXYkIJojxZyetqnOV5epubpuJjFnE4UobtKAcvulek3tY5uyHunYlBVBBu0vZajE3iiiRHJCOy7PkWp1I5isBWt6sLkm4KCh92l6BPoapYg/w43R6qSADH7zr6OtlAmdg+YoQIOLtqILySR1UzVHVDpYNA8Ll8FcJe5llX8dmqMqLwHN8hwlet19BubIFsq7TKSF8iafq6iNPkeKVJpKZ13SV5cdvgm+ARlU7Qsnxf3Ng4ukZ8Tm1aWa1amaIwvxa9Ic8WZ1+ryoUGbGwMTY9lXxvtScUGUUufku6qTaT8GkqO1xPkeyj4P8nCt3igoqndu0tR+fufoxY78l5qgaS4SjZDqndIIKNtR6uW9LNUdTxnfgv99yKC7796PYOmh0IxNOPHgXfPc9R+Lqjx9r3N/KpSgzp+kzmNVF4PYh8p7MOouifGxsmiPVnGnSWJ6Ikpgxj700QiRLUaXv5N4XNluIIVMgG58cPkAtBHfBUN6AbEYHyBoHm48ikJvVZSaU4nwxTCJ7niNdc+Q6f8SYeZnVJXxiVC5aHfu8pDnS1+DMF9fh3Gsel4IFmPxvZU2qtVkJEzoLaI48AjJIZnW18fcJ5S1gSk5PfZmE5uj3s17CZbc/L80vdcxNzL1oXt0LOcGd/Fxafv+dxrP3uTXr2gf06KGEiVGEj5z2B9CZNW6v45gsNdDM1ElpJNblm7YBAHaZ2ClpodpKBp+jiA/IoEerS//lQnm7QM3qRmO0upAEtkG4uGw6GU3R6tYqmiNVAlAEnKNtKQISUg+dxvVojsR7qBtftsA5zZEplLfV5yg/ECXmqEw0R4bDWN0Ecql14rTbZwldD35Jja5lamenCR21dtLfqsMsh8lj27FtoMqY1elSaNPhGkVAR1kn2nzN6ipVnnig9ds2VtXPhwZWyBgntl71ObOvD0+U5mMkxk9omIoKH+ic/+Fd8zPJIJtPoxShQ/gcVeRgDHT81IOzbDhwTf2lmqM9dhiDT54k+23J2g+35qgUAe991d7Z77aSnjiwrRRlRFGfYlaX56aRpf0RZGaDY9SpZNbuc5T+K4hS7rsD8rr1+dalSCYUuFwkNoj5MIYxo4kTYRKqt+lnVufvL0k1ftTcGpCJajr3zjhyD9zw+HKpHlVzZPKbFbDtrYLpLxLKeyDTVLlNGitxwhKEIiCDkzlK9IAtQP7dl27YhqUbtuG5ld2kTeF/q9RdpwByfEcbNkZ+wQh8zOrklBTpv9woms43E9GbIF97NGXBFTMWys9rPkf287qsdIQLFkQhvtMhu01k73NBX1xMdlnZj9Vpp2v2RaAoYlan7G1tpYjxbaLm02mdWdCP2rjtOmkMlm3clpXbZ8o4OVgI0RxRjabJ50i1BBA94szqXGhvy/fqoDkK0FBEc8TlOQIYzRGd5HVqjtoUm1lKjMkq/0LVA+AdXEU7QL5p0gXz4totmH7rc9ohYstzRImr/ipJrljOmSbfaHWS5shhH6uG8gTsUdgEVC2YehC8fPdJuP/LJ2faDTW0rS0SlpCM08iGMWNOZTM/MeY5Yg4g7lBMHf/tmiPbdFXN6ipE4yHuWX2Oan8kJFKSxhwZAjI8/OJ6HHPpnZgxby0A4OCpE9K6C5qt0jlNJcjcOo2iXHLZX43ZHEeAPlfbGUddWzuVKv0udmLAR3OkjgnXZsr42c3qVGm/yjxzWotSFGV7l0lqDVAJa22/K0WsyShtz0cjHEURxrTrRAvgx8B01wIfcD4Gab+5vCp+Zrs0KI0LlCiMFY2T2HNVpmzaIbvg5s+dgGP23TG7JohTNZqWGBe119aADIzmyG1WRzVH+v2JnW247Ysnpn2LTZqjAj5Htb/pe6nffdG6LaR/uiAQkM2dfX2O2mvnmm/6Dh+zulxYGlkFUPX4Xrr8/QDO54gfC9G+GjCASzPBPfcyA3PkE8pbhdoHLZ2Csqdx9dpyGnHX8qT26W8xbrtO6pSe2XvHsdL+TE0AqSl+FPHzw0dz5EPrADWfo1GsOQrMUYNwHZh0wWRSN+UZlTmitHvRaFoZc0SlEgrRKh/OxSd1ryFnkXqAqlKjn9/3oraIrAEZopxQ61PM6sTZb9psOc1R7uPj1hzRHDWiLy6oWrB+pZ29dhyLfXbK7YUzszolgzkH4SSuRqtT96RyycxQG5kjxwEkkCaBzXrP1G8PyCD6Jfsc5X1Ly+jP6WZ15mh1nM9RJU7wvTtewHqST0xIGhvRHFEimvt2arQ6U24Z1fTDZNMO8PvBpq39eHFtSrBxb6OG03ZrjpT+Me/WXi4pmiNiVkek7/RVI+TaUlGH1nYplx77MEdiLZdLEfvtffIqSeUhzyGXGaCK7tr6HNteZnfWShxrxLLLp1HMswR2wY7J3CdNg5C3KfYp9X2iKMIr9pyMHYjPlfDlUgU3pu7ak8Ay/glOs7pceMKN0cv3mISdxndmZTmfJ3F2uJgU6lNpM8ek1QxkJuaJsYwv3ahG83TBxoiqZUwEvdq2L6jgz8ocaWZ1roAMcj/cARlSHGpgjkz7sg02U+YksQRksGiOuG9KzwFhLaD6HI3vaJPO532mjJP2JJruhK69UsRrFnVNmq55950KHeU8lLdvioGRhMAcNYgiCy3P2SCXWa8kgaUbSFHirUIkRQJRJG9+9YYZFcgcXJWHM8fAzB+Ad+qnsOY5KkUZMdVHtG7lUp58zPS8xhzBrW0SaCuVNELL5/BwRaszJfRU8xxxEOGFu7YqZnUKCWYzqytF/EHGEZUCP/vg0fjlh16VtsdoeuT6I9bnR0A8kpkTJrS+GmFgkWqKNm394NqP4ySz3QZSafgO4zqM7dlApy8dN47uKkWQfI7EXFWJ0g7lwKLfzycJ6Zb+Kr55y3MA+HlKAxFEkVsuqDZhknpmPkcDMZsYsxRFkolKqRRJUknOjLQU5SHCbaYaarS6tlLJoDnK//byOYrk78qF27VB+ByZ1lSa20u+Vo7sdQvBSJIkVsGOKZBHqnHSfY5MzB6tR2iO1Hko1qQ636x5jrLIVv6WC5KJJkvoyv3lzLT9fY6SbCFLGgELUyzGVZ2rsXTG+h2y2f7ouSepdAOH7FsrwlIVBckM6TvbwsGrNIBZc5T+qzLhLrM68S67GYKtcNYYrnWsCw3yv5PEnPuN0lw+zBGrOar9rhALoJ1rZvgAsNeUcYrAJ/e/liITlobA56iNaI5CnqMAFa55ZHLUtoFurAVpt9xhVpIWy5qjesOMCuSHjXxdzdujaon2mDymmM9RiZjVVWTtitjzXNFvsrrIIepSAadSaD9JKUWfIyAD1ycgHy+bZFpE0Hpk8YbsWhzrRLktLHBk0BzZDuO2Uil7hobyNplvvWa/KXjnv+3B1iX6RaPOZRqgUt5Hvd/y80mSZAS4VyjvJMHuk/PDk0buKhytjswdStxvYpIWlkr5eFeq5twyUuhuhYG1OQdzoMW/8Y7D8abDdsWFbzkU/+9Ve+OzJx+U9csGtQmOqaBmbH2VqkQAivWl+omotbBOysz85czv1HwgpRLPkBQOyBBFbLZ4wOzXRCHM6kxluRxm5ZI92IAQjMSJK1Q2/65xLBOlQltvSsJL57UgTn1Dmtui1eVML41W59AcVYVQjNeuqfud6vcJ5Puy26wu701JIkDN32bAw6zOdtyo5zTgvyfRfcyEfsbMnvt0Rc3q6HyiPkcqVKLZGa2uqOaInBtfe9thOP6gnaT7nADGxRzpViduAZV6Xd2z+D1UF7yomqNyKcLi9VuzcscftLOsOSJBqwYIMxRFDfgceXIFqeYoRKsLMMCpObIQez6gC87ncBZQAzLQfjbqc5TZcKu285G8wMWCecsRuwFIF3wRzRH1lcqZo/S9VAdhFepmRP0dXNHq2koRxigbvs8nU/2n1INBk74qzJrtUKS5VwS4Dalc4n2OxCXWz8PSbqqlMzMzUj1RWtcP3/dKfPKkA7T7ggmwmtUxXcnCblOzOkXjJNDZVtLWVxqtKx+rtx65O3k/vT0bqDCBmn1t2qpLcWm0uv5qHsrbdnCO62iz+rmo/Z06UbZJpwf5h47bD7/80KvQ2VbGd95zJL506iG1Mub3U+tI22QiPpUpcxRLc7FKIoxJ/Y0iiWjkiPMo0teuKqgA9IiYqbbXrjlSHa05lCLFXJL0kYvqqKJ7W0qwmnyOqlU9iIorebJgUBKHz5EUVpgw2NVEzo8k9imz5ii/LohTzkyZg1e0OikJrLE4ANnagjtr6f4E8Hl5xHnlEgRSH0i64duY6jwhutmsztauJDyI9GuNQoQ2p9/UlKOuCKgmUjVBp9DM6gzWM6JPRUN509IfPWF//PrDr5bumwLl2KDuS5Jg2fI81c6pWmxWc8TkUuI04ie9bBcAwPEH7YQ9dxgrhxYv5cF9VFqIW4vqVi7mZj2aI+pz5EqPMhIRotU1iKL2qz7PSM+TsiJimQ/GKNLPKKIMEf+3L8xmdXKdaqz+mJGa2jRHVIqcMUdZIjs7c6QSdFR75hOtTpVC+3wztV5ViqpOBZVZs4Xz5d6TmqXROm1zjm7an3r9gTjx4J3NjSJldvINMM6SSXJ+StRkiuuvcHSlgTs0szqm72LoIzK/TPmFSqUIO0/olPz4qsQXob0c4X/feUReviAhQudvD5Hc0kAZed1QfI54DSH9PbajLEutHVLL/XYaLyW+9CFymuFzVC6VpFDelAgSn14laNVaTMSu+o7jO9uyKHAC9fgcNao54qI6qtgsNEcm5ijh/ATtOXw6SIoEm/kKnUf0XatxIhEvueaIJ2rps4I4VfuXmdUpz9oDMuRCFgG3WZ2B0a4hUjVHNeZo+ruPwCOLNuBvTyxHr0gj4TjraIAb+l42Yvr6x5bhZbtOhPpZ6E+bVL1UAlCV2yyizT5wl/FYuHaL8X5/Jd/3BLjai/scUc1RgYAMca49p2bomeZIObd9AzLQvkRRzpxygh0X88k9I5Akynwgr2eLxMmZ99F1ls3tWscHSKCZS95+OP759Ep85HX7AdD3NLHkKL2RJHrkxlJkDrYg+RyxJXS0t5VyQXiRePUjBEFz1CBc+1hbOcL7X7MPAOB9r9679oz/RkQXAqc9MIFKP6nWBKhPW0QhDhuNMFfM6gTzlJkWxYnmkGnTHKX9Tv/OzANKMhFtDsigVkbN6hyao3JJ09IVJaLZPqmEbiSPl62NYw/YSbvG5jkq8dGOxDjSTfujx++H4w+yM0dtpTx6WDVOslDY3Fyk3eeYIyE5pvV5RavLtEr6cxzhokb4qZAoVue/6RBMHpf3vTBzRMabhprmJPpqniOzWV3eh3EdZdlPRpNiyr93Ud7VJ9KQq4Q6pKaIT1lAhoGqJCjJAzJEmjmPSxbDMUcco5H7NQoJq67tVd/FhzkCZMES3UfGd7o192I/030WkfVXM6uL7GZ1uVRZ3z+lekp0rPNxTAyaI5/EmZnmyCJNp7D7HOkmOG6zulxTzY1RKZL7u7UmbHv1flPwxVMOBkCTwFqbSqM+MmbDtiiiAPCtfz6HbWrYeU/rDFlzZBYQmdBhMWkD8vORM99rBP2ZuaN9fNR9UXxP1RRPdK+oWZ36Lqpwox7NkdoHKX4IEi/NXmGfo8ysLv0tkgqXyxH233k8zj35oExzreZdys3qqIBKj9zIfafMrM4gzLFhtOc5CsxRg3BJXEpRyvn/6ROvxSXvOLx2zb9+uoCKMUdyxmPaZMJojopsyBfdOBcv+59bGcdieYFXFOaoGicoEtSE2uILu/HMNKug9Ifmd3FpjtpKkZanpBmWDrpZXfrvk8u6sj6acMrLp+LjJ+wvXYtNARlsDAaVKHtoDVMH+dwcRgSEcDFHnIRbSC/LEpNj7l/eh7wvQEp3mJLAArpzbhzn/j6qyUTRgCd07fRYkpSK/mbMUSUhjvBym/TQGttetkZY035rxIHrDYprjljmiJjV9VcVzRHJhSMd5B6di6JII2g4c+I4Ab5/xzxc8Nensj5y5j0SkeuRaTVJEoU5yuuc4CDUKFSzOnnOq2Z19jMheweH5kiPSpj+XVUCOYjmTcwiZaQmGHyOsnWqVGHbW7kksK5gqQPE54jb18rKdfFunW15UJ3egarkp2hCTDTZtCmfeaMGR5AD8tk0R4Q5Uv71gRrMRcU2JjIhtww5s2AbxHyiwjMOVWU+iLmlapuyaHXKPHMngdWvScwR0zfX99SjE8qMrs+Zwe3b6jxoZ5gV1eqGK0NrTpPApleo5ihO9FDe3HtnARnImNn8Bik6Qp6jABt8Qnl3tJVw3IE7ZdKSIipsuvG/6bBdvUw7AGCMYfMBVHtovR0fcAtIrGPV50i8d8xojmygDI2qOXKZHuiO7ERzVNuw95jMR7gplyJt/IqaHbD1GkxT8kYsz5YivOHlU6VrlLmgddoYjAkdbdhvp3HYc4exmDqRf3+KXSZ2SBo34XA+ycGosz5HyrejRFLOAOl1iUtiftGkp9y83VVhjqokz4vpUPaFbFZnT9ZIQ3mv6NqGrTXpsipV7GjL+6Bqjlxz5sOv29d6n++X/b5ahSkgg3gPNVpdHpBB1gJF8NAcMWahnP9OnCS4/J4F+XOliHUMlx3r3cddAplQoOM/wUNzJKBpngURweQms0WYBGRzUp9Q2YC8d6pmdQImszrqSze+NvbqvDLNMxthxSaBNZZOkTmmR3xAhqi236m3OtpKmSYxDWShM6WmtgBZA+ujcVynJHLnBJAcuBDb4zrKOGCX8c42AXd4+QVregDojLOKNUo6ERde2rC1Vpd97qoCuAFFYJr3qcYcKe/jmwSWwpTEWW3LBPV9uLxkLqhMTbkUaXOdamNFE+t6+tA7UM3WiMstg859Slslia454syOxTyl93ySCwMhz1GAA651wh3IRYTVdB1PHtuO2Redkpnp2WAy6wB4nyPfCCU20MMYyBcrNasrImFgo9Up2gcTuFDeqlmdCOesoq2k+y80zhoxmiON4DA/W46iLGqVAIk8m5cr8WNDIyHddf7rce+Xpzk3+V0mduLAXSbkyRurDrM6MkoH7DIBz196mnRf1fpRQk/0xar1igRzaw91r2qOqImBSkwU1RzR6bvFoTmaMKYta++Hd83H+X9+ku0D1RyN62izEvScz9F9X56W/fbi9ZqgOZJCeVdifk+JdIdz1+ovRbr5x1gmPLvqe8lFmBRtCqjJHU0YY5A8j7eEqbfVAeREWsxojkoGwl9A7FNxYmc+ygoBnAc+4dMqtBvM6ujYmhzljcyRT0AG0heXNqdCtZDsPKz9q/Sng+ThAlJTQhdzJAeIoW14MEebZc0LbcnXrG73yWMBpGN+xxdPwtnH7+ds1+Y3ts+UPKee/A76+3A+k1lp5vXvf2Ft1o6NedR8jiq8kCr3OZLrcgVk4OahrDlifI4c31MdU1UL6DMfVIbdJGDK603/Xd3dhzd+775sjXDPqfWWFBpJ9FllcnYY1240Yy0zfQHMES2BEK0uwAG3FKL4M/LzspSgs63sJcni8vTkEsj8em5i0fhU0OxmM81RHpBBSBj23GGssz56IGbErRKtztgXhvEQjwgCw/TKHKFVZHhMDqrqXNBDe5vfqVyKNOfUdHx1/wWXtKmtXPJKaPm6A3eSbLi39Fcy5ojVHCnNjmkvy8SpYGwVDR6QE2G2UN6cWSRHMO2iRHBLAzLUzBSU9y7IG0kElghOsfOEDvz2I3mUpK+97TCcePDO+MBr9mGjA2rR6sgBpAZkUE0huDlDmXwfCZ7rnX2Yo/ZySQrlLUerS//VNUe6aYnWNqNFGcdIPC+/e770mxNoqO/iQ9QkCTC2Q9bACLhMfChUG36a00yVppdKZuZorx3H4lOvT7WwMeNkLfddXk/UV4kzdzOZZHHJd00+R2oNds2WLDwD3MxyHq2ON6szBXLpaCtJkStTaby9LXO0OvdeqTLr9BPbmLJKnOAPH3sNjtl3R/zkA6/M22T8XjmYGNz2cglvPmxX6bdA0T2P8+UTSLWeBXyOMs1Rc3yOuFdxa46sVWpzSd2zJEbCUg/VHrl8jiiWb9qWmy0y5wddBnISWFlApQoqdmSEwbT/n5l2IE5/xW545d47ZNe480ugvW10a45CtLoG4eJzeM1RfcyRmKc+j7ORm5AuBrrYOUlZvcgO40xzJKvQK3Fu973b5DFY29NnlTTShS8SnGW5clxmderBTwi1CjlwTc/qmiO/AfrWu16BOUs24frHlmn3XP4htnkRRZFmYsCZ6JgIrXqsAo8/MA3WINrtHYixoWZbz2uOdLSVomzTVsOw+5vVRdI9KUky82JTxsuHQDVOMomlZs5RcOILwi5Jkiwgw61fOEliyD56wv74aM0/jLPztkWrG99RliI4usyZSiXZAVnNtcWhSK4koLjmKA/lrZsN0enKSRtTHzeFOWLM6p5Z0a30xx3K29vniBBu9FO5ImdRqH2mwWo0ba/FNOkvn3pdxkz1V2OrWSJlusqlfO9UQ3kL+JjV0T5SmOaQNSBDKT8HBFxmlmKOpIy2ft/GHEVR6hfXOxCjbyB2MuY0zxHd74tqlwFVc2Rut78S48SDd8GJB++i3fMRYJkY3FIEjCPztZGADDZhbBsxreKgaga5oDRRRDWUjUWrA9SAKvp915xTTeKO2muHLCLg1IljvF0QyqUoi0TI5luirg4KmyXWiMsskPplU1qKRmgV2HFcu54bizR7wWmHam21t5UAZj8A0vmZ+xyNvmh1gTlqEPVojorsTbRsngvGXkEU8dqLUhTVnPhziF/1HABc/UB+SIuDTUgfkkT2Hdprx7F40RKGlEqeRfjZ3DTL3hddwq6bZZWiCHedfxJueHw5lm3chr8/uaLWNy5anb09geMP3BlP1wIsqFAJ8aLO9KoUjTPRKUe8g2w9X/d1tYR6VGK+sqsXADQTPxPSMRdSMJ6Qycvx9zLNEaNx4tYCxxzlobwVcw7yfHs5cgbr+M2DizCuo4y1m/uyQ9Z2gHMEjvp96AE4tqMNJWLioiXfZLSPlNCg4XFNcM1lVXtnTAKbRauT8xxlebsi2f8timTNkTFPl9KeTySltpLb58hXOz7GkPPDJ8+RgLp/ZGZ1TGAAujepKJcixFXBkNvbpPSJbFbH50fipNIAn16ByxuX/itf9wrlTYNDOHRHA4TRZvPzlPR9I4ry/naUU+ZIDRrCgYueSfvtgzS0spzLykY3qk7zFKZogj5loiiSGHQplHfBw8CVB89GO5ij1fHaWWoKWVYEPxy4d5Hf2xyhzQTxPneedxL+9sRynHPSgTjjqD0wb/VmvPaAKbjh8VzwaWO428oRMCDqZOgxMm7q8hT+qex5qPQ1ywUphfLW59YO4zo05sg1FjbNUeco1xwFs7oG4WJUuAO53jxHuemR/Zn2cgkH7zrB2C6XBLYZzFG5JNefbYRkg8u0COUIe+04DjZwC7/+gAzU5yg/AA+aOhEXnHaoJPlPCT9lU/b8ZvvuNM7YN036qhEc9jbUgzAuoDkqqiEBkH2fdsbEg49Wx2sYBMRBxfbPYlaXa5XSP6h0mqN3D5oqz30akIEGP1D757MGNm0dwDdveQ4/v//F7BqnsRDgDmeb5kgLyOBgqNXfNmJLwB1hU/7Nh/K2mdUJab+yfwHSaczRFaVIZx59zIvKZZPPEWWO3N83ARTNUf5MEc2RlieNMPZaEJWSOQlsm2E9c6D7Ot3vREACFWazuop2zeX7JtDvEa1uIJaJOBuolp8Xquj96SjniTHFnjlQjZ2hvKtJks1PW8RIG/Lw6fk1m+bI1icbYSpg0i5FkcwkUDqEzifhv3wUMaVSYXv/MqPppVA1CkLrT5kjukdQAUdbyR7iHuD3srFOzZF9IghG8uBdU9pg8rh2nHzoVHzq9QdqpsI2SHmMHI+oXRLJpDnGXE0SLvyyaG4/zqxOFRr64H0W//b2cpSZ26pRCUcDAnPUIFzrxLah+0CN9pQ+7yCiyyXsteM43Hju8bj3S9Py52uPXffoUpz+o39hyfqt2UbRHM1R+m+Wg6RWdyfZwMWCLZdK2GWC7BvC1Sf2hqIBGbT8B9B9XUy+HazPkWN4rjzraPzrgpOt2e5dPkZFP0Gc6IerSZLXaG4L1aRv0lguCawO2hc1R5XUv5JePq+3xhDXblEpFTcPdhjXgZs/dwKO2XdHAOnGLeZPR9kcqIQLm+oDG7PBSXZVYkLPc2QmzFQiVWUkfDRHrqmgJ4HlnZpls7r8Hs3bRd9VbZeT5HNEMGdWp/Uncuc58t3jTD4LRZgjlaHL0xwwPkcWgqtcNu8nKigRnvqY1giXuAlmdUpRc0AGM3POJYF1EaoV4h9qCuUNyN+JrjnBYAxU3KG8qVkdHfMi/riiH1QjVq9Q3UdjZfqGpSgyh7Qmf37shP3x27Nfjd+f/RrpeUpIu3xhi2iOBhjNEa2eXhfvdvd/vh6X1tKg+MCV58gFpz8zuW/7tFQz6xMpk0JEhXUF9CqXIrz5sN00P1vOP3GHcbpA07X+PveGg3DV2a9m74VodQFWuKSwjRKqNkm6CeJw+Le9d8B+O+chQUW7P7xrPp5b2Y1v/fPZXHPUIPEMELt61ayujTJHtXxFpQg7T7BLMqgWpGhABi15JqlrgGRdF6CEcVs5wrteuScA4PiaaZmttUlj2vCmw3bF3rXoQKax1KPVKffr+AacWR3vuFysXnVDpMzRmPYSa8LEgdMcWaPpMf0UnyY3i5R9Kzi8Ys/JOHS3iQDS+Zib1SnMBmVECpjP+IIjcNS5SQmcsR2uPEdKXcr9Xg/NkY9ZrtwmI31FkofyrshmdTQJLJ3zpShSiEberK5NcWT28b0olyKcecxe2vWieY6QyJpA2v8iZnXjlMh2uW1+wjh4mzW7baXI2ya2qprVEYaMI15M43rZe44EAHz51ENIH+WypilkM0vNol4yARlM+xMNC8+1qUayBBQCO8vF5Y5WV6nyeY6KCA4FQSyny6iPcCw3rDnK52Cbsg7z5yOcfMhUTB7Xji+8MU2a+7MPHo0TSHJwWzfayrwZt0g5snzjNry0Pjedz1Mq8KarXKTIA3eZgH/be0dzJxRQs1ivNa/Atd/UozlqK0VWLalqXioCH/HMnXw+jO0oaxGMuWh1O47r0Jg518xsL5cw7ZCp7L2OttEdrS74HDWIIlIGAdPBEkVcaGZd8uoibkwSJ/WxhWu35FmXm2FWJw7j2ppUAzIA+YItRRF2cjFHke5s6BuQgZO4qJojSWugSHl2nzwWz1xyaiaFMo35Z6YdiC+ccrAkJTIxzOpVzi+qKFSip1SKWFOzInmanrr4zZpPEU2AaUpGzDVRZohTrn92fzr5HjXLsb1XGyFIsySwlszl9UgZXeCkzuo1ypiPay8rUmudyaf31Pfva4LPkaY5MuwnWRLYSlVJApubrXL7lwAnyVfNVjrKJeNa33encXhpfZpvpa0UYY8d0jX7q38twg/ueiHtAxlqHw1AAlnyTPfjQpqjDn6eSRHRaig5tM2+QhNKhFNtFJ3/FCYi8LRX7I6nL36z5ONoCuWtds0akKE2j5Ik/falUpSNRVupxIYppybQNiuMNmXO5G2KOerOc5SaKYt6CjLVomymOZLrrQc+rZoDMsg+R9L5pJQTOO9NL8PHT9wfE8e047a5q/JnLevGFK1uh/Ht2NxXwU/vXYif3rsQ33jH4fjQcftlZy+lCeh35TRHQDE/Kclkj+mbr89RvfcFJGsUp12d/DNjjjizOsq41wZGFTTHTG6zHRnNUSMImqMAK5xmdcyqpgQNVYdyZj1c9u+ivikC6iG7aN0WbN4m1LeNE4aqT1OVsS/OzONKEXZ2mNVRLUjmc+RpVscd5rlZlq45opuQyIcyvrMtI8xMBMq4jrKmRTGNpVoFMzO0K1PGd+BTrz+QrQ/QbbrLDiLCB1ywBZpvwsgcMddk5qMk/cv1zxZpT8zrLAGs46VohLDcrM4cra6ecPZffevLrfe5taj2WzarU/McyWU5ZpPCR3PkgvoJuG+SJCA+R7HE6GTSfuZZSidyZnXlkrx228tmsx1qliuIj/GdbdK4FA3lDcjSa0rsN+JzRP0xucTNpv2srVTyZo6qEnOUM4ZxkkjaVgGb2ZYa/MWUo02twRrKm6wvMUeyVBKGvgwQYZotHDLtH2dW11+NrYERRJ+EBN8moLBBvAfn11sUPp/dqDmC6nPErwn1u4rvLml8S+bzw5TnaIexMrE+d3kXgFyw1WFgfCTmqE6ahJ7HXB2u7+Fihn2tbOh8d80htUsicAIvXNeZLjUHG+dzxOV1rJNvB1ALyJCZyoZodQEK6jGrozhyz8m4+/k1eVmFtuGqd+0ZNlU7RTVO8OK6LV799IHYC7IksExuGcHklMsRdvLwORJ1CkfzzDTLRRgz/jy5iV4i9Tet10FEGSW7dptguQr5hqr25p7748eOxWF7TOIrhG7GYpI0N9PnyMQccSgrhC7Aa45y8xj9nrhmyh1jbJv4XAwwEku1jqImGF9968vx8RMPsJbhCFD1mpbniHRRN6ujTDwjFfU47FZ19Vnv6z5HBuaoxgD0DciRwPKIX6rPUYRdSYJe7jxVieCOtrLxO9NcW6oJC/cuvqG8KYFGfbjGd/qZkgKMzxFh1FWNGQ3Hq6KAVZ1ULzUjTs3q/DVHHFxREwWs0erIuGYh8bP6DMwREWTxgpNI618HY1Y3oISb5xDHSTYn5UAeRcZJN6urX3Pk/vL2aHXErM7AjBg1lpQAjyK0lUvsty2XSuy3U/1bRMLsPEgTrzkaY0jgWsRsS9IcMWveZebo+t6+tFKR8OmmPtkEiUD+ndQcbKlZnUxM7jiuQ+PCXNEibQiaIwX3338/zjjjDOyxxx6Iogg33nijdD9JEnzta1/D7rvvjrFjx+KUU07B/Plywr4NGzbgrLPOwqRJk7DDDjvgYx/7GHp6ehp6keGCa524JAanHr4bvnjKwfjZB4+2SsYAs1nd2cfvh313yiO/maLcWB0rm+BzRKMjAfmG1kacijPzuCjCTo7oKZzPUSYpLKg5iiJq2sL4HJExc6myKdjcG56bp+r4zL2Ti6BTDw0uiaap7iKY2JkfdiKTuwreP44Sp7zPkStinCAStPDqjt0ri6RD8xxpSWB5otoHLrNQwBTK22xWlybONfdJmrMeoX45zF+z2XrfJwkskBMhvZWqrBGSctNQAgGYdsgu+MIbD8Yv/uMYlmhUGaoOi+aIMukSMae0KeBrVkfHf9O2/uzvIklgNZ8jwqjzZnX8O0aWeypotVQbVY15X6AizJH6DUxCQc40LmuP1CH2YJcWmAbP4cZBvIJZc5ReH/AI5U0JPNpSEV9Ebr+umzlimj37+P2k3+aADObAIjJzxL+btIZKkVGLo2p6BVQtxeZawuwsaijpNw2kQhkbOpaUuXdF8aOMF9c3F6PlYn7o3Ld9WpPAhoOpGtdZLupVtdoJqzniAjJYu2VFmudo9PocFT5dt2zZgqOOOgpXXHEFe/+73/0uLr/8cvzsZz/Dww8/jPH/v703j7OjqPe/P33OmTNLMksy+yQz2SD7QkhgkrCTGAhcZVXEqEEUBIKyKEKuC+JV46P35UV9EB+vCs/9SeSqF1C5ikLAIF7WSARcEBABlYDATUICmWRm+vfHme5TVV3VyzndZ8vn/XoF5pzuU11dXV1V3/pu48bhhBNOwN69e91z1q5di9/97ne48847cfvtt+Pee+/F+eefX/hdlJHAhIoBL0VdxsKlq2bixPm9euFIu+AUjqcsXP3WeRiYKAhHxt2k/N+HTZ0gXycRs7q8PbmzMBkSzOrUCCu68jwBGdxcOf518WZ09yaBtTQL91zZ5gW65zoRQrWrX3uEI809qYPqqjnd0md1xyaT0pvoFCv7ipojsa9J19B8J05wpmh14ke/ACRq1LLQmiPbdpMIqwKFSUtz8oJe37IBBJqFAgbhyMesri4tLwI9ubEiTLgmjpmZSzhpigKnFqtb8NnIa1jeVPpxPlqd/C5YyPlIXfaWmVg9r8cYkEG857qMfmcakE09xfdQar+Iwq9apWZh0RE2CIllefPMiSaeXrM6//HXCjlLe83q8tfURqvLhO8/QZE2Hfw0RzpNgLNjbno2ss+R97hTD5PPUdYNyBAcyntUCJZR6KZJPpS3oEkdlY+FRXf21W+dJ43FfnO9yaxOnMtMQ6hkumVZxo0Yk+ZovKJl3TM0DNu28epYEnHRbFMU4kTNkbhpJJqFBkXxk8OBe+sdtJAPKj/sXBrF52ixIZR6UF2ctleFoxHbdv2WHKJYfIQhK+Y5qsFQ3pHN6tasWYM1a9Zoj9m2jWuvvRaf+MQncMoppwAA/uM//gPd3d247bbb8M53vhN/+MMfcMcdd+Dhhx/G0qVLAQBf+9rXcNJJJ+Ff//Vf0dfXV8TtlJ6oGgzvcf9dDp1wpdtZlgaVEJqjIw/qxMN/+V/3c5zCkTP4OJN1bsEDYEQwq0tZOTWvD+lUvl5DQghwIFjo9Mss7exeieOOuDOmVWUbFii664TVwr25X84nYlkWfvWx4/Dgs6/hoz/4rVRnh2vfeQju/dM/cNFNvwHgtfU15wMp7vmKk1n/RL3mSDeby0lWc43oRJ4K60PnHPcsOEO+e1JABjVaXcpbPwD40tsX4q2LenHBd39jLL99XBjhyFtHT0AGcTGXToUOyBBl51/kvcunYvKERkzrGI8Trr3Xc1x9HlqnZju/CFGFfDEJrF9ABt0iJWV5F7qmd12c7NVQ/Lp7CTPGqWYmTdkMfnjB8kiR6poFX0W3fk5ftG3PfadT+khsDmHfXLFcMaWAbXuds4FweXTEOoo4H9W+4rfuFMvw+BwFaPWM+dtcc1yhz2ic+vcpfnE6hgXBVbxUlLmxzsesLpOyIu2wGwUX8XohAzKYyjXNVWLXUCNIimQUS4VjZnbiyhNnY9NDz0nn7d47jGf+sRv/eH0I9ZkUFkzOm4qLFgFmzZEcbMSPrKEMhyBNXqDmyPdonjA+R/decRz+8uoeYw6ioLncOa6OTy/u2IvX9w4jnbLwvfOWobEu7fGDBIKDU/gh+oPqzHarnVgDMjz77LPYvn07Vq1a5X7X2tqKwcFB3H///QCA+++/H21tba5gBACrVq1CKpXCgw8+GGd1SkLQmjPoRRMXOGHNscRrOi+dKRu2iFh8V0u9tMgNMwGE3cVQk8BmhMHVyb6eSVuBGcDFCd4NxexoH4I0dspxfRJY/UIziuZI98xMz1H9Vl1UWgD6JzbhpAU97neqZmh8fQYnCVoNdcfGlHeiWM2RaFLUH5C8V0QKeKDRIql/+2FZcu6OoPfFOT60f9RdrNSnzdonNTDCifN7sXYwFyJV1bQC3ghBOvRmdZbxnLpMSpn84vORcshmUjhxfq9Uf6ldlWJNl8kGaI5EU1bA2//1SWDl6Fd16VQonyPVDChfXv78KMLk/Em5xdvqed1YOnUi5vSa/f7U67RqzFdcLc6IN5S3ZVnYP5z/zs+U0g/VrM7drLKj5TnSYYxWF7qEXH8QNyyAvDAabMrkv1AU34WsoDlw8xyNBEerG7FtrQ9GYQEZ8t85ly10M8MPv4AMokZGDJSh9hMd4juXsizj3K/ON8tntGNuX4tHmNo9NIxfP/0qAGDp1AlorMvPJ2I96w0+RwsmtwLIBbAKeh0kAasQzVGAoC5e389nR0oCayhzoL0JR8/sND4HXf11gruqOXI0dNM6xuHwaRPd9vPUt6iADGnP+1xLxBqQYfv2XPjH7m7Z9Ke7u9s9tn37dnR1yXHTM5kMJk6c6J6jMjQ0hKGhvBPxrl274qx2UQRNXEGDfkOAfWzQNZ0BRLRxzxrMP9RdVDHCSZgJuLEujf0jOW3HuGwaezw+M7n/u0lgRwXN0dgxRzgKY6KSFiZ4J0SxG60uoK10O51unhzBJ8JBWrhrJgJT80TSHCnfm3yORBtsk6NmemwXUrcLrRXYipSORDOJfqNZnfcaUuQxj+lTru6qL5GKWPembBpvjvWhoD7gXNs5H/CaEgU5Xn/21Pm4/C0zcfPDL0iaVgCYECLjeBizOjWUrTz5QTlXX05d2vLNMaNDXHw0Cu3qNeXTaI4ghPJWFt4jRs2RXK4pCazqXG9aU5p8KkwBGUJpjsaqdNtFR2DP0IhW0NFRl0652m1dtEdnSBnRRKtLpyypjzbUpbF7KK9VDvvuNtTlw2GLpnq5/D3e86MI157xtABLA6c/DI/aoaPVib/Va47G6idqjpTNBmAs3HyIJLDOKbo5Ngz6JLB539somOZI8bWRNlctCJovS2oHky+YqW+Jzzed0ucyAuSNTyDf9mp/2bNvGP/zzCsAgBUzOqTNBHH8F9dDYpjyloY6PP7p1chmUjj8c5u1dcmX4Z8ENmiYjCOtCWDeDNRfM7gM91zNmGbyh5zV3Sx9blR8IYsJyNCUTXs2nGuJ+LcyEmDjxo1obW11//X395e7Si5hF2gq56yYimXTJ0rJ1sJOgjqzG1FzZM59IP9OXFyI99HWVIcT5skCLiAvRkQ17sFd4/HVsxdLO5VA/oXJDa65ruYIBM7C6qo1szG3twVLp3h35sXFVd4cL+Ue8yMnDOU/55zDc38PCwsIBykgg1bzYt45837nWzWXvfv1wmUqZeHMJZNx7KxOHNQ1Xn9dSz8opSxLuxtUrOZI1A70tjZoz9FdwxQtTNQa6tT9pnIbJA1H0ISTOy62syqs6KLpydfORVVUr/WOpZND7QSHCcjglHf0zE7M72v11RyZtJ1h/WGkegj33pCRF1mm8xxy0er0959PAisvWtXHZfI5kqLVCU6/KlmDtnfZ9HZMbW9CZ3M9VgvjWCifI+fcdCq0YKTWRWfb7ywgf/nky553Nm1ZeHNfXhhSN0Qa6lKBWvuDu8Zj4+kL82UK7ahGxdTVOQg/P8GwWBA0R2MrVDcJedDi0fLX0qsbDA6i5ki3z3TuEdNck6Zcgt6xumrm2DA47/Y9T/4De/eP4KVde/HIc/87Vk605daJ83tw6ECb53vxvckatCSWJc9Z+wTNpLggNvmzqX6PprHO875m9MLR7r3DeOJvuU3tJVMmSM+yQTKrM/sLNTfUoT6TDpzLxH6t6zOFJuV1CBNFEJDrn05ZvoKIWXNk3hBwygVy+fF0zOqRhaPPnjIfM7v1a4qoNGXTQihvCke+9PTkzIFeeukl6fuXXnrJPdbT04OXX35ZOj48PIzXXnvNPUdlw4YN2Llzp/vvhRdeiLPaRRE0bpp2IT79tnm4+fzl0kLJL2QzkH8pdRoP2azOpGqXd8PEHRtxMPvFpUfjPcumen4vaqdEG9k7Lz8Gb1vUJ5jV5b53/GEyqfyunyMcOYPoBcfMwE8vOUrr3J7LrzAmHHkCMgTvNKpRq5zPe4a8OQTUJLDe8vTXCesnBnhNUKZ1jJM+i+PLv759EW583+FGocypomrraxqEi9UcidGHouykSgEEJLM1/W6hDrHmooAe9O45C3NnV14061HPUeuqIh6aPKERXzxzkf/Fx8hqnN51feaLZy7Cf5x7+JhvhflcU3seYnDo9UMKoSu0q8fnyJQENq2fkEeECGPib9VS1F3N3LWVABUZy7jZYEokOa1jHH55xXF4+OOrsFIIYFKoGWIYxLId4UhKyjpW1e899AJ+8tu/S7+1LFmLrGrULMtCV7N+Q8LhzsuPwfTO/HiS8+uTN5ZU4jCrCzI3FBFN49xodfAPyCBeTx+cyDsfGPMcaRbFpx86CZsvP8b9PKKJZBrF58g597cv7MBnbv89LvvPbUJdovW/hro0brnoCCxWBCSxf5g2CNTxXso/JTSD2edIuH/L39RMp7VV22x41MbfdrwJIPfeq9YADiafI5GgVpTDhHuPF7uQF5tsfl/OXE3XRVQ/SD+ZzHRPQSbybvReQx89WNlcHWhvwi8uy/f3YuTExmzaXSsxIEMA06ZNQ09PDzZv3oxDDjkEQM4E7sEHH8SFF14IAFi+fDl27NiBrVu3YsmSJQCAu+++G6OjoxgcHNSWW19fj/r6YOfnchDkTB5l12nj6QvQ2VyPsw8b0B7PJ6gTB6Nc5xQXjeYksHK9xEFJGiQtfRmZlIXPnDIPb+wbwW+e+1/8cbscEtiNVufkORI0R84g9aaiOXLL1gyEoomYGso7cMJyd87yW4FO/f7y6hsA5Ik9SAUeJuSp+11IQeRT/zQXKcvCrY/+DUA0p0bXRFAZlFKWfhAu1lLgnxb24rd/3YHl09uN5+guITaFOMGKgrmav0hFHPhNAr0O57ijOapLpzzvqzjnB2WCz58XvjHD+BypmKKtqfUQy/7yWYvwb3c+hXcv048dQXUTTTnD5DkCzKYgUoQxSXMkl7Px9IXouutPeOX1Ifzi97kNNZ3myPTu1RuEIxOhdu4LnOPrAjRHYv1EkznnmGhWp1u79bQ2uItLE57NoLGPQ4qGWlfnINRn4Hz88jsW4drNT+H23/4du/YOa34p/AZ5CwJ3gepqjvzrMr4+o13oumZ1Sp9xcMxo9w3rQ3mnLNkMOR/JNH9OlDQXooZv04PPS+GTo2wqqXUUEfuHJwXFfuc3chliFEGxFYxmdYpwaBqzRm1b2gBx2tI0ZnQ112PCuCxSr+5xv5PN6oLH96A1lzwuRPc5CkK8+tfetRhfu/tprFs+1XNeFL9a0z3p3lG/VA8qLQER6oppiaZspqZ9jiK/rbt378a2bduwbds2ALkgDNu2bcPzzz8Py7Jw6aWX4rOf/Sx+/OMf4/HHH8d73/te9PX14dRTTwUAzJkzByeeeCLOO+88PPTQQ/j1r3+Niy++GO985zurLlJdGIIGfZGO8fX4/GkLXOc5E5KQ42iOQkSrU32OTAORyQHTsnKRri44ZoZWeHKTwPqE8n5jzHxE/b2uzjk789zfbkCGdFizOnkHXtQcOayYkV/o16X8F1pRdnbC7jS2j6/HF8/Mm8JE2X1xJmx1N9S0Q1Ws5iiTTuHqt87D6nl67S6gN6sT6yJOsGLfawgwCROLlTVHYYUjfY4j8Ry1fp46KGYmxRBlovTNcyT02a7mBmw8fQHm9fmPHXJZ+b9F7Z1aO31/to3tP+qa1VmSAKWe3dmcG+8WD0zIX0vxOapLp4zjmWxSFPxM4ojIaUKsi25B4meKk05ZktmqLqpad0vw5qAqVAeZ1QWZ6omo74Zzra6WBnz+tAWBVg+AqjlyzOrCaY5aGuu0C0jdZpkuWt3+kVH9uJiSr+36o0rnRGgnZb7f8UY+nLLY3o4ZeZh0AOrVRY2kWKb4nqhttd+gPTQNofLcaRkFu5FRWw48MFagaWxwzLzE59Vo0ByZ1ttBT2Nqe16DqutXheadylcgX2ZvayM+f9oCj/la7trhN29Mh4PWIsX6vBdjYthYJ/oc1V60usiao0ceeQTHHXec+/nyyy8HAKxbtw433ngjPvaxj2HPnj04//zzsWPHDhx55JG444470NCQNwu46aabcPHFF2PlypVIpVI444wz8NWvfjWG26k84gxQ40ywOpW/HJDBoDlSnLlNkb8smIUVv2s4A6Nt5146V3OUzi+SnEWAulA1RSISkyc69c6dr71F4bdyfS3IZhnjsmksEkyR6gI0R5byWycYRRQtk+5r3cQcBud5eaPV6Z0sg3bb4kC3AByVJnJBc5QNrzkS6x5Fc6QGZND1WcnU1E9zJG5IRFgs6RYlgWGLxV1rn9DjxZqJie3q58tl2jk3dSkpWp2Pz5GD+O7lfAPFnf+UsX9k02JfCB5ow/kcFbZYCPI5emX3kOc7h5Tlb1YHAN0t/mZ1gFdzpJokq0RLAus/XofdfPFGq9OXp9LaWGfI3+bMB4IpXcb79/6RUUPoeFlT6SzyCh0v/fqY2N7nHT0d79k/gmU+mnixjiLifZiirKrV3xc1Wp0o8KTMSWBHRm25341Vx9QOs8eECPG6JuFITVPhEPRs+toacdMHBtHckMH2nXs9x+PUHPmRDlhTSGVG8jkKN2eFuW4xpFNWTWuOIgtHxx57rK+0aVkWPvOZz+Azn/mM8ZyJEydi06ZNUS9dNYiRo6JojkxMHJfFa3v24bBpud0m8T1yAzII0cRMjrbiQjCdsoz+G5ZleczeVHTHxZd21M7vgIoRbd5wotUpDoS6XcyU5R008sJR0AJTSaaplDW3r0UxSdD/7SBWo7O5HnvGTPN0k4vRHEAzrIp1iiIcmaLEJGVWVyhi9cSBusmQ+E+H2MRRhCNHgHQE8qCdcr/j8mIh/DutiyAXxaxOXRAWGkUrCPEZqItznc+RbZu1IWK0OnHyNnVv2QxG7if16ZQUVVP6XcRIn2E0AGE3Us8/ejq+ee+f3c/iWKLTHPmZxKUsC+cfPR33//lVnLSgBz993Bu1tUcQjrLplNaPSB3DXeEoBp8jbz+Uj4eRJdR0CrZt51M7hBCOdEKea1Yn/FyOeDbmczSs9zlSLQr2a8zqguhtbcCLY4twvzFJDUhzgo8WXkSti/geSXnPlA1OEdmsLl+Aqb5hzepymiMhAIIjrEpWAilXez9zzM/QNKbrEgWrhHk2R4wFunpl90ueY8Wu48P2DSlqZoGaI90YLwfL8K9DoObI/+eBMFodiYSkTo1hx/5/rjoeWz+xynXK1e0cRM1zVJdOGU2ULITQHOmOCxcYEcK1iqG8TZoj3Q6I6KvknueECg1oVgvyIJabmPOf1QW5WJ+gCDGiKYQ21GaBkoguF4kJNzKgJpS3bpwq1qwuDHqzOv1EbLIz15Yr/N0kBQ7wr4/zHEWfIz/86hHFzjuIKJojv4AMpt3cQhAXlGreIm20Opjbf9h1apcnb5M5SzYjL65UvypTMsugqFSFEHaK37BmNv7nquPdz2KI+BZNWN3XffxxUpaF42Z34f4Nx+P/PftQ7Tmi5qilUS8sqkK1a1a3v3izOnWRpW5ahYngZVmi5mgUV//4d/j57/K+Zn60NNRpn7Ezv4obFmIkVTcJ7IitNVe0LH2ghzAt855lU7DtU2+RgtX4jTGFrgv8TjVpmT1+g8IxWXOkL9drZm82q5PqMPZBvEZnc36+nN3T4inflMrBZKkV5U1PwucoLGGSwDpEiVYnb44HaY78jxdrYeiUX4uaIwpHCSAn/yp+0m6oS6NdWJBLi6exQU9MqmYOyCDXy5T40bLy+SFExJdSa1anMU8AHD+C3PmO/bsaBtgUz19tP1NABnVsEXdOc1/Iv/ELCKG3881/1yOEstYNvlHNkBwi+RyNXdYTrc5wkSQ0R1955yFSIuEgnyOTGVdjQLQ68Tk2mIKI+Pxur49ZnciHjj8I0zrG4WMnzvIcU81MwnLsrE43oahDkOZI9Q2U6xG+nCiIbayGmNfmObJtY392uqT6/posDiThKKX4HGUsT4JD3e/CCqynHzrJ93hYG3zLstDXlu/74uLRpOky4bRRb2ujUchrFgQuXR4lsRwgJ5S6SZCHx/JXKUXrxngTJp8jhzBrfUuo49DwKP7j/ueM5au0NtZpxzBdAIDmeu9cmNMc6euUSlme+ofZTGpuyKCtKSv3Q5/7kIT5CMKR37lSUmiNBuffzlqUi655hj66pjEaqiLwmISj4VFb9se08s/XwdnUtSzg4LEw0qYxXURnXuqUE5YkfI7Ch/IWx/HCltpB0eqK1RwVCzVHJBJRkn8VgjiB6vIcmQMy5P9WfY7EAU5NIKf7/eQJ3kSg4q2Kavycz5HcDl7NkUY4SlmewdvZ7VTLu/eK47BqTj65sDcggywseQNC+D8zcRCaJCyKtElgDW9VUE8oJFqdumOTaxfdKiD+fnjKIZPwq48d73uOaSKKpDkSql5ItDrX50jzYMR+0N3SgHs+eiwuOvYgb1k+Aosf9Zk0bv/QUZjSnn9fouwi+vl2xGlWJz4m9XnohND+iU3GRULeb8NraqujTlk0ypHH0pLJsIgplLcfX37HIfjC6QtCnRsF8R50mi6/6oXReomaI9UkOX8NeQx3inU3pDJmbXkQ6gK9kGnNEjbJHvvrTulY0A63yedIF8pbpznabwjl7f6+AGHPeY+zARtr7vlSVLfg8tU6ao8ZNm2cn5y2eDLuu/J4KWBGmGWsWK6amFnEM/+4wlF+g2XCWMS+qe3j3LFFLM6Uo8doVhdBd6QVjmIM5e17bWVN4XdVU8CMoLlCfG90m0hJpi8Qy6fmiITC5CQZF2KJerO6cJqjJqPPkcFsTvj9uwYHcPbhA/jGuw/VHheFo4zGPE6d4PW2td5Jy7lf9fu0Ikg11MkhgMVdS8B7f0HPTByQxR3jOCPDRQrIYOl3bMzR6gqqUkS8FzHdkdj3TGYVulKbCohW5zSRTnM0cVwWV5wwC1etmS0tqjx1UHZSoyKFdQ1YlOrMVHSfoyxugxgZtfHFMxfi3COmYdn0icb6AMD0jnH4yOpZxj7lKEAtZVFlNKsT3z1LntDrMpZRExNkCmtCfJYnL+jFt9671P1c6BQvaqKbNP3ovy5cIWl/RMJUfV5fCy48dgaueds84/niglsMZuOMxWr/j5Tc1EdI1312UJT3bv+990//kM4LeqfGN2T0SWAt7+/HaTRHgcKRaokQYgGe11rl29U3H1CBmiN/szr9pp5f0IIw2lF5M8i8ptCZdQPy/O8s2sW8ZqaADH5l53/rV3MZnXBg0khNaKrD9Wv1Zq0iYS8fxYLIFFFSN1eI1Ref0y0XrcBcJe9Y6TRHjFZHQpC4cCTtHuf+FidkUzAF1VbVFKHKgsGsTvi7Lp3CRmUHVrxX0Qk45zskl+cRTgz25OrXGYPmKJdoNv+5KZtWwi8rPlMeszp/0wix7USzut1D+z3nmvMzaL92iWZWN7Zjo8tzpDm/XD5HpgWxaEph2gnPlysKvdE1Rw6mCX79cV5NkV9ZhWiD5QWU/+9lzbBc57RhMVQsI7aNdyztD6wPAHzp7QvR2lhnXLyMCD5HYruZZH/VrE7sq/VKsmqRqHmOHMSF7xfOWIBmwUytUIsb8Vn0teXGh+Nmd+GP21/HhKY6LB6YgG++ZynO/vcHPL8N439iWRauPHE2AOAHW/VJ0NPKGK6a1anzQhSzuqDodKZbqEvlg0dYguD76PM7fMsXaW7IQM1/pdZDPCaZ1aXzi3WtWd3YzzIpC0Oa7/1w2lsyyfbZqRff+0j91c+szmBm61d6mC6umhEbAzIoL8zUMQ25KBw5Wk8xRYkkHEXVHEWYy6L4HH3+tAVYs6A3sMzwmqPwmzcTx2W13+v6iTiniv1tZnczrn3nIVj9b/eGvm6hOD6qGcM6pBagcJQAhfonhEUbytsnFK/pd8aADJY+z1HQqGDWHKU8ARS8Pkc6Mz6vOZ5Jc6QuqhqzGY9ZnSkXBiBPXDoTD7FscQdYl/jQLBz5t1+U3RfnGvtVn6OUpd0ZLI3myItpsSklgS3QrC7ontSJIYoDuoqfqVsYgnzaRPxsyiXBKUbNUTRTE0v4r5cRwedI7PNGnyNlR10SJNMpo9lZkA+ZCUmbEdOmgWVZ+M/zl+HN/SOuj8UlKw/GtPZxOGpmLnKWSXMUtQ4mrYZHy6j4f6hjbhTNo0c4Un5quoNM2oIT38MSxuC9w7Jfm9+76YRG13UDp28EmdXtM4XyTuk320IJR2nvtf0Wo9J7HcnnyO+YOK6Imwyhi9ei+hGJ7+T/c8YCXPlfjwPICxq3rT8CL+3ai4PHtEOiJuT8o6djoL0JpxwySSrTwWRWXXQ+Iph8jvTnhn0kYd/XKNHqulsacMM5hyGbSWHttx7UluEwatAcAd6+kpTmyHlm9DkikYiyECoEsUhn8BcFnTA7LnVp/zxH+l268PUSQxinLK/AESbPUVoReAAxlLd3ISCe25RNe36r+jKIyAn0PFWRvmvKZtAxPrfTs1yTp6Jgs7oIuy/OrXjMGix9tLrS5DnyYloQy2Z14QMySGZ1QRoY5Z6zAclmfcsqWnMUXqjxy2MhR3KL75maTE3U+gD5d8HUpRzNkXo4TLQ6McoaYNZuXHHCLOl3URZSqpY8Lgant+PYWXm/x4a6NN5xWD96W3NmuKbAElHnCFO7q++403VcszofU+IggszqxGuLmhuP9nasUurj8nNYdwJQ6MZV16xOOBbNrC73/6D70+FqjoTfquNxn2RlkN9Ii/LI37t8CoDguUbc4POtf4hXRRxa0ikLWSEa41mHDbh/O3PWIf1tUmhycXO0fXw91g5Okfq/+LhN0ShNC+4ogp/WrG7UlvyG88Q7R6o+Rx9eeTAA4PTF+qAwx83ukhLTq2U4SJojj1Cv30yOG2ft6JRfi8IRNUcJINodJxKQQbOLLZpMqNqE/O/yf/vnOdIvpoPuxHECHrXzg2MmZY1pgORzPSYehjxH6svvTHbqwjiVkrVMjdl0pIAMplCn4u8dmrJp3Pux4/C/b+zXDrKFCsSx5DlK6ee+UmiO9GZ1+nMLDeXdGCFanTqxZIsQJmQbBDZ01AAARldJREFU/OgTThSzPPU9lY+ZBadi8HOoVZvZcr/X34fTJ9XjJsWobFYnPzd1QZ/NpHDHJUdhWsc4qc6RNhaEIkuwZ+Bi0hxFTfdgOluKDAjROd7xOQrOLWfCM94a+gSQy/P0+pggoApgprHRryqO5sjPrE6sn9jOruZoeFSrHTX6HIVoGl3kVDUX05T2cfj7WA6kvftHPb8Nw/Gzu7HlimMlX1ddOWHN6sLIAJL1i2V5gnk4FKrdCeNzZCo7joAMmz9yDF7ZPYT33fAwnnp591idQhcbCnGeSKcsvHtwAEce1IGBid5gVg5RhZsgc9ekNUf9Exux6QODHq10LUDhKAHkqDTxd06x/zsTh/hSmew/1YVVo8EUL4xZnomUZWHUtl07c+flVF9ydbDVmrKlvFFynMnOG6hB9jkal80oEfhk+2xvtLr8Z13rSQv0ujSashk0GRzFC9UcRYn44lzDuwNrMqtLfhWom7SMPkeiWZ1hcnTLFYptMGg7daj37BdwIQhZYIn++yCfNvla3s0P3ec4NUd+ixz1Kup7pf7UWYSq7W+6hl+0OlVztG94FNM7c+GAxXaMskgT+2lc70WYUsabzOqi9idDncUx0bZtIWy2E63Rkp5XYpoj4T7V35n6vt+GQ96sTiMcOZtEgo+rpDkau8c/vbQbe5T8Xbl6O9dX7ifEE9XNbWrC3YGJTZjeOQ7/88yrWD2vG9te2GG8Fz+mtI/Tfm/aLPGzFDhiRgdm9zRjdk+z8RzZX9fC+uMOwi9+tx1nKn6Jpg29j66ehQeffRXnHjEtsN7mPEdxhPLW+BzZNhrq0pg8oUmJ8Beu4LDXV031LcvCtA79czShm+KmtY/DkikT0NZYZzSlzV83WeGoKZvBirGEu7UGhaMEiOKIVwjiwKLbhdgfYlBJp2XNUZhahhkUUmOqI1Fz5H4v4BdK2y3L8uZXqHPtvOVzVRO8pmzaGL0J0GmuBOFIs9ASvzGZAYh1KQRTOE8dpsnVnOeohFvkAkafIzEgQ4C5mzhpjdcsfEyoz0FM3hsVvyAJYZBy9wTU2y/hrBSQIU7hyKfr+YVxTlmWxyTP+ay+Bqa+oCaBFe85rLYvwquTiLYoTJn1mTSy6ZRnAV3su+mMR2q3dH2OxjQWmXQKacvC8NiDiCIcRQnI4AgzumuYxkY/Qb+tKdis7k0hN5fof+v0LdGkTf792HwS4LuhQ6c5UhMoD7Q3Yf1xB8G2bXz3gec81y0W8ZnrQnnryGZS+NklRwUEepA1R53N9fj1VcdrtMH6l3qgvQkPbFhpvIb4tWlzrN+gYYnScrr+JgqahZjYhtVcpQt0r3CsbwC9wJZKWfjhBcv11j3KV34BQoohyBS+FqBwlAChbX8LRBwQdcLRsGGloC66mupEG+DggTXUbtrYj50FgOswq/zUm4TV+7KlLcsrRDlmdZ7JzPIMuLI2TL5H9frBoTaFyTcgyaMxz1FA8xViVqeSSulDeZdCNtJdI5TPUQTN0dKpE3DKIX14cedevP9I/a6kg9pG7eP1EYHCUGieIwexfwf93s+sLh1ByIqCn8+R16zOf0HxwmtvAvBuiIQK5Z3yD5xiwq/+KqrmKx7CFTS+IYPX9uyL7UonLejBh47P+TKI452N/H06Y3HG3UByhKPwNx8oHAl/t0jCUbidbN078Za53Xhz3wjeNThgPMd5L8XExakI74grHKltEWYjUONzJAppa+b34LQx/xI1uFBcFrHiuCS2ddC6I0hLIpbr1Fv3G785y+8aovmhqjn64QXLccOv/4KPnzwncrkq6gbSqjnd+OQ/5ctNF/BMwl4+Sihvkbp0yhjaO18H8/wvEtVkNyxBpvC1AIWjBJAc8RKQ3MWBr3+i1w55jhLr3kGsSSZlwcqmtMdMQlAozdHYOfsVzZEnlHcI4cSyND4HjlmdZtHoH5DB3+dIRLfOEncEGyIEEBDxM2MAImqOjLb7FmyNYWC5AjKY5s6GCNHqROozaXzlnYtDnis/p+I0R/m/iw3I4JcLBYhiVleaaHVq3xE/iottFTUAQahQ3pY3Wl0YpvjY8atI/pUxOWGHfb3G13uFo6jmkeK1vr52ifu3tBCy85s0juYoF/kPwNhQVkwob4/ALHxuEUKj+/VfEd079e9C/qncb72/c94VUSgRCWpb57LqOxmmX+iCAw0JfkXXv3uJdL60wRKb5kg/VhRbulyu9/j0jnH48yt7cPzsLu/BEIimj+pCe+nUiVg6daLxt1HuTdXyf+Pdh8r5pqQ2C1fyrIB5XHftuIUjE+plkvI5ijJnVysUjhKgLmGzOtE3RVQ9/+ySo/Do8ztwsiFWv7g2yaRSEGQjaQfIqDkKIxyl5N1KRyjyJIENYVaXTnlDihsDMlhyuzTVZZRFnBqtzrww0O1wi860gbtuSt3+/3MPx0s79+K4Wf4TSRSfI9OcnzZojhIaIyV07aIT1AA1IIP/Iq3QiK5OlDCHjiI0R0WH8jY4Tuuvlf/bu7jUl1ksvpojvx/6HHz3sinS5zCaIxt2JAHwlotW4LlX92BRf5vveSKS5qsE74WIKDCevngS3nZIX6BZqYqpyp5dY8XnKJ2STYujhPJWF5me0NdCrfzM6kwmqWGCnPiZEanmbA5Bmken3hPGZYFX9rjfh3m13CSwwj2ahDTxfPXvYjD5HBVrsSJWT/fMbj5/GX76+Is4Y8nkgsqfOC6Lb75nCRqz6diiNerwmCV7NCtiweHKPHZmJ7545kLM6dFvQrvXVqLVhaWYDXVTdN+4oeaIFMSs7mb86qlXACRjVvfiWPQbAOgUdsPn9LYYtUaAvDucTltoECYO0WzMOPmGuBdn8FF9juSB22tGZ8otpO5u6gIypFO5iHiiaUVjNu3JGF6U5shn0lNRdwUXTmrFhJmdgb9L0qyuXD5Hxmh12cI0R1HobmlAXdpyw8q3jytcc1Rs7rIoE6Wfz5G0GCqZ5sj82XQn71424ElsaMxzJLyLI6O27HM0dqw+o99NPXRgAg4dmGCsuw6v5qt4wpYiBmVYNbdbCv0d+lqhHccd4cjRHFnKYjr8vatjmjfPXP5vx0cI8C70jJqjEAtCnbbFKe/N/fqd9iAB0AmG0a701TBtrAvl7TdPSKZqMfU7k7lvscVL5maawrpaGnCOIdhCWFYLob+jECkJrNKv1N8Wom2zLMuYMFukGM1RoXh8jhISjt5xWPD9Vzu171VVQk4/dBJ+9bHj0NmcX4QlEWf+1d15s4woA4WomcikLGlxJZoDmAbucGZ1quYo91n29/Euhk2hvL25OSypXEBvd57NqNH4/KPVieiWcHsjCEe6MONhiJKI0y8gg05bUxrNkfc7k0JC9HcL2oWKlqA0TzplSaHWO5qLMKsrUnNkRRBqJF85X7O60miOvP4lwYs8bZQow3MUFwPDo7ZWwxvklxYF2awuHsIOw2IOoELfyTA/s2Hn/T/djaqU4D8SrR+ri0z1p2Kf6BLeM6/myDBuhaiLXyhv0/gcpDlyft+umNyGaZmMZi4yabDE84E4zer05ReaINktVxrviioqdqK0XHDahPgFVt21o2iD6oqYrGUBPBlz+l9cdjSOCbHZW+1UWLevbiY2ZdE/UQ4PmUS0kHNWTMXEcVl86PiDIv1Olzxs9dxuTO8ch0On5HdfiwnI4Awwjv+MMyjodoNFdGYVliYgg7NY0i1W9yq7hw1KqHJJc6QZ8U8/dBImtTVizXzvjlYU4Sisnb3D185ejOb6DG5432Ghr2EOt64XSErhc6THFMo73/5BORKKSS/X1pTfEVZ3h6NQ6I67jigBGXw1R7HmOTIf89UcGW5FFNzOPnwAva0NON1ggiOeOzwyql3kNcWqXYxvhz1fYriCRM1RoYuxMD+zbVGrMhbKO5Nyv6tLp6I5tnt8jjzSkUtXiyAc+SQx9itfh26TyfnOJJQEB2TI/b9TMLm1LKCpPri/6QIy+M0TUmS0mPqdnAQ2f69RTCZ1yIEKyjV36IlmVhc+omncU2ThZnWFP7ukhL1rzzoEzQ0ZbDpvEDO7w/lcVTs0q4sRZxGn02rEyUB7Ex75+KrIg5a4aHZe1v/vPUtg28C37vuzeyxM+E0Tznvt7Fa6miPhx6q/EWDeWfGG8vYGZFBt6x2kkNvKTqlOQPvyOw7B6KitbdcoZnWeRGwBDffWRX04eUFvpOdp3ImygB4hK3u+TqGLLhh9niP9uWL7B03khSYaBOQ+UIydtOwHVNzCI9hJ3KylMiV9LJbuFrNWzS8gg6kGYhttPH2B8b1Sy1c1R877Pq0zn0yzWCTNUVxmdSGLGV8fXjgyvbNhBTGn/DfGBIfGunxi7KiLZ79w7ipdzfnxR+2jpj4bLoee+bue1gZs3+XtH2Gj1Ymao96WhlB+YG5ABuGeelob8KohGmGxprmBZaa9702hSONd2TbW9BSbBFZENquL9z6DTBNNxOVzFKdwdOriSXjbor6KE5SThJqjGHEWcUkMgiqFdFJxkeksCpwQo2EGhih22PtH1Gh1+XN0gokpgpfHrC7jDfDgNIWqORJNcdTkkiazA1O7qmX7UUi29ajP05RrKWVZ+MTJcyXTTuf7pNGb1ekFm7amLD54zHR88OjpknZHRxGyUWBOqrDEKZQE7WZaPguTuM3qbvrAIFbN6cLG0xeY6+P5HDwBq3WLYloqto8zfnzpzEVYObsLN31gMFQ5fpTL/w5QNEcBs69x7gipOVJ/LqY3iNp3gpLA7npzv/u3OPZE1aL7oVukO/W49qxDcPzsLvzwguXS8cCADGNFimH+J4eMfOgGZBDu6WtnL8bxs7vwXxeuMNZV/bsYTBrtKJEIg8pNag1TKFGaLkqi8LiHBTkwV/jnERTN1A8xoXTc93MgCUYANUeJIHahShpYouQy0Z4T4hpubo0xzZGbR0JU+UfRHBmi2mnN6hTNkagpsJTf6LRXfkTTHMmfk+gDYkQo+doWJo7P4lvvXYpTrvu19H3S6K7g5y60YY0+j4VKMWZ1K2Z04K4/vFxECTlMIXMLIYodvF9+mTjM6o44qANHBGQ49zOrMw0KBSdCHrW1TuZ9bY349jnhzU79SOJVCFumGOY6aLPJ6PsZ4jq9bQ2eZ1BfJ5vVRSHIj1IMT97go3Upps9qzerG2mhqxzh8R9M/gsZ5V3MkBGvR5Q7UkdbMbdM7x2vrkTtPEI5i2paWNdrxbZwUqvUoBXGaiCdpVleoe0VcmqMKe2xVB4WjGNHJHpUkHBXq2O4Q5lY80epcp9X8OTqTBdOCMUyeI2dy2qvYnTfW+WiO0tE0Cvsi5B2IalZXCOIiS762vg7lGiiLMYlzMGmfwvDe5VMwMmoHCgBBSAJLIY0p3ELwbubYdVKWb3SlpMK0euuj9CXD3yKFmvWMjNjSQiKJhVk5Fw2iWV1QPzLNHX4/2/SBQfx1x5uY19eK2x97UTqWM6srTDhSUasmBgkSF/5hNUehTLa1miP/3zTUpXH92kNx4U2/0R532qOzOa85Ci0cafxpfc8X2yWmTmgyCyvW56iiNUcxliUJEzGb1dUV6HNUzLuZRETEAxWa1cWAkz9l9dxuz7FSLWDCUKRsFM6szhGORhwTw1wXywRqjgxmdRn5mnWagAyOc/9eRYARTaosSx44io3m40chZnVRMWmOmrIZ7TWDBsoPHDkNAPD2AvNW6K4JAOcdNR0AtEEuwlKMgJVJp3De0dMxt88/J0UQppC5SeAIT9rQxdLOYGnGFvUq4nVNgl6h496wEso7iUhZSbRb6IAMkXyOTJoj8+9WHNThhhlW+09DXdoVXArRLLT4BJMQNUd+WgdTv4gS7CfoO5U1C3qxaHKroczc/0XNUU+L12dTx56hYQBw89cFpSQIY44aBcuS3z+xaYsWfkvgGlAocQYAFpspdjO0AueMYrR+4j1QOCoOao5i4O6PHovnX30D8yd5B+BKGliK3cUPcyvO+6jmOQoMyGAoPExAhskTcuGah/abNUfqRFIq4ShlJbMYa22ShaN/OXU+jp3ZabyvoCpctWY2TlrYiwWaPhwW3X2uP+4gHHVwR1HCSQzKp6KRQuYm/E477agNXazxtUsaPy2kqQqFjnsjo6OJhtdNqsywm85ytLqAIg3Hw1bf43NUl3YFpkIWz+esmIqv3v30WNly4ftG9Kkg4jQx1i2Kw5ZnHhdzvxc3m8Rn5Mc/Xh8CACyY3Iqffvgo9GoC4ZiIw38jbckRWMUyixWOKlkDEaeGp5A8R2Ep1NqgKNNTmtXFBjVHMdDSUKcVjIAKE458Ez166+l10g6hOVICMjj3L5vVaQIyGDVHwXmO+ifkzCBUzVGDJyCDudwgvr72UGTTKVz3rkMDzy2FSYJqVjcwsQn9gjlIVM1RJp3CoQMTip5UVdIpC4sHJoSK/mSiAmQj+ZkmEJ5fvlbu/zohrCy+AJb5o0nwL7QfDY/aqEtbWNTfhumd40KbOEWhnEOymOcoaNOkGBM0wLsAb6hLFWVWd8GxMzCntwWHDrRJofg91/VZWJvuaUbXOExtb8KktkaMy6ZxpkaDrftt2LYIzHeUsnDcrE70tTZoc7j869sXIZ2y8O11S3HW0n60Ntbh5IW97vG5fS2YEJQqQNrVD1dv3zpblqxJFo4VnedIMo0sqqiKJowWvPCy839HmTOKCaaRkvpY5aw9qxFqjhJAXMxVUhhMP7M6XS3PPnwACya14p++dl/unBC34kxg3mh1/qGbTZOmOInXpfM+GOKL7yyguprr8aIQ7rfRJyBDVJvskxb04i1zu0MtKkqxgFXN6tTmU3fXStENk7pEJWiOSunr4/QZPwf03PFEq+Gi1kJaUBiaotBNgeERG5Zl4dYLV8Auohw/4vYtAHI57sIgaiWC7i2seZcJvVndmHBUwAKsKZvB7R860lcbPqDk+fNqHfW/y6RS2PyRY2EhFzhIN87qxtLQmqMQ4/Z3zjkMI6O21sT7zCWTccohfahLp7ByTjc+e9r8yAKmWNM4+nXOGkL8LM5vxZWftPa2GOIcEkzCZdxEmTO6Y0pWXmGPreqo4T2ByqCSwh8WYlYn7kCFM6vLnaTmORLnkXH1XpncZGeblYSj/N+S5mhMOPr2usOwYkY7brkoF0ZV9DlKpSzp/gvZWQs7GZbCJKFFEY6ChKGSTHAJXaKYgAxxUcodubCao1L5HPkFZDA99ELt5p2ImqmUlZjWNc5m++rZi3H0zE5c/paZoc6XfY7052w6bxBHHNSOr6/Va6lD5zlSLiCZ1RXYtrogIQDwvfOWYcWMdnznnMPkd0UZMk1Xtaxc2amUZRxnC/U5AsKN95Zl+SbgrDPMRWGxYp4X1MTmYpWKNqurYJ+jOF/gJKPVie9plDa8as1sHHVwRygrFZWUz8YEiQY1RwcQfsKR6T0S3+kwk7IzJg/5aI6aNTbd5oAMBuFIqLAjHM3ta8Gm85a536uhvIdH8vcfNZR3FPyiNcVFa6Pchurz8wpHiVSjJMQR8a5YTPlEksDP56gcvgB+fctUhULt5odHwkeFLJSuInZmVd62qA9vW9QX+nxRc2QSblfM6MCKGeboiov6W3Hf068EXkvtHw11afd5xW0+u3xGO5bPaPd8r95jMeHJizOriyffWVzEIxzJ44Foal3LeY7irI78HJK7zyjjYfv4evyf98eRz63oIg5oKBwdQEQ1q1OPhDKrc3yOXM1RSvoe0Du8mnYy5URq+XNswXixf2Kj9rdyQAYLI0IDFBvq1A81IEMSeDRHAZqi0uQ5SuYaFSAbKTkrklW4p3yEIymKVNk0R8H9u9BcHSPFhtQMwcHdzfj8aQvQ3RKfkBSW5vr8e1voovNDxx+MhkwaqzTRUUXUbtqYTefzHCW4OSQSNqVAmPFJ11xh34Ekx/tCiEPgSFk5TdvX1x6KN/aNJKY5qjQNRJy10SWTjwux2cojqFTWc6s2KmvEIIlSyMIjqjmRa1bnBmTIfS8ulnQ5ekyaI5N5Tltj3sa/c7x+keOEtQZy9zEs3H+S5o6lCPus+hx5zOqU85M0wXKekc6ROQ4qQDYqqebIKT6o75RqwvXVHBkm4KiaIydK4umHFh5KPgrvGhzAyjn+wkUSNAiJWAt9fg11aXxo5cGY0+sfAdKjOcrkhaNifVLCsri/TamT/rwww5NuDAs7jtf7BJAoFWJNYwnIMFbISQt6ceaSyUqeo+IuINav0jRHySWBjfc+JZ1UGQRMv8fmpOw4ayzsP/FCzdEBRCHmSZa8EgrEkwQ25c1LpDOrEwepTecN4qDO8QDMtuKtTXX42SVHoSmbNg48jdn8b1XNUZKUwu63PpNGQ10Ke/fn2rmcZnUPbFiJv7z6BpZMmZBI+RVhVlekDb4dQcRz+kyQEFaOCddbB/33Udvoe+cvwxN/24nDp06MoVaVi2VZaG7IYMcb+0vguyaX35hNuX0mbrM6Ewd1jcdPLj4SnWOmjKY+W+jQHNrnqMI0R3G8u54gPMLn4pP8ll5DHZY4ayMngY2ZMjeb32P77GnzcdqhkxKbs2uByhoxSKL4rTFNg3VUzVGYUN464ai5PoODu8ZjVnczlk1rR9dYpKY6YQdarf6c3hZMaR9nrIvoc6RqjpJETtSZ3HVEDZz3MqUzq2sfX5/oIFsBspH0TJP3Ocr937QrPq+vBc31GRyi7MonhZ9plKlfRQ3IML4+g2XT2ysqgE1SHDZ1IiY01Umh95NAFVDrM2k4j8Uv8EAcLJzcisa6NJZMmYAFk1vRM5YDyDQMFeprFra7JOljGpa4h2C/MT1Ws7oKeyc3nDQHAPDBo6cXXVaSARkW909Ac30G84pMQF4ofv2jPpPGihkdRaXYqHWoOTqA8NOcmN4jUVUfZuxwylGTwEoBGeq9ZnWplIWfXnKU+7f4faHIobytkjh7A3Kdk1zYtzbW4eWxRIRqOwVpkqqJSotWl7SZSZDm6McXH4nh0dGSTWyFRD5MevFdzXzzPUswNDwqbd4kgSdanehzlLBZ3W0XHYH9mj5q6jv7C9y4ijNaXbWhbmiKn+MNyFBUUbGzZMoE/PFfTozl/UkyZHljNo1HPrmqqKSuxVBpvmLVRoV1e5IkIwWZ1en/NpFyNUe5a7maI+G3Os0RkNvt8tvxirpIFn2OrFJqjkq009Yt5EFRr6h+rqaB8qYPDOLQgTb3c/lFo9KGSM0HZNC/C+mUVdIdP1/NkeF1TVq7Vs1YlpW4YATo8xw5C+ikzcxShj5q6hWFblzFmecoaeIOWKPeklh6sT5HcqCCynuX43p/kp6r6wU/v1JTgY+tqij/iFGDTGrTR08rN4XswIcxoRFxFkvDo2Oao7FBWozwpYtWlwSi5mjUtjF5QmmeS6lstEWzHK+myF+TVMkccVAHbrnoCPdzBSiOig6yMas7vGlFPiBD5MskglfwtrR/i1A4Kj/qI2jIpPJ5jsrUuUxziJhmIQrhQ3mX/2XqaA6XKDgsfpsWsfoc1fC7nKRZXbmpRKG2moh9lTp16lQ899xznu8vuugiXHfddTj22GOxZcsW6dgHP/hBfOMb34i7KmXj+NlduOKEWZg/FoGpUigklHdUh0Wz5ij/a120uiRoEAIy7N0/ircu7MNfXnkDh01N1gmxVFp0MYS5RxhSzq3mgbIiAjIU6bj7wWOmY//IaGD4ZUDMc1T+BR3gL2ibuhXN6sqPqO2sS+cSnObN6srzfEz9Zf9ooT5H1WNWN7unBZ/6p7nobW0IPjkEfukaYk0CW8VzRxDyuF5b91nDj60kxC4cPfzwwxgZGXE/P/HEE3jLW96Ct7/97e535513Hj7zmc+4n5uaknVMLTWWZWH9cQeVuxoefBeZhjdJ+jrEy+aG8lai1YnXNpnVBRF1iSyaUuzdP4JUysIlqw4u6NpRECeTJJf1A6LmSDnmnTgTrEjClF80kgXeQiadhro0PnrCrFDndo7tMJtC1Jcaj1ZS+Nu0OKXmqPyI45BjhuR8lbTPkQlT4J9CNUdhtRqHVUgUxHOPnBZbWX7vZZyao0oLyBAVyzJbH0jmg+WXn2OlmjdEK4HYhaPOTjnXyRe+8AXMmDEDxxxzjPtdU1MTenp64r40CaCQDfioDovOGU60Ouc3b+7LC8zj60tjVidOxHv3j/icGS+lMkPonyCa1fmb0VXzQFkZARki7hIUwaEDE/B/3n84ZveUJ8qRiuduLZ9jYxSaBJbEh7jYc0yMy605Mg2N+xOOVjd/Uiu+/8Hl6G1twFFfvKega1Ua6jwjDlHZTHHvXzmSTSeFBfMGW5qaI2Ig0RFy3759+O53v4tzzz1XWrzddNNN6OjowPz587Fhwwa88cYbSVaDhMD0HkVdEjpjqhP8wFkkvSEIR6U0uZnV3QwAGJzeXrJrlir/jKg5cjR1JiohJ06hVIBsVFLbdMuycNTBnW5umHLj8W0IIR2VK0ITyZPSaI7K7XNkenX2h9QczZ8kbxhE2fQ5fNrExMOnlxLvvec/Z9PFBSwoRSLzUuHXR1L0OSIGEt3Cv+2227Bjxw6cc8457nfvete7MGXKFPT19eGxxx7DlVdeiSeffBK33HKLsZyhoSEMDQ25n3ft2pVktQ9IjKG8I2qOXJ+jYTnP0Rv7housYWGL5P/+8JEYGh7FuBJpq1SS1Hq0NeV9t3a9uV865tUcJVaNxKkE4SjJkK+Vjl9YeKNZHTVHZUdc1Da6ZnVjwlGRmoVCMZlohTXz+9H6I/HYX3fgtK//T668A+xdFPF7L4t9vinJ3Ky62zjXR/STSFoa10tUoRJRa/dTahJdMX7729/GmjVr0NfX5353/vnnu38vWLAAvb29WLlyJZ555hnMmDFDW87GjRtxzTXXJFlVYiBqKG/nHMfBNuMKR6UzaxPJpFM16xxuWRY+fPxBePDZ13DUzA7PMZFqXkRURkCG/N/V25KF4dUc6f8WqaPmqOzIPke55+EMheUKba32lxPn9eAfu4dw9uEDoX6fTlmSz2o1j2vFopq7JeVzVPVmdT7VlwW/6r5PlQP53YiDxISj5557DnfddZevRggABgcHAQBPP/20UTjasGEDLr/8cvfzrl270N/fH19liZGoL5izKB9WotVNKlEY7QONy1frnfy9ARqSr0tSTO0YV+4q1HTI10A8O9TBbZGm5qjsWJJwlNMcORqkxmzp8mSZ6gQAFxw7A4f0txVcxoEsg3tDeYtmdUVGq6shjYrfGuaAHteJL4kJRzfccAO6urpw8skn+563bds2AEBvb6/xnPr6etTXV4b9fa1ickaMOl54fI7GvjhnxVS8unsIq+YEhzImxeM1R6++kf8/z1+GzX98Ge+PMcJToUQ1L60lzJ4N5raoq/YVVQ0gLvymtuc2GM4/egYmjqvHSfPN822S+GkhCynjQHsXRRKNVldD76/frcgBGWqLA/ndiINEhKPR0VHccMMNWLduHTKZ/CWeeeYZbNq0CSeddBLa29vx2GOP4bLLLsPRRx+NhQsXJlEVEpIFhpxMkTVHyhDj5GppqEvj4yfPLaxyVUy5DMLU51CNc93g9PaSBtIITRW2ZTH45VMxUe1O3LWAuD6e1ZMLTDO3rwWf6ivfOBxHFE2xaxXSz/xCO1cD0zrG4dlX9uDkBWYBt9hQ7bX0+voFIxKFwFoTJmrsdkpOIsLRXXfdheeffx7nnnuu9H02m8Vdd92Fa6+9Fnv27EF/fz/OOOMMfOITn0iiGiQCCya34v+8/3BMalPM3yK+YKqZQ5z5TiohpHO1oDZ7rQ38pHT4BMUyLjxq1c+vmhDfeUc4KjfquFTIsCQl7izg92b3/Orgvy5cgYeefQ0r53RJ348I82NdkUlv0zXkZOnXR9JWuPOqEc75xZGIcLR69WrtQra/vx9btmxJ4pIkBo46uNPzXVTZRl0scQe5THiEo/JUoxY50CYdr2+DeEz/m3IlGS2UT5w8B5/97z/gyhNnl7sqsTEkhPevFOFI1WgXJNxI/a8QzVF1q44mjsvixPnePJFiIt1ifY5qaYwL7XNU7VKgAuf84ihPfGNSNUTNj6OeHadw1NxQF3wSAaBbhHCkjIsDzZ/Gz+fIGJChytroA0dNx6mLJ6FjfO34tv7vnn3u35VyX14/mQKFmzEKiaRWXT0zPMOjeWG4WJ+jant//fC7lVrOc1R7N1RaaPtwALHpvEFM7xyH7523LPRvoo6R6i5NHIPsN9+zBDM6x+Eb715SdFmlplwblHHY9hOZdy8bwLLpEyvTDypJ/KLVGZaa1RjKu1IEiLhYs6AXc3tbcOmqg8tdFRc/LWRYRKuUwjRH0a9ZDYiJdIudd1Mh3vFqwVdzVKSJZiVTQ/JtWaDm6ABixYwO3P2RYyP9JurAqL6QcfgcrZ7Xg9XzvGYExIza6hwoi+ezpy4odxXKgl+EMVO/qqVoV9VKa2MdfnrJUeWuhkTcmzZWATK4VfVeR3r2j4wGnxSSWnp9wwZkqDXrCm6IFkf1be+RkiK+X2G0IElojkh0aikJLCkvHrO6MHZ1hGiIQ3NUdFj9Gu2ywzEKR7UkKBy4obzLXYPqhsIR8SXyGKlqjqrMMTtuyhVhz3dBS0gEVC2QqE1mtyJR8GqOopchjqmF9L9a7bOiWR3J4xutroZ9jmpJwC0HFI6IL1F35ryaI3axcuBxfOZASQrET9Dm7iSJgnccKtKsjv3PRQzIECfV3sZ+a5iaznNU7gpUOVy5El+ivmBJ+ByR6HjN6spUEVL1+K0ZKHSTKHjzr0Uvo7M5HzijPpOO/Pta7bJxa46ccPxzelpiLbfUfGT1LADAWUv7Pcdq26yu1u6otDAgA/El6gumBnCgz1F5YLQ6Ehd+/mt8vUkU4kgxUJ9J47efWg0rVdj8Uu3R10zEPcRv+9RqDA2PorWpulNonLlkMpbPaEdvS4PnmBTxvMa6BY12ioPCEfEl6oCrvpCF5KEgxcNodSQu/MzqanWhSZJBHYcK7T3FLNhrdUpaOzgF/7X1r1gzvzeW8sbVZzCuRqLbT2pr1H5fSyHLVbghWhwUjogvkZPAqj5HB3hAhnKhPgeaP5FC8QvlXWPrCZIw1GgnR2tjHTZHTNVxoJNO1a4WnHN+cVDxRmJFfR3pc1QevJojPgdSGH7BPfh6kyh4N23KUIfSX5JUKJLmqMbmyNq6m9JD4YiExg6ROI95jiqDOELmEgJo/ER8jhHiRxx5joql1hbBpHBkE+Ha4oiD2stdhaqGZnUkVrzR6g5s+btcmSfURSs1R6RQvJoj8zFC/PD6r5W+A7HLEgdZc1TGisTIrz52HO5/5lWcduikclelqqFwRGLF43NElUVZ8FvQEhIFf7M6diwSHnWvrCy9h12WjCFv9NRGx+if2IT+iU3lrkbVc2Bv65PYUccX+hyVBzo+k7jw6zvsViQKlaDRZpclDrWoOSLxQOGIxAp9jhTKZFfnzSdSnnqQ6odmdCQuKkGjXSsaAlI8texzRIqDwhGJFVUWOuCFozJBzRGJC1HQZhREUgwVEa2OXZaMIY5tHMuICIUjEiv0OaoM/BJ3EhKFlKQ5Kv/illQv3iSwNKsj5SNFrTgxQOGIxApDSFcG6iKWu2KkUMSu413c+p9PiIg6DpVjfqBZHXFIpUStOPsFycNodSQ0dgj/GW8eiwN7wClfKG8ZCkekUMR32M+h/j3LpuDg7vE4ZmZnyepGqotKCOVNiAM1R8QEhSMSK+r4kuaIUxaowSNxYRk/yP2soS6F9y6fWoIakWrFY5ZZjjqU4ZqkUmG0OqKHZnUkVrxmExxxyoHXN4TPgRSGFO7Wc5QOzSQ8lRAoht2UOEiaI4rNRIDCEYkVj08Cx5uy4ecrQkhY/EJ5S/2KfYwE4BGGmAWWlBHmOSImKByReFE1Rwf4qtwO46iVEGLLc1efFIocytscrY59jAShTgcH+PRAyoy/VpwcyFA4IrHCya9ysLgrRmLAT3PklwOJEBVvElia1ZHywc0dYoLCEYkV+hzlmNTWCAA46uDyRe6i5ojEgV8W+ZQwg7CPkSC8KQZKX4cjD+oAALQ11ZX+4qSi8Nv4IQc2jFZHYoXJR3P84ILl+NG2v+Ndhw+UrQ4c+EkcyHb5arQxaidJeDzzQxn0jdecMg+zeppx8oLekl+bVBZ+Yxs5sKFwREITxntG9TE6UEN597U14sJjZ5S1DrmFR+6pcVefFIqf5sjvGCEq3jx4pa9DS0MdLjimvGMzqQz6xiw8CFGhcERipRJCtZIxaE9NYsBPO2Rx55VEoBKEI0IcWhvrcM9Hj0U2Qw8TIkPhiMSKaibBRXn5kH2OylYNUuXIWeTNSTz5qpMg/AJ6EFIOpnWMK3cVSAVCcZnEiifPEXtY2aA9NYmFkHmOuBFCgvDNk0UIIRUCl64kVhitrnJgElgSB365QCyfY4SoePNksdcQQioPCkckVrgzWDlIZnV8EKRAZNM5s1kd+xgJIqWsONhlCCGVSOzC0ac//WlYliX9mz17tnt87969WL9+Pdrb2zF+/HicccYZeOmll+KuBikT3jwWnP3KhfgsuAghhSL2I9u2jccICYKaI0JINZCI5mjevHl48cUX3X/33Xefe+yyyy7DT37yE/zgBz/Ali1b8Pe//x2nn356EtUgZUBdhFM4Kh/mPX5CwuMnWDPDPIkCN2kIIdVAItHqMpkMenp6PN/v3LkT3/72t7Fp0yYcf/zxAIAbbrgBc+bMwQMPPIBly5YlUR0SE3aIREden6OEKkOCoc8RiQFxt18dAhitjkSB2mxCSDWQiOboqaeeQl9fH6ZPn461a9fi+eefBwBs3boV+/fvx6pVq9xzZ8+ejYGBAdx///1JVIWUGOY5qhzkUN58DqQw/CJOprjYJRGQkgZzTCKEVCixa44GBwdx4403YtasWXjxxRdxzTXX4KijjsITTzyB7du3I5vNoq2tTfpNd3c3tm/fbixzaGgIQ0ND7uddu3bFXW0SEx6Hbc5/ZUN0kKdwRApF7Dmq9lha7NJ0kwRAYZoQUg3ELhytWbPG/XvhwoUYHBzElClT8P3vfx+NjY0Flblx40Zcc801cVWRJIicMJK7g+WEJk8kDvzeYcvS/02IDmlMojBNCKlQEg/l3dbWhpkzZ+Lpp59GT08P9u3bhx07dkjnvPTSS1ofJYcNGzZg586d7r8XXngh4VqTQhEnPGoryots389nQQrDPyADEw2T8KRkVSMhhFQkiQtHu3fvxjPPPIPe3l4sWbIEdXV12Lx5s3v8ySefxPPPP4/ly5cby6ivr0dLS4v0j1Qm4kIqzcVSWZFz0JStGqTK8dvhtwx/E6KDiakJIdVA7GZ1H/3oR/HWt74VU6ZMwd///ndcffXVSKfTOPvss9Ha2or3v//9uPzyyzFx4kS0tLTgQx/6EJYvX85IdTVCStpJLmNFCMMsk1jw6zpc7JIo0EeNEFINxC4c/fWvf8XZZ5+NV199FZ2dnTjyyCPxwAMPoLOzEwDwb//2b0ilUjjjjDMwNDSEE044AV//+tfjrgYpF1yQVxB0fibFI77GahLYFM3qSAQYkIEQUg3ELhzdfPPNvscbGhpw3XXX4brrrov70iRhbE+WEy+c/CoHea3Kh0EKI6xZHd93EgRDeRNCqgF6IpBYSVFzVDFw4UriIGxABtrRkiBodk0IqQYoHJFY4eRXOaQYrY7EgCgAqbpj+hyRKDBYHSGkGqBwRGJFnPzSXC2VFQZkIHHgqzkSlrh0sCdBSP2FYxIhpEKhcERihbl1KgcmgSVxIC1iFdVRipojEgE1STghhFQiFI5IIM6EduRBHaHPBbgzWG4kQZUrV5IAdDkiUZCSBpexHoQQ4kfs0epI7fE/V63Eb/+6A2+Z0x14rsXw0RUJnwVJAnmxy05G/OE4RAipBigckUB6WhvQ09oT6lxGq6sc6HNEkoaaIxIFv+AehBBSKdCsjsSK7HNUxooQLlxJ4tDBnkSBXYQQUg1QOCKxwiR/lYNs4shnQYqHobxJMXAcIoRUAxSOSKyIkx9DeZcXKThG+apBahhGHyNRYBchhFQDFI5IrDC0b+XAsOokbmxb1h1RO0miwD5CCKkGKByRWGEQgMpBbH0+C5IE7FYkClLKLEZkIIRUKBSOSKxIoX25cCovoskT33SSANROkiiwixBCqgEumUispLhYqhioOSJx4wnIIP7NLkYC4DhECKkGKByRWGGeo8qBYdVJ0tCMlkSBPYQQUg1QOCKxIjloc0VeVqg5InGj+omI/Yo9jATBcYgQUg1QOCKxwmh1lQOTwJKkoVkdiQL7CCGkGqBwRGKFDtqVA/2/SNyo3YhJn0kU2EcIIdUAhSMSKxY1RxUJhSMSB6pZnUWzOlIgas4sQgipFCgckViRfBC4IC8rXLiSpGFABkIIIbUGhSMSK/Q5qhzoD0LixlaCeYsBWNjHCCGE1AIUjkiscCe5cnCa37KoxSPJwND9hBBCag0KRyRWpIAMVB2VFedRcNFKkkLqWuxmhBBCagAKRyRW5AhpZawIcU2e+BxIXPjlOaIQTqLAcAyEkEqFwhGJFSYerRzyZnV8DiR52MsIIYTUAhSOSKxwJ7lycIQiao5IXKi7/VJERPYzQgghNQCFIxIrclLI8tWD5HfyKaSSpGBABkIIIbUGhSMSK9QcVQ4MyECShvEYCCGE1BoUjkisiOvwNO25yoql/J+QuJHN6tjTSAQYkYEQUqFQOCKxwmh1lYOzWOWalSRFima0hBBCagwKRyRW5MUSV0vlxPU5opRK4sIbkcH9k+abhBBCagEKRyRWLMlBu3z1IPQ5Iskj+RyxmxFCCKkBKByRWLG4k1wxMAksiRtbUR3RjJYQQkitEbtwtHHjRhx22GFobm5GV1cXTj31VDz55JPSOcceeywsy5L+XXDBBXFXhZQBRqurHJgEliSN3LXYzwghhFQ/sQtHW7Zswfr16/HAAw/gzjvvxP79+7F69Wrs2bNHOu+8887Diy++6P774he/GHdVSBkQl0f0dSkvebO68taD1C7S+85+RgghpAbIxF3gHXfcIX2+8cYb0dXVha1bt+Loo492v29qakJPT0/clydlhmY2lUPerI4PgsSDrQRkSDGUNykQRvImhFQqifsc7dy5EwAwceJE6fubbroJHR0dmD9/PjZs2IA33ngj6aqQEiAHZOBiqZwwIANJHEv7JyGEEFK1xK45EhkdHcWll16KI444AvPnz3e/f9e73oUpU6agr68Pjz32GK688ko8+eSTuOWWW7TlDA0NYWhoyP28a9euJKtNikBch3NNXl7yPkflrQepXWSzOnY0Qggh1U+iwtH69evxxBNP4L777pO+P//8892/FyxYgN7eXqxcuRLPPPMMZsyY4Sln48aNuOaaa5KsKokJBmSoHByzOj4GkhSyWV0ZK0IIIYTERGJmdRdffDFuv/123HPPPZg8ebLvuYODgwCAp59+Wnt8w4YN2Llzp/vvhRdeiL2+JB7oc1Q50KyOJA01xYQQQmqN2DVHtm3jQx/6EG699Vb88pe/xLRp0wJ/s23bNgBAb2+v9nh9fT3q6+vjrCZJiBR9jioGx0Gez4HEhepELwlH9DoiEbDV6B6EEFIhxC4crV+/Hps2bcKPfvQjNDc3Y/v27QCA1tZWNDY24plnnsGmTZtw0kknob29HY899hguu+wyHH300Vi4cGHc1SGlRhSOqDoqK07rUzYiSSFpiplSnBBCSA0Qu3B0/fXXA8glehW54YYbcM455yCbzeKuu+7Ctddeiz179qC/vx9nnHEGPvGJT8RdFVIGaFZXOdCsjsSN324/NUeEEEJqgUTM6vzo7+/Hli1b4r4sqRAkB20ulsqK0/oUUklScDOEEEJIrUFDCBIrXB9VDvQ5InHj63PEbkYIIaQGoHBEYoWhfSuHvM8RHwRJBlE7zH5GCCGkFqBwRGLFYo+qGPI+R+WtB6ldxL7FbkYIIaQW4FKWxIpl+JuUAyaBJckim9Wxo5HwMJA3IaRSoXBEYkU2q+NiqZykXM0RnwNJCgZkIIQQUltQOCKxwoV45eA8CgqpJC7UYKSyWR37GSGEkOqHwhGJFa7DKwdnscodfZIUFgOwEEIIqTEoHJFY4QKpcmASWJI0ko8huxkhhJAagMIRiRUuxCsHRqsjSZMSZhC++4QQQmoBCkckVrhAqhwsN1odnwlJBjnPURkrQgghhMQEhSMSKzSzqSCoOSJJI/QtboyQKKjBPQghpFKgcERixWL0qorBaX0uWklSSKH7y1gPQgghJC4oHJFYoQlX5eAsXCkckaSQNcXsZ4QQQqofCkeE1Cj5PEflrQepXSRNMfsZIYSQGoDCEUkMLpbKi9P83NEnpYC9jBBCSC1A4YiQGsVyzerKXBFyQEDzTUIIIbUAhSOSGFwqlRcGZCClhN2MEEJILUDhiCQGF0tlhqG8SQmh+SaJgg3G8iaEVCYUjgipUZgElpQSdjNCCCG1AIUjQmoUi5ojkjBiIk+abxJCCKkFKByRxKDGorykXOGIz4EkD3sZIYSQWoDCESE1imNWR+GIJIXYtdjPCCGE1AIUjgipUdy1KtespARQNiJRsBmPgRBSoVA4IonBtVJ5sWhWRwghhBASCQpHJDm4Ji8zTAJLkoUBGQghhNQaFI4IqVGoOSKlhN2MEEJILUDhiJAaxXU54qKVlAAK4YQQQmoBCkckMSza1ZUVao5IKWEvI4QQUgtQOCKkRnGEIvockVJAGZxEgcHqCCGVCoUjkhhcLJUXp/mpOSKlgEmfCSGE1AIUjkhicKlUXpzFKhetJCm4+08IIaTWoHBESI1DszpCCCGEkHBQOCKkRnEURlQcEUIIIYSEo6zC0XXXXYepU6eioaEBg4ODeOihh8pZHRIzXJSXF8tNAssHQQipMGiTSQipUMomHP3nf/4nLr/8clx99dX4zW9+g0WLFuGEE07Ayy+/XK4qEVJTMJQ3IYQQQkg0yiYcffnLX8Z5552H973vfZg7dy6+8Y1voKmpCd/5znfKVSVCagomgSWEEEIIiUZZhKN9+/Zh69atWLVqVb4iqRRWrVqF+++/vxxVIgnAJLDlJZWiWR0hhBBCSBQy5bjoK6+8gpGREXR3d0vfd3d3449//KPn/KGhIQwNDbmfd+3alXgdSfG0NdWVuwoHNOkx4SjDcHUkJjrGZ6XPTdl0mWpCqp2+toZyV4EQQrRURbS6jRs3orW11f3X399f7ioRH7545kKsntuNdy+bUu6qHND808JeHD2zE29d1FfuqpAq58cXH4GjZ3biux8YlL5fOmUCzlwyGVecMKtMNSPVxn9duALHzOzEt9YtLXdVCCFEi2Xbdsljxuzbtw9NTU344Q9/iFNPPdX9ft26ddixYwd+9KMfSefrNEf9/f3YuXMnWlpaSlVtQgghhBBCSIWxa9cutLa2xiIblEVzlM1msWTJEmzevNn9bnR0FJs3b8by5cs959fX16OlpUX6RwghhBBCCCFxUhafIwC4/PLLsW7dOixduhSHH344rr32WuzZswfve9/7ylUlQgghhBBCyAFM2YSjs846C//4xz/wqU99Ctu3b8chhxyCO+64wxOkgRBCCCGEEEJKQVl8joolTrtCQgghhBBCSPVS9T5HhBBCCCGEEFJpUDgihBBCCCGEEFA4IoQQQgghhBAAFI4IIYQQQgghBACFI0IIIYQQQggBQOGIEEIIIYQQQgBQOCKEEEIIIYQQABSOCCGEEEIIIQQAhSNCCCGEEEIIAUDhiBBCCCGEEEIAAJlyV6AQbNsGAOzatavMNSGEEEIIIYSUE0cmcGSEYqhK4ej1118HAPT395e5JoQQQgghhJBK4PXXX0dra2tRZVh2HCJWiRkdHcXf//53NDc3w7KsstZl165d6O/vxwsvvICWlpay1uVAgO1dWtjepYXtXVrY3qWF7V062Nalhe1dWnTtbds2Xn/9dfT19SGVKs5rqCo1R6lUCpMnTy53NSRaWlr4QpQQtndpYXuXFrZ3aWF7lxa2d+lgW5cWtndpUdu7WI2RAwMyEEIIIYQQQggoHBFCCCGEEEIIAApHRVNfX4+rr74a9fX15a7KAQHbu7SwvUsL27u0sL1LC9u7dLCtSwvbu7Qk3d5VGZCBEEIIIYQQQuKGmiNCCCGEEEIIAYUjQgghhBBCCAFA4YgQQgghhBBCAFA4IoQQQgghhBAAFI6K5rrrrsPUqVPR0NCAwcFBPPTQQ+WuUlVy77334q1vfSv6+vpgWRZuu+026bht2/jUpz6F3t5eNDY2YtWqVXjqqaekc1577TWsXbsWLS0taGtrw/vf/37s3r27hHdRHWzcuBGHHXYYmpub0dXVhVNPPRVPPvmkdM7evXuxfv16tLe3Y/z48TjjjDPw0ksvSec8//zzOPnkk9HU1ISuri5cccUVGB4eLuWtVAXXX389Fi5c6CarW758OX72s5+5x9nWyfGFL3wBlmXh0ksvdb9je8fLpz/9aViWJf2bPXu2e5ztHS9/+9vf8O53vxvt7e1obGzEggUL8Mgjj7jHOVfGx9SpUz1927IsrF+/HgD7dtyMjIzgk5/8JKZNm4bGxkbMmDED//Iv/wIxblzJ+rdNCubmm2+2s9ms/Z3vfMf+3e9+Z5933nl2W1ub/dJLL5W7alXHT3/6U/vjH/+4fcstt9gA7FtvvVU6/oUvfMFubW21b7vtNvu3v/2t/ba3vc2eNm2a/eabb7rnnHjiifaiRYvsBx54wP7Vr35lH3TQQfbZZ59d4jupfE444QT7hhtusJ944gl727Zt9kknnWQPDAzYu3fvds+54IIL7P7+fnvz5s32I488Yi9btsxesWKFe3x4eNieP3++vWrVKvvRRx+1f/rTn9odHR32hg0bynFLFc2Pf/xj+7//+7/tP/3pT/aTTz5p//M//7NdV1dnP/HEE7Zts62T4qGHHrKnTp1qL1y40L7kkkvc79ne8XL11Vfb8+bNs1988UX33z/+8Q/3ONs7Pl577TV7ypQp9jnnnGM/+OCD9p///Gf75z//uf3000+753CujI+XX35Z6td33nmnDcC+5557bNtm346bz33uc3Z7e7t9++23288++6z9gx/8wB4/frz9la98xT2nVP2bwlERHH744fb69evdzyMjI3ZfX5+9cePGMtaq+lGFo9HRUbunp8f+0pe+5H63Y8cOu76+3v7e975n27Zt//73v7cB2A8//LB7zs9+9jPbsiz7b3/7W8nqXo28/PLLNgB7y5Yttm3n2raurs7+wQ9+4J7zhz/8wQZg33///bZt54TZVCplb9++3T3n+uuvt1taWuyhoaHS3kAVMmHCBPtb3/oW2zohXn/9dfvggw+277zzTvuYY45xhSO2d/xcffXV9qJFi7TH2N7xcuWVV9pHHnmk8TjnymS55JJL7BkzZtijo6Ps2wlw8skn2+eee6703emnn26vXbvWtu3S9m+a1RXIvn37sHXrVqxatcr9LpVKYdWqVbj//vvLWLPa49lnn8X27dultm5tbcXg4KDb1vfffz/a2tqwdOlS95xVq1YhlUrhwQcfLHmdq4mdO3cCACZOnAgA2Lp1K/bv3y+19+zZszEwMCC194IFC9Dd3e2ec8IJJ2DXrl343e9+V8LaVxcjIyO4+eabsWfPHixfvpxtnRDr16/HySefLLUrwL6dFE899RT6+vowffp0rF27Fs8//zwAtnfc/PjHP8bSpUvx9re/HV1dXVi8eDH+/d//3T3OuTI59u3bh+9+97s499xzYVkW+3YCrFixAps3b8af/vQnAMBvf/tb3HfffVizZg2A0vbvTBw3dCDyyiuvYGRkROr0ANDd3Y0//vGPZapVbbJ9+3YA0La1c2z79u3o6uqSjmcyGUycONE9h3gZHR3FpZdeiiOOOALz588HkGvLbDaLtrY26Vy1vXXPwzlGZB5//HEsX74ce/fuxfjx43Hrrbdi7ty52LZtG9s6Zm6++Wb85je/wcMPP+w5xr4dP4ODg7jxxhsxa9YsvPjii7jmmmtw1FFH4YknnmB7x8yf//xnXH/99bj88svxz//8z3j44Yfx4Q9/GNlsFuvWreNcmSC33XYbduzYgXPOOQcAx5IkuOqqq7Br1y7Mnj0b6XQaIyMj+NznPoe1a9cCKO1akMIRIQcw69evxxNPPIH77ruv3FWpaWbNmoVt27Zh586d+OEPf4h169Zhy5Yt5a5WzfHCCy/gkksuwZ133omGhoZyV+eAwNnVBYCFCxdicHAQU6ZMwfe//300NjaWsWa1x+joKJYuXYrPf/7zAIDFixfjiSeewDe+8Q2sW7euzLWrbb797W9jzZo16OvrK3dVapbvf//7uOmmm7Bp0ybMmzcP27Ztw6WXXoq+vr6S92+a1RVIR0cH0um0JzLJSy+9hJ6enjLVqjZx2tOvrXt6evDyyy9Lx4eHh/Haa6/xeRi4+OKLcfvtt+Oee+7B5MmT3e97enqwb98+7NixQzpfbW/d83COEZlsNouDDjoIS5YswcaNG7Fo0SJ85StfYVvHzNatW/Hyyy/j0EMPRSaTQSaTwZYtW/DVr34VmUwG3d3dbO+EaWtrw8yZM/H000+zf8dMb28v5s6dK303Z84c14yRc2UyPPfcc7jrrrvwgQ98wP2OfTt+rrjiClx11VV45zvfiQULFuA973kPLrvsMmzcuBFAafs3haMCyWazWLJkCTZv3ux+Nzo6is2bN2P58uVlrFntMW3aNPT09EhtvWvXLjz44INuWy9fvhw7duzA1q1b3XPuvvtujI6OYnBwsOR1rmRs28bFF1+MW2+9FXfffTemTZsmHV+yZAnq6uqk9n7yySfx/PPPS+39+OOPS4PQnXfeiZaWFs/kTbyMjo5iaGiIbR0zK1euxOOPP45t27a5/5YuXYq1a9e6f7O9k2X37t145pln0Nvby/4dM0cccYQn7cKf/vQnTJkyBQDnyqS44YYb0NXVhZNPPtn9jn07ft544w2kUrJYkk6nMTo6CqDE/buIwBIHPDfffLNdX19v33jjjfbvf/97+/zzz7fb2tqkyCQkHK+//rr96KOP2o8++qgNwP7yl79sP/roo/Zzzz1n23YufGNbW5v9ox/9yH7sscfsU045RRu+cfHixfaDDz5o33ffffbBBx/M8KQaLrzwQru1tdX+5S9/KYUpfeONN9xzLrjgAntgYMC+++677UceecRevny5vXz5cve4E6J09erV9rZt2+w77rjD7uzsZIhSDVdddZW9ZcsW+9lnn7Ufe+wx+6qrrrIty7J/8Ytf2LbNtk4aMVqdbbO94+YjH/mI/ctf/tJ+9tln7V//+tf2qlWr7I6ODvvll1+2bZvtHScPPfSQnclk7M997nP2U089Zd900012U1OT/d3vftc9h3NlvIyMjNgDAwP2lVde6TnGvh0v69atsydNmuSG8r7lllvsjo4O+2Mf+5h7Tqn6N4WjIvna175mDwwM2Nls1j788MPtBx54oNxVqkruueceG4Dn37p162zbzoVw/OQnP2l3d3fb9fX19sqVK+0nn3xSKuPVV1+1zz77bHv8+PF2S0uL/b73vc9+/fXXy3A3lY2unQHYN9xwg3vOm2++aV900UX2hAkT7KamJvu0006zX3zxRamcv/zlL/aaNWvsxsZGu6Ojw/7IRz5i79+/v8R3U/mce+659pQpU+xsNmt3dnbaK1eudAUj22ZbJ40qHLG94+Wss86ye3t77Ww2a0+aNMk+66yzpLw7bO94+clPfmLPnz/frq+vt2fPnm1/85vflI5zroyXn//85zYATxvaNvt23Ozatcu+5JJL7IGBAbuhocGePn26/fGPf1wKe16q/m3ZtpB6lhBCCCGEEEIOUOhzRAghhBBCCCGgcEQIIYQQQgghACgcEUIIIYQQQggACkeEEEIIIYQQAoDCESGEEEIIIYQAoHBECCGEEEIIIQAoHBFCCCGEEEIIAApHhBBCCCGEEAKAwhEhhBBCCCGEAKBwRAghhBBCCCEAKBwRQgghhBBCCAAKR4QQQgghhBACAPi/dNdzQfZbDscAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#Линейная диаграмма\n", + "plt.figure(figsize=(10, 5))\n", + "df['Glucose'].plot(title='Line Plot (Glucose)')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGdCAYAAAAIbpn/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAr8klEQVR4nO3de3QUZZ7/8U9DrlzSAZRchgSiRgJiGAGFFhgVMiKyDkjWVQfWoJnxFhAIjpJxlPGCQT1y8chF3RhkHUQyi4zICmLEuGi4RQEZdwNKJGgucEaTJmHSien6/eGP1iYJJE2H6grv1zl1Dv081dXffk558vHpp6pshmEYAgAAsKBOZhcAAADgK4IMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwrCCzC2hvbrdbZWVl6t69u2w2m9nlAACAVjAMQ8ePH1dsbKw6dWp53qXDB5mysjLFxcWZXQYAAPDBkSNH1KdPnxb7O3yQ6d69u6QfByIiIsLkagAAQGs4nU7FxcV5/o63pMMHmZM/J0VERBBkAACwmDMtC2GxLwAAsCyCDAAAsCyCDAAAsKwOv0YGAIBzyTAM/fDDD2psbDS7lIDWuXNnBQUFnfWtUQgyAAD4SX19vcrLy3XixAmzS7GELl26KCYmRiEhIT4fgyADAIAfuN1ulZSUqHPnzoqNjVVISAg3Ym2BYRiqr6/XsWPHVFJSosTExNPe9O50CDIAAPhBfX293G634uLi1KVLF7PLCXjh4eEKDg7W4cOHVV9fr7CwMJ+Ow2JfAAD8yNeZhfORP8aK0QYAAJZFkAEAAJbFGhkAANpZv7kbz9lnfb1ggs/vLSws1KhRo3TDDTdo48ZzV/PZYEYGAABIknJycjRjxgx99NFHKisrM7ucViHIAAAA1dTU6M0339R9992nCRMmaOXKlV79b7/9thITExUWFqbrrrtOr732mmw2m6qqqjz7bNu2TaNHj1Z4eLji4uL0wAMPqLa2tl3rJsgAAACtXbtWSUlJ6t+/v6ZOnapXX31VhmFIkkpKSvSv//qvmjRpkvbu3at77rlHjzzyiNf7v/rqK91www1KTU3Vvn379Oabb2rbtm2aPn16u9bNGpl20NJvoWfzuyUAAO0pJydHU6dOlSTdcMMNqq6uVkFBga699lq99NJL6t+/v5577jlJUv/+/bV//37Nnz/f8/7s7GxNmTJFs2bNkiQlJibqhRde0DXXXKPly5f7fJ+YM2FGBgCA81xxcbF27typ22+/XZIUFBSkW2+9VTk5OZ7+K6+80us9V111ldfrvXv3auXKlerWrZtnGzdunOeOx+2FGRkAAM5zOTk5+uGHHxQbG+tpMwxDoaGhevHFF1t1jJqaGt1zzz164IEHmvTFx8f7rdZTEWQAADiP/fDDD1q1apWef/55XX/99V59kyZN0htvvKH+/fvrv//7v736du3a5fV6yJAh+uKLL3TJJZe0e80/R5ABAOA89s477+j7779Xenq67Ha7V19qaqpycnK0du1aLVy4UA8//LDS09O1Z88ez1VNJx+M+fDDD2vEiBGaPn26fve736lr16764osvtGXLllbP6viCNTIAAJzHcnJylJKS0iTESD8Gmd27d+v48eP661//qnXr1ik5OVnLly/3XLUUGhoqSUpOTlZBQYEOHDig0aNH64orrtBjjz3m9XNVezB1RqZfv346fPhwk/b7779fS5cuVV1dnebMmaM1a9bI5XJp3LhxWrZsmaKiokyoFgAA3wTyVasbNmxose+qq67yXIKdnJys3/zmN56++fPnq0+fPl5XI1155ZV677332q/YZpg6I7Nr1y6Vl5d7ti1btkiSbrnlFknS7NmztWHDBuXl5amgoEBlZWWaPHmymSUDAHBeWrZsmXbt2qVDhw7pP//zP/Xcc88pLS3N7LLMnZG58MILvV4vWLBAF198sa655hpVV1crJydHq1ev1pgxYyRJubm5GjBggLZv364RI0aYUTIAAOelgwcP6qmnntJ3332n+Ph4zZkzR1lZWWaXFTiLfevr6/X6668rMzNTNptNRUVFamhoUEpKimefpKQkxcfHq7CwsMUg43K55HK5PK+dTme71w4AQEe3aNEiLVq0yOwymgiYxb7r169XVVWVpk2bJkmqqKhQSEiIIiMjvfaLiopSRUVFi8fJzs6W3W73bHFxce1YNQAAMFPABJmcnByNHz/+rFc3Z2Vlqbq62rMdOXLETxUCAIBAExA/LR0+fFjvv/++1q1b52mLjo5WfX29qqqqvGZlKisrFR0d3eKxQkNDPZeCAQBwrp28ygdn5o+xCogZmdzcXPXu3VsTJvx0edrQoUMVHBys/Px8T1txcbFKS0vlcDjMKBMAgBYFBwdLkk6cOGFyJdZxcqxOjp0vTJ+Rcbvdys3NVVpamoKCfirHbrcrPT1dmZmZ6tmzpyIiIjRjxgw5HA6uWAIABJzOnTsrMjJSR48elSR16dLFc9dbeDMMQydOnNDRo0cVGRmpzp07+3ws04PM+++/r9LSUt11111N+hYtWqROnTopNTXV64Z4AAAEopNLH06GGZxeZGTkaZeLtIbN6OA/5jmdTtntdlVXVysiIuKcfGa/uRubbQ/kOzsCAPynsbFRDQ0NZpcR0IKDg087E9Pav9+mz8gAANDRdO7c+ax+LkHrBcRiXwAAAF8QZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGUFmV2AlfWbu9HsEgAAOK8xIwMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACzL9CDz7bffaurUqerVq5fCw8N1+eWXa/fu3Z5+wzD02GOPKSYmRuHh4UpJSdHBgwdNrBgAAAQKU4PM999/r5EjRyo4OFjvvvuuvvjiCz3//PPq0aOHZ59nn31WL7zwglasWKEdO3aoa9euGjdunOrq6kysHAAABAJTHxr5zDPPKC4uTrm5uZ62hIQEz78Nw9DixYv1pz/9SRMnTpQkrVq1SlFRUVq/fr1uu+22c14zAAAIHKbOyLz99tsaNmyYbrnlFvXu3VtXXHGFXnnlFU9/SUmJKioqlJKS4mmz2+0aPny4CgsLmz2my+WS0+n02gAAQMdkapA5dOiQli9frsTERG3evFn33XefHnjgAb322muSpIqKCklSVFSU1/uioqI8fafKzs6W3W73bHFxce37JQAAgGlMDTJut1tDhgzR008/rSuuuEJ33323fv/732vFihU+HzMrK0vV1dWe7ciRI36sGAAABBJTg0xMTIwGDhzo1TZgwACVlpZKkqKjoyVJlZWVXvtUVlZ6+k4VGhqqiIgIrw0AAHRMpgaZkSNHqri42KvtwIED6tu3r6QfF/5GR0crPz/f0+90OrVjxw45HI5zWisAAAg8pl61NHv2bF199dV6+umn9W//9m/auXOnXn75Zb388suSJJvNplmzZumpp55SYmKiEhIS9Oijjyo2NlaTJk0ys3QAABAATA0yV155pd566y1lZWXpiSeeUEJCghYvXqwpU6Z49nnooYdUW1uru+++W1VVVRo1apQ2bdqksLAwEysHAACBwGYYhmF2Ee3J6XTKbrerurra7+tl+s3d2Kb9v14wwa+fDwBAR9Xav9+mP6IAAADAVwQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWaYGmT//+c+y2WxeW1JSkqe/rq5OGRkZ6tWrl7p166bU1FRVVlaaWDEAAAgkps/IXHbZZSovL/ds27Zt8/TNnj1bGzZsUF5engoKClRWVqbJkyebWC0AAAgkQaYXEBSk6OjoJu3V1dXKycnR6tWrNWbMGElSbm6uBgwYoO3bt2vEiBHnulQAABBgTJ+ROXjwoGJjY3XRRRdpypQpKi0tlSQVFRWpoaFBKSkpnn2TkpIUHx+vwsLCFo/ncrnkdDq9NgAA0DGZGmSGDx+ulStXatOmTVq+fLlKSko0evRoHT9+XBUVFQoJCVFkZKTXe6KiolRRUdHiMbOzs2W32z1bXFxcO38LAABgFlN/Who/frzn38nJyRo+fLj69u2rtWvXKjw83KdjZmVlKTMz0/Pa6XQSZgAA6KBM/2np5yIjI3XppZfqyy+/VHR0tOrr61VVVeW1T2VlZbNrak4KDQ1VRESE1wYAADqmgAoyNTU1+uqrrxQTE6OhQ4cqODhY+fn5nv7i4mKVlpbK4XCYWCUAAAgUpv609OCDD+qmm25S3759VVZWpnnz5qlz5866/fbbZbfblZ6erszMTPXs2VMRERGaMWOGHA4HVywBAABJJgeZb775Rrfffrv+8Y9/6MILL9SoUaO0fft2XXjhhZKkRYsWqVOnTkpNTZXL5dK4ceO0bNkyM0sGAAABxGYYhmF2Ee3J6XTKbrerurra7+tl+s3d2Kb9v14wwa+fDwBAR9Xav98BtUYGAACgLQgyAADAsggyAADAskx/1hLaprl1Oay9AQCcr5iRAQAAlkWQAQAAlkWQAQAAlkWQAQAAlkWQAQAAlkWQAQAAlkWQAQAAlkWQAQAAlsUN8QJUWx9ICQDA+YgZGQAAYFkEGQAAYFkEGQAAYFkEGQAAYFkEGQAAYFkEGQAAYFkEGQAAYFk+BZlDhw75uw4AAIA28ynIXHLJJbruuuv0+uuvq66uzt81AQAAtIpPQebTTz9VcnKyMjMzFR0drXvuuUc7d+70d20AAACn5VOQ+eUvf6klS5aorKxMr776qsrLyzVq1CgNGjRICxcu1LFjx/xdJwAAQBNntdg3KChIkydPVl5enp555hl9+eWXevDBBxUXF6c77rhD5eXl/qoTAACgibMKMrt379b999+vmJgYLVy4UA8++KC++uorbdmyRWVlZZo4caK/6gQAAGjCp6dfL1y4ULm5uSouLtaNN96oVatW6cYbb1SnTj/mooSEBK1cuVL9+vXzZ60AAABefAoyy5cv11133aVp06YpJiam2X169+6tnJycsyoOAADgdHwKMgcPHjzjPiEhIUpLS/Pl8AAAAK3i0xqZ3Nxc5eXlNWnPy8vTa6+9dtZFAQAAtIZPQSY7O1sXXHBBk/bevXvr6aefPuuiAAAAWsOnIFNaWqqEhIQm7X379lVpaelZFwUAANAaPgWZ3r17a9++fU3a9+7dq169ep11UQAAAK3hU5C5/fbb9cADD2jr1q1qbGxUY2OjPvjgA82cOVO33Xabv2sEAABolk9XLT355JP6+uuvNXbsWAUF/XgIt9utO+64gzUyAADgnPEpyISEhOjNN9/Uk08+qb179yo8PFyXX365+vbt6+/6AAAAWuRTkDnp0ksv1aWXXuqvWgAAANrEpyDT2NiolStXKj8/X0ePHpXb7fbq/+CDD/xSHAAAwOn4tNh35syZmjlzphobGzVo0CANHjzYa/PFggULZLPZNGvWLE9bXV2dMjIy1KtXL3Xr1k2pqamqrKz06fgAAKDj8WlGZs2aNVq7dq1uvPFGvxSxa9cuvfTSS0pOTvZqnz17tjZu3Ki8vDzZ7XZNnz5dkydP1scff+yXzwUAANbm04xMSEiILrnkEr8UUFNToylTpuiVV15Rjx49PO3V1dXKycnRwoULNWbMGA0dOlS5ubn65JNPtH37dr98NgAAsDafgsycOXO0ZMkSGYZx1gVkZGRowoQJSklJ8WovKipSQ0ODV3tSUpLi4+NVWFjY4vFcLpecTqfXBgAAOiafflratm2btm7dqnfffVeXXXaZgoODvfrXrVvXquOsWbNGn376qXbt2tWkr6KiQiEhIYqMjPRqj4qKUkVFRYvHzM7O1uOPP96qzwcAANbmU5CJjIzUzTfffFYffOTIEc2cOVNbtmxRWFjYWR3r57KyspSZmel57XQ6FRcX57fjAwCAwOFTkMnNzT3rDy4qKtLRo0c1ZMgQT1tjY6M++ugjvfjii9q8ebPq6+tVVVXlNStTWVmp6OjoFo8bGhqq0NDQs64PAAAEPp/WyEjSDz/8oPfff18vvfSSjh8/LkkqKytTTU1Nq94/duxYff7559qzZ49nGzZsmKZMmeL5d3BwsPLz8z3vKS4uVmlpqRwOh69lAwCADsSnGZnDhw/rhhtuUGlpqVwul37961+re/fueuaZZ+RyubRixYozHqN79+4aNGiQV1vXrl3Vq1cvT3t6eroyMzPVs2dPRUREaMaMGXI4HBoxYoQvZQMAgA7G5xviDRs2TN9//73Cw8M97TfffLPXDMrZWrRokf7lX/5Fqamp+tWvfqXo6OhWLyQGAAAdn08zMv/zP/+jTz75RCEhIV7t/fr107fffutzMR9++KHX67CwMC1dulRLly71+ZgAAKDj8mlGxu12q7GxsUn7N998o+7du591UQAAAK3hU5C5/vrrtXjxYs9rm82mmpoazZs3z2+PLQAAADgTn35aev755zVu3DgNHDhQdXV1+u1vf6uDBw/qggsu0BtvvOHvGgEAAJrlU5Dp06eP9u7dqzVr1mjfvn2qqalRenq6pkyZ4rX4F976zd3YpO3rBRNMqAQAgI7BpyAjSUFBQZo6dao/awEAAGgTn4LMqlWrTtt/xx13+FQMAABAW/gUZGbOnOn1uqGhQSdOnFBISIi6dOlCkAEAAOeET1ctff/9915bTU2NiouLNWrUKBb7AgCAc8bnZy2dKjExUQsWLGgyWwMAANBe/BZkpB8XAJeVlfnzkAAAAC3yaY3M22+/7fXaMAyVl5frxRdf1MiRI/1SGAAAwJn4FGQmTZrk9dpms+nCCy/UmDFj9Pzzz/ujLgAAgDPyKci43W5/1wEAANBmfl0jAwAAcC75NCOTmZnZ6n0XLlzoy0cAAACckU9B5rPPPtNnn32mhoYG9e/fX5J04MABde7cWUOGDPHsZ7PZ/FMlAABAM3wKMjfddJO6d++u1157TT169JD0403y7rzzTo0ePVpz5szxa5EAAADN8SnIPP/883rvvfc8IUaSevTooaeeekrXX389QcaCmnsyt8TTuQEAgc2nxb5Op1PHjh1r0n7s2DEdP378rIsCAABoDZ+CzM0336w777xT69at0zfffKNvvvlG//Vf/6X09HRNnjzZ3zUCAAA0y6efllasWKEHH3xQv/3tb9XQ0PDjgYKClJ6erueee86vBQIAALTEpyDTpUsXLVu2TM8995y++uorSdLFF1+srl27+rU4AACA0zmrG+KVl5ervLxciYmJ6tq1qwzD8FddAAAAZ+RTkPnHP/6hsWPH6tJLL9WNN96o8vJySVJ6ejpXLAEAgHPGpyAze/ZsBQcHq7S0VF26dPG033rrrdq0aZPfigMAADgdn9bIvPfee9q8ebP69Onj1Z6YmKjDhw/7pTAAAIAz8WlGpra21msm5qTvvvtOoaGhZ10UAABAa/g0IzN69GitWrVKTz75pKQfn6nkdrv17LPP6rrrrvNrgTgz7soLADhf+RRknn32WY0dO1a7d+9WfX29HnroIf3973/Xd999p48//tjfNQIAADTLp5+WBg0apAMHDmjUqFGaOHGiamtrNXnyZH322We6+OKL/V0jAABAs9o8I9PQ0KAbbrhBK1as0COPPNIeNQEAALRKm2dkgoODtW/fvvaoBQAAoE18WiMzdepU5eTkaMGCBf6uB+dAS4uDAQCwGp+CzA8//KBXX31V77//voYOHdrkGUsLFy70S3EAAACn06Ygc+jQIfXr10/79+/XkCFDJEkHDhzw2sdms/mvOgAAgNNoU5BJTExUeXm5tm7dKunHRxK88MILioqKapfiAAAATqdNi31Pfbr1u+++q9raWr8WBAAA0Fo+3UfmpFODTVstX75cycnJioiIUEREhBwOh959911Pf11dnTIyMtSrVy9169ZNqampqqysPKvPBAAAHUebgozNZmuyBuZs1sT06dNHCxYsUFFRkXbv3q0xY8Zo4sSJ+vvf/y7px6dsb9iwQXl5eSooKFBZWZkmT57s8+cBAICOpU1rZAzD0LRp0zwPhqyrq9O9997b5KqldevWtep4N910k9fr+fPna/ny5dq+fbv69OmjnJwcrV69WmPGjJEk5ebmasCAAdq+fbtGjBjRltIBAEAH1KYgk5aW5vV66tSpfiuksbFReXl5qq2tlcPhUFFRkRoaGpSSkuLZJykpSfHx8SosLCTIAACAtgWZ3Nxcvxfw+eefy+FwqK6uTt26ddNbb72lgQMHas+ePQoJCVFkZKTX/lFRUaqoqGjxeC6XSy6Xy/Pa6XT6vWYAABAYzmqxrz/0799fe/bs0Y4dO3TfffcpLS1NX3zxhc/Hy87Olt1u92xxcXF+rBYAAAQS04NMSEiILrnkEg0dOlTZ2dkaPHiwlixZoujoaNXX16uqqspr/8rKSkVHR7d4vKysLFVXV3u2I0eOtPM3AAAAZjE9yJzK7XbL5XJp6NChCg4OVn5+vqevuLhYpaWlcjgcLb4/NDTUczn3yQ0AAHRMPj1ryV+ysrI0fvx4xcfH6/jx41q9erU+/PBDbd68WXa7Xenp6crMzFTPnj0VERGhGTNmyOFwsNAXAABIMjnIHD16VHfccYfKy8tlt9uVnJyszZs369e//rUkadGiRerUqZNSU1Plcrk0btw4LVu2zMySAQBAADE1yOTk5Jy2PywsTEuXLtXSpUvPUUU4Vb+5G5u0fb1gggmVAADQVMCtkQEAAGgtggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALCsILMLQMfXb+7GJm1fL5hgQiUAgI6GGRkAAGBZBBkAAGBZBBkAAGBZBBkAAGBZBBkAAGBZBBkAAGBZBBkAAGBZBBkAAGBZBBkAAGBZ3NkXCADN3f1Y4g7IAHAmzMgAAADLIsgAAADLIsgAAADLIsgAAADLMnWxb3Z2ttatW6f/+7//U3h4uK6++mo988wz6t+/v2efuro6zZkzR2vWrJHL5dK4ceO0bNkyRUVFmVg5mtPSglUAANqLqTMyBQUFysjI0Pbt27VlyxY1NDTo+uuvV21trWef2bNna8OGDcrLy1NBQYHKyso0efJkE6sGAACBwtQZmU2bNnm9XrlypXr37q2ioiL96le/UnV1tXJycrR69WqNGTNGkpSbm6sBAwZo+/btGjFihBllAwCAABFQa2Sqq6slST179pQkFRUVqaGhQSkpKZ59kpKSFB8fr8LCQlNqBAAAgSNgbojndrs1a9YsjRw5UoMGDZIkVVRUKCQkRJGRkV77RkVFqaKiotnjuFwuuVwuz2un09luNQMAAHMFzIxMRkaG9u/frzVr1pzVcbKzs2W32z1bXFycnyoEAACBJiCCzPTp0/XOO+9o69at6tOnj6c9Ojpa9fX1qqqq8tq/srJS0dHRzR4rKytL1dXVnu3IkSPtWToAADCRqUHGMAxNnz5db731lj744AMlJCR49Q8dOlTBwcHKz8/3tBUXF6u0tFQOh6PZY4aGhioiIsJrAwAAHZOpa2QyMjK0evVq/e1vf1P37t09617sdrvCw8Nlt9uVnp6uzMxM9ezZUxEREZoxY4YcDgdXLAEAAHODzPLlyyVJ1157rVd7bm6upk2bJklatGiROnXqpNTUVK8b4gHtqbmb+/EkagAIPKYGGcMwzrhPWFiYli5dqqVLl56DigAAgJUExGJfAAAAXxBkAACAZRFkAACAZQXMnX0BtE5LTxlnMTKA8xEzMgAAwLIIMgAAwLIIMgAAwLIIMgAAwLJY7AtL4E67AIDmMCMDAAAsiyADAAAsiyADAAAsiyADAAAsi8W+MEWg3J22pTrasi+LjgHAPMzIAAAAyyLIAAAAyyLIAAAAyyLIAAAAy2KxLwAP7qAMwGqYkQEAAJZFkAEAAJZFkAEAAJZFkAEAAJbFYl9YFnfaBQAwIwMAACyLIAMAACyLIAMAACyLIAMAACyLxb7AOdTSAuX2PPbZLn5mUTWAQMaMDAAAsCyCDAAAsCyCDAAAsCyCDAAAsCwW+wLtpD0X9gIAfsSMDAAAsCyCDAAAsCyCDAAAsCyCDAAAsCxTg8xHH32km266SbGxsbLZbFq/fr1Xv2EYeuyxxxQTE6Pw8HClpKTo4MGD5hQLAAACjqlBpra2VoMHD9bSpUub7X/22Wf1wgsvaMWKFdqxY4e6du2qcePGqa6u7hxXCgAAApGpl1+PHz9e48ePb7bPMAwtXrxYf/rTnzRx4kRJ0qpVqxQVFaX169frtttuO5elAgCAABSwa2RKSkpUUVGhlJQUT5vdbtfw4cNVWFjY4vtcLpecTqfXBgAAOqaAvSFeRUWFJCkqKsqrPSoqytPXnOzsbD3++OPtWhsCG09rBoDzR8DOyPgqKytL1dXVnu3IkSNmlwQAANpJwAaZ6OhoSVJlZaVXe2VlpaevOaGhoYqIiPDaAABAxxSwQSYhIUHR0dHKz8/3tDmdTu3YsUMOh8PEygAAQKAwdY1MTU2NvvzyS8/rkpIS7dmzRz179lR8fLxmzZqlp556SomJiUpISNCjjz6q2NhYTZo0ybyiAQBAwDA1yOzevVvXXXed53VmZqYkKS0tTStXrtRDDz2k2tpa3X333aqqqtKoUaO0adMmhYWFmVUyAAAIIKYGmWuvvVaGYbTYb7PZ9MQTT+iJJ544h1UBAACrCNg1MgAAAGdCkAEAAJZFkAEAAJYVsHf2BeAfzd3pONDvctyWmlu6k3NzAv17A2g7ZmQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlsdgXAAKEFRdmA2ZjRgYAAFgWQQYAAFgWQQYAAFgWQQYAAFgWi30B+KSlO+p2lMWpHf37AR0FMzIAAMCyCDIAAMCyCDIAAMCyCDIAAMCyWOwLoN21tHD2XAuUBbztOR7cHRjnG2ZkAACAZRFkAACAZRFkAACAZRFkAACAZbHYFwDaIFAWDPtDWxYGt+f3ZoEyzgYzMgAAwLIIMgAAwLIIMgAAwLIIMgAAwLJY7AsAftBeC1atuLjYHzVb8XvDHMzIAAAAyyLIAAAAyyLIAAAAyyLIAAAAy2KxLwB0cC0tnO3oWDB8fmBGBgAAWBZBBgAAWBZBBgAAWBZrZAAAPjvX62/a62Z7bV03c74+sTsQv7clZmSWLl2qfv36KSwsTMOHD9fOnTvNLgkAAASAgA8yb775pjIzMzVv3jx9+umnGjx4sMaNG6ejR4+aXRoAADBZwAeZhQsX6ve//73uvPNODRw4UCtWrFCXLl306quvml0aAAAwWUCvkamvr1dRUZGysrI8bZ06dVJKSooKCwubfY/L5ZLL5fK8rq6uliQ5nU6/1+d2nTjrY7RUVyAf24o1t3Rsaj43x6Zm6xzbijW3dOy2HLetfyOaO3Z7/J0JNOfye588rmEYp9/RCGDffvutIcn45JNPvNr/8Ic/GFdddVWz75k3b54hiY2NjY2Nja0DbEeOHDltVgjoGRlfZGVlKTMz0/Pa7Xbru+++U69evWSz2dp0LKfTqbi4OB05ckQRERH+LrVDYaxaj7FqPcaqbRiv1mOsWs+ssTIMQ8ePH1dsbOxp9wvoIHPBBReoc+fOqqys9GqvrKxUdHR0s+8JDQ1VaGioV1tkZORZ1REREcGJ3kqMVesxVq3HWLUN49V6jFXrmTFWdrv9jPsE9GLfkJAQDR06VPn5+Z42t9ut/Px8ORwOEysDAACBIKBnZCQpMzNTaWlpGjZsmK666iotXrxYtbW1uvPOO80uDQAAmCzgg8ytt96qY8eO6bHHHlNFRYV++ctfatOmTYqKimr3zw4NDdW8efOa/FSFphir1mOsWo+xahvGq/UYq9YL9LGyGcaZrmsCAAAITAG9RgYAAOB0CDIAAMCyCDIAAMCyCDIAAMCyzvsgk52drSuvvFLdu3dX7969NWnSJBUXF3vtU1dXp4yMDPXq1UvdunVTampqk5v0nQ+WL1+u5ORkz02RHA6H3n33XU8/49SyBQsWyGazadasWZ42xusnf/7zn2Wz2by2pKQkTz9j5e3bb7/V1KlT1atXL4WHh+vyyy/X7t27Pf2GYeixxx5TTEyMwsPDlZKSooMHD5pYsTn69evX5Lyy2WzKyMiQxHn1c42NjXr00UeVkJCg8PBwXXzxxXryySe9nnMUsOeVHx6JZGnjxo0zcnNzjf379xt79uwxbrzxRiM+Pt6oqanx7HPvvfcacXFxRn5+vrF7925jxIgRxtVXX21i1eZ4++23jY0bNxoHDhwwiouLjT/+8Y9GcHCwsX//fsMwGKeW7Ny50+jXr5+RnJxszJw509POeP1k3rx5xmWXXWaUl5d7tmPHjnn6GauffPfdd0bfvn2NadOmGTt27DAOHTpkbN682fjyyy89+yxYsMCw2+3G+vXrjb179xq/+c1vjISEBOOf//yniZWfe0ePHvU6p7Zs2WJIMrZu3WoYBufVz82fP9/o1auX8c477xglJSVGXl6e0a1bN2PJkiWefQL1vDrvg8ypjh49akgyCgoKDMMwjKqqKiM4ONjIy8vz7PO///u/hiSjsLDQrDIDRo8ePYz/+I//YJxacPz4cSMxMdHYsmWLcc0113iCDOPlbd68ecbgwYOb7WOsvD388MPGqFGjWux3u91GdHS08dxzz3naqqqqjNDQUOONN944FyUGrJkzZxoXX3yx4Xa7Oa9OMWHCBOOuu+7yaps8ebIxZcoUwzAC+7w6739aOlV1dbUkqWfPnpKkoqIiNTQ0KCUlxbNPUlKS4uPjVVhYaEqNgaCxsVFr1qxRbW2tHA4H49SCjIwMTZgwwWtcJM6r5hw8eFCxsbG66KKLNGXKFJWWlkpirE719ttva9iwYbrlllvUu3dvXXHFFXrllVc8/SUlJaqoqPAaL7vdruHDh5+X43VSfX29Xn/9dd11112y2WycV6e4+uqrlZ+frwMHDkiS9u7dq23btmn8+PGSAvu8Cvg7+55Lbrdbs2bN0siRIzVo0CBJUkVFhUJCQpo8eDIqKkoVFRUmVGmuzz//XA6HQ3V1derWrZveeustDRw4UHv27GGcTrFmzRp9+umn2rVrV5M+zitvw4cP18qVK9W/f3+Vl5fr8ccf1+jRo7V//37G6hSHDh3S8uXLlZmZqT/+8Y/atWuXHnjgAYWEhCgtLc0zJqfe/fx8Ha+T1q9fr6qqKk2bNk0S/w2eau7cuXI6nUpKSlLnzp3V2Nio+fPna8qUKZIU0OcVQeZnMjIytH//fm3bts3sUgJW//79tWfPHlVXV+uvf/2r0tLSVFBQYHZZAefIkSOaOXOmtmzZorCwMLPLCXgn/69PkpKTkzV8+HD17dtXa9euVXh4uImVBR63261hw4bp6aefliRdccUV2r9/v1asWKG0tDSTqwtcOTk5Gj9+vGJjY80uJSCtXbtWf/nLX7R69Wpddtll2rNnj2bNmqXY2NiAP6/4aen/mz59ut555x1t3bpVffr08bRHR0ervr5eVVVVXvtXVlYqOjr6HFdpvpCQEF1yySUaOnSosrOzNXjwYC1ZsoRxOkVRUZGOHj2qIUOGKCgoSEFBQSooKNALL7ygoKAgRUVFMV6nERkZqUsvvVRffvkl59YpYmJiNHDgQK+2AQMGeH6KOzkmp159c76OlyQdPnxY77//vn73u9952jivvP3hD3/Q3Llzddttt+nyyy/Xv//7v2v27NnKzs6WFNjn1XkfZAzD0PTp0/XWW2/pgw8+UEJCglf/0KFDFRwcrPz8fE9bcXGxSktL5XA4znW5AcftdsvlcjFOpxg7dqw+//xz7dmzx7MNGzZMU6ZM8fyb8WpZTU2NvvrqK8XExHBunWLkyJFNbhFx4MAB9e3bV5KUkJCg6Ohor/FyOp3asWPHeTlekpSbm6vevXtrwoQJnjbOK28nTpxQp07ekaBz585yu92SAvy8MnWpcQC47777DLvdbnz44Ydel+mdOHHCs8+9995rxMfHGx988IGxe/duw+FwGA6Hw8SqzTF37lyjoKDAKCkpMfbt22fMnTvXsNlsxnvvvWcYBuN0Jj+/askwGK+fmzNnjvHhhx8aJSUlxscff2ykpKQYF1xwgXH06FHDMBirn9u5c6cRFBRkzJ8/3zh48KDxl7/8xejSpYvx+uuve/ZZsGCBERkZafztb38z9u3bZ0ycODEgLpM1Q2NjoxEfH288/PDDTfo4r36SlpZm/OIXv/Bcfr1u3TrjggsuMB566CHPPoF6Xp33QUZSs1tubq5nn3/+85/G/fffb/To0cPo0qWLcfPNNxvl5eXmFW2Su+66y+jbt68REhJiXHjhhcbYsWM9IcYwGKczOTXIMF4/ufXWW42YmBgjJCTE+MUvfmHceuutXvdFYay8bdiwwRg0aJARGhpqJCUlGS+//LJXv9vtNh599FEjKirKCA0NNcaOHWsUFxebVK25Nm/ebEhq9vtzXv3E6XQaM2fONOLj442wsDDjoosuMh555BHD5XJ59gnU88pmGD+7bR8AAICFnPdrZAAAgHURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGX9P6QBSsyFjcY+AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#Гистограмма\n", + "plt.figure(figsize=(8, 5))\n", + "df.plot.hist(column=[\"Age\"], bins=80)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApwAAAHaCAYAAACtoplJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDZklEQVR4nO3deXQUZdr+8as7O4QkEAghkgQEJKCDIrIEF5aJRkQWiSK+MuIMKPKCDOCMA+4iCs64jiIoL0ZFQEERRQcUUHFjkSjoiGAQEBQTcCGBYAKS+/eHJ/WjSQKpJAUJfj/n1IGquvvJ091V1VdX91PtMzMTAAAA4BH/ie4AAAAATm4ETgAAAHiKwAkAAABPETgBAADgKQInAAAAPEXgBAAAgKcInAAAAPAUgRMAAACeInACAADAUwROAKiEa6+9Vs2aNTtuf2/NmjUKDQ3VN998c9z+5rEMGjRIAwcOPNHdAFALEDgB1AjPPPOMfD5fwBQXF6cePXpo8eLFx60f3bt3D+hDgwYN1LFjRz399NMqLi6ulr9x3333aeHCha5uc+utt+qqq65ScnJymes7deokn8+nadOmVUMPK+Yf//iHXn75Za1fv/64/U0AtROBE0CNMnHiRM2aNUvPPfecbr75Zu3evVuXXHKJXn/99ePWh6ZNm2rWrFmaNWuWbr/9dv36668aOnSobrnllmpp323gXLdunZYtW6YbbrihzPXZ2dn6+OOP1axZM82ePbta+lgR7du31znnnKMHH3zwuP1NALUTgRNAjdKrVy8NHjxYf/rTn/S3v/1N77//vkJCQjR37txqab+4uFiFhYVHrYmOjtbgwYM1ePBgjR07Vh9++KGaNm2qxx9/XAcPHqyWfriRmZmppKQkdenSpcz1zz//vOLi4vTggw/qo48+0rZt245b3wYOHKgFCxZo3759x+1vAqh9CJwAarSYmBhFREQoODg4YPkDDzygrl27KjY2VhEREerQoYNeeumlUrf3+XwaNWqUZs+erdNPP11hYWFasmSJqz7UqVNHXbp0UUFBgXbv3l1uXUFBgW666SYlJiYqLCxMrVu31gMPPCAzC+hPQUGBnn32Wedj+2uvvfaof3/hwoXq2bOnfD5fmevnzJmjyy+/XJdeeqmio6M1Z86cMuveffddnXPOOQoPD1eLFi305JNP6q677iqz3eeff14dOnRQRESEGjRooEGDBmnHjh2l6i688EIVFBRo6dKlR70PAH7fgo9dAgDHT15enn744QeZmXbt2qXHHntM+/bt0+DBgwPqHn30UfXt21dXX321Dhw4oBdeeEFXXHGFXn/9dfXu3Tug9u2339a8efM0atQoNWzYsFKDfbZs2aKgoCDFxMSUud7M1LdvX73zzjsaOnSozjrrLL355pv6+9//ru+++04PP/ywJGnWrFkaNmyYOnXqpOuvv16S1KJFi3L/7nfffaft27fr7LPPLnP96tWrtXnzZmVmZio0NFQDBgzQ7NmzS338/+mnn+riiy9WkyZNdPfdd+vQoUOaOHGiGjVqVKrNe++9V7fffrsGDhyoYcOGaffu3Xrsscd0wQUX6NNPPw14DNq2bauIiAh9+OGHuuyyy472EAL4PTMAqAEyMzNNUqkpLCzMnnnmmVL1+/fvD5g/cOCAnXHGGdazZ8+A5ZLM7/fbF198UaF+dOvWzVJSUmz37t22e/du+/LLL2306NEmyfr06ePUDRkyxJKTk535hQsXmiSbNGlSQHuXX365+Xw+27x5s7Osbt26NmTIkAr1Z9myZSbJFi1aVOb6UaNGWWJiohUXF5uZ2VtvvWWS7NNPPw2o69Onj9WpU8e+++47Z1l2drYFBwfb4S8F27Zts6CgILv33nsDbv/5559bcHBwqeVmZqeddpr16tWrQvcHwO8TH6kDqFGmTp2qpUuXaunSpXr++efVo0cPDRs2TAsWLAioi4iIcP7/888/Ky8vT+eff74++eSTUm1269ZNbdu2rXAfNm7cqEaNGqlRo0Zq06aNHnvsMfXu3VtPP/10ubf5z3/+o6CgII0ePTpg+U033SQzq/RI+x9//FGSVL9+/VLrfv31V7344ou68sornY/Fe/bsqbi4uIDBQ4cOHdKyZcvUv39/JSQkOMtbtmypXr16BbS5YMECFRcXa+DAgfrhhx+cKT4+Xq1atdI777xTqh/169fXDz/8UKn7B+D3gY/UAdQonTp10jnnnOPMX3XVVWrfvr1GjRqlSy+9VKGhoZKk119/XZMmTdK6detUVFTk1Jf1fcTmzZu76kOzZs00Y8YM+Xw+hYeHq1WrVoqLizvqbb755hslJCSoXr16AcvbtGnjrK8KO+x7oCXeeust7d69W506ddLmzZud5T169NDcuXN1//33y+/3a9euXfrll1/UsmXLUm0cuSw7O1tmplatWpXZj5CQkDL7Vt73SwFAInACqOH8fr969OihRx99VNnZ2Tr99NP1/vvvq2/fvrrgggv0xBNPqEmTJgoJCVFmZmaZA2YOPxtaEXXr1lVaWlp13YUqiY2NlfTbWdwjlZzFLO/i6ytWrFCPHj1c/b3i4mL5fD4tXrxYQUFBpdZHRkaWWvbzzz+XG1ABQCJwAqgFfv31V0lyLr3z8ssvKzw8XG+++abCwsKcuszMzBPSP0lKTk7WsmXLtHfv3oCznBs3bnTWl3BzNjAlJUWStHXr1oDlBQUFevXVV3XllVfq8ssvL3W70aNHa/bs2erRo4fi4uIUHh4ecBa0xJHLWrRoITNT8+bNddpppx2zf7/++qt27Nihvn37Vvg+Afj94TucAGq0gwcP6q233lJoaKjz8XRQUJB8Pp8OHTrk1G3bts31r/dUp0suuUSHDh3S448/HrD84Ycfls/nC/iuZN26dbVnz54KtXvKKacoMTFRa9euDVj+yiuvqKCgQCNHjtTll19earr00kv18ssvq6ioSEFBQUpLS9PChQu1c+dOp43NmzeX+m7pgAEDFBQUpLvvvrvUx/hm5nyntMSGDRtUWFiorl27Vuj+APh94gwngBpl8eLFzlnBXbt2ac6cOcrOztb48eMVFRUlSerdu7ceeughXXzxxfqf//kf7dq1S1OnTlXLli312WefnZB+9+nTRz169NCtt96qbdu26cwzz9Rbb72lV199VWPGjAm49FGHDh20bNkyPfTQQ0pISFDz5s3VuXPnctvu16+fXnnllYDvSs6ePVuxsbHlBr2+fftqxowZeuONNzRgwADdddddeuutt3TuuedqxIgRTjg+44wztG7dOud2LVq00KRJkzRhwgRt27ZN/fv3V7169bR161a98soruv766/W3v/3NqV+6dKnq1KmjCy+8sIqPIICT2okbIA8A/19Zl0UKDw+3s846y6ZNm+Zc9qfEzJkzrVWrVhYWFmYpKSmWmZlpd955px15WJNkI0eOrHA/unXrZqeffvox6468LJKZ2d69e23s2LGWkJBgISEh1qpVK/vXv/5Vqu8bN260Cy64wCIiIkzSMS+R9Mknn5gke//9983MLDc314KDg+1Pf/pTubfZv3+/1alTxy677DJn2fLly619+/YWGhpqLVq0sP/7v/+zm266ycLDw0vd/uWXX7bzzjvP6tata3Xr1rWUlBQbOXKkbdq0KaCuc+fONnjw4KP2HwB8ZmUMfQQA1Ch//OMflZCQoFmzZlVru/3799cXX3yh7Oxs17ddt26dzj77bH3yySc666yzqrVfAE4uBE4AqAVWr16t888/X9nZ2QEDkNz45ZdfAkbsl4z6HzJkiGbMmOG6vUGDBqm4uFjz5s2rVH8A/H4QOAHgd6JJkya69tprdeqpp+qbb77RtGnTVFRUpE8//ZTLGgHwFIOGAOB34uKLL9bcuXOVk5OjsLAwpaam6r777iNsAvAcZzgBAADgKa7DCQAAAE8ROAEAAOCpGvcdzuLiYu3cuVP16tVz9fNvAAAAOD7MTHv37lVCQoL8/mOfv6xxgXPnzp1KTEw80d0AAADAMezYsUNNmzY9Zl2NC5z16tWT9NsdKPkZOwAAANQc+fn5SkxMdHLbsdS4wFnyMXpUVBSBEwAAoAar6NcfGTQEAAAATxE4AQAA4CkCJwAAADxF4AQAAICnCJwAAADwFIETAAAAniJwAgAAwFMETgAAAHiKwAkAAABPETgBAADgKQInAAAAPEXgBAAAgKcInAAAAPAUgRMAAACeInACAADAU8EnugPH0mz8G2Uu3zal93HuCQAAACqDM5wAAADwFIETAAAAniJwAgAAwFMETgAAAHiKwAkAAABPuQqczZo1k8/nKzWNHDlSklRYWKiRI0cqNjZWkZGRysjIUG5uricdBwAAQO3gKnB+/PHH+v77751p6dKlkqQrrrhCkjR27FgtWrRI8+fP14oVK7Rz504NGDCg+nsNAACAWsPVdTgbNWoUMD9lyhS1aNFC3bp1U15enmbOnKk5c+aoZ8+ekqTMzEy1adNGq1atUpcuXaqv1wAAAKg1Kv0dzgMHDuj555/XX/7yF/l8PmVlZengwYNKS0tzalJSUpSUlKSVK1eW205RUZHy8/MDJgAAAJw8Kh04Fy5cqD179ujaa6+VJOXk5Cg0NFQxMTEBdY0bN1ZOTk657UyePFnR0dHOlJiYWNkuAQAAoAaqdOCcOXOmevXqpYSEhCp1YMKECcrLy3OmHTt2VKk9AAAA1CyV+i31b775RsuWLdOCBQucZfHx8Tpw4ID27NkTcJYzNzdX8fHx5bYVFhamsLCwynQDAAAAtUClznBmZmYqLi5OvXv3dpZ16NBBISEhWr58ubNs06ZN2r59u1JTU6veUwAAANRKrs9wFhcXKzMzU0OGDFFw8P+/eXR0tIYOHapx48apQYMGioqK0o033qjU1FRGqAMAAPyOuQ6cy5Yt0/bt2/WXv/yl1LqHH35Yfr9fGRkZKioqUnp6up544olq6SgAAABqJ5+Z2YnuxOHy8/MVHR2tvLw8RUVFqdn4N8qs2zald5nLAQAA4K0j89qx8FvqAAAA8BSBEwAAAJ4icAIAAMBTBE4AAAB4isAJAAAATxE4AQAA4CkCJwAAADxF4AQAAICnCJwAAADwFIETAAAAniJwAgAAwFMETgAAAHiKwAkAAABPETgBAADgKQInAAAAPEXgBAAAgKcInAAAAPAUgRMAAACeInACAADAUwROAAAAeIrACQAAAE8ROAEAAOApAicAAAA8ReAEAACApwicAAAA8BSBEwAAAJ4icAIAAMBTBE4AAAB4isAJAAAATwWf6A5Ut2bj3yhz+bYpvY9zTwAAACBxhhMAAAAeI3ACAADAUwROAAAAeIrACQAAAE8ROAEAAOApAicAAAA8ReAEAACApwicAAAA8BSBEwAAAJ4icAIAAMBTrgPnd999p8GDBys2NlYRERH6wx/+oLVr1zrrzUx33HGHmjRpooiICKWlpSk7O7taOw0AAIDaw1Xg/Pnnn3XuuecqJCREixcv1oYNG/Tggw+qfv36Ts0///lP/fvf/9b06dO1evVq1a1bV+np6SosLKz2zgMAAKDmC3ZTfP/99ysxMVGZmZnOsubNmzv/NzM98sgjuu2229SvXz9J0nPPPafGjRtr4cKFGjRoUDV1GwAAALWFqzOcr732ms455xxdccUViouLU/v27TVjxgxn/datW5WTk6O0tDRnWXR0tDp37qyVK1eW2WZRUZHy8/MDJgAAAJw8XAXOLVu2aNq0aWrVqpXefPNNjRgxQqNHj9azzz4rScrJyZEkNW7cOOB2jRs3dtYdafLkyYqOjnamxMTEytwPAAAA1FCuAmdxcbHOPvts3XfffWrfvr2uv/56XXfddZo+fXqlOzBhwgTl5eU5044dOyrdFgAAAGoeV4GzSZMmatu2bcCyNm3aaPv27ZKk+Ph4SVJubm5ATW5urrPuSGFhYYqKigqYAAAAcPJwFTjPPfdcbdq0KWDZV199peTkZEm/DSCKj4/X8uXLnfX5+flavXq1UlNTq6G7AAAAqG1cjVIfO3asunbtqvvuu08DBw7UmjVr9NRTT+mpp56SJPl8Po0ZM0aTJk1Sq1at1Lx5c91+++1KSEhQ//79veg/AAAAajhXgbNjx4565ZVXNGHCBE2cOFHNmzfXI488oquvvtqpufnmm1VQUKDrr79ee/bs0XnnnaclS5YoPDy82jsPAACAms9V4JSkSy+9VJdeemm5630+nyZOnKiJEydWqWMAAAA4OfBb6gAAAPAUgRMAAACeInACAADAUwROAAAAeIrACQAAAE8ROAEAAOApAicAAAA8ReAEAACApwicAAAA8BSBEwAAAJ4icAIAAMBTBE4AAAB4isAJAAAATxE4AQAA4CkCJwAAADxF4AQAAICnCJwAAADwFIETAAAAniJwAgAAwFMETgAAAHiKwAkAAABPETgBAADgKQInAAAAPEXgBAAAgKcInAAAAPAUgRMAAACeInACAADAUwROAAAAeIrACQAAAE8ROAEAAOApAicAAAA8ReAEAACApwicAAAA8BSBEwAAAJ4icAIAAMBTBE4AAAB4isAJAAAATxE4AQAA4CkCJwAAADxF4AQAAICnXAXOu+66Sz6fL2BKSUlx1hcWFmrkyJGKjY1VZGSkMjIylJubW+2dBgAAQO3h+gzn6aefru+//96ZPvjgA2fd2LFjtWjRIs2fP18rVqzQzp07NWDAgGrtMAAAAGqXYNc3CA5WfHx8qeV5eXmaOXOm5syZo549e0qSMjMz1aZNG61atUpdunSpem8BAABQ67g+w5mdna2EhASdeuqpuvrqq7V9+3ZJUlZWlg4ePKi0tDSnNiUlRUlJSVq5cmW57RUVFSk/Pz9gAgAAwMnDVeDs3LmznnnmGS1ZskTTpk3T1q1bdf7552vv3r3KyclRaGioYmJiAm7TuHFj5eTklNvm5MmTFR0d7UyJiYmVuiMAAAComVx9pN6rVy/n/+3atVPnzp2VnJysefPmKSIiolIdmDBhgsaNG+fM5+fnEzoBAABOIlW6LFJMTIxOO+00bd68WfHx8Tpw4ID27NkTUJObm1vmdz5LhIWFKSoqKmACAADAyaNKgXPfvn36+uuv1aRJE3Xo0EEhISFavny5s37Tpk3avn27UlNTq9xRAAAA1E6uPlL/29/+pj59+ig5OVk7d+7UnXfeqaCgIF111VWKjo7W0KFDNW7cODVo0EBRUVG68cYblZqaygh1AACA3zFXgfPbb7/VVVddpR9//FGNGjXSeeedp1WrVqlRo0aSpIcfflh+v18ZGRkqKipSenq6nnjiCU86DgAAgNrBVeB84YUXjro+PDxcU6dO1dSpU6vUKQAAAJw8+C11AAAAeIrACQAAAE8ROAEAAOApAicAAAA85WrQ0Mmo2fg3yly+bUrv49wTAACAkxNnOAEAAOApAicAAAA8ReAEAACApwicAAAA8BSBEwAAAJ4icAIAAMBTBE4AAAB4isAJAAAATxE4AQAA4Knf/S8NucUvEwEAALjDGU4AAAB4isAJAAAATxE4AQAA4CkCJwAAADxF4AQAAICnCJwAAADwFIETAAAAniJwAgAAwFMETgAAAHiKwAkAAABPETgBAADgKQInAAAAPEXgBAAAgKcInAAAAPAUgRMAAACeInACAADAUwROAAAAeIrACQAAAE8ROAEAAOApAicAAAA8ReAEAACApwicAAAA8BSBEwAAAJ4icAIAAMBTBE4AAAB4qkqBc8qUKfL5fBozZoyzrLCwUCNHjlRsbKwiIyOVkZGh3NzcqvYTAAAAtVSlA+fHH3+sJ598Uu3atQtYPnbsWC1atEjz58/XihUrtHPnTg0YMKDKHQUAAEDtVKnAuW/fPl199dWaMWOG6tev7yzPy8vTzJkz9dBDD6lnz57q0KGDMjMz9dFHH2nVqlXV1mkAAADUHpUKnCNHjlTv3r2VlpYWsDwrK0sHDx4MWJ6SkqKkpCStXLmyzLaKioqUn58fMAEAAODkEez2Bi+88II++eQTffzxx6XW5eTkKDQ0VDExMQHLGzdurJycnDLbmzx5su6++2633QAAAEAt4eoM544dO/TXv/5Vs2fPVnh4eLV0YMKECcrLy3OmHTt2VEu7AAAAqBlcBc6srCzt2rVLZ599toKDgxUcHKwVK1bo3//+t4KDg9W4cWMdOHBAe/bsCbhdbm6u4uPjy2wzLCxMUVFRARMAAABOHq4+Uv/jH/+ozz//PGDZn//8Z6WkpOgf//iHEhMTFRISouXLlysjI0OStGnTJm3fvl2pqanV12sAAADUGq4CZ7169XTGGWcELKtbt65iY2Od5UOHDtW4cePUoEEDRUVF6cYbb1Rqaqq6dOlSfb0GAABAreF60NCxPPzww/L7/crIyFBRUZHS09P1xBNPVPefAQAAQC1R5cD57rvvBsyHh4dr6tSpmjp1alWbBgAAwEmA31IHAACApwicAAAA8BSBEwAAAJ6q9kFDCNRs/BtlLt82pfdx7gkAAMCJwRlOAAAAeIrACQAAAE8ROAEAAOApAicAAAA8ReAEAACApwicAAAA8BSBEwAAAJ4icAIAAMBTBE4AAAB4isAJAAAATxE4AQAA4CkCJwAAADxF4AQAAICnCJwAAADwFIETAAAAngo+0R1AoGbj3yhz+bYpvY9zTwAAAKoHZzgBAADgKQInAAAAPEXgBAAAgKcInAAAAPAUgRMAAACeInACAADAUwROAAAAeIrACQAAAE8ROAEAAOApfmmoluOXiQAAQE3HGU4AAAB4isAJAAAATxE4AQAA4CkCJwAAADzFoKHfGQYZAQCA440znAAAAPAUgRMAAACeInACAADAUwROAAAAeIrACQAAAE+5CpzTpk1Tu3btFBUVpaioKKWmpmrx4sXO+sLCQo0cOVKxsbGKjIxURkaGcnNzq73TAAAAqD1cBc6mTZtqypQpysrK0tq1a9WzZ0/169dPX3zxhSRp7NixWrRokebPn68VK1Zo586dGjBggCcdBwAAQO3g6jqcffr0CZi/9957NW3aNK1atUpNmzbVzJkzNWfOHPXs2VOSlJmZqTZt2mjVqlXq0qVL9fUaAAAAtUalv8N56NAhvfDCCyooKFBqaqqysrJ08OBBpaWlOTUpKSlKSkrSypUry22nqKhI+fn5ARMAAABOHq4D5+eff67IyEiFhYXphhtu0CuvvKK2bdsqJydHoaGhiomJCahv3LixcnJyym1v8uTJio6OdqbExETXdwIAAAA1l+vA2bp1a61bt06rV6/WiBEjNGTIEG3YsKHSHZgwYYLy8vKcaceOHZVuCwAAADWP699SDw0NVcuWLSVJHTp00Mcff6xHH31UV155pQ4cOKA9e/YEnOXMzc1VfHx8ue2FhYUpLCzMfc8BAABQK1T5OpzFxcUqKipShw4dFBISouXLlzvrNm3apO3btys1NbWqfwYAAAC1lKsznBMmTFCvXr2UlJSkvXv3as6cOXr33Xf15ptvKjo6WkOHDtW4cePUoEEDRUVF6cYbb1Rqaioj1AEAAH7HXAXOXbt26ZprrtH333+v6OhotWvXTm+++aYuvPBCSdLDDz8sv9+vjIwMFRUVKT09XU888YQnHcfx0Wz8G2Uu3zal93HuCQAAqK1cBc6ZM2cedX14eLimTp2qqVOnVqlTAAAAOHnwW+oAAADwFIETAAAAniJwAgAAwFMETgAAAHiKwAkAAABPETgBAADgKQInAAAAPEXgBAAAgKcInAAAAPAUgRMAAACeInACAADAUwROAAAAeIrACQAAAE8ROAEAAOApAicAAAA8ReAEAACApwicAAAA8BSBEwAAAJ4icAIAAMBTBE4AAAB4isAJAAAATxE4AQAA4CkCJwAAADxF4AQAAICngk90B3ByaTb+jTKXb5vS+zj3BAAA1BSc4QQAAICnCJwAAADwFIETAAAAniJwAgAAwFMETgAAAHiKwAkAAABPETgBAADgKQInAAAAPEXgBAAAgKf4pSGcUPwyEQAAJz/OcAIAAMBTBE4AAAB4isAJAAAATxE4AQAA4CkGDaHWYIARAAC1k6sznJMnT1bHjh1Vr149xcXFqX///tq0aVNATWFhoUaOHKnY2FhFRkYqIyNDubm51dppAAAA1B6uAueKFSs0cuRIrVq1SkuXLtXBgwd10UUXqaCgwKkZO3asFi1apPnz52vFihXauXOnBgwYUO0dBwAAQO3g6iP1JUuWBMw/88wziouLU1ZWli644ALl5eVp5syZmjNnjnr27ClJyszMVJs2bbRq1Sp16dKl+noOAACAWqFKg4by8vIkSQ0aNJAkZWVl6eDBg0pLS3NqUlJSlJSUpJUrV5bZRlFRkfLz8wMmAAAAnDwqHTiLi4s1ZswYnXvuuTrjjDMkSTk5OQoNDVVMTExAbePGjZWTk1NmO5MnT1Z0dLQzJSYmVrZLAAAAqIEqHThHjhyp//73v3rhhReq1IEJEyYoLy/PmXbs2FGl9gAAAFCzVOqySKNGjdLrr7+u9957T02bNnWWx8fH68CBA9qzZ0/AWc7c3FzFx8eX2VZYWJjCwsIq0w0AAADUAq7OcJqZRo0apVdeeUVvv/22mjdvHrC+Q4cOCgkJ0fLly51lmzZt0vbt25Wamlo9PQYAAECt4uoM58iRIzVnzhy9+uqrqlevnvO9zOjoaEVERCg6OlpDhw7VuHHj1KBBA0VFRenGG29UamoqI9QBAAB+p1wFzmnTpkmSunfvHrA8MzNT1157rSTp4Ycflt/vV0ZGhoqKipSenq4nnniiWjoLuMEvEwEAUDO4Cpxmdsya8PBwTZ06VVOnTq10pwAAAHDyqNJ1OAEAAIBjIXACAADAUwROAAAAeKpS1+EETkYMMgIAwBuc4QQAAICnCJwAAADwFIETAAAAniJwAgAAwFMMGgIqiUFGAABUDGc4AQAA4CkCJwAAADxF4AQAAICnCJwAAADwFIOGgOPE7SAjr+sBADheOMMJAAAATxE4AQAA4CkCJwAAADxF4AQAAICnCJwAAADwFKPUgd8pRrUDAI4XznACAADAUwROAAAAeIrACQAAAE8ROAEAAOApBg0BqBAGGQEAKosznAAAAPAUgRMAAACeInACAADAUwROAAAAeIpBQwA84XaQkdf1AIAThzOcAAAA8BSBEwAAAJ4icAIAAMBTBE4AAAB4ikFDAH4XGGQEACcOZzgBAADgKQInAAAAPEXgBAAAgKcInAAAAPAUgRMAAACech0433vvPfXp00cJCQny+XxauHBhwHoz0x133KEmTZooIiJCaWlpys7Orq7+AgAAoJZxHTgLCgp05plnaurUqWWu/+c//6l///vfmj59ulavXq26desqPT1dhYWFVe4sAAAAah/X1+Hs1auXevXqVeY6M9Mjjzyi2267Tf369ZMkPffcc2rcuLEWLlyoQYMGVa23AAAAqHWq9TucW7duVU5OjtLS0pxl0dHR6ty5s1auXFnmbYqKipSfnx8wAQAA4ORRrb80lJOTI0lq3LhxwPLGjRs76440efJk3X333dXZDQCoEn6VCACq1wkfpT5hwgTl5eU5044dO050lwAAAFCNqjVwxsfHS5Jyc3MDlufm5jrrjhQWFqaoqKiACQAAACePag2czZs3V3x8vJYvX+4sy8/P1+rVq5WamlqdfwoAAAC1hOvvcO7bt0+bN2925rdu3ap169apQYMGSkpK0pgxYzRp0iS1atVKzZs31+23366EhAT179+/OvsNAACAWsJ14Fy7dq169OjhzI8bN06SNGTIED3zzDO6+eabVVBQoOuvv1579uzReeedpyVLlig8PLz6eg0AAIBaw3Xg7N69u8ys3PU+n08TJ07UxIkTq9QxAAAAnBxO+Ch1AAAAnNwInAAAAPAUgRMAAACeqtZfGgKA3yO3v0xU0+oBwGuc4QQAAICnCJwAAADwFIETAAAAniJwAgAAwFMMGgKA3zkGGQHwGmc4AQAA4CkCJwAAADxF4AQAAICnCJwAAADwFIOGAACu8MtHANziDCcAAAA8ReAEAACApwicAAAA8BSBEwAAAJ4icAIAAMBTjFIHANQoXo+Cr2n1wO8BZzgBAADgKQInAAAAPEXgBAAAgKcInAAAAPAUg4YAADhBatoAJgY8wSuc4QQAAICnCJwAAADwFIETAAAAniJwAgAAwFMMGgIAAJVS0wYxMeip5uIMJwAAADxF4AQAAICnCJwAAADwFIETAAAAnmLQEAAA+F1iUNLxwxlOAAAAeIrACQAAAE8ROAEAAOApAicAAAA8xaAhAAAAD9SkX1Y60QOkPDvDOXXqVDVr1kzh4eHq3Lmz1qxZ49WfAgAAQA3mSeB88cUXNW7cON1555365JNPdOaZZyo9PV27du3y4s8BAACgBvMkcD700EO67rrr9Oc//1lt27bV9OnTVadOHT399NNe/DkAAADUYNX+Hc4DBw4oKytLEyZMcJb5/X6lpaVp5cqVpeqLiopUVFTkzOfl5UmS8vPzJUnFRfvL/Dsl649E/clbX5P6Qv3JXV+T+kL9yV1fk/pC/cldX91tl/xrZmXWlWLV7LvvvjNJ9tFHHwUs//vf/26dOnUqVX/nnXeaJCYmJiYmJiYmplo27dixo0L58ISPUp8wYYLGjRvnzBcXF+unn35SbGysfD6fszw/P1+JiYnasWOHoqKijtku9SdvfU3qC/Und31N6gv1J3d9TeoL9Sd3fXW1bWbau3evEhISjtmG5MFH6g0bNlRQUJByc3MDlufm5io+Pr5UfVhYmMLCwgKWxcTElNt+VFRUhR4g6k/++prUF+pP7vqa1BfqT+76mtQX6k/u+upoOzo6usK3r/ZBQ6GhoerQoYOWL1/uLCsuLtby5cuVmppa3X8OAAAANZwnH6mPGzdOQ4YM0TnnnKNOnTrpkUceUUFBgf785z978ecAAABQg3kSOK+88krt3r1bd9xxh3JycnTWWWdpyZIlaty4caXbDAsL05133lnq43fqf3/1Nakv1J/c9TWpL9Sf3PU1qS/Un9z1XvelPD6zio5nBwAAANzz7KctAQAAAInACQAAAI8ROAEAAOApAicAAAA8ReAEAACApwicAAAA8NQJ/y31oykuLpbfXzoTFxcX69tvv1VSUlKF2vn555+1aNEiXXPNNeXWbN26VZs3b1aTJk10xhlnVKjdnj17KjMzU8nJyaXWmZm2bdumxMREBQcH68CBA3rllVdUVFSkSy65RA0bNgyoX79+vbKystS9e3edeuqp+uKLLzR16lQVFxfrsssuU3p6ulNbVFQkv9+vkJAQSdLXX3+tp59+Wtu3b1dycrKGDh2q5s2bO/Uvv/yyevXqpTp16lTofpV4++239cEHH+j777+X3+/Xqaeeqr59+6pVq1au2nGjIs+VF6prW6uNKrPtl8Xtdim5308kac2aNVq5cqVycnIkSfHx8UpNTVWnTp0q3feT2dGOU25U9jjiVkWPO26OmcfLgQMHtHDhwlLbZ9euXdWvXz+FhoZKkr799luFh4c72/f777+v6dOnO/vKyJEjS/0y348//qjPPvtMZ555pho0aKAffvhBM2fOVFFRka644gq1adOmVH++/fZbxcTEKDIyMmD5wYMHtXLlSl1wwQWVup8PPvigLr/88ipvU14xM7377rvOcS09Pd05LpX45ZdfNHfu3FLbWv/+/fXHP/7R1d/Lzc3Vk08+qTvuuKM674br9k899VS9+eabVX6Nfv3117VmzRqlp6fr3HPP1dtvv60HHnhAxcXFGjBggK6//vrKNWw1UF5enl1xxRUWHh5ucXFxdvvtt9uvv/7qrM/JyTG/31/h9tatWxdQP2LECNu7d6+Zme3fv98yMjLM7/ebz+czv99vPXr0cNabmb366qtlTkFBQfb444878yU2btxoycnJ5vf7rWXLlrZlyxbr0KGD1a1b1+rUqWMNGza0r776yql/+eWXLSgoyGJjYy0yMtKWLl1qMTExlpaWZunp6RYUFGSzZ8926rt162bz5883M7MPPvjAwsLCrF27dnbllVda+/btrU6dOvbRRx859T6fz6Kiouy6666zVatWHfPxys3NtU6dOpnf77fg4GDz+/3WoUMHi4+Pt6CgIPv73/9e4cfezOynn36yZ599tkK1Rz5Xh1u9erU98sgjNn78eBs/frw98sgjtnr16oCal156yQoKCirct8psa8XFxbZlyxY7ePCgmZkVFRXZCy+8YM8++6zt3r27zPs0c+ZM+/rrr83M7L///a+NGDHChg8fbkuWLAmoLSwstAMHDjjzmzdvtltuucUGDx5st956q23ZsqXM+3Ho0KFyl3/zzTfOvNttvzw9evSwbdu2BSxzu1263U9yc3PtvPPOM5/PZ8nJydapUyfr1KmTJScnm8/ns/POO89yc3PL7O/y5cvt7rvvthtuuMH+93//1x544IGAto9my5Yt9tZbb9nnn39e5vqKbJcVUd5+UtHn1u1xyszdtun2OFKesrYdM3fHHbfHTDP3xwYzd/t6dna2nXrqqRYeHm7dunWzgQMH2sCBA61bt24WHh5uLVu2tOzsbDMz69Spky1atMjMzBYuXGh+v9/69u1r//jHP+yyyy6zkJAQZ73Zb9tYdHS0+Xw+q1+/vq1du9aaN29urVq1shYtWlhERIRlZWU59Tt37rSOHTua3++3oKAg+9Of/hSwX1fkNfRo273P57OgoCBLS0uzF154wYqKio7aVmWPaxXdb3v16mV79uwxM7Mff/zROnfubD6fzxo1amR+v99SUlJs165dTn12drYlJydbXFycJSYmms/ns969e1vnzp0tKCjIrrjiCuc5r4jyXrcquu+6bf/RRx8tcwoKCrIJEyY480eqyLFq+vTpFhwcbB06dLCoqCibNWuW1atXz4YNG2bDhw+3iIgIe+SRRyrc98PVyMA5evRoO+2002z+/Pk2Y8YMS05Ott69ezsbdU5Ojvl8Pqc+Ly/vqNP7778f8GT5/X7nhWnChAnWtGlTe/vtt62goMA++OADa9GihY0fP96pL3kx9vl85U6Ht9+vXz/r27evffbZZzZmzBhr06aN9evXzw4cOGCFhYXWp08fGzx4sFN/9tln26RJk8zMbO7cuRYTE2MTJ0501j/wwAN21llnOfNRUVHOTtetWzcbO3ZswON322232bnnnhvQ/4kTJ1r79u3N5/PZ6aefbg8//LD98MMPZT7+V155pfXv39/y8vKssLDQRo0aZddcc42Z/XYAiI2NdbXBHb6zuH2uzNwFDbcvim63tZr2ZsJtYHa77bsJMW63S7f7SUZGhqWmptrGjRtLPY8bN260rl272uWXXx6w3O2bJzeBvCoBuCxHvqi4fW7dHqfcbptujyNuA7Cb447bY2ZJ/90cG9zu62lpadavXz/Ly8sr1VZeXp7169fPLrroIjMzq1u3rhOyOnfubFOmTAmof+yxx6x9+/YBbQ8bNszy8/PtX//6lzVt2tSGDRvmrP/zn/9s/fv3d+avueYa69y5s3388ce2dOlS69Chg51zzjn2008/mVnp45rbN6I+n88yMzOtX79+FhISYrGxsfbXv/613Ddlbo9rbvdbn8/n7GsjRoywtm3bOo/vjh07rEOHDnbDDTc49b169bLhw4dbcXGxmZlNmTLFevXqZWZmX331lTVr1szuvPNOp379+vVHnV588cUq7btu2/f5fNa0aVNr1qxZwOTz+eyUU06xZs2aWfPmzQMez4oeq9q2bWtPPfWUmZm9/fbbFh4eblOnTnXayszMtDZt2pT5PB9LjQycSUlJ9s477zjzu3fvtk6dOtlFF11khYWF5R5oy5uOPNAevnGeccYZNmfOnIC//+qrr9ppp53mzF988cXWu3fvUi8ewcHB9sUXX5Tqf6NGjezTTz81M7N9+/aZz+ez999/31n/4YcfWlJSkjNft25d27p1q5n99o46JCTEPvvsM2f9119/bZGRkQH1X375pZmZNW7c2NatWxfw9zdv3hxQf/j9Xbt2rY0YMcJiYmIsLCzMrrjiCnvrrbcCbh8VFWX//e9/nfl9+/ZZSEiIcyCdNWuWtW7d2lnvJkS6fa7M3AUNty+Kbre1mvZmwm1gdrvtuwkxbrdLt/tJZGSkffLJJ1aetWvXBrRv5v7Nk5tA7jYAu32z5fa5dXuccrttuj2OuA3Abo47bo+ZJf1xc2xwu69HRESUG7jMzD777DOLiIgwM7Po6Ghbv369mZnFxcU5/y+xefNmq1OnjjNfv35927Bhg5mZHThwwPx+f8CZqaysLDvllFOc+YSEhID1Jf0966yz7Mcff6zyG9HDt4Xc3Fy7//77LSUlxfx+v3Xs2NGeeuopy8/Pd+rdHtfc7reH96d169alzuQvW7YsIIDVqVMn4M1CUVGRhYSEONvCwoULrVmzZgHtl7ctl/W6VZnjspv2hw8fbmeddZazTZQob193c6yKiIgIOPsaEhISsF1v3bo1YNt0o0YGzoiIiFKn2PPz8y01NdV69uxpW7ZsKXWguv/+++3dd98tc5oxY0apwFlyer1hw4YBBzkzs23btjkHhhIPPfSQJSYmBnzMUd6Te+QTFhkZaZs3b3bmt2/fbmFhYc58fHy8rV271sx++1jN5/MFhKA1a9ZYfHy8M9+zZ0/75z//aWZmXbt2LfUx3EsvvRTwQn34zljil19+seeee866d+9ufr8/YOdq1KhRwP3av3+/+f1++/HHH83st4P54f13EyLdPlclj19Fg4bbF0W321pNezNRmTdnbrZ9NyHG7Xbpdj+JjY21d99918rzzjvvWGxsbMAyt2+e3ARytwHY7Zstt8+tmbvjlNtt0+1xpDJv1Ct63HF7zDyy/xU5Nrjd15s0aRLwuB/ptddesyZNmpiZWd++fZ0Al56eXurjzxkzZlirVq2c+cOfK7Pftr2Sr0GYmX3zzTcWHh4eUH/kR88HDx60/v37W7t27eyzzz6r0kmYsrYFM7P33nvPhgwZYnXr1rW6desG9MfNca0y+23JcS0uLq7M49rhx5KEhISAryD8/PPP5vP5nJC8ZcuWUseemTNn2rZt28qc3njjjSrtu27bNzNbsGCBJSYm2mOPPeYsK2/fcnOsatq0qb333ntmZvbdd9+Zz+ezN954w6l99913rWnTpuW2dTQ1MnC2bt064A6W2Lt3r6WmptqZZ54Z8OB3797d7r///nLbW7duXal3E8OHD7exY8daXFxcqQNNVlaWNWzYsFQ7n376qbVt29auv/56KygoKPfJbdGiRcCB6Yknngh4t5eVlRVwMBw8eLB17tzZnn/+eevTp4+lp6dbly5d7Msvv7SNGzdat27dAs6UfPTRRxYdHW133nmnPfbYY9awYUO77bbbbPbs2XbHHXdYTExMwONx+LvXsmRnZ9stt9zizF922WWWkZFh+/btswMHDtiYMWOsZcuWzvpVq1YF9N9NiHT7XJm5CxpuXxTdbms17c2E28BcmW2/oiHG7Xbpdj/53//9X0tOTrYFCxYEfGyZl5dnCxYssGbNmtmoUaMC+lSZN08VDeRuA7DbN1tun9sSFT1Oud023R5HzNwFYDfHHbfHTDP3xwa3+/rtt99u9evXt4ceesjWr19vOTk5lpOTY+vXr7eHHnrIGjRo4HxMu2HDBouNjbVrrrnG7rnnHouMjLTBgwfbvffea9dcc42FhYVZZmam03ZKSootX77cmX/99ddt//79AY/N4SHgD3/4g7300kulHuOS0JmUlFSlN6LH2hby8vKcj2XN3B/XKrPfXnLJJXbZZZdZ/fr1SwX/VatWWePGjZ35IUOGWLdu3ezLL7+0LVu2OB/tl3j33XctMTHRmb/ooovsnnvuKff+Hvm65Xbfddt+iW+//dZ69uxpF198sX3//ffl7ltujlUjR460Vq1a2aRJk6xTp042ZMgQS0lJscWLF9uSJUvsD3/4g/3lL38pt62jqZGB88Ybbyx1sCiRn59vnTt3DniynnrqqTK/IFsiJyfH7rrrLme+W7du1r17d2eaMWNGQP0999xj3bp1K7Ot/fv32/Dhw61Vq1YWFBRU5pM7fPjwUm0ebvLkyXbJJZcE9O/CCy+0yMhIS09Ptz179tioUaOcMx6tWrUKONCZ/fbi3qVLl1Kn30855ZRS368s791oeb7++mtr0aKFBQcHW0hIiMXExNjSpUud9ZmZmQEfr7gJkW6fKzN3QcPti6Lbba2mvZlwG5gru+1XNMS42S7d7ieFhYV2ww03WGhoqPn9fgsPD7fw8HDz+XwWGhpqI0aMsMLCwoA23L55chPI3QZgt2+23D63h6vIccrttun2OFKiotuOm+NOZY6Zbo8Nbvd1s9++C9ikSZOAs9k+n8+aNGlS6rnfvHmzDRo0yOrVq+fsJyEhIda1a1d75ZVXAmrvuusumzt3brl9v+WWW2zAgAHO/M033+x8X/RIBw8etL59+1bpjajbbcHtcc3tfnvttdcGTC+++GLA3//73/9u6enpznxubq5znPL7/ZacnBxwBnD+/Pn273//25lfsGCBzZo1q9z799NPP9kzzzzjzLvdd922f7ji4mK77777nO+3lrVvuTlW7du3z6677jo744wz7Prrr7eioiL717/+ZaGhoebz+ax79+6VOg6Y1dDA+dNPP5V6h3W4/Pz8o6b1qvr6669tx44dR6159dVXbcyYMZV64Lds2WI7d+6sUD8+//zzo46W27Vrl61atco++uijgI9cDrdt2zbny9EVVVBQYG+++aYtWrSozJHXh3vqqaeOOoiorBB5pKP1r7yg4ff7SwUNtwfC8ra1kv4cua1V55sJn89X5TcTbgNzeUru79G2/YqEmBKHb5fljUA9Vl/K20/y8vJs+fLlNmfOHJszZ44tX768zIEaJffHzZsnN4HczXZp5v7NVnU8t6+++qqNHj26zH3CbWjbtm1bmaNuK3Jsqei2U9Zxx82x62jHTLfHBrf7+uG2bNliH330UYW2/+LiYsvJybGdO3cGjOR2o6CgIGBbO3jwYLn7RMn6w68UUJWTMBXl5rhW1n57eAg+cr89ln379tkvv/xSavlXX311zNfYyhg1alS1HJfdWLt2rT3yyCPOwLDDuT1WleWXX34JeMNVGT4zsypdsAmoBqGhoVq/fn2Z15IrkZ+fr6ysrIDr23Xo0EFRUVFOzTfffKOkpCT5fD7P+1OWrVu3Kjw8XE2aNDlq3ZYtW7R//36lpKQoOLjsy+Hu3r1bW7ZsUXFxsZo0aaJmzZqVqvn555+1c+dOnX766WW2sXfvXn3yySfq1q3bUfvj5v6+9tpreueddzRhwgTFxcUds97tY1nd9fv379eHH36ooqIidenSpcxre1bUli1bFBoaqqZNmzrLKrJdVsaJeG6lim2blW1/0aJFevvttyu87bht/2i11XVsKFHRff1kUNZ2X1kVOa5J1bvfHm/Vte9Wt/z8fK1du1a5ubmSqu9YVVE19sLvv/zyi7KystSgQQO1bds2YF1hYaHmzZsXcHFw6k9s/ZdffqlVq1YpNTVVKSkp2rhxox599FEVFRVp8ODB6tmzpyRp3LhxKsuhQ4c0ZcoUxcbGSpIeeuihgPWHt9+jRw+n/VmzZgW0n5ycXOG+VLY/bto/vL5r165q3bq1q/rOnTtr48aNuv/++8usr1+/vnJycpSZmXnc7u9pp52m//znPxo/fnyVnluv60t88803+vbbb5WamqqGDRtW+/MVFRWlHj16qKCgQPPmzdOyZcu0YcMGDRo0yOlTWUrqSy5OfdVVVwXU169fX/Xr1z9q/eEvWJV9fMpqPyEhQU2aNAnoT3W0/8MPP6hOnTqaN29eqfvrpv3K9OXIi5Qf6/Evq/9Hq//kk09Uv35958cNZs2aFXAx91GjRmnQoEGua49HvZf39UiNGjVytoHXX39dCQkJZe4rderU0YUXXuj0JzMzs9r643X9HXfcoYEDB5b7+NarV69U2Hz88ce1Zs0aXXLJJRo0aJBmzZqlyZMnOxdbnzhxovMG0G1/brzxRg0cOFDnn39+qePXkaq67RxVlc6PemTTpk3O9aH8fr9dcMEFAR+tHTnCi/oTW7948WILDQ21Bg0aWHh4uC1evNgaNWpkaWlp1rNnTwsKCnK+8O7z+eyss84K+Pime/fu5vP5rGPHjta9e3fr0aOHHc5N+25qK9Mft+3XtHov76/btr2u9/rxbNOmjTOIYfv27dasWTOLjo62jh07WoMGDSwuLi7g41Sv690+Pke2n5ycXGvar8y24PXj365dO+frGjNmzLCIiAgbPXq0TZs2zcaMGWORkZE2c+ZM17XHo97tc1XV9t0+9tXdH6/rD/9aypQpU+z777+3o7nnnnusXr16lpGRYfHx8TZlyhSLjY21SZMm2X333WeNGjWyO+6447j0x23bbtTIwNm/f3/r3bu37d6927Kzs613797WvHlzZ8TgkYGH+hNbn5qaarfeequZ/XY9v/r16wd8+X78+PF24YUXmtlv33tq3rx5wIu8WfkjV92276a2Mv1x235Nq/fy/rpt2+t6t/13W3/4dwKvvvpq69q1q/NrJ3v37rW0tDS76qqrnNt6Xe/28anN7VdmW/D68Y+IiHC+F9m+ffuAUdpmZrNnz7a2bdu6rj0e9V7e18q073V/jsfjuWzZMvvrX/9qDRs2tJCQEOvbt68tWrSozO9Bt2jRwl5++WUz+23wYFBQkD3//PPO+gULFgQMmvKyP27bdqNGBs64uLiA68EVFxfbDTfcYElJSfb111+XCjzUn9j6qKgo5yfbDh06ZMHBwQEj/j7//POAS1KsWbPGTjvtNLvpppucL8kf7YXCTftu++K2P27br2n1Xt9ft8+t1/VePp6HvyieeuqppUb2fvjhhwGXVvG63u3jU9vbd7steP34x8bGOpeZiouLK/Nak4dfUquitcej3sv7Wpn2ve7P8Xw8Dxw4YC+++KLz610JCQl2yy23OMcZs7Ivtn74YNZt27YFXGzdy/64bdsNf+U+iPfWL7/8EvBldZ/Pp2nTpqlPnz7q1q2bvvrqK+prUH1JjST5/X6Fh4crOjraWVevXj3l5eU58x07dlRWVpZ2796tc845R//973+P+UV+N+27qa1Mf9y2X9Pqvby/btv2ut5t/93Wl9QWFhaWGjxyyimnaPfu3WW27VV9ZZ/b2th+VbYFLx7/Xr16adq0aZKkbt266aWXXgqonzdvnlq2bOm69njUe3lfK9O+1/05Ho9niZCQEA0cOFBLlizRli1bdN1112n27Nlq3bq1UxMfH68NGzZIkrKzs3Xo0CFnXpK++OKLgEF2XvanKm0fU6Viqsc6duxozz33XJnrRo4caTExMQFn2Kg/sfXt2rWzxYsXO/NHXmbivffeC/hZscPNnTvXGjdubH6/v9wzE27ar0pfKtIft+3XtHqv76+bto9HvZePp8/nsz/84Q/Wvn17i4yMLHWh7RUrVgT83KDX9W4fn9revttarx//7777zpo1a2YXXHCBjRs3ziIiIuy8886z6667zi644AILDQ11rs3opvZ41Ht5X2vaY3+8Hs+jXYKruLg44KztbbfdZo0aNbJhw4ZZ8+bNbfz48ZaUlGTTpk2z6dOnW2JiYsDPgXrZH7dtu1EjR6lfdtllmjt3rv70pz+VWvf444+ruLhY06dPp76G1I8YMUKHDh1y5s8444yA2yxevLjckXGDBg3Seeedp6ysrFKjSCvTflX6UpH+uG2/ptUfqbrvr5u2j0e9l4/nnXfeGbAuMjIyYH7RokU6//zznXmv6490rMentrfvttbrxz8hIUGffvqppkyZokWLFsnMtGbNGu3YsUPnnnuuPvzwQ51zzjmua49HvZf3taY99sejPjk5WUFBQSqPz+dzRuBL0t13362IiAitXLlS1113ncaPH68zzzxTN998s/bv368+ffronnvuOS79cdu2G1yHEwAAAJ6qkd/hBAAAwMmDwAkAAABPETgBAADgKQInAAAAPEXgBIAqWLlypYKCgtS7d+8T3RUAqLEYpQ4AVTBs2DBFRkZq5syZ2rRpkxISEk50lwCgxuEMJwBU0r59+/Tiiy9qxIgR6t27t5555pmA9a+99ppatWql8PBw9ejRQ88++6x8Pp/27Nnj1HzwwQc6//zzFRERocTERI0ePVoFBQXH944AgMcInABQSfPmzVNKSopat26twYMH6+mnn1bJh0Zbt27V5Zdfrv79+2v9+vUaPny4br311oDbf/3117r44ouVkZGhzz77TC+++KI++OADjRo16kTcHQDwDB+pA0AlnXvuuRo4cKD++te/6tdff1WTJk00f/58de/eXePHj9cbb7yhzz//3Km/7bbbdO+99+rnn39WTEyMhg0bpqCgID355JNOzQcffKBu3bqpoKBA4eHhJ+JuAUC14wwnAFTCpk2btGbNGl111VWSpODgYF155ZWaOXOms75jx44Bt+nUqVPA/Pr16/XMM88oMjLSmdLT01VcXKytW7cenzsCAMdBjfwtdQCo6WbOnKlff/01YJCQmSksLEyPP/54hdrYt2+fhg8frtGjR5dal5SUVG19BYATjcAJAC79+uuveu655/Tggw/qoosuCljXv39/zZ07V61bt9Z//vOfgHUff/xxwPzZZ5+tDRs2qGXLlp73GQBOJL7DCQAuLVy4UFdeeaV27dql6OjogHX/+Mc/9Pbbb2vevHlq3bq1xo4dq6FDh2rdunW66aab9O2332rPnj2Kjo7WZ599pi5duugvf/mLhg0bprp162rDhg1aunRphc+SAkBtwHc4AcClmTNnKi0trVTYlKSMjAytXbtWe/fu1UsvvaQFCxaoXbt2mjZtmjNKPSwsTJLUrl07rVixQl999ZXOP/98tW/fXnfccQfX8gRw0uEMJwAcJ/fee6+mT5+uHTt2nOiuAMBxxXc4AcAjTzzxhDp27KjY2Fh9+OGH+te//sU1NgH8LhE4AcAj2dnZmjRpkn766SclJSXppptu0oQJE050twDguOMjdQAAAHiKQUMAAADwFIETAAAAniJwAgAAwFMETgAAAHiKwAkAAABPETgBAADgKQInAAAAPEXgBAAAgKcInAAAAPDU/wPLJlpMS1AiXwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(8, 5))\n", + "df['Age'].value_counts().plot(kind='bar', title='Bar Plot (Age)')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApsAAAHDCAYAAABrp9FjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAstUlEQVR4nO3de3xU9Z3/8fckIZcmmUFCbpQEUuIKyEVFC0GogNFAwYdZglpvILBeINCSCJawVopVom4RoRugspjYIkWhQAEXvGQFqU1Q02VLqouIwURJBlAyQ7JkoMn8/uDH6Mh1kvlmkvB6Ph7n0eackzOf9A/2tefMOcfidrvdAgAAAAwICvQAAAAA6LiITQAAABhDbAIAAMAYYhMAAADGEJsAAAAwhtgEAACAMcQmAAAAjCE2AQAAYAyxCQAAAGOITQAAABhDbAIIKLvdroceekjJycnq1KmTLBaLZ+nZs2egxwMAtFBIoAcAcPlqaGjQj370Ix04cECTJ0/W4MGDFR4eLklatGiRjh07FuAJAQAtRWwCCJhNmzbpk08+UV5enhYuXOi1be3atcQmAHQAXEYHEDAHDhyQJA0bNuyS9rdYLJoxY4bXunHjxp11uX39+vWyWCzasWOHZ11RUZEsFosOHjzoWdfU1KQBAwbIYrGoqKjIs/6BBx4465irV69WUFCQnnnmmYvOWVtbq5ycHPXs2VNhYWHq3r27Jk6cqKNHj573d2666SYNHDjwnNuuuuoqZWRkeM29ZMkS9e/fX+Hh4YqNjdXo0aP14YcfevYpLCzUqFGjFBcXp7CwMPXt21fLly8/69g9e/aUxWLRrFmzztqWkZEhi8WicePGedbt2LHjrP9tJWns2LGyWCz65S9/ed6/EcDlidgEEDBdunSRJK8AbE2///3vtXfv3ovu9+abb2rKlCmaMWOG5s6de8F96+rqNHz4cP3mN7/RrbfeqiVLluiRRx7R//7v/+qLL7447+/df//9+tvf/qby8nKv9R988IE++eQT3XfffZ51U6dO1axZs5SUlKRnn31Wc+fOVXh4uEpLSz37LF++XD169NC8efO0aNEiJSUlafr06SooKDjrs8PDw/XKK6/o1KlTnnVffPGFiouLPV9ruJB3331X//mf/3nR/QBcnriMDiBgbr/9ds2dO1dPPvmk4uPjvb6z+e3wMcHlcumJJ57QmDFjtG3btvPuV1ZWpqysLGVmZuqFF1646HH/7d/+TeXl5dqwYYP++Z//2bP+8ccfl9vtPu/v3XHHHZo5c6ZWr17tdfZ09erVioyM1Pjx4yVJ77zzjoqKivTTn/5US5Ys8ez36KOPeh1/586dioiI8Pw8Y8YMjR49Ws8//7yys7O9Pnv48OH67//+b23evFlZWVmSTp8JHjx4sL788suL/s2PPfbYRf93BHD54swmgIDp1q2b/vKXv6h///6aMGGCkpKSFBsbq9jYWL355ptGP7ugoEBfffWV5s+ff959PvvsM40dO1bXXHONfv/73yso6OL/ZP7xj3/UwIEDvULzDIvFct7fs9lsuv322/WHP/zBE42NjY169dVXlZmZqcjISM/xLRbLOef+9vG/HZoOh0NHjx7VTTfdpM8++0wOh8Pr90JDQ3XvvfeqsLDQs66oqEiTJ0++6N+7YcMGffDBB5f09QIAlydiE0BAXX311dq2bZt69eql7t2766233tJbb72lwYMHG/tMh8OhhQsXKjc3V/Hx8efcp76+XhkZGbLb7fr6668vGIrfduDAAfXr169Zc02cOFGVlZXatWuXJOntt9+W3W7X/fff73X8bt26eb6CcD7vvfee0tPTFRkZqc6dOys2Nlbz5s2TpLNiU5ImT56s7du3q7q6Wjt37lR1dbXuvPPOC35GY2Oj5s2bp3vvvVcDBgzw9c8FcJkgNgEE3IoVK3TgwAHl5+crPT1d6enp6tq1q7HPe/bZZxUUFKQ5c+acd5+jR4/q1KlT2rJli/bt26f8/Hxj85yRkZGh+Ph4rV69WtLpS+gJCQlKT0/36TgHDhzQzTffrKNHj+r555/X66+/rrfeeks5OTmSTt9g9F0DBw7UwIED9bvf/U6FhYXKysqS1Wq94OesWrVKBw8e1K9+9Suf5gNweSE2AQSUw+HQggULdMMNN+jee+81/nmHDh3SkiVL9Pjjjys6Ovq8+33ve9/T9u3bNW7cOOXk5GjhwoX6+OOPL3r8Xr16nXWTz6UKDg7WPffco/Xr1+vYsWPatGmT7r77bgUHB3sd/9ChQ/r666/Pe5wtW7bI5XJp8+bNevjhh/XjH/9Y6enpXpfWz2XKlClauXKl1q9ff9FL6P/3f/+nBQsWaPr06erRo4dvfyiAywqxCSCgFi5cqKNHj2rx4sWXfKm6JRYsWKD4+Hg98sgjF9wvNjZWvXv3liQ9+eST6t69ux588MEL3uQjSVlZWfqf//kfbdy48axtF/td6fRd6ceOHdPDDz+suro6r7vQzxzf7XZrwYIF5z3+mTj99uc5HA6v72Seyz333KMvv/xScXFxGjFixAX3XbJkierr6/Wv//qvF/2bAFzeuBsdQMB8/vnnWrp0qe68807deOONl/Q7lZWV2r59u+fnI0eO6MSJE17r9uzZI0l6//33deWVV+r73/++Z9ubb76pV155RaGhoZc8Z0REhF588UWlp6dr+fLlmj59+nn3nTNnjtavX6877rhDU6ZM0aBBg/T1119r8+bNWrFixXmfpXnGtddeq379+mndunXq06ePrrvuOq/tI0eO1P3336+lS5dq//79Gj16tJqamrRr1y6NHDlSM2bM0K233qrQ0FDddtttnmhduXKl4uLiVF1dfd7PvuKKK1RdXa3g4OCLhv+bb76pp59+WjExMRfcDwCITQABM2/ePLndbj377LOX/DtbtmzRli1bzlo/ZsyYs9b9/Oc/V1xcnB544AHPumuuuUZ33323z7PefPPNmjx5svLy8nT77bd7Bey3RUVFadeuXZo/f742btyol19+WXFxcbr55pvVvXv3S/qsiRMn6rHHHvO6MejbCgsLNWDAAK1atUpz5syRzWbT9ddfr6FDh0o6/RD49evX6/HHH9fs2bOVkJCgadOmKTY2VlOmTLngZ3fu3PmSZkxMTDzng+AB4Lss7ku5rgMA7dCIESP0wAMPeMVme7BkyRLl5OTo4MGDSk5ODvQ4ANAifGcTANoQt9utVatW6aabbiI0AXQIXEYH0GH98Ic/PO/l7ramvr5emzdv1jvvvKO9e/fqT3/6U6BHAgC/4DI6ALQBBw8eVEpKijp37qzp06fr6aefDvRIAOAXxCYAAACM4TubAAAAMMan2OzZs6csFstZS3Z2tiSpoaFB2dnZiomJUVRUlLKysmS3240MDgAAgLbPp8voR44cUWNjo+fn8vJy3XLLLXrnnXc0YsQITZs2Ta+//rqKiopks9k0Y8YMBQUF6b333rvkgZqamnTo0CFFR0e3yttEAAAA4Bu3263jx4+rW7duCgq6yLlLdwv87Gc/c/fq1cvd1NTkrq2tdXfq1Mm9bt06z/aPP/7YLcldUlJyycesqqpyS2JhYWFhYWFhYWnjS1VV1UXbrtmPPjp58qRWr16t3NxcWSwWlZWV6dSpU0pPT/fs07t3byUnJ6ukpERDhgy5pONGR0dLkqqqqmS1Wps7HgAAAAxxOp1KSkrydNuFNDs2N23apNraWs+bOWpqahQaGnrWq87i4+NVU1Nz3uO4XC65XC7Pz8ePH5ckWa1WYhMAAKANu5SvPDb7bvRVq1ZpzJgx6tatW3MPIUnKz8+XzWbzLElJSS06HgAAANqOZsXm559/rrffflv/8i//4lmXkJCgkydPqra21mtfu92uhISE8x4rLy9PDofDs1RVVTVnJAAAALRBzYrNwsJCxcXFaezYsZ51gwYNUqdOnVRcXOxZt2/fPlVWViotLe28xwoLC/NcMufSOQAAQMfi83c2m5qaVFhYqEmTJikk5Jtft9lsmjp1qnJzc9WlSxdZrVbNnDlTaWlpl3xzEAAAADoWn2Pz7bffVmVlpaZMmXLWtsWLFysoKEhZWVlyuVzKyMjQsmXL/DIoAAAA2p829250p9Mpm80mh8PBJXUAAIA2yJde493oAAAAMIbYBAAAgDHEJgAAAIwhNgEAAGBMs19XCQC4uMbGRu3atUvV1dVKTEzU8OHDFRwcHOixAKDVcGYTAAzZsGGDUlNTNXLkSN1zzz0aOXKkUlNTtWHDhkCPBgCthtgEAAM2bNigCRMmqH///iopKdHx48dVUlKi/v37a8KECQQngMsGz9kEAD9rbGxUamqq+vfvr02bNiko6Jv/v76pqUmZmZkqLy/X/v37uaQOoF3iOZsAEEC7du3SwYMHNW/ePK/QlKSgoCDl5eWpoqJCu3btCtCEANB6iE0A8LPq6mpJUr9+/c65/cz6M/sBQEdGbAKAnyUmJkqSysvLz7n9zPoz+wFAR0ZsAoCfDR8+XD179tTChQvV1NTkta2pqUn5+flKSUnR8OHDAzQhALQeYhMA/Cw4OFiLFi3S1q1blZmZ6XU3emZmprZu3apf//rX3BwE4LLAQ90BwIDx48dr/fr1evTRRzV06FDP+pSUFK1fv17jx48P4HQA0Hp49BEAGMQbhAB0RL70Gmc2AcCg4OBgjRgxItBjAEDA8J1NAAAAGENsAgAAwBhiEwAAAMYQmwAAADCG2AQAAIAxxCYAAACMITYBAABgDLEJAAAAY4hNAAAAGENsAgAAwBhiEwAAAMYQmwAAADCG2AQAAIAxxCYAAACMITYBAABgDLEJAAAAY4hNAAAAGENsAgAAwBhiEwAAAMYQmwAAADCG2AQAAIAxxCYAAACMITYBAABgDLEJAAAAY4hNAAAAGONzbH755Ze67777FBMTo4iICPXv318ffvihZ7vb7dYTTzyhxMRERUREKD09Xfv37/fr0AAAAGgffIrNY8eO6cYbb1SnTp20bds2ffTRR1q0aJGuuOIKzz7PPfecli5dqhUrVmj37t2KjIxURkaGGhoa/D48AAAA2jaL2+12X+rOc+fO1Xvvvaddu3adc7vb7Va3bt306KOPavbs2ZIkh8Oh+Ph4FRUV6Sc/+clFP8PpdMpms8nhcMhqtV7qaAAAAGglvvSaT2c2N2/erOuvv1533HGH4uLidO2112rlypWe7RUVFaqpqVF6erpnnc1m0+DBg1VSUuLjnwEA7V9jY6N27NihP/zhD9qxY4caGxsDPRIAtCqfYvOzzz7T8uXLdeWVV+qNN97QtGnT9NOf/lQvv/yyJKmmpkaSFB8f7/V78fHxnm3f5XK55HQ6vRYA6Ag2bNig1NRUjRw5Uvfcc49Gjhyp1NRUbdiwIdCjAUCr8Sk2m5qadN1112nhwoW69tpr9dBDD+nBBx/UihUrmj1Afn6+bDabZ0lKSmr2sQCgrdiwYYMmTJig/v37q6SkRMePH1dJSYn69++vCRMmEJwALhs+xWZiYqL69u3rta5Pnz6qrKyUJCUkJEiS7Ha71z52u92z7bvy8vLkcDg8S1VVlS8jAUCb09jYqEcffVTjxo3Tpk2bNGTIEEVFRWnIkCHatGmTxo0bp9mzZ3NJHcBlwafYvPHGG7Vv3z6vdZ988ol69OghSUpJSVFCQoKKi4s9251Op3bv3q20tLRzHjMsLExWq9VrAYD2bNeuXTp48KDmzZunoCDvf2aDgoKUl5enioqK895sCQAdSYgvO+fk5Gjo0KFauHCh7rzzTr3//vt68cUX9eKLL0qSLBaLZs2apaeeekpXXnmlUlJS9Itf/ELdunVTZmamifkBoM2prq6WJPXr1++c28+sP7MfAHRkPsXmDTfcoI0bNyovL09PPvmkUlJS9MILL+jee+/17PPYY4+pvr5eDz30kGprazVs2DBt375d4eHhfh8eANqixMRESVJ5ebmGDBly1vby8nKv/QCgI/PpOZutgedsAmjvGhsblZqaqv79+2vTpk1el9KbmpqUmZmp8vJy7d+/X8HBwQGcFACax9hzNgEAFxccHKxFixZp69atyszM9LobPTMzU1u3btWvf/1rQhPAZcGny+gAgEszfvx4rV+/Xo8++qiGDh3qWZ+SkqL169dr/PjxAZwOAFoPl9EBwKDGxkbt2rVL1dXVSkxM1PDhwzmjCaDd4zI6AAAA2gRiEwAM4XWVAEBsAoARvK4SAE7jO5sA4Gc8+ghAR8d3NgEggHhdJQB8g9gEAD/jdZUA8A1iEwD87NuvqzwXXlcJ4HJCbAKAnw0fPlw9e/bUwoUL1dTU5LWtqalJ+fn5SklJ0fDhwwM0IQC0HmITAPyM11UCwDd4XSUAGMDrKgHgNB59BAAG8bpKAB2RL73GmU0AMCg4OFgjRowI9BgAEDDEJgAYxJlNAJc7bhACAEN4NzoAEJsAYATvRgeA07hBCAD8jHejA+joeDc6AAQQ70YHgG8QmwDgZ7wbHQC+QWwCgJ/xbnQA+AaxCQB+xrvRAeAbxCYA+BnvRgeAb/BQdwAwgHejA8BpnNkEAIO++3S5715WB4COjjObAGDAmYe6jx07Vo899pgiIiJ04sQJbdu2TRMmTODsJoDLBg91BwA/O/NQ965du+ro0aM6ePCgZ1vPnj3VtWtXffXVVzzUHUC7xUPdASCAzjzUvays7JyvqywrK+Oh7gAuG8QmAPjZl19+KUkaPXq0XnvtNZWWliovL0+lpaV67bXXNHr0aK/9AKAj4zubAOBnR44ckXT6ZqDo6Gj94x//8GybM2eORo4c6bUfAHRknNkEAD+LjY2VJL3xxhuKiYnRypUrVV1drZUrVyomJkZvvfWW134A0JERmwDgZ3FxcZ7/fv311+vqq69WZGSkrr76al1//fXn3A8AOipiEwD8bO/evZKkHj16qLy8XEOHDpXVatXQoUP197//XT169PDaDwA6Mr6zCQB+VlFRIUmqrKzU2LFjNWfOHM9zNrdv367XX3/daz8A6MiITQDws169ekmSHnnkEW3btk1bt271bEtJSdFDDz2k3/72t579AKAj46HuAOBnJ0+eVGRkpGJiYvT555+rpKRE1dXVSkxMVFpamnr06KGvvvpK9fX1Cg0NDfS4AOAzHuoOAAEUGhqqnJwc2e129ejRQ5988oluuukmffLJJ+rRo4fsdrtycnIITQCXBS6jA4ABzz33nCRp8eLFevjhhz3rQ0JCNGfOHM92AOjouIwOAAadPHlSy5Yt04EDB9SrVy9Nnz6dM5oA2j1feo3YBAAAgE/4ziYAAADaBJ9i85e//KUsFovX0rt3b8/2hoYGZWdnKyYmRlFRUcrKypLdbvf70AAAAGgffD6zefXVV6u6utqz/PnPf/Zsy8nJ0ZYtW7Ru3Trt3LlThw4d0vjx4/06MAAAANoPn+9GDwkJUUJCwlnrHQ6HVq1apTVr1mjUqFGSpMLCQvXp00elpaUaMmRIy6cFAABAu+JzbO7fv1/dunVTeHi40tLSlJ+fr+TkZJWVlenUqVNKT0/37Nu7d28lJyerpKTkvLHpcrnkcrk8Pzudzmb8GQDQMidONurAkTojx2441agvjp1Q9ysiFN4p2MhnSFKv2ChFhJo7PgA0h0+xOXjwYBUVFemqq65SdXW1FixYoOHDh6u8vFw1NTUKDQ1V586dvX4nPj5eNTU15z1mfn6+FixY0KzhAcBfDhyp07jf/PniO7ZhW2cOU7/v2wI9BgB48Sk2x4wZ4/nvAwYM0ODBg9WjRw+99tprioiIaNYAeXl5ys3N9fzsdDqVlJTUrGMBQHP1io3S1pnDjBz708N1mvXqHr1w1zVKjYsy8hnS6b8BANqaFr1BqHPnzvqnf/onffrpp7rlllt08uRJ1dbWep3dtNvt5/yO5xlhYWEKCwtryRgA0GIRocHGzwqmxkVx5hHAZadFz9msq6vTgQMHlJiYqEGDBqlTp04qLi72bN+3b58qKyuVlpbW4kEBAADQ/vh0ZnP27Nm67bbb1KNHDx06dEjz589XcHCw7r77btlsNk2dOlW5ubnq0qWLrFarZs6cqbS0NO5EBwAAuEz5FJtffPGF7r77bn311VeKjY3VsGHDVFpaqtjYWEnS4sWLFRQUpKysLLlcLmVkZGjZsmVGBgcAAEDb51Nsrl279oLbw8PDVVBQoIKCghYNBQAAgI6Bd6MDAADAGGITAAAAxhCbAAAAMIbYBAAAgDHEJgAAAIwhNgEAAGAMsQkAAABjiE0AAAAYQ2wCAADAGGITAAAAxhCbAAAAMIbYBAAAgDHEJgAAAIwhNgEAAGAMsQkAAABjiE0AAAAYQ2wCAADAGGITAAAAxhCbAAAAMIbYBAAAgDHEJgAAAIwhNgEAAGAMsQkAAABjiE0AAAAYQ2wCAADAGGITAAAAxhCbAAAAMIbYBAAAgDHEJgAAAIwhNgEAAGAMsQkAAABjiE0AAAAYQ2wCAADAGGITAAAAxhCbAAAAMIbYBAAAgDHEJgAAAIwhNgEAAGAMsQkAAABjiE0AAAAYQ2wCAADAmBbF5jPPPCOLxaJZs2Z51jU0NCg7O1sxMTGKiopSVlaW7HZ7S+cEAABAO9Ts2Pzggw/029/+VgMGDPBan5OToy1btmjdunXauXOnDh06pPHjx7d4UAAAALQ/zYrNuro63XvvvVq5cqWuuOIKz3qHw6FVq1bp+eef16hRozRo0CAVFhbqL3/5i0pLS/02NAAAANqHZsVmdna2xo4dq/T0dK/1ZWVlOnXqlNf63r17Kzk5WSUlJec8lsvlktPp9FoAAADQMYT4+gtr167VX//6V33wwQdnbaupqVFoaKg6d+7stT4+Pl41NTXnPF5+fr4WLFjg6xgAAABoB3w6s1lVVaWf/exneuWVVxQeHu6XAfLy8uRwODxLVVWVX44LAACAwPMpNsvKynT48GFdd911CgkJUUhIiHbu3KmlS5cqJCRE8fHxOnnypGpra71+z263KyEh4ZzHDAsLk9Vq9VoAAADQMfh0Gf3mm2/W3r17vdZNnjxZvXv31s9//nMlJSWpU6dOKi4uVlZWliRp3759qqysVFpamv+mBgAAQLvgU2xGR0erX79+XusiIyMVExPjWT916lTl5uaqS5cuslqtmjlzptLS0jRkyBD/TQ0AAIB2wecbhC5m8eLFCgoKUlZWllwulzIyMrRs2TJ/fwwAAADagRbH5o4dO7x+Dg8PV0FBgQoKClp6aAAAALRzvBsdAAAAxhCbAAAAMIbYBAAAgDHEJgAAAIwhNgEAAGAMsQkAAABjiE0AAAAYQ2wCAADAGGITAAAAxhCbAAAAMMbv70YHAJMqjtar3vWPQI/hk08P13n9Z3sTGRailK6RgR4DQDtFbAJoNyqO1mvkr3cEeoxmm/XqnkCP0GzvzB5BcAJoFmITQLtx5ozmC3ddo9S4qABPc+kaTjXqi2Mn1P2KCIV3Cg70OD759HCdZr26p92dTQbQdhCbANqd1Lgo9fu+LdBj+OT6noGeAAACgxuEAAAAYAyxCQAAAGOITQAAABhDbAIAAMAYYhMAAADGEJsAAAAwhtgEAACAMcQmAAAAjCE2AQAAYAyxCQAAAGOITQAAABhDbAIAAMAYYhMAAADGEJsAAAAwhtgEAACAMcQmAAAAjCE2AQAAYAyxCQAAAGOITQAAABhDbAIAAMCYkEAPAAC+sIQ4VeHcp6DwqECPclmocNbJEuIM9BgA2jFiE0C70qnzbs17f2Ggx7isdOp8s6QfB3oMAO0UsQmgXTlVO1iLxt6jXnGc2WwNBw7X6aevHAj0GADaMWITQLvi/odVKdar1DfGFuhRLgtNDQ65/3Ek0GMAaMe4QQgAAADGEJsAAAAwhtgEAACAMT7F5vLlyzVgwABZrVZZrValpaVp27Ztnu0NDQ3Kzs5WTEyMoqKilJWVJbvd7vehAQAA0D74FJvdu3fXM888o7KyMn344YcaNWqUbr/9dv3973+XJOXk5GjLli1at26ddu7cqUOHDmn8+PFGBgcAAEDb59Pd6LfddpvXz08//bSWL1+u0tJSde/eXatWrdKaNWs0atQoSVJhYaH69Omj0tJSDRkyxH9TAwAAoF1o9nc2GxsbtXbtWtXX1ystLU1lZWU6deqU0tPTPfv07t1bycnJKikpOe9xXC6XnE6n1wIAAICOwefY3Lt3r6KiohQWFqZHHnlEGzduVN++fVVTU6PQ0FB17tzZa//4+HjV1NSc93j5+fmy2WyeJSkpyec/AgAAAG2Tz7F51VVXac+ePdq9e7emTZumSZMm6aOPPmr2AHl5eXI4HJ6lqqqq2ccCAABA2+LzG4RCQ0OVmpoqSRo0aJA++OADLVmyRHfddZdOnjyp2tpar7ObdrtdCQkJ5z1eWFiYwsLCfJ8cAAAAbV6Ln7PZ1NQkl8ulQYMGqVOnTiouLvZs27dvnyorK5WWltbSjwEAAEA75NOZzby8PI0ZM0bJyck6fvy41qxZox07duiNN96QzWbT1KlTlZubqy5dushqtWrmzJlKS0vjTnQAAIDLlE+xefjwYU2cOFHV1dWy2WwaMGCA3njjDd1yyy2SpMWLFysoKEhZWVlyuVzKyMjQsmXLjAwOAACAts+n2Fy1atUFt4eHh6ugoEAFBQUtGgoAAAAdA+9GBwAAgDHEJgAAAIwhNgEAAGAMsQkAAABjiE0AAAAYQ2wCAADAGJ9fVwkAgXLiVKMkqfxLR4An8U3DqUZ9ceyEul8RofBOwYEexyefHq4L9AgA2jliE0C7ceD/h8/cDXsDPMnlJzKM/3MBoHn41wNAu3Hr1QmSpF5xUYpoR2cIPz1cp1mv7tELd12j1LioQI/js8iwEKV0jQz0GADaKWITQLvRJTJUP/lhcqDHaLbUuCj1+74t0GMAQKviBiEAAAAYQ2wCAADAGGITAAAAxhCbAAAAMIbYBAAAgDHEJgAAAIwhNgEAAGAMsQkAAABjiE0AAAAYQ2wCAADAGGITAAAAxhCbAAAAMIbYBAAAgDHEJgAAAIwhNgEAAGAMsQkAAABjiE0AAAAYQ2wCAADAGGITAAAAxhCbAAAAMIbYBAAAgDHEJgAAAIwhNgEAAGAMsQkAAABjiE0AAAAYQ2wCAADAGGITAAAAxhCbAAAAMIbYBAAAgDHEJgAAAIwhNgEAAGCMT7GZn5+vG264QdHR0YqLi1NmZqb27dvntU9DQ4Oys7MVExOjqKgoZWVlyW63+3VoAAAAtA8+xebOnTuVnZ2t0tJSvfXWWzp16pRuvfVW1dfXe/bJycnRli1btG7dOu3cuVOHDh3S+PHj/T44AAAA2r4QX3bevn27189FRUWKi4tTWVmZfvSjH8nhcGjVqlVas2aNRo0aJUkqLCxUnz59VFpaqiFDhvhvcgAAALR5LfrOpsPhkCR16dJFklRWVqZTp04pPT3ds0/v3r2VnJyskpKScx7D5XLJ6XR6LQAAAOgYmh2bTU1NmjVrlm688Ub169dPklRTU6PQ0FB17tzZa9/4+HjV1NSc8zj5+fmy2WyeJSkpqbkjAQAAoI1pdmxmZ2ervLxca9eubdEAeXl5cjgcnqWqqqpFxwMAAEDb4dN3Ns+YMWOGtm7dqnfffVfdu3f3rE9ISNDJkydVW1vrdXbTbrcrISHhnMcKCwtTWFhYc8YAAABAG+fTmU23260ZM2Zo48aN+q//+i+lpKR4bR80aJA6deqk4uJiz7p9+/apsrJSaWlp/pkYAAAA7YZPZzazs7O1Zs0a/elPf1J0dLTne5g2m00RERGy2WyaOnWqcnNz1aVLF1mtVs2cOVNpaWnciQ4AAHAZ8ik2ly9fLkkaMWKE1/rCwkI98MADkqTFixcrKChIWVlZcrlcysjI0LJly/wyLAAAANoXn2LT7XZfdJ/w8HAVFBSooKCg2UMBAACgY+Dd6AAAADCG2AQAAIAxzXr0EQB0NCdONurAkTojx/70cJ3Xf5rSKzZKEaHBRj8DAHxFbAKApANH6jTuN382+hmzXt1j9PhbZw5Tv+/bjH4GAPiK2AQAnT4ruHXmMCPHbjjVqC+OnVD3KyIU3sncmcdesVHGjg0AzUVsAoCkiNBgo2cFr+9p7NAA0KZxgxAAAACMITYBAABgDLEJAAAAY4hNAAAAGENsAgAAwBhiEwAAAMYQmwAAADCG2AQAAIAxxCYAAACMITYBAABgDLEJAAAAY4hNAAAAGENsAgAAwBhiEwAAAMYQmwAAADCG2AQAAIAxxCYAAACMITYBAABgDLEJAAAAY4hNAAAAGENsAgAAwBhiEwAAAMYQmwAAADCG2AQAAIAxxCYAAACMITYBAABgDLEJAAAAY4hNAAAAGENsAgAAwBhiEwAAAMYQmwAAADCG2AQAAIAxxCYAAACMITYBAABgDLEJAAAAY3yOzXfffVe33XabunXrJovFok2bNnltd7vdeuKJJ5SYmKiIiAilp6dr//79/poXAAAA7YjPsVlfX6+BAweqoKDgnNufe+45LV26VCtWrNDu3bsVGRmpjIwMNTQ0tHhYAAAAtC8hvv7CmDFjNGbMmHNuc7vdeuGFF/T444/r9ttvlyT97ne/U3x8vDZt2qSf/OQnLZsWAAAA7Ypfv7NZUVGhmpoapaene9bZbDYNHjxYJSUl/vwoAAAAtAM+n9m8kJqaGklSfHy81/r4+HjPtu9yuVxyuVyen51Opz9HAgAAQAAF/G70/Px82Ww2z5KUlBTokQAAAOAnfo3NhIQESZLdbvdab7fbPdu+Ky8vTw6Hw7NUVVX5cyQAAAAEkF9jMyUlRQkJCSouLvasczqd2r17t9LS0s75O2FhYbJarV4LAAAAOgafv7NZV1enTz/91PNzRUWF9uzZoy5duig5OVmzZs3SU089pSuvvFIpKSn6xS9+oW7duikzM9OfcwMAAKAd8Dk2P/zwQ40cOdLzc25uriRp0qRJKioq0mOPPab6+no99NBDqq2t1bBhw7R9+3aFh4f7b2oAAAC0Cxa32+0O9BDf5nQ6ZbPZ5HA4uKQOAADQBvnSawG/Gx0AAAAdF7EJAAAAY4hNAAAAGENsAgAAwBhiEwAAAMYQmwAAADCG2AQAAIAxxCYAAACMITYBAABgDLEJAAAAY4hNAAAAGENsAgAAwBhiEwAAAMYQmwAAADCG2AQAAIAxxCYAAACMITYBAABgDLEJAAAAY4hNAAAAGENsAgAAwBhiEwAAAMYQmwAAADCG2AQAAIAxxCYAAACMITYBAABgDLEJAAAAY4hNAAAAGENsAgAAwBhiEwAAAMYQmwAAADCG2AQAAIAxxCYAAACMITYBAABgDLEJAAAAY4hNAAAAGENsAgAAwBhiEwAAAMYQmwAAADCG2AQAAIAxxCYAAACMITYBAABgjLHYLCgoUM+ePRUeHq7Bgwfr/fffN/VRANBmVVRUKCIiQkFBQYqIiFBFRUWgRwKAVmUkNl999VXl5uZq/vz5+utf/6qBAwcqIyNDhw8fNvFxANAmBQcH6wc/+IEaGhrkdrvV0NCgH/zgBwoODg70aADQaozE5vPPP68HH3xQkydPVt++fbVixQp973vf00svvWTi4wCgzQkODlZTU5MkyWq1aunSpbJarZKkpqYmghPAZcPvsXny5EmVlZUpPT39mw8JClJ6erpKSkr8/XEA0OZUVFR4QtNut8vhcGjmzJlyOByy2+2STgcnl9QBXA78HptHjx5VY2Oj4uPjvdbHx8erpqbmrP1dLpecTqfXAgDtWd++fSWdPqMZFxfntS0uLk7R0dFe+wFARxbwu9Hz8/Nls9k8S1JSUqBHAoAWcblckqSnnnrqnNvnz5/vtR8AdGR+j82uXbsqODjYc6noDLvdroSEhLP2z8vLk8Ph8CxVVVX+HgkAWlVYWJgk6fHHHz/n9gULFnjtBwAdmd9jMzQ0VIMGDVJxcbFnXVNTk4qLi5WWlnbW/mFhYbJarV4LALRnH330kSTJ6XSe9RSOw4cP6/jx4177AUBHZuQyem5urlauXKmXX35ZH3/8saZNm6b6+npNnjzZxMcBQJuSkpKioKDT/7zGx8fLarVq0aJFslqtnu+zBwUFKSUlJZBjAkCrCDFx0LvuuktHjhzRE088oZqaGl1zzTXavn37WTcNAUBH1djY6Hn80fHjxzV79mzPtqCgIDU2NgZwOgBoPRa32+0O9BDf5nQ6ZbPZ5HA4uKQOoN2rqKhQ37595XK5FBYWpo8++ogzmgDaPV96zciZTQDAaSkpKTpx4kSgxwCAgAn4o48AAADQcRGbAAAAMIbYBAAAgDHEJgAAAIwhNgEAAGAMsQkAAABjiE0AAAAYQ2wCAADAGGITAAAAxrS5NwideXum0+kM8CQAAAA4lzOddilvPW9zsXn8+HFJUlJSUoAnAQAAwIUcP35cNpvtgvtY3JeSpK2oqalJhw4dUnR0tCwWS6DHAYAWczqdSkpKUlVVlaxWa6DHAYAWc7vdOn78uLp166agoAt/K7PNxSYAdDROp1M2m00Oh4PYBHDZ4QYhAAAAGENsAgAAwBhiEwAMCwsL0/z58xUWFhboUQCg1fGdTQAAABjDmU0AAAAYQ2wCAADAGGITAAAAxhCbAAAAMIbYBIBmeuCBB2SxWDxLTEyMRo8erb/97W+efc5sKy0t9fpdl8ulmJgYWSwW7dixw2v/TZs2tdJfAADmEZsA0AKjR49WdXW1qqurVVxcrJCQEI0bN85rn6SkJBUWFnqt27hxo6KiolpzVAAICGITAFogLCxMCQkJSkhI0DXXXKO5c+eqqqpKR44c8ewzadIkrV27VidOnPCse+mllzRp0qRAjAwArYrYBAA/qaur0+rVq5WamqqYmBjP+kGDBqlnz5764x//KEmqrKzUu+++q/vvvz9QowJAqyE2AaAFtm7dqqioKEVFRSk6OlqbN2/Wq6++qqAg739ep0yZopdeekmSVFRUpB//+MeKjY0NxMgA0KqITQBogZEjR2rPnj3as2eP3n//fWVkZGjMmDH6/PPPvfa77777VFJSos8++0xFRUWaMmVKgCYGgNZFbAJAC0RGRio1NVWpqam64YYb9B//8R+qr6/XypUrvfaLiYnRuHHjNHXqVDU0NGjMmDEBmhgAWhexCQB+ZLFYFBQU5HUz0BlTpkzRjh07NHHiRAUHBwdgOgBofSGBHgAA2jOXy6WamhpJ0rFjx/Tv//7vqqur02233XbWvqNHj9aRI0dktVpbe0wACBhiEwBaYPv27UpMTJQkRUdHq3fv3lq3bp1GjBhx1r4Wi0Vdu3Zt5QkBILAsbrfbHeghAAAA0DHxnU0AAAAYQ2wCAADAGGITAAAAxhCbAAAAMIbYBAAAgDHEJgAAAIwhNgEAAGAMsQkAAABjiE0AAAAYQ2wCAADAGGITAAAAxhCbAAAAMOb/AZTESzFxkTucAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(8, 5))\n", + "df[\"BMI\"].plot(kind = \"box\", title='Ящик с усами')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGzCAYAAAA1yP25AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZxdR3Un/q3X3WrJkmVb3mRjMMZm8+AAIQwBEpZAzE7AEEIIiwODE2KTAGHCMD8IGEg82ZkJi8knCSHBBAIxITCBYGIwGbYACfGGjSVLlmSppd67X7/13jq/P2o7tdz77ut+LXXb93zUeu/dW3Xq1HbOqVOnTgkiItRQQw011FBDDTVsQmicaAJqqKGGGmqooYYaVgu1IlNDDTXUUEMNNWxaqBWZGmqooYYaaqhh00KtyNRQQw011FBDDZsWakWmhhpqqKGGGmrYtFArMjXUUEMNNdRQw6aFWpGpoYYaaqihhho2LdSKTA011FBDDTXUsGmhVmRqqKGGGmqooYZNC7UiU0MN93F42tOehqc97WnHrby/+7u/w65du9BsNteERwiBd7/73aMhqobKcO211+JBD3oQut3uiSalhhoqQa3I1FBDAj70oQ9BCIEnPOEJJ5qUQnjwgx8MIYT9O+uss/DTP/3T+OxnPzsS/K1WC+9+97vxta99rXKePM/xrne9C2984xuxY8cO752UEn/913+Nn/3Zn8UZZ5yBiYkJnHXWWbj00kvxZ3/2Z7XgDID3rRAC27dvx8UXX4z3ve99aLVaXtrLL78cQgjs3LkT7XY7wnXXXXdZPH/4h39on3/ta1+DEAKf+cxnPFy9Xg8f+chH1q9yNdQwQqgVmRpqSMB1112HBz/4wfi3f/s37Nmz50STUwiPecxj8Dd/8zf4m7/5G7z1rW/F4cOHcdlll+Haa69dM+5Wq4Wrr756KEXm85//PO68805cccUV3vN2u43nPve5eM1rXoNWq4W3vvWt+LM/+zO87W1vw9atW/Frv/Zr+LVf+7U103xfg5/92Z+1/ftHf/RHeOxjH4t3vvOdeM1rXhOlHR8fR6vVwuc///no3XXXXYetW7dWKnPr1q14zWtegz/+4z9GfRVfDZsBxk80ATXUsNFg3759+OY3v4nrr78ev/Irv4LrrrsO73rXuwbmy7IMUkps2bLlOFCp4AEPeABe+cpX2t+vfvWrcdFFF+FP/uRP8Ku/+qvHjQ4DH/3oR/HkJz8ZD3jAA7znb37zm/HP//zPeP/734/f+I3f8N795m/+Ju666y7ccMMNx5PUTQEPe9jDvP791V/9VfR6PVx//fXodDqecjI5OYknP/nJ+Nu//Vu87GUv8/B84hOfwPOe9zz8/d//faVyX/ayl+H3f//38dWvfhU/8zM/M5rK1FDDOkFtkamhhgCuu+46nHbaaXje856Hl770pbjuuuuiNPv377dm+ve///248MILMTk5idtvvx0AcMcdd+ClL30pdu3aha1bt+InfuIn8I//+I8ejrm5Obz1rW/FJZdcgh07dmDnzp14znOeg//8z/9cNe27d+/GIx/5SOzbt6803bFjx/C6170OZ599NrZu3YpHP/rR+NjHPubV78wzzwQAXH311XZbosxnpdPp4Etf+hKe+cxnes8PHjyIP//zP8ezn/3sSIkx8NCHPnSgRebyyy/Hgx/84Oj5u9/9bgghoucf//jH8V//63/FSSedhNNOOw1PecpT8OUvf9lL86EPfQj/5b/8F0xOTuLcc8/FlVdeiYWFBS/NXXfdhZe85CXYvXs3tm7divPOOw8vf/nLsbi4GJX3uMc9Dtu2bcOuXbvw8pe/HAcPHiyt02pg9+7dEEJgfDxeh77iFa/AF7/4Ra8O3/3ud3HXXXfhFa94ReUyHve4x2HXrl343Oc+NwqSa6hhXaG2yNRQQwDXXXcdLrvsMmzZsgW/+Iu/iA9/+MP47ne/i8c//vFR2o9+9KPodDq44oorMDk5iV27duG2226zVon/8T/+B7Zv346/+7u/w4te9CL8/d//PV784hcDAO6++278wz/8A37+538eF1xwAY4ePYqPfOQjeOpTn4rbb78d55577tC09/t9HDx4EKeffnphmna7jac97WnYs2cPrrrqKlxwwQX49Kc/jcsvvxwLCwv4jd/4DZx55pn48Ic/jDe84Q148YtfjMsuuwwA8GM/9mOFeL///e+j1+vhx3/8x73nX/ziF5HnuWdZWG+4+uqr8e53vxtPetKT8J73vAdbtmzBd77zHdx444249NJLASgF6Oqrr8Yzn/lMvOENb8Cdd95p+/ob3/gGJiYm0Ov18KxnPQvdbhdvfOMbsXv3btx77734whe+gIWFBZxyyikAgN/5nd/BO9/5TrzsZS/Df/tv/w3T09P40z/9UzzlKU/Bf/zHf+DUU09dVT06nQ5mZmYAACsrK/jGN76Bj33sY3jFK16RVGQuu+wy/Oqv/iquv/56vPa1rwWgrDGPeMQjon4ZBD/+4z+Ob3zjG6uiu4YajitQDTXUYOF73/seAaAbbriBiIiklHTeeefRb/zGb3jp9u3bRwBo586ddOzYMe/dM57xDLrkkkuo0+nYZ1JKetKTnkQPfehD7bNOp0N5nkd4Jycn6T3vec9AWs8//3y69NJLaXp6mqanp+k///M/6eUvfzkBoDe+8Y023VOf+lR66lOfan+///3vJwD08Y9/3D7r9Xr0xCc+kXbs2EFLS0tERDQ9PU0A6F3vetdAWoiI/vzP/5wA0C233OI9f/Ob30wA6Ac/+IH3vNvtWtqnp6dpZmbGex+W/ZrXvIbOP//8qNx3vetdxFnZXXfdRY1Gg1784hdH7SulJCKiY8eO0ZYtW+jSSy/10nzgAx8gAPSXf/mXRET0H//xHwSAPv3pTxfWe//+/TQ2Nka/8zu/4z2/5ZZbaHx8PHpeFQAk/170ohd5Y4tItc327duJiOilL30pPeMZzyAiojzPaffu3XT11VfbMfsHf/AHNt9Xv/rVwvpdccUVtG3btlXRXkMNxxPqraUaamBw3XXX4eyzz8bTn/50AOrkyC/8wi/gk5/8JPI8j9K/5CUvsVswgNouuvHGG/Gyl70My8vLmJmZwczMDGZnZ/GsZz0Ld911F+69914Ayqeh0VBTMM9zzM7OYseOHXj4wx+Of//3f69E75e//GWceeaZOPPMM/HoRz8an/70p/GqV70Kv/d7v1eY55/+6Z+we/du/OIv/qJ9NjExgV//9V9Hs9nETTfdVKnsEGZnZwEAp512mvd8aWkJAKJTTP/0T/9kaT/zzDNx/vnnr6rcEP7hH/4BUkr89m//tm1fA2YL6itf+Qp6vR7e9KY3eWle//rXY+fOnfi///f/AoC1uPzzP/9zdFLIwPXXXw8pJV72spfZ/p6ZmcHu3bvx0Ic+FF/96ldXXZef+7mfww033IAbbrgBn/vc5/D2t78dX/rSl/CKV7yi0BH3Fa94Bb72ta9hamoKN954I6ampobaVjJw2mmnod1uF9a7hho2CtRbSzXUoCHPc3zyk5/E05/+dM/H5AlPeAL+6I/+CP/yL/9ityUMXHDBBd7vPXv2gIjwzne+E+985zuT5Rw7dgwPeMADIKXE//7f/xsf+tCHsG/fPk9RKtsa4vCEJzwB73vf+yCEwEknnYRHPvKRA7cx7rnnHjz0oQ+NhPwjH/lI+34tEArYk08+GQCiuDJPfvKTrYPvH/zBH4xsG2Pv3r1oNBq4+OKLC9OYOj784Q/3nm/ZsgUPechD7PsLLrgAb3nLW/DHf/zHuO666/DTP/3TeOELX4hXvvKVVsm56667QER46EMfmixrYmJi1XU577zzPJ+jF77whTj99NPx1re+FV/4whfwghe8IMrz3Oc+FyeffDI+9alP4Qc/+AEe//jH46KLLsL+/fuHKtv0Y8r/qIYaNhLUikwNNWi48cYbceTIEXzyk5/EJz/5yej9ddddFyky27Zt835LKQEAb33rW/GsZz0rWc5FF10EAPjd3/1dvPOd78RrX/tavPe978WuXbvQaDTwpje9yeIZBGeccUbkXHuiwChf8/PzOO+88+zzRzziEQCAW2+9FY9+9KPt8zPPPNPS/vGPf3wg/iKBmrKUjRL+6I/+CJdffjk+97nP4ctf/jJ+/dd/Hddccw2+/e1v47zzzoOUEkIIfPGLX8TY2FiUP7RErRWe8YxnAAC+/vWvJxWZyclJXHbZZfjYxz6Gu+++e9VBBefn53HSSSdFY7yGGjYa1IpMDTVouO6663DWWWfhgx/8YPTu+uuvx2c/+1lce+21pYz9IQ95CAC1Ch+kYHzmM5/B05/+dPzFX/yF93xhYQFnnHHGKmpQDc4//3zcfPPNkFJ6Vpk77rjDvgeGX4kbhWXfvn245JJL7PPnPOc5GBsbw3XXXYdf+qVfWjXdp512WnSiCIgtSBdeeCGklLj99tvxmMc8JonL1PHOO++0fQYAvV4P+/bti/rukksuwSWXXIJ3vOMd+OY3v4knP/nJuPbaa/G+970PF154IYgIF1xwAR72sIetun5VIcsyALGFi8MrXvEK/OVf/iUajQZe/vKXr6qcffv2WStdDTVsZKh9ZGqoAeokz/XXX4/nP//5eOlLXxr9XXXVVVheXo6OUIdw1lln4WlPexo+8pGP4MiRI9H76elp+31sbCzahvn0pz9tfWjWC5773OdiamoKn/rUp+yzLMvwp3/6p9ixYwee+tSnAgBOOukkAEgqDyl43OMehy1btuB73/ue9/xBD3oQXvva1+KLX/wiPvCBDyTzFvl7cLjwwguxuLiIm2++2T47cuRIFMn4RS96ERqNBt7znvdEli1TzjOf+Uxs2bIF/+f//B+v7L/4i7/A4uIinve85wFQ/j1GcTBwySWXoNFo2EjEl112GcbGxnD11VdH9SAi6zs0KjAB77h1K4SnP/3peO9734sPfOAD2L1796rK+fd//3c86UlPWlXeGmo4nlBbZGqoAcA//uM/Ynl5GS984QuT73/yJ38SZ555Jq677jr8wi/8QimuD37wg/ipn/opXHLJJXj961+PhzzkITh69Ci+9a1v4dChQzZOzPOf/3y85z3vwS//8i/jSU96Em655RZcd911noVgPeCKK67ARz7yEVx++eX4/ve/jwc/+MH4zGc+g2984xt4//vfb31atm3bhosvvhif+tSn8LCHPQy7du3Cox71KDzqUY9K4t26dSsuvfRSfOUrX8F73vMe79373/9+7Nu3D2984xvxyU9+Ei94wQtw1llnYWZmBt/4xjfw+c9/PvJXCeHlL3853va2t+HFL34xfv3Xfx2tVgsf/vCH8bCHPcxzjr7ooovw//1//x/e+9734qd/+qdx2WWXYXJyEt/97ndx7rnn4pprrsGZZ56Jt7/97bj66qvx7Gc/Gy984Qtx55134kMf+hAe//jH26PiN954I6666ir8/M//PB72sIchyzL8zd/8DcbGxvCSl7wEgFKw3ve+9+Htb3879u/fjxe96EU4+eSTsW/fPnz2s5/FFVdcgbe+9a0A1JUAT3/60/Gud72r0pbPj370I7vt1mq18O1vfxsf+9jHcNFFF+FVr3pVYb5Go4F3vOMdA/EXwfe//33Mzc3h537u51aNo4YajhucmMNSNdSwseAFL3gBbd26lVZWVgrTXH755TQxMUEzMzPJo6wc9u7dS69+9atp9+7dNDExQQ94wAPo+c9/Pn3mM5+xaTqdDv3mb/4mnXPOObRt2zZ68pOfTN/61rei49JFcP7559Pznve8gelS+I4ePUq//Mu/TGeccQZt2bKFLrnkEvroRz8a5f3mN79Jj3vc42jLli2VjmJff/31JISgAwcORO+yLKOPfvSj9DM/8zO0a9cuGh8fpzPOOIOe8Yxn0LXXXkvtdttLnyrvy1/+Mj3qUY+iLVu20MMf/nD6+Mc/Hh2/NvCXf/mX9NjHPpYmJyfptNNOo6c+9an2WL2BD3zgA/SIRzyCJiYm6Oyzz6Y3vOENND8/b9/ffffd9NrXvpYuvPBC2rp1K+3atYue/vSn01e+8pWovL//+7+nn/qpn6Lt27fT9u3b6RGPeARdeeWVdOedd9o0n//85wkAXXvttaXtaOrP/8bGxui8886jK664go4ePeql5cevi2CY49dve9vb6EEPepA9rl5DDRsZBFF9mUYNNdQwGsjzHBdffDFe9rKX4b3vfe+JJmfDwW/91m/hb//2b7Fnzx5MTk6eaHKS0O128eAHPxj/43/8j8JIzDXUsJGg9pGpoYYaRgZjY2N4z3vegw9+8IOlzqj3V/jqV7+Kd77znRtWiQFUtOqJiYkTcldXDTWsBmqLTA011FBDDTXUsGmhtsjUUEMNNdRQQw2bFmpFpoYaaqihhhpq2LRQKzI11FBDDTXUUMOmhVqRqaGGGmqooYYaNi1syoB4UkocPnwYJ598cn2hWQ011FBDDTVsEiAiLC8v49xzz40url0tbEpF5vDhw3jgAx94osmooYYaaqihhhpWAQcPHvQul10LbEpFxoRQP3jwIHbu3HmCqamhhhpqqKGGGqrA0tISHvjAB1o5PgoYSpG55pprcP311+OOO+7Atm3b8KQnPQm/93u/592R8rSnPQ033XSTl+9XfuVXcO2119rfBw4cwBve8AZ89atfxY4dO/Ca17wG11xzDcbHq5FjtpN27txZKzI11FBDDTXUsMlglG4hQykyN910E6688ko8/vGPR5Zl+J//83/i0ksvxe23347t27fbdK9//eu9S+PMLbqACmH+vOc9D7t378Y3v/lNHDlyBK9+9asxMTGB3/3d3x1BlWqooYYaaqihhvsLrCmy7/T0NM466yzcdNNNeMpTngJAWWQe85jH4P3vf38yzxe/+EU8//nPx+HDh3H22WcDAK699lq87W1vw/T0NLZs2RLl6Xa76Ha79rcxTS0uLtYWmRpqqKGGGmrYJLC0tIRTTjllpPJ7TS7Di4uLAIBdu3Z5z6+77jqcccYZeNSjHoW3v/3taLVa9t23vvUtXHLJJVaJAYBnPetZWFpawm233ZYs55prrsEpp5xi/2pH3xpqqKGGGmqoAViDs6+UEm9605vw5Cc/GY961KPs81e84hU4//zzce655+Lmm2/G2972Ntx55524/vrrAQBTU1OeEgPA/p6amkqW9fa3vx1vectb7G9jkamhhhpqqKGGGu7fsGpF5sorr8Stt96K//f//p/3/IorrrDfL7nkEpxzzjl4xjOegb179+LCCy9cVVmTk5Mb+rbYGmqooYYaaqjhxMCqtpauuuoqfOELX8BXv/rVgefAn/CEJwAA9uzZAwDYvXs3jh496qUxv3fv3r0acmqooYYaaqihhvspDKXIEBGuuuoqfPazn8WNN96ICy64YGCeH/zgBwCAc845BwDwxCc+EbfccguOHTtm09xwww3YuXMnLr744mHIqaGGGmqooYYa7ucw1NbSlVdeiU984hP43Oc+h5NPPtn6tJxyyinYtm0b9u7di0984hN47nOfi9NPPx0333wz3vzmN+MpT3kKfuzHfgwAcOmll+Liiy/Gq171Kvz+7/8+pqam8I53vANXXnllvX1UQw011FBDDTUMBUMdvy4KYPPRj34Ul19+OQ4ePIhXvvKVuPXWW7GysoIHPvCBePGLX4x3vOMd3jGre+65B294wxvwta99Ddu3b8drXvMa/K//9b8qB8Rbj+NbNdRQQw011FDD+sJ6yO81xZE5UVArMjXUUEMNNdSw+WDDxZGpoYYaaqihhhpqOJFQKzI11FBDDTXUUMOmhVqRqaGGGmqooYYaNi3UikwNNdRQQw01pKA9D8zvB6Q80ZTUUAKrjuxbQw011FBDDfdpmN8PzO4F+l3grIefaGpqKIDaIlNDDTXUUEMNRZBnwPKRE01FDSVQKzI11FBDDYOg3lq4HwPpvxo2KtSKTA011FBDGczvB+79PtBrnWhKNga0F4CpW4Hu8ommpIYaANSKTA011FBDObTngbm9wJEfnGhKNgbM7wOO3gbs/eqJpqSGGgDUikwNNdRQQzXot080BRsICMjuL+1Rby1tdKgVmRpqqKGGQVDLMR/uV+1xv6rspoRakamhhhpqqKGGFNTGmE0BtSKzVui3gekfAZ2lE03J5oKFg8CRWwCZn2hKaqihAtTSzAcCIE40EccJCNh8dyvfr6BWZNYKc/uAmTuBu758oinZXLAyAxy7DZi+40RTUkMNNdRQDLUSs+Ghjuy7VpAZ0Fs50VRsPiBSi7pu80RTUkMNNdSQhlqJ2RRQW2RGBfV4XwWcgEYjUtagYU6g5H0Vpry9sG5k1VBDDRsUqN5a2uhQKzI13L+gNQfM7gHu+Wb1PEv3AnN3A3tuWD+67otQM/8aNj3UY3gzQL21NDKoB/xwcIKOA/RbSjHJ+9XzyBxozdZdPAz028CxO4CTTgdOe9CJpmYEQIC4vzi3VoH70WSoFfIND7VFpoYTCCeAQRhhNEzRNSMbHpaPAEuHgANDWL5quO/B/D3KmrmpoZ7/Gx1qRaaGEwTa2feEMYnVlFsztOog1N1EtRK4+aC3UuGSzAr9SgQsTwEH/01t6W5KqAPJbAaoFZkaThzQCG4UJlrFZX71FsG6g2iov/uMELiv1GMANKfVPUpHbx0Nvryrmq4+2VnDOkKtyNRwgmBEgmF+H3DkP1WAvUpglJih9pZWked+DkKopq4tMpsLVqbVVtDR28vT3W+69X5T0U0NtSIzMqgH/NAwCiHXWQQW7gEOfmfYwldRWN3HlUE0AAhldbsvKDP3gSpUAmslHUGFyUT/3eyNV28vbXSoFZkaTgxYI8eoGGZFEALWKjNs2TUvGwKEVmYwmi3EEPI+0F0ePd4U3K/63VR2xH22mZXZzUz7/QRqRWYQdBZVMLSBx3XrwT40jJRBrEIpqVo+1VtLQ4O1yKxTMLGjtwL3/jvQmh897vszGKVzYJ+tZmt2E8IoF1w1rBvUiswgmLtb+WDc+x8nmpL7GIzSXLua7YtVlF0zs+oghPojuT4WGUAd8T5ud3XdT/rebAWOZKyzBcBmnjubmfb7CdSKTBXIe0DzSPrdauKS1KBhRAxuKBR8W6nutHUDY5EBre8N51Tfnj56GOG82PQuMgP4RJ6po+XrOcZrGAi1IlMFNvVE3KAw6m2ldV011QNgeBDs+PU6WWSOZ7fcn1blVep6PCygGwoK6J/fBxy7DTj2w+NLziiBCJjZo2L+bFKoFZmNBllPRcMcOjbKJoL1EApVcZotj9XQcX8SZmsF0XDHr2V2oqlZG9zf+n3kW4GbvP3KyO81gcV7Rxd353iCsSK159W1LXd/rUIgxI0JtSJTCapMxFHFRdkPzPxIDar7NNDoGOZqtonqraX1B+Mjs26KTN1/6wKjUtwMnvWea3lf3Ux/ohZIm3EYLhwA7v2+OsxCBHSX1PP18mdbZ6gVmY0GWVtdUGgG1n0R1mWFOwzOISP7egyZQa+lLke8r8LivUpArBqE3lk6jv4Do1pRdpsqyOL90fdhpMLsOETRPvZDYOpmYOnwaPF6pxXL+Msm0WQ6S2oLKesqGTN3N3Dwu+79JqlGCurbr0cFoxbOm3hQVYKRH8utiottK61ln1/mwPSdStBf9PQh8WwCaM+rLc7mUeBRL14FAoJaJ9HxM1e35hRzPuVBwMlnrQ3X7F3A4iG1YrVwf7naYsRzc72O4Fv8uVJiuk3glAeMGrn+uA8w5Lm9an4sHQa2nqyq1r9vuDDUFpkTBctHlXnvfgnrEJdlaFSrMXez9FlXKTHNo0B7sTBHBFlXCcisN2TZxxnyPtCa0XflrLKfBNZvaylF0sI9wOwe4O4bR1NGb0U5c27248PDAOn/xChEAxV8XwcgrOMJNrrvLCyzPtCa1j/CSm3eStaKTCVYhw5ePATc802l0ByvMjcajLSKwzr7riKAnvdbApQp5jnMQn12r4p9cvDfhiv/RMFa+sicWjreR6QHKR1EKirwwHSjI2nTgIkjIyoM6uPRPv32iVP6+fgYVNf1aguZ3z+3N4eEWpE5UZD31OCPrre/H5ivT+SppVXlSaSjXFsbcgzVZ3kXaM4AS4eq59nMQCN06o6RB79NPwwob+EAMHUrMHPXehC1ycEEMBwVH1pDdOesBxz9IXDgWyOiZRVwIqN6EynfnwPfGSHPvO9YYTjUikwlWK/Ovm8MolWBPckwgjYYepJrJj3UlkdQhsyV78d9NiAbuyV8LUyUaJ0D4jHaRAOVrp5oz6ltqMP/Pgj5WqmrDlLqKOK3+D5FrTng8A+Uo+bxANLbKIMsMkONiQHzvLOk/M1Cx/msDbRnVQTnfqdCGaOGE+wfk/eV38/igTU63RfBfUf+1IrMMNBrqa2gcGDfd8bDcYKqpwGGQTmksy8AHPmBOpmz6vL06rWqxcEKqPvQnnsR8JXs8VL2jF9HFefijdT+UgJT/6mcMI/dppysDSzco7Yij1c4hlEela5qzZjbC0zdAtx9U/xOZppNnOhjwYNOLa3DgBINtQggAuSgu/6qwnH0WzqOUCsyVcD098ydytQ3t290iKvsRd8nYR1ORgxb/uIhYP+/rg633Voa4p6n2T1A7z58XDsJ6+koG+BtjOnHVcob0qKwnqvyrKOsEot6u7HfjIpH3l2/8m05Q/iEVEdaLZnMykNOnGg+eaKsMsafb5D1ePko0JwuTzMQNq9iUysylUFPpJVZpdCEsKqBPkjLv4+CxzDXa++3AIRwEWfXgl9mbGup4mqxv6LMxBsFpBzOkXL+HmCp4M6xFBTF3xkFpHDakzYnevU+LJDzmUs21fHkBcyKMnA7Zxi0a3GsPkG80KP5RPJjKrcy5n3l97XvJnUqaRAuOy/tf5seakVmaBjB6owPpBO90jhhMGpz7CpxrZYEqS0y4XiQUu33LxY481rmsQEYyLHbgEPfrXYdRq+ltj723aQYZ1U4nhGUrSIzgPGbNEPBBuiv4wl5X229DqO4RsAXLOutXK6yf/JM/RWiNbz6BCnHQgyeQyTVKTyZAb3lcnyU+nECHZpHBLUiUwlG7OndNEeuN+/AWRvwlfpmaIMEnVIzwPBUTmdBMf/9/69AmG6g+uYZsHgwbWEE4K4u1n+9pvqaDbtSX6c6h2gFC8A3EsFzvPuqZD5wZbl5zPejWRc6oK5LWfOJoapz/ATMCyLg6C3AwaJTQcMI+PWiXysyI/P7Wg9r+ImHWpEZGsoGfAXot5UZcOGeAQPpvjPI0kDex9pQDbOFsdoLI4Oysi6QdxAxaiLl40BAsZPrBulbc0JloDkarL0IQx3NJRw/hskvAx2oyNAQ3bDO9A9sn+D9wkGlYIw6JH9Y5ijvXFrX8AirBJnrSx8PqpD9aSIqIFovOslZZKjqCctBW3ghvwqzbhDeNCTUikwViPZK19DZMtcXnK2RpuMNy0dV3I1RhJv3TrSsFd+wx4R52cOWxRSmfsv5NchhEK2m3BMJq13B8XY+XorMGNy1CAOUM0NS6bHmcN6v9zZwUTuF1kBdt0Lhu9riE+UXbX1XukxxVP2+jspEnus5vNaTdetskanEJzcVYxkp1IrMsLCWFSaRv0ovw7PRxuTyYXVb6syPRoPPyrk1KjJ8FT6Mw69NWpUhs3RZRzlCWl8RLuzz+JmPrBqNxw0Cevqdcp+BoegfxjS/GgjwmqjNJCv48ei8ewdcZ3C8fNiG2mYV69ik0RJ9RDhH7bM0CmDjM9XP3qGEE+lALtfnvrJI/oxiYXlioFZkhoY1TLiZH6mbWj08wQTaqM6/htz2/OiQjYR3sesGjsfKn0j7x/T0yphN/u6yMvuXbdVY8+1GU2igI6neHvtFeEJ2WAvLejHHAhoa2iJT1SG57GTOceuiQdsBq8izZjB9XsaPqiwCKqZba/5VFzFoLlZEvO5jZYRzqExZPfRvx8+COkKoFZlhYS2d3F1RDnTtuQq4NuBgGilJBtmIJuiwK1oOR25RPi8D8XsPXJnm3fJRtd9eGvPjOG61DITQGrOiLopculcpaiZJ86hWDPS22FDK9jrWt8hBs8pY2DB9wGBYob/eVhmiEe6mDSK2wCpiYR0WeFUD9q337d1l5aovFbe+hqQzlXbxXuVMvslg/EQTsCmgStyTSgNIskXOBl2VHw/wfGTWiEsM6SPjMS/9/dhtSog/6CeLMgV5SyDrlAukE3l3C4fZvVBKZECHzGP6Z/esnu61rsjXHSosJo4L+QMsICdUkCZfVkFQPWkFNCNIVJy19NQSULrgWtcxrvnaKK2aRaSaNhgmvMIGgdoic1yB37q8GRWZEdI7bLC0flsJ3yjmiW7ToZkJ+V87i+53c1oFPhwIxj+HXT1gPzdw3+aZWnXN7kWazsD0vHwEaE7pnxXrVtavWU/dIVMVeq2Cvi8svEKSjdpHg/rjeJe9VkuIxjmUQ7yGromJsp5KwiD8gdV1EKzMqL9RAlW9060ijZxf3Ueu26kVmWFhZEcSB+DbiKbvkcEqBP7sHnXnzN5/8Z9zi0xlhzgRtC9bCecZsLAf2Pd139fFsyKFFro1mnNPBAzaSgvBW7VWFG5GSISryWO3Kcfx7oDgXQZm9wDTPwTu/mq19K7wzQFVlHr+zoStX+86UomFaDhEwydpzwPLU+p4dKUiVtEW3hbaAGffKnWQOTC/D9j3r8NFzB4EhNE5+95HFJcQakVmaBhCOx+EZzPBugnginhlpgRfb6UEz2onO8tHEug0laDvLBRnsWSLhNmXSszV+vlG6P7VyMJVjYNw+0oqK8/snorZc2XBSSk+oVI5aIEwiLYi3MdFaShNsL7lJ4ssEPDD5FdfMJj+4H1nUfmbreuFo9zaUjRXq6LSCnu3qXzkynjHUPTpz7J24JHih9nyO6HWv9FCrchUgYEMbRimyVdf7LeUOk5L1cBHJwJGZY0KLRojIqEyLr7Fp78ahm3uYkJFGvm9TVUY90axyHir+pLxnfKNGfrUUpheKxzDxu6gwh8l6YrSlDHz1SAcAQyl4B4Pmkon2+ppkDK9IJE5cO8PnI+GNJGz16muVfEShtgaG/XReK0gjbQNCub7RuFNq4Da2XcYoOhL6mVVJP6KpzUDLBwCVo6ms20UGGW0z/XANzhh4lGRJScxyT0Tv0kyjLmWEClSGw6KaFuFUCl0VBxB/ZO0GL8l/b49D0zuBMZCVjeC8vNMCduJrWtEtFplasRjKKVwjgJnOAZmfqSC+Z1+EXDy2X7ZM3eoLtx26trLrkZgiQI5AqveSIAqbi2tgo6NzIaGgNoiUwlGaGIOTd/8s7u0wQfWqIgLrVIjomFkKwqBSkGowr70TMGbwCoDIO0HMYqV+IjN1ymFcRAsH1EXeN7778U0DERZcqXF0Vv0pZvt4ehKQkl7pco+XkNoZEeiGcFZW20bJfsFyqmbgjm0LnOmilXO0FBFkWD+eiOH9QpUt4F40RqgVmSGAarK/AoR+JkL42CsFv96wqiJMm05yglakUa+HQTznTFlG/mXMzpujQgtMEEdBh5b3WgdPKxFaQj6jWUkBWI92Q+pq0AW7gHm7y5PV/hqQD1lpmLulOIfAtZ83HnUNBDWJiIGKAqp+4OipBWtgGtx9h3FgiNyoh2hxZEqXoJadRtuIy2kRgS1IjMsjOrYZugjY8Kre+83GIzMIDNImVs14lWkLZr8VMA8RmFhqMhw1h2GYXqroXfEVplK5fH5udaFh0FTIugIa/drKzoRV55pncfQiPGv9rSMTSdVMNGRBmtLjJUoyVrG/whh3XwnEwcVNiHUikwIUgLH7lARDi2QCnTGfjoY8iikx7RCPBvdd2KEQNGXEeAc0lJgy+anlopM2SW/zRYUz7ueToqjhCIlLvXMDt0h67Ue98QMhNCyUJRsLX10HOfrcR1KrLBRXJlSxYk5tT3LFxP9NrB4GNhzo7K0jRQGEjfg9Tp2jmVRZY7xq1hIeT+LeN7mgVqRCaE1CywdAfb/qz8BSQIrZjWwziuhDQsjM8m4j7VuLYWWrUrpK6YLFZTCMtbISE4YrMakvgoFLbkaX2ubDaCj9F2F8ocy7o3CQjtkoevqM2J+yrVt/5We9lwF/VlXHcGf37d6mjwS+MIjmYB9HZJPjbp/qqAbhreFiNdjYXkcoVZkIiCgVxCoy8QGWK3wJQRCkTFjc+x3M46jPCuJ71IEqzDZDlw4VeyXSGgEiO0qtGo/J1Y4ZRaZjbLyKdVXVrkVkMxflPl4XZBasAINv0fZgnTrdqFrJSm1TmUXFWeE+xrrvNateD6PGg1A9ka4zcLn6BqtLpXG+yqhkpK7ynpQ4Y9NBbUiUwRVLe4bv5DhYPkocPgHypTrQYlgPnY7cPjfgdbckIVpq0ev5V8RMBSK1bZXkZAaYGYNn3uOw0WfCRwnVJmpKMhT+VYjmFIKJsG1uZTA0duAmb2Dy69WoP4osaCNzE/rOPVjit7jYZUZydZSAm+Fov13a1Q0yvJUnetVyhipsrua/j1ei4ONBbUiMxSswooQoQgZkvktEs9OACwfVlcBHPh29TyUK5+iqVsrpud1JGDmTuDQ94a7f8chq76qSuU1+T0GZO5vCreWEP+mxO+BW10bZeVTQCdXtMK2HWp8mjwph0KGo7MALB8D7v3ukEHyqlpaShSaSvgH1HkkCsWQyslxUYQlRndFwTBjJhx//PcIyPHKGkBfZd4SjrchCF2r/8vIFHHyFxibCGpFphAKGEtqP7XyOCphruGppRMJRNXvwTEXpBGQPE5ZXpASclkPWJmuuPc9IoFStiI3kX09RSbsd/5DJp6XMcfqZN4nINUv4bNMXwg5UqfGomwVLDLDnB4aGaxGEV9HIFLbOasuls2FNVtOCeVK9FoWlyinjzQvWA/lceGAundsFA7MwyjBxL6vFs8GgqEUmWuuuQaPf/zjcfLJJ+Oss87Ci170Itx5551emk6ngyuvvBKnn346duzYgZe85CU4etSPVnvgwAE873nPw0knnYSzzjoL//2//3dk2UYKzR8GwSr6XA0MWNker0HUb6tJVHi5WUU65u9hd+ZUVcSCugvhWwFWA5XzD0hTtJIvWpklryhI4RqChuMF4RgsO8HEnaqH7qeCdgkV95E3S9F8HVTnVRSxJhxDWmPWC9bar2VpItxFcyWVruq8GhKGceKnsnRB+kppNbRmgbm7gQPfKcdb2f9vyLYZ1C+bBIZSZG666SZceeWV+Pa3v40bbrgB/X4fl156KVZWnKPnm9/8Znz+85/Hpz/9adx00004fPgwLrvsMvs+z3M873nPQ6/Xwze/+U187GMfw1/91V/ht3/7t0dXqzVD2cAeYlANwh0J3+MYR2b6TuWXcO/3Ey8lkgwlRVPW0avo1dAb4lwFjlXlD60rYUA7/Z8cwOjsyfthnIz1lxNpfVuLv8Gg1WsKV2H7DBNROJW0okKSdHDkfVsy3wduaYxqng6yCJwIZYdQvDhZD6WnLHtomRkRhFtXcQL9Mcgis5ZFGIC8k3g+BD+rTMMa+e0GhaHuWvrSl77k/f6rv/ornHXWWfj+97+PpzzlKVhcXMRf/MVf4BOf+AR+5md+BgDw0Y9+FI985CPx7W9/Gz/5kz+JL3/5y7j99tvxla98BWeffTYe85jH4L3vfS/e9ra34d3vfje2bNkyutqNBKows6qoQsbLcAsdR+a4MSoC2ot6C+mJMZ3DMG77qKJw9trB7MNThXgj68VIEgy7ii9I8nUF4XrCnX2rwFrbOuxj830NArkoy+xe5Wi+7bQKicPXFegYSOvx7kuqNj5XixsYzfgs7euCZ9HjMmWKo1rDIqiSs+8a2zvvA2IsvVU3SIldV9jofKgarMlHZnFRnTTZtWsXAOD73/8++v0+nvnMZ9o0j3jEI/CgBz0I3/rWtwAA3/rWt3DJJZfg7LPPtmme9axnYWlpCbfddluynG63i6WlJe9v/aFs8o2i86lgAh7vFVfq8bCTdhWTnCtL9rbp42WR0WnLFBHPkjCgj6qms882CPMoW4UWOvkOOy5S5aym/iW0theAub3Awn6/zEKFPOy/qoI2kaZM0LTmgGM/BPqJ1XYS3QZTcFMKvn1eFYf5XMUihXhZ3Eo8qjbi47mIF5rih+mbIF3eVwchDv1b9Tyrgoo4ysbZRhp/Q8CqFRkpJd70pjfhyU9+Mh71qEcBAKamprBlyxaceuqpXtqzzz4bU1NTNg1XYsx78y4F11xzDU455RT798AHPnC1ZA8JgyZXSbooX8g8w3xhZN/jMaA2kMWg8qoq0fbDrPIjAW3+S6y+uIJSeXV5PPsvAUtH1F9lGFaIr0YRY+mLtlLXBFIVYaJvD3TcHKKP1rIF2FkAjvyn2sItgyr0HE9fhmHaZ2icg1APKHNd+FIxv8uI0O7rNKULv5JnvSbQmlFXLOR9FXdrqAXYgDk39GKuaD5uXli1InPllVfi1ltvxSc/+clR0pOEt7/97VhcXLR/Bw8eXPcyk7AW3wKVAJHQG+mliUPCsHu+yfQs/spqmb5RJtbk7Itqc9gv1EG4rRUpViWChOe1MiDRt+vt5yAlsHgI2HfTKgIUhjBCJTc8iVSIo8r8SYE5Ll9VoUwprquEQdZLggukWZqIhlDmh0k3DCSUjdKVe9Wt5BI8hXmCdl2POWOtdkW4CffMdXD3Uo7lfu7meb8DzO1LxNoqoTXvq+r028DULUrBZeUUlT96KFOIN69SsypF5qqrrsIXvvAFfPWrX8V5551nn+/evRu9Xg8LCwte+qNHj2L37t02TXiKyfw2aUKYnJzEzp07vb/1hXW0jJStdo67/2eZsKqQ1HPAG6ZYzqAKYrVUR1bwvWqekB5eJwqSDxDAqzU9jwwI6Le08CwLMMiUzkFOjt6j1dBdojQMNd6HLbtAwVi1tWEV7bGq7bgB5SfH6iiBt096cdLq5zi4LNHNhtkuqsJQMGB+laVZDQR1TYAkwlI7w+GFPuyhgLm96rDEvq8H6Cq0R2cBaE6pWF0hGcNC3lenRlcbVf0+Yo0BhlRkiAhXXXUVPvvZz+LGG2/EBRdc4L1/3OMeh4mJCfzLv/yLfXbnnXfiwIEDeOITlUPpE5/4RNxyyy04dszdYnrDDTdg586duPjii9dSl3WBLCcs9wjknRyoeisyf52YyNFq4ATcUVBUXNLxdoQrh5RAWZUDaIGwWD4KHLlZ3c+SzMfLTik2ZPuZiLDcA/rJ1XfKElDCKGyfr2c/l60yA1pSeQfirkJCBTxDl12eVhKw3JPusFmSlnDeDVBO1wwV4o+s2s9rvSFNy70LLdy72MUtRwf7/nSyDO0MIxgPJflXK5DtPC/Ar/ESlEJjeWLeUwpJax6eRbqUJuGSZT34ViqWVg4Rr2bhgAp9Uep7MwRsYsVmqFNLV155JT7xiU/gc5/7HE4++WTr03LKKadg27ZtOOWUU/C6170Ob3nLW7Br1y7s3LkTb3zjG/HEJz4RP/mTPwkAuPTSS3HxxRfjVa96FX7/938fU1NTeMc73oErr7wSk5OTo6/hakEPtIPzbTQX+zgbGc7ayl+uBidXhsqE6BrKWC09/gtUv2cIxYygPIOfJ7UVMzQwfMuH1aqp1wTOf9LgbNEevmubhXaGqeUMJAkXI0grAuXT698RKn7DwiiZUtQ+Q+JOnVoCIT4pNghPWQLC0WaG+fkWTpI5HlwVx8Dt1QHzcdBWW1Wl1UuXMlWtUeFfNaTNZjIH2r3yKMxEhIMLXbQXMlz8gGw4YaMwJPrL/jc47SBozTh8Ay2TQT+m6CjEEYbVCHFpZSrPgKO3AGIcOOeSAjoYZF0VSJQATJyE0kVGFC+sYLG1SZWZoSwyH/7wh7G4uIinPe1pOOecc+zfpz71KZvmT/7kT/D85z8fL3nJS/CUpzwFu3fvxvXXX2/fj42N4Qtf+ALGxsbwxCc+Ea985Svx6le/Gu95z3tGV6sRQiYlllsZ9s93k0ypneXYt9DHcrfqRAonA/txQmKLFNFcZJEZ1UAPGERlhg9g9u4EHqTbP9hi6ec57lnoYa6bKj+kS7VBq5dhfqWPBeX1l6CpqvJ5HJiEVawqjsUiRbboKHxFS08vl9g/18N8NxFSYORbA+p7sycx1+rhyFLGFIzilXYaT9WiK/Z5JZ+ijSY8iCmv6XFAFcdXp9XESjfHwlKw1Tlsm8hUbKs1QHdZ3fHWXUQVJYiihVbJmC5VikrK6S6pAHnHblNKTRH+JN4Cugwcuw3opE77JmjahMrMUEoyVajg1q1b8cEPfhAf/OAHC9Ocf/75+Kd/+qdhij4BQMXfWDscWehgermPw/0enlwRn/cs3Fo6noOoTHmI7fMF+fW7YehO+tYMgePQvwGnP8ThKlpVJdDNrvQwu7CAwws9PPF0nrC4fo5ps3S8rMhROLHqSuBdN1jrVkbp+wHMeOkIsHQIs+0JzCwsYmqxj588t0ApihT3sjYrLtJlJfu1WNFgfWOTVOin1Ww/GSWmcn/H6fqSsNKV2LmF1v8+mfUYl6TmT/Um4G1eIc1qIe8rX5UKFjk7qiJFRiCThGZX4uQxwljVhYzd0krwkqyri62yxTSkArLMTzNuPmWlDIa39t3vwWe2kgj9XFb3W+SCu1AbPtGDLJy0g5KvZUWLeGIPWR5RkQE8xkcAOv1UfyX6ISwnqWgKeA7LljnFdJaQNRogxVxRZlEJCCluuzit/Sjrp+YUMLsXojOBTj/HGG8fjsfSO1oYaCmobB2qSmeFOgzqCybQSI0yC4fmW2gu9nHKJPAgr7yg3PaCElSnPRiY2DaYpkJaqqQJqSxMVhFhERGBwmmepfpj2LEkGipA3SCFgeDqGm6RCoHDi10sLmXYPpbhIYPo8eZOxTE1cNtyEK402gEPNx3Ul0YWAVMo3P8JDXpthcAbSBtqa6liHb3TL8PctYREO1Zd0TiGstjuY8+ixErRlVEBeK55njIVnp7i/V1Ana1uVaVvSMYTZSdgeWrwLeEVx+fUisSehRxZUtAmnlUVTASMyS4aDQGilAN7BQtIFUj1FQCvlyOUodK8yoXDULQmfEl6rWj74MgKYe9CDsnGd5YTFjsZ7l3olpc5v085t+/71yHoGgCEigrxIBBpPEmLnPkaKCxZmWPxKvqvMaaUGZL+uJZSWRV7K0phI2IG1lgh7/ZzLLb7mFrsl/ePcHlU9sRCjtdlKFlABd81RPwiJcsouXjbLFArMquF1ZiaeRqzJRKZF4/jQLLbMgXvBiPwf1adfIVWp4plkrSM8dhyF9PLXdwx262Yv4Ae2XcnnAL/CoqYDiO3rMpBG3YzibmO9ATVUNCeV/ErwmOfHIZQrpZ7hOnlHg4em/dfFDJZoHBF7CNAQyhSpAByLrC9cc4bb9BxcP9du5thrhM6EVft/xHNsaqm/7C/+20V8ffAt7x0S13C0cUu7p065iVPL6QLrBLdsmP3FaGarrq2RJWtr/q/ubthx/RIhK1Qyoy5J87gXDmmjldbhZAL+nC8CS+FsdLERfGxnarDAEU/8s8J0lGQNsw7cxewMsPSl/D9TQr11tIgoMBYzRUPNmgH87RQUQkVGATvTzAUmeBHYdbNe3AmXfZXdfVHBFAOo4dLAJmsSAeRf8jd5Om1gYPfAXb/mHkRHIVke+Upesy7kpX+gbkWmgsZOhM5zj0JxYyvCLKOssgUHSn3xtSgthBWQev0y0+fONzV+1kAaAggQwNSEsZCXEMLIz/9oYUOluYzZDtaOOvMk0rSF4xjLgTKHJtHMR1DIdRtAs2jyrnTlE2A1EKul+VK2Zm5K6FUlhY0AmJHh8/nm2u8vbmzoCwoZeNwKHJJby3lfrn9NrB4r0VGybkNN3eT6zGmsCSJHCQLEmO3lO8O4M29ZeVEHNIR7SsXzJlNALVFZigoWGGhYteHq/lSoXg8oEw4JWdoCaoh6M57WhjzFcIQ+Sl30WK1opnej49xOr1B+MlkH1g6rARMYf4CpaN0deVDu5vhWLPg9FMZ5H31N7AMUaE9A3qrWgWH6KOGDZshgq2rkrYacux3exmOLcfXEkRYIqW8AvKBaSowfdMPkeM81PhNLA6ssrxwUAU7W7ynuJjUImhN/KP6OB5G2FVuyug5UzYJ1ZWhqiBE4jQUeR8qnXmVCiPAodpCqjh/6vkQONMv0/ygMM/mU2KAWpEZDoYQWINxEPs7UTCsIhMmWSXteV9FoG2MBxO7Kj5SypCFgqBUg7AUrs7N5C+6DJJD0aV66foQgHYm0BvmEjoi4OitwOKBCvTo91VW71SAiaCEb+TCUHXFRmgIgYYQkBDI8iGY8yC6m9M2TenILRQYCUFVuno2n2tR7sosXuHihkE/jNiaUjoLcK0aQh63dsWommErHFtrGCPDgLHIFC2CLPHhnNLfkxbVkrFCBcfIZck4KISwYQcpLGsZwxsbakWmCEItNhrn6oGIgh0VIox/FzKjAVr7KKGsjKO36b3VkrS2naj6NknWVYpIYxwe46pqOpdSWVBY+tSit3DiRoePWB04BFtLpTgBH0eBVYQACCLcOVO0PZTCK1Vgv8V7gbyLwrYq2dYqRZ/4FuNk7yv2kxBCW2SYIC/Ymk1Rk4Spm4FFdtdaoqrDCc3jMMfSgxOpMZXUu8hPU5i4KN2qYdCcLC/L9y1bhTUlKYRH3GeySJFx5TvKA3pEw39T1FbdJrzIvsm0vF6pdq8+hga+p7isviS9y7k5lZpakRkGBpkFOSxPqSORPgJEk+FEa8NlJsb5fcCer1QUXBXrIaXy9chzYGw8mGcVmJ1REKwDKcXvkoGfFAjmoOeqVbBqCZgv+ZnSeQaAaaml1hABvoi0UsWRDMhb0d9oXUYfAeaALhGQh/5LqynU5F+ZBo7ennxv1aIq7cMbs+g6jqp0lprpCW7VnyqDK9EpYZoop9B6OQTNpTBaZYFCV5KwfwoV8JJ6Jn8PQbNty8DZN4nZXEoq+cOShRvD15oDlu5V1jUiuCsrSni/GRODxnCVLVMPV6LNidDLJPbPd3HnfJZAsDmgVmSGgOUe4UiTkA8KFtddVle27/v6gMGayFvZfL/OQKRWEpXosTO7CmLFECiP01dW6iTzFwnyL08pS1K/U0AylfB78j6cI2CinFK6Bym8qxAUnrWnihJU8t5uzZTRVyTcq9Cu2b8ApGggz1M+MimhPQC3t0cRUs9+8WFVxMAHQLOb48gKofBexGEWNUXWCIK6L2f5sPu9VliLHwmrSzsjHGkCvTyhhNl0A+a7bSP7XwAF1uzK1og1QkpJDF8SQZlwAT9elEykTrR9ex5YuMfxq9R2dkQM1FUFleZZ1TRc3vg0rPQyLDdXML/SRx4qmZsEakVmCJhaIRxY6ODAUobSAZT3lZd4v5UYwKg2gdYbymQYkB7MI6Q1I0In1zgGrVAiOiQgMyaQGQtpzSjGMb8/mVWIhEeNnbxBH4UmWJEIiCeKthbL269aiPcQV0WmRXIIgTZIyKfeD6DDq6dAHl2EV6DEF9JQQM9q00VCM26rI4sdHFjsYt9cuxhXFcWrUCnUNLZmgdm9ilcUp4rba53ZxKEm4dByH3dOrf44tyOxfAuRQGhnhDjMQcF8SlnQVi18hbrbKAnkz1NbBi8/OIKdAuvYbRSgAXyUSF0G2Zyu1s9lfKeiwp1bHW3zKTFArcgUQ4FwzaGCsFXDMfBBPMBKlZxRQxWNvsLV9KuAfYvAnukW2n0zsYfAYxSZiAoCxnVU06yDQcoRpRhl6cqwIF0Rwy2pkyjEXwas7LUKfKYEDmSs9vFq/Bwq0CMi1XI41PqXqNT2VZVCIM8JczzS4mrnY5FjN+cxg7orWX4q0xpP9rAyslxisVW03SCGihxQVr2pxQ72LUpMrWjrj4c4scAYCZS1JSuTSLcowXP+J+l8ZOyQIjhfmDKLZqLMcE4T/CCApdbdIvzmmclPLotXVpVDDRsbakVmKKABMqQCo7HMC/7g0tDNJQ4u5Wj113lQpfZN3Uv33KvwKmjqt4Hlo8mVQbPdwdQyFxQD4plwhiFDq5hmIOOT6ntq62kQFAjdkggyfnq7H83o9ECg2vZbiJ6NGf6bv+erVN5nskqMmER5nj9AqGxXU5JMzsKAgoUnvgoRM1pigbDqwNgFK/zyWnKhMODUE+XpeiXnlfb1Ycod2f/DtAl8a2QbvVziUJPscCv2AiniHQHYahSNAaDZy7DQ7OHumW7yvSlxMAxb+RLF1+MFJqQB31oCgj3MimUFSkOZggtgqtnDsRbPV1KF5HuHq9mVOLgs1YnJsvI3IdSKTCE4YcDZshvfiQEwcxe7mXmQUhMMJP15eAWYWuri5qk2MPOjVZJeqm0V0FOCK/XpfTcTI8H2pu9QJ03m7vbyGRJzbmqtPKkYUwlpFQIY2xKdajIgiCAE2W1vD2e0ugm2RAh+MDqh/0sJpIK6mAv0KgsCD2+BMDv2Q+DwvyNaWbXmgMP/oQN8pdCGgm+AEhFd41CSWmkwzk5Sum3Ay68wbtdyD1glOirgMbRUzVvoJ0ND0DFgHAxDUwEcmO/i2EqGuZZaCAixenzkKfXR2+BXeHsT4wkDx+k6CeOwXMMPSsdvITL3oeeGVw5/r7/3c4m55Rb2znXR7hbdwVKijHnlEo40JQ4udPCj2Z56Tn6azazS1IrMUGCCrxUExGseVTczZ2zQRWZS/j1msjkB3YzUnuWRH6yOzKO3AYe+X1ExKGH05nforZ/KX1ZWaxaYvjPOF/qXVFVkPEZiJiEPBFcBD5XFfynJcvj7Ls1AmTsihmsYKleYuMWlswjM7FGOzpZRSuUrNLsH2B/evzOgzwufrW7bwt93p+TXiphK8ritJYJQTpa2kEH1LanXQBoJaB5TbV+YJE8jspa2snYtEjIF82VNK2yClIRmH+hJoLL1kEiNwaGtf6lrKcy4LnFoH4UVoUzB1XSQ18a6n6z/GVUzAdoFoPldIQAfe9DvtkBQ15tUqkdyrBPUGCeQBNo9Ph6L0m8uqBWZMohM+Cjv435bvbfB2sq09oa6pTZkYqEFYFiQUh0/ntujjqoWQmqlw2gonHgF6Uvfxz+sXObvhmGEgQOpu3igykRkDDTJ0MwzvTvO03SWfUXV5lFUDNqGIwhtxFkrs9D5874ab7IfxMTg46iorFRbDWjDSroxTySUIJehrwUVyMmB2mFJOmZma8/7MZCKaKykDAygqb8C3P21ePxyIZYc23yFX1Z+6vn6CJss66FHE8NlWrpXHYmfujX5mgCIAUpwsjbrXt+iMeiX7X3zxk3RqcsK8yrqd55HfReQUCJaVPN8Sioh/jPlrkV+UdJ6AW1aqBWZQijoVpF+z8RzGkc4aIUAGg2UD59VDi3KVNZQ4CZxJxhpmG6QD8BggtI47Y2wvuIwGJ1ZYYRb8JxJIF0vFpdqsSuRFe7dx+2i+IRU7ZvoZyLCYo901N6q9RgAeaaC4UWrQ6PI9HSAwMx3mq0UR4bMvwQ9ZW1RVdkApLGUHfxOYVj+SuDlo4SuwcWNUBaCldkErYSMCAs9uKPVBXFkJEpsEqHCSkjcgcXHVpnVp6QtyPsYDGtQkIkJQidnixU9+6Y1q6x/0z8MkqVDyZXWZsBCoPjdanllUC4fR17bk7MSeYu7QQFRA8XFu2NuMF0No5sXLfIGzafwecRzgVW33QaCWpEphURnkxhscC2JkxSBZaI+x1q79XTAZDFMKhL4/LsIaCzCNUgZCtLa74OiXUaZHROQTpGxalCeOyWmAhxayrF/sQ+/rULFxjF2XUihgji/0se9SznunDWKTkAIuTFUGY7drnxg2HFzr73zvlKs8swx2II99xDMq3Jq1srwtNKxdFjdHWToL0y+ijJ0HhHRl8Y1tdTFoWaOe2zfa+i3FZ1JoWEEWPisRPBys77nyB6OsdTJPb9X7CHf1SqCqwCC8ikbKkP1x+VpChcVZXxtmDapMFZIbS+5N4HPXLS1RAGtPi4/zSA6XBoJILrlI4k7+dIpUOxntGXGaduEUCsyAWS5xN1zXRxpFmjA4eAVnOVwAVImUBPafGm6dYLCyaRBCLjgdUXpKtIY+AoRUvJ8GGVI/Rm0JICU71Iis/4TaHYzTC2x001WQfCFk3/qJg/ueXLpWv0MC60eljsZozNFgRkjVSIZ58p0356DN7bM97ynBK+3tRSWXaFdiXQZ+nsqrL6nKJUi81bzEqQUrvb8AFoq0jngORGzTBnIXZ+0+4TlVo4jSz2dRPfD9B3Kv+xoeoukAnHFtBUpRwPrbPhIxbYZoYJTHVPZ8Xk9h4ZUZ3q5xN6FHMdaZQH5FMw1e7hrXqKbDVv3kjlCwVlFgr/oLLO+JNAZnEhZa1PbTOa3ZnCrPlQfWWRCv6TNq7xwqBWZABbaPSw2m7h7rgvSzIexSDcOC7VuJSRN+qQJ2s8UfI8F6XBQNQ+fdEV59LaA599QNIGpPGR36mmkSA1RX61c8RKlNE5sxXj4FQXcmpP0i0iZxknGiky0Ki+mgYDhzwmn8NsVllFiMngrK+97jG+5q/vUkNKaVb5V3WaKYp+OSsLSMWJldOjrLTLzbrBCUow6JYD8Uy/+qhNqa4u99AOdsYwrM/FpwSRJifFSRmdKkTH8oswPjT8OrbcDMwwLcd7Y6FAd/3A6lV/QXLODhVYPe+bKtscVzK70ML3cw53T7WEK9CFBLNntIPsE/nwI/RtL8LLFV5pPSITzi0jqa+RFSUzFYC5E1vOgfFsdPjbDyNubT7EpCml4/4SVGYwtH0EvK2AYFIm/GDgDLVw9ajSpSLG85DWNpwGZLY0lTNRcllMUMMnfRB6erpBJFl6ul8BhJp+5BoUAMg7AdtIO24BBHr5SMt0ucxujJidgzKTzsCRWqDaNWPui2Rtj0jk+m+2nlFIGqCPw/Q7kzvNweLGDJRPYkSTQXVLh8l0BBQUPR6bj05lylPYSUOKz6riN2DE7taSnGBc09qLJlMIaCCfyrYclxLD3BUKEby8l6xIKy3SZ4eFkS2uSphFCJSWu6LmpWzjmQ4VA/faCRBLQ1bG0SEp/i6tgAqngmhWh4iT0DRf8h/6mNb1IcS5UdCv2md0uFbrosjYvWRhZZSyYLwTkRBiDcSrejOqLg9oiE8KSuveEx/lgw1btZkeDlsMgxhd+LRrwg3ANgjJly5udJfmMj0zJZWKVSCSAciUoeytwrRuaOfUkz3rKWbMQndvicCqDgCyjU0N6ygcMKlRMuKDRW0tzrT7ums+w3GVWGxmPl7Acn59XZbypVRYPziXVb0/hTJjBV2aAqZshl6fQaS4h8+5AMtuIoVBF0DwVlA2WyZsqspfGPxQUKFiUSMUVowJF4cjKAMVmKLIK8pVtLdm2reJQH66cRwuUqEO57VC/rRKZecg2JT3HiYC9SyFPTCl6VcdlAU0hfYHVLpzZ5rsgmbAsI0pn+7pIWecKeqSsN5CXyptB9XY0mHlxtNnBXfM5VvrkKeCbVZmpFRkPBJAx8+TSYajOFxB2vMST1ueRFMx+93a5m2OmrSboUg+Y6xghhMRE9zXpylDFSsLNnCmlzLwXAgBb8Q+ipWjLhAD0WupOmQPfZGUEK1+D/9htwOEf6FMnBQi1YBDCTWWy1qXBJvjoTXILMNHHMgfyLmZbGeZWuvjh4QWfdsYs0iAGSYdiYimhnNjYFnAKp9enjI5c+4T0O/ZdYQsRYXolw3KPK0wJnAMhFSsk8du9GICPtJApLEmnGjReBQiEfXNdv0zPAqlgpZdhukXwfLAGbEV6aYgS1hq/2JSFKU6vRvpyJ8NsJ6Rh0OmZijBE1moubhTffg2U9z+5OUwAji310B94Cm+1YZ1ZuVXScLp7K/41At5CiKLH6rv003lJudLj46jm/lfK9Nk3wlInw9xKH3fz8b9ZtRjUikwhkARw+D+DUPdU3tlhWPxA459a7ODu+T5mWxmmViT2Hl3E0oq/rxufvFgNDNj+CmkrTJvykfGQsM8ywaGVlubR2AejiI7lI0qhYdDjrvsJBZAk/x0Ip6AMfjNP31ssJwSU91Nax9EcDWRlYcoLma8R7lWPmycEZOQPw4XloL4IweHv5zkkSSx3M0wvNPHDmcE+CqWk8zID5RBEajyY4HWFyrLZgq3GqB3IeDwMHB/w21sAhxd72L/Qx6G50H+I5R0kRAqv39AtFL5PLQp0GUcWO9gz28F8s5lIP0iBWyOU4U4qcsNcj1o8ZiXfdi4KSLoKyEj9pcok6ZRmyRcHfCguH2JZBrX9APnBkgFOca5kxCxaZNitJa6EuzL6ueIbm1iHAVArMgVAOrYWAXkYG8JMTdX1HrvJy03nUkpkUmKp3Uee58glYaFdcindaiwylSBYORQqNdYxZACuIWgkaAZRgUSmCMyt9HD3QoYjK1qp4pE/7aI/Iaz6beDe/7Bh+gXitdueRUKzn2gLI1wo+ANhTChMfYy7Y982cao+fEW0SkhtCZptCxvfJnyPwnFkXomsA3QW0Cdg/0KGO+cJvVxiudNHlksmigYprCF2BbHrE6Nvfr/y3Rl0z1ZhCWlayilMzDMAbivVRT7VHgro5xLTzdDJm+FKWHLSzte8PNOWVCEYpJuHWdZHLoH5Fc6buOVrlSMssAqpjdsqyvYga0iIx8zbgnxCwMS0iYfO6HgiEbBvCfjRTEf51/lvlRIT9Vs4dpKYC/LoccDHTeHCyfSFsmjZrSUp2Qm8knK9ZzFO9WkOPgQHA9ZTEV4nqBUZDgNOk3gTPNXZA1dnjlGYO3eS5tlKq7wBVKYmfNZT22UFx4fTeGT14GpFDK1AUYocGGU6HaBOJswsd7F3tqvbyDF+11wJYSAzYPGACtNfEEZ+od3HgYWuluqDmLJSoBo6XY4GeiauTDH5AVTwKeBQZkXg24RcGBaecHGMzbxpyB4wtx+dvkSzm2F+pQfZDxVswnSbMBdtaZSRTQFfZGPSMPPeijoxpX2nylf8hvYih0kKmiqlsKTUH/2rMc5+h3OwQp2LeEK0tcTmloFVXHLqjVR+cGAkgkj1nSiYD5VLCBOW+b6Z9FwpJKDKtlEJ9ymETBK6vR6W2hmWlhcSOEPFpXgsqOFWtvXIUyb6qWzs8IjVR28BDv4bGy8DFNck71C0KgM2obJleANDfWppaIhXCb6cDgZqZNrmmMSA4NMDBulAUoO8c3uBpSPqUkVzBX1SeOjfxgFFZv7zEP+QjNOuCIwil8w/aIImjj4W4ck66v3dXwOd8bgkw7OOr6SsESIHJhLKIBFBkHIElGio5pGGAP4Zfk+RVkU4snTEfnur/dwpd5aMYAyWCmRSlkcCci1wpfQVxV4OzLQyLMz38Pi8X8w4Cod72C7mt97+qXokPTXmwj7iz4nAHNxsCj+LUWTGNEm5zsOTpIKfsapQSsHiNIZKdlCP3ATnK/Ez8244LxhdVa4UKYCoFYcJ3Agk5gr7Yr7P3g0sHEI6YTFFa/WAKcJPpA9wZClF0qkykgC0ZlScIU4b7wdPSQdLV2Uupp6T/d/uqmddtTDbcTYb3+boZrqOaf2LPSy76X6TQG2RKQM26Lw+9nwxOIRMJEhjjuq5B4VXHhQ/qwgp+rKOuuBuyTCSlBIT4pCeqX1AoRUeMSESnXYYHM/AMY08QbupT0FbBsqOPWXEskiSuGeuizsWcmtWppBJENQ7AkACMuAUlGQICWFbWQFMCUjDHI0jtnQWmWiVFTBTuEjlnlUsyuNIlAR09HHYbqc1gN6gXoWWtrhdi8dZuj25gBOgYIel6MgzfMXJPGvoO4ZklrhuYBBNiblkBlZIS7hFSACx8nydLoUTCcluKo6YjqHA9TsJJBZaCdxCFHSbrh9/T5lWmgfQaK8DMGO0hK8OC+0FYGVmIBZHIrvBfXYPO4RQMscLrNDpQtJ4SEq9Kcd4jLnmI++l8YbWczsGnWyi8D3JdVIUjx/UikwRkBZg/iOopwXOtJYRFztdEoRTgIVz7pWScO9Sj7GNgtMeA+keNIEofhc6gnE8yZVmWN4AGr09NNeKhbkqoLQTNuIdoRAPkSYmM0OQ5RKdlUU0OxlWOkyY2S5XOfNcq63C8NzUeChgUKnIs0Xg4XDM3SoHfNvC87MoOKpbNJ4SwyJ+r7cbBlPNgInCMBS6XSgUjC+Zq1u9I/rTRBq6nMkcSFYsMbcVAqG2l7rLQGfRsyiQqGA9LbJsQqL4rhz9Obm9BLeB4JgsVxAF50lrEPRs3hOKrmMpGkPpOUDkH2FY7hIOLmtHU75Q9L6tQimoCrN3A7N3gbIM1gMstccf1kfqxQvzmxRhnkLw+U/E5PjhBXJp1RAOA+IxHFX5PQVPzJaV/k6J2mwmqBWZMuDjJTHVoqQphcD+JrvKSLGb+XYPs3PzmGl29buCSSFlxdViESR8JwZFqKSStIWZEnntI8O82CoywjGAYaVuUy5bIdkJHU9s7rMioJyyCdAnJVI4CZJyKDVUoPBqhAKlIRncrBQC2r1nErZPJbvMUko/T6ofkk9kSZoKaozp20KFKKGUeGnZj+UpfRnhneVl8nI9LAH3LmyDsK0qbM8QoZtLtDKelqI0VplKWLs8pWxim/0qViW4mXJcyactBSNQEjxsjGeyOk01Mxyc7+BHM22bcm0FDaHAEQFZC+gsg7pLevipG6aTwK22kSLiPgtnF99WsygS/R9iCeZtnriri4iw3CP/4tuIDKZAcdYXWgXDcjcZ1IpMKSQYE6hw6Prp0jiU4HN4zJpHEqHdT+2jB+Ucux049D21auTQZ/EMTETeFI18Ynlmx2RFtAI26Pj1EGDnZ6DEpMzypZPKtCGboPq4ZHplqP7zX5kfjBZhHBwFpBWOjCFLdZJBSgmpp09ufWT4yEjRbiSV/tmaUfF1egO2akJmyPvMCF0h/H4qUa64UPGjELMx46Xxvw280ypQUCR/5uFOfHqKTq7ufwrr7ukE7iVf99utpQIFxmPqpS/i9jBwYLaNvfM52llxGouCC6ISQVY6o8xFqdYlgqX2tmlXp8ikoseWhYZiqZDkVXoMhFcvGljqFPMVu9gR0NFzWf6BJ7xKgFs7yFEdOTWTf1+Yn9fRWU0JKBgfYcT0AoXMDuFg3Myv9HBoOcfd83mCtpBG8h+xHhGGb6bqtEmgVmSSwAZMERMs3EooHwT+20a0evJ5dgKX7Ktw60dvd8+WDgNTN+vbhdOTIcaZoDXrxs+s0CzBm7Ry8Pwhs9YaQ1RUHBumEJIXWQbCMlIomaBjjEsCEILlS2B2D0kpOCS1Umr4AmuDUAhGeHXZx36o+u3gd9Qx8WS9w/4ySoLREjQTE8Idy0xCsTAf+AxOyCmmX1LMIEQOoRtXhQpAUPcgndfu/DtB+xSE/V8AyasxwmdxpbM8w3I3w7GmmTclgqx0u3N4IPa/R1/pwmPVBbHfZfQWvYvbzl2cmuA3ieIkEQ4uZZhuA+iv2HAKw4OZsBLS/kwFZeAQKvvBKzM0k4oIBbwo+F029o3jvdnU5HlIYrmjThhON3s4vNzHkZZKHeFJ8kL+bQ2K4QaBWpHhkOTQoZAuj4bqGLTJ5Aaw+iZ8fUd4H2mcKZIk87JvHlWxOA58y0/Ub6sJH92KTIwsTW/zGHDk5uBodkKABIpXuy/R7A86eRIIm1xtgbhDEQXKURnTlC5YFKMU3sMIH8/gaPWmNUl7v4mNaAyABxlUCxh3zQJxfxUPdUCHpsEqMt0VFUdl+ShwzzeBw/9RXN8iMGNNNNSYCJUoCvowsu7ARPsCCPpEFvx7ilCcNUFQMp/SLtS7TkZY7idoQ6UCEFqVDAQXrENKicUeoe8FU/MnXqwaJfosWasgCRM8Pj5DTLA1ENC/0g+yBDh0WLYSKkzasKzhwNMLoe8sTJbDIJz37XnFT9jcrLJdlhOw1NNzhA02ImClT5hv5dg714fMpQqnEBJcBazyzFtWgHjbWpSOx0gh4GLA2IoHv1PjrOA9T2M/wwUjawN+MlLPG743ML/cxP7ZLjrt0Lob8PoUffbeutpH5j4JLsCa+WBMLbU6LLwYzk9phmDaVyJxmiJGWukRlg8DR28Fpm5l6VKOvRJYulcdz14Mj0YCLjBcPBEPLXRw11yOTj6IybJ6tWaUsCcj9IMJnWD0Ybnu1BKf7PpZBWtZfJqWCVVz6ty8ktw0rk3Skmz/yaQlrozBhs6+ObAyHd+67KUhvw789muSSpFJ+WHYFWBKuU5B2kLosddKFjM3V8KRcXChi7sXciy2OlG2mNkHNIW/g8SGF0sCZtuEe5dz3DWXBW0XSGsPP3snhMWnrilJCGMrdIvGHOD5MXllqHx9kjiyLLHSrWJJKeZBFveat16i4oaD2X3AgW8D7cWkDAWKF4N3L/SxsNKKCm4A6OYSEkL5iyT1hIrj0lhUebeVLX7M64HzPJwtqaQcBx8TBeEkdNLcK8ZXdoiAfq8LAtALTxR6c98vwM1lYk82J9SKTCGUDMZwz9Z7zwROgdnUDB1it8J6p0FDrTxFVpGlJnzemlcKSowg+Ate2zKKJoKCbqeFdi/DcqcsBLtPkzOKJBS5pHnWPOF0+hYZP09x37CdYZWOwM4i85YXcVNoGoiUs6+6N7ZRcPw6Ii6wHrF2SZzAijMaBsx+A3CrxAZ75hERfRJPxyiCl5L9DkyIRWdZfJoDTKxNZJ6h1c1wdHpGF120pZiiM1mQ+ia1kinUPUorfcJCq4eFlSyRfhDTLj1Xl6ajaPuIUHAsVkGWA+3WEvo5Wyo5DUp9SIq2wNJym1avyIRjhhDH06kCeVf5fbWm0/gJCJV5U0qrm+HQvH9ti/JbU9YhgkCW8xzh9wFgwxU4fzlp/RbT5DpSGU/X3wfOBV9bKqeX0Rams4oUEWzsJZumjIbicelYH7MEFSnlGxxqRcaDOOiVP8ADQRVBSjGQ6ghp85jOKNDsaTzMGiGgHM6i4qqYKMNnSeEePPekqnvRzQhzHbKOrlaAloJJU2ECaGGsnHRNfcN2q4DLbi2xdDLAE5pSybW1L1yDPQkjQ/o9pELnSy2YpFDKg7mHhTykQfmeohBYZCTz9ylq6xA3SJ3qMTF+jOnbpAlPtsmAWRXhD6yQqW4oHw5FuIHw+LBIFlJlvLvfY/1ljyARpiJ+xUKQ3zwOT3h5kDjlx9D4J+8K+l4gGEdxujK1qZpY4X27SmffoDR15LwglUdUyopMXth/Mn4YrOlTm7vuiXpmdlQEgIYQkBDlp3QGguYPZDaTUnNCvbd9Qoa1yLDiLL8IxlEFn6gC/sRpKJwbJNkCo2T+DLI0MUXHPt6Eikwd2bcUygRqYkCyAWJ/t+bUdk1zCkTbAKhjvcudDMSbn82HtdGb+m4eScTbD8J7dmApw8pKD91twDk7iOUpk2yB6bOQJv1EK3RkT1d5L8vrYF9pAc7lRXsG6J1eQkeJJS0sUysnOHIznKJgXrnVnFI+faYVBZK1qB2DE+Y331orFeIB05JSXaxpHLxFw2+7vKfGni3XcqmSckJRFlOhfgxY8Qd9Kj0hz5WlBC0pQREqVyE0jwQPhK2JkDnk2ER15pwqi3yxa54JEeYp8pEpeMfN+pXmD3lf03FtaG0+Mt6PYZiRUxDcsaqUEslKCbtePxCe5ZEp/QIgNBIWmcGz2iU0FkxmRyVEfm4+TWVxn9wzIhlsP+r3hVaO1HOmOPcDyxRXXDyePKifKEE653OmzLRlajNAbZFJARnDf2JQmv+9Di8JXkeZul/EMnOBTMaYhWCnpnl5BTfKIu8X3M8STkiOUCIWHvFkanVzTC33XfYBN/cCwL1NQrtfYY/fClV2UiASBIweKdUdUV6RjGmyxyRzYDblZwKbXkRC3WNFelWlbNlEpE6IeVhIZzc+MsLD5XdswmFWX2vgGDUqWGQC4c/Lk331rMFPwOk6Nqf83yZ/KcTjxraSOak1AEOUPzkWDU4+Hqsy0aDfgvDyrjgCKHfpPIES2W4StA2mymulcIVtnotGwuGef3c0RZYO+6rkIIL3iEZ0aom8KVoti18vwfopuj26YDySVjJYQvtN2T8FskHWxYE0arrIXAmaFoNm3EodLyplkfGbp4iW1LiAP0YAeBdKEgHdxaAvOd+jgtN2JWVzqUbayZngyZg98xKbUZmpFRkOUSwBuDFmrheg4uFqMyQv7CMvjTFJl4uFUOlgjzuLwKHvluRj3/l+O2nGyt8HVhA3wM2jwYKm289x99Rs/MJMzPBICYraMijr6K2qnpHlRsKYf+0jSzP5n06SFTA+ZkIv0BeibSNoJiaATPqZk63EaLWMM1TgEmX4XcnaxipBUjM7ARv5F1CCM9P39xC8raXktoAR8p61JFGN4lcJgvkTjrdI6IcZU7QoBu5nUXXz4uNoBi2M5S6gyD7xLGIhhCvxoo0W8y3sO5YvJZACDGVApg8HthUGddDgshi+yMKQwh3NbWWR4Un9bSRCJUUyKNfEVs5kKRMuB2vJcM6uFG7ps/JVSuH94jR5PwcpFqTaZLol0czCOZA6KOLo8D6JLUgJ8E5gJpsyJUPStC52+phfmCuvxwaEWpEZANY2wwYpn+hBYtgBl5LS5BQYs/oyaIT9L86TLCjvqqO7nSVWeEI4cGXETmJRyuyYyGP5YnqI/HNXvawYJ6e9qEqR0CZSR7UXD6rAaGF6SJCnBHhfwsTeO180csuQYXLCnkaiAtyGyfGOpES6iJbo1CZTfIvGVZlAyfuBcgolOPM+SxcoEh5yJN75ypU/5hNMt7PojUWHNaHAAsr/IuXkOwTTdbqcRJ8fT/WqEo73sB0BSsYk0jlZ2eGRdHeqUfdb8oZrQhSskBPPxlZ6dIYUGZxFgpNGGEdmgEkmVDCBwE+EOc9XVDz8cUbBC0CioRcORfy3SgmklYryOWt5i0j0TZS8wMuJ8RQAaPYyTLdy3H7MRHCX6qoGAL7Fh9i4hHtvypbu5Jb03LQSfIIpbzF5pI7Ls6xZrx2l2+hQ+8gMAgIAgYyAfqYtKFxh8SCxdWMYGR9IRMpcmbpszeP7KcHGnvXbQdwX+EyA02J8XUKlxDqJ8gpzuvREoJTOqxkCytgdozfgS8lmjBRAchM3Ql3Agkq5psnjC1gXVSRkWea3sXgwBqeBH9N2eSmxX65KcopToMCU0W3axfapBMYm1XeryHCmBbXt1Jh0z30zGycqLTyC8k1/WbKXp5TQPPkcYGavilS87VSO1MfojUeoIISRYpWod6R4+Xj2L/TRaeU4abuPR45NAhh0wWWInviH/l6gMFR6BiiLTHEsJ0qOY3+VLViK9DAxD0M/uOrgWx2LttcLCYh5z1CLjOAZ62ZzKIKg+Ka6FaJsjpcAu2RVDXuKWQ5XGDX/J0ov/jxjlBy8IOlnhOVOjlxHCJ9a6mFhUeLckyVO4UqSQLx1ZOkxfJeQID4uNPiu/s/dd+Yjs1mhtsiUQbCqaHb7MI6eyTDtZvA2j8XPIrag7+mxv1gyH2kxbf0OO53CmTv56QD42n5wyqBA0XBL3lFGfnSRfaM4OpHlp0DoemnD9ilxuCykyB3FdvvijpV7xbJP4yOTy4K2jwoyuFLOgyn/JZ4mcLgmclaY0x4ENMYAIsyu9DFrwrPIDF7/W8JdGX6JjCkWWUHM/1IqS9n+/6duE+4uKquZuTojKMNvBu1hZJlyUZmJ/k9AXxIWOn3MtQKfsQZfpxmpGIssigLZFZCTTMC2HYoUCNFA5GcWrNSBglqmrB5Fac2LQc7YJRDrHFWEmyfNdX7f4kEp61vBuSVR0E8m+5p8OBivk5LgrkqJ28wmFY1EyxslwvHU9NUdQf91FgAtQ0ASzW6G+ZU+7p7vxicLI75rxrBE2v+uqG1ChUj4ShKz4K2laU8k1IqMB4EplczTYFIJF801dvYi5WSZteENIEr99Ae/YP9b6LeB6R+5EygWgVSTL7TIBLT7gkxPFGshMvWVXr5IfHtCMD2BSiHa3lAOdPZJxKxTAp2BcBYNCtrU48QeCoXTWU1STNRnoJavlK1wjVUtVYekEGI+SCF5CPEUgC1P/41v1fRKHFtq40ezPbSz3E+XENZmDEY0DCpaSjXuuitqDPaafpeZNrPd7W+/Aexwrd9pSSIIhHZGBcIQVhEJYzKSVvQijERcnrE5omlky2zrHJ4ENYes4C3YgoUQvsN61FjsEWumtnO+CuaJnp3RgsX09Vq2lsIJVfCe2Mk7RyDrZ2+DOjmuBfWjC0FTafkze1ddgaJTCTR9RIbK9HwU/Ra8UJhRueR/C+Ox2M+YF1GQP89Nm3GMju9KGeIjPw3DGtVVpxWWjCCsCL9sdpNCrciUgmNOlvXogWG/y4QikTTT+wyRb2YAJQf8Zu4EZu8C7voyo8kMZglknQB9wYBkJtXku7B0Tm4BYzRKga1DmZUq8pXgeQlh+0TCugBi/hgzuYi5JDCKFA0AXLyG+JWAAEh4MXcc00uV4goX3Mk0Yk48LR9LvG6srfUll0RA1mkCIHR60qWL8BcwPK7WBELZdaMKNoe8C1CmHIrFGKMxpBvwfDm4ZdC2EatjQuDNtCT2L2Q43NR5Zd+jL7WFx2kIhUZcRsK3xUpq9ijc9vVel/WdAPotJ7TDPoVLZmCh3cc9Cxn6uVuVk3Q+YYU7CiSTSmshSKkWSSYqNrwWiOvEi0pNMwr6GoCtWHAIYixr29AUIaLQslCs3w8pgO0WuynD58Mezs68/ZlUdmKqB5BH6mSl/eleWqWQLRojC4+ncBedLiqa2wxYyAgCfItMAuNmgNpHJgmxxqxAT0gh1ICc3+e2dsJJHGL0bhgFCI3QMul/MUJn6bDD7yE0ikwQ+IyV4PCATWCJ2NvUh4gNVmSM0QnRpEIHzyoS6yEliogriT0LemqAUDPxI6wimWxXStNmS3RlCqExBndUzXcIqYg2KhowZ0j+2zT9Bc/NM8GPsgPqWCnrdwh4l2yS3UzjqpfX9kRkbwQ+tJxjq9fc5I7/y8wTwMvdHAvLhIkxCbVO4tY/XgfmN1YqIQgLHcLcSg/zlOMBOybV46zNO70AhQg+bQUUWAMP6VNeHZs+NQLTT9nXAgucGiQSuPc/gDMfrstmWzAJyhdaPcw0u2j0Mzg2HeD0SOFjqsLWUmtOKVdZV/k6nbQLtO2sotqVQ+JEolVGLFkFyltnwR8ClEgT0TOIP5QAU+b5Bk1yti9N2beONEInI0w3CWeMczr5WODPfQdeY7UhIFoIRgvK8HRW6lAA/yicSuqhHyya/S/VGHNZV+djdSKhtshwKGAOpoOzxiTIrD5JqpMaS1MeQ1V/vue+faeZliA/tVdk4lv024xWmauVcRJbMMH4PUSRwhGvSH35mjrCWpI+fJ+Uzan6BBytwCzrfbWCgF3eWNR2FODn3+xjckUa65tHU0A7AOQ5MH8PqN+yaH4014cMbqP2r0fwKsHqmmgXAOit+OmlUUpJ+WAYC0/IrEwas09G7FmSOl+JJwDHljMcmO/CKniSlOImM+aHo/6mlns4uNDBkSXnr+L5LEZ9wMat1xFB/RlNIFL+YbaO4akqjTUc5zN7gN5KYiVLwLHbdRsH48trkzS4ti6gVzQAIzaXE7F9AhAQgPbL8M7LFF5KGZRvVtitOWApDBaoYf4e4OC/qQtLFw4AR27RaDjOAv+YMl8Qvv1Hzh8upLdoSvPrX/h49IdQ3Nb21/KUqksyxpamT89h5TOcsMjY4akdYoWx1yql5N7lHEebfdw85d8VRoPumyOwsce29M24J4l2X6Jnfe4CvmvqTQRfQYLDWbiYdKisSwPp1h3GgrdBoVZkKoIaWkLdgmoYn30DJ/BSgg7smeE1EAAa0fNyChwl6qsE+jxYHJvgocC2Fhn4jEik6ZU8b8HlZoNJTjN25yFRFL8hbJOUcNGYuPAybR8JRJfApvcvt3II7IpJuH3povroM/M55crRte9fdpdzBhEKiMLGKxCGY1vcySTz3Pb3GCJfp7Bcb6uIvw9PqJGjT+ftS4lc95odFzJXR+PNpZUMMQFo9zLYIPDekLWORzqCayCMUw1jFxShk7r5kXb8jpzJZ34ETN0aCS1lkcmi4IcmQbqrwtMurnUKgSRw99f8rdpifSYqzyutKOou37qb268ub1yZSafLekB7VlllxrYEpRUQVcqv2JhkfSsTiowP/kLK3MDuY2a2kyTP0J/LR4Cjtw2IseXoyw3OxFF2w8+VFdUpWBKEfq5uVRc6jLcb+awMwO8P85unJdLHpwndLMeBxT7unI0Xwu5//SfzckNmos7eiOEnLEd2XP/EQa3IlIIfG8BjU515fUIjZMSIlQgPn3kuvHMoqbLtRyiYPSGdBWUG3y0OY0hVU3e5l2H/MtDuJ9KHj3K2LQEoITZ3t/bAB6Ad8JLm2aKtEg0SwPRKHweb2pkz6/hpmED1IDTLlpYHr0/cEXr9RAhrJgtSwSk3AU0arKuLzH3TQ4puw9ijgIT8e0r5IWDbaYhXtvqz0YCNRGxotxYewxS5Y21RG7FiC7kkvx8rcNb1hihjlMw52yVkW01lHLnwFYW2cvslPRVIbUdpZdObyzKg3+P45COUEpjbZ53vvaYqUlyNAip1e+XauVK3HR9z/LdXNSC2yLAyljt97F+U6OZwipLsq/lktqcjIGVZy/ueIkOigd7YDtcQKX4CMIsXG5f26hA/j++ord5FVzwEFbbzj5kZJUzwypIxk3WVQpMCa42U8A4bhnMKUHUhVz9PpSCvKvpZyv+lqB0EyDiA60HU6WVY7vSw3O2z2DIh/abwIumRzGC/u28qSne/sQNoTOinVaN2bzyofWQS4O3mB5PMOBYSwfeLMOMltHBY4eKPepkwA6oDMCLKa/FziCwvRQnNY+Psq/JMLfUws9jGXFPgxyPu4YIsGWq7WY5ej3AyoMy3c/d4K710qXwys1NCBM+SMrfSw+x8F5MTYzhr+k61ZafLTU5M76x6yILKJ7LfE5wjO8Hi6DTC2qffl3iJmpMR3qlWYaZzkj7r8JQm9gyAvcPCPpeOJu4jI/jRcVNlXQ9bRtGY4UfjXQvxIU22bF5Z06IsD2O0vtUskZcz/ZLxnOxfu4UB14X2sUhY3lwZprZkM/J+jYsCoGLlLBwALR0GsNWnIzn2ND7FMOCPR8CfxwVWFoav6Ojx1GIb0wtdLFKORz9YKzJmS0sWbLMAOmhiBoxNWLpyMYlsbCsmstmi4V1AP+Arq4EADa05SR4Wbi2ZJHwcpPgrbzupbt9OAesnKRUflhCBkqhx6utKVHBMwN5gmUKrP1d6OURGOKm3ohZ7dlzpP6M0CwEs3OP3DTvp5/KEyrEeq9JtO4UzBICyts3drX3J1HPLawxPILOoSls0NxPUiowHTCAAAO94wAkMAryVrk1OamVfYIUgckJYogEiCckmkOfCGpk6A1p4mUlgdBgBKXPwUywEgV4mEVkcwnJI4sBcByuLGR58cgunyj7QmgHlGYQYTxBVBE6AALC7GlJ78nd6uVoxt+d9AZc0Zxe3c5qe9HMKf1nGGLFhl4qlAfiCPiGgGG6br0i4JoWhxuUNDiY0iJyPTLIbcgBj8KJ7cmXcq60WBwkljNfY+ihY2vlqG1b5Ue+ZqhaQ7Zc9BHirXcbcwySCggdmqytMXOLzEaaXWSIUQkogs2cN7ew7xoRGMoxBYHEj/gwgmVvbgH3Or54QOro2F8pSlvhA6J7S/MFfN/nbKXE+Vl9rGeNjmOXj73n+IiCf//ntYvqxYK4ZM4vsq3o3wk0Hsr54ZltJoUjwWzJ3i8WLy/iKGYE8lzi82MHKbIZLzlzE2Mo0MD7JSFW0k54XaB4FWrn33kwp9TM8mcTaz5y8KmrLpUPqMEpnkc1VS6odE3EsL/jtuUmg3loqg6hDEysmNpjcatNn7C5t+JMxqcJr3xktgwZYxCh4fi09AqZG5h17QhQ4aGpFo9XNMbXUg2uHXM+RwStJ73vEgxSzyM0kKlmhx0qFwS+QFCQuUVB/1vbC4fF4IsOWNyaUud2aYRUOkTyxofEXxZ/x5EBAcyrMPYADi4T9S9y3QjHz5R7htmmJ5Y6+aVj77UACK33CngXCUld6p+uK/R+MQ3CCsXvVDARVclymHVN9vLIiroK2ir4FIBrBkIhTkqGJv0tc0Oh8xpy1xrempShhgt5sO1gl0Al83wE0RWHRIwkcvUU57ZJM3yFIVBg+wcNtLAPBHKJIsLnv6Y2IhOUv6OLkd28IsHyeUlcOdgOojFeydzlRibLG6LALLqdAWXsoU0KklGg1l9Hq5WguzqsYYNa6bOgyJZJyLmd9I8K5z6yNZGg3v5LKKRs/UrLLihlOi0GpaCTGNOvc3A6/tSJTAI7XMIYp2NS1xye9XMmvxoeEg0ylS/rE6YFbKOA9qeh/egPft8b44izBTQDMtXN0JTyBTIDb5uCbzAAapMuZ2aO2nSigmzwsthrqCHMJEy9QKEOfgXifm9FnH5H3M1kmbzrNzEk0kDcm7Aovyh9d9ZBikIYphf4hCcbNICfCYquLI4s9LHdZ8CqSmFohTE3di9v33+uXT8DhFWC22cVtR9va1G7K4iva8MSPw+2NETMMUxQWXR+hE7rDZM6nxht7pQr6oAmiKRKAZ1lMWkd0naLySkzrZRZP05+mDwdG9vUGloc/LiWeD0lh02upLQodUTnCRnnBCZ5AM+guQcze5Z5527dx1kKwPIGUf06BEuR/Y2mEDjAY9ju59xE5Ib8stfw43MplKfTfYgi5gkkhNhG7aEV8J1bmSaoFB5EA5ZlKYw1W/pwj73/WriCYbUplrHUp05Yl9Uzw6aPra1wcjH1ps0KtyHAQwZ56AZN1zJ0P1oTwBNwEIcA5RwKExgBn39RLwzBjRlhAoE+H9EvkuwMxCBxpZrhzju0DkClPbbG5icfabGUaWDgI7PlKSb1MG/ETCPyUkC94yhgSn8QmjywVPmwfmozPU4iFRd/VfRzySkWxf82E19xJgWnelTCMBEMlAJm+yTrLY4dCSZohkWNFdlQSKWFmjxZTwlGago/Y3BzV0QpvxlwLLWLcETmcHzxL0F7BNgXvHTfuCsoEwDg0ooUAT+091+8M82fPfM5AwdDkW7QMp9mO5uEPKGd1g+U5fAfAsaFifx01PTI9rDOXzFvwSBTHlQn4yPx+/2lCaSgghZXHLE8ARNbSzVTG7eJ+p+A9H3+lxoNQUUymcY6+BGGcEwvq4sZKuLAVCJSD0EoSBAAEy28dpSXjLaFSS8FM5GNYmi0qtxBJ19rbx9VlC9ZOAkBj0x/BrhWZCmDGXzi51AcF34NnPL0dbIYJC3Ct3axF0nK7RFAUUe1mn5r9hSbmeBBLAHMrfbT6jkETBMaylnJ4BOAC7Km3Y70ldVpAB7kqagNDlxFH/H4jTyAWKSRRvB9YhWKpS7hrntx9QxZPKftlX5j1KaCD4DM8AvwdLe9dsNVVpBB7ZcRMx7MIslWgJ+SF2cd37chzgQjorwD8WfiNKSYUKSWW2Bhvsm4iirbrypFWkfK2AhK0JYpnZXK6+W/+IeAFk+Ent7wiZfAsJcDZM+1DREQOfSDkHBFGULItF5nDU2aitipoAxkq1OHAMwsDrlBJfUoqwhbkp/SabCCEY4BsG5OEtgaxBUvEx3zLtlV0U/PAn6hB+awe4dgI8UC7yYDgrkopSEvGaiEgg2sXhPAbim+J+UoPefVWX/V89XyTTBphv8fXULC6ltQvbhfmMkaOVrIHBZx/ztjK0fSR/Q0MtSKTAjMGwq0LL3aDm/VmaLujdRKzLYnlXigU2XTRwse79Z6VHf8IVzTEnttCkBrA6rdmnuYlmWnPBK5XthncjmlbmL6TrTDhw/Sd+jRXwCQDyp0oE5aHEvG3nKEVM3aAmGmWcHRFYnalgx/N9DDdptjKI2NaAHg8wbasZUYF5UcCL2Qi6ZVwwUF1+Ba+AK1gxt+AkZEw8Y18VHLLTrS3nK6S9VYsMy28dK/wSKcjw4+vE9QzYdlQv8j7Fh8wLpGYwTiebpO1uPm5RPA9sBTyciR5yYstZwka+H5CJDQS/k0EvbVklFSlWMy0cyz3/VqUtILDnxqo+oc7qcY+CeWnlmx2M9/8x843KEgX5TUZmGJCBCNiQmtGsg5WwKsf+dhWyye8ZOGkNdYfIjeGi8a4GYGG/2lrTGrbzvotCkBZFR29Satq6ni8pmO2Q1jOWMRtg4qkVnTJziMCsNAF+PlDRV7cD2Eto2qzOc2tfE5qNfR2Hs8iyy3qGxBqRcaDxP5r8NqOZTtpeCr1udIDjrUy3DHTd5MhEPqSBCbGGgyXGZhl2w7kTQ77zH6GgiRIl1iZqfmRmMQm4qWnXHCGpJkyPwZsGSF/F9DvpbNYVQ6SzremiC7vG7EksQf/PQs9HF5mcXYoTBPNer/JUqSXpgvrK33/BNJ74/an9NskKogzK+G/Z9tuamhxZm+UHkLe2KJ+9lb88RpzPGTS/63+FwxlMJ6sNPCddt1t4k4MEs/nYfKkQ5IuXq17Fns40qy2VaIEFS/btJkEp4LCLYBQKTSFJ/qGVSlhnie21+e2KZbbbRxrKv5gxkRxfdjoCugUCd8e21/tBfcuaZFBoq0l+zbAOlyIL/S/snY3Lx/vk7jLwzHCXiVeuGd6HFqeVEynBCCJIDFmn6HfZnfXkZ7mBECwAwFSD2uBhkCgAITXxaj2aPUljrUId872Ha3mCwtsR6xye2f76GSOP7iLSXXmqnFkEvxFGYPUb2kXk8VK2GaAWpGJgO9JxzNGhGZS/lL/lCTR7GQq+mOv76UpHRoE/2huVH6C4Q5YeRQrOmHa4Em0R58IDSjJMSIy/J8LpfRkc1Qwoa7vnvImkFc3J5x9PCyN7+uKXiYxvdyL6u7rlPwHP7VkLoMkz4qjeHXuSPKOUhOrPiml7ND3opgWhEZQPiW+8wwpxu4YnD0iSvypTtWYUMw66yhGTX59DK5WD5jukL6FNyFYTd8AaPSWge4Sa1c+rkpGuNTbMfpYq62bN43COeWX0csIsyv6ugQuqyLlg0KnloJxxcaRN/bc+9h+JgK+b/IUBETbcTb4tlaW5Vjp9pFJQOYsDL1XBeF9GrHjShTeL6/YvAfM7gVa0+phaks5GgJp3pC+X6qMj7B5xmeoJ8H1KGUC1Udj2so1SDwDgnyhn0uhbqjKV9Gc9U9zquzYHcDKbKItjE+go0IyOWGXGq05CARKNhFyUpGuMxkuFgB7/ikxJlvdgi3BYJ6ppg39cVJjndWHeN34O0ZXrcjct8DJOTax7L1AiYlrBlW4ik1AfHNvwQzk/ijE0wZCJGmtYe9D5YczeE4rCefBoy0ZfuwKAMjhHRv3lyeI980UzLVcuzkGHZ/s8gVZAiJFiacVwe/wfQpfWV+xeBL62ntf7sQrT5JSnSg59kNY5sko8B1fU33AmVUQY0KPP6GrSmwqq206UlsaUEfHkekor6E6REp5W+xJLLV6yJMCLaA776tgW1I5IJfHKYFri6h0WKXqWCvHYm8A4yTAmvit1mZoI4vcYYmPX5Mkb0j5QqAc2OYejDhjxcant0zh205Vyox55q12+fHauEyf/FA4xcJPTdpMXZnRVTeh2+jfEfKgwbhw08iSLWMWNdzTlTmv+vTFCzP/7rLwHjfns+J1MwPv0lWGV1grcNk4Um1vxhDpOSLynopflYgILARz+WYLukhPljKIgk7maBQjl28BQllkPCwMc1R31rYyUDSsBSlRX5aEUWY5WEJ3Vw/n74mwbVSoFZkkpAeFZ6a26bhdITTP8a+BgDUykVJZCgRu6eWNBQUbZpF1wLeBLA+KrDpBxU2dA4HgfXplcuWF1UMXKInQlTnavdxHBR0905qHyQmGlLIXzkrhCHUMg9eJMYCgHgTTD6TzO4Zr9qZTtjTDPsl/wGjUfkRZN05QtBJNbE+QVZIEejlUvB1buqGBbwUI69+jukE5K/YloZcTKFw1asisNYYSsl1AbYHods64pTEwhYU18BooPF4q0ewD0ys5bp/uQg6wHnjOteYLMbqh2onHAOF0mh4nz9eF44mIRiyQXXr3pmDOGiLMosY63UfntwrKZtX1AqRpXPaleSzi50kFPVE67/RAeJfR5qP0LQPEr/7gijlp51PyHZjDNZb7HvDPlFLH/WOIVHTbqVvUpZgRocETguoXytHJyI4Ude+TEfjk9FBERsCA46R4pGOLbk3M6Te81/CUYF55dQ7xa4qTgVT9vuZbmSSMddjjlooPHfoO410bG2pFhkPy+DX/5SwgyuqS0P7tYNQTIFh5hRAxinQKlcbbIyc9p+N9co8Oglo5txeckyNbERJBbRMU0EEILlRjzCpaZUfbBIFPhmYE/Yyccyq5D+dcm3CaTJAXRz+WML1kzMEhnnhaA55/Sb+lMfl9F4FmOMJqeprRefSZLShGh7D/2XHi40z0Aavn4ZbEXQuOYSvzvLAryxQYob1/McOP5iVyY5Xw6qZaxSorSUSmDQ031p+pIItxZo0imDP6KGxLK7ZZFigyXqcL23muDylOZh57MX8YvQGFlIqDE6diZLDx4sWWytLpDe32se8/ZkbsQFsC8VoLfQrF9wWp0hPJ98xK4VFdpFSxfO5hom29z0T7yzxNplVOOepUJzNaeR8TVCiIpSPAPd/08eo06n/BdqVI3Vm1lGHvQs5KEI6F6YeuKzh/YiPSC46q0zA+QKY+YYwu840cvnCOam7ptYeIFh6MF4ftJtxru83Nu9HQT6S2ozcB1IpMGSRWpayn+WjWr/mND2zweVtMouB7sHXgmZ/Ni3DfMuUjE+bRsGQCpvkWGYIA9VZUEDuWh00RpeuHJzKI0QzHjN2MUBN4uZPhUJOQsXqNNYAM4yrAIOPvZhvLFUP+ZwgrU44Cy2FS7NI9jINtBdmDVaN56zktBt9c4pBt61oJE3PHALcGMIZjxxQvw2+DlU6GhXZm+0MAoIbQBixpk5qtQO5z1c8Uo56fm/Np5z5A0UrRtQBgnEB5H4HRnBZifJx49bV5E33Ovkcm/Ai7ShXfxxMrs1ZYG2d2kdrSDDxDvCnn+/b43eUzjOVejoNNgZ40CyRNvfUB0f0UCBGR99HoBH1EsP3kygwsEIBbqNh8BXMnAjPHw9ZNpAug289wcFmiFVyP4PdHihZCeLKP8wPo8RtRFK1o+CEJ3ikE9JrJ9A4aKq/aj0Wzm2Gh1cd001kcjaJDOkaVsdekwuy46RPO3cSWJqAXKfH4AwDJoohbB12TXIZqb57ouTSvs3fLAYw/hAttx7s2A9SKTAq4tcJCgrkFsotPW+ENYjBh4TPnMHhbmoFo5JIfnybGHAvS89gVhoHrgdlwKdVx2sJVKWckhsu4EzM+BFYMKTG11MOB+R72Ty+y+hFyajjeTBwta1j+3bNq6O9ze4E88/QAXv3oofcZvjc//T1r63sRdKdhnnq6a+BMXLDFmD/NJrafVtzPKa8E4aexqznWO7kYA3GfDd5kZlvPtj7Z/+1/jNla03nE2rgyx9+x7cBAeFm5ylfKPDdfkQ6UuZQom+cNB0BskTPvvPAyyI2k0k/8eaXaI95a8i1wwRwiwtRiF4cWOrh132HYuUESlOcAyUILTKO/AtGaTdTRb9u0Z4+/OCqESPFm35m/V7q9/U48vNDB0eUebj2mwy5wHkBszFACW+RXFH1Rv1gQR5ckUb+If6QgNY50b0jpwgswOWACZPI+b4igXtxCbbVTxiv5IoHz7mDBRoBSMIR/eavXZwX8WnTmgalb3ekrAN2c0MlcXcn73yx2Qj6ot7lLLL0bCepLIz1I7IPzX95YNKuhNCYnDDg2NyyJoGZCyDSTTin6N1dMioAzggGre/NUUoYxXp7+2oD2x/C4B+yqi+IswUOneC21c+CUhk2TkztpY/LkAPxYGaHUC6pKgOCOjIwhhG2fqrtDzCxtrGwZPoryRTqG/VDVkgHtmiovHKiPL7WaDktT7aZWSw0BqCPdDRbfRSstQvgGH8RNKVg5ggsx6drGWndCgecx61QZcccJE1m5QGDFDJVjI+1XYcp3yUlof4ZgyITjUvULrwOvKyGcG7bk5BjU/cniR4WQE7C8vAjs5H1OLq9XDrN2dZbienjzv3g+x2Syp90mMLYlfs5zlw0Y8PZS0JcS3X4OkROwPOXTaIQxQV1i6JVBsdMqo5kA795PAyLoJ49Mb/4YJSL2izN9auPImHeMt9kRI8aighTfjGl2i70coIY/JqwlRHh4BA8HQG6BYWlS1AY1DdpA81oh+8DRW4HJk1UuKXFgidBZkdi+1eDVVkhitHhhNEwDxO28UWFodevrX/86XvCCF+Dcc8+FEAL/8A//4L2//PLLIYTw/p797Gd7aebm5vBLv/RL2LlzJ0499VS87nWvQ7PZXFNFRgvpziO2RURasRCpmUZ88oTMwQ0WYR1cOXMN87CBq5mbKyPlgBg7i/qf/tYSgISZkoEQ2pzKJxRbZVj0Ni6x/m0YlH7mOf0ZisbgngZ79HZylUwk8msXbhF4v+zqym8HLzGR5y/BaYMAc7o1KIwTIDjnQ29su06nH0Q38LLtDE+oJhgHASYKqG0f6xvFBLeApV23JuuPhtcWUvrWhE4OOEt6QbA+8La2XNbR7RoirKqHgbKeplefPpJsQRBZsX18ka+W/yXKm4rJ5JpXuM9Qcea+DH4mm4eIIKLYG7EiIxEckyaCcdr3hrtHF29ThsujQ9jrNULaovoYaB5TJ+gO/yCik4tKS2oiVQq350ezfMRG/jYWDAudJWDxXh8xcV8U2PqoKeW2Bud6jge53avEeLNtx9558yoYU3ZOm+f6qge2g2joMgcCUgEUzZyzdQmLIwq2zTQ0xoL5o0BGCYFonqWuxDD5ussACJKATpah2cmx0stMVSxqGcx3N63cON0MMLQis7Kygkc/+tH44Ac/WJjm2c9+No4cOWL//vZv/9Z7/0u/9Eu47bbbcMMNN+ALX/gCvv71r+OKK64Ynvp1htgLnTtrMcFjJ46v0fKJHO5AukM24YmPgj1JImD5MAsdTbChz4mlsZ/BZOZMmsiudAh+LAvPYU1oRpyHwjUQYNE7/WmcH9lktvUHYXzbyZ6gsMVwRznGFfzSHKd1DMKYdk1fpBS9mENLCHQksJLBZ3qSPPp8Ic+eGQaHHIBAf2ybu8/Emp1ZuVYBCrboPA6I4DnLB2HN2I0GNGNq+GeRHHkBY3XlZY1tAIC+JMytdBA6KxdCyKkTW43KWpbI2zyq8zifkQK3nFggFaYDvL0i81CkxgAbosbalFLAwjwWjZNGXg7L+H0ipWGxvJLWCsEUYZOI/Pw+EfzUElMgilbNtp/0+6V7gdm7gOk7EM3fhOJUyIs8bpjgDdbp2aWSBHVNBpnxYtpx0PUJCpZbOXoZP1xASlhP3QqiYMud85Hk4kD6bW5qZKKVh3UVwvpSeWuzMGXYnsH4VaT5/mKdMx+jwiN4CpgpOdx+Yn9E3vaRYdjhYpAAx0YFx+uq74r1VreMpo0PQ28tPec5z8FznvOc0jSTk5PYvXt38t0Pf/hDfOlLX8J3v/td/MRP/AQA4E//9E/x3Oc+F3/4h3+Ic889d1iS1gV8AWaexV4DoIARE+CLgzSzMVPcCwwGd/eHl9cg7i7ry//Yq1BRCfMY3D7X9XY3ZC6BsZhGA8ENL7DKk8z0dQRALI00YyeCH+SPpfJ21bTQ8e7DCesUg2rrhpcmTk2cp7qnrA2JgD0LOc7fqpmsfxtcQekBoyHzyY+uFuUN+Jb5kTx+7dNLAEhKvc2i2o0gkLNTt0pOFinF6j/JQpPn0h+P3JTtGwKEjWHjBIf08BbyPiKQ9v1wikGwteBlTvRkodYT0EgU158p6cTTDlTf1Hsh+8DSoaB8bl1L9TU/tm7aKxCYRfoC4Oln7mqG8jaKeQGDrItYaLK5pj8lhIp5SyjpE90uIsCV2NTlc83Dwe6P4kJYxUFydSWQHd8WmkeBxUPAyoJN4+ZrIPTNeLB9kKha3oM/yfQXoRL68aAHAEmEfMnu4vBk45MgE12Y1SAsyJZs6yGBbpMpJXy730kXzwJtkbuTqBKNJH+2PjIVYyydaFgXT56vfe1rOOuss/Dwhz8cb3jDGzA76xzXvvWtb+HUU0+1SgwAPPOZz0Sj0cB3vvOdJL5ut4ulpSXvb11ACN+oEqktbIWXMl9yVOZUSWe5ABvYajnBKJL8yRz5Dp8nBIEVqpzBuO/OhbcBibQJ0U0RvhVhBJcWujLj88OnP/LpMQyECwGXx93K6lUu8Yy9Y5RLKrzFKKpfmConQrsvsdRxpxXsVoapXIoZe17/PtNwbMnfqnABtkKBE7K5BL2WFrY9AUBiDBmz+ix2gX6WAeRizAg7fhmdpp6mf0XYgm68F3dDObPz3obWrfB6gAFiwltxRi9LswblsxKDecJXrCoCbB8ggQb1lUW0z24S5/M6cPY1kFvF2Bes4cWi8QgN2zxIEVoiAKU0peadX2FEixtmQfDHgU6Uddl1GyVjNOQ/oTQuXJz4Y9KCZ1UzddRfxyaVVSJrwVq4+HZ04LTr4UhVQGY2vzfMjOOtN0b84/Kq+cKtnpB3peOS278gLU/nt53mL96aVybyOLd+gmNVUitYpo5k87PsFCwwNjiMXJF59rOfjb/+67/Gv/zLv+D3fu/3cNNNN+E5z3kOch3xcGpqCmeddZaXZ3x8HLt27cLU1FQS5zXXXINTTjnF/j3wgQ8cNdmFQNEX85trqwkBZGKtZB1nRYEb3wLQ/icBeuap7kYZGPPhQ58xwqSZmTORNKMgECjnjNDP6XgRN4nqQT427syWEUi1Jw/Ai7/DKPNv+yY2eRiLKJlMTrUSuma8fcJKmBWLZ9xV4K3Kpffe738/+F10H43uLrUAZ4oPUw7KWQMFDKWgT6CPc5sXQkCSQD9z7ZFLYHapHRXKTyw5a6BWkImPvAKGbxkfr1HQ7kGdhVcJd7KqMET9yixw+D+BvjGdl7RaqQUncnRI1Ir7dsXlCMBXUFqz3nT3bkSPQhSoF96BxUAYemuQpDWWP6KC17x+emwkV9l8fEUMzZEd5pMZcPR24MC3VURnkzphZQ7bIDrpFiq9BVZDyQPl6bmXXOSMbYnvkrINawcrvFoxPEKovVnLAx0jZlQbi5rHBTlxIVqkGCMBnp9XmrU5mv36K1jp5ljsa9rIn2N24cSraozndtGocfPxm3LIsZbDzWGRGfmppZe//OX2+yWXXIIf+7Efw4UXXoivfe1reMYznrEqnG9/+9vxlre8xf5eWlpaF2Um13dhWL22iH9amae3TkIGxj5Fvxlo8+atmxxFEKwNdXmcEXkbnDHBXLmx1g6zL68Hsz1VkGDi2vciCxzaHc0N9kh4LAtEwOwegE6O1ALidNin3BSmnNQaKQEZgBXIwsfLyZREaDCpkWC/lmS+TUJB+YYncquAYIH9jIpkgtMpP5YG1BHGBBPn5ScVUf+3L7uYv4AA8sYY+ta6odtWmD+hLuSM6s4FDLy8MZk5iF+wxxFwq4qnfHm7/DZvXA/evgQsHlC3qI9vtThccSmbm+p3i7mwLszUzpBIuyeXwExBYpuZO8CrsScSK3J1J5KxKoTOwUrpiGMUJYoEmAUGflwRXlMBUC59B9ykFSScV+G4M1uWBGRtdeVBcxqY3K6vPoBVQgRvo6Asd4GoHv98IWHnqz/GCdD+aQVb0jZ/4jAAf5ZS2rj1jci/Nd7D548TAQIlvXX5b14Ph4erG5GFzUxgXb7iH+a/sCzC4eUemvN9PGxrHliAcrg73JxsMGOTb/17KBsN2BHI2SePkrwJYN0PiT/kIQ/BGWecgT17VMC13bt349ixY16aLMswNzdX6FczOTmJnTt3en/rAQvtPubaJugRQMGk9NQVOxliBz+VOPE8GhO+9cWdBtGJPT6jpzi/v8jslXqQMG/a70isgEIli9gbOJ9Mi1cC4L4vgQcNbzOZR/f7eGWJRrCVp/AfWSHcOU/oZsGKwCgXZpKST6tqE85AgU5GuGteYqoVtlNQMCHw/ygBI0CCEw8U+beYtGl8Vkh6n7FSTIDn2GlX3QxPTkrhJFt35m9FYOm5BYG3gyciWNwOJdBEpIBw4TB41cavfbAFBUqCL6RIX6thFAKTxgnGUE3yT82RrmqBZSIqs2iO+ukV+PVd6gH7lmHp4hUkQXCLFrLdLOB8n1KWjYQ3Huw9URHt8FwgCFJbjsi2H5YOw4v3EyoyoZKvTMZsvmnBpm9RT6m7ZPDYpjTu1A32zp+fRUDk2q1wNsocPDIwRXON1TPsFw8R2/az1mC+IBqDu/aibJy4bILCclPZdFtYY5M/Lj1Dif7sd7voZhILbX3PmYnTk1Rc4Wgm5w/nx7AJtvdtRmPxHcALNwisuyJz6NAhzM7O4pxzzgEAPPGJT8TCwgK+//3v2zQ33ngjpJR4whOesN7klIIQAnMrPWSRV5mD8KIt46EvxRjm5TYs9VSqMpO3pyAn3icK1ThzxD4yfLAxIeARGeP3tw7IYzJ+Orea9ypgFKkQNy8778Hs3UoCptsSvdyULfztF5a/2SfMr/RwYKGLyDEyJlAzShE8g9pyAbDQ6mHffL8AAWs98hkC32RKsT8/P7Fv2geGt5PFK5wVxxTKiUji920SKtie21oiCORooB8FttCOpuUywwkZEKSY8OniqcivpRtvidVbMDRmuwLdTKWxp8u8KaKxhjFZWnNBmmC7KGllg1rRC771VyxQ+OjuE3Cs7RPnCwmAW5UIQJ4Tji1n6OfSp4tIb1wF5kzb5cIPipdoD1/XMHX1y+AjROGkoLqkjj3P7jUVsPXw6UoMQu9Rwp8pOTedEFc9pinOuxYHga2pkizE5zlxLxP87f0EwZIrbg6WejkWuowPQbctj2lD6r0lsTGuLkst5UWU+O5/8nWSnnFJ2pOlsJALdlfWU5xY2cJf7Pn8UXhfEzMd9uj1fXVrqdlsWusKAOzbtw8/+MEPsGvXLuzatQtXX301XvKSl2D37t3Yu3cvfuu3fgsXXXQRnvWsZwEAHvnIR+LZz342Xv/61+Paa69Fv9/HVVddhZe//OUb4sRSlkun3UUaaeCkaawxBCxvPQfHestoN1u46PStUGbCsUjT5lOS8/qIbxkZyCabGpgSmSRMNOBbV5LKCx/c0g3wAOxljWjEXJXMyoBNOTPIA0bkmZhBau9aT4RORphaztHr9zBprCap8OOMOWZ9w6hiAR2CALTTavCOlKCJIi1HYJ6HcWRY6Z4jrN5MS4X4poaTV0RArwmaucta6fh2lIE+EcaJIMJ7i4iUEy9/JgwDdMfDCePIpN4pJyf0AH0yIVKs422XlcmzgDyDkG3bL57yRjnAQyd6q3v2LPxOwNGVHPN5hvPPcBSkVqEejUTA2JaY0gErRUt7Yiy4r2a7h9WDCFNNwsLCCjoT44zQBJXsmaFGbVH540yasqzkCQSrJ9FDC1NQzeBeHq8fOJilvHme52p7yAvVEC5O+G9zdYhWQfi1DLoefFy4WFrcsgHvmdfVflHxPLM9qPltmMYqu8Ziy1QOj3/xvnDfjzQllpZ7ENvJ9Y3NZhivmUtqrmSNbaB8AcC4196ho7gBaUKWR2OO/WZBJ71mI54+dUhEWci8yx9Ne/me9Wr8SfVuuZMBGIsi+Rqnc+KP81yfZA0L35gwtEXme9/7Hh772MfisY99LADgLW95Cx772Mfit3/7tzE2Noabb74ZL3zhC/Gwhz0Mr3vd6/C4xz0O//qv/4rJyUmL47rrrsMjHvEIPOMZz8Bzn/tc/NRP/RT+7M/+bHS1WjU45hYLWJOEWWSCC+66rSaynJDlLg6qSmxWBmDMX5WXlqvq4f6lYJuIJA4uSeyZl+j0C7auylZITH2yp5CoIIsGCYFc+hPSZKTweCEjxVpkZAbTpkvtHrp9Z2ERqfpznwnyTccefjbz3amcSBTGTQBTPGcqrs95fB3P51in49M/2oEnAglzhxSzwnSWgfn9Sph4JCmiujmwbyHH3Uva6ZbhO7TYw+EmgXJ3l4py0Iv9YZy1yzw3TNq1Mx8ibBRCooG8sRXSs2L4lBrrmh/Mj5gQ5Fxbc0XdzCt9YLatLIqG6Tocfln2ucz8YIKFYzsqnfWJ8H7H2w8A30Lu5ISVfo5OxudX4NRPhJTFQBrr4fx+5edDSpnyj8jqvGxbksfvKZMbTp+NU6WMmx7NUmqn2KCV+Hz1sDM+F67wyxiGy2SxOXxsq5jxQHipzRgtUNrsd9KHKPx5EPMj3mcASKKfq8VBp2+c/0KFN5ogWJo8R9Xfu0sqzMbHhNuaUXzFnWH0Ai5KNhfg0ifBWi0Bo3iQy8bSmXpZr71olvBj2ZKAqN3Gxrz0Gx2Gtsg87WlPC1Z3PvzzP//zQBy7du3CJz7xiWGLXndQPD9eqTrBrUeOANQEClfP6vVMB3bCFq8e2QT2zOPmucDRZoaHMDIAoJsR5lt9bAVwwWkTbDaFrIARFRebEOYORyRa7EBnmWUOZcEpMj1qQVQYg0UpMkHRsaS1Vi/2TCTyCdNDPK+hOnkOyUJ74lScnLVUbhbN0vdZCoskV66hmQjNybNhvGwt6xIAKPOVD4Z6uU9Y6mTI2n1cuHQYOP2hwJaTAACdfo75Vh9C9uAtTaXU/FkLSiHQJ4EJMqKSxb0QnkFf58/ZSpvTZW6MNu2o0vTHToIQY/qIajDmbMwMAEGbmZ7qYQInNfR84ALZG5+BNJYZlKO0UyT4fOFgnwuXkgxNrLwoJ2fi5sPODT6XQgHshIrTBaRS3penlDKTj8Fs70kplcO5XXwrv5HlLmGxmyTKlRHSyX/qcScYD3HzleEhgovUyrc6Xbv57mgJBZIpA6qFXLv5Jy2dw7zXpqnrCIx1wLNy6LTBjlykqszv13FoyE9ov5otT/7IKRRax3dJWD1DfkFj45iZOB+Qi34ZvOTkY84DQgtKQDHpQKVCsPBKmoOROVSipQTlKBbfMf/3RzKnQ9i68zSwQfo2x9bS5rgR6gRBZI0PVuRqgIYWHIH5lR6y3I8p4fNLPbBFMFOLVqfedzWwMmvmlUGyYPXIKZZAO9OrCnJin3TEUH6xmOGI4WrB1lb2vbqHE98yThm+jQ+7+rVmzJutalLg5lhDW7wdRo9ZhbQFv6QYQ298RyqJxmUeMgZg07ln+cR25I0Je1oochw2R0q5Vc/kNQy5swjc/bU0vTzOEWWaNvVAiLGgHwT7C3DJDMj7wegKtxF8BtYd34msscXvZ8N040YJLmX0mbU/l0rGvMzRzeMQBd6nk9zRPJCNcVv9nPu9pXy++E9mTTPzI6XA+FQrZQUyA/ptGIukuZRP2iPuCoXaVhWYaUvMNHvIek6bcQLMbxU11YOCmzpkhdfNjFabPGdKaEKM2vqm6xdrOnykJWZyokt45Nx03/vjxNsuCoeZGUcy9y2x3tHzmH96dwzp+RP7iUiew9aynRMOz8yjm/EgfkHZJjVTOnqGrwo2/AP8dpyxqoXj0CitZLaW4Kx9FLaoWa9EYkXXPdI12dzlY32Q9W2DQK3IJCBtcfKFmeJLEu52UH8/M7oZt4A5RUzUfBGKOUaMx5oXw9kd4w/pn+5I7F/IcKzlO4ERAXMdiX2L2mExoMdZlQSshcQwxVCI8NWYlIDMmTLkyFRHAhvc04NLJqfIyBxe/RP1LTymKcIHrG89nivQmtgVOCX4p7lcv8LVOWh/N/2NAuHajYwkigg1ko0R1FkM6qJtV55FJgd6K3DGY79Mz5HRlqPBRHc1tZBOwZLWTyocS4nGtEyxgPGlLCe6vvxElfdeOgvcSi/D/iWygqBsVoZCB3p8mSc/mmdtL3Nw6094CaKkVF3VMX7POhGMIQJcUDXKIXS/2SslmCOzmtsqwmpOosASHDZO7s05d6qFjVN9N1rUWjKYS7Em5ufxmoBtVXj9G+Sxz3VvSIIJaOcoDvyuLKrUWAm3fBRhvuIUz2c3R2L/OoosxA0ADT0GFL3mqLW5TV7lE9aao7b13VWPYcH8VOFyjzDdJmRa+fF4iseLfF7j5iybx/027GMzhpMUuF9GKU52t/5C/NM8LIoKvkGhVmQYiEbZ+p0xK/OWafYmvRkw5vSHz2ADdutdTlcmOBhiyt0gtxp7IDw8jdo9X+wCC8027p7twtks1P9zbcJcs4ulFotsq4j0p77ZHsnZtlFy0JtVrD/dvRYomit2chH84+3q5aEmfAdYa+GgIgOBd+Gny8N/N9Rlj7r92hOn+upToo6C/U9Ezjhmtg9C5hEqrYyBeVtiUY15Hdiz3opuJwE0fAuH2XKy2Mn4YghlTQNAaCBrbAUg0R/fASJAGsU8YR2MFMbQ+sc4YtK4aPwsiipqQZXT7GZYXl7EQqvHnvrt5hXBCj3WIhvPBwAW2sY/hMDv96FEPaKQ7dwB28yvhGCQOTlFRkrrtyKhLG6mfexZnsgSwHhD9LxIaCla7DYtaUXGm3Tkjiqb31HJzDcNxqTISzIWmXArR6dgvh6z7RxTLVOUwalomGv785nc2ePguWT94NfdTf3EYQDLkk0dzbxSn1IrN7ZHw/u4xJhafIVDvcGtqEUKTPCIJBY6wGKrj75kG98eu3aKiqdMBBG2CVB3ZYFgwlb0t/mBZZ1yYix/ToHhc0GPcvc7Ou0IsNmWeLfxoFZkSoHAJ71/hE0/ZwIx73WDbudn9H0cbtAB6C3Df1hGkjfag0zxxPVBIsMYtoyZejkh7DDEHNrxCqH3ZqH9Xxp2srhtD1O+Xn0xISC8SmvmS3xiEXtv7LDxvvqhuWUcWM48q5IrMwDS9RZbFJMqgECdQCa2oCcbyKXfIhk37zcCDJbxGj8TvgpX+9pqR1Gl61jZapQPgPh1EZ4Z3tGnsuj2NUkxrhg8jxzKPpmOAXepH9Cc3I2VybPQHd8JsxVFrGxXtHA3BZP/vGgfnbHoGJIn1vRvq0xJ5WgeGG88+pJCGcjyDIePTSOMNaOGVKYtQgyjh0cEz1NbKinhSyqMv7bINLRVlaiBzPazHu1MgEqLNoGz5Bd/ZncERYjLtFMGP5RB/Mmx+4sXpgAllDi1qHI/Z1o59s13sdgNI+5KzLQJCyu9dH28YW8ZQ5yAl0uBtSHc/rK4KJEn5HZ6DttuNwQo2xqZxaOF9GKTWJk5ESQRcs0TpCR2d5pO3whniaHBt2STDkTYmTgN3dMeDjr5HPaWb4fxGnGLrXni4+1sPw+OORgShG2rzQC1IhNBScBys9I2b4ltLdk+D7ZRgGiyqRKYU+WBbyfISJiaGU73NhD0fCJ33Z0w/Vwiy4E+xrBlXA9wY/bV2QXBH+SMl5jJKWSuHFEf9F+BrTvhNlvDVWzgpJuoC287RbphMqYOEikhSQQstzM/L8ZUWxaVV2Aq9Y1XJsqxaQeBPQuOQRAE9s11EjjI/tm8nuZghDOBHe7HoWaGhR7bihNAdGkkaadVYqoe4zl2yPH6eas5t4Wh6iZA0p1eIdFANnGy0WFs/6ciUftjIdWubOvBClbhfdqVvyfYmVXTbEcQqSOgtpKurVnpplTvCUGtvJdpO0JQfcStqP7ihIggic1pwI1l1UERToNHWR2MUzep1T8BUgj0tj8A2Hk2HBPhfCbFhuMtGF9g89p6EsiGS/CeyxxOkTEKCUtD8NK7cSBVhG6DMzG/fEuZtj4BaPdduym9W/pXDwCxZRTcrS5sl3C7PqCHAOd4ToDsMdxGyTDj0ywolTXTLgCscznvH3bqj+L6Wtosc3aO/uFCiM+f8CBI9Dusvba0KJrHo/HhCHZ9TDofx+wrMgKyMQEa2+LT4c3XjQ+1IsNAJJojGoT2R4IJ61cS8E2WQcAw+78Z8N1lIOt7OAz2viQcWMyx2NUKCwHSs3ww6jhzakzo44kqQS6BTObIMYYxofbsTfh0GTI1r8YCuX6nBHSuGPXkTsaAnQLgzJoSGN8CKop8DFGorFmILqJSP1K3tXpNYqxN5N66EywxI/ZjipgsipGp2AsahxDo5dIyavucHIu1gtv+Z7bfGkDeRy7GbL3bvRyHF3sOlVY4ANIX9BF8a0DAq+CUG2FNx7FQJ6bY9Ma3g8SYY4hBkxgnVG+skt9G/hywpfgEamhOno3m5JkufRCpGcEqV3Wd6avc9lvM3n3BFF2GQGpryVmseLE8jxMgy311NYYsWkTI4JknQ/U8yvvgvl3UUKeW+lIA288EGhMgIuTM6qTmQkBnSmELrQ/2pc9b3GWnbE5T7tLGVUO8om84FEv3Au0ZVZ+kRYq3BaMD/mmq0GclVmF8fH78mNAaHtSPf5r+a06zNGa8OL8XAdi0bqup4CSmuWbE4ytuHsZVUH0iSfuDpSuqk5q4Uz5/dHPPJFR0mfHpkem1v2sLfvGtGzvBNjQr00eW3vbbiFArMhEwpupsvup3GEFWOg/5yKGVf0sOMgbJR2qwzbQkjjV7+OG0EWx8ZJuBxhEwwWl8AcgxIEnCnXjUrCRgSdFvg0N95kBjLE4QBnk75QHA9jNgVgWeaCDykweMgXT9BelVpD8LnTNmyOyJ9wIXjsxCEcRy4cn5ystDzJ5JY2KGccF1yoCiQYAED2mu84sGkHXRHd8Jflmm5HUQgA3Id+h7SsGFc4y1jM1cpQAj2AQwNhYIc//Uh4n2SqLhBcSyF1/qupi2pbDijkCvDDXOUqPG4GkgGzsJfrQt16ztjLCScYWKgMa4omBsS6TsWlN5IDgj0Aw8Z9uJto8AH69GdnQFmF1hiqXBn7puJFGuCrxtnH3NnFOLBXVqyrUtt8JIYzVL18QQDHv8lisqia1XMxe8+lkzR0oJAOxiy/wM28fc81a04PEMc7r/w21Oq0zpJ95WDEsH00a+5SCanJ71VoO9wgXKqd1Tenhhgn0yMSjUdRwem9XPSZopEHE02EWkVz/zjSvj5GXx07u62IUhkyFeDJ9QtIAlJ8AsKJXvnuYh1jrKMxTwPKNc14rMJoWQVyNk6pzhSLUS1mNOImRGjPmw/AonX90GE95+V8HoOv0cZtvE499eDAbO3Ax5jsnlZoUArv0LZ8ZPUOAbt5UFJxvbBpz5CK+WnkWD13X7mUDWVttRAfrU9HD3grD3WT9KHTuuwQ+chpARkFvl9zu+glFQcwUikt2S+HFgt5pz20oMaXD2sTd5GkSjwZQ4HuFG+xqZ4IPTdwCLhzRvSynLZLveHMP0GBmUMDJjUuYU4IiFHwGgBrNcRUHJBEfPmKpkv/1WDOUhXxUCwKEm4dhy17WDGbOigfzUByN0Ng+XC14t2LghvT3gFDP+v29ZkrpDx4Sawx2a8NrGm1O6EiF/l2ZLR/Z1HXIY52oJ4cIxkHG6dvSG638/1g57nrrLK8xD/BBZMK9tYE7ety6fBeErER4OLlhNGZ7+TKYlEN3vJUPHfbAOdbjVN21Ri+jgv+NTSWqu6zTSLeRcXC9pHxkMENwiMwb7y0OtthVDC4yj2M0rsqYkFdZCUsK6wik2yR37Y3ON9bl0wSRzFiPHjXmGBAAo91rI8RpnISK48c8oYh8pijce1IoMB+Z0Fbp82FUGZ4J6P58ANXmEYZKhtu60Y5PZ32dNDRaVwl+QOqYz31WrWT8vY1BCZ9ZbOwRCrqvgJohAJHzDakMPdAL6Y5PobT8H2H66a4MUIzEE7DgbvV2PjASiTZPYIlJtxMzcObNEAVZwe9j0Nt5CF+hxgc2sPh6fRrzCJr0yi7cdOA61vZRrBUUIt8o5sNiHZBFblV8Ai9tBjjG7e8IFI84xHwBAr2mPYUe9w4LtSVvcGNwFcGCCxtBo6tVIIFT0KsXbKTLCXhypB45tdtU/h1cI+5aMb5Dpn9SoUAqhXcwaIULqWGqrL9URa8EUO3vkN6w7ECoRSTAWyGBrKrkzAsJ0s4eetpr0scW2lqKXXS2RQGC+SSKtxLBtYDQgIdC3AQidoha2j4/Wb0epBWkIh5cz7FvMg/SJRopi4Zh2dp9+Dt6fRrBLUKrx7SMmsMNJhxzhCUS14E8pTJpCClMzkr2JyerOjorzuDU+/5AB7zHzg9DfeR6jwT9uLo0ICBeU9n2w10MESdKeBKTAak1gJ9gCZP4JWVNv4+Df0NVm6Ym3EZtDdigQK9fnc+Excl//rTLZTjzUikwA/gqAr7zMKoWv5nKP1yoTohYI9hkw3yW0E4uROHCTmSkJxmt/6JKlxI8Oz8GtsELGBLUFZC611MqIZRzMe96F5Y+Zs1rVmofFqzSKiE3V02Xxg1iF+MCYYXBFAVwfUfCs288xtxKeHHPQznSe3GcAlmlYPkOWbq5jqK8NZLnPpTMCWu0OltoqtoNi/QIubofBKSxe82ylDzT7OpdwzApEKqBaZwENabY72NI3aOuGvUncKK6A0R48xsVOH4Xg1coG3GMvWUoCYbErcXSxjYWVlUgAD8LvPt0JEgD6aLhJKTz/nlQJkXmepZLaGmKYuBGA5LWher/Q7mN2pZcU5tY3IS4wrhvpwHMgvW2o/LPyLIf1syDTJ7DWGb95KVFEwgpEwGInx5HlHpZbLZ1KeDzLfobRdnmhQgCTJ/nj3PhK2TobumREG7+wUFmNZNJWYq1ZSL3kNdX/8YCb5PhUJ9cLlvDoNQAeqBMsSjeIgPa87X9DsoBQFl7DQ4WzxvH2FvCPyxdbrNI1snVi7NnhMv5I4QkssJOeZqwYPqHxRs7SXBbkbAanVnX6R5IVB32/waFWZEqA2P8AMNEAdpz1QDezdCf7qg8fWAKtHmFqJcc9i2Z1boRZUFBkNhZeMrJpHFW9PMUuCAQJ2rIDOPkca6pXRgQumMgKcGP/SB2IdU9KJqkX4MQpATEO03SxuOiNbfPex0eq3RpCQjBaibWUo9NFvTTCROCOGXPiKIhlofOrGCvxNo6fVsDqMUwP7efsDiEy9LBw/sm+V0JnvtPXfSDYHr9Ue/y2z5mvjNCtQQTjW2HuSLIyUPJ2MC4S5NqFjADy+9xsLSknQbY1IIzDtNteynNlas9y6TFh057+eOL942iznyb/yjG7BUEBd1K5oo2Y5FejcOQpFsd4t2qWxMk4D02BzTJ3/jREZlwzQaIFTQ6BPM8ht+xQzr55xyoKalg0kPPLOAF2ESOrVmJrKdcdnuWuUt6FhZ6JTikZ0XwenwS2nppuANsI7CGfv6057zi/b2F2Fg3VNL5DsW9F4MVxARsySmX5unMui543pL6d2gh3NnfQmgNm7gJ1lzw90V2OqYE765tHRqEmAGh4yoVJLDkzsHULlT6/rnznDbp9eNN6fNPgA+fUgKddIWj/koWlHddCINpZAiFeZG9sqBUZBsJsx2g41AQsY5IEajQgoJwH1Xjh8RXU6QQrzHSqXk5otvvOz4WXFZoCEQwbPeHcASi2beRlYLmkxP6FHu6YzUCnXwTsOMuRCKmdVQ2zMNsJCkd6yCacwVJFU+qhecTqSWqVIRIMw88ltX9oYr+ajMMvm+p630JN0MCqpcvv9HPHJBHX2PmZGJHJmYSwz8yesupCt71kfMMJQH9sq/Z3YdFU7e6Mz3w6fYLM7WaRkYraNM6PmZtMIjpYIRpjHoMzbWK2w6JTPYhX+Cq/do7V5Sa7XjJ/Uy009s93scdscXhKLLNiUsJUH5YgpVo5+7UDAWhuOdtVTuNp9tjRWN2juRhHZ8tpAASEdhwO8TnLJ+tzT/Cr7wRCtuU0v/KA6lt7ozQBaGgF12wtwc5fwhh6ucTt8+O4i85BLiaRC/+enJxZc10l+fATbGzoFNJLytqK/Idet5sfMvjtJzT9xueDtchwWDwIsXRQ59Ezymy5mwjGBhr+Nh+AYLvFjBPYtvMc3Vn9ltv94DnQyDrwFgws8CG6S8DCAVB7HgHnUDiTQeF0rayTrHEcN1s86XZ2SkboQA1XMfOMXTWQosHrHimtBdnqqoaVsPaLa1D0TtHS6XaCtJzAYr+sjQS1IuOBYyIEoNXN0c8p8R4wyo23dxucYIoESxqTHa0UphCCKcYChlWQLcO3QkBKyP4K2q0OZpbbODK3iOm2RCaVf4yydDQ8Nhfybg8IABr+Hmok/MJHjjmk6g1dC+GliZGqJ+YoZFCCiOnujbOYIbyb7NRk9gHptl+8264jYR8RrnZ87CqTn3bwP1e2nAFqTNhVtDnurkSer4lyJu1Hkc1tyP4w5k/oi2KZrPR9SwyTM6t05ewtdBv7gkul0FYXduu46WOzzWPkNRhTXWmtYKaZodfvg/er8MaBys0VD8WMWXv0Wox8fv0HlKN5oKRKAIudvi0NABa2nof++A6MjTWwZccuWwlC2GbcfE4Rr7ez2/NYZuOR34RsAgOyu8WMH5poNDDXEVhanMP+mRY6Z10C0oqMoSmHf7oqCakXwTP/wAF7Z2llW5e+GsBy6X72zMGq7pQ753v7P/HeNc8CMp2DiX0WWTY8qk3MJT/R0uTuIDGhUNEiCWQd912q+RSNA49PB6tEMmsVAXd7i3MY9vQM9n2uK2CDpNs+KrJSm+ehcz3PCx2VmM9V1aaGenfthysv5s9+fQGg21pG3mc3lwbK/GaAWpEpARLwYoZ4RhQQcPZ/8dJLbxKI5KSWIbd0pfFS2GM9ZAWcUCRlXvUZFgF5F2jNIc/UXv/+2R4OHZ3DwUUVBVdKn64wjgY/QeORYBeYCdrJTamQnRVBq5+jP7bNj7liywosMOx+GkW9n8Gwx+VtD3TkhCQK85/gcsbDEVIutRXD+EWY2A1S6JV3SAQA2HgQArIxjmzHucDENriW0e3XYH40tlaJtrdWGSDsbdUk0m4XyrGtiulqfxreXxKcCavds2RPE/OfMWZ5L7qoUz8VfnWPFpEL/OUFAEso6HG5fs0o7zEha6wUGk8QfE/VTd2sbYD7a6iFgM4T8HivNbVESo1agmtL4oKSIix6XLCtUGsdaKDXbWFlYVopwpl//xhAyCgQ2rG5DL6o5CX5CeNTKCxV2cknL59gSj6z3kjfshxT4NrI30I21plYoQnbkUnxoJgMfbG1kH6HgVl5jCLTb8H2iTcIBZwvXNxupu4CwvlcJYU7sXELNHtQVnE24Cgswj4z28I+cwoVLs6hlP4m/aog8DcD9MnJ3GtJ1fqO9+bR3ScmVYBrA0OtyBSAGXR84PH9diIAO85EahXPmSW/cNHhIj9tqNoDLNR4cTrpj2JANHTsEdi4Ad1+D9MrfRXoK1GGzZ4Yr1aox6/Ye3KMwBIKZkYOVhn6dWsLP/mkeWSgKDnmErJqcyzTUMC3CjgfZEyN5RZRjUKrQaqexiFPIMsNwxDefE/fomsGA7GSOPLgGjt7RFULBOOsLdiWpsXNfjfG0Jw8A5Qxvw0YhamhjwaTrwwI6C0AsjwdBH3nVMo7XSXy/WGKtx4jWWWOlns/nYCz7R9MPF5Gyt88s9thpPGoRNby5eFiZLHBZ6xDidrCN/Ex9YFbIkz2IOAfCWFu8tD0+4sdU2jSl8cjEmwispHqtRWfi8G8YVYVRqz6LqBPbCa2lyn4kYdxdqBvelb1sb4Xpije4TFCpHxgLOWi4fw5AIi8p2NYCUd7OGtJn0gy705SsaywMsPqH1LBLPH8NFkwZ5VTsLBlFHlWZWMnYWnidKzQFoOVpQhnMHSfMauQzzJcPk27WYjwJvWUHuJfoI9t83nP56y6KDaawzZWWNHk3lhQKzIMBF/BMeBTxb0n3xdAD6600GdMpBA7YwYmvT7S7SxBzrTIPy3+xjgo9+83MXxKKQrumSuLT670oPUUs4KqBfs5KSz2W29sB6gxbrcdVHa+zaT/iLDUzXG0BcscAdXWOYDQabiIduMnYveVC5w7/TgpvI058zExHPzcyujDgssRQOboM1NmeQ7Xrg2HhR+TJYJRKFoTZ6LfmERvbId+xU/fqHHZH9uB5R0XsPGq6RDsoBb5Vg6DC+ySydb4KaCxIJaKrSXnk27ziBLpXCvyL45uJ4eCsdNdUt8brjz1xViYvKdueoWUCE4Li+nk6RL+9m+oZkjy60OSMLUi0ez7s90IbtM6zsoJAGNq19CML11n7oMlMc4wpb9S4AxqsLiSmIQzCg4XaGc8DDjjIp3OV7hC8PUX3kL+xiijTn8jON8YH7Gvn7pt8rT1Ca4+GjoTpzBcbAxx8LZWWV/39amucHuGGkCDCXLBms08EuZ4vMLnndIK4ryAlPU8G9uG5S1no3PKhQ5ZwED56SlTGXfIIVx4ChdjSr+L6m5PMDn5odqX8ysCxBgzWvmnGN1wiRcBGxlqRaYIWGcyVuhzusY4sh0PQGfiVEDHCPHGqh0VZtSxt6RMzs7SEqoJStB1rQQyjDggMVq9BmC2RNgqmi/sYnrdV/NTzZ+iAZ16rhgeAJAM2Z7DNJ53fAy6LkTaAiGAoy3C/vkeur0uwyAQHWnxShDhA8983B87yZXHlAHTHsIqTeZkiTvtI1nYe2V0CkWfQHiCQYFZKSKpLFtFzVvx5/Z3PjaBpa3noj9uTncZwcFGZ0oJF8oJPdfbg3ZbiQs4Pa7tiSYhkIrEyxvU5owDoMC0m5fZyFU+xijEqsd4d8Vrl7CNTc0THz5+wYMPMsHnRS/WuQnBM/jl6M+FTo7plRx3z/VcYaTGu720k5v8tTLrpri20LBCCMDWU43vBzvyb/8M7QTRPOI3DaPQfC/cPGo04C5OpeDTKQ3O64ITAmByJ3DSafGMZ43vb224MUogYGzc/i5kJ4C9Cyy8KiJjfnDF2SMveJU662oSjeLHFTKzhRxXy2yvCW2NoVQZKkHEd2RjHL3JU9M0e7xWj0emMBKAfreNbt9ZRp1fHLca+TjDAKzELLwGfXdiB0DCWnllqAYQuUV6rchsVuBbFmDRNFnnwiZBtv0sdPVKwQ5knswoDxSoAt6Yp2jAmF+tnrQWebLHCYW1sngFsYd+QDcjJF1Sd8Q5VpDCCc334qNxrZcvbgXm6pIOjqaEq7eON0sg1r5LW88BUUNviRFavdzDlWLW7S2nI29MQIoJhI1tJqtEKBgZXQ0ulJ11hXjfs65SYVq4k2QYcVjwH0G57Di5DUInEG3pkEQmxsGPPkPJSmuVISHQaHBGC9e00HFMvAEQfI+0gNQpJ/NGtYdRwKXemgoSpb5afNYiQabrtW3OSnvf8mhzc96aGgDCs2d6Fj9uveRVhqXBzRWvTDsulTKSk0Sr19fz2eG3m4jMGdjUU4gGCA0bHM/MP0eLgLfNG3yzlct7QLcJFWvHo9L8g2lXh4PNMY3G+83xs+++FUom0oS0eszFZAQgMLftQWhu3Q25dZeXL6nPA4DM3DiPyjLFkE1g+YzhfykhnPf9fLaqpANVGggCKLJak7HwsVNpfC6F22iSGqA89w6BcJJMSARr/eVjB8766KanPi1lrcuOh9gtsch/IAx3B/THT8by5G4sbX0A1FQqUWQSPGAjQq3IMAhXyqFDnmK4gbkbfNAz0673UisZLER3Q4Dts/JMZrWihNJim11ayOIw9Ma3O2HDBZBWaMhGf2UMKVjCKYXC0RiRHvBAAJjvCkw1VT3kyedBNibQnjjVH+4Ut44vPJT91ra3viXY8RgCiXG0J88ItmYceuOEa3ALCGTj27G89VxIeyLEUeBtw4UcVECfOnFChvvdQDLHaG17js6GMEHiCzL49Aszztw44mZrT6kgCSKB5uTZzMrTiJi8WuU3tEM4W4HpAiX0iVid31LN2s9aYrhV0bP0BatNJrDC0PnObO/UwZUtZ0ZC2qyCbUh309fsSLPwtlPSpzCCwuFHzfVfuVN/8NsahKCKNpdXd09Q+PMrZ/Fb7AKiober9Xx3crCkFpF1ls2izgK8eCypBVB0/5LB58bdfCfDkZWQjuL+BqDaVSsLbuwpUejyEfvf5BtD1tjK+kUN9JyAwyt+uQAgZOYpkECJlSmAxU6Oe5vEYl7qsZX3Nd3k0a8uWw0sRDzIHHtudcECKwW5jgcA5KKhb0D3uYX7zniAxh/2qTt+7ssIsk/N4rlhn7nxYxYZvnImhEA+Pmn7w/hTehZK71LTjQ+1IhOAZ6qHGZww3wrW8i5fMmoqKXxxqH6WpCQol2APzEmI7vhOb9uo2Zf+ZDeLEmFoJxBTm2wdBdgEjcsG/FVB1u/hlh/+EP1eD5g4CSu7HoF+Y9JumziBHVsHzA81cfg7dR6AAPSYr2s+vg39XY+IFA8uKL3nAe/xc3GLCl+p6zf6xA4l2kD1fMP6OKTXp4ouCbPFw/xlLPNs6Cf+aseMnayxFbRlu6pIYwzUXUF/YgeIBUxzCpW5TFMwWvxjlZymnAhui4zXzqVTCqJhjIFFhhzDY1NC53HCK2oXPSy64zsgGxO2k1zbysCBl8ADP8rGBLwMQLKP1I+gRxrGH4j1eULwW0uMrk+8VOEZ9KoYBG9bTbh7nTxBDzAFUf3l5r0RHsmiiP2xurLtRj7fPHWEwieGRsfuZ5oZ9s91caypr06wd2yFuXzhnD65CO80VGfnRUpxIaA7vh3COv77yNsZML/cxELbtzCRuXgzMZ7ThTs41pI4eHQah5bCgHnacV4mshb5PRJ/rfpQbUsn+DhnSHb904CU3JKcqg9fJKXexgtRa9lhCq+NKs93ELadhu55T0LemAisVIKVCWcRZhRZ1aDeWtqkEPBv/13cXObIorHGEBkrC189mq0dxTRSY8PcuIqgeM7KiPhq25lDjy33cGCJcO9C16a2WnZRXYxyxfx0itK6y3aNUAA63I8hIlraieMrF+x0DNgXZl49uAJ0spw9TtVB2BWXy6lpDcWQEd6WHsmYldA0jcGoqcTycDyehYbR4fRevkoN24R0HBneTKHQI8egAOWPcOoD0T/5QQB4wDRYZcTE5iABiIY+yRUIUfW9gVyausbWZ0OHM8+JoN8ikgECehPbYe9uIsd0laUlPZH4ExMQz9/GItjtNSHQndiJvLEFrYlTPabe6cdXV4TgOZMbjYrYb1sieYI4XKAbISa4oCOysWAMOIdq2yAgatjVshFmmZRK6dE6QtrSm+wkUC7hnbwhP4cW2UywMkVEuDEk9ZHcZs8/HODX2eDVbeM55Pt0qacqgng+vhXLk7vRPOmByMd3AGCXP3K9iIBOny+u/JGbVJqgrHu2fRP5JDWw1DHjg1vTzBx0lz+aKwrc7pmw70x7cnbV3HImmlvPCeZyeiDmaAB5jubkmcjGtkVBEG1u0YCEP1/yxiRaE6cjwxbXHvZYO/Oj0vmktciwbS8hgLGJiDrRMNvUzu/Powdgl/DWisymg5SoSnLyVOeSOZUgEE5HK6iTuHTmCuOFJMNlcBCw3M2w0Orj3oU2XJwEtrImH7+7qVnAOfbF4s+lD+jQe7RJkplZ08cW/A4VH/2gn0t0+5rhBDFATGZ12oMrAg0W3Cws15VfFANCLbi4k65hD9qCwvaMvdYnd7u0eqkcC1ULaOVJsDYxzCHYfybSYc85hxcN0GnnA1u2AwRk5AKm2azOfAChFVundErWzg17RUXYaZYhm2B35oSGkzvqU7jxa45r98d32KsRYGvuWs98NwyTyAkJriz5BDklAADysW1oTp6FvLHFI72f+xZMRbtPBQnTvhx9cBQ1nPEUjlZXE6kXIqbtu5OnW58XgG93mrbX/ktagTBjpZ9lICQExQAeYK+NCKxa4Tezcp9uSRxqBopH6PtgG8eJAgHCSdtOwvi2kzXvCPJ7DcqtQwIHl/UPISDHT1IxSuzpswBXqtolbWCyZo1JJDi1WkRKqbZ0vECaptzcDnjuzygEH5dxebbe0PO6EZ/os7QTWcucit+Uoz++HSuTZyP0OzOXrXpKHgjd8Z1objkbvfGTsXzSAzyCbNwoSdY6D8D5yPBI4roMf6eSAOYTRAjiyLgKp+u4QaFWZErAG3j6o3PSOQARMuO4pjlozP5SCFlEWQiPKXrmSjbR3MpYwNua0hMr4wM0WQf3xa391f9u/FL8GfJXghJ2RuAFfFAJUfVjuSvRyZiFxwt8R4iGnU6YayfdTEzarQ1Vtr+2hlCtFd3aahQHMEYFAokxi4ff4+SvLM1K1eBybaxYoPvu7Vd7K3SXBwC6mcRyz6dR6CxcaXIh0P34DgqtepAF+9yOOylfI+Xs66VQ9YGAaIzZcWLLID+pzUqubBE0D4mGnRFSM1U1VMLNNuHahXWcPb3Cp5RnkdL/Wz8fJzxshgHjnYPviA10MpcvGDnJJwyRGv5E1irb3XIK8pPOdKkp4WdpsDSM4BBW2HIFOLRwmHYB+7T/UwZ42xUELzkEmn2gJwlzXcLBxR5mWsbCFVdQErDQ9W8f2zIOXPjwR2Fsy7aAMoH4tmqfV8ytdLE0PxNY9MYifYi/TSm0RFzgErwFSgmbJSJkGPOuMLEgc7gtfM1PhbFOGKuT8wMy0LBhOQTCaNNui8fPY4LndVtNlzZQAiNndijrcGvL6ZCNceTCWLICJ2FmjTeWnMycDiVScoYpOR19xYZlx/CduWWAH0T6hBvSnbMBoVZkQgjP1HM2IwR6W8/AwrYHQ55yvpdN+SKYH5wBsxmsnVo5dsesy52q1HzxfVwkhLqMUjMTyywEmLlQ+EgAZqBhwtITgoEwDB7HVic92QAs9wmHljPccnjRZUoITTISHYBSEwjLk2eju/V0tLaeqesjGA8LpS6sk6lCZVZBDZ962Ud3bAeU1Ub1Zh75XTiLgfkFXkcj3AU3d5N6xIuy52rV04WewP7pFSy2OxqJKseqZUTojW1nypFfQcsfhbBB3/zVm+kLxWgJsOZzr34NpfASzx98N+WQ/lTlx21u6OJjUOZ+Hxs8ecgEE/qrU6pMndl8iXyjeD5f0Tff+cgUYKYlAHfNZVbZ5jjN3Cpm2Zrxk9TOoWpQhnM2PhkGuPmtA49BQOa5H05euPFrM/vLaAB6HsocdtETmUrVGGv3CXfM6iCYEGj3jHVCBZjj3T7fBQ4u9XFgdikqz9FihLx5wuqY0IolmTFEXj41ZhMbU8zaZ9Ca7emgGU2GRL21L59UW2ZZYP2AbjuC2uaVEIFPIMXtqd9wG1asx5F7x+pGUNdOdMSk45cEdDOy310X60MGLASOZOPFYORhMMh+VwtGe/JI5vaEloH+2Da0x3ey5vNniclr5rX1kSHTqhsfakWGQeynyyeD1hAAdVzPRlqlID306pVbLszNxRKtidNAaKA1eYbNRSTt1iYHJ5CMNA8HlcCRZXf3iXXQZKtc/3/+GyA0tHXAfx8S4pVKzpeDWw/M104usNTuodnu4+7Znn3P8UZ733rLjBrj6O04T8c3YCvWkF8Hz9ICSD1d2XKmXWWZ1ROJMSxsfYCXzk1i84SvWvSWghGM2lwrzAqNwnY13Iiw0s8xtbCSoFE9aW05w+bxfGSCLYDGlu0ebZIICx1CnqvSGmMNi8NvMwHChDV3c2ff+OSVqyNZL3ByeKjhulK/C49uEgCSxb5ZTjlyzvR2m8V0bHjZnqYtVKC9994vtgK2INDNJNo9qZUgrqjmvMFg9eZgOgiSNuJpyiqg6HTCRdVOAMIJJBICUubIMe7TENaDO23yd9IpFvb4riftBbI8R1P7iEgIZNYI4Z/QMS0138pwZGoac+7uQDW2zZaQVSxTN4n752qknSN6YUEEIRrwezTEQbExm2+5wCgRhr+Gi02HRm2lNNCnBrIcuHshw7EWoBisVmS4NbPR8KP5wlk2fXrZ/Oc0eTTzrwIZxq0lNZmepXVzwY0Jfv+W7TOCF9zTvLTDN2N3JjWY/yMbgw0vJo6w1mZXFrm+ri0ymxXCTk18Fe4oNM/nHdENM5E6adSZOBVLJz0Q/fGT9WtKj26mQ1krS+4ztQwNxXCMEC7giinnToJjHoNO2HF5ZgWu3YMJyDYTh4D9++9C1g9iXiRojVb+bLXN6WSlwDsuKHh6lsawaqH7RCizPkEgFxOWMRodxVk7yAbASuPVhPp8DZ7yBVZP/UVai49flVBg8qYw7bHr7AfZDMac3MsllroSXRrTtzz7opG0349oNJwFIFJf2LgVvqJjPjhdhlwi7o/js31iFkHBchpzP28jQU5AGWbuLABhxwdWi4BOpWMyaht8nKj/c761wFCR9C0yBo9klx3ysei2LtwGtHTnyVl9hBbkDftb5n0lKxyKBKQmLYFvTwctYE/LsdGHnMZUnRMCyRzL7+uowocXjRAM+JeZAIIrnLyd9B+/kV5XThKxU0tanfHXNYgtLI4+sHHrXvtbIwZUtG8JKQRyamC+R1hcnMfeWX0Igthq0Wxdk8LtLyAU7pWMW5WMYubGKoesMRnMfYHGlpP8+SM43YSVTB+P5vyLbQll8P3i+DhWW+Tu4IIUDX2hJgHjk9EY9KDx/7f35vG2HVWd+Ldq7zPeeXh3ePOQ4WUGEghR/NndpA2YRlR+3UpHO4BKY4OCsVVwAOf4a/tnI/4QtBGQBjqCH0FEBjHMdggQCTKGhAQSSF5ekjfde98dztl7/f6oaVXtfc6597073/om951z9q5d065aa9Vaq1Yxn0KmkfHg+fdtfkRBpgDHIHP23UgTVoUPdtmm7ZQjcLY2jsXmtHrG44Dmk0kTpCcrI+TzlWHQ4LQTBCDQpgSJZKUyHkslq6fZ2rRXkoluWbbtj6OoESnb5ssJU2Z9MdrtlqNTvpKBVVv3Hu9Lw1QDTZVTrfocVliBhRfkvrst2x1a63EF4rVy+etvPAfXJLJl26w8buXSt6pDAJRPEDcVtWU9EDL0N8FaZPm2WllmkBgbn0Ka8hW+iQ+kyhZJirY+I8aZNIItpMRaQ4KZ8zTxdItsd5XcdmIOAb6l0xeDiLSwq7+bvAQBzmfMOCz6TEOxwe7+aPyqid3qTIXlmqLcaoFKMmE1oDyHioxrxqDfQiXHGP2mYejQO8pcWspzHbm6OE7DMvl9zx+DpSsbz7y8zEicQhSEwyzP0ELizWlR0Hiw2V3Ylk/g6mQbyZgvCkLJpdA0/z3zwHZl79o39rirs7VJLDSm7eIhzwmthXk3vvMsELoJEAmEENrk6FdssZ2hnSkftJDu26rrz7OVUa9vSC8g3NxiNEg/8/jZDETkhFwmxACEFiXwa2XGFPcdMqKrRCtpotW3B7k0u6McD1hIBwAId8QJBBIB7D18CZJqs7BGMLS3+LI2J6IgwyBKiCORmTjkEQEi4PhchsV2SzNQZzHPiacjtJM6ltJ+WGkamrgyX4TCOSrBpFeCjQQXstpIkEhdGZDWyruJxLMiqJgchkYYxisEMNNyxE4xFUuV+IfK0wgYnJaBTSw9uSic+Lzv2DZQN4E9qcR+qq4s2R7ofdGMl/iKJ2ASdrurMS3AcWYmAOmehA/Sq9GS7fd8145w5g8jF5g+BpFV1S/VRnGmPo2Z+jQAgZONfZitT6ClT7C2eTOiKyT3XzHqcfUu0kpDvdcSlTtBQCYVFVWWvWMfwqs7X5W6XtHXzFZixsSd6cFda3tx+N2OsJBdcEJv30futl+zSnRoX2ewxa4a/xBo24Mz2XsKBBkBuND0gD0UUX1KdyMo3I1Lf97YIvT3PM+RS37QpShJ500wRzMK5fkCKfcnJcqRmajOpjOCw0eJ1Dbh0vhXXjmsnsQ/jBBDTPhlNAfC7tZj4YGCMUCFvgzN6DkLeFViFAUBaMk6lhqTlh4VZb7czW1SZQhzbEJISwDtW+QPQ6/epP7asm5/OzFEOdmHQhp38s8JWDx72s6BLNgK6mtkiKlAneXR62cAjy0A3ziZ42zL19yRqOBUY79yaWBzOElSQKbgqxQiwn2nCd86vVTSiZsTUZAJIYJ3Fxxtb0AgPDqX4YmHv2XvdYp70Er7mYRrCuEpCCIPDnt0XNw+kwfmnAwJOFkqmAVMPnCPcWd+ayYCcHJuKSBI8J7zflM5w59ZAs601IH3JsCcba+XkWaN5kgAFnqb7F4k43zbYyKRapMQ0goz4T0A6owhIVA4AZocTyIIb/eGWikRzOmxnoOmpevuWsF5lvLCOwQUbWsnDUdQRIq2bAAkGTPwHfLCPIzsp05XFh5j5XIBARBpRTkPGm1UgQELyywdgwszFPaPE09PqGXJy9TV6lphNHljlkjt9npsPkdGEp6MS8WnfPjjTbCAeLYOgSZPlVm2B85MBz6XSAm0BDiBRtj+USFetDbJnivijiiAZnyUtQvRp3m92xlhdokKTMT1M+sxLwkXFs13gSXuIyMTNlZ8AYp/Kcg1XCrkL3r2uH+Nz/U8M5PTq2ZoyS7uhFLMVMB/f8Tap/qy6FiYU8ZCAhCcppSURiYnj6Zbc1zJyy8sxlgdWDLM1qe8upEdfwmsL4oddm5eqd1Ceq4LgZxrTBEIMmTmqfZFImcW8/qGgFNnZnDfE8rhSTnimwWboT++cAVDOzUWc8LM3Fk8emYB8/NBvLBNiijIdEAnEwRbdACAt9IEI9SOBvFc2He7KtSUevYYuy/Y/HUigxVkLMMWqCTC3rfqFgCh1sRrm/1HE1lO2zvJDURI8pab4DZz53OQE/DEXEurS7VgJ4oZct5k4mL4Yb/VsMxQrJjwnuSEzAhljkh4T7JDPe11T/Gg+nGxlaPdzsEJjuJHJZIC3LPu/eu+hwDlIiDahpBILw/fRwUe0yDKNa/kOziEJeQEtT0UAEiWTWeB1GhkyDlqK4JItq6GmJcJ49wXSdiy1XVHjE1iAoQJ4KdgfHrUrhKfQdtxAqCdqOBfD83k+M7pNo49cQrw3mOR8fqCeiAWsK3xpqw8p+AZ/W+wI5Dn1U6byGQVmaxr7YIbZX4/qXeS5c6B3vrIsC32OVFBM8Ilh7kWML/UDlpTIgR2mqumbN3uVm6eFUqYEcK2V7B+LH33eqxkeW5Ne+ZQVUFtoL3AZkmwaNK0QthQ+EwAA5/LvCFOELKOw6VN7uD4TQS3o01RmhwAUQZUG16/gAAhUje3jFChb+fBIqTQPwLBfdNoV/fQHMtNrmTmpF4858T4iRBo7DpYIkgZp2o44YjYbk09jlptAvcj9DXFztRptpbzN5ET0G4tqrq0zYaNzY0oyDAo2SIknDmWkj6cqe8uFUn4xPImcqgWZz/86cwyyjP/UqmCxzF3gdCRVzNbcrtJbD0Zkyr6vPAfHY5KoAySMtiJHq4WoVaS7TxX54vABR4ra6+TT6hwUU04vvovdkTBgdnY5Tv4MBHpoGR2j2OJlsNob/TBREZTYez84Wm8wvxLYMIbb6nKx9uJyrLw2qbHXigTwGu/roMRYsgwSm0ULTEPEATSVDmbZjaIHIWvwwpR7s+t4gzjsg7TXHgUEuHRF2oXktTMjveGwImFYBaR094spMOgxjCICHOtNmbOnHS7/2yd/NWlD6HfFfvtSlL9V7ZAyXOrdXNP+SLN6cZeLNTHtUZGM+3AVJeTQJZluP90jgfOqDkgBACptIvGfKdMHGa1rUydM337bXlAjrOtsE/NKlzNb8409ZQH80YBQaCVO78tJz1ILUT5gQGzpFagP657CPefbOPLj5rT6nWu2SIo08cJkGOC9jmjpdSC+3fO5GibMWjnpfeT1Sn3tIwcpJvEYfyuzCGJ/jwEgARojNraq/5Tu9CML0u4scD4GRY0GF7+3mw3tQFIeBF0nVOuE65zmYCyttrBJiQ7H0pBBmdTaTEL0AIQ93bk38hIN4aeuEFh22MXNMLQTNfGLDdb1FVU6q2ArVHLdQUjZqQk2nZS15FFAy4EJ2ETBERSZRNUeOnKmLkNS04E5G3wgUn2RGT34ZTfwufF5OdOIBebgYB2DqteLjjehQyhRI1DAJBnMIYXgju5mLfGfjKtUNmWKVtPUdX9bP4xE9b0C5/A7lknnJFNL+xkDGatXRmxEN5BnVUXOI2EACBk4jMRXxrlT7N2scBnMM6pishaFXKBTZpPPrZ84ugLKa59VjgVKjZNyMAtY9amDTMuiGduiyuuON3KNXdtE9JqK+2fx5sUR7PKIU0IjWB/ZqHtG3HMVmtqo5U0kNWGdRl8IeCE2qAk71OBCSRCYKbvoE2jNDLFWeh5lBOstsSWxsxHgIAQjBmyxwhAO8uxmOU4Pd/GUluPTZio0np85rnWnrk2ttM+zOit+LBmA9jfwtPI6PaTXw/DeM3v+cXMyjqqqdL9MVMoQaAtG8pUk7fgRraaf4s5YW6pjRMzC1haUrsQF0xckmwJYY+aPG2xul4L83P2FHtHLgKNHmuz1NojV39Dl3kvuBIBOOHS0Ceb1okB/sB38+bxs+QFsFTMXlMVNv+sxoYPG8/spgUituXZ898jtctJHbWgjnRQ88iM3SKfsfOdzzVuIuOsXJh47cIudnwIGJOXhHk/vH2qLLXAiHFktiws/fbGk1s58x1BxKRZCD6BFfFbzNz3gAz5ZYY+MqI4oCmYlAZu4eLUm0oQchGWHp9btFzRlG8PAWR1CpmznZ7Zku0TArTWBWwyGeEDtlynsvWapgmEwEz/QdYX+hs7KiS3BZZpGsK9Q44ol+3Yslt880Bo8PL0CZM65NBsGWU7T8iUxB/O0BYV+x4Aqf0l/LFSLNCNlxwSi7kTIPh4cYtv3/4PElo9DOTBdk1A96FXbHE3AgluiuOJSxiUNkUu2aOOuKM3LHOYr46hlTSwVB1m+RTNAe20iVwkaIkqSCRskJMTHhnjyju8O153xyMF2mnTu595S1QzFsvaW+bzVFIkl8kgQHmGXAdly7UmD2b7tWC7G2UCf56pMQMIdiSGGwHM19VeD7yLrKwliKdyfZ4RsJDrs5/YKemA2ggAAS3IFEQ9u4kgz9vufYhEBV/LlR+grath9Fmm66R9QDJtLrNj3hfYXH1VY/uqAgNTR/xuFsIK43znYihU8l/2PDCgsLASeityRsDj84RHH/qmfS2cGiqTaniMCeHU2XLTi1tcmb7SxevnZ+q70RY1ZBAQaUOlsdKXboRgfobExgLTthvxLLem83AjBp/nKi8pJSc7CAgEFjNCmwRasmF9uTY7tkYt1xOMsZvVuXG8tQOELc7DFbaBGSiLWY5WJkGJcOprw5QMcaIcyPygXH5m5GzrbGUvYJh9QIB1etImEugizA4gN7iFbYwvZJUgz5FJpUGxdTG37IqVNCFVSwdPwCM2XcxcTSreBVU/J3xx32guRThhgbEbobdLk3tvtmwwBmiYBPlttTZtK3kJtEUNAjlEThCJe9cZoA7vgybmIIg8s4H8TMGmzUK4PAsioupQW5eHz7SwQBXsHXXRNv0VoesxE+LE+MgEkpX+Vwfqt31YzIdxCVYvX4hwiQXm28DsYo48Dwmn0GNVYq42iVpCyCp9EPMnXX97+REyUcHJxj5UxUn3XnXZOYQWzQIToykwkGnmahNYQtVu/bfsUrjxZLbEGxZlGaLNUNfCmwi+YCwIUBqqYGcNgCzTWhB9rIYQhlma/jEf7v0WkRevd1LxMwbnLyZYV+uOv/cUYXZ+FpeYscHKyI1glRsTMi9Dp2HCvHomBbJFAIlrG2A1WJbRMm2FHYLemON01KX1xzxf1LEAg2F38O9MM6zMRkrbkFthluCOKAAW2220hERWm0I7y5C0T/lxwvUjVqvpulyXJxztNQ/YBpsx7MxFuZDIkEKmda+/XHkuc743jcdGNenbYOc/GWHWHlZq5o29YeuRSGlpp2sHMC9qmKkPI68PYysgamR6oEw7o5BDBeRlTJcLOPrL3IJW1bLRR0z158ZPuW+K2y7oq2C5mtKbTPoZ7rvgzQ69ovbyMOWUUVVbTI6Z6i4rKLjdRQBBbzO0wguhlTR1WucMrMrIrRaLB/OzMM6Ymhk4zUuJipM1z56FIuwFL6k97iAMRc+ovXN4VBcXk6Z6b9mSR4TyLFfbH4URxjKAch0XBmq3AkxZTMhDSb0YAScCzs7P48GTwSqP/PRCC6lkfCCsScFbZrG+CcvzSaYJnOecK7lAB/h+U2rknjq7pLfs+0KtV34YPKywg8UQ1cLk0nf9wF383XD2bYpfSprIkprqH2379/MzWRGrovIXcWkoqCN7vkyjxr+QOtla+UtBDUfNKMy8sf2so00rOTaIuZNnmpZwASCY5IXKKVrEFwvKedT1WCsnnHrsERx77HF/rtu5BoAySK4dtvYZvktGPauO+jARc01yYvSF9LrBBZe01Wd0tdPb97SZOrF6t6xqjkIWP/UCSvU9H8usRCGsHVQAaFGKLKljvjJi8xF6JWD6MVg36g+BOU+prs4/I/gO7aEGKoOErKhgelRihjfmSPdeybUNOc7U9mAhHcRiMuAyZTsOcyvMsUJNKAfdaKNtMlhYylQMG/I3JWxmREGmI4yI7CTYcHWc59yEIvxnudMwmYFnLoRM1ggRbtCF5hGu/jfE1i70AVcP7SNnzv2hMBNHG/W9cItr7prtTVgCCRN0TWJmidR2UwCoNlCpVgAQFtMBzDb2KCJXtqoHGHOHpovuB5n7gDV9EQREXiLIBLKBaXOZ+YGv4LjznesapokAICDRllXM1KcxV5sCMZ8ZQxbV/E8U4c9dELfDFz8JaXPI7sCV+ZIVajwGLIwvjbBEhTXL9jvMaj6QlE2eQgpdbek9Z0Lx2/Zbn4pghWzTESrNYYi0YvOwNTLjRXK1thaYPRUAIdemLidX6fcqjW+Vy9ej3cSaa/slZ9PFrGyJZc4f981/ggkzZkyHp19nInW7AW0xZXmr58+2A8YQIMuMNoWHUHT0w9RNWuGTbJHSCARZ29EIVpB19i3UjH121GKo8dBGonb75XwhIu0YE1ojowQsLjHkViAzWtPFdAhUHUAma35VzXglAUBaH5nW4rxXLyPolCHPyT5n6aIZ410cUK3juR1LTAuEgBwZ05+hnURYEk6zYfwU3XENnekKACy22lhoZ+yVhT5xJsK2FjIg0IZEtVaz5Rt6YMoNoklA9Zqjq62kifnqKDLnlGafmWnBW4O4sFnCH6Pe9mt1bVY0Fc/p9II2GaIgwyDYgh6AN+gIQM4nA6lJkzNV4VI6CIDQkk3wQZ9rQsalaQNF+/Vky3P/OhyhM6tkKtyHtqkz5mKl8jJwD33pYrl4JXd61q0qnpht4YHHTuvLCQAJQZna4aJNLDmkR3g9ficE+G4Axtrs71wzHoWik65vZOIEg0uNfEWPYGYXW26JhF5NtZMa8mq/xyT5E4uVIU+oAIQeR8KpsIn0QW5lTMaqBuw7M/3jnJmLUATPtNa4+vp5ut7hDEGJuW5cCy0kM8aFoo+2G4XModQI9N64Jl0e33Hht5kLG1y4g85TDclcOdL7N3GqsccKVWSlK11nW5bWdlh5zQjGibLiMmdeFb+HtG+Iq4PfdvX7bCYxu9BCy0rwnDrod6JNxNbka/2XAj8kqc+7IdfvxqQjkJVM3xItEQELLefrQrbf3RwC+1SHOZZFXGbtzDNkMvWuKltajgzmFHl9R6bAnqeiPXkVqyXcOLayjLDakRzwtzWLsCZOeJLe2GHbqssECq+xWpPraYEM7dI7L81VvuDMcyxRaulAuEtRzRVhBTXy7ilkbXL3pOEfZOtlYHhCjgSVSlXnwedlMAzJtJGPOJfIatR0X8y3gftPLGHh7CwbC0aS4ecu8Y0Sjue14J93t9kRBZme0AOH2GTR142ZwgySudokZqsTmK3u8gd5EA0VEL623hTjFRBOIsmi9pokAZMwldERPfnq00rzQlqWR9q50DMj6Osdh7BQg33x7AxOPfYI7ApIJJ7WxDCoYsyqEtVszraa+h1nGaoodBjwuDnkTsBzrCt2rUAmEhitRKmgRn4P2IzNL4GgL9XdVnUIs7UJzFfcOxdaXe0ET1K7Owoyo+W0nH7bFoQMXl0zwpGrqTQB8Upi9ow1UxWCPKy5pwGUbGeO+sjSPvtdkDHqCKtZNA7brs4a2heLE0fTgfbID1MOgYVTd8NXaoEot/F2XMdlxinYdqHwnmc3AkaosFgZUMEIdflto03IWpyF8Iy850+ffBzmffmmXl0/MsZQ5YtmcuJmuxzCLfBZXJuFdBC5SJEjDeakYrjkc2sAUEKVbgyFu60A+GNF2EWG3d5sIZQDatrEWb2bxkOWIZM1y+isUCYEYKLjmvmhaYQ6rsBpUAobGEz92GdbpIrBiwSUlLtwmtYvtDM8eMa00n8Xgv3rzu6SvvmGyO1YhHqfbX1cAy8oFCj4D0tyefvNc/p9G81r6OeWk0CbJGSqtNcuyF2xf3zBlPl2FczK9hGcOHUKs6eO28vWednbMdehcXaObg1RJgoyBbjByM0zzoNd/Te7BOejoO/IagNLaZ+ahCY9haYOYVckgjOnkFHzkWu/BoRTC0h2fSGYUCK0sMQHoiYkdtsm9wXQzwk4wYvX3PctUVdbooJMb8dUE4rgDrUTXp396VA2idxvIwCoSLxmp4NzQDRNPHV2CUvtDPYsFHLM1qQ03ZjLBLPVXVio7QLfpuqzBsecFfSED459EPDb006ayKp9AARG69yRVJsjKUM+fBDEtud7bYHZ6uh2bPiSjesvJ0wxMwNzXuU5J1LgwNGnIKmkrDCrbPf6gGv7AIH5xiRmWWwTp51k79Wn94wBCPDYFCxbrz9lvoSWd9ieGpsJd84NsuBb3EPYkAX6OeWL5sZDLhIs1KdA2mndXINMvG3HhTccMmC9lXZpftYUbPvBiKCmvwSAaiUFkDitjACEFToymAVFLlUY+YX6eNjoon+Ou6Xqlmd2DAHkOfab2pGJHGsExIC+ZLKC+f4DyCpNHZvIdBxBoA2SgaBE/qe7boQcVRspTAwn37RqP/nzQmKm7wDm+vYhS+t+xoI/BDwyB5xcaGFmoQ0ugJLeaZOlNUcPCcDoIbTGj6IlajYjAbczKKccGZwDu6mW3kvGGsjpAJ+bQT+wcaPSmZAaapTkEMggkWhHa+Jxnrw89TsFEyzsQsTRsrTWxzoqpOD+ezLXJRPkXNmhCXrzIwoyDE5FH0w3O9DVzxyERx47Yff9E4BDe/egOTzlie82F52liSrh3w1TmzJKbhsTFCNCjhGqCeiiZ+rt18Y/gbURpCaE2hrK66uYaG5Vj7wQs3J00WqXkKLdWoCZCIKdsusmQnEba24YfMk8MV7/hmlTpvf5lh7RTWibhaXUYeDBmbJPqVtpP9oDe0vycc00dR3uq6Ixvi9I4a+ObBwgodpZTxPsv/jJahcR+yMQqDFaUh55TIpcEbYd5pIn+gndT9rPwZl7itM5jDBDgDKHAZirjNuLBL5KA9pLC1jKCKfq+3C6vscxcyOwsrTh3p2yeijmIP30WQvEfBKCB9Amf6Vv6u+nc9KU1SpJBAJp+fPWjZykjvXD07uxX2DUtj1+3iov5legZb2Du4bQN3mYvWcByYUC5ndkyxeAWwzoa1yDp0pz7SB1fhOfU9zJNNeaolwHhrTmr9L8ixBZG4BQB2daZlciTNouYeKy8d/oopHxFntCIpcVtxuPvxcWXisjFbcnD+p9ur4XC+kQFgYOOSKTVACZIu+bRDup2bRcI6N8HhMUDr5kbSNAayXL2u4LNS5+ULG9VtAQ6sgI1f7cbyvrLyvSaGHUKpYk7HsjTdc59+J/EIzWOFnTLgJ9SPfcFkAUZJYBQTxSLoF0fITZ0ydgfCqq9YY9rt6f5G7fP0DqzB/7S1gBxVzhIPZNrfYYQWYUK1SrgtyJquaaJb5GsCG1DVFoRttKmpb558LfFl38qspeQNVqQdSN3GPKZmLZ5/TXtmQOdSX/OgEIALW1ZiaY5HBLJkvvLFEKiAzxlY3fDo9RwKzeVb9Uqg1DbqwQV+gO1t6kkiKt1DQNcv0vKAdEWuxOa2/3CSSxfGEEvkAdbPVjBLjIvl7jChC6jKXKCGYGDuuDTJ1gyrWOrcWzaszJCkimtv3+wapasGVBKfwTfItVMealhXQAc9VdhS29XDZoG6bC8shNOSY9Z9yB74UsCAhmXJIvMELPa4FAahHKMZZ8nxMeRt7PA8g0n890VqS1hZVa02oHSFVO0QUqF/zCFb4Q3G8pGEikapXb9+SSENRz350hZO22MtdpYbQw9wRAyJlvkdNoLtRGQZqBlq4pvKqZDNSYlcIssvgupJDBF/MJD/E1c9i+ey2Ae76MRMhlBfPVEeTVfsxWJ7CU9IGGD9h85ivDmK+MYLY+qeeg1IJR8b3astnuOXst1JaSn1YIJhBrQSXUzh/Yd9AuxJDlJWZx9824N9j25658jzSy/nB+Zq6/BXtAJMoZ29vswExWZXssNiOiIBOigwrXDiT9KyMByo1a2EvGP/R3c5w76VOMtfTtPUTetTBfgrCnxwqQouCC76QxBEzlk0uP8rH2sQih0hd25qoTmK+MoJU0XJ0YUdO9ALfKk1hADaAcZxp7kIkUZ6tule/KcvVYqAxhIRnQtwVma4qYzFaUXZ5sBDdNGDLldCGCfBi1tVoHHqOBJbT9WTgXKOhfowWyT+l/HNP0uZ/gnWfzMBsc3CoJeQ4kJiJKWC6sTOZW+V62HtFXQqZQljbDKK2PTBDvBLABv3ieJACSVS+lPxqF91nIlPy3kRuplVFK88a8WBh2Gy5hPh1BO63rIcrr51qdoUwQKYwElz9jKoDoOJWdXpQzLja5pXDjnYD5+Xmg5N2U1cF1hXpnnjOp9kUiCCRSum30bHeVqb/37vWcy03/mPGm1ZokBJC1QUiZYK1X7aQie88s5Tj5xHHn1B3Mg1AA8u5RjlbfNGuzx17t2OVM1fwJLSi4vikREoKcO/Ut+Lgk4NTZlnZgDoQi4Q5rzNI6ztZ2gZoTui0AhMTZyghyoeaA6Xq3Vdnkp965EeFdfxg6wfvBvEOfAfCdiS6tLg8CIxN79FxJ2PEppnglhJytDDNiwIUnwGPhxp3A5uCPK3LJwBctkI7uubxKdr1uYkRBhoFrPhfSITYwyRIgnVL7o2TergMOEjzEfYnvA/gYo7IPf3Dp1ZLL314EH265l8AXp+3kYKXwCdpOm1isDDKixn1kLGny6pXrKKGttA9zjSm3FVMIJjhowUdWVHwG5pS4lDQx0zyIVtpn25LbVbh0fhKGc4MxSdY5xj8ot0yZEWtP/iB/gnoZGS0QK0dzpv6KwOGLrkClWjE0juUrtB+BIw5CCAiroSIdyRXww8gL/rJhCQ9nmOSTmEwkONl/WK34lSRj/RlCh3T/STOWw5Wwakhe6FPV/7rSaCFl2+ED4YL3A6BOHy6TIoTWeOV5ifbD1cWgbeITeZAFpm/gr/h1bjypfu+hfJ+TAFczlMk/Hh+xeQkt9Lu+yvRqh4xJUchiHoCNMaITe/fLSg/Ng94PgjrA0Qhvehzw93R2qY2zqDM/Ij+eimPODpmOOFsyMLrCMHV+6KMZ7yEdLJpvnA8fpF8/Bd+/zQhQmazbHMxzXIPBo2VzE6IQwFJ1BCCgrYV7VT0XJE7JmYKV5+ph6yf8tljh1BILb6J734XQMXl0FHHftwaYr4xitjYBWE22QJab/Z28H4vleFp487TlZU7Yn61NsscI5LOJTY8oyHREsGIh+471XXOaMDglV/eEv8K1ZilyA85OLDsjO40YO/xA3iA1TIV0GcISacqpsPUZBaICWGdWNuhN23SmJT1RnIrOJ4A7o/qMtUzTYL36mdbA224uBJaSPltvEOFMfS84AQYU3bL2aPiHN5rc7D4gKrwuVidfWDWmHyMgJWkFobrb/c6tikbRMBZVkxhDC8q2RIaZqJzw6NK4epI6FydRcXtIKGdKRftC4moEK7+d7lU4IQa2z4ildcJNG2nRp8K8a7dxxvVKiYaB4DPLULuSQ8AcgWCYHfcxmJjcjUr/uNeiIlsA3LgW9kYZG3HPEThzDYWnjIQV4uw9zbjOVKdwur4XS0kTIKV8y0HOsZUJ7a4tAolIbK8XYkYFAp1jbqYB/B3petsgdrx+7neWA4tUUQsPPi9NmpI5MdfYg8VkEO3hw9ri4By98xJNtArIF9Ac6XYtna2MggzTdo+pf7UExvtCFvrFtMcISiqvU/W9mKlNqbGkNbpqu7dv1i/pPkghkSV1nGrsw1xtSqWxfRGMFkeaPNrbkdmLDtpcuHlvkIuU17BQJOC2RkOoozaynFjUaP6MH7naJXCfXlOg6GxbcC0tC9OxBRAFmW4gPpCKRBd5BrNLJjwhtZxxK9+L3BtQbPja3TGcnbnysqSp72uGIFguJnKtYSqGYIW14D4svJ3GwdeuIEo6Q5fmAvMV5S/OzMi2z1998UlUANsJZvwp5isjNnNiwZu49slE9uXE29Vc10UI+C6OZbsozCosDDgYgJjAYVppT8v1Vz1EOZQZMNyezuppg9I50ejUYm77zxM+hNDxT4BW0udiAXU9qdYIrCWOuAJQhMsneHxFLaREkmizlmEWuh0e4yfexrAgWbiRB0b4vDqArDlh3zlXyY8OD6A+MOrGbjDHzDs2v8Ptrqp6ZSME3kCebezFQmUIc5URbSp1ZsuCxksIFU+FC022D/x57Ma1hEhNfpqJc02dCB4or7FrtwDO1iYKdIOPMQKsk6gSQjhxMMK/WWApwZiSCuarozgmJ21+i41dyNI6FiojPh2wzXcB29wuKpVooTKEM/W9OFsZdUKd5+SUs34meLIbgzuAU9GtXFYD4VOVu2SUTlyQzclY/RyTNu+QbWU2o4SgFTyeidYtEDjdKM5nk4cTxr166u9SCMxVJ5CLFPOVUXabC7Q+DcghsdRqQdit77CCE6dpOYUCp9r677RNwjPNEaBPrNdnN20NOSYKMhwCQKjaF2QYiXOSNUTBONUWl9nwTAh8wpvh7w8QM9PcxbzAlAhLtVEs9u/B6doeyzhz9hxpSd3Rjtxm7TMpfdE4eYUh6O3Kk7MR7sjrPo3DomHiTsjQzn3EY6IYAifQxzerMLVvu7UAAjs3KefbvlWZHoOyRmxmUuqwa8Z8M6l8u7VAS9bhbN+OiDj3Y9OxvqMkFw5V3molupgOYEk20K4OudPHQ35U6mCoEp+YyzB36jEsZYFwICQWmrsxO36FPXzQto7l44t1oUhLGBnsx9DeS4PVOWA0S/yJIwcO4OAlV8M7PFML05SzEsjszePE0WmdyF7hRJe/G4nW6IVYrAxqwuzKk9qsxN1xvK4M52HwXpzWkjyhz7WWMFubwGI6iIXKCBYqI2ilfTowmmBOwqT/D3sW1i/Ftk4XI62wqJBI1uZwMRC6fJIZr16F2e0Eme4vPr99P7vc28XE55zuLK8wPp4eefhBtJdUHKQsGcDZ4Qs9+uRisxCbG2YWOaGYYLQxmgaGxVKGTKR6IwIC+BsoFCTyPDSLOmHu1PHv2O++BtwI/i54pdImaw2HfibTDvpZ2oRMKmgT80kUxXfvBeDT+fK+KMARDORJBXON3ViojTmywumTHfcumnyGBDLhhFRolbxfj8ImCOHzJRk43AOwwQC3iBwTBZleKB+IjsAWt+KZiasOEywSChEwG16SofyOmXoSvwBajQl9KrMmVEq6ss89fpYdPsnpi5nQtmzD9rUt30vuEwyvCFZrobUjnjnCK1MRtvDIAAmBAxdcZnd5EaNo3ncI5VBN4cpAer+Nc63vx+RgVfWELkwQaCcNzFQnMVOf1u1jd4VHChwNshfYmza8QiSYrU3hRHUa3zm1iPbSAmTqtn46mmoEZUWUjS9ma2nBCnQOqhZZDhWXhhUovLRBTwgjePO6Ck24i07SfNVr8k+snw/PNkEuHDMmnb7UfGffT+6Ws3xXW8GW7+IxOQaiovaWmVrCuea0dL4a32pB9FXjrEwQaCdNbzFTutsm6ANeJpn8TdO0aWn/aBONUWUWzQG9/dow/mJQM28Vrxqjj7xwPTRbm0Jb1jBTn0JJwAYAhEpVjbc8U4uuHFL78ah8TM/Z+e2taTSDJ8LS/KztR18r5dMa0p1jaul5HhH7rhkz2Y5SbypnprjyXUt6nAhjigzro4VruPxdfC0jxPpN1FVW9dLzgQAVeqCxD1ljFEmSKp8tGEodvB+bh+tLYQUI9TlXGQFIBT4Ek18F+7d4vAr/rd6b0ajkSFQwPZaOzNzSdeRhFfzynPYYel4KRrxFEFxxsyMKMh1A3jgtOkK605TLpdY2jMqP22lVXnxC2x0fAYctc4LLMn/dwT8NIz8137ZExOyI8OkhZwC+744lajxYg/30hTVDpL2JIlye1izhERn111dLUWsOwIdm5FazoupBVLYSC9vumHiZIOPyZ21hjMxmAqitmrICs22WE9rybIsCmKJfLg7DYibwxMMPYGH+rI2yG44tRxwVQVE7K1XALEWIzdvRBI8UwRSkBEqupWrLqio37Wc95QiqjZasn8nYPQNiAoK6w0wfxGKU8DgWLLXZ0lkwuXplCfDzoGzZxrwofcHGJSgrM9wHGG4Vd6mV2YLdY3NPdbtgzCBwIjYdQMKjAUED2HWVJk0kBkfGbN2krCghh6gQaM5VxD1vg9ix8rKkjrn6NNrCBRXk9pi2rEPq04tJqPes/JpDWlMUzHhAPLeIceOwOFaEK5sx0lyPzQy+QMEFRdtcyv0T5GXAngJ6pGL2+NprtX3c0SA3X8wZTARrajaB7SQfk4ltDwnp1aHFgzEKJ9ToytqyjBbfE24h0Er6cLJxAPPVMa9ZihKVxICSEk6bL2z/KUEmQQahBZmwLN0XBT81YX3qTKlqiPE5yBcvRb63WREFGQbBCK+zl6pXaR0izQTkE5HcoDECwXw6CBAhyRaRi8QRPbPq9EaIGn4Z2xJrVhwuhfBWS2rl4ezJRAKLlCJnIbZ9o4wZlCwejoTbGWAkN2MzNaUItYbMZRAHRQjFaEpXJazOpn2GARRsK74fTU7M8TdRWxI7hqHnuQhFDDI2oTkGJ/ZDJNXigxZcALNVc4JMif+JYN94G+wuIjBCTYQF1FBJWR2sEKzHkCY0ELCaExNd2i9XqJgXRHYlKaAZhRA4Xd+L04392nfDlWW4YzvLsDQ/BwCoVXyNTL1q/D1E4V1ZNbyHxK8eFzyDoHTWj4Acjy6ubHOm/k+cQAwmhJt+Qtg10goAhKCuOmFuNITsvBljHuV1tQ+RsNvAtcTMmiYKzxD/VwuZrGtsHySVFE8MXoYzjb3FOUHlGi2vXmBMS+jMTf0K6kpopq3i8ugjIYMy/bqzqgQ+cVTyaLjA0O+MBMC1TSRgdjPydhi0ZB25rNr8QofxULOgfsvibjVDY7m6xbz/oLb8nDLVl6JAdwFgpFkBIQ2cnMkKGPyaHdeFFoYuA0zwswJTGHJAfctkHVltBEuVfkCHLcgogbRz3K+zGQacBgWlwpjp1UYJzRNsG0wcma0hykRBJsBCfRJtUVPbr8EZtT8w88AxrHCOhkhxujaNuXQEarsxn5xc6oWlSGcbUy6DEkqW5RmCWajT6sGO1FsBc3uwJ3AQrGuJkcxVkU4YMwnnqrvQkg3M6/gwjjED4AKafcIR/VClH6683enEpOcNWcczMv4RWcaYHVlGxXeZWKdar+5g99h5RHzdrts72hDomzjk0pOAlNIROGL1ZW0plGSd99Rqyq7sSNne56gGIXL7PP/0TvqGXmlSZjV7rhRoZmDYmLArSuNgLIzjollxMgastDwJMlLnzuwZbuDIBRfhssuuwIWHjmBofDdMLxHC8WDqy5ijCN9xZ2GTH15pcxTw5wEcY3T+Co55ujO1TA483gX3VxOQidmq7eYbUV6YW57GzwjzrH4Z28HhxqIzOal3or/n7PR4xhAAWG1GTnonj17xB1PTzluC3gmkTWGhNsN7yKJUArIhDdqQTgj2sjACMxPIzYFQgucT9hmrRHAvM87v0HNZOHppGOYSKdPIYjqgz3gyfaRymWsqc9xMdQJ80NiqwgmIrgs0DTEOq0xW9seO6zKrTRFuDPH+Ge2rYu+ho0jrQ6V5EPwyiI0jfo9nbMsEN4kHZlAmvC8NHcJ8cxqQFWSQEGkF0jj7WkGd5cKnFXu3broxuiEE5qq7AAgsVEZUDiVze7MiCjIBlupjONPYbQmTY/b+VuWchVsvTmpF5LK0gSyte0JELozEXCBfgbShrjupmk8GQ2AUcTOnLEstF5Rof12OIpjw0A8YezgAe7AcEdqyitn6JPLaoK4Rf77oW2EnFPwt6KaVICO8sGv2U5+YbZh7limGyxlNQaOjy5dGMyDRGBj17urpq4haTrrrfObc3z9g20eifP3ntdUSDObHZPmlMa1I2wdppYZF1DA6NsUzC3LXvaAJs1GdhyNFCBVHAmREOKH5jTP3qNVWcTwJKBNDS6QAckghMDI8hkajD0NjuyCMmaODv5GwJ/pClxnujgPMXOFaEyOAcV8rq6HhNTTTQAuDZc70RQHZFOvs/jmk9cEKz5sh8370NWciyoPVtaqnv/PDCXd2TrJnwl1YYdtMnpLtvlOyXNAmzXzbsqZiiATzyc2bQMNbOj+4o35ifT0E+9doAsm74wuyRMDpRSVehe3KWNh/8wyPtOzyNeNH3VuEEmTasu7kS+szI9GqDuFEQ8WZypl2JxxHrKnsqzMfWV0Dd3K2/e/6Xo05P28TF2pwoB9JXR+myueB33kmUxitnz9ei1RFvRoTniEY2eynWRjVKhK1vmHs2XvYK69wvA4xIZmNC0dNuYAPtJO66uvKAMLDejY7oiDDYKavz1ydZDtYZU5jNk2HFVDwnas5Q+YVan3K8s0hcWYpd6s6xmp1tt5ccqpc3hbHwFWgNbdCNg50PE8BFe4bgD3Fum0nHKDUsHzFyYkqeROlDJaQktFDMOZGQBsCc6LOCIGq55natNd/fGfExMgg+oZ3+e9Qr46UH02u6iyZyYb1myF+QjNSR+b01A7VyF4bXF+IJGVmMvX8+PAQ6v1DrHfVrcIKT7ggbW0RamS0KphJOEKqc56d43li0/LuF6QYaBspMusLUPZOGPMyNxKzkgvGqPTfLRlh07O7KzifBbKr4JARt3NCK7MN8+ooZEheHUNU0P5EeqymHXwsuD8TACxW1Sp7KekHzFZ+NicN4+fZFPrOzu8g2o7nv+Gi4NrjTAr0AC4+FQTmKyPKARll444LhHq+efPd7B5T5rTR8SlUBsZxtjaBdupORFd5FHeuwOTNdtbNnHwUrYWzQSLCUtKP2eoYZmq7bT5WI6N9PQh+6AYAOFPbjbOVMSwkA0GW5MaWMM/yepXvTOS7hZzZh2mz+EknMIsOR3u4dqRoklF55cG74CESLM9gglZZXn6+YHTF7x9vEUOqrL6qxEWXXIUBrT11FNDvDbtnxMpbhh4Ec5tpoawTtvbLi6dfb2UEomitInHppVfg0EVX2nGRe8yiuGK0DD50ZizZ6maeKlQi0FwsLZzF3MwTcIGR/IO9wsGci+Jq1i8hXCm4tCf7DmGmsRftyiCTBpT5irerLBiT+SR3URfhp89yNVEod+YWrq5vjh9SPj9CneJrGttKB9CWtZK2SSQCWGiocOSL6aBtmvGhyTPjOeQ761WTcPVespr03oe+ahmYv6U+SZQ93Qm+1FGgM+UajYWA3l2Um8BqLh+nKncmK16PnNWzjLzJJMUi6ejEHQ7N4aY695vDMTaTzgZF7DC6oQVrlSQwVgmnxj52FpifOwOC0NtC/boY4ZIX4xF7PTeIAJEkLoXjLbDHOugrS+kg5kYvw1xl3PfxKmGgtjzBhBlmvnWRrPVg5WOGDO2QynRZotE0JZB5wLBGYfywXIvZtLRfwnW0YmY5SCRKEBQCLVHBwuglltl72TCfCKslYouwjATaraVCehICi+kg8qTKzBySCVbS1pe3IkuqWKoMFOYGochwFc3NdB/6rfYelExzY9pnT5wOz2yDFVwJgDOnFAVMJZ8bOsnGoF0plGkxmYBjHY153U0qb0YghPVfKZmyXj2ZydBEa+ZDhL/vMl8g0wfW7L815JgoyJRCv7zZ6gSW0kG00gE0m32o1JuMoRjGpVYb3q4OALLarwaOgO+wyZwMRcAYuQmlOH4ksizHTKbDaAsWO4SYQx7bMJEFrzec9ML4gVgZgZtJpCJ+noAjkBGLF2N2UhC8NJwY+Lt6/PLbbPdEnqnIpFzTldSa0BYUBsPYfD+G3UNNDDVrGJ/cizxt4InGQZytmJgMEmlaAQSB8ky9LynQ1odjZkkNuwZqqA1PwaxquWNpCMOQPBenEjklM3XVtFNIn1hx84RVfQvuI6Nif2TwnxNCok3hmIE2lzAGaQUahyQRaCPVTLeTGaTcdKPi4wQCnuDMCpaQCkbULSMSLOYNY1JCOO0Q5cDMyePqWbZrw+9cVz/PtGudzzPkQiIxUWW9eRYwZyjhgyoN1jb/RWZQGi+j2TAVL9diBHOXm50s7WCphRnRTGAj10YenZnHKbECv3nXugMXTPBI/dB8bQK5SDBfGbH9kRXMX4LJTGzDdCBIWFpWaLGpIRdw1fgXQmBqqA6RqpARXNAOMrBfW0gLwi6gD3XMM08AUzX2x6TRqqjt5uad6/llT2YooY1khGfu5+cgtUnS0XPhPtk5Yr7fJP/jKPEt02MqTKc+BM62oHcdsbwCYYPM4eT6XhiSgkj5Cwq4Pgz9ztRiKhBwNzmiIMPgxof6spT2Y6E6grx0t4uwQYP8aaUwse8CuyIsai34D7KfhSMFAgaudhyY+BNc8DDT1y8h0ztKijukNPEWmoqCWIhst/pSH4YIEESSWtOSsz37hCkHn5ACLUoC4l8UDDKt3VGRR92kMityb9eSt/hyPwaaVVx46VNQ6zNaGLMaF6Ckgmq1rvtQOQ8LmeJ0fQ9ONg4gr4wgkQKTk1N6e7Rqk3NGBjya1AkBgeb+Pshh2KEH7uSnORfs+yV16nZ/VWJ8oAYhpSVi7dYi5k49hlDr4pktXA/oe4T+qkTf5GH9fjqTKWsm1L+5my5fUUp7uFy4zgwJtdqKe7o2jdnaJHJ7RpGPPGs5U45+/zwKqXmmXFWvBZ8cWqBLvCq5lbEWGvh1JhXbaKf6Xo4EItVn+XjBxoS9xAVbK7BQ8Z0bLYHvo+XPexebhQmpvN9lipnaFJtPrq5z9Sn7XYCwWBvHmcZe5LJizSjWp8kW6wRix4Bd1dw9yTY5MNLF6s8XRASJkYF+9NdSDExd6Atwtl3w55QQOCub+mtRoFTO1KFJ0uWcLS3abrNCjF4MmfPiOLUUUuqDfHU9tPO1v1uOxVyxIQF84Rgw48AXEsq1K8L75BpJbubinwBw8vhD6n2UaXbtmHUbJkwbuJYbAhhuVpDU+tBMnTO2Z/ITZuh18EXbhEh7J9lZ8LUkhiD4MNfdqihcEajBIcCdzbikGxI38LkIvhLjFciDVa4hSoVztElAyKQYHdPOVvNDYq6xB8nZx7GU9PONQGpCZ7DM3Pg+tLiPDAKGoicyDKGEwLyoo57MB/3jMwPzjGqjW50bZ8/Eq3Oh+woEL0Ra64NMJHKZIG+1kaOu6mB2jtjqCxhznWSMzNTTtYExGLtiDti2UD4+KRzxLCVA8MdZrolQpglvNU1w5OiTkFZTXHH5kzC7sISHHn7EChp2x5LOK4ffv0W4GC9UsrVSybXkvRPepkLFE6NFIG4JKawUFSTaSQOZyGw/mzyMELd4dkaf8A27+k1C59LSGcnnldrCnSQSQBYkFXCxj9wK1GRTeEcEDA4MYjHpA04/wsZ9GLzM9APflUaFTiswwcD53T3L6it8AXKhPoFsqQpgUbdW2EYYTVgoNPAxnRmpK2wqE8wK9TBtZuaiAt1h9a8mwJGLr0S1XtdXnJZEUkgPnYAphEAuazpadHFhYOsR1tuYbYQTPKxpSXcPk9u8daLUY8HQLGu6D/rR0HUKWk9BCjOeGpUEZ4J+DPOzT2k6mxdfC2u/KHF9L5lmxOsfuA8QUEslLr/kEqC9pK4GO+fUe5BKpN4ikkwUZEoRsKXSkcX9YMpzsdIt124IPti1BB1KMvx5+933lYBhxLwgYVkmkKTIsrSQj8f0kwStyiDma2O6To4gFpATUgGkQ5OYn5sFZS7+gFdnTSTMjoVFStFfawLtxTLzrq6fW+/nTPAzn9zkphhxh4y8PBXaQqKvOaCJeAIV/lwJeiGz9vO1azbvWqfCFAF19015Odo2doUMnU99UgZjrlzIge/O5MiphbTSj7SqtBfVahUVfRyAs8ebVZ2uCgkXk8KOO5/8CWG29XbykSFvh1EnKNOK1poEnFMUBD/OINjKU/eTqWsGYbecOwJLnLuCS/ck4DZ6CK0F0yYgFT03c3mY+SbgCbAh0/ecfQWQ1hpYbANGOyT1Pd4/zhcjEGhlccyEAQiFgKdF49otJxcawc/P37StaLolxyABgAQS6XZrcW0UwExGLH+jqeAa1YwJCX4d9FgkWE11vdnH8pJeakWv/LlukOsdiEJFfrNos34jNpbMh3cEg6GXbGFltDJKE52ocQquwRR2yz8/f8i2Qb0ol6fQhXvVcA9NDzeB6b2oJcDZ+Xm1xfzR+2Deax4MDdLCfLngo+izCuYYmsVcen0MmhLshHl/xXdWSVMg5exfQnnyOT/GUCDezIimJYZyvwhRGDiAeskuei9ApRK6SwuA2ScFdg07L/1Ti4SMwmfcF/M9g7Ob+wPOTCo3YGVS1SabsE5GeCK7Egk6wUvvNEg5KonE/n0HUWkO2Mle9GHwn69Xq34Zxc6xBMg5j3LNE1tVELHJWBJYqpg1lqiCZrNf27eduYlH7PTdL/ROpcD3AFRmGArhUkwNKr8A6xROVBDAyp3tlKnmsVOnsTg3gyzzNQpm55Q9ukCw69BCi1FTayaaVfqxWFVnBwlZgfFt6hTsSglegglLbm6E283D1ZzP3EOQfcdunGkBXLdjiap6y70qjfcRX71boYhNFHtkBqlAgs7Zl3W8UAyO+xlQgbM7wYvQ6RRmsHEqWEYK9hybwqjRpiX302O+6uEyH7mi8EGeMOhuhPeNDKccjHVnUx68IMWZQ+GV2MvJEWqhFN0rLPoIRW0wazuvIyvdfZLyNxHsmvpL4Gy8SeFZBO8jJyZg2z4l9o71U4zuVCsV2MCKQUWV0qTMoZc3ROisBdJEYt+evZiY2ouDhy5ErTHgCX2C7b/3Yj2V9AugNm/kIR0JTgsv1I1K/YM9DDVMdGD9iBGmlrGY2SyIgkwAPs2I/XGYwWK3IkPYcyoc4ddMyQgfeqCO1hNcddVTsOvAxTa3Y3MZTmSNoAxXG3fNH6jWwTj3t16qm1Ktnoi1g/l8KImdq2B5eY4YFOLyibBeJasDHdFzsArsueDJrg9KtpoCzFGZjF2bM3Zdl4BIm++dSYq6s4gUjWa/tm8rH4pclhFBvpbVQoCARyhUIgH+djwNF/veqCY4cORSJHVFvHJyjJi3ILfjQ/eFzj8ngUVUsBAIMuDEVADEzkQhypW2yYZo1/UUAmea+7GYDqhw+EI6Qais58zOh+B9CTDmCD2+hXs/IRFV/glcvyC8Dje9KIS0OyxaSNHSTEqac2+snxIXmouVN5oUc1cUwsgzIaID0yDARcOFy6/TKrm8XSwt6696RdGDesKdscM+A8LYs91A+h/7ppgmQYA8gdEaJgRQ1OyYdLx1gaAE46NX0vuhEFcytvzDHeEmsHfROGgHTq0ArrzyyagPT6uaeX6LRhAx300cK7cIytwgVGmkS6s0lAp7RpoY2H2R6w8hfPMtO4tJJWCCHPtSPDOpM9S8Mj/8TSMFp+Y8L6EjAv1VgbQ5gHnUwcelEj6ZX5NricWugRoG9hx1fEARNvXMFhFkommpBCFBLt+lD7RJlqYPmW0OodxudYjutFJl21WB2SVgLh0KeKbwJ4hgDmisAP+M0aI9SAAAYyxJREFUt6Aexo+irI2ko93KYKJ4cBNCrUyNHKMIxFA9QXPsMIQUOHbyDAAX6rqSSOw7fBRppSwOSlAXO9EkSOSO2Oj2tWQN7aSGFhlVtQ5aZYWbzkRj7/RuVBv9WFjM9ApDBGr8clihhhFaYb39/Wc75ZHIRAWYsydfB+9HcAFYlUp6RZeJFItURZ6Hjrs6XdhmAQgyu0IkSxsmcivQspq3cwJlmfLHEoAXVKvQbhPXhY/VMHKx+877i8cN8sxQQqBFKWpoYXqkHw+1dgGzD5dYlkoESM+HTJSY8tyCoribiL8H9d5zPV/9XU+uZf4WYFO+WfGTnmOuDtNDDaR7D2OgkSpfiFBA4/mRmXeOoRZ93pxjsLklyoQjraGTidDOqsWFAYExU+KCFp9fvmBq89db9pwfShhrxVaX7bwqCr0Wwpjt/XlardZxaM8UTlVaEKfmQDNnvWdV/BNTb7L0MkGG+47Pgap9UGZTV77yBXF9JIRAklZLaYoQAlK/B+7ryLVMuWloB3jmYATvv8RfytPIQEAdCllMI4RAtdGPRaqgoS/mNj/ej+V1SxJOpwXztdoakkzUyATgYZnLPMcNcsALlOVFjDQw49MSI0fYjEAAqNNQW4Kds1SyulVlCp94eudB8UmgauFt29XiOLf/h5E7+XpMsIluKmVOZlY/BVIJTE1Nojk4wopR9RgfG0fDBn8LCGVJu2waLcSM1Y0go1b9c829OFsb9zq4A0306jI+fcAGjBNGE5FUWC8VhVazRVQ9o/tBC3wnBy+1/ZXJmucD0ZF8GUGmJEAbN6cBwJnqBBbTQbTSPiyggonBJgowhJ6EW7WSens5ivFJTDuMH4+Uid1dFqKVKcNSm8zhfax9QkAEY0pof4Yyvw5WYfbpGLPl+ULYJJwp1FOJ4fHpcklRX1tKlHCbQ4UK4HM27G87zoXPJIMQdv68ICdoMXnHz88rJGfj3E+RSIGpqUn0DblDA90qWZVtroYH/hkhtHhoo2Q9z245ycYr39QqJ98kxP3UfDCBT/dvHgpLwSMFzYuXTtg/48/R8fWWdG9fvYrJPYcKzByAb+qGEQTV54m5eTz0nYdYm1y/mRAUStrzNSJlKukcApmoIISvmSuZBYUq87klPQErTKO0K4kVGgvlwpyozsoXwvo0ldeoDE6z5Y/NzY0oyARwc1T41wIoNXi5mtX/bRiVYv5leS2hghZSG0sF4MTAMQYVHI4RVeGYEWfKZjdAjtBmyokSEJpNeN6hMx9neuZ04E6aKqNVYA8UG12St1lBCQgcvPRp+jG2uwXlfV0+9f2rUioHX3i+MmU5QjEvxlA5sqSGM/W9mKlNYrGxCwmPCxTWhPWROjumdCDpD8Uk5tMBLFRHkEGglkrsPnKFn6UWRoxg6IRAHVxQlAhMpigS1mejkyOfiarbZoePEiPwHEbJzQVQV0/zLt0b4hoGu8WZAB5ZlO/CCzUVRmicr6hIvC3ZwGx1F86mI5ipTXuLkIyXw/vAdCLYzArMwro0qLHn91JLbw1eSgZcH5J7AgQQOWbYaeiX7V70EDBQIUTBrYUESplfKOpYE6GQbgzypnMJqES6tYKSLksd2VA+90FmXJY0qYQWqSyZSQN61JB73520CIZO+QtPt31eaUjUu1hEDYutzIY0YIVpa5yiWTKIB1aQY6QS8OcrI1hMBzBbm/T6wjgA99qhWCq8UbF/wmc7UV0BdUQNX06QfVcu1XIQakm3AlYsyHzyk5/Ec57zHOzevRtCCLz3ve/17hMRXv3qV2N6ehqNRgPXX3897r33Xi/NiRMncNNNN2FwcBDDw8P4qZ/6KczOzp5XQ1YTPuEThUFpBtT07oNI+4bLZG8vrUir1vGwMAy1CnCRila+MF8THM5MYOt46TnB8gnBGERZCwKVuZlhnQY8r3vOfRfCgR+u3Aury6Bd4XZJKGacakK2Entzpzqr8++URibRJ1CHGhnngwEbDr+MbOQyRTtpQEVLVTb9Mu2GeVIxeirZbcBTmtRqnORI0EZRq2DrYBm1zougfFu8XQ9uq7xxJvQE4RKY/FrsVGsepKtA4NjOorykLyf7Kjh06AI0dh3wyuSCIhc2rBDtaT4A/p4W0yGcru/BTG0SJBIsVIaRS3VgqhPswvdGdowX74Ax8KITu5RufJ9pTONUYz9ymTpBz+Yv9IoZbMx3lGTYl6IobnYfFgR3KjK8UEDw/eiceUAy/4vQSdcGFgwGsudLZYRMppExAdi8p8Lf9rLTkLhhnRTT6f4X3rOshQF9ccKBiwRtWm92OhFBB5HUc0Waevh+gl6EbFae3ycACYmz1XG0kwZL6/dVJ3i+KPZD2N/FhbAp16+jzY+NNd9s6AfTXIl2xRyyu1V8ZFYsyMzNzeGqq67C61//+tL7/+2//Te87nWvwxvf+Ebceeed6Ovrww033ICFhQWb5qabbsJXvvIVfOQjH8H73/9+fPKTn8SLX/zic2/FqqLkxVNZNwnsmpiGTKpWmi8+r743Bsb0bpESRqDTqfNU+HOMWOiKKEc7TjzZdwF4tlC7InEE2ZgWeHj9kCDwdtgySJNUYbQKPhN1zxN7zmTjE5YyPxy3ajBHLqg0U0N1JPV+wAQBhFstEMu3PG6KCH6p59pIUan4auFQUOVElNjzrKGKIQqlYXM8sOTdMuJU3IrL+8onOsofokjknU+K1Bo+zpzIEmejsfHq4hFuWbqzZHqojkq1CULiCKJg75v7lpjdPwUHFnNfMayxsXFUa32W4dh+IeO0zMa6biVQ1l+uhLZ0To2mjsa01Gj0YbwRqNS5moKZ4wB4W6ZzLbx6AfJYRkQCZEyU9rK3lwtnq8p0tJQOdF/ZcinUXbT3fGVJYPJgZfPvgg1IgntnRMq0ZAVZL2gUC4hnH3K5hppa/qS6XozzQwVVhq+lqaXucNJwy7Ga30nQd5360UTSNT467t0q86LakUMAFnNpTydX0aSDBZhPuErLLd0ZpB/kQfQ68/9Ogra6x+nM9FAdtVRCVutWUFOpiiZqk7PbOKH6JZUJGkMTrGyBMjrlZ+dq0WvH02bBigWZZz/72fjd3/1d/MiP/EjhHhHhta99LX79138dz33uc3HllVfibW97Gx5++GGrufna176GD33oQ3jTm96Ea6+9Fs94xjPwJ3/yJ7jtttvw8MMPn3eDzhc+EWPEIEgFCEckAG+/YTiIpTQ7ZdwKuyBVV/oDJl9U/XMmDwi1GiZNlLRjlxJeTLmO4Ba2VeYoTGIvPLYJzhH43XDTRhGGyTICEYSID3uHtHCTCGB4/+VeH9TSBAcPX4RKc7gjYVjuikFKZUPOSCJN/XOyiiRLOCHFajVYGwRj7gAoSUpVyfYUbF3RolOnKj8RAtNHrvL6v93BD9/0f+4Jzw6ZHhfeMzCyRlFAC9Gsprj88qvQ3HXQplGBuMpJhTLXQQfXIzjtoIBbK8PF54BhuFzLw5m08l+x573YFpR9Bu1IUgASFx45jIOXPR2mxXOVcRAEZqvjnqBUznRIj2/myM/qwXfk5F479YylHK20Hyfr+zFfHemoUev1Hsw84oJukal0mIeFsSj07hvpRK6QHrBLhQUKW+HblhZXMTDa604a3XLfmZJ5o2nwcs0bXAlCugHm2tDeS23dAYH20gJaaVMv7AQSKSGE0bKoHUqVRICHsvDqJouCTJHyh6JescY8heMjPv3vq6W44knXom98vza5GkGkLE9Dr5wATCLBZZdfhf7RSZumN7RjuNS0fIuoZFbVR+aBBx7AsWPHcP3119trQ0NDuPbaa3HHHXcAAO644w4MDw/jmmuusWmuv/56SClx5513lua7uLiIM2fOeH9rCrNS7CCVQzNe/jv8rtxIVD7KIVPqwVs+mFTMkTA2SkjIXHwNXjciZZ5xMkeuHPukDM7pgXX2tdqTMh+CMvKoHCW8dB1a0uG32kZc1H6o3HgQpqTDfKPgB1s094TUq/6WOXfJlh8SJdMzziwDgGmv2NqbyOYLoKsGwZgCi/dUftPDdew5cAEq/aMgCLRE0rEfALDAgVK3D0yIMPUr1sPc7rb92rTXCjLkhDbO5axDLeeAXfL0NAxwwhXYdRfQS12XHfwkCswLwMWHDuDiw4dRrfd5aRcqQzjVOIB2UlfjRpS8CU8pEjjVhwsMoYQXfy6avjcRZs25Up1fotu1FMx78ue9rpKuEHnXw/4uajFMOiOc63eUZ/ZhJ0AWRSO1a8s5j5utx6E5kDez8xCQXonqktEQs3ElzO67MkEzaCcrnIIxzQXxHOqMqcWlRYhqv50rPAowtPC0d6SJvfsPozIwXtoKT3ulKuN/ojheWc2DTz1KjAauTHhjQQyNoMb7gdh3GxSQCDJJkaQ1dwo8FeldpzpKe3bU1sCqCjLHjh0DAExOTnrXJycn7b1jx45hYmLCu5+mKUZHR22aELfeeiuGhobs3759+1az2gHClYZPivaONDDQN4C9k0p9bLc7elFS3QQ0kx4iKaxE/fQCxQPZ/LpkcKaZoWpnpkgQGGqkGBufBpiJgBM2IkAkboCHAo0joM4PhzN1b6IyhgRo9bzRPOm4Ja6gYlrze+9IAwP9Q7ZvOXLeBqse7yRourSC7RIjypVpKekQC4Nnk7AVDgXMRlEc9YiAOgyxm1Sgt6yGgg5/QgqB4aFRyLQGAMhIYnp3cZwry4HTehia1l9LMTq2CyM1fcYQwfaT0QzpHtFld9KqcTrp92/hEEEYrR9vEKnnmRmDtdIyDDfmuVDuM04pJEabVVSaQ2g065Cp221WVvd6tYKB0YnCdc4g1DgPTHbs3Znt1jyarYmICwFkgSlNVBp+/b2KdZrvHi8qWOZ4FuGxJP6ig/kEFaR68tKRABLdNu9QV6v5EIWyTTbFaNuuwsdmc++gWgCFdwoAu4frEGmjcF0Yja3V+qhrOSREsHDqDDamrSYvWKDpebOwlKFR77PbyKU5OFf/SSGRSIGh4THIpIKyxacd76baZVJ1FxSFY9aSjtpupwkK4+twYZe/G5mkEFJiYrCGSv+oP+i6QJ3Onvhm802OLbFr6VWvehVOnz5t/x566KHeD50jfD+A4mqwXklw8SWXY9feC5FIASlTAALSRBENCBmgCaGWlDkzy9M6AMJi2l+IkDo+Oma3SxqY1RBB4OBlT7NX1Ydj2hmAREoc3LsHdPAZAIC5dIw10Kwbfa1D+Zhlgo993BDzsH4mbxbPlIfHDwroqyUwDslEum+PXoZdey/0SueE3tte2WFe2p1CLG0iBUSSoIUE1VqN51543rYVAuqYAePwCeufYzZmmTQd9iSpemjBJyRAnegeARjoa2Bo154ObSPN4ABzOKYQAgd2T+HgZdeylX5IgBWRH6grE8xQDZ3Bng23J7t66jYHJkpLikkJjwC0ul4zGG+Okc2LMwUjePTVUlx66ZU4cMl13vZSN9a6Dl5bZ+tIzuYJZ8wzJx+F40xqDBukUgBJog4tJM0UoQSDgclDql/NoCF7SEip8NoJo306/ELBZ8PNKRenxU/nNd0cgGiuMlomEyM0CFi/FgIaCTCy75KedSRoE4wOeAkA33jgfpw89i1Xhw5BL5vVFEO7L3D9ojO0wq4w2uuSNgWwNAi+GdPQRpbS1VxrI9okUavVAeTeYs4Ie7wMF6rCr01Ri1usc+f6C8Nk3PzT7SmvuynTtS0cUf51JmTrMBOVRGL3ngMQMu1aM2+Bkggt/HVMvqmwqgHxpqbUyauPPvoopqen7fVHH30UT3rSk2ya48ePe8+1222cOHHCPh+iVquhVutGddcQXeiQFAJHD+7B4ngTjcFRYGFWD1I2JIxGR9tWOXOZ6TsEWT+BJdFkWguTN/tBwFhfglODBzH/2LdgzDSiZOCbeWeKaVeHcKJxACQSuw/FqMbNzhx9ka2WebZCr/yASr1fpZdm5VPeL4UVmSYINmKsxtRgHacmj6D96Nd7Thh3n5FpQ6u7P6qrIHDxvmksjtQhG8PA8ZPFNKYEbXqwViMB//2w7eXMslQQZRxhUUyuSICYMABGPLu0yWrUdR3CfvMF8bBAxcQnBmroO3oZ6tViLAxbNmuYtwtG+ClDoUCR3GL5+0abEK0jePzYd4DsjNXqGQ1IuNpX52GVt4ObfdzqtoMYLv2twmrcJl7qLAh3L+CblqRUCxV1MruJjlsU5NUDfj16+XkY0/NoXxVLhy/BI999EJjX2XR+jXDiIns3kocq8E+0dmK3ZtjEn+Xp/DpzYds6wQv1y1xz4RbMcxLpMlb/7oDTMK3xs+uZhaunNZk7wcScZaTODVPlZJBo1mpaKJTK98vWvfOY8+E02bzdxrSIMs2WV1ngKJt/Zr4RC/tQfIQJbiUdIyVfwDFtuIYwsmeOjlpCnVIL6bKjULoZsaoamUOHDmFqagq33367vXbmzBnceeeduO666wAA1113HU6dOoW77rrLpvnoRz+KPM9x7bXXrmZ1zh1cDunBJhMp0BwcDa6yASmc+jIPB6oQyGUVgHYwZMzapDIEtSqBZt8AfKJsaFauJ60jSN5uJJGgSCxQWP3YzxIi3UKKvmafY6Rd+oWHybed4K/FdPMFKrUmuk17axYJDzj06tipLn6+aSK9YGQwjLTwmPYnAGBMggmPBqz7WhDZNF2HSa5jVxQISLnjJciseju0ipuWuvjlFCql+Y0QAv39A0ir9dJnwy2oSpthwxMXxksgc1uWyZslhUBf/yBEksLT5rlBZ8vqRZZ6zclOTxHU2JSszwTcUSO8z3jbpVBBBDORsG3KfI4RDJPhAes6+UWpu7oPGNNrNJqQlZp91tWQCxdF7YBS+AmPcbmCWNuEGS9FJ05/HPl15nVRixr3fjKSaPNjMkAYGhjEvt2+ewHPm7xfgaCs62mj2JbUyQnacFoUMuOUV5wLZMIeFivTGkBqN5ZMpJem2HYfe4YbGB4aQnVwwis3RLcxSkD5/OtCWz1tE/eR8ehpkF0paes9d5TlwJwR1zP5psCKNTKzs7O477777O8HHngAd999N0ZHR7F//3684hWvwO/+7u/iwgsvxKFDh/Abv/Eb2L17N374h38YAHDJJZfgWc96Fn7mZ34Gb3zjG9FqtfCyl70MP/7jP47du3evWsPOC8Y4KIx/xPIeG++v4hSAkZohgmoiSnOYnegm8budEqoKZSSQCyrut6mzgKq3ipPg+0SYI+AN8TQrMsEJgjfxXT0AJciY02zNrgJJjPQzW37oM0JCQuRmTVEyST0hrjt4zITlp10evL4wwifUSsmYhQpB2pg/RVge146EZkV1rVM7OpupVAAzsgeIdlzxC8dEnVBcJNSdYExY9rk8L9TMOJIbwar4CoU3DnicHiMQqTZIu2omXmbHurp0vdpjzjcyyCEhZGJ7hgC0KbGMgiBQq0jMmgMKlTINUqZoEzusk/WT0XAq8BjHPatXah5VCxTJ3p7b8Xa2pXOXQitmWf/K1NbHE5CN5lK4Me1O4mLztMNYBMxr1EIQYAUhEhJtpDoIoACEwMEDh1Cpl0SkZvn5bWV3mRAtqcc7Jv5Va/i8d8OdXHUamUCmCYBcm4ylo19qMAZFCK/4RjXBBRdeim8eP4PFM9/uVJ0VaTKsyRqidDyo/CT42CorVwgVbTyHULG5SqIPLwcEgSSRllVsBaxYkPn85z+Pf/2v/7X9fcsttwAAbr75Zrz1rW/FL//yL2Nubg4vfvGLcerUKTzjGc/Ahz70IdTrTvp8xzvegZe97GV45jOfCSklnve85+F1r3vdKjRndcCHS+kOhw4YblZxxRVPQiIFHj9ryISy+5rw+L6fhGOAUqgt2ol6yE0e9t1nSLy++q5WoxOcQ1hh+6fVZJCzATMVaSdBIYdAmqRetUKQLi/LBYjarjjLFHsTpI4QxAQw9khXJ9vyy873qHymGpWzFFCRPIUI+tEJbTZNFw1KbgW+MI16FzU2Cy0h7yyf2Dq6PPwcjR9EWVnd1cp+OUZdH2717uR8CmgGJ8q34XKB1/kfCG9Lq5dfiZCWSDd+Ta5K81H+svcMNzAzdQTtY18FIJAxAc8gg/Tm1L7RAYw0LsWDjz4BnFbMSkhzCKsM5bOAocJpWUr8onjTROl7ss1i7VOfOYCZJWB+sQUkbJcL6fpY531RmGrGAd/ujsn5DjcjNhX7kL+XRq2OvDEKOj1jG5sJgYx0UEsjMHUzz5ATQ9WblF6xSaLC6lNBK1eep5PV3EYHfh3hfZHod1c8Cytn84ObeTs3pYwOm2/dnu3QFtJCfWlZ+rmOvnZqTuVC4onGQQicQe4drFmoZMdbBKm0lnrRtBWwYkHmX/2rf9V1b7kQAr/927+N3/7t3+6YZnR0FO985ztXWvQ6waw6XBs7EaMyKEcyAEIFACQ49SUFnvgWegBnIsVidRxttNCf9vkJwJmYYHeEXhH7jNYPw6+JVPjarJBhPm0BdoXgCmL+EJ38AyAAmSDPpT9GjE9OaB5ireu1LTAvcb3gK5GVoJpK7JmaxrfvPwPkSwWC5a0Q9W4BKZzgEGofBJTGLTyk0GyrNHnKAoEXmJiYxkh/I7yMTuaVSiIxOjaGY2eOo5O9HPB5mRs3PZhMIRPzIYDM+WW5V1usI4nUf01+R7n8wL+zrd5azCju4FPYO9LAzIlJLJ3xdzh2okhCCFSqDbRM/iSRBPvaMxsBW+UiE4l6ow/AE+q6OU3caB1Iz2VRslCwZxgJraDo3N/d7gXx6uzH3EILGVJQ3i4wbSkqOh5KkJeuj9qJYgRIv8dCX6KgpoAQqFSraKcVy6dJO11kIvU0Nl1hBFnAjl9ek0QA+6anMJcuoNo3BMzPl2TBy3DfzTZrIioEtVQ+MwmSpK5oe27Kl2pGCz+cv4cSfmd3/3naZF/A7oSigO/y6vRsrikRUORHxp9IQPVNZrSJ5wgr4JUsRjYrtsSupXVFsNriatQVQ/NtY9LJIRAGB7EDRUvAi+kgFtKBohOlACYG6pCVGkZramVl7d+co5esivihjIAhdORClutB3xh32319JabZpWN8R8oJllLbK2Jqzo0yk8vlW4YuxN7l0vH5Tk93e2tjQ/1oThwoptFbQ8xJtzZcupSeQKA+yabpZRNXFVVpxvqrSKpNDNcE9u8/iAEdsMppr7rTobGBftSGp5Rw1I35eD9NvsslTI7BVKV09nz2fCLMrj2FhXQQc7Xi9uewRoaxWgYseaRcAX0eZqn2qJJI9I/wMpbZHmuyQCDkK2ffcI4YGIa4a6BmD4ktrvZdaygnW5Zi2D1IbJkiJBhPBFiHtlaWYwnMZGAFCADSD8xoInmb7yprZ9LrsLIpDD5jTnNnGEkYH5McEjlJz2G61zvxKQvfXq76emSgib2HLw0OQeyeUx60qTj3JZYoQVqpaHqZwz9g1fRRcbFRBi7AUvAJAKP1lQoA3QVeu9gLpzXb7TraV0VSHwBggq8W87RzrAR8MeGE962hkYmCTAk8lfkqvEcznnIKyBrzGXC2a/8231rXqCa46vIrcOCSq4PaGmJqBBsRMCy3NZFL80oY4kREwHiq++d3qE8eldg/i8RNNikTECTyLNS+EEywuRArk/pLHCg7MudzW03khggIF5LcWwXxAcLSFEpjhJG/n3olwZWXXYpD3nv0s+9ddy3cFbqis8DHQgH1hhG6Bpu45LKrUOsb9GpFAA5Nj0MmiVG4YTEdACUVK+yGLIUfieHV04uW6rQePSoIQGBg90XLbRGgV+zVitu1ND1UR9o3wgIyIniTBEiBoUYFV155jY54HBqy+OqHrNRAQGHhUmxDOfjs4fMjI2EFKnj1EEiS1H43/xpBwdIRqb/n2XKq4eUvNJ0iKxQqc1eb1WM5czkTNVgJLtQulJraiguncMobJ3Gy70KikZp7at4tIUW9VrWLU3vAqoB6ltwCkPsWdl1mEW+zalOjQjhwtHxuq/oEuTD66fJh6XV7DA0vbhpQ9a8kEgcPHEbSGDRKsxXCtUMK/zT5zY4oyIRgjB2A9V9ZcTZw/M6o6dQKoMNE5fFW2JAOCUSSpEh0YDDHDDTLEPovYPbE2uWKYEM0IB7KBOaYiSWEQlgH1lInRQAiraANgVybkXiwLWWwO8eJUeBtbJKd11xj/RQ4pkrdTqVp0n0i+YoWNk3oFFhWeW5a4u/RpRKFb6W5WcJXJPDuaWHpndGkdTYJdqk3gEqtUXpXppUiUw+22HcUqJjWQRHMYJt0h7YBPhMzB4D2hK7I7skpjO8+hKEjT8PIrt3o23clZFoD6WMRfHMqgZjwlVbSku3mRebt5kZnfQw3Exc0PBQyEMXIAH1Yq/3uBKZcKBM29xby81DfJXuG33PjowyK6UshnFMqjPJSaB+jYr+EsAs6WcGJkStwpr5Xx9I6twkcjjORqnPvpgYq2Lv3IA4cVkKuEQqn9bs3lVeCPR9zEt1nXhmKAogECnO7U739606a5rU4MD6A2uAuCKnGetmZbebVySSBTFRss/K29G5fDtiXVb703HyIgkwAYYyNBucRppkctwskbpZG3dZaDl6P5RbCnmEV9/wxrMlJsD/YXQwmm/BkZN50suldfuEgJwKqlRQVmWB4cKikrp297jtNFyM4ubSsvvaaLD7D0q4cvkYrh2+XLti4Sw+Sg+srgEUc7YEOIfnL0DXWSCGt0hQs20dGt6m7ZjlU/ZtxVV4HAehggnwMKiFelSNRr1VhVta9nEZXikQI7N53GGmlhsbACIYv+VdIq/WiP1iHctz7LGpPF9JBAAJZUvUe6/TOjVDcGZLn4guhNr6HGwAEaTUyZytjyEWKueoYM4Ho/jYbApgJzN0twtAFMvGwmE+I2oqdIEfqR3fu0ObpoQbSSgUDVYF20kDGDnQ8N3Cdn0B9eAoEgVQQpqambViMHAIVCezedwRppQajGSa+QDFVt1pnlWengSbA/foERGq0TJ3nrlt4ltAKoVahfVUVWXh6yAno9UqC3bv3AUmlQ97Fa75WvXO68BlTv0Qm2ln4vFaJ64ZVDYi3neAx83N4l3z4Sz0pSs0PUPcQ7Nyw6Zymuhx6rlnHUv1wwRRi8+WTVgCZy1+pjbUJzF9mW0Go22QkCOzqr2H00FN9+7boTBDQ9U7Y0HN+uJibNX8Eq2kiG6jLMwl69nqnWbLvtiSYlcfQmbN0LxjnvV7177qjjveL43/npF1cLpzgw1buXBAQTBNjBDahmEcOgYnhATQnj+Db3/wayt3CGQK/q5WvpHmdpAswCM3MMncWkVVm6jFTtjV8Ke3Hqep+1HDKTihjNuuGbjSBmyw8Dal9n+5aDoGKrt9iOojFyiByWWF5uTYozRMzhYF9DSpDtlO0f5yQyGDIjkCLjHaow7EfDI1qgquueDLOLmW4/zsPq1wCITIcns1qglMQaBY4FV+0KednUz6vgzkAso+7FVG5iFK24aB7CAdnLL/s6MU48Y0ToJmHeo7EMtMSNO1tViSOPPlpJU+59WjZ7kd7mngHmCeWtUCCDtC4/2IMj3faRr+5EAWZApjTofe5MmQZgShTBEarvwsTxZ5/o00UsBTTJjEEvZRJCjc8wX4Ty9v8NoSnXR9BAiCTVZgTnm0WJf4VztEMnv24PB6Mcp4rddIjs+1IFEy83SYX3/nj2hbsGlpdGcfG+xE6sF8uEvXblsMJr94+3GnlLcxKOBSGytKWfy9P13l8ClEeX7fjrrkOUAJYmV6l0y/zYNE0qtKGdRbK1MGEHndOTifVOK/f8udmJ+WV1MzZCQViGc+pq2FAyXbSh5xmQBlzZO7Q3yXrDPc7ePkdd/SR6QPVX0mSqoUJioyaggIpa5sXDEc/pK5zeYtdvR2dyCDRrFYgmqOYO/WoFsI7jzEhJaRk+qRgkUPC743JwToqhy9AX7V87iQCOHLhxZBLZ/GdmUw7JjsxeM9wA839RzA44BiyGZ4mlQqhAFBZzANCyRzgDRJsJViknx0eCn4JbbLWRuES4dc7eJg9fmCsiUHaj9FRP9AnUNxFae92iWWm6s/as4YLn9VENC0FCF9bfo6mpUwP/gwJ0koVykdGdJkUgXBgVcm9BSq79ZFF8Qy3+hrSsVQbwZnabszWJouMxTDdwGRg1NoFv5tCPUTJFmPWpA62EF9wLEd3W+3qDGPyvrjW5uRH9nUqDkKjkqBRr6El6+hrlPuSqCyFPutkBfXoAEv4uiT0HDx1XUv4dOcyhO8LxAr36xhohbiIWfYsd2o3mg0pBHIhkFPWVeNXqMSK0EnvActEytP5grTiW6reU+Ojuq4sN/J1HcvfJQb7tqyWhg1IbvIui5WyJBvoazTddfaylcOqmtNZnhdiFHk+dhTec/PTRAV2/jACbaTYt3saIxPT7IllwmqYOvdRIgV2jY6j2T/i3xCqskIAwwMDGBybtD5OvAZpIrFrYgK1Rn+xvbp/hptVDAyNY7S2Mjpi6j1UFRBCze3l7XAtb2/XMW9Jjj8eK4nExORupJWal/NytLqd0FMbugkRNTJlOFd7EkOWq3gSbSSoVqvaj0IWpWGC4sMy4XSrZ+mMRQXf9G9vFKtVj/HTaMsaSCxawmSqYVfDRogiP4+yLYf2t25vmdYhlxUkANpS2ZGb1dBBs9cENvXxtUu9hZ/lIVz5+6tPHdPE05IJ68GQSIEL9+9Fvne60HZnxhMQMkGS9p5uovBmO6PbeVflD6CHX4Zfj94aD5+hqhW69vUyY4mtjgX0kKJAO6N9ZPKc0KwmkGmKrC1XYIpbTprytkipyw/aBIAdBVEscNdQP3btuwinj8/ap4RmrrxDumrWzLsO0uT6/B/PhMS0kGVC14VXfa9ayMw9hlAfQ2xhnWvJJAucc0VZRVgZXHDlgsDeiTEMjO/G3JkFXzvRE6zkc1SdEvz3qsJJSFST7vNsoF7BMQAVPb4SKXDRoYMADto0TiAoh1UkCYFDR6+CSCsFOhJisJ7iOIBasJNN9CoMzNF6mVqSc+tSvsDYWoiCTAiz4joPJ18AMLuPTTTfi/bvwcJIDc3BsY7PeFua9We3AekOSjN8Q/8WwrPNuxUewR6YxyJEmlWXhCg/rI+Kg1upcBmxJHWeUJk6c67vAGqnvoOz6TAOHziIoZGwD3zC2w3Op8BoDKjjiq5XjuXbwXOQEVzMihGAFL6PTNgfZQJcmgi9HX1lgnFPjQxbmXfRMxTS51iZ7orYv8vFIlUwNLILp7rUg+tsFANVQj4RoV5JcNGRC5AvzC6zfl5OK4YUKtihkT+OXnhhWSL2o2SXkWEATKNBekHQOzosCrSGKHhPnj2B9Bw3WjdVJymTQswPK/iw/Ew7M5HwA1GQSAESnUyf2nSlhU5ugiie77T8sU7B54pQYr66YM8uzDUJg6OdYxkBwFCjgouPXg5Jra7pliv0e8IvqKjWWka5ZrdZ1+Ei9M7XnrGJFP8qow7L6+utZ6iJgkwApp+AqNSRtxbOKz9zIF2tmqI2Vn66N5GLRWJKZ3fL6yncQLUOlnDmgDLbvDE5ma3CwmoaHPHRp0PZupQdVuf7aLhG5Ca0dVhuWsN8dRQCEkMj4yWaic6zt5POiZuuO6+Elql9KEkmWMj13BxXYMoWAmIZFCGRAiKpFELg98Qy8hY9GUaordFjepkqHLu7JaiL93gigXb4oEBzYBynznYaty7mjnOY1jEySMU26WvUgUb5gZZrAaFjH1Uk0M8PFe1iBuYg7w4TjrkqpCSHTgJ4LhIknlC0nPfNtSp+ZHIThZinzPQuJFOGCiOgzSOBNjc01xCjFeG6ZSXjnOx45Fqw5T8vAttnJZEYHi+nsSEG+vt7J1KldOz20PQqipK6n5MQXcvt7iuo0/SgDfbVnZNcrx6aHt4aDr4cW0/0WhcIDDaraI7tOecchpsVABJDtV7RKVV5lTSB9zr0/DERTzvzH66e1gSMfB8Zp4LlWhhhg3WZs0fULQlIsEBROg/PE1WpcJu1GquHDjBVsqoT/N9A0Blpqu0EA9UuMy9w9i0e3Fj+2PJMDsUfZpVrkMMIjjxd55WXgRQCSZoig0R7GQTaMLdeh1060bJzOsVQiufVrMRnw4zAjne1MMxzNONKakGo4Y0Rl6892BCwu5Y6nGBRWitVFiuzB7q9KaOyz1kiX4jwEqO4Ld0wMMHmGvQusS6Orx30rkVHbW1WID+1Y6RFbSlHFoj6BIEsmKfKTyktmiudTUnH1HKLHH42kZd7D02G79Qe7FpaJktaqI0DAM5WO2u4zweer1ZXgfbcNIFhLsuJ8WTMvd38EA2ckBheL1/4DdaVEDtSA/ZccNVyqr2pEDUyJfAjoJ7bQB3vr6F+9ArUO3jb27L05/6xJgblxXjo+OPA7DFXbg9ubFZeGfPj6KTSVqpgvdLmJEPNJAAmlo0hVM6OzjUQF0yNYL7vQvQNjKj7pExLIKhTUwvQdSmp01h/DY1Lr0Clx+Rk+iDvs4yQF8pdIUxkX7MFvdO5P8uBSCpoUbKyPEj0JOjmjJdytwal7wiRo7eQ5BdSEpi2y+OciV8wPYb5fmHHiHqUreShNAVu549EItbOzbAgkHDIBDkph+Py51b+/p2Q1kEjw8y6vvMtgUiqBYGW7ExMHbdDqVfwOVu6fT4N6pHpMPZm4ZNIAcgUGUlUdDA3pegVOr1ESuSFxAck0sCBfaUnzhewTHPOQn0CZxsHkKVlgvI6wwp/5YJp78eVNj3rMrmMk3nor1dIZ4ReS+uXh10DNTSPXoZ69dxOzN5oREGmFEaHUAx8tRL091Bf8pOOpRDoGxyEePykR4a6LeQNkSR2Uo0iTP4WaE7EjZbHls9XVHoCJNIQOXh5GCRSeCp4IujDqTs4aApYc0LZaqDZ7Cs+46rkiL72WxmuS7QbQ8DcLLpy1mWgGEfGtbVeSTCxaxcWaQZJteHb9JdJsKVMlHlxORoZTdC6WCT8dF3yKmMoJDpvBw4xPVQH9TcwuXtfcIcLkCxvdk+iOEZUvVWaMPDi7uE68if6MDW9e1l1c2Uu/913VdsLwWaQSU/632BRUHo6sS+okzVLdl9ll4U7oDxTp2wnovMR6B3a5Jmb9efu4TroRD92T02x59RRB/yCFCoeS1sk6Kv4zvg59Anh2vRn+mq0UUW/9nfztZW9QXYHozineQXofl4PdGhT74CRKy2mc2b2vYrzoXjlgTsBNXb6+wfOOeeNRhRkemIVR2oHFHfN6CtakukZJpr82A8qyBj7rTJytFV/9226jgAKIUB25dVb5UkgeyRBaeyC81ilmTgfPIpmLZHoG5vG0tnv6ksdA8GfY6mOIUyPjQBj6tyUzNoelLp5OSNjuFnBKaSY7l9mKH2T/zLQlZGXaWuoaJbrhL5aigsvedKy0obo6eBKgGD916ymuOiSK8+prNWANIJ7F98GDpVMjff+WopTEKjXG2hZ4cBpPXuOfVZmTgTKM30mm0Sb6yF7+K14WQphzSHNaooLj7q+HWlWcAoJyMvdaGQk2pSgWvFX5QSBNiVoLbVslQfrKY5cVjxPqJPpogx89x9v23JghcA1Js89sxfs4zzoXOgrVFaONS8uc9fSuQaJ3IqIgkwZhIoImYtVUJX2QO9w1svMx8vGnxTE/lRafwVpy9H271RKZPBt1139MTRjyroIPXb9tQJ1J2AcZhO4YwgEEgmILhqOWuqHZe8G3r+ptaN0V8uS0Ycsg4qO99cwcPmTkHY5e6Us/17oGlYf5Sa3ZdLA7uWWCN3FMjqNafsPgPPf5knBZ6+03dqe6Z0encrodG1qqI7hS6/A6SXg4e/cr+6biNlAiQ+JgusLIM+0aEQA5W1lPkgSYEmVpuam0bCSJ9SX5mt8uEruj/XX8Pj0RVh65CvBcwLIc7SQohqERyAAmZDIsxZMyLyK7NTrK3mnZM8u8wpb/tNrhh5+u94Y994x9VSklZclumtYjTabOp7XxxL2pAvbD1GQCbB/rIkn+gcxtXsPvn26tU5vXuh/wwGoiX4HXwi3a0kn0GnyHrslQEZFqdZDBFjbdA4lPLThmNTynCm1Gr5kG7J1eDyHvjQT2BDvkWYFo5N7cfLRBztmN9JXxeK+Q0hbMysqa6Bewd69B0Azj/ZMu5Km1OrL3wXQ6UwuP436p6MgUMI8iXKmZzp3iOA7H2aGf3YT/p0Zp6vXSvc62MdW8nxvLdHyn/Ov1Zt9mM0X2fWipjOEFAIyrWIJFbT0QdRKI0P6cFnfNOzyIRb9tvOioVt7k0oNfASb2D4EQgsp0mrodyKREaHdbuPwSAOV2TFMTOzqWPayFitehzOhoEf0a/eEogzrw5jLSyF2SxQmwvLBWu/FXfLSaDk7B5a1gOoqRK9wMbkVEAWZAM1qioHJQ6j3N4DTT6yt1N9lZVVp9GGx2gTaneNpmOitlqyxgesPYmEFDfWc+keysPvGodHEvRHslF11vTP6aykqtQZq7dnOk4SwgrgMDlIKvT1WYe+hi5FWgwi6wYSVQmD35CSAyWWU4DvATo6NAGMjXZ9Yc7VtDxOQZWldq1CmXViGqWMZcEahMECiEqY7huVn42+4nmIeEruGOvtHrS56CDKdz6n2+mw5gmYuEqh4ROi6g2ffWD++/nAdIzWtkckJyDO1y0ibu1Td1DwtaFT1/YlmQbw0jeoICtI0qgmqtQawlNoTxaeH6jglU0hqI6cEY4MDqFcSe6p0OZY/vgqH1OJczgJbm3noxMblaDdWpw69FozWxL4cexp1GntrSLc2EFGQ6YFzDbR1vhBCYvjyZ+HkF98PtJY6pOGyvLONU0G96BMMy7y1HloF75JAngGQqKUSC23haWq69UMiBS49fBB5tqfDeULn3odSCHWgJm2eVYQlvKss5S5Hxewl7sGowl7vZvZZLfQuQ7VvuJli8qqnQCbLW4F3yst9du4Mc7BnvUtRoX4olVKvjv22dNIE+KkklCDTva+b1RRXPekaO5CqqQRRpoQq4TN4T4BSFhlcfuWTVGnhziFbqeWZGAhqDl9y+ACy1hQSbQZtVlNcdcVVaqgRnee76lYJJ1RtNja7Gga0XliOG0HF7gbtTgfVUF/h7sRtgCjIdMMy9vavSjHBb+dPIoC0BnQJQOmUzH7ETSlDjYzw7kOf2WHMNqmQ2L9rGCfzSQyMTuH0dx72GHUv5iqTpCehO9fJJfWhfqKzN+Y55YsOZz91Arebr6WA23tl1nvXkpcfAYJW6QwVM65sNMKgrl0q5ZnEclJnkJ0Pljk+9402UW/vw8hA512EGQRSlks1lTi47wCWTldRqYWmwR76OEY3emnuEhZOf6hRwYFDFyFpzWHp4VNeeRzKZwWoVDsFDexNt6igTVPjKg3yTCsr2467fNmeO8trumQXV71hNL/nGYB9WejUptDh2tKHc1zh9BJkDuzdh6XTKSr1ZWgxgzOZHLangBMFmR5YextsL6bV7Z5wdlomt+SdtkGzslywrhwZEtTSBI1qgsa+w5hfyiAKkYbPQ6uiHfrONQeZJGiTQBK8DbseX/e5aTQAG3u8WmdziHHPCBng6piWLAoyjGbePU2I51eHqaE6TtebGMTZQmDhMlQSid3TnYNbqi6RIGTe9eH+BtB/2Ls20l/DnBAYHR4t5mPni3M2X4k/ghACu0ZHAIzg2MP/UpKzQZc8jQPxMvp4LWjbSvMcqqdYgF6wtedWaH1eu4nvtrL31moVx/u51avXAqZsPHbMS3SoxTb19o2CTDeUxoxYzeylPpnWx4psr2Q+WD4ldM7XyKi8hVSEtg2JvrpbibmVs4TkW47PE+fqmpfIBEsQOoSXWemylc+5xpPQK+fqClXmazUmjFp4OX29gl297Noq2fK7mbRE5+jB0t6T51WTWprgiksvB4Fw/+PzON+xaUxPy3mv4/01jD75qR1MqKpvTHyT8z98j5nOmPmBuN2prA7s307gIvhqmUjV9uCVtFlgtFnBxFVX496HHwc9fqKjg2pHrLlKpoMDLtPOFi6eI1ZjfvqO8C6/RjVRQRW3qckpCjI90PlgvtUroTu6lc5t6S4dj8KbSEcMLzp0CGdgiKG6tn+0icF8P0bH3C4Ed9Kqqt/5amRULuf+fJJIHRk3Y0zSfJ67rufw1ChOp4vLPp+F9TDKD5xcHajQ773bVPTgUCiEfRfmLa7uSHamNmMaQBeVthqLR/btwdn+BI3BokZjRWXL8xOG/HoZwWN5TLRMiLEnE6vKAcB5jRDTtun+BLVd+7C0cHZ5AscyF1/d4tCcD5Zv7nSbD5IktdqPlfhwrY9yoRv9Dxcdqk/byTlEG15lNwYTDdqgWU1x5PCFoIUzq1bGZsLm8aDcpHBMf43yL5m4pH0IesIyklyrEk1e7rVOD9VRb/Rhqr+GwbFJl79e5VVTiYmpvUgrbvIJs0IlIM/z8xbmVr4TwYcxoa324quWJpiY2ltyiGUX5EogWIsx4dTZy8t9ucJho5JgcGgYQ1WBZFVDuvPzk71YuB2faNYqGJ/at7pbQOn85ujUYB2NvgFMNM/fmVX5eSw/jlEn1Mb2Q1abGN99BCO7fLPYsgSVHnNuNTUJPs49r5UudlZ6qvxKMTLYh2YK9HcUuo12WH2eGTiChcow5irjKy5rtL+BeiIwPDRyrtX1UDZGhvr7MDw+vSr5bzZEjUxPrLEqjgIzgbfVc5mlszz4SgdQYfYvv+yKMLneCdFpmyxYpMlVXMufs7NvDyK3TqHKhRDaDrHGOrpl9lOvraEu7qHA4T3TwJ51IGJCLMNHZvXLPB9UU4nLLrlsVaqi5go34Z4bhvdfjuH9l3cso7vvRnfTkwJz9hUbyAZ4BHLCijQya43p0SFMjz69c4KAMOZJDfOVEVDJwbm9MDncj8kndylrpaDzX0BuJUSNTE+Icwl/smx0pDfaT8WkKTch+HmYVW6+HGdLMoWU5SsC84REeh4j5XxX36n24ynDevuuXbRvGrXhKaz2OSselp2vKOXhvZwUzwe9Tx5fe0FvM8II/wThdnatYj+oOWkWIT0OFF1ejjhTm0YraeJs5fzMfADYoZTLbDMVF0hlDuo9Mll+easMpbTWGhnzvldBE7ea2By1WB9EQaYLJgcbaKYCY7uW50NxbigzLXW9ze45PxG+Cux9MKDeRdTxZF4AUiIHMFaXaDaa2DuxcnVpWOa5Sh2JFHrV6K/2N2L1Vkkkav2ro/4tQ4/wMBa7hvrQlwqMjU10ymkdCJkIDEndj01YS2xUuSGIigc3rlrewWdn9Ah3r6u1lPRhtjaBXJ7nNngAw80qhsemMNbozVLMAiCsI0FsQS1CUN/NsCvInmO2c9h7NC11wXBfDcNPWkV1XwnO25nY2ImIs5NeMAyogyCjP3MI1FLg0suuOp8anjc5T6WASFK02/ykbqaJWmfit5IYLudaQq+V6Wh/A6MdxmaizV/NRqc4I6uLwi67LceMVgHaR430IgBYS562DI1rlzSjfVWcBAAWe+p8kUiBIwf2A9i/7GeU4OKbYVayq2Yz7MA5/51pqwtPiE42V93WElGQ2UQIz5BZkYjDzEzLm9+dY1w4p1MJdDj7Y6XIsVyHnyISKSBkBVnJCoP7JKwv1qrM89dqHNzVj131i9DXP7RKdSpH2Tjr5nu1ltgMC2HAN/tsmCBD3R3jR5pVXHLplfj28VOgJ+5Zc7G8HIG7sQi1e8vMYoN4tavpZhl5Oxs7R/e0SWHjQnRL02GuuEMjnZkoX+bWnl7iydTYCIYbKQZHOpku1g+J1shkkKCy3VzrrZEJo9tuMkghMDA42jHWyWqhdEW8ObtkzSHAhIdViyNTLAPovltneqgBkVQ63jfoazaRdIwMvLYwho9wqCw37IDLZ+MRzoHNUCcFsaOY+05q66ZE+cAvTuby+a01N8xxd7kail7C0+hAAxdc9lRUVnByc0cIXbNznOX1SoK01gQ67AbYQHe/NcHmIYZFhK0u36GznTRkK4PPjFfR2RfwQt+P1MrzHmzWMLT36DIzlRs82ELBhVboI7MJ3jnrP3dm0sbVS2ham+8wp/toWtpg9KIjy54UZCaRRGUZ56NsyGQ7R82JOpTyAFrzo55gZVeoG2IrF+e1k6tzthuj6F8xSispuzqR7wwIZlpbm37Yv2sYo7u7h6pfdmC686/OeSDQZqxwHq99sNLl1CH8vdE1MtgSVGTVEAWZDUfZ9m7fcXdZQ1IAA3suAc2fwtC+S3smX88JZ9pwPiUmUiDpG/TyRIdfa43dw3UkZwYxOb139TMP4gBtbpTtuNuoum9sn5nVeAaJ6aE6Fvr2oSG6nPZ6HqhUqoXDHbcFaHM48C4HoT+j+rZ56k6iPDTDdkUUZDYYXEhJpUCtVgNJoFKt9RyIzllX5VLrG8Suq25YcbnrArH6W3M3as3RrKY4dEFvYfFcQdjawaw2E0FfL+Q5gbI22kjQbNYxvgZb9K0ZZhnO1MvXyKz/u6pXElSqdchEQKZOe6zG/fLVnBvo68vqsNE1KIKIIDZZcMG1RhRkNhxuq60QAhftm0Z7cgSVWgOtrJdLLlsNrHDQrue2wbVmbGKNnVrXH1uDAPmnHZHlLKt6/EAP9NUSnAKQbjDRbmU58vYiWpSiWm2sfgFiZYL7chjsRjE6KQQuObQPWWsCabWOnEj7/6xt8NG1AH8n6znue2EzCHnriSjIbDh8Ni+EQKXW8O53w0q1EnKjHNJ2lsn2PLGJSZA/WPlWGm0WWN+6TwzUIfYfRl9vt7A1RU4AtVvIIJGk5x9grhtWdyptkKu8EJ55TB3CurLxsxlISrEOm2XubpZ6rA+iILOBGOurYkYITIx1DxGuNit0nrYEYLlLmfH+Gh5vDqA/m1l2PVcLaza1tpEKdbBZx4IUGBxa2xgwqwvX/+sdICyRAlMTGx8iYLSviseag+jLTm+KlflmYPIrRZdTUzqk3/h5X7aFfDOAILaMv9FqIAoyG4iRviqGnvzU7qaXXn4yMGrE5RHPaipxxdFLbCyH9cByw+6vCOTI2HaartMjfZgceuqax4A5XxTGDxW+7ChUU4nLjx5d03mldtbSMgWlZZiWIJBvkngjwpy9tNXiyBT6eRPUSm/T30FyTBRkNhrLY1jlFs9zPXdISLkhzH+ZsfqWBS78bYaV2Wpiswsx3bCTVoEh1nJeqQXLWuS+CRgvnGlpJc6+m2MJU7JzbxN06SaowrpiMwjjEV0wX9+FVtJAu1puanCRgTfDpO6GtXD5NQ6mm73tOwg7jYKuN1ZwMnrPFFJuqte18tOvNzrwXLEOGy3I8wM5dxJVjBqZTY75+jSoNoN6tb9LKtoSo3atVipboOnbCu6wzmI8n83EGLcvuo/4SqIWNs3KMmaGEBuuQRCA8pZewUyuperAy/4NcvLur6UQMoWktn9jk0gQZQdybmdEQWYTQ6D3ThDnJ7IJZk8HKB+ZNazhBhxSGMFNHd5Wpo2oyo5Cr0X/3pEmhuQF6O/r653ZJpA8+enpyzUt7R5uoP+CC9FX25jAgAP1Ci666BLIbGFDyu+O9fSA3ByIgswWQa9V01bwE1ntybUV2rxzYA4CjO9kLSA8bVf3Pk6kwPDI+LLy3QwMTwqB8ZFBnJoVaA4OL+uZRAqMDI+tbcV6YKC/D4AvLG6G/lTYWfMwCjJbAJ239Akte4utcb7NmtmPt0Dbtw10X0ffpI3B5uGUq4rJkUFMjjx9o6ux5cF1MTspsm/UyW8R9JJTNvOgXQujkjD7zhEtS5sBpAWbbcpnNxVW16F089KNrYmN7U93tMnOeq9RI7PJIbodGym4ynnzD9zV3H5t9mthS+zY2r7gm+DdvxFridUc7dEUuLrY6BO565UEE7t2YSE/jWQtjsrYpIiCzCbGcrQsbgfJJiZIaxEQz4KiiWODULb4i4xxbcCH+Kae6xEbjumxEWDsqRtdjXVFVMpvAXQWArbWbhGxuioZmDZv/pZvV5QEA9uAWkREROxsREFmK6BHrAcVM2DzsvMuxrFVyn/ztn37I+z7+C7WFqsbqCQKnquL2J8bgyjIbAV0dpFhhw9vgVe5BjwuEo4NgO10AYjwDURBZishzp+I7YAtwP12NnrZw7eEjwzW9hiFjQ4LHuF0bjsnluh6Q5R8O39EQWZ1QdgcZy3tNERn3+2CTczMN2/NIs4fwlo7hvobmNw1tdEV2qZw3DFuv968iM7uG4OokdkC6Cbgbx2NzFr4sphAMpu77dsTVIhtND48jMGxyY2pTsQ5ISoPIrYDoiCzhSGsaEDINzMvX7tDlrZMDJ1tiYIAGd/D+iBqZDYrTHSriPVFFGQ2MbaXomF19THeyTPbqp82PzihjjvG1glxkG8RxPe0EYiCzJZA78khN/EEEmvh6BsDhG04Cv4A8T2sKUg7Va/uuWrxWImIrY8oyGwB9CI0BGzqA4cSqQSZZJX5HEU97gagy0uMcsyaYS3EjUqi5mVfNb641UPsy41A3LW0JVA+ObbKAni4WcEFFxxFo7pWm3O3SEdsM3hmJSVNb1RVdhZWaeLvHWliSF6A/r6+VckvAgAE0s27pty2iILMJsayyJXQ6TaxVCOFwPDw8Jrlv4mbvq0RTXrridXnjokUGB4ZX/V8dyp2D9exdLyGyeGBja7KjkMUZLYBlIVlhy4DaHVDtkesDPEww/XEjp7pmx7NaopLL3/yRldjRyLOiYgtCaHDZyqLRmSg6w8qfItvYX0Qg65FRPiIgswWwHLc/FZ3J8Pmh7/td2e1fdMivoa1R4x/HxFRQBRktjQIhO4nY29n5IUDCyM2CvFNrDFExx8RETseqy7I/OZv/iaEEN7f0aNH7f2FhQW89KUvxdjYGPr7+/G85z0Pjz766GpXY1vA+Bwsi0ls4u3XEdsL1pS0w7SAG41oUoqIKMeacL/LLrsMjzzyiP379Kc/be/9wi/8Av7u7/4O7373u/GJT3wCDz/8MH70R390Laqx7SGEW5vtZEfLndz2jYbf81GYXkvYuS5jP0dEcKzJrqU0TTE1VTwF9/Tp0/iLv/gLvPOd78S/+Tf/BgDwlre8BZdccgk+85nP4OlPf/paVGfLYzmHRu5sREFm3REHXkRExCbBmoj29957L3bv3o3Dhw/jpptuwoMPPggAuOuuu9BqtXD99dfbtEePHsX+/ftxxx13dMxvcXERZ86c8f52FpbBqHeyVmInt31TIb6HtULs2YiIzlh1Qebaa6/FW9/6VnzoQx/CG97wBjzwwAP4vu/7PszMzODYsWOoVquF4GiTk5M4duxYxzxvvfVWDA0N2b99+/atdrW3PHbc4X3R+XHDEJUxG4PoIxMRUY5VNy09+9nPtt+vvPJKXHvttThw4ADe9a53odFonFOer3rVq3DLLbfY32fOnNlRwkwnxmGFl3zdqrKJQADpQ/Q2uioRCtH5d10QfcIiInysudfY8PAwLrroItx3332YmprC0tISTp065aV59NFHS31qDGq1GgYHB72/iBA7l7hFwr4RCCMqU7TwRUREbAjWXJCZnZ3FN7/5TUxPT+Pqq69GpVLB7bffbu/fc889ePDBB3HdddetdVW2MHpziMhEIjYecRCuFUzPRrNeREQRq25a+q//9b/iOc95Dg4cOICHH34Yr3nNa5AkCZ7//OdjaGgIP/VTP4VbbrkFo6OjGBwcxM/93M/huuuuizuWzhO00yQZKnyJWAd09MXaqVEZ1xGk/9lxcz0iogdWXZD5zne+g+c///l44oknsGvXLjzjGc/AZz7zGezatQsA8D/+x/+AlBLPe97zsLi4iBtuuAF/+qd/utrV2GZYDuHawcQtEvb1gxAABCgUIOM7iIiI2CCsuiBz2223db1fr9fx+te/Hq9//etXu+gdDNqRfpZRB7AJYAQY2oE75zYIMgYejIjwEGfElkDUyERsdkSxck0Rp3dEREdEQWaTQ8gEAFCrVnokXIfKbFJEq8YGQZuZ/N8RawUqM+lFRESszREFEauHC3eP4Ww/0D842iPlTmMijKBHBrqBIP1vZLAREREbgyjIbHIkUmBgeLzjfSJzcuQOZeaRf647OgZo3KFDcL0R4yZFRPiIpqVtgZ3NzSNZX3+Y3da278n7FbFGEDt8rkdElCEKMtsEYodtWyJmzIi7ZTYOlFQ3ugo7CHGcR0SUIZqWtjD8cxMjkYtYf7SrQ5ivjqGFfpzbSWoRERER54eokdnCECB1buIOBiH6DKw/VH8LocjHbH0a7aS5kRWKiIjYwYiCzDZBNK9ErCdKfTVkJCdrhTyp2e87zYwcEdEL0bS0lWFPksux4+zn2ttUgCJh30jYMRjfwVqiVR3BXGUMuRzEwEZXJiJikyEuobY4dvpZfTu8+RE7BUJgoTqGdlLf6JpERGw6RI3Mlof2V9iRav2oBdgsiAHxIjYClOdA3t7oamxLyLyFrLWEhYWFFT1XqVSQJMka1aocUZDZBogsJGK9QAiOJTAQAiIqeNcH0bkdRIR87iTQOhuXM2uEESIsnjyNB86sfF4PDw9jampq3TZiREFmC2NHO/h60tsO7ocNA0H1u3sR8S2sA2hHz3qLfO4kZPssxid2od5o7GxauEbIckIlkahVlq9dISKcPXsWx48fBwBMT0+vVfU8REFmG0AgbkGO2GjE8RexPqA8B1pKiBke6XUGXcS5op0RqqlEfQWCDAA0Giqi1PHjxzExMbEuZqaoC97y2OlBy3d26yN2FuLmMAB5GwJAvRFDMG5WNJsqrlSr1VqX8qIgs01AO1kjs5PbvhEokR0pamQi1hnRnLR5sd4WgijIbGWwsSJ35KsUO377+YZAiNJ9/9G8uR4QkGInzvWIiM6IPjLbAJGXR6wXSFbKr8dBGLEJsNTOkeXrMxgTKVBN10ao7KtVcNu7/hrPee5z1yT/7YYoyERERCwbi80JLCb9aKXDmOQRlaMyZl0Q5cXOWGrn+PJ3T2NucX3iyvTVUly+Z2jFwsyxY8fw3//b/4MPf/CD+O53v4PBoSEcOXIEP/78/4ibfvI/Wf+SiOUjCjLbBDtXrU/28MKIdYBIMFubQANBkKzIYdcJO3We90aWE+YW26ikEtVkbftpKVNlrVT788D99+OZ//r7MTw0jN/8nd/BZZddjlqthq98+ct481+8Cbt378GNz3nOGtV6+yJygK0MCj53InZy2zcbdqwwvX6IJrzeqCYCtUqypn/nKii94ud/Dmma4lN3fAbP+7//PY5ecgkOHT6Mf/dDP4S/+dv34Qf/3b8rPPPJT3wCfbUKTp06Za998Yt3o69Wwbe/9S177Y7/80941r99JsaHB7Fnchd+6MYfxMmTJwEAi4uL+K+/8Aoc2Lsbo4P9uP5ffz/u+vzn7LMnT57EC2/+SRzYM42xoQFceeklePvb/tLef+ihh/Af/sN/wPDwMEZHR/Hc5z4X32JlbzSiIBOxdRGJ+qZClGPWASKefr1V8cQTT+D2f/wIXvySn0VfX19pmnPVrH/xi3fjxmfdgKNHL8FHP/kpfORjH8cP3ngjsiwDAPzaq16J9773PfjzN70Z/3TnZ3H4yBE899/diBMnTgAAfuc3X4Ovf+1reM/7/g7//MUv4bV/8v9hbGwMgNpCfcMNN2BgYACf+tSn8E//9E/o7+/Hs571LCwtLZ1TfVcb0bS0pUH23x1J3Oyk34Ft32SIMmVERHfc/837QES46KKLvOv7d0/Z84xe/JKfxe/+/q0rzvt//L//L55y9dV47Z/8f/bapZdeBgCYm5vDm/78z/Bnb/oL3PCsZwEAXv+GP8Mlt1+Av3zLW/ALv/iLeOihh3DVk56Ep1x9DQDgwMGDaGdqVv/VX/0V8jzHm970JitoveUtb8Hw8DA+/vGP4wd+4AdWXN/VRhRkIiIiIrYKosS47fCJT/8f5HmOF73gP2FxcfGc8vjSF7+IH3ne80rv3X//N9FqtXDddd9jr1UqFVxzzVNxzz1fAwD89Iv/M2768f+Au7/wBTzz+n+L5/zQD+Gap10HAPjiF7+I++67DwMDA16+CwsL+OY3v3lO9V1tREEmYktivm8PcvEVzFXGN7oqOxY8IBlBRNtSREQXHD5yAYQQ+MY3vuFdP3T4MAAX2j+ElMoDhJiDVDuImFtv1M+rbjc861n42r3fxIc/9EF89PZ/xI3PugE//Z9/Fn/4h3+I2dlZXH311XjHO95ReG7Xrl3nVe5qIfrIbHGYob3Tdi3lSR0nGwewlA70ThyxBiiOt501AjcGar7Hnt6KGBsbw7955vX4szf8Kebm5pb93Pi4WqwdO/aIvfYvX/yil+byK67Axz/20dLnDx8+gmq1ijvu+D/2WqvVwl13fR5Hj15qr+3atQs/8ZP/CW9+69vw3/77/4u/fPObAABPecpTcO+992JiYgIXXHCB9zc0NLTsdqwloiATsaVBEDvTP2jTIdo8IiJ64bWv+xO0221833VPx1+/+134+te+hm/ccw/+9zvfgXvuuaf0gMUjF1yAvfv24fd/53dw37334kMf+ABe99rXemn+6y/9Cu76/Ofxip97Gb70pX/BPV//Ov7nn70Rjz/+OPr6+vDTL/7P+LVXvRL/8OEP42tf+ype+rP/GfNnz+LmF74QAPA7v/WbeP/73odv3ncfvvrVr+CDH/gALrr4KADgpptuwvj4OJ773OfiU5/6FB544AF8/OMfx8///M/jO9/5zpr32XIQTUsRERErRl7QCkRhcj0Qz7TqjaWMAGTrUMbKcfjIEfyfOz+H//7//AFe8+u/ju9+9zuo1Wo4esklePkrbsGLX/KSwjOVSgVvfdv/wst/7mW49pqn4OprrsGrf+u38BPP/3Gb5sKLLsL7/v6D+M1X/zq+/3u/B41GA9c89Wn49z+m0vzO7/0+KM/xMy96AWZmZvCUq6/G377/7zEyMgIAqFareM1v/Dq+/e1vodFo4Hu+9xl489veDkAdAPnJT34Sv/Irv4If/dEfxczMDPbs2YNnPvOZGBwcPKd+WG0Ioq0XmeDMmTMYGhrC6dOnV70jHzk9j3/5zmnsHtr8J6uefOIxnP7qR1DDEsaf+h9Qqe+ciJAPn5rHw/d9EQ0s4JKnfB+kXPuj4iNcv9ewhMuf8gycWmjjgfu+jtrSCVxw2TWoNfo3uorbEsdnFvDQvV9GPZ/FxVc+HWn1/HwitjKovQSaOY79Bw6gVnf9sFUi+24VtDNCNZWoV1ZOWxcWFvDAAw/g0KFDqNf9sboW/DtqZLYw2tVBnKlNoyYz7DSXVy5+x1NwNwJ8/ZNDvYX4HiI2DtVU4vI9Q9virKWIlSEKMlscrXQAFZrZ6GpE7EAI6RPxneZwvmGI/dwRUbDYmYhvfZtg5zq87tR2by4UfWYiIiIi1gdRkNkO2HJeThFbHRS1AhuE2O8RESGiIBOxpZFDFEwcERsB2sFawfVD1HxFRBQROcA2QAySFRGxcyBEJNsRERxxRmxhkD00cicLMdGutiGI3b5BiB0fEREiCjIRERHnjegzExERsVGIgsx2wQ5lJHF9GhEREbGzEePIRGxJGLPaThXgNhoFAZKA6Ke1djDBBqPmqweyJSBfn8i+kCmQVNenrIiuiILMtsAOJm5RJROx47CD53s3ZEsQ370LorX8k6XPB1TpA+25ekXCzIt/+kV4x//6X/b36OgonnL1NfjdW2/FFVdcCQDoq1UAAB/75KfwtGufbtMuLi7igoP7ceLECXzwH/4R/9f3f79Nf9u7/hrPee5zV6NZWxLRtLQNkEPEnQwR6wyfmUZ5cp0QO7oz8jZEaw6UVEHV/rX9S6pKYDoH7c+//YEb8M1vP4RvfvshvP9DH0aapvi/f+SHvTR79+3D//rLv/Suve9v34u+/niWWRki94uIiIiI2D5IqkBaX9u/8zAp1Wo1TE1NYWpqCldd9ST84i/9Er7z0EN47LHHbJqbfuIn8dfvfhfm5+fttbe99a246Sd+8ry6ZrsiCjLbAjt3mbZzW76xKO336L+x5ojjfXthdnYWt73znThy5AKMjY3Z609+8lOw/8ABvPc9fwMAeOjBB/FPn/4Unv8fb9qoqm5qREFm2yAykYj1RDje4vhbL8QIylsbH/zA32NidBgTo8OYHBvB3//9+/GX73gHZBCh/D/d/AK87S/fCgB4+/96G2541rMxvmvXBtR48yMKMtsAO3snw05ue8TOQxzvWx3/1/f/K9zx2c/jjs9+Hp/8p/+D6//tv8WP/NBz8OC3v+2l+/H/eBM++5nP4IH778fb3/Y2/KebX7AxFd4CiILMdkDUN0dsMHZ2dOmIiOWjr68PRy64AEcuuABXX/NU/Okb/xxn5+bwljf/hZdubGwMz/7BG/FfXvJiLCwu4Aee9awNqvHmRxRktgl2mrqZ7OfOanfEzkYc79sPQghIKT3HXoOfvPkF+OQnPoH/eNNPIEmSDajd1kCMI7MNEBUyEZsBMQRARERvLC4u4tixYwCAUydP4s/e8KeYnZ3FD9747wppf+CGG/Dt7z6CwcHB9a7mlkIUZCIiIlaMKDxvHETUynRHtrSpy/jIP3wYRw7sAwAMDAzgoosvxtv/9202wB2HEALj4+PnXNZOQRRktjIsNxGRuEVsKKJgE7HhkCmo0qcC1a2DMEOVPnVMwQrw5296M/78TW/ummZusdXx3vDwcOF+t/Q7BVGQ2QbYyXbzyEA3BrHfIzYdkipoz9WgeNbSjkMUZCIiIlYJO1egXi9EAbIHkmoULnYgonfelkcOABAyvsqIjUNksOuHONcjInzEGRGxpREZ6MZgJ5szNxJxvEdEFBEFmW2ASNwiNhpRsImIiNgoREFmG2BHCjJkPiID3SzYaUEZNwJxvDsQ7UjKtyWQ5/m6lhedfSMiIlaMyEIiNgxJBTmA48cewej4OCqV6Ny7FshyArUlkC0/ojARYWlpCY899hiklKhW1+fdREFmG2Anr9IiQ90ciO9hfRD7WQWJSwanMD93Ao88/MhGV2fbIiNCKgUqycoNN81mE/v37y+c6L1WiIJMRETEsuEOWt+5wnPExkMkKZKBXQDlQJ5tdHW2JU7OLmLvSAMHxvpW9FySJEjTFEKsH42Igsw2wM5epUWGujkQ38P6IPazgRACEAkg42GKa4Fc5kgqVdTr9Y2uSk9sqLPv61//ehw8eBD1eh3XXnstPvvZz25kdbYwInGL2HjEYzIiIiI2AhsmyPzVX/0VbrnlFrzmNa/BP//zP+Oqq67CDTfcgOPHj29UlSK2JCLz3BiE/R7fQ0RExMZgwwSZP/qjP8LP/MzP4IUvfCEuvfRSvPGNb0Sz2cSb39z9QK0IB2dSikwkImJnIM71iIgQG+Ijs7S0hLvuuguvetWr7DUpJa6//nrccccdhfSLi4tYXFy0v0+fPg0AOHPmzKrXbebMPOZmZzArN/+JonOzi5g/OwfKM8zOrH5fbGacnZ3H/Nk5gGjHtX0jMTe7oPodwOzMGczNtzB/dg750gJmZ87E8PlrhLnZJT3X23G8R6wL5mYXMVNr40x9db0wDd9ezThAGyLIPP7448iyDJOTk971yclJfP3rXy+kv/XWW/Fbv/Vbhev79u1bszpGRERERERErA1mZmYwNDS0KnltiV1Lr3rVq3DLLbfY33me48SJExgbG1v1LV5nzpzBvn378NBDD2FwcHBV895M2CntBGJbtytiW7cfdko7gZ3b1oGBAczMzGD37t2rlv+GCDLj4+NIkgSPPvqod/3RRx/F1NRUIX2tVkOtVvOuDQ8Pr2UVMTg4uO0HF7Bz2gnEtm5XxLZuP+yUdgI7s62rpYkx2BCDdrVaxdVXX43bb7/dXsvzHLfffjuuu+66jahSRERERERExBbEhpmWbrnlFtx888245ppr8LSnPQ2vfe1rMTc3hxe+8IUbVaWIiIiIiIiILYYNE2R+7Md+DI899hhe/epX49ixY3jSk56ED33oQwUH4PVGrVbDa17zmoIpa7thp7QTiG3droht3X7YKe0EYltXE4LiWegRERERERERWxQx6ENERERERETElkUUZCIiIiIiIiK2LKIgExEREREREbFlEQWZiIiIiIiIiC2LKMhEREREREREbFlEQYbh9a9/PQ4ePIh6vY5rr70Wn/3sZze6SivGJz/5STznOc/B7t27IYTAe9/7Xu8+EeHVr341pqen0Wg0cP311+Pee+/10pw4cQI33XQTBgcHMTw8jJ/6qZ/C7OzsOraiN2699VY89alPxcDAACYmJvDDP/zDuOeee7w0CwsLeOlLX4qxsTH09/fjec97XiGa9IMPPogbb7wRzWYTExMT+KVf+iW02+31bEpPvOENb8CVV15po2Jed911+OAHP2jvb5d2hviDP/gDCCHwile8wl7bTm39zd/8TQghvL+jR4/a+9uprd/97nfxEz/xExgbG0Oj0cAVV1yBz3/+8/b+dqFLBw8eLLxTIQRe+tKXAthe7zTLMvzGb/wGDh06hEajgSNHjuB3fud3vMMg1+29UgQREd12221UrVbpzW9+M33lK1+hn/mZn6Hh4WF69NFHN7pqK8IHPvAB+rVf+zX6m7/5GwJA73nPe7z7f/AHf0BDQ0P03ve+l774xS/SD/3QD9GhQ4dofn7epnnWs55FV111FX3mM5+hT33qU3TBBRfQ85///HVuSXfccMMN9Ja3vIW+/OUv0913300/+IM/SPv376fZ2Vmb5iUveQnt27ePbr/9dvr85z9PT3/60+l7vud77P12u02XX345XX/99fSFL3yBPvCBD9D4+Di96lWv2ogmdcT73vc++vu//3v6xje+Qffccw/96q/+KlUqFfryl79MRNunnRyf/exn6eDBg3TllVfSy1/+cnt9O7X1Na95DV122WX0yCOP2L/HHnvM3t8ubT1x4gQdOHCAXvCCF9Cdd95J999/P334wx+m++67z6bZLnTp+PHj3vv8yEc+QgDoYx/7GBFtn3dKRPR7v/d7NDY2Ru9///vpgQceoHe/+93U399Pf/zHf2zTrNd7jYKMxtOe9jR66Utfan9nWUa7d++mW2+9dQNrdX4IBZk8z2lqaor+8A//0F47deoU1Wo1+t//+38TEdFXv/pVAkCf+9znbJoPfvCDJISg7373u+tW95Xi+PHjBIA+8YlPEJFqV6VSoXe/+902zde+9jUCQHfccQcRKaFPSknHjh2zad7whjfQ4OAgLS4urm8DVoiRkRF605vetC3bOTMzQxdeeCF95CMfoe///u+3gsx2a+trXvMauuqqq0rvbae2/sqv/Ao94xnP6Hh/O9Oll7/85XTkyBHK83xbvVMiohtvvJFe9KIXedd+9Ed/lG666SYiWt/3Gk1LAJaWlnDXXXfh+uuvt9eklLj++utxxx13bGDNVhcPPPAAjh075rVzaGgI1157rW3nHXfcgeHhYVxzzTU2zfXXXw8pJe688851r/Nycfr0aQDA6OgoAOCuu+5Cq9Xy2nr06FHs37/fa+sVV1zhRZO+4YYbcObMGXzlK19Zx9ovH1mW4bbbbsPc3Byuu+66bdnOl770pbjxxhu9NgHb853ee++92L17Nw4fPoybbroJDz74IIDt1db3ve99uOaaa/Dv//2/x8TEBJ785Cfjf/7P/2nvb1e6tLS0hLe//e140YteBCHEtnqnAPA93/M9uP322/GNb3wDAPDFL34Rn/70p/HsZz8bwPq+1w07omAz4fHHH0eWZYXjESYnJ/H1r399g2q1+jh27BgAlLbT3Dt27BgmJia8+2maYnR01KbZbMjzHK94xSvwvd/7vbj88ssBqHZUq9XCKelhW8v6wtzbTPjSl76E6667DgsLC+jv78d73vMeXHrppbj77ru3VTtvu+02/PM//zM+97nPFe5tt3d67bXX4q1vfSsuvvhiPPLII/it3/otfN/3fR++/OUvb6u23n///XjDG96AW265Bb/6q7+Kz33uc/j5n/95VKtV3HzzzduWLr33ve/FqVOn8IIXvADA9hu/r3zlK3HmzBkcPXoUSZIgyzL83u/9Hm666SYA68tvoiATseXx0pe+FF/+8pfx6U9/eqOrsma4+OKLcffdd+P06dP467/+a9x88834xCc+sdHVWlU89NBDePnLX46PfOQjqNfrG12dNYdZuQLAlVdeiWuvvRYHDhzAu971LjQajQ2s2eoiz3Ncc801+P3f/30AwJOf/GR8+ctfxhvf+EbcfPPNG1y7tcNf/MVf4NnPfjZ279690VVZE7zrXe/CO97xDrzzne/EZZddhrvvvhuveMUrsHv37nV/r9G0BGB8fBxJkhS8xx999FFMTU1tUK1WH6Yt3do5NTWF48ePe/fb7TZOnDixKfviZS97Gd7//vfjYx/7GPbu3WuvT01NYWlpCadOnfLSh20t6wtzbzOhWq3iggsuwNVXX41bb70VV111Ff74j/94W7XzrrvuwvHjx/GUpzwFaZoiTVN84hOfwOte9zqkaYrJyclt09YyDA8P46KLLsJ99923rd7r9PQ0Lr30Uu/aJZdcYs1o25Euffvb38Y//uM/4qd/+qftte30TgHgl37pl/DKV74SP/7jP44rrrgCP/mTP4lf+IVfwK233gpgfd9rFGSgmMTVV1+N22+/3V7L8xy33347rrvuug2s2eri0KFDmJqa8tp55swZ3Hnnnbad1113HU6dOoW77rrLpvnoRz+KPM9x7bXXrnudO4GI8LKXvQzvec978NGPfhSHDh3y7l999dWoVCpeW++55x48+OCDXlu/9KUveRPpIx/5CAYHBwuEd7Mhz3MsLi5uq3Y+85nPxJe+9CXcfffd9u+aa67BTTfdZL9vl7aWYXZ2Ft/85jcxPT29rd7r937v9xZCI3zjG9/AgQMHAGwvumTwlre8BRMTE7jxxhvtte30TgHg7NmzkNIXIZIkQZ7nANb5vZ6H0/K2wm233Ua1Wo3e+ta30le/+lV68YtfTMPDw573+FbAzMwMfeELX6AvfOELBID+6I/+iL7whS/Qt7/9bSJS2+GGh4fpb//2b+lf/uVf6LnPfW7pdrgnP/nJdOedd9KnP/1puvDCCzfdNsef/dmfpaGhIfr4xz/ubXc8e/asTfOSl7yE9u/fTx/96Efp85//PF133XV03XXX2ftmq+MP/MAP0N13300f+tCHaNeuXZtuq+MrX/lK+sQnPkEPPPAA/cu//Au98pWvJCEE/cM//AMRbZ92loHvWiLaXm39xV/8Rfr4xz9ODzzwAP3TP/0TXX/99TQ+Pk7Hjx8nou3T1s9+9rOUpin93u/9Ht177730jne8g5rNJr397W+3abYLXSJSO173799Pv/Irv1K4t13eKRHRzTffTHv27LHbr//mb/6GxsfH6Zd/+ZdtmvV6r1GQYfiTP/kT2r9/P1WrVXra055Gn/nMZza6SivGxz72MQJQ+Lv55puJSG2J+43f+A2anJykWq1Gz3zmM+mee+7x8njiiSfo+c9/PvX399Pg4CC98IUvpJmZmQ1oTWeUtREAveUtb7Fp5ufn6b/8l/9CIyMj1Gw26Ud+5EfokUce8fL51re+Rc9+9rOp0WjQ+Pg4/eIv/iK1Wq11bk13vOhFL6IDBw5QtVqlXbt20TOf+UwrxBBtn3aWIRRktlNbf+zHfoymp6epWq3Snj176Md+7Me82Crbqa1/93d/R5dffjnVajU6evQo/fmf/7l3f7vQJSKiD3/4wwSgUH+i7fVOz5w5Qy9/+ctp//79VK/X6fDhw/Rrv/Zr3jbx9XqvgoiF4YuIiIiIiIiI2EKIPjIRERERERERWxZRkImIiIiIiIjYsoiCTERERERERMSWRRRkIiIiIiIiIrYsoiATERERERERsWURBZmIiIiIiIiILYsoyERERERERERsWURBJiIiIiIiImLLIgoyEREREREREVsWUZCJiIiIiIiI2LKIgkxERERERETElsX/D9hf3mRwrT/NAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(8, 5))\n", + "df[['Glucose', 'BMI']].plot(kind='area', alpha=0.2, title='Area Plot (Glucose, BMI)')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB630lEQVR4nO2deXgV5dn/vwcSQgLZSQiBhBBERFkEWQwgglIUfbUobZViQUCt/nADrYpat2qxtVpbpdoFUV7F7X0Vqb61IiKIRFkj4hICYQlCSAhZSAIhkPn9Qc+BczLzPHNmOTNz8v1cV64LZs7MPLOcM/dz39/7vn2KoigghBBCCIlS2jk9AEIIIYQQO6GxQwghhJCohsYOIYQQQqIaGjuEEEIIiWpo7BBCCCEkqqGxQwghhJCohsYOIYQQQqKaGKcH4AZaWlqwb98+JCYmwufzOT0cQgghhOhAURQcPnwY2dnZaNdO239DYwfAvn37kJOT4/QwCCGEEGKAsrIy9OjRQ3M9jR0AiYmJAE5erKSkJIdHQwghhBA91NXVIScnJ/Ae14LGDhAIXSUlJdHYIYQQQjyGTIJCgTIhhBBCohoaO4QQQgiJamjsEEIIISSqobFDCCGEkKiGxg4hhBBCohoaO4QQQgiJamjsEEIIISSqobFDCCGEkKiGxg4hhBBCohpHjZ358+dj2LBhSExMRGZmJiZNmoTi4uKgzxw9ehSzZ89Geno6OnfujMmTJ+PAgQNBn9mzZw8uv/xyJCQkIDMzE7/61a9w/PjxSJ4KIYQQQlyKo8bOqlWrMHv2bHzxxRdYvnw5mpubMWHCBDQ0NAQ+M2fOHPzzn//E22+/jVWrVmHfvn24+uqrA+tPnDiByy+/HMeOHcPatWvxyiuv4OWXX8ZDDz3kxCmFRWllPVYWV2DnwQb5hwkhhBBiCJ+iKIrTg/BTWVmJzMxMrFq1CmPGjEFtbS0yMjKwZMkS/OQnPwEAfP/99+jXrx8KCwtx/vnn41//+hf+67/+C/v27UPXrl0BAC+++CLuvfdeVFZWokOHDq2O09TUhKampsD//Y3EamtrI9Ibq6bxGG5/vQirSyoDy8b0ycBzUwYjOSHW9uMTQggh0UBdXR2Sk5Ol729XaXZqa2sBAGlpaQCAjRs3orm5GePHjw985qyzzkJubi4KCwsBAIWFhRgwYEDA0AGASy65BHV1dfjmm29UjzN//nwkJycH/nJycuw6JVVuf70In28/GLTs8+0HcdvrmyM6DiPQG0UIIcRruKbreUtLC+68806MGjUK/fv3BwCUl5ejQ4cOSElJCfps165dUV5eHvjM6YaOf71/nRrz5s3D3LlzA//3e3YiQWllfZBHx88JRcHqkkrsPNiAXl06RWQs4WC3N6q0sh67DzUiL72TK8/fatra+XoV3qdT8FoQL+MaY2f27NnYunUr1qxZY/ux4uLiEBcXZ/tx1Nh9qFG4fleVO40dkTdq8azhhvfb1kJ6be18vQrv0yl4LUg04Iow1q233or3338fK1euRI8ePQLLs7KycOzYMdTU1AR9/sCBA8jKygp8JjQ7y/9//2fcRM+0BOH6vHT3GTp+b9SJEHnX6d4o/+fCDXF5OaRnBKvOl+FEe3H6uXTT/XX6WhBiBY56dhRFwW233YZ3330Xn376KXr16hW0/rzzzkNsbCxWrFiByZMnAwCKi4uxZ88eFBQUAAAKCgrwxBNPoKKiApmZmQCA5cuXIykpCWeffXZkT0gH+RmdMaZPBj7ffjDIeGjv82HUGV1c6dWReaO++aEWD7/3TdgzP6+G9Ixixflylm0/Tj6Xbru/be07SqIXRz07s2fPxquvvoolS5YgMTER5eXlKC8vx5EjRwAAycnJmDVrFubOnYuVK1di48aNmDFjBgoKCnD++ecDACZMmICzzz4bv/jFL/DVV1/h3//+Nx588EHMnj3bsVCVjOemDMaoM7oELRt1Rhc8N2WwQyMSI/NGvbJ2l6GZn56QXjRhxflylm0/Vj2X0eDpbGvfURK9OOrZeeGFFwAAY8eODVq+aNEiXH/99QCAP/7xj2jXrh0mT56MpqYmXHLJJfjLX/4S+Gz79u3x/vvv45ZbbkFBQQE6deqE6dOn47HHHovUaYRNckIsFs8ajp0HG7CrqsH1gj+RN2pIzxSs31Xdahs9Mz8vhvTMYPZ8OcuODGbvk1HvjFX310ohsRe+oxROEz04HsaS0bFjRyxYsAALFizQ/EzPnj3xf//3f1YOLSL06uKdL+dzUwbjttc3B/0YjzqjC342rIeqseNHJLjOz+iM1IRYVDc2t1qXmhDrmWujF7MhTK+K272G2ftkVMxv9v7aEQJzc9jdbSE/4m5cIVAm4SNykdshbvR7o1bePRaLZgzDyrvHYvGs4Ti7m7gIo2jmV1pZr2roAEB1Y7MrxJlWYyaE6YVZdrRg9D7pFfOrYfb+2hUCc2vY3W0hP+JuXJN6TvQhms0oUGyf6YR6o8zM/Nqip8JrIcy2itH7ZOaZNvNdsjPE6cZnliFdEi707HgM0WzGqZmO0ZlfW/ZU9OrSCeP6Zob1g0yxaOQJ9z6ZfaaNfpci8WwYeWbtgt8FEi707HgI2WxGjUjMdIzO/CKlB4gWAWNbNg69gtln2uh3qa09G23tfIl56NnxELLZjIhIzHSMzPzs1APUNB7DtIXrcNHTqzBj0XqM+8OnmLZwHWo1dEJux/8ibe/zBS1v7/NhTJ8MTxty0YQVz3S436W29my0tfMl5nFV13On0Ns11WlKK+tx0dOrDG278u6xrv4BsEMPMG3hOs0ZtpkWF05S29jcKiuOGSjuJNIal2h9NrQ8s9F6viQ89L6/aezAO8YOIH6BA4i6l7tRZIah240/GW4SixJ3ES3Pht7U8mg5X2IMve9vhrE8hshF7nSKqJv6+URCwOjk+XKOQrSIlmdDb8KFm4TTxL1QoOwgRoSzMgGjEymibizuZaeA0cnzteLY0SLYJsG48XtoFKaWE6thGAuRD2NF048S4F5tjF3jcvJ8zRw72p47Eoxbv4dGWFlcgRmL1muuXzRjGMb1zYzgiIhbYRjLxURT5U8zFWPtxoqwXmioysnzNXvsaHruIoWbQrMi3Pw9NAJTy4nVMIwVYaLNPevmKsgKjDsttbwgPxvWQ7idnedr5lpH23NnN17zgrn5e2gEN/fkIt6Enp0IE22VP908AzPjydDa9pW1u4Tb2Xm+Zq51tD13duM1L5ibv4dGcTrhgkQX9OxEmGj7UXLrDMyMJ0O07fpd1Rick4LNZTWt1o/sne7aGWe0PXd24kUvmFu/h2ZwY08u4l3o2Ykw0Vj5040zMDOeDNm2R5pPqC63W+pv5pyi8bmzC696wdz4PbQCppYTK6BnxwGemzK4VeVPL/8oWTEDszod2ownQ7bt9+WHVZcXllbZOuu3osmkV5+7SKbLe9ULRk8IIdrQ2HGAaP1R6tUl/POwSwhqxq0v2rZfdiK2/lCnua2dQtD8jM4oyE9HYWlVq3UF+fIQmhefOyeEwl4PCRn5HhIS7TCM5SB0z+oXghpJATbj1tfa9olJ/YXb2T3rD4lCSZerYea5i3QqtlNC4WgNCRHSVqFnhziGHiFoakKs4Zm9GU+GVtp6Xrpzs/7Synqs3dHaqwMAa3fYG0JzwsPipFDYi14wQog29OwQywh31q9HCGrFzN6IJ0N0XKdm/U4KZ53wsLhBKEzvKyHRAT07DuJUjyKrj2t01i8Tgrb3wZGZvcyjcKjxmK5Zv5tE12ZwysNi1fmyF9gpeC1IW4XGjgM4VZ3VruOKZv2injwyIegJSSq3XWJgvdVotYSgbhRdm8Gp6rxmz9drVZDthNeCtHUYxnIAu0MCq4or8KcV2/BZyGzcjuOa7ckjCglFwpOhFnoze1w7768TITQnU7HNnK/XqiDbCa8FaevQsxNh7AwJ7K5qwKQFn6O6sTmwLDUhFstmj0ZzS4stxzU76xcJQZMTYm3zZIhmumY8CnaHfMz0+zKKk6nYRoXCXqyCbBe8FoTQsxNx9IoujaT4hho6AFDd2IwrF6yxTexp1axfSwhqlydDNtPVc1y1e2S3qLatpmKHKxR2g7jZLfBaEELPTsSRGQdpCbGYtnBd2LH1VcUVrQwdP9WNzfj2h1rhcWPahVGo5TTsnvXbkQKsN+VdC5FXyM6QD1Ox9ePVKsh2wGtBCD07ESc/o7PmizQ1IRZPf1RiaOZetLdGuL6ksl64/niL8fBIJGb9VqYAm015F62zsweVG2boXknFZi+wU8h+c9rStSBtF3p2bEQtzbO0sl7ogTE6cz+3R4pwLCPz07F08z7N9WZmd9E265elvKtx+j2yqwcVZ+jh4eVeYFYi+82hZoe0BWjs2IAozCGbnYsQiX0v7JuJ1IRY1R+11IRY/GxYLt7fUm6ryNQrPXnMpryL8N8jLxl/0YrXjHC7cKp0ACFugmEsGxCFOWSzcxGymfuy2aNbuav92ViA8yJTN2Em5V3E6ffI6pCPG8JYXkR0HyLd68sKwh0zPYKE0LNjOTIRqe8/mgEtrwIAw96XnPQEbH5oAj4rqcSmPdUYkpuKC/pkBNZzpnsKMynvgL57FC0VlKMRLxbZMzpmr3dxJ8QKHPXsrF69GldccQWys7Ph8/mwdOnSoPU+n0/176mnngp8Ji8vr9X6J598MsJncgo9s+/HJ/VHUnywnZkUH4MnJvW3xPtyQZ8M3HHxmUGGzul4RWQaCYykvMvuUU3jMUxbuA4XPb0KMxatx7g/fIppC9ehVkM3oReKbq3Di0X2zIyZXl3S1nHUs9PQ0IBBgwZh5syZuPrqq1ut379/f9D///Wvf2HWrFmYPHly0PLHHnsMN954Y+D/iYmJ9gxYB3pm3w8u3Yq6I8eDltcdOY4Hlm7F4lnDHem7RILxe35Wb6vE5rLWXjLRPTLaPkMPFN2ax4tF9syOmV5d0tZx1NiZOHEiJk6cqLk+Kysr6P/vvfcexo0bh/z8/KDliYmJrT4roqmpCU1NTYH/19XV6d5WhsxlrGhk9IT+aEW67xIJRs91VrtHdr9I+dIyjxcFu1aN2StJBIRYjWcEygcOHMAHH3yAWbNmtVr35JNPIj09HYMHD8ZTTz2F48ePq+zhFPPnz0dycnLgLycnx9KxilzGZkWmelzZbUF0adW2WhgNGURKRMxQpHG8qH3y4pgJcROeESi/8sorSExMbBXuuv322zFkyBCkpaVh7dq1mDdvHvbv349nnnlGc1/z5s3D3LlzA/+vq6uz1OARzb7N/GjJvAZflVXj6Y9KPOX1MeOpssvLZcY7w5eS+/GiYDc/ozMK8tNRWFrVal1Bfrorx0yIm/CMZ+ell17C1KlT0bFjx6Dlc+fOxdixYzFw4EDcfPPNePrpp/Hcc88FhalCiYuLQ1JSUtCfHajNvs1UM5V5DR54d6vtokurvShmRJd2iUzNeGdYrdYbeFGw69Po6KK1nBByCk94dj777DMUFxfjzTfflH52xIgROH78OHbt2oW+fftGYHThYaaaqcxrsHVfa+2RmjfCiLjZDi+KGQ+KndoYs943Vqt1P1ZonyKZJFBaWY+1O1p7dQBg7Y4qPleESPCEsbNw4UKcd955GDRokPSzRUVFaNeuHTIzMyMwsvAxIzTMz+iMkb3TVX/0+mUl4rvyw8L9pibEGjZY7MgwMnMt7BSZmglzeFH82pYxIth1IkmAzxUh5nA0jFVfX4+ioiIUFRUBAHbu3ImioiLs2bMn8Jm6ujq8/fbbuOGGG1ptX1hYiGeffRZfffUVSktL8dprr2HOnDm47rrrkJqaGqnTCAuzmg5Fo5VBXIz4VualdzIc9vF7UU6EHPx0L4oeQkNgZq6F3doYo2EOL2h2vChgdxNO1OjxwnNFiJtx1LOzYcMGjBs3LvB/v2h4+vTpePnllwEAb7zxBhRFwZQpU1ptHxcXhzfeeAOPPPIImpqa0KtXL8yZMydIfOw2zHgNSivrVQWKAFC0txbD8lKxaXeNqZR3NczOKkUzYaPXwm6RqdEwh5vFryxbYB6navS4+bkixAs46tkZO3YsFEVp9ec3dADgpptuQmNjI5KTk1ttP2TIEHzxxReoqanBkSNH8O2332LevHmIi4uL4FmEj1GvgczomD4yz5aUd7OzStFM2IxQNBIiUyMp3m4Vv3qxarDbcLI/mVufK0K8gCc0O9GGUa+BzOg4JzsZi2dlW57ybtYbJZoJm3k56L2Oka42HQnxa7jn5MWqwZEg3OvoZDiJBSUJMQ6NHQcJVxyp1+hQ269ZN7jRNgXSdPmlX+O7fcHC6nCFz26tNm2H+NXoOVHgGoyXm2qyCjIh4eOZOjvkJE6FffyzypV3j8WiGcOw8u6xWDxruNRokKbL/1BnufDZjxfDNrIxGz0nClyDYVNNQtoW9Ox4DDOubCvc4Ea8UVqVX8/KSsT3knR5o8LnqoYmz4VtZKGm1dsqDJ+TqGzByN5tqwIvm2oS0vagseNRzLiyRdvaoW/RqvAaH9teuJ0Z4fOM0XnCbd0YtpGFmjaX1QjXy85Jq2yB1vJoIfSZZlNNbxFpzR2JTmjsuBQ7v+Bq+7azz5RW5dfNZTXCdHkzwucbLsgTjsuNYRtZqGlwTopwvayys1bZgsJS91fgXVVcgaK9NRiSm4oL+mTo2kbrmb5rwpnC7dz4bLRFnNbckeiCxo7LsPMLLtq3HRWSAX3p8vGxey0XPp9Q4LiQNFxk4tcxZ2a2ucrOu6saMGnB50EtOFITYrFs9mjkpIuNQ61nGvDes9EWses3ibRNKFB2GXaKarX2PeuV9ZZUSFZDX7q8XPhspPqyF4WksjE7Xdk50tWXQw0d4GSPsSsXrBGOSVb1++5LzvTcs9GWsKpqOyF+6NlxEXbWQhHte8PuauG2kegzZSR9XM9+vSYklYlfnars7ERIYVVxhbCp6r++3o/X15WpjknmyapqOOa5Z6Mt4VVPJHEv9Oy4CDurs8r2LeL0Wb+Rmb0ZD4sV1ZeNVEF2GtmYI13Z2QqPY7jPTtHeGuH6Jz/8TnNMej1ZXnw22gIslUCshp4dFxHOF1wkYFZbJ9u3TChsZmZv1Bshr75cL90HOYVd90HmcTT67JzbI0U4rt1VRzTH5PP5dHmyzCQCMEvIPtxQvJFEFzR2XISeL7joxaFA0VwnqndTkJ+OF687T1gh2QqxYLiputLqy+9uxXf7zVVfbotYfR9kIQWjz86FfTORmhCrGsrqHNce9U0nhGMSVf02Y7wzSygyGK3aTogaNHZchuwLLgsniF4qWvVufD7xrN+pvkrS6sv76iI+praImZCC2Wdn2ezRuHLBmlbZWM9PGYKpC78Ujkn0TE9buM6w8c4sIetR85KxeCOxEho7LsOM0aHGqeq7lZr1btbuOFVnRW3W75RYUOTp6pediK0/tDZ27B5TW8RMSMHss5OTnoDND03AZyWV2LSnOlBnp7RSfwgz9Jk2Y4Cxoaq16PGSsXgjsQIKlF2KmnDSjMh4c5k840oLJ8WCWqLaJyb1d2xMVhDpFG6zOJ3yfkGfDNxx8ZmBgoJmxPxObUta48X+dcSb0LPjIWQvDhGDc1KF60UvHSfFgiJPVyTGZLUIVa/ew23iV6MhhTKJcbC3utHQ+ZkxopzalgRDLxmJJPTseAi/0dE+RHzT/j+ZJ8J1Z4rXy35UnC7Qp+bpsnNMNY3HMG3hOlz09CrMWLQe4/7wKaYtXIdajbovepHNZO06rlWEm6otSx/ftEfscdRC9l0Qjc+pbUkw9JKRSEJjx2OIXvB2Vd8FTs3sF88chjk/6oP/njW8VaVjM6EZI9v6xySrvmzkuHa41/VUhXXarW91eE2WPj4kV+xxFGHmeXZq22gm3GdHr5fMayFf4k4YxvIYCrRbVNtVfRcQh19EKe+RSOM1ImAUHbeqockW97psJvtF6UHH3Pp2pVOL0sdTE2J1N/VUw8zz7NS20YjRZ0cWHk9NiMW0heuY4k8sgZ4dj6Fn5m9H9V3RcfV6I9RmaE55MkTHtcu9LtdcadQGMHlcPdh5H5bNHo3UkJeTv5mnFZipguzUttGEmWdH5CVz2stJogt6djyEU4I+MynvOw82IDUhVnXmd9eEPq48nxsuyBNub1SEKpvJjuiVZstxZdj9XGmljxPvY/bZ0fKSUbxMrIaeHQ/hlKDPTMr7riptHcoDS7dKt/VjZdxedj4nFNgmQhXNZK0Sv4Z7rSL1XIWmj3sB6kXEWPXshHrJKF4mVkPPjoeQWaYx7U6+JK3u92Mm5b29z6c5QxMVBQROejKs0JKEnpMeYaRdpepleg8zxzV6raxKp3ZburwfI+NiSwh92JWKzxR/YjU0djxEi2R9zZFmw4I+0Y+7LPwCQHNdaOZRKP2zk/Dd/sOatXLMlPUXnZOeGj12ilC1RNVmxK9G2xiYraPkVsPAzLjYEkIfdtXgYiNQYjUMY7kUNfe5bLazeO0uw4I+mRjQaMq7bMy/vWqA5rZ6UrWNnpPe9GGRCNXOVPtwxa9mr5Xe67GquAJ/WrENn51mQLhVSGp0XGavZVvDrlR8pvgTK6Fnx2UY9bAMzk3B+l2tC7RZ2e9H5HHQWpecECucoQ3MSdHcdpOOFhdGz+lQ4zFb0vCd6phttgeVzKO0u6oBkxZ8rtKQc7ArhaRmBK5O9YLzKnal4jPFn1gJPTsuw6iHZcbIPOF+rer3I/I4aK3TM0NT29ZM3F7vOVmdhm/ntiKs0jhoXY9QQwcAqhub8ctXNwr355SQ1IzAlXoRY9iVis8Uf2IF9Oy4CDMeFlkXaNEPtF7hs1GMztD0xu2NiKqNim7d2jE7HI1DuILdVcUVqkUBAaC+6YRwW6cMAzP3n3oRQqIPGjsuIhz3eajA1cwPtEz4fLxFLDLWi5FKx6LsJDOiaqOi22uG9hBuJwpx2B0ekWVyGQ2hyfpb9UyLx97qo64yDMzef7uy8QghzkBjx0ZkM+jQ9WY9LEZ/oMOZBUc6vVjkFZJlapl5YWmFmxqPHRduJ7pWTnvQjGYYyfpbzZvYD0vWlbnOMDBz/6kXISS6oLFjA7IZtFGvgczDYucPtNPpxaFeIStE1VqI9r1hdzWG5aVi0+4aTY+BXfdXL2oeNDMhNFl/q0sHdMOlA7q5zjCw4vtgxBtJCHEfjgqUV69ejSuuuALZ2dnw+XxYunRp0Prrr78ePp8v6O/SSy8N+syhQ4cwdepUJCUlISUlBbNmzUJ9vVi/YjcyEarW+kVrdwn3a1ZkqoWe8Irb0outElUb2ff0kXlCwbXd91eGWlq72Yq0evpbuVVIate4WF2ZEO/gqGenoaEBgwYNwsyZM3H11VerfubSSy/FokWLAv+Pi4sLWj916lTs378fy5cvR3NzM2bMmIGbbroJS5YssXXsWshm0Ku3VZjyGtiBLIzV3gfXpRfbmTFTUXtUuL6qvklznVmvkBlE3jez14v9rU7htJeTEBI+jnp2Jk6ciMcffxxXXXWV5mfi4uKQlZUV+EtNTQ2s++677/Dhhx/iH//4B0aMGIHRo0fjueeewxtvvIF9+/ZF4hRaIZtBby6rEa6XeQ3sQNaT6YQkuuJEerFVfaTUKD8sNnZe+nyn4Y7pdt7fW17d1MrQWl1SiZtf3WjZ9fJifyurcZuXkxAix/WanU8//RSZmZlITU3FRRddhMcffxzp6ekAgMLCQqSkpGDo0KGBz48fPx7t2rXDl19+qWlENTU1oanp1Oy8rk7coykcZDPowTkpwvXnZCdj8azsiOsfRGLOqgZtTwZwyisQafGyXRkzMkHu7qojrZbp7Zhu1/0traxHYWmV6rrC0irsPNgQtRlG4SYCmD2W27ychBA5rjZ2Lr30Ulx99dXo1asXduzYgfvvvx8TJ05EYWEh2rdvj/LycmRmZgZtExMTg7S0NJSXl2vud/78+Xj00UdtGbMs5XXMmZkoyE9XfTEV5KdrppbbjUjMKauCnJoQa7gnl11jNoNIkNs5rr2wtoy/Y7os5dnq+/vlzkPC9V+UVmHK8NyoyjAymghg5rlkdWVCvImrKyhfe+21uPLKKzFgwABMmjQJ77//PtavX49PP/3U1H7nzZuH2trawF9ZWZk1A/4PsorBPo0MY63latgljlQ0GneKzkmvW9+uMdshQNUS5P71uqEaW5zE3zE98j19xLHG0x8trXvsNYwmApgJN7G6sj1Q7E3sxtWenVDy8/PRpUsXbN++HRdffDGysrJQUVER9Jnjx4/j0KFDyMrK0txPXFxcK6GzlYg8DqWV9Vi7Qz3csHZHldQNbpc4UrZfReNluqtK7tZPTYj1nKBTJMh1umO6GiN6pYvX56frenYiHYo0ijwRoNKWcFO0V1eO9P234vfMK88scRZPGTt79+5FVVUVunXrBgAoKChATU0NNm7ciPPOOw8A8Mknn6ClpQUjRoxwcqgA1EMVZt3gRgvDyfh/r21qZYStLqnELa9txJIbz8dNizdgXUij0dUllSiva61fOZ1dVQ14+D3tbuxmxhwJLuiT0UqMq1f7EslQZH5GZ4zsna5qSI/sfTI8KirC+Ocp53rKIJUnAhhvIisjGrVPTmWYmfk9Y1YcCQdHjZ36+nps37498P+dO3eiqKgIaWlpSEtLw6OPPorJkycjKysLO3bswD333IMzzjgDl1xyCQCgX79+uPTSS3HjjTfixRdfRHNzM2699VZce+21yM7Oduq0hJhxg9sljpR5m1Zvq2hl6PjZdkBc06i9z6drzF6anUWiuq6R6/HC1PNavYT9P/6yZ+fGxRuwaXdN0Do3G6Sy+Hu3pHjheqO90QD33n8z2DWJEmH298zuMXvpN4nIcdTY2bBhA8aNGxf4/9y5cwEA06dPxwsvvIAtW7bglVdeQU1NDbKzszFhwgT85je/CQpBvfbaa7j11ltx8cUXo127dpg8eTL+/Oc/R/xc9GLGDW6XOPLLneqGjp///mJ32Pv0s6q4Qrh+675aPPzeN56cndnhuTEzWxW9hDdJPB3rVYxZN2cYyfq5ZSTF2dIb7fT74Lb7bxSnMszM/J7ZOWZ6jKITRwXKY8eOhaIorf5efvllxMfH49///jcqKipw7Ngx7Nq1C3/729/QtWvXoH2kpaVhyZIlOHz4MGpra/HSSy+hc+fODp2RPowKWPV6hcIX+4mV0Q1N4n5QImQ/aIvXaoe43M6q4gr8acU2fKbyo2sUK0S1aoJt2bMjQm8dpUiKTPV8F8wIxZ2qpaPnuFZfZ7PVtY1ixstt55hZRyk68ZRmx2touUH9M/DV2yqxuUy9Gq3atjKvkNEU8BG90oTn8eNzu2PtDnFqsxaXnJOFY8cV1TEPzk3xnEcBAHZXNWDSgs+DUtP9rRNy0o0bFeHMVsN1sYuencG5KdiwW9vzIwv56J0JWxkW0OshPfk9q8DmshrdVZ+d8nTIjvtVWQ2e/mib5R4HpzLMzHi57Roz6yhFL65OPfcqNY3HMG3hOlz09CrMWLQe4/7wKaYtXIfa/7wc/eunvbQOf1xegl8sXBdYL9vWihTwUPIzOqMgXz2bpyA/HdcMy0WMxpMS0067W3dMOx9+OjRHc8wzRuYJx+VEZWY9hBo6AFDd2IwrF6wxtV89s1XZ8yFC6z4snD7MVHVl2XNnZsxGzsfvuTn1PVvf6nsmwilPh+y4Dyz92haPg53VyGUY9b7ZNWan7j2xH3p2bEAmnJO9HETbaukyzM5IXrxOLG49riGSON4C/P0XQ3DLa5uCunbHtPNh2exRALS1JKWVYnGzG2uWrCquUC02CJw0eD4rqTTcSkE284hp5zMlyhR5FI1mGOl57h5+7xtbhKQyobDRa+WUp0N23K0/tK70bpXHwYoMMyOeOzNibzuy4lhHKXqhsWMxZhqBqi0/fd3pP2ih4kiz4mUz4taYmHbY/tvL8PaGMny+4yBG9e6Cnw7NafW50DF7sWZJ0d4a4fpNe6oNGzsy0e3e6iOmDFpZuMnIS0f23H1RetD2sICaUNiM8e/Ucyk6br9uidi6T7utjdnKzVp1tPRghaDXiNjbjqw4L/4mEX0wjGUxZhuBijjdhRoqUrRqRqJWXVfvvs/rmYofn9sdQ/PEGqDTcabasHFkfbOG5KYK14uQXWdZgW2Zi11PmDPcatRy4bN41E6FhGTHdeq51DruE1cNEG5n1uNgRpTrtKDX6grqXvtNIvqgZ8dipKGIcHpChJCX3kk4i7Ir1dYuYTQQmZolViLqm5WaEGuqG7hfO6XVN224REjuRI0m2bMhE787FRKSHdep51J0XLs8DmaejWgU9HrtN4nog54di5GFIo5L+hL1754kFN2JZlF2ptraIYw+HTv6W9mFVt+sZbNHm963qG+aGVGmVcJLtbRn0bPhlPjVquM69VyqHdcuj4OZZyOaBb1e+k0icujZsRjZjDIrqaNw/YyReXj8g++CPAdJ8TF4YlJ/6SzqUOMxXam2oUJCvbMzO4TRXkTUN8sMevqmPT7pHPw4JBvM/3yIMOvpMKP3caq9gpfbOqiJfc3oakSYeTYo6CVegcaOxeRndMbQnqmqdUuG9UxFpsTYWfT5LtQdCS7iV3fkOB5YuhUzRucJt5VVI9Z6YV0ztIdwv6eLH60WRnsZtb5ZZtBzLRet0X4+RBlGZoWXejKbtESmbgwJuRWRUWlXewQzzwYFvcQrMIxlA9sr1FOqSyrq5eml++qCfjSAU16Sitqjwm3/tmqHMJyk9WO5aO0u4X5Pn53ZJYx2ikhW/ZUhu5b+PmNaz4fsHIyGQfzeO6PH9WNXWEB2D70UjtD6js56Zb0l90ALMyEyCnqJF6Bnx2JWFVeg5oh6HZaaI83419f7De+7/LDY2PlaUIdDlPK+YXc1huWlYtPuGs3ZmdaM864JZxo+HydxY/8b2Sw59EUXipnyAiLc6r1z4z00gygkLKpwDZi/B2a8YF70oJG2Bz07FiOrw7ImZNYWDoNzUgxvK0t5nz4yTzg705pxPvDu18L9itLlrcLIfq0QVZs5H61tRbNkq7xoVqeXO+W9czrlWUa4z4fMqBQh8r6GgxkvmJc8aKTtQc+OxWQlijU553RLQmGpdp+pAd2T8O2+w6oz+zFnZmrO/M/OTlT17PjpJtEKnZOdjMWzslVnZ6IZp6jQGSBPlzczAze6X7OiajPnI9tWNEtOTojVpY+QVbK1sq+WU7oMO/uImcXo8yEzKo16X73q6YoEkX42iHPQs2Mxmclio2LUmRlor5Fe3N4HvDrrfKGH5fFJ5yApPthGTYqPwbTz84THzUjqqCsVV212JptxmkmXN4PR/ZpNl41EATatWbLI86O3J5uVfbWc0mXY3UfMDGZ61Im+o/+YNsyQ99Utni434dSzQZyDnh2LkVmPlYeP4oSG9OKEgkD6uFb8+8Gl36hm47y5oUx43Lz0ToZTcWUzzt9eNQB/+Pc21f3alZpuZr9mwjKRKsCmNeMUeX6mLVxnuCeb3r5abtFl6LmHdmUviTD7vIu+o6J7EIkSENHkBXHi2SDOQmPHYmRFBb+VhH2+KK0KpPCG0+9Hr8jYCLIwxsAeKYb7ahkVVjolmjVzXD3bpibE6gpFhD4fZnuy6X0ZGulh5ARlhxocqf9kZ486P2r3wM7vQ7SFx9pibTDCMJblyGac6Z3ihOv9Dmw1kaHsB82oyFiPm1tPGMNMX61wMbNfM2Esuwuw2RWakwnUrah0G8k0fjecrxpuF5E7JeZ3E9Fc9dmtuKHEBz07FiPrb3T5wG54evk2ze37dUvU7DMls0yT4+1zc4tmnGb6ahmdQZnZbzgvpFDXvZ0F2JT/3ItQrAjNyTL59L6E1UIZTsz8I3W+4eLGjulm+tdFoxfErdmF0YibvIL07NiArL/RyN7pqutH9k7H0x+VaM6ipH23Wk7+yBkRGeudzajt20xfLTMY3a+evkkiAeM9l5zZ6h77fMB9l/aVjllLYP7EpP6m7pHsnPyZfEZ7RYmuhxMzf7vP1wxu65hupn9dNHpBnOrX1hZxk1fQp6jFHtoYdXV1SE5ORm1tLZKSkkztq7SyHhc9vUpz/cq7xyItoUMrEeLJAn198OMFazW3XTxzOKa9tE64b5E4VjYuo0Jhvfu1S9xqZL+1jc2q98A/4/CLfdVmyV//UKPZ9XzzQxOExxXt95ErzzZ1j2TnJFsPaItQtcY9pGcK1u/S1mUZfa70YMX52olTYm61/nVGn6twtvWSgNnpZ6MtYNc7JxS972+GsSxGr1BQLSS0srhCuO0JRXFdD5twhJF2iVuN7NdMZosW1Y3N+KykUrNflmy/vv/MLI3eI5m41WgosqqhSXPcIkMHsLe6spnzjQROiblDj2tGvKznd8NNoQq92NVUlZzCbZXXGcaymHDiwaFONT3bOt3DxqneWHYJ3IyE/ERs2qP98tfz5bfiHsnEreGGIq2q7GsXRs63LWH2Oyp7Jt0UqtCLF8fsNdymjaJnxwHM9JkyM1s1M5sRzd7sFGRaMWsM170u+5KKGJKbani/eemdHPFGyDxON1yQJ9x+WM9UbNqjXfKAOItZr67T9X2sxotj9iJuq7xOz47F6Jm937h4Q6sv2+qSSvzq7a+k2/oxMlu1q/KvnYJMM2M2WiVVJmBMjlc3spLjYzVDWHr2e/q9jKQ3QvbMnlBOZhKqUZCfjn9MF1f2Jc5jl8fQiwJmL47Zq7ip8jo9OxYjraBc16Spc9hWUS/c1kx6sN7ZjJFt/VWfV2+rwOayGgzJTRW+9K0esxZmqqSKKtneuHg91qncw75dO0vPyWgV61DMiEFDt9XjcRJlGDqtjSFy/Pdo9bZKbC6rNvQdVcNtoQo9eHHMXsVNvw00dizmq721wvXvbd4rXJ+TGo+y6iOtlo/sna4rPVgr5CObzWzdV4uH3/vG0Lbf/KC9rZnGmGYEbnbVFSqtrFc1dABg3a5q7DworoJsVhhpVxPSkb3TsXZH69pQI3unQ1EU1XUAsHZHVeBaeqW6clvELhGx20IVevDimL2OG34bGMaymEMNTcL1VZIQSvMJ9Wo6oQUC3ly3B3e+uRlvn9YTS+TJkM1mFq/dZXjbVwTbyjAzZlFVWLvqCunZr+iczAoj7QpFahWgUBS6/Y3ihqqxfuwU5LopVKEXL46ZmIOeHYsZ1zcTL6/drbn+ioHd8H35Yc315XXqxlJh6ckZdP3RZlz1l7WBAoJLN+/DvHe+xl9+PkToydhbLX5hqYXWTm3b2tMUtO1u7W3NNMaUHbfuyDFMW6juUXKqTUV7ny/stHW93iY7m5BqUVhahVvG9tZcD7jf7R/p+i9uS8W2W5DrplCFXrw4ZmIOenYs5sK+mUjRELCmxMdi9kV90F5L/yDZ966qhiBDx8/xFgU3v7ZRuK2sV5B4W3EtFRGiWb+8v5H4uA+8u1VztmpXldT8jM5I1XhhpSbEBrnFw0XmITHjYTGTPn5CUYTn7NaXhFGBulncltYcKc+cF1P8vThmYgwaOzbwz1tHt3o5pCbE4p+3jkZpZT1OaIUMJPv95ofaVoaOH43FAboldZTsXbRtvOFtRbN+2cPXLVk85q376loZF6fPVu1wVZdW1qtWTwZOFhXUMmT1ENqTKzQEYiasZyadvr3PJzxnvWEaM2EdrzSw9HtRRM9lpKEglxCGsWyhRWC2fLnzkOH9FpnwzpxQoCnK69ctEVv31Qm2FVtSRuusyHp9ZSR21B5zdiK2/qA9ZlGlajPoSdMWiR+bT7RoNomVVaM10+xRti0AzXWy+y+rhGqXqNqNDSzdVjUWoCCXEMBhz87q1atxxRVXIDs7Gz6fD0uXLg2sa25uxr333osBAwagU6dOyM7OxrRp07Bv376gfeTl5cHn8wX9PfnkkxE+k2AmLfi81Uy4urEZVy5YA7n/RpucVOMeFh+0RXlPXDVAuq2I60fmGfKgmKkY/cSk/tJt/VjpqjZb5VqUwg2Ya6pqZlvROrOeAbtE1SIiEbpZVVyBP63Yhs9OM6rc6kWhIJe0dRz17DQ0NGDQoEGYOXMmrr766qB1jY2N2LRpE379619j0KBBqK6uxh133IErr7wSGzZsCPrsY489hhtvvDHw/8TExIiMX41VxRWSMIdx+3LcWZlYJBA/ixiRny5MpxaRnSI2ss7unozFg7LD9qD4O8BrpTz7PR1q5KU7M1vVO0vWus6iFO7V2yql3ggt7cyuqgZdngyRp0trXXJCrPQ+aWGnqFq0rZ1Gx+6qhlYTmtSEWCybPdq1XhQKcklbx1FjZ+LEiZg4caLquuTkZCxfvjxo2fPPP4/hw4djz549yM3NDSxPTExEVlaWrWPVS9HeGuH6/XVHhC+OmHbtBOEE8bE7xbVHQ9OJVstT4oNFpKE9ueShmZMCVa1O3/59h+43lFXFFSjaG1x0UJTyDMgrN+sp0GdlAT5Af2HAcK+zTJC9q6oBD7+nnuYvK3mgtyGr1jrZfdLCTFjHbANLPc+skWdD5Lnd/NAEywpH2oEb6p0Q4gSe0uzU1tbC5/MhJSUlaPmTTz6J3/zmN8jNzcXPf/5zzJkzBzEx2qfW1NSEpqZTL4e6Om3tR7i0lwR9Ytu1wwtTz2v1Y+jXIQDQ/KEskrwM1QwdAKg50iwsdnft8B7C/VbWNQm9VV+V1eDpj7Zp6iq0ZsLPTxmsql8BTqY8yzwd/srNWrNVPXoPrZedaFtZYUCjvc8G52j31QKA9j5oXg+R5gow58korawX3ie7PCwyH2hMO+3vmkxILntmtZB5bv1d7+lFIcRdeMbYOXr0KO69915MmTIFSUlJgeW33347hgwZgrS0NKxduxbz5s3D/v378cwzz2jua/78+Xj00UdtGecJyYuwuaVF+LIUuZtlgl4Ru6oa8MC7pa08SqtLKlF5+Khw2/114no3976zBd/vD64dtLqkEje/uhGv33S+5kz4l6/K0uXlng5R5d4bF29oVT9odUklbly8Hn+bNlRoCMm0IqI2FFrb+o+h5bkbc2aG0Osn8+z1756E7/Ydtjx8YtbDYjSsI3vetTIT9YxZ9sxqIfPcbtpTHfBa0otCiHvwROp5c3Mzfvazn0FRFLzwwgtB6+bOnYuxY8di4MCBuPnmm/H000/jueeeC/LchDJv3jzU1tYG/srKyjQ/Gy56PDt6RJdqolqz6cNaepHvBEUOAWBwTopwfehLw09haRXeXL9HcyZcr+GJOnVcsafD7xVQE4qWVtZr9iBbt6saNy7eoHkPZOnDwnXbKoTr777kTKFQVBQukt3/3141wBYRqln9i1FxrJnjyrYVPbOi9PBze6QI9yvqek8IcQ7Xe3b8hs7u3bvxySefBHl11BgxYgSOHz+OXbt2oW/fvqqfiYuLQ1xcnB3DlXp2Kg4fNSy6NJM+/EONeKab36UTSlV+5Avy09Ej1biRtfzbA8L1ol5gY87MEJ5vOx8w+LGPVIWi72/Z12qfpyOqGL3ORHkAWfHGqgbt0JssXOTz+VCQn66Zuj6wR4ot4RM9QnIRRsWxZrxCom3zMxJQUqFt0HxRWqW57wv7Zgq1QFY01ySEWI+rPTt+Q6ekpAQff/wx0tPTpdsUFRWhXbt2yMzMjMAIWyOb+XXpLDay/CmxWkXUjKYPyxLIRSnRZqrvytLlO8ep29v+95PonERC0UMNxqvkmmnVKfOC+b0Rap47PeEiWeq61r7NYlSgfDpGxmUmZVpr2ynDewq3k5VaWDZbvWjostmjpWPyMm7q9UVIuDjq2amvr8f27dsD/9+5cyeKioqQlpaGbt264Sc/+Qk2bdqE999/HydOnEB5eTkAIC0tDR06dEBhYSG+/PJLjBs3DomJiSgsLMScOXNw3XXXITXVGXeybOY3oHuycPujzSc0C8MlJ8QKZ8laadoAkC2pRryjUv0HbO2OKvx4ULZwWxH9uonPVyuEdrrwVe18ZULRjM4dDI/5/Px0wx60MWdmGvZGyGYelXVNurqPW40ZgbJe1DL1AHMp06JSC4+9r73diHzxpConPQGbH5qAz0oqsWlPdasxRxtW9PqKdH8yQkJx1NjZsGEDxo0bF/j/3LlzAQDTp0/HI488gmXLlgEAzj333KDtVq5cibFjxyIuLg5vvPEGHnnkETQ1NaFXr16YM2dOYD9OsWz2aFy5YI1qeGX7QXFNmwUrt+O7fcEGwOniVz9q4keRFmjG6DyDZwOUSwTMImTiZhGidGmZUPS4oiCpYwzqjh5vtS6pYwzOzUkVGiSy9GHRuscn9cePQ+5/UnyMtBCiTJAru5Z2Vee1syqwqGZNTvqp8KkZsW/otmbDcn4u6JMR1UaOH9Hvyum/SWq4rSkqabs4auyMHTtWWJtFVrdlyJAh+OKLL6welmlEM7/mFvErTa0FgpqeJ3QmLCvAdsMFvQyfT1ai8b5aWSZ6cokEqLIxZSfH46ysRKxT0eaclZUoNWZkHoXFs4Zj9bYKbC5r7Y14cOlW1B0JNrLqjhzHA0u3Cl8OMlGt3hCZ1dhZoE9Ws8YuZOUfyEnMtt0wYyh5GXqy3IfrBcpexuqZ366qBrTztX5BpCbE4v6J/YTbygTKIsxoWCrqxF6hPpmdUVrZEHbIJ1MSljve0qJq6AAns7FkNXr8qHkURLPVqoYm2wToZoTiZrCrKrDemjV2wIrC+jDj1XOqP5mT0JPlXlwtUPY6ainRZsS+eemdNGfCv/ngW8nWxttxmzF2qhq0dUQA8PPhObakJcvO1y8ENyKaFc1WzfZkEglyI9Hvyci4/IQrYNVTs8Zu7BBzRxNmvHpOPq9OYaYPHLEXenZsQKRDMGNdrttZpTkTVtOmnI6Z44oEu70zOmFbhbYOKaOz2AMzpGcqVhYfFH7GCN1TxMc1GnoxGy6UHdfvcVALkel98VjdHuP0cWkJ443MZlmzxv2Y8eq5tSmqXbRFT5aXoGfHBq58Xt378l/PrzFVBVkrI0YPMpFxv27qzVP9gk2tmf3FZ4tT/I8rLTi3h3pG1uAeyXj6oxJbulqfUE6+cNuH5Gq39/kwpk+GcUGtjj5iI3urZ/PoEb/WNB7DtIXrMO2l9fjj8hL8YuE6TFu4DrWNzYEXj9Y5pSbEYtrCdbjo6VWYsWg9xv3h08C2MvzHlW2r5gkxOpv1Zy6qwZo17sFo+r/seY22F39b9GR5CRo7FrOquAK1R9RfLrVHmlFZJ27YKKJPZmfD20qFwhpicP9i/8x+5d1jsWjGMKy8eywWzxqO83uJ03SH5KZiV5X6j8D2ygZhtWFROETPrNGO0Iue45qpSSMzHETnZMaFbnRbWbVp2XVtqzVrvITWd1+PBsVMnSSv0dY8WV6DYSyLWVnc2o15Oma8MyckbqF+3RLxnUoZ/IL8dGRKjJ3vytVDUaF1VEIFu7K6Qi0tCmo0jL/DTeLQmxU9l6wOveRndBZWMVYUxXBNGr1ucK3aMUZd6Ga2NZuW3tZq1ngZI+n/bUkIbpeQn1gDPTsWk9ZJPNsxLhMGqiVi33oN3Y7PZ66v1unuVzXRtWh2LhOhijh9JqTmgdE7a1QrYWDGC2Km2rTIlR3OtqHhpEgdNxSrZrMX9MnAHRefSUMnSmkrQvC25MnyGvTsWMwgiejy/Px0vLP5B0P7TpdUBVbrMQWcrK7r+0+cXG3WMaRnimbTTODkC0skuk6Mj8GA7ilB3oEB3VOQFB8rrYdzZtdO2FHRqDkTknlgRLNGrW3vmtDHlBdEVMX45gvzhedrpnmlG7eVebqi/eVmF6zTcgovXYu25MnyGvTsWIxMgJyRFKcp2uvfXdzkNFQXEQ67qhrw+KRzkBQfbN8mxcfgmZ+eKxXVioq/ibwksno4s0bnq47JX23YaId4ALjl1U2tjJrVJZW4752vhWMy4wUxI4zOz+gsFOzKtjUqjDZzXEDs6SLhoVco3hbw8rVoK54sL0Fjx2JkFzSmnU/T1SlrJzA4x3gqbl56Jzy49BvNyr4iUa2s+JtIoCorKvjqF7s1x2RG/Crq56Smazods14Qo67s0sp64XWWiX2NCqPNHFfm6WLTyPBgnZZT8FoQK2EYy2L21Ypf7nurj2g2A81LF/fs6SHpIC6i7FCjMHSjRWFpFc7KUk9L10O5xNj5WtAe48udh4TbisSvsm37ZHZCaaV2+MwMRl3ZZqvVGhVGmzmunX2z2hqs03IKXgtiNYY9O8ePH8fHH3+Mv/71rzh8+ORMed++faivFze6jH7E02gfxDMW0ezcTPXlzWXGq9GmdjLeQdyMN0p2LcXiV/G2Px/eU5f3JVQYHY6YV9bbLZRwtDNmxmXmuFZuaxXhlg9wK3rvYbScrwjWrCFWY8izs3v3blx66aXYs2cPmpqa8KMf/QiJiYn43e9+h6amJrz44otWj9MztJPkW1XVi3snaVFYWoVbxvY2PK5uEu2MiCsGZWPhmlLUHmmd7ZUcH4NBPbQ7iI85M8OwMPr8/C6GUzlHSOr/jD0rEzNG9zIkbhaRly4XVWuhJ3XVzLjMHNeObc0SbX2IZIZjWkIHTFu4LmrOV4QbjGgSXRjy7Nxxxx0YOnQoqqurER9/KrRy1VVXYcWKFZYNzovIKhWXVBr3fJkRKGckdhSKUGWi2r5d1cXTfbsmSTUqWuv/MW2Y9LhmqrfqEexqCQm1vG9Pf1QiHbMZrYHsfM2My8xx/aiVHnAq3dbLmg4174ys4vDTH23z7PmGS1urvkzsx5Bn57PPPsPatWvRoUNweCMvLw8//GAsrTpakKVa98kwXgX5mx9qDW/77Q91QhHqLy/Mx9c/1AR9xp8VVVpZj3W71DUw63Ydwq4qsQGnCEJKj0/qjx8vWKN6XMBcKucLU8/Dba9vVp0Ji5DpBZbNHgUAQZ/xv9zNag1E18rMuGTIrrOo9EBOekLE0229qumQeaOemzK41TM76owuuGvCmfjxgs9b7c/t52sGrWvBmjXECIaMnZaWFpw4caLV8r179yIx0biYNRqQpVqf3T1ZWHFYyyABgO0mvEIlleIMpEeXfaOaWn7X20W4ZdwZwm3v+9+v8V158P5Xl1Tiltc2YsmN5+PGxRtahatWl1TixsXr0TE2RjMba/Gs4YFlkazeKtMLVDUe09zvJok2SibYFXkrZozOMzwuvWhdZ1Hpgc0PTRBuawdeFUaL7q+/BYPaPVxZXCHcr1vP1wysWUOsxFAYa8KECXj22WcD//f5fKivr8fDDz+Myy67zKqxeRLZBa08fFToYRFxRNLZXMTIfLGGRatz+bpd1a1cyaGEGjp+1u6owuptlZq6nHW7qk31VdJLuDUv9OoF1PZrRmsgS7VvL6lbIxpX6HHCEbjKSg98JtCa2YUbNB3hXsdwSimE3kOrzteL4mbWrCFWYMiz8/TTT+OSSy7B2WefjaNHj+LnP/85SkpK0KVLF7z++utWj9FTyIoK7pekpouok/SS6hTXHg1NrT1uKfGx+NmwXLy9ca+q4dE9pSN+qNEe15a9NZoi1PyMTijRMJQA4L8LdwnHLMKp2apZwa6ofIBoW70FC42KgY0KemUtPzbtqY54mwcvCqOd9EZFm5ibkHAx5Nnp0aMHvvrqKzzwwAOYM2cOBg8ejCeffBKbN29GZmam1WP0FLIZmJlU7NEhItBQ8jV+KP3d0rcdUDdKKg+LO7EfrD+mKUKdMjxXuG29xEATIeuN5UdNNKsXrf2aEd0aLe5ndyd3o4LecyUtUIbkmikvYBwrhNFGPB1Gr6MZ74zZVGwvi7kJsQLDRQVjYmIwdepUTJ061crxEAGXDczGyuJKbNjd2jvTPztJtUAfAKzfXY031+9BrUb38WMnxG/hc7KTNOPnpZX1eOx97W0nDe6OwlJxgT8RohlpzZFjQtGsH7XeOrKZrlG9gJnifnZ2cq9qEJc8EI1L1tneqeadZjQdRj0dZoTRZrxRVoRHjYyZkGjBkGfnlVdewQcffBD4/z333IOUlBSMHDkSu3fvtmxwXkQ2AzNT3G9XVQO+L1c3aHZIxMtaL2A9dEmMC/w7NH6en9EZQ3uqz+yH9UzFNcNykRyv/vLo1KG98Li7qhqEM1KRaBYQ99bRO9MNVy9gdgau11uhNi7ROZkdl6izvdMY0XQY9XRE6v6GYiYVmwX6CDHo2fntb3+LF154AQBQWFiI559/Hs8++yzef/99zJkzB++8846lg/QSFbJ2EVXGqyBX1B1FvYomBwCONIvVQmZS3mXixw4x6jZz7H+Wv3/raFwZkl6emhCL56cMwdSFX2rut73PZ6gAo180+/fVO1VfaDcsXq+qXbJipmtWSGrGoyS6Vjdc0EvXuLQ6TOekJ2DzQxPw1vo9WFtahVG9u+CnQ3Ok49JLJDtbm/F0OHV/AeOp2G4QcxPiNIaMnbKyMpxxxsl05KVLl+InP/kJbrrpJowaNQpjx461cnyeQ1ZUcG/NEcP7fuXznYa3Te8ch+T4GM0qyGd3S1b1/hTki0W1ehpB9urSCZsfmoDPSiqxaU81huSm4oI+GVglSafdIhHGiljx3QHNF5qoajNgTiian9EZBfnphq7l6YSbxi0XNyvCEEpqQqywOm9o2Gfp5n3451f7TQtcnRDOmhEKWyWMjmQpBSfF3IS4BUNhrM6dO6Oq6uSP+UcffYQf/ehHAICOHTviyBHjL/NoQCbmlImMRVRIhMQiFEBYBVkruzx0uZmeTBf0ycAdF58Z0HjIsnwO1h8TrhfRpXOc/EMamE3j1XstrcSsuFkW1tET9omk2NcMZnqQAc5VjPZjJGznlJibELdgyLPzox/9CDfccAMGDx6Mbdu2BWrrfPPNN8jLy7NyfJ7jwr6ZSImPRY2KGDglPtbUS/i8nmn497cHDG3bPSVeWAVZC793JjUhVnUGfu1wcSgjpp32G15mGF7cLxOllQ2aM9LQis9+UhNiNTvL+xnQPQnf7jtseQp3VUOTLk+XWYyEfUQic1FYZ/W2CuH6r8pq8PRH2yIq9rUbmcfJa8XunBBzE+ImDHl2FixYgIKCAlRWVuJ///d/kZ5+smDdxo0bMWXKFEsH6EX8qd5qywt3GhMKx7QDrh0hTvPu1EH9dibHx5jqqyUSCv9l5XbhtsdbtI/rz/JRw5/lI5qRikSzsnpHv7ywt+GZrp1CYBlaouvv9qkL19WOG+oZkIvqa4TrH1j6tSNiX6PoOa4ej5MXi91FUsxNiJsw5NlJSUnB888/32r5o48+anpAXqe0sh7rVVLDgZMp4LnpYhd6RqdYVDa09lYM7J4itUwbjqm/4muPHEdFnfFihu190JyBb5W8ZEWeHeBklo+aeNmf5SOakSYnxGLzQxOw4JMSrNl+EBf0ycD/+09ri+YWsblzTnYyFs/KtkEInCfc3qwYVOvF03hMXM9IdFxZWCcrSdwCZatKyYNIiH2NIjuuTBiv1+MUSdG1XUTK+xYN14q4G8N1dmpqarBw4UJ89913AIBzzjkHM2fORHKyOHwQ7chmjVq1bvyoGToAsKmsBvtMVF8uN2HsiKoryxB5dgAgMT4GA7qnBP2gDuiegqSQdHU1QWdoc8rC0kP4+2elWDZ7tG5RptVCYDPXSoboxbNhdzUG5yRjc1nrZrEyYbTsWmVKjB0RbuzZJDtfmRdUdk7RFPaxu+pzNF0r4m4MhbE2bNiA3r17449//CMOHTqEQ4cO4ZlnnkHv3r2xadMmq8foKWSzxhzJejHGQ1FmKjebOa5sdq7XRa4mjpTV2bFDlCm7vzINspnQjOzFc/S4ujdLjzBadK1k5yzCzqrAZjBzvlY9017Abu9bNF0r4m4MeXbmzJmDK6+8En//+98RE3NyF8ePH8cNN9yAO++8E6tXr7Z0kF4iP6Oz5gx7SE4yxp6ZgUWf7zK07/PzuwjTmmPbt9OcrY45M0Nz27O7JeLb/dpd0XukJmhue26PFGlWlRZ6XOSawuhhPaTNKS/ok2GLKFPkFRjeK024XzMvB9mL5zuNe6hHGC0LF4r6ffmPobbOrqrAZpGdr9FUbTeLro0QTtp6uKGoaLtWxN0Y9uzce++9AUMHONk+4p577sGGDRssG5xX2fJDa0MHAL76oVYqnBWJjHt16SRMa358Un8kxQfbr0nxMXhiUn8AQNNx9YKETRoeAT/HWxTN42rt049odm5GKPq7fxcLt92055RuympRpsgr4G8Eqobs5S9DVEW3f7Z6WQE/er0kWtdK1O/LaC8wM1WBrULrfI16BaOxWrHsWogqlYuIxmtF3IshYycpKQl79uxptbysrAyJiYm697N69WpcccUVyM7Ohs/nw9KlS4PWK4qChx56CN26dUN8fDzGjx+PkpKSoM8cOnQIU6dORVJSElJSUjBr1izU14tbJ9jJm+v24ISG7XCiBfhWwxDyIxIZr95WKUxrvuutItSFFA2sO3IcDyzditLKemzaU6O67Y5K8Y9KZd1RzeN+V67tEQLMCWP9QtFQDcUJRcFuSSVqM80p/TNOteOuLqnEocZjWDxrOFbePRaLZgzDyrvHYvGs4QGNgdGXvx60Xjx+YbYWpwvFw62XIuv3JesFJsLpmjVa+D0/WvdYi2isViy7Fk40RiUkXAyFsa655hrMmjULf/jDHzBy5EgAwOeff45f/epXYaWeNzQ0YNCgQZg5cyauvvrqVut///vf489//jNeeeUV9OrVC7/+9a9xySWX4Ntvv0XHjidFk1OnTsX+/fuxfPlyNDc3Y8aMGbjpppuwZMkSI6dmmuXfievgfGywTg4AfPK9eFu1LDD/C/q/C433LNsvETf3756E7wzUrJFVG5YJRTvHtVdtn2G2OaVeUaaauNlMI1A9aIVfVkqqUR9vUQyLQWXXQ4RMwOr2mjXhCtijuVqx1vPuRGNUQsLFkGfnD3/4A66++mpMmzYNeXl5yMvLw/XXX4+f/OQn+N3vfqd7PxMnTsTjjz+Oq666qtU6RVHw7LPP4sEHH8SPf/xjDBw4EIsXL8a+ffsCHqDvvvsOH374If7xj39gxIgRGD16NJ577jm88cYb2Ldvn5FTM01Oarz4AybK6KZ3Ml6QsKza+AtrcE6KcP1vrxqga3a+qrgCf1qxDZ+d9uMoCsvJZn5/+8VQW5pTmplxRso1Hxp+0TNmu2bgsuPqwUzNGrdV9nWrt8oOnGqMSki4GPLsdOjQAX/6058wf/587NixAwDQu3dvJCSYyTQKZufOnSgvL8f48eMDy5KTkzFixAgUFhbi2muvRWFhIVJSUjB06NDAZ8aPH4927drhyy+/VDWiAKCpqQlNTadaL9TViWvFhMNZWWLtxJDcFGmRNi0G5RhP60/pKHa/56bFY8+h1q0+RvZOxxYVsfXprCk5KJydh6aIA/5GoIOFYbm9EgOtU5y+tPVwMTPjdMo1XyZ56azfeciWGXi/bonCWkt7qxttm6G7NW3Z7d4qK3GyMSoh4WDIs1NbW4tDhw4hISEBAwYMwIABA5CQkIBDhw5ZZjiUl5cDALp27Rq0vGvXroF15eXlyMzMDFofExODtLS0wGfUmD9/PpKTkwN/OTnWdW+WNQJNSohFe42r3r7dyZYSaqTEx+KECc3HcUn6eItGyEhRgM93HFRd58fvqdGanWuliP/y1Y3C/dpVuVcPRmecToluZRlxa0vF99DoDHxMH3Gvt9OF4lbj9rRlL1ZYDhernve2cK2Isxgydq699lq88cYbrZa/9dZbuPbaa00Pym7mzZuH2trawF9ZWZll+/5mr9gLsmHnIaGAWa2nFnByuZkqyGd0UW9h4Wdvtfq+C0urkJ0iDs2dk63tcVpVXKGZIq6mtzmd0B/QULb+UKcpIjYb0jAqUAWccc3L+oyNzBcbJXpn4KHXY0S+euaZHzNCcREyEXk44ms3hcC8CENRxAsYCmN9+eWXeOaZZ1otHzt2LB544AHTgwKArKwsAMCBAwfQrVu3wPIDBw7g3HPPDXymoiJYmHn8+HEcOnQosL0acXFxiIszrn8RsUcSevm23LjnS1YF+aysRHyvkh1VkJ+Oc3oYD4HJWlyMEszuZR6Hnmnx2Ft91FAlWxFWVe4NV6AKOOOa9/cZ02qMOjTPGqMj9HrIjmtGKC7CbGVft4bAvAhDUcQLGPLsNDU14fjx1r14mpubceRIa92HEXr16oWsrCysWLEisKyurg5ffvklCgoKAAAFBQWoqanBxo2nwiGffPIJWlpaMGLECEvGES6yGXRXE13PZVWQ42Pbqy7XI/Y1c1yRV0DmcZg3sZ/mrFC2rdExRQqRa17mUTDicRA1RrVTOC06rl2wyrH7YCiKuBlDnp3hw4fjb3/7G5577rmg5S+++CLOO+883fupr6/H9u2numbv3LkTRUVFSEtLQ25uLu688048/vjj6NOnTyD1PDs7G5MmTQIA9OvXD5deeiluvPFGvPjii2hubsatt96Ka6+9FtnZ2UZOzTQX9s3AS2t3aa7PSU3At+XadYB6pHTE/tomzSrIWkLRIT1TsH6Xuj5i7Y4q+Hw+DM9LxTqVzwzPS0NMe59mFVxR9WVZ3yVZe4y+3ZI0Z4WybYf1TMWmPTWeSluVeRTMeBxy0hOw+aEJ+KykEpv2VGNIbmrAsyJrjGrGOBQd1y7MiMhZuZeQtochY+fxxx/H+PHj8dVXX+Hiiy8GAKxYsQLr16/HRx99pHs/GzZswLhx4wL/nzt3LgBg+vTpePnll3HPPfegoaEBN910E2pqajB69Gh8+OGHgRo7APDaa6/h1ltvxcUXX4x27dph8uTJ+POf/2zktCxBFrbZLQlzDcxJQX7GiaAf49Pj389NGYzbXt/cav3PhvXQNHaAkzP34gPqBQCLD9Th7G7qYS7/e0SUIi5Cb7hBUQlZyba9fmQe4jvs1bxWVmB1N2aRR2HxrOHS9Xq4oE9GK2MjP6OzMNxkxbmpHddOtL4LVlQ5dtrYYRdwQqzFkLEzatQoFBYW4qmnnsJbb72F+Ph4DBw4EAsXLkSfPn1072fs2LGqLzk/Pp8Pjz32GB577DHNz6SlpTlWQFCNrERxh+j+3ZLxvcCzM65vJn46NAert1Vic1nrWXLNkWP4+oeaoG2+/qEGvxyTLzxuRe1R1B5pHXoETlZnFhXCk1VuFs2EZeGGtIRYTFu4TtWTIdv27O7JWDwo2xatgB2aDplHYfW2St0eByN9iES9xLzozTCqFXFD5V6t+0ctESH2YMjYAYBzzz0Xr732mpVjiQoyk8XGzuXnZuN/Nv+guf5HZ3fVfPknJ8RqpnHf+vomJMfHolYlmys5PlaaEi9ic5k4fVg0E5aFG57+qEToydATqjAiIpZhhYclFJlHQc911mqMarYKshu8GUbxUpVjmTFjx3NHCDEoUN6zZ4/wry0jmzV+I+mN9bO/rtX8sROlcVc3NqsaOgBQe6RZmsYt4vS+SkbWa6Wm3jWhjzR92O60VjUhsFVpzaHIng09QnCjwlrZF112D6MNp9KlRffPrueOEGLQs5OXlwef4OV54oS4fko0s37nIeH6Fd+JexhtO9D6B83/Y5efYTyj6mD9McPbHm8Rp4DL1hvt5+T3NtiR1iqaYdvlBZF5FEQC9FFndIHyn+cgFD3CWrE8WX4Pow0n0qVlYcwvJb8dXva+EeI0hoydzZuDZ5HNzc3YvHkznnnmGTzxxBOWDMyrFO5U17b4EWmUZKR16mB423QT2+pNPZfpSELDDeFoJ6wOVYlm2I9cebbucYWLTFQrWr/JRDhR77U2I4z1oqjWjhCoFvKGquLfBjeUUyDEqxgydgYNGtRq2dChQ5GdnY2nnnpKtYN5W6GgVzqWbtZuQjq0ZyqKJFWWtYhp1w4p8bGqVZY7xbZHQ7O2R+3c3BSh1wCA0OMgSltPFYiMRToSWddzu15Cshm27z+l7u3QdMg8CqL1ZoS1Mq+S0XsIUFSrF9n9Oz+/i67nzotGpVPwWhE/hjQ7WvTt2xfr16+3cpee45rhuZr6h5h2PiSa+PHfVnEYfTLV2z5kS7qtH29RhDqFxyf1R1J8sO2bFB+DJyb1BwBh2rqZAm0nNMInWsutQE+Yym5Nh6wAm9p6s32IROdk5h6yQJ8+9Nw/0T2qaTyGaQvX4aKnV2HGovUY94dPMW3hOtRq6PjaMrxWJBRDnp3QZp+KomD//v145JFHwko9j1YGZCdhs4r3ZkB2kjQ1XUSfjM6aXqOSCu10duCkoSXyGtz2+mbUhaSm1x05jgeWbsWs0XnCtHWjOpLSynqs26WuU1i365Bt6dB6PCT+a6VVAsApjNaWAbS9RmaK7LFAX3jI7p/oOzpt4TpmaumEWW0kFEPGTkpKSiuBsqIoyMnJUW0Q2pYoraxXNXQAYPPeWpzbU91Dooc0E60mfqg+1cYjVKcge2HlZxh/WYl0JF9K9E1fllbZ8qLUk3rs1tCMFcLa0PtvRpAdzSntdqBIdDl+wv2O0qg8Ba8VUcOQsbNy5cqg/7dr1w4ZGRk444wzEBNjuHRPVCD78S+TihRFGA/tiLaUjTmtk/GXu1hUKU531nu2RuLyshm2FTNDO/UCImFtuMc1owVyQ4E+L2H0uaJRqR9eK6KGIcvkwgsvtHocUYNMBGWmIWc7iXEg4nQdUejLUDbmwbmpmq0GkjrGoO6oeogrlNDjZksKMPaQ6JDMeF9EHhK9M0O3VcE1elwzRfasKtDXFoSkZjwONCr1w2tF1NBt7Cxbtkz3Tq+88kpDg4kGZPVMkiQvu04d2qPhWOusKrNVkPfVHtF8Gf5sWA/htsdbFCybPRpXLlgTZPCkJsTi/on98Kv/3aK5rajq7zVD5ccVYYX3Rc1DIpsZbt1Xi4ff+8Z1VXDNHNeMFsjMtm4NF9qBGY+Dk1WfvQavFVFDt7Hj7zQuw+fztemighW1YoMkxif2o6gZOsDJKshZScbFzUNyUzVfhkeaxZ6ZvPROmp2tSyvFwmhR1d/GY/Lj+gmd+dsZl5fNDBev3YVNu2uClp1eo8cJvYDZ62FGC2Rm27YkJDXrcTBjVLY1eK1IKLqNnZYWmc+CAJB6X2T9j0S0KEByfIxqZlRyfAwUBaohpaSOMeieEq/5Mly/qxrDeqZi054a6Uwo3M7WZYcaNI+7YXc1huWlYtNu7eNqzfxlXiEzcXnRzHBwbopqd3mnq+BapVMwU2Qv3G3bmpDUrMfBiarPXoXXioQSlmbn6NGj+Pjjj/Ff//VfAIB58+ahqanp1M5iYvDYY4+hY0fjHgivc26PFOH6xibjXi8fgL5dk1TTtft2TcL35VrFChXpy/D6kXmI77A37JmQvLlljXD99JF5iI/VPq4VXiEjaM0MrxnaAxt2iwxWZ6rgelGn0BaFpFZ4HCJZ9dnr8FoRP2EZOy+//DI++OCDgLHz/PPP45xzzkF8/Ekh6ffff4+srCzMnTvX+pF6hBzJS0cmyhVumxIvrEujRd3RE6isE3uczu6ejMWDsqV1ZULDSfLmlinC9edkJ2PxrGys3laBzWU1QccVzfz1eIX0oCWMFdWkEaG3Cq7VeFGn4EUDzSz0OBDiDGEZO6+99hruueeeoGVLlixBfn4+AODVV1/FggUL2rSxI5utHpfM/HNS41F2Wk0cPyN7p7fqhhwO++uOmmoXIBKSamVqpSbEYsyZmYaPK7uWMq+QCL3C2NCZoR6jwim9wD2XnolJCw4GOZd8PuC+S/vaelyjeNFAswp6HAiJLGG1i9i+fTsGDBgQ+H/Hjh3Rrt2pXQwfPhzffvutdaPzILLZakGvdOH6By7vhzEhHpUxfTLwwtTzTPX2yE6ON9UuQGv9rFfWqxo6AFDd2IydB8WtF0THlV3Lk16h4Vh591gsmjEMK+8ei8WzhuvK4jHT4kDWSsI/exeNq7SyHiuLK7DzYOsu90b5xcJ1rTLYjrcomLrwS8uOIcLIOdndloMQQoAwPTs1NTVBGp3KyuAQQ0tLS9D6tkh+RmcMzk3B5j01rdYNyU3BNcNz8eSH32t6Qs7PT8eSL8tU921GIt4lMc5wu4DV2yqF4SQRft2FkePuVfFwqRFpYazeUITauOxKtV5VXCE0Oj8rqbSt3YVd9Y4IIcQqwnIW9OjRA1u3btVcv2XLFvToIc6SaQts0RDlfvWf5ctmj0ZqyEsgNSEWy2aPNuXpEHG6/iG0yaRcZGw8g8zO4+6q0udBCPU46BHGam17OrJmnmrY1TSzaG+NcP2mPcbvoQwrzsnItSSEEL2E5dm57LLL8NBDD+Hyyy9vlXF15MgRPProo7j88sstHaDXeHPdHpzQkNacUIC3N5ThR2d3xYDuKUEz4QHdU3Co8ZjQ4+Dz+VCQn47C0tY9pc7qmojvNTqTA8De6kbD1VlDuzSHcmbXTthR0Ri27kIubk4VrpcJWLU8DndNEDerzUu3pzeWnanWsizAIbnia2mUtpY+TgjxJmF5du6//34cOnQIffv2xVNPPYX33nsP7733Hn7/+9+jb9++qK6uxv3332/XWD1BoaS55ec7DmrOhB9492vhtruqGqBldzRIUrFFM/v8jM6tPE1+UhNipcLoi/t1NaS78AtUQ42p9j4fxvTJwJgzM4TrZS9Rrev89Ecl0v3a4YEJx6MULhf2zRTeQ7tCWHaeEyGEWEVYnp2uXbti7dq1uOWWW3DfffdB+c9L0Ofz4Uc/+hH+8pe/oGvXrrYM1CsU9ErH0s37NNf3yeyMpzZva7X8hKJg67464b7b+3xYu0PdmFLL4Dqd7GTtPlOllfVCvYescvPI3l1w76X9DOkuZJlLRjObZB6HZbNHAYDqfu3yVtidaq3V0mPZ7NGm9iuiLaaPE0K8R9iNQHv16oUPP/wQhw4dwvbt2wEAZ5xxBtLS0iwfnBe5ZnguHli6VbWvU0w7H87OTja87301+gS7apQL6uzIZueZSR2F6eV+r4GRdFqZQFUx2Olddk5Vjcc0j7tJh1bIiLFjd6p1YnyMang0Kd6+HlNtOX2cEOIdDGczp6WlYfjw4Rg+fDgNnRCWzR4V1GUcOGnoLJs9ypTI2HiVHeBQ/THNdXpm5yJRtRVoCVSNhpP0ehzUjmunt8KqVGs14bRd4mcZTB8nhLidsD07RE52ajxG9u4SNMMe2bsLuqcmoKrBeGp+9xTj1ZczEuM01+VndNYUPhfkpwd6VEXaa2AmnGTG42Cnt8JsqrVIdO2UUJjp44QQt2OmTh3RQDTDloVX+ndP0hTOamV56aFZ0shVS/jsX+6E18Cs+NWMx8Fub4XRVGtNcftS7ZIQQGSEwkwfJ4S4FXp2LEbmjRjeS5wCfHn/LPxQfSRIH5MUH4MnJvWXGiwiTk89Du0HVVpZryl8XrujSlhU0E6vgdlwkhmPg93eCq2eXLJttO7D1h/E4nYKhQkhbRkaOxYj80ZslzSSfGN9GeqOBKeR1x05jgeWbsXiWcOF4ZUte2tQc6S1iDgl/qSIWCsEcs1QcSFIPcX97DB2rAonmelDZHUPIzP1e6RewewkfLf/MIXChBASAsNYFiPzRqQldBCu333oSKu6Nqd7UEThlT6ZnVX36V+uFQJZtHaXcExmi/uZwe5wkh09qkSYCQfKnq3fXjWAQmFCCFGBnp0I02Kic/muqgbNwnG7quqxXqNP1frd1Vi9rULY32pYXio27a5R9Qr4i/s5kV5sVzjJrh5VIszW75F5ugbmpFAoTAghKtCzYzGyUENaJ7FnR0ReunZlX5lAdbNGvy4/00fmCb0CTqcXWy1+9aLgGtB3HygUJoSQYOjZsRhZqOGKQd2x6PNdmgX6BnRP0Zy5K//xAISiR6A6OCdFuP6c7GQsnpWt6RVwc3pxuGLfSPVzCh2XFfV7jBZZJISQtozrPTt5eXnw+Xyt/mbPng0AGDt2bKt1N998s2PjlfV76tVFXKBPNHOXeQY6x7VXXZ6aEIsxZ2bq6jMl8wq4yWtQ03gM0xauw0VPr8KMResx7g+fYtrCdajVaH3hx+5+TlrjSu8UZ6rXF+Bc4UBCCPEyrjd21q9fj/379wf+li9fDgD46U9/GvjMjTfeGPSZ3//+904NF4A81JCTnoDND03Aryb0RUF+Gu65pC82PzQBOekJAQ/K4pnDMedHffDfs4Zj8azhSE6IlXoG6ptOqC6vbmyWipu9iN3Vle0Yl5l74PdIiQTshBBCWuP6MFZGRnC35ieffBK9e/fGhRdeGFiWkJCArKws3ftsampCU9OpSsZ1deIQULjIQj67qxowacHngVBWYekh/P2zUiybPRqJ8TGawlmRQLVfdqIwlOVPD3drKCpcnKqubHZcu6rEpQdE6PFIefV+EkKInbjes3M6x44dw6uvvoqZM2fCd1oo4LXXXkOXLl3Qv39/zJs3D42N4pfC/PnzkZycHPjLycmxZbyKRubV6YaOn+rGZly5YI3UW6HlGXhiUn/hWE73VohCUZFOxTaKk9WVzYzrgXe32pZ6zsKBhBCijus9O6ezdOlS1NTU4Prrrw8s+/nPf46ePXsiOzsbW7Zswb333ovi4mK88847mvuZN28e5s6dG/h/XV2dpQaPKK25qKxaVZwMnDR49HgrtLwzsv5WRsdsVyq2GZysrmxmXFv3tfa+WZV6Tq8OIYSo4yljZ+HChZg4cSKys7MDy2666abAvwcMGIBu3brh4osvxo4dO9C7d2/V/cTFxSEuTrsxpllE3pnz8lIM7/f0MIVaZV9ZfysRojEvnjXc0HjtxA3VlbXGNbJ3umr7jX5Zifiu/LDmtnrCUM9NGYzbXt8cZJR6WXdFCCGRwDPGzu7du/Hxxx8LPTYAMGLECADA9u3bNY0dO5FpNi4fqF9bFIrIWyHrb3W610CtN5ZTHbPN4NYXv1bdyLgYcdRYTxjKzSUACCHErXjG2Fm0aBEyMzNx+eWXCz9XVFQEAOjWrVsERtUamWYjM6kjkjrGoO7o8VbrkjrG4NycVEPeCj0altSEWNVQ1c+GiXtjuVX46sYXf2llvWooEQCK9tYKK1WHM3arPVKEEBLNeMLYaWlpwaJFizB9+nTExJwa8o4dO7BkyRJcdtllSE9Px5YtWzBnzhyMGTMGAwcOdGSsZrUkRr0Veo6rFao60tza8ApnzE7jphe/zOicPjIP8bF7XeeNIoSQaMYTxs7HH3+MPXv2YObMmUHLO3TogI8//hjPPvssGhoakJOTg8mTJ+PBBx90aKRy1pVWqXp1AKDu6HFs+aHGkLdCpmERVV9ev6saw3qmYtMe8x6Hto7M6JRVqiaEEGI9njB2JkyYoJrGnZOTg1WrVjkwIm1kM/vCneohDj+b9lTjgv9U0w33JSjyCm0qU28S6uf6kXmI70CPg1n0Cqfd5I0ihJBoxxPGjpeQzewLeqVj6eZ9muuH5KYCCL/fE3BKw7J6WwU2l9VgSG4qLuiToWtcZ3dPxuJB9DhYgVuF005j5JkmhBAroLFjMbKZ/TXDc/Hkh98LGoEmY9rCdYbq3Yhq5dDjEDncKJx2Eq/VcCKERB+eqqDsFWTVeUWNQM00ejRafbmtexzswk1NUyOBVvVtNi8lhDgNPTs2IJvZ+xuBflZSiU17qgPhJjP1bvRuS48DsRqR56aqocmTNZwIIdEFjR0bkYWELuiTEdDUAOYaPYazLUNVxEpEnpsZo/OE27q1hhMhJLpgGMtFmKnRwyaRxE8km7n6PYonQrIl/Z6b9pJeJXwuCSGRgJ4dF2Gm3xObRBInhMAyj+IJReFzSQhxHHp2XIYZETEFyG0bJ4TAejyKfC4JIU7jU9Sq9bUx6urqkJycjNraWiQlJTk9HAAwJSKmALntUVpZj4ue1i6wufLusbY9C9MWrtP03CyeNTywjM8lIcRq9L6/GcZyKWZExBQgtz3MiNvNoreIIp9LQohT0NghxIOEViN2UqDOIoqEELdDY4cQDyESITstBKbnhhDiVihQJsRDiETITguBI5nyTggh4UDPDiEeQVYl+1DjMUfCSex9RQhxO/TsEOIR9IiQgcj35GLvK0KI26GxQ4hHcGOVbFkFZYa0CCFugMYOIR7BXyU7tAVDe58PY/pkOCIO1uttIoQQJ6GxQ4iHcFqEHIobvU2EEBIKBcqEeAi31bRhTzZCiBegZ4cQD+KmLi9u8zaRtgVLHhA90LPjIKFVcAmR4cY0b7d5m0jbwI3fBeJe2AgUkW8Eyi8pMYreppuERDv8LhBA//ubYSwHYF0SYgSmeRNyEn4XSLjQ2Ikw/JISozDNm5CT8LtAwoXGToThl5QYhWnehJyE3wUSLjR2Igy/pMQobiwqSIgT8LtAwoXGToThl5SYgWnehJyE3wUSDszGQuSzsWobm3Hb65uZjUUMwzRvQk7C70LbRu/7m8YOIm/s+OGXlBBCCDGO3vc3iwo6SK8uNHIIIYQQu6FmhxBCCCFRjauNnUceeQQ+ny/o76yzzgqsP3r0KGbPno309HR07twZkydPxoEDBxwcMSGEEELchquNHQA455xzsH///sDfmjVrAuvmzJmDf/7zn3j77bexatUq7Nu3D1dffbWDoyWEEEKI23C9ZicmJgZZWVmtltfW1mLhwoVYsmQJLrroIgDAokWL0K9fP3zxxRc4//zzIz1UQgghhLgQ13t2SkpKkJ2djfz8fEydOhV79uwBAGzcuBHNzc0YP3584LNnnXUWcnNzUVhYKNxnU1MT6urqgv4IIYQQEp242tgZMWIEXn75ZXz44Yd44YUXsHPnTlxwwQU4fPgwysvL0aFDB6SkpARt07VrV5SXlwv3O3/+fCQnJwf+cnJybDwLQgghhDiJq8NYEydODPx74MCBGDFiBHr27Im33noL8fHxhvc7b948zJ07N/D/uro6GjyEEEJIlOJqz04oKSkpOPPMM7F9+3ZkZWXh2LFjqKmpCfrMgQMHVDU+pxMXF4ekpKSgP0IIIYREJ54ydurr67Fjxw5069YN5513HmJjY7FixYrA+uLiYuzZswcFBQUOjpIQQgghbsLVYay7774bV1xxBXr27Il9+/bh4YcfRvv27TFlyhQkJydj1qxZmDt3LtLS0pCUlITbbrsNBQUFzMQihBBCSABXGzt79+7FlClTUFVVhYyMDIwePRpffPEFMjIyAAB//OMf0a5dO0yePBlNTU245JJL8Je//MXhURNCCCHETbARKJxrBErcT2llPXYfamSzVkIIcSFsBEqICWoaj+H214uwuqQysGxMnww8N2UwkhNiHRwZIYSQcPGUQJmQSHH760X4fPvBoGWfbz+I217f7NCICCGEGIXGDiEhlFbWY3VJJU6ERHhPKApWl1Ri58EGh0ZGCCHECDR2CAlh96FG4fpdVTR2CCHES9DYISSEnmkJwvV56RQqE0KIl6CxQ0gI+RmdMaZPBtr7fEHL2/t8GNMng1lZhBDiMWjsEKLCc1MGY9QZXYKWjTqjC56bMtihERFCCDEKU88JUSE5IRaLZw3HzoMN2FXVwDo7hBDiYWjsECKgVxcaOYQQ4nUYxiKEEEJIVENjhxBCCCFRDY0dQgghhEQ1NHYIIYQQEtXQ2CGEEEJIVENjhxBCCCFRDY0dQgghhEQ1NHYIIYQQEtXQ2CGEEEJIVENjhxBCCCFRDY0dQgghhEQ1NHYIIYQQEtXQ2CGEEEJIVENjhxBCCCFRDY0dQgghhEQ1NHYIIYQQEtXQ2CGEEEJIVENjhxBCCCFRDY0dQgghhEQ1NHYIIYQQEtXQ2CGEEEJIVENjhxBCCCFRjauNnfnz52PYsGFITExEZmYmJk2ahOLi4qDPjB07Fj6fL+jv5ptvdmjEhBBCCHEbrjZ2Vq1ahdmzZ+OLL77A8uXL0dzcjAkTJqChoSHoczfeeCP2798f+Pv973/v0IgJIYQQ4jZinB6AiA8//DDo/y+//DIyMzOxceNGjBkzJrA8ISEBWVlZkR4eIYQQQjyAqz07odTW1gIA0tLSgpa/9tpr6NKlC/r374958+ahsbFRuJ+mpibU1dUF/RFCCCEkOnG1Z+d0WlpacOedd2LUqFHo379/YPnPf/5z9OzZE9nZ2diyZQvuvfdeFBcX45133tHc1/z58/Hoo49GYtiEEEIIcRifoiiK04PQwy233IJ//etfWLNmDXr06KH5uU8++QQXX3wxtm/fjt69e6t+pqmpCU1NTYH/19XVIScnB7W1tUhKSrJ87IQQQgixnrq6OiQnJ0vf357w7Nx66614//33sXr1aqGhAwAjRowAAKGxExcXh7i4OMvHSQghhBD34WpjR1EU3HbbbXj33Xfx6aefolevXtJtioqKAADdunWzeXSEEEII8QKuNnZmz56NJUuW4L333kNiYiLKy8sBAMnJyYiPj8eOHTuwZMkSXHbZZUhPT8eWLVswZ84cjBkzBgMHDnR49IQQQghxA67W7Ph8PtXlixYtwvXXX4+ysjJcd9112Lp1KxoaGpCTk4OrrroKDz74YFjaG70xP0IIIYS4h6jQ7MjssJycHKxatSpCoyGEEEKIF/FUnR1CCCGEkHChsUMIIYSQqIbGDiGEEEKiGho7hBBCCIlqaOwQQgghJKqhsUMIIYSQqIbGDiGEEEKiGho7hBBCCIlqaOwQQgghJKqhsUMIIYSQqIbGDiGEEEKiGho7hBBCCIlqaOwQQgghJKqhsUMIIYSQqIbGDiGEEEKiGho7hBBCCIlqaOwQQgghJKqhsUMIIYSQqIbGDiGEEEKiGho7hBBCCIlqaOwQQgghJKqhsUMIIYSQqIbGDiGEEEKiGho7hBBCCIlqaOwQQgghJKqhsUMIIYSQqIbGDiGEEEKiGho7hBBCCIlqaOwQQgghJKqhsUMIIYSQqIbGDiGEEEKimqgxdhYsWIC8vDx07NgRI0aMwLp165weEkor67GyuAI7Dzaorl9VXIE/rdiGz0oqIzwyYgWy+xutxyaEEK8R4/QArODNN9/E3Llz8eKLL2LEiBF49tlncckll6C4uBiZmZkRH09N4zHc/noRVp9mxIzpk4HnpgxGckIsdlc1YNKCz1Hd2BxYn5oQi2WzRyMnPSHi4yXhIbu/0XpsQgjxKlHh2XnmmWdw4403YsaMGTj77LPx4osvIiEhAS+99JIj47n99SJ8vv1g0LLPtx/Eba9vBoBWhg4AVDc248oFayI2RmIc2f2N1mMTQohX8byxc+zYMWzcuBHjx48PLGvXrh3Gjx+PwsJC1W2amppQV1cX9GcVpZX1WF1SiROKErT8hKJgdUkl3ly/p5Wh46e6sZkhLZcju792hpWcPDYhhHgZzxs7Bw8exIkTJ9C1a9eg5V27dkV5ebnqNvPnz0dycnLgLycnx7Lx7D7UKFxfWFolXL9pT7VlYyHWI7u/u6rsMzicPDYhhHgZzxs7Rpg3bx5qa2sDf2VlZZbtu2eaWHNTkJ8uXD8kN9WysRDrkd3fvPROUXlsQgjxMp43drp06YL27dvjwIEDQcsPHDiArKws1W3i4uKQlJQU9GcV+RmdMaZPBtr7fEHL2/t8GNMnA9cMy0WqhpA0NSEWF/TJsGwsxHpk97dXF/sMDiePTQghXsbzxk6HDh1w3nnnYcWKFYFlLS0tWLFiBQoKChwZ03NTBmPUGV2Clo06owuemzIYALBs9uhWBo8/G4u4H9n9jdZjE0KIV/EpSoja0YO8+eabmD59Ov76179i+PDhePbZZ/HWW2/h+++/b6XlUaOurg7Jycmora211Muz82ADdlU1IC+9k+qs+7OSSmzaU40huan06HgQ2f2N1mMTQohb0Pv+jgpjBwCef/55PPXUUygvL8e5556LP//5zxgxYoSube0ydgghhBBiH23O2DEDjR1CCCHEe+h9f3tes0MIIYQQIoLGDiGEEEKiGho7hBBCCIlqaOwQQgghJKqhsUMIIYSQqIbGDiGEEEKiGho7hBBCCIlqaOwQQgghJKqhsUMIIYSQqCbG6QG4AX8R6bq6OodHQgghhBC9+N/bsmYQNHYAHD58GACQk5Pj8EgIIYQQEi6HDx9GcnKy5nr2xgLQ0tKCffv2ITExET6fL6xt6+rqkJOTg7KyMvbVksBrpR9eK/3wWumH10o/vFbh4dT1UhQFhw8fRnZ2Ntq101bm0LMDoF27dujRo4epfSQlJfELoRNeK/3wWumH10o/vFb64bUKDyeul8ij44cCZUIIIYRENTR2CCGEEBLV0NgxSVxcHB5++GHExcU5PRTXw2ulH14r/fBa6YfXSj+8VuHh9utFgTIhhBBCohp6dgghhBAS1dDYIYQQQkhUQ2OHEEIIIVENjR1CCCGERDU0dnQwf/58DBs2DImJicjMzMSkSZNQXFwc9JmjR49i9uzZSE9PR+fOnTF58mQcOHDAoRE7xwsvvICBAwcGCksVFBTgX//6V2A9r5M2Tz75JHw+H+68887AMl6vkzzyyCPw+XxBf2eddVZgPa9TMD/88AOuu+46pKenIz4+HgMGDMCGDRsC6xVFwUMPPYRu3bohPj4e48ePR0lJiYMjdo68vLxWz5bP58Ps2bMB8Nk6nRMnTuDXv/41evXqhfj4ePTu3Ru/+c1vgvpSufbZUoiUSy65RFm0aJGydetWpaioSLnsssuU3Nxcpb6+PvCZm2++WcnJyVFWrFihbNiwQTn//POVkSNHOjhqZ1i2bJnywQcfKNu2bVOKi4uV+++/X4mNjVW2bt2qKAqvkxbr1q1T8vLylIEDByp33HFHYDmv10kefvhh5ZxzzlH2798f+KusrAys53U6xaFDh5SePXsq119/vfLll18qpaWlyr///W9l+/btgc88+eSTSnJysrJ06VLlq6++Uq688kqlV69eypEjRxwcuTNUVFQEPVfLly9XACgrV65UFIXP1uk88cQTSnp6uvL+++8rO3fuVN5++22lc+fOyp/+9KfAZ9z6bNHYMUBFRYUCQFm1apWiKIpSU1OjxMbGKm+//XbgM999950CQCksLHRqmK4hNTVV+cc//sHrpMHhw4eVPn36KMuXL1cuvPDCgLHD63WKhx9+WBk0aJDqOl6nYO69915l9OjRmutbWlqUrKws5amnngosq6mpUeLi4pTXX389EkN0NXfccYfSu3dvpaWlhc9WCJdffrkyc+bMoGVXX321MnXqVEVR3P1sMYxlgNraWgBAWloaAGDjxo1obm7G+PHjA58566yzkJubi8LCQkfG6AZOnDiBN954Aw0NDSgoKOB10mD27Nm4/PLLg64LwOcqlJKSEmRnZyM/Px9Tp07Fnj17APA6hbJs2TIMHToUP/3pT5GZmYnBgwfj73//e2D9zp07UV5eHnS9kpOTMWLEiDZ5vU7n2LFjePXVVzFz5kz4fD4+WyGMHDkSK1aswLZt2wAAX331FdasWYOJEycCcPezxUagYdLS0oI777wTo0aNQv/+/QEA5eXl6NChA1JSUoI+27VrV5SXlzswSmf5+uuvUVBQgKNHj6Jz58549913cfbZZ6OoqIjXKYQ33ngDmzZtwvr161ut43N1ihEjRuDll19G3759sX//fjz66KO44IILsHXrVl6nEEpLS/HCCy9g7ty5uP/++7F+/Xrcfvvt6NChA6ZPnx64Jl27dg3arq1er9NZunQpampqcP311wPgdzCU++67D3V1dTjrrLPQvn17nDhxAk888QSmTp0KAK5+tmjshMns2bOxdetWrFmzxumhuJa+ffuiqKgItbW1+J//+R9Mnz4dq1atcnpYrqOsrAx33HEHli9fjo4dOzo9HFfjnzkCwMCBAzFixAj07NkTb731FuLj4x0cmftoaWnB0KFD8dvf/hYAMHjwYGzduhUvvvgipk+f7vDo3M3ChQsxceJEZGdnOz0UV/LWW2/htddew5IlS3DOOeegqKgId955J7Kzs13/bDGMFQa33nor3n//faxcuRI9evQILM/KysKxY8dQU1MT9PkDBw4gKysrwqN0ng4dOuCMM87Aeeedh/nz52PQoEH405/+xOsUwsaNG1FRUYEhQ4YgJiYGMTExWLVqFf785z8jJiYGXbt25fXSICUlBWeeeSa2b9/O5yqEbt264eyzzw5a1q9fv0DYz39NQjOK2ur18rN79258/PHHuOGGGwLL+GwF86tf/Qr33Xcfrr32WgwYMAC/+MUvMGfOHMyfPx+Au58tGjs6UBQFt956K95991188skn6NWrV9D68847D7GxsVixYkVgWXFxMfbs2YOCgoJID9d1tLS0oKmpidcphIsvvhhff/01ioqKAn9Dhw7F1KlTA//m9VKnvr4eO3bsQLdu3fhchTBq1KhWpTG2bduGnj17AgB69eqFrKysoOtVV1eHL7/8sk1eLz+LFi1CZmYmLr/88sAyPlvBNDY2ol27YLOhffv2aGlpAeDyZ8tRebRHuOWWW5Tk5GTl008/DUpRbGxsDHzm5ptvVnJzc5VPPvlE2bBhg1JQUKAUFBQ4OGpnuO+++5RVq1YpO3fuVLZs2aLcd999is/nUz766CNFUXidZJyejaUovF5+7rrrLuXTTz9Vdu7cqXz++efK+PHjlS5duigVFRWKovA6nc66deuUmJgY5YknnlBKSkqU1157TUlISFBeffXVwGeefPJJJSUlRXnvvfeULVu2KD/+8Y9dkR7sFCdOnFByc3OVe++9t9U6PlunmD59utK9e/dA6vk777yjdOnSRbnnnnsCn3Hrs0VjRwcAVP8WLVoU+MyRI0eU//f//p+SmpqqJCQkKFdddZWyf/9+5wbtEDNnzlR69uypdOjQQcnIyFAuvvjigKGjKLxOMkKNHV6vk1xzzTVKt27dlA4dOijdu3dXrrnmmqC6MbxOwfzzn/9U+vfvr8TFxSlnnXWW8re//S1ofUtLi/LrX/9a6dq1qxIXF6dcfPHFSnFxsUOjdZ5///vfCgDVa8Bn6xR1dXXKHXfcoeTm5iodO3ZU8vPzlQceeEBpamoKfMatz5ZPUU4rfUgIIYQQEmVQs0MIIYSQqIbGDiGEEEKiGho7hBBCCIlqaOwQQgghJKqhsUMIIYSQqIbGDiGEEEKiGho7hBBCCIlqaOwQQgghJKqhsUMIIYSQqIbGDiHEkxQWFqJ9+/ZBjRsJIUQNtosghHiSG264AZ07d8bChQtRXFyM7Oxsp4dECHEp9OwQQjxHfX093nzzTdxyyy24/PLL8fLLLwetX7ZsGfr06YOOHTti3LhxeOWVV+Dz+VBTUxP4zJo1a3DBBRcgPj4eOTk5uP3229HQ0BDZEyGERAQaO4QQz/HWW2/hrLPOQt++fXHdddfhpZdegt9JvXPnTvzkJz/BpEmT8NVXX+GXv/wlHnjggaDtd+zYgUsvvRSTJ0/Gli1b8Oabb2LNmjW49dZbnTgdQojNMIxFCPEco0aNws9+9jPccccdOH78OLp164a3334bY8eOxX333YcPPvgAX3/9deDzDz74IJ544glUV1cjJSUFN9xwA9q3b4+//vWvgc+sWbMGF154IRoaGtCxY0cnTosQYhP07BBCPEVxcTHWrVuHKVOmAABiYmJwzTXXYOHChYH1w4YNC9pm+PDhQf//6quv8PLLL6Nz586Bv0suuQQtLS3YuXNnZE6EEBIxYpweACGEhMPChQtx/PjxIEGyoiiIi4vD888/r2sf9fX1+OUvf4nbb7+91brc3FzLxkoIcQc0dgghnuH48eNYvHgxnn76aUyYMCFo3aRJk/D666+jb9+++L//+7+gdevXrw/6/5AhQ/Dtt9/ijDPOsH3MhBDnoWaHEOIZli5dimuuuQYVFRVITk4OWnfvvffik08+wVtvvYW+fftizpw5mDVrFoqKinDXXXdh7969qKmpQXJyMrZs2YLzzz8fM2fOxA033IBOnTrh22+/xfLly3V7hwgh3oGaHUKIZ1i4cCHGjx/fytABgMmTJ2PDhg04fPgw/ud//gfvvPMOBg4ciBdeeCGQjRUXFwcAGDhwIFatWoVt27bhggsuwODBg/HQQw+xVg8hUQo9O4SQqOeJJ57Aiy++iLKyMqeHQghxAGp2CCFRx1/+8hcMGzYM6enp+Pzzz/HUU0+xhg4hbRgaO4SQqKOkpASPP/44Dh06hNzcXNx1112YN2+e08MihDgEw1iEEEIIiWooUCaEEEJIVENjhxBCCCFRDY0dQgghhEQ1NHYIIYQQEtXQ2CGEEEJIVENjhxBCCCFRDY0dQgghhEQ1NHYIIYQQEtX8fyJ+ivEoOgNXAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df.plot.scatter(x=\"Age\", y=\"Glucose\")" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAGrCAYAAACVJgNuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/VElEQVR4nO3dd3xT5eIG8OckTdp0D7optJS9ZVUcoIiouHCAIAqKCipernpVHNeLOH/XiQNRcIAIKIiouC5DQECQDWVaKIUuuvdKmry/PyqV2pauJO/JyfP9fPqRnpwkT9OaJ+ec97xHEUIIEBERqYxOdgAiIqKGsKCIiEiVWFBERKRKLCgiIlIlFhQREakSC4qIiFSJBUVERKrEgiIiIlViQRERkSqxoMiu7rrrLsTGxkp57pSUFCiKgtdff13K8zeHzWZD79698dJLL8mO4rLGjx+PcePGyY5BTsCComZZuHAhFEWp/fLy8kLXrl3x0EMPISsry+HPv2/fPtxxxx2IiYmBp6cngoODMXLkSHz66aewWq0Of/6G/Pjjj3juuedadJ9ly5YhNTUVDz30UL3bDh06hDvuuAPR0dHw9PREVFQUJk6ciEOHDrUp58svv4xvvvmmTY+hJjNnzsTKlSuxf/9+2VHI0QRRM3z66acCgHj++efF4sWLxYIFC8TkyZOFTqcTcXFxoqysTAghhNlsFpWVlXZ97gULFgi9Xi+ioqLEzJkzxUcffSTeeustcd111wlFUcRLL70khBDi5MmTAoB47bXX7Pr8jZk+fbpo6f9C/fr1E1OnTq23fOXKlcJoNIqIiAjxzDPPiI8++kj8+9//FpGRkcJoNIqvv/661Tl9fHzE5MmTW31/NRoyZIi48847ZccgB2NBUbOcLaidO3fWWf7oo48KAGLp0qUOed5t27YJvV4vLrnkElFcXFzv9p07d4pPP/1UCOG8giotLRVCtLyg9uzZIwCIdevW1Vl+/Phx4e3tLbp37y6ys7Pr3JaTkyO6d+8ufHx8xIkTJ1qVV4sF9frrrwsfHx9RUlIiOwo5EHfxUZuMGDECAHDy5EkADR+DstlsmDNnDnr16gUvLy+Eh4dj2rRpKCgoaPLxZ8+eDUVRsGTJEvj5+dW7fdCgQbjrrrvqLZ8/fz7i4+Ph6emJwYMHY+fOnXVuP3DgAO666y506tQJXl5eiIiIwJQpU5CXl1dnveeeew6KouDw4cO4/fbbERQUhEsuuQR33XUX5s6dCwB1dn2ezzfffAOj0Yhhw4bVWf7aa6+hvLwc8+fPR2hoaJ3b2rVrhw8//BBlZWV49dVXa5c3dqzvbN6zFEVBWVkZFi1aVJvx3NcrPT0d99xzD6KiouDp6Ym4uDg88MADMJvNteskJydj7NixCA4Ohre3Ny688EL88MMPdZ5348aNUBQFy5cvx+zZsxEdHQ0/Pz/ceuutKCoqQlVVFR5++GGEhYXB19cXd999N6qqqurl//zzzzFw4ECYTCYEBwdj/PjxSE1NrbfelVdeibKyMqxdu7bhF5s0wUN2AHJtJ06cAACEhIQ0us60adOwcOFC3H333ZgxYwZOnjyJ9957D3v37sXWrVthMBgavF95eTnWr1+PYcOGoUOHDs3OtHTpUpSUlGDatGlQFAWvvvoqbr75ZiQnJ9c+19q1a5GcnIy7774bEREROHToEObPn49Dhw5h+/bt9cpm7Nix6NKlC15++WUIIXDBBRcgIyMDa9euxeLFi5uV67fffkPv3r3r/byrV69GbGwsLr300gbvN2zYMMTGxtYrheZYvHgx7r33XgwZMgRTp04FAMTHxwMAMjIyMGTIEBQWFmLq1Kno3r070tPT8dVXX6G8vBxGoxFZWVm46KKLUF5ejhkzZiAkJASLFi3CDTfcgK+++go33XRTned75ZVXYDKZ8OSTT+L48eN49913YTAYoNPpUFBQgOeeew7bt2/HwoULERcXh//85z+1933ppZfw7LPPYty4cbj33nuRk5ODd999F8OGDcPevXsRGBhYu27Pnj1hMpmwdevWehlIQ2RvwpFrOLuLb926dSInJ0ekpqaKL774QoSEhAiTySTS0tKEEEJMnjxZdOzYsfZ+mzdvFgDEkiVL6jzezz//3ODyc+3fv18AEP/85z+blfHsLr6QkBCRn59fu/zbb78VAMTq1atrl5WXl9e7/7JlywQA8euvv9YumzVrlgAgJkyYUG/9lu7ia9++vbjlllvqLCssLBQAxI033nje+95www0CQO1uzr+/zn/Pe67GdvFNmjRJ6HS6ertthRDCZrMJIYR4+OGHBQCxefPm2ttKSkpEXFyciI2NFVarVQghxIYNGwQA0bt3b2E2m2vXnTBhglAURVxzzTV1Hn/o0KF18qekpAi9Xl97PPGsxMRE4eHhUW+5EEJ07dq13uOStnAXH7XIyJEjERoaipiYGIwfPx6+vr5YtWoVoqOjG1x/xYoVCAgIwJVXXonc3Nzar4EDB8LX1xcbNmxo9LmKi4sBoMFde+dz2223ISgoqPb7s1smycnJtctMJlPtvysrK5Gbm4sLL7wQALBnz556j3n//fe3KEND8vLy6uQCgJKSEgBN/4xnbz/7mrSVzWbDN998g+uvvx6DBg2qd/vZLcgff/wRQ4YMwSWXXFJ7m6+vL6ZOnYqUlBQcPny4zv0mTZpUZwsxISEBQghMmTKlznoJCQlITU1FdXU1AODrr7+GzWbDuHHj6vydREREoEuXLg3+nQQFBSE3N7f1LwKpHnfxUYvMnTsXXbt2hYeHB8LDw9GtWzfodI1/zklKSkJRURHCwsIavD07O7vR+/r7+wP46028uf6+O/BsKZx7zCs/Px+zZ8/GF198US9DUVFRvceMi4trUYbGiL9dwPps8TT1Mza3yJorJycHxcXF6N2793nXO3XqFBISEuot79GjR+3t5z7G31/7gIAAAEBMTEy95TabDUVFRQgJCUFSUhKEEOjSpUuDORraDSyEaPK4H7k2FhS1yJAhQxr8xN0Ym82GsLAwLFmypMHb/z4o4FydO3eGh4cHEhMTW5RRr9c3uPzcchg3bhx+++03PP744+jfvz98fX1hs9lw9dVXw2az1bvvuVtcrRUSElJvYEhAQAAiIyNx4MCB8973wIEDiI6Ori3txt6YZZ0TdlZjr31TvxObzQZFUfDTTz81uK6vr2+9ZQUFBY0WGmkDC4ocKj4+HuvWrcPFF1/c4jd5b29vjBgxAr/88gtSU1PrfQpvrYKCAqxfvx6zZ8+uc5A+KSmpRY/T0k/v3bt3rx3teK7rrrsOCxYswJYtW+rsSjtr8+bNSElJwbRp02qXBQUFobCwsN66p06dalbO0NBQ+Pv74+DBg+fN3LFjRxw7dqze8qNHj9bebg/x8fEQQiAuLg5du3Ztcv3q6mqkpqbihhtusMvzkzrxGBQ51Lhx42C1WvHCCy/Uu626urrBN9lzzZo1C0II3HnnnSgtLa13++7du7Fo0aIWZTr7Cf3vu9vmzJnTosfx8fEBgCZ/hrOGDh2KgwcP1hte/fjjj8NkMmHatGn1hrnn5+fj/vvvh7e3Nx5//PHa5fHx8SgqKqqz5ZWZmYlVq1Y1mPPvGXU6HcaMGYPVq1dj165d9e5z9rUZPXo0duzYgW3bttXeVlZWhvnz5yM2NhY9e/Zs1s/elJtvvhl6vR6zZ8+u93sRQtR7XQ4fPozKykpcdNFFdnl+UiduQZFDDR8+HNOmTcMrr7yCffv2YdSoUTAYDEhKSsKKFSvw9ttv49Zbb230/hdddBHmzp2LBx98EN27d8edd96JLl26oKSkBBs3bsR3332HF198sUWZ/P39MWzYMLz66quwWCyIjo7GmjVrGty6OZ+BAwcCAGbMmIGrrroKer0e48ePb3T9G2+8ES+88AI2bdqEUaNG1S7v0qULFi1ahIkTJ6JPnz645557EBcXh5SUFHz88cfIzc3FsmXLaoeHAzXz0c2cORM33XQTZsyYgfLycsybNw9du3atN8hj4MCBWLduHd58801ERUUhLi4OCQkJePnll7FmzRoMHz4cU6dORY8ePZCZmYkVK1Zgy5YtCAwMxJNPPolly5bhmmuuwYwZMxAcHIxFixbh5MmTWLly5XmPP7ZEfHw8XnzxRTz11FNISUnBmDFj4Ofnh5MnT2LVqlWYOnUqHnvssdr1165dC29vb1x55ZV2eX5SKTmDB8nVNDaTxN81Nvx5/vz5YuDAgcJkMgk/Pz/Rp08f8cQTT4iMjIxmPf/u3bvF7bffLqKiooTBYBBBQUHiiiuuEIsWLaod6ny+mSQAiFmzZtV+n5aWJm666SYRGBgoAgICxNixY0VGRka99c4O287Jyan3mNXV1eIf//iHCA0NFYqiNGvIed++fcU999zT4G0HDhwQEyZMEJGRkcJgMIiIiAgxYcIEkZiY2OD6a9asEb179xZGo1F069ZNfP755w0OMz969KgYNmyYMJlMAkCdIeenTp0SkyZNEqGhocLT01N06tRJTJ8+XVRVVdWuc+LECXHrrbeKwMBA4eXlJYYMGSK+//77Os9xdpj5ihUr6ixv7O+msdd15cqV4pJLLhE+Pj7Cx8dHdO/eXUyfPl0cO3asznoJCQnijjvuaPB1Ie1QhPjb9jQROczixYsxffp0nD59us6Jp9R8+/btw4ABA7Bnzx70799fdhxyIBYUkRPZbDb07dsXEyZMwDPPPCM7jksaP348bDYbli9fLjsKORgLioiIVImj+IiISJVYUEREpEosKCIiUiUWFBERqRILioiIVIkFRUREqsSCIiIiVWJBERGRKrGgiIhIlVhQRESkSiwoIiJSJRYUERGpEguKiIhUiQVFRESqxIIiIiJVYkEREZEqsaCIiEiVWFBERKRKLCgiIlIlFhQREakSC4qIiFSJBUVERKrEgiIiIlViQRERkSqxoIiISJVYUEREpEosKCIiUiUWFBERqRILioiIVIkFRUREqsSCIiIiVWJBERGRKrGgiIhIlVhQRESkSiwoIiJSJRYUERGpEguKiIhUiQVFRESqxIIiIiJVYkEREZEqsaCIiEiVWFDUbHPnzkVsbCy8vLyQkJCAHTt2yI5ERBrGgqJm+fLLL/Hoo49i1qxZ2LNnD/r164errroK2dnZsqMRkUYpQgghOwSpX0JCAgYPHoz33nsPAGCz2RATE4N//OMfePLJJyWnk6/SYkVOSRVyS6tQWlUNc7Wt5stqQ9XZf//5vbnaBovVBkVRYNQrMHroYNTrYPTQw2TUwdvoAR+jB7w99fDz9ECIryeCfYyyf0Qip/OQHYDUz2w2Y/fu3Xjqqadql+l0OowcORLbtm2TmMw5zhRV4kROKVLzy5FTUoWc0poiyi0x1/y7pAolVdUOzWD00CHU1xPh/p4I9/dCuL8Xwvw9EebnhXB/T0QGmNAxxBsGPXeKkHawoKhJubm5sFqtCA8Pr7M8PDwcR48elZTKvszVNqTkleFEdilO5JTiRE4ZTuSUIjmnDKUOLp/m5ksvrEB6YUWj6xj0CmJDfNA13A9dwn3RJcwPXcN9EdvOh8VFLokFRW7HahM4klmMvacLsOd0IfanFeJUXjmsNtfe222xCiRllyIpuxRI/Gv5ucXVM8ofgzoGoV9MILwMenlhiZqBBUVNateuHfR6PbKysuosz8rKQkREhKRUzZdXWoW9pwux53QB9pwuwIG0IpSbrbJjOc25xfVDYiYAwKjXoVe0PwbHBmNgxyAMjg3mcS5SHRYUNcloNGLgwIFYv349xowZA6BmkMT69evx0EMPyQ3XgJJKC7Yk5WLjsRxsP5mHU3nlsiOpjtlqw97Thdh7urB2Wad2PhgUG4RBscEY3jUU4f5e8gISgaP4qJm+/PJLTJ48GR9++CGGDBmCOXPmYPny5Th69Gi9Y1MyJGWVYMOxbGw4moNdp/JhsfLPui0UBegTHYAR3cMwskc4ekcHyI5EbogFRc323nvv4bXXXsOZM2fQv39/vPPOO0hISJCSpdJixbYTefjlaDY2/pGN1PzGBw9Q20X4e2FEjzCM7BGGi+Lb8fgVOQULilyG1Sbwa1IOvtmbjjWHslBhcZ/jSGpiMuhxced2GN0nAtf0joTJyLIix2BBkeodSCvEqr3pWL0/E7mlVbLj0Dl8jHpc0ycStw5sj4S4YCiKIjsSaQgLilQpraAc3+xNx6q96TiRUyY7DjVDTLAJN1/QHrcMaI8OId6y45AGsKBINSxWG35MzMSS7aex81Q++JfpmhQFGNwxGLcMjMa1faPg68nBwtQ6LCiSLr/MjKW/n8Li7aeQVcxdeFri6+mB2wbH4O6LY9E+iFtV1DIsKJLm2JkSfLLlJL7Zl46qapvsOORAep2Cq3tF4N5L43BBhyDZcchFsKDIqWw2gfVHs/Hp1pP47USe7DgkwcCOQbj3kjhc1SsCOh0HVVDjWFDkFBarDV/tTsOHm04ghTM7EIAOwd64++JY3DY4Bt5GHqei+lhQ5FBni2nuhuNIK+DJtFRfiI8RD1wWjzuHdoSnB8+por+woMghrDaBlbvT8O6GJM7yQM0SFeCFGVd0wdhBMdBz1x+BBUV2JoTAj4ln8MbaY0jm+UvUCp3a+eCRK7viur6RPPHXzbGgyG5+/SMHr/7vKA6mF8uOQhrQK8ofj43qhsu7h8mOQpKwoKjNUvPLMXv1Yaw7ktX0ykQtNDg2CM9c2xP9YwJlRyEnY0FRq1VarPhg0wnM23iC5zGRQykKMG5gDGZe050XVnQjLChqlXWHs/D894dxOp9Dxsl5AkwG/GtUV0xM6MiBFG6ABUUtciqvDLNXH8YvR7NlRyE31jvaH6/c1Bd92vNCilrGgqJmqbRY8f6G4/jg12SYuTuPVECvU3DnhR3x2FXdOCGtRrGgqEn7Uwvx6PJ9vOwFqVJkgBeev7E3ruwZLjsK2RkLihpVbbXhnV+O4/0Nx1Ft458Jqdu4Qe0x6/pe8OHWlGawoKhBx7NL8MiX+5GYXiQ7ClGzdQzxxlu39ccAzpiuCSwoqkMIgY+3nMRr/zvGoePkkvQ6BdMv74wZIzrDQ6+THYfagAVFtdIKyvHYiv3YnpwvOwpRm/WLCcSc2/ojrp2P7CjUSiwoAgB8uy8d/151ECVV1bKjENmNt1GPf1/bE7cndJAdhVqBBeXmqq02vPjDESz8LUV2FCKHGdUzHG+M6wc/L4PsKNQCLCg3ll1SiYeW7MWOFO7SI+2LD/XB/EmDEB/qKzsKNRMLyk3tPlWAB5fsRlZxlewoRE7j5+mBOeP744oePGfKFbCg3NBn21LwwveHYbHyV0/uR1GAR0Z2xT9GdOb1plSOBeVGKi1WPL0qEV/vSZcdhUi6q3qF441x/TlNkoqxoNxEZlEF7l20C4cyeDFBorO6hPli/qRBHIquUiwoN/BHVgkmf7IDmUWVsqMQqY6/lwfmThyAS7uEyo5Cf8OC0rjfk/Nw32e7UFzJ85uIGmPQK3hjXH/c0C9KdhQ6BwtKw35KzMQ/v9zHy2MQNYOiALOu64m7Lo6THYX+xILSqM+2peC57w6Bk5ATtcw/RnTGv0Z1kx2DwILSpFd/Por3N56QHYPIZU0Y0gEvjekNHS8rLxULSkOqrTbMXJmIlXvSZEchcnlX94rA2xP6w9NDLzuK22JBaYTFasP0JXuw5nCW7ChEmnFhp2AsmDSIc/hJwoLSgGqrDf9Ythc/HTwjOwqR5vRrH4DP701gSUnAq3m5OKtN4OEv97GciBxkf1oR7v50J8rNPFXD2VhQLsxmE3h0+T58fyBTdhQiTdt1qgD3LtqFSotVdhS3woJyUTabwGNf7ce3+zJkRyFyC7+dyMP9n+/meYVOxIJyQUIIPPn1AU76SuRkG4/l4KGle1BtZUk5AwvKxQgh8PSqRCzfxaHkRDKsOZyFR5bvh41nwTscC8rF/N/PR7FsR6rsGERubfX+DDyx8gA4CNqxWFAuZMnvp/DhpmTZMYgIwFe70/DiD0dkx9A0FpSL2HgsG//59pDsGER0jo+3nMSS30/JjqFZLCgXcDijGA8t3Qsr93kTqc6sbw9hc1KO7BiaxIJSuTNFlZiycCdKq3iSIJEaVdsEHlyyB8ezS2RH0RwWlIqVVVVjysKdOFPMK+ESqVlJZTWmLNyF/DKz7CiawoJSKatNYPrSPTicWSw7ChE1w+n8ckz9bBeqqjnbhL2woFTq+dWHsPEY92sTuZJdpwow86sDsmNoBgtKhb7dl45F2zgyiMgVfbMvA++uT5IdQxNYUCpzPLsUT3+dKDsGEbXBW+v+wNbjubJjuDwWlIpUmK14cMlulJm5D5vIldkE8M8v9iGnpEp2FJfGglKRZ75JxB9ZpbJjEJEd5JZW4eEv93LOvjZgQanElztPc3ZyIo3ZejwP7204LjuGy2JBqcCRzGLM+o7TGBFp0dvrk/B7cp7sGC6JBSVZaVU1pi/Zg0oLry9DpEVWm8CML/byJN5WYEFJ9syqRCTnlsmOQUQOlFVchUe+3MfLc7QQC0qiHw5k8pLtRG5i0x85mP8rL5fTEopgpUuRW1qFUW/96vab/dUluSjcuBAVybshqqvgERiJkNEPwzOyCwAg94e3UHZwfZ37eMUNQPi45xt9zMrUgyj+fSXMWSdgLc1H6E3PwLvr0DrrFP3+NYp3rAQABCTcAv8hN9feVpVxDPlr3kfEpDeh6PT2+lGJ4Omhw4//vBTxob6yo7gED9kB3NVTXye6fTlZK0tx5vMn4NWhL8LGPgeddwCqCzKg86r7P69X3EC0G/3wXws8DOd9XGGuhCGsE3z7XomcVS/Xu92cfRJFW5Yg9Nb/AEIgZ+Xz8IobAGNoLITNirz/zUXI1Q+xnMjuqqpteHLlASyfNhSKosiOo3osKAlW7U3D2sNZsmNIV7z9K3j4t0O7ax+uXWYIjKi3nuJhgN43qNmPa4ofBFP8oEZvt+SlwRAaC1PHfjXPGRoLS14ajKGxKP59JbxiesEzsmvzfxCiFtiZUoDF209h0tBY2VFUjwXlZLmlVXh+9WHZMVSh4vjv8IobgJxvXkFl6kHofUPgd8Fo+PW/us56lacTkfruROi8fOHVoS8Ch90Jvcm/1c9rDI1FdUE6qouzAQFU56fD2K4jLAWZKE1ch8jJc9r4kxGd36s/H8MVPcIRHWiSHUXVWFBONuu7Qygot8iOoQqWwjOw7P0R/oPHIHzoOFRlJqFg/XwoegN8+1wBADDFDYB314vgERiO6oJMFP76GbJXzELEHa+3ehecoV0MAodNQtaXzwIAAodPhqFdDLK+eAZBl92NipN7ULR1KaDzQPDIqfCK6W23n5kIqDm95JlViVh49xDZUVSNBeVEaw9n4YcDmbJjqIcQ8IzojKDhkwEAxvB4WHJPoWTfj7UF5dNzeO3qxtBYGMLikPHhvag8nQhTbP9WP7XfBaPhd8Ho2u9LE9dDMZrgGd0d6QvuR+SkN2EtyUPud68ietrHUJo47kXUUhuP5eDrPWm4eUB72VFUi8PMnaS0qhrPfnNQdgxV0fsGwdCuQ51lhpAYWIsbvw6WITACOpM/qgvtV/TW8iIUbV2K4JH3oyrjDxiCo2AIjoZXx74Q1mpYCjgFFTnGC98fRm4pJ5RtDAvKSd79JYmXbv8bz+iesOSn1VlmyU+Hh39Yo/epLs6FraIEep9gu+Uo+OUj+A0eAw//doCwQljPmU3eZgVsnOWDHKOg3ILnOM1Zo1hQTnAqrwyfbkmRHUN1/AffiKqMYyjathyWggyUHd6I0v0/w3fAtQAAm7kCBRs+QVX6UVQXZaEiZR9yvn4BHkGRMMUNqH2crC+eRvHu1bXf28wVMGclw5xVc1JkdVEWzFnJNYMi/qbi5F5Y8tPh9+dzGiO6ojo/DRUndqFk38+ATg+P4GhHvgzk5r4/kInfeO2oBvEYlBO8/OMRmK38FP53npFdEXrTMyjctAiFW5fBIyAcQSPug2+vy2tWUHQwZ59E6cH1sFWWQe8bDFPcBQi89I46x4QsBWfgWVFc+735TBKylj1d+33BLx8BAHx6X4F21z5Su9xmqUL+ug8QesNMKErNZzUP/3YIGjkNuT/NgaI3IOTaR6AzeDryZSDC898fxg8zLoVex3OjzsWZJBzstxO5uH3B77JjEJHKvTCmN+68sKPsGKrCXXwOZLUJnvNERM3y1to/UMRTUOpgQTnQFztP4+iZEtkxiMgF5JeZ8c4vSbJjqAoLykGKKy14c80fsmMQkQtZvO0UUvPLZcdQDRaUg7y7Pgl5bj4ZLBG1jNlqw+trjsmOoRosKAdIL6zAot9OyY5BRC7ou/0ZOJheJDuGKrCgHOD9Dcc5rJyIWkUI4P9+Oio7hiqwoOzsTFElVuxOa3pFIqJGbDmei72nC2THkI4FZWcfbDoBczW3noiobeZuOC47gnQsKDvKLqnEsh2nZccgIg1YfzQbRzKLm15Rw1hQdvThpmRUceuJiOxACG5FsaDsJLe0Ckt/59YTEdnPj4mZOJlbJjuGNCwoO1nwazIqLNamVyQiaiabAOZtdN+tKBaUHRSUmfH5dp73RET2t2pvOtILK2THkIIFZQdLfj+FMjO3nojI/ixWgfmbTsiOIQULqo2sNsFjT0TkUF/sTEWBG06dxoJqo3VHspBRxEu5E5HjVFXbsHKP+00AwIJqIx57IiJncMc9NSyoNjiZW4Ytx3NlxyAiN5CcW4bfTrjX+w0Lqg0+334KQshOQUTuwt22olhQrVRpseIrTgpLRE605lAW8kqrZMdwGhZUK323LwNFFRbZMYjIjZitNre6WgILqpUWc3AEEUmwbMdpCDc5tsCCaoWjZ4qRyCteEpEEp/LKsfV4nuwYTsGCaoXV+zNkRyAiN7Zsp3sMlmBBtcL3BzJlRyAiN/bLkWxUuMH0aiyoFjqQVohTeeWyYxCRG6uwWPHL0WzZMRyOBdVC3L1HRGrwY6L29+SwoFpACIEfuHuPiFRgw7FsVGr8GnQsqBbYfaqAE8MSkSqUm63YoPHdfCyoFuDgCCJSkx80vpuPBdVMNpvQ/B8DEbmWDUe1vZuPBdVMu04VIKfEfebAIiL1KzNbsfFYjuwYDsOCaqZf/9DuHwERuS4tj+ZjQTXT5iQWFBGpz69JObDZtDk3HwuqGQrLzZx7j4hUqbDcgsOZxbJjOAQLqhm2Hs+DRj+gEJEGaPVKuyyoZuDuPSJSM63Obs6CaobNSdr8dEJE2rAzJR8Wq012DLtjQTUhOacU6YUVsmMQETWq3GzF3tOFsmPYHQuqCdx6IiJXsPW49t6rWFBNYEERkSvQ4kAJFlQT9pwukB2BiKhJ+1ILUW6ulh3DrlhQ55GaX478MrPsGERETbJYBXaf0tYHahbUeRxI48m5ROQ6tDahAAvqPA6kF8qOQETUbIfStTWjBAvqPA6kauvTCBFp28EMbb1nsaAaIYTQ3C+biLTtdH45SiotsmPYDQuqESdzy1BSqa0RMUSkbUIAhzK0s5uPBdUIDpAgIld0UEMDJVhQjWBBEZErOswtKO3j8ScickVaeu9iQTUiJbdMdgQiohY7kVOGSotVdgy7YEE1oMJsRXZJlewYREQtZrUJnNTIB2wWVANO5Wvjl0tE7ik1v1x2BLtgQTUgJVcbv1wick+pBdq4hh0LqgGnuQVFRC6MW1AalpKnjV8uEbmntAJtvIexoBpwmgVFRC4sNZ+7+DSLgySIyJWluvMW1IgRI1BYWFhveXFxMUaMGNHWTFJZrDZkFFbKjkFE1GrlZivySl3/VJlWFdTGjRthNte/0mxlZSU2b97c5lAynSmqhNUmZMcgImoTLYzk82jJygcOHKj99+HDh3HmzJna761WK37++WdER0fbL50EORr41EFElFZQjv4xgbJjtEmLCqp///5QFAWKojS4K89kMuHdd9+1WzgZ8kvrbxkSEbma/DLXfy9rUUGdPHkSQgh06tQJO3bsQGhoaO1tRqMRYWFh0Ov1dg/pTHll3IIiItdXVO76Fy5sUUF17NgRAGCz2RwSRg1yuQVFRBpQrIEr67aooM6VlJSEDRs2IDs7u15h/ec//2lzMFkKy1lQROT6iirctKAWLFiABx54AO3atUNERAQURam9TVEUly4oLfxSiYiKK6plR2izVhXUiy++iJdeegkzZ860dx7ptPBLJSLSwoftVp0HVVBQgLFjx9o7iypoYb8tEZEW3staVVBjx47FmjVr7J1FFbTwqYOISAsF1apdfJ07d8azzz6L7du3o0+fPjAYDHVunzFjhl3CyVChkUslE5F708Iwc0UI0eJ5feLi4hp/QEVBcnJym0LJdNlrG3i5DSJyeToFSH7lWtkx2qRVW1AnT560dw7V4DR8RKQFNgFYbQJ6ndL0yirFy238ja3lG5RERKrk6u9nrdqCmjJlynlv/+STT1oVRg1s3IQiIo2w2gQMLjz7XKsKqqCgoM73FosFBw8eRGFhoctfD4r9RERa4ZZbUKtWraq3zGaz4YEHHkB8fHybQ8nk6r9QUr9oryq8HrMNAP/WyLE8xBVow4x20rVqFF9jjh07hssuuwyZmZn2ekinG/TiWk4YSw71W/xniEr/WXYMcgdPZwJGb9kpWs2ugyROnDiB6mrXniqIu/jIkf7b6QDLiZxH58IHoNDKbb9HH320zvdCCGRmZuKHH37A5MmT7RJMFu7iI0e5JLgI43Jd+4Ke5GIU1x6o3aqC2rt3b53vdTodQkND8cYbbzQ5wk/tDHrX/oWSOpn0Vsz3ngclt0x2FHInihtuQW3YsMHeOVTDz9MDOSW8qi7Z15L49fA+fUB2DHI3Otf+wN2m4R05OTk4duwYAKBbt251LgHvqny9XHfEC6nTPdGpuCD1M9kxyN0Y/WQnaLNW1WtZWRmmTJmCyMhIDBs2DMOGDUNUVBTuuecelJe79jx2vp4sKLKfDqZKPF01B4qwNb0ykT2ZgmQnaLNWFdSjjz6KTZs2YfXq1SgsLERhYSG+/fZbbNq0Cf/617/sndGpWFBkT8ujlkFf6rqnXZALMwXITtBmrXo3XrlyJb766itcdtlltctGjx4Nk8mEcePGYd68efbK53TcxUf28mb8XkSkr5Udg9yVu25BlZeXIzw8vN7ysLAwl9/F58ctKLKD4SEFuCl7ruwY5M68AmUnaLNWFdTQoUMxa9YsVFZW1i6rqKjA7NmzMXToULuFk4FbUNRWPnobPvCaB8Xi2h/WyMVpYAuqVe/Gc+bMwdVXX4327dujX79+AID9+/fD09PT5S8F7+tpaHolovNY2ul/MKUelB2D3J27FlSfPn2QlJSEJUuW4OjRowCACRMmYOLEiTCZTHYN6GzcgqK2eCDmFPqmfi47BhFgCpSdoM1a9W78yiuvIDw8HPfdd1+d5Z988glycnIwc+ZMu4STIczPU3YEclGdvCvxWPkcKJylnNRAA1tQrToG9eGHH6J79+71lvfq1QsffPBBm0PJFB3o2luAJM8XEUugL8uSHYOohrsW1JkzZxAZGVlveWhoqEtfagNgQVHrvNN5N8Iy1suOQfQX73ayE7RZqwoqJiYGW7durbd869atiIqKanMomYJ8jPA2uvYEi+RcV4Tk4/oz78uOQVRXUKzsBG3WqmNQ9913Hx5++GFYLJbaS7yvX78eTzzxhMvPJAEAUYEmHM8ulR2DXICPhxVzPedCKauQHYXoLx5egL9rbywArSyoxx9/HHl5eXjwwQdhNtdcfdbLywszZ87EU089ZdeAMrCgqLm+jPsJXqlHZMcgqisoFlAU2SnarFUFpSgK/vvf/+LZZ5/FkSNHYDKZ0KVLF3h6amMEXHSgl+wI5AIeiklBr9RlsmMQ1RfcSXYCu2jTST++vr4YPHiwvbKoBgdKUFO6+FTg0bK3OKSc1CkoTnYCu3Dtq1k5SBQLiprwRdhn0JXnyI5B1LBgFpRmxQR7y45AKvZ+550IydwkOwZR41hQ2tU13PWvREmOcXVoHq4547qXkyE3wV182hVgMvA4FNXj51GNtz3eg1Jd2fTKRLLoPIDAjrJT2AULqhE9IrkVRXWtiPsBngXHZMcgOr+A9oBeG5Nes6Aa0SPSX3YEUpFHOiSje+qXsmMQNS2ij+wEdsOCakRPFhT9qbtvOf5RMkd2DKLmiR4oO4HdsKAawS0oAgBFEVjabiF0FbmyoxA1T9QA2QnshgXViI4h3vDhpLFu78P43xF8ZovsGETNpABRF8gOYTcsqEYoioJuERwo4c6uC83FlZmufX0zcjPtugBe2tn7w4I6D+7mc18Bhmq86fEuFKtZdhSi5tPQ8SeABXVe/doHyo5AkqyIXQ1jQZLsGEQto6HjTwAL6rwSOgXLjkASPNExCV1TV8iOQdRy3IJyHx1DfBAVwEtvuJNefmW4v/ht2TGIWk5vBCJ6y05hVyyoJlzYKUR2BHISRRFYEvIpdBX5sqMQtVx4L8BDG9fkO4sF1QQWlPv4uPNvCDzzm+wYRK3TYajsBHbHgmoCC8o9jAnPxuXp82XHIGq9zlfITmB3LKgmdAjx5szmGhditOBV5R0oNovsKESt42ECOl4iO4XdsaCagaP5tG15h29hLEyWHYOo9WIvBgzaG9DFgmoG7ubTrqdj/0B82teyYxC1TeeRshM4BAuqGYayoDSpr38p7i2cIzsGUduxoNxXTLA3uvEy8JqiV2z4POhj6CoLZUchapvAjjVz8GkQC6qZruodITsC2dGnnbfCP+t32TGI2k6Do/fOYkE109W9WFBacWtEFi5NXyA7BpF9aHT3HsCCaraeUf7oGOItOwa1UajRglfE21Bs1bKjELWdzgDEDZedwmFYUC1wFbeiXN6KDl/DUJQiOwaRfcRdCnj6yk7hMCyoFmBBubb/xB1BbNq3smMQ2U+fcbITOBQLqgUGdAhEmJ+2JmN0FwMCSnB3/juyYxDZj4cJ6HGd7BQOxYJqAUVRMKpXuOwY1EIGncCigAVQqopkRyGyn27XAJ7aPv2FBdVCV/eKlB2BWmhR/Cb4Ze+SHYPIvvreJjuBw7GgWmhofAjC/bmbz1WMj8zE0LSPZccgsi9TsKbPfzqLBdVCep2CWwa0lx2DmiHC04wXrW9DEVbZUYjsq9dNgN4gO4XDsaBa4bbBMVAU2SmoKStivoJH8WnZMYjsr6+2R++dxYJqhY4hPpxAVuVeiDuEmLTvZccgsr/ADkBMguwUTsGCaqXbBsfIjkCNGBJYjDs4pJy0qs9YuMsuHBZUK13dOwKB3trfB+xqPHU2fOI3H0pViewoRPan6ID+E2WncBoWVCt5euhx0wXRsmPQ33wWvxG+OXtkxyByjC6jgJB42SmchgXVBuMHd5Adgc5xZ1Q6hqR9KjsGkeNc+IDsBE7FgmqDbhF+6B8TKDsGAYj2qsIsyxwOKSftCusJdLpMdgqnYkG10R0XdpQdgQAsj14Oj5J02TGIHCfhftkJnI4F1UY39IvizBKS/V+nRESn/yQ7BpHjeIe4xdRGf8eCaiOjhw53XxwnO4bbujioCLflckg5adzAuwCDl+wUTseCsoPbEzrA19NDdgy346mzYb7vh1DMZbKjEDmOzgAMvld2CilYUHbg72XAeJ6463RL49fDJ2ef7BhEjtXzRsA/SnYKKVhQdnLvpZ1g9ODL6SxTolMxIG2R7BhEjnfhg7ITSMN3VDuJCPDCrQM5y7kztPeqwjNVb0MRNtlRiBwr/gqg/UDZKaRhQdnRA8Pj4aFzjzmyZPoqehn0pRmyYxA53oh/y04gFQvKjmKCvXFDP/fcV+wsr3fah4j0NbJjEDle9+uA6AGyU0jFgrKzh0Z05laUgwwLLsQtOXNlxyByPEXn9ltPAAvK7jqF+mL8EI7oszeT3ooPvOdBsXBIObmB3rcCYT1kp5COBeUAD4/sCh+jXnYMTVnWaS28cxNlxyByPJ0HcPlTslOoAgvKAdr5emLacPeZEt/RprY/jX6pi2XHIHKO/hOB4E6yU6gCC8pB7ru0E8L8OEdfW8WaKjGzYg4UCNlRiBxP7wkMf0J2CtVgQTmIyajHo1d2lR3D5S2PXAJ92RnZMYicY9AUIIDnU57FgnKgsYNi0DXcV3YMlzUnfg/CMtbLjkHkHF4BwLDHZKdQFRaUA+l1Cp68prvsGC5pREgBbszikPKWmLfTjL7zSuH/SjH8XynG0I/L8FOSpd56Qghcs6QMyuxifHO0/u3nyiq14a5vKhD1Rgm8XyrG1Z+XISmv7kUhH/1fJYL/W4yYt0qw5EDdx1txyILrl5W3/YdzB5c/A/i0k51CVVhQDjaieziGdgqRHcOl+HhYMdfrfSjVFbKjuJT2/gr+b6Qndk/1wa6pPhgRq8eNX1TgUHbdQpmz3QwFTZ+rJ4TAmC8rkFxgw7fjvbF3mg86BugwcnE5ysw1xwRXH7NgaaIFa+70wasjvXDv6grkltdMQVVUKfDML1WYO9r9LhPRYuF93HbG8vNhQTnB8zf2glHPl7q5voj7Gaa8Q7JjuJzruxkwuosBXUL06Bqix0tXeMHXCGxP+6ug9p2x4o1tZnxyY9OlkZRvw/Y0K+Zd64XB0Xp0a6fHvOu8UGEBlh2s2VI6kmvDZbF6DIrSY0IfA/w9FZwsqCmvJ9ZW4oFBBnQI4N9+k0a/Buh4asrf8S/HCbqE++H+4Rw22hzTY1LQO3Wp7Bguz2oT+OKgBWUWYGhMzRtfuUXg9pUVmDvaCxG+Tf+vX1Vd818vj7+2tnSKAk8PYMvpmtLrF67HrgwrCioEdmdYUWER6Bysw5bT1dhzxooZCUb7/3Ba0/c2oONQ2SlUiVfZc5LpIzrj+8RMJOdwJoTGxHtX4NFyDilvi8QsK4Z+XIbKasDXCKy6zYSeoTUF9cjPlbgoRo8buxua9Vjd2+nQIUDBU+sr8eF1JvgYgbe2mZFWLJBZWrMb76rOHrijrwGDF5TCZFCwaEzNeg/8UImFN5owb5cF7+4wo523gvnXeaFXGLcS6vAKBEa9JDuFailCCL4bOMnvyXkYv2A7+Io3bFen+WiXsVF2DJdmtgqcLhIoqhT46rAFH+21YNNd3jieb8O/1lRh7zQf+BprtoiU2cVYdZsJY85TWLszrLjnuwrsz7JBrwAjO+mhUxQICPw00afB+8zeWIXCSoG7LzBg1OJyJD7gg+//qMZ7O83YPZWjWuu4/u2ay7lTg1hQTvbU1wewbEeq7Biq817nnbgu7S3ZMTRn5GdliA/SwWRQ8M7vZpw7j7FVADoFuLSDHhvvarhsziqqFDBbBUJ9dEj4qBSDIvWYe62p3npHc624flkF9k7zwSd7zdhy2orlY71RZhbwfaUExU/6wc+TkykDADoMBe7+CVD4ejSGu/ic7MlremDdkWzklFTJjqIao9rl49oz82TH0CSbAKqswOzLjbh3QN0tpT7zyvDWVZ64vmvTu/wCvBQACpLyrNiVYcMLl9cfZCGEwLTvK/HmKE/4GhVYbYDlz2tKnv2vlR+Ha+iNNVtPLKfz4iAJJwswGfDc9b1kx1ANP49qvGN8D0p1pewoLu+pdZX49VQ1UgptSMyy4ql1ldiYYsXEPgZE+OrQO0xf5wsAOgToEBf019tA9/dKserIX+cyrThkwcaU6pqh5kctuHJxOcZ098Co+PqfbT/aY0Got4Lru9UU3sUdPPDLyWpsT6vGW9uq0DNUh0AvviEDAC59DAjtJjuF6nELSoJr+0Zi1d4wrDuSLTuKdF/G/QSv1KOyY2hCdpnApFUVyCwVCPBU0Ddch//d4Y0rGyiTxhzLs6Go6q/NnMxSGx5dY0ZWqUCkn4JJfQ14dnj9OSazSm14aXMVfrvnr12FQ6L1+NdQT1y7tAJhPjUDKAhATAJnjGgmHoOS5ExRJa55+1cUlJ//TH4t+2eHZDySzYuykRvx9Afu3wwExcpO4hK4i0+SiAAvvHprP9kxpOnqU4F/lsyRHYPIuUa/xnJqARaURFf2DMekoR1lx3A6RRFYFrYIuopc2VGInKf3LUC/8bJTuBQWlGRPj+6B7hF+smM41bz4HQjJ/FV2DCLnCYgBrn1TdgqXw4KSzMugx3u3XwCTwT3OsB8dmourMj+QHYPIeRQdcNMHgClQdhKXw4JSgc5hfph1fU/ZMRwuwFCNtzzeg2LlOWDkRi7+JxB7iewULokFpRLjh3TAtX0jZcdwqOWx38Oz4A/ZMYicJ7J/zXWeqFVYUCryys190D5Im+eK/KvDCXRLXS47BpHzeLcDblsM6Js3OS/Vx4JSEX8vA+ZNHAgvg7Z+LT18yzGdQ8rJnegMwLjPgMAOspO4NG29E2pAn/YBeE1D50cpisDSdp9CV5EnOwqR81zzXyD2YtkpXB4LSoWu7xeFGVd0kR3DLhbEb0PQma2yYxA5z6ApwOB7ZKfQBBaUSj0ysgtG94mQHaNNrg/LwRWZ82XHIHKejpcA17wqO4VmsKBUSlEUvDG2P3pH+8uO0ipBhmq8oXsHitUsOwqRcwR2qDnuxEERdsOCUjGTUY+PJg1GmF/92aPVbkXstzAWnpAdg8g5DD7A+GWAT4jsJJrCglK5iAAvzJ80CJ4ervOrerLjH+iculJ2DCInUWpmiojoLTuI5rjOu54b6x8TiNfG9nOJi2/29S/F1KK3Zccgcp5RLwI9b5CdQpNYUC7ihn5Rqr8Sr16xYXHQJ9BVFsiOQuQcw2cCFz0kO4VmsaBcyOSLYvH4Veq9TPTHnX9DQNZ22TGInCPhAeDyp2Wn0DQWlIuZfnln3D88XnaMem4Oz8bw9AWyYxA5R/87gKtfkZ1C81hQLujJa7rjjgvVM4VKqNGC/+IdKDb3vXw9uZEeNwA3vAOXOCjs4lhQLuqFG3vj5guiZccAACzvuAqGomTZMYgcL/4K4JaPAZ17XL9NNhaUi1IUBa+N7YereoVLzfFs3FHEpX4jNQORU8RcCNz2OeBhlJ3EbbCgXJhep+DdCQNwaZd2Up5/QEAppuRzSDm5gch+wMTlgNFbdhK3woJycUYPHT6aPAhX9nTulpResWFhwAIoVUVOfV4ip+twETB5NeAVIDuJ22FBaYCnhx4f3DEQNw9w3jGpRZ03wz97p9Oej0iKLqOAO79mOUnCgtIIvU7BG2P74a6LYh3+XLdFnsHF6R87/HmIpOozFhi/FDBo8yrXrkARQgjZIci+5qz7A3PWJTnkscM8Ldga8B8Yik855PGJVGHwfcDo1ziUXDJuQWnQwyO7Ytb1PR3y/9aKmJUsJ9K2YY8D177OclIBFpRG3X1xHN4Y2w8eOvv9T/Z83GF0TPvObo9HpC4KcNUrwIh/yw5Cf+IuPo1bdzgLM77Yi3KztU2PMyigBCvwGJSqEjslI1IRnQdw/TvABRNlJ6FzsKDcwJHMYtz32S6kFVS06v4GncDe9m/CN3u3nZMRqYApGBi7EOg0XHYS+hvu4nMDPSL98d1DlyAhLrhV918cv5HlRNoU3huYuoHlpFIsKDcR7GPE5/cmYGJCyyaZnRiZgYS0TxyUikiinmOAe9YAQbGyk1AjuIvPDX2+/RRmrz4Ei/X8v/pILzM2+/0bHiVpTkpG5ASKDrj8GWDYY7KTUBNYUG7q9+Q8PLBkD/LLzI2us6XzErRP+8GJqYgczNMfuHkB0O1q2UmoGbiLz00ldArBt9MvRo9I/wZvfzkukeVE2hLSBbjvF5aTC+EWlJurtFjx4g+H8fn207XLhgYVYan1cSjmUonJiOyo+3XAmPc5p56LYUERAODng5mYuTIRlVVV2BP9Onxy9smORNR2Rt+aS7MPmCQ7CbUCC4pqpRdWIPuX93HBgedlRyFqu/ZDgJs/BII7yU5CrcSCorpsVmDLW8DG/wNsFtlpiFpO5wEMe6JmlB4vze7SWFDUsIy9wNdTgdw/ZCchar7g+JpReu0Hyk5CdsCCosZZKoC1s4Ad8wHwz4RUbuBdwFUvA0Yf2UnITlhQ1LTUncD3jwBZibKTENXnFwVc9ybQ7RrZScjOWFDUPDYrsH0esPEVgMPPSQ10BuDC+4HhTwKevrLTkAOwoKhlitKBn54Ajn4vOwm5s9hLgdGvA2HdZSchB2JBUesc+xn46XGg8HTT6xLZi284MOoloO9Y2UnICVhQ1HrmcmDTf4FtczkknRxL0QNDpgKXPw14NTw9F2kPC4raLvsosH42cOxH2UlIi2IuBK59A4joLTsJORkLiuwndQew/nkgZbPsJKQF7boCI/4N9LxRdhKShAVF9nfil5qiytgrOwm5ooAY4LIngX4TOBOEm2NBkeMc/hb45SUg95jsJOQKfMOBix8GBt8DeHjKTkMqwIIix7JZgf1f1MztV8QRf9QA33Dg4n8Cg6YABpPsNKQiLChyjmozcOALYNv7QM4R2WlIDXwjgItnsJioUSwocr4Tv9QU1fF14Bx/bih6IJBwP9DrJkBvkJ2GVIwFRfLkHAO2vw/s/xKorpCdhhxJZwB6jakppvaDZKchF8GCIvnK84FdHwM7PgJKz8hOQ/bkEwYMurtmN55fhOw05GJYUKQe1Wbg0Cpg3+dAyhZA2GQnotaKuuDP3Xg3Ax5G2WnIRbGgSJ2K0oHEFcCBL4Hsw7LTUHMExAC9bwb6jAUi+shOQxrAgiL1yzxQU1SJX3EXoNp4hwA9x9SUUocLAUWRnYg0hAVFrsNmBZI31pTVke8BS5nsRO7J6At0G11TSvEjAL2HU5/+119/xWuvvYbdu3cjMzMTq1atwpgxY5yagZzDuX9ZRG2h0wOdr6j5slQAJzcDSWuA42uBghTZ6bTNOwTodBnQ/Vqg6zWA0VtalLKyMvTr1w9TpkzBzTffLC0HOR63oEgbcpOApLU1hXXqN8BaJTuRa9MZgJghNVtI8SOAyP6ATic7VT2KonALSsO4BUXa0K5LzdfQBwFz2TlbV+uAwlOy07mG4E5A/BU1hRR3KeDpJzsRuTkWFGmP0QfodnXNFwCUnAHSdgHpu4D03UD6XsBcIjejbHrPmusrRV1Q8xV7CRAUKzsVUR0sKNI+vwigx3U1XwBgs9XMsH62tNJ21wxlF1a5OR1FZwDCevxVRlEXAOG9OM0QqR4LityPTlfzhh3WAxhwZ80yczmQcxTIT675yjsB5J+o+Xd5nty8zeXpDwR1rNkSCoqt2WUX0a9mS4mXryAXxIIiAmpGpUUPqPn6u4rCmrLKS675b0EKUJoNlOUAZblAeS5gNTs2n8Eb8AoAvAIB39C/Sqj2Kw7wDnZsBiInY0ERNcUUWDMDd/TAxtepLAIqCmr+e+6X5c9JcIUAIGqmb6r995/fn53R3ehb81xeAYBX0J///fOL0wXVKi0txfHjx2u/P3nyJPbt24fg4GB06NBBYjKyNw4zJyKXsnHjRlx++eX1lk+ePBkLFy50fiByGBYUERGpkvrOvCMiIgILioiIVIoFRUREqsSCIiIiVWJBERGRKrGgiIhIlVhQRESkSiwoIiJSJRYUERGpEguKiIhUiQVFRESqxIIiIiJVYkEREZEqsaCIiEiVWFBERKRKLCgiIlIlFhQREakSC4qIiFSJBUVERKrEgiIiIlViQRERkSqxoIiISJVYUEREpEosKCIiUiUWFBERqRILioiIVIkFRUREqsSCIiIiVWJBERGRKrGgiIhIlVhQRESkSiwoIiJSJRYUERGpEguKiIhUiQVFRESqxIIiIiJVYkEREZEqsaCIiEiVWFBERKRKLCgiIlIlFhQREakSC4qIiFSJBUVERKrEgiIiIlViQRERkSqxoIiISJX+H3nEoW/rBMAYAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(8, 5))\n", + "df['Outcome'].value_counts().plot(kind='pie', autopct='%1.1f%%', title='Pie Chart (Outcome)')\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.7" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/labs/lab1/healthcareDataset.csv b/labs/lab1/healthcareDataset.csv new file mode 100644 index 0000000..763aacc --- /dev/null +++ b/labs/lab1/healthcareDataset.csv @@ -0,0 +1,5111 @@ +id,gender,age,hypertension,heart_disease,ever_married,work_type,Residence_type,avg_glucose_level,bmi,smoking_status,stroke +9046,Male,67,0,1,Yes,Private,Urban,228.69,36.6,formerly smoked,1 +51676,Female,61,0,0,Yes,Self-employed,Rural,202.21,N/A,never smoked,1 +31112,Male,80,0,1,Yes,Private,Rural,105.92,32.5,never smoked,1 +60182,Female,49,0,0,Yes,Private,Urban,171.23,34.4,smokes,1 +1665,Female,79,1,0,Yes,Self-employed,Rural,174.12,24,never smoked,1 +56669,Male,81,0,0,Yes,Private,Urban,186.21,29,formerly smoked,1 +53882,Male,74,1,1,Yes,Private,Rural,70.09,27.4,never smoked,1 +10434,Female,69,0,0,No,Private,Urban,94.39,22.8,never smoked,1 +27419,Female,59,0,0,Yes,Private,Rural,76.15,N/A,Unknown,1 +60491,Female,78,0,0,Yes,Private,Urban,58.57,24.2,Unknown,1 +12109,Female,81,1,0,Yes,Private,Rural,80.43,29.7,never smoked,1 +12095,Female,61,0,1,Yes,Govt_job,Rural,120.46,36.8,smokes,1 +12175,Female,54,0,0,Yes,Private,Urban,104.51,27.3,smokes,1 +8213,Male,78,0,1,Yes,Private,Urban,219.84,N/A,Unknown,1 +5317,Female,79,0,1,Yes,Private,Urban,214.09,28.2,never smoked,1 +58202,Female,50,1,0,Yes,Self-employed,Rural,167.41,30.9,never smoked,1 +56112,Male,64,0,1,Yes,Private,Urban,191.61,37.5,smokes,1 +34120,Male,75,1,0,Yes,Private,Urban,221.29,25.8,smokes,1 +27458,Female,60,0,0,No,Private,Urban,89.22,37.8,never smoked,1 +25226,Male,57,0,1,No,Govt_job,Urban,217.08,N/A,Unknown,1 +70630,Female,71,0,0,Yes,Govt_job,Rural,193.94,22.4,smokes,1 +13861,Female,52,1,0,Yes,Self-employed,Urban,233.29,48.9,never smoked,1 +68794,Female,79,0,0,Yes,Self-employed,Urban,228.7,26.6,never smoked,1 +64778,Male,82,0,1,Yes,Private,Rural,208.3,32.5,Unknown,1 +4219,Male,71,0,0,Yes,Private,Urban,102.87,27.2,formerly smoked,1 +70822,Male,80,0,0,Yes,Self-employed,Rural,104.12,23.5,never smoked,1 +38047,Female,65,0,0,Yes,Private,Rural,100.98,28.2,formerly smoked,1 +61843,Male,58,0,0,Yes,Private,Rural,189.84,N/A,Unknown,1 +54827,Male,69,0,1,Yes,Self-employed,Urban,195.23,28.3,smokes,1 +69160,Male,59,0,0,Yes,Private,Rural,211.78,N/A,formerly smoked,1 +43717,Male,57,1,0,Yes,Private,Urban,212.08,44.2,smokes,1 +33879,Male,42,0,0,Yes,Private,Rural,83.41,25.4,Unknown,1 +39373,Female,82,1,0,Yes,Self-employed,Urban,196.92,22.2,never smoked,1 +54401,Male,80,0,1,Yes,Self-employed,Urban,252.72,30.5,formerly smoked,1 +14248,Male,48,0,0,No,Govt_job,Urban,84.2,29.7,never smoked,1 +712,Female,82,1,1,No,Private,Rural,84.03,26.5,formerly smoked,1 +47269,Male,74,0,0,Yes,Private,Rural,219.72,33.7,formerly smoked,1 +24977,Female,72,1,0,Yes,Private,Rural,74.63,23.1,formerly smoked,1 +47306,Male,58,0,0,No,Private,Rural,92.62,32,Unknown,1 +62602,Female,49,0,0,Yes,Private,Urban,60.91,29.9,never smoked,1 +4651,Male,78,0,0,Yes,Private,Rural,78.03,23.9,formerly smoked,1 +1261,Male,54,0,0,Yes,Private,Urban,71.22,28.5,never smoked,1 +61960,Male,82,0,1,Yes,Private,Urban,144.9,26.4,smokes,1 +1845,Female,63,0,0,Yes,Private,Urban,90.9,N/A,formerly smoked,1 +7937,Male,60,1,0,Yes,Govt_job,Urban,213.03,20.2,smokes,1 +19824,Male,76,1,0,Yes,Private,Rural,243.58,33.6,never smoked,1 +37937,Female,75,0,1,No,Self-employed,Urban,109.78,N/A,Unknown,1 +47472,Female,58,0,0,Yes,Private,Urban,107.26,38.6,formerly smoked,1 +35626,Male,81,0,0,Yes,Self-employed,Urban,99.33,33.7,never smoked,1 +36338,Female,39,1,0,Yes,Private,Rural,58.09,39.2,smokes,1 +18587,Female,76,0,0,No,Private,Urban,89.96,N/A,Unknown,1 +15102,Male,78,1,0,Yes,Private,Urban,75.32,N/A,formerly smoked,1 +59190,Female,79,0,1,Yes,Private,Rural,127.29,27.7,never smoked,1 +47167,Female,77,1,0,Yes,Self-employed,Urban,124.13,31.4,never smoked,1 +8752,Female,63,0,0,Yes,Govt_job,Urban,197.54,N/A,never smoked,1 +25831,Male,63,0,1,Yes,Private,Rural,196.71,36.5,formerly smoked,1 +38829,Female,82,0,0,Yes,Private,Rural,59.32,33.2,never smoked,1 +66400,Male,78,0,0,Yes,Private,Urban,237.75,N/A,formerly smoked,1 +58631,Male,73,1,0,Yes,Self-employed,Urban,194.99,32.8,never smoked,1 +5111,Female,54,1,0,Yes,Govt_job,Urban,180.93,27.7,never smoked,1 +10710,Female,56,0,0,Yes,Private,Urban,185.17,40.4,formerly smoked,1 +55927,Female,80,1,0,Yes,Private,Rural,74.9,22.2,never smoked,1 +65842,Female,67,1,0,Yes,Self-employed,Rural,61.94,25.3,smokes,1 +19557,Female,45,0,0,Yes,Private,Rural,93.72,30.2,formerly smoked,1 +7356,Male,75,0,0,Yes,Private,Urban,104.72,N/A,Unknown,1 +17013,Male,78,1,0,No,Private,Urban,113.01,24,never smoked,1 +17004,Female,70,0,0,Yes,Private,Urban,221.58,47.5,never smoked,1 +72366,Male,76,0,0,Yes,Private,Urban,104.47,20.3,Unknown,1 +6118,Male,59,0,0,Yes,Private,Urban,86.23,30,formerly smoked,1 +7371,Female,80,1,0,Yes,Self-employed,Rural,72.67,28.9,never smoked,1 +70676,Female,76,0,0,Yes,Govt_job,Rural,62.57,N/A,formerly smoked,1 +2326,Female,67,1,0,Yes,Private,Rural,179.12,28.1,formerly smoked,1 +27169,Female,66,1,0,Yes,Govt_job,Rural,116.55,31.1,formerly smoked,1 +50784,Male,63,0,0,Yes,Private,Rural,228.56,27.4,never smoked,1 +19773,Female,52,0,0,Yes,Private,Rural,96.59,26.4,never smoked,1 +66159,Female,80,0,1,Yes,Self-employed,Rural,66.72,21.7,formerly smoked,1 +36236,Male,80,1,0,Yes,Private,Urban,240.09,27,never smoked,1 +71673,Female,79,0,0,Yes,Private,Urban,110.85,24.1,formerly smoked,1 +45805,Female,51,0,0,Yes,Private,Urban,165.31,N/A,never smoked,1 +42117,Male,43,0,0,Yes,Self-employed,Urban,143.43,45.9,Unknown,1 +57419,Male,59,0,0,Yes,Private,Rural,96.16,44.1,Unknown,1 +26015,Female,66,0,0,Yes,Self-employed,Urban,101.45,N/A,Unknown,1 +26727,Female,79,0,0,No,Private,Rural,88.92,22.9,never smoked,1 +66638,Female,68,1,0,No,Self-employed,Urban,79.79,29.7,never smoked,1 +70042,Male,58,0,0,Yes,Private,Urban,71.2,N/A,Unknown,1 +32399,Male,54,0,0,Yes,Private,Rural,96.97,29.1,smokes,1 +3253,Male,61,0,1,Yes,Private,Rural,111.81,27.3,smokes,1 +71796,Female,70,0,1,Yes,Private,Rural,59.35,32.3,formerly smoked,1 +14499,Male,47,0,0,Yes,Private,Urban,86.94,41.1,formerly smoked,1 +49130,Male,74,0,0,Yes,Private,Urban,98.55,25.6,Unknown,1 +28291,Female,79,0,1,Yes,Private,Urban,226.98,29.8,never smoked,1 +51169,Male,81,0,0,Yes,Private,Urban,72.81,26.3,never smoked,1 +66315,Female,57,0,0,No,Self-employed,Urban,68.02,37.5,never smoked,1 +37726,Female,80,1,0,Yes,Self-employed,Urban,68.56,26.2,Unknown,1 +54385,Male,45,0,0,Yes,Private,Rural,64.14,29.4,never smoked,1 +2458,Female,78,0,0,Yes,Private,Rural,235.63,32.3,never smoked,1 +35512,Female,70,0,0,Yes,Self-employed,Rural,76.34,24.4,formerly smoked,1 +56841,Male,58,0,1,Yes,Private,Rural,240.59,31.4,smokes,1 +8154,Male,57,1,0,Yes,Govt_job,Urban,78.92,27.7,formerly smoked,1 +4639,Female,69,0,0,Yes,Govt_job,Urban,82.81,28,never smoked,1 +12363,Male,64,0,1,Yes,Govt_job,Urban,74.1,28.8,Unknown,1 +63973,Female,77,0,0,Yes,Govt_job,Rural,190.32,31.4,never smoked,1 +45277,Female,74,0,0,Yes,Private,Rural,231.61,34.6,formerly smoked,1 +4712,Female,81,0,1,Yes,Self-employed,Rural,78.7,19.4,Unknown,1 +33175,Female,57,0,0,Yes,Govt_job,Urban,110.52,28.5,Unknown,1 +2346,Male,58,0,0,Yes,Private,Urban,82.3,N/A,smokes,1 +42072,Female,50,1,0,Yes,Private,Rural,73.18,30.3,formerly smoked,1 +12062,Female,54,0,0,Yes,Self-employed,Rural,191.82,40.4,smokes,1 +30456,Female,79,0,0,Yes,Private,Rural,93.05,24.2,never smoked,1 +59125,Female,53,0,0,Yes,Govt_job,Urban,64.17,41.5,never smoked,1 +56546,Male,79,0,1,Yes,Private,Rural,129.98,22.6,formerly smoked,1 +48405,Male,80,0,1,Yes,Private,Urban,68.53,24.2,smokes,1 +36706,Female,76,0,0,Yes,Self-employed,Urban,106.41,N/A,formerly smoked,1 +41069,Female,45,0,0,Yes,Private,Rural,224.1,56.6,never smoked,1 +71639,Female,68,0,0,No,Govt_job,Urban,82.1,27.1,Unknown,1 +53401,Male,71,1,1,No,Govt_job,Rural,216.94,30.9,never smoked,1 +60744,Male,61,1,0,Yes,Self-employed,Rural,76.11,27.3,smokes,1 +7547,Male,74,0,0,Yes,Private,Urban,72.96,31.3,smokes,1 +31720,Female,38,0,0,No,Self-employed,Urban,82.28,24,formerly smoked,1 +5563,Female,77,0,0,Yes,Private,Urban,105.22,31,never smoked,1 +68798,Female,58,0,0,Yes,Private,Rural,59.86,28,formerly smoked,1 +72918,Female,53,1,0,Yes,Private,Urban,62.55,30.3,Unknown,1 +13491,Male,80,0,0,Yes,Private,Rural,259.63,31.7,smokes,1 +44033,Male,56,1,0,Yes,Private,Rural,249.31,35.8,never smoked,1 +14164,Female,72,0,0,Yes,Private,Urban,219.91,N/A,Unknown,1 +50522,Female,72,0,0,Yes,Govt_job,Urban,131.41,28.4,never smoked,1 +3352,Male,78,1,0,Yes,Self-employed,Urban,93.13,N/A,formerly smoked,1 +70943,Female,80,0,0,Yes,Private,Urban,73.54,24,Unknown,1 +37132,Male,82,0,0,Yes,Govt_job,Urban,200.59,29,formerly smoked,1 +48796,Female,75,0,0,Yes,Govt_job,Urban,62.48,N/A,Unknown,1 +53440,Female,73,1,0,Yes,Private,Rural,190.14,36.5,never smoked,1 +16817,Female,78,1,0,No,Private,Urban,130.54,20.1,never smoked,1 +69551,Male,69,1,0,No,Private,Rural,182.99,36.5,never smoked,1 +31563,Female,38,0,0,Yes,Private,Rural,101.45,N/A,formerly smoked,1 +20387,Female,68,1,0,Yes,Self-employed,Rural,206.09,26.7,never smoked,1 +71279,Female,71,0,0,Yes,Govt_job,Urban,263.32,38.7,never smoked,1 +55824,Male,76,0,0,Yes,Private,Urban,140.1,29.9,formerly smoked,1 +11762,Female,76,0,0,Yes,Private,Urban,207.28,34.9,Unknown,1 +29281,Male,76,1,0,Yes,Self-employed,Rural,194.37,27,formerly smoked,1 +30683,Female,75,0,0,Yes,Private,Rural,199.2,26.6,Unknown,1 +20439,Male,82,0,1,Yes,Govt_job,Rural,103.68,25,never smoked,1 +45965,Female,59,0,0,Yes,Private,Rural,116.44,23.8,smokes,1 +8045,Female,74,1,0,Yes,Private,Urban,70.28,21.8,never smoked,1 +37651,Female,69,1,1,No,Self-employed,Urban,72.17,36.8,never smoked,1 +17308,Female,72,1,0,Yes,Private,Urban,221.79,30,never smoked,1 +67981,Male,66,0,0,Yes,Private,Urban,151.16,27.5,formerly smoked,1 +41241,Male,65,0,0,Yes,Self-employed,Urban,68.43,N/A,formerly smoked,1 +62861,Female,78,0,0,Yes,Private,Urban,67.29,24.6,never smoked,1 +72081,Female,57,1,0,Yes,Govt_job,Rural,67.41,32.9,never smoked,1 +58978,Female,70,0,1,Yes,Private,Rural,239.07,26.1,never smoked,1 +11933,Female,79,0,0,Yes,Private,Rural,169.67,N/A,Unknown,1 +46703,Male,68,0,1,Yes,Private,Urban,223.83,31.9,formerly smoked,1 +32503,Female,80,0,0,Yes,Self-employed,Urban,76.57,34.1,never smoked,1 +12482,Male,68,0,0,Yes,Self-employed,Urban,77.82,27.5,smokes,1 +56939,Female,55,0,0,Yes,Self-employed,Rural,92.98,25.6,never smoked,1 +24669,Female,77,0,1,Yes,Private,Rural,231.56,36.9,never smoked,1 +43054,Female,50,0,0,Yes,Private,Rural,102.16,31.4,smokes,1 +59437,Female,57,0,0,Yes,Private,Urban,221.89,37.3,smokes,1 +66258,Female,71,0,0,Yes,Self-employed,Urban,195.71,34.1,formerly smoked,1 +34567,Female,81,1,0,Yes,Self-employed,Rural,74.02,25,never smoked,1 +50931,Female,76,0,0,Yes,Private,Urban,57.92,N/A,formerly smoked,1 +16590,Male,71,0,1,Yes,Private,Urban,81.76,N/A,smokes,1 +69768,Female,1.32,0,0,No,children,Urban,70.37,N/A,Unknown,1 +20426,Female,78,1,0,No,Private,Urban,203.87,45.7,never smoked,1 +3512,Female,70,1,0,Yes,Self-employed,Urban,89.13,34.2,formerly smoked,1 +42899,Male,78,0,0,Yes,Self-employed,Urban,133.19,23.6,formerly smoked,1 +63453,Female,56,0,0,Yes,Govt_job,Rural,162.23,27.3,Unknown,1 +43364,Male,79,1,0,Yes,Private,Rural,75.02,N/A,never smoked,1 +44993,Female,79,1,0,No,Govt_job,Urban,98.02,22.3,formerly smoked,1 +210,Male,81,0,0,Yes,Self-employed,Rural,91.54,31.4,never smoked,1 +28939,Male,64,0,0,Yes,Self-employed,Rural,111.98,N/A,formerly smoked,1 +60739,Female,79,1,1,No,Self-employed,Rural,60.94,N/A,never smoked,1 +67432,Female,60,0,0,Yes,Private,Urban,97.43,26.4,smokes,1 +2182,Female,80,1,0,Yes,Self-employed,Rural,91.02,32.9,formerly smoked,1 +40899,Female,78,0,0,Yes,Self-employed,Rural,60.67,N/A,formerly smoked,1 +14431,Male,72,1,0,Yes,Self-employed,Rural,185.49,37.1,never smoked,1 +62466,Female,80,0,0,Yes,Private,Urban,64.44,45,never smoked,1 +36841,Male,78,1,0,Yes,Self-employed,Rural,56.11,25.5,formerly smoked,1 +33486,Female,80,0,0,Yes,Govt_job,Urban,110.66,N/A,Unknown,1 +65105,Male,81,0,0,Yes,Private,Urban,213.22,26.1,Unknown,1 +54567,Female,46,0,0,Yes,Private,Urban,78.18,30.8,never smoked,1 +66204,Male,59,0,0,Yes,Private,Urban,111.04,32,formerly smoked,1 +39912,Female,32,0,0,Yes,Private,Rural,76.13,29.9,smokes,1 +8003,Female,77,0,0,No,Private,Urban,81.32,N/A,Unknown,1 +28378,Male,61,1,1,Yes,Private,Urban,112.24,37.4,smokes,1 +41081,Male,63,0,0,Yes,Private,Rural,137.3,31.7,formerly smoked,1 +16077,Male,63,0,1,Yes,Self-employed,Urban,116.69,34.5,formerly smoked,1 +67895,Female,82,1,1,Yes,Govt_job,Urban,215.94,27.9,formerly smoked,1 +30184,Male,82,0,0,Yes,Private,Rural,86.62,29.5,formerly smoked,1 +66955,Male,61,0,1,Yes,Private,Urban,209.86,N/A,Unknown,1 +24905,Female,65,0,0,Yes,Private,Urban,205.77,46,formerly smoked,1 +66071,Male,51,1,0,Yes,Private,Urban,112.16,42.5,formerly smoked,1 +36255,Male,59,0,0,Yes,Self-employed,Rural,118.03,35.5,smokes,1 +69112,Male,68,1,1,Yes,Private,Rural,271.74,31.1,smokes,1 +23410,Female,72,0,0,Yes,Private,Rural,97.92,26.9,smokes,1 +64373,Male,59,0,0,Yes,Private,Urban,200.62,35.8,formerly smoked,1 +58267,Male,70,1,0,Yes,Private,Rural,242.52,45.5,formerly smoked,1 +35684,Male,69,0,0,Yes,Private,Rural,93.81,28.5,Unknown,1 +18937,Male,79,0,0,Yes,Private,Rural,114.77,N/A,formerly smoked,1 +491,Female,74,0,0,Yes,Self-employed,Urban,74.96,26.6,never smoked,1 +54695,Male,74,0,0,Yes,Private,Urban,167.13,N/A,Unknown,1 +68627,Male,80,1,1,Yes,Private,Urban,175.29,31.5,formerly smoked,1 +8580,Female,77,0,0,Yes,Self-employed,Rural,90,32,never smoked,1 +28484,Female,78,0,0,Yes,Self-employed,Rural,109.47,30.8,never smoked,1 +62019,Male,54,0,0,Yes,Govt_job,Rural,87.85,31.1,smokes,1 +51314,Female,78,0,0,Yes,Private,Urban,106.74,33,formerly smoked,1 +37060,Female,81,0,0,Yes,Private,Rural,80.13,23.4,never smoked,1 +35578,Male,78,0,0,No,Self-employed,Urban,90.19,26.9,never smoked,1 +54921,Male,78,1,0,Yes,Self-employed,Rural,134.8,33.6,Unknown,1 +33454,Female,63,0,0,Yes,Govt_job,Rural,106.58,23.9,Unknown,1 +33943,Female,39,0,0,Yes,Private,Urban,83.24,26.3,never smoked,1 +62439,Female,51,0,0,Yes,Govt_job,Rural,103.43,27.3,formerly smoked,1 +31179,Male,63,0,0,Yes,Private,Urban,208.65,30.7,never smoked,1 +66866,Female,48,0,0,Yes,Private,Urban,74.11,20.5,never smoked,1 +2548,Female,81,0,0,Yes,Self-employed,Urban,95.84,21.5,never smoked,1 +68025,Female,79,0,1,No,Private,Urban,205.33,31,smokes,1 +2390,Male,78,0,0,Yes,Self-employed,Urban,116.1,27.1,never smoked,1 +29552,Female,55,1,1,Yes,Private,Urban,210.4,40,smokes,1 +25904,Female,76,1,1,Yes,Self-employed,Urban,199.86,N/A,smokes,1 +31421,Male,73,0,1,Yes,Govt_job,Rural,219.73,28.6,never smoked,1 +20463,Male,81,1,1,Yes,Private,Urban,250.89,28.1,smokes,1 +68023,Male,79,0,0,Yes,Private,Rural,72.73,28.4,never smoked,1 +12689,Female,63,0,0,Yes,Govt_job,Rural,205.35,42.2,formerly smoked,1 +54724,Female,81,0,0,No,Govt_job,Urban,70.3,25.8,smokes,1 +8899,Male,49,0,0,No,Private,Rural,104.86,31.9,smokes,1 +39186,Female,57,0,1,Yes,Private,Urban,216.58,31,Unknown,1 +32729,Female,81,0,0,Yes,Private,Rural,184.4,27.5,never smoked,1 +39105,Male,74,0,0,Yes,Self-employed,Rural,60.98,N/A,never smoked,1 +31154,Female,39,0,0,Yes,Self-employed,Urban,97.76,29.6,smokes,1 +69959,Female,80,1,0,No,Private,Urban,66.03,35.4,never smoked,1 +10552,Female,81,0,0,Yes,Self-employed,Rural,81.95,16.9,never smoked,1 +12917,Female,79,0,0,Yes,Private,Urban,97.73,21.5,smokes,1 +68356,Female,73,0,0,Yes,Self-employed,Urban,70.94,34.4,never smoked,1 +23368,Female,77,1,0,Yes,Self-employed,Urban,199.84,28,formerly smoked,1 +25974,Male,78,0,0,Yes,Self-employed,Urban,218.46,26.8,Unknown,1 +1210,Female,68,0,0,Yes,Private,Rural,211.06,39.3,Unknown,1 +28493,Male,57,0,0,Yes,Private,Urban,86.3,31.7,Unknown,1 +36857,Male,77,0,0,Yes,Self-employed,Rural,162.14,32.6,formerly smoked,1 +1836,Female,51,1,0,Yes,Private,Urban,88.2,28.4,never smoked,1 +32221,Male,60,0,1,Yes,Private,Urban,91.92,35.9,smokes,1 +10548,Male,66,0,0,Yes,Private,Rural,76.46,21.2,formerly smoked,1 +52282,Male,57,0,0,Yes,Private,Rural,197.28,34.5,formerly smoked,1 +45535,Male,68,0,0,Yes,Private,Rural,233.94,42.4,never smoked,1 +40460,Female,68,1,1,Yes,Private,Urban,247.51,40.5,formerly smoked,1 +17739,Male,57,0,0,Yes,Private,Rural,84.96,36.7,Unknown,1 +49669,Female,14,0,0,No,children,Rural,57.93,30.9,Unknown,1 +27153,Female,75,0,0,Yes,Self-employed,Rural,78.8,29.3,formerly smoked,1 +34060,Male,71,1,0,Yes,Self-employed,Rural,87.8,N/A,Unknown,1 +43424,Female,78,0,0,Yes,Private,Rural,78.81,19.6,Unknown,1 +30669,Male,3,0,0,No,children,Rural,95.12,18,Unknown,0 +30468,Male,58,1,0,Yes,Private,Urban,87.96,39.2,never smoked,0 +16523,Female,8,0,0,No,Private,Urban,110.89,17.6,Unknown,0 +56543,Female,70,0,0,Yes,Private,Rural,69.04,35.9,formerly smoked,0 +46136,Male,14,0,0,No,Never_worked,Rural,161.28,19.1,Unknown,0 +32257,Female,47,0,0,Yes,Private,Urban,210.95,50.1,Unknown,0 +52800,Female,52,0,0,Yes,Private,Urban,77.59,17.7,formerly smoked,0 +41413,Female,75,0,1,Yes,Self-employed,Rural,243.53,27,never smoked,0 +15266,Female,32,0,0,Yes,Private,Rural,77.67,32.3,smokes,0 +28674,Female,74,1,0,Yes,Self-employed,Urban,205.84,54.6,never smoked,0 +10460,Female,79,0,0,Yes,Govt_job,Urban,77.08,35,Unknown,0 +64908,Male,79,0,1,Yes,Private,Urban,57.08,22,formerly smoked,0 +63884,Female,37,0,0,Yes,Private,Rural,162.96,39.4,never smoked,0 +37893,Female,37,0,0,Yes,Private,Rural,73.5,26.1,formerly smoked,0 +67855,Female,40,0,0,Yes,Private,Rural,95.04,42.4,never smoked,0 +25774,Male,35,0,0,No,Private,Rural,85.37,33,never smoked,0 +19584,Female,20,0,0,No,Private,Urban,84.62,19.7,smokes,0 +24447,Female,42,0,0,Yes,Private,Rural,82.67,22.5,never smoked,0 +49589,Female,44,0,0,Yes,Govt_job,Urban,57.33,24.6,smokes,0 +17986,Female,79,0,1,Yes,Self-employed,Urban,67.84,25.2,smokes,0 +29217,Female,65,1,0,Yes,Private,Rural,75.7,41.8,Unknown,0 +72911,Female,57,1,0,Yes,Private,Rural,129.54,60.9,smokes,0 +47175,Female,49,0,0,Yes,Private,Rural,60.22,31.5,smokes,0 +4057,Male,71,0,0,Yes,Private,Urban,198.21,27.3,formerly smoked,0 +48588,Female,59,0,0,Yes,Private,Urban,109.82,23.7,never smoked,0 +70336,Female,25,0,0,Yes,Private,Urban,60.84,24.5,never smoked,0 +66767,Female,67,0,0,Yes,Govt_job,Rural,94.61,28.4,smokes,0 +45801,Female,38,0,0,No,Private,Rural,97.49,26.9,never smoked,0 +36275,Female,54,0,0,Yes,Private,Rural,206.72,26.7,never smoked,0 +11577,Female,70,0,0,Yes,Self-employed,Rural,214.45,31.2,never smoked,0 +67210,Male,27,0,0,Yes,Self-employed,Urban,82.9,25,Unknown,0 +29908,Female,47,0,0,Yes,Private,Urban,103.26,25.4,Unknown,0 +45222,Male,58,1,0,No,Private,Urban,55.78,27.5,smokes,0 +33759,Female,3,0,0,No,children,Urban,73.74,16,Unknown,0 +40311,Female,58,0,0,Yes,Private,Urban,149.75,27,Unknown,0 +26325,Male,14,0,0,No,Govt_job,Urban,82.34,31.6,Unknown,0 +65460,Female,32,0,0,Yes,Private,Rural,62.6,25.1,formerly smoked,0 +36811,Female,23,0,0,No,Private,Urban,94.09,30.9,never smoked,0 +71750,Female,55,0,0,Yes,Private,Urban,55.42,24.8,Unknown,0 +70970,Female,17,0,0,No,Self-employed,Urban,82.18,23.4,Unknown,0 +42203,Male,59,0,0,Yes,Private,Urban,117.92,29.4,smokes,0 +55680,Male,13,0,0,No,children,Urban,114.84,18.3,Unknown,0 +11014,Male,4,0,0,No,children,Rural,79.17,20,Unknown,0 +44338,Female,16,0,0,No,children,Rural,110.63,19.5,Unknown,0 +20980,Male,67,0,0,Yes,Private,Urban,190.7,36,formerly smoked,0 +34974,Female,22,0,0,No,Private,Rural,79.81,27.7,Unknown,0 +71379,Female,45,0,0,Yes,Govt_job,Urban,113.63,27.5,smokes,0 +58261,Female,66,0,0,Yes,Private,Rural,141.24,28.5,never smoked,0 +67318,Male,58,1,0,Yes,Govt_job,Rural,56.96,26.8,smokes,0 +28526,Male,69,0,0,Yes,Self-employed,Rural,203.04,33.6,never smoked,0 +8831,Female,58,0,0,Yes,Private,Rural,94.3,29.1,Unknown,0 +65199,Female,53,0,0,Yes,Self-employed,Urban,81.51,28.5,Unknown,0 +43454,Female,78,0,0,No,Self-employed,Urban,137.74,34.9,formerly smoked,0 +7282,Male,44,0,0,Yes,Private,Rural,81.84,25.1,never smoked,0 +18518,Male,66,0,0,Yes,Private,Rural,242.3,35.3,smokes,0 +41648,Male,27,0,0,Yes,Private,Rural,102.64,26.4,smokes,0 +49003,Male,43,0,0,Yes,Private,Urban,146.01,31.5,smokes,0 +16371,Female,13,0,0,No,children,Urban,75.42,40.1,Unknown,0 +42807,Male,51,0,0,Yes,Govt_job,Urban,220.49,43.1,Unknown,0 +40181,Female,30,0,0,Yes,Private,Urban,61.45,36.7,smokes,0 +66174,Male,46,0,0,Yes,Self-employed,Rural,88.19,29.3,formerly smoked,0 +45538,Female,43,0,0,Yes,Self-employed,Rural,115.22,21.2,Unknown,0 +6319,Female,79,0,0,Yes,Private,Urban,97.93,31.2,Unknown,0 +68249,Female,27,0,0,Yes,Private,Rural,85.6,21.4,Unknown,0 +55232,Female,38,0,0,Yes,Private,Rural,79.83,27.9,smokes,0 +11120,Female,78,1,0,Yes,Private,Urban,218.46,34.3,never smoked,0 +41940,Male,57,0,1,Yes,Private,Rural,62.2,31,formerly smoked,0 +72214,Male,61,0,0,Yes,Self-employed,Urban,69.15,27.7,formerly smoked,0 +37089,Female,37,1,0,Yes,Self-employed,Rural,127.71,36,never smoked,0 +68614,Female,48,0,0,Yes,Private,Rural,216.7,38.7,formerly smoked,0 +1686,Female,29,0,0,No,Private,Urban,71.89,27.6,never smoked,0 +22284,Male,22,0,0,No,Private,Rural,103.56,25.1,Unknown,0 +39038,Male,11,0,0,No,children,Rural,79.03,16.5,Unknown,0 +21956,Female,22,0,0,No,Private,Urban,69.94,22.8,Unknown,0 +52134,Male,53,0,0,Yes,Private,Rural,90.12,35.4,Unknown,0 +30171,Male,27,0,0,No,Govt_job,Urban,95.1,24.3,formerly smoked,0 +4480,Male,76,0,0,Yes,Private,Rural,234.58,34.3,formerly smoked,0 +2982,Female,57,1,0,Yes,Private,Rural,235.85,40.1,never smoked,0 +65535,Male,8,0,0,No,children,Rural,78.05,25.7,Unknown,0 +29865,Female,21,0,0,No,Private,Rural,89.44,21.9,smokes,0 +54918,Female,18,0,0,No,Private,Rural,111.38,38.4,smokes,0 +59368,Female,78,0,0,Yes,Private,Urban,243.5,26.1,never smoked,0 +65836,Female,78,1,0,Yes,Private,Urban,182.2,30.5,formerly smoked,0 +21130,Male,33,0,0,Yes,Self-employed,Urban,229.92,25.9,smokes,0 +1703,Female,52,0,0,Yes,Private,Urban,82.24,54.7,formerly smoked,0 +16934,Female,51,0,0,Yes,Self-employed,Rural,89.84,29.9,Unknown,0 +28799,Male,11,0,0,No,children,Rural,90.69,18.6,Unknown,0 +32689,Female,48,0,0,Yes,Private,Urban,84.38,27.1,Unknown,0 +56357,Female,82,0,1,No,Private,Urban,215.6,24.9,never smoked,0 +18051,Female,54,0,0,Yes,Govt_job,Rural,91.61,25.2,never smoked,0 +40840,Female,49,0,0,Yes,Private,Rural,138.16,19.4,never smoked,0 +10449,Female,24,0,0,Yes,Private,Urban,75.23,29,never smoked,0 +38805,Female,37,0,0,Yes,Private,Rural,75.18,48.2,formerly smoked,0 +31091,Male,34,0,1,Yes,Private,Urban,106.23,N/A,formerly smoked,0 +45053,Male,64,0,0,Yes,Govt_job,Urban,239.64,34.6,formerly smoked,0 +61837,Female,66,0,0,Yes,Self-employed,Urban,58.95,24.6,never smoked,0 +9487,Female,23,0,0,No,Private,Urban,99.92,25.8,never smoked,0 +49713,Male,68,0,0,Yes,Private,Rural,116.23,26.1,never smoked,0 +17608,Female,55,0,0,Yes,Govt_job,Urban,118.82,29,formerly smoked,0 +28102,Female,25,0,0,No,Private,Rural,66.3,27.2,never smoked,0 +1506,Female,48,0,0,No,Govt_job,Urban,101.41,20.7,smokes,0 +28333,Female,79,1,1,Yes,Self-employed,Urban,200.28,30,formerly smoked,0 +62608,Female,47,0,0,Yes,Private,Urban,136.8,37.3,never smoked,0 +40670,Female,20,0,0,No,Private,Rural,96.57,34.1,never smoked,0 +4630,Female,60,0,0,Yes,Private,Rural,66.42,23.6,never smoked,0 +21284,Female,32,0,0,Yes,Private,Urban,98.09,25.2,smokes,0 +49421,Female,66,1,0,Yes,Private,Rural,205.23,39.5,never smoked,0 +5973,Male,43,0,0,Yes,Private,Urban,86.78,23.5,smokes,0 +42996,Female,36,0,0,No,Govt_job,Rural,126.82,23.3,never smoked,0 +66333,Male,52,0,0,Yes,Self-employed,Urban,78.4,64.8,never smoked,0 +46785,Female,29,0,0,Yes,Private,Urban,63.69,28.1,smokes,0 +54312,Female,76,1,0,Yes,Self-employed,Urban,209.58,N/A,never smoked,0 +21408,Female,39,0,0,Yes,Self-employed,Rural,89.86,24.4,never smoked,0 +49916,Male,76,0,0,Yes,Private,Rural,110.99,29.8,formerly smoked,0 +7559,Female,0.64,0,0,No,children,Urban,83.82,24.9,Unknown,0 +71038,Male,34,0,0,Yes,Private,Urban,137.96,35.1,Unknown,0 +69037,Female,72,0,0,Yes,Private,Rural,210.78,32.3,formerly smoked,0 +58617,Female,43,0,0,Yes,Self-employed,Rural,118.89,43.6,never smoked,0 +69064,Female,57,0,0,No,Self-employed,Rural,72.55,21,never smoked,0 +9404,Female,44,0,0,Yes,Private,Rural,107.41,47.3,never smoked,0 +8171,Female,4,0,0,No,children,Rural,93.25,16.6,Unknown,0 +28286,Male,44,0,0,Yes,Private,Rural,74.91,37.5,never smoked,0 +43232,Female,18,0,0,No,Private,Urban,80.05,24.2,never smoked,0 +10159,Male,41,0,0,Yes,Private,Urban,99.8,31.6,never smoked,0 +34402,Female,23,0,0,Yes,Private,Rural,91.97,21.6,formerly smoked,0 +58282,Female,53,0,0,Yes,Govt_job,Rural,64.4,31,smokes,0 +64489,Male,56,0,0,Yes,Govt_job,Rural,73.02,31.1,never smoked,0 +22706,Female,0.88,0,0,No,children,Rural,88.11,15.5,Unknown,0 +71539,Male,25,0,0,No,Private,Urban,138.29,27.3,Unknown,0 +28637,Female,14,0,0,No,children,Rural,72.36,20.5,Unknown,0 +64553,Female,53,0,0,Yes,Private,Rural,68.76,35.6,formerly smoked,0 +31741,Male,4,0,0,No,children,Rural,106.22,16.7,Unknown,0 +69936,Female,39,0,0,Yes,Private,Urban,101.52,41.8,never smoked,0 +46527,Male,53,1,1,Yes,Govt_job,Rural,109.51,41.9,never smoked,0 +22537,Male,5,0,0,No,children,Rural,85.84,16.4,Unknown,0 +50611,Male,4,0,0,No,children,Rural,110.15,17.1,Unknown,0 +13547,Female,37,0,0,Yes,Private,Urban,91.72,29.2,never smoked,0 +63732,Male,70,1,0,Yes,Self-employed,Urban,251.6,27.1,never smoked,0 +9608,Male,24,0,0,No,Private,Urban,123.1,37.9,never smoked,0 +10504,Male,55,0,0,Yes,Govt_job,Rural,97.4,44.6,formerly smoked,0 +37090,Female,70,0,0,Yes,Private,Rural,68.34,22.8,formerly smoked,0 +60148,Male,34,0,0,Yes,Private,Urban,80.81,33.2,never smoked,0 +9637,Male,26,0,0,Yes,Private,Rural,120.31,22.3,smokes,0 +44862,Female,39,0,0,Yes,Private,Rural,83.51,26.4,never smoked,0 +52173,Male,38,0,0,No,Self-employed,Urban,74.09,39.6,never smoked,0 +5708,Female,20,0,0,No,Private,Urban,91.6,28.1,never smoked,0 +23462,Female,17,0,0,No,Private,Urban,87.52,39.2,never smoked,0 +2374,Male,60,1,0,Yes,Private,Rural,213.37,36,never smoked,0 +11091,Female,75,0,0,Yes,Self-employed,Rural,75.39,37.8,never smoked,0 +70374,Female,31,0,0,Yes,Private,Rural,122.41,40.3,smokes,0 +15528,Male,58,1,0,Yes,Private,Rural,223.36,41.5,formerly smoked,0 +65357,Female,5,0,0,No,children,Rural,84.59,17.7,Unknown,0 +49465,Female,13,0,0,No,children,Urban,70.16,21.2,never smoked,0 +31143,Female,22,0,0,No,Private,Rural,107.52,41.6,Unknown,0 +66972,Female,52,0,0,Yes,Govt_job,Urban,80.88,23.8,smokes,0 +55810,Female,61,0,0,Yes,Self-employed,Rural,93.48,23.7,Unknown,0 +37031,Female,78,0,1,Yes,Govt_job,Urban,70.21,24.8,never smoked,0 +34608,Male,57,0,0,Yes,Private,Rural,86.67,39,Unknown,0 +36007,Female,21,0,0,Yes,Private,Rural,101.37,37.9,never smoked,0 +14123,Female,22,0,0,Yes,Private,Rural,105.22,31.1,never smoked,0 +48298,Female,80,0,0,Yes,Private,Rural,70.31,23.2,Unknown,0 +54975,Male,7,0,0,No,Self-employed,Rural,64.06,18.9,Unknown,0 +27213,Male,64,1,0,Yes,Self-employed,Rural,178.29,36.1,never smoked,0 +44749,Female,64,0,0,No,Govt_job,Rural,81.6,36.3,smokes,0 +46468,Female,38,0,0,Yes,Self-employed,Urban,147.48,40.5,Unknown,0 +10913,Male,12,0,0,No,children,Urban,86.86,25.4,never smoked,0 +51983,Female,33,0,0,Yes,Private,Rural,71.16,46.5,smokes,0 +27029,Female,3,0,0,No,children,Urban,73.2,16.8,Unknown,0 +22320,Female,37,0,0,Yes,Private,Urban,203.81,46.6,never smoked,0 +45719,Female,22,0,0,No,Private,Rural,82,26.4,never smoked,0 +129,Female,24,0,0,No,Private,Urban,97.55,26.2,never smoked,0 +20351,Male,75,0,0,Yes,Govt_job,Urban,94.29,35.2,Unknown,0 +530,Female,12,0,0,No,children,Rural,75.22,20.9,Unknown,0 +55351,Male,63,0,0,Yes,Private,Urban,90.07,36.8,Unknown,0 +67431,Female,52,0,0,Yes,Private,Urban,73.73,34.4,formerly smoked,0 +20546,Female,68,0,0,Yes,Private,Urban,79.58,22.2,never smoked,0 +6107,Female,5,0,0,No,children,Urban,77.88,13.8,Unknown,0 +50305,Female,56,1,0,Yes,Private,Rural,205.26,40.3,never smoked,0 +52342,Female,43,0,0,Yes,Private,Rural,58.63,28.4,smokes,0 +59906,Female,40,0,0,Yes,Private,Rural,139.9,31.7,smokes,0 +59729,Male,53,0,0,Yes,Private,Urban,211.03,34.2,formerly smoked,0 +53144,Female,52,0,1,Yes,Private,Urban,72.79,54.7,never smoked,0 +3655,Male,31,0,0,Yes,Govt_job,Rural,91.65,24.6,formerly smoked,0 +11999,Female,63,0,0,Yes,Govt_job,Rural,79.92,N/A,smokes,0 +12985,Female,69,0,0,Yes,Self-employed,Rural,225.47,36.9,never smoked,0 +38119,Male,64,0,0,Yes,Govt_job,Urban,94.48,31.1,never smoked,0 +3355,Female,64,0,0,Yes,Private,Urban,82.34,31.9,never smoked,0 +22091,Female,62,0,0,Yes,Self-employed,Urban,180.63,31.8,formerly smoked,0 +5010,Female,2,0,0,No,children,Rural,92.48,18,Unknown,0 +67177,Male,53,0,0,Yes,Private,Rural,116.66,28.5,formerly smoked,0 +58600,Male,65,1,0,Yes,Private,Urban,112.09,29.5,never smoked,0 +56681,Female,22,0,0,No,Private,Urban,130.34,22,never smoked,0 +56716,Female,26,0,0,No,Private,Urban,82.59,29.4,never smoked,0 +65946,Male,53,0,0,Yes,Private,Rural,123.87,28.8,Unknown,0 +61350,Male,20,0,0,No,Govt_job,Rural,98.7,26.2,Unknown,0 +17291,Female,63,1,0,Yes,Self-employed,Rural,227.1,26.9,Unknown,0 +61465,Male,13,0,0,No,children,Rural,55.39,23.2,Unknown,0 +18108,Male,21,0,0,No,Govt_job,Urban,66.07,27.9,Unknown,0 +48368,Female,65,0,0,Yes,Self-employed,Rural,104.21,36.8,never smoked,0 +36471,Male,65,0,0,Yes,Private,Urban,145.15,28.9,Unknown,0 +15689,Male,42,0,0,Yes,Govt_job,Urban,68.19,31,never smoked,0 +8233,Male,72,0,1,Yes,Self-employed,Rural,97.53,29.4,smokes,0 +46436,Male,13,0,0,No,children,Urban,122.31,15.3,never smoked,0 +23221,Male,29,0,0,No,Private,Urban,83.51,37.1,never smoked,0 +31830,Male,59,0,0,Yes,Self-employed,Urban,86.46,30.5,Unknown,0 +15296,Female,42,0,0,Yes,Private,Rural,112.06,38.2,never smoked,0 +7351,Male,13,0,0,No,Private,Urban,92.14,23.2,never smoked,0 +66196,Male,75,0,1,No,Private,Rural,201.76,30.2,formerly smoked,0 +17718,Female,33,1,0,Yes,Private,Urban,74.44,45.2,smokes,0 +31164,Female,43,0,0,Yes,Private,Rural,95.93,21.8,Unknown,0 +48272,Female,11,0,0,No,children,Rural,87.51,24.4,Unknown,0 +2893,Female,7,0,0,No,children,Rural,72.35,17,Unknown,0 +34376,Female,16,0,0,No,children,Rural,113.47,19.5,Unknown,0 +18498,Female,44,0,0,No,Private,Rural,103.78,49.8,formerly smoked,0 +56735,Female,78,0,0,Yes,Self-employed,Rural,115.43,27.8,never smoked,0 +8595,Male,25,0,0,Yes,Private,Rural,95.59,25.1,never smoked,0 +621,Male,69,0,0,Yes,Private,Rural,101.52,26.8,smokes,0 +1307,Female,61,1,0,Yes,Private,Rural,170.05,60.2,smokes,0 +35846,Female,43,1,0,No,Self-employed,Rural,217.3,27.5,never smoked,0 +28645,Female,38,1,0,Yes,Private,Urban,196.01,28.1,never smoked,0 +5835,Male,68,0,0,Yes,Private,Urban,92.21,27.3,Unknown,0 +46474,Male,26,0,0,Yes,Private,Rural,100.09,27.4,never smoked,0 +69687,Female,18,0,0,No,Self-employed,Rural,93.88,22.2,never smoked,0 +2953,Female,43,0,0,Yes,Private,Rural,75.05,22.9,smokes,0 +11838,Female,43,0,0,Yes,Govt_job,Rural,70.08,26.6,never smoked,0 +9179,Female,32,0,0,No,Private,Urban,74.2,23,smokes,0 +38165,Female,81,0,0,No,Private,Rural,69.01,32.6,never smoked,0 +63050,Male,25,0,0,No,Private,Rural,96.17,22.1,Unknown,0 +22470,Male,61,0,0,Yes,Govt_job,Urban,184.15,N/A,Unknown,0 +71585,Female,66,0,0,Yes,Govt_job,Urban,87.24,22.5,formerly smoked,0 +15649,Male,54,1,0,Yes,Private,Rural,198.69,N/A,smokes,0 +11974,Male,11,0,0,No,children,Urban,82.58,25.5,Unknown,0 +3009,Female,53,0,0,Yes,Self-employed,Rural,96.88,31.4,Unknown,0 +32361,Female,78,0,1,Yes,Self-employed,Urban,73.32,26,Unknown,0 +41523,Male,9,0,0,No,children,Rural,94.59,20,Unknown,0 +53910,Female,48,0,0,Yes,Self-employed,Rural,132.08,31.6,smokes,0 +67548,Female,31,0,0,Yes,Private,Urban,98.99,31.2,never smoked,0 +50441,Male,20,0,0,No,Private,Rural,104.48,21.7,never smoked,0 +16927,Male,21,0,0,Yes,Private,Rural,98.01,24.2,Unknown,0 +28265,Female,42,0,0,Yes,Self-employed,Rural,79.14,25,formerly smoked,0 +33404,Male,35,0,0,Yes,Private,Urban,89.32,36.7,Unknown,0 +50965,Male,53,0,0,No,Private,Rural,65.24,28.9,Unknown,0 +21077,Male,60,0,0,Yes,Private,Rural,80.98,29.7,formerly smoked,0 +12982,Male,74,0,0,Yes,Self-employed,Urban,186.17,44.3,Unknown,0 +66570,Female,23,0,0,No,Private,Rural,69.24,51,never smoked,0 +29158,Female,55,0,0,Yes,Private,Rural,111.19,39.7,formerly smoked,0 +34299,Female,71,0,0,Yes,Private,Urban,93.28,34.7,never smoked,0 +54375,Male,5,0,0,No,children,Rural,122.19,35,Unknown,0 +37832,Female,14,0,0,No,children,Rural,129.53,21.3,never smoked,0 +21058,Female,15,0,0,No,children,Rural,114.53,29.1,Unknown,0 +7696,Female,66,0,0,No,Private,Urban,93.73,23.9,smokes,0 +34668,Female,56,0,0,Yes,Private,Urban,77.49,36,formerly smoked,0 +68483,Female,60,0,0,Yes,Private,Urban,65.38,41.2,formerly smoked,0 +6072,Female,57,0,0,Yes,Private,Urban,94.18,27.1,never smoked,0 +51112,Male,29,0,0,Yes,Self-employed,Urban,118.7,33.2,Unknown,0 +69673,Female,76,0,0,Yes,Govt_job,Urban,96.29,25.4,smokes,0 +71238,Male,52,1,0,Yes,Private,Rural,74.64,30.7,smokes,0 +63958,Female,42,0,0,Yes,Private,Urban,96.99,34.8,formerly smoked,0 +34511,Female,71,0,0,Yes,Private,Rural,100.61,19.2,Unknown,0 +24892,Male,64,0,0,Yes,Private,Rural,97.08,31.7,Unknown,0 +29496,Female,39,0,0,Yes,Private,Rural,84.79,35.7,never smoked,0 +19939,Female,46,0,0,Yes,Private,Rural,78.75,37.8,formerly smoked,0 +27832,Female,51,0,0,Yes,Private,Rural,82.93,29.7,smokes,0 +27757,Male,31,0,0,Yes,Private,Urban,88.78,35.8,smokes,0 +31279,Male,22,0,0,No,Private,Urban,122.1,23.6,smokes,0 +25099,Male,41,0,0,No,Govt_job,Rural,74.81,39.7,smokes,0 +67733,Female,28,0,0,Yes,Private,Urban,183.45,40.5,smokes,0 +9201,Female,44,0,0,Yes,Self-employed,Urban,114.94,21.4,never smoked,0 +33123,Female,68,0,0,Yes,Self-employed,Rural,104.38,40.8,formerly smoked,0 +21713,Male,49,0,0,Yes,Private,Urban,102.91,24.7,Unknown,0 +22622,Male,10,0,0,No,children,Rural,108.79,21,Unknown,0 +6726,Female,31,0,0,Yes,Private,Urban,73.31,45,never smoked,0 +17242,Male,67,0,0,Yes,Self-employed,Urban,68.52,26.2,never smoked,0 +16380,Male,40,0,0,Yes,Private,Rural,89.77,N/A,smokes,0 +9729,Male,70,0,0,Yes,Private,Urban,102.64,28.3,never smoked,0 +56974,Female,38,0,0,Yes,Govt_job,Urban,70.92,41.6,never smoked,0 +29933,Female,5,0,0,No,children,Rural,86.11,19,Unknown,0 +65574,Female,54,0,0,Yes,Private,Urban,129.16,32.4,never smoked,0 +17019,Female,30,0,0,Yes,Govt_job,Urban,113.85,34,never smoked,0 +41800,Female,23,0,0,Yes,Private,Rural,79.35,39.4,formerly smoked,0 +7621,Female,31,0,0,Yes,Private,Rural,80.79,28.7,Unknown,0 +6855,Male,72,1,0,Yes,Self-employed,Urban,114.01,31.8,formerly smoked,0 +5374,Male,23,0,0,No,Private,Rural,93.74,31.2,never smoked,0 +31564,Female,25,0,0,Yes,Private,Rural,90.65,20.9,Unknown,0 +26028,Male,51,0,0,Yes,Private,Urban,98.41,32.1,never smoked,0 +71808,Female,20,0,0,No,Private,Urban,127.18,31,Unknown,0 +56998,Female,12,0,0,No,children,Urban,138.06,23.1,Unknown,0 +14712,Male,57,0,0,Yes,Private,Urban,89.44,26.7,never smoked,0 +23094,Male,65,0,0,Yes,Self-employed,Urban,105.61,27.9,Unknown,0 +43134,Female,16,0,0,No,Private,Rural,155.43,27.3,never smoked,0 +40622,Female,43,0,0,Yes,Private,Rural,80.83,51.5,Unknown,0 +39383,Female,30,0,0,Yes,Private,Urban,80.19,20.4,never smoked,0 +63606,Male,29,0,0,Yes,Govt_job,Urban,60.34,29.6,formerly smoked,0 +46438,Female,54,0,0,Yes,Self-employed,Urban,79.3,30.6,formerly smoked,0 +65144,Female,57,0,0,Yes,Self-employed,Urban,98.44,33.6,Unknown,0 +545,Male,42,0,0,Yes,Private,Rural,210.48,71.9,never smoked,0 +36331,Male,18,0,0,No,Private,Rural,70.34,24.2,Unknown,0 +42359,Male,9,0,0,No,children,Urban,122.22,17.7,Unknown,0 +20751,Female,26,0,0,Yes,Private,Rural,75.29,22.6,smokes,0 +34641,Male,40,0,0,No,Private,Rural,100.35,28.1,never smoked,0 +15791,Male,77,0,0,Yes,Private,Urban,193.83,26.5,never smoked,0 +68241,Female,15,0,0,No,children,Urban,126.96,28.7,Unknown,0 +67780,Female,76,0,0,Yes,Private,Urban,183.34,39.5,formerly smoked,0 +68275,Male,52,0,0,Yes,Private,Urban,247.69,35.1,Unknown,0 +13129,Female,55,0,0,Yes,Self-employed,Rural,76.2,27.9,never smoked,0 +60902,Male,5,0,0,No,children,Rural,71.43,19.3,Unknown,0 +37629,Female,55,0,0,No,Private,Rural,93.36,28.4,never smoked,0 +58439,Male,36,0,0,No,Private,Urban,61.29,26.7,never smoked,0 +62936,Male,46,0,0,Yes,Private,Urban,103.62,40.9,Unknown,0 +29010,Male,5,0,0,No,children,Rural,100.52,17.2,Unknown,0 +36561,Female,39,0,0,Yes,Govt_job,Rural,191.47,28.3,never smoked,0 +44912,Male,12,0,0,No,children,Urban,67.06,16.1,Unknown,0 +59829,Male,67,0,1,Yes,Private,Urban,144.1,27.6,never smoked,0 +45238,Female,1.8,0,0,No,children,Urban,58.26,16.5,Unknown,0 +47811,Female,72,0,0,Yes,Self-employed,Urban,239.82,35.8,never smoked,0 +61511,Female,0.32,0,0,No,children,Rural,73.71,16.2,Unknown,0 +55424,Female,64,1,0,Yes,Private,Rural,88.53,24.6,never smoked,0 +36942,Male,27,0,0,No,Private,Urban,114.79,32,Unknown,0 +61697,Male,25,0,0,No,Private,Rural,113.8,35.3,formerly smoked,0 +55138,Female,81,0,0,No,Self-employed,Urban,71.91,19.2,Unknown,0 +39399,Female,32,0,0,No,Self-employed,Urban,65.3,40.4,never smoked,0 +17148,Male,57,0,0,Yes,Private,Urban,189.57,30.7,never smoked,0 +721,Female,52,1,0,Yes,Self-employed,Urban,114.25,24.3,formerly smoked,0 +40448,Male,54,0,0,Yes,Private,Urban,81.26,26.4,formerly smoked,0 +58007,Female,36,0,0,Yes,Private,Urban,87.88,34.7,smokes,0 +15095,Male,18,0,0,No,Private,Urban,112.17,31.7,Unknown,0 +11960,Male,45,0,0,Yes,Private,Rural,99.97,35.6,never smoked,0 +56179,Male,29,0,0,No,Private,Urban,207.58,22.8,smokes,0 +24592,Female,51,1,0,Yes,Private,Urban,109.16,28,smokes,0 +67744,Female,23,0,0,No,Private,Urban,74.46,35.6,formerly smoked,0 +8328,Female,54,0,0,Yes,Private,Rural,118.51,40.6,never smoked,0 +32437,Female,54,0,0,Yes,Self-employed,Urban,107.47,29.3,formerly smoked,0 +44315,Male,18,0,0,No,Self-employed,Rural,182.86,21,Unknown,0 +68245,Female,26,0,0,Yes,Private,Rural,59.17,20,Unknown,0 +25483,Male,72,0,0,Yes,Private,Rural,215.64,26.7,formerly smoked,0 +47732,Male,5,0,0,No,children,Rural,163.7,18.4,Unknown,0 +50118,Female,65,0,1,Yes,Private,Rural,196.36,34.5,formerly smoked,0 +55420,Female,42,0,0,No,Private,Rural,139.77,27.7,Unknown,0 +55709,Female,47,0,0,Yes,Self-employed,Urban,141.23,21.1,never smoked,0 +15311,Female,24,0,0,Yes,Private,Urban,89.99,24.4,formerly smoked,0 +53660,Male,57,0,0,Yes,Private,Urban,108.53,19.4,smokes,0 +56553,Male,51,0,0,Yes,Private,Urban,63.61,42.3,Unknown,0 +30480,Male,48,0,0,Yes,Private,Urban,85.54,32.2,smokes,0 +31988,Female,56,0,0,Yes,Private,Urban,100.83,26.8,never smoked,0 +59807,Female,30,0,0,Yes,Private,Urban,59.82,25.4,never smoked,0 +45585,Female,63,1,0,Yes,Private,Urban,105.95,23.5,smokes,0 +39639,Female,46,0,0,Yes,Private,Rural,188.11,50.2,smokes,0 +52063,Female,53,0,0,Yes,Self-employed,Urban,71.15,26.1,formerly smoked,0 +40639,Female,1.08,0,0,No,children,Rural,60.53,17.5,Unknown,0 +31090,Male,15,0,0,No,children,Rural,205.5,24.2,never smoked,0 +64174,Female,59,1,0,Yes,Private,Urban,204.86,30.8,never smoked,0 +8544,Female,24,0,0,No,Self-employed,Rural,115.03,23.4,never smoked,0 +27377,Male,53,0,0,Yes,Private,Rural,79.87,30.9,never smoked,0 +3361,Female,39,0,0,Yes,Govt_job,Rural,97.89,23.6,never smoked,0 +61408,Male,23,0,0,No,Never_worked,Urban,125.26,18.7,never smoked,0 +33552,Male,31,0,0,Yes,Private,Rural,114.32,27.7,smokes,0 +31364,Male,5,0,0,No,children,Urban,92.23,16.7,Unknown,0 +7446,Male,44,0,0,Yes,Private,Urban,83.51,31.2,never smoked,0 +9906,Female,1.8,0,0,No,children,Urban,102.34,17,Unknown,0 +65130,Male,40,0,0,Yes,Private,Rural,144.48,29.8,smokes,0 +27794,Male,7,0,0,No,children,Rural,88.39,19.7,Unknown,0 +48993,Female,56,0,0,Yes,Private,Rural,228.08,29.1,Unknown,0 +30753,Male,42,0,0,Yes,Govt_job,Urban,93.79,27.2,never smoked,0 +46809,Male,48,0,0,Yes,Private,Rural,147.14,22.3,Unknown,0 +22853,Male,82,0,0,No,Self-employed,Rural,106.43,27,smokes,0 +12465,Female,52,0,0,No,Private,Rural,88.04,42.1,never smoked,0 +64849,Female,42,0,0,Yes,Private,Urban,92.2,34.2,Unknown,0 +39659,Female,73,0,0,Yes,Govt_job,Urban,219.53,40.9,never smoked,0 +24183,Female,55,0,0,Yes,Govt_job,Rural,75.56,29.4,smokes,0 +71533,Male,50,0,0,Yes,Private,Urban,158.31,32.8,formerly smoked,0 +35565,Male,43,0,0,Yes,Private,Urban,111.43,21.9,smokes,0 +34558,Male,33,0,0,Yes,Private,Rural,219.97,39.6,never smoked,0 +42553,Female,80,0,0,Yes,Private,Rural,148.91,28.3,never smoked,0 +39601,Female,33,0,0,Yes,Private,Urban,69.4,47.8,never smoked,0 +46891,Female,74,0,0,Yes,Private,Rural,68.34,39.3,Unknown,0 +38987,Male,65,0,1,Yes,Self-employed,Urban,58.37,28,smokes,0 +21886,Female,40,0,0,Yes,Private,Urban,71.2,27.1,never smoked,0 +5353,Male,52,0,1,No,Private,Rural,101.5,31.2,smokes,0 +44300,Female,66,0,0,Yes,Govt_job,Urban,92.04,23.1,never smoked,0 +48144,Female,20,0,0,No,Govt_job,Rural,73,20.8,never smoked,0 +46218,Female,51,0,0,Yes,Self-employed,Urban,111.15,34.1,smokes,0 +39745,Female,60,0,0,Yes,Self-employed,Rural,58.65,30.1,never smoked,0 +13517,Male,59,0,0,Yes,Private,Urban,100.54,35.8,never smoked,0 +36355,Male,58,0,0,Yes,Govt_job,Rural,111.73,34.6,never smoked,0 +22678,Female,42,0,0,Yes,Govt_job,Urban,97.78,29.8,Unknown,0 +2532,Male,28,0,0,No,Private,Rural,85.79,26.7,Unknown,0 +52512,Male,57,0,0,Yes,Private,Rural,98.54,30.2,never smoked,0 +3579,Female,66,0,1,Yes,Private,Urban,94.62,29.7,formerly smoked,0 +3130,Female,56,0,0,Yes,Private,Rural,112.43,54.6,never smoked,0 +5545,Male,48,0,0,Yes,Self-employed,Urban,99.67,23.3,formerly smoked,0 +63693,Male,37,0,0,No,Private,Urban,67.39,35.6,Unknown,0 +34363,Female,27,0,0,Yes,Private,Urban,95.12,27,never smoked,0 +23650,Male,15,0,0,No,children,Rural,85.06,21.6,never smoked,0 +53515,Male,61,0,0,Yes,Private,Rural,214.05,29.4,formerly smoked,0 +33528,Female,80,0,1,Yes,Self-employed,Urban,79.09,22.8,never smoked,0 +23046,Female,43,0,0,Yes,Self-employed,Urban,98.09,17.3,never smoked,0 +11068,Male,53,0,0,Yes,Self-employed,Urban,76.36,29.8,Unknown,0 +62233,Female,70,0,0,No,Self-employed,Urban,98.42,36.4,formerly smoked,0 +7291,Female,58,0,0,No,Private,Urban,82.01,34.7,formerly smoked,0 +36814,Female,49,0,0,Yes,Private,Rural,56.11,28.7,smokes,0 +48265,Male,65,0,0,Yes,Govt_job,Rural,111.85,26.7,never smoked,0 +10139,Female,54,0,0,Yes,Self-employed,Urban,92.39,22.1,never smoked,0 +12662,Male,74,1,0,Yes,Self-employed,Urban,112.54,27.7,formerly smoked,0 +43174,Female,56,0,0,Yes,Private,Urban,63.71,40.5,formerly smoked,0 +72823,Female,79,0,0,Yes,Private,Urban,70.35,23,formerly smoked,0 +30567,Male,71,1,0,Yes,Private,Urban,94.65,25.3,formerly smoked,0 +41927,Female,28,0,0,Yes,Private,Rural,64.64,22.1,never smoked,0 +54866,Female,9,0,0,No,children,Rural,57.27,28,Unknown,0 +20364,Female,4,0,0,No,children,Urban,107.25,12,Unknown,0 +21117,Female,36,0,0,No,Self-employed,Rural,77.12,28.4,never smoked,0 +50491,Male,78,0,0,Yes,Self-employed,Urban,55.32,29.6,smokes,0 +61013,Male,52,0,0,No,Private,Rural,69.37,36.2,Unknown,0 +71010,Female,80,0,0,No,Self-employed,Urban,57.57,22.8,never smoked,0 +23551,Male,28,0,0,Yes,Private,Urban,87.43,55.7,Unknown,0 +10997,Female,38,0,0,Yes,Private,Rural,98.73,24.3,never smoked,0 +12738,Male,56,0,0,Yes,Private,Rural,81.18,26.9,never smoked,0 +57772,Female,75,0,0,Yes,Govt_job,Rural,56.23,25.3,never smoked,0 +16615,Male,76,1,0,Yes,Self-employed,Rural,69.61,35.3,never smoked,0 +62999,Male,10,0,0,No,children,Rural,59.49,18.3,Unknown,0 +68995,Female,48,1,0,No,Private,Rural,118.14,N/A,formerly smoked,0 +66184,Male,40,0,0,Yes,Govt_job,Rural,100.26,26,Unknown,0 +53010,Male,82,0,0,Yes,Self-employed,Rural,56.75,21,never smoked,0 +967,Male,61,0,1,Yes,Private,Urban,88.27,N/A,never smoked,0 +31145,Female,17,0,0,No,Private,Urban,67.81,55.7,never smoked,0 +54338,Female,58,0,0,Yes,Govt_job,Rural,77.46,27.6,never smoked,0 +22870,Male,12,0,0,No,children,Urban,76.26,20.5,never smoked,0 +13223,Female,53,0,0,Yes,Govt_job,Rural,86.39,30.2,never smoked,0 +57523,Female,26,0,0,Yes,Private,Urban,116.38,21.9,formerly smoked,0 +67932,Female,48,0,0,Yes,Private,Rural,75.74,28.8,smokes,0 +10255,Male,25,0,0,Yes,Private,Rural,92.14,36.2,Unknown,0 +68131,Female,27,0,0,No,Private,Rural,149.95,25.9,never smoked,0 +29873,Male,31,1,0,Yes,Govt_job,Urban,92.11,N/A,never smoked,0 +54182,Female,16,0,0,No,Private,Rural,74.98,21.4,never smoked,0 +61300,Male,20,0,0,No,Private,Urban,55.25,20.4,never smoked,0 +15274,Female,2,0,0,No,children,Rural,79.89,31.6,Unknown,0 +53016,Female,1.8,0,0,No,children,Urban,130.61,14.4,Unknown,0 +28848,Male,28,0,0,No,Private,Urban,94.26,23.7,Unknown,0 +27012,Male,32,0,0,No,Private,Urban,94.34,30.2,formerly smoked,0 +7745,Female,35,0,0,Yes,Private,Urban,109.03,19.5,formerly smoked,0 +20541,Female,52,1,0,Yes,Private,Rural,81.03,32.6,never smoked,0 +5892,Female,55,1,0,Yes,Private,Rural,99.82,34.2,never smoked,0 +66883,Female,42,0,0,Yes,Self-employed,Urban,140.08,43,never smoked,0 +43196,Female,52,0,0,Yes,Self-employed,Urban,59.54,42.2,Unknown,0 +12593,Female,18,0,0,No,Private,Urban,80.33,19.7,never smoked,0 +51514,Female,13,0,0,No,children,Urban,131.51,41.7,never smoked,0 +15553,Female,45,0,0,Yes,Private,Rural,89.21,21.6,formerly smoked,0 +45796,Female,29,0,0,Yes,Private,Rural,91.45,24.2,never smoked,0 +31840,Female,12,0,0,No,children,Rural,90.58,19.2,Unknown,0 +58767,Female,37,0,0,Yes,Private,Urban,91.45,25.8,Unknown,0 +14391,Female,30,0,0,Yes,Private,Rural,89.63,23.2,smokes,0 +22321,Female,44,0,0,Yes,Private,Urban,124.06,20.8,never smoked,0 +38184,Female,79,1,0,Yes,Private,Rural,99.47,28.4,never smoked,0 +13997,Male,38,0,0,Yes,Private,Urban,88.97,30.2,never smoked,0 +41673,Female,45,0,0,Yes,Private,Rural,80.93,23.1,never smoked,0 +27796,Female,66,0,0,Yes,Private,Urban,102.07,16.7,smokes,0 +18390,Female,19,0,0,No,Private,Rural,91.69,39.5,Unknown,0 +63409,Female,49,0,0,Yes,Private,Urban,63.71,33.8,smokes,0 +9752,Female,66,0,0,Yes,Govt_job,Rural,200.49,34.6,smokes,0 +72882,Male,47,0,0,Yes,Private,Rural,75.3,25,formerly smoked,0 +49744,Female,59,0,0,Yes,Private,Urban,240.71,43.9,formerly smoked,0 +49086,Female,23,0,0,No,Private,Urban,60.5,27.1,formerly smoked,0 +40866,Female,79,0,0,Yes,Self-employed,Rural,131.85,25.9,Unknown,0 +47523,Female,37,0,0,No,Self-employed,Rural,134.39,22.7,formerly smoked,0 +63561,Male,78,0,0,Yes,Private,Urban,56.18,27.1,never smoked,0 +51422,Female,70,1,0,Yes,Private,Rural,113.64,25.6,formerly smoked,0 +56870,Female,34,0,0,No,Private,Rural,156.57,28.4,Unknown,0 +3590,Female,28,1,0,No,Private,Rural,80.4,57.5,never smoked,0 +60665,Male,29,0,0,No,Private,Urban,59.26,35.8,smokes,0 +40791,Female,13,0,0,No,children,Rural,63.26,19.5,Unknown,0 +54304,Female,22,0,0,Yes,Private,Urban,86.24,31.2,never smoked,0 +22485,Male,56,0,0,Yes,Private,Urban,197.1,43.6,formerly smoked,0 +18430,Female,81,0,0,Yes,Self-employed,Urban,90.9,31.2,formerly smoked,0 +19234,Female,28,0,0,No,Private,Rural,84.59,23.5,Unknown,0 +52454,Male,9,0,0,No,children,Rural,121.8,18.7,Unknown,0 +13365,Male,50,0,0,Yes,Private,Rural,77.65,24.4,smokes,0 +60983,Male,70,0,0,Yes,Private,Urban,64.41,29.4,smokes,0 +14615,Female,30,0,0,No,Private,Urban,75.19,37,smokes,0 +50277,Female,51,0,0,Yes,Self-employed,Rural,67.97,29.4,smokes,0 +50811,Male,24,0,0,No,Private,Urban,119.34,38.5,never smoked,0 +16575,Male,17,0,0,No,Private,Rural,94.92,23.5,never smoked,0 +1246,Female,43,0,0,Yes,Govt_job,Rural,107.42,N/A,never smoked,0 +11176,Male,9,0,0,No,children,Rural,85.02,16.3,Unknown,0 +30712,Male,50,0,0,Yes,Private,Urban,103.51,35.9,never smoked,0 +31308,Female,49,0,0,Yes,Private,Urban,114.5,35.9,formerly smoked,0 +9612,Male,6,0,0,No,children,Urban,70.78,20.3,Unknown,0 +3325,Male,30,0,0,Yes,Self-employed,Rural,95.01,32.3,smokes,0 +52808,Male,73,0,0,Yes,Private,Urban,84.11,27.9,never smoked,0 +41513,Female,20,0,0,Yes,Private,Urban,74.02,22.3,never smoked,0 +36109,Male,42,0,0,Yes,Private,Urban,78.49,31.8,smokes,0 +53336,Female,79,0,0,Yes,Govt_job,Urban,74.22,29.7,Unknown,0 +56831,Female,55,0,0,Yes,Private,Urban,55.34,27.1,smokes,0 +52580,Female,27,0,0,No,Private,Rural,75.04,24.5,never smoked,0 +55592,Male,71,0,0,Yes,Private,Rural,109.73,28.9,never smoked,0 +33723,Female,9,0,0,No,children,Urban,95.81,N/A,Unknown,0 +26235,Male,23,0,0,No,Private,Rural,96.78,24.6,smokes,0 +16685,Female,71,1,0,Yes,Private,Urban,194.62,31.6,never smoked,0 +44583,Female,56,0,1,Yes,Private,Rural,70.02,32.3,never smoked,0 +25315,Male,31,0,0,Yes,Private,Urban,222.21,41.1,smokes,0 +58227,Female,64,0,0,Yes,Govt_job,Rural,62.41,30,never smoked,0 +60810,Male,46,0,0,Yes,Self-employed,Urban,55.83,26.4,never smoked,0 +34612,Male,55,0,0,Yes,Govt_job,Rural,65.12,30,never smoked,0 +8320,Male,2,0,0,No,children,Rural,73.62,20.8,Unknown,0 +25595,Female,58,1,0,Yes,Private,Urban,85.83,44,formerly smoked,0 +30550,Female,78,0,0,No,Private,Urban,103.86,30.6,Unknown,0 +49529,Female,1.16,0,0,No,children,Urban,60.98,17.2,Unknown,0 +13367,Female,35,0,0,Yes,Private,Rural,82.69,29.1,Unknown,0 +33585,Female,64,0,0,Yes,Private,Rural,250.2,27.4,Unknown,0 +49785,Female,18,0,0,No,Private,Rural,128.97,23.5,Unknown,0 +6886,Male,19,0,0,No,Private,Rural,84.31,31.8,never smoked,0 +38609,Male,47,0,0,Yes,Govt_job,Rural,74.8,23.5,never smoked,0 +22159,Female,54,1,0,No,Private,Urban,97.06,28.5,formerly smoked,0 +37413,Female,39,0,0,Yes,Private,Urban,77.54,32.7,Unknown,0 +4169,Female,37,0,0,No,Private,Rural,92.78,54.2,never smoked,0 +40055,Female,17,0,0,No,Private,Rural,173.43,25.6,smokes,0 +18888,Female,20,0,0,Yes,Private,Urban,79.08,41.2,never smoked,0 +45283,Female,31,0,0,Yes,Private,Urban,106.18,27,smokes,0 +42503,Female,56,0,0,Yes,Private,Rural,114.21,21.3,never smoked,0 +23645,Female,31,0,0,No,Private,Rural,91.08,34.3,never smoked,0 +62382,Male,82,0,0,Yes,Private,Urban,105.77,29.5,Unknown,0 +59521,Male,33,0,0,Yes,Private,Rural,74.88,31.6,smokes,0 +55386,Male,42,0,0,Yes,Private,Rural,123.15,26.1,smokes,0 +22685,Male,20,0,0,No,Private,Rural,184.25,27.5,never smoked,0 +46745,Male,22,0,0,Yes,Govt_job,Rural,117.69,26.5,never smoked,0 +72547,Male,61,0,0,Yes,Private,Rural,55.26,33.2,Unknown,0 +26973,Female,31,0,0,Yes,Private,Urban,106.51,40.2,never smoked,0 +41033,Female,31,0,0,Yes,Govt_job,Rural,55.27,32.5,formerly smoked,0 +5046,Male,17,0,0,No,Self-employed,Urban,98.42,23.4,Unknown,0 +71442,Female,30,0,0,Yes,Private,Rural,99.2,32.5,never smoked,0 +49624,Male,69,0,0,Yes,Private,Urban,98.92,23.9,formerly smoked,0 +10572,Female,63,0,0,Yes,Private,Rural,92.7,29.5,never smoked,0 +55847,Male,19,0,0,No,Private,Rural,106.7,24,never smoked,0 +42441,Male,7,0,0,No,children,Urban,152.81,17.7,Unknown,0 +28910,Female,51,0,0,Yes,Private,Urban,82.59,26.2,formerly smoked,0 +10381,Female,38,1,0,Yes,Self-employed,Urban,91,33.3,never smoked,0 +14387,Male,2,0,0,No,children,Urban,93.88,17.4,Unknown,0 +31956,Female,58,0,0,Yes,Private,Urban,76.99,29,never smoked,0 +17813,Female,69,0,1,Yes,Private,Rural,254.6,21.7,Unknown,0 +24665,Female,64,1,0,Yes,Private,Rural,93.99,37.8,formerly smoked,0 +13683,Female,31,0,0,Yes,Private,Urban,109.68,41.8,never smoked,0 +7387,Female,59,1,0,Yes,Private,Rural,92.04,24.2,never smoked,0 +57011,Female,54,0,0,Yes,Private,Rural,111.41,31.1,never smoked,0 +22384,Female,24,0,0,Yes,Private,Rural,97.92,23.1,never smoked,0 +24108,Male,19,0,0,No,Private,Urban,65.61,25.1,Unknown,0 +50053,Male,17,0,0,No,Private,Urban,62.37,41.3,never smoked,0 +69427,Female,29,0,0,No,Private,Urban,101.28,22.7,never smoked,0 +21688,Female,42,0,0,Yes,Private,Rural,88.31,24,smokes,0 +60777,Female,31,0,0,Yes,Govt_job,Rural,103.55,20.5,formerly smoked,0 +64732,Female,29,0,0,No,Private,Urban,60.26,20.4,never smoked,0 +42710,Female,23,0,0,No,Private,Urban,79.39,27.6,never smoked,0 +46683,Female,25,0,0,No,Private,Urban,122.01,27,smokes,0 +58909,Female,14,0,0,No,children,Rural,78.09,26.4,Unknown,0 +51125,Female,66,0,0,Yes,Private,Urban,89.7,34.9,smokes,0 +29077,Female,77,0,0,Yes,Private,Rural,95.1,35,never smoked,0 +4970,Male,79,0,0,Yes,Self-employed,Rural,112.64,28.5,formerly smoked,0 +58291,Female,52,0,0,Yes,Private,Rural,79.8,32.3,formerly smoked,0 +18616,Female,41,0,0,Yes,Private,Urban,82.2,23.9,Unknown,0 +99,Female,31,0,0,No,Private,Urban,108.89,52.3,Unknown,0 +55529,Male,39,0,0,Yes,Private,Rural,114.32,26.4,never smoked,0 +12204,Female,51,0,0,No,Govt_job,Rural,116.14,20.9,never smoked,0 +21397,Female,40,0,0,Yes,Govt_job,Urban,122.74,23.3,Unknown,0 +64633,Female,48,0,0,Yes,Private,Urban,94.04,32.7,never smoked,0 +23016,Male,55,0,0,Yes,Private,Rural,86.6,26.5,never smoked,0 +18412,Male,41,0,0,Yes,Private,Rural,82.32,27.9,Unknown,0 +67412,Female,39,0,0,Yes,Private,Rural,83.83,30.3,never smoked,0 +37545,Male,41,0,0,No,Govt_job,Urban,106.98,27.6,never smoked,0 +10324,Female,5,0,0,No,children,Urban,93.88,14.6,Unknown,0 +14491,Male,38,0,0,Yes,Govt_job,Urban,70.53,40.9,smokes,0 +64582,Male,40,1,0,Yes,Govt_job,Rural,212.01,28.4,never smoked,0 +25514,Male,12,0,0,No,children,Rural,65.88,23.7,Unknown,0 +7663,Male,20,0,0,No,Govt_job,Rural,106.97,27.9,formerly smoked,0 +66220,Male,53,0,0,Yes,Private,Urban,126.35,25.2,never smoked,0 +71793,Female,21,0,0,No,Private,Urban,129.16,34.4,Unknown,0 +25458,Female,70,1,0,Yes,Govt_job,Rural,88.66,36.7,formerly smoked,0 +69645,Male,61,0,0,Yes,Govt_job,Rural,112.95,22.2,formerly smoked,0 +53695,Male,70,0,0,Yes,Govt_job,Urban,81.59,27.2,never smoked,0 +26692,Female,38,0,0,Yes,Govt_job,Rural,76.82,27.3,never smoked,0 +33400,Male,59,0,0,Yes,Govt_job,Rural,73.75,27.3,smokes,0 +67078,Female,36,1,0,Yes,Private,Urban,91.56,42.2,never smoked,0 +32352,Female,31,0,0,Yes,Govt_job,Rural,104.55,26.4,never smoked,0 +22540,Female,65,0,0,Yes,Govt_job,Urban,84.84,39.4,Unknown,0 +26999,Male,61,1,1,Yes,Govt_job,Rural,86.06,34.8,never smoked,0 +65218,Male,2,0,0,No,children,Rural,109.1,20,Unknown,0 +30102,Male,52,0,0,Yes,Private,Rural,68.35,34.1,never smoked,0 +49521,Female,33,0,0,Yes,Private,Urban,121.04,31.4,Unknown,0 +54643,Male,5,0,0,No,children,Rural,160.83,17.8,Unknown,0 +29134,Female,32,0,0,Yes,Private,Rural,85.62,46.1,smokes,0 +68281,Female,54,0,0,Yes,Govt_job,Urban,74.23,28.1,formerly smoked,0 +40350,Female,51,0,0,No,Private,Urban,110.76,24.7,formerly smoked,0 +33410,Female,39,0,0,No,Govt_job,Urban,79.44,22.7,never smoked,0 +39375,Female,40,0,0,Yes,Private,Rural,119.52,34.6,never smoked,0 +2543,Female,19,0,0,Yes,Private,Rural,90.42,21.4,never smoked,0 +45289,Female,9,0,0,No,children,Urban,109.32,27.4,Unknown,0 +12106,Male,53,1,0,Yes,Govt_job,Rural,78.16,36.6,never smoked,0 +10792,Female,23,0,0,No,Private,Rural,79.13,32.9,formerly smoked,0 +19153,Female,19,0,0,No,Self-employed,Urban,84.06,24.7,never smoked,0 +47876,Male,1,0,0,No,children,Rural,89.3,21.4,Unknown,0 +25283,Female,48,0,0,Yes,Private,Urban,69.21,33.1,never smoked,0 +12270,Male,71,0,0,Yes,Govt_job,Rural,186.45,26.7,never smoked,0 +49949,Male,44,0,0,Yes,Private,Urban,58.47,24.4,never smoked,0 +50826,Female,53,0,0,Yes,Govt_job,Rural,189.49,25.8,Unknown,0 +28681,Female,70,1,0,Yes,Self-employed,Urban,99.6,34.3,formerly smoked,0 +41615,Female,1.4,0,0,No,children,Rural,126.18,18.1,Unknown,0 +14147,Male,49,0,0,Yes,Private,Urban,186.32,43.8,smokes,0 +41537,Female,17,0,0,No,Private,Rural,62.49,26.9,never smoked,0 +62332,Female,40,0,0,Yes,Private,Rural,74.51,36.6,never smoked,0 +25488,Female,46,0,0,Yes,Self-employed,Urban,94.63,24.9,never smoked,0 +45759,Female,32,0,0,Yes,Private,Rural,91.98,27.6,smokes,0 +71929,Male,2,0,0,No,children,Rural,56.77,20.9,Unknown,0 +14807,Female,40,0,0,Yes,Private,Urban,75.87,30.3,never smoked,0 +16110,Female,19,0,0,No,Private,Rural,77.19,37.4,smokes,0 +40970,Male,43,0,0,Yes,Private,Urban,135.75,35.9,smokes,0 +28933,Female,46,0,0,Yes,Private,Rural,100.15,50.3,smokes,0 +11709,Male,71,0,0,No,Private,Urban,95.08,31.5,never smoked,0 +37154,Female,31,0,0,Yes,Private,Urban,125.38,24.4,smokes,0 +16809,Male,41,0,0,Yes,Private,Urban,111.71,38.9,formerly smoked,0 +13907,Male,65,0,0,Yes,Self-employed,Rural,94.64,28.6,never smoked,0 +2314,Male,52,0,0,Yes,Private,Urban,226.7,N/A,smokes,0 +70380,Female,20,0,0,No,Private,Urban,112.96,27.5,never smoked,0 +63058,Female,77,0,1,Yes,Private,Rural,183.1,N/A,never smoked,0 +54071,Female,51,0,0,Yes,Private,Urban,105.36,43.7,Unknown,0 +67405,Female,37,0,0,Yes,Private,Urban,84.13,27,never smoked,0 +28024,Male,49,0,0,Yes,Private,Rural,102.47,29.3,formerly smoked,0 +11730,Female,62,1,0,Yes,Govt_job,Rural,77.04,34.7,never smoked,0 +2549,Female,17,0,0,No,Private,Rural,83.23,N/A,never smoked,0 +17245,Female,28,0,0,Yes,Private,Rural,87.01,39.9,never smoked,0 +70852,Male,80,0,0,Yes,Private,Rural,56.99,26.7,never smoked,0 +60957,Male,45,0,0,Yes,Private,Rural,73.01,24.8,formerly smoked,0 +19742,Female,37,0,0,Yes,Private,Urban,106.35,29.7,never smoked,0 +10782,Female,3,0,0,No,children,Rural,80.63,15.9,Unknown,0 +61742,Male,26,0,0,No,Private,Urban,103.61,31.4,never smoked,0 +4808,Female,71,0,0,Yes,Self-employed,Urban,91.35,N/A,formerly smoked,0 +13571,Male,58,0,0,Yes,Govt_job,Urban,194.04,27.8,never smoked,0 +49928,Female,59,0,0,Yes,Govt_job,Rural,111.99,35.5,formerly smoked,0 +52688,Male,74,1,0,Yes,Private,Rural,57.51,31.7,smokes,0 +24099,Male,17,0,0,No,Private,Rural,68.49,33.2,never smoked,0 +65698,Female,62,0,0,Yes,Private,Urban,60.2,27.7,formerly smoked,0 +47885,Male,37,0,0,Yes,Self-employed,Urban,160,31.9,formerly smoked,0 +13948,Female,19,0,0,No,Never_worked,Urban,86.96,25.8,never smoked,0 +17351,Female,59,0,0,Yes,Private,Rural,237.15,27.7,never smoked,0 +820,Female,59,1,0,Yes,Private,Rural,99.06,23.4,never smoked,0 +55721,Male,62,0,1,Yes,Self-employed,Urban,56.31,24.3,formerly smoked,0 +72310,Male,80,1,1,Yes,Self-employed,Urban,84.31,30.3,smokes,0 +24115,Female,54,0,0,Yes,Private,Rural,90.92,29.1,never smoked,0 +65766,Female,27,0,0,No,Private,Rural,104.33,20.1,never smoked,0 +42482,Female,4,0,0,No,children,Urban,62.61,21.2,Unknown,0 +25627,Male,81,1,0,Yes,Self-employed,Urban,231.19,31.6,formerly smoked,0 +7122,Female,41,0,0,No,Private,Rural,94.3,41.6,Unknown,0 +48755,Male,27,0,0,Yes,Private,Rural,104.48,36.4,smokes,0 +33551,Female,51,1,0,Yes,Private,Urban,72.62,30.5,never smoked,0 +62716,Female,59,0,0,Yes,Self-employed,Urban,81.64,32.8,Unknown,0 +68438,Female,51,0,0,Yes,Private,Rural,90.78,32.3,never smoked,0 +41148,Male,71,0,1,Yes,Private,Urban,70.71,30.1,never smoked,0 +14924,Male,48,0,0,Yes,Private,Urban,72.36,34.7,smokes,0 +47950,Female,49,0,0,Yes,Self-employed,Urban,59.76,29.7,Unknown,0 +8008,Female,35,0,0,No,Govt_job,Urban,83.76,N/A,smokes,0 +56089,Female,25,0,0,Yes,Private,Rural,63.64,31.3,formerly smoked,0 +9262,Female,31,0,0,Yes,Private,Rural,76.26,35.6,never smoked,0 +71896,Female,68,0,0,Yes,Private,Rural,82.06,35.2,formerly smoked,0 +38623,Male,39,0,0,No,Private,Urban,110.91,27.6,never smoked,0 +26503,Female,32,0,0,No,Private,Rural,77.16,35.2,smokes,0 +5475,Female,39,0,0,Yes,Private,Rural,69.58,28.1,Unknown,0 +15525,Female,63,0,0,Yes,Private,Urban,96.26,31.8,Unknown,0 +48748,Female,69,0,0,Yes,Private,Rural,87.27,23.3,smokes,0 +11745,Female,29,0,0,Yes,Private,Urban,65.36,28.8,formerly smoked,0 +17733,Female,1.72,0,0,No,children,Rural,109.51,19.5,Unknown,0 +71591,Female,58,0,0,Yes,Private,Urban,89.03,30,smokes,0 +11743,Female,32,0,0,Yes,Private,Urban,91.34,25.5,formerly smoked,0 +67864,Male,63,0,0,Yes,Private,Rural,57.82,28.8,formerly smoked,0 +34857,Male,57,0,0,Yes,Self-employed,Urban,81.15,40.2,formerly smoked,0 +34995,Female,77,0,0,Yes,Private,Rural,115.29,32.9,Unknown,0 +3606,Male,8,0,0,No,children,Urban,111.02,22.4,Unknown,0 +22952,Female,21,0,0,No,Govt_job,Urban,111.61,36.9,smokes,0 +32554,Female,16,0,0,No,children,Rural,109.02,19.8,Unknown,0 +45893,Female,8,0,0,No,children,Urban,106.51,12.3,Unknown,0 +72020,Male,71,0,1,Yes,Self-employed,Rural,207.32,32.4,smokes,0 +57879,Female,74,0,0,Yes,Private,Urban,87.11,24.8,never smoked,0 +53538,Female,7,0,0,No,children,Urban,61.68,16.4,Unknown,0 +17006,Male,19,0,0,No,Private,Rural,119.04,35.9,Unknown,0 +36638,Male,64,0,0,Yes,Private,Urban,86.05,23,Unknown,0 +41097,Female,23,1,0,No,Private,Urban,70.03,78,smokes,0 +36618,Male,75,0,1,Yes,Self-employed,Urban,207.64,30.5,formerly smoked,0 +37290,Male,80,0,0,Yes,Self-employed,Rural,236.84,26.8,never smoked,0 +54620,Male,40,0,0,Yes,Private,Urban,78.11,35.3,never smoked,0 +42108,Female,24,0,0,No,Govt_job,Rural,100.97,27.9,never smoked,0 +19681,Female,74,0,0,Yes,Self-employed,Urban,99.21,22.1,never smoked,0 +6988,Female,52,0,0,Yes,Self-employed,Urban,113.21,38.3,never smoked,0 +25287,Male,54,0,0,Yes,Private,Urban,92.95,41,never smoked,0 +224,Female,23,0,0,No,Private,Urban,110.16,N/A,never smoked,0 +56679,Male,19,0,0,No,Private,Rural,142.57,22.8,Unknown,0 +27146,Female,23,0,0,No,Private,Rural,92.87,30.1,never smoked,0 +16556,Male,13,0,0,No,Never_worked,Rural,111.48,20.8,Unknown,0 +5934,Female,51,0,0,Yes,Private,Urban,123,31.7,never smoked,0 +58999,Male,60,0,0,Yes,Govt_job,Urban,100.54,30.1,never smoked,0 +28261,Male,79,0,1,Yes,Self-employed,Urban,106.68,30.8,never smoked,0 +35222,Female,75,0,0,Yes,Private,Urban,86.4,42.6,never smoked,0 +44105,Female,69,1,0,Yes,Self-employed,Urban,61.81,37.1,Unknown,0 +65256,Female,57,0,0,Yes,Self-employed,Rural,128.28,34.2,never smoked,0 +62709,Female,47,0,0,Yes,Private,Rural,204.63,43.4,never smoked,0 +36698,Female,33,0,0,Yes,Private,Urban,89.98,18.7,smokes,0 +7273,Female,51,0,0,Yes,Self-employed,Urban,232.89,34,smokes,0 +20044,Female,47,0,0,Yes,Private,Rural,98.58,23.2,never smoked,0 +54769,Male,15,0,0,No,Private,Urban,57.94,41.7,Unknown,0 +57372,Male,1,0,0,No,children,Rural,123.21,15.1,Unknown,0 +30605,Female,20,0,0,No,Private,Urban,76.34,20.6,smokes,0 +13622,Male,6,0,0,No,children,Rural,92.98,18.9,Unknown,0 +12686,Male,50,0,0,No,Govt_job,Rural,92.81,26.6,never smoked,0 +39250,Male,31,0,0,Yes,Private,Urban,85.16,30.1,smokes,0 +2879,Female,15,0,0,No,Self-employed,Urban,90.1,32.1,never smoked,0 +59684,Female,3,0,0,No,children,Urban,65.15,15.1,Unknown,0 +48830,Male,30,0,0,Yes,Private,Urban,104.62,33.5,smokes,0 +56986,Male,17,0,0,No,Never_worked,Urban,113.25,23.4,never smoked,0 +47924,Male,24,0,0,No,Private,Urban,59.28,43.2,never smoked,0 +16402,Female,5,0,0,No,children,Urban,93.07,19.1,Unknown,0 +40889,Male,33,0,0,No,Private,Rural,77.42,26.1,Unknown,0 +4083,Female,30,0,0,No,Private,Rural,73.69,17.3,never smoked,0 +59336,Male,66,1,0,Yes,Private,Rural,74.9,32.1,never smoked,0 +5684,Male,40,0,0,No,Private,Urban,88.27,N/A,formerly smoked,0 +48843,Female,27,0,0,No,Private,Urban,58.39,30.4,never smoked,0 +5694,Male,21,0,0,No,Private,Rural,102.05,29.9,never smoked,0 +3673,Female,55,0,0,Yes,Private,Rural,112.47,32.8,smokes,0 +44481,Female,19,0,0,No,Private,Rural,72.84,22.7,never smoked,0 +10538,Male,75,1,1,Yes,Self-employed,Urban,195.03,28.7,formerly smoked,0 +9648,Female,71,0,1,Yes,Private,Urban,170.95,35.2,never smoked,0 +19101,Female,16,0,0,No,Private,Urban,87.98,22.4,never smoked,0 +31867,Female,49,0,0,No,Private,Rural,65.81,32.3,Unknown,0 +11973,Female,10,0,0,No,children,Urban,124.6,18.6,Unknown,0 +23633,Female,37,0,0,Yes,Private,Rural,83.65,42.1,smokes,0 +52549,Male,59,0,0,Yes,Govt_job,Rural,88.81,38,formerly smoked,0 +59178,Female,7,0,0,No,children,Urban,86.75,22.3,Unknown,0 +37349,Female,61,0,0,Yes,Private,Rural,123.36,33.4,never smoked,0 +44281,Male,34,0,0,No,Private,Rural,89.68,23.2,smokes,0 +55599,Female,9,0,0,No,children,Rural,69.87,18,Unknown,0 +45224,Female,46,0,0,Yes,Private,Rural,109.22,20.1,never smoked,0 +54747,Male,0.88,0,0,No,children,Rural,157.57,19.2,Unknown,0 +2751,Male,50,0,0,Yes,Govt_job,Urban,110.73,28.7,smokes,0 +6090,Male,19,0,0,Yes,Private,Urban,99.14,28.1,never smoked,0 +46385,Female,21,0,0,Yes,Private,Urban,59.15,22.6,never smoked,0 +46323,Female,2,0,0,No,children,Rural,165.11,18,Unknown,0 +28122,Female,37,0,0,Yes,Self-employed,Rural,77.44,21.4,formerly smoked,0 +50843,Male,20,0,0,No,Private,Rural,100.33,27.8,Unknown,0 +64464,Male,50,0,0,Yes,Private,Urban,57.93,27.6,Unknown,0 +66922,Male,61,1,1,No,Private,Rural,148.24,32.2,formerly smoked,0 +66494,Male,48,0,0,Yes,Private,Urban,91.96,24.9,Unknown,0 +42786,Male,82,0,1,Yes,Self-employed,Rural,72.93,27.1,formerly smoked,0 +33401,Male,64,0,0,Yes,Private,Rural,84.27,24.6,Unknown,0 +24174,Female,50,0,0,Yes,Govt_job,Rural,124.45,24.6,never smoked,0 +60211,Male,1.4,0,0,No,children,Urban,90.51,18.9,Unknown,0 +53279,Male,0.24,0,0,No,children,Rural,118.87,16.3,Unknown,0 +61715,Male,55,0,0,Yes,Private,Rural,56.42,31.8,never smoked,0 +37830,Female,29,0,0,No,Private,Urban,73.67,21,Unknown,0 +2454,Male,4,0,0,No,children,Rural,89.11,20.1,Unknown,0 +60663,Male,70,1,0,Yes,Private,Rural,74.04,29.1,never smoked,0 +46875,Male,35,0,0,Yes,Private,Urban,145.23,32.3,never smoked,0 +69091,Female,80,0,1,Yes,Private,Rural,100.8,29.4,never smoked,0 +1821,Female,54,0,0,Yes,Private,Urban,85.22,50.2,never smoked,0 +44978,Male,39,0,0,Yes,Govt_job,Rural,72.49,44.9,formerly smoked,0 +3437,Female,26,0,0,No,Private,Urban,82.61,28.5,smokes,0 +6355,Female,6,0,0,No,children,Rural,72.07,19.5,Unknown,0 +10762,Female,41,0,0,Yes,Private,Rural,79.85,45,Unknown,0 +58567,Female,42,0,0,Yes,Private,Rural,84.86,22.8,Unknown,0 +62187,Male,9,0,0,No,children,Urban,131.89,25.5,Unknown,0 +84,Male,55,0,0,Yes,Private,Urban,89.17,31.5,never smoked,0 +8521,Male,71,0,0,Yes,Private,Rural,227.91,31.6,formerly smoked,0 +72779,Female,14,0,0,No,children,Urban,131.77,31,Unknown,0 +45824,Female,77,1,0,Yes,Self-employed,Urban,102.01,29.5,Unknown,0 +61838,Female,50,0,0,Yes,Govt_job,Urban,128.63,23.1,Unknown,0 +57212,Male,49,0,0,No,Private,Urban,144.1,30.7,smokes,0 +62668,Female,51,0,0,Yes,Self-employed,Urban,143.15,44.7,formerly smoked,0 +33142,Male,79,0,0,Yes,Self-employed,Rural,116.67,33.5,never smoked,0 +17437,Female,63,0,0,Yes,Self-employed,Rural,85.6,25.9,Unknown,0 +38303,Female,66,0,0,Yes,Self-employed,Urban,142.12,28.3,never smoked,0 +12396,Female,20,0,0,No,Private,Urban,100.81,26.8,Unknown,0 +36484,Female,37,0,0,Yes,Govt_job,Urban,69.17,27.8,never smoked,0 +60047,Male,22,0,0,No,Private,Rural,58.38,36,never smoked,0 +16542,Female,60,0,0,Yes,Govt_job,Urban,86.34,22.1,never smoked,0 +18805,Male,39,0,0,Yes,Private,Urban,95.44,38.4,never smoked,0 +17869,Female,53,0,0,Yes,Private,Urban,94.78,30.1,Unknown,0 +6793,Female,55,0,0,Yes,Private,Rural,109.59,26.2,formerly smoked,0 +49265,Female,63,0,0,Yes,Private,Rural,79.26,26.6,smokes,0 +6606,Female,57,0,0,Yes,Private,Urban,78.46,32.6,never smoked,0 +23031,Male,82,0,0,Yes,Self-employed,Rural,85.29,27,never smoked,0 +69330,Male,56,0,0,Yes,Private,Rural,156.18,25.3,smokes,0 +22902,Male,41,1,0,Yes,Private,Urban,69.52,31.9,never smoked,0 +69622,Female,8,0,0,No,children,Urban,65.32,18.4,Unknown,0 +4807,Male,34,0,0,No,Private,Urban,108.47,30.4,smokes,0 +9641,Male,75,0,0,Yes,Private,Urban,105.63,28.2,smokes,0 +10313,Male,57,0,0,Yes,Private,Urban,77.93,35.7,formerly smoked,0 +12097,Female,72,0,0,Yes,Private,Urban,95.2,35,never smoked,0 +58037,Male,21,0,0,No,Private,Rural,78.52,27.2,never smoked,0 +45323,Female,51,0,0,Yes,Private,Urban,114.89,23,never smoked,0 +34281,Female,15,0,0,No,Private,Rural,95.43,25,Unknown,0 +7990,Female,24,0,0,Yes,Private,Rural,84.08,24.5,Unknown,0 +57622,Female,30,0,0,Yes,Govt_job,Rural,110.55,30.9,smokes,0 +39120,Female,82,0,0,No,Self-employed,Urban,82.21,26,never smoked,0 +68344,Female,62,0,0,Yes,Private,Urban,82.38,27.2,formerly smoked,0 +66752,Female,79,0,0,Yes,Govt_job,Urban,93.89,30.4,never smoked,0 +11691,Female,19,0,0,No,Private,Rural,75.08,21.7,Unknown,0 +5077,Male,45,0,0,Yes,Private,Urban,76.72,29.1,Unknown,0 +13319,Female,5,0,0,No,children,Rural,84.93,17.6,Unknown,0 +49279,Male,57,0,1,Yes,Private,Urban,76.5,29.2,formerly smoked,0 +53815,Female,31,0,0,No,Private,Urban,65.47,28.1,never smoked,0 +42856,Male,61,0,0,Yes,Private,Urban,99.16,26.6,smokes,0 +51579,Male,27,0,0,No,Self-employed,Rural,63.53,26.9,never smoked,0 +10752,Female,61,0,0,Yes,Private,Rural,78.65,36.2,formerly smoked,0 +42133,Female,53,0,0,Yes,Self-employed,Urban,63.78,25.9,never smoked,0 +4842,Female,76,0,0,No,Self-employed,Urban,77.52,40.9,formerly smoked,0 +58138,Male,57,0,0,Yes,Private,Rural,111.64,31.5,never smoked,0 +58203,Male,9,0,0,No,children,Urban,97.84,23.3,Unknown,0 +65053,Female,34,0,0,Yes,Private,Urban,113.01,37.6,never smoked,0 +24168,Male,51,1,0,Yes,Private,Urban,56.48,39.8,never smoked,0 +5824,Male,61,0,0,Yes,Private,Rural,204.5,35.1,formerly smoked,0 +6965,Female,19,0,0,No,Private,Rural,96.02,21.9,never smoked,0 +8332,Female,50,0,0,Yes,Private,Rural,206.25,53.4,formerly smoked,0 +61973,Female,80,1,1,Yes,Private,Rural,115.52,34.4,Unknown,0 +42821,Female,13,0,0,No,Private,Rural,60.69,24,smokes,0 +18687,Male,55,0,0,Yes,Self-employed,Urban,93.67,29.3,Unknown,0 +72642,Male,67,0,0,Yes,Govt_job,Urban,67.79,26,formerly smoked,0 +54782,Female,30,0,0,No,Self-employed,Rural,56.07,31.3,never smoked,0 +55862,Male,67,1,1,Yes,Private,Rural,254.63,31,never smoked,0 +24437,Female,82,0,0,Yes,Private,Rural,96.63,26.5,Unknown,0 +10367,Male,5,0,0,No,children,Rural,84.3,16,Unknown,0 +42550,Female,81,0,0,Yes,Self-employed,Rural,246.34,21.1,never smoked,0 +14178,Female,48,0,0,Yes,Private,Rural,195.16,42.2,Unknown,0 +65429,Female,66,0,0,Yes,Govt_job,Rural,93.34,27.7,never smoked,0 +66530,Female,38,0,0,Yes,Private,Urban,162.3,23.6,never smoked,0 +43146,Male,8,0,0,No,children,Urban,106.4,18.3,Unknown,0 +3509,Male,47,1,0,Yes,Private,Urban,110.25,44.3,never smoked,0 +57497,Male,27,0,0,No,Private,Rural,69.7,27.3,never smoked,0 +15220,Female,53,1,0,Yes,Private,Urban,87.03,55.2,formerly smoked,0 +4813,Male,27,0,0,No,Private,Urban,112.98,44.7,never smoked,0 +31166,Female,36,0,0,Yes,Govt_job,Rural,82.47,33.1,smokes,0 +9051,Female,50,0,0,Yes,Private,Urban,75.88,30,never smoked,0 +28669,Female,32,0,0,Yes,Private,Urban,84.63,40.1,Unknown,0 +59894,Female,58,0,0,Yes,Govt_job,Rural,109.56,23.1,never smoked,0 +18684,Female,73,0,0,Yes,Self-employed,Rural,89.45,30.3,formerly smoked,0 +35866,Female,62,0,0,Yes,Private,Rural,91.65,30.5,never smoked,0 +51907,Female,50,0,0,Yes,Self-employed,Urban,121.14,22.8,never smoked,0 +7250,Female,51,0,0,No,Private,Rural,87.77,42,Unknown,0 +16147,Female,19,0,0,No,Private,Rural,106.56,29.9,never smoked,0 +18306,Female,30,0,0,No,Private,Rural,93.88,24,formerly smoked,0 +69143,Female,45,0,0,No,Private,Rural,153.76,36.7,Unknown,0 +61769,Male,30,0,0,No,Private,Urban,88.65,22.2,never smoked,0 +26134,Female,28,0,0,Yes,Private,Urban,111.22,25.5,Unknown,0 +67603,Male,70,0,0,Yes,Self-employed,Urban,223.68,34.3,formerly smoked,0 +66772,Female,0.32,0,0,No,children,Rural,55.86,16,Unknown,0 +41861,Female,23,0,0,No,Private,Rural,63.73,25.6,smokes,0 +954,Male,18,0,0,No,Private,Rural,103.94,23.3,never smoked,0 +37888,Male,41,0,0,Yes,Private,Rural,92.49,41.6,Unknown,0 +34326,Male,52,0,0,Yes,Private,Urban,229.2,35.6,formerly smoked,0 +42329,Female,77,0,0,Yes,Private,Rural,75.06,22,Unknown,0 +23565,Male,34,0,0,Yes,Private,Urban,85.57,26.8,Unknown,0 +27323,Female,67,0,0,Yes,Self-employed,Urban,68.61,31.9,never smoked,0 +57854,Male,1.64,0,0,No,children,Urban,56.3,19.7,Unknown,0 +18414,Female,23,0,0,No,Private,Rural,193.22,N/A,smokes,0 +72836,Female,59,0,0,Yes,Private,Urban,65.98,31.1,Unknown,0 +17708,Male,62,0,0,Yes,Govt_job,Rural,204.57,34.4,Unknown,0 +66321,Male,47,0,0,Yes,Govt_job,Urban,64.99,33.2,never smoked,0 +53817,Female,71,1,0,Yes,Self-employed,Rural,66.12,N/A,never smoked,0 +66678,Female,22,0,0,No,Private,Urban,73.4,21.6,never smoked,0 +56734,Male,33,0,0,Yes,Govt_job,Urban,82.83,25.4,Unknown,0 +32240,Female,27,0,0,No,Private,Urban,93.55,41.6,never smoked,0 +28127,Female,44,0,0,Yes,Private,Rural,90.4,33.1,formerly smoked,0 +20347,Female,18,0,0,No,Private,Rural,98.1,21.8,never smoked,0 +40824,Male,47,0,0,Yes,Private,Rural,142.02,30,Unknown,0 +38678,Female,66,0,0,Yes,Self-employed,Rural,251.46,35.2,smokes,0 +29380,Female,42,1,0,Yes,Private,Rural,89.96,35.6,never smoked,0 +809,Male,13,0,0,No,children,Urban,71.73,N/A,Unknown,0 +65453,Female,56,1,0,Yes,Govt_job,Urban,82.44,27.8,smokes,0 +9415,Female,69,0,0,Yes,Self-employed,Urban,80.85,29.3,formerly smoked,0 +30989,Female,65,0,0,Yes,Self-employed,Rural,220.52,37.2,smokes,0 +65258,Male,53,0,0,Yes,Private,Urban,86.73,26.1,Unknown,0 +67052,Female,36,0,0,Yes,Private,Urban,76.93,21.6,never smoked,0 +62756,Female,69,0,0,Yes,Self-employed,Urban,113.1,22.7,never smoked,0 +69224,Male,19,0,0,No,Private,Rural,96.84,30.2,formerly smoked,0 +13323,Male,3,0,0,No,children,Urban,100.91,18,Unknown,0 +59940,Male,15,0,0,No,children,Urban,116.5,27.8,Unknown,0 +49042,Female,59,1,0,No,Private,Rural,57.26,23.5,never smoked,0 +66362,Female,61,0,0,Yes,Private,Urban,129.31,41.2,Unknown,0 +46093,Female,28,0,0,Yes,Private,Rural,56.47,22.7,never smoked,0 +10370,Male,52,0,0,Yes,Govt_job,Urban,86.06,29.2,formerly smoked,0 +156,Female,33,0,0,Yes,Private,Rural,86.97,42.2,never smoked,0 +11105,Male,80,0,0,Yes,Private,Urban,78.78,24,formerly smoked,0 +22363,Female,47,0,0,Yes,Private,Rural,195.04,45.5,never smoked,0 +46072,Male,2,0,0,No,children,Rural,103.25,19.4,Unknown,0 +65667,Female,48,0,0,Yes,Private,Rural,134.59,28.2,smokes,0 +47848,Male,1.56,0,0,No,children,Rural,93.74,20.1,Unknown,0 +71440,Female,26,0,0,Yes,Private,Urban,90.66,27.2,Unknown,0 +35231,Male,62,0,0,Yes,Govt_job,Urban,91.68,26.5,Unknown,0 +59734,Male,1.72,0,0,No,children,Urban,75.79,17.6,Unknown,0 +1893,Female,38,0,0,Yes,Private,Urban,91.68,42.8,formerly smoked,0 +32733,Female,28,0,0,Yes,Private,Rural,106.68,29.3,never smoked,0 +34728,Female,67,0,0,Yes,Private,Rural,82.31,21.3,never smoked,0 +30352,Male,57,0,0,Yes,Private,Rural,90.06,29.8,Unknown,0 +61338,Female,40,0,0,Yes,Private,Rural,65.47,24.1,smokes,0 +59275,Male,10,0,0,No,children,Rural,58.03,35.2,Unknown,0 +45497,Female,55,0,0,No,Private,Rural,83.09,18.8,never smoked,0 +19996,Female,7,0,0,No,children,Urban,88.6,17.4,Unknown,0 +50371,Male,56,0,0,Yes,Private,Urban,63.18,31.5,Unknown,0 +32687,Male,37,0,0,Yes,Private,Rural,78.42,29.9,never smoked,0 +35295,Male,69,0,0,Yes,Private,Urban,65.08,27.3,formerly smoked,0 +15746,Female,45,0,0,Yes,Govt_job,Urban,79.47,28.1,never smoked,0 +31517,Female,28,0,0,Yes,Private,Rural,95.52,28.9,never smoked,0 +43268,Female,52,1,0,No,Private,Urban,73,25.2,smokes,0 +54540,Male,46,0,0,Yes,Private,Rural,138.07,24.3,never smoked,0 +20973,Male,45,0,0,Yes,Govt_job,Rural,86.99,37.9,never smoked,0 +56245,Female,21,0,0,No,Private,Urban,112.07,28.2,never smoked,0 +9225,Male,4,0,0,No,children,Rural,105.76,18.4,Unknown,0 +45955,Female,45,0,0,Yes,Private,Urban,55.67,23.1,smokes,0 +3532,Female,71,0,0,Yes,Private,Urban,90.55,39.4,formerly smoked,0 +41291,Female,46,0,0,Yes,Private,Rural,218.65,29.5,never smoked,0 +53943,Female,3,0,0,No,children,Rural,111.21,18.3,Unknown,0 +52550,Female,79,0,0,Yes,Govt_job,Urban,83.56,28.7,smokes,0 +47414,Female,71,1,0,Yes,Private,Urban,116.76,32.9,formerly smoked,0 +38804,Male,74,0,0,Yes,Private,Rural,83.5,26.7,Unknown,0 +72861,Female,52,0,0,Yes,Private,Urban,69.3,20.1,never smoked,0 +53276,Female,49,0,0,Yes,Private,Urban,67.55,17.6,formerly smoked,0 +30944,Female,32,0,0,Yes,Private,Rural,80.28,43.7,never smoked,0 +33622,Male,62,1,0,Yes,Private,Urban,211.49,41.1,Unknown,0 +26191,Female,78,0,0,No,Private,Urban,67.96,26.8,Unknown,0 +69312,Female,48,0,0,Yes,Self-employed,Urban,99.29,31.2,never smoked,0 +39661,Male,18,0,0,Yes,Private,Rural,140.52,27.4,never smoked,0 +20162,Female,80,0,0,Yes,Private,Rural,75.62,25.1,smokes,0 +48989,Female,34,0,0,No,Govt_job,Rural,120.06,33,never smoked,0 +30411,Female,40,0,0,No,Private,Rural,117.45,30.7,smokes,0 +47735,Female,59,0,0,Yes,Private,Rural,224.71,42.9,never smoked,0 +51162,Female,11,0,0,No,children,Rural,122.75,14.3,Unknown,0 +8598,Female,35,0,0,Yes,Govt_job,Urban,82.39,33.2,never smoked,0 +57347,Female,29,0,0,No,Govt_job,Rural,57.02,43,formerly smoked,0 +4683,Male,23,0,0,No,Private,Urban,115.98,22.3,never smoked,0 +55775,Female,59,0,0,Yes,Private,Rural,226.11,32.8,formerly smoked,0 +32645,Female,44,0,0,Yes,Private,Rural,97.59,30.5,smokes,0 +46643,Female,62,0,0,Yes,Private,Rural,82.57,36,formerly smoked,0 +782,Female,32,0,0,No,Private,Urban,79.34,26.5,formerly smoked,0 +63565,Female,2,0,0,No,children,Rural,125.68,20.1,Unknown,0 +13602,Male,73,1,0,Yes,Self-employed,Rural,102.06,N/A,Unknown,0 +28326,Female,79,0,0,Yes,Private,Urban,65.59,28.1,never smoked,0 +26389,Female,2,0,0,No,children,Urban,120.85,16.2,Unknown,0 +16906,Male,43,0,0,Yes,Govt_job,Urban,101.65,30,never smoked,0 +35140,Male,43,0,0,Yes,Govt_job,Urban,210.94,31.3,never smoked,0 +16837,Male,62,1,0,Yes,Private,Rural,77.92,26.7,never smoked,0 +2750,Male,73,1,1,Yes,Self-employed,Rural,230.68,37.7,Unknown,0 +47585,Female,31,0,0,No,Self-employed,Urban,62.68,35.8,never smoked,0 +37404,Male,42,0,0,Yes,Private,Urban,55.22,27,never smoked,0 +39518,Female,20,0,0,No,Private,Rural,78.94,20.7,never smoked,0 +70678,Female,55,0,1,No,Private,Rural,109.69,22.2,smokes,0 +542,Female,3,0,0,No,children,Urban,79.63,N/A,Unknown,0 +38649,Female,23,0,0,No,Private,Rural,79.33,41.5,never smoked,0 +53266,Female,33,0,0,Yes,Private,Urban,79.91,33.5,never smoked,0 +26031,Female,14,0,0,No,Private,Rural,84.46,21.8,Unknown,0 +1191,Female,79,0,1,Yes,Private,Urban,68.4,22.1,formerly smoked,0 +36820,Male,64,1,0,Yes,Private,Rural,78.43,30.2,smokes,0 +62783,Female,76,0,0,Yes,Private,Urban,198.02,38.7,Unknown,0 +10133,Male,46,0,0,Yes,Private,Urban,85.35,32.1,smokes,0 +19778,Male,80,0,0,No,Self-employed,Rural,204.17,41.3,formerly smoked,0 +38255,Male,21,0,0,No,Private,Urban,82.71,20.1,formerly smoked,0 +41565,Female,33,0,0,No,Private,Urban,121.19,22.1,never smoked,0 +39423,Female,32,0,0,Yes,Private,Rural,106.02,24.9,smokes,0 +68908,Female,0.72,0,0,No,children,Urban,66.36,23,Unknown,0 +22440,Female,49,0,0,Yes,Private,Urban,267.76,29.3,formerly smoked,0 +28418,Female,41,0,0,Yes,Private,Rural,107.18,22.8,never smoked,0 +22566,Male,37,0,0,Yes,Private,Rural,74.58,31.6,Unknown,0 +7055,Female,58,0,0,Yes,Private,Urban,80.92,19.4,Unknown,0 +69177,Female,79,0,0,Yes,Private,Rural,90.77,22.5,never smoked,0 +33162,Female,23,0,0,No,Private,Rural,90.84,31.6,never smoked,0 +44764,Female,78,1,0,Yes,Self-employed,Rural,59.2,29.1,Unknown,0 +32157,Male,51,0,0,Yes,Private,Rural,217.71,N/A,formerly smoked,0 +61983,Female,41,0,0,Yes,Private,Urban,133.76,43.4,smokes,0 +72268,Male,68,0,0,Yes,Self-employed,Urban,61.36,26.5,formerly smoked,0 +39467,Female,30,0,0,No,Private,Rural,118.62,29.7,Unknown,0 +20282,Male,1.88,0,0,No,children,Rural,77.91,21.8,Unknown,0 +51159,Female,32,0,0,No,Govt_job,Urban,68.98,23.4,formerly smoked,0 +7167,Female,20,0,0,No,Private,Rural,112.08,23,never smoked,0 +59147,Male,20,0,0,No,Private,Urban,96.2,21.5,never smoked,0 +18192,Male,10,0,0,No,children,Rural,93.11,14.6,Unknown,0 +14049,Male,8,0,0,No,children,Rural,115.54,28.5,Unknown,0 +35927,Male,65,0,0,Yes,Private,Urban,88.57,29,smokes,0 +28150,Female,65,1,0,Yes,Private,Urban,180.76,26.9,Unknown,0 +8727,Male,46,0,0,Yes,Self-employed,Urban,83.12,29.6,formerly smoked,0 +7516,Male,53,0,0,Yes,Self-employed,Urban,94.89,28.5,never smoked,0 +6419,Female,79,0,0,No,Private,Rural,239.52,25.5,never smoked,0 +20425,Male,43,0,0,Yes,Self-employed,Rural,99.15,30.5,formerly smoked,0 +59878,Female,56,0,0,Yes,Self-employed,Urban,124.16,23,never smoked,0 +69355,Male,3,0,0,No,children,Rural,86.38,22.8,Unknown,0 +5858,Male,32,0,0,No,Private,Rural,93.68,31.4,never smoked,0 +39823,Female,41,0,0,Yes,Govt_job,Rural,229.86,35.2,smokes,0 +37053,Male,53,0,0,Yes,Govt_job,Rural,78.73,23.3,never smoked,0 +2082,Male,35,0,0,Yes,Private,Rural,115.92,N/A,formerly smoked,0 +48073,Male,67,0,0,Yes,Govt_job,Rural,93.71,31.2,formerly smoked,0 +16449,Female,33,0,0,Yes,Govt_job,Rural,76.66,24.8,never smoked,0 +5447,Female,21,0,0,No,Private,Rural,112.38,25.8,Unknown,0 +27145,Female,26,0,0,No,Private,Rural,89.3,48.4,smokes,0 +30328,Female,69,1,0,Yes,Govt_job,Rural,103.44,43.1,formerly smoked,0 +739,Female,73,0,0,Yes,Self-employed,Rural,79.69,N/A,formerly smoked,0 +44224,Male,15,0,0,No,Private,Rural,61.61,27.8,never smoked,0 +533,Female,3,0,0,No,children,Rural,94.12,21.4,Unknown,0 +45554,Female,1.24,0,0,No,children,Urban,62.4,22.1,Unknown,0 +32884,Female,80,1,0,Yes,Private,Urban,210.96,31.8,never smoked,0 +55744,Male,2,0,0,No,children,Urban,76.25,20.1,Unknown,0 +28414,Male,50,0,0,Yes,Private,Urban,103.48,29.1,smokes,0 +25767,Female,30,0,0,No,Private,Urban,96.42,22.6,Unknown,0 +71319,Male,15,0,0,No,Private,Rural,78.59,25.1,Unknown,0 +70031,Female,71,1,0,Yes,Private,Rural,195.25,33.3,never smoked,0 +23604,Male,4,0,0,No,children,Rural,103.76,15.9,Unknown,0 +46576,Male,2,0,0,No,children,Rural,68.52,20.8,Unknown,0 +31293,Male,11,0,0,No,children,Urban,92.17,19.5,Unknown,0 +70610,Female,45,0,0,Yes,Private,Rural,81.02,39,never smoked,0 +6044,Male,22,0,0,No,Govt_job,Rural,94.33,23.1,never smoked,0 +62284,Male,63,0,0,Yes,Self-employed,Rural,78.43,18.8,never smoked,0 +5821,Female,50,0,0,Yes,Private,Rural,217.39,50.6,Unknown,0 +22295,Female,25,0,0,No,Private,Urban,82.77,36.3,Unknown,0 +27583,Male,49,0,0,Yes,Private,Rural,88.13,32.8,never smoked,0 +9696,Male,39,0,0,Yes,Private,Urban,102.77,35.8,smokes,0 +1164,Female,43,0,0,No,Private,Rural,101.75,26.7,smokes,0 +48781,Male,67,0,0,Yes,Private,Rural,113.34,26.3,formerly smoked,0 +50947,Male,48,0,0,Yes,Private,Urban,63.33,26.5,smokes,0 +47844,Female,38,0,0,Yes,Private,Urban,69.34,43.7,never smoked,0 +45209,Female,14,0,0,No,Private,Rural,118.81,24.7,Unknown,0 +49412,Male,63,0,0,Yes,Govt_job,Urban,66.13,46.2,never smoked,0 +43088,Male,37,0,0,No,Private,Urban,67.53,49.5,formerly smoked,0 +16355,Male,20,0,0,No,Private,Urban,96.58,43.3,never smoked,0 +43172,Female,60,0,0,Yes,Private,Urban,57.89,30.9,formerly smoked,0 +43155,Female,13,0,0,No,children,Rural,78.38,38.7,Unknown,0 +11882,Male,34,0,0,No,Private,Urban,94.15,28.6,never smoked,0 +45669,Male,22,0,0,No,Private,Urban,89.53,30.2,Unknown,0 +65339,Female,46,0,0,Yes,Private,Urban,127.75,30.5,never smoked,0 +60399,Male,53,0,0,Yes,Self-employed,Rural,76.79,33.9,Unknown,0 +59604,Female,28,0,0,Yes,Private,Rural,141.15,28.6,never smoked,0 +22488,Female,62,0,0,Yes,Govt_job,Urban,88.63,24.5,never smoked,0 +33187,Female,6,0,0,No,children,Urban,201.25,N/A,Unknown,0 +44192,Female,11,0,0,No,children,Urban,130.15,17.2,Unknown,0 +16114,Male,66,0,0,No,Private,Urban,108.03,27.2,never smoked,0 +35293,Female,80,0,0,Yes,Self-employed,Rural,104.07,19.3,formerly smoked,0 +728,Male,8,0,0,No,children,Urban,88.83,18.5,Unknown,0 +45788,Male,53,0,1,Yes,Private,Rural,197.79,32,Unknown,0 +52150,Male,63,1,1,Yes,Private,Urban,150.45,44.5,formerly smoked,0 +26172,Male,31,0,0,Yes,Private,Rural,100.39,37,never smoked,0 +67814,Male,43,0,0,Yes,Govt_job,Rural,79.92,30.8,formerly smoked,0 +12618,Male,79,0,1,Yes,Self-employed,Urban,96.79,24.7,Unknown,0 +28952,Male,8,0,0,No,children,Rural,86.84,18.3,Unknown,0 +39123,Male,38,0,0,Yes,Private,Rural,61.27,44,Unknown,0 +53967,Female,80,0,0,Yes,Self-employed,Rural,72.61,27.6,never smoked,0 +34772,Female,49,0,0,Yes,Private,Rural,82.41,45.4,smokes,0 +43124,Female,50,0,0,Yes,Govt_job,Urban,74.72,28.5,never smoked,0 +51916,Male,13,0,0,No,children,Rural,57.37,17.6,Unknown,0 +68003,Male,46,1,0,Yes,Private,Rural,73.72,N/A,smokes,0 +59157,Male,73,1,0,Yes,Private,Urban,88.34,27.5,never smoked,0 +54383,Male,60,0,0,Yes,Private,Rural,101.34,32.8,never smoked,0 +6928,Male,44,0,0,Yes,Private,Rural,119.01,29.5,never smoked,0 +321,Female,79,0,0,No,Self-employed,Rural,71.98,36.4,never smoked,0 +21857,Female,5,0,0,No,children,Urban,84.91,26.1,Unknown,0 +33526,Female,51,0,0,Yes,Self-employed,Rural,91.63,35.3,Unknown,0 +37327,Female,71,0,0,Yes,Private,Urban,214.77,N/A,Unknown,0 +55976,Male,5,0,0,No,children,Rural,145.71,18.1,Unknown,0 +56090,Female,65,0,0,Yes,Self-employed,Rural,167.31,27.1,never smoked,0 +38350,Female,81,0,0,Yes,Self-employed,Urban,63.65,23,Unknown,0 +6040,Female,46,0,0,No,Private,Rural,79.63,55,Unknown,0 +17639,Male,44,0,0,Yes,Govt_job,Rural,87.49,26.6,never smoked,0 +1678,Female,54,1,0,Yes,Private,Rural,98.74,N/A,never smoked,0 +27572,Female,25,0,0,No,Private,Rural,92.82,24.1,never smoked,0 +57668,Male,49,0,0,Yes,Govt_job,Urban,72.2,30.3,formerly smoked,0 +22001,Male,80,0,1,Yes,Govt_job,Rural,181.23,32.2,formerly smoked,0 +54184,Female,22,0,0,No,Private,Urban,63.37,26.5,never smoked,0 +27966,Female,61,0,0,Yes,Private,Urban,74.82,30.6,never smoked,0 +4702,Female,3,0,0,No,children,Rural,97.6,25.8,Unknown,0 +38123,Male,50,0,0,Yes,Private,Rural,93.04,41.9,smokes,0 +47345,Male,45,0,0,Yes,Private,Rural,97.12,29.2,never smoked,0 +17222,Male,55,1,0,Yes,Self-employed,Rural,82.81,44.3,never smoked,0 +45048,Female,21,0,0,No,Private,Urban,134.45,29.1,never smoked,0 +30084,Male,0.8,0,0,No,children,Rural,98.67,17.5,Unknown,0 +7195,Male,50,0,1,No,Private,Urban,85.82,31.9,never smoked,0 +16260,Male,73,0,1,Yes,Self-employed,Rural,189.45,32.2,never smoked,0 +52457,Female,58,0,1,Yes,Private,Rural,144.16,26,smokes,0 +50650,Male,30,0,0,No,Private,Rural,82.56,25.4,formerly smoked,0 +35913,Female,55,1,0,Yes,Private,Urban,206.4,54.8,never smoked,0 +52306,Male,57,0,0,Yes,Self-employed,Urban,67.97,27.9,never smoked,0 +132,Female,80,0,0,Yes,Govt_job,Urban,84.86,N/A,Unknown,0 +8951,Female,77,1,0,Yes,Self-employed,Urban,71.7,32.8,never smoked,0 +64752,Female,29,0,0,No,Private,Urban,72.02,34,formerly smoked,0 +51285,Female,46,0,0,Yes,Private,Urban,61.81,25.5,Unknown,0 +14349,Female,40,0,0,Yes,Private,Urban,103.09,35.6,Unknown,0 +40571,Male,29,0,0,No,Private,Urban,73.75,28.3,never smoked,0 +40624,Female,37,0,0,Yes,Private,Rural,156.7,36.9,never smoked,0 +13072,Female,35,0,0,Yes,Self-employed,Urban,70.87,22.1,formerly smoked,0 +66310,Male,54,0,0,Yes,Self-employed,Rural,138.47,31.5,never smoked,0 +58101,Female,56,0,1,Yes,Private,Rural,64.66,26.7,formerly smoked,0 +22969,Female,26,0,0,Yes,Private,Rural,91.88,24.9,formerly smoked,0 +28904,Female,75,0,0,Yes,Self-employed,Rural,74.79,32.4,never smoked,0 +6563,Female,44,0,0,No,Private,Rural,78.18,32.2,never smoked,0 +55315,Male,63,0,0,Yes,Private,Rural,77.82,30.3,Unknown,0 +47537,Female,17,0,0,No,Private,Rural,112.23,28.7,never smoked,0 +45945,Male,46,0,1,Yes,Private,Urban,178.76,24.1,never smoked,0 +65849,Female,47,0,0,Yes,Private,Rural,121.43,25.3,never smoked,0 +31125,Female,50,0,0,Yes,Private,Rural,94.22,24.8,never smoked,0 +5103,Female,49,0,0,Yes,Private,Rural,67.27,N/A,formerly smoked,0 +54526,Male,76,1,0,Yes,Self-employed,Rural,197.58,34.8,formerly smoked,0 +67309,Male,47,0,0,Yes,Private,Rural,86.37,39.2,smokes,0 +2275,Female,47,0,0,Yes,Private,Urban,112.09,24.7,smokes,0 +29869,Male,49,0,0,Yes,Private,Urban,199.96,28.6,never smoked,0 +15757,Male,71,0,0,Yes,Private,Urban,85.33,27.7,never smoked,0 +38523,Female,65,0,0,No,Self-employed,Rural,86.33,33.1,never smoked,0 +65388,Female,40,0,0,No,Private,Urban,80.47,27.3,smokes,0 +60816,Female,82,1,0,Yes,Private,Urban,62.46,20.3,formerly smoked,0 +67350,Female,64,0,0,Yes,Govt_job,Rural,78.85,33.9,never smoked,0 +40124,Male,72,0,0,Yes,Self-employed,Rural,72.09,N/A,smokes,0 +20370,Female,50,0,0,Yes,Self-employed,Rural,103.81,28.3,never smoked,0 +35188,Female,40,0,0,No,Private,Urban,78.04,32.4,smokes,0 +28716,Female,74,0,0,Yes,Self-employed,Rural,94.67,19.7,Unknown,0 +56166,Female,30,0,0,Yes,Govt_job,Rural,62.25,33.7,never smoked,0 +47159,Male,68,0,0,Yes,Private,Urban,155.17,35.5,never smoked,0 +26242,Male,6,0,0,No,children,Urban,83.28,20,Unknown,0 +36226,Male,4,0,0,No,children,Urban,132.41,16.3,Unknown,0 +47357,Female,60,0,0,Yes,Private,Rural,62.78,36.4,Unknown,0 +33167,Female,59,0,0,Yes,Private,Urban,89.96,28.1,Unknown,0 +21042,Female,72,0,0,Yes,Self-employed,Rural,103.25,26.9,formerly smoked,0 +71062,Female,62,0,0,Yes,Private,Rural,126.99,29.4,formerly smoked,0 +32723,Female,13,0,0,No,children,Rural,102.27,17.2,never smoked,0 +49646,Male,72,0,1,Yes,Self-employed,Rural,113.63,26.5,Unknown,0 +35737,Male,1.08,0,0,No,children,Urban,86.09,19.5,Unknown,0 +24256,Male,35,0,0,Yes,Private,Rural,108.08,30.6,formerly smoked,0 +62340,Male,54,0,0,Yes,Private,Urban,108.34,31.9,never smoked,0 +39927,Male,40,0,0,Yes,Private,Rural,56.07,26.6,never smoked,0 +30677,Female,3,0,0,No,children,Urban,82.91,19.9,Unknown,0 +50453,Male,2,0,0,No,children,Urban,94.75,18,Unknown,0 +17398,Male,41,0,0,Yes,Private,Rural,101.79,26.7,Unknown,0 +20938,Female,61,0,0,Yes,Private,Rural,88.41,25.3,formerly smoked,0 +21850,Male,58,0,0,Yes,Govt_job,Urban,101.05,31.4,Unknown,0 +14241,Male,17,0,0,No,Private,Urban,85.07,21.1,never smoked,0 +43905,Female,64,0,0,No,Govt_job,Rural,108.1,17.9,never smoked,0 +40144,Female,32,0,0,No,Self-employed,Rural,93.17,27.5,smokes,0 +7806,Female,42,0,0,Yes,Private,Urban,158.89,37.6,smokes,0 +63984,Male,39,0,0,Yes,Private,Rural,205.77,24.1,never smoked,0 +13504,Female,10,0,0,No,children,Urban,112.34,18.1,Unknown,0 +62272,Female,78,0,0,Yes,Private,Urban,119.03,31,never smoked,0 +5878,Female,68,0,0,Yes,Private,Urban,237.21,26.6,smokes,0 +62767,Female,24,0,0,Yes,Private,Urban,89.68,38.7,never smoked,0 +239,Male,59,1,1,Yes,Private,Rural,246.53,27.2,formerly smoked,0 +3184,Female,45,0,0,Yes,Private,Urban,89.05,27.8,formerly smoked,0 +51959,Male,12,0,0,No,children,Rural,81.74,28.3,Unknown,0 +2092,Female,37,0,0,Yes,Private,Rural,98.12,27.5,never smoked,0 +69239,Female,43,0,0,Yes,Self-employed,Rural,105.59,43.3,smokes,0 +68235,Male,12,0,0,No,children,Rural,86,20.1,formerly smoked,0 +3956,Male,13,0,0,No,children,Urban,65.51,25.9,Unknown,0 +42703,Male,74,0,0,Yes,Self-employed,Urban,61.78,25.8,Unknown,0 +34436,Female,2,0,0,No,children,Rural,109.56,16.4,Unknown,0 +39258,Female,59,0,0,Yes,Self-employed,Urban,65.82,29.4,never smoked,0 +40513,Female,21,0,0,No,Private,Urban,90.16,28.9,smokes,0 +48648,Female,55,0,0,Yes,Private,Urban,64.45,26.7,never smoked,0 +48836,Female,14,0,0,No,children,Urban,91.85,27.8,never smoked,0 +71444,Female,53,0,0,Yes,Private,Rural,97.89,38.7,formerly smoked,0 +33983,Male,75,0,0,Yes,Govt_job,Rural,206.33,26.8,never smoked,0 +35372,Male,37,0,0,Yes,Govt_job,Rural,74.29,36.1,never smoked,0 +31849,Female,49,0,0,Yes,Private,Rural,107.4,26.7,smokes,0 +2772,Male,55,0,0,Yes,Private,Urban,87.72,27,Unknown,0 +11148,Male,57,0,0,Yes,Private,Rural,85.99,21.2,Unknown,0 +62387,Female,45,0,0,Yes,Private,Urban,100.84,21,never smoked,0 +50775,Male,46,0,0,No,Private,Urban,124.61,37.4,Unknown,0 +3807,Female,12,0,0,No,children,Urban,86.55,26.5,Unknown,0 +51339,Male,12,0,0,No,children,Rural,90.42,28.9,Unknown,0 +69259,Female,77,0,0,Yes,Private,Rural,100.85,29.5,smokes,0 +32826,Male,6,0,0,No,children,Urban,87.74,17.7,Unknown,0 +12414,Male,76,1,0,Yes,Private,Rural,80.15,34.9,formerly smoked,0 +21381,Female,52,0,0,Yes,Private,Urban,107.29,28.1,never smoked,0 +29375,Male,62,0,0,Yes,Private,Urban,206.98,36.8,smokes,0 +62452,Male,82,1,0,Yes,Private,Rural,227.28,33.3,never smoked,0 +68650,Male,69,0,1,Yes,Private,Rural,80.43,29.2,Unknown,0 +47622,Male,78,0,1,Yes,Self-employed,Urban,228.7,34,Unknown,0 +57124,Male,37,0,0,Yes,Private,Urban,120.07,33.9,smokes,0 +19382,Female,50,0,0,Yes,Private,Rural,93.47,28.7,never smoked,0 +44179,Female,41,0,0,Yes,Private,Urban,80.77,21.1,never smoked,0 +50098,Male,54,0,0,Yes,Private,Rural,150.27,38.2,smokes,0 +24674,Male,43,0,0,Yes,Private,Urban,81.94,27.7,smokes,0 +72361,Female,37,0,0,Yes,Private,Urban,70.75,35.8,Unknown,0 +14563,Male,9,0,0,No,children,Urban,83.83,27.1,Unknown,0 +40237,Female,11,0,0,No,children,Urban,73.66,20.5,never smoked,0 +36523,Male,56,1,0,Yes,Private,Urban,102.37,35.6,never smoked,0 +65970,Female,5,0,0,No,children,Rural,77.83,15.6,Unknown,0 +1577,Female,17,0,0,No,Private,Urban,70.01,43,Unknown,0 +51109,Female,6,0,0,No,children,Rural,119.88,17.8,Unknown,0 +5984,Male,25,0,0,Yes,Private,Rural,78.29,N/A,smokes,0 +46373,Female,57,0,0,Yes,Private,Rural,169.97,25.8,never smoked,0 +13062,Male,18,0,0,No,Private,Rural,123.79,20.5,Unknown,0 +47770,Male,2,0,0,No,children,Urban,80.98,19.9,Unknown,0 +32459,Female,76,0,0,Yes,Govt_job,Rural,84.21,24.4,never smoked,0 +12687,Male,1,0,0,No,children,Urban,101.31,18.3,Unknown,0 +7725,Male,54,0,0,Yes,Private,Urban,86.26,35.1,formerly smoked,0 +67217,Female,45,0,0,Yes,Private,Urban,92.86,35.1,formerly smoked,0 +49976,Female,54,0,1,Yes,Private,Urban,140.28,37.1,formerly smoked,0 +71318,Male,67,0,0,Yes,Govt_job,Rural,244.28,29.4,formerly smoked,0 +42201,Male,53,0,0,Yes,Private,Urban,124.16,31.7,never smoked,0 +11232,Male,47,0,0,Yes,Private,Rural,93.55,31.4,never smoked,0 +14709,Male,44,0,0,Yes,Private,Urban,99.34,33.1,never smoked,0 +57137,Male,65,0,0,Yes,Private,Urban,59.87,28.5,smokes,0 +36858,Female,40,0,0,Yes,Private,Rural,72.76,24,formerly smoked,0 +50373,Female,3,0,0,No,children,Rural,68.34,18,Unknown,0 +51124,Male,81,0,0,Yes,Self-employed,Urban,61.1,27.6,smokes,0 +13191,Female,24,0,0,No,Private,Rural,120.77,16.9,never smoked,0 +47330,Male,9,0,0,No,children,Rural,60.39,16.4,Unknown,0 +42191,Female,52,0,0,Yes,Govt_job,Urban,126.34,35.1,never smoked,0 +35332,Female,63,0,0,Yes,Private,Rural,93.24,28.8,never smoked,0 +49341,Female,78,0,0,Yes,Private,Rural,154.75,17.6,never smoked,0 +64750,Female,22,0,0,No,Private,Rural,62.81,21.3,never smoked,0 +70259,Female,2,0,0,No,children,Rural,65.96,19.7,Unknown,0 +36960,Female,79,0,0,Yes,Private,Rural,79.53,37.3,never smoked,0 +12992,Female,49,0,0,Yes,Private,Rural,96.85,35.5,never smoked,0 +4692,Female,74,0,0,Yes,Govt_job,Urban,251.99,25.5,never smoked,0 +62460,Male,62,0,0,Yes,Private,Rural,115.13,30,smokes,0 +72132,Male,16,0,0,No,children,Urban,102.3,21.9,Unknown,0 +41402,Male,62,0,0,Yes,Self-employed,Urban,78.99,45.5,never smoked,0 +40253,Male,27,0,0,No,Private,Rural,191.79,N/A,smokes,0 +63577,Female,50,1,0,Yes,Self-employed,Rural,68.8,34.9,never smoked,0 +11726,Female,49,0,0,Yes,Govt_job,Rural,83.84,19.3,formerly smoked,0 +13736,Male,24,0,0,Yes,Private,Urban,94.66,32.1,formerly smoked,0 +43913,Female,21,0,0,No,Private,Rural,107.98,26.9,never smoked,0 +41870,Male,17,0,0,No,Never_worked,Rural,61.01,32.5,Unknown,0 +37907,Female,22,0,0,No,Private,Urban,135.64,19.5,never smoked,0 +15987,Male,13,0,0,No,children,Urban,92.65,31.7,never smoked,0 +57166,Female,21,0,0,No,Private,Rural,121.11,21,Unknown,0 +44950,Male,51,1,0,Yes,Private,Rural,163.56,N/A,formerly smoked,0 +47627,Male,8,0,0,No,children,Urban,107.69,20.3,Unknown,0 +42460,Male,48,0,0,Yes,Self-employed,Rural,216.88,N/A,smokes,0 +8723,Female,16,0,0,No,Private,Rural,70.15,21.5,Unknown,0 +52559,Male,18,0,0,No,Private,Urban,83.02,40.4,Unknown,0 +937,Male,7,0,0,No,children,Urban,87.94,N/A,Unknown,0 +41271,Male,68,1,0,Yes,Govt_job,Urban,222.29,30.1,never smoked,0 +66893,Male,49,1,0,Yes,Govt_job,Urban,139.43,40.2,formerly smoked,0 +21491,Female,80,0,0,Yes,Private,Urban,213.11,34.7,never smoked,0 +51806,Male,31,0,0,Yes,Private,Rural,77.23,25.9,smokes,0 +59412,Female,25,0,0,Yes,Private,Urban,58.48,23.7,never smoked,0 +742,Female,39,0,0,No,Govt_job,Rural,87.33,34.3,never smoked,0 +42902,Male,35,0,0,Yes,Private,Rural,102.34,34.3,never smoked,0 +43059,Female,71,0,0,Yes,Self-employed,Rural,151.3,26.3,never smoked,0 +61512,Female,71,0,0,Yes,Self-employed,Urban,144.23,22.1,formerly smoked,0 +10943,Female,40,0,0,Yes,Govt_job,Rural,110.6,33.3,formerly smoked,0 +11447,Female,41,0,0,Yes,Govt_job,Urban,80.28,37.3,never smoked,0 +29233,Male,2,0,0,No,children,Rural,111.02,20.5,Unknown,0 +17762,Female,3,0,0,No,children,Rural,114.88,19.1,Unknown,0 +46284,Male,53,1,0,Yes,Self-employed,Urban,227.51,34.7,formerly smoked,0 +1405,Male,1.88,0,0,No,children,Urban,111.65,16.3,Unknown,0 +38493,Male,60,1,1,Yes,Private,Urban,201.01,28,never smoked,0 +57953,Female,5,0,0,No,children,Urban,129.01,17.2,Unknown,0 +30746,Female,30,0,0,Yes,Private,Rural,124.08,41.1,Unknown,0 +16949,Female,49,1,0,Yes,Govt_job,Rural,107.91,25,Unknown,0 +45297,Male,68,1,0,Yes,Private,Rural,95.4,27.5,never smoked,0 +40251,Female,23,0,0,No,Private,Rural,65.9,21.5,never smoked,0 +27013,Male,2,0,0,No,children,Urban,78.98,15.1,Unknown,0 +7586,Male,24,0,0,No,Self-employed,Rural,111.33,29.6,formerly smoked,0 +26452,Female,41,0,0,Yes,Private,Rural,104.36,30.2,never smoked,0 +16378,Female,63,0,0,Yes,Govt_job,Urban,123.87,34.9,Unknown,0 +5137,Male,64,0,0,Yes,Self-employed,Rural,210,30.7,formerly smoked,0 +4559,Male,38,0,0,No,Private,Rural,86.86,36.5,Unknown,0 +45357,Female,1.24,0,0,No,children,Rural,113.96,21.5,Unknown,0 +45257,Female,38,0,0,Yes,Private,Rural,81.28,33.2,smokes,0 +34386,Female,43,0,0,Yes,Private,Rural,102.5,50.2,never smoked,0 +15219,Female,27,0,0,No,Private,Rural,78.05,22.3,never smoked,0 +39202,Female,61,1,1,Yes,Private,Urban,237.58,N/A,formerly smoked,0 +9076,Male,42,0,0,Yes,Self-employed,Urban,86.07,27.3,Unknown,0 +72824,Male,46,0,0,Yes,Private,Rural,59.05,28.3,formerly smoked,0 +64132,Male,67,0,1,Yes,Self-employed,Rural,95.88,31.9,Unknown,0 +52987,Female,34,0,0,Yes,Govt_job,Rural,70.18,24.9,Unknown,0 +17827,Male,51,0,0,Yes,Private,Rural,111.13,32.7,formerly smoked,0 +29378,Female,77,0,0,Yes,Private,Urban,79.3,26.4,Unknown,0 +29327,Female,30,0,0,No,Self-employed,Urban,65.84,24.8,smokes,0 +48609,Female,81,0,1,Yes,Private,Rural,123.49,30.7,smokes,0 +4833,Female,12,0,0,No,children,Rural,207.45,25.4,smokes,0 +8085,Male,18,0,0,No,Private,Rural,143.45,32,smokes,0 +41820,Female,35,0,0,Yes,Govt_job,Rural,89.11,24.4,never smoked,0 +72474,Female,82,0,0,Yes,Govt_job,Rural,58.3,20.4,never smoked,0 +32094,Male,53,1,0,Yes,Self-employed,Urban,78.68,29.5,never smoked,0 +66818,Male,75,0,0,Yes,Govt_job,Urban,98.91,24.4,never smoked,0 +49057,Female,32,0,0,No,Private,Rural,67.92,22.8,smokes,0 +18070,Female,27,0,0,No,Private,Rural,73,20,never smoked,0 +17860,Male,56,0,0,Yes,Private,Rural,97.5,36.3,formerly smoked,0 +17078,Male,71,0,0,Yes,Private,Urban,108.43,32.8,smokes,0 +23836,Male,78,0,0,Yes,Private,Urban,90.43,34.4,formerly smoked,0 +5296,Female,44,0,0,No,Private,Urban,76.3,30.5,never smoked,0 +48184,Male,62,0,0,Yes,Private,Rural,121.27,29.7,smokes,0 +9511,Male,27,0,0,No,Private,Urban,119.67,36.9,Unknown,0 +19389,Female,42,0,1,Yes,Govt_job,Urban,226.93,34.2,smokes,0 +25559,Female,66,0,1,Yes,Govt_job,Rural,76.11,37,Unknown,0 +11770,Female,25,0,0,Yes,Govt_job,Urban,93.23,N/A,smokes,0 +34496,Female,82,0,0,Yes,Private,Urban,253.16,47.5,Unknown,0 +8096,Female,49,0,0,Yes,Private,Urban,101.02,24.2,smokes,0 +49709,Female,77,1,0,Yes,Self-employed,Rural,238.53,30.6,never smoked,0 +19735,Female,59,0,0,Yes,Private,Rural,79.18,52.8,formerly smoked,0 +31415,Female,54,0,0,Yes,Private,Urban,207.79,38.6,never smoked,0 +71322,Female,38,0,0,Yes,Private,Rural,196.2,32.8,never smoked,0 +72337,Female,55,0,0,Yes,Private,Urban,231.76,42.9,never smoked,0 +25454,Female,13,0,0,No,children,Rural,93.3,25.9,Unknown,0 +15310,Female,45,0,0,Yes,Private,Urban,110.47,24.7,smokes,0 +10245,Female,54,0,0,Yes,Self-employed,Rural,77.52,35.8,never smoked,0 +29224,Male,30,0,0,Yes,Private,Urban,91.23,N/A,smokes,0 +7550,Female,51,0,0,Yes,Private,Rural,216.92,31.2,Unknown,0 +57917,Female,47,0,0,Yes,Private,Urban,157.01,26.1,smokes,0 +24219,Male,25,0,0,Yes,Private,Urban,93.51,30.8,never smoked,0 +49023,Male,61,1,0,Yes,Self-employed,Rural,102.54,40.5,never smoked,0 +51020,Female,55,0,0,Yes,Private,Rural,87.78,25.2,formerly smoked,0 +52089,Female,23,0,0,No,Private,Urban,126.67,28.7,smokes,0 +29095,Male,71,1,0,Yes,Self-employed,Rural,93.6,N/A,never smoked,0 +41424,Male,59,0,1,Yes,Self-employed,Rural,194.98,30.4,Unknown,0 +7297,Male,4,0,0,No,children,Rural,99.96,15.2,Unknown,0 +68994,Male,65,0,0,Yes,Private,Urban,58.87,36.6,never smoked,0 +25935,Female,50,0,0,No,Self-employed,Urban,77.67,34.5,Unknown,0 +29910,Male,42,0,0,Yes,Private,Urban,83.14,23.7,never smoked,0 +24567,Male,51,0,0,Yes,Self-employed,Urban,69.18,35.7,smokes,0 +54858,Male,66,0,0,Yes,Govt_job,Rural,218.54,38.9,smokes,0 +36679,Female,22,1,0,No,Private,Urban,71.22,40,never smoked,0 +59339,Male,5,0,0,No,children,Urban,82.41,18.4,Unknown,0 +18754,Male,19,0,0,No,Self-employed,Rural,82.07,29,never smoked,0 +34312,Female,47,0,0,Yes,Self-employed,Urban,73,20.6,never smoked,0 +57798,Male,12,0,0,No,children,Rural,127.25,28.2,Unknown,0 +37759,Female,53,0,0,Yes,Private,Rural,72.63,66.8,Unknown,0 +11605,Female,26,0,0,No,Private,Rural,108.2,26.2,never smoked,0 +47558,Male,62,1,1,Yes,Private,Urban,123.95,34.8,formerly smoked,0 +54264,Female,81,1,0,Yes,Private,Urban,58.71,34.5,never smoked,0 +47893,Male,63,0,0,Yes,Private,Rural,98.46,30.6,never smoked,0 +3178,Female,25,0,0,Yes,Private,Rural,68.78,55.1,formerly smoked,0 +61924,Male,8,0,0,No,children,Rural,133.63,18.8,Unknown,0 +18141,Male,76,0,1,Yes,Self-employed,Rural,101.43,29.1,Unknown,0 +58015,Female,44,0,0,No,Private,Rural,65.3,22.1,smokes,0 +354,Female,65,0,0,Yes,Private,Urban,72.49,28.9,smokes,0 +5777,Female,54,0,0,Yes,Private,Urban,65.49,34.7,Unknown,0 +43271,Female,24,0,0,No,Govt_job,Urban,63.4,20.3,smokes,0 +46210,Female,65,0,0,Yes,Self-employed,Rural,105.29,25.1,formerly smoked,0 +39714,Male,12,0,0,No,children,Urban,64.08,18.2,Unknown,0 +21785,Female,33,0,0,No,Private,Urban,78.34,25.5,never smoked,0 +36620,Female,74,0,0,Yes,Private,Rural,66.32,34.4,formerly smoked,0 +49495,Female,18,0,0,No,Private,Rural,168.15,48.5,never smoked,0 +21720,Female,77,0,0,Yes,Private,Rural,93.48,25.2,formerly smoked,0 +6304,Male,48,1,0,Yes,Self-employed,Urban,79.2,32.5,never smoked,0 +18887,Male,52,0,0,Yes,Private,Rural,107.45,42.1,formerly smoked,0 +30214,Male,23,0,0,No,Private,Rural,83.86,19.5,never smoked,0 +66419,Male,25,0,0,Yes,Private,Rural,119.96,27.7,never smoked,0 +57468,Female,44,0,0,Yes,Private,Rural,70.58,25.1,never smoked,0 +24218,Female,78,0,0,No,Private,Rural,87.7,29.6,never smoked,0 +69792,Female,37,0,0,Yes,Govt_job,Urban,65.29,32.9,never smoked,0 +6372,Female,32,0,0,Yes,Private,Urban,97.14,55.9,never smoked,0 +34664,Male,67,0,0,Yes,Private,Urban,110.68,25.1,formerly smoked,0 +40931,Female,41,0,0,Yes,Govt_job,Urban,91.93,24.7,smokes,0 +28559,Male,2,0,0,No,children,Urban,88.54,17.5,Unknown,0 +15166,Female,75,1,0,Yes,Private,Urban,183,20.8,Unknown,0 +49815,Female,17,0,0,No,Govt_job,Rural,115.93,23.3,never smoked,0 +1625,Female,13,0,0,No,children,Urban,99.13,22.8,Unknown,0 +56309,Female,25,0,0,Yes,Private,Rural,69.24,26.6,never smoked,0 +30116,Female,57,0,0,Yes,Private,Rural,102.28,25.5,never smoked,0 +52034,Male,31,0,0,Yes,Private,Urban,71.31,25.8,never smoked,0 +35584,Male,61,0,0,Yes,Private,Rural,89.75,25.4,never smoked,0 +2898,Male,46,0,0,Yes,Private,Urban,87.66,57.3,never smoked,0 +16593,Male,47,0,0,No,Private,Rural,237.17,N/A,Unknown,0 +17175,Female,15,0,0,No,children,Urban,81.11,20.2,Unknown,0 +63663,Male,47,0,0,Yes,Private,Urban,178.33,27.7,never smoked,0 +10603,Female,68,0,0,Yes,Private,Rural,81.38,23.1,Unknown,0 +40544,Male,0.4,0,0,No,children,Urban,109.56,14.3,Unknown,0 +49152,Female,40,0,0,No,Private,Rural,70.45,23.3,smokes,0 +1231,Female,62,0,0,Yes,Govt_job,Rural,73.44,23.4,Unknown,0 +43672,Female,45,0,0,Yes,Private,Urban,146.44,22.8,formerly smoked,0 +25107,Female,47,0,0,Yes,Private,Urban,65.04,30.9,never smoked,0 +39286,Female,35,0,0,Yes,Self-employed,Rural,151.25,28.4,Unknown,0 +32766,Male,51,0,0,No,Private,Rural,106.41,41.9,smokes,0 +15988,Male,60,1,0,Yes,Private,Urban,197.09,34.3,Unknown,0 +9011,Male,59,0,0,Yes,Private,Urban,93.58,25.1,smokes,0 +38043,Female,1.24,0,0,No,children,Rural,122.04,10.3,Unknown,0 +71721,Female,18,0,0,No,Private,Rural,80.06,31.8,Unknown,0 +14832,Female,81,0,1,Yes,Private,Urban,84.93,31.8,Unknown,0 +38094,Male,15,0,0,No,Self-employed,Urban,68.4,23,never smoked,0 +49789,Female,73,0,0,No,Govt_job,Urban,62.99,25.4,formerly smoked,0 +47350,Female,0.08,0,0,No,children,Urban,139.67,14.1,Unknown,0 +33525,Male,53,0,0,Yes,Govt_job,Urban,113.4,35.1,smokes,0 +12318,Male,45,0,0,Yes,Self-employed,Urban,101.92,26.9,Unknown,0 +54553,Male,70,1,0,Yes,Private,Urban,65.98,33,formerly smoked,0 +45976,Male,56,0,0,Yes,Private,Urban,84.3,22.1,Unknown,0 +43675,Female,7,0,0,No,children,Urban,61.42,20.8,Unknown,0 +12915,Female,66,0,0,Yes,Govt_job,Rural,85.52,30,never smoked,0 +4542,Female,53,0,0,Yes,Govt_job,Urban,83.79,44,Unknown,0 +65801,Female,20,0,0,No,Private,Urban,73.83,16.6,Unknown,0 +59953,Female,15,0,0,No,Private,Rural,69.38,28.4,never smoked,0 +60973,Male,51,0,0,Yes,Private,Urban,66.11,26.3,never smoked,0 +68739,Male,34,0,0,Yes,Private,Urban,149.62,39.4,formerly smoked,0 +35829,Female,33,0,0,Yes,Private,Urban,242.84,15.7,smokes,0 +53909,Female,53,1,0,Yes,Private,Urban,202.66,34.1,smokes,0 +5799,Male,69,0,1,Yes,Private,Rural,216.9,29.8,formerly smoked,0 +43772,Female,28,0,0,No,Private,Urban,103.78,23.6,Unknown,0 +3154,Female,81,0,0,Yes,Self-employed,Rural,114.88,18.3,formerly smoked,0 +45754,Female,20,0,0,No,Private,Urban,75.94,28.3,never smoked,0 +57485,Female,1.48,0,0,No,children,Rural,55.51,18.5,Unknown,0 +6128,Male,2,0,0,No,children,Rural,93.74,18.4,Unknown,0 +22623,Male,77,0,0,Yes,Private,Urban,71.44,24.1,smokes,0 +37082,Female,38,0,0,Yes,Govt_job,Urban,58.29,25.5,formerly smoked,0 +64541,Male,23,0,0,Yes,Private,Urban,115.83,25.3,never smoked,0 +47037,Female,67,0,0,Yes,Private,Urban,102.71,39.9,formerly smoked,0 +48614,Male,59,0,0,Yes,Govt_job,Urban,99.69,28.8,smokes,0 +15969,Female,41,0,0,Yes,Self-employed,Rural,102.89,37.2,formerly smoked,0 +17752,Male,76,0,1,Yes,Private,Urban,79.05,N/A,Unknown,0 +50889,Female,21,0,0,No,Govt_job,Rural,56.63,49.8,never smoked,0 +56459,Male,41,0,0,Yes,Private,Rural,87.34,34.3,formerly smoked,0 +34163,Male,54,0,0,Yes,Private,Rural,109.51,29,never smoked,0 +4538,Female,29,0,0,No,Private,Urban,81.43,N/A,formerly smoked,0 +14222,Female,25,0,0,No,Private,Urban,78.59,37.2,never smoked,0 +31461,Female,48,0,1,Yes,Self-employed,Urban,101.22,N/A,formerly smoked,0 +34001,Female,6,0,0,No,children,Urban,78.26,19.4,Unknown,0 +48964,Male,21,0,0,No,Private,Rural,105.47,26.2,never smoked,0 +40393,Female,32,0,0,No,Private,Urban,68.19,21.1,never smoked,0 +16488,Female,57,1,0,Yes,Private,Urban,210,N/A,never smoked,0 +47947,Female,64,0,0,Yes,Self-employed,Rural,114.47,31.6,smokes,0 +51149,Male,70,0,0,Yes,Private,Urban,66.85,29.3,Unknown,0 +17079,Male,44,0,0,Yes,Private,Rural,94.71,28.4,smokes,0 +44781,Female,60,0,1,Yes,Private,Urban,208.05,35.3,smokes,0 +29385,Female,56,0,0,Yes,Private,Rural,222.6,40.1,smokes,0 +53610,Male,53,0,0,Yes,Private,Urban,80.81,39,formerly smoked,0 +48210,Male,59,0,0,Yes,Private,Rural,64.51,31.5,never smoked,0 +48072,Female,53,1,0,Yes,Private,Urban,151.56,28.5,Unknown,0 +32776,Male,63,0,0,Yes,Private,Urban,199.14,28.5,never smoked,0 +8960,Female,42,0,0,No,Self-employed,Rural,73.41,56,smokes,0 +63491,Female,63,0,0,Yes,Private,Urban,109.65,28.6,formerly smoked,0 +51883,Female,52,0,0,Yes,Govt_job,Rural,69.11,35.2,never smoked,0 +20460,Female,62,0,0,Yes,Private,Urban,114.41,32.5,never smoked,0 +47181,Female,68,0,0,Yes,Private,Urban,103.46,35.9,never smoked,0 +35432,Female,36,0,0,Yes,Private,Rural,95.36,25.1,never smoked,0 +44010,Female,3,0,0,No,children,Urban,57.33,16.8,Unknown,0 +50841,Female,40,0,0,Yes,Private,Rural,191.48,27.9,smokes,0 +71044,Female,8,0,0,No,children,Rural,71.63,16.3,Unknown,0 +1842,Male,58,0,0,Yes,Private,Urban,94,N/A,Unknown,0 +34720,Male,45,0,1,Yes,Private,Rural,93.77,N/A,Unknown,0 +9489,Female,65,0,0,Yes,Private,Urban,84.75,21.4,Unknown,0 +28725,Female,28,0,0,No,Private,Rural,89.24,32.7,formerly smoked,0 +30290,Female,40,0,0,Yes,Private,Urban,70.13,23.6,never smoked,0 +13723,Female,65,0,0,Yes,Private,Urban,82.26,19.8,formerly smoked,0 +26328,Male,58,1,0,Yes,Private,Urban,200.16,33.1,never smoked,0 +60104,Male,44,0,0,Yes,Private,Urban,80.73,28.1,smokes,0 +48722,Female,54,0,0,Yes,Private,Urban,75.09,38.9,formerly smoked,0 +14481,Female,79,0,0,Yes,Self-employed,Urban,80.57,23.8,never smoked,0 +67963,Female,62,1,0,No,Private,Rural,77.04,33.8,formerly smoked,0 +70752,Male,37,0,0,Yes,Private,Urban,145.26,26.7,Unknown,0 +52419,Male,66,0,0,Yes,Private,Urban,190.4,N/A,formerly smoked,0 +14711,Male,63,0,0,Yes,Self-employed,Urban,82.08,32.2,formerly smoked,0 +26366,Female,27,0,0,No,Private,Rural,103.35,28.1,formerly smoked,0 +12436,Male,6,0,0,No,children,Urban,97.46,21.3,Unknown,0 +36722,Female,30,0,0,Yes,Private,Urban,123.65,44,smokes,0 +37698,Female,15,0,0,No,children,Urban,87.96,21.5,formerly smoked,0 +55235,Female,50,0,0,Yes,Self-employed,Urban,85.92,37.3,smokes,0 +20468,Female,32,0,0,Yes,Private,Urban,80.8,44.8,never smoked,0 +14677,Female,33,0,0,Yes,Self-employed,Rural,99.3,21.4,never smoked,0 +44171,Male,62,0,0,Yes,Private,Rural,62.56,32.3,never smoked,0 +70344,Male,82,0,0,Yes,Private,Urban,144.2,35.4,smokes,0 +8470,Female,71,0,0,Yes,Private,Urban,71.38,19.7,never smoked,0 +42743,Female,20,0,0,No,Private,Urban,95.5,31.3,Unknown,0 +13949,Female,44,0,0,Yes,Govt_job,Urban,67.06,35.5,never smoked,0 +61096,Male,57,0,0,Yes,Private,Rural,70.16,25.8,formerly smoked,0 +19239,Female,50,0,0,Yes,Govt_job,Urban,104.24,32.8,Unknown,0 +70447,Male,50,0,0,Yes,Private,Rural,122.48,35.9,smokes,0 +6879,Female,44,0,0,No,Govt_job,Urban,215.9,41.8,smokes,0 +37451,Female,47,0,0,Yes,Govt_job,Rural,108.56,27.3,formerly smoked,0 +5686,Male,35,0,0,Yes,Private,Urban,69.88,27.7,Unknown,0 +4789,Male,8,0,0,No,children,Rural,91.54,13.4,Unknown,0 +897,Male,3,0,0,No,children,Rural,65.85,17,Unknown,0 +69553,Female,29,0,0,Yes,Private,Rural,60.74,20,never smoked,0 +58438,Male,36,0,0,No,Private,Rural,233.52,40.9,never smoked,0 +29104,Female,19,0,0,No,Private,Urban,110.7,38.5,never smoked,0 +26862,Female,41,0,0,Yes,Govt_job,Rural,78.93,30.9,formerly smoked,0 +38036,Female,23,0,0,No,Private,Urban,124.5,33.4,Unknown,0 +36666,Male,14,0,0,No,children,Urban,57.95,17.1,Unknown,0 +16316,Male,35,0,0,Yes,Private,Rural,92.82,28.6,Unknown,0 +61365,Male,45,0,0,Yes,Private,Rural,58.25,24,smokes,0 +12512,Female,52,1,0,Yes,Private,Rural,213.54,32,never smoked,0 +31835,Male,19,0,0,No,Private,Urban,74.86,28.4,never smoked,0 +4099,Female,21,0,0,No,Private,Urban,78.35,20.3,Unknown,0 +26893,Male,8,0,0,No,children,Urban,101.26,33.8,Unknown,0 +35143,Female,35,0,0,Yes,Private,Urban,86.87,43.2,Unknown,0 +1486,Female,33,0,0,Yes,Private,Rural,124.01,22.7,Unknown,0 +5043,Female,53,0,0,Yes,Private,Urban,83.41,29.9,never smoked,0 +2513,Male,59,0,1,Yes,Govt_job,Urban,188.69,N/A,formerly smoked,0 +5451,Male,34,0,0,Yes,Private,Rural,86.51,N/A,formerly smoked,0 +3640,Female,31,0,0,No,Self-employed,Rural,70.65,29.9,Unknown,0 +17835,Female,43,0,0,No,Self-employed,Rural,92.4,22.7,Unknown,0 +26826,Female,61,0,0,Yes,Self-employed,Urban,73.36,16.1,never smoked,0 +45713,Female,57,0,0,Yes,Govt_job,Urban,219.5,33.8,formerly smoked,0 +37660,Male,11,0,0,No,children,Rural,105.73,22.6,never smoked,0 +24782,Male,36,0,0,Yes,Private,Rural,83.79,25.5,smokes,0 +63416,Female,16,0,0,No,Private,Urban,58.02,22.5,Unknown,0 +16953,Female,60,0,0,Yes,Govt_job,Rural,61.94,27.9,formerly smoked,0 +42082,Male,13,0,0,No,children,Rural,99.71,23.5,Unknown,0 +51660,Female,69,0,0,Yes,Self-employed,Rural,63.19,32.2,never smoked,0 +27135,Male,69,1,0,Yes,Private,Rural,107.11,N/A,smokes,0 +54058,Female,22,0,0,No,Private,Urban,56.84,29.9,smokes,0 +24272,Male,63,0,0,Yes,Govt_job,Rural,217.66,28.7,formerly smoked,0 +16028,Female,45,0,0,Yes,Private,Rural,77.19,37.2,smokes,0 +49645,Male,58,0,0,No,Private,Rural,76.22,22.2,formerly smoked,0 +54347,Male,61,0,0,Yes,Self-employed,Rural,155.32,26.6,formerly smoked,0 +4861,Female,30,0,0,Yes,Private,Urban,70.67,24.6,smokes,0 +54353,Female,78,1,1,Yes,Private,Urban,227.16,41.7,never smoked,0 +71016,Female,68,0,0,Yes,Private,Rural,58.69,26.2,formerly smoked,0 +33768,Female,16,0,0,No,Self-employed,Urban,88.85,27.1,Unknown,0 +62681,Female,38,1,0,Yes,Private,Urban,137.94,41.8,never smoked,0 +41007,Female,39,0,0,Yes,Private,Urban,60.6,34.2,never smoked,0 +35450,Female,51,0,0,Yes,Private,Rural,93.67,19.2,never smoked,0 +62793,Male,37,0,0,Yes,Private,Urban,79.56,25.2,never smoked,0 +66592,Male,16,0,0,No,Private,Rural,122.46,18.7,never smoked,0 +33462,Male,39,0,0,Yes,Private,Urban,92.32,43,never smoked,0 +29804,Male,24,1,0,Yes,Private,Rural,80.63,28.2,smokes,0 +33906,Male,51,0,0,Yes,Govt_job,Urban,92.32,34.7,smokes,0 +43510,Female,50,1,0,Yes,Govt_job,Urban,59.89,25.5,never smoked,0 +21202,Female,27,0,0,Yes,Private,Urban,80.57,39.8,smokes,0 +7222,Female,73,0,0,Yes,Self-employed,Urban,88.52,20.8,formerly smoked,0 +13561,Female,65,0,0,Yes,Private,Urban,88.82,28.2,formerly smoked,0 +29179,Female,76,1,1,Yes,Private,Rural,102.08,31,smokes,0 +5511,Male,66,0,0,Yes,Self-employed,Urban,71.38,N/A,formerly smoked,0 +20825,Female,53,0,0,Yes,Govt_job,Rural,84.9,21.6,never smoked,0 +67144,Female,65,0,0,Yes,Self-employed,Urban,82.21,26.2,Unknown,0 +15515,Female,48,0,0,Yes,Self-employed,Rural,209.9,N/A,smokes,0 +3753,Male,31,0,0,Yes,Private,Urban,74.05,26,Unknown,0 +27279,Male,1.72,0,0,No,children,Urban,90.46,22.5,Unknown,0 +48759,Female,45,0,0,Yes,Private,Rural,176.48,24,formerly smoked,0 +69524,Male,56,0,0,Yes,Self-employed,Urban,94.07,31.5,never smoked,0 +28443,Male,62,0,0,Yes,Self-employed,Urban,85.12,36.3,formerly smoked,0 +38578,Female,35,0,0,No,Private,Urban,71.81,25.4,Unknown,0 +66502,Male,16,0,0,No,Private,Rural,111.93,32.2,never smoked,0 +50978,Female,31,0,0,Yes,Govt_job,Urban,94.4,39.8,Unknown,0 +9034,Male,5,0,0,No,children,Urban,70,18.6,Unknown,0 +16582,Male,26,0,0,Yes,Private,Rural,95.57,30.7,smokes,0 +28500,Male,10,0,0,No,children,Urban,91.98,16.4,Unknown,0 +70241,Female,22,0,0,No,Private,Urban,66.29,20.5,smokes,0 +32452,Female,82,0,1,Yes,Self-employed,Rural,211.88,28.7,never smoked,0 +45573,Female,50,0,0,Yes,Private,Rural,76.55,29,smokes,0 +64412,Female,47,0,0,Yes,Private,Urban,56.67,24.4,never smoked,0 +66647,Male,31,0,0,Yes,Private,Rural,100.52,29.9,Unknown,0 +39450,Male,22,0,0,No,Private,Rural,58.96,25.3,Unknown,0 +57109,Female,12,0,0,No,children,Rural,81.66,23.5,formerly smoked,0 +3591,Female,63,1,0,Yes,Private,Rural,96.77,20.5,never smoked,0 +25138,Female,78,1,0,Yes,Private,Rural,91.63,33.5,smokes,0 +17277,Male,4,0,0,No,children,Urban,97.51,22,Unknown,0 +35333,Male,76,1,0,Yes,Private,Rural,225.6,29,never smoked,0 +18861,Male,32,0,0,No,Private,Rural,95.58,N/A,smokes,0 +15120,Female,81,1,0,Yes,Self-employed,Rural,210.23,30.7,never smoked,0 +29221,Female,39,0,0,Yes,Private,Urban,92.82,37.4,never smoked,0 +11412,Female,59,0,0,Yes,Private,Rural,234.82,51.8,never smoked,0 +38858,Male,2,0,0,No,children,Rural,65.67,16.6,Unknown,0 +6802,Female,37,0,0,Yes,Private,Urban,74.51,29.5,Unknown,0 +8644,Female,78,0,1,Yes,Private,Rural,81.99,27.3,formerly smoked,0 +54579,Female,75,0,0,Yes,Self-employed,Urban,87.69,27.5,formerly smoked,0 +41935,Male,34,0,0,No,Private,Rural,125.29,33.9,never smoked,0 +17926,Female,48,0,0,Yes,Govt_job,Rural,111.64,27.9,Unknown,0 +13862,Female,13,0,0,No,Never_worked,Urban,70.93,22.9,never smoked,0 +64523,Male,54,1,0,Yes,Private,Urban,89.93,32.1,never smoked,0 +66065,Male,13,0,0,No,children,Rural,137.45,18.2,Unknown,0 +71869,Female,24,0,0,No,Private,Rural,72.06,30.2,formerly smoked,0 +11024,Female,76,0,0,Yes,Private,Rural,97.9,31.3,formerly smoked,0 +46035,Male,1,0,0,No,children,Urban,84.85,20.3,Unknown,0 +24630,Male,57,0,0,Yes,Private,Rural,230.59,23.2,formerly smoked,0 +11238,Male,46,0,0,Yes,Private,Rural,92.81,30.8,Unknown,0 +54946,Female,26,0,0,No,Private,Urban,168.15,22.9,never smoked,0 +24229,Female,56,0,0,Yes,Self-employed,Urban,224.63,42.8,never smoked,0 +29934,Male,34,0,0,Yes,Private,Urban,108.12,22.2,Unknown,0 +28998,Male,25,0,0,No,Private,Rural,85.17,28.7,smokes,0 +19805,Male,60,0,0,No,Private,Urban,84.14,32.3,never smoked,0 +63668,Male,22,0,0,No,Private,Rural,85.57,24.2,formerly smoked,0 +24876,Male,35,0,0,Yes,Private,Urban,82.81,23.9,never smoked,0 +34719,Male,48,1,0,No,Private,Urban,110.53,34.2,never smoked,0 +48769,Female,38,0,0,Yes,Private,Rural,61.88,29,Unknown,0 +22536,Female,12,0,0,No,children,Urban,85.04,29.9,never smoked,0 +8760,Female,22,0,0,No,Private,Urban,140.4,23,smokes,0 +53126,Female,0.64,0,0,No,children,Urban,62.27,17.3,Unknown,0 +18179,Male,13,0,0,No,Private,Rural,99.44,21,never smoked,0 +38242,Female,78,0,1,Yes,Self-employed,Rural,88.9,34.3,Unknown,0 +68708,Female,23,0,0,No,Private,Urban,64.1,19.8,Unknown,0 +12366,Female,35,0,0,No,Private,Urban,97.58,24.3,Unknown,0 +42465,Female,78,1,0,Yes,Private,Rural,58.66,16.4,never smoked,0 +24638,Male,50,0,0,Yes,Govt_job,Urban,88.24,32.6,Unknown,0 +58587,Male,61,0,0,Yes,Private,Urban,61.32,23.7,smokes,0 +9170,Male,60,0,0,Yes,Self-employed,Urban,185.71,N/A,Unknown,0 +36545,Male,43,0,0,Yes,Private,Rural,62.99,27,formerly smoked,0 +19467,Male,60,1,0,Yes,Private,Urban,86.04,25.6,smokes,0 +16868,Female,51,0,0,Yes,Private,Rural,83.3,34,formerly smoked,0 +47608,Female,21,0,0,No,Private,Urban,208.17,24.9,never smoked,0 +38440,Male,16,0,0,No,Private,Rural,133.2,26.3,Unknown,0 +23543,Female,25,0,0,No,Private,Rural,81.54,43.1,Unknown,0 +65396,Female,36,0,0,Yes,Private,Rural,146.61,39.6,never smoked,0 +34621,Female,8,0,0,No,children,Urban,79.33,15.2,Unknown,0 +23561,Female,48,0,0,Yes,Private,Rural,84.56,41.8,never smoked,0 +16091,Male,14,0,0,No,Private,Rural,103.44,20.1,never smoked,0 +63597,Female,60,0,0,Yes,Private,Urban,185.31,39.3,never smoked,0 +57533,Male,61,1,0,Yes,Private,Urban,102.53,28.3,formerly smoked,0 +59370,Female,60,0,0,Yes,Private,Urban,65.78,27.5,Unknown,0 +57285,Male,56,0,0,No,Private,Rural,62.6,33.9,never smoked,0 +17515,Female,9,0,0,No,children,Rural,81.18,20,Unknown,0 +23988,Female,45,0,0,Yes,Private,Rural,76.68,34.8,smokes,0 +34958,Male,14,0,0,No,children,Urban,92.86,20.7,formerly smoked,0 +30620,Male,37,0,0,No,Private,Urban,90.95,24.6,smokes,0 +31811,Female,52,0,1,Yes,Private,Urban,85.66,39.4,never smoked,0 +1818,Female,30,0,0,No,Govt_job,Urban,88.2,N/A,smokes,0 +5478,Female,60,0,0,Yes,Self-employed,Urban,203.04,N/A,smokes,0 +26830,Female,47,0,0,Yes,Self-employed,Rural,68.37,29.4,smokes,0 +25883,Female,82,1,0,Yes,Self-employed,Urban,77.32,24.8,Unknown,0 +43657,Male,64,0,0,Yes,Govt_job,Rural,187.87,32.3,never smoked,0 +71917,Male,12,0,0,No,children,Rural,213.87,25.3,never smoked,0 +61299,Female,79,1,0,Yes,Private,Rural,119.62,39,Unknown,0 +24603,Male,77,0,0,Yes,Private,Urban,222.85,29.4,formerly smoked,0 +70654,Female,25,0,0,No,Private,Rural,100.82,31.9,Unknown,0 +49485,Female,26,0,0,No,Private,Rural,136.1,26.4,Unknown,0 +61641,Male,14,0,0,No,children,Rural,149.42,20.6,Unknown,0 +12600,Female,42,0,0,Yes,Self-employed,Rural,79.99,26.3,never smoked,0 +11566,Male,37,0,0,Yes,Private,Rural,118.21,23.6,Unknown,0 +72108,Male,8,0,0,No,children,Rural,56.3,18,Unknown,0 +35117,Female,78,0,0,Yes,Self-employed,Rural,84.49,26.4,never smoked,0 +22967,Male,18,0,0,No,Private,Rural,89.61,22,never smoked,0 +28913,Male,78,0,0,Yes,Private,Rural,100.09,30.5,Unknown,0 +70857,Female,55,0,0,Yes,Govt_job,Urban,198.36,29.1,smokes,0 +42229,Female,68,0,0,Yes,Self-employed,Rural,93.61,24.9,never smoked,0 +23459,Female,47,0,0,Yes,Private,Rural,75.43,36.4,smokes,0 +2209,Female,47,0,0,Yes,Govt_job,Urban,100.31,31.2,smokes,0 +38673,Female,51,0,0,Yes,Private,Rural,105.63,32.8,never smoked,0 +42184,Male,43,0,0,Yes,Self-employed,Rural,82.84,31.6,never smoked,0 +59250,Female,78,0,0,Yes,Govt_job,Urban,58.88,35.8,Unknown,0 +29525,Male,63,0,0,Yes,Private,Urban,92.27,35.2,formerly smoked,0 +42713,Female,45,0,0,Yes,Private,Urban,115.23,28,never smoked,0 +16066,Female,53,1,1,Yes,Private,Urban,196.25,24.9,smokes,0 +33692,Female,12,0,0,No,children,Rural,85.97,35.7,Unknown,0 +29232,Female,56,0,0,Yes,Private,Urban,114.33,30.7,smokes,0 +70122,Female,29,0,0,Yes,Private,Rural,72.52,33.9,never smoked,0 +25305,Male,10,0,0,No,children,Rural,99.87,N/A,formerly smoked,0 +66110,Female,55,0,0,Yes,Private,Rural,63.47,27.8,Unknown,0 +69461,Female,49,0,0,Yes,Govt_job,Urban,90.58,23.2,Unknown,0 +7885,Female,23,0,0,No,Private,Rural,92.26,17.1,Unknown,0 +60050,Female,53,0,0,Yes,Self-employed,Urban,113.74,31.6,smokes,0 +21608,Male,56,1,0,Yes,Govt_job,Urban,72.79,23.8,smokes,0 +32150,Female,56,0,0,Yes,Self-employed,Rural,94.71,29.6,smokes,0 +48069,Female,61,0,0,Yes,Private,Rural,194.53,45,never smoked,0 +24066,Female,45,0,0,Yes,Private,Urban,72.65,25.6,Unknown,0 +39242,Male,80,1,1,Yes,Private,Urban,86.68,27.7,formerly smoked,0 +57618,Female,47,0,0,Yes,Self-employed,Rural,140.39,25.5,never smoked,0 +14599,Female,3,0,0,No,children,Rural,77.87,18.3,Unknown,0 +27479,Male,63,0,0,Yes,Self-employed,Rural,104.7,21,formerly smoked,0 +10238,Female,68,1,0,Yes,Private,Urban,95.82,28.6,never smoked,0 +49014,Female,76,0,0,Yes,Govt_job,Urban,204.05,23.5,never smoked,0 +67063,Male,62,0,0,Yes,Self-employed,Urban,130.56,36.1,Unknown,0 +38488,Female,30,0,0,Yes,Private,Urban,67.78,29.2,smokes,0 +33298,Female,44,0,0,Yes,Private,Urban,105.29,27.6,formerly smoked,0 +48739,Male,47,0,0,Yes,Self-employed,Urban,135.19,36,smokes,0 +52428,Male,25,0,0,No,Private,Urban,116.12,20.4,smokes,0 +61171,Female,31,0,0,No,Private,Rural,59.63,19.9,never smoked,0 +40878,Male,71,0,0,Yes,Self-employed,Rural,56.43,29.2,formerly smoked,0 +61247,Female,32,0,0,No,Private,Rural,199.18,27.9,never smoked,0 +27799,Male,72,0,0,Yes,Private,Rural,209.26,38.1,formerly smoked,0 +2824,Female,44,0,0,Yes,Govt_job,Urban,91.21,24.1,never smoked,0 +12376,Male,63,0,0,Yes,Govt_job,Urban,95.16,37.8,formerly smoked,0 +72435,Female,37,0,0,Yes,Private,Urban,217.11,29.1,never smoked,0 +46864,Male,54,0,1,Yes,Govt_job,Urban,222.46,35.7,never smoked,0 +2019,Male,20,0,0,No,Private,Rural,70.96,N/A,Unknown,0 +26154,Male,56,0,0,Yes,Private,Rural,82.44,34.5,never smoked,0 +47972,Female,25,0,0,No,Govt_job,Rural,74.11,34.1,smokes,0 +47751,Female,19,0,0,No,Private,Urban,131.23,21.1,Unknown,0 +25405,Male,62,0,0,Yes,Govt_job,Urban,187.52,57.7,never smoked,0 +34525,Female,27,0,0,No,Private,Rural,83.26,22.2,never smoked,0 +13755,Male,5,0,0,No,children,Rural,99.07,20.5,Unknown,0 +56019,Female,20,0,0,No,Private,Urban,76.63,26.2,never smoked,0 +67942,Male,21,0,0,No,Private,Rural,65.09,23.5,never smoked,0 +43806,Male,44,0,0,Yes,Private,Urban,142.31,29.1,smokes,0 +39849,Male,39,1,0,No,Private,Urban,80.99,39.8,Unknown,0 +7344,Male,38,0,0,Yes,Govt_job,Rural,237.74,21.2,never smoked,0 +1741,Male,77,0,0,Yes,Private,Urban,74.26,N/A,formerly smoked,0 +52220,Female,26,0,0,No,Private,Rural,154.08,20.2,formerly smoked,0 +20129,Male,51,0,0,Yes,Private,Rural,78.29,30.8,never smoked,0 +61178,Male,39,0,0,Yes,Private,Urban,164.67,33.8,Unknown,0 +48226,Female,5,0,0,No,children,Rural,59.61,17.1,Unknown,0 +1151,Female,59,0,0,Yes,Self-employed,Urban,67.75,21.3,formerly smoked,0 +6672,Male,67,0,0,Yes,Private,Urban,92.73,N/A,never smoked,0 +10333,Female,45,0,0,Yes,Private,Urban,90.35,22.3,never smoked,0 +11134,Male,43,0,0,Yes,Private,Rural,77.86,28.9,never smoked,0 +25199,Female,80,0,0,Yes,Private,Rural,71.88,26.7,never smoked,0 +66490,Male,42,1,0,Yes,Govt_job,Urban,118.82,41,smokes,0 +10390,Female,8,0,0,No,children,Urban,67.33,16.7,Unknown,0 +33144,Female,68,0,0,No,Govt_job,Urban,121.66,29.1,smokes,0 +72497,Female,5,0,0,No,children,Rural,111.92,23.6,Unknown,0 +16783,Male,57,0,1,Yes,Self-employed,Urban,92.82,27.8,formerly smoked,0 +727,Male,44,0,0,Yes,Private,Rural,95.46,31.4,smokes,0 +51935,Male,16,0,0,No,Never_worked,Urban,59.99,28.2,never smoked,0 +44177,Female,60,0,0,Yes,Self-employed,Rural,68.96,30.8,Unknown,0 +2421,Female,58,0,0,Yes,Private,Urban,90.26,36.1,never smoked,0 +48693,Female,43,0,0,Yes,Private,Rural,91.9,32.7,formerly smoked,0 +5723,Female,50,0,0,Yes,Private,Urban,91.08,26.4,never smoked,0 +29470,Female,1.48,0,0,No,children,Rural,118.55,20.7,Unknown,0 +71590,Female,5,0,0,No,children,Rural,102.04,18.5,Unknown,0 +16600,Male,9,0,0,No,children,Rural,65.52,33.5,Unknown,0 +28309,Female,67,0,0,Yes,Private,Urban,82.09,14.1,never smoked,0 +41911,Female,21,0,0,Yes,Private,Rural,149.9,23.4,Unknown,0 +3390,Female,36,0,0,Yes,Private,Rural,100.33,23.2,never smoked,0 +31806,Female,70,0,0,Yes,Private,Urban,91.25,36,Unknown,0 +68750,Male,57,0,0,Yes,Private,Rural,89.81,35.6,never smoked,0 +32840,Female,52,0,0,Yes,Private,Urban,97.32,21.8,smokes,0 +49797,Female,28,0,0,No,Private,Rural,75.53,34.9,never smoked,0 +72096,Female,41,0,0,Yes,Private,Rural,121.44,20.4,never smoked,0 +13503,Male,81,0,0,Yes,Self-employed,Urban,83.52,25,never smoked,0 +41536,Female,33,0,0,Yes,Govt_job,Rural,57.92,22.3,Unknown,0 +17441,Female,31,0,0,No,Self-employed,Rural,75.27,27.3,never smoked,0 +62238,Female,42,0,0,No,Private,Urban,80.24,28.9,never smoked,0 +737,Male,10,0,0,No,children,Urban,88.69,30.4,Unknown,0 +4627,Male,34,0,0,No,Private,Urban,69.09,36.9,formerly smoked,0 +47208,Female,70,0,0,Yes,Self-employed,Rural,62.67,27.7,never smoked,0 +6844,Male,33,0,0,Yes,Private,Urban,98.74,44.4,never smoked,0 +60001,Female,58,0,0,Yes,Private,Rural,56.51,28.2,smokes,0 +44503,Female,25,0,0,No,Private,Rural,65.95,35,never smoked,0 +44938,Female,1.4,0,0,No,children,Urban,129.07,20.6,Unknown,0 +40371,Female,47,0,0,Yes,Private,Urban,62.47,26.5,never smoked,0 +39011,Female,14,0,0,No,children,Urban,69.82,25.1,never smoked,0 +1460,Female,82,0,0,Yes,Private,Urban,99.68,22.2,Unknown,0 +48364,Male,52,0,0,Yes,Govt_job,Urban,223.35,27.3,formerly smoked,0 +30285,Male,72,0,1,Yes,Self-employed,Rural,74.36,27.3,never smoked,0 +21472,Male,52,0,1,Yes,Self-employed,Rural,102.97,41.9,formerly smoked,0 +71182,Female,61,1,0,Yes,Govt_job,Urban,153.38,38.8,never smoked,0 +33412,Female,15,0,0,No,Private,Rural,87.1,18.3,never smoked,0 +16061,Female,1.56,0,0,No,children,Urban,113.4,19.5,Unknown,0 +60266,Male,6,0,0,No,children,Rural,94.88,17.2,Unknown,0 +70965,Male,3,0,0,No,children,Urban,82.73,20.8,Unknown,0 +56736,Male,18,0,0,No,Private,Rural,67.8,23.8,Unknown,0 +6537,Female,53,0,0,Yes,Self-employed,Urban,84.85,24.7,never smoked,0 +41827,Male,58,0,0,Yes,Private,Rural,135.89,23.1,formerly smoked,0 +49480,Female,31,0,0,No,Private,Urban,106.13,22.4,never smoked,0 +36704,Female,29,0,0,Yes,Self-employed,Rural,74.33,29.9,smokes,0 +8884,Female,5,0,0,No,children,Rural,109.4,20,Unknown,0 +49775,Male,40,0,0,Yes,Private,Rural,75.4,28.7,Unknown,0 +25777,Male,75,0,0,Yes,Private,Rural,87.69,26.2,formerly smoked,0 +2070,Male,52,0,0,Yes,Private,Urban,95.85,29.6,smokes,0 +15752,Male,39,0,0,Yes,Private,Urban,90.36,30.8,formerly smoked,0 +45915,Female,40,0,0,No,Private,Rural,63.45,32.7,formerly smoked,0 +48775,Female,78,1,0,Yes,Self-employed,Rural,201.07,21.8,Unknown,0 +65697,Female,39,0,0,Yes,Private,Urban,122.91,35.7,never smoked,0 +65229,Female,17,0,0,No,Private,Rural,55.41,25.4,Unknown,0 +56889,Male,45,1,0,Yes,Private,Urban,60.99,32.8,Unknown,0 +6596,Male,0.56,0,0,No,children,Rural,111.77,21.1,Unknown,0 +46577,Female,13,0,0,No,Private,Urban,77.63,31.7,never smoked,0 +63455,Male,26,0,0,Yes,Private,Urban,70.61,20,never smoked,0 +21724,Female,42,0,0,Yes,Self-employed,Urban,124.34,34.7,formerly smoked,0 +29863,Male,44,0,0,No,Private,Urban,103.44,28,never smoked,0 +69249,Female,3,0,0,No,children,Urban,124.5,16.4,Unknown,0 +8968,Female,42,0,0,Yes,Private,Urban,208.06,N/A,smokes,0 +20310,Male,25,0,0,No,Govt_job,Urban,75.5,24.6,never smoked,0 +11450,Female,41,0,0,Yes,Self-employed,Urban,98.85,24.6,never smoked,0 +31999,Male,51,0,1,Yes,Private,Rural,96.06,30.3,Unknown,0 +34133,Female,20,0,0,No,Private,Rural,93.74,23.7,Unknown,0 +44202,Female,25,0,0,Yes,Private,Urban,65.6,33.5,never smoked,0 +72311,Male,18,0,0,No,Private,Urban,113.24,24.9,Unknown,0 +18704,Female,37,0,0,Yes,Private,Rural,94.77,48.9,Unknown,0 +36518,Female,51,0,0,Yes,Private,Urban,145.22,31.4,Unknown,0 +35651,Male,2,0,0,No,children,Urban,112.92,18.4,Unknown,0 +13749,Female,38,0,0,Yes,Private,Rural,84.79,24.2,formerly smoked,0 +21521,Male,64,0,1,Yes,Private,Urban,103.28,34.3,smokes,0 +27163,Female,60,1,0,Yes,Private,Urban,109,N/A,Unknown,0 +8882,Male,22,0,0,No,Govt_job,Rural,96.18,25.1,never smoked,0 +32016,Male,71,1,0,Yes,Private,Rural,186.95,33.3,never smoked,0 +14287,Female,32,0,0,Yes,Private,Urban,68.66,22.6,Unknown,0 +60139,Female,32,0,0,Yes,Self-employed,Rural,128.72,26.3,smokes,0 +2447,Female,63,0,0,Yes,Private,Urban,85.04,29.7,formerly smoked,0 +42500,Male,0.24,0,0,No,children,Rural,146.97,18.5,Unknown,0 +44391,Male,54,0,0,Yes,Private,Urban,65.69,21.4,never smoked,0 +12741,Female,25,0,0,Yes,Private,Rural,97.52,45.5,formerly smoked,0 +15418,Female,80,0,0,Yes,Self-employed,Rural,90.43,34.2,never smoked,0 +69482,Female,31,0,0,Yes,Govt_job,Urban,81.71,32.7,Unknown,0 +32270,Male,53,0,0,Yes,Private,Rural,198.24,38.1,never smoked,0 +50983,Male,35,0,0,Yes,Private,Rural,90.51,26.7,never smoked,0 +6493,Male,31,0,0,No,Private,Urban,97.78,22.6,smokes,0 +45399,Male,60,0,0,Yes,Private,Urban,80.74,27.7,Unknown,0 +67099,Male,0.56,0,0,No,children,Rural,57.02,20.7,Unknown,0 +19585,Female,21,0,0,No,Private,Rural,93,25.7,never smoked,0 +26247,Female,78,0,0,Yes,Private,Rural,95.37,17.3,Unknown,0 +25818,Male,59,0,0,Yes,Govt_job,Rural,96.25,23.3,formerly smoked,0 +34261,Male,0.64,0,0,No,children,Rural,86.74,16.2,Unknown,0 +64128,Male,10,0,0,No,children,Urban,63.08,20.5,smokes,0 +62817,Male,60,0,0,Yes,Private,Urban,129.16,33.6,smokes,0 +69339,Male,11,0,0,No,children,Urban,99.79,20.2,Unknown,0 +25919,Male,48,1,0,Yes,Self-employed,Urban,83.34,49.3,never smoked,0 +71978,Female,50,0,0,Yes,Private,Urban,95.01,26.2,formerly smoked,0 +1473,Male,69,1,0,Yes,Private,Urban,229.21,30.1,smokes,0 +66546,Female,20,0,0,No,Private,Urban,80.08,25.1,never smoked,0 +56584,Female,22,0,0,No,Private,Rural,62,32.7,smokes,0 +38316,Male,55,0,0,Yes,Private,Rural,118.69,26.4,Unknown,0 +15647,Female,57,0,0,No,Private,Rural,77.57,21,Unknown,0 +59933,Female,29,0,0,No,Private,Rural,108.75,24.1,Unknown,0 +3429,Female,32,0,0,No,Govt_job,Urban,108.23,20.4,Unknown,0 +60963,Female,54,0,0,Yes,Private,Rural,151.33,30.9,formerly smoked,0 +67689,Male,37,0,0,Yes,Self-employed,Rural,82.43,39.1,Unknown,0 +31689,Female,58,0,0,Yes,Private,Rural,107.17,27.7,Unknown,0 +23240,Female,41,0,0,Yes,Private,Rural,91.46,29.5,never smoked,0 +30850,Male,72,0,0,Yes,Private,Urban,81.05,30.3,Unknown,0 +38920,Male,0.48,0,0,No,children,Urban,73.02,N/A,Unknown,0 +66080,Female,32,0,0,No,Private,Urban,114.37,37.8,Unknown,0 +57263,Female,54,0,0,Yes,Private,Urban,100.29,30.2,never smoked,0 +60126,Female,79,0,0,Yes,Private,Urban,68.37,24.2,smokes,0 +64393,Male,56,0,0,No,Self-employed,Rural,87.95,25.2,never smoked,0 +69285,Female,45,0,0,Yes,Private,Urban,73.27,22.2,smokes,0 +24428,Male,6,0,0,No,children,Rural,131.43,17.7,Unknown,0 +59642,Female,45,0,0,Yes,Private,Urban,107.29,29.6,never smoked,0 +12064,Male,60,0,0,Yes,Private,Rural,68.24,32.2,Unknown,0 +59737,Female,65,0,0,Yes,Private,Urban,74.01,28.7,smokes,0 +19352,Female,57,0,0,Yes,Private,Urban,95.4,19.5,Unknown,0 +61903,Male,58,0,0,No,Govt_job,Rural,95.75,38.5,smokes,0 +47701,Male,8,0,0,No,children,Urban,104.51,20.6,Unknown,0 +15225,Male,18,0,0,No,Private,Rural,108.87,21.5,Unknown,0 +66431,Male,49,0,0,Yes,Private,Urban,209.06,43.8,Unknown,0 +57236,Male,2,0,0,No,children,Rural,86.57,18,Unknown,0 +48453,Female,52,0,0,Yes,Private,Urban,120.25,28.2,Unknown,0 +8031,Female,63,0,0,Yes,Self-employed,Rural,85.51,26.6,smokes,0 +39139,Female,57,0,0,Yes,Private,Rural,84.18,35.5,never smoked,0 +4838,Female,50,0,0,Yes,Govt_job,Urban,82.37,30.7,never smoked,0 +22689,Male,12,0,0,No,children,Rural,96.15,18.7,Unknown,0 +37752,Female,35,0,0,Yes,Private,Rural,74.55,22.4,never smoked,0 +32320,Female,35,0,0,Yes,Self-employed,Urban,114.45,25.2,smokes,0 +14889,Male,64,0,0,Yes,Govt_job,Rural,113.68,24.2,never smoked,0 +13964,Female,42,0,0,Yes,Private,Rural,107.91,20.5,never smoked,0 +31746,Female,62,0,0,Yes,Private,Rural,83.85,24.5,never smoked,0 +17492,Female,3,0,0,No,children,Urban,101.3,24.8,Unknown,0 +1499,Female,43,0,0,Yes,Govt_job,Rural,72.13,42.6,never smoked,0 +34396,Female,52,1,0,Yes,Private,Urban,94.98,23.8,never smoked,0 +36750,Male,64,1,0,Yes,Private,Rural,228.42,42.3,formerly smoked,0 +68816,Male,59,0,0,Yes,Private,Rural,93.9,42.2,never smoked,0 +16129,Female,81,0,0,Yes,Self-employed,Urban,93.13,26.1,Unknown,0 +64006,Female,15,0,0,No,Private,Urban,121.6,22.8,never smoked,0 +51845,Male,50,0,0,Yes,Govt_job,Rural,84.4,42.3,formerly smoked,0 +30692,Male,73,0,0,Yes,Private,Rural,82.13,28.5,never smoked,0 +65712,Male,19,0,0,No,Private,Urban,73.33,23,never smoked,0 +42161,Female,30,0,0,Yes,Private,Urban,75.88,32.8,Unknown,0 +16938,Female,40,0,0,Yes,Self-employed,Rural,212.97,49.8,formerly smoked,0 +16113,Female,47,0,0,Yes,Govt_job,Rural,100.41,23.8,never smoked,0 +29388,Female,66,0,0,Yes,Private,Urban,202.05,31.7,smokes,0 +65109,Male,47,0,0,Yes,Private,Urban,71.42,34.9,smokes,0 +61242,Female,41,1,0,Yes,Govt_job,Rural,107.5,54,never smoked,0 +65252,Female,63,0,0,Yes,Govt_job,Rural,55.57,26.8,formerly smoked,0 +49615,Female,12,0,0,No,children,Urban,58.14,21.3,never smoked,0 +63511,Male,1.32,0,0,No,children,Rural,78.53,19.8,Unknown,0 +14089,Female,46,0,0,Yes,Private,Urban,78.79,42.4,smokes,0 +16987,Female,8,0,0,No,children,Urban,96.62,16.4,Unknown,0 +53399,Male,74,0,0,Yes,Private,Rural,65.28,28.2,never smoked,0 +36946,Male,74,0,0,Yes,Private,Rural,92.67,26.3,formerly smoked,0 +55522,Female,4,0,0,No,children,Rural,206.25,17,Unknown,0 +27954,Female,26,0,0,No,Private,Urban,114.18,23.3,never smoked,0 +5355,Male,63,0,0,Yes,Govt_job,Rural,231.69,56.1,formerly smoked,0 +69069,Female,48,0,1,No,Private,Rural,101.89,25.1,smokes,0 +11539,Female,24,1,0,No,Private,Urban,107.22,35.3,smokes,0 +16847,Male,47,0,0,No,Private,Rural,101.99,36.3,never smoked,0 +15873,Male,70,0,0,Yes,Private,Rural,72.56,30.4,formerly smoked,0 +15415,Male,41,1,1,Yes,Private,Urban,94.47,43.9,never smoked,0 +22891,Female,42,0,0,Yes,Self-employed,Urban,98.76,26.4,smokes,0 +7394,Female,57,1,0,No,Private,Rural,116.93,28.3,never smoked,0 +29915,Female,51,0,0,No,Private,Rural,219.96,42.3,never smoked,0 +62607,Male,15,0,0,No,Private,Urban,75.77,38,never smoked,0 +24404,Male,11,0,0,No,children,Urban,124.35,32.7,Unknown,0 +69666,Female,27,0,0,Yes,Self-employed,Urban,88.97,28.8,never smoked,0 +54997,Female,53,0,0,Yes,Self-employed,Rural,72.49,38.5,never smoked,0 +6199,Female,52,0,0,Yes,Govt_job,Rural,107.27,30.1,Unknown,0 +4635,Female,68,0,0,Yes,Private,Rural,97.96,31.3,never smoked,0 +3305,Male,65,0,0,Yes,Private,Urban,197.69,28.4,smokes,0 +24342,Female,23,0,0,No,Private,Rural,112.3,26.6,Unknown,0 +65093,Female,43,0,0,Yes,Self-employed,Urban,75.77,20.4,formerly smoked,0 +46261,Male,55,0,0,Yes,Private,Urban,76.51,34.7,Unknown,0 +42624,Female,52,0,0,Yes,Private,Urban,93.14,32.5,never smoked,0 +24735,Female,21,0,0,No,Private,Rural,80.84,30.7,Unknown,0 +50671,Male,78,1,1,Yes,Self-employed,Rural,199.88,29.6,formerly smoked,0 +1679,Male,35,0,0,Yes,Private,Rural,77.48,N/A,formerly smoked,0 +66680,Female,49,1,0,Yes,Private,Rural,65.34,39.4,never smoked,0 +34248,Male,50,1,0,No,Private,Urban,81.96,N/A,formerly smoked,0 +65336,Female,27,0,0,Yes,Private,Urban,98.71,26.1,formerly smoked,0 +68333,Female,52,1,0,No,Private,Rural,170.22,27.2,formerly smoked,0 +60210,Female,22,0,0,No,Private,Urban,73.5,41.3,smokes,0 +11573,Female,19,0,0,No,Private,Rural,72.39,N/A,smokes,0 +67890,Male,77,0,1,Yes,Private,Urban,102.96,20.9,formerly smoked,0 +49254,Male,57,1,0,Yes,Private,Urban,80.72,41.5,formerly smoked,0 +9199,Male,13,0,0,No,Self-employed,Urban,74.19,31.1,formerly smoked,0 +35402,Male,14,0,0,No,Private,Urban,77.12,24.5,formerly smoked,0 +25996,Female,29,0,0,Yes,Private,Urban,81.2,23,Unknown,0 +8345,Female,49,0,0,Yes,Private,Rural,114.76,24.7,never smoked,0 +63219,Male,1.24,0,0,No,children,Urban,109.97,19.3,Unknown,0 +8770,Male,21,0,0,No,Self-employed,Urban,92.87,37,never smoked,0 +22370,Male,36,1,0,No,Govt_job,Urban,113.05,31,smokes,0 +25930,Male,42,0,0,Yes,Private,Urban,68.24,33.1,formerly smoked,0 +33478,Female,56,0,0,No,Private,Rural,74.35,26.6,smokes,0 +23009,Male,46,0,0,Yes,Private,Urban,91.08,27.7,never smoked,0 +24885,Male,79,0,1,Yes,Self-employed,Urban,88.83,40.3,smokes,0 +58591,Female,25,0,0,No,Private,Rural,134.33,19.5,Unknown,0 +44777,Male,67,0,0,Yes,Private,Rural,208.78,26.7,Unknown,0 +46363,Male,37,0,0,Yes,Private,Rural,66.17,26.1,never smoked,0 +36377,Female,44,0,0,Yes,Private,Rural,222.29,38.2,never smoked,0 +15440,Female,36,0,0,Yes,Private,Rural,114.16,21.3,smokes,0 +56420,Male,17,1,0,No,Private,Rural,61.67,97.6,Unknown,0 +39531,Male,50,1,0,Yes,Private,Rural,220.36,40.9,formerly smoked,0 +55220,Male,53,0,0,Yes,Private,Urban,76.03,27.3,never smoked,0 +30731,Female,39,0,0,No,Self-employed,Urban,73.06,20.9,never smoked,0 +14479,Female,71,0,1,Yes,Private,Urban,187.88,29.2,formerly smoked,0 +40471,Female,18,0,0,No,Private,Urban,79.89,17.9,Unknown,0 +7384,Male,55,0,0,No,Self-employed,Rural,79.02,38,Unknown,0 +53422,Male,52,0,0,Yes,Private,Rural,191.66,26.1,smokes,0 +59745,Female,27,0,0,Yes,Private,Urban,76.74,53.9,Unknown,0 +24721,Male,24,0,0,No,Private,Urban,72.29,22.2,Unknown,0 +9644,Male,72,0,0,Yes,Private,Urban,92.59,24.6,formerly smoked,0 +50837,Male,41,0,0,Yes,Self-employed,Rural,80.42,33.4,formerly smoked,0 +67941,Female,29,0,0,No,Self-employed,Rural,62.47,34.4,formerly smoked,0 +43590,Female,26,0,0,Yes,Private,Rural,63.94,17.6,never smoked,0 +29014,Female,23,0,0,Yes,Private,Rural,77.73,19.2,never smoked,0 +66051,Male,43,0,0,Yes,Self-employed,Rural,115.79,31.8,Unknown,0 +70783,Female,43,0,0,Yes,Private,Urban,96.3,28.1,smokes,0 +10716,Female,49,0,0,Yes,Private,Rural,107.46,32.1,never smoked,0 +7868,Male,13,0,0,No,children,Rural,108.33,17.4,never smoked,0 +58350,Female,26,0,0,No,Govt_job,Rural,89.37,20.2,never smoked,0 +18927,Female,10,0,0,No,children,Urban,93.64,23.4,Unknown,0 +19550,Male,39,0,0,Yes,Private,Urban,217.75,39.5,never smoked,0 +31372,Female,41,0,0,Yes,Private,Rural,83.44,21.5,Unknown,0 +55262,Male,25,0,0,Yes,Private,Rural,93.88,24.3,smokes,0 +50238,Male,10,0,0,No,children,Urban,55.34,15.3,Unknown,0 +2868,Female,54,0,0,Yes,Govt_job,Rural,102.61,32.4,Unknown,0 +51343,Male,7,0,0,No,children,Rural,62.08,16.1,Unknown,0 +56324,Female,53,0,0,Yes,Self-employed,Rural,81.76,34.3,formerly smoked,0 +42047,Female,55,0,0,Yes,Self-employed,Urban,59.2,43.8,never smoked,0 +36486,Male,6,0,0,No,children,Urban,55.61,19.6,Unknown,0 +62456,Female,72,0,0,Yes,Self-employed,Urban,226.88,36.7,formerly smoked,0 +64980,Female,42,0,0,Yes,Govt_job,Urban,65.66,33.7,never smoked,0 +65962,Male,50,0,0,Yes,Private,Urban,58.7,38.9,smokes,0 +47521,Female,55,1,0,Yes,Govt_job,Urban,186.4,28,never smoked,0 +41501,Female,47,0,0,Yes,Govt_job,Urban,122.32,23.9,Unknown,0 +47582,Male,3,0,0,No,children,Urban,59.05,16.6,Unknown,0 +63938,Female,49,0,0,Yes,Self-employed,Urban,149.13,42.9,smokes,0 +49627,Female,12,0,0,No,children,Urban,82.39,17.1,never smoked,0 +61291,Male,28,0,0,Yes,Private,Rural,169.49,27.2,Unknown,0 +53032,Male,40,0,0,Yes,Private,Rural,80.25,30.3,formerly smoked,0 +45040,Male,55,0,0,Yes,Private,Urban,203.81,33.9,formerly smoked,0 +56791,Male,9,0,0,No,children,Urban,170.76,20,Unknown,0 +37320,Female,77,0,0,Yes,Private,Rural,80.85,19.4,Unknown,0 +72514,Male,18,0,0,No,Private,Rural,120.58,21.5,never smoked,0 +3842,Male,73,0,0,Yes,Private,Rural,86.57,28.5,formerly smoked,0 +38143,Female,67,1,0,Yes,Private,Urban,90.01,34.4,smokes,0 +54296,Male,58,0,0,Yes,Self-employed,Rural,68.84,43.7,formerly smoked,0 +48435,Female,2,0,0,No,children,Rural,155.14,13.7,Unknown,0 +42212,Female,38,0,0,Yes,Private,Urban,158.48,33.7,formerly smoked,0 +47607,Male,5,0,0,No,children,Rural,92.56,18,Unknown,0 +16535,Female,34,0,0,No,Private,Rural,90.15,27.9,formerly smoked,0 +66677,Male,78,0,0,Yes,Private,Rural,80.09,21.8,never smoked,0 +57270,Female,57,0,0,Yes,Private,Rural,189.44,35.8,never smoked,0 +22414,Female,17,0,0,No,Private,Rural,70.03,23.1,smokes,0 +63401,Female,71,0,0,Yes,Self-employed,Rural,249.29,30.3,smokes,0 +32252,Female,19,0,0,No,Private,Rural,72.52,32,Unknown,0 +17950,Male,56,0,0,Yes,Private,Urban,96.93,25,smokes,0 +53990,Male,64,0,1,Yes,Private,Urban,211.35,30.7,formerly smoked,0 +20565,Male,13,0,0,No,children,Rural,85.87,24.3,Unknown,0 +59993,Male,40,0,0,Yes,Private,Rural,60.96,11.5,never smoked,0 +42830,Male,80,0,1,Yes,Private,Urban,120.09,30.7,never smoked,0 +34721,Female,62,1,0,Yes,Govt_job,Urban,92.13,33.7,never smoked,0 +5157,Male,79,1,0,Yes,Self-employed,Urban,83.07,26.5,smokes,0 +48851,Female,9,0,0,No,children,Rural,77.67,17.6,Unknown,0 +26084,Female,77,1,0,Yes,Self-employed,Urban,109.51,N/A,never smoked,0 +23413,Female,26,0,0,No,Private,Urban,97.24,22.5,never smoked,0 +49970,Male,1.72,0,0,No,children,Rural,127.29,18.5,Unknown,0 +72414,Male,16,0,0,No,Private,Urban,134.8,22.4,never smoked,0 +21374,Female,40,0,0,Yes,Private,Urban,74.65,25.3,formerly smoked,0 +69623,Male,46,0,0,Yes,Private,Urban,85.84,37.3,never smoked,0 +40378,Male,45,1,0,Yes,Self-employed,Urban,90.43,39.7,smokes,0 +4671,Female,59,0,0,No,Private,Urban,74.35,28,never smoked,0 +17295,Female,31,0,0,Yes,Self-employed,Urban,206.59,41.4,smokes,0 +55466,Female,69,0,1,Yes,Private,Urban,196.33,25.3,never smoked,0 +65419,Male,73,0,1,Yes,Govt_job,Rural,70.23,28.1,never smoked,0 +34448,Female,56,0,0,Yes,Self-employed,Urban,242.94,41.2,never smoked,0 +14406,Female,80,0,1,Yes,Self-employed,Rural,103.06,28.8,never smoked,0 +924,Female,60,0,0,Yes,Govt_job,Urban,80.86,31,smokes,0 +71339,Female,40,0,0,Yes,Govt_job,Urban,114.32,28.3,smokes,0 +31443,Female,30,0,0,Yes,Govt_job,Urban,83.91,23.9,Unknown,0 +49672,Female,66,0,0,Yes,Govt_job,Rural,152.02,44.2,formerly smoked,0 +394,Male,78,1,0,Yes,Self-employed,Rural,75.19,27.6,never smoked,0 +63362,Female,37,0,0,Yes,Private,Urban,60.61,35.7,formerly smoked,0 +59928,Female,41,0,0,Yes,Self-employed,Rural,89.14,37.4,formerly smoked,0 +62289,Female,34,0,0,Yes,Private,Urban,97.23,27.5,Unknown,0 +59464,Female,18,0,0,No,Private,Rural,135.19,23.4,never smoked,0 +18680,Male,69,0,0,Yes,Self-employed,Urban,78.48,25.8,formerly smoked,0 +19439,Male,67,0,1,Yes,Private,Rural,97.24,N/A,Unknown,0 +27017,Male,28,0,0,No,Private,Urban,75.92,22.8,never smoked,0 +8277,Female,3,0,0,No,children,Urban,93.3,19.5,Unknown,0 +14099,Female,57,0,0,Yes,Govt_job,Urban,97.39,38,Unknown,0 +37128,Male,34,0,0,Yes,Private,Rural,134.61,23.4,never smoked,0 +57774,Male,50,0,0,Yes,Private,Rural,104.02,29.5,never smoked,0 +64033,Male,55,0,1,No,Private,Urban,56.9,28.2,never smoked,0 +72701,Male,2,0,0,No,children,Rural,112.66,14.2,Unknown,0 +59130,Female,27,0,0,No,Private,Rural,226.75,28.9,Unknown,0 +48472,Male,57,0,0,Yes,Private,Rural,76.28,31.4,formerly smoked,0 +67956,Female,73,0,0,Yes,Private,Urban,90.01,32.4,formerly smoked,0 +35602,Female,52,0,0,Yes,Govt_job,Rural,107.84,22,formerly smoked,0 +13818,Female,65,0,0,Yes,Private,Rural,71.06,26.4,never smoked,0 +34661,Male,48,1,0,Yes,Private,Urban,185,26.1,never smoked,0 +64895,Male,54,1,0,Yes,Self-employed,Rural,104.42,37.6,smokes,0 +21969,Male,8,0,0,No,children,Urban,89.57,18.8,Unknown,0 +38320,Male,45,1,0,Yes,Private,Rural,136.2,23.8,Unknown,0 +42040,Female,48,0,0,Yes,Govt_job,Urban,128.23,49.4,never smoked,0 +31857,Female,77,0,0,Yes,Self-employed,Rural,104.23,23.8,smokes,0 +64494,Female,34,0,0,Yes,Private,Urban,133.82,20.4,never smoked,0 +34764,Female,33,0,0,Yes,Private,Rural,80.82,40.3,never smoked,0 +20673,Male,39,0,0,Yes,Private,Rural,102.35,23.6,never smoked,0 +64817,Male,39,0,0,Yes,Self-employed,Rural,88.48,34.3,never smoked,0 +72450,Male,40,0,0,Yes,Private,Rural,88.81,32.7,Unknown,0 +13988,Female,46,0,0,Yes,Private,Rural,75.09,28.7,never smoked,0 +54985,Female,1,0,0,No,children,Urban,199.83,24.5,Unknown,0 +6049,Female,5,0,0,No,children,Rural,73.69,24.8,Unknown,0 +13380,Male,14,0,0,No,children,Urban,111.27,23.2,Unknown,0 +64371,Female,49,0,0,Yes,Self-employed,Rural,68.44,23,smokes,0 +50295,Female,45,0,0,Yes,Private,Urban,65.36,39.3,never smoked,0 +14404,Female,13,0,0,No,children,Urban,94.12,20.1,never smoked,0 +58645,Female,76,0,0,Yes,Private,Rural,96.24,25.4,never smoked,0 +19419,Male,14,0,0,No,children,Rural,91.25,23.8,Unknown,0 +24518,Female,20,0,0,No,Private,Rural,77.29,28.4,never smoked,0 +53494,Female,9,0,0,No,children,Rural,125.09,15.4,Unknown,0 +42599,Female,78,0,1,Yes,Private,Urban,107.18,28.2,never smoked,0 +68370,Male,49,0,0,Yes,Private,Urban,130.07,26,never smoked,0 +57813,Female,55,0,0,Yes,Private,Urban,57.3,41.5,never smoked,0 +1329,Female,43,0,0,No,Govt_job,Rural,101.35,32.2,never smoked,0 +15255,Female,16,0,0,No,Private,Rural,94.03,25.7,never smoked,0 +65680,Male,58,0,1,Yes,Self-employed,Urban,227.81,33,formerly smoked,0 +32974,Male,67,0,0,Yes,Govt_job,Urban,66.67,35,smokes,0 +5863,Female,71,0,0,Yes,Private,Urban,240.81,27.4,never smoked,0 +10584,Male,8,0,0,No,children,Urban,88.02,16.4,Unknown,0 +38675,Female,18,0,0,No,Private,Urban,152.87,31.5,Unknown,0 +47600,Female,47,0,0,Yes,Private,Urban,96.04,29.2,Unknown,0 +48246,Male,59,0,0,Yes,Private,Urban,60.35,25.9,formerly smoked,0 +61743,Male,28,0,0,No,Govt_job,Urban,118.66,32.3,never smoked,0 +3879,Female,20,0,0,No,Private,Urban,89.03,N/A,smokes,0 +58086,Male,67,0,0,Yes,Private,Urban,58.51,30.4,formerly smoked,0 +53957,Male,71,0,0,Yes,Self-employed,Urban,96.04,45.1,formerly smoked,0 +40137,Female,56,0,0,Yes,Self-employed,Rural,110.92,25.9,Unknown,0 +70500,Female,44,0,0,No,Private,Rural,92.72,36.6,never smoked,0 +35085,Female,6,0,0,No,children,Rural,108.23,18.6,Unknown,0 +43872,Female,78,0,0,Yes,Private,Rural,56.34,27.5,Unknown,0 +62951,Female,32,0,0,Yes,Private,Rural,61.83,31.3,never smoked,0 +43244,Female,40,0,0,Yes,Private,Rural,131.99,37.5,never smoked,0 +31198,Female,63,0,0,Yes,Self-employed,Rural,136.81,23.1,smokes,0 +23223,Male,51,0,0,Yes,Private,Rural,239.28,35,never smoked,0 +38474,Male,22,0,0,Yes,Govt_job,Urban,131.3,27,never smoked,0 +4591,Female,82,0,0,Yes,Self-employed,Rural,117.75,29.8,never smoked,0 +1451,Female,17,0,0,No,Private,Urban,78.46,23.5,Unknown,0 +37150,Female,34,0,0,Yes,Private,Rural,83.53,48.5,formerly smoked,0 +65632,Male,42,0,0,Yes,Private,Rural,145.5,31.8,formerly smoked,0 +62834,Female,32,0,0,Yes,Private,Urban,88.33,20,Unknown,0 +21826,Male,73,0,0,Yes,Self-employed,Rural,101.25,29.4,formerly smoked,0 +21036,Female,47,0,0,Yes,Private,Urban,131.43,24.3,never smoked,0 +55566,Female,34,0,0,Yes,Private,Rural,231.5,45.4,never smoked,0 +46923,Male,64,0,1,Yes,Private,Rural,82.89,29.5,never smoked,0 +63990,Male,52,1,0,Yes,Self-employed,Rural,192.37,49.2,never smoked,0 +2265,Male,49,0,0,Yes,Private,Rural,79.64,N/A,smokes,0 +2860,Male,55,0,0,Yes,Private,Rural,82.88,29.4,Unknown,0 +15964,Female,64,1,0,Yes,Private,Rural,99.4,29.1,never smoked,0 +46483,Male,23,0,0,No,Private,Urban,77.75,38.8,smokes,0 +33284,Male,18,0,0,No,Private,Rural,75.03,23.4,never smoked,0 +61895,Female,65,0,0,Yes,Private,Rural,220.47,48.7,never smoked,0 +48875,Male,12,0,0,No,children,Rural,196.91,19.7,Unknown,0 +36589,Female,61,0,0,Yes,Self-employed,Urban,180.8,20.3,never smoked,0 +28651,Male,66,0,0,Yes,Private,Urban,247.48,33.5,smokes,0 +45033,Male,59,0,0,Yes,Govt_job,Urban,216,36.7,smokes,0 +32166,Male,47,1,0,Yes,Private,Urban,75.64,24.4,never smoked,0 +34188,Female,47,0,0,Yes,Govt_job,Urban,95.07,38.8,formerly smoked,0 +58359,Female,71,1,0,Yes,Private,Urban,129.97,44.2,smokes,0 +59347,Male,62,0,0,Yes,Private,Urban,124.26,33.4,never smoked,0 +12849,Female,28,0,0,Yes,Private,Urban,87.92,32.5,Unknown,0 +6104,Female,7,0,0,No,children,Rural,85.15,15.1,Unknown,0 +29694,Female,68,0,0,Yes,Private,Rural,95.36,21.5,smokes,0 +30806,Male,37,0,0,Yes,Self-employed,Urban,87.16,30.4,formerly smoked,0 +20316,Female,75,0,0,Yes,Govt_job,Rural,219.39,33.4,smokes,0 +58253,Male,5,0,0,No,children,Urban,71.92,18.2,Unknown,0 +57679,Male,1.08,0,0,No,children,Urban,167.66,18.7,Unknown,0 +39956,Female,34,0,0,No,Private,Rural,87.21,38.4,Unknown,0 +7683,Male,49,0,0,Yes,Self-employed,Rural,220.47,36.4,smokes,0 +9197,Female,8,0,0,No,children,Urban,80.47,20.6,Unknown,0 +58543,Female,50,0,0,Yes,Govt_job,Urban,89.95,48.9,formerly smoked,0 +6968,Male,2,0,0,No,children,Rural,111.32,18.2,Unknown,0 +35838,Female,1.16,0,0,No,children,Urban,65.01,17,Unknown,0 +57549,Female,76,0,0,Yes,Self-employed,Urban,110.07,31.8,never smoked,0 +59200,Male,18,0,0,No,Private,Urban,60.56,33,never smoked,0 +24289,Male,82,0,0,Yes,Private,Urban,89.83,24.7,smokes,0 +6206,Female,67,0,0,Yes,Self-employed,Rural,90.35,28.1,Unknown,0 +28227,Female,27,0,0,Yes,Private,Urban,71.5,40.3,smokes,0 +35229,Male,57,0,0,Yes,Govt_job,Urban,71.71,35.2,smokes,0 +23176,Female,51,1,0,Yes,Private,Urban,173.96,31.2,formerly smoked,0 +3045,Male,68,1,0,Yes,Private,Urban,96.06,37.6,never smoked,0 +22386,Female,56,0,0,Yes,Private,Urban,113.2,38.7,smokes,0 +1077,Male,77,0,1,Yes,Govt_job,Rural,106.03,N/A,Unknown,0 +57903,Female,52,1,0,Yes,Self-employed,Rural,111.38,N/A,smokes,0 +22108,Female,18,0,0,No,Private,Rural,73.29,28.1,smokes,0 +55982,Female,63,0,0,Yes,Self-employed,Urban,65.71,29.2,smokes,0 +55465,Female,31,0,0,Yes,Private,Rural,60.41,31.1,Unknown,0 +29258,Female,37,0,0,No,Private,Urban,89.11,24.1,never smoked,0 +38432,Female,64,0,0,Yes,Private,Urban,63.32,18.7,formerly smoked,0 +49666,Male,47,0,0,Yes,Self-employed,Urban,85.68,39.6,never smoked,0 +59904,Female,1.8,0,0,No,children,Urban,162.93,15.7,Unknown,0 +32365,Male,42,0,0,Yes,Private,Rural,89.22,53.8,Unknown,0 +15351,Male,37,0,0,Yes,Private,Rural,91.68,32.4,formerly smoked,0 +61000,Female,69,0,1,No,Private,Urban,198.33,42.7,smokes,0 +77,Female,13,0,0,No,children,Rural,85.81,18.6,Unknown,0 +17466,Male,73,0,0,No,Govt_job,Rural,79.59,31.4,smokes,0 +57569,Male,48,0,0,Yes,Private,Rural,106.74,33.7,formerly smoked,0 +9026,Female,78,1,0,Yes,Self-employed,Urban,191.33,24.5,never smoked,0 +54590,Female,21,0,0,No,Private,Rural,59.52,33.7,never smoked,0 +54301,Male,54,0,0,Yes,Private,Rural,206.52,35.4,smokes,0 +170,Male,43,0,0,Yes,Govt_job,Rural,80.07,N/A,never smoked,0 +52554,Male,19,0,0,No,Private,Rural,64.92,22.5,Unknown,0 +10649,Female,82,0,0,Yes,Private,Urban,80,33.6,never smoked,0 +28258,Female,80,0,0,Yes,Self-employed,Urban,75.06,29.7,Unknown,0 +22269,Female,69,1,0,Yes,Govt_job,Urban,112.2,N/A,never smoked,0 +12557,Female,21,0,0,No,Self-employed,Urban,91.18,25.7,never smoked,0 +2846,Female,46,0,0,Yes,Private,Rural,85.81,20.2,formerly smoked,0 +61219,Female,14,0,0,No,Never_worked,Urban,148.37,22.7,never smoked,0 +65321,Male,6,0,0,No,children,Rural,64.55,17.4,Unknown,0 +23946,Female,3,0,0,No,children,Rural,97.31,22.2,Unknown,0 +56312,Male,47,0,0,No,Private,Rural,111.15,23.8,never smoked,0 +20256,Male,34,0,0,Yes,Private,Urban,80.97,28.7,never smoked,0 +26993,Female,41,0,0,Yes,Private,Rural,89.88,33.1,formerly smoked,0 +58599,Female,67,0,0,Yes,Private,Rural,62.66,28,formerly smoked,0 +27849,Female,5,0,0,No,children,Urban,122.25,16.7,Unknown,0 +33367,Male,20,0,0,No,Private,Rural,87.08,27.1,never smoked,0 +61764,Female,63,0,0,Yes,Private,Rural,85,26.4,smokes,0 +13620,Female,73,0,0,Yes,Self-employed,Urban,100.49,23.7,smokes,0 +39308,Male,62,0,0,Yes,Private,Urban,145.37,33.3,Unknown,0 +1275,Male,0.88,0,0,No,children,Urban,112.19,18.9,Unknown,0 +34336,Male,50,1,0,Yes,Govt_job,Rural,79.73,25.5,smokes,0 +1505,Male,71,0,1,Yes,Self-employed,Rural,101.13,35.9,formerly smoked,0 +31887,Female,30,0,0,Yes,Private,Urban,101.98,23.2,Unknown,0 +60258,Female,80,0,1,Yes,Self-employed,Rural,98.39,22.2,smokes,0 +63450,Female,64,0,0,Yes,Self-employed,Rural,128.04,34,smokes,0 +35178,Male,7,0,0,No,children,Urban,98.12,20.4,Unknown,0 +3099,Female,36,0,0,No,Private,Urban,216.96,34.5,Unknown,0 +43903,Male,79,0,0,Yes,Self-employed,Rural,94.92,31.9,Unknown,0 +9013,Female,35,0,0,Yes,Private,Rural,83.27,19.8,formerly smoked,0 +60158,Female,28,0,0,No,Private,Rural,96.86,29,Unknown,0 +15579,Male,72,0,0,Yes,Self-employed,Rural,99.73,36.7,formerly smoked,0 +8563,Female,12,0,0,No,children,Rural,91.71,21.3,Unknown,0 +61573,Male,25,0,0,No,Private,Rural,65.77,23.7,smokes,0 +43827,Female,27,0,0,Yes,Private,Urban,161.57,25.7,smokes,0 +43090,Female,62,1,0,Yes,Self-employed,Rural,74.32,34,never smoked,0 +46068,Male,58,0,0,No,Self-employed,Rural,170.93,30.7,Unknown,0 +12469,Female,30,0,0,Yes,Private,Urban,74.43,44.8,never smoked,0 +58820,Male,56,0,0,Yes,Private,Rural,86.36,27.7,formerly smoked,0 +31893,Female,28,0,0,Yes,Private,Rural,97.06,23.2,Unknown,0 +45259,Male,47,0,0,Yes,Private,Rural,110.38,30.1,Unknown,0 +63779,Female,16,0,0,No,Private,Rural,79.03,29.3,Unknown,0 +71250,Female,29,0,0,Yes,Private,Rural,62.48,29.5,never smoked,0 +55051,Male,26,0,0,Yes,Private,Rural,55.62,25.8,never smoked,0 +2520,Female,26,0,0,Yes,Private,Rural,84.9,26.2,never smoked,0 +3715,Male,55,0,0,Yes,Private,Rural,232.81,28.8,Unknown,0 +21206,Female,29,0,0,No,Private,Rural,86.55,29.8,smokes,0 +60159,Female,29,0,0,No,Govt_job,Rural,118.61,26.5,never smoked,0 +3113,Female,33,0,0,No,Private,Rural,80.21,27.8,formerly smoked,0 +62126,Female,19,1,0,No,Private,Rural,65.96,29,never smoked,0 +51275,Female,10,0,0,No,children,Urban,61.34,19.1,Unknown,0 +3115,Female,3,0,0,No,children,Urban,116.6,17.1,Unknown,0 +9986,Female,60,0,0,Yes,Private,Urban,85.13,24.6,Unknown,0 +35974,Female,16,0,0,No,Private,Rural,86.32,18.3,Unknown,0 +46488,Male,35,0,0,Yes,Private,Rural,69.22,42.8,never smoked,0 +54172,Female,41,0,0,Yes,Private,Urban,140.93,46.5,Unknown,0 +21804,Female,19,0,0,No,Private,Urban,83.43,38.4,Unknown,0 +50402,Female,79,0,0,Yes,Private,Urban,207.95,26,formerly smoked,0 +36317,Female,41,0,0,Yes,Private,Rural,134.29,26.8,smokes,0 +44676,Male,1.64,0,0,No,children,Urban,115.12,21.1,Unknown,0 +3724,Female,51,0,0,Yes,Govt_job,Urban,86.25,29,never smoked,0 +69668,Female,33,0,0,Yes,Self-employed,Rural,112.94,43,never smoked,0 +59274,Female,33,0,0,Yes,Govt_job,Rural,73.54,36.6,smokes,0 +29676,Male,48,0,0,No,Private,Urban,80.86,27.5,Unknown,0 +37655,Male,45,0,0,Yes,Private,Rural,83.91,40.2,Unknown,0 +16980,Female,61,0,0,No,Private,Rural,69.91,37.1,never smoked,0 +40213,Male,31,0,0,No,Private,Rural,95.62,32,smokes,0 +47831,Male,60,1,0,No,Private,Urban,63.95,32.2,never smoked,0 +40977,Male,51,0,0,Yes,Private,Rural,122.5,20.6,Unknown,0 +39129,Male,53,0,0,Yes,Govt_job,Rural,86,24.1,never smoked,0 +40837,Male,52,0,0,Yes,Govt_job,Urban,120.27,25,never smoked,0 +59000,Female,42,0,0,Yes,Govt_job,Urban,56.71,25.2,Unknown,0 +44510,Female,56,0,0,Yes,Private,Rural,131.63,27.6,never smoked,0 +3793,Male,14,0,0,No,Private,Urban,79.36,48.8,never smoked,0 +32215,Female,40,0,0,No,Private,Urban,120.77,27.6,never smoked,0 +35296,Female,58,0,0,Yes,Private,Rural,100.42,39.5,smokes,0 +69502,Female,52,1,0,Yes,Private,Urban,155.86,27.2,smokes,0 +67620,Male,30,0,0,Yes,Govt_job,Rural,66.01,26.3,smokes,0 +27664,Female,47,0,0,Yes,Private,Urban,86.99,28.9,smokes,0 +49555,Female,34,0,0,Yes,Govt_job,Urban,90.55,30,never smoked,0 +16812,Female,82,0,1,Yes,Self-employed,Rural,229.58,23.7,Unknown,0 +63665,Female,31,0,0,Yes,Private,Urban,60.06,25.5,smokes,0 +68141,Female,58,0,0,Yes,Private,Rural,65.66,24.6,formerly smoked,0 +33674,Female,47,0,0,Yes,Private,Urban,104.7,20.7,smokes,0 +30432,Male,65,1,0,Yes,Self-employed,Urban,113.86,36.4,never smoked,0 +10886,Female,13,0,0,No,children,Rural,99.49,23.4,Unknown,0 +62629,Male,37,1,0,Yes,Private,Urban,165.99,32.3,never smoked,0 +67758,Male,9,0,0,No,children,Urban,114.99,18.8,Unknown,0 +41244,Female,7,0,0,No,children,Urban,79.58,15.5,Unknown,0 +50309,Female,37,0,0,No,Govt_job,Rural,77.37,21.4,never smoked,0 +6480,Male,62,0,0,No,Govt_job,Urban,93.55,31.7,never smoked,0 +27007,Male,14,0,0,No,Self-employed,Urban,187.22,29.7,Unknown,0 +63912,Female,77,0,0,Yes,Govt_job,Rural,167.59,34.3,formerly smoked,0 +37483,Male,36,0,0,Yes,Private,Urban,98.03,22.1,smokes,0 +29855,Female,3,0,0,No,children,Urban,88.79,21.5,Unknown,0 +22136,Male,78,1,1,No,Self-employed,Urban,92.9,30.4,smokes,0 +66637,Female,49,0,0,Yes,Govt_job,Urban,117.34,21.6,never smoked,0 +2244,Male,44,0,0,Yes,Private,Urban,80.75,30.9,never smoked,0 +22259,Male,10,0,0,No,children,Rural,77.51,21.9,Unknown,0 +19088,Male,8,0,0,No,children,Urban,105.63,19.2,Unknown,0 +61010,Female,60,0,0,Yes,Private,Urban,114.34,30.3,smokes,0 +49574,Female,56,0,0,Yes,Private,Rural,227.04,23,smokes,0 +12336,Female,73,0,0,Yes,Self-employed,Urban,87.56,24.1,never smoked,0 +3668,Female,65,0,0,Yes,Govt_job,Urban,84.47,52.7,smokes,0 +6034,Female,34,0,0,Yes,Self-employed,Rural,96.26,27.6,Unknown,0 +61418,Male,13,0,0,No,children,Rural,116.64,23.9,Unknown,0 +68725,Female,80,0,0,Yes,Private,Urban,79.57,26.9,never smoked,0 +464,Male,46,0,0,Yes,Private,Rural,78.44,23.9,never smoked,0 +42225,Female,80,0,0,Yes,Self-employed,Urban,64.15,40.5,never smoked,0 +51254,Female,65,0,0,No,Private,Urban,74.5,32,never smoked,0 +59164,Female,24,0,0,No,Private,Urban,70.32,20.5,Unknown,0 +70429,Female,33,0,0,Yes,Private,Urban,84.48,44.5,never smoked,0 +54253,Male,11,0,0,No,children,Urban,144.08,16.2,formerly smoked,0 +47937,Female,57,0,0,Yes,Self-employed,Rural,78.14,35.8,never smoked,0 +66882,Female,19,0,0,No,Govt_job,Urban,133.58,24,never smoked,0 +7411,Male,82,0,0,Yes,Private,Urban,214.42,33.9,formerly smoked,0 +39593,Female,39,0,0,Yes,Private,Urban,80.63,36,smokes,0 +6239,Female,14,0,0,No,Private,Rural,233.71,22.9,never smoked,0 +35378,Female,60,1,0,No,Private,Urban,96,44.5,smokes,0 +54012,Female,3,0,0,No,children,Urban,74.52,17.5,Unknown,0 +69835,Female,57,0,0,Yes,Private,Rural,131.4,32.3,never smoked,0 +44591,Male,79,0,0,Yes,Private,Urban,216.4,30.3,never smoked,0 +4709,Female,65,0,0,Yes,Private,Rural,108.8,33.5,Unknown,0 +20393,Female,67,1,0,Yes,Private,Urban,97.06,30.9,never smoked,0 +27626,Female,60,0,0,No,Govt_job,Rural,266.59,25.5,never smoked,0 +45864,Female,36,0,0,No,Private,Rural,55.58,30,never smoked,0 +68685,Male,36,0,0,Yes,Govt_job,Urban,65.87,32.2,formerly smoked,0 +28711,Female,26,0,0,No,Private,Urban,89.28,21.7,smokes,0 +44962,Male,71,0,0,Yes,Govt_job,Urban,56.12,24.7,Unknown,0 +7892,Male,78,0,0,Yes,Private,Urban,74.7,28.8,formerly smoked,0 +11744,Male,77,0,0,Yes,Self-employed,Urban,83.06,27,Unknown,0 +12279,Male,74,0,0,Yes,Private,Urban,227.94,26,Unknown,0 +20740,Female,50,0,0,Yes,Self-employed,Rural,84.88,27.1,never smoked,0 +58257,Male,9,0,0,No,children,Urban,64.2,18.5,Unknown,0 +36547,Male,1.64,0,0,No,children,Rural,137.22,18.8,Unknown,0 +559,Female,54,0,0,Yes,Private,Urban,81.44,31.5,formerly smoked,0 +13728,Male,8,0,0,No,children,Rural,90.26,18.1,Unknown,0 +4400,Female,36,0,0,Yes,Private,Urban,68.48,24.3,never smoked,0 +68524,Female,38,0,0,Yes,Private,Urban,100.02,28,never smoked,0 +24096,Female,34,1,0,Yes,Self-employed,Urban,100.61,N/A,Unknown,0 +65643,Female,7,0,0,No,children,Urban,156.82,17.3,Unknown,0 +30186,Female,5,0,0,No,children,Urban,81.66,17.2,Unknown,0 +11904,Male,14,0,0,No,children,Rural,112.22,26.9,Unknown,0 +20257,Male,0.88,0,0,No,children,Urban,90.62,22.4,Unknown,0 +2822,Female,30,0,0,Yes,Private,Rural,72.49,25.8,never smoked,0 +18072,Female,39,0,0,Yes,Govt_job,Urban,107.47,21.3,Unknown,0 +34896,Female,17,0,0,No,Private,Rural,92.11,43,never smoked,0 +53328,Female,14,0,0,No,Private,Rural,70.54,24.4,formerly smoked,0 +28303,Female,52,0,0,Yes,Self-employed,Rural,205,30.1,never smoked,0 +44325,Male,78,0,0,Yes,Self-employed,Rural,126.39,21.3,smokes,0 +8579,Female,2,0,0,No,children,Rural,89.72,17.8,Unknown,0 +29229,Male,32,0,0,Yes,Private,Urban,92.08,28.4,smokes,0 +48406,Male,0.88,0,0,No,children,Urban,85.38,23.4,Unknown,0 +3761,Female,50,0,0,Yes,Self-employed,Rural,95.25,24.3,never smoked,0 +65324,Female,48,0,0,Yes,Govt_job,Rural,75.91,27.8,Unknown,0 +7658,Male,66,0,0,Yes,Govt_job,Rural,203.44,30.5,formerly smoked,0 +35997,Male,78,0,1,Yes,Self-employed,Urban,243.73,N/A,smokes,0 +34383,Male,46,0,0,Yes,Private,Urban,88.23,25.8,Unknown,0 +8646,Female,54,0,0,Yes,Private,Rural,97.47,26.7,never smoked,0 +46653,Female,81,1,1,Yes,Private,Rural,59.28,28.1,never smoked,0 +1099,Female,15,0,0,No,children,Rural,101.15,22.2,Unknown,0 +61676,Male,77,0,0,Yes,Self-employed,Urban,68.38,25.1,Unknown,0 +38131,Female,59,0,0,Yes,Self-employed,Rural,55.46,20.9,never smoked,0 +61848,Female,48,0,0,Yes,Private,Urban,113.87,28.9,never smoked,0 +56228,Male,76,0,1,Yes,Self-employed,Urban,67.03,N/A,never smoked,0 +4949,Male,49,0,0,Yes,Private,Rural,96.35,35.9,never smoked,0 +46688,Female,44,0,0,No,Private,Urban,127.21,29.8,smokes,0 +30491,Female,39,0,0,Yes,Private,Urban,78.9,26.7,never smoked,0 +43478,Male,34,0,0,Yes,Private,Urban,59.91,28.4,formerly smoked,0 +25443,Male,50,0,0,No,Private,Urban,160.94,26.7,smokes,0 +52519,Male,62,0,0,Yes,Private,Rural,59.61,32.5,Unknown,0 +24361,Female,38,0,0,Yes,Private,Urban,87.94,43.8,never smoked,0 +29514,Female,43,0,0,Yes,Private,Rural,97.55,28.3,formerly smoked,0 +35893,Male,28,0,0,No,Private,Urban,116.02,36.6,formerly smoked,0 +58568,Female,58,0,0,Yes,Private,Rural,127.32,33.1,smokes,0 +63303,Male,28,0,0,No,Private,Urban,75.5,27,smokes,0 +70625,Male,18,0,0,No,Private,Urban,79.35,23.6,Unknown,0 +54807,Male,62,1,1,Yes,Private,Rural,176.25,N/A,never smoked,0 +18820,Male,31,0,0,No,Private,Rural,108.56,21.8,never smoked,0 +64029,Male,55,1,0,Yes,Private,Urban,168.06,23.5,smokes,0 +72703,Female,54,0,0,Yes,Private,Urban,75.52,28.7,formerly smoked,0 +11394,Male,73,0,1,Yes,Private,Rural,82.15,31.6,formerly smoked,0 +12298,Male,26,0,0,No,Self-employed,Urban,200.28,31.9,formerly smoked,0 +70845,Male,73,0,1,Yes,Private,Rural,62.44,25.2,smokes,0 +44494,Female,38,0,0,Yes,Private,Rural,84.31,25.9,smokes,0 +30953,Male,75,1,1,Yes,Private,Rural,221.43,32.5,Unknown,0 +47861,Male,81,0,0,Yes,Private,Urban,165.47,28.1,Unknown,0 +13465,Female,20,0,0,No,Private,Rural,96.69,27.4,smokes,0 +62454,Female,12,0,0,No,children,Urban,63.98,21.2,formerly smoked,0 +52593,Male,78,0,1,Yes,Private,Urban,145.03,26.8,formerly smoked,0 +91,Female,42,0,0,No,Private,Urban,98.53,18.5,never smoked,0 +22056,Female,71,1,0,Yes,Private,Urban,105.55,N/A,smokes,0 +45469,Male,16,0,0,No,children,Rural,134.23,30.6,Unknown,0 +41284,Male,4,0,0,No,children,Rural,62.48,19.9,Unknown,0 +20112,Male,79,0,1,Yes,Private,Urban,213.38,N/A,Unknown,0 +45627,Male,60,0,0,Yes,Private,Rural,70.52,26.5,formerly smoked,0 +4174,Female,45,1,0,Yes,Private,Urban,93.21,43.8,never smoked,0 +31660,Male,23,0,0,No,Private,Rural,82.39,31.8,Unknown,0 +36196,Male,21,0,0,No,Private,Rural,88.29,36.6,smokes,0 +19769,Female,67,0,0,Yes,Self-employed,Rural,80.18,22.9,formerly smoked,0 +8341,Male,10,0,0,No,children,Rural,84.02,18.7,never smoked,0 +42172,Female,24,0,0,Yes,Self-employed,Rural,69.72,29.6,never smoked,0 +14372,Male,50,0,0,Yes,Self-employed,Urban,192.16,43.6,never smoked,0 +61252,Male,79,0,1,Yes,Private,Rural,82.27,N/A,never smoked,0 +15251,Male,14,0,0,No,children,Urban,101.87,20.3,never smoked,0 +67800,Female,13,0,0,No,children,Rural,77.55,21.3,Unknown,0 +10416,Male,71,0,1,Yes,Private,Urban,215.72,39.2,smokes,0 +19504,Female,66,0,0,Yes,Private,Rural,87.84,52.8,Unknown,0 +7476,Male,32,0,0,No,Govt_job,Rural,91.93,30.2,never smoked,0 +55526,Male,46,0,0,Yes,Govt_job,Urban,58.63,35.3,never smoked,0 +452,Male,48,1,0,Yes,Private,Urban,173.14,37,smokes,0 +55790,Female,45,0,0,Yes,Private,Urban,106.83,32.1,formerly smoked,0 +38541,Male,55,0,0,Yes,Private,Urban,84.44,30.5,formerly smoked,0 +23748,Female,31,0,0,Yes,Private,Urban,92.16,22.8,never smoked,0 +18790,Male,25,0,0,No,Private,Urban,85.96,34.5,formerly smoked,0 +45751,Male,73,1,0,Yes,Self-employed,Rural,202.57,37.4,never smoked,0 +72369,Female,14,0,0,No,children,Rural,65.41,19.5,Unknown,0 +7171,Female,56,0,0,Yes,Govt_job,Urban,102.51,55.7,Unknown,0 +52826,Male,60,0,0,Yes,Private,Rural,62.6,30.4,Unknown,0 +42556,Male,27,0,0,Yes,Private,Urban,150.1,25.3,never smoked,0 +507,Female,28,0,0,Yes,Private,Rural,94.15,23.1,smokes,0 +56746,Male,46,1,0,Yes,Private,Urban,65.5,30.7,never smoked,0 +54072,Female,11,0,0,No,children,Urban,81.31,18.8,never smoked,0 +49760,Female,63,0,0,Yes,Private,Rural,78.96,28.6,never smoked,0 +61821,Female,59,0,0,Yes,Private,Rural,123.47,27.5,Unknown,0 +65481,Male,57,0,0,Yes,Private,Urban,90.4,26.5,never smoked,0 +6174,Female,35,0,0,No,Private,Urban,71.59,40.3,never smoked,0 +68224,Male,54,0,0,Yes,Private,Rural,209.5,37.9,formerly smoked,0 +61559,Male,7,0,0,No,children,Urban,86.6,17.1,Unknown,0 +65564,Female,48,0,0,Yes,Private,Urban,57.43,53.5,formerly smoked,0 +18890,Male,69,1,0,Yes,Private,Rural,87.93,33.6,never smoked,0 +58936,Male,59,0,0,Yes,Private,Rural,203.16,43.4,Unknown,0 +67667,Female,72,1,0,Yes,Self-employed,Rural,112.12,30.5,never smoked,0 +68138,Male,49,0,0,Yes,Private,Urban,92.02,38.1,never smoked,0 +50363,Female,73,1,0,Yes,Private,Rural,60.98,29.9,formerly smoked,0 +4740,Female,24,0,0,No,Private,Urban,86.35,32.7,never smoked,0 +39683,Male,26,0,0,No,Private,Rural,71.26,28.6,Unknown,0 +49903,Male,27,0,0,No,Private,Urban,72.61,38.5,never smoked,0 +63457,Female,78,0,1,No,Self-employed,Urban,110.78,22.9,never smoked,0 +18595,Female,77,0,0,Yes,Private,Urban,99.78,38,never smoked,0 +64912,Female,59,0,0,Yes,Self-employed,Rural,201.45,43.8,smokes,0 +68382,Male,0.32,0,0,No,children,Urban,127.78,20.8,Unknown,0 +69510,Male,39,0,0,Yes,Private,Rural,121.32,26.8,never smoked,0 +29872,Female,35,0,0,Yes,Private,Urban,83.89,25.5,never smoked,0 +1924,Male,54,0,0,Yes,Private,Rural,74.06,N/A,never smoked,0 +67243,Female,75,0,1,Yes,Private,Urban,206.15,25.4,never smoked,0 +3494,Female,80,0,0,Yes,Private,Rural,102.9,26.7,Unknown,0 +37307,Female,35,0,0,Yes,Private,Urban,65.48,50.5,never smoked,0 +41175,Female,22,0,0,No,Govt_job,Urban,123.23,21.3,Unknown,0 +48303,Male,39,0,0,Yes,Private,Rural,71.3,34.7,never smoked,0 +31473,Male,6,0,0,No,children,Rural,79.05,17.9,Unknown,0 +31402,Female,62,0,0,Yes,Self-employed,Rural,102.21,36.3,never smoked,0 +18996,Female,13,0,0,No,children,Urban,105.22,18.4,Unknown,0 +2573,Male,56,0,0,Yes,Govt_job,Rural,84.58,34.5,Unknown,0 +60683,Male,53,0,1,Yes,Govt_job,Urban,77.3,33.4,never smoked,0 +70537,Male,5,0,0,No,children,Rural,74.79,19.4,Unknown,0 +63193,Female,44,0,0,Yes,Private,Rural,88.75,25.6,Unknown,0 +12228,Male,13,0,0,No,children,Rural,97.97,24.5,never smoked,0 +58107,Female,59,0,0,Yes,Private,Rural,79.18,30,Unknown,0 +28647,Female,35,0,0,Yes,Private,Urban,81.33,28.9,never smoked,0 +57086,Female,52,0,0,Yes,Private,Urban,126.68,28.1,never smoked,0 +5505,Female,76,0,0,Yes,Private,Urban,196.61,23,never smoked,0 +44112,Female,51,0,0,Yes,Self-employed,Urban,219.92,33.5,formerly smoked,0 +56645,Female,79,0,0,Yes,Govt_job,Rural,79.16,34.8,formerly smoked,0 +16652,Female,69,0,0,Yes,Self-employed,Urban,99.68,17.6,formerly smoked,0 +32445,Female,78,0,0,Yes,Self-employed,Urban,79.55,21.1,formerly smoked,0 +18752,Male,60,0,0,Yes,Private,Rural,87.86,29,formerly smoked,0 +35152,Male,10,0,0,No,children,Urban,76.92,15.8,Unknown,0 +70081,Male,42,1,0,Yes,Self-employed,Rural,77.24,41.2,Unknown,0 +72340,Male,21,0,0,No,Private,Urban,120.94,29.7,formerly smoked,0 +67112,Female,56,0,0,Yes,Private,Rural,77.66,40.8,never smoked,0 +42323,Male,59,0,0,Yes,Govt_job,Rural,231.95,33.2,never smoked,0 +35022,Female,69,0,0,Yes,Private,Urban,111.48,37,smokes,0 +21625,Female,25,0,0,Yes,Private,Urban,84.25,24.5,Unknown,0 +49972,Male,63,0,0,Yes,Self-employed,Rural,216.38,34.5,never smoked,0 +44142,Male,25,0,0,No,Private,Rural,95.01,28,never smoked,0 +364,Female,58,0,0,Yes,Private,Urban,105.74,26.8,formerly smoked,0 +59669,Female,28,0,0,Yes,Private,Rural,58.41,21,Unknown,0 +69900,Female,46,0,0,Yes,Govt_job,Urban,56.89,23.8,smokes,0 +12753,Male,53,0,0,Yes,Private,Urban,86.25,29.3,never smoked,0 +10273,Female,37,0,0,Yes,Private,Rural,86.49,24.4,Unknown,0 +30824,Male,12,0,0,No,children,Rural,115.47,22.6,Unknown,0 +587,Female,14,0,0,No,children,Rural,92.22,22.8,Unknown,0 +55856,Female,60,0,0,Yes,Private,Rural,83.16,29.7,smokes,0 +47196,Male,42,0,0,Yes,Private,Rural,110.68,32.4,formerly smoked,0 +67724,Female,65,0,0,Yes,Private,Rural,70.06,35.8,Unknown,0 +23488,Male,80,1,0,Yes,Self-employed,Urban,213.33,31.1,formerly smoked,0 +2849,Male,32,0,0,Yes,Private,Urban,93.52,31.9,Unknown,0 +12134,Female,53,0,0,Yes,Govt_job,Rural,87.62,33.7,smokes,0 +24058,Female,50,0,0,Yes,Govt_job,Rural,77.67,25.6,never smoked,0 +15117,Female,23,0,0,No,Private,Rural,95.66,19.9,smokes,0 +72915,Female,45,0,0,Yes,Private,Urban,172.33,45.3,formerly smoked,0 +61836,Female,0.8,0,0,No,children,Urban,106.59,15.5,Unknown,0 +13116,Male,49,0,0,Yes,Private,Urban,87.06,28.3,never smoked,0 +48146,Male,70,0,1,Yes,Private,Rural,93.02,40.2,formerly smoked,0 +72819,Female,82,0,0,Yes,Self-employed,Urban,243.59,24.3,never smoked,0 +20070,Male,23,0,0,No,Private,Urban,86.7,24.6,Unknown,0 +8778,Female,79,0,0,Yes,Self-employed,Rural,97.81,26.6,formerly smoked,0 +13764,Female,74,0,0,Yes,Private,Urban,116.04,30.9,never smoked,0 +2005,Male,78,0,1,Yes,Self-employed,Urban,169.43,23.5,formerly smoked,0 +8616,Female,50,0,0,Yes,Private,Rural,68.41,23.9,smokes,0 +51524,Female,34,0,0,Yes,Private,Rural,94.44,34.2,Unknown,0 +50541,Male,47,0,0,Yes,Govt_job,Urban,73.48,34.9,smokes,0 +21971,Female,52,0,0,Yes,Govt_job,Rural,183.87,26.2,never smoked,0 +32183,Female,67,0,0,Yes,Private,Rural,66.08,36.2,never smoked,0 +30145,Female,62,0,0,Yes,Private,Rural,72.19,22.4,Unknown,0 +30482,Female,18,0,0,No,Private,Rural,101.09,19.3,smokes,0 +30790,Female,75,1,0,Yes,Govt_job,Urban,88.83,41.7,never smoked,0 +63337,Female,42,0,0,Yes,Private,Rural,69.99,46,smokes,0 +66264,Male,29,0,0,Yes,Govt_job,Urban,102.4,26.9,smokes,0 +641,Male,52,0,0,Yes,Govt_job,Rural,87.26,40.1,smokes,0 +42412,Female,18,0,0,No,Private,Urban,146.59,27.7,Unknown,0 +65693,Male,67,0,0,Yes,Govt_job,Rural,59,29.5,Unknown,0 +3746,Female,66,0,0,Yes,Private,Urban,76.83,26,never smoked,0 +71304,Male,5,0,0,No,children,Urban,101.83,22.7,Unknown,0 +34935,Female,18,0,0,No,Govt_job,Urban,90.92,16,never smoked,0 +29173,Male,52,0,0,Yes,Govt_job,Urban,67.5,27.7,smokes,0 +26474,Female,44,0,0,Yes,Govt_job,Urban,97.16,33.1,Unknown,0 +56857,Male,46,1,0,Yes,Govt_job,Urban,85.62,33.1,formerly smoked,0 +13529,Female,36,0,0,Yes,Govt_job,Rural,129.43,29.7,never smoked,0 +61979,Female,61,0,0,Yes,Govt_job,Urban,106.01,34,smokes,0 +70886,Female,7,0,0,No,children,Rural,114.82,33.3,Unknown,0 +27693,Female,15,0,0,No,children,Urban,121.39,27,Unknown,0 +59762,Male,61,0,0,Yes,Private,Urban,227.98,14.2,Unknown,0 +57308,Male,20,0,0,No,Private,Urban,78.97,19.4,never smoked,0 +3701,Female,2,0,0,No,children,Urban,84.12,15.3,Unknown,0 +61339,Male,47,0,0,Yes,Self-employed,Urban,95.04,28.7,never smoked,0 +24965,Female,25,0,0,No,Govt_job,Rural,103.15,21,smokes,0 +33952,Male,66,1,0,Yes,Private,Urban,82.91,28.9,formerly smoked,0 +39042,Male,2,0,0,No,children,Urban,70.93,20.3,Unknown,0 +43039,Female,63,0,0,Yes,Private,Rural,153.6,28,formerly smoked,0 +59915,Female,53,0,0,No,Private,Urban,129.43,29.6,never smoked,0 +4727,Female,33,0,0,Yes,Govt_job,Rural,81,30.2,formerly smoked,0 +16481,Female,23,0,0,No,Govt_job,Rural,71.81,22.2,Unknown,0 +15018,Female,23,0,0,No,Govt_job,Urban,84.46,28.4,formerly smoked,0 +49702,Female,81,0,0,Yes,Self-employed,Rural,101.32,29.6,formerly smoked,0 +48017,Male,55,0,0,Yes,Private,Urban,62.56,28.6,never smoked,0 +15313,Female,69,1,0,Yes,Govt_job,Urban,208.2,32.6,formerly smoked,0 +22231,Male,58,0,0,Yes,Private,Urban,199.42,29,never smoked,0 +45461,Female,70,0,0,Yes,Private,Urban,91.28,30.1,Unknown,0 +30678,Female,48,0,0,Yes,Private,Urban,77.99,31.2,formerly smoked,0 +57904,Male,15,0,0,No,Private,Urban,190.13,20.7,never smoked,0 +67483,Male,31,1,0,Yes,Private,Urban,149.68,45.1,never smoked,0 +5646,Female,2,0,0,No,children,Rural,92.3,14.8,Unknown,0 +67911,Male,80,0,0,No,Self-employed,Rural,235.54,37.4,formerly smoked,0 +16856,Female,69,0,0,Yes,Private,Rural,84.46,19.9,Unknown,0 +37972,Female,52,0,0,Yes,Private,Rural,68.7,16,Unknown,0 +62414,Male,80,1,0,Yes,Self-employed,Urban,178.89,27.4,Unknown,0 +50485,Male,54,0,0,Yes,Private,Rural,227.74,33.4,smokes,0 +47405,Female,2,0,0,No,children,Rural,100.66,18.5,Unknown,0 +70928,Male,39,0,0,Yes,Govt_job,Urban,73.62,33.4,Unknown,0 +4679,Female,38,0,0,Yes,Private,Rural,100.05,20.8,smokes,0 +15070,Male,76,0,1,Yes,Private,Rural,213.8,22,never smoked,0 +25625,Female,45,0,0,No,Private,Rural,103.94,32.5,smokes,0 +35123,Female,1.24,0,0,No,children,Urban,84.2,19.2,Unknown,0 +20165,Female,77,0,0,Yes,Private,Urban,250.8,32.9,never smoked,0 +41730,Female,46,0,0,No,Govt_job,Rural,112.29,23.5,Unknown,0 +38761,Female,50,0,0,Yes,Private,Urban,65.98,21.7,never smoked,0 +4797,Female,52,0,0,Yes,Private,Urban,99.1,29.1,Unknown,0 +19199,Female,73,1,0,Yes,Private,Rural,217.84,N/A,never smoked,0 +30402,Male,41,0,0,Yes,Private,Urban,104.34,30.3,Unknown,0 +25088,Female,40,0,0,No,Private,Rural,217,29.4,formerly smoked,0 +54756,Female,59,0,0,Yes,Private,Rural,57.47,30.1,formerly smoked,0 +19590,Male,48,0,0,Yes,Govt_job,Urban,78.24,32.9,never smoked,0 +23332,Female,42,0,0,Yes,Private,Rural,94.38,34,never smoked,0 +16971,Female,26,0,0,No,Private,Urban,100.31,38.6,never smoked,0 +11727,Male,39,0,0,Yes,Self-employed,Urban,74.29,29.3,smokes,0 +60255,Female,34,0,0,No,Private,Rural,103.43,43.6,smokes,0 +38796,Female,54,0,0,Yes,Private,Urban,99.83,22.7,formerly smoked,0 +46498,Female,57,0,0,Yes,Private,Urban,217.4,36.6,never smoked,0 +41042,Female,1.56,0,0,No,children,Urban,71.81,22.6,Unknown,0 +35069,Female,50,1,1,No,Govt_job,Urban,79.79,25.6,smokes,0 +61103,Female,64,1,0,Yes,Self-employed,Urban,190.92,31.4,never smoked,0 +25095,Male,44,0,0,Yes,Govt_job,Urban,94.76,26,formerly smoked,0 +55607,Male,38,0,0,Yes,Private,Urban,101.43,27,formerly smoked,0 +63029,Male,32,0,0,Yes,Private,Rural,115.86,33.3,never smoked,0 +2919,Male,17,0,0,No,Private,Rural,95.27,17.3,Unknown,0 +60003,Male,81,0,0,Yes,Govt_job,Rural,89.02,26.9,never smoked,0 +46256,Male,15,0,0,No,Private,Urban,77.55,24.8,Unknown,0 +23659,Female,5,0,0,No,children,Urban,75.86,20,Unknown,0 +2952,Male,70,1,1,Yes,Private,Rural,93.62,35.8,never smoked,0 +49229,Male,52,0,0,No,Govt_job,Rural,72.71,36.9,formerly smoked,0 +2457,Female,67,0,1,Yes,Self-employed,Rural,94.45,29.6,formerly smoked,0 +23508,Female,17,0,0,No,Never_worked,Rural,88.57,31.1,never smoked,0 +28364,Male,61,0,0,Yes,Private,Urban,84.12,25.1,formerly smoked,0 +31360,Female,31,0,0,No,Private,Urban,89.11,51.9,smokes,0 +19335,Male,58,0,0,Yes,Self-employed,Rural,99.83,36.3,smokes,0 +40390,Female,12,0,0,No,children,Rural,150.03,28.2,never smoked,0 +63936,Female,30,0,0,No,Private,Urban,69.67,35.8,formerly smoked,0 +24832,Female,65,0,0,Yes,Self-employed,Urban,77.46,30.9,formerly smoked,0 +25219,Female,23,0,0,No,Private,Urban,100.54,22.1,smokes,0 +42393,Male,14,0,0,No,children,Rural,142.38,17.6,never smoked,0 +17951,Male,27,0,0,No,Self-employed,Rural,110.87,29.5,smokes,0 +17443,Female,53,0,0,Yes,Private,Urban,73.6,27,never smoked,0 +52242,Female,58,1,0,Yes,Govt_job,Rural,59.52,33.2,never smoked,0 +45931,Male,9,0,0,No,children,Urban,142.68,24.4,Unknown,0 +7828,Male,59,1,0,Yes,Self-employed,Urban,182.9,34.4,smokes,0 +21547,Female,46,0,0,Yes,Govt_job,Urban,75.28,36.7,formerly smoked,0 +42305,Female,41,0,0,No,Private,Rural,100.75,27.2,never smoked,0 +9442,Male,55,0,0,Yes,Self-employed,Rural,163.82,27.5,never smoked,0 +57047,Female,43,0,0,Yes,Private,Urban,110.42,32.6,smokes,0 +2538,Female,5,0,0,No,children,Rural,105.18,N/A,Unknown,0 +28461,Male,15,0,0,No,Never_worked,Rural,79.59,28.4,Unknown,0 +16433,Female,36,0,0,Yes,Private,Rural,107.99,25.5,never smoked,0 +50681,Female,36,0,0,Yes,Private,Rural,90.22,28.7,formerly smoked,0 +71327,Female,47,0,0,No,Private,Rural,143.45,23.8,never smoked,0 +46699,Female,18,0,0,No,Private,Rural,78.57,34.4,Unknown,0 +25248,Male,19,0,0,No,Private,Rural,79.82,26.1,Unknown,0 +35315,Male,65,0,0,Yes,Self-employed,Urban,95.88,28.5,never smoked,0 +63144,Male,17,0,0,No,Govt_job,Urban,123.04,29.6,never smoked,0 +21517,Male,54,0,0,Yes,Private,Urban,92.34,29.4,smokes,0 +29789,Female,46,0,0,Yes,Private,Rural,116.84,28.2,never smoked,0 +52207,Female,59,0,0,Yes,Self-employed,Urban,90.04,28.7,formerly smoked,0 +19209,Female,48,0,0,Yes,Govt_job,Rural,255.17,38.1,formerly smoked,0 +42041,Female,38,0,0,Yes,Private,Rural,217.55,N/A,smokes,0 +58153,Female,18,0,0,No,Private,Urban,123.66,22.2,never smoked,0 +27717,Female,56,0,0,Yes,Self-employed,Urban,112.16,25.7,Unknown,0 +35106,Male,3,0,0,No,children,Urban,88.43,17.7,Unknown,0 +47730,Female,41,0,0,No,Private,Urban,86.03,26.4,never smoked,0 +20657,Female,67,0,0,Yes,Private,Urban,227.96,32.8,Unknown,0 +63411,Female,60,0,0,Yes,Private,Rural,85.6,34.5,Unknown,0 +18671,Female,47,0,0,Yes,Govt_job,Rural,111.68,39.5,never smoked,0 +3843,Female,24,0,0,No,Private,Urban,73.49,23.5,never smoked,0 +1225,Male,43,0,0,Yes,Private,Urban,87.82,38.8,formerly smoked,0 +40264,Female,17,0,0,No,Private,Rural,99.29,21.2,Unknown,0 +72451,Female,45,0,0,Yes,Private,Rural,63.73,32,Unknown,0 +20292,Female,24,0,0,Yes,Private,Urban,85.55,63.3,never smoked,0 +31201,Female,79,0,0,No,Self-employed,Urban,79.2,32.6,never smoked,0 +59359,Male,79,0,0,Yes,Self-employed,Urban,105.93,25.2,never smoked,0 +57985,Female,27,0,0,Yes,Private,Urban,94.19,27.4,formerly smoked,0 +2885,Male,72,1,0,Yes,Private,Rural,231.71,N/A,Unknown,0 +59743,Male,64,0,1,Yes,Self-employed,Rural,69.28,38.6,formerly smoked,0 +11544,Female,34,0,0,Yes,Private,Urban,71.37,32.9,never smoked,0 +11969,Female,50,0,0,Yes,Self-employed,Urban,110.18,26,formerly smoked,0 +42929,Female,58,0,0,Yes,Self-employed,Rural,59.68,29.2,formerly smoked,0 +72776,Male,26,0,0,Yes,Govt_job,Urban,94.24,29.2,formerly smoked,0 +21438,Female,50,0,0,Yes,Private,Rural,82.1,26.4,Unknown,0 +51084,Female,80,0,0,Yes,Private,Urban,62.62,23.1,formerly smoked,0 +13440,Male,2,0,0,No,children,Urban,107.83,21.2,Unknown,0 +15533,Male,46,0,0,No,Private,Urban,107.59,26.2,formerly smoked,0 +50903,Female,29,0,0,Yes,Private,Urban,116.98,23.4,never smoked,0 +35276,Female,6,0,0,No,children,Rural,84.1,19.8,Unknown,0 +44472,Male,32,0,0,Yes,Self-employed,Urban,160.64,20.4,smokes,0 +23587,Female,16,0,0,No,Never_worked,Urban,84.4,25.9,never smoked,0 +66794,Female,44,0,0,Yes,Govt_job,Rural,81.13,34.1,never smoked,0 +35854,Female,23,0,0,No,Private,Urban,88.19,18.3,never smoked,0 +60907,Male,48,0,0,Yes,Private,Rural,127.13,35,Unknown,0 +12449,Female,34,0,0,Yes,Private,Rural,119.61,26.4,Unknown,0 +54371,Male,78,0,0,Yes,Govt_job,Urban,143.47,27.6,formerly smoked,0 +8106,Female,42,0,0,Yes,Private,Rural,84.6,27,smokes,0 +2013,Male,14,0,0,No,Private,Rural,110.72,N/A,never smoked,0 +61785,Female,40,0,0,No,Private,Rural,158.93,31.3,smokes,0 +2707,Male,10,0,0,No,children,Rural,68.94,18,Unknown,0 +49120,Female,39,0,0,Yes,Govt_job,Rural,69.38,22.1,Unknown,0 +30752,Female,42,0,0,No,Self-employed,Urban,72,34.4,never smoked,0 +64972,Male,47,0,0,Yes,Private,Rural,57.76,33.2,smokes,0 +49537,Male,14,0,0,No,Private,Rural,108.65,23.1,never smoked,0 +315,Male,45,0,0,Yes,Private,Rural,65.42,39.7,never smoked,0 +62814,Male,58,0,0,No,Private,Rural,78.93,40.7,formerly smoked,0 +7665,Female,73,0,0,Yes,Private,Rural,98.34,30.9,Unknown,0 +28108,Female,62,0,0,Yes,Private,Rural,82.57,27.5,Unknown,0 +50536,Female,62,0,1,Yes,Govt_job,Urban,124.37,28.3,never smoked,0 +8655,Female,51,0,1,Yes,Self-employed,Urban,100.96,33.4,never smoked,0 +760,Male,0.8,0,0,No,children,Urban,75.22,33.1,Unknown,0 +47501,Female,57,0,0,Yes,Private,Urban,59.85,41.5,never smoked,0 +16863,Female,8,0,0,No,children,Rural,104.75,17.1,Unknown,0 +51342,Female,69,0,0,Yes,Govt_job,Rural,70.98,30,Unknown,0 +35759,Female,16,0,0,No,Private,Rural,92.77,24.9,Unknown,0 +17270,Female,56,0,0,Yes,Private,Urban,82.12,32.5,smokes,0 +53862,Female,41,0,0,Yes,Govt_job,Rural,106.35,26.1,never smoked,0 +40951,Female,1.24,0,0,No,children,Rural,77.33,19.2,Unknown,0 +56976,Female,42,0,0,Yes,Private,Urban,96.01,38.7,Unknown,0 +37299,Male,57,0,0,Yes,Private,Urban,107.49,29.5,never smoked,0 +33247,Male,20,0,0,No,Private,Rural,88.47,28.1,smokes,0 +32560,Female,8,0,0,No,children,Rural,87.92,14.1,Unknown,0 +10973,Male,43,0,0,Yes,Private,Urban,91.13,33.9,never smoked,0 +3816,Male,62,0,0,Yes,Private,Rural,80.72,26,formerly smoked,0 +50215,Male,42,0,0,No,Govt_job,Rural,59.83,52.8,never smoked,0 +10351,Male,50,0,0,Yes,Private,Urban,67.02,N/A,formerly smoked,0 +69665,Female,63,0,0,Yes,Private,Rural,60.22,29.2,never smoked,0 +14976,Male,80,0,1,Yes,Private,Rural,82.41,26.3,smokes,0 +28183,Female,13,0,0,No,children,Urban,75.78,23.6,Unknown,0 +33085,Female,20,0,0,No,Private,Rural,102.42,18.6,never smoked,0 +13386,Female,71,0,1,Yes,Self-employed,Rural,98.45,29.7,Unknown,0 +15601,Female,50,0,0,Yes,Private,Urban,93.51,30.9,smokes,0 +22254,Female,76,0,0,Yes,Private,Rural,113.68,22.8,Unknown,0 +15539,Female,41,0,0,Yes,Private,Rural,97.41,25.5,never smoked,0 +58235,Male,76,0,0,Yes,Private,Urban,58.65,25.6,smokes,0 +21162,Female,78,0,0,Yes,Self-employed,Rural,81.68,23,Unknown,0 +67880,Male,5,0,0,No,children,Urban,148.52,20.6,Unknown,0 +42545,Male,29,1,0,Yes,Private,Urban,77.55,N/A,formerly smoked,0 +48359,Female,43,0,0,Yes,Private,Rural,142.12,28.4,smokes,0 +54815,Female,49,0,0,Yes,Private,Urban,125.3,29.7,formerly smoked,0 +6233,Male,70,1,0,Yes,Self-employed,Rural,118.81,26,smokes,0 +52225,Male,24,0,0,No,Private,Urban,84.16,37.5,smokes,0 +50463,Female,41,0,0,Yes,Private,Urban,78.74,42.3,smokes,0 +49084,Male,20,0,0,No,Private,Urban,57.51,21.4,Unknown,0 +61889,Male,34,0,0,Yes,Private,Urban,61.11,29.3,never smoked,0 +25525,Male,32,0,0,Yes,Private,Urban,78.3,31,Unknown,0 +9730,Male,27,0,0,Yes,Private,Urban,76.19,22,never smoked,0 +30622,Female,44,0,0,Yes,Govt_job,Rural,115.99,20.9,never smoked,0 +26480,Male,20,0,0,No,Private,Rural,100.8,45.9,never smoked,0 +65895,Female,52,0,0,Yes,Private,Urban,98.27,61.2,Unknown,0 +4913,Female,57,0,0,Yes,Private,Rural,93.85,29.1,never smoked,0 +20676,Male,29,0,0,No,Private,Rural,94.69,28.4,smokes,0 +52410,Female,16,0,0,No,Private,Urban,136.23,22.6,Unknown,0 +57944,Female,35,0,0,Yes,Govt_job,Rural,56.12,24.2,smokes,0 +20290,Female,5,0,0,No,children,Rural,93.03,16.3,Unknown,0 +10875,Male,63,0,0,Yes,Private,Rural,196.81,35.9,never smoked,0 +2393,Male,59,1,0,Yes,Private,Rural,87.81,29.8,formerly smoked,0 +66464,Male,63,0,0,Yes,Private,Urban,222.66,37,formerly smoked,0 +40548,Male,52,0,0,Yes,Private,Rural,223.58,35.8,never smoked,0 +19699,Female,50,0,0,No,Private,Urban,85.77,21.1,never smoked,0 +205,Female,43,0,0,Yes,Private,Rural,88.23,37.6,Unknown,0 +54805,Female,27,0,0,No,Self-employed,Urban,73.65,24.8,Unknown,0 +53195,Male,30,0,0,No,Private,Urban,141.8,31.9,never smoked,0 +9107,Female,8,0,0,No,children,Rural,92.65,17.5,Unknown,0 +65196,Male,75,1,0,Yes,Private,Rural,198.79,N/A,smokes,0 +58833,Male,14,0,0,No,Private,Rural,61.04,17.6,Unknown,0 +4309,Female,23,0,0,Yes,Private,Rural,102.88,38.9,Unknown,0 +55462,Male,6,0,0,No,children,Urban,123.39,15.2,Unknown,0 +51746,Female,37,0,0,Yes,Govt_job,Rural,67.07,27.4,never smoked,0 +59335,Male,38,0,0,Yes,Govt_job,Rural,69.88,27.9,smokes,0 +65644,Male,3,0,0,No,children,Urban,57.02,16.1,Unknown,0 +52790,Female,26,0,0,No,Govt_job,Urban,123.81,39,never smoked,0 +42681,Female,58,0,0,Yes,Govt_job,Rural,73.36,36.6,formerly smoked,0 +33697,Male,57,0,0,Yes,Private,Rural,90.54,33.7,never smoked,0 +51963,Male,58,0,0,Yes,Private,Urban,69.24,27.6,never smoked,0 +13375,Male,76,0,0,Yes,Private,Urban,192.39,31,never smoked,0 +37526,Female,68,1,1,Yes,Private,Rural,233.3,N/A,Unknown,0 +59454,Female,79,0,0,Yes,Self-employed,Urban,74.35,28.5,formerly smoked,0 +23600,Male,34,0,0,Yes,Private,Rural,71.94,31.4,smokes,0 +61245,Male,75,0,0,Yes,Self-employed,Rural,82.35,25.3,never smoked,0 +53489,Male,11,0,0,No,children,Rural,73.28,17.2,never smoked,0 +42284,Male,71,1,0,Yes,Self-employed,Rural,97.57,26.9,Unknown,0 +69089,Female,40,0,0,Yes,Private,Rural,83.3,32,smokes,0 +68970,Female,24,0,0,No,Private,Urban,85.07,22.5,Unknown,0 +42938,Male,0.64,0,0,No,children,Urban,60.4,17.3,Unknown,0 +11327,Female,82,0,0,Yes,Self-employed,Urban,79.96,27,formerly smoked,0 +5464,Male,32,0,0,Yes,Private,Rural,70.96,33.1,Unknown,0 +56995,Female,81,0,0,Yes,Private,Urban,82.86,25,never smoked,0 +53646,Female,33,1,0,No,Private,Rural,97.87,N/A,smokes,0 +45139,Female,79,0,1,Yes,Private,Rural,201.38,31.1,never smoked,0 +38354,Female,62,0,0,Yes,Self-employed,Urban,91.82,19.6,Unknown,0 +15566,Male,39,0,0,Yes,Private,Rural,91.85,24.7,smokes,0 +4793,Female,60,1,0,Yes,Self-employed,Urban,99.23,48,formerly smoked,0 +59223,Male,48,0,0,Yes,Private,Urban,68.13,38,formerly smoked,0 +30927,Male,24,0,0,No,Private,Rural,93.76,24,formerly smoked,0 +966,Female,70,1,0,Yes,Self-employed,Rural,103.89,30,never smoked,0 +62923,Female,17,0,0,No,Private,Urban,87.39,24.6,Unknown,0 +30627,Female,56,0,0,Yes,Govt_job,Urban,89.53,23.1,Unknown,0 +17236,Female,3,0,0,No,children,Urban,66.61,17.4,Unknown,0 +27566,Male,65,0,0,Yes,Private,Rural,236.14,43.1,Unknown,0 +6368,Male,72,0,1,Yes,Private,Urban,99.76,27.1,formerly smoked,0 +33876,Male,10,0,0,No,children,Urban,87.09,14.3,Unknown,0 +52164,Male,29,0,0,Yes,Private,Urban,193.81,46.8,never smoked,0 +32446,Female,44,0,0,Yes,Private,Rural,97.27,26,never smoked,0 +56855,Male,46,0,0,Yes,Private,Urban,137.77,29.3,never smoked,0 +43837,Male,33,0,0,Yes,Private,Urban,105.19,50.1,smokes,0 +5477,Male,63,0,1,Yes,Self-employed,Urban,82.72,N/A,never smoked,0 +64974,Male,0.24,0,0,No,children,Urban,58.35,18.6,Unknown,0 +33976,Male,55,0,0,Yes,Private,Urban,68.79,27,never smoked,0 +31019,Female,56,0,0,Yes,Private,Urban,94.19,25.7,never smoked,0 +4699,Male,50,0,0,No,Govt_job,Rural,121.17,25.5,formerly smoked,0 +60276,Male,78,1,1,Yes,Self-employed,Rural,106.41,27.3,never smoked,0 +24420,Male,63,0,0,Yes,Private,Rural,104.79,24.1,Unknown,0 +28478,Female,31,0,0,Yes,Private,Urban,82.18,42.7,never smoked,0 +63236,Male,65,0,0,Yes,Private,Urban,96.81,41.2,smokes,0 +6324,Male,51,0,0,Yes,Private,Rural,107.42,20.2,formerly smoked,0 +62059,Male,60,0,0,Yes,Private,Rural,69.2,30.9,never smoked,0 +28400,Male,69,0,0,Yes,Self-employed,Urban,92.73,27.7,never smoked,0 +5841,Female,23,0,0,No,Private,Urban,86.11,22.3,never smoked,0 +5681,Male,46,0,0,Yes,Private,Rural,111.78,39.4,smokes,0 +16587,Female,16,0,0,No,Private,Urban,122.26,34.2,never smoked,0 +3477,Female,26,0,0,No,Private,Rural,78.16,20.1,never smoked,0 +23890,Female,44,1,0,Yes,Govt_job,Rural,105.77,36.8,never smoked,0 +3803,Female,56,0,0,Yes,Private,Urban,102.97,N/A,smokes,0 +34068,Female,23,0,0,Yes,Govt_job,Urban,77.53,33.9,formerly smoked,0 +60145,Female,38,0,0,Yes,Private,Urban,77.35,27.7,never smoked,0 +11702,Female,18,0,0,No,Never_worked,Urban,82.36,22.7,Unknown,0 +50508,Female,63,0,1,Yes,Self-employed,Rural,239.95,32.2,smokes,0 +65473,Male,23,0,0,No,Private,Urban,61.96,22,smokes,0 +51257,Male,32,0,0,No,Private,Rural,72.1,23.2,never smoked,0 +47810,Male,8,0,0,No,children,Rural,107.97,26.7,Unknown,0 +38737,Male,77,0,0,Yes,Self-employed,Urban,60.77,23,smokes,0 +39060,Female,41,0,0,Yes,Private,Urban,71.06,23.4,never smoked,0 +56804,Female,34,0,0,No,Govt_job,Urban,60.36,24.1,never smoked,0 +45099,Male,25,0,0,Yes,Self-employed,Urban,83.33,31.5,Unknown,0 +22221,Female,35,0,0,Yes,Self-employed,Urban,65.33,26.1,never smoked,0 +57134,Male,15,0,0,No,children,Urban,113.28,23.7,never smoked,0 +57609,Male,1.64,0,0,No,children,Urban,170.88,20.8,Unknown,0 +6132,Male,4,0,0,No,children,Urban,103.34,18.8,Unknown,0 +31600,Female,33,0,0,No,Private,Rural,106.08,32.5,formerly smoked,0 +51497,Male,28,0,0,Yes,Self-employed,Urban,156.45,24.3,never smoked,0 +48455,Female,37,0,0,Yes,Private,Urban,60.05,24.1,Unknown,0 +13049,Female,50,0,0,Yes,Private,Rural,114.05,32.5,never smoked,0 +9079,Female,76,0,1,Yes,Self-employed,Urban,202.21,39.3,formerly smoked,0 +68568,Female,72,0,0,Yes,Self-employed,Rural,57.28,23.9,never smoked,0 +72867,Male,16,0,0,No,Private,Rural,99.49,22,Unknown,0 +53121,Male,44,0,0,Yes,Private,Urban,63.6,37.3,never smoked,0 +33779,Male,46,0,1,Yes,Govt_job,Urban,80.01,33,formerly smoked,0 +52367,Male,46,0,0,Yes,Private,Urban,58.42,24.7,formerly smoked,0 +29314,Female,73,1,1,Yes,Govt_job,Urban,67.38,32.8,formerly smoked,0 +18366,Female,29,0,0,Yes,Self-employed,Rural,73.58,29.8,Unknown,0 +32522,Male,19,0,0,No,Private,Urban,103.92,24.1,Unknown,0 +3980,Female,27,0,0,No,Private,Rural,80.22,21.6,never smoked,0 +5350,Female,36,0,0,Yes,Private,Rural,103.76,27.1,never smoked,0 +3428,Female,61,0,0,Yes,Self-employed,Urban,77.06,27,never smoked,0 +62552,Female,9,0,0,No,children,Rural,90.22,18.7,Unknown,0 +51085,Female,25,0,0,No,Private,Urban,181.3,35.8,never smoked,0 +60586,Female,68,0,0,Yes,Private,Rural,85.29,27.1,formerly smoked,0 +59988,Female,26,1,0,Yes,Private,Urban,107.59,33.1,smokes,0 +34122,Female,17,0,0,No,Private,Urban,87.72,25.9,smokes,0 +11392,Male,75,0,0,Yes,Private,Rural,70.73,26.7,smokes,0 +53632,Male,34,0,0,No,Govt_job,Urban,72.75,22.2,Unknown,0 +32202,Male,53,0,0,Yes,Private,Rural,95.47,26,smokes,0 +52489,Female,18,0,0,No,Private,Urban,70.54,23.5,Unknown,0 +13374,Male,48,0,0,Yes,Private,Urban,100.03,23.5,never smoked,0 +66370,Female,5,0,0,No,children,Rural,59.78,15.9,Unknown,0 +259,Male,79,0,0,Yes,Private,Urban,198.79,24.9,never smoked,0 +12092,Male,16,0,0,No,Private,Rural,90.39,26.5,never smoked,0 +38263,Female,32,0,0,Yes,Private,Rural,147.04,35.7,Unknown,0 +1666,Male,70,0,0,Yes,Govt_job,Urban,202.55,N/A,formerly smoked,0 +48922,Male,55,1,1,Yes,Private,Rural,64.92,32.1,smokes,0 +58061,Female,70,1,0,Yes,Self-employed,Rural,154.6,28.5,formerly smoked,0 +50283,Female,51,0,0,Yes,Private,Urban,95.98,40.1,smokes,0 +26605,Female,39,0,0,Yes,Private,Rural,102.51,26.6,smokes,0 +10396,Male,79,1,0,No,Private,Urban,96.52,21.7,Unknown,0 +14695,Male,80,1,0,Yes,Self-employed,Rural,232.12,28.8,never smoked,0 +2579,Female,34,0,0,Yes,Self-employed,Rural,78.12,32,Unknown,0 +71061,Male,59,0,0,Yes,Govt_job,Urban,70.04,31.4,never smoked,0 +41250,Female,54,0,0,Yes,Private,Rural,97.61,32.1,smokes,0 +53923,Female,22,0,0,No,Private,Urban,113.11,19.8,Unknown,0 +54139,Female,21,0,0,No,Private,Rural,71.06,25.3,formerly smoked,0 +32430,Female,4,0,0,No,children,Rural,104.95,28.8,Unknown,0 +14928,Female,26,0,0,No,Private,Urban,81.94,26,smokes,0 +32457,Male,62,0,0,Yes,Private,Urban,96.37,30.7,formerly smoked,0 +59718,Female,33,0,0,Yes,Private,Rural,114.16,43.3,never smoked,0 +4948,Male,51,0,0,Yes,Self-employed,Rural,93.58,35.2,smokes,0 +40870,Female,75,0,0,Yes,Govt_job,Urban,73.89,20.9,Unknown,0 +2218,Male,42,0,0,Yes,Private,Rural,107.83,35.3,smokes,0 +57494,Female,82,1,0,Yes,Self-employed,Urban,107.21,27,formerly smoked,0 +1534,Female,61,0,0,Yes,Private,Rural,99.35,26.1,smokes,0 +69329,Female,62,0,0,Yes,Private,Rural,203.57,29.1,Unknown,0 +39852,Male,59,1,1,Yes,Govt_job,Rural,81.51,32.6,never smoked,0 +65358,Female,31,0,0,Yes,Private,Rural,69.26,21.8,formerly smoked,0 +36488,Male,12,0,0,No,children,Urban,111.47,32.3,never smoked,0 +55567,Female,76,0,1,Yes,Private,Rural,86.09,28.1,never smoked,0 +33562,Male,71,0,1,Yes,Govt_job,Rural,72.94,32.3,formerly smoked,0 +20006,Female,15,0,0,No,Private,Urban,76.77,21.7,Unknown,0 +47696,Male,44,0,0,Yes,Private,Rural,60.32,25,never smoked,0 +60117,Male,30,0,0,No,Private,Rural,133.24,28.9,never smoked,0 +5032,Female,47,0,0,Yes,Private,Rural,65.01,21.7,formerly smoked,0 +5780,Female,47,0,0,Yes,Private,Urban,74.63,45.3,never smoked,0 +52236,Female,60,0,0,Yes,Private,Rural,230.78,40.2,never smoked,0 +59752,Male,62,0,0,Yes,Private,Urban,72.5,22.5,formerly smoked,0 +47005,Female,47,0,0,Yes,Private,Urban,68.48,21.3,never smoked,0 +4750,Male,78,0,0,Yes,Private,Urban,85.03,26.1,formerly smoked,0 +65127,Female,35,0,0,Yes,Private,Urban,80.76,28.8,smokes,0 +4498,Male,71,0,1,Yes,Private,Urban,204.98,N/A,formerly smoked,0 +32203,Female,57,0,0,Yes,Self-employed,Rural,95.36,32.4,formerly smoked,0 +27436,Male,12,0,0,No,children,Urban,110.33,20.4,Unknown,0 +34999,Male,26,0,0,Yes,Private,Urban,89.18,25.9,formerly smoked,0 +4213,Male,33,0,0,No,Self-employed,Rural,91.53,38.8,formerly smoked,0 +71669,Male,60,0,0,Yes,Private,Rural,65.16,30.8,never smoked,0 +36803,Female,35,0,0,No,Private,Rural,74.53,24.6,never smoked,0 +17725,Female,10,0,0,No,children,Rural,93.29,20.6,Unknown,0 +57983,Male,50,0,0,Yes,Govt_job,Urban,227.89,38.8,formerly smoked,0 +68089,Female,44,0,0,Yes,Private,Urban,121.46,40.4,Unknown,0 +3135,Female,73,0,0,No,Self-employed,Rural,69.35,N/A,never smoked,0 +563,Female,41,0,0,Yes,Private,Rural,216.71,36.2,never smoked,0 +19364,Female,7,0,0,No,children,Rural,74.96,18.8,Unknown,0 +34590,Male,45,0,0,Yes,Self-employed,Rural,75.25,27.6,smokes,0 +55459,Female,60,0,0,No,Private,Rural,91.82,28.3,formerly smoked,0 +38724,Female,49,1,0,Yes,Govt_job,Urban,56.37,39.4,smokes,0 +52968,Female,45,0,0,Yes,Self-employed,Rural,149.15,33.5,Unknown,0 +35716,Female,55,1,0,Yes,Private,Urban,202.67,40.4,formerly smoked,0 +51421,Female,54,0,0,Yes,Private,Rural,65.38,25.9,Unknown,0 +72525,Female,39,0,0,Yes,Private,Urban,90.31,27.6,smokes,0 +33009,Male,76,0,0,Yes,Self-employed,Rural,221.8,44.7,formerly smoked,0 +35437,Female,28,0,0,Yes,Private,Rural,73.39,30.8,Unknown,0 +37253,Female,70,1,0,Yes,Private,Urban,147.12,22.3,formerly smoked,0 +46171,Male,28,0,0,Yes,Private,Urban,109.85,27.9,Unknown,0 +18143,Male,79,0,0,Yes,Self-employed,Rural,103.21,22.9,formerly smoked,0 +35330,Male,30,0,0,Yes,Private,Urban,81.25,27.3,smokes,0 +32127,Female,26,0,0,Yes,Govt_job,Urban,84.69,25,never smoked,0 +69834,Female,57,0,0,Yes,Govt_job,Rural,87.1,48.3,smokes,0 +56311,Female,16,0,0,No,Private,Rural,81.92,22.7,Unknown,0 +13439,Male,40,1,0,Yes,Private,Urban,90.91,39.1,Unknown,0 +36366,Male,77,0,0,Yes,Govt_job,Urban,64.4,27.8,never smoked,0 +13111,Female,67,1,0,Yes,Private,Rural,85.48,N/A,smokes,0 +28932,Female,36,0,0,Yes,Private,Rural,67.29,36.7,formerly smoked,0 +67521,Female,40,1,0,Yes,Private,Urban,124.48,38.5,Unknown,0 +65688,Male,2,0,1,No,children,Urban,62.89,29.4,Unknown,0 +58761,Male,52,0,0,Yes,Private,Urban,87.51,30.5,formerly smoked,0 +21192,Female,78,0,0,Yes,Private,Urban,93.15,23.6,Unknown,0 +72348,Female,22,0,0,No,Private,Urban,64.87,20.6,Unknown,0 +1825,Male,33,0,0,Yes,Self-employed,Urban,90.68,31.7,smokes,0 +25674,Male,40,0,0,Yes,Private,Urban,104.64,24.9,Unknown,0 +33035,Female,20,0,0,No,Private,Urban,92.44,33.4,never smoked,0 +54297,Male,19,0,0,No,Private,Rural,120.46,22.2,Unknown,0 +9122,Male,25,0,0,Yes,Private,Urban,89.87,26.5,never smoked,0 +1218,Female,23,0,0,No,Private,Urban,105.28,27.1,formerly smoked,0 +57210,Female,28,0,0,Yes,Private,Rural,131.8,30.3,never smoked,0 +37096,Female,6,0,0,No,children,Rural,66.33,18.6,Unknown,0 +38243,Female,37,0,0,Yes,Private,Rural,101.07,26.4,Unknown,0 +17198,Female,10,0,0,No,children,Rural,83.37,17.8,formerly smoked,0 +70884,Female,34,0,0,Yes,Private,Urban,79.8,37.4,smokes,0 +51809,Female,60,0,0,Yes,Self-employed,Rural,103.17,32.1,formerly smoked,0 +40602,Female,22,0,0,No,Private,Urban,62.52,38.2,never smoked,0 +65116,Female,62,1,0,Yes,Self-employed,Urban,75.78,N/A,smokes,0 +70455,Female,52,0,0,Yes,Govt_job,Urban,110.36,39.1,formerly smoked,0 +41618,Male,61,0,0,No,Private,Rural,140.07,29.5,never smoked,0 +21209,Female,10,0,0,No,children,Rural,84.86,28.6,never smoked,0 +26103,Male,36,0,0,Yes,Private,Rural,106.85,40.1,never smoked,0 +10436,Female,29,0,0,Yes,Private,Rural,102.07,31.8,never smoked,0 +16550,Female,69,0,1,No,Govt_job,Urban,202.38,34.6,Unknown,0 +17697,Female,62,0,0,Yes,Govt_job,Urban,67.07,24.5,never smoked,0 +10744,Male,62,0,1,Yes,Govt_job,Rural,73.7,26.2,never smoked,0 +7799,Female,79,0,0,No,Self-employed,Urban,77.59,33,never smoked,0 +57183,Male,13,0,0,No,children,Rural,69.16,22.3,Unknown,0 +121,Female,38,0,0,Yes,Private,Urban,91.44,N/A,Unknown,0 +32604,Male,49,0,0,Yes,Self-employed,Rural,215.81,58.1,never smoked,0 +49883,Female,41,0,0,Yes,Private,Rural,65.4,36.9,formerly smoked,0 +68242,Male,56,0,0,Yes,Private,Urban,139.72,43.9,never smoked,0 +33726,Female,8,0,0,No,children,Urban,72.81,18.2,Unknown,0 +56255,Female,24,0,0,No,Private,Urban,149.17,23.1,never smoked,0 +46455,Female,61,0,0,Yes,Private,Urban,125.74,32.6,Unknown,0 +13270,Female,40,0,0,No,Govt_job,Urban,90.21,41.2,never smoked,0 +38067,Female,22,0,0,No,Private,Urban,139.48,28.6,formerly smoked,0 +9160,Female,80,1,0,Yes,Private,Urban,90.77,26,never smoked,0 +52843,Female,60,1,1,Yes,Private,Urban,220.24,36.8,never smoked,0 +67343,Female,57,0,0,Yes,Private,Rural,81.42,35.8,never smoked,0 +50805,Female,55,0,0,Yes,Private,Urban,102.36,24.2,never smoked,0 +10826,Female,39,0,0,Yes,Self-employed,Urban,82.85,22.9,smokes,0 +60358,Female,51,0,0,Yes,Private,Urban,102.11,23.1,never smoked,0 +72231,Female,47,0,0,Yes,Self-employed,Rural,195.61,N/A,never smoked,0 +58586,Male,77,1,1,Yes,Self-employed,Urban,80.92,28.9,smokes,0 +50499,Female,32,0,0,Yes,Private,Rural,71.8,26.5,never smoked,0 +18986,Female,45,0,0,No,Self-employed,Urban,88.47,29.3,never smoked,0 +51177,Female,49,0,0,Yes,Private,Urban,67.68,24.8,formerly smoked,0 +575,Male,13,0,0,No,children,Rural,98.65,20.1,Unknown,0 +47321,Female,74,0,0,Yes,Private,Rural,83.58,18.2,never smoked,0 +7754,Female,72,0,0,Yes,Self-employed,Rural,104.04,34.7,formerly smoked,0 +66270,Female,57,0,0,Yes,Private,Rural,69.4,24,Unknown,0 +2814,Male,51,1,0,No,Govt_job,Urban,106.22,29,never smoked,0 +52847,Female,55,0,0,Yes,Private,Rural,112.46,27.3,never smoked,0 +60235,Male,73,0,1,Yes,Private,Rural,72.42,27.6,never smoked,0 +10981,Male,12,0,0,No,children,Rural,96.73,20.4,never smoked,0 +62833,Female,6,0,0,No,children,Urban,107.4,17.7,Unknown,0 +26267,Female,76,0,0,Yes,Self-employed,Urban,267.61,27.9,smokes,0 +69918,Female,38,1,0,Yes,Private,Rural,109.46,41.5,never smoked,0 +44927,Female,50,0,0,Yes,Govt_job,Rural,120.05,27.4,Unknown,0 +20169,Female,75,0,0,Yes,Private,Rural,106.33,27.8,Unknown,0 +31481,Female,1.16,0,0,No,children,Urban,97.28,17.8,Unknown,0 +27721,Male,32,0,0,Yes,Private,Rural,83.13,32,smokes,0 +71419,Male,12,0,0,No,children,Urban,97.35,37.3,Unknown,0 +25642,Male,32,0,0,No,Private,Urban,79.54,28.1,Unknown,0 +31932,Female,13,0,0,No,children,Urban,76.55,29.1,Unknown,0 +13629,Male,1.32,0,0,No,children,Urban,56.11,22.9,Unknown,0 +38258,Female,63,0,0,Yes,Private,Rural,91.36,38.8,formerly smoked,0 +70602,Female,29,0,0,No,Private,Rural,79.27,29,smokes,0 +60056,Male,53,0,0,Yes,Private,Urban,113.21,28.6,smokes,0 +31156,Female,49,0,0,Yes,Private,Urban,105.99,29.8,never smoked,0 +69643,Male,81,0,0,Yes,Private,Rural,59.93,28.9,formerly smoked,0 +23171,Male,66,0,0,Yes,Private,Rural,88.83,29.1,Unknown,0 +42309,Female,42,0,0,Yes,Private,Urban,73.37,N/A,smokes,0 +2877,Female,61,0,0,Yes,Private,Urban,115.42,16.7,smokes,0 +37011,Female,52,0,0,Yes,Private,Rural,71.93,34.1,Unknown,0 +355,Male,8,0,0,No,children,Rural,96.43,25.7,Unknown,0 +53252,Male,82,0,0,No,Self-employed,Urban,161.95,30.8,never smoked,0 +3553,Female,43,0,0,Yes,Govt_job,Urban,104.55,23.9,smokes,0 +72178,Female,4,0,0,No,children,Urban,71.25,18.8,Unknown,0 +11817,Male,58,0,0,Yes,Govt_job,Urban,160.87,N/A,formerly smoked,0 +26468,Female,45,0,0,Yes,Govt_job,Urban,82.02,41.8,smokes,0 +13176,Female,62,1,0,Yes,Private,Urban,78.02,36.4,never smoked,0 +67032,Male,42,0,0,No,Govt_job,Urban,115.21,28.7,Unknown,0 +39784,Female,72,0,0,Yes,Self-employed,Urban,65.12,28.3,never smoked,0 +56156,Other,26,0,0,No,Private,Rural,143.33,22.4,formerly smoked,0 +15230,Female,9,0,0,No,children,Rural,80.55,15.1,Unknown,0 +25218,Female,31,0,0,Yes,Govt_job,Urban,88.2,22.7,never smoked,0 +39637,Female,20,0,0,No,Private,Rural,147.42,26.6,Unknown,0 +26777,Male,22,0,0,No,Private,Rural,86.53,20.8,never smoked,0 +60533,Female,23,0,0,No,Private,Rural,91.95,23,Unknown,0 +44375,Female,57,1,0,Yes,Self-employed,Rural,63.72,35.8,smokes,0 +49848,Male,52,0,0,Yes,Private,Rural,63.78,29.9,never smoked,0 +65413,Female,64,0,0,Yes,Private,Urban,55.64,43.4,never smoked,0 +31161,Female,26,0,0,No,Govt_job,Urban,88.88,36.3,never smoked,0 +61787,Male,54,0,0,Yes,Self-employed,Urban,114.61,40.1,formerly smoked,0 +53482,Male,32,0,0,No,Self-employed,Rural,56.08,35.9,formerly smoked,0 +71387,Female,66,0,0,Yes,Govt_job,Rural,59.62,32.4,never smoked,0 +7577,Male,13,0,0,No,children,Urban,75.85,20.3,Unknown,0 +34400,Female,77,1,0,Yes,Self-employed,Rural,176.71,33.2,never smoked,0 +45175,Male,18,0,0,No,Private,Urban,80.07,22.3,Unknown,0 +71192,Male,11,0,0,No,children,Rural,56.33,18.1,Unknown,0 +26997,Female,16,0,0,No,Private,Urban,87.16,28.2,never smoked,0 +33532,Female,73,0,1,Yes,Private,Rural,102.46,29.7,never smoked,0 +33704,Male,44,1,0,Yes,Private,Rural,84.1,N/A,Unknown,0 +51897,Male,36,0,0,Yes,Private,Rural,161,29,smokes,0 +43016,Male,10,0,0,No,children,Urban,70.7,25.4,Unknown,0 +3370,Female,54,0,0,Yes,Private,Rural,81.26,26.5,Unknown,0 +39984,Female,42,0,0,Yes,Govt_job,Rural,157.67,22.7,formerly smoked,0 +59232,Female,52,0,0,Yes,Self-employed,Urban,89.59,27.5,Unknown,0 +57896,Male,32,0,0,Yes,Private,Urban,64.02,23.8,smokes,0 +21917,Male,43,0,0,Yes,Govt_job,Rural,110.69,35.6,Unknown,0 +66435,Female,28,0,0,Yes,Private,Rural,71.97,27.2,never smoked,0 +3442,Female,79,0,0,No,Self-employed,Rural,82.07,30.4,Unknown,0 +48064,Male,11,0,0,No,children,Rural,65.07,21.5,never smoked,0 +13358,Female,75,0,0,Yes,Self-employed,Rural,207.62,31.8,never smoked,0 +64986,Male,55,0,0,Yes,Private,Urban,108.64,29.5,never smoked,0 +6032,Male,78,0,0,Yes,Self-employed,Urban,201.58,30.6,Unknown,0 +52924,Female,48,0,0,Yes,Private,Urban,116.2,27.6,formerly smoked,0 +69979,Male,73,0,0,Yes,Self-employed,Rural,231.43,23,smokes,0 +50489,Female,56,0,0,Yes,Govt_job,Urban,112.62,24.8,never smoked,0 +20094,Male,54,1,0,Yes,Private,Urban,220.26,28,formerly smoked,0 +16618,Female,55,0,0,Yes,Private,Urban,84.37,22.2,Unknown,0 +63280,Female,65,0,0,Yes,Private,Rural,82.83,27.8,formerly smoked,0 +14551,Female,69,0,0,No,Private,Urban,102.48,30.2,formerly smoked,0 +22098,Female,29,0,0,Yes,Self-employed,Rural,69.12,26.8,never smoked,0 +17771,Female,64,1,0,Yes,Govt_job,Urban,211.12,22,never smoked,0 +11803,Female,16,0,0,No,Private,Rural,95.38,34.3,formerly smoked,0 +34356,Female,75,0,0,Yes,Private,Rural,108.72,29.2,formerly smoked,0 +26528,Female,17,0,0,No,Private,Rural,88.65,30.3,never smoked,0 +51554,Male,42,0,0,Yes,Private,Urban,177.91,N/A,Unknown,0 +2296,Male,78,1,0,Yes,Self-employed,Urban,90.19,N/A,Unknown,0 +10624,Male,24,0,0,Yes,Private,Rural,73.78,21.4,smokes,0 +1681,Female,68,0,0,No,Private,Urban,82.85,N/A,smokes,0 +36375,Male,50,0,0,Yes,Private,Rural,59.48,26.6,Unknown,0 +8117,Male,52,0,0,Yes,Private,Rural,75.77,30,formerly smoked,0 +49849,Female,82,0,0,Yes,Private,Rural,80.96,33.7,formerly smoked,0 +19436,Male,56,0,0,Yes,Private,Rural,82.4,30.9,smokes,0 +10523,Male,56,0,0,Yes,Private,Urban,78.93,31.1,Unknown,0 +39322,Male,18,0,0,No,Private,Urban,80.59,23,Unknown,0 +53265,Female,33,0,0,Yes,Self-employed,Urban,70.59,20.2,Unknown,0 +40379,Female,57,0,0,Yes,Private,Rural,98.57,31.6,never smoked,0 +66841,Male,30,0,0,No,Private,Rural,61.87,23.9,Unknown,0 +38900,Female,52,0,0,Yes,Private,Urban,68.88,26.1,Unknown,0 +18180,Female,3,0,0,No,children,Urban,66.25,15.8,Unknown,0 +1183,Male,39,0,0,Yes,Private,Rural,84.18,N/A,smokes,0 +22964,Male,44,0,0,Yes,Govt_job,Rural,69.23,28.7,smokes,0 +64597,Female,33,0,0,Yes,Private,Rural,73.2,28.9,Unknown,0 +23893,Male,24,0,0,Yes,Private,Urban,103.45,25.1,smokes,0 +51564,Female,24,0,0,No,Govt_job,Urban,104.86,19.8,never smoked,0 +14410,Male,54,0,1,Yes,Govt_job,Urban,90.3,30.8,smokes,0 +4964,Female,72,1,0,Yes,Private,Rural,90.87,22.1,never smoked,0 +15020,Female,37,0,0,No,Govt_job,Rural,76.21,20.4,Unknown,0 +27380,Female,36,0,0,Yes,Private,Rural,74.14,31.2,formerly smoked,0 +21523,Female,22,0,0,No,Govt_job,Urban,87.25,24.9,smokes,0 +8819,Female,68,0,0,Yes,Govt_job,Rural,215.33,27,formerly smoked,0 +68408,Male,24,0,0,No,Private,Urban,88.38,20.1,smokes,0 +8976,Female,35,0,0,Yes,Private,Rural,104.4,24.4,never smoked,0 +22290,Female,32,0,0,Yes,Private,Urban,104.92,22.6,never smoked,0 +7700,Female,52,0,0,Yes,Private,Urban,106.54,22.4,never smoked,0 +40503,Male,21,0,0,No,Private,Rural,62.91,26.2,never smoked,0 +47917,Female,82,1,0,No,Private,Rural,61.47,22.9,never smoked,0 +30303,Male,33,0,0,No,Private,Rural,88.5,32.6,formerly smoked,0 +63864,Male,62,0,0,Yes,Private,Rural,107.61,31.3,Unknown,0 +24177,Female,57,1,0,Yes,Private,Urban,90.77,43.9,formerly smoked,0 +57274,Male,14,0,0,No,Never_worked,Urban,137.91,41.8,never smoked,0 +37213,Male,60,0,0,Yes,Self-employed,Rural,212.02,N/A,Unknown,0 +59992,Female,63,1,0,Yes,Self-employed,Urban,228.2,37.7,never smoked,0 +27382,Female,50,0,0,Yes,Govt_job,Urban,92.15,20.8,never smoked,0 +61017,Female,12,0,0,No,children,Urban,126.32,21.6,Unknown,0 +61699,Male,80,0,0,Yes,Private,Rural,94.96,22.1,formerly smoked,0 +14489,Female,74,0,0,No,Self-employed,Urban,89.52,39.2,Unknown,0 +54053,Male,46,0,0,Yes,Private,Rural,66.59,36.7,formerly smoked,0 +38348,Female,66,0,0,Yes,Private,Urban,80.1,32,never smoked,0 +17668,Male,26,0,0,Yes,Self-employed,Urban,73.72,25.9,smokes,0 +11792,Female,70,0,0,Yes,Private,Urban,90.49,28.9,formerly smoked,0 +22917,Female,62,0,0,Yes,Private,Urban,92.99,29.3,formerly smoked,0 +36204,Male,15,0,0,No,children,Rural,62.57,32.3,never smoked,0 +49554,Male,67,0,0,Yes,Private,Rural,65.51,33.2,formerly smoked,0 +72594,Male,63,0,0,Yes,Private,Urban,95.29,31.6,smokes,0 +28027,Female,42,0,0,Yes,Govt_job,Urban,83.7,20.6,never smoked,0 +54177,Female,49,1,0,Yes,Govt_job,Rural,63.16,23.3,formerly smoked,0 +32602,Male,78,0,1,Yes,Self-employed,Urban,87.77,30.8,Unknown,0 +1213,Female,31,0,0,Yes,Self-employed,Urban,87.23,N/A,formerly smoked,0 +21534,Male,67,0,0,Yes,Private,Urban,260.85,N/A,Unknown,0 +6852,Female,52,1,0,Yes,Self-employed,Rural,104.45,N/A,never smoked,0 +3379,Female,61,0,0,Yes,Private,Urban,87.52,23.7,Unknown,0 +41146,Male,41,0,0,Yes,Private,Rural,113.65,49.3,never smoked,0 +20391,Female,73,0,0,Yes,Govt_job,Rural,65.93,30.3,never smoked,0 +69379,Female,64,1,0,Yes,Self-employed,Urban,93.78,24.4,never smoked,0 +34778,Male,65,0,0,Yes,Private,Rural,223.9,28.2,formerly smoked,0 +49270,Female,81,0,0,Yes,Private,Urban,77.54,33.8,Unknown,0 +55407,Female,47,0,0,Yes,Private,Urban,93.18,42.6,formerly smoked,0 +36744,Male,40,0,0,Yes,Self-employed,Rural,169.74,31.9,never smoked,0 +26603,Male,46,1,0,Yes,Self-employed,Urban,101.93,34,Unknown,0 +71414,Female,2,0,0,No,children,Urban,125.03,19.8,Unknown,0 +14517,Male,56,0,0,Yes,Private,Urban,82.25,30.5,formerly smoked,0 +69050,Male,54,0,0,Yes,Private,Urban,85.81,21.7,formerly smoked,0 +52080,Female,26,0,0,No,Private,Rural,85.27,24.6,never smoked,0 +27493,Female,45,0,0,Yes,Private,Urban,86.06,38.1,never smoked,0 +6295,Female,57,0,0,Yes,Govt_job,Urban,104.36,19.2,smokes,0 +20375,Female,78,0,0,Yes,Private,Urban,78.29,30.1,formerly smoked,0 +29017,Male,2,0,0,No,children,Urban,93.55,23.3,Unknown,0 +56635,Male,76,1,0,Yes,Self-employed,Rural,207.96,34.5,formerly smoked,0 +4280,Female,51,0,0,Yes,Govt_job,Rural,105.52,30.8,never smoked,0 +22896,Female,54,0,0,Yes,Private,Rural,109.27,43.8,formerly smoked,0 +70297,Female,36,0,0,Yes,Private,Urban,91.34,29.9,never smoked,0 +47776,Female,57,0,0,Yes,Govt_job,Rural,176.78,50.4,never smoked,0 +53141,Female,25,0,0,No,Private,Rural,67.73,22.6,never smoked,0 +16145,Female,7,0,0,No,children,Rural,73.27,19.5,Unknown,0 +41593,Female,76,0,0,Yes,Self-employed,Rural,70.29,33.4,formerly smoked,0 +50651,Female,45,0,0,No,Private,Rural,91.47,24.2,Unknown,0 +11111,Female,66,1,0,Yes,Govt_job,Urban,205.01,52.7,formerly smoked,0 +15803,Female,45,0,0,Yes,Private,Rural,73.87,25.6,Unknown,0 +71597,Female,79,1,0,Yes,Private,Rural,64.44,26.9,formerly smoked,0 +22804,Female,25,0,0,No,Private,Rural,111.65,35.2,formerly smoked,0 +64498,Female,53,0,0,Yes,Private,Rural,90.65,22.1,formerly smoked,0 +41182,Female,35,1,0,Yes,Private,Urban,94.2,34.4,smokes,0 +56606,Female,78,0,0,Yes,Self-employed,Urban,56.95,26,Unknown,0 +36958,Female,32,0,0,Yes,Private,Rural,92.37,26.9,never smoked,0 +14877,Male,0.56,0,0,No,children,Rural,127.23,20.1,Unknown,0 +65988,Female,26,0,0,No,Private,Rural,191.78,24.7,Unknown,0 +50001,Female,34,0,0,Yes,Govt_job,Rural,86.36,32.1,smokes,0 +27034,Female,65,0,0,Yes,Govt_job,Urban,82.72,29.8,smokes,0 +8950,Female,15,0,0,No,Private,Urban,113.57,27.5,formerly smoked,0 +31850,Female,17,0,0,No,Private,Urban,89.58,22.8,Unknown,0 +14288,Female,71,0,0,Yes,Private,Rural,91.85,27.6,formerly smoked,0 +3180,Female,42,0,0,Yes,Govt_job,Urban,88.89,33,never smoked,0 +13899,Male,30,0,0,Yes,Private,Urban,79.55,33.7,never smoked,0 +23730,Female,75,0,0,Yes,Self-employed,Urban,108.62,25.1,Unknown,0 +6011,Male,9,0,0,No,children,Urban,78.24,15.3,Unknown,0 +14376,Male,47,0,0,Yes,Private,Rural,88.49,22.2,smokes,0 +22052,Female,75,1,0,No,Self-employed,Rural,91.85,21.4,formerly smoked,0 +24836,Female,61,0,0,Yes,Private,Rural,72.01,26,formerly smoked,0 +11861,Male,61,0,0,Yes,Self-employed,Rural,81.96,29.9,never smoked,0 +25613,Female,27,0,0,Yes,Private,Urban,70.56,28.6,smokes,0 +71496,Female,55,0,0,Yes,Private,Urban,71.02,21.2,never smoked,0 +24074,Female,2,0,0,No,children,Rural,99.75,16,Unknown,0 +44937,Female,51,0,0,Yes,Govt_job,Urban,127.2,22.7,never smoked,0 +72082,Female,45,0,0,Yes,Self-employed,Rural,69.76,25.3,smokes,0 +53271,Male,36,0,0,Yes,Private,Rural,74.63,31.6,formerly smoked,0 +34077,Male,46,0,0,Yes,Govt_job,Rural,102.27,38.9,formerly smoked,0 +42330,Female,48,0,0,Yes,Private,Rural,73.56,27.1,smokes,0 +69487,Female,79,0,0,Yes,Self-employed,Urban,57.77,24.1,formerly smoked,0 +70973,Female,50,0,0,Yes,Govt_job,Urban,151.25,31.5,never smoked,0 +44986,Female,79,0,0,Yes,Self-employed,Urban,78.32,32,Unknown,0 +2633,Male,32,0,0,Yes,Private,Rural,71.5,31.8,never smoked,0 +21834,Female,36,0,0,Yes,Private,Urban,84.7,34,never smoked,0 +49196,Female,27,0,0,Yes,Private,Urban,127.28,23.4,Unknown,0 +22939,Female,22,0,0,No,Private,Rural,80.72,29.3,Unknown,0 +55400,Female,5,0,0,No,children,Rural,73.92,17.2,Unknown,0 +30870,Male,9,0,0,No,children,Urban,93.24,31.9,Unknown,0 +247,Male,31,0,0,No,Private,Urban,72.6,31.6,never smoked,0 +7979,Female,26,0,0,No,Private,Rural,69.77,23.2,never smoked,0 +56189,Male,43,0,0,No,Govt_job,Urban,84.43,30,smokes,0 +3984,Female,33,0,0,Yes,Private,Rural,84.13,26.3,never smoked,0 +49753,Male,34,0,0,No,Self-employed,Rural,81.54,31.8,formerly smoked,0 +71719,Male,66,0,0,Yes,Govt_job,Rural,57.17,25.5,formerly smoked,0 +11313,Female,44,0,0,Yes,Private,Rural,86.15,21.3,never smoked,0 +38070,Female,56,0,0,Yes,Private,Rural,163.02,29.6,never smoked,0 +50455,Female,67,0,0,Yes,Self-employed,Urban,110.41,28.7,never smoked,0 +31766,Male,18,0,0,No,Private,Rural,102.58,30.8,never smoked,0 +24245,Male,55,0,0,Yes,Private,Urban,90.97,32.1,Unknown,0 +50726,Male,61,0,0,Yes,Private,Rural,140.96,34,smokes,0 +29955,Male,0.08,0,0,No,children,Rural,70.33,16.9,Unknown,0 +64742,Male,48,0,0,No,Self-employed,Rural,64.18,32.1,never smoked,0 +48518,Male,44,0,0,Yes,Self-employed,Rural,127.57,22.6,never smoked,0 +42999,Female,68,0,0,Yes,Private,Urban,109.23,31.3,never smoked,0 +71447,Male,52,0,1,Yes,Private,Urban,124.49,29,never smoked,0 +61437,Male,15,0,0,No,Govt_job,Rural,142.82,27.6,never smoked,0 +50428,Male,2,0,0,No,children,Rural,75.69,17.7,Unknown,0 +8816,Male,60,0,0,Yes,Private,Urban,74.08,35.9,Unknown,0 +49556,Female,37,0,0,Yes,Govt_job,Urban,75.98,33.8,Unknown,0 +67654,Female,5,0,0,No,children,Rural,57.8,17.6,Unknown,0 +21989,Female,25,0,0,No,Private,Urban,76.44,48.3,Unknown,0 +46434,Male,52,1,0,Yes,Govt_job,Urban,214.43,39.9,smokes,0 +3205,Female,79,0,0,Yes,Self-employed,Urban,79.03,11.3,Unknown,0 +68692,Male,61,1,0,Yes,Private,Urban,66.46,31.5,formerly smoked,0 +44531,Male,36,0,0,Yes,Private,Urban,56.42,29.6,never smoked,0 +70392,Male,34,0,0,Yes,Private,Rural,112.72,19.4,Unknown,0 +37025,Female,2,0,0,No,children,Urban,114.02,18.1,Unknown,0 +68965,Male,43,0,0,Yes,Private,Urban,72.33,36.2,smokes,0 +53843,Female,1.48,0,0,No,children,Rural,55.59,17.9,Unknown,0 +5236,Female,49,0,0,Yes,Private,Rural,73.48,33,never smoked,0 +32110,Female,2,0,0,No,children,Urban,105.05,20.4,Unknown,0 +17893,Female,82,0,0,Yes,Self-employed,Urban,84.78,33.6,formerly smoked,0 +65794,Female,81,1,0,Yes,Private,Rural,164.77,34.5,never smoked,0 +65955,Male,81,1,1,No,Private,Rural,220.64,30,never smoked,0 +53924,Female,1.08,0,0,No,children,Urban,159.39,12.8,Unknown,0 +70674,Male,60,0,0,Yes,Self-employed,Urban,69.53,26.2,never smoked,0 +56410,Male,1.88,0,0,No,children,Urban,81.42,13.5,Unknown,0 +9955,Female,58,0,0,No,Private,Urban,83.93,25.6,formerly smoked,0 +8410,Female,8,0,0,No,children,Rural,98.9,18.8,Unknown,0 +46854,Female,9,0,0,No,children,Urban,82.64,14.5,Unknown,0 +8168,Female,34,0,0,Yes,Private,Rural,112.54,23.4,formerly smoked,0 +30405,Female,23,0,0,No,Private,Rural,75.25,39.7,formerly smoked,0 +1301,Female,74,0,0,No,Self-employed,Urban,204.77,40.8,never smoked,0 +42348,Male,72,0,1,Yes,Self-employed,Urban,63.86,29.5,smokes,0 +38560,Male,47,0,0,Yes,Private,Rural,72.2,33,Unknown,0 +48129,Female,56,0,0,Yes,Private,Urban,80.08,25.6,never smoked,0 +10511,Male,5,0,0,No,children,Urban,101.61,33.1,Unknown,0 +42481,Male,27,0,0,Yes,Private,Urban,114.32,28.1,Unknown,0 +59872,Female,38,0,0,Yes,Private,Rural,80.82,49.3,never smoked,0 +56282,Male,13,0,0,No,Private,Rural,90.6,16.9,never smoked,0 +6540,Female,41,0,0,Yes,Private,Rural,93.67,35.9,Unknown,0 +31378,Female,50,0,0,Yes,Self-employed,Rural,87.15,32.1,never smoked,0 +32317,Female,41,0,0,Yes,Private,Urban,80.72,34.1,smokes,0 +9948,Male,6,0,0,No,children,Urban,83.16,15.1,Unknown,0 +35182,Female,62,0,0,Yes,Govt_job,Rural,98.14,42,Unknown,0 +5655,Male,4,0,0,No,children,Urban,83.13,16.8,Unknown,0 +51762,Female,59,0,0,Yes,Private,Rural,134.24,28.8,Unknown,0 +68193,Male,63,0,0,Yes,Self-employed,Urban,248.37,32.2,smokes,0 +49459,Male,9,0,0,No,children,Rural,61.75,16.2,Unknown,0 +54776,Male,41,0,0,No,Private,Urban,70.55,44.2,Unknown,0 +45701,Female,72,0,1,No,Self-employed,Rural,124.38,23.4,formerly smoked,0 +7953,Female,45,0,0,Yes,Private,Rural,92.21,31,never smoked,0 +65508,Male,80,0,0,Yes,Govt_job,Urban,148.72,28.7,never smoked,0 +68539,Female,19,0,0,No,Private,Urban,79.25,23.6,Unknown,0 +12022,Male,37,0,0,Yes,Govt_job,Urban,82.09,35.7,smokes,0 +3348,Female,58,1,0,Yes,Private,Urban,194.53,39.5,never smoked,0 +58466,Male,77,0,0,Yes,Private,Rural,98.84,27.3,Unknown,0 +50434,Male,38,0,0,Yes,Govt_job,Rural,135.74,31.3,formerly smoked,0 +49974,Male,49,0,0,Yes,Private,Rural,66.55,33.4,Unknown,0 +54574,Female,20,0,0,No,Private,Urban,115.69,29.2,never smoked,0 +39342,Male,23,0,0,No,Private,Rural,67.76,26,never smoked,0 +2972,Male,55,0,0,No,Govt_job,Rural,88.65,18.1,formerly smoked,0 +32717,Male,16,0,0,No,children,Rural,106.11,22.4,Unknown,0 +14063,Male,81,0,1,No,Self-employed,Rural,95.49,29.4,Unknown,0 +71724,Female,23,0,0,No,Private,Urban,59.07,21.6,never smoked,0 +4753,Male,82,0,1,Yes,Self-employed,Urban,228.92,27.9,formerly smoked,0 +62076,Male,48,0,0,Yes,Private,Rural,62.89,29.6,Unknown,0 +6665,Male,56,0,0,Yes,Private,Rural,96.84,30.2,Unknown,0 +51385,Male,61,0,0,Yes,Private,Rural,81.25,43.4,smokes,0 +66973,Male,43,0,0,Yes,Private,Urban,92.71,30.5,formerly smoked,0 +59671,Female,39,0,0,No,Private,Rural,85.59,33.2,Unknown,0 +3946,Female,22,0,0,Yes,Private,Urban,89.06,27.7,never smoked,0 +17623,Male,41,0,0,No,Self-employed,Urban,87.44,33.5,Unknown,0 +50644,Male,37,0,0,Yes,Private,Urban,64.07,28,Unknown,0 +54294,Female,65,0,0,Yes,Govt_job,Urban,79.39,31.5,formerly smoked,0 +46767,Female,8,0,0,No,children,Rural,67.84,24,Unknown,0 +12911,Female,51,0,0,Yes,Private,Rural,81.73,27.4,never smoked,0 +16109,Male,63,0,0,Yes,Private,Urban,105.52,37.9,formerly smoked,0 +47499,Female,48,0,0,Yes,Govt_job,Rural,77.55,26.2,Unknown,0 +8790,Female,17,0,0,No,Private,Urban,127.42,22.4,Unknown,0 +11259,Female,53,0,0,Yes,Private,Urban,227.68,N/A,never smoked,0 +12003,Female,75,0,0,Yes,Private,Rural,226.73,43.7,never smoked,0 +71099,Female,51,0,0,Yes,Self-employed,Urban,89.74,28.4,never smoked,0 +62090,Male,51,0,0,No,Self-employed,Rural,219.17,29.8,never smoked,0 +10138,Female,41,0,0,Yes,Private,Urban,74.85,24.8,formerly smoked,0 +71424,Female,75,1,0,Yes,Self-employed,Urban,55.96,34.8,never smoked,0 +44759,Male,57,0,0,Yes,Private,Urban,215.92,27.4,smokes,0 +21953,Female,33,0,0,No,Private,Urban,84.4,N/A,smokes,0 +52234,Female,72,0,0,Yes,Govt_job,Urban,104.05,33.5,never smoked,0 +46461,Female,52,0,0,Yes,Private,Urban,62.54,35,smokes,0 +6973,Male,11,0,0,No,children,Rural,87.54,24.4,Unknown,0 +5068,Female,28,0,0,No,Private,Urban,76.81,28.3,smokes,0 +65277,Female,78,1,0,No,Self-employed,Rural,198.12,29.1,never smoked,0 +52679,Female,82,0,0,Yes,Self-employed,Rural,78,31.3,formerly smoked,0 +36728,Male,74,0,0,Yes,Private,Urban,79.44,32.8,never smoked,0 +46797,Female,31,0,0,Yes,Private,Rural,75.82,29.1,never smoked,0 +63898,Female,53,1,0,Yes,Private,Urban,240.86,31.9,never smoked,0 +11371,Male,0.24,0,0,No,children,Urban,89.28,14.2,Unknown,0 +13155,Female,67,1,0,Yes,Govt_job,Rural,263.56,26.3,never smoked,0 +27125,Female,17,0,0,No,Private,Urban,81.13,22.8,never smoked,0 +15383,Female,29,0,0,Yes,Private,Urban,118.44,24.8,never smoked,0 +19828,Female,56,1,0,Yes,Private,Rural,97.37,34.1,smokes,0 +6289,Female,15,0,0,No,children,Urban,80.51,21.5,Unknown,0 +44243,Female,29,0,0,No,Private,Rural,78.88,26.1,never smoked,0 +40167,Female,79,1,1,Yes,Govt_job,Rural,83.61,21.4,smokes,0 +38078,Female,82,1,1,Yes,Private,Urban,73.19,33.5,never smoked,0 +34257,Male,17,0,0,No,Govt_job,Urban,68.91,23,Unknown,0 +21653,Male,8,0,0,No,children,Rural,104.3,18.5,Unknown,0 +63764,Male,23,0,0,No,Private,Urban,87.87,23.4,never smoked,0 +22194,Female,36,0,0,Yes,Private,Urban,96.7,31.4,Unknown,0 +16010,Male,47,0,0,Yes,Private,Rural,91.05,31.1,formerly smoked,0 +5074,Male,24,0,0,No,Private,Rural,200.14,37.7,smokes,0 +10243,Female,60,0,0,Yes,Govt_job,Urban,73.04,25.3,never smoked,0 +52588,Female,63,0,0,Yes,Private,Rural,85.81,35.6,never smoked,0 +56996,Male,44,0,0,Yes,Private,Urban,65.41,24.8,smokes,0 +28315,Male,38,0,0,Yes,Private,Rural,108.68,32.7,never smoked,0 +15104,Female,26,0,0,Yes,Private,Rural,88.79,24.9,never smoked,0 +26604,Female,18,0,0,No,Private,Rural,107.82,26,never smoked,0 +27916,Male,18,0,0,No,Private,Urban,97.39,22.8,never smoked,0 +60249,Male,13,0,0,No,Private,Urban,141.09,24,Unknown,0 +45787,Male,13,0,0,No,children,Urban,122.38,20.3,Unknown,0 +65526,Female,47,0,0,Yes,Private,Urban,77.91,30.3,formerly smoked,0 +72354,Female,80,1,0,Yes,Self-employed,Rural,103.6,23.7,never smoked,0 +38938,Female,24,0,0,No,Private,Rural,159.7,25.7,Unknown,0 +39017,Female,72,0,0,Yes,Govt_job,Rural,118.22,21.9,formerly smoked,0 +13219,Male,5,0,0,No,children,Urban,84.5,15.8,Unknown,0 +3003,Female,51,0,0,Yes,Govt_job,Rural,85.59,30.5,never smoked,0 +34543,Female,82,0,0,Yes,Self-employed,Rural,84.42,25.7,Unknown,0 +21762,Male,5,0,0,No,children,Rural,100.98,19,Unknown,0 +22003,Male,66,0,0,Yes,Private,Rural,81.11,28.8,formerly smoked,0 +6731,Female,53,0,0,No,Private,Rural,235.45,N/A,formerly smoked,0 +19032,Female,15,0,0,No,Private,Rural,79.2,22.4,never smoked,0 +55370,Female,53,0,0,Yes,Private,Urban,207.71,32.4,Unknown,0 +57288,Female,78,0,0,Yes,Private,Rural,99.84,36.6,never smoked,0 +31925,Female,62,0,0,Yes,Private,Rural,98.05,27.9,never smoked,0 +8264,Male,41,0,0,Yes,Self-employed,Rural,105.9,27.7,Unknown,0 +448,Female,49,0,0,Yes,Private,Rural,107.55,N/A,Unknown,0 +38783,Female,41,0,0,Yes,Self-employed,Urban,146.21,34.3,Unknown,0 +45961,Female,78,0,0,Yes,Private,Urban,79.94,26.7,never smoked,0 +27518,Male,14,0,0,No,Self-employed,Rural,72.28,19,Unknown,0 +51106,Female,1.48,0,0,No,children,Rural,123.1,20.6,Unknown,0 +42251,Male,71,1,1,Yes,Self-employed,Rural,67.06,26.7,smokes,0 +33115,Male,32,0,0,Yes,Private,Rural,82.68,29.2,never smoked,0 +31701,Male,16,0,0,No,Private,Rural,125.89,21.3,never smoked,0 +21661,Female,68,0,0,Yes,Govt_job,Urban,228.05,51.9,Unknown,0 +18837,Male,0.56,0,0,No,children,Urban,98.23,14.1,Unknown,0 +57777,Female,59,0,0,Yes,Self-employed,Urban,90.06,28.9,smokes,0 +62610,Male,32,0,0,Yes,Private,Urban,119.9,30.9,smokes,0 +2730,Male,58,0,0,Yes,Private,Urban,94.53,36.1,never smoked,0 +51116,Female,40,0,0,Yes,Self-employed,Urban,64.66,25,formerly smoked,0 +22607,Female,41,0,0,Yes,Private,Urban,103.79,28.6,never smoked,0 +11595,Female,21,0,0,No,Private,Urban,88.51,20.5,never smoked,0 +24355,Female,1.88,0,0,No,children,Rural,97.26,16.7,Unknown,0 +32563,Male,55,0,0,Yes,Govt_job,Urban,92.59,36.6,never smoked,0 +18266,Female,67,0,0,Yes,Private,Rural,102.89,26.4,never smoked,0 +60088,Male,49,1,0,Yes,Self-employed,Rural,92.26,33.1,formerly smoked,0 +14912,Female,42,0,0,Yes,Private,Rural,80,27.5,never smoked,0 +49939,Female,54,0,0,Yes,Self-employed,Urban,56.75,26.9,never smoked,0 +64534,Female,25,0,0,Yes,Private,Urban,104.66,23.9,never smoked,0 +62914,Male,62,0,0,Yes,Private,Rural,60.39,26.9,Unknown,0 +4297,Male,75,0,0,Yes,Govt_job,Urban,223.14,27.8,never smoked,0 +20399,Female,72,1,0,Yes,Private,Urban,105.51,32.7,never smoked,0 +1112,Female,14,0,0,No,Private,Urban,83.42,28.7,never smoked,0 +13276,Female,38,0,0,Yes,Private,Urban,71.06,22.6,Unknown,0 +1260,Male,59,0,0,Yes,Govt_job,Urban,101.24,26.5,never smoked,0 +40509,Female,23,0,0,No,Private,Urban,91.19,28.3,never smoked,0 +15241,Female,63,1,1,No,Govt_job,Urban,174.43,24.3,never smoked,0 +31344,Male,82,0,0,Yes,Self-employed,Urban,214.51,24,formerly smoked,0 +55169,Male,34,0,0,Yes,Private,Rural,72.64,32.4,never smoked,0 +55740,Female,8,0,0,No,children,Urban,62.69,28.7,Unknown,0 +62513,Female,28,0,0,Yes,Private,Rural,141.16,36.7,never smoked,0 +18040,Female,49,0,0,Yes,Govt_job,Rural,89.61,27.7,never smoked,0 +10374,Female,24,0,0,Yes,Private,Rural,76.42,24.8,smokes,0 +37209,Male,17,0,0,No,Never_worked,Rural,124.38,31.2,never smoked,0 +62306,Female,69,1,0,Yes,Self-employed,Urban,111.81,26.1,formerly smoked,0 +54101,Female,58,0,0,Yes,Self-employed,Rural,57.57,26.8,Unknown,0 +12259,Male,50,0,0,Yes,Private,Urban,77.82,26.7,formerly smoked,0 +37634,Male,5,0,0,No,children,Urban,60.09,19.6,Unknown,0 +22548,Female,34,0,0,Yes,Private,Urban,91.02,25.8,never smoked,0 +65407,Female,64,0,0,Yes,Self-employed,Rural,65.46,32.5,formerly smoked,0 +50723,Male,47,0,0,Yes,Private,Rural,131.19,28.3,smokes,0 +20890,Female,61,0,0,Yes,Private,Rural,79.89,24.5,smokes,0 +52472,Male,14,0,0,No,children,Urban,74.54,25.2,Unknown,0 +42859,Female,57,0,0,Yes,Private,Urban,231.31,32.3,never smoked,0 +3167,Male,53,0,1,Yes,Private,Urban,91.57,30.1,formerly smoked,0 +56469,Male,67,0,0,Yes,Private,Urban,238.78,35.7,formerly smoked,0 +23851,Female,57,0,0,No,Private,Rural,87.18,20,formerly smoked,0 +30571,Female,38,0,0,Yes,Govt_job,Rural,78.94,23.5,Unknown,0 +67786,Female,13,0,0,No,children,Rural,69.01,23.4,Unknown,0 +41404,Female,37,0,0,Yes,Private,Rural,110.28,22.3,never smoked,0 +33960,Male,39,1,0,Yes,Self-employed,Urban,71.66,28.7,never smoked,0 +70833,Female,13,0,0,No,Private,Urban,62.57,20.9,Unknown,0 +65731,Male,57,0,0,Yes,Self-employed,Urban,83.64,29.4,smokes,0 +57968,Female,11,0,0,No,children,Urban,107.18,27.6,Unknown,0 +57539,Female,68,0,0,Yes,Private,Rural,233.59,43.9,never smoked,0 +17745,Male,79,1,0,Yes,Self-employed,Urban,84.88,28.7,formerly smoked,0 +33252,Female,24,0,0,No,Private,Rural,97.95,34.7,Unknown,0 +69789,Female,44,0,0,Yes,Private,Rural,58.19,37.1,Unknown,0 +40076,Female,46,0,0,Yes,Private,Rural,70.11,24.2,never smoked,0 +10323,Female,66,0,0,Yes,Private,Urban,112.77,22.7,smokes,0 +23514,Female,61,0,0,Yes,Self-employed,Urban,75.46,29.3,formerly smoked,0 +37395,Female,16,0,0,No,Private,Urban,63.63,20,smokes,0 +8240,Female,37,0,0,Yes,Private,Urban,100.22,22.7,smokes,0 +9620,Female,43,0,0,Yes,Govt_job,Rural,81.77,25.4,never smoked,0 +7092,Female,27,0,0,Yes,Private,Rural,94.25,37.6,never smoked,0 +50216,Male,44,1,0,Yes,Self-employed,Rural,188.13,44.7,formerly smoked,0 +59506,Male,14,0,0,No,Private,Rural,164.7,26.3,Unknown,0 +43397,Male,81,0,1,Yes,Self-employed,Rural,68.27,25,Unknown,0 +62384,Male,52,0,1,No,Self-employed,Rural,79.81,N/A,formerly smoked,0 +10651,Male,54,1,0,Yes,Govt_job,Rural,100.12,32.3,formerly smoked,0 +69750,Female,77,0,0,Yes,Self-employed,Urban,151.23,24.9,never smoked,0 +55455,Male,27,0,0,No,Private,Rural,112.41,33.7,never smoked,0 +34230,Female,35,0,0,Yes,Self-employed,Urban,205.97,26.6,formerly smoked,0 +65154,Female,30,0,0,Yes,Private,Urban,112.19,53.4,never smoked,0 +36298,Female,48,0,0,Yes,Self-employed,Rural,71.93,41.7,never smoked,0 +13171,Female,15,0,0,No,children,Urban,190.89,22,never smoked,0 +62983,Female,26,0,0,Yes,Private,Urban,138.02,20.3,smokes,0 +44834,Female,38,0,0,Yes,Private,Rural,66.16,42.7,Unknown,0 +67411,Male,29,0,0,No,Private,Rural,105.73,28.2,smokes,0 +5455,Male,49,0,0,Yes,Private,Rural,78.34,32.5,Unknown,0 +49267,Female,55,0,0,Yes,Private,Urban,102.1,22.5,formerly smoked,0 +60464,Male,52,0,0,Yes,Private,Urban,97.37,26.5,smokes,0 +56286,Male,49,0,0,Yes,Private,Urban,193.87,41,Unknown,0 +5223,Female,21,0,0,No,Private,Rural,78.32,27,Unknown,0 +53302,Female,24,0,0,Yes,Private,Rural,130,25.9,formerly smoked,0 +59309,Male,18,0,0,No,Self-employed,Urban,74,23.7,Unknown,0 +69824,Male,52,0,0,Yes,Private,Rural,111.04,30,never smoked,0 +13173,Male,70,1,0,Yes,Private,Urban,214.77,15,formerly smoked,0 +52579,Female,51,0,0,Yes,Self-employed,Rural,97.25,21.5,never smoked,0 +59451,Male,58,0,0,Yes,Private,Urban,79.95,25.9,never smoked,0 +56875,Female,46,0,0,Yes,Govt_job,Urban,162.24,24.3,smokes,0 +16774,Female,79,0,0,No,Self-employed,Urban,74.36,39.2,Unknown,0 +61672,Female,11,0,0,No,children,Urban,69.68,14.4,Unknown,0 +25811,Female,61,0,0,Yes,Private,Urban,98.35,26.6,never smoked,0 +7780,Male,51,0,0,Yes,Self-employed,Urban,75.73,30.7,never smoked,0 +58149,Female,21,0,0,No,Private,Rural,85.86,35.4,Unknown,0 +38742,Female,71,0,0,Yes,Private,Urban,80.34,29.2,never smoked,0 +29613,Female,13,0,0,No,Private,Rural,73.76,26.7,Unknown,0 +20655,Male,16,0,0,No,Private,Rural,94.96,21.5,never smoked,0 +53897,Female,61,0,0,Yes,Private,Urban,108.18,19.1,never smoked,0 +29792,Female,49,0,0,Yes,Private,Rural,85.23,25.4,Unknown,0 +15990,Male,65,1,0,Yes,Govt_job,Rural,189.88,34,never smoked,0 +45112,Male,40,0,0,No,Govt_job,Urban,197.11,23.9,never smoked,0 +28385,Female,44,0,0,Yes,Private,Rural,100.08,20.9,smokes,0 +63423,Male,11,0,0,No,children,Rural,68.62,18.2,Unknown,0 +187,Female,20,0,0,No,Private,Rural,84.07,27.6,smokes,0 +18891,Male,24,0,0,No,Govt_job,Rural,99.65,50.3,never smoked,0 +34657,Female,44,0,0,Yes,Self-employed,Urban,82.33,24.5,never smoked,0 +40546,Male,5,0,0,No,children,Urban,94.49,16.6,Unknown,0 +56755,Male,41,0,0,Yes,Private,Rural,108.71,24,never smoked,0 +71097,Female,23,0,0,No,Private,Urban,64.94,18.8,never smoked,0 +21025,Female,7,0,0,No,children,Urban,98.22,34,Unknown,0 +69020,Female,74,0,0,Yes,Private,Urban,83.5,25.8,never smoked,0 +48883,Male,61,0,0,Yes,Govt_job,Rural,192.47,30.3,never smoked,0 +71297,Female,80,1,0,Yes,Private,Urban,125.89,28.9,smokes,0 +52216,Female,35,0,0,Yes,Private,Urban,87.72,21.3,never smoked,0 +20421,Female,43,0,0,Yes,Private,Rural,68.94,26.8,never smoked,0 +36896,Male,25,0,0,Yes,Private,Rural,66.51,29.2,Unknown,0 +23535,Male,72,0,1,Yes,Self-employed,Urban,85.82,25,formerly smoked,0 +1323,Female,45,0,0,Yes,Private,Rural,87.47,21.5,never smoked,0 +47309,Male,9,0,0,No,children,Urban,87.74,17.1,Unknown,0 +34161,Male,33,1,0,Yes,Private,Rural,85.12,32.5,never smoked,0 +57405,Male,53,0,0,Yes,Self-employed,Urban,103.37,26.9,formerly smoked,0 +15824,Female,67,0,0,Yes,Private,Rural,81.68,30.4,never smoked,0 +32103,Male,59,0,0,Yes,Self-employed,Urban,76.51,29.8,never smoked,0 +18205,Female,1.32,0,0,No,children,Rural,110.17,20.3,Unknown,0 +71420,Male,27,0,0,No,Govt_job,Rural,65.12,41.1,smokes,0 +298,Female,41,0,0,Yes,Self-employed,Rural,76.66,N/A,Unknown,0 +15136,Male,64,0,1,Yes,Private,Rural,109.88,33.9,Unknown,0 +9879,Female,55,0,1,Yes,Private,Urban,199.38,39,Unknown,0 +68302,Female,40,0,0,Yes,Private,Urban,65.77,31.2,never smoked,0 +65507,Male,33,0,0,Yes,Private,Rural,55.72,38.2,never smoked,0 +63949,Female,33,0,0,Yes,Govt_job,Urban,75.67,44.7,never smoked,0 +62475,Male,39,1,0,Yes,Private,Rural,88.18,33.5,smokes,0 +35648,Female,74,0,0,Yes,Self-employed,Rural,95.94,27,never smoked,0 +72276,Male,38,0,0,Yes,Private,Urban,86.93,31.1,never smoked,0 +49661,Male,53,0,0,Yes,Govt_job,Urban,85.17,29.2,never smoked,0 +31590,Male,22,0,0,No,Private,Urban,111.1,26.6,never smoked,0 +8584,Female,5,0,0,No,children,Rural,92,17.9,Unknown,0 +7964,Male,24,0,0,No,Private,Urban,97.47,24.2,formerly smoked,0 +25130,Female,27,0,0,Yes,Private,Urban,79.21,19.5,Unknown,0 +3531,Male,41,0,0,Yes,Private,Rural,83.97,28.5,formerly smoked,0 +6529,Female,20,0,0,No,Private,Urban,98.55,21.3,never smoked,0 +22272,Female,71,1,0,Yes,Private,Rural,202.98,41.3,never smoked,0 +40702,Female,65,0,0,No,Govt_job,Urban,60.7,31.3,never smoked,0 +1656,Male,38,0,0,Yes,Private,Urban,92.22,40.8,never smoked,0 +51988,Female,25,0,0,Yes,Private,Rural,79.94,36.6,Unknown,0 +48323,Male,53,0,0,Yes,Govt_job,Rural,83.68,26.7,Unknown,0 +35155,Female,50,0,0,Yes,Self-employed,Urban,69.92,18.7,formerly smoked,0 +46314,Female,1.24,0,0,No,children,Rural,136.96,15.2,Unknown,0 +12906,Female,55,0,0,Yes,Self-employed,Rural,95.32,26.8,never smoked,0 +24961,Female,38,0,0,Yes,Private,Rural,107.78,25.1,never smoked,0 +14000,Female,72,1,1,Yes,Private,Urban,198.32,31.3,formerly smoked,0 +23047,Male,43,0,0,Yes,Private,Urban,100.16,59.7,never smoked,0 +6827,Male,30,0,0,Yes,Private,Urban,96.02,29.8,never smoked,0 +44656,Female,69,1,0,Yes,Private,Rural,112.69,33.5,formerly smoked,0 +59801,Female,61,0,0,Yes,Private,Urban,60.61,24.5,never smoked,0 +51073,Female,34,0,0,Yes,Self-employed,Urban,79.77,33.6,never smoked,0 +34966,Female,43,0,0,Yes,Self-employed,Urban,87.41,39.7,formerly smoked,0 +41122,Female,62,0,0,Yes,Private,Rural,226.38,47.4,never smoked,0 +4449,Male,48,0,0,Yes,Govt_job,Rural,124.64,26.4,smokes,0 +54726,Female,37,0,0,Yes,Private,Urban,69.42,33,never smoked,0 +1772,Female,64,0,0,Yes,Govt_job,Urban,77.68,31.4,never smoked,0 +4850,Male,51,0,0,Yes,Private,Rural,112.79,27.2,never smoked,0 +44886,Male,69,1,0,Yes,Self-employed,Rural,236.79,35.7,formerly smoked,0 +26076,Female,75,1,0,Yes,Self-employed,Rural,219.82,29.5,formerly smoked,0 +54962,Female,27,0,0,No,Private,Urban,82.05,21,Unknown,0 +1116,Female,49,0,0,No,Govt_job,Rural,104.08,26.6,never smoked,0 +28247,Male,82,0,0,No,Self-employed,Urban,101.57,24.3,smokes,0 +39563,Female,36,0,0,Yes,Private,Rural,71.32,43.9,smokes,0 +49553,Male,1.88,0,0,No,children,Rural,143.97,N/A,Unknown,0 +14872,Male,45,1,0,Yes,Self-employed,Rural,239.19,52.5,Unknown,0 +57598,Female,64,0,0,Yes,Private,Rural,78.45,27,formerly smoked,0 +70022,Male,32,0,0,No,Private,Rural,61.11,32.7,never smoked,0 +70365,Female,15,0,0,No,Private,Urban,87.29,29.4,Unknown,0 +57219,Female,1.64,0,0,No,children,Rural,82.49,15.1,Unknown,0 +28344,Male,34,0,0,Yes,Private,Urban,83.15,32.1,Unknown,0 +50785,Male,17,0,0,No,Private,Rural,83.26,32.9,never smoked,0 +17251,Female,76,1,0,Yes,Self-employed,Urban,78.7,27.6,formerly smoked,0 +48459,Male,61,0,0,Yes,Self-employed,Urban,111.94,26.5,smokes,0 +68843,Male,30,0,0,Yes,Private,Rural,104.77,19.2,smokes,0 +27523,Female,18,0,0,No,Private,Urban,104.26,25.9,Unknown,0 +61651,Male,48,0,0,Yes,Private,Rural,113.84,21.9,never smoked,0 +22877,Male,0.16,0,0,No,children,Urban,114.71,17.4,Unknown,0 +52859,Female,4,0,0,No,children,Urban,61.54,13.2,Unknown,0 +55631,Male,38,0,0,Yes,Private,Rural,133.62,25.2,never smoked,0 +7003,Female,27,0,0,Yes,Private,Rural,111.96,28.2,never smoked,0 +68447,Female,50,0,0,No,Private,Urban,112.44,31.5,Unknown,0 +13817,Male,19,0,0,No,Private,Urban,123.61,25.2,Unknown,0 +12117,Male,8,0,0,No,children,Urban,84.68,14.5,Unknown,0 +40210,Male,78,0,1,Yes,Self-employed,Rural,206.62,28,formerly smoked,0 +23360,Male,0.8,0,0,No,children,Rural,114.54,15.1,Unknown,0 +28447,Female,53,1,0,Yes,Private,Rural,216.88,31.4,smokes,0 +72398,Female,73,1,0,Yes,Private,Urban,110.38,26.3,never smoked,0 +7859,Male,34,0,0,Yes,Private,Urban,99.23,N/A,smokes,0 +20140,Male,58,0,0,Yes,Govt_job,Rural,204.92,39.6,never smoked,0 +46903,Female,62,0,0,Yes,Private,Urban,56.74,28.9,never smoked,0 +61333,Female,78,0,0,No,Self-employed,Rural,68.35,31.4,Unknown,0 +7403,Female,51,0,0,Yes,Private,Urban,83.52,34.3,Unknown,0 +69370,Male,78,0,0,Yes,Govt_job,Urban,59.74,27,formerly smoked,0 +43549,Female,40,1,0,Yes,Private,Rural,81.59,27.2,never smoked,0 +2903,Female,35,0,0,No,Private,Rural,123.83,23.8,never smoked,0 +70268,Male,82,0,0,Yes,Private,Urban,226.84,25.3,formerly smoked,0 +11003,Female,46,0,0,Yes,Self-employed,Rural,93.2,32.6,Unknown,0 +61475,Female,51,1,0,Yes,Private,Rural,85.84,31.8,never smoked,0 +27608,Female,53,0,0,Yes,Govt_job,Urban,74.64,22.4,Unknown,0 +9923,Male,55,0,1,Yes,Private,Urban,80.17,28,never smoked,0 +28091,Female,43,0,0,Yes,Govt_job,Urban,85.03,23.9,formerly smoked,0 +59749,Male,81,0,0,Yes,Private,Urban,234.35,25.3,formerly smoked,0 +8719,Male,12,0,0,No,children,Urban,116.25,16.4,formerly smoked,0 +58154,Female,20,0,0,No,Private,Urban,66.55,26.9,smokes,0 +31712,Female,53,0,0,Yes,Private,Urban,88.38,25.4,never smoked,0 +14249,Female,1.32,0,0,No,children,Urban,81.05,18.7,Unknown,0 +30693,Female,22,0,0,No,Private,Urban,68.4,37.5,never smoked,0 +18866,Female,75,0,0,Yes,Self-employed,Urban,96.95,41.4,never smoked,0 +36909,Female,66,0,0,Yes,Self-employed,Rural,66.24,37.5,never smoked,0 +63562,Male,7,0,0,No,children,Rural,91.81,15.8,Unknown,0 +29352,Female,26,0,0,No,Private,Urban,84.86,37.6,never smoked,0 +44024,Female,14,0,0,No,Private,Rural,118.88,30.5,never smoked,0 +24068,Female,32,0,0,Yes,Private,Urban,85.91,22.1,Unknown,0 +57602,Male,6,0,0,No,children,Rural,115.4,19.2,Unknown,0 +16536,Female,42,0,0,Yes,Self-employed,Rural,75.34,38,never smoked,0 +6639,Male,4,0,0,No,children,Rural,100.19,18.7,Unknown,0 +6528,Male,75,0,0,Yes,Govt_job,Urban,200.73,25.7,formerly smoked,0 +42594,Male,80,1,0,Yes,Govt_job,Urban,114.09,30.1,never smoked,0 +59045,Female,52,0,0,Yes,Private,Urban,67.3,36.3,never smoked,0 +31608,Male,11,0,0,No,children,Rural,96.91,20.4,Unknown,0 +47949,Male,14,0,0,No,children,Rural,116.2,20.9,Unknown,0 +41362,Female,74,0,0,Yes,Self-employed,Rural,72.54,28.4,never smoked,0 +18187,Male,58,0,0,Yes,Private,Rural,96.01,33.8,Unknown,0 +8983,Female,80,1,0,Yes,Private,Urban,89.16,24,never smoked,0 +20098,Female,31,0,0,Yes,Self-employed,Rural,108.64,43.3,never smoked,0 +3777,Female,28,1,0,Yes,Govt_job,Rural,83.66,36.4,never smoked,0 +11651,Female,25,0,0,Yes,Private,Rural,81.21,37.9,never smoked,0 +28527,Male,71,0,0,No,Private,Urban,86.96,32.6,never smoked,0 +63282,Female,51,0,0,Yes,Govt_job,Rural,92.95,23.9,never smoked,0 +37038,Male,15,0,0,No,children,Urban,95.86,18.1,Unknown,0 +4528,Male,45,1,0,No,Private,Rural,85.52,36.4,never smoked,0 +41665,Male,53,0,0,Yes,Govt_job,Rural,159.39,29.2,never smoked,0 +26539,Male,69,0,0,Yes,Self-employed,Urban,202.51,30.8,formerly smoked,0 +25325,Female,42,0,0,Yes,Private,Rural,82.24,23.8,formerly smoked,0 +69462,Female,4,0,0,No,children,Rural,109.81,17.9,Unknown,0 +29816,Male,64,1,0,Yes,Private,Rural,91.85,31.8,formerly smoked,0 +47784,Female,5,0,0,No,children,Rural,123.49,19.5,Unknown,0 +18181,Male,44,0,0,Yes,Private,Rural,105.49,31.5,smokes,0 +8614,Male,78,0,1,Yes,Self-employed,Urban,101.53,24.1,formerly smoked,0 +347,Female,16,0,0,No,Private,Urban,89.45,N/A,Unknown,0 +61336,Female,69,0,0,Yes,Self-employed,Urban,126.04,35.9,never smoked,0 +27647,Male,80,0,1,Yes,Self-employed,Rural,95.49,31.6,Unknown,0 +25676,Female,7,0,0,No,children,Rural,89.38,19,Unknown,0 +65894,Female,2,0,0,No,children,Urban,82.3,18.8,Unknown,0 +2291,Female,80,1,0,Yes,Self-employed,Urban,218,33.5,Unknown,0 +25630,Female,69,0,0,Yes,Self-employed,Urban,79.7,25,never smoked,0 +38575,Male,58,1,0,Yes,Self-employed,Rural,209.15,52.9,formerly smoked,0 +29326,Female,75,0,0,Yes,Self-employed,Rural,70.22,24.8,formerly smoked,0 +59292,Female,60,0,0,Yes,Self-employed,Rural,83.57,24.5,never smoked,0 +52051,Female,75,0,0,Yes,Self-employed,Urban,60.6,40.4,smokes,0 +64508,Female,10,0,0,No,children,Urban,97.24,20.2,Unknown,0 +36593,Male,38,0,0,No,Private,Rural,162.72,31.9,smokes,0 +39834,Male,28,0,0,No,Private,Urban,73.27,25.4,smokes,0 +54111,Female,3,0,0,No,children,Urban,92.62,15.4,Unknown,0 +53476,Female,31,0,0,Yes,Private,Urban,90,38.6,never smoked,0 +479,Female,59,1,0,Yes,Private,Rural,78.28,31,formerly smoked,0 +37237,Female,31,0,0,No,Private,Rural,87.81,26.4,smokes,0 +5496,Female,45,0,0,Yes,Private,Urban,202.66,N/A,never smoked,0 +56075,Female,58,0,0,Yes,Private,Rural,196.5,37.7,never smoked,0 +46130,Female,57,0,0,Yes,Self-employed,Urban,142.31,35.2,smokes,0 +7730,Male,31,0,0,No,Private,Rural,94.96,54.7,smokes,0 +12380,Male,43,0,0,Yes,Govt_job,Rural,83.78,21.6,never smoked,0 +15324,Female,40,0,0,No,Private,Urban,86.1,23.9,Unknown,0 +11658,Male,1.08,0,0,No,children,Rural,74.5,N/A,Unknown,0 +22778,Male,34,0,0,Yes,Private,Urban,66.96,26.1,never smoked,0 +4128,Female,55,0,0,Yes,Private,Rural,76.7,39.7,formerly smoked,0 +36825,Female,39,0,0,Yes,Private,Rural,103.12,29.9,formerly smoked,0 +1454,Female,42,0,0,No,Private,Urban,84.03,31.4,never smoked,0 +12674,Male,44,0,0,Yes,Private,Rural,74.15,34.5,formerly smoked,0 +55375,Male,69,1,0,Yes,Private,Rural,73.29,29.4,never smoked,0 +3726,Male,16,0,0,No,Private,Urban,115.16,26.9,Unknown,0 +48652,Female,8,0,0,No,children,Urban,83.55,22.4,Unknown,0 +68657,Female,1.48,0,0,No,children,Urban,61.53,20.5,Unknown,0 +17337,Female,1.88,0,0,No,children,Rural,100.74,18.6,Unknown,0 +44831,Female,69,0,0,No,Private,Urban,59.31,31.4,smokes,0 +68420,Female,13,0,0,No,children,Urban,63.22,18.5,formerly smoked,0 +39632,Female,53,0,0,Yes,Private,Urban,209.5,41.8,never smoked,0 +49095,Female,16,0,0,No,children,Urban,64.51,21.2,Unknown,0 +46292,Male,64,0,0,Yes,Private,Rural,90.07,28.6,never smoked,0 +43492,Female,7,0,0,No,children,Urban,113.95,16,Unknown,0 +55766,Male,41,0,0,Yes,Private,Rural,119.32,30.6,Unknown,0 +17740,Male,65,0,0,Yes,Private,Rural,99.12,29,formerly smoked,0 +64189,Male,61,0,0,Yes,Self-employed,Rural,152.84,28.6,Unknown,0 +24202,Male,63,0,0,Yes,Private,Rural,78.23,34.8,never smoked,0 +32514,Male,1.8,0,0,No,children,Urban,68.8,N/A,Unknown,0 +9866,Female,54,0,0,Yes,Private,Urban,76.05,42,Unknown,0 +54816,Female,14,0,0,No,children,Rural,116.49,30.3,never smoked,0 +59880,Male,45,0,0,Yes,Private,Rural,99.91,30.9,Unknown,0 +20625,Male,51,1,0,Yes,Private,Urban,76.1,32.1,smokes,0 +65969,Male,8,0,0,No,children,Rural,121.99,19.6,Unknown,0 +56923,Male,52,1,0,Yes,Private,Rural,116.21,32.8,smokes,0 +44001,Female,39,0,0,Yes,Private,Urban,55.28,31.5,Unknown,0 +51852,Female,13,0,0,No,children,Rural,219.81,N/A,Unknown,0 +27176,Female,69,0,0,Yes,Private,Rural,103.73,34.7,never smoked,0 +70874,Male,71,1,0,Yes,Govt_job,Urban,153.08,21.5,Unknown,0 +34287,Female,73,0,0,Yes,Self-employed,Rural,98.69,27.6,Unknown,0 +23052,Female,54,0,0,Yes,Private,Rural,94.11,28.6,formerly smoked,0 +67499,Male,10,0,0,No,children,Rural,117.03,21.1,never smoked,0 +5380,Female,26,0,0,Yes,Private,Urban,91.35,23.8,never smoked,0 +20154,Female,41,0,0,Yes,Private,Rural,82.48,33.5,Unknown,0 +29546,Male,71,0,0,Yes,Govt_job,Rural,99.76,33.4,formerly smoked,0 +3718,Female,46,0,0,Yes,Govt_job,Urban,111.1,23.3,smokes,0 +43734,Male,15,0,0,No,Private,Rural,122.25,21,never smoked,0 +41917,Female,29,0,0,No,Private,Urban,84.19,21.2,never smoked,0 +8050,Male,8,0,0,No,children,Urban,84.6,18.4,Unknown,0 +44426,Female,21,0,0,Yes,Private,Urban,126.35,26.9,never smoked,0 +34700,Female,56,1,0,No,Self-employed,Urban,87.5,20.2,formerly smoked,0 +70230,Female,14,0,0,No,Self-employed,Rural,77.52,21.9,never smoked,0 +68721,Female,78,0,0,Yes,Private,Rural,133.13,24.2,Unknown,0 +23170,Female,36,0,0,No,Private,Urban,96.1,29.6,never smoked,0 +5731,Female,57,1,0,Yes,Private,Urban,108.61,38.1,smokes,0 +62791,Male,79,1,1,Yes,Self-employed,Rural,205.23,22,never smoked,0 +18943,Male,26,0,0,No,Govt_job,Rural,76.74,29.8,Unknown,0 +45472,Male,22,0,0,Yes,Private,Urban,138.55,24,never smoked,0 +3942,Male,72,0,1,Yes,Private,Urban,234.27,26.9,never smoked,0 +30201,Female,54,0,0,Yes,Private,Urban,75.16,38,never smoked,0 +38284,Male,8,0,0,No,children,Rural,77.08,16.9,Unknown,0 +53552,Female,62,0,0,Yes,Private,Urban,101.19,23.4,never smoked,0 +59663,Female,28,0,0,No,Private,Urban,107.74,38.5,never smoked,0 +68631,Female,50,0,0,Yes,Private,Rural,62.32,21.6,Unknown,0 +49900,Male,7,0,0,No,children,Urban,56.32,15.9,Unknown,0 +18140,Female,33,0,0,Yes,Private,Rural,131.28,25.1,never smoked,0 +52340,Male,55,0,0,Yes,Private,Urban,67.02,41.1,smokes,0 +2327,Female,25,0,0,No,Private,Rural,76.72,21.5,Unknown,0 +55137,Female,25,0,0,No,Private,Urban,125.98,21,smokes,0 +458,Female,37,0,0,Yes,Govt_job,Urban,72.09,24.1,smokes,0 +57044,Male,58,0,0,Yes,Private,Urban,88.05,30.6,Unknown,0 +71548,Male,45,0,0,Yes,Govt_job,Urban,55.47,19.8,smokes,0 +67438,Female,60,0,0,Yes,Govt_job,Rural,145.94,29.2,Unknown,0 +36524,Male,66,0,1,Yes,Private,Rural,239.21,33.7,formerly smoked,0 +61827,Male,80,0,0,Yes,Self-employed,Rural,196.08,31,formerly smoked,0 +31454,Female,38,0,0,Yes,Govt_job,Rural,93.93,21.5,never smoked,0 +15663,Female,11,0,0,No,children,Urban,76.74,19.1,Unknown,0 +4707,Female,63,0,0,Yes,Private,Urban,83.74,21.4,Unknown,0 +55885,Male,19,0,0,No,Private,Urban,119.58,24.8,Unknown,0 +47563,Female,17,0,0,No,Private,Rural,68.66,35.1,never smoked,0 +63729,Female,19,0,0,No,Private,Urban,65.79,28.6,smokes,0 +5286,Female,40,0,0,Yes,Govt_job,Urban,176.38,35.7,never smoked,0 +29878,Male,49,0,0,Yes,Private,Urban,175.74,45.4,Unknown,0 +42628,Female,69,0,1,No,Private,Urban,193.45,34.5,never smoked,0 +5006,Female,46,0,0,Yes,Self-employed,Rural,85.84,21.2,never smoked,0 +11250,Male,78,0,0,Yes,Self-employed,Rural,93.85,22.7,formerly smoked,0 +41858,Female,63,0,1,Yes,Private,Rural,86.21,39.1,never smoked,0 +15742,Female,3,0,0,No,children,Rural,75.41,21.9,Unknown,0 +27300,Female,1.8,0,0,No,children,Rural,95.28,16.5,Unknown,0 +34965,Female,18,0,0,No,Private,Urban,95.87,23,never smoked,0 +65748,Female,46,0,0,Yes,Private,Urban,180.45,22.5,never smoked,0 +44635,Female,8,0,0,No,children,Urban,95.39,20.4,Unknown,0 +72284,Female,53,0,0,Yes,Private,Rural,60.77,28.7,smokes,0 +20217,Female,38,0,0,Yes,Govt_job,Urban,102.84,22.4,never smoked,0 +44259,Female,74,0,0,Yes,Private,Urban,130.37,26.3,Unknown,0 +52668,Female,24,0,0,No,Private,Urban,65.44,23.6,never smoked,0 +37446,Male,78,0,0,Yes,Private,Rural,79.84,25.9,never smoked,0 +46895,Male,60,0,0,Yes,Private,Rural,62.61,30.7,never smoked,0 +57667,Male,12,0,0,No,children,Urban,70.07,24.5,formerly smoked,0 +41962,Female,32,0,0,Yes,Private,Rural,108.8,24,Unknown,0 +25495,Male,5,0,0,No,children,Urban,112.11,20.1,Unknown,0 +2029,Female,40,0,0,Yes,Private,Rural,92.35,38,never smoked,0 +13993,Female,19,0,0,No,Private,Urban,76.57,26.6,Unknown,0 +18876,Female,28,0,0,Yes,Private,Urban,69.5,24.5,never smoked,0 +22865,Female,61,0,0,Yes,Private,Rural,219.38,N/A,never smoked,0 +365,Female,44,1,0,Yes,Private,Rural,69.48,41.3,never smoked,0 +37631,Male,50,0,0,Yes,Govt_job,Urban,89.18,34.8,smokes,0 +5500,Female,50,0,1,Yes,Govt_job,Urban,68.09,35.5,smokes,0 +53217,Female,18,0,0,No,Private,Rural,92.71,24.1,Unknown,0 +56712,Male,1.64,0,0,No,children,Rural,56.21,19,Unknown,0 +10055,Female,37,0,0,No,Govt_job,Rural,72.08,N/A,formerly smoked,0 +4959,Female,5,0,0,No,children,Urban,82.56,16.6,Unknown,0 +22155,Female,39,0,0,Yes,Private,Urban,78.24,28.6,Unknown,0 +22860,Female,65,0,0,Yes,Govt_job,Rural,84.66,22.4,never smoked,0 +6960,Female,26,0,0,No,Govt_job,Urban,90.35,38.6,Unknown,0 +57209,Male,42,0,0,Yes,Govt_job,Rural,68.12,32,Unknown,0 +66581,Female,34,0,0,Yes,Private,Rural,59.14,40.1,never smoked,0 +17347,Female,45,0,0,Yes,Govt_job,Urban,85.64,32,formerly smoked,0 +58422,Male,43,0,0,Yes,Govt_job,Rural,56.08,23.9,Unknown,0 +19043,Female,40,0,0,No,Private,Rural,99,25,never smoked,0 +52897,Male,35,0,0,No,Private,Urban,93.6,28.5,smokes,0 +16329,Female,2,0,0,No,children,Urban,105.75,19.8,Unknown,0 +40353,Female,61,0,0,Yes,Private,Urban,114.09,25.7,never smoked,0 +56778,Male,64,1,0,Yes,Private,Urban,57.42,28,smokes,0 +41153,Female,32,0,0,Yes,Private,Urban,100.01,37.2,never smoked,0 +63725,Male,23,0,0,No,Private,Urban,62,24.8,formerly smoked,0 +19675,Female,51,0,0,Yes,Self-employed,Rural,103.61,39.2,never smoked,0 +72784,Female,52,0,0,Yes,Private,Rural,118.46,61.6,smokes,0 +8541,Female,75,0,0,Yes,Govt_job,Rural,94.77,27.2,never smoked,0 +45565,Female,40,0,0,Yes,Private,Urban,72.12,38,never smoked,0 +36431,Male,39,0,0,Yes,Govt_job,Rural,155.23,36.2,never smoked,0 +6171,Male,6,0,0,No,children,Urban,90.6,16.6,Unknown,0 +29419,Female,32,0,0,Yes,Private,Urban,81.92,38,never smoked,0 +65673,Female,55,0,0,No,Self-employed,Rural,67.1,31.4,never smoked,0 +64662,Female,23,0,0,No,Private,Rural,58.01,35.3,never smoked,0 +51693,Female,52,0,0,Yes,Private,Rural,173.9,35.8,never smoked,0 +50495,Male,58,1,0,Yes,Private,Rural,106.27,28.6,never smoked,0 +37086,Male,17,0,0,No,Private,Rural,60.57,34,Unknown,0 +71396,Male,3,0,0,No,children,Urban,105.34,15.5,Unknown,0 +27854,Female,23,0,0,No,Private,Rural,96.28,31.1,never smoked,0 +53759,Male,56,0,0,Yes,Self-employed,Urban,122.73,37.5,formerly smoked,0 +14407,Male,45,0,0,No,Self-employed,Urban,104.12,37.7,Unknown,0 +887,Female,14,0,0,No,Private,Urban,69.74,24.2,formerly smoked,0 +13328,Female,45,0,0,Yes,Private,Rural,106.95,33.4,Unknown,0 +62507,Female,57,0,0,Yes,Private,Urban,94.63,33,never smoked,0 +51797,Female,35,0,0,Yes,Private,Urban,86.97,25.7,Unknown,0 +61536,Female,8,0,0,No,children,Rural,76.12,19.4,Unknown,0 +71221,Female,42,0,0,Yes,Govt_job,Urban,99.94,33.4,never smoked,0 +6948,Male,8,0,0,No,children,Urban,91.53,18,Unknown,0 +66083,Male,62,0,0,Yes,Private,Rural,145.46,40.1,never smoked,0 +21238,Female,43,0,0,Yes,Private,Urban,74.86,26.9,never smoked,0 +70992,Female,8,0,0,No,children,Urban,74.42,22.5,Unknown,0 +20376,Male,40,0,0,Yes,Self-employed,Urban,70.07,27.6,smokes,0 +6613,Male,2,0,0,No,children,Urban,89.85,23.3,Unknown,0 +27818,Female,27,0,0,No,Private,Rural,104.21,35.7,never smoked,0 +3062,Female,47,0,0,Yes,Self-employed,Rural,157.77,28.4,never smoked,0 +11692,Female,53,0,0,No,Govt_job,Urban,101.81,29.4,smokes,0 +25070,Male,62,0,0,Yes,Govt_job,Rural,103,31.9,Unknown,0 +39556,Male,50,0,0,Yes,Self-employed,Urban,101.85,25.1,smokes,0 +18437,Male,26,0,0,No,Private,Urban,85.92,35.6,smokes,0 +59540,Female,19,0,0,No,Private,Rural,56.85,21.1,never smoked,0 +13857,Male,0.32,0,0,No,children,Urban,89.04,17.8,Unknown,0 +57924,Female,45,0,0,Yes,Govt_job,Rural,63.01,31.5,never smoked,0 +38069,Male,45,0,0,Yes,Private,Rural,65.48,26.6,Unknown,0 +48871,Female,54,0,0,Yes,Private,Rural,68.6,44.8,smokes,0 +63420,Male,64,1,0,Yes,Private,Urban,81.68,31.3,formerly smoked,0 +67665,Male,2,0,0,No,children,Urban,65.21,17.2,Unknown,0 +50638,Female,66,0,0,Yes,Govt_job,Urban,72.53,25.3,smokes,0 +43892,Female,73,0,0,Yes,Private,Rural,81.78,28.8,never smoked,0 +9335,Female,31,0,0,No,Private,Rural,116.85,49.9,smokes,0 +38830,Female,1.88,0,0,No,children,Rural,80.83,18,Unknown,0 +14019,Female,58,0,0,Yes,Private,Urban,96.21,23.5,never smoked,0 +65888,Male,12,0,0,No,children,Rural,117.04,18.1,Unknown,0 +62986,Female,60,1,0,Yes,Private,Rural,78.26,41.7,formerly smoked,0 +61409,Male,32,1,0,No,Govt_job,Urban,58.24,N/A,formerly smoked,0 +72041,Male,23,0,0,No,Private,Urban,82.53,20.7,smokes,0 +51584,Male,26,0,0,No,Private,Urban,71.25,30.3,smokes,0 +56476,Male,36,0,0,Yes,Private,Rural,129.73,27.8,never smoked,0 +51740,Female,3,0,0,No,children,Urban,115.47,18.9,Unknown,0 +45983,Male,21,0,0,No,Private,Urban,56.79,20.4,Unknown,0 +16079,Female,67,0,0,Yes,Private,Urban,100.16,31.8,Unknown,0 +24920,Female,35,0,0,Yes,Govt_job,Rural,97.6,44.8,smokes,0 +72818,Female,26,0,0,No,Private,Rural,90.54,37.1,Unknown,0 +65944,Female,47,0,0,Yes,Self-employed,Urban,105.88,39.9,smokes,0 +63836,Male,81,1,1,Yes,Govt_job,Rural,217.94,24.1,formerly smoked,0 +46729,Female,1.64,0,0,No,children,Urban,69.89,18.1,Unknown,0 +44642,Male,52,0,0,Yes,Govt_job,Urban,93.28,36.3,never smoked,0 +70693,Female,28,0,1,Yes,Private,Rural,111.27,19.1,smokes,0 +54065,Female,45,0,0,Yes,Private,Urban,91.04,21.1,never smoked,0 +9926,Male,20,0,0,No,Private,Urban,87.2,28.9,smokes,0 +29201,Male,1.56,0,0,No,children,Rural,109.12,18.9,Unknown,0 +33308,Female,65,0,0,No,Private,Urban,216.64,43.3,formerly smoked,0 +15937,Male,45,1,0,Yes,Self-employed,Rural,74.28,37.2,formerly smoked,0 +53748,Male,77,0,0,Yes,Self-employed,Urban,57.6,32.2,Unknown,0 +47803,Male,37,0,0,Yes,Govt_job,Urban,173.97,26.3,Unknown,0 +41554,Female,50,0,0,Yes,Private,Rural,65.25,25.4,smokes,0 +69435,Female,0.56,0,0,No,children,Urban,80.92,18.3,Unknown,0 +41049,Female,30,0,0,Yes,Private,Rural,124.37,21.4,never smoked,0 +13859,Female,31,0,0,No,Private,Urban,102.39,22.9,smokes,0 +24257,Male,4,0,0,No,children,Rural,90.42,16.2,Unknown,0 +14417,Male,65,1,0,Yes,Private,Rural,79.17,29.6,Unknown,0 +45260,Female,68,0,0,Yes,Self-employed,Urban,71.08,21.5,never smoked,0 +12807,Female,63,1,0,Yes,Private,Urban,81.54,24.2,never smoked,0 +71417,Male,46,0,0,No,Private,Urban,159.67,37.3,never smoked,0 +37479,Female,54,0,0,Yes,Private,Urban,93.96,33.3,smokes,0 +23850,Male,66,0,0,Yes,Private,Urban,103.01,33.1,never smoked,0 +17791,Female,29,0,0,Yes,Govt_job,Rural,92.49,22.2,never smoked,0 +2544,Male,78,0,0,Yes,Private,Urban,208.85,24.4,formerly smoked,0 +4961,Male,56,0,0,Yes,Govt_job,Urban,122.39,30.3,Unknown,0 +2702,Female,57,0,0,Yes,Private,Rural,65.91,28.2,Unknown,0 +11208,Female,2,0,0,No,children,Rural,70.25,17,Unknown,0 +4077,Male,49,0,0,Yes,Private,Urban,219.7,53.8,Unknown,0 +36548,Male,31,0,0,Yes,Govt_job,Urban,65.7,30.4,formerly smoked,0 +71596,Female,47,0,0,Yes,Private,Urban,67.08,22.3,Unknown,0 +61050,Male,37,0,0,Yes,Govt_job,Rural,107.58,25.3,never smoked,0 +6172,Female,79,0,0,Yes,Private,Rural,208.05,N/A,smokes,0 +15098,Female,65,0,0,Yes,Private,Rural,95.87,29.8,never smoked,0 +34895,Male,61,0,0,Yes,Private,Urban,68.17,43.8,formerly smoked,0 +6443,Female,66,0,0,Yes,Private,Urban,95.37,34.5,smokes,0 +67635,Male,24,0,0,No,Private,Urban,90,25.5,never smoked,0 +19931,Male,66,0,0,Yes,Self-employed,Rural,106.1,31.5,smokes,0 +57302,Female,64,1,0,Yes,Private,Rural,56.13,39.2,Unknown,0 +26197,Female,38,0,0,Yes,Private,Rural,104.03,47.3,smokes,0 +54982,Female,7,0,0,No,children,Rural,157.01,17,Unknown,0 +13398,Female,63,0,0,Yes,Private,Urban,84.35,38.2,never smoked,0 +21101,Male,71,0,0,Yes,Private,Rural,67.99,31.1,never smoked,0 +39958,Male,18,0,0,No,Private,Rural,118.93,22.4,never smoked,0 +51894,Female,65,0,0,Yes,Private,Rural,185.28,32,smokes,0 +56001,Male,57,0,0,Yes,Private,Rural,82.08,24.7,Unknown,0 +56137,Female,62,0,0,Yes,Private,Urban,88.32,36.3,Unknown,0 +25900,Male,1.8,0,0,No,children,Rural,85.16,20.2,Unknown,0 +69213,Male,35,0,0,No,Private,Rural,69.54,27.4,never smoked,0 +38613,Female,50,0,0,Yes,Govt_job,Rural,62.12,29.6,never smoked,0 +27660,Female,73,1,0,No,Self-employed,Rural,198.3,54.3,formerly smoked,0 +33790,Female,23,0,0,No,Private,Rural,100.06,28.6,never smoked,0 +50845,Female,32,0,0,Yes,Govt_job,Urban,101.13,43.9,formerly smoked,0 +44628,Female,38,0,0,Yes,Private,Rural,91.09,22.2,never smoked,0 +38951,Female,50,0,0,Yes,Self-employed,Rural,61.54,28.4,Unknown,0 +52792,Female,39,0,0,Yes,Private,Urban,62.02,23.7,smokes,0 +27675,Female,7,0,0,No,children,Urban,103.11,18.3,Unknown,0 +6903,Female,15,0,0,No,children,Rural,77.57,18.3,Unknown,0 +35463,Male,67,0,0,Yes,Private,Urban,97.34,28.9,never smoked,0 +172,Male,8,0,0,No,children,Urban,78.76,N/A,Unknown,0 +16876,Female,32,0,0,Yes,Private,Rural,67.1,27.1,Unknown,0 +60926,Male,5,0,0,No,children,Urban,79.89,13.8,Unknown,0 +21333,Male,56,1,0,Yes,Private,Rural,206.66,21.9,smokes,0 +69183,Male,49,0,0,No,Private,Urban,95.79,24,Unknown,0 +2313,Female,75,0,1,Yes,Self-employed,Urban,83.88,N/A,smokes,0 +8041,Female,11,0,0,No,children,Rural,93.51,20.8,Unknown,0 +68171,Male,61,0,0,Yes,Self-employed,Urban,116.78,39.8,formerly smoked,0 +27948,Male,76,0,0,Yes,Self-employed,Rural,117.63,26.2,never smoked,0 +45673,Female,34,0,0,Yes,Private,Rural,60.01,43.9,Unknown,0 +50810,Male,20,0,0,No,Private,Rural,64.6,27.3,Unknown,0 +2467,Female,79,1,0,Yes,Self-employed,Rural,92.43,N/A,never smoked,0 +64165,Female,24,0,0,No,Private,Urban,71.63,22,formerly smoked,0 +22352,Female,39,0,0,Yes,Self-employed,Urban,87.79,40,formerly smoked,0 +62990,Female,55,0,0,Yes,Govt_job,Rural,99.64,20.1,formerly smoked,0 +1737,Female,16,0,0,No,Private,Rural,86.53,42.2,never smoked,0 +26357,Male,36,0,0,No,Private,Urban,200.68,25.8,Unknown,0 +28013,Female,38,0,0,Yes,Self-employed,Urban,98.37,27.2,never smoked,0 +24727,Male,20,0,0,No,Private,Rural,117.98,30.9,smokes,0 +37608,Female,38,0,0,No,Private,Urban,218.6,47.9,formerly smoked,0 +13870,Female,52,0,0,Yes,Private,Urban,101.3,33.1,smokes,0 +4655,Male,49,0,0,Yes,Private,Urban,79.51,37.8,never smoked,0 +55356,Female,80,0,0,Yes,Self-employed,Urban,223.26,25.4,never smoked,0 +49400,Male,75,0,0,Yes,Private,Rural,97.22,28.4,never smoked,0 +38132,Female,13,0,0,No,Private,Rural,172.27,16.6,never smoked,0 +50136,Female,54,1,0,Yes,Private,Urban,221.83,35.1,smokes,0 +3094,Male,28,0,0,No,Private,Urban,74.61,32.7,Unknown,0 +42727,Female,61,0,0,Yes,Private,Rural,60.91,29.8,Unknown,0 +41500,Male,0.16,0,0,No,children,Rural,69.79,13,Unknown,0 +33185,Male,59,0,0,No,Govt_job,Urban,83.6,27.5,formerly smoked,0 +7057,Male,12,0,0,No,children,Urban,83.95,23.6,Unknown,0 +48244,Female,38,0,0,No,Private,Rural,77.5,36.9,smokes,0 +69559,Male,15,0,0,No,Never_worked,Urban,64.29,16.7,Unknown,0 +61757,Male,31,0,0,Yes,Self-employed,Rural,61.1,26.5,never smoked,0 +10541,Male,52,1,0,Yes,Private,Rural,100.71,37,never smoked,0 +48169,Female,61,0,0,Yes,Self-employed,Urban,65.21,27.7,Unknown,0 +64202,Male,50,0,0,Yes,Private,Rural,119.77,23.5,Unknown,0 +7069,Female,41,0,0,Yes,Private,Rural,102.39,40.4,formerly smoked,0 +52050,Male,20,0,0,No,Private,Urban,59.67,27.7,never smoked,0 +31692,Male,67,0,0,Yes,Private,Rural,83.16,28.3,never smoked,0 +11192,Female,45,0,0,Yes,Private,Rural,218.1,55,smokes,0 +69404,Male,73,0,0,Yes,Govt_job,Rural,76.45,28.7,Unknown,0 +42700,Female,52,0,0,Yes,Private,Rural,200.46,25,Unknown,0 +7638,Female,51,0,0,Yes,Private,Urban,95.7,24.8,formerly smoked,0 +7298,Female,56,0,0,Yes,Self-employed,Rural,70.23,35.5,never smoked,0 +43615,Female,49,0,0,Yes,Self-employed,Urban,75.15,25,Unknown,0 +18134,Male,10,0,0,No,children,Rural,95.8,17.3,Unknown,0 +19324,Female,51,0,0,Yes,Govt_job,Urban,90.67,37.8,Unknown,0 +18827,Male,57,0,0,Yes,Self-employed,Rural,84.79,32.8,formerly smoked,0 +68291,Male,76,0,0,Yes,Private,Urban,147.5,28.7,Unknown,0 +70661,Female,28,0,0,No,Private,Rural,134.12,28.8,formerly smoked,0 +6019,Female,57,0,0,Yes,Private,Urban,82.62,28.4,never smoked,0 +56616,Male,39,0,0,Yes,Private,Rural,125.11,24.9,formerly smoked,0 +14399,Female,41,0,0,Yes,Private,Urban,92.14,29.6,formerly smoked,0 +8009,Female,72,1,1,Yes,Private,Urban,217.79,26.1,formerly smoked,0 +30961,Male,45,0,0,Yes,Private,Rural,95.62,29.5,smokes,0 +24201,Male,33,0,0,Yes,Private,Rural,93.8,23.9,never smoked,0 +18032,Male,62,0,1,Yes,Private,Rural,90.61,25.8,smokes,0 +62396,Female,27,0,0,Yes,Private,Urban,139.2,36.2,never smoked,0 +67055,Female,31,0,0,Yes,Private,Rural,77.01,31.3,formerly smoked,0 +51024,Female,24,0,0,Yes,Private,Urban,105.26,26.1,never smoked,0 +60774,Male,1.88,0,0,No,children,Rural,68.35,19.1,Unknown,0 +35039,Female,28,0,0,No,Private,Rural,99.07,17.6,never smoked,0 +46141,Female,24,0,0,No,Private,Rural,147.74,21.4,Unknown,0 +54240,Female,30,0,0,Yes,Govt_job,Urban,61.29,24,Unknown,0 +15929,Male,38,0,0,Yes,Govt_job,Rural,98.92,25.5,never smoked,0 +19849,Female,1.64,0,0,No,children,Urban,90.74,19.9,Unknown,0 +43282,Male,0.72,0,0,No,children,Rural,159.79,19.9,Unknown,0 +50372,Male,57,0,0,Yes,Private,Rural,233.47,35.5,never smoked,0 +5834,Female,27,0,0,No,Govt_job,Urban,85.53,26.9,smokes,0 +69847,Female,30,0,0,Yes,Self-employed,Urban,76.7,24.2,never smoked,0 +67277,Male,42,0,0,Yes,Private,Rural,67.87,30,never smoked,0 +41181,Male,36,0,0,Yes,Private,Urban,77.26,30.9,never smoked,0 +36388,Male,44,1,0,Yes,Private,Rural,91.28,26.5,never smoked,0 +49272,Male,59,0,0,Yes,Govt_job,Urban,129.19,30.6,never smoked,0 +52024,Female,61,0,0,Yes,Govt_job,Urban,97.86,19.1,formerly smoked,0 +58508,Female,18,0,0,No,Govt_job,Rural,112.33,23.2,formerly smoked,0 +64159,Female,44,0,0,Yes,Private,Rural,110.41,30.5,smokes,0 +29453,Male,16,0,0,No,children,Rural,91.58,15.8,Unknown,0 +52838,Male,13,0,0,No,children,Urban,58.86,16.9,never smoked,0 +43024,Male,9,0,0,No,children,Rural,76.88,18,Unknown,0 +8247,Male,0.16,0,0,No,children,Urban,109.52,13.9,Unknown,0 +42159,Female,81,1,0,Yes,Self-employed,Urban,181.23,36.7,never smoked,0 +37761,Female,38,0,0,Yes,Private,Urban,103.58,30.8,formerly smoked,0 +27624,Female,58,0,0,Yes,Self-employed,Rural,81.96,34.6,never smoked,0 +40242,Male,5,0,0,No,children,Rural,104.55,16.3,Unknown,0 +4383,Female,64,0,0,Yes,Govt_job,Urban,76.12,38.2,formerly smoked,0 +58577,Female,38,0,0,Yes,Govt_job,Rural,64.27,27.3,never smoked,0 +59916,Female,56,0,0,Yes,Private,Rural,200.98,30.4,smokes,0 +44526,Male,58,0,0,Yes,Govt_job,Urban,101.96,34.5,never smoked,0 +12990,Male,9,0,0,No,children,Rural,84.17,17.4,Unknown,0 +14414,Female,34,0,0,Yes,Private,Rural,85.79,32,never smoked,0 +46343,Female,79,0,0,Yes,Private,Urban,71.46,33.4,Unknown,0 +29539,Male,62,1,0,Yes,Self-employed,Rural,95.49,40.2,smokes,0 +10924,Female,60,0,0,Yes,Private,Rural,87.62,30.1,smokes,0 +30248,Female,42,0,0,No,Private,Rural,118.55,46.2,smokes,0 +39769,Female,59,0,0,Yes,Self-employed,Urban,82.14,35.6,smokes,0 +28778,Female,54,0,0,Yes,Private,Urban,219.67,29.4,smokes,0 +65257,Male,59,0,0,Yes,Private,Urban,135.84,27.3,never smoked,0 +7233,Male,15,0,0,No,children,Rural,74.83,17.4,Unknown,0 +67773,Female,14,0,0,No,children,Urban,60.37,26.9,Unknown,0 +14993,Male,5,0,0,No,children,Rural,67.28,17.7,Unknown,0 +59054,Male,17,0,0,No,Private,Rural,77.79,23.6,Unknown,0 +22554,Female,13,0,0,No,children,Rural,88.51,27.7,Unknown,0 +72512,Female,48,0,0,Yes,Self-employed,Urban,90.38,38,smokes,0 +56195,Male,37,0,0,Yes,Govt_job,Urban,156.69,35.2,never smoked,0 +7524,Female,69,0,1,Yes,Private,Urban,207.6,N/A,never smoked,0 +45795,Female,74,0,0,Yes,Private,Urban,158.9,32.4,formerly smoked,0 +64433,Male,54,0,0,Yes,Private,Urban,247.97,36.1,formerly smoked,0 +70106,Female,64,0,1,Yes,Private,Rural,114.71,30.6,never smoked,0 +50072,Female,26,0,0,No,Private,Rural,58.55,29,never smoked,0 +52530,Male,55,0,0,Yes,Govt_job,Urban,231.15,22.3,never smoked,0 +768,Female,74,0,0,Yes,Self-employed,Urban,68.18,27.3,formerly smoked,0 +40255,Female,0.48,0,0,No,children,Rural,118.75,17.4,Unknown,0 +50073,Female,41,0,1,No,Private,Rural,186.54,39,formerly smoked,0 +52439,Male,68,0,1,Yes,Private,Rural,96.14,26.7,never smoked,0 +65379,Male,9,0,0,No,children,Urban,69.52,24.2,Unknown,0 +38605,Female,36,0,0,Yes,Private,Rural,101.93,22.8,smokes,0 +35772,Male,17,0,0,No,Private,Urban,71.58,25.6,Unknown,0 +38014,Male,24,0,0,Yes,Private,Urban,83.1,21.9,smokes,0 +68330,Female,69,0,0,Yes,Self-employed,Rural,110.96,25.9,never smoked,0 +47271,Male,38,0,0,Yes,Govt_job,Urban,122.83,30.6,Unknown,0 +26330,Female,69,0,0,Yes,Private,Urban,91.65,25.7,formerly smoked,0 +24022,Female,32,0,0,No,Private,Urban,84.1,33.3,Unknown,0 +45622,Female,25,0,0,No,Private,Rural,118.85,23.8,smokes,0 +60732,Male,2,0,0,No,children,Urban,89.32,17.2,Unknown,0 +53694,Male,79,0,0,No,Self-employed,Urban,128.72,31,Unknown,0 +11280,Female,28,0,0,Yes,Private,Urban,98.05,24.7,never smoked,0 +28734,Female,16,0,0,No,Never_worked,Urban,102.1,27.1,never smoked,0 +12693,Male,31,0,0,Yes,Private,Urban,108.62,N/A,smokes,0 +17683,Male,66,0,0,Yes,Self-employed,Urban,96.19,38.3,smokes,0 +36155,Female,57,1,0,Yes,Private,Urban,98.07,50.9,formerly smoked,0 +31390,Female,61,0,0,Yes,Private,Rural,71.4,29.2,formerly smoked,0 +10636,Female,74,0,0,Yes,Self-employed,Rural,82.27,23.6,formerly smoked,0 +71659,Female,70,0,0,Yes,Govt_job,Rural,158.33,33.5,never smoked,0 +52305,Female,8,0,0,No,children,Rural,102.5,16.3,Unknown,0 +9602,Female,49,0,0,Yes,Private,Urban,72.18,30.8,Unknown,0 +68407,Male,30,0,0,Yes,Govt_job,Urban,95.94,31.1,never smoked,0 +72011,Male,51,0,0,No,Self-employed,Rural,87.15,26.4,formerly smoked,0 +40568,Female,10,0,0,No,children,Urban,82.59,18.6,formerly smoked,0 +50206,Female,34,0,0,Yes,Private,Rural,89.31,37.3,formerly smoked,0 +41191,Male,40,0,0,Yes,Private,Rural,64.84,26.6,never smoked,0 +7129,Male,3,0,0,No,children,Urban,107.52,17.6,Unknown,0 +45485,Female,45,0,0,Yes,Self-employed,Urban,92.76,22.3,Unknown,0 +32023,Male,4,0,0,No,children,Urban,79.16,20.2,Unknown,0 +33064,Male,52,0,1,Yes,Private,Urban,87,30.9,never smoked,0 +60896,Male,68,0,1,Yes,Private,Rural,145.25,31.5,never smoked,0 +2109,Female,8,0,0,No,children,Urban,125.14,29.7,Unknown,0 +27705,Female,82,0,1,Yes,Self-employed,Rural,88.6,32.5,Unknown,0 +36850,Male,36,0,0,Yes,Govt_job,Urban,57.59,32.8,Unknown,0 +52500,Female,42,0,0,Yes,Govt_job,Urban,59.43,25.4,never smoked,0 +43698,Female,27,0,0,No,Govt_job,Rural,65.43,27.2,Unknown,0 +49901,Male,55,0,0,Yes,Govt_job,Urban,154.03,31.6,smokes,0 +69120,Female,31,0,0,Yes,Self-employed,Rural,139.81,39.6,never smoked,0 +25510,Male,82,0,0,Yes,Self-employed,Urban,111.81,19.8,formerly smoked,0 +60416,Female,57,0,0,Yes,Self-employed,Urban,106.84,29.6,never smoked,0 +15135,Female,78,0,1,Yes,Private,Rural,221.06,25.5,formerly smoked,0 +34660,Male,55,0,0,Yes,Self-employed,Urban,69.97,25.8,formerly smoked,0 +11713,Male,51,0,0,Yes,Private,Rural,77.07,32.1,formerly smoked,0 +40704,Male,80,0,0,No,Private,Urban,59.49,25.6,Unknown,0 +71298,Female,17,0,0,No,Private,Rural,109.39,26.3,never smoked,0 +54497,Female,61,0,0,Yes,Private,Rural,93.97,39.4,Unknown,0 +30129,Female,62,0,0,Yes,Govt_job,Urban,163.17,25.6,never smoked,0 +44965,Female,14,0,0,No,Self-employed,Urban,124.39,34,Unknown,0 +38549,Female,62,0,0,Yes,Private,Urban,212.62,35.8,never smoked,0 +39236,Female,56,0,0,No,Self-employed,Urban,128.63,24.9,smokes,0 +50545,Male,41,0,0,Yes,Govt_job,Urban,84.1,29.3,never smoked,0 +28435,Female,59,0,0,Yes,Self-employed,Urban,77.6,23.4,Unknown,0 +4631,Male,29,0,0,Yes,Private,Urban,70.51,24.5,Unknown,0 +9912,Male,39,0,0,Yes,Private,Rural,109.19,29.8,Unknown,0 +43028,Male,66,0,0,Yes,Self-employed,Rural,55.23,28.9,Unknown,0 +38894,Female,35,0,0,Yes,Private,Urban,120.15,27.3,never smoked,0 +41238,Female,36,0,0,Yes,Private,Urban,72.16,23.2,never smoked,0 +51828,Male,35,0,0,Yes,Private,Rural,95.89,34.2,Unknown,0 +64196,Male,26,0,0,No,Private,Urban,64.68,23.3,smokes,0 +10626,Female,31,0,0,No,Private,Rural,70.51,26.9,formerly smoked,0 +4117,Female,56,0,0,Yes,Self-employed,Rural,81.77,21.8,never smoked,0 +37993,Female,36,0,0,Yes,Govt_job,Urban,66.47,26.9,never smoked,0 +57765,Female,41,0,0,Yes,Govt_job,Rural,146.08,29.9,never smoked,0 +7841,Female,50,0,0,Yes,Private,Urban,91.68,22.4,never smoked,0 +18398,Female,42,0,0,Yes,Private,Rural,108.96,27.5,never smoked,0 +50210,Male,79,0,0,Yes,Self-employed,Urban,113.41,35,never smoked,0 +52461,Male,57,0,0,Yes,Private,Urban,111.08,27.9,never smoked,0 +32523,Male,68,0,1,Yes,Private,Urban,217.74,25.5,Unknown,0 +49509,Female,25,0,0,Yes,Private,Rural,78.5,28.6,never smoked,0 +16377,Male,69,0,0,Yes,Private,Urban,89.06,34.8,formerly smoked,0 +13902,Female,42,0,0,Yes,Private,Urban,74.8,50.6,Unknown,0 +44047,Male,37,0,0,Yes,Govt_job,Rural,80.2,30.9,never smoked,0 +34184,Female,2,0,0,No,children,Rural,76.52,14.8,Unknown,0 +11312,Female,78,0,0,Yes,Self-employed,Rural,208.99,31.4,formerly smoked,0 +39616,Female,36,0,0,Yes,Private,Urban,99.72,22.3,smokes,0 +57322,Male,10,0,0,No,children,Urban,102.97,19.1,Unknown,0 +28011,Male,39,1,0,Yes,Private,Rural,197.36,27.4,Unknown,0 +242,Male,4,0,0,No,children,Urban,98.56,17.5,Unknown,0 +18178,Female,48,0,0,Yes,Private,Urban,86.06,36.2,never smoked,0 +51823,Male,72,0,0,Yes,Self-employed,Urban,123.08,25.4,smokes,0 +23439,Male,63,0,1,No,Private,Urban,75,25.7,smokes,0 +12594,Female,28,0,0,Yes,Private,Rural,105.9,28.6,smokes,0 +2692,Female,80,0,0,Yes,Self-employed,Urban,73.87,33.7,never smoked,0 +26062,Male,49,0,0,Yes,Private,Rural,78.04,37.9,never smoked,0 +6805,Male,57,0,0,No,Private,Urban,107.74,28.4,Unknown,0 +45817,Female,59,0,0,Yes,Private,Rural,60.64,20,never smoked,0 +66306,Female,43,0,0,Yes,Private,Rural,82.57,29.1,never smoked,0 +62167,Female,47,0,0,Yes,Private,Rural,115.98,27.6,Unknown,0 +16627,Male,54,0,0,Yes,Self-employed,Rural,110.38,27.6,formerly smoked,0 +34285,Male,57,0,0,Yes,Private,Rural,92.59,24.2,Unknown,0 +71151,Male,56,0,0,Yes,Private,Urban,82.64,31,never smoked,0 +2580,Male,66,0,1,No,Govt_job,Urban,70.28,34.5,never smoked,0 +11891,Male,18,0,0,No,Govt_job,Urban,106.54,27,never smoked,0 +57080,Female,81,1,1,Yes,Self-employed,Urban,59.11,20.7,formerly smoked,0 +47456,Male,30,0,0,Yes,Private,Rural,58.89,26.1,formerly smoked,0 +56139,Male,8,0,0,No,children,Urban,129.66,19.2,Unknown,0 +12857,Male,55,0,0,Yes,Self-employed,Rural,73.57,28,smokes,0 +40980,Male,79,1,0,Yes,Self-employed,Urban,72.04,23.6,formerly smoked,0 +47668,Female,49,0,0,Yes,Private,Rural,125.63,57.2,Unknown,0 +72792,Female,53,1,0,Yes,Private,Rural,77.94,33,never smoked,0 +37728,Female,26,0,0,Yes,Private,Urban,68.99,22.2,never smoked,0 +47410,Female,14,0,0,No,children,Rural,111.76,24.8,Unknown,0 +56450,Male,25,0,0,No,Private,Rural,65.36,24.7,never smoked,0 +9189,Female,20,0,0,No,Private,Urban,80.27,27.9,never smoked,0 +71966,Female,18,0,0,No,Never_worked,Urban,81.73,21.6,never smoked,0 +59272,Male,38,0,0,Yes,Private,Rural,79.22,34.8,smokes,0 +45563,Female,72,0,1,Yes,Self-employed,Urban,142.63,32.9,smokes,0 +19907,Female,52,0,0,Yes,Private,Rural,97.05,28,Unknown,0 +40163,Female,82,1,0,Yes,Private,Urban,222.52,N/A,formerly smoked,0 +62738,Male,71,0,1,Yes,Private,Rural,70.38,25,smokes,0 +51651,Male,46,0,0,Yes,Private,Rural,114.46,24.7,formerly smoked,0 +39940,Female,33,0,0,Yes,Private,Urban,64.62,27.3,never smoked,0 +8122,Female,37,0,0,Yes,Private,Urban,94.12,34.2,Unknown,0 +71057,Female,54,0,0,Yes,Private,Rural,70.19,39.1,smokes,0 +67921,Female,5,0,0,No,children,Urban,55.35,22.7,Unknown,0 +12834,Male,45,0,0,Yes,Private,Urban,115.52,33.9,formerly smoked,0 +56567,Male,14,0,0,No,children,Urban,60.7,18.6,Unknown,0 +11872,Male,5,0,0,No,children,Urban,69.24,16.7,Unknown,0 +6574,Female,35,0,0,Yes,Self-employed,Urban,103.29,20.6,never smoked,0 +5294,Female,20,0,0,Yes,Private,Rural,92.74,20.1,Unknown,0 +10870,Male,51,0,0,Yes,Private,Rural,232.64,45.2,never smoked,0 +15062,Male,40,0,0,Yes,Govt_job,Urban,82.46,25.3,smokes,0 +46454,Female,79,0,0,Yes,Govt_job,Urban,63.57,32.4,never smoked,0 +31795,Male,61,0,0,Yes,Self-employed,Urban,73.24,34.9,never smoked,0 +62395,Male,33,0,0,Yes,Private,Urban,78.43,43.7,smokes,0 +42760,Female,27,0,0,Yes,Private,Urban,57.46,23,smokes,0 +27119,Female,28,0,0,No,Private,Rural,104.16,21.5,never smoked,0 +47113,Female,67,0,0,Yes,Self-employed,Rural,110.42,24.9,never smoked,0 +36045,Female,35,0,0,Yes,Private,Rural,119.4,22.9,never smoked,0 +54871,Female,78,0,0,Yes,Private,Urban,119.13,25,never smoked,0 +48824,Female,20,0,0,No,Private,Rural,120.22,21.3,never smoked,0 +67356,Female,43,0,0,Yes,Private,Urban,80.8,46.1,never smoked,0 +70670,Female,27,0,0,Yes,Private,Rural,57.96,64.4,never smoked,0 +58477,Female,45,0,0,Yes,Private,Urban,81.24,37,never smoked,0 +53636,Female,11,0,0,No,children,Urban,88.79,21.3,never smoked,0 +24262,Female,31,0,0,Yes,Private,Rural,70.91,28.3,never smoked,0 +33886,Female,30,0,0,No,Private,Rural,87.12,31.1,smokes,0 +59126,Female,27,0,0,No,Private,Urban,126.09,25.1,Unknown,0 +31697,Female,34,0,0,Yes,Private,Urban,76.42,27.6,smokes,0 +10018,Male,19,0,0,No,Private,Rural,56.33,29.4,Unknown,0 +52447,Female,3,0,0,No,children,Rural,131.81,14.1,Unknown,0 +23238,Male,53,0,1,Yes,Private,Rural,95.23,35.2,smokes,0 +4148,Male,81,0,0,Yes,Self-employed,Urban,71.18,23.9,formerly smoked,0 +63404,Female,44,0,0,Yes,Private,Rural,87.71,34,formerly smoked,0 +13540,Female,59,0,0,Yes,Self-employed,Rural,115.68,27.1,Unknown,0 +44288,Male,43,0,0,Yes,Private,Rural,207.37,29.5,formerly smoked,0 +23194,Male,32,1,0,No,Private,Rural,74.43,N/A,Unknown,0 +751,Female,5,0,0,No,children,Rural,75.1,20.7,Unknown,0 +7047,Female,31,0,0,Yes,Private,Rural,69.72,39.5,smokes,0 +68020,Male,47,0,0,Yes,Private,Urban,111.84,33.7,Unknown,0 +11325,Female,12,0,0,No,children,Rural,111.08,23.2,never smoked,0 +25636,Male,40,0,0,Yes,Private,Rural,201.96,30.1,Unknown,0 +60602,Female,49,0,0,Yes,Govt_job,Urban,68.68,28.8,never smoked,0 +51856,Male,38,1,0,Yes,Private,Rural,56.9,92,never smoked,0 +13031,Female,15,0,0,No,children,Urban,91.16,38,never smoked,0 +19498,Female,81,0,1,No,Self-employed,Urban,99.44,27.7,Unknown,0 +51476,Male,48,0,0,Yes,Private,Urban,78.85,43.2,never smoked,0 +49762,Female,24,0,0,No,Private,Rural,123.89,24.1,smokes,0 +23449,Male,47,0,0,Yes,Self-employed,Rural,90.44,28.7,never smoked,0 +51374,Female,13,0,0,No,children,Rural,138.44,34.8,Unknown,0 +41263,Female,16,0,0,No,Private,Urban,75.06,23.5,never smoked,0 +6599,Male,64,1,0,Yes,Self-employed,Rural,85.66,28.5,never smoked,0 +16320,Female,11,0,0,No,children,Urban,102.76,20.3,Unknown,0 +64670,Female,55,0,0,Yes,Govt_job,Urban,71.79,43,formerly smoked,0 +35941,Male,38,0,0,Yes,Private,Urban,167.16,18.3,never smoked,0 +64931,Male,37,0,0,Yes,Private,Rural,131.05,27.2,never smoked,0 +27416,Female,34,0,0,Yes,Private,Rural,86.92,22,Unknown,0 +43433,Female,52,0,0,Yes,Self-employed,Rural,59.62,50.8,Unknown,0 +21366,Female,50,0,0,Yes,Private,Urban,103.72,35.4,formerly smoked,0 +14658,Female,37,0,0,Yes,Private,Rural,77.1,55.9,Unknown,0 +7538,Female,55,0,0,Yes,Self-employed,Rural,94.75,27.9,smokes,0 +52092,Female,2,0,0,No,children,Rural,77.72,19.8,Unknown,0 +45372,Male,68,0,0,Yes,Self-employed,Rural,76.09,26,smokes,0 +63043,Female,27,0,0,No,Private,Urban,61.8,26.8,formerly smoked,0 +67,Female,17,0,0,No,Private,Urban,92.97,N/A,formerly smoked,0 +68034,Female,53,1,0,Yes,Govt_job,Urban,83.73,32.5,never smoked,0 +63026,Male,5,0,0,No,children,Rural,79.33,15,Unknown,0 +18352,Female,3,0,0,No,children,Rural,108.32,14.2,Unknown,0 +36087,Female,20,0,0,No,Private,Rural,103.65,17,formerly smoked,0 +27480,Male,19,0,0,No,Private,Rural,86.19,26.2,never smoked,0 +38074,Female,31,0,0,Yes,Private,Urban,131.42,24.9,smokes,0 +66690,Female,63,0,0,Yes,Self-employed,Urban,69.46,26.6,never smoked,0 +31131,Female,49,0,1,Yes,Private,Rural,76.78,22.7,smokes,0 +26884,Female,72,0,0,Yes,Self-employed,Urban,103.78,32.7,formerly smoked,0 +26935,Female,50,1,0,Yes,Private,Urban,213.43,36.7,smokes,0 +17569,Male,41,0,0,Yes,Self-employed,Rural,93.52,31.5,Unknown,0 +24585,Male,40,0,0,Yes,Govt_job,Urban,115.07,36.9,never smoked,0 +53954,Male,17,0,0,No,Private,Rural,69.45,27.6,Unknown,0 +13286,Male,3,0,0,No,children,Rural,81,20.7,Unknown,0 +7653,Female,33,0,0,No,Private,Urban,83.16,20.2,Unknown,0 +59027,Female,12,0,0,No,children,Rural,108.63,23.4,never smoked,0 +70318,Male,23,0,0,No,Private,Rural,88.06,25.3,Unknown,0 +15422,Male,31,0,0,No,Govt_job,Rural,80.57,28.2,formerly smoked,0 +56692,Female,65,0,0,Yes,Self-employed,Urban,248.24,27,smokes,0 +45395,Female,43,0,0,Yes,Private,Urban,57.79,24.8,smokes,0 +39977,Female,22,0,0,No,Private,Urban,87.4,34.8,never smoked,0 +14553,Male,7,0,0,No,children,Urban,76.63,17.3,Unknown,0 +40998,Female,81,0,0,Yes,Self-employed,Rural,58.01,27.8,never smoked,0 +71900,Female,10,0,0,No,children,Urban,77.43,16.2,Unknown,0 +3318,Female,18,0,0,No,Private,Rural,101.12,N/A,smokes,0 +41481,Female,5,0,0,No,children,Rural,64.45,21.7,Unknown,0 +24854,Female,24,0,0,No,Self-employed,Urban,79.42,21.4,never smoked,0 +22330,Female,45,0,0,Yes,Self-employed,Urban,82.94,29.3,Unknown,0 +14892,Female,46,1,0,Yes,Private,Rural,81.58,36.2,never smoked,0 +36710,Male,64,0,0,Yes,Private,Urban,62.21,28.3,Unknown,0 +29267,Male,25,0,0,No,Private,Rural,229.94,23.5,never smoked,0 +17098,Female,12,0,0,No,children,Urban,116.06,25.9,Unknown,0 +61384,Male,81,1,0,Yes,Private,Urban,117.77,27.1,never smoked,0 +69732,Male,65,0,0,Yes,Self-employed,Urban,66.69,21.5,never smoked,0 +61238,Female,40,0,0,Yes,Private,Rural,122.23,30.5,Unknown,0 +18696,Male,81,0,0,No,Private,Urban,168.68,23.4,formerly smoked,0 +25643,Male,36,0,0,Yes,Private,Rural,119.9,37.6,never smoked,0 +63333,Female,32,0,0,Yes,Self-employed,Urban,110.33,24,smokes,0 +23210,Male,31,0,0,No,Private,Rural,77.95,25.1,never smoked,0 +2647,Male,55,0,0,Yes,Private,Rural,80.35,28.7,smokes,0 +60934,Male,39,0,0,Yes,Private,Urban,57.38,41.8,formerly smoked,0 +50412,Female,17,0,0,No,Private,Urban,96.47,25.6,Unknown,0 +1192,Female,31,0,0,No,Govt_job,Rural,70.66,27.2,never smoked,0 +55361,Female,36,0,0,Yes,Self-employed,Urban,202.06,24.4,never smoked,0 +50141,Female,5,0,0,No,children,Urban,91.3,20.7,Unknown,0 +12963,Female,29,0,0,No,Self-employed,Rural,67.56,19.6,Unknown,0 +55337,Female,2,0,0,No,children,Rural,126.12,24.8,Unknown,0 +23989,Female,62,0,0,Yes,Self-employed,Urban,86.4,32.6,smokes,0 +26025,Female,45,0,0,Yes,Govt_job,Urban,103.22,20.5,never smoked,0 +67711,Female,18,0,0,No,Private,Rural,88.85,36.2,Unknown,0 +53105,Female,29,0,0,Yes,Private,Urban,63.9,45.4,smokes,0 +10696,Female,52,0,0,Yes,Private,Urban,81.32,27.6,formerly smoked,0 +43656,Male,59,1,0,Yes,Govt_job,Rural,253.93,N/A,formerly smoked,0 +52361,Male,69,1,1,Yes,Private,Urban,78.11,34.7,formerly smoked,0 +57343,Female,71,0,0,Yes,Private,Urban,134.65,32.4,Unknown,0 +23339,Male,3,0,0,No,children,Rural,194.75,N/A,Unknown,0 +51408,Male,33,0,0,Yes,Govt_job,Rural,77.94,28.7,never smoked,0 +47886,Female,43,1,0,Yes,Govt_job,Rural,56.94,45.3,Unknown,0 +21407,Male,39,0,0,Yes,Private,Rural,117.03,40.3,formerly smoked,0 +34026,Female,60,0,0,Yes,Private,Rural,207.84,38.9,never smoked,0 +53004,Female,54,0,0,Yes,Govt_job,Rural,228.26,46,never smoked,0 +18833,Male,61,0,0,Yes,Self-employed,Rural,84.43,32.4,smokes,0 +69222,Male,0.24,0,0,No,children,Urban,57.09,19.4,Unknown,0 +32610,Female,11,0,0,No,children,Urban,94.89,27.5,never smoked,0 +57645,Female,75,0,0,Yes,Govt_job,Rural,132.46,26.2,Unknown,0 +21677,Female,64,0,0,Yes,Private,Rural,75.13,31.1,formerly smoked,0 +50410,Female,78,0,0,No,Govt_job,Rural,76.64,34.6,never smoked,0 +25051,Female,14,0,0,No,Private,Rural,91.32,24.3,never smoked,0 +31642,Female,66,0,0,Yes,Self-employed,Rural,85.9,34.6,never smoked,0 +60455,Male,48,0,0,Yes,Private,Urban,76.19,28.5,never smoked,0 +52172,Female,44,0,0,Yes,Private,Rural,85.77,32.1,Unknown,0 +69647,Male,30,0,0,No,Private,Urban,63.42,28,never smoked,0 +24972,Male,1.48,0,0,No,children,Rural,112.02,20.9,Unknown,0 +13172,Female,61,0,0,Yes,Self-employed,Urban,203.76,33.8,never smoked,0 +31911,Female,54,0,0,Yes,Govt_job,Urban,98.44,25.8,formerly smoked,0 +34415,Female,22,0,0,No,Govt_job,Urban,79.57,31.8,Unknown,0 +53219,Male,47,0,0,Yes,Private,Urban,63.98,26.8,smokes,0 +7924,Female,67,0,0,Yes,Private,Urban,101.46,25.9,formerly smoked,0 +72491,Male,53,0,0,Yes,Private,Urban,74.66,29.2,smokes,0 +59058,Female,45,0,0,Yes,Govt_job,Rural,68.66,25.3,never smoked,0 +52619,Female,65,0,0,Yes,Private,Rural,205.78,41.7,never smoked,0 +36162,Male,39,1,0,Yes,Private,Rural,111.24,38.8,never smoked,0 +68371,Male,57,0,0,Yes,Private,Urban,134.76,29.1,Unknown,0 +21067,Female,45,0,0,Yes,Self-employed,Urban,110.1,30.9,never smoked,0 +25718,Female,28,0,0,Yes,Private,Urban,100.8,39.3,formerly smoked,0 +24421,Male,30,0,0,No,Private,Urban,113.08,41.8,Unknown,0 +69528,Female,31,0,0,Yes,Private,Urban,56.48,26.2,formerly smoked,0 +56594,Female,70,0,0,Yes,Private,Urban,77.77,33.8,smokes,0 +35095,Female,17,0,0,No,Private,Urban,104.02,26.1,Unknown,0 +30002,Male,44,1,0,Yes,Self-employed,Rural,83.59,24.1,never smoked,0 +71143,Male,65,0,0,Yes,Self-employed,Urban,179.67,30.7,formerly smoked,0 +32669,Male,6,0,0,No,children,Urban,91.89,22.4,Unknown,0 +17174,Male,15,0,0,No,children,Rural,78.9,23,Unknown,0 +2818,Female,80,0,0,No,Self-employed,Rural,230.74,30.2,formerly smoked,0 +30650,Male,54,0,0,Yes,Govt_job,Rural,216.19,30.3,formerly smoked,0 +3013,Female,79,0,0,Yes,Self-employed,Rural,83.7,28.7,never smoked,0 +42806,Female,60,1,0,Yes,Private,Rural,200.66,36.3,smokes,0 +6390,Female,12,0,0,No,children,Rural,73.99,16.3,Unknown,0 +46647,Female,36,0,0,No,Private,Urban,228.5,34.5,never smoked,0 +6625,Female,54,0,0,Yes,Self-employed,Urban,70.43,20.8,smokes,0 +49605,Male,63,0,0,Yes,Private,Urban,74.39,31,formerly smoked,0 +72940,Female,2,0,0,No,children,Urban,102.92,17.6,Unknown,0 +24783,Female,28,0,0,No,Private,Urban,87.91,22.7,formerly smoked,0 +22515,Female,38,1,0,Yes,Private,Rural,118.55,38.4,smokes,0 +3700,Male,37,0,0,Yes,Private,Urban,232.29,40.8,smokes,0 +53802,Male,80,0,1,Yes,Private,Rural,125.32,32.9,Unknown,0 +49955,Male,43,0,0,No,Private,Urban,78.98,31.3,formerly smoked,0 +2456,Male,60,1,0,Yes,Govt_job,Rural,100.2,28.5,smokes,0 +71515,Female,66,0,0,Yes,Private,Rural,200.91,27.6,never smoked,0 +44662,Female,45,0,0,Yes,Govt_job,Rural,95.24,40.2,Unknown,0 +38661,Female,29,0,0,No,Private,Urban,56.64,24.7,never smoked,0 +15978,Male,4,0,0,No,children,Urban,80.48,17.7,Unknown,0 +35210,Female,48,0,0,Yes,Private,Urban,112.96,25.4,never smoked,0 +49930,Female,68,0,0,Yes,Private,Rural,236.04,28.5,never smoked,0 +27789,Female,57,0,0,Yes,Private,Urban,73,26.2,never smoked,0 +45325,Female,29,0,0,No,Private,Urban,61.13,26,never smoked,0 +31092,Female,30,0,0,Yes,Private,Urban,88.56,45.3,never smoked,0 +40705,Female,47,0,0,Yes,Self-employed,Rural,66.16,31.5,never smoked,0 +28513,Female,73,0,0,Yes,Private,Rural,88.98,20.6,smokes,0 +12367,Female,66,0,0,Yes,Self-employed,Urban,94.39,29.4,Unknown,0 +63915,Female,39,0,0,Yes,Private,Urban,87.39,57.9,never smoked,0 +10166,Male,66,0,0,No,Govt_job,Rural,77.91,39.1,Unknown,0 +35999,Female,52,0,0,Yes,Private,Urban,86.85,23.8,formerly smoked,0 +8964,Female,34,0,0,No,Private,Rural,94.37,38.1,never smoked,0 +38207,Female,79,1,0,Yes,Self-employed,Rural,76.64,19.5,never smoked,0 +52681,Female,39,0,0,Yes,Private,Urban,254.95,35.5,smokes,0 +38980,Male,61,0,0,Yes,Govt_job,Urban,107.33,26.4,formerly smoked,0 +33924,Female,26,0,0,No,Private,Urban,80.94,22.2,smokes,0 +10135,Female,37,0,0,No,Private,Rural,112.02,29.1,Unknown,0 +46517,Female,66,0,1,Yes,Private,Rural,196.58,41.9,formerly smoked,0 +65966,Female,16,0,0,No,Private,Urban,89.14,22.6,formerly smoked,0 +56575,Female,51,1,0,Yes,Govt_job,Urban,69.94,33.3,smokes,0 +43138,Male,15,0,0,No,Private,Urban,55.79,21.3,never smoked,0 +36633,Male,1.72,0,0,No,children,Urban,73.08,20.4,Unknown,0 +11632,Male,60,0,0,Yes,Private,Urban,96.02,28.7,Unknown,0 +31153,Male,66,0,0,Yes,Self-employed,Rural,189.82,28.8,formerly smoked,0 +52247,Female,75,0,0,Yes,Govt_job,Urban,89.68,38.7,never smoked,0 +61987,Female,40,0,0,Yes,Private,Urban,101.06,32.3,smokes,0 +64416,Female,52,0,0,Yes,Govt_job,Rural,62.66,37.9,Unknown,0 +31708,Female,13,0,0,No,children,Urban,84.03,25.3,Unknown,0 +62296,Female,44,0,0,Yes,Govt_job,Rural,108.38,27.7,Unknown,0 +53976,Female,37,0,0,No,Private,Rural,78.79,25.1,Unknown,0 +16446,Male,2,0,0,No,children,Rural,76.12,16.8,Unknown,0 +51329,Female,48,0,0,Yes,Private,Rural,68.01,27.7,never smoked,0 +33560,Female,81,0,1,Yes,Govt_job,Urban,90.11,28.6,never smoked,0 +37866,Female,76,0,0,Yes,Self-employed,Urban,193.61,37.6,never smoked,0 +8553,Female,58,0,0,Yes,Govt_job,Rural,195.74,32.7,Unknown,0 +5654,Female,11,0,0,No,children,Rural,94.77,22.7,Unknown,0 +17238,Female,9,0,0,No,children,Urban,85,16,Unknown,0 +45252,Male,54,0,0,Yes,Private,Urban,141.37,23.5,never smoked,0 +14444,Female,37,0,0,No,Self-employed,Urban,90.71,45.8,Unknown,0 +46503,Female,16,0,0,No,Private,Rural,106.8,20.8,never smoked,0 +18578,Male,11,0,0,No,children,Rural,121.66,16.7,Unknown,0 +917,Female,32,0,0,Yes,Private,Urban,85.18,22.2,smokes,0 +60981,Female,26,0,0,No,Private,Rural,130.07,33.1,never smoked,0 +28873,Female,21,0,0,No,Private,Rural,74.24,32.7,never smoked,0 +25446,Female,45,0,0,Yes,Govt_job,Urban,79.98,41.4,never smoked,0 +54127,Female,40,0,0,Yes,Self-employed,Urban,106.76,24.1,formerly smoked,0 +63478,Female,41,0,0,Yes,Private,Urban,76.34,28,Unknown,0 +15464,Female,71,1,1,Yes,Private,Rural,221.24,24.2,Unknown,0 +63312,Male,16,0,0,No,Private,Urban,80.55,23.5,smokes,0 +55681,Female,7,0,0,No,children,Rural,63.98,23,Unknown,0 +63804,Female,27,0,0,No,Private,Rural,55.93,20.3,smokes,0 +10321,Female,22,0,0,Yes,Private,Rural,73.94,24.8,Unknown,0 +56339,Female,79,0,0,Yes,Self-employed,Rural,65.58,26.1,Unknown,0 +56277,Female,38,0,0,Yes,Private,Rural,83.8,24.2,smokes,0 +33657,Female,64,0,0,Yes,Private,Urban,95.87,19.3,formerly smoked,0 +7054,Male,4,0,0,No,children,Rural,112.83,18.2,Unknown,0 +72393,Female,23,0,0,Yes,Govt_job,Rural,84.93,24.2,never smoked,0 +68059,Male,35,0,0,Yes,Govt_job,Rural,103.08,41.5,smokes,0 +14996,Male,66,0,0,Yes,Self-employed,Rural,85.98,28,Unknown,0 +841,Male,34,0,0,Yes,Private,Urban,83.75,37,never smoked,0 +22880,Female,19,0,0,No,Private,Urban,125.43,32.2,Unknown,0 +1552,Male,73,0,0,Yes,Private,Urban,101.58,35.9,never smoked,0 +68853,Female,70,0,0,Yes,Private,Rural,149.8,47.6,Unknown,0 +49190,Female,45,0,0,Yes,Private,Rural,112.55,32.1,never smoked,0 +49277,Female,34,0,0,No,Private,Urban,70.87,55.7,formerly smoked,0 +711,Male,81,0,0,Yes,Private,Rural,92.96,22.2,never smoked,0 +1953,Female,0.72,0,0,No,children,Rural,112.19,20.1,Unknown,0 +34900,Male,13,0,0,No,Never_worked,Urban,85.08,14.6,Unknown,0 +13237,Male,57,0,1,Yes,Self-employed,Urban,112.37,28.4,never smoked,0 +61684,Female,38,0,0,Yes,Private,Urban,151.26,20.6,never smoked,0 +28382,Male,21,0,0,No,Private,Urban,73.81,19.8,Unknown,0 +13768,Female,38,0,0,Yes,Private,Urban,77.2,23.4,Unknown,0 +32726,Female,41,0,0,No,Private,Urban,76.08,25.1,never smoked,0 +65729,Female,26,0,0,Yes,Private,Rural,123.98,30.1,never smoked,0 +6422,Female,48,0,0,Yes,Self-employed,Urban,108.51,33.3,Unknown,0 +11382,Male,18,0,0,No,Private,Rural,98.07,24,never smoked,0 +31703,Male,66,0,0,Yes,Self-employed,Urban,85.82,27.8,never smoked,0 +33439,Female,27,0,0,No,Private,Rural,86.21,21.4,Unknown,0 +5647,Female,18,0,0,No,Private,Urban,99.01,25.5,formerly smoked,0 +1847,Female,20,0,0,No,Govt_job,Rural,79.53,N/A,never smoked,0 +12900,Male,11,0,0,No,children,Rural,80.08,21.8,never smoked,0 +28367,Female,7,0,0,No,children,Rural,69.47,18.9,Unknown,0 +71551,Female,54,0,0,No,Private,Urban,85.07,21.9,Unknown,0 +13846,Male,43,0,0,Yes,Govt_job,Rural,88,30.6,never smoked,0 +61667,Female,61,0,0,Yes,Private,Rural,144.14,29.8,never smoked,0 +46079,Male,31,0,0,No,Private,Urban,78.8,28.7,smokes,0 +7871,Female,40,0,0,Yes,Private,Urban,86.78,35.5,smokes,0 +60964,Female,71,1,0,Yes,Govt_job,Rural,105.72,29.1,formerly smoked,0 +72562,Female,57,0,0,Yes,Private,Rural,64.37,32.8,never smoked,0 +63773,Female,13,0,0,No,children,Rural,146.1,22.8,never smoked,0 +53998,Female,21,0,0,No,Private,Urban,58.66,31.3,never smoked,0 +16617,Female,63,1,0,Yes,Govt_job,Urban,192.5,29,never smoked,0 +54117,Male,7,0,0,No,children,Rural,103.5,19,Unknown,0 +5987,Female,78,0,0,Yes,Private,Urban,89.42,24.1,never smoked,0 +72215,Female,66,0,0,Yes,Self-employed,Rural,212.92,21.4,never smoked,0 +39796,Male,41,0,0,No,Self-employed,Rural,60.73,28,never smoked,0 +12345,Male,11,0,0,No,children,Urban,73.18,27.6,never smoked,0 +65636,Male,55,0,0,Yes,Private,Urban,82.26,28.7,Unknown,0 +47356,Female,42,0,0,Yes,Private,Urban,87.4,24.5,formerly smoked,0 +27859,Male,51,0,0,Yes,Private,Rural,86.95,25,formerly smoked,0 +41715,Female,79,1,0,Yes,Self-employed,Rural,74,29.6,never smoked,0 +38617,Male,28,0,0,Yes,Self-employed,Urban,73.98,29.9,never smoked,0 +32638,Female,73,1,0,Yes,Self-employed,Rural,124.78,35.6,never smoked,0 +47799,Female,42,0,0,Yes,Private,Urban,191.94,27.9,never smoked,0 +41942,Female,37,0,0,Yes,Private,Urban,247.87,42.6,never smoked,0 +69010,Male,78,0,0,Yes,Private,Rural,83.2,21.2,formerly smoked,0 +47144,Female,74,0,0,Yes,Self-employed,Urban,88.62,28.5,formerly smoked,0 +65103,Female,59,0,0,Yes,Private,Urban,81.51,25.6,formerly smoked,0 +6472,Female,78,0,0,Yes,Govt_job,Urban,101.76,N/A,smokes,0 +27596,Female,82,1,0,Yes,Private,Urban,115.71,31.1,formerly smoked,0 +59522,Male,71,1,0,Yes,Private,Rural,229.73,30.4,never smoked,0 +51512,Female,19,0,0,No,Private,Rural,57.4,22.9,Unknown,0 +53821,Male,18,0,0,No,Private,Rural,100.47,31.9,never smoked,0 +51532,Female,53,0,0,Yes,Govt_job,Rural,81.36,48.8,never smoked,0 +50070,Female,62,1,0,Yes,Self-employed,Rural,261.67,43,formerly smoked,0 +41654,Male,3,0,0,No,children,Rural,110.2,21.8,Unknown,0 +5714,Female,49,1,0,Yes,Govt_job,Rural,98.9,35.5,never smoked,0 +2304,Male,51,0,0,Yes,Govt_job,Rural,95.19,24.3,smokes,0 +8543,Female,53,0,0,Yes,Private,Rural,105.28,23.1,never smoked,0 +45279,Female,10,0,0,No,children,Rural,83.03,18.5,Unknown,0 +57870,Male,54,0,0,Yes,Private,Rural,89.41,42.4,smokes,0 +56961,Female,40,0,0,No,Govt_job,Rural,70.56,32.3,never smoked,0 +8623,Female,3,0,0,No,children,Urban,78.79,22.6,Unknown,0 +21346,Female,12,0,0,No,children,Rural,70.13,17.8,Unknown,0 +36922,Male,56,0,0,Yes,Private,Rural,62.68,18.4,never smoked,0 +19814,Female,43,0,0,No,Private,Urban,71.77,26.9,never smoked,0 +22151,Female,28,0,0,No,Govt_job,Rural,77.99,32,smokes,0 +47802,Male,28,0,0,No,Private,Urban,256.74,23.4,formerly smoked,0 +25404,Male,56,0,0,Yes,Private,Rural,93.72,31.4,never smoked,0 +43487,Female,14,0,0,No,children,Urban,63.74,22.4,Unknown,0 +58313,Female,63,0,0,Yes,Self-employed,Urban,60.67,28.9,formerly smoked,0 +16629,Female,29,0,0,Yes,Private,Urban,112.08,27.4,never smoked,0 +60675,Female,48,1,0,Yes,Govt_job,Rural,221.08,57.2,never smoked,0 +1119,Male,47,0,1,Yes,Govt_job,Urban,101.81,28.4,smokes,0 +64864,Male,63,1,0,Yes,Private,Rural,60.17,23.5,smokes,0 +55244,Male,40,0,0,Yes,Self-employed,Rural,65.29,28.3,never smoked,0 +23568,Female,40,0,0,Yes,Private,Urban,153.24,38.2,Unknown,0 +56979,Male,55,0,0,Yes,Private,Rural,61.42,33.3,smokes,0 +66006,Female,43,0,0,Yes,Private,Urban,86.67,33.3,never smoked,0 +40447,Female,59,0,0,Yes,Private,Rural,82.42,28.8,never smoked,0 +62798,Female,78,1,0,Yes,Private,Rural,100.54,32.1,smokes,0 +38397,Female,27,0,0,No,Private,Urban,111.48,28.9,never smoked,0 +66945,Female,49,0,0,Yes,Private,Urban,85.33,25.5,never smoked,0 +44992,Male,14,0,0,No,Private,Urban,126.57,25.9,formerly smoked,0 +50009,Female,17,0,0,No,Private,Urban,81.51,19.5,formerly smoked,0 +5170,Male,42,0,0,Yes,Govt_job,Rural,67.97,23.8,Unknown,0 +16263,Female,36,0,0,Yes,Self-employed,Urban,77.92,24.9,Unknown,0 +16024,Male,19,0,0,No,Private,Urban,80.54,18.5,smokes,0 +47057,Male,55,0,0,Yes,Self-employed,Urban,76.47,30.6,Unknown,0 +34045,Female,8,0,0,No,children,Urban,87.15,16.1,Unknown,0 +59691,Female,56,0,0,Yes,Govt_job,Urban,86.07,32.5,Unknown,0 +49261,Male,54,0,0,No,Private,Rural,106.52,27.4,formerly smoked,0 +30734,Male,15,0,0,No,children,Rural,94.24,30.2,Unknown,0 +72184,Female,43,0,0,Yes,Self-employed,Urban,89.73,23.5,formerly smoked,0 +37440,Male,52,0,0,Yes,Govt_job,Urban,208.39,36,formerly smoked,0 +54400,Female,62,0,0,Yes,Self-employed,Rural,128.61,24.8,never smoked,0 +56547,Male,54,0,0,Yes,Private,Rural,57.56,27.5,never smoked,0 +13598,Male,60,0,0,Yes,Self-employed,Urban,227.23,40,formerly smoked,0 +24246,Male,7,0,0,No,children,Urban,77.76,18.1,Unknown,0 +29276,Male,3,0,0,No,children,Urban,72.76,18.8,Unknown,0 +20979,Female,39,0,0,No,Private,Rural,90.11,23.6,never smoked,0 +46048,Male,60,0,0,Yes,Govt_job,Rural,203.27,29.7,never smoked,0 +35217,Female,60,1,0,Yes,Private,Urban,234.5,43.7,never smoked,0 +11816,Female,46,0,0,Yes,Self-employed,Urban,71.12,27.3,never smoked,0 +48721,Male,26,0,0,No,Private,Urban,190.67,20.2,never smoked,0 +24163,Female,12,0,0,No,children,Rural,116.04,23.8,Unknown,0 +8022,Male,16,0,0,No,Private,Urban,82.95,21.4,never smoked,0 +10950,Female,2,0,0,No,children,Urban,112.75,25.1,Unknown,0 +21830,Female,82,0,0,Yes,Private,Urban,82.63,17.9,smokes,0 +26594,Female,32,0,0,Yes,Private,Urban,92.75,34.5,smokes,0 +14789,Female,62,0,0,Yes,Private,Rural,117.63,27.1,formerly smoked,0 +46670,Female,75,1,0,Yes,Self-employed,Rural,197.06,26.1,never smoked,0 +31426,Female,81,1,0,Yes,Govt_job,Urban,216.07,43.4,never smoked,0 +64435,Female,37,0,0,Yes,Private,Rural,76.03,33.2,never smoked,0 +68789,Female,28,0,0,No,Private,Urban,62.44,37.2,Unknown,0 +56254,Female,25,0,0,No,Private,Rural,108.82,41.3,smokes,0 +17478,Male,44,0,0,Yes,Govt_job,Urban,101.66,35.4,never smoked,0 +59908,Female,11,0,0,No,children,Rural,121.15,26.1,Unknown,0 +34130,Male,54,1,0,Yes,Private,Rural,116.44,24.5,never smoked,0 +22282,Male,52,1,0,Yes,Govt_job,Rural,116.62,N/A,smokes,0 +21110,Female,43,0,0,Yes,Private,Urban,93.3,32.7,never smoked,0 +71622,Female,56,0,0,Yes,Private,Urban,144.33,29.2,never smoked,0 +10056,Female,37,0,0,Yes,Private,Urban,98.02,20.4,never smoked,0 +2424,Male,60,0,0,Yes,Private,Urban,80.67,33.5,Unknown,0 +24736,Female,4,0,0,No,children,Urban,94.27,14,Unknown,0 +8920,Female,51,0,0,Yes,Self-employed,Rural,76.35,33.5,formerly smoked,0 +62715,Male,82,0,1,Yes,Private,Urban,57.56,27.5,never smoked,0 +70615,Female,56,0,0,Yes,Govt_job,Urban,179.14,35.3,Unknown,0 +43507,Female,60,0,0,Yes,Private,Rural,63.49,30.1,never smoked,0 +43035,Male,35,0,0,Yes,Private,Rural,145.18,32.6,smokes,0 +44799,Female,32,0,0,Yes,Private,Rural,66.3,47.5,never smoked,0 +49053,Female,45,0,0,No,Private,Rural,120.56,31.6,never smoked,0 +33102,Male,10,0,0,No,children,Rural,69.2,23.5,formerly smoked,0 +59405,Female,68,1,0,Yes,Private,Urban,150.74,40.3,Unknown,0 +18283,Female,51,0,0,Yes,Govt_job,Urban,81.38,34.1,smokes,0 +4929,Male,8,0,0,No,children,Urban,78.48,16.1,Unknown,0 +37289,Female,63,0,0,Yes,Self-employed,Rural,203.87,26.4,never smoked,0 +6202,Male,4,0,0,No,children,Urban,87,19,Unknown,0 +24106,Female,33,0,0,Yes,Private,Rural,84.68,34.7,formerly smoked,0 +32126,Female,56,0,1,Yes,Private,Urban,91.89,23.3,smokes,0 +56322,Male,49,0,1,Yes,Govt_job,Rural,88.97,32.6,never smoked,0 +54869,Female,30,0,0,Yes,Private,Urban,116.98,26,never smoked,0 +40887,Male,16,0,0,No,children,Urban,135.82,35.1,never smoked,0 +29764,Female,1.8,0,0,No,children,Rural,96.62,18.6,Unknown,0 +38287,Male,54,0,0,Yes,Private,Rural,106.53,30.4,formerly smoked,0 +53426,Male,49,0,0,Yes,Private,Rural,58.42,32.8,formerly smoked,0 +14943,Female,17,0,0,No,Private,Rural,79.62,21.6,never smoked,0 +65351,Male,11,0,0,No,children,Urban,141.84,23.3,Unknown,0 +61830,Male,51,0,0,Yes,Private,Rural,78.05,31.4,never smoked,0 +71777,Male,74,1,1,Yes,Private,Rural,77.16,26.3,never smoked,0 +69059,Female,42,0,0,Yes,Private,Urban,86.3,20.1,never smoked,0 +11908,Female,69,0,0,Yes,Self-employed,Urban,83.55,28.3,formerly smoked,0 +24955,Female,22,0,0,No,Private,Rural,102,40.4,smokes,0 +61477,Female,25,0,0,No,Private,Urban,68.07,18.6,smokes,0 +724,Male,17,0,0,No,Private,Rural,81.77,44.7,never smoked,0 +22614,Male,64,0,0,No,Self-employed,Rural,82.62,25.3,smokes,0 +61997,Female,50,0,0,Yes,Private,Urban,102.03,28.3,Unknown,0 +6605,Male,52,1,0,Yes,Govt_job,Urban,235.06,39.9,formerly smoked,0 +46987,Female,65,0,1,Yes,Private,Rural,57.52,N/A,formerly smoked,0 +70428,Female,37,0,0,Yes,Govt_job,Urban,76.98,34.7,never smoked,0 +2267,Female,31,0,0,Yes,Self-employed,Urban,82.31,31.9,never smoked,0 +25476,Female,52,0,0,Yes,Private,Urban,83.84,35,Unknown,0 +52960,Female,56,0,0,Yes,Self-employed,Urban,98.14,32.7,formerly smoked,0 +56600,Female,43,0,0,Yes,Private,Rural,84.04,30.6,Unknown,0 +9394,Male,11,0,0,No,children,Rural,92.24,27.9,Unknown,0 +42400,Female,2,0,0,No,children,Urban,94.92,20.4,Unknown,0 +36210,Female,16,0,0,No,Private,Rural,112.7,29.6,never smoked,0 +34416,Male,23,0,0,No,Private,Urban,74.34,23.5,never smoked,0 +37192,Female,40,0,0,Yes,Private,Urban,72.99,46.4,Unknown,0 +20237,Male,15,0,0,No,Private,Urban,104.9,27.4,never smoked,0 +60635,Male,48,0,0,Yes,Private,Rural,99.96,25.2,never smoked,0 +32571,Male,33,0,0,Yes,Private,Urban,85.27,25.8,Unknown,0 +52368,Male,46,0,0,Yes,Private,Urban,60.32,33.3,smokes,0 +66786,Female,53,0,0,Yes,Private,Rural,94.14,27.7,smokes,0 +12668,Male,68,0,0,Yes,Self-employed,Urban,195.43,28.9,never smoked,0 +64155,Male,60,0,0,Yes,Govt_job,Rural,200.25,33.1,never smoked,0 +17885,Male,57,0,0,No,Govt_job,Rural,90.31,38.1,smokes,0 +18930,Female,51,0,0,Yes,Govt_job,Urban,95.33,27.9,never smoked,0 +15728,Female,0.4,0,0,No,children,Rural,85.65,17.4,Unknown,0 +71846,Female,76,0,0,Yes,Govt_job,Urban,223.64,27.1,smokes,0 +37515,Female,46,0,0,Yes,Govt_job,Rural,76.43,22.7,Unknown,0 +25763,Female,23,0,0,No,Private,Urban,98.66,28.3,Unknown,0 +16566,Male,9,0,0,No,children,Urban,75.84,21.5,Unknown,0 +30836,Female,53,0,0,Yes,Private,Urban,85.46,30,never smoked,0 +68060,Male,4,0,0,No,children,Urban,81.33,18.6,Unknown,0 +51958,Female,62,1,0,No,Private,Urban,199.78,45.2,Unknown,0 +45285,Male,37,0,0,Yes,Private,Urban,176.42,39.7,Unknown,0 +19271,Female,82,1,1,Yes,Self-employed,Urban,101.56,31.5,never smoked,0 +6576,Female,33,0,0,Yes,Private,Urban,84.48,23.2,formerly smoked,0 +6850,Male,3,0,0,No,children,Urban,93.21,27.3,Unknown,0 +25798,Male,14,0,0,No,Private,Urban,72.88,26.5,never smoked,0 +28611,Male,16,0,0,No,Private,Urban,84.1,19.3,Unknown,0 +15061,Male,40,0,0,Yes,Govt_job,Rural,72.84,26.1,Unknown,0 +40323,Female,18,0,0,No,Private,Urban,70.89,19.8,never smoked,0 +40842,Female,29,0,0,Yes,Private,Rural,108.14,25.1,formerly smoked,0 +23765,Female,56,0,0,Yes,Govt_job,Rural,244.3,37.3,never smoked,0 +66287,Male,33,0,0,Yes,Private,Rural,88.04,30.3,formerly smoked,0 +50804,Male,2,0,0,No,children,Rural,65.84,16.1,Unknown,0 +25927,Male,36,0,0,Yes,Private,Rural,106.73,25.1,never smoked,0 +41970,Male,30,0,0,No,Private,Urban,106.03,26.7,Unknown,0 +54206,Female,31,0,0,No,Govt_job,Urban,80.88,29.3,formerly smoked,0 +46691,Male,16,0,0,No,children,Urban,140.1,38.7,never smoked,0 +37553,Male,58,0,0,Yes,Private,Urban,127.4,35.8,formerly smoked,0 +27507,Female,19,0,0,No,Private,Urban,87.72,21.7,never smoked,0 +68209,Male,47,0,0,Yes,Govt_job,Rural,58.23,31.4,formerly smoked,0 +42841,Male,59,0,0,Yes,Private,Rural,69.37,26.9,formerly smoked,0 +51889,Female,40,0,0,Yes,Private,Urban,58.64,33,never smoked,0 +72725,Female,26,0,0,No,Govt_job,Urban,59.67,24.5,smokes,0 +18605,Female,17,0,0,No,Never_worked,Urban,78.08,44.9,never smoked,0 +23599,Female,30,0,0,No,Private,Urban,105.08,25.5,never smoked,0 +45530,Female,19,0,0,No,Private,Urban,89.3,22.1,never smoked,0 +56425,Female,78,0,0,Yes,Govt_job,Rural,61.38,24.3,Unknown,0 +69972,Female,55,0,0,Yes,Private,Rural,56.11,32.4,formerly smoked,0 +5774,Male,59,0,0,Yes,Private,Urban,223.16,N/A,Unknown,0 +13307,Male,57,0,0,Yes,Govt_job,Urban,75.53,33.1,formerly smoked,0 +72188,Male,33,0,0,No,Private,Urban,107.47,26.7,never smoked,0 +60226,Female,35,0,0,Yes,Private,Urban,76,37.9,Unknown,0 +34940,Male,32,0,0,Yes,Private,Urban,90.28,39.6,never smoked,0 +4403,Female,55,0,0,Yes,Private,Urban,65.22,19.8,never smoked,0 +33051,Male,28,0,0,No,Private,Urban,86.24,30,Unknown,0 +37668,Male,25,0,0,Yes,Govt_job,Urban,166.38,23.1,never smoked,0 +27276,Female,45,0,0,Yes,Private,Urban,78.91,34.3,Unknown,0 +37808,Female,34,0,0,No,Govt_job,Urban,226.28,38.4,Unknown,0 +21678,Male,33,0,0,Yes,Private,Urban,90.73,32.8,smokes,0 +40087,Male,65,0,0,Yes,Private,Rural,172.86,34.4,never smoked,0 +38658,Female,62,0,0,Yes,Self-employed,Rural,213.92,44.6,never smoked,0 +30353,Male,36,0,0,Yes,Private,Urban,92.23,32.8,never smoked,0 +28803,Male,31,0,0,Yes,Private,Urban,79.81,26.4,never smoked,0 +10445,Male,54,0,0,Yes,Govt_job,Rural,81.78,27.3,Unknown,0 +12812,Female,53,0,0,Yes,Private,Rural,102,32.4,never smoked,0 +72289,Female,44,0,0,Yes,Private,Rural,68.42,43.2,smokes,0 +30433,Male,77,0,0,Yes,Private,Urban,94.68,33.6,Unknown,0 +37640,Female,67,0,0,Yes,Govt_job,Rural,125.33,26.4,Unknown,0 +54378,Female,48,0,0,Yes,Self-employed,Urban,212.19,46.9,never smoked,0 +34138,Male,42,0,0,Yes,Private,Urban,89,36.3,formerly smoked,0 +72160,Male,72,1,1,Yes,Private,Rural,60.98,34.9,formerly smoked,0 +44447,Male,49,0,0,Yes,Private,Urban,58.19,29.6,smokes,0 +5927,Female,1.32,0,0,No,children,Rural,67.68,16.5,Unknown,0 +44233,Female,45,0,0,Yes,Govt_job,Rural,84.99,35.4,Unknown,0 +56021,Female,63,1,0,Yes,Private,Urban,62.13,23.6,never smoked,0 +65038,Female,33,0,0,Yes,Private,Rural,57.1,33.1,never smoked,0 +3595,Male,32,0,0,Yes,Private,Urban,97.95,40.2,smokes,0 +25783,Female,0.48,0,0,No,children,Rural,94.06,14.8,Unknown,0 +68268,Female,63,0,0,Yes,Self-employed,Urban,93.88,34.8,Unknown,0 +7564,Male,70,0,0,Yes,Private,Rural,90.3,33.5,formerly smoked,0 +26723,Female,57,0,0,Yes,Private,Urban,83.14,31.9,never smoked,0 +9995,Male,8,0,0,No,children,Urban,118.66,16.1,Unknown,0 +68074,Male,54,0,0,Yes,Private,Rural,100.47,50.2,formerly smoked,0 +8385,Male,37,0,0,Yes,Private,Urban,90.78,35.9,Unknown,0 +21796,Male,59,0,0,Yes,Private,Urban,66.46,39.6,formerly smoked,0 +53115,Female,78,0,0,Yes,Govt_job,Urban,73.56,27.5,formerly smoked,0 +27623,Female,59,0,0,Yes,Private,Urban,200.8,32.3,Unknown,0 +70823,Female,10,0,0,No,children,Urban,57.28,15.4,never smoked,0 +5173,Male,21,0,0,No,Private,Rural,92.87,28.4,smokes,0 +21852,Male,2,0,0,No,children,Rural,96.47,19.5,Unknown,0 +24711,Female,55,0,0,Yes,Govt_job,Urban,99.44,25,formerly smoked,0 +21967,Female,20,0,0,Yes,Private,Urban,77.96,26.3,smokes,0 +36793,Female,38,1,0,Yes,Private,Rural,60.13,39.6,never smoked,0 +37492,Female,33,0,0,Yes,Private,Rural,88.17,38.6,formerly smoked,0 +45658,Male,14,0,0,No,Private,Rural,84.41,33.9,never smoked,0 +6264,Male,32,0,0,Yes,Private,Rural,72.34,32.2,Unknown,0 +37507,Female,32,0,0,No,Private,Rural,68.72,25.1,never smoked,0 +50557,Female,68,0,0,Yes,Self-employed,Urban,222.58,37.4,smokes,0 +21973,Male,70,0,0,Yes,Private,Rural,66.06,30.1,formerly smoked,0 +53346,Female,24,0,0,Yes,Private,Rural,156.43,27,formerly smoked,0 +41210,Male,44,0,0,No,Self-employed,Urban,105.76,32.4,formerly smoked,0 +29078,Male,39,0,0,Yes,Govt_job,Rural,73.07,26.8,smokes,0 +24873,Female,81,0,0,Yes,Private,Rural,99.48,27.2,never smoked,0 +15387,Male,19,0,0,No,Private,Rural,79.6,36.7,Unknown,0 +63880,Female,69,0,0,Yes,Self-employed,Urban,70,36,never smoked,0 +49833,Female,42,0,0,Yes,Govt_job,Rural,112.98,37.2,formerly smoked,0 +43773,Male,8,0,0,No,children,Urban,61.07,19.1,Unknown,0 +53095,Male,8,0,0,No,children,Rural,63.43,21.8,Unknown,0 +56185,Female,28,0,0,No,Private,Urban,73.2,26.5,smokes,0 +57043,Female,66,0,0,Yes,Self-employed,Urban,102.73,35,formerly smoked,0 +55545,Female,66,0,0,Yes,Self-employed,Rural,74.88,32.6,never smoked,0 +60899,Female,47,0,0,Yes,Private,Urban,122.43,23.9,never smoked,0 +16136,Female,78,0,0,Yes,Self-employed,Urban,84.21,33.7,never smoked,0 +11843,Female,65,0,0,Yes,Self-employed,Rural,80.42,29.4,formerly smoked,0 +3609,Male,78,0,0,Yes,Private,Urban,80.44,29,never smoked,0 +29172,Female,68,0,0,Yes,Self-employed,Rural,80.63,20.2,never smoked,0 +49894,Female,78,1,1,Yes,Private,Rural,206.53,N/A,never smoked,0 +6048,Female,65,0,0,Yes,Private,Urban,104.12,27.4,never smoked,0 +16029,Female,70,0,0,Yes,Self-employed,Rural,96.82,25,never smoked,0 +63022,Female,59,0,0,Yes,Self-employed,Urban,88.1,30.7,never smoked,0 +40041,Male,31,0,0,No,Self-employed,Rural,64.85,23,Unknown,0 +6924,Female,32,0,0,Yes,Private,Rural,102.87,26.6,smokes,0 +22590,Male,5,0,0,No,children,Urban,83.75,18.1,Unknown,0 +25878,Male,55,0,0,Yes,Self-employed,Rural,97.68,47.1,formerly smoked,0 +11169,Female,61,0,0,Yes,Private,Urban,97.58,29.7,formerly smoked,0 +44355,Female,48,0,0,Yes,Private,Rural,74.16,19.9,never smoked,0 +31113,Female,1.16,0,0,No,children,Urban,86,13.3,Unknown,0 +46514,Female,50,0,0,Yes,Govt_job,Urban,100.93,32.7,never smoked,0 +67466,Male,63,1,0,Yes,Private,Urban,232.78,31.8,formerly smoked,0 +3612,Male,67,0,0,Yes,Private,Rural,86.96,31.4,formerly smoked,0 +66590,Female,43,0,0,Yes,Self-employed,Urban,67.5,20.4,formerly smoked,0 +19611,Male,59,0,0,Yes,Private,Urban,81.21,33.2,smokes,0 +47216,Male,47,0,0,Yes,Private,Rural,110.14,30.5,smokes,0 +55591,Male,50,0,0,Yes,Private,Urban,120.44,30.3,never smoked,0 +24381,Male,51,0,1,Yes,Self-employed,Urban,187.47,34.2,never smoked,0 +8037,Male,44,0,1,No,Govt_job,Urban,94.62,34.4,Unknown,0 +23911,Female,39,0,0,No,Private,Rural,89.57,48.1,never smoked,0 +31596,Female,24,0,0,No,Private,Urban,95.31,22.8,never smoked,0 +44647,Male,62,0,0,No,Govt_job,Rural,75.07,30.5,never smoked,0 +51486,Female,61,0,0,Yes,Private,Rural,106.65,35.9,formerly smoked,0 +18263,Female,78,0,0,Yes,Self-employed,Urban,234.06,33.7,never smoked,0 +41930,Male,15,0,0,No,Private,Rural,144.15,24.1,never smoked,0 +45922,Female,23,0,0,No,Private,Urban,58.81,25.4,never smoked,0 +52934,Male,79,0,0,Yes,Self-employed,Urban,242.62,25.5,never smoked,0 +18020,Male,57,0,0,Yes,Private,Urban,93.04,29.2,never smoked,0 +2044,Female,70,0,1,Yes,Self-employed,Rural,65.68,N/A,Unknown,0 +63467,Male,9,0,0,No,children,Urban,150,17.4,Unknown,0 +38642,Male,55,0,0,Yes,Private,Urban,63.56,29.9,Unknown,0 +5387,Female,82,0,0,No,Private,Rural,96.98,21.5,never smoked,0 +68417,Female,19,0,0,No,Private,Rural,66.7,24.7,never smoked,0 +22477,Male,41,0,0,Yes,Private,Rural,79.66,25.1,Unknown,0 +23968,Female,79,0,0,Yes,Govt_job,Rural,90.16,34.4,never smoked,0 +8111,Female,23,0,0,No,Private,Rural,104.09,27.9,Unknown,0 +15282,Female,77,0,0,Yes,Private,Rural,90.96,31.5,formerly smoked,0 +54395,Female,78,1,0,Yes,Self-employed,Rural,152.38,31.8,never smoked,0 +25408,Female,24,0,0,Yes,Self-employed,Rural,114.54,30.1,smokes,0 +69284,Female,81,1,0,Yes,Self-employed,Urban,174.54,26.4,never smoked,0 +28348,Female,46,0,0,Yes,Private,Rural,106.47,27.2,Unknown,0 +46015,Female,29,0,0,No,Private,Urban,73.63,22.5,smokes,0 +69047,Female,59,0,0,Yes,Govt_job,Urban,98.52,29.8,formerly smoked,0 +39706,Male,41,0,0,Yes,Self-employed,Rural,62.93,26.1,smokes,0 +9143,Female,17,0,0,No,Private,Urban,67.87,24.9,formerly smoked,0 +64879,Female,8,0,0,No,children,Rural,120.43,23.5,Unknown,0 +17130,Female,23,0,0,No,Private,Rural,76.56,30.1,never smoked,0 +16420,Female,45,0,0,Yes,Private,Urban,108.03,37.3,never smoked,0 +7529,Male,67,0,0,Yes,Private,Rural,83.16,25.5,formerly smoked,0 +54022,Female,78,0,0,Yes,Self-employed,Rural,67.9,35.3,never smoked,0 +35660,Male,18,0,0,No,Private,Rural,115.46,27.6,Unknown,0 +50605,Female,35,0,0,Yes,Private,Rural,123.94,28.7,never smoked,0 +27803,Female,54,0,0,Yes,Govt_job,Urban,231.54,29.9,never smoked,0 +68981,Female,71,1,0,Yes,Govt_job,Urban,219.8,34.2,formerly smoked,0 +61505,Female,24,0,0,No,Private,Rural,187.99,24.9,smokes,0 +70677,Male,60,0,0,Yes,Private,Rural,234.45,36.8,formerly smoked,0 +49620,Male,75,0,0,Yes,Private,Rural,75.47,24.5,formerly smoked,0 +5319,Male,48,0,0,Yes,Private,Rural,98.24,34.6,never smoked,0 +51100,Male,62,0,0,Yes,Govt_job,Rural,66.2,30,Unknown,0 +163,Female,20,0,0,No,Private,Rural,94.67,28.8,Unknown,0 +55140,Male,69,1,0,No,Private,Urban,75.95,28.6,never smoked,0 +52882,Female,60,0,0,Yes,Govt_job,Rural,111.79,23.6,smokes,0 +54344,Female,12,0,0,No,children,Rural,80.89,20.1,Unknown,0 +2550,Female,28,0,0,Yes,Govt_job,Rural,86.91,21.1,formerly smoked,0 +58610,Female,55,0,0,Yes,Private,Urban,59.36,34.1,smokes,0 +16902,Female,70,0,1,Yes,Self-employed,Urban,240.69,N/A,smokes,0 +60603,Female,51,0,0,No,Private,Rural,66.67,29.5,never smoked,0 +808,Female,16,0,0,No,Private,Rural,87.54,37.8,never smoked,0 +61881,Male,56,0,0,No,Self-employed,Urban,139.87,31.2,smokes,0 +41600,Male,52,0,0,Yes,Private,Rural,67.92,31.1,never smoked,0 +12786,Female,59,0,0,Yes,Private,Urban,83.62,34.2,Unknown,0 +11935,Female,9,0,0,No,children,Rural,110.97,17.7,Unknown,0 +44655,Female,34,0,0,Yes,Private,Rural,70.53,39.2,never smoked,0 +48644,Female,47,0,0,Yes,Self-employed,Rural,115.91,22.2,formerly smoked,0 +41527,Male,46,0,0,Yes,Private,Urban,59.74,29.5,smokes,0 +50975,Male,49,0,0,Yes,Private,Rural,62.64,27,never smoked,0 +49179,Male,10,0,0,No,children,Rural,84.81,16.8,never smoked,0 +27509,Female,76,1,0,Yes,Self-employed,Urban,78.68,23.3,never smoked,0 +19191,Male,82,0,0,Yes,Private,Urban,217.57,33.5,formerly smoked,0 +25149,Female,3,0,0,No,children,Rural,79.76,15.6,Unknown,0 +42626,Female,76,1,0,Yes,Govt_job,Rural,63.28,28.2,never smoked,0 +2578,Male,16,0,0,No,Govt_job,Rural,78.48,22.6,never smoked,0 +55975,Female,44,0,0,Yes,Govt_job,Rural,70.48,20.2,never smoked,0 +62182,Female,17,0,0,No,Private,Rural,120.96,22.2,formerly smoked,0 +12037,Female,73,0,0,Yes,Self-employed,Rural,77.29,22.6,never smoked,0 +21963,Male,31,0,0,Yes,Private,Urban,108.51,26.7,Unknown,0 +26250,Male,17,0,0,No,Self-employed,Urban,113.85,22.9,Unknown,0 +13960,Female,18,0,0,No,Never_worked,Urban,97.65,21.5,Unknown,0 +56573,Male,73,0,0,Yes,Private,Rural,121.83,30.3,formerly smoked,0 +10659,Female,8,0,0,No,children,Urban,81.53,14.8,Unknown,0 +50763,Male,42,0,0,Yes,Govt_job,Urban,58.35,24.3,never smoked,0 +62075,Female,40,0,0,Yes,Private,Urban,65.42,17.4,formerly smoked,0 +10119,Male,79,0,0,Yes,Private,Rural,69.34,29,never smoked,0 +48127,Male,53,0,0,Yes,Self-employed,Urban,109.09,26.3,smokes,0 +65892,Female,58,0,0,Yes,Self-employed,Urban,66.71,51.7,never smoked,0 +33370,Female,48,0,0,Yes,Private,Rural,114.92,29.2,Unknown,0 +59049,Female,17,0,0,No,Private,Rural,120.58,18.3,never smoked,0 +53896,Female,23,0,0,No,Private,Rural,165.36,21.9,smokes,0 +21980,Male,9,0,0,No,children,Urban,66.11,16.3,Unknown,0 +70497,Female,81,1,1,Yes,Private,Rural,126.34,27.4,smokes,0 +58652,Female,16,0,0,No,Never_worked,Rural,68.27,20.4,never smoked,0 +30335,Male,21,0,0,No,Private,Rural,92.86,23.2,never smoked,0 +26305,Male,29,0,0,No,Self-employed,Rural,96.77,30.3,formerly smoked,0 +31227,Male,8,0,0,No,children,Rural,89.24,16.7,Unknown,0 +5581,Female,39,0,0,Yes,Private,Rural,89.32,31,formerly smoked,0 +1989,Male,37,0,0,Yes,Private,Rural,107.06,N/A,smokes,0 +43803,Female,64,0,0,Yes,Private,Urban,65.63,33.5,smokes,0 +41395,Male,9,0,0,No,children,Urban,123.66,17,Unknown,0 +71784,Male,17,0,0,No,Private,Rural,63.82,19.4,smokes,0 +57979,Male,8,0,0,No,children,Rural,108.06,14.6,Unknown,0 +54437,Male,62,0,0,Yes,Self-employed,Rural,136.18,32.2,Unknown,0 +67159,Male,73,1,0,No,Govt_job,Urban,71.29,37.7,never smoked,0 +7230,Male,48,0,0,Yes,Govt_job,Rural,76.58,27.4,never smoked,0 +68306,Male,17,0,0,No,Private,Rural,119.58,25,never smoked,0 +33087,Female,10,0,0,No,children,Urban,109.3,20.1,Unknown,0 +40850,Female,74,0,0,Yes,Govt_job,Urban,111.94,21.7,never smoked,0 +57612,Male,62,0,0,Yes,Private,Urban,81.64,38.2,never smoked,0 +37029,Male,5,0,0,No,children,Rural,97.64,17,Unknown,0 +338,Female,43,0,0,Yes,Private,Rural,110.32,28.4,never smoked,0 +9565,Female,39,0,0,No,Private,Rural,79,30,never smoked,0 +3623,Female,37,0,0,Yes,Self-employed,Urban,95.08,34.1,never smoked,0 +69723,Male,15,0,0,No,Private,Urban,137.27,19.3,never smoked,0 +47662,Female,36,0,0,No,Self-employed,Urban,57.83,21.6,smokes,0 +58495,Male,34,0,0,Yes,Private,Rural,84.08,32.9,never smoked,0 +71222,Male,75,1,0,Yes,Private,Urban,234.51,27.2,formerly smoked,0 +37865,Male,53,0,0,Yes,Private,Urban,142.64,27.8,smokes,0 +20185,Female,61,0,0,Yes,Self-employed,Rural,69.77,29.9,never smoked,0 +41875,Female,45,0,0,Yes,Private,Urban,71.4,28.4,smokes,0 +67602,Female,17,0,0,No,Private,Urban,79.61,24.1,Unknown,0 +40387,Female,17,0,0,No,Private,Rural,77.46,24,Unknown,0 +43208,Female,19,0,0,No,Private,Urban,96.85,23.4,Unknown,0 +54324,Female,54,1,0,No,Govt_job,Urban,182.22,32.6,formerly smoked,0 +51110,Female,51,0,0,Yes,Self-employed,Urban,67.26,33.1,formerly smoked,0 +36969,Female,44,0,0,Yes,Private,Rural,60.02,33.8,formerly smoked,0 +48118,Female,82,0,0,Yes,Self-employed,Urban,113.45,30.3,never smoked,0 +4607,Female,49,0,0,Yes,Self-employed,Urban,112.31,36.9,Unknown,0 +62471,Female,34,0,0,Yes,Self-employed,Rural,68.53,29.7,never smoked,0 +43821,Female,63,1,0,Yes,Private,Rural,57.15,38.8,never smoked,0 +7218,Female,79,0,0,Yes,Private,Rural,214.73,30.9,never smoked,0 +23427,Female,81,0,0,Yes,Private,Rural,91.82,36.9,Unknown,0 +66014,Female,14,0,0,No,children,Urban,71.8,18.8,Unknown,0 +41652,Female,31,0,0,No,Private,Urban,63.41,25.5,formerly smoked,0 +16605,Male,57,0,0,Yes,Private,Urban,106.24,32.3,never smoked,0 +42091,Male,32,0,0,Yes,Govt_job,Rural,83.01,25.8,smokes,0 +66067,Male,66,0,0,Yes,Private,Rural,67.92,31.1,formerly smoked,0 +50222,Female,22,0,0,No,Private,Rural,74.99,27.9,smokes,0 +41214,Female,1.32,0,0,No,children,Rural,75.22,18.6,Unknown,0 +72386,Female,20,0,0,No,Private,Urban,61.88,20.1,never smoked,0 +14918,Female,41,0,0,Yes,Private,Urban,65.67,26.7,smokes,0 +55457,Female,48,0,0,Yes,Private,Urban,110.18,30.3,smokes,0 +63323,Male,49,1,0,Yes,Self-employed,Rural,119.3,30.4,formerly smoked,0 +35446,Male,73,0,0,Yes,Govt_job,Rural,208.69,30,Unknown,0 +8208,Male,19,0,0,No,Private,Rural,95.18,24.9,smokes,0 +5131,Female,51,0,0,Yes,Private,Urban,107.72,60.9,Unknown,0 +68157,Male,1.08,0,0,No,children,Rural,83.27,24.3,Unknown,0 +4795,Female,31,0,0,No,Private,Rural,90.29,38.7,Unknown,0 +7581,Male,4,0,0,No,children,Urban,81.87,18.6,Unknown,0 +47383,Male,1.8,0,0,No,children,Urban,153.31,17.1,Unknown,0 +14036,Male,44,0,0,Yes,Private,Rural,101.46,29.4,Unknown,0 +25942,Female,4,0,0,No,children,Urban,72.49,16.9,Unknown,0 +24018,Male,55,0,0,Yes,Private,Rural,86.58,34.2,never smoked,0 +27801,Female,34,0,0,Yes,Private,Urban,113.26,27.6,never smoked,0 +52978,Female,30,0,0,Yes,Private,Urban,84.92,47.8,never smoked,0 +15593,Female,7,0,0,No,children,Urban,128.17,18.9,Unknown,0 +11098,Male,75,0,0,Yes,Govt_job,Rural,93.93,24.4,formerly smoked,0 +12015,Male,14,0,0,No,children,Urban,99.87,25.2,Unknown,0 +47348,Female,61,0,0,Yes,Private,Urban,129.31,30.7,formerly smoked,0 +44155,Female,55,0,0,Yes,Govt_job,Urban,89.43,26.1,formerly smoked,0 +62656,Female,14,0,0,No,children,Rural,101.6,25.3,never smoked,0 +8838,Female,36,0,0,No,Private,Rural,66.55,32.8,smokes,0 +42563,Female,57,1,1,Yes,Private,Rural,231.72,45.7,formerly smoked,0 +31254,Female,20,0,0,No,Private,Urban,96.69,24.6,Unknown,0 +27922,Male,32,0,0,Yes,Private,Rural,102.13,32.3,never smoked,0 +1696,Female,43,0,0,Yes,Private,Urban,100.88,47.6,smokes,0 +54162,Male,43,0,0,Yes,Private,Rural,66.22,34.4,Unknown,0 +70396,Female,1.08,0,0,No,children,Urban,109.33,18.2,Unknown,0 +65907,Female,49,0,0,Yes,Private,Urban,206.53,44.5,smokes,0 +49451,Female,53,0,0,Yes,Private,Rural,83.91,36.6,Unknown,0 +68601,Female,18,0,0,No,Private,Urban,67.92,19.4,never smoked,0 +13236,Female,13,0,0,No,children,Rural,73.48,22.9,Unknown,0 +65998,Male,5,0,0,No,children,Rural,101.31,20,Unknown,0 +5875,Female,37,0,0,Yes,Private,Urban,103.66,36.1,smokes,0 +47427,Male,49,0,0,Yes,Self-employed,Urban,70.73,27.3,formerly smoked,0 +29734,Female,45,0,0,No,Govt_job,Rural,77.45,42.2,formerly smoked,0 +72715,Female,50,0,1,Yes,Private,Urban,193.8,26.4,never smoked,0 +59847,Female,12,0,0,No,children,Rural,114.34,23.6,never smoked,0 +59911,Male,12,0,0,No,children,Urban,69.25,18.6,Unknown,0 +13583,Female,5,0,0,No,children,Rural,88.44,18,Unknown,0 +22897,Male,39,0,0,Yes,Private,Rural,84.09,31.1,formerly smoked,0 +11898,Female,41,0,0,Yes,Private,Urban,87.06,30,never smoked,0 +14785,Female,41,0,0,Yes,Private,Rural,92.64,43.8,never smoked,0 +45163,Female,47,0,0,Yes,Private,Urban,99.36,23.8,smokes,0 +57254,Female,57,0,0,Yes,Private,Rural,135.63,36.2,formerly smoked,0 +30658,Male,16,0,0,No,children,Rural,82.44,32.6,Unknown,0 +32617,Male,3,0,0,No,children,Urban,81.88,18,Unknown,0 +65376,Female,65,0,0,Yes,Self-employed,Urban,95.44,25.5,smokes,0 +1731,Female,80,0,0,No,Self-employed,Urban,72.71,29.9,never smoked,0 +38441,Female,58,0,0,Yes,Private,Urban,65.45,32.1,never smoked,0 +22147,Female,74,0,0,Yes,Private,Urban,203.01,25.4,never smoked,0 +50663,Female,62,0,0,Yes,Govt_job,Urban,110.84,23.4,smokes,0 +19165,Male,33,0,0,Yes,Private,Urban,83.12,23.4,Unknown,0 +60562,Female,21,0,0,No,Private,Rural,55.12,21.8,never smoked,0 +22013,Female,17,0,0,No,Private,Rural,105.91,30.8,never smoked,0 +39936,Female,49,0,0,Yes,Private,Rural,61.57,37.9,formerly smoked,0 +6517,Female,24,0,0,Yes,Govt_job,Urban,83.1,42.5,smokes,0 +62576,Female,56,0,0,Yes,Private,Urban,66.32,23.4,never smoked,0 +18636,Female,26,0,0,Yes,Govt_job,Urban,72.56,35.4,never smoked,0 +24299,Male,54,1,0,Yes,Self-employed,Rural,97.99,32.3,smokes,0 +40826,Female,42,0,0,No,Private,Urban,63.27,27,never smoked,0 +53323,Female,34,0,0,No,Govt_job,Urban,79.6,46.3,never smoked,0 +28717,Female,56,1,0,Yes,Private,Rural,177.56,30.1,never smoked,0 +53028,Female,39,0,0,Yes,Private,Rural,81.31,34.7,never smoked,0 +57757,Female,77,0,0,Yes,Self-employed,Rural,59.91,18.3,never smoked,0 +54795,Female,12,0,0,No,children,Rural,132.85,16.2,never smoked,0 +70267,Male,65,0,0,Yes,Private,Rural,198.84,33.2,formerly smoked,0 +34084,Male,7,0,0,No,children,Urban,77.12,18.6,Unknown,0 +20258,Male,25,0,0,No,Private,Urban,87.17,25.1,never smoked,0 +65333,Female,31,0,0,Yes,Private,Rural,96.03,24.1,Unknown,0 +56629,Female,14,0,0,No,Private,Rural,83.56,33.1,Unknown,0 +22417,Female,5,0,0,No,children,Rural,80.93,24.8,Unknown,0 +49925,Female,60,0,0,Yes,Private,Rural,84.54,23.4,smokes,0 +72696,Female,53,0,0,Yes,Private,Urban,70.51,54.1,never smoked,0 +39708,Male,55,0,0,Yes,Private,Rural,56.87,28.9,formerly smoked,0 +60426,Female,69,0,0,Yes,Self-employed,Urban,67.55,38.1,Unknown,0 +70540,Female,39,0,0,Yes,Private,Urban,243.52,37.2,smokes,0 +37622,Female,0.32,0,0,No,children,Urban,108.63,19.6,Unknown,0 +44813,Female,34,0,0,No,Private,Rural,69.06,29,smokes,0 +47153,Female,80,0,0,Yes,Private,Urban,73.89,26.7,formerly smoked,0 +8175,Male,20,0,0,No,Private,Urban,84.49,20.5,never smoked,0 +61528,Female,45,0,0,Yes,Govt_job,Urban,73.71,34.1,never smoked,0 +38771,Female,41,0,0,No,Govt_job,Urban,129.01,42.4,Unknown,0 +31189,Male,54,0,0,Yes,Govt_job,Urban,72.96,37.7,smokes,0 +27804,Male,23,0,0,No,Private,Rural,110.23,39.1,Unknown,0 +41842,Male,75,0,0,Yes,Govt_job,Rural,79.49,28.9,Unknown,0 +11962,Male,36,0,0,Yes,Private,Urban,89.33,30.7,never smoked,0 +45404,Female,75,0,0,Yes,Private,Rural,68.38,33.8,Unknown,0 +4062,Male,72,0,1,Yes,Private,Rural,238.27,N/A,smokes,0 +63650,Female,47,0,0,Yes,Govt_job,Urban,135.79,32.1,formerly smoked,0 +72186,Female,15,0,0,No,Private,Rural,82.19,40.5,never smoked,0 +40240,Male,40,1,0,Yes,Self-employed,Urban,93.2,24.8,smokes,0 +25931,Female,71,0,0,Yes,Self-employed,Urban,208.31,31.8,formerly smoked,0 +21292,Male,38,0,0,Yes,Private,Rural,111.33,27,never smoked,0 +25391,Female,10,0,0,No,children,Rural,69.84,13.7,Unknown,0 +65469,Male,11,0,0,No,children,Rural,121.71,23.4,never smoked,0 +29487,Male,0.72,0,0,No,children,Urban,80.08,16.4,Unknown,0 +63575,Male,9,0,0,No,children,Urban,84.4,14.9,Unknown,0 +30457,Female,53,1,0,Yes,Govt_job,Rural,98.61,38.8,smokes,0 +5951,Male,28,1,0,No,Private,Urban,86.61,38.6,smokes,0 +8690,Female,81,0,0,Yes,Private,Urban,80.44,32.2,never smoked,0 +32147,Male,1.32,0,0,No,children,Rural,107.02,N/A,Unknown,0 +47691,Male,16,0,0,No,Private,Rural,97.23,30.6,never smoked,0 +25982,Male,24,0,0,No,Private,Rural,91.21,28.1,formerly smoked,0 +70058,Female,62,1,0,Yes,Self-employed,Urban,103.69,35.2,smokes,0 +61868,Female,62,0,0,Yes,Private,Urban,74.12,21.8,formerly smoked,0 +46086,Female,59,0,0,Yes,Private,Urban,71.08,28.1,never smoked,0 +68596,Female,19,0,0,No,Private,Urban,58.39,28.2,never smoked,0 +10281,Female,51,1,0,Yes,Self-employed,Rural,176.34,28.4,never smoked,0 +31409,Male,38,0,0,Yes,Private,Rural,73.76,37.4,never smoked,0 +54067,Female,26,0,0,No,Private,Rural,67.21,21.8,formerly smoked,0 +9731,Male,13,0,0,No,children,Urban,87.98,19.8,Unknown,0 +24009,Male,4,0,0,No,children,Urban,94.23,16.2,Unknown,0 +61694,Male,55,0,0,Yes,Self-employed,Rural,111.36,33.6,never smoked,0 +7453,Female,44,0,0,Yes,Private,Urban,84.07,21.2,smokes,0 +66405,Female,31,0,0,Yes,Private,Urban,117.31,28.4,never smoked,0 +2138,Male,58,0,0,Yes,Govt_job,Urban,84.94,N/A,never smoked,0 +66650,Female,17,0,0,No,Private,Urban,68.86,41.1,never smoked,0 +59945,Female,23,0,0,No,Private,Urban,132.88,24.9,never smoked,0 +16245,Male,51,1,0,Yes,Self-employed,Rural,211.83,56.6,never smoked,0 +68094,Female,46,0,0,Yes,Private,Rural,124.92,28.8,Unknown,0 +64661,Female,81,0,0,No,Self-employed,Urban,57.42,33.7,never smoked,0 +61376,Male,38,0,0,Yes,Private,Urban,215.69,38.6,formerly smoked,0 +47236,Female,50,0,0,Yes,Private,Urban,154.67,33.8,never smoked,0 +875,Female,34,0,0,No,Private,Urban,67.66,22.4,never smoked,0 +63986,Male,60,0,0,Yes,Private,Rural,153.48,37.3,never smoked,0 +55410,Female,50,0,0,Yes,Self-employed,Urban,62.63,23.4,never smoked,0 +63287,Female,49,0,0,Yes,Private,Urban,77.93,39.1,smokes,0 +3720,Female,2,0,0,No,children,Rural,80.3,21.2,Unknown,0 +20274,Male,47,0,0,Yes,Private,Urban,106.69,31.2,Unknown,0 +50338,Female,34,0,0,Yes,Private,Urban,83.07,28,formerly smoked,0 +58209,Female,22,0,0,No,Private,Urban,140.14,21.1,never smoked,0 +20634,Female,11,0,0,No,children,Urban,92.65,15.7,never smoked,0 +3251,Male,54,0,0,Yes,Private,Urban,111.37,29.1,formerly smoked,0 +12677,Female,60,0,0,Yes,Private,Rural,99,26.1,never smoked,0 +45160,Male,3,0,0,No,children,Rural,78.24,16.2,Unknown,0 +67940,Female,46,0,0,Yes,Govt_job,Rural,83.88,27.1,never smoked,0 +8145,Male,30,0,0,No,Private,Urban,86.21,28.8,smokes,0 +39393,Female,63,0,0,Yes,Private,Urban,57.06,37.9,never smoked,0 +57710,Female,50,0,0,Yes,Private,Rural,112.25,21.6,Unknown,0 +12487,Male,65,0,0,Yes,Private,Urban,81.06,30.1,smokes,0 +16513,Male,78,0,0,Yes,Private,Urban,104.37,29.7,never smoked,0 +42297,Female,36,0,0,Yes,Private,Urban,124.31,26.4,Unknown,0 +63656,Female,18,0,0,No,Private,Urban,101.95,46,formerly smoked,0 +56233,Female,44,0,0,No,Private,Rural,116.95,26.1,never smoked,0 +22591,Female,4,0,0,No,children,Urban,99.76,23.2,Unknown,0 +23757,Female,60,0,0,No,Private,Urban,105.48,28.4,Unknown,0 +19601,Female,19,0,0,No,Private,Urban,100.6,20.5,never smoked,0 +61801,Male,15,0,0,No,Private,Urban,65.05,24.6,Unknown,0 +949,Male,20,0,0,No,Private,Rural,75.9,32.2,never smoked,0 +10995,Male,76,1,0,Yes,Private,Rural,267.6,30.5,never smoked,0 +1503,Male,31,0,0,No,Private,Urban,215.07,N/A,smokes,0 +37431,Female,39,0,0,Yes,Govt_job,Urban,109.03,24.9,Unknown,0 +53697,Male,58,0,1,Yes,Private,Rural,225.35,26.5,smokes,0 +67012,Male,64,1,0,Yes,Private,Rural,196.26,34.5,Unknown,0 +30525,Female,79,0,0,Yes,Govt_job,Urban,95.42,21.5,formerly smoked,0 +25860,Female,11,0,0,No,children,Rural,123.04,15.9,Unknown,0 +21743,Male,4,0,0,No,children,Urban,85.88,17.7,Unknown,0 +25833,Female,43,0,0,Yes,Private,Rural,107.43,26.5,never smoked,0 +64652,Female,44,0,0,Yes,Private,Rural,56.85,24.4,never smoked,0 +45710,Female,37,0,0,Yes,Govt_job,Rural,102.15,26.6,Unknown,0 +27853,Female,34,0,0,Yes,Self-employed,Rural,88.68,23.9,never smoked,0 +5964,Female,59,0,0,Yes,Private,Urban,182.52,30.1,Unknown,0 +6976,Female,40,0,0,Yes,Private,Urban,93.97,23.6,never smoked,0 +11145,Female,8,0,0,No,children,Urban,104.03,18.4,Unknown,0 +39229,Female,24,0,0,Yes,Private,Rural,67.99,32.1,never smoked,0 +14189,Male,18,0,0,No,Private,Rural,83.37,24.4,Unknown,0 +49929,Male,20,0,0,No,Private,Rural,124.66,27.3,never smoked,0 +56328,Female,70,0,0,Yes,Private,Rural,212.87,34.8,never smoked,0 +26742,Female,68,0,0,Yes,Govt_job,Urban,96.75,28.4,formerly smoked,0 +63158,Male,17,0,0,No,Private,Urban,63.28,40.2,Unknown,0 +27435,Female,17,0,0,No,Private,Urban,82.64,31.1,Unknown,0 +10829,Female,21,0,0,No,Private,Rural,71.34,24,never smoked,0 +70593,Female,38,0,0,Yes,Private,Rural,183.43,38.1,formerly smoked,0 +42647,Female,59,0,0,Yes,Govt_job,Urban,101.19,29.9,formerly smoked,0 +48109,Female,79,0,1,Yes,Private,Rural,88.51,24.5,never smoked,0 +40732,Female,50,0,0,Yes,Self-employed,Rural,126.85,49.5,formerly smoked,0 +58635,Female,72,0,0,Yes,Self-employed,Urban,74.17,35.5,formerly smoked,0 +844,Female,54,0,0,Yes,Private,Urban,76.04,29.5,smokes,0 +14688,Female,44,0,0,Yes,Private,Urban,73.87,28.8,smokes,0 +23026,Female,48,0,0,Yes,Private,Rural,99.07,22.1,never smoked,0 +30463,Male,29,0,0,No,Private,Urban,82.93,29.4,formerly smoked,0 +50140,Female,44,0,0,Yes,Govt_job,Rural,133.24,45,smokes,0 +36837,Female,61,0,0,Yes,Self-employed,Urban,69.88,27.1,never smoked,0 +57333,Female,58,0,0,Yes,Govt_job,Rural,69.12,28.3,Unknown,0 +19826,Female,81,0,0,Yes,Self-employed,Rural,86.05,20.1,formerly smoked,0 +37713,Male,29,0,0,Yes,Private,Urban,185.27,31.3,never smoked,0 +6278,Male,5,0,0,No,children,Urban,97.46,17.6,Unknown,0 +15517,Female,35,0,0,Yes,Private,Urban,81.9,24.5,never smoked,0 +25326,Female,40,0,0,No,Private,Rural,99.58,24.1,Unknown,0 +57034,Female,37,0,0,No,Private,Rural,124.54,31.3,never smoked,0 +70718,Male,33,0,0,Yes,Private,Rural,153.34,31.5,never smoked,0 +47461,Female,35,0,0,Yes,Private,Urban,112.35,29.9,Unknown,0 +50091,Female,38,0,0,No,Govt_job,Urban,160.76,30.2,smokes,0 +62416,Female,26,0,0,Yes,Private,Rural,73.29,27.8,never smoked,0 +5288,Male,10,0,0,No,children,Urban,108.08,15.6,Unknown,0 +66951,Female,72,0,0,Yes,Private,Urban,206.49,26.3,never smoked,0 +28335,Male,21,0,0,Yes,Private,Rural,77.42,24.8,never smoked,0 +67465,Female,20,0,0,No,Private,Rural,117.59,17.1,never smoked,0 +67426,Female,1.24,0,0,No,children,Rural,61.94,20.3,Unknown,0 +19508,Female,26,0,0,No,Private,Urban,116.68,18.7,formerly smoked,0 +65405,Female,79,0,0,No,Private,Urban,253.86,28.8,formerly smoked,0 +49773,Female,78,0,0,Yes,Private,Urban,203.36,28.7,formerly smoked,0 +57159,Male,56,0,0,Yes,Self-employed,Rural,125.87,24.6,never smoked,0 +69710,Female,46,0,0,No,Self-employed,Rural,64.09,25.3,never smoked,0 +58834,Male,55,0,0,Yes,Govt_job,Urban,65.33,29.7,Unknown,0 +42007,Male,41,0,0,No,Private,Rural,70.15,N/A,formerly smoked,0 +5121,Male,30,0,0,Yes,Private,Urban,96.84,21.1,Unknown,0 +44878,Male,53,0,0,Yes,Private,Rural,175.92,26.9,smokes,0 +40220,Male,32,0,0,No,Private,Rural,100.65,26.2,formerly smoked,0 +19692,Male,38,0,0,No,Private,Rural,112.39,26.3,Unknown,0 +27616,Male,33,0,0,Yes,Govt_job,Rural,81.1,24.8,never smoked,0 +19801,Female,44,0,0,Yes,Private,Rural,98.3,25,never smoked,0 +21467,Male,44,0,0,Yes,Private,Urban,89.68,34.6,Unknown,0 +25102,Female,51,0,0,Yes,Govt_job,Urban,95.16,42.7,formerly smoked,0 +28788,Male,40,0,0,Yes,Private,Urban,191.15,N/A,smokes,0 +29028,Female,41,0,0,Yes,Private,Rural,91.04,24.5,never smoked,0 +15581,Male,5,0,0,No,children,Urban,101.87,19.3,Unknown,0 +16738,Female,42,0,0,Yes,Private,Rural,96.86,29.3,never smoked,0 +31836,Female,6,0,0,No,children,Urban,91.05,22.1,Unknown,0 +43496,Female,46,0,0,Yes,Govt_job,Urban,55.84,27.8,never smoked,0 +52677,Female,47,0,0,Yes,Private,Urban,84.04,24.7,never smoked,0 +11630,Female,25,0,0,No,Private,Urban,92.06,25.3,smokes,0 +53478,Female,40,0,0,Yes,Private,Urban,89.61,41.2,formerly smoked,0 +38349,Female,49,0,0,Yes,Govt_job,Urban,69.92,47.6,never smoked,0 +48425,Male,21,0,0,No,Private,Rural,89.29,23.4,never smoked,0 +64420,Female,61,0,0,Yes,Govt_job,Rural,120.23,22.7,Unknown,0 +60271,Male,78,0,0,Yes,Private,Urban,60.22,29.7,formerly smoked,0 +38009,Male,41,0,0,Yes,Private,Urban,223.78,32.3,never smoked,0 +11184,Female,82,0,0,Yes,Self-employed,Rural,211.58,36.9,never smoked,0 +68967,Male,39,0,0,Yes,Private,Urban,179.38,27.7,Unknown,0 +66684,Male,70,0,0,Yes,Self-employed,Rural,193.88,24.3,Unknown,0 +7789,Female,31,0,0,Yes,Private,Urban,89.01,37.4,never smoked,0 +40112,Female,37,0,0,No,Private,Urban,118.41,25.1,never smoked,0 +65814,Male,21,0,0,No,Private,Urban,138.51,24.3,never smoked,0 +49598,Male,80,0,0,Yes,Self-employed,Urban,120.03,24.3,formerly smoked,0 +15599,Female,21,0,0,No,Private,Urban,91.01,28.7,never smoked,0 +62425,Female,5,0,0,No,children,Urban,61.98,16.8,Unknown,0 +52652,Male,81,0,0,Yes,Private,Rural,135.32,35.8,Unknown,0 +71957,Female,35,0,0,Yes,Private,Rural,58.72,40,smokes,0 +17231,Female,24,0,0,No,Private,Urban,90.42,24.3,never smoked,0 +30379,Female,52,0,0,Yes,Govt_job,Urban,104,25.6,smokes,0 +63997,Male,70,0,0,Yes,Private,Urban,102.5,37.8,Unknown,0 +39935,Female,34,0,0,Yes,Private,Rural,174.37,23,never smoked,0 +8203,Male,17,0,0,No,Private,Rural,106.56,21,Unknown,0 +27446,Female,8,0,0,No,children,Urban,76.31,15.5,Unknown,0 +42709,Male,1.72,0,0,No,children,Urban,77.28,17.1,Unknown,0 +22691,Female,29,0,0,Yes,Self-employed,Urban,90.52,28,never smoked,0 +37680,Male,55,0,0,Yes,Govt_job,Rural,108.35,40.8,formerly smoked,0 +24552,Female,44,0,0,Yes,Private,Rural,72.03,37.5,smokes,0 +72914,Female,19,0,0,No,Private,Urban,90.57,24.2,Unknown,0 +29540,Male,67,0,0,Yes,Private,Rural,97.04,26.9,smokes,0 +53525,Female,72,0,0,Yes,Private,Urban,83.89,33.1,formerly smoked,0 +65411,Female,51,0,0,Yes,Private,Urban,152.56,21.8,Unknown,0 +26214,Female,63,0,0,Yes,Self-employed,Rural,75.93,34.7,formerly smoked,0 +22190,Female,64,1,0,Yes,Self-employed,Urban,76.89,30.2,Unknown,0 +56714,Female,0.72,0,0,No,children,Rural,62.13,16.8,Unknown,0 +4211,Male,26,0,0,No,Govt_job,Rural,100.85,21,smokes,0 +6369,Male,59,1,0,Yes,Private,Rural,95.05,30.9,never smoked,0 +56799,Male,76,0,0,Yes,Govt_job,Urban,82.35,38.9,never smoked,0 +32235,Female,45,1,0,Yes,Govt_job,Rural,95.02,N/A,smokes,0 +28048,Male,13,0,0,No,children,Urban,82.38,24.3,Unknown,0 +68598,Male,1.08,0,0,No,children,Rural,79.15,17.4,Unknown,0 +41512,Male,57,0,0,Yes,Govt_job,Rural,76.62,28.2,never smoked,0 +64520,Male,68,0,0,Yes,Self-employed,Urban,91.68,40.8,Unknown,0 +579,Male,9,0,0,No,children,Urban,71.88,17.5,Unknown,0 +7293,Male,40,0,0,Yes,Private,Rural,83.94,N/A,smokes,0 +68398,Male,82,1,0,Yes,Self-employed,Rural,71.97,28.3,never smoked,0 +36901,Female,45,0,0,Yes,Private,Urban,97.95,24.5,Unknown,0 +45010,Female,57,0,0,Yes,Private,Rural,77.93,21.7,never smoked,0 +22127,Female,18,0,0,No,Private,Urban,82.85,46.9,Unknown,0 +14180,Female,13,0,0,No,children,Rural,103.08,18.6,Unknown,0 +18234,Female,80,1,0,Yes,Private,Urban,83.75,N/A,never smoked,0 +44873,Female,81,0,0,Yes,Self-employed,Urban,125.2,40,never smoked,0 +19723,Female,35,0,0,Yes,Self-employed,Rural,82.99,30.6,never smoked,0 +37544,Male,51,0,0,Yes,Private,Rural,166.29,25.6,formerly smoked,0 +44679,Female,44,0,0,Yes,Govt_job,Urban,85.28,26.2,Unknown,0 \ No newline at end of file diff --git a/labs/lab1/lab1.ipynb b/labs/lab1/lab1.ipynb new file mode 100644 index 0000000..a57a5d2 --- /dev/null +++ b/labs/lab1/lab1.ipynb @@ -0,0 +1,2875 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**4 Вариант**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "1.1 Загрузка данных" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idgenderagehypertensionheart_diseaseever_marriedwork_typeResidence_typeavg_glucose_levelbmismoking_statusstroke
09046Male67.001YesPrivateUrban228.6936.6formerly smoked1
151676Female61.000YesSelf-employedRural202.21NaNnever smoked1
231112Male80.001YesPrivateRural105.9232.5never smoked1
360182Female49.000YesPrivateUrban171.2334.4smokes1
41665Female79.010YesSelf-employedRural174.1224.0never smoked1
\n", + "
" + ], + "text/plain": [ + " id gender age hypertension heart_disease ever_married \\\n", + "0 9046 Male 67.0 0 1 Yes \n", + "1 51676 Female 61.0 0 0 Yes \n", + "2 31112 Male 80.0 0 1 Yes \n", + "3 60182 Female 49.0 0 0 Yes \n", + "4 1665 Female 79.0 1 0 Yes \n", + "\n", + " work_type Residence_type avg_glucose_level bmi smoking_status \\\n", + "0 Private Urban 228.69 36.6 formerly smoked \n", + "1 Self-employed Rural 202.21 NaN never smoked \n", + "2 Private Rural 105.92 32.5 never smoked \n", + "3 Private Urban 171.23 34.4 smokes \n", + "4 Self-employed Rural 174.12 24.0 never smoked \n", + "\n", + " stroke \n", + "0 1 \n", + "1 1 \n", + "2 1 \n", + "3 1 \n", + "4 1 " + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "df = pd.read_csv(\"healthcareDataset.csv\")\n", + "\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "1.2 Сохранение данных" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "df.to_csv(\"newHealthcareDataset.csv\", index=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "2. Получение сведений о датафрейме с данными" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idagehypertensionheart_diseaseavg_glucose_levelbmistroke
count5110.0000005110.0000005110.0000005110.0000005110.0000004909.0000005110.000000
mean36517.82935443.2266140.0974560.054012106.14767728.8932370.048728
std21161.72162522.6126470.2966070.22606345.2835607.8540670.215320
min67.0000000.0800000.0000000.00000055.12000010.3000000.000000
25%17741.25000025.0000000.0000000.00000077.24500023.5000000.000000
50%36932.00000045.0000000.0000000.00000091.88500028.1000000.000000
75%54682.00000061.0000000.0000000.000000114.09000033.1000000.000000
max72940.00000082.0000001.0000001.000000271.74000097.6000001.000000
\n", + "
" + ], + "text/plain": [ + " id age hypertension heart_disease \\\n", + "count 5110.000000 5110.000000 5110.000000 5110.000000 \n", + "mean 36517.829354 43.226614 0.097456 0.054012 \n", + "std 21161.721625 22.612647 0.296607 0.226063 \n", + "min 67.000000 0.080000 0.000000 0.000000 \n", + "25% 17741.250000 25.000000 0.000000 0.000000 \n", + "50% 36932.000000 45.000000 0.000000 0.000000 \n", + "75% 54682.000000 61.000000 0.000000 0.000000 \n", + "max 72940.000000 82.000000 1.000000 1.000000 \n", + "\n", + " avg_glucose_level bmi stroke \n", + "count 5110.000000 4909.000000 5110.000000 \n", + "mean 106.147677 28.893237 0.048728 \n", + "std 45.283560 7.854067 0.215320 \n", + "min 55.120000 10.300000 0.000000 \n", + "25% 77.245000 23.500000 0.000000 \n", + "50% 91.885000 28.100000 0.000000 \n", + "75% 114.090000 33.100000 0.000000 \n", + "max 271.740000 97.600000 1.000000 " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.describe() # Генерация описательной статистики." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 5110 entries, 0 to 5109\n", + "Data columns (total 12 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 id 5110 non-null int64 \n", + " 1 gender 5110 non-null object \n", + " 2 age 5110 non-null float64\n", + " 3 hypertension 5110 non-null int64 \n", + " 4 heart_disease 5110 non-null int64 \n", + " 5 ever_married 5110 non-null object \n", + " 6 work_type 5110 non-null object \n", + " 7 Residence_type 5110 non-null object \n", + " 8 avg_glucose_level 5110 non-null float64\n", + " 9 bmi 4909 non-null float64\n", + " 10 smoking_status 5110 non-null object \n", + " 11 stroke 5110 non-null int64 \n", + "dtypes: float64(3), int64(4), object(5)\n", + "memory usage: 479.2+ KB\n" + ] + } + ], + "source": [ + "df.info() # Вывод краткого описания фрейма данных." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "3. Получение сведений о колонках датафрейма" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['id', 'gender', 'age', 'hypertension', 'heart_disease', 'ever_married',\n", + " 'work_type', 'Residence_type', 'avg_glucose_level', 'bmi',\n", + " 'smoking_status', 'stroke'],\n", + " dtype='object')" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.columns" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "4. Вывод отдельных строки и столбцов из датафрейма" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
agesmoking_status
067.0formerly smoked
161.0never smoked
280.0never smoked
349.0smokes
479.0never smoked
.........
510580.0never smoked
510681.0never smoked
510735.0never smoked
510851.0formerly smoked
510944.0Unknown
\n", + "

5110 rows × 2 columns

\n", + "
" + ], + "text/plain": [ + " age smoking_status\n", + "0 67.0 formerly smoked\n", + "1 61.0 never smoked\n", + "2 80.0 never smoked\n", + "3 49.0 smokes\n", + "4 79.0 never smoked\n", + "... ... ...\n", + "5105 80.0 never smoked\n", + "5106 81.0 never smoked\n", + "5107 35.0 never smoked\n", + "5108 51.0 formerly smoked\n", + "5109 44.0 Unknown\n", + "\n", + "[5110 rows x 2 columns]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df[[\"age\", \"smoking_status\"]]" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idgenderagehypertensionheart_diseaseever_marriedwork_typeResidence_typeavg_glucose_levelbmismoking_statusstroke
121233162Female23.0000NoPrivateRural90.8431.6never smoked0
121344764Female78.0010YesSelf-employedRural59.2029.1Unknown0
121432157Male51.0000YesPrivateRural217.71NaNformerly smoked0
121561983Female41.0000YesPrivateUrban133.7643.4smokes0
121672268Male68.0000YesSelf-employedUrban61.3626.5formerly smoked0
121739467Female30.0000NoPrivateRural118.6229.7Unknown0
121820282Male1.8800NochildrenRural77.9121.8Unknown0
121951159Female32.0000NoGovt_jobUrban68.9823.4formerly smoked0
12207167Female20.0000NoPrivateRural112.0823.0never smoked0
122159147Male20.0000NoPrivateUrban96.2021.5never smoked0
122218192Male10.0000NochildrenRural93.1114.6Unknown0
122314049Male8.0000NochildrenRural115.5428.5Unknown0
\n", + "
" + ], + "text/plain": [ + " id gender age hypertension heart_disease ever_married \\\n", + "1212 33162 Female 23.00 0 0 No \n", + "1213 44764 Female 78.00 1 0 Yes \n", + "1214 32157 Male 51.00 0 0 Yes \n", + "1215 61983 Female 41.00 0 0 Yes \n", + "1216 72268 Male 68.00 0 0 Yes \n", + "1217 39467 Female 30.00 0 0 No \n", + "1218 20282 Male 1.88 0 0 No \n", + "1219 51159 Female 32.00 0 0 No \n", + "1220 7167 Female 20.00 0 0 No \n", + "1221 59147 Male 20.00 0 0 No \n", + "1222 18192 Male 10.00 0 0 No \n", + "1223 14049 Male 8.00 0 0 No \n", + "\n", + " work_type Residence_type avg_glucose_level bmi smoking_status \\\n", + "1212 Private Rural 90.84 31.6 never smoked \n", + "1213 Self-employed Rural 59.20 29.1 Unknown \n", + "1214 Private Rural 217.71 NaN formerly smoked \n", + "1215 Private Urban 133.76 43.4 smokes \n", + "1216 Self-employed Urban 61.36 26.5 formerly smoked \n", + "1217 Private Rural 118.62 29.7 Unknown \n", + "1218 children Rural 77.91 21.8 Unknown \n", + "1219 Govt_job Urban 68.98 23.4 formerly smoked \n", + "1220 Private Rural 112.08 23.0 never smoked \n", + "1221 Private Urban 96.20 21.5 never smoked \n", + "1222 children Rural 93.11 14.6 Unknown \n", + "1223 children Rural 115.54 28.5 Unknown \n", + "\n", + " stroke \n", + "1212 0 \n", + "1213 0 \n", + "1214 0 \n", + "1215 0 \n", + "1216 0 \n", + "1217 0 \n", + "1218 0 \n", + "1219 0 \n", + "1220 0 \n", + "1221 0 \n", + "1222 0 \n", + "1223 0 " + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.iloc[1212:1224]" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idgenderagehypertensionheart_diseaseever_marriedwork_typeResidence_typeavg_glucose_levelbmismoking_statusstroke
09046Male67.001YesPrivateUrban228.6936.6formerly smoked1
151676Female61.000YesSelf-employedRural202.21NaNnever smoked1
231112Male80.001YesPrivateRural105.9232.5never smoked1
360182Female49.000YesPrivateUrban171.2334.4smokes1
41665Female79.010YesSelf-employedRural174.1224.0never smoked1
.......................................
510245010Female57.000YesPrivateRural77.9321.7never smoked0
510518234Female80.010YesPrivateUrban83.75NaNnever smoked0
510644873Female81.000YesSelf-employedUrban125.2040.0never smoked0
510837544Male51.000YesPrivateRural166.2925.6formerly smoked0
510944679Female44.000YesGovt_jobUrban85.2826.2Unknown0
\n", + "

2866 rows × 12 columns

\n", + "
" + ], + "text/plain": [ + " id gender age hypertension heart_disease ever_married \\\n", + "0 9046 Male 67.0 0 1 Yes \n", + "1 51676 Female 61.0 0 0 Yes \n", + "2 31112 Male 80.0 0 1 Yes \n", + "3 60182 Female 49.0 0 0 Yes \n", + "4 1665 Female 79.0 1 0 Yes \n", + "... ... ... ... ... ... ... \n", + "5102 45010 Female 57.0 0 0 Yes \n", + "5105 18234 Female 80.0 1 0 Yes \n", + "5106 44873 Female 81.0 0 0 Yes \n", + "5108 37544 Male 51.0 0 0 Yes \n", + "5109 44679 Female 44.0 0 0 Yes \n", + "\n", + " work_type Residence_type avg_glucose_level bmi smoking_status \\\n", + "0 Private Urban 228.69 36.6 formerly smoked \n", + "1 Self-employed Rural 202.21 NaN never smoked \n", + "2 Private Rural 105.92 32.5 never smoked \n", + "3 Private Urban 171.23 34.4 smokes \n", + "4 Self-employed Rural 174.12 24.0 never smoked \n", + "... ... ... ... ... ... \n", + "5102 Private Rural 77.93 21.7 never smoked \n", + "5105 Private Urban 83.75 NaN never smoked \n", + "5106 Self-employed Urban 125.20 40.0 never smoked \n", + "5108 Private Rural 166.29 25.6 formerly smoked \n", + "5109 Govt_job Urban 85.28 26.2 Unknown \n", + "\n", + " stroke \n", + "0 1 \n", + "1 1 \n", + "2 1 \n", + "3 1 \n", + "4 1 \n", + "... ... \n", + "5102 0 \n", + "5105 0 \n", + "5106 0 \n", + "5108 0 \n", + "5109 0 \n", + "\n", + "[2866 rows x 12 columns]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df[df[\"age\"] > 40]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "5. Группировка и агрегация данных в датафрейме" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
avg_glucose_level
age
0.08105.000000
0.1698.006667
0.2494.112000
0.3291.004000
0.4097.605000
......
78.00119.664216
79.00113.806824
80.00119.772857
81.00117.180167
82.00130.483571
\n", + "

104 rows × 1 columns

\n", + "
" + ], + "text/plain": [ + " avg_glucose_level\n", + "age \n", + "0.08 105.000000\n", + "0.16 98.006667\n", + "0.24 94.112000\n", + "0.32 91.004000\n", + "0.40 97.605000\n", + "... ...\n", + "78.00 119.664216\n", + "79.00 113.806824\n", + "80.00 119.772857\n", + "81.00 117.180167\n", + "82.00 130.483571\n", + "\n", + "[104 rows x 1 columns]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "group = df.groupby([\"age\"])[\"avg_glucose_level\"].mean()\n", + "group.to_frame()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "6. Сортировка данных в датафрейме" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idgenderagehypertensionheart_diseaseever_marriedwork_typeResidence_typeavg_glucose_levelbmismoking_statusstroke
488660562Female21.000NoPrivateRural55.1221.8never smoked0
119137404Male42.000YesPrivateUrban55.2227.0never smoked0
411043028Male66.000YesSelf-employedRural55.2328.9Unknown0
68261300Male20.000NoPrivateUrban55.2520.4never smoked0
77272547Male61.000YesPrivateRural55.2633.2Unknown0
.......................................
246227626Female60.000NoGovt_jobRural266.5925.5never smoked0
498310995Male76.010YesPrivateRural267.6030.5never smoked0
308826267Female76.000YesSelf-employedUrban267.6127.9smokes0
120722440Female49.000YesPrivateUrban267.7629.3formerly smoked0
19369112Male68.011YesPrivateRural271.7431.1smokes1
\n", + "

5110 rows × 12 columns

\n", + "
" + ], + "text/plain": [ + " id gender age hypertension heart_disease ever_married \\\n", + "4886 60562 Female 21.0 0 0 No \n", + "1191 37404 Male 42.0 0 0 Yes \n", + "4110 43028 Male 66.0 0 0 Yes \n", + "682 61300 Male 20.0 0 0 No \n", + "772 72547 Male 61.0 0 0 Yes \n", + "... ... ... ... ... ... ... \n", + "2462 27626 Female 60.0 0 0 No \n", + "4983 10995 Male 76.0 1 0 Yes \n", + "3088 26267 Female 76.0 0 0 Yes \n", + "1207 22440 Female 49.0 0 0 Yes \n", + "193 69112 Male 68.0 1 1 Yes \n", + "\n", + " work_type Residence_type avg_glucose_level bmi smoking_status \\\n", + "4886 Private Rural 55.12 21.8 never smoked \n", + "1191 Private Urban 55.22 27.0 never smoked \n", + "4110 Self-employed Rural 55.23 28.9 Unknown \n", + "682 Private Urban 55.25 20.4 never smoked \n", + "772 Private Rural 55.26 33.2 Unknown \n", + "... ... ... ... ... ... \n", + "2462 Govt_job Rural 266.59 25.5 never smoked \n", + "4983 Private Rural 267.60 30.5 never smoked \n", + "3088 Self-employed Urban 267.61 27.9 smokes \n", + "1207 Private Urban 267.76 29.3 formerly smoked \n", + "193 Private Rural 271.74 31.1 smokes \n", + "\n", + " stroke \n", + "4886 0 \n", + "1191 0 \n", + "4110 0 \n", + "682 0 \n", + "772 0 \n", + "... ... \n", + "2462 0 \n", + "4983 0 \n", + "3088 0 \n", + "1207 0 \n", + "193 1 \n", + "\n", + "[5110 rows x 12 columns]" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sorted_df = df.sort_values(by=\"avg_glucose_level\", ascending=True)\n", + "sorted_df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "7. Удаление строк/столбцов" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idgenderhypertensionheart_diseaseever_marriedResidence_typeavg_glucose_levelbmismoking_statusstroke
09046Male01YesUrban228.6936.6formerly smoked1
151676Female00YesRural202.21NaNnever smoked1
231112Male01YesRural105.9232.5never smoked1
360182Female00YesUrban171.2334.4smokes1
41665Female10YesRural174.1224.0never smoked1
.................................
510518234Female10YesUrban83.75NaNnever smoked0
510644873Female00YesUrban125.2040.0never smoked0
510719723Female00YesRural82.9930.6never smoked0
510837544Male00YesRural166.2925.6formerly smoked0
510944679Female00YesUrban85.2826.2Unknown0
\n", + "

5110 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " id gender hypertension heart_disease ever_married Residence_type \\\n", + "0 9046 Male 0 1 Yes Urban \n", + "1 51676 Female 0 0 Yes Rural \n", + "2 31112 Male 0 1 Yes Rural \n", + "3 60182 Female 0 0 Yes Urban \n", + "4 1665 Female 1 0 Yes Rural \n", + "... ... ... ... ... ... ... \n", + "5105 18234 Female 1 0 Yes Urban \n", + "5106 44873 Female 0 0 Yes Urban \n", + "5107 19723 Female 0 0 Yes Rural \n", + "5108 37544 Male 0 0 Yes Rural \n", + "5109 44679 Female 0 0 Yes Urban \n", + "\n", + " avg_glucose_level bmi smoking_status stroke \n", + "0 228.69 36.6 formerly smoked 1 \n", + "1 202.21 NaN never smoked 1 \n", + "2 105.92 32.5 never smoked 1 \n", + "3 171.23 34.4 smokes 1 \n", + "4 174.12 24.0 never smoked 1 \n", + "... ... ... ... ... \n", + "5105 83.75 NaN never smoked 0 \n", + "5106 125.20 40.0 never smoked 0 \n", + "5107 82.99 30.6 never smoked 0 \n", + "5108 166.29 25.6 formerly smoked 0 \n", + "5109 85.28 26.2 Unknown 0 \n", + "\n", + "[5110 rows x 10 columns]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_dropped_columns = df.drop(\n", + " columns=[\"age\", \"work_type\"]\n", + ")\n", + "df_dropped_columns" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idgenderagehypertensionheart_diseaseever_marriedwork_typeResidence_typeavg_glucose_levelbmismoking_statusstroke
09046Male67.001YesPrivateUrban228.6936.6formerly smoked1
151676Female61.000YesSelf-employedRural202.21NaNnever smoked1
231112Male80.001YesPrivateRural105.9232.5never smoked1
41665Female79.010YesSelf-employedRural174.1224.0never smoked1
556669Male81.000YesPrivateUrban186.2129.0formerly smoked1
.......................................
510518234Female80.010YesPrivateUrban83.75NaNnever smoked0
510644873Female81.000YesSelf-employedUrban125.2040.0never smoked0
510719723Female35.000YesSelf-employedRural82.9930.6never smoked0
510837544Male51.000YesPrivateRural166.2925.6formerly smoked0
510944679Female44.000YesGovt_jobUrban85.2826.2Unknown0
\n", + "

5108 rows × 12 columns

\n", + "
" + ], + "text/plain": [ + " id gender age hypertension heart_disease ever_married \\\n", + "0 9046 Male 67.0 0 1 Yes \n", + "1 51676 Female 61.0 0 0 Yes \n", + "2 31112 Male 80.0 0 1 Yes \n", + "4 1665 Female 79.0 1 0 Yes \n", + "5 56669 Male 81.0 0 0 Yes \n", + "... ... ... ... ... ... ... \n", + "5105 18234 Female 80.0 1 0 Yes \n", + "5106 44873 Female 81.0 0 0 Yes \n", + "5107 19723 Female 35.0 0 0 Yes \n", + "5108 37544 Male 51.0 0 0 Yes \n", + "5109 44679 Female 44.0 0 0 Yes \n", + "\n", + " work_type Residence_type avg_glucose_level bmi smoking_status \\\n", + "0 Private Urban 228.69 36.6 formerly smoked \n", + "1 Self-employed Rural 202.21 NaN never smoked \n", + "2 Private Rural 105.92 32.5 never smoked \n", + "4 Self-employed Rural 174.12 24.0 never smoked \n", + "5 Private Urban 186.21 29.0 formerly smoked \n", + "... ... ... ... ... ... \n", + "5105 Private Urban 83.75 NaN never smoked \n", + "5106 Self-employed Urban 125.20 40.0 never smoked \n", + "5107 Self-employed Rural 82.99 30.6 never smoked \n", + "5108 Private Rural 166.29 25.6 formerly smoked \n", + "5109 Govt_job Urban 85.28 26.2 Unknown \n", + "\n", + " stroke \n", + "0 1 \n", + "1 1 \n", + "2 1 \n", + "4 1 \n", + "5 1 \n", + "... ... \n", + "5105 0 \n", + "5106 0 \n", + "5107 0 \n", + "5108 0 \n", + "5109 0 \n", + "\n", + "[5108 rows x 12 columns]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_dropped_rows = df.drop([3, 9]) \n", + "df_dropped_rows" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "8. Создание новых столбцов на основе данных из существующих столбцов\n", + "датафрейма" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idgenderagehypertensionheart_diseaseever_marriedwork_typeResidence_typeavg_glucose_levelbmismoking_statusstrokeage+id
09046Male67.001YesPrivateUrban228.6936.6formerly smoked19113.0
151676Female61.000YesSelf-employedRural202.21NaNnever smoked151737.0
231112Male80.001YesPrivateRural105.9232.5never smoked131192.0
360182Female49.000YesPrivateUrban171.2334.4smokes160231.0
41665Female79.010YesSelf-employedRural174.1224.0never smoked11744.0
..........................................
510518234Female80.010YesPrivateUrban83.75NaNnever smoked018314.0
510644873Female81.000YesSelf-employedUrban125.2040.0never smoked044954.0
510719723Female35.000YesSelf-employedRural82.9930.6never smoked019758.0
510837544Male51.000YesPrivateRural166.2925.6formerly smoked037595.0
510944679Female44.000YesGovt_jobUrban85.2826.2Unknown044723.0
\n", + "

5110 rows × 13 columns

\n", + "
" + ], + "text/plain": [ + " id gender age hypertension heart_disease ever_married \\\n", + "0 9046 Male 67.0 0 1 Yes \n", + "1 51676 Female 61.0 0 0 Yes \n", + "2 31112 Male 80.0 0 1 Yes \n", + "3 60182 Female 49.0 0 0 Yes \n", + "4 1665 Female 79.0 1 0 Yes \n", + "... ... ... ... ... ... ... \n", + "5105 18234 Female 80.0 1 0 Yes \n", + "5106 44873 Female 81.0 0 0 Yes \n", + "5107 19723 Female 35.0 0 0 Yes \n", + "5108 37544 Male 51.0 0 0 Yes \n", + "5109 44679 Female 44.0 0 0 Yes \n", + "\n", + " work_type Residence_type avg_glucose_level bmi smoking_status \\\n", + "0 Private Urban 228.69 36.6 formerly smoked \n", + "1 Self-employed Rural 202.21 NaN never smoked \n", + "2 Private Rural 105.92 32.5 never smoked \n", + "3 Private Urban 171.23 34.4 smokes \n", + "4 Self-employed Rural 174.12 24.0 never smoked \n", + "... ... ... ... ... ... \n", + "5105 Private Urban 83.75 NaN never smoked \n", + "5106 Self-employed Urban 125.20 40.0 never smoked \n", + "5107 Self-employed Rural 82.99 30.6 never smoked \n", + "5108 Private Rural 166.29 25.6 formerly smoked \n", + "5109 Govt_job Urban 85.28 26.2 Unknown \n", + "\n", + " stroke age+id \n", + "0 1 9113.0 \n", + "1 1 51737.0 \n", + "2 1 31192.0 \n", + "3 1 60231.0 \n", + "4 1 1744.0 \n", + "... ... ... \n", + "5105 0 18314.0 \n", + "5106 0 44954.0 \n", + "5107 0 19758.0 \n", + "5108 0 37595.0 \n", + "5109 0 44723.0 \n", + "\n", + "[5110 rows x 13 columns]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df[\"age+id\"] = df[\"age\"] + df[\"id\"]\n", + "df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "9. Удаление строк с пустыми значениями" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "id 0\n", + "gender 0\n", + "age 0\n", + "hypertension 0\n", + "heart_disease 0\n", + "ever_married 0\n", + "work_type 0\n", + "Residence_type 0\n", + "avg_glucose_level 0\n", + "bmi 201\n", + "smoking_status 0\n", + "stroke 0\n", + "age+id 0\n", + "dtype: int64\n" + ] + } + ], + "source": [ + "print(df.isna().sum())" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idgenderagehypertensionheart_diseaseever_marriedwork_typeResidence_typeavg_glucose_levelbmismoking_statusstrokeage+id
09046Male67.001YesPrivateUrban228.6936.6formerly smoked19113.0
231112Male80.001YesPrivateRural105.9232.5never smoked131192.0
360182Female49.000YesPrivateUrban171.2334.4smokes160231.0
41665Female79.010YesSelf-employedRural174.1224.0never smoked11744.0
556669Male81.000YesPrivateUrban186.2129.0formerly smoked156750.0
..........................................
510414180Female13.000NochildrenRural103.0818.6Unknown014193.0
510644873Female81.000YesSelf-employedUrban125.2040.0never smoked044954.0
510719723Female35.000YesSelf-employedRural82.9930.6never smoked019758.0
510837544Male51.000YesPrivateRural166.2925.6formerly smoked037595.0
510944679Female44.000YesGovt_jobUrban85.2826.2Unknown044723.0
\n", + "

4909 rows × 13 columns

\n", + "
" + ], + "text/plain": [ + " id gender age hypertension heart_disease ever_married \\\n", + "0 9046 Male 67.0 0 1 Yes \n", + "2 31112 Male 80.0 0 1 Yes \n", + "3 60182 Female 49.0 0 0 Yes \n", + "4 1665 Female 79.0 1 0 Yes \n", + "5 56669 Male 81.0 0 0 Yes \n", + "... ... ... ... ... ... ... \n", + "5104 14180 Female 13.0 0 0 No \n", + "5106 44873 Female 81.0 0 0 Yes \n", + "5107 19723 Female 35.0 0 0 Yes \n", + "5108 37544 Male 51.0 0 0 Yes \n", + "5109 44679 Female 44.0 0 0 Yes \n", + "\n", + " work_type Residence_type avg_glucose_level bmi smoking_status \\\n", + "0 Private Urban 228.69 36.6 formerly smoked \n", + "2 Private Rural 105.92 32.5 never smoked \n", + "3 Private Urban 171.23 34.4 smokes \n", + "4 Self-employed Rural 174.12 24.0 never smoked \n", + "5 Private Urban 186.21 29.0 formerly smoked \n", + "... ... ... ... ... ... \n", + "5104 children Rural 103.08 18.6 Unknown \n", + "5106 Self-employed Urban 125.20 40.0 never smoked \n", + "5107 Self-employed Rural 82.99 30.6 never smoked \n", + "5108 Private Rural 166.29 25.6 formerly smoked \n", + "5109 Govt_job Urban 85.28 26.2 Unknown \n", + "\n", + " stroke age+id \n", + "0 1 9113.0 \n", + "2 1 31192.0 \n", + "3 1 60231.0 \n", + "4 1 1744.0 \n", + "5 1 56750.0 \n", + "... ... ... \n", + "5104 0 14193.0 \n", + "5106 0 44954.0 \n", + "5107 0 19758.0 \n", + "5108 0 37595.0 \n", + "5109 0 44723.0 \n", + "\n", + "[4909 rows x 13 columns]" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.dropna() # Удалили 201 пустую строку" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "10. Заполнение пустых значений на основе существующих данных" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "ename": "TypeError", + "evalue": "Could not convert ['MaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleMaleMaleMaleMaleFemaleMaleMaleFemaleMaleFemaleMaleFemaleMaleMaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleMaleMaleFemaleMaleMaleMaleFemaleMaleMaleMaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleMaleMaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleMaleMaleFemaleMaleMaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleMaleMaleMaleMaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleMaleMaleMaleMaleFemaleMaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleMaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleMaleMaleMaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleMaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleMaleMaleMaleMaleMaleFemaleMaleMaleMaleFemaleMaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleMaleMaleFemaleMaleMaleFemaleMaleFemaleMaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleMaleMaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleMaleMaleMaleMaleMaleMaleFemaleFemaleFemaleMaleMaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleMaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleMaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleMaleMaleMaleMaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleMaleMaleMaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleMaleMaleMaleFemaleMaleMaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleMaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleMaleMaleMaleMaleFemaleMaleMaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleMaleMaleMaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleFemaleMaleFemaleMaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleMaleMaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleMaleMaleMaleFemaleFemaleMaleMaleMaleMaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleMaleMaleMaleMaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleMaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleMaleMaleFemaleMaleMaleFemaleMaleFemaleMaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleMaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleMaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleMaleFemaleMaleMaleMaleMaleMaleFemaleMaleMaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleMaleFemaleMaleMaleFemaleMaleFemaleMaleMaleMaleFemaleMaleFemaleMaleMaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleMaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleMaleMaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleMaleMaleMaleMaleMaleFemaleMaleMaleMaleFemaleMaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleMaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleMaleMaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleOtherFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleMaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleMaleFemaleMaleMaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleMaleMaleMaleMaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleMaleFemaleMaleMaleMaleMaleFemaleMaleMaleMaleMaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleMaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleMaleMaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleMaleMaleMaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleMaleMaleFemaleMaleMaleMaleFemaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleMaleMaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleMaleMaleMaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleMaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleMaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleMaleMaleMaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleMaleMaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleMaleMaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleMaleMaleMaleMaleMaleMaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleMaleFemaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleMaleMaleMaleMaleMaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleMaleMaleMaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemale'\n 'YesYesYesYesYesYesYesNoYesYesYesYesYesYesYesYesYesYesNoNoYesYesYesYesYesYesYesYesYesYesYesYesYesYesNoNoYesYesNoYesYesYesYesYesYesYesNoYesYesYesNoYesYesYesYesYesYesYesYesYesYesYesYesYesYesNoYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesNoNoYesYesYesYesYesYesYesYesNoYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesNoNoYesYesNoYesYesYesYesYesYesYesYesYesYesYesYesNoNoYesYesYesYesYesYesYesYesYesYesNoYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesNoNoYesYesYesYesNoYesYesNoYesYesYesYesYesYesYesYesYesYesYesNoYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesNoYesYesYesYesYesYesYesNoYesYesYesYesYesYesYesNoNoYesYesYesYesNoYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesNoYesYesYesNoYesNoYesNoYesYesYesYesYesYesYesYesYesYesNoNoYesYesYesYesYesYesYesYesYesYesNoYesYesYesYesNoNoYesNoYesNoYesNoYesNoNoNoYesNoYesYesYesYesYesYesNoYesYesYesYesNoYesYesYesYesYesYesYesYesYesYesYesYesNoNoNoNoYesNoYesYesNoNoNoYesYesYesYesYesNoYesNoYesYesYesYesYesYesYesNoYesYesNoNoYesYesNoYesYesYesYesNoYesYesYesYesYesNoYesYesYesNoYesNoYesNoYesYesYesYesNoNoNoYesNoYesYesNoNoYesYesNoYesYesYesYesYesNoNoNoYesYesYesYesNoNoNoYesYesYesYesYesYesYesNoYesNoYesNoYesNoYesNoNoYesNoYesYesYesNoYesYesYesYesYesYesYesYesYesYesYesNoYesYesNoNoYesNoYesNoNoYesYesYesYesNoNoYesYesNoNoYesYesNoNoNoNoYesYesYesYesNoYesYesYesNoYesYesNoNoNoYesYesYesNoYesYesNoYesYesNoYesYesYesNoYesYesNoYesYesNoNoNoNoYesYesYesYesYesYesYesYesYesYesYesYesYesNoNoYesYesYesYesNoYesYesYesYesYesNoYesYesYesYesYesNoYesYesNoNoYesYesNoYesYesYesYesYesYesNoNoYesNoYesNoYesYesYesNoNoNoYesNoYesNoYesNoYesNoYesNoNoNoNoYesYesYesYesNoYesNoYesNoYesYesNoYesYesNoYesNoYesYesYesYesYesYesYesYesYesYesNoNoYesNoYesYesNoYesNoYesNoYesNoYesYesYesNoNoYesYesYesYesYesYesYesYesYesYesYesNoYesNoYesYesYesYesYesNoYesYesYesYesNoYesNoYesYesYesYesNoNoYesYesYesYesYesYesYesYesNoNoNoYesNoNoYesYesYesYesYesNoNoYesYesYesNoYesNoYesYesYesYesNoYesNoNoNoNoNoNoYesYesYesYesYesNoNoYesYesNoYesYesYesYesYesYesYesNoYesYesYesYesNoYesNoYesYesNoNoNoNoYesYesYesNoNoYesYesNoYesNoNoYesNoYesYesNoYesYesYesYesYesYesNoYesNoNoYesYesYesYesYesYesNoYesNoNoYesYesNoNoYesNoYesNoNoYesYesYesNoYesYesYesNoYesYesYesYesNoYesYesYesNoNoYesYesNoYesYesYesYesYesYesYesNoNoNoYesYesNoNoNoNoYesYesYesYesYesNoYesNoYesYesYesYesYesNoNoYesYesNoNoYesNoYesYesYesYesYesYesYesYesYesNoYesYesNoYesYesNoNoYesYesNoYesNoNoNoYesYesYesYesYesNoYesNoYesYesYesNoYesNoYesYesNoYesYesYesYesNoYesYesYesYesYesNoYesYesYesYesNoNoYesYesYesYesNoYesYesNoYesYesYesYesYesNoNoYesNoYesYesYesYesYesYesYesNoYesYesYesNoNoYesYesYesYesNoYesYesYesYesYesNoNoNoNoYesYesNoNoYesNoYesYesYesNoYesYesYesNoNoNoNoYesYesYesYesYesYesYesYesYesYesNoNoNoNoNoYesNoNoYesNoNoNoNoNoYesNoNoNoYesNoYesYesNoNoNoYesYesNoYesNoNoYesNoYesYesYesNoYesNoYesNoYesYesYesYesNoNoYesNoNoYesYesYesYesYesNoNoYesYesNoYesYesNoYesYesNoYesYesYesYesNoYesNoYesYesYesYesYesYesYesYesYesNoNoYesYesYesNoYesNoYesYesNoYesYesNoYesNoYesNoYesNoYesYesNoYesNoYesYesYesNoYesYesNoYesYesNoYesYesNoYesYesYesYesNoYesNoYesNoYesYesYesYesYesYesYesNoNoNoNoNoYesYesNoNoNoYesYesYesYesYesNoNoYesYesYesYesNoYesNoYesNoYesYesYesNoYesYesYesYesYesYesNoNoNoNoYesYesYesYesYesYesNoYesNoYesYesNoYesYesYesYesYesNoNoNoYesYesYesYesYesNoYesYesNoNoYesYesYesNoYesYesYesYesYesYesYesNoYesYesYesNoNoYesNoYesNoNoYesYesYesNoNoYesYesNoYesYesYesYesNoYesNoNoNoNoYesNoYesYesYesYesNoNoNoYesNoYesYesYesYesYesNoYesYesYesYesNoNoNoNoNoNoNoYesYesYesYesNoYesYesNoNoYesYesYesYesYesNoNoYesYesNoNoNoYesNoYesNoNoYesNoNoNoYesNoYesYesNoYesYesNoYesYesYesNoYesNoNoYesNoNoNoYesYesYesYesNoNoNoYesNoYesYesYesYesYesNoYesYesYesYesNoYesYesYesYesNoNoYesYesNoYesYesNoYesYesNoYesYesNoYesNoYesYesYesNoNoNoYesYesNoYesYesYesYesNoYesYesNoYesYesYesYesYesYesNoYesNoYesYesYesYesYesYesYesYesYesNoNoYesYesYesYesNoYesYesYesNoNoYesYesYesYesNoYesNoYesYesYesNoNoYesYesYesNoNoNoYesYesNoYesYesYesYesYesNoYesYesNoNoYesNoYesNoYesNoYesYesYesYesYesYesYesNoNoNoYesNoYesYesYesYesYesYesYesYesYesYesYesYesNoNoYesNoNoNoYesYesNoNoYesNoYesYesYesYesYesYesYesYesYesNoYesNoNoYesYesYesNoNoYesYesYesYesNoYesNoYesYesYesNoNoNoNoNoYesNoYesNoNoNoYesYesYesYesYesNoYesYesYesYesYesNoNoYesNoYesNoYesYesYesNoNoNoYesYesYesNoNoYesYesNoYesYesYesYesYesYesYesNoYesNoNoYesYesYesYesNoNoYesYesYesNoYesNoYesYesYesYesYesYesYesYesYesYesNoYesYesYesYesYesYesYesYesNoYesYesNoYesNoYesYesYesNoNoNoYesNoYesNoYesYesYesYesNoYesNoYesYesNoYesNoNoYesNoYesYesYesNoYesYesNoYesYesYesYesNoYesNoNoYesYesYesYesYesNoNoYesYesNoNoYesYesYesYesNoYesYesNoNoYesNoNoNoYesYesYesYesNoYesYesNoNoYesYesYesYesYesNoYesNoNoNoYesYesYesYesYesYesYesNoYesYesNoNoYesNoNoNoYesYesYesYesYesYesYesYesYesYesNoYesYesYesYesYesNoYesNoYesYesYesNoYesYesYesYesYesYesNoYesYesYesNoNoYesNoYesYesYesYesYesYesNoYesYesYesYesNoYesYesNoNoYesNoNoYesNoNoYesYesYesNoNoNoYesYesYesYesYesNoNoYesYesNoYesNoYesNoYesYesNoYesYesNoYesYesYesYesNoYesYesYesYesNoYesYesYesYesYesYesYesYesYesYesYesYesYesNoYesYesYesNoNoYesNoYesNoNoYesYesYesYesNoNoYesYesNoYesNoYesYesYesNoYesYesYesNoYesNoYesNoNoYesNoYesYesNoYesYesNoNoNoYesNoYesNoNoNoNoYesNoNoYesYesYesYesYesYesYesNoNoNoYesNoYesNoYesYesYesNoNoYesNoNoYesNoYesYesYesYesNoYesYesNoNoNoYesYesNoYesNoYesYesYesYesYesYesYesYesYesYesYesNoYesYesNoYesYesNoYesYesYesYesYesYesYesNoYesYesYesYesYesYesYesNoNoYesNoYesYesYesYesYesNoYesNoNoYesNoNoNoNoYesNoYesYesNoYesYesNoYesYesYesYesYesYesNoNoNoYesYesNoYesYesYesYesNoNoNoYesYesYesYesYesYesNoYesYesYesNoNoNoNoYesYesYesNoNoYesNoYesYesYesYesYesNoNoNoNoNoYesYesNoYesNoYesYesYesYesNoYesYesNoYesNoNoYesYesNoNoYesNoYesYesNoYesNoYesYesNoYesYesYesNoYesYesYesYesNoYesYesYesYesYesYesNoYesNoNoYesYesNoNoYesNoYesYesYesNoNoYesNoNoNoYesYesYesYesYesNoNoYesYesNoYesNoYesYesYesYesNoNoNoYesNoYesYesYesYesNoYesYesYesYesYesNoYesYesYesYesYesNoYesYesNoYesYesYesYesYesYesYesNoNoYesNoYesYesNoNoYesNoNoNoYesYesYesNoNoNoNoYesYesYesYesYesNoYesYesYesNoYesYesYesNoYesNoNoNoYesYesNoNoYesYesNoNoNoYesNoYesYesNoYesYesYesYesNoYesYesNoYesNoNoYesYesNoYesYesNoYesYesYesYesYesNoNoNoYesYesYesNoYesNoYesYesNoYesYesYesYesYesNoYesNoYesYesYesNoYesNoYesYesYesNoYesNoNoYesYesNoYesNoYesYesNoYesYesYesYesNoYesNoNoNoYesYesYesNoYesYesYesYesYesYesYesYesYesYesYesYesYesNoYesYesNoNoYesYesYesNoNoNoYesYesYesYesYesYesNoYesYesYesYesYesYesYesYesYesNoNoNoYesYesNoYesNoNoNoYesYesYesNoNoYesYesYesNoNoYesYesNoNoYesYesYesNoNoYesYesYesYesYesYesYesNoYesYesYesYesYesYesYesYesYesYesYesNoNoYesNoYesYesYesYesYesYesYesYesNoYesYesYesNoNoNoYesNoYesNoNoYesNoYesYesYesYesYesYesYesYesYesNoYesYesNoYesYesNoYesYesNoNoNoYesYesNoYesYesNoYesYesYesNoYesNoNoNoNoYesYesYesNoNoYesYesYesNoYesYesYesYesYesNoNoYesYesNoYesNoNoYesYesNoYesYesYesYesNoYesYesYesYesNoNoNoNoNoNoYesNoYesYesNoYesYesNoYesYesYesNoYesNoNoNoYesYesYesYesYesNoNoYesYesYesYesYesYesYesYesYesYesNoYesNoNoNoNoNoYesYesNoNoYesYesNoNoYesYesYesYesYesNoYesYesYesNoNoYesNoYesNoYesYesNoNoNoYesYesYesYesNoNoYesNoYesYesYesYesYesNoNoYesNoYesYesYesNoNoNoNoYesYesNoNoYesYesNoYesNoYesYesYesYesYesYesYesNoYesYesYesYesYesNoYesYesNoYesYesYesNoYesNoNoYesNoYesYesYesNoYesYesYesYesNoNoYesNoYesNoNoYesYesYesNoNoYesNoYesYesYesNoNoYesYesNoYesYesYesYesYesNoYesNoYesYesYesYesYesNoYesYesYesNoYesNoYesYesYesYesYesYesNoNoNoNoYesYesNoYesYesYesYesYesYesNoYesNoYesNoYesYesNoYesNoYesYesYesYesYesYesYesYesYesNoYesNoYesYesYesYesYesNoYesYesYesYesYesNoNoYesYesYesYesYesYesYesNoYesNoYesYesYesNoYesYesYesYesYesYesYesYesYesNoYesYesYesYesNoYesYesNoNoYesYesYesYesYesNoNoYesNoNoYesNoYesNoYesNoYesNoNoYesYesYesYesYesYesNoYesNoNoYesYesYesYesNoYesYesYesNoNoYesNoYesYesYesYesNoYesYesYesNoYesNoYesYesNoNoYesYesYesYesNoYesNoNoYesNoYesNoYesNoYesNoNoYesNoNoNoYesYesNoYesYesNoYesYesNoNoYesYesNoNoNoYesNoYesYesYesYesYesNoYesNoNoYesYesYesNoYesNoYesYesNoYesYesYesYesYesYesYesYesYesYesNoNoYesNoYesNoYesNoYesYesYesYesNoNoNoYesNoYesNoYesNoYesYesYesYesNoYesNoYesNoYesYesNoYesYesNoNoYesYesNoYesYesYesNoNoYesYesYesYesYesYesNoYesYesYesYesNoYesNoYesYesYesYesNoYesYesNoNoYesNoYesYesYesYesNoYesNoNoNoYesNoYesNoYesYesNoNoYesYesYesYesYesYesYesYesNoYesYesNoNoYesYesYesNoYesYesYesYesYesNoYesNoYesNoYesYesNoYesYesYesYesYesNoYesYesNoYesYesYesYesYesYesYesNoYesNoNoYesYesYesYesNoYesNoNoNoYesYesNoYesYesNoNoNoNoYesYesYesYesYesNoYesYesYesYesYesNoNoYesYesNoNoYesYesNoYesNoYesNoYesNoYesNoYesYesYesYesYesYesNoYesYesYesYesNoNoNoNoYesYesYesYesYesYesYesYesYesYesNoYesYesNoYesNoYesYesYesYesYesYesYesYesYesNoYesNoYesNoNoYesYesNoYesNoYesNoYesYesYesYesYesYesYesYesYesYesYesYesYesNoYesYesYesYesYesNoYesYesNoYesYesNoNoYesNoYesNoYesNoYesYesNoYesYesNoNoYesYesNoYesYesNoNoYesYesYesYesNoNoYesNoNoYesYesYesYesYesYesYesYesYesNoYesNoYesYesYesNoYesYesNoNoYesYesYesYesNoYesNoNoNoNoYesNoYesYesYesYesYesYesYesNoNoYesNoYesYesYesNoYesNoNoYesNoNoNoYesYesYesNoYesNoYesNoYesNoNoNoYesYesYesNoYesYesYesYesYesYesNoNoYesYesYesYesYesYesYesYesYesNoYesYesNoYesNoYesYesYesNoYesYesYesYesYesNoYesYesNoYesNoYesYesYesYesNoYesYesNoYesNoYesNoYesYesYesNoNoNoYesYesNoYesYesYesNoYesNoYesYesYesYesYesNoYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesNoYesYesNoYesYesYesNoYesYesYesYesYesNoNoYesNoYesYesYesNoYesYesYesYesNoNoYesYesNoNoYesYesYesYesNoYesNoYesYesYesYesNoYesYesYesYesYesYesYesYesYesYesYesNoNoNoNoNoNoYesNoYesYesYesYesNoYesYesNoNoYesYesYesNoNoYesYesNoNoYesYesYesYesYesNoYesNoYesNoYesYesNoNoYesNoNoNoNoYesNoNoYesYesYesNoYesYesNoYesYesYesNoYesNoYesYesNoNoNoYesYesNoYesYesYesYesYesNoNoNoNoNoNoYesYesYesYesYesNoYesNoYesYesNoYesYesYesNoYesYesYesNoYesYesYesNoYesYesNoNoNoYesYesYesYesNoYesNoYesYesNoNoYesYesNoNoNoYesYesNoYesYesYesYesYesNoNoNoNoYesYesNoYesNoYesYesNoYesNoNoYesYesYesYesYesYesYesNoNoYesYesNoYesNoYesYesYesYesYesNoNoYesYesYesYesYesYesYesYesYesNoYesYesNoNoYesYesNoYesYesYesNoYesYesYesNoYesYesYesYesNoYesYesYesNoYesNoYesYesNoYesNoYesYesNoYesYesYesYesNoYesYesYesYesNoYesNoYesYesNoYesYesYesNoYesYesNoYesYesYesYesNoYesNoYesYesYesYesYesNoNoYesYesNoYesNoNoYesYesYesNoYesNoNoNoYesNoYesNoNoYesYesYesYesYesYesYesYesNoYesYesYesYesNoNoYesYesYesYesYesYesYesYesYesYesNoNoNoYesYesNoYesNoYesYesYesYesNoYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesNoNoNoYesNoYesYesNoNoNoYesNoYesYesYesNoYesNoNoYesYesNoNoNoYesNoYesYesYesYesYesNoYesYesYesNoYesYesYesYesYesYesYesNoNoYesNoNoYesYesNoNoNoYesNoYesNoYesYesYesNoNoYesYesYesYesYesYesNoYesNoNoYesYesYesNoYesNoYesYesNoYesYesNoNoYesYesYesYesYesYesNoNoNoNoYesYesNoYesYesYesNoYesNoNoYesYesYesNoYesYesNoNoNoNoNoNoYesNoYesNoYesYesYesYesNoYesNoYesYesNoYesYesNoYesYesYesYesNoYesYesYesYesNoNoNoYesNoNoYesNoYesYesNoYesYesYesNoYesNoYesNoYesYesNoNoYesYesYesYesYesYesYesNoYesNoNoNoYesYesNoYesYesYesNoNoNoYesNoYesYesYesNoYesYesNoYesNoYesNoYesYesYesYesYesNoNoNoNoYesYesNoYesYesYesYesNoNoNoYesYesYesNoYesYesYesYesYesNoYesNoNoYesYesNoNoNoYesNoNoYesYesYesNoYesNoYesYesNoYesNoNoYesNoYesYesNoNoNoYesYesYesYesNoYesYesNoNoYesNoYesNoNoNoYesNoNoYesYesNoYesYesNoYesYesYesNoNoNoYesYesYesYesNoYesNoNoYesYesYesNoYesYesYesYesYesYesNoYesYesYesYesYesYesYesYesNoYesYesYesNoYesYesNoYesYesYesNoNoYesNoNoYesYesYesYesNoNoYesNoYesNoYesNoYesNoYesYesYesNoYesNoYesYesNoNoYesNoNoYesYesYesYesNoYesNoYesNoNoNoNoNoYesYesYesYesYesNoYesYesYesYesYesYesYesNoYesYesYesNoYesYesYesYesYesYesYesYesYesYesNoNoNoYesYesNoNoYesNoYesYesYesYesYesYesNoYesNoNoNoNoYesYesYesNoYesYesYesYesNoYesYesYesYesNoYesYesYesNoNoNoNoNoYesYesYesYesYesYesNoYesYesNoNoYesNoYesNoYesYesYesYesNoNoNoNoYesNoYesYesYesYesYesYesNoYesYesNoNoYesYesNoYesNoYesYesNoYesYesYesNoYesYesYesYesYesYesYesNoNoYesYesNoYesNoYesYesYesYesYesYesYesYesNoNoYesYesYesYesYesYesYesYesYesYesYesYesNoYesYesNoYesNoYesYesNoYesYesYesNoYesYesYesYesYesYesNoNoYesYesNoYesYesYesYesYesNoNoNoNoYesYesYesYesYesYesYesYesYesNoYesNoNoYesYesYesYesYesYesYesYesNoYesYesYesNoYesYesYesNoYesNoNoYesNoNoYesYesYesYesYesNoNoYesYesNoYesYesYesNoNoYesNoYesNoNoYesNoYesYesYesYesYesYesYesYesNoYesNoNoYesNoNoNoNoYesYesYesYesYesYesYesNoNoNoNoNoNoYesYesNoNoYesNoNoNoNoYesYesYesNoNoYesYesYesNoYesYesNoYesYesNoNoYesNoNoNoYesYesNoYesYesYesYesYesNoYesYesYesYesYesYesNoNoYesYesNoNoYesYesYesNoNoYesYesNoYesYesYesYesYesYesYesYesYesNoYesYesNoYesYesNoNoNoYesYesYesNoNoYesYesNoNoYesYesYesNoYesYesYesNoNoYesYesYesNoYesYesYesYesYesNoYesNoYesYesYesNoNoYesNoYesNoNoYesYesYesYesYesNoYesNoNoYesYesYesYesNoNoYesNoNoNoYesNoNoYesYesYesYesNoNoNoYesYesYesYesNoYesYesYesYesNoYesYesYesNoYesNoNoYesYesNoYesNoYesYesNoYesNoNoNoNoNoNoYesYesNoYesYesYesNoNoYesNoYesYesNoNoYesYesYesYesYesYesYesYesYesYesYesYesYesYesNoNoYesYesNoYesYesYesNoYesNoNoNoYesNoNoNoYesNoYesYesYesYesYesYesYesYesYesYesYesNoYesNoNoYesYesNoYesNoYesNoNoYesYesYesYesYesNoNoNoYesYesYesNoNoNoNoYesYesYesYesYesYesNoNoYesNoYesYesYesYesYesYesNoYesYesYesYesYesYesNoNoYesYesNoYesNoYesYesYesYesNoNoYesYesNoNoYesYesYesYesNoNoNoNoYesYesYesYesYesYesYesYesNoNoNoNoYesNoYesYesYesYesYesYesNoYesNoYesYesNoNoYesNoNoYesYesYesNoNoNoYesNoYesYesYesNoYesNoNoNoYesNoYesYesYesNoNoNoNoYesYesYesYesNoYesYesYesNoYesYesNoYesYesYesYesYesYesYesYesYesYesYesYesYesYesNoYesYesYesYesNoYesYesYesNoYesYesYesYesYesNoNoNoYesYesYesYesNoYesNoYesYesYesNoYesYesNoYesYesNoNoNoYesYesYesYesYesYesYesYesYesYesYesNoYesNoYesYesYesNoYesYesYesYesYesYesYesYesNoNoNoNoYesYesNoNoYesYesYesNoYesNoNoYesYesNoYesYesYesYesYesNoYesYesNoNoNoYesYesYesNoYesYesYesNoYesYesYesYesNoNoYesNoYesYesYesNoNoNoYesYesNoYesYesYesYesNoYesYesNoYesNoYesNoYesYesNoNoYesNoYesYesYesYesYesYesNoNoNoYesNoNoNoNoYesYesYesNoNoNoYesNoYesNoNoYesYesNoYesNoYesNoNoYesYesYesYesYesNoNoNoNoYesYesYesYesYesYesYesYesNoNoYesYesYesNoNoNoYesYesYesYesNoYesNoNoNoNoYesNoYesYesYesNoYesNoYesYesNoNoYesNoYesYesYesNoYesYesNoNoNoYesYesNoYesNoNoNoYesYesYesYesYesNoNoYesNoYesYesYesYesNoNoYesYesYesYesYesNoNoYesYesYesNoYesNoNoYesNoNoYesYesYesYesYesNoNoYesNoYesNoYesNoYesYesYesYesYesNoYesYesYesNoNoNoNoYesNoYesNoNoNoYesYesYesNoYesYesNoNoNoYesYesYesYesNoNoYesYesNoYesYesNoYesYesYesNoYesYesNoNoYesYesNoYesNoYesYesYesYesYesNoNoNoNoNoNoNoYesNoYesYesYesYesNoNoYesYesYesYesYesYesNoYesNoNoYesYesNoNoNoYesYesYesYesYesYesYesYesNoYesYesYesYesYesNoYesNoNoYesYesNoYesNoYesYesNoNoNoNoYesYesNoYesNoYesYesNoNoYesYesYesYesYesYesNoYesNoYesYesNoYesYesNoYesYesYesYesYesYesYesNoNoYesNoNoYesYesNoYesYesYesNoNoNoYesYesYesNoYesYesYesYesYesNoNoYesYesYesNoNoYesYesNoYesYesYesYesNoNoYesYesYesYesYes'\n 'PrivateSelf-employedPrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivatePrivateSelf-employedPrivatePrivatePrivateGovt_jobGovt_jobSelf-employedSelf-employedPrivatePrivateSelf-employedPrivatePrivateSelf-employedPrivatePrivatePrivateSelf-employedSelf-employedGovt_jobPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateGovt_jobPrivateSelf-employedPrivateSelf-employedPrivatePrivatePrivatePrivateSelf-employedGovt_jobPrivatePrivatePrivateSelf-employedGovt_jobPrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivateSelf-employedGovt_jobPrivateGovt_jobPrivatePrivateSelf-employedPrivatePrivatePrivateSelf-employedPrivateSelf-employedPrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedSelf-employedPrivatePrivateSelf-employedPrivateGovt_jobGovt_jobGovt_jobGovt_jobPrivateSelf-employedGovt_jobPrivatePrivateSelf-employedPrivateGovt_jobPrivatePrivateSelf-employedPrivateGovt_jobGovt_jobSelf-employedPrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivateGovt_jobSelf-employedPrivateGovt_jobGovt_jobPrivatePrivatePrivatePrivateSelf-employedGovt_jobPrivatePrivateSelf-employedPrivateGovt_jobPrivatePrivateSelf-employedPrivatePrivateSelf-employedPrivateGovt_jobPrivatePrivatePrivateSelf-employedSelf-employedSelf-employedPrivatePrivatePrivateSelf-employedSelf-employedPrivatePrivatechildrenPrivateSelf-employedSelf-employedGovt_jobPrivateGovt_jobSelf-employedSelf-employedSelf-employedPrivateSelf-employedSelf-employedSelf-employedPrivateSelf-employedGovt_jobPrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedGovt_jobPrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivateSelf-employedSelf-employedGovt_jobPrivatePrivateSelf-employedSelf-employedGovt_jobPrivateGovt_jobPrivatePrivateSelf-employedPrivateSelf-employedPrivateSelf-employedGovt_jobPrivatePrivateGovt_jobGovt_jobPrivatePrivatePrivateSelf-employedSelf-employedPrivateSelf-employedPrivateSelf-employedSelf-employedSelf-employedPrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatechildrenSelf-employedSelf-employedPrivatechildrenPrivatePrivatePrivateNever_workedPrivatePrivateSelf-employedPrivateSelf-employedGovt_jobPrivatePrivatePrivatePrivatePrivatePrivatePrivateGovt_jobSelf-employedPrivatePrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivateSelf-employedSelf-employedPrivatePrivatechildrenPrivateGovt_jobPrivatePrivatePrivateSelf-employedPrivatechildrenchildrenchildrenPrivatePrivateGovt_jobPrivateGovt_jobSelf-employedPrivateSelf-employedSelf-employedPrivatePrivatePrivatePrivatechildrenGovt_jobPrivateSelf-employedSelf-employedPrivatePrivatePrivatePrivatePrivateSelf-employedSelf-employedPrivatePrivatePrivatechildrenPrivatePrivateGovt_jobPrivatePrivatechildrenPrivatePrivatePrivatePrivateSelf-employedPrivateSelf-employedchildrenPrivatePrivateGovt_jobPrivatePrivatePrivatePrivateGovt_jobSelf-employedPrivatePrivateGovt_jobPrivateGovt_jobSelf-employedPrivatePrivatePrivatePrivatePrivatePrivateGovt_jobSelf-employedPrivateSelf-employedSelf-employedPrivatechildrenPrivatePrivateSelf-employedSelf-employedPrivatechildrenPrivatePrivatePrivatePrivateGovt_jobGovt_jobchildrenPrivatechildrenPrivatechildrenPrivateGovt_jobchildrenchildrenPrivateSelf-employedPrivateGovt_jobPrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivateSelf-employedPrivatePrivatechildrenchildrenPrivateGovt_jobSelf-employedGovt_jobPrivatePrivatePrivatePrivateSelf-employedSelf-employedGovt_jobSelf-employedchildrenPrivatechildrenPrivatePrivatePrivateGovt_jobchildrenPrivatePrivatePrivatechildrenPrivatePrivatePrivatePrivatePrivateGovt_jobGovt_jobSelf-employedGovt_jobPrivateSelf-employedchildrenPrivatePrivatePrivatePrivatePrivateGovt_jobSelf-employedchildrenGovt_jobSelf-employedPrivateGovt_jobSelf-employedchildrenPrivateSelf-employedPrivatePrivatePrivatePrivatePrivatechildrenchildrenchildrenPrivateSelf-employedPrivatePrivatePrivateSelf-employedPrivatePrivatePrivateSelf-employedPrivateGovt_jobPrivatePrivatePrivateGovt_jobGovt_jobPrivatechildrenSelf-employedSelf-employedchildrenSelf-employedPrivatePrivatePrivateSelf-employedPrivatePrivatePrivateSelf-employedPrivatePrivatePrivatechildrenchildrenchildrenPrivatePrivatePrivatePrivateSelf-employedGovt_jobPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateGovt_jobPrivateSelf-employedSelf-employedPrivatechildrenPrivateSelf-employedPrivatePrivateGovt_jobchildrenPrivateGovt_jobPrivatePrivateSelf-employedPrivatePrivatePrivatePrivatechildrenPrivateSelf-employedPrivatePrivatePrivateGovt_jobSelf-employedSelf-employedPrivatePrivatechildrenPrivatePrivatePrivatechildrenPrivatePrivateSelf-employedchildrenPrivatePrivatePrivatechildrenGovt_jobchildrenPrivatechildrenSelf-employedchildrenPrivatePrivatePrivateSelf-employedSelf-employedPrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedSelf-employedPrivatePrivatechildrenPrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedchildrenchildrenPrivateSelf-employedPrivateGovt_jobNever_workedPrivatechildrenPrivatechildrenPrivatechildrenPrivateGovt_jobPrivateSelf-employedPrivatePrivateGovt_jobGovt_jobPrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivateGovt_jobGovt_jobSelf-employedSelf-employedPrivateGovt_jobGovt_jobPrivatePrivatePrivatePrivateSelf-employedPrivatePrivatechildrenPrivateSelf-employedSelf-employedSelf-employedSelf-employedPrivatePrivateGovt_jobSelf-employedSelf-employedPrivatePrivatePrivatePrivatechildrenchildrenSelf-employedSelf-employedPrivateSelf-employedPrivatePrivatePrivateGovt_jobSelf-employedchildrenPrivateGovt_jobSelf-employedPrivatePrivateGovt_jobchildrenGovt_jobPrivatePrivatePrivatePrivateGovt_jobPrivatePrivatechildrenchildrenPrivatePrivatePrivatePrivatePrivateSelf-employedSelf-employedPrivatechildrenPrivatePrivatechildrenPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivatePrivateSelf-employedSelf-employedPrivatePrivatePrivatePrivatePrivatechildrenPrivatePrivateSelf-employedPrivatechildrenPrivatePrivatePrivateSelf-employedPrivatePrivateGovt_jobchildrenPrivatePrivatechildrenSelf-employedPrivatePrivatePrivateGovt_jobPrivatePrivatePrivatechildrenPrivatePrivatePrivatePrivateGovt_jobSelf-employedGovt_jobchildrenPrivatePrivatechildrenPrivatePrivatePrivatePrivateGovt_jobPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivateGovt_jobSelf-employedPrivatePrivatePrivatePrivatechildrenPrivateSelf-employedchildrenPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivatePrivatechildrenPrivatePrivateSelf-employedPrivatePrivatePrivatePrivateGovt_jobGovt_jobPrivatePrivatePrivatePrivateGovt_jobchildrenGovt_jobGovt_jobchildrenGovt_jobPrivatePrivateGovt_jobGovt_jobGovt_jobGovt_jobGovt_jobPrivateGovt_jobGovt_jobGovt_jobchildrenPrivatePrivatechildrenPrivateGovt_jobPrivateGovt_jobPrivatePrivatechildrenGovt_jobPrivateSelf-employedchildrenPrivateGovt_jobPrivateGovt_jobSelf-employedchildrenPrivatePrivatePrivateSelf-employedPrivatechildrenPrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivatePrivatePrivatePrivatechildrenPrivateSelf-employedGovt_jobGovt_jobPrivatePrivatePrivateSelf-employedNever_workedPrivatePrivateSelf-employedSelf-employedPrivatePrivatechildrenSelf-employedPrivatePrivatePrivateSelf-employedPrivatePrivatePrivateSelf-employedGovt_jobPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatechildrenPrivatePrivatePrivateSelf-employedPrivatechildrenGovt_jobchildrenchildrenSelf-employedPrivatechildrenPrivatePrivatePrivateSelf-employedSelf-employedPrivateGovt_jobSelf-employedSelf-employedPrivatePrivatePrivatePrivateNever_workedPrivateGovt_jobSelf-employedPrivateSelf-employedSelf-employedPrivatePrivateSelf-employedPrivatePrivatechildrenPrivatechildrenGovt_jobPrivateSelf-employedchildrenPrivateNever_workedPrivatechildrenPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatechildrenPrivateGovt_jobchildrenPrivatePrivatechildrenPrivatechildrenGovt_jobPrivatePrivatechildrenSelf-employedPrivatePrivatePrivatePrivateSelf-employedPrivateGovt_jobchildrenchildrenPrivatePrivatechildrenPrivatePrivatePrivatePrivateGovt_jobPrivatechildrenPrivatePrivatechildrenPrivatePrivatechildrenSelf-employedGovt_jobPrivateSelf-employedSelf-employedSelf-employedSelf-employedPrivateGovt_jobPrivateGovt_jobPrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivatechildrenPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateGovt_jobSelf-employedPrivateGovt_jobPrivatePrivatechildrenPrivatePrivatePrivateSelf-employedPrivateSelf-employedSelf-employedPrivatechildrenPrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedGovt_jobSelf-employedPrivatePrivatechildrenSelf-employedPrivateGovt_jobPrivatechildrenPrivatePrivatePrivatePrivateGovt_jobPrivatePrivateGovt_jobSelf-employedPrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivateSelf-employedchildrenPrivatePrivatePrivatePrivatePrivatePrivateSelf-employedchildrenPrivatePrivateGovt_jobGovt_jobSelf-employedPrivateGovt_jobPrivatePrivatePrivatePrivateSelf-employedPrivatechildrenGovt_jobSelf-employedSelf-employedPrivatePrivateSelf-employedPrivatechildrenchildrenPrivatePrivatePrivateGovt_jobPrivatePrivatePrivatechildrenPrivatechildrenPrivateGovt_jobchildrenPrivatePrivatePrivatePrivatePrivatechildrenPrivatechildrenPrivatePrivatePrivateGovt_jobPrivatePrivatePrivateGovt_jobPrivatechildrenPrivatePrivatePrivatechildrenGovt_jobPrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivateGovt_jobPrivatePrivatechildrenGovt_jobGovt_jobPrivatePrivatePrivatePrivatePrivatechildrenSelf-employedPrivatechildrenGovt_jobGovt_jobPrivateSelf-employedSelf-employedPrivatePrivatePrivatechildrenPrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatechildrenPrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivateSelf-employedPrivatechildrenGovt_jobPrivatePrivatechildrenchildrenPrivatePrivateSelf-employedSelf-employedPrivateSelf-employedSelf-employedchildrenPrivateGovt_jobGovt_jobPrivateGovt_jobGovt_jobPrivatePrivateGovt_jobSelf-employedPrivatechildrenchildrenPrivatechildrenPrivatePrivatePrivatePrivatechildrenchildrenchildrenPrivateGovt_jobSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivatePrivatechildrenPrivatePrivatePrivateSelf-employedPrivateGovt_jobchildrenchildrenPrivateSelf-employedchildrenPrivatePrivatePrivateGovt_jobSelf-employedchildrenPrivateSelf-employedPrivateGovt_jobchildrenPrivatePrivatePrivatePrivateSelf-employedchildrenSelf-employedPrivatechildrenSelf-employedSelf-employedPrivateGovt_jobPrivatePrivateGovt_jobGovt_jobPrivatePrivatechildrenPrivatePrivateSelf-employedPrivatechildrenPrivateSelf-employedPrivatePrivatePrivateSelf-employedGovt_jobSelf-employedPrivatePrivatePrivatePrivatePrivateSelf-employedSelf-employedPrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivateSelf-employedPrivatePrivateGovt_jobSelf-employedSelf-employedPrivateSelf-employedGovt_jobPrivatechildrenchildrenPrivatePrivateSelf-employedPrivatechildrenSelf-employedchildrenPrivatePrivatePrivatechildrenchildrenPrivatePrivateGovt_jobPrivateGovt_jobSelf-employedPrivatePrivatechildrenPrivatePrivatePrivatePrivatePrivatechildrenPrivateSelf-employedchildrenchildrenSelf-employedchildrenSelf-employedPrivatePrivatechildrenPrivateGovt_jobGovt_jobPrivatePrivatePrivatePrivatePrivatechildrenchildrenPrivatechildrenPrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatechildrenchildrenPrivatechildrenPrivatechildrenPrivatePrivatePrivatechildrenGovt_jobchildrenPrivatePrivatePrivateGovt_jobPrivatePrivatePrivatePrivatePrivatechildrenSelf-employedPrivatechildrenGovt_jobPrivatePrivatePrivatechildrenPrivatePrivateGovt_jobPrivatechildrenSelf-employedPrivateSelf-employedGovt_jobPrivatePrivateNever_workedPrivatechildrenPrivatePrivatechildrenSelf-employedPrivatePrivatechildrenGovt_jobGovt_jobPrivatePrivatePrivateGovt_jobPrivateSelf-employedSelf-employedGovt_jobGovt_jobchildrenchildrenSelf-employedchildrenPrivatechildrenPrivateGovt_jobPrivatePrivatechildrenSelf-employedPrivateGovt_jobSelf-employedPrivatechildrenPrivatePrivatePrivatePrivateSelf-employedPrivateSelf-employedGovt_jobPrivatePrivateSelf-employedPrivatechildrenPrivateGovt_jobGovt_jobSelf-employedGovt_jobPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateGovt_jobGovt_jobGovt_jobPrivatePrivateSelf-employedPrivatePrivatePrivatePrivatechildrenPrivateSelf-employedPrivatePrivatePrivatePrivateSelf-employedPrivatePrivateSelf-employedSelf-employedchildrenPrivateSelf-employedPrivateSelf-employedGovt_jobPrivatechildrenSelf-employedSelf-employedchildrenPrivatePrivatePrivatePrivatePrivatePrivatechildrenSelf-employedPrivatePrivatePrivateGovt_jobSelf-employedchildrenPrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivateGovt_jobchildrenPrivateGovt_jobchildrenPrivatePrivatePrivatePrivatePrivatePrivatechildrenPrivatePrivatechildrenPrivateGovt_jobPrivatePrivateSelf-employedPrivatePrivatePrivatechildrenPrivatePrivateSelf-employedGovt_jobchildrenGovt_jobSelf-employedPrivatePrivatechildrenGovt_jobGovt_jobPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatechildrenchildrenPrivateGovt_jobPrivatePrivateGovt_jobSelf-employedPrivateGovt_jobPrivatePrivatePrivatePrivateSelf-employedchildrenPrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivateGovt_jobPrivatePrivatePrivatechildrenPrivatechildrenPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivateSelf-employedPrivatechildrenPrivatechildrenSelf-employedPrivateSelf-employedPrivatePrivatePrivatePrivateGovt_jobPrivateGovt_jobPrivateGovt_jobGovt_jobPrivatechildrenchildrenPrivatePrivatePrivateGovt_jobPrivatechildrenPrivatePrivatePrivatePrivatePrivatechildrenPrivatePrivatePrivateGovt_jobPrivateSelf-employedSelf-employedSelf-employedGovt_jobchildrenPrivatePrivateGovt_jobchildrenSelf-employedPrivatePrivateGovt_jobPrivatePrivateSelf-employedPrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivateGovt_jobGovt_jobPrivateSelf-employedPrivatePrivateSelf-employedGovt_jobSelf-employedSelf-employedPrivatechildrenPrivateSelf-employedSelf-employedPrivatePrivateGovt_jobchildrenPrivatechildrenPrivateSelf-employedPrivatePrivatePrivatePrivatechildrenPrivatePrivatechildrenPrivatePrivateSelf-employedPrivatePrivatechildrenPrivatePrivateSelf-employedPrivateGovt_jobNever_workedPrivatechildrenPrivatePrivatechildrenPrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatechildrenPrivatechildrenPrivateSelf-employedPrivatePrivatePrivateGovt_jobPrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatechildrenPrivatePrivatePrivatePrivatePrivatePrivatechildrenPrivatechildrenPrivatePrivateGovt_jobSelf-employedSelf-employedSelf-employedGovt_jobchildrenPrivatePrivatePrivatePrivatechildrenSelf-employedPrivatechildrenSelf-employedPrivatePrivateGovt_jobSelf-employedPrivateGovt_jobPrivateSelf-employedGovt_jobPrivatePrivatePrivatechildrenPrivatePrivatechildrenPrivateGovt_jobPrivateSelf-employedGovt_jobSelf-employedPrivatePrivatePrivateSelf-employedchildrenSelf-employedPrivateGovt_jobSelf-employedPrivatePrivateSelf-employedPrivatePrivateSelf-employedPrivatePrivateGovt_jobGovt_jobPrivateGovt_jobPrivatePrivateGovt_jobPrivateGovt_jobPrivatechildrenPrivatePrivatePrivatePrivateGovt_jobPrivatePrivatePrivatePrivatechildrenSelf-employedPrivatePrivatePrivatePrivateGovt_jobchildrenGovt_jobchildrenSelf-employedPrivateNever_workedSelf-employedPrivatePrivatePrivatechildrenchildrenchildrenPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedGovt_jobSelf-employedPrivatechildrenPrivateSelf-employedPrivatePrivatePrivatechildrenPrivatechildrenPrivateGovt_jobSelf-employedSelf-employedGovt_jobPrivatechildrenchildrenchildrenPrivateSelf-employedPrivatePrivateSelf-employedchildrenPrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatechildrenPrivatePrivateSelf-employedPrivatechildrenPrivateGovt_jobSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatechildrenPrivatePrivatePrivateGovt_jobPrivatePrivateSelf-employedPrivatechildrenPrivatePrivateSelf-employedGovt_jobPrivatePrivatePrivatePrivatechildrenPrivatePrivateGovt_jobchildrenchildrenPrivatechildrenSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivateGovt_jobPrivateSelf-employedPrivatePrivatePrivatechildrenPrivatePrivatePrivateSelf-employedPrivatechildrenPrivatePrivatePrivatePrivateGovt_jobchildrenPrivatePrivatechildrenPrivateSelf-employedPrivateGovt_jobchildrenPrivateSelf-employedGovt_jobPrivatePrivatechildrenGovt_jobPrivatePrivatePrivateSelf-employedPrivateGovt_jobPrivatePrivatePrivateSelf-employedGovt_jobPrivatePrivateGovt_jobGovt_jobchildrenchildrenPrivatechildrenPrivatePrivatechildrenPrivateGovt_jobPrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatechildrenSelf-employedSelf-employedGovt_jobPrivatePrivatePrivateSelf-employedPrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatechildrenSelf-employedGovt_jobPrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivateSelf-employedPrivatePrivatePrivatePrivateSelf-employedSelf-employedPrivatePrivateSelf-employedPrivatePrivatechildrenGovt_jobchildrenPrivatePrivatePrivatechildrenGovt_jobchildrenSelf-employedSelf-employedchildrenSelf-employedGovt_jobPrivateGovt_jobGovt_jobchildrenSelf-employedchildrenPrivatePrivatePrivatechildrenPrivatePrivatePrivatePrivateSelf-employedchildrenPrivatechildrenPrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatechildrenPrivatePrivateGovt_jobSelf-employedchildrenSelf-employedPrivatechildrenPrivatePrivatePrivateSelf-employedPrivateSelf-employedPrivateGovt_jobSelf-employedSelf-employedGovt_jobGovt_jobGovt_jobGovt_jobSelf-employedPrivateSelf-employedPrivatePrivateSelf-employedPrivatePrivatechildrenGovt_jobPrivatePrivatePrivatechildrenPrivatePrivatePrivateGovt_jobPrivatePrivateSelf-employedchildrenPrivateGovt_jobSelf-employedPrivatePrivatePrivateSelf-employedPrivatePrivatechildrenchildrenchildrenSelf-employedPrivatechildrenPrivatechildrenPrivatechildrenPrivatePrivatePrivateGovt_jobPrivateSelf-employedGovt_jobPrivatechildrenPrivatePrivatePrivateGovt_jobPrivatePrivateSelf-employedSelf-employedPrivatechildrenPrivatePrivatePrivateSelf-employedPrivateGovt_jobSelf-employedPrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatechildrenSelf-employedPrivateGovt_jobPrivateGovt_jobPrivatePrivatePrivatechildrenPrivateSelf-employedGovt_jobchildrenchildrenPrivateSelf-employedchildrenGovt_jobchildrenchildrenSelf-employedPrivatePrivateSelf-employedPrivateGovt_jobPrivatePrivatePrivateGovt_jobSelf-employedPrivateSelf-employedPrivatePrivatePrivateSelf-employedchildrenPrivatePrivatePrivatechildrenGovt_jobPrivateSelf-employedPrivatePrivateGovt_jobPrivatePrivateSelf-employedGovt_jobSelf-employedPrivateNever_workedchildrenchildrenPrivatePrivatePrivatePrivatechildrenPrivatePrivateSelf-employedPrivatechildrenGovt_jobSelf-employedPrivateSelf-employedSelf-employedchildrenPrivateSelf-employedPrivatePrivateSelf-employedchildrenPrivatePrivateSelf-employedSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivatechildrenchildrenPrivatePrivatePrivatePrivatePrivatePrivatePrivatechildrenGovt_jobSelf-employedGovt_jobPrivatePrivatePrivatePrivatePrivatePrivateGovt_jobGovt_jobGovt_jobPrivatePrivatePrivatePrivatePrivateGovt_jobPrivateGovt_jobSelf-employedPrivatePrivatePrivateSelf-employedchildrenPrivatechildrenchildrenGovt_jobGovt_jobSelf-employedGovt_jobPrivatechildrenSelf-employedGovt_jobPrivatechildrenchildrenPrivatePrivateSelf-employedGovt_jobSelf-employedchildrenPrivatePrivateSelf-employedPrivatePrivatePrivatechildrenSelf-employedGovt_jobPrivatePrivatePrivatePrivatechildrenPrivatePrivatePrivatePrivateGovt_jobPrivateGovt_jobPrivateGovt_jobPrivateSelf-employedPrivateSelf-employedchildrenchildrenPrivatechildrenPrivatePrivateSelf-employedchildrenchildrenchildrenchildrenPrivateGovt_jobPrivatePrivateSelf-employedSelf-employedchildrenPrivatechildrenSelf-employedGovt_jobGovt_jobSelf-employedPrivatePrivatePrivatechildrenSelf-employedSelf-employedPrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatechildrenPrivatePrivatePrivatechildrenchildrenPrivatePrivatePrivatePrivatePrivateSelf-employedchildrenSelf-employedSelf-employedPrivatechildrenchildrenPrivatePrivateGovt_jobGovt_jobPrivatePrivatePrivatePrivatePrivateSelf-employedchildrenGovt_jobPrivatePrivatePrivatePrivatechildrenPrivatePrivatePrivatePrivatePrivatechildrenPrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivateSelf-employedPrivateSelf-employedchildrenPrivatePrivatePrivatePrivatePrivatePrivateGovt_jobPrivatechildrenSelf-employedchildrenGovt_jobGovt_jobchildrenPrivatechildrenPrivatePrivatePrivatePrivateSelf-employedGovt_jobSelf-employedSelf-employedPrivatechildrenSelf-employedPrivatePrivateGovt_jobPrivatePrivateSelf-employedPrivatePrivatePrivateGovt_jobPrivatePrivatechildrenchildrenPrivatePrivatePrivateSelf-employedPrivateGovt_jobGovt_jobPrivatePrivatechildrenPrivatePrivateSelf-employedPrivateSelf-employedPrivateSelf-employedPrivatePrivateGovt_jobGovt_jobPrivatePrivatePrivateGovt_jobPrivateGovt_jobGovt_jobPrivateGovt_jobPrivatechildrenGovt_jobGovt_jobGovt_jobGovt_jobGovt_jobGovt_jobchildrenchildrenPrivatePrivatechildrenSelf-employedGovt_jobPrivatechildrenPrivatePrivateGovt_jobGovt_jobGovt_jobSelf-employedPrivateGovt_jobPrivatePrivatePrivatePrivatePrivatechildrenSelf-employedPrivatePrivateSelf-employedPrivatechildrenGovt_jobPrivatePrivatePrivatechildrenPrivateGovt_jobPrivatePrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivateSelf-employedPrivatePrivatePrivatechildrenGovt_jobSelf-employedGovt_jobPrivatePrivatePrivateGovt_jobPrivatechildrenPrivateGovt_jobSelf-employedNever_workedPrivatePrivateSelf-employedchildrenPrivateSelf-employedPrivatechildrenSelf-employedPrivateGovt_jobchildrenSelf-employedGovt_jobPrivateSelf-employedPrivatechildrenNever_workedPrivatePrivatePrivatePrivatePrivateSelf-employedGovt_jobPrivatePrivateSelf-employedGovt_jobPrivatePrivateSelf-employedchildrenPrivatePrivatePrivateGovt_jobPrivatePrivatePrivatePrivatePrivateSelf-employedSelf-employedPrivatePrivateSelf-employedPrivateSelf-employedSelf-employedGovt_jobPrivatePrivatechildrenPrivatePrivatechildrenSelf-employedNever_workedGovt_jobPrivatePrivatePrivateGovt_jobPrivatePrivatePrivatechildrenGovt_jobSelf-employedPrivatePrivatePrivatePrivatePrivatePrivateGovt_jobSelf-employedchildrenPrivatechildrenGovt_jobPrivatePrivateGovt_jobchildrenPrivatePrivatePrivatechildrenPrivatePrivateGovt_jobPrivatePrivatePrivatechildrenPrivateSelf-employedPrivatePrivatePrivatePrivateSelf-employedchildrenPrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivatePrivatePrivatePrivateGovt_jobchildrenPrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatechildrenPrivatePrivatePrivatechildrenGovt_jobGovt_jobchildrenGovt_jobGovt_jobPrivatePrivatePrivatePrivateSelf-employedPrivateSelf-employedchildrenSelf-employedPrivatePrivatechildrenSelf-employedPrivatePrivatePrivatePrivateSelf-employedPrivateSelf-employedPrivatePrivateSelf-employedPrivateGovt_jobchildrenPrivatePrivatechildrenPrivatePrivatePrivatePrivateSelf-employedchildrenPrivatePrivateGovt_jobSelf-employedPrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivateGovt_jobPrivateGovt_jobPrivateNever_workedSelf-employedPrivatePrivatechildrenSelf-employedPrivateGovt_jobSelf-employedSelf-employedchildrenchildrenchildrenPrivateSelf-employedPrivatePrivateSelf-employedSelf-employedPrivatePrivateGovt_jobPrivateGovt_jobSelf-employedPrivatePrivatePrivateSelf-employedchildrenPrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivatePrivatechildrenPrivatePrivatePrivateGovt_jobPrivateSelf-employedPrivatePrivatePrivateSelf-employedSelf-employedGovt_jobPrivatePrivatePrivatechildrenPrivatePrivatePrivateSelf-employedGovt_jobPrivateSelf-employedPrivatePrivateGovt_jobPrivatechildrenPrivateGovt_jobPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedchildrenPrivateSelf-employedPrivatePrivatechildrenGovt_jobPrivateSelf-employedPrivatechildrenSelf-employedPrivateGovt_jobSelf-employedPrivatePrivatePrivateSelf-employedPrivatePrivatePrivateSelf-employedPrivateGovt_jobGovt_jobPrivatePrivateGovt_jobPrivatePrivatePrivatechildrenPrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatechildrenPrivatechildrenPrivateSelf-employedPrivateSelf-employedGovt_jobPrivatechildrenPrivatePrivateGovt_jobGovt_jobGovt_jobSelf-employedchildrenPrivateSelf-employedPrivatePrivatechildrenPrivatePrivateGovt_jobPrivatePrivatePrivatePrivatePrivateSelf-employedPrivateSelf-employedSelf-employedPrivateSelf-employedPrivatechildrenPrivateSelf-employedPrivateGovt_jobPrivatePrivatechildrenchildrenSelf-employedPrivateGovt_jobPrivatechildrenPrivatechildrenPrivatechildrenchildrenPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatechildrenSelf-employedGovt_jobchildrenGovt_jobGovt_jobPrivateGovt_jobSelf-employedPrivatechildrenGovt_jobPrivatePrivatePrivateSelf-employedPrivatePrivateGovt_jobSelf-employedSelf-employedGovt_jobchildrenSelf-employedPrivatechildrenPrivatePrivatePrivatePrivatechildrenPrivateGovt_jobSelf-employedPrivateGovt_jobPrivateSelf-employedchildrenSelf-employedPrivateSelf-employedPrivateSelf-employedGovt_jobPrivatePrivatePrivatePrivateSelf-employedGovt_jobPrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatechildrenPrivateGovt_jobPrivatePrivateGovt_jobGovt_jobPrivateGovt_jobPrivateGovt_jobGovt_jobPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateNever_workedSelf-employedSelf-employedGovt_jobchildrenPrivateSelf-employedPrivatePrivateSelf-employedPrivatePrivatechildrenPrivatePrivateGovt_jobGovt_jobSelf-employedSelf-employedPrivateSelf-employedPrivatePrivateGovt_jobSelf-employedPrivatePrivatePrivateSelf-employedSelf-employedchildrenPrivatePrivatePrivatePrivateGovt_jobPrivatechildrenSelf-employedGovt_jobPrivatePrivateGovt_jobPrivatechildrenSelf-employedPrivateGovt_jobPrivatePrivatePrivatePrivatePrivateSelf-employedPrivatechildrenPrivateGovt_jobGovt_jobPrivatePrivatePrivateGovt_jobPrivateSelf-employedchildrenPrivateSelf-employedPrivateSelf-employedPrivatePrivatechildrenGovt_jobSelf-employedPrivateGovt_jobPrivateSelf-employedGovt_jobSelf-employedPrivatePrivatePrivatePrivatechildrenchildrenPrivatePrivateGovt_jobPrivateSelf-employedGovt_jobPrivatePrivateSelf-employedPrivatePrivatePrivatechildrenSelf-employedSelf-employedPrivatePrivateGovt_jobchildrenPrivateGovt_jobchildrenPrivateGovt_jobSelf-employedPrivatePrivatePrivatechildrenPrivatechildrenPrivatechildrenSelf-employedPrivatePrivatechildrenSelf-employedchildrenPrivatechildrenchildrenPrivatePrivateSelf-employedSelf-employedPrivatePrivatechildrenPrivatePrivatePrivatePrivateSelf-employedPrivatechildrenGovt_jobchildrenPrivateSelf-employedchildrenPrivateSelf-employedPrivateGovt_jobPrivateGovt_jobPrivatePrivateGovt_jobPrivatePrivatePrivateGovt_jobchildrenSelf-employedPrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivateGovt_jobchildrenPrivatePrivateGovt_jobPrivatePrivatePrivateSelf-employedSelf-employedPrivateSelf-employedPrivatePrivateGovt_jobPrivatechildrenPrivateSelf-employedSelf-employedPrivatePrivatePrivatechildrenGovt_jobPrivatePrivatePrivatechildrenPrivateGovt_jobPrivateGovt_jobchildrenPrivatePrivatePrivatePrivateGovt_jobPrivatePrivatePrivatePrivatePrivatePrivatePrivatechildrenPrivateSelf-employedPrivateGovt_jobchildrenGovt_jobSelf-employedchildrenPrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivateSelf-employedPrivateSelf-employedchildrenSelf-employedPrivatePrivateGovt_jobchildrenSelf-employedPrivatePrivateSelf-employedPrivatePrivatechildrenGovt_jobPrivateSelf-employedPrivateSelf-employedPrivatePrivateGovt_jobPrivatePrivatePrivateGovt_jobPrivateGovt_jobSelf-employedPrivatechildrenPrivateGovt_jobPrivateNever_workedSelf-employedSelf-employedPrivatechildrenPrivateSelf-employedPrivatePrivatechildrenPrivatePrivatePrivatePrivateGovt_jobchildrenPrivateSelf-employedPrivateSelf-employedchildrenPrivateSelf-employedPrivatePrivatePrivatePrivateSelf-employedPrivatePrivateGovt_jobPrivateSelf-employedPrivateSelf-employedSelf-employedGovt_jobSelf-employedPrivateSelf-employedPrivateSelf-employedchildrenPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivateSelf-employedPrivateGovt_jobSelf-employedchildrenPrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivateGovt_jobGovt_jobPrivatechildrenPrivateGovt_jobSelf-employedchildrenPrivatePrivatechildrenPrivateGovt_jobPrivatePrivatePrivatePrivateSelf-employedPrivatechildrenPrivateSelf-employedPrivateSelf-employedchildrenGovt_jobSelf-employedPrivatePrivatePrivatePrivateGovt_jobPrivateSelf-employedPrivateGovt_jobPrivatechildrenPrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivateGovt_jobSelf-employedchildrenSelf-employedPrivatePrivatePrivatePrivatePrivatePrivateSelf-employedSelf-employedPrivateGovt_jobPrivateGovt_jobPrivateSelf-employedSelf-employedPrivateGovt_jobSelf-employedPrivatechildrenSelf-employedPrivatePrivatePrivatechildrenPrivatePrivateSelf-employedSelf-employedPrivatePrivatePrivatechildrenchildrenPrivatePrivatePrivatePrivatechildrenSelf-employedchildrenPrivatePrivatePrivateGovt_jobPrivateSelf-employedPrivateGovt_jobPrivatePrivatePrivateSelf-employedPrivateGovt_jobPrivateGovt_jobPrivatechildrenPrivatePrivatechildrenPrivateSelf-employedSelf-employedchildrenPrivatePrivatePrivatechildrenSelf-employedchildrenGovt_jobGovt_jobPrivatechildrenchildrenSelf-employedPrivatePrivateSelf-employedGovt_jobPrivatePrivateGovt_jobchildrenPrivateGovt_jobSelf-employedPrivatechildrenPrivatechildrenPrivateSelf-employedPrivateSelf-employedSelf-employedchildrenchildrenSelf-employedSelf-employedSelf-employedSelf-employedSelf-employedSelf-employedchildrenPrivatePrivatechildrenPrivatePrivatePrivatePrivatePrivateSelf-employedPrivateGovt_jobPrivatechildrenPrivatePrivatePrivatePrivatePrivatePrivatePrivatechildrenchildrenchildrenPrivatechildrenPrivatechildrenPrivatechildrenPrivatePrivateSelf-employedPrivatechildrenPrivatechildrenPrivatePrivatechildrenPrivatePrivatechildrenPrivateGovt_jobSelf-employedPrivatechildrenPrivatePrivateGovt_jobGovt_jobPrivatePrivatechildrenPrivateSelf-employedSelf-employedPrivatePrivatePrivateSelf-employedGovt_jobPrivatePrivatePrivatechildrenPrivatePrivatePrivatechildrenPrivatePrivatePrivatePrivateGovt_jobPrivateGovt_jobGovt_jobPrivateSelf-employedGovt_jobchildrenPrivatePrivatePrivatePrivateGovt_jobPrivatePrivateSelf-employedSelf-employedPrivatechildrenchildrenPrivatePrivatechildrenPrivateGovt_jobPrivatePrivatePrivatePrivatechildrenPrivatechildrenPrivatePrivatePrivatePrivatePrivateGovt_jobGovt_jobPrivatechildrenGovt_jobchildrenPrivateGovt_jobGovt_jobGovt_jobPrivateGovt_jobGovt_jobPrivatePrivatechildrenPrivatePrivatePrivatePrivateSelf-employedPrivateGovt_jobPrivateGovt_jobchildrenPrivateSelf-employedPrivatePrivatePrivatePrivatechildrenPrivateSelf-employedSelf-employedPrivatePrivatePrivatePrivatechildrenGovt_jobchildrenPrivatePrivatechildrenSelf-employedchildrenPrivateSelf-employedGovt_jobGovt_jobSelf-employedPrivatePrivatechildrenGovt_jobPrivatePrivatePrivatechildrenGovt_jobPrivatePrivatechildrenPrivatechildrenPrivateGovt_jobPrivatePrivatePrivatechildrenPrivatePrivateGovt_jobPrivateSelf-employedGovt_jobchildrenGovt_jobPrivatePrivatePrivatechildrenPrivateSelf-employedSelf-employedGovt_jobPrivatechildrenPrivatePrivatechildrenPrivateSelf-employedPrivatePrivatePrivatePrivateGovt_jobPrivateGovt_jobPrivatechildrenPrivateGovt_jobPrivateGovt_jobPrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivatechildrenPrivatePrivatePrivatePrivatePrivatePrivatechildrenPrivateGovt_jobSelf-employedPrivateGovt_jobPrivateSelf-employedPrivatechildrenchildrenPrivatechildrenPrivatechildrenPrivatePrivateSelf-employedchildrenSelf-employedSelf-employedPrivatePrivateSelf-employedPrivateSelf-employedGovt_jobPrivatePrivateSelf-employedPrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatechildrenGovt_jobchildrenPrivateNever_workedSelf-employedPrivateSelf-employedPrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivateSelf-employedSelf-employedchildrenGovt_jobSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatechildrenPrivatePrivateGovt_jobGovt_jobchildrenchildrenPrivateGovt_jobSelf-employedPrivatePrivatePrivateGovt_jobGovt_jobGovt_jobPrivatechildrenchildrenchildrenchildrenSelf-employedPrivateSelf-employedchildrenGovt_jobGovt_jobPrivateGovt_jobchildrenPrivatePrivateSelf-employedPrivatePrivateSelf-employedPrivatePrivatechildrenchildrenchildrenPrivatechildrenSelf-employedGovt_jobPrivatePrivatePrivatePrivatePrivateGovt_jobSelf-employedchildrenPrivatePrivatechildrenPrivatePrivatePrivateSelf-employedGovt_jobPrivatePrivatePrivatechildrenSelf-employedPrivateNever_workedPrivateSelf-employedPrivatePrivateSelf-employedGovt_jobchildrenPrivateGovt_jobSelf-employedchildrenPrivatePrivatechildrenSelf-employedchildrenPrivatePrivatechildrenSelf-employedGovt_jobGovt_jobGovt_jobGovt_jobSelf-employedSelf-employedSelf-employedPrivateSelf-employedPrivatePrivatePrivatePrivateGovt_jobSelf-employedPrivateSelf-employedGovt_jobSelf-employedPrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivateSelf-employedGovt_jobGovt_jobPrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivateGovt_jobchildrenSelf-employedPrivatechildrenPrivatechildrenPrivateSelf-employedPrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivateGovt_jobGovt_jobSelf-employedPrivatechildrenSelf-employedSelf-employedPrivatePrivatePrivatechildrenPrivatePrivateNever_workedPrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatechildrenPrivatechildrenchildrenSelf-employedPrivatePrivateGovt_jobGovt_jobSelf-employedPrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatechildrenPrivatePrivatePrivatePrivatePrivatechildrenPrivateSelf-employedPrivateSelf-employedPrivatePrivatechildrenPrivatePrivatechildrenPrivateGovt_jobPrivatechildrenSelf-employedPrivatePrivateSelf-employedchildrenPrivateSelf-employedchildrenGovt_jobPrivatePrivatePrivateSelf-employedPrivatePrivateSelf-employedchildrenSelf-employedPrivatePrivateGovt_jobchildrenchildrenPrivatePrivatePrivateSelf-employedPrivateSelf-employedPrivateSelf-employedGovt_jobPrivatechildrenPrivatechildrenPrivateGovt_jobSelf-employedPrivatePrivatechildrenSelf-employedchildrenPrivatechildrenSelf-employedSelf-employedPrivatePrivatePrivatechildrenPrivateSelf-employedPrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivateGovt_jobSelf-employedchildrenSelf-employedchildrenSelf-employedGovt_jobPrivatePrivatePrivateGovt_jobPrivatePrivatechildrenGovt_jobGovt_jobPrivatePrivateGovt_jobSelf-employedchildrenchildrenGovt_jobPrivateGovt_jobPrivateSelf-employedPrivatePrivatePrivatechildrenSelf-employedGovt_jobGovt_jobPrivatePrivatePrivateGovt_jobPrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivateSelf-employedSelf-employedchildrenchildrenSelf-employedGovt_jobSelf-employedPrivatechildrenPrivateSelf-employedPrivatechildrenPrivatePrivatePrivatePrivatePrivateGovt_jobPrivateGovt_jobPrivatechildrenPrivatePrivatePrivatePrivatePrivateSelf-employedPrivateSelf-employedPrivateGovt_jobPrivatePrivateSelf-employedPrivateGovt_jobPrivatePrivatePrivatePrivateGovt_jobPrivatechildrenPrivateSelf-employedGovt_jobPrivateGovt_jobchildrenGovt_jobPrivatechildrenPrivateGovt_jobSelf-employedGovt_jobchildrenchildrenPrivateSelf-employedPrivatechildrenPrivatePrivatePrivateGovt_jobSelf-employedPrivatePrivatePrivatechildrenPrivatePrivateSelf-employedPrivatePrivatechildrenGovt_jobGovt_jobSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatechildrenNever_workedSelf-employedPrivatePrivatePrivatePrivatePrivateSelf-employedPrivateSelf-employedPrivatePrivateGovt_jobchildrenchildrenPrivateGovt_jobPrivatePrivatePrivateGovt_jobPrivatechildrenPrivateGovt_jobchildrenPrivateSelf-employedSelf-employedchildrenPrivatePrivatePrivateSelf-employedSelf-employedSelf-employedPrivatePrivatePrivateSelf-employedPrivateGovt_jobPrivatePrivatePrivatePrivateGovt_jobSelf-employedchildrenGovt_jobGovt_jobPrivatechildrenPrivateGovt_jobchildrenchildrenPrivatePrivateGovt_jobPrivatePrivatechildrenSelf-employedPrivateGovt_jobGovt_jobPrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateGovt_jobSelf-employedPrivateSelf-employedchildrenGovt_jobPrivatechildrenSelf-employedGovt_jobSelf-employedPrivateSelf-employedchildrenchildrenPrivateGovt_jobPrivateSelf-employedPrivatechildrenPrivatechildrenPrivatePrivatePrivateSelf-employedGovt_jobPrivatePrivatePrivateGovt_jobchildrenPrivateGovt_jobPrivatePrivatePrivatePrivatechildrenSelf-employedPrivateGovt_jobPrivatePrivatePrivatePrivatechildrenPrivateGovt_jobchildrenSelf-employedchildrenPrivatePrivateGovt_jobPrivatechildrenchildrenPrivatePrivatePrivatechildrenPrivatePrivatePrivateSelf-employedPrivatePrivatePrivateSelf-employedPrivateGovt_jobPrivateGovt_jobSelf-employedPrivateSelf-employedPrivatechildrenchildrenPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedGovt_jobGovt_jobGovt_jobchildrenGovt_jobGovt_jobPrivatechildrenPrivatechildrenPrivatePrivateSelf-employedPrivatechildrenPrivatePrivateGovt_jobPrivatePrivateGovt_jobPrivatechildrenPrivatePrivateGovt_jobchildrenPrivatePrivateGovt_jobPrivatePrivateGovt_jobNever_workedPrivatePrivateGovt_jobPrivatePrivateGovt_jobPrivatePrivatePrivatePrivatePrivateGovt_jobPrivateGovt_jobPrivatePrivateSelf-employedPrivatePrivateGovt_jobPrivatePrivatePrivateGovt_jobSelf-employedPrivatePrivatePrivatechildrenGovt_jobPrivatePrivatePrivatechildrenSelf-employedPrivatePrivatechildrenPrivatePrivatePrivateGovt_jobPrivatechildrenPrivatechildrenGovt_jobPrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivateSelf-employedGovt_jobPrivatePrivateSelf-employedGovt_jobchildrenchildrenPrivateSelf-employedSelf-employedPrivateSelf-employedSelf-employedPrivateSelf-employedPrivatePrivateSelf-employedSelf-employedSelf-employedPrivatechildrenSelf-employedPrivatePrivatechildrenGovt_jobPrivatePrivateSelf-employedPrivatePrivatePrivateSelf-employedGovt_jobPrivatePrivateGovt_jobPrivateSelf-employedPrivatePrivateSelf-employedPrivateSelf-employedchildrenPrivatePrivatePrivatePrivateGovt_jobPrivatePrivateSelf-employedSelf-employedSelf-employedPrivatePrivateGovt_jobSelf-employedPrivatechildrenPrivatePrivatePrivateSelf-employedPrivatePrivateGovt_jobGovt_jobPrivatePrivatePrivatePrivateGovt_jobPrivatePrivateGovt_jobchildrenGovt_jobPrivateSelf-employedPrivatePrivateSelf-employedPrivatePrivatechildrenPrivateSelf-employedPrivatePrivatechildrenSelf-employedPrivatechildrenGovt_jobGovt_jobGovt_jobPrivateSelf-employedPrivateSelf-employedNever_workedPrivatechildrenGovt_jobPrivatePrivateSelf-employedSelf-employedPrivatePrivatePrivatechildrenPrivateNever_workedPrivateSelf-employedchildrenPrivatePrivatePrivatechildrenPrivatechildrenSelf-employedGovt_jobGovt_jobPrivatechildrenGovt_jobPrivatechildrenPrivatePrivateSelf-employedPrivateSelf-employedPrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivateGovt_jobSelf-employedPrivateSelf-employedSelf-employedSelf-employedPrivatePrivatePrivatechildrenPrivatePrivateGovt_jobPrivatePrivatechildrenPrivatePrivatePrivateSelf-employedGovt_jobPrivatePrivatechildrenPrivatechildrenchildrenPrivatechildrenPrivatePrivatePrivatechildrenGovt_jobchildrenPrivateGovt_jobchildrenPrivatePrivatePrivatePrivatePrivatePrivatechildrenPrivatePrivatePrivatechildrenchildrenPrivateSelf-employedGovt_jobPrivatechildrenchildrenchildrenPrivatePrivatePrivatePrivatePrivatechildrenchildrenSelf-employedSelf-employedPrivatePrivateGovt_jobPrivatePrivatePrivatePrivateGovt_jobPrivateGovt_jobSelf-employedPrivateGovt_jobPrivatePrivateSelf-employedchildrenPrivatechildrenPrivatePrivatePrivatechildrenPrivatePrivatePrivateSelf-employedPrivatechildrenPrivatePrivatePrivateGovt_jobGovt_jobGovt_jobPrivateGovt_jobPrivatePrivatePrivateGovt_jobPrivateSelf-employedSelf-employedPrivatechildrenchildrenchildrenchildrenGovt_jobPrivatePrivatechildrenPrivatePrivateSelf-employedPrivatePrivatePrivateSelf-employedPrivatePrivatechildrenchildrenSelf-employedPrivatePrivateGovt_jobPrivatePrivateSelf-employedPrivateSelf-employedPrivatePrivatePrivatePrivateSelf-employedPrivatechildrenPrivatePrivatePrivatechildrenPrivatePrivatechildrenGovt_jobPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatechildrenPrivatePrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivateGovt_jobchildrenchildrenPrivatePrivateGovt_jobSelf-employedPrivatePrivatechildrenPrivatePrivatePrivatePrivateGovt_jobPrivatePrivatePrivatePrivateGovt_jobPrivateSelf-employedSelf-employedPrivatePrivatePrivatePrivateGovt_jobSelf-employedGovt_jobSelf-employedPrivatechildrenPrivatePrivatePrivatePrivatePrivateGovt_jobPrivatechildrenPrivatePrivatePrivatechildrenPrivatePrivatePrivateSelf-employedSelf-employedGovt_jobPrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivateGovt_jobPrivatePrivatechildrenPrivatechildrenGovt_jobPrivatePrivatePrivateGovt_jobPrivateGovt_jobPrivatePrivateSelf-employedPrivateSelf-employedPrivatePrivatePrivateSelf-employedPrivatechildrenPrivatePrivatePrivateGovt_jobPrivatePrivatePrivatechildrenchildrenSelf-employedGovt_jobPrivatePrivatePrivatePrivatePrivateSelf-employedSelf-employedchildrenGovt_jobPrivateGovt_jobGovt_jobchildrenchildrenGovt_jobSelf-employedchildrenPrivateSelf-employedPrivatePrivatePrivatechildrenPrivateSelf-employedSelf-employedPrivateGovt_job'\n 'UrbanRuralRuralUrbanRuralUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanRuralRuralRuralUrbanRuralUrbanRuralUrbanUrbanUrbanRuralRuralRuralRuralUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanRuralRuralRuralUrbanUrbanUrbanUrbanUrbanRuralRuralRuralRuralRuralRuralRuralUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanUrbanRuralRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralUrbanUrbanRuralRuralRuralUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanUrbanUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanRuralRuralRuralUrbanRuralRuralRuralUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanRuralRuralRuralUrbanRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralUrbanRuralUrbanRuralRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanRuralRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanUrbanRuralRuralRuralUrbanRuralRuralRuralRuralRuralRuralUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanUrbanRuralRuralRuralRuralUrbanRuralUrbanUrbanRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralRuralRuralRuralUrbanUrbanRuralRuralRuralUrbanUrbanUrbanUrbanRuralRuralUrbanRuralRuralUrbanRuralUrbanRuralRuralUrbanRuralRuralUrbanRuralUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralRuralRuralRuralRuralUrbanUrbanRuralRuralRuralRuralUrbanRuralRuralRuralUrbanRuralRuralRuralUrbanUrbanUrbanRuralRuralUrbanRuralRuralUrbanUrbanUrbanRuralRuralRuralRuralRuralUrbanRuralUrbanRuralUrbanRuralRuralRuralRuralRuralRuralRuralUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralRuralRuralUrbanUrbanRuralRuralRuralUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanRuralRuralRuralRuralUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanRuralUrbanRuralRuralRuralRuralRuralRuralRuralRuralRuralRuralUrbanUrbanRuralRuralRuralRuralUrbanRuralRuralUrbanUrbanRuralUrbanRuralUrbanRuralRuralUrbanRuralRuralRuralUrbanRuralRuralUrbanRuralRuralUrbanRuralRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralRuralRuralUrbanUrbanRuralUrbanUrbanRuralUrbanRuralUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanRuralRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanRuralRuralUrbanRuralRuralUrbanUrbanUrbanUrbanRuralRuralRuralUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanRuralRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanRuralRuralRuralRuralRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralUrbanRuralRuralRuralUrbanRuralUrbanUrbanUrbanRuralRuralRuralUrbanRuralRuralRuralUrbanUrbanRuralUrbanUrbanRuralRuralUrbanRuralUrbanUrbanRuralUrbanRuralUrbanRuralUrbanRuralUrbanRuralRuralUrbanRuralUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanRuralRuralRuralRuralRuralRuralRuralRuralUrbanUrbanRuralUrbanRuralUrbanRuralRuralRuralUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanRuralRuralRuralUrbanRuralUrbanRuralUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanRuralRuralUrbanRuralRuralRuralUrbanRuralUrbanUrbanUrbanRuralRuralRuralUrbanUrbanRuralUrbanRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanRuralRuralRuralRuralRuralUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanRuralRuralRuralRuralRuralUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanRuralRuralRuralUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanRuralUrbanRuralRuralRuralUrbanUrbanRuralRuralUrbanUrbanRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralUrbanUrbanRuralRuralUrbanRuralRuralUrbanRuralUrbanRuralRuralRuralUrbanRuralRuralUrbanUrbanUrbanRuralRuralUrbanRuralRuralUrbanRuralUrbanRuralUrbanRuralUrbanRuralUrbanRuralRuralUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanRuralRuralRuralRuralRuralRuralUrbanRuralUrbanUrbanUrbanRuralRuralRuralUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralRuralRuralUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanRuralUrbanRuralUrbanUrbanRuralUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanRuralRuralRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralRuralUrbanUrbanRuralRuralRuralUrbanUrbanUrbanRuralUrbanRuralRuralUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralUrbanRuralUrbanRuralRuralRuralUrbanRuralRuralUrbanRuralRuralUrbanRuralUrbanRuralUrbanRuralRuralRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralUrbanUrbanUrbanRuralUrbanRuralUrbanUrbanUrbanRuralRuralUrbanUrbanRuralUrbanUrbanUrbanRuralRuralRuralRuralRuralUrbanUrbanRuralRuralRuralRuralRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanRuralRuralRuralUrbanRuralRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralRuralUrbanRuralUrbanUrbanUrbanRuralUrbanRuralUrbanRuralUrbanUrbanUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanRuralUrbanRuralUrbanRuralRuralRuralRuralUrbanUrbanUrbanUrbanRuralRuralRuralRuralRuralRuralUrbanUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanUrbanRuralRuralUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanRuralRuralRuralRuralRuralRuralUrbanRuralUrbanRuralRuralRuralUrbanRuralRuralUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanRuralUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanRuralRuralUrbanRuralRuralRuralRuralUrbanUrbanRuralRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanRuralRuralUrbanRuralRuralRuralRuralRuralRuralRuralRuralRuralRuralRuralRuralRuralUrbanUrbanUrbanUrbanUrbanRuralRuralRuralRuralUrbanRuralRuralRuralRuralUrbanRuralUrbanRuralRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanRuralRuralUrbanRuralRuralRuralRuralUrbanRuralRuralUrbanRuralRuralRuralUrbanRuralUrbanRuralRuralUrbanRuralRuralRuralRuralUrbanRuralUrbanUrbanRuralRuralRuralRuralUrbanRuralUrbanRuralRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralRuralRuralRuralRuralUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanRuralRuralRuralUrbanRuralRuralUrbanUrbanUrbanRuralUrbanRuralRuralRuralRuralUrbanRuralUrbanRuralUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralRuralRuralRuralUrbanRuralUrbanUrbanUrbanRuralRuralUrbanRuralUrbanUrbanRuralRuralUrbanUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralRuralUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanUrbanRuralRuralUrbanRuralRuralUrbanRuralRuralRuralRuralRuralRuralUrbanRuralUrbanUrbanRuralRuralRuralUrbanRuralRuralUrbanUrbanRuralRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanRuralRuralRuralRuralUrbanRuralRuralUrbanRuralRuralRuralRuralRuralRuralUrbanUrbanRuralRuralRuralRuralUrbanUrbanRuralRuralRuralRuralRuralUrbanUrbanRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanRuralUrbanRuralUrbanUrbanRuralRuralUrbanRuralRuralRuralUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanRuralRuralRuralUrbanUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanRuralRuralRuralUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanRuralUrbanRuralUrbanRuralUrbanUrbanRuralUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanRuralUrbanRuralRuralRuralRuralUrbanRuralUrbanUrbanRuralRuralRuralUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralRuralRuralUrbanUrbanRuralRuralUrbanRuralRuralRuralRuralUrbanRuralRuralRuralRuralUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanRuralRuralUrbanRuralRuralRuralRuralRuralUrbanRuralRuralRuralUrbanRuralRuralUrbanRuralUrbanRuralRuralUrbanUrbanRuralRuralRuralUrbanRuralRuralUrbanUrbanUrbanRuralUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanRuralRuralUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanRuralUrbanRuralRuralRuralUrbanRuralRuralUrbanUrbanUrbanRuralRuralRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralUrbanRuralRuralRuralRuralRuralRuralRuralRuralRuralUrbanRuralRuralUrbanRuralRuralUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralUrbanRuralUrbanUrbanRuralRuralUrbanUrbanRuralRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralRuralRuralUrbanUrbanUrbanUrbanRuralRuralRuralUrbanUrbanRuralRuralUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanRuralUrbanRuralUrbanRuralUrbanRuralUrbanRuralRuralRuralUrbanRuralRuralUrbanRuralUrbanRuralRuralUrbanRuralRuralUrbanUrbanUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanRuralUrbanRuralUrbanRuralRuralRuralRuralUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanRuralRuralUrbanRuralRuralUrbanUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralRuralRuralUrbanRuralRuralRuralRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanRuralUrbanUrbanRuralUrbanRuralUrbanRuralUrbanRuralRuralUrbanRuralRuralUrbanRuralRuralRuralUrbanRuralUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanRuralUrbanUrbanRuralRuralRuralUrbanRuralRuralUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanUrbanRuralRuralRuralUrbanRuralUrbanUrbanUrbanRuralRuralRuralRuralUrbanUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralRuralRuralRuralRuralRuralRuralUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanRuralRuralRuralRuralRuralUrbanRuralRuralRuralUrbanUrbanRuralRuralUrbanRuralRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralRuralUrbanRuralRuralUrbanRuralRuralRuralRuralRuralRuralRuralUrbanUrbanRuralRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanRuralUrbanUrbanUrbanRuralRuralUrbanRuralRuralRuralUrbanRuralRuralUrbanRuralUrbanRuralUrbanRuralUrbanRuralRuralRuralRuralRuralUrbanRuralUrbanRuralUrbanUrbanRuralRuralRuralRuralUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralRuralRuralRuralRuralRuralRuralUrbanRuralUrbanRuralRuralUrbanRuralUrbanRuralRuralRuralRuralRuralRuralUrbanRuralRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanRuralUrbanUrbanRuralRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralRuralRuralUrbanRuralUrbanUrbanUrbanUrbanRuralRuralUrbanRuralRuralRuralUrbanRuralRuralRuralRuralUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralUrbanRuralRuralUrbanRuralRuralUrbanUrbanUrbanRuralRuralUrbanRuralRuralUrbanUrbanRuralRuralRuralRuralRuralRuralUrbanRuralRuralUrbanRuralRuralRuralRuralRuralRuralRuralRuralRuralRuralRuralRuralUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanRuralUrbanUrbanRuralRuralUrbanRuralRuralRuralUrbanRuralRuralUrbanUrbanRuralUrbanUrbanRuralUrbanRuralUrbanUrbanRuralUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanRuralRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanRuralRuralRuralRuralRuralUrbanUrbanRuralRuralRuralUrbanUrbanRuralRuralRuralUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanRuralUrbanUrbanRuralRuralUrbanUrbanRuralUrbanRuralRuralRuralUrbanRuralUrbanUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralRuralRuralRuralRuralUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanRuralRuralUrbanUrbanRuralUrbanUrbanRuralRuralRuralUrbanRuralUrbanRuralUrbanUrbanUrbanRuralUrbanRuralUrbanRuralUrbanRuralUrbanUrbanRuralRuralRuralUrbanRuralUrbanRuralRuralRuralRuralUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanRuralRuralUrbanRuralUrbanUrbanRuralRuralRuralRuralRuralRuralUrbanUrbanRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanRuralRuralUrbanRuralRuralRuralRuralUrbanRuralUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralRuralRuralUrbanRuralRuralUrbanRuralRuralRuralUrbanUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralRuralUrbanUrbanRuralRuralRuralRuralUrbanUrbanRuralRuralUrbanUrbanUrbanRuralRuralUrbanRuralUrbanUrbanUrbanRuralRuralUrbanRuralRuralRuralRuralRuralRuralRuralUrbanUrbanUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanRuralRuralRuralRuralRuralUrbanRuralRuralRuralRuralRuralRuralUrbanUrbanUrbanUrbanRuralRuralRuralUrbanRuralRuralUrbanUrbanRuralRuralUrbanRuralRuralUrbanRuralRuralUrbanRuralRuralUrbanRuralRuralUrbanRuralUrbanUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanRuralRuralUrbanRuralRuralRuralRuralUrbanRuralUrbanRuralUrbanUrbanRuralRuralRuralRuralUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanRuralUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanUrbanRuralRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralRuralUrbanUrbanRuralRuralUrbanUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanRuralUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanRuralRuralUrbanRuralUrbanRuralRuralUrbanRuralUrbanRuralRuralUrbanUrbanRuralRuralUrbanRuralUrbanRuralRuralRuralRuralUrbanRuralRuralUrbanRuralRuralRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralRuralRuralRuralUrbanUrbanRuralRuralRuralRuralRuralUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanRuralUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralRuralRuralRuralUrbanRuralUrbanUrbanUrbanRuralRuralRuralRuralUrbanUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanRuralUrbanUrbanRuralRuralRuralRuralUrbanRuralRuralRuralUrbanUrbanRuralRuralRuralUrbanRuralUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanRuralRuralRuralUrbanRuralRuralUrbanUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanRuralUrbanRuralRuralRuralUrbanUrbanRuralUrbanRuralRuralRuralRuralUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralUrbanRuralUrbanRuralUrbanUrbanRuralRuralRuralRuralUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralRuralRuralUrbanRuralRuralRuralRuralRuralUrbanRuralRuralRuralRuralUrbanUrbanRuralRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralRuralRuralRuralUrbanUrbanRuralUrbanRuralRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanRuralRuralUrbanUrbanRuralUrbanRuralRuralRuralRuralRuralUrbanRuralUrbanRuralRuralRuralRuralUrbanUrbanRuralRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanRuralUrbanRuralRuralUrbanUrbanRuralUrbanUrbanUrbanRuralRuralRuralRuralUrbanUrbanRuralUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanRuralRuralRuralUrbanRuralRuralRuralRuralUrbanUrbanRuralRuralRuralUrbanRuralUrbanUrbanUrbanUrbanRuralRuralUrbanRuralUrbanUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanUrbanRuralUrbanUrbanRuralRuralUrbanRuralUrbanRuralRuralRuralUrbanUrbanUrbanUrbanRuralRuralRuralUrbanRuralRuralRuralRuralRuralRuralUrbanRuralRuralRuralRuralUrbanUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralRuralUrbanRuralUrbanUrbanUrbanRuralRuralRuralUrbanUrbanUrbanUrbanRuralRuralRuralRuralUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralUrbanUrbanUrbanUrbanRuralRuralRuralRuralRuralRuralRuralUrbanRuralUrbanUrbanRuralUrbanUrbanRuralRuralRuralUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralUrbanRuralRuralUrbanRuralRuralRuralRuralUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanRuralUrbanRuralRuralRuralRuralUrbanUrbanRuralUrbanRuralRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanRuralUrbanUrbanRuralRuralUrbanRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralRuralUrbanRuralUrbanRuralRuralRuralRuralRuralUrbanRuralUrbanRuralUrbanUrbanRuralUrbanRuralUrbanUrbanRuralRuralUrbanUrbanUrbanRuralRuralRuralUrbanUrbanRuralUrbanRuralUrbanUrbanRuralRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralRuralUrbanRuralRuralRuralUrbanRuralUrbanRuralRuralUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanRuralRuralRuralUrbanUrbanRuralUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralRuralUrbanRuralUrbanRuralRuralUrbanRuralRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralRuralUrbanUrbanRuralRuralUrbanRuralRuralUrbanRuralRuralUrbanRuralRuralRuralUrbanRuralRuralUrbanRuralUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanRuralRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanRuralRuralUrbanUrbanRuralRuralRuralUrbanUrbanRuralUrbanRuralRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralRuralUrbanRuralUrbanUrbanRuralRuralRuralRuralRuralUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralRuralUrbanRuralUrbanUrbanRuralUrbanRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralUrbanRuralRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralRuralUrbanRuralUrbanUrbanRuralUrbanUrbanRuralUrbanRuralUrbanUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralRuralUrbanUrbanUrbanRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralRuralUrbanRuralRuralRuralRuralUrbanRuralRuralRuralRuralRuralUrbanRuralRuralUrbanUrbanRuralUrbanUrbanRuralUrbanRuralUrbanUrbanRuralUrbanRuralRuralRuralRuralUrbanUrbanRuralRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanRuralUrbanRuralRuralUrbanRuralRuralUrbanRuralRuralRuralRuralUrbanRuralUrbanRuralUrbanRuralUrbanRuralUrbanRuralUrbanUrbanRuralRuralRuralUrbanRuralUrbanRuralRuralRuralUrbanRuralUrbanRuralRuralUrbanUrbanRuralUrbanRuralUrbanUrbanRuralRuralRuralUrbanRuralUrbanUrbanUrbanRuralRuralUrbanRuralRuralUrbanRuralRuralUrbanRuralRuralRuralUrbanUrbanUrbanRuralUrbanRuralRuralRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralRuralUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralRuralRuralUrbanUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanUrbanRuralUrbanRuralUrbanUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanRuralRuralRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanRuralRuralUrbanRuralRuralUrbanUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanRuralRuralRuralUrbanRuralUrbanRuralUrbanUrbanRuralRuralUrbanUrbanRuralRuralRuralUrbanRuralRuralRuralRuralRuralRuralUrbanRuralRuralUrbanRuralUrbanUrbanUrbanRuralRuralRuralUrbanRuralUrbanUrbanUrbanRuralRuralRuralUrbanRuralRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralRuralUrbanUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanRuralRuralRuralUrbanUrbanUrbanUrbanRuralUrbanRuralRuralUrbanUrbanRuralUrbanRuralUrbanUrbanUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanRuralUrbanUrbanRuralRuralUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanRuralRuralRuralRuralRuralRuralRuralUrbanUrbanRuralRuralRuralRuralRuralUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralRuralRuralRuralRuralRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralRuralUrbanUrbanRuralUrbanRuralRuralUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanRuralRuralRuralRuralUrbanUrbanRuralRuralUrbanUrbanUrbanRuralRuralUrbanRuralRuralUrbanUrbanUrbanRuralUrbanRuralRuralRuralRuralRuralUrbanRuralRuralRuralRuralUrbanUrbanUrbanRuralRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanRuralUrbanRuralRuralRuralUrbanRuralRuralUrbanUrbanRuralRuralRuralUrbanUrbanRuralUrbanRuralRuralUrbanUrbanUrbanRuralRuralUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralRuralRuralRuralRuralRuralRuralRuralRuralRuralRuralRuralUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanRuralRuralRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanRuralUrbanRuralUrbanRuralUrbanUrbanRuralRuralRuralRuralUrbanRuralRuralUrbanUrbanRuralUrbanRuralRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralRuralUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralRuralUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanRuralUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralRuralRuralRuralUrbanRuralRuralUrbanRuralRuralRuralUrbanRuralUrbanRuralUrbanUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanRuralRuralRuralRuralRuralRuralRuralRuralUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanRuralRuralRuralRuralUrbanUrbanRuralRuralRuralRuralRuralRuralUrbanRuralRuralRuralUrbanUrbanRuralRuralUrbanRuralUrbanRuralRuralRuralUrbanRuralRuralUrbanUrbanRuralRuralRuralRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanRuralRuralRuralUrbanRuralRuralRuralRuralRuralRuralRuralUrbanUrbanRuralRuralRuralUrbanRuralRuralUrbanUrbanUrbanRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanRuralRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralUrbanRuralRuralUrbanUrbanRuralUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralRuralRuralUrbanRuralUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanUrbanRuralUrbanRuralUrbanRuralRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanRuralRuralRuralRuralRuralUrbanUrbanRuralRuralRuralRuralUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanRuralRuralUrbanRuralUrbanUrbanRuralRuralRuralUrbanUrbanRuralUrbanUrbanRuralRuralRuralUrbanUrbanUrbanUrbanRuralRuralRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralRuralRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanRuralUrbanRuralRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralRuralUrbanUrbanUrbanRuralRuralUrbanRuralRuralUrbanUrbanUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanRuralRuralRuralUrbanUrbanRuralUrbanUrbanRuralRuralRuralUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanRuralRuralUrbanRuralUrbanUrbanRuralUrbanRuralRuralRuralUrbanRuralUrbanRuralRuralUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanRuralRuralUrban'\n 'formerly smokednever smokednever smokedsmokesnever smokedformerly smokednever smokednever smokedUnknownUnknownnever smokedsmokessmokesUnknownnever smokednever smokedsmokessmokesnever smokedUnknownsmokesnever smokednever smokedUnknownformerly smokednever smokedformerly smokedUnknownsmokesformerly smokedsmokesUnknownnever smokedformerly smokednever smokedformerly smokedformerly smokedformerly smokedUnknownnever smokedformerly smokednever smokedsmokesformerly smokedsmokesnever smokedUnknownformerly smokednever smokedsmokesUnknownformerly smokednever smokednever smokednever smokedformerly smokednever smokedformerly smokednever smokednever smokedformerly smokednever smokedsmokesformerly smokedUnknownnever smokednever smokedUnknownformerly smokednever smokedformerly smokedformerly smokedformerly smokednever smokednever smokedformerly smokednever smokedformerly smokednever smokedUnknownUnknownUnknownnever smokednever smokedUnknownsmokessmokesformerly smokedformerly smokedUnknownnever smokednever smokednever smokedUnknownnever smokednever smokedformerly smokedsmokesformerly smokednever smokedUnknownnever smokedformerly smokedUnknownUnknownsmokesformerly smokedsmokesnever smokednever smokedformerly smokedsmokesformerly smokednever smokedUnknownnever smokedsmokessmokesformerly smokednever smokedformerly smokedUnknownsmokesnever smokedUnknownnever smokedformerly smokedUnknownformerly smokedUnknownnever smokednever smokednever smokedformerly smokednever smokednever smokedformerly smokedUnknownformerly smokedUnknownnever smokedsmokesnever smokednever smokednever smokedformerly smokedformerly smokednever smokednever smokednever smokedUnknownformerly smokednever smokedsmokesnever smokednever smokedsmokessmokesformerly smokednever smokedformerly smokedsmokesUnknownnever smokedformerly smokedformerly smokedUnknownnever smokedformerly smokednever smokedformerly smokednever smokedsmokesformerly smokedformerly smokednever smokednever smokedformerly smokedUnknownUnknownnever smokedformerly smokedsmokesUnknownsmokesformerly smokedformerly smokedformerly smokedformerly smokedUnknownformerly smokedformerly smokedsmokessmokessmokesformerly smokedformerly smokedUnknownformerly smokednever smokedUnknownformerly smokednever smokednever smokedsmokesformerly smokednever smokednever smokedUnknownUnknownnever smokedformerly smokednever smokednever smokednever smokedsmokesnever smokedsmokessmokesnever smokedsmokesnever smokedformerly smokedsmokessmokesUnknownnever smokednever smokedsmokesnever smokednever smokedsmokesnever smokedformerly smokedUnknownUnknownUnknownformerly smokednever smokedsmokesformerly smokedformerly smokednever smokedformerly smokedUnknownUnknownformerly smokedUnknownUnknownUnknownnever smokedUnknownformerly smokedUnknownUnknownformerly smokednever smokedsmokesnever smokedUnknownformerly smokednever smokedformerly smokednever smokednever smokedsmokesnever smokedsmokessmokesUnknownsmokessmokesformerly smokednever smokednever smokedsmokesnever smokednever smokednever smokedUnknownUnknownsmokesUnknownUnknownUnknownformerly smokednever smokedUnknownUnknownsmokesUnknownUnknownUnknownformerly smokedUnknownsmokesnever smokedsmokesnever smokedUnknownUnknownformerly smokednever smokedsmokessmokessmokesUnknownUnknownsmokesformerly smokedUnknownUnknownUnknownsmokesnever smokedformerly smokedformerly smokednever smokedformerly smokednever smokedUnknownUnknownUnknownUnknownformerly smokedformerly smokednever smokedUnknownsmokessmokesnever smokedformerly smokedsmokesformerly smokedUnknownUnknownUnknownnever smokednever smokednever smokednever smokedformerly smokedformerly smokedformerly smokednever smokednever smokednever smokedformerly smokednever smokedsmokesformerly smokednever smokednever smokednever smokedsmokesnever smokedsmokesnever smokednever smokedsmokesnever smokednever smokedformerly smokedUnknownUnknownformerly smokednever smokednever smokednever smokedUnknownnever smokednever smokednever smokedformerly smokedsmokesnever smokedUnknownUnknownUnknownformerly smokedUnknownnever smokednever smokedUnknownUnknownnever smokednever smokednever smokedformerly smokedformerly smokednever smokedsmokesnever smokednever smokednever smokednever smokednever smokednever smokedsmokesformerly smokedUnknownnever smokedUnknownsmokesUnknownnever smokedUnknownnever smokednever smokedUnknownUnknownnever smokedsmokesUnknownnever smokedsmokesUnknownnever smokednever smokednever smokedUnknownUnknownUnknownformerly smokednever smokedUnknownnever smokedsmokessmokesformerly smokednever smokedformerly smokedsmokesnever smokednever smokednever smokedformerly smokedUnknownformerly smokednever smokednever smokednever smokedUnknownUnknownUnknownUnknownUnknownnever smokedUnknownnever smokedsmokesnever smokednever smokedUnknownnever smokednever smokedformerly smokedsmokesUnknownUnknownUnknownUnknownformerly smokednever smokednever smokedsmokessmokesnever smokednever smokedUnknownnever smokednever smokedsmokesnever smokedsmokesnever smokedUnknownUnknownformerly smokedsmokesUnknownUnknownUnknownUnknownsmokesnever smokednever smokedUnknownformerly smokedUnknownUnknownformerly smokedUnknownnever smokedformerly smokednever smokedUnknownnever smokedUnknownsmokesformerly smokedformerly smokednever smokedUnknownsmokessmokesformerly smokedUnknownUnknownnever smokedformerly smokedsmokessmokessmokessmokessmokesnever smokedformerly smokedUnknownUnknownnever smokednever smokedsmokesnever smokednever smokedUnknownnever smokednever smokedformerly smokedUnknownformerly smokednever smokedUnknownnever smokedUnknownUnknownnever smokedUnknownnever smokedUnknownnever smokedformerly smokedformerly smokedUnknownnever smokedUnknownUnknownsmokesnever smokednever smokedUnknownformerly smokedUnknownnever smokedUnknownnever smokednever smokedUnknownUnknownnever smokedUnknownnever smokedUnknownnever smokedUnknownnever smokedUnknownformerly smokedUnknownnever smokednever smokedformerly smokedformerly smokedsmokesUnknownnever smokedsmokessmokesformerly smokednever smokedformerly smokedUnknownUnknownformerly smokedUnknownformerly smokedUnknownnever smokedformerly smokedsmokesUnknownsmokesnever smokednever smokedsmokessmokesformerly smokedUnknownnever smokednever smokednever smokednever smokednever smokednever smokedsmokesUnknownnever smokedUnknownsmokesUnknownUnknownnever smokedUnknownsmokesnever smokedUnknownnever smokedsmokesformerly smokedsmokesnever smokednever smokednever smokedUnknownsmokesnever smokedsmokesnever smokednever smokedsmokesnever smokednever smokednever smokedUnknownUnknownnever smokedformerly smokednever smokedformerly smokedUnknownnever smokednever smokedformerly smokednever smokednever smokedUnknownformerly smokedformerly smokedsmokesnever smokednever smokedformerly smokedformerly smokedformerly smokedformerly smokednever smokedUnknownUnknownnever smokedsmokesUnknownnever smokedUnknownnever smokednever smokednever smokednever smokedUnknownformerly smokedUnknownnever smokednever smokednever smokednever smokednever smokednever smokedformerly smokedsmokesUnknownnever smokednever smokednever smokednever smokedUnknownUnknownUnknownformerly smokedformerly smokednever smokednever smokednever smokedUnknownnever smokednever smokedformerly smokednever smokedUnknownUnknownsmokesnever smokednever smokednever smokednever smokedsmokesUnknownsmokessmokesformerly smokedformerly smokedformerly smokedUnknownformerly smokednever smokedformerly smokedUnknownnever smokedsmokesUnknownnever smokedformerly smokedformerly smokedUnknownUnknownsmokessmokessmokessmokesnever smokednever smokednever smokedUnknownnever smokedformerly smokedUnknownsmokesnever smokednever smokedsmokesUnknownsmokesnever smokednever smokedUnknownsmokesnever smokednever smokedsmokesnever smokednever smokednever smokedUnknownformerly smokedUnknownUnknownUnknownUnknownUnknownnever smokednever smokedformerly smokedUnknownnever smokedsmokesnever smokedsmokesnever smokednever smokedUnknownsmokessmokesnever smokednever smokedUnknownnever smokedformerly smokedUnknownnever smokedformerly smokednever smokednever smokedUnknownformerly smokednever smokedUnknownnever smokedUnknownformerly smokednever smokednever smokednever smokednever smokedUnknownnever smokednever smokedsmokesformerly smokednever smokednever smokedsmokesUnknownsmokesnever smokedformerly smokedformerly smokedUnknownUnknownnever smokednever smokedUnknownnever smokednever smokedUnknownnever smokednever smokedUnknownsmokesnever smokedUnknownformerly smokednever smokedUnknownformerly smokedformerly smokednever smokednever smokedsmokesnever smokednever smokedUnknownnever smokedUnknownnever smokedUnknownUnknownsmokesformerly smokedformerly smokednever smokednever smokednever smokedUnknownnever smokedformerly smokednever smokedUnknownnever smokednever smokednever smokedUnknownformerly smokedUnknownsmokesnever smokednever smokednever smokedsmokesUnknownnever smokedsmokessmokessmokesnever smokedsmokesformerly smokednever smokedsmokesnever smokednever smokedUnknownnever smokedformerly smokednever smokednever smokednever smokednever smokedformerly smokednever smokedUnknownnever smokedformerly smokednever smokedformerly smokedsmokesnever smokedformerly smokedformerly smokednever smokednever smokednever smokedformerly smokedsmokesnever smokednever smokedUnknownformerly smokedUnknownsmokesnever smokedUnknownnever smokednever smokedsmokesUnknownsmokesformerly smokednever smokedformerly smokednever smokedsmokesUnknownUnknownsmokesformerly smokedUnknownsmokesformerly smokedformerly smokedformerly smokedUnknownUnknownsmokesUnknownUnknownsmokesnever smokedUnknownUnknownUnknownsmokesformerly smokednever smokednever smokednever smokednever smokednever smokednever smokednever smokedUnknownnever smokedUnknownnever smokednever smokednever smokednever smokedUnknownnever smokednever smokedsmokessmokesnever smokedUnknownUnknownsmokesUnknownnever smokedsmokesnever smokedUnknownsmokesnever smokednever smokedUnknownUnknownnever smokednever smokedformerly smokednever smokednever smokedsmokesnever smokedformerly smokednever smokednever smokedUnknownUnknownsmokesformerly smokedUnknownnever smokedsmokesUnknownnever smokedUnknownsmokesnever smokednever smokedUnknownformerly smokedUnknownUnknownformerly smokedUnknownformerly smokedUnknownnever smokedUnknownUnknownnever smokedUnknownUnknownnever smokednever smokednever smokednever smokedformerly smokedsmokesUnknownUnknownUnknownUnknownnever smokedformerly smokedUnknownUnknownUnknownsmokesformerly smokednever smokedUnknownnever smokedUnknownnever smokednever smokednever smokednever smokedUnknownformerly smokedsmokesnever smokednever smokedsmokesnever smokedUnknownsmokessmokesformerly smokednever smokednever smokednever smokedUnknownUnknownsmokesnever smokedformerly smokednever smokedUnknownUnknownUnknownformerly smokednever smokedsmokesnever smokedformerly smokednever smokedformerly smokednever smokedUnknownnever smokednever smokedformerly smokednever smokedformerly smokedUnknownsmokesUnknownformerly smokednever smokednever smokedUnknownUnknownnever smokedUnknownnever smokednever smokedUnknownnever smokednever smokedformerly smokednever smokedsmokesnever smokedUnknownnever smokedformerly smokednever smokednever smokedUnknownnever smokedformerly smokedUnknownnever smokedUnknownformerly smokedUnknownsmokesnever smokedUnknownformerly smokedUnknownUnknownnever smokedUnknownsmokesUnknownUnknownnever smokednever smokednever smokedUnknownnever smokedformerly smokednever smokedUnknownsmokesnever smokedUnknownsmokesformerly smokedsmokesUnknownnever smokednever smokedformerly smokedUnknownUnknownnever smokedUnknownnever smokedformerly smokednever smokedformerly smokednever smokedUnknownsmokesUnknownUnknownUnknownUnknownformerly smokednever smokednever smokedUnknownsmokesUnknownnever smokedUnknownUnknownnever smokedformerly smokednever smokednever smokedsmokesnever smokednever smokednever smokedUnknownsmokesformerly smokednever smokedUnknownsmokesformerly smokedUnknownnever smokedformerly smokednever smokedUnknownUnknownnever smokednever smokedsmokesnever smokedsmokesnever smokedUnknownnever smokedformerly smokednever smokedformerly smokedsmokesformerly smokedformerly smokedUnknownUnknownnever smokedUnknownnever smokednever smokednever smokedUnknownnever smokednever smokednever smokedsmokesUnknownnever smokednever smokedUnknownformerly smokedsmokesUnknownsmokesformerly smokedformerly smokednever smokedsmokesUnknownformerly smokednever smokedUnknownUnknownnever smokednever smokedUnknownformerly smokedsmokesformerly smokedUnknownUnknownformerly smokednever smokednever smokedUnknownUnknownsmokesUnknownformerly smokednever smokednever smokedformerly smokednever smokedUnknownnever smokedsmokesnever smokedformerly smokedformerly smokednever smokedUnknownsmokesformerly smokedformerly smokednever smokedUnknownUnknownnever smokedUnknownsmokesUnknownUnknownnever smokedUnknownUnknownUnknownnever smokednever smokednever smokedUnknownUnknownnever smokedsmokessmokesformerly smokedsmokesnever smokedUnknownnever smokedformerly smokednever smokedformerly smokedUnknownnever smokedUnknownnever smokedUnknownnever smokednever smokedUnknownUnknownnever smokedformerly smokedUnknownUnknownformerly smokednever smokedformerly smokedUnknownUnknownUnknownnever smokedsmokesnever smokedUnknownsmokesnever smokednever smokednever smokednever smokedUnknownUnknownUnknownUnknownnever smokedUnknownUnknownnever smokednever smokednever smokedformerly smokedformerly smokednever smokednever smokedUnknownsmokesnever smokednever smokednever smokedUnknownnever smokednever smokedsmokesformerly smokednever smokednever smokedUnknownnever smokedformerly smokedUnknownUnknownnever smokednever smokedformerly smokednever smokedformerly smokedformerly smokednever smokednever smokedUnknownnever smokednever smokednever smokednever smokedformerly smokedformerly smokedsmokessmokesnever smokednever smokednever smokedsmokesformerly smokednever smokedsmokesnever smokedsmokesUnknownnever smokednever smokedUnknownUnknownUnknownUnknownformerly smokedformerly smokednever smokedUnknownUnknownformerly smokednever smokednever smokedUnknownUnknownUnknownformerly smokedUnknownnever smokednever smokedsmokessmokesnever smokedUnknownnever smokedsmokesnever smokedformerly smokedformerly smokedUnknownnever smokedsmokesformerly smokedUnknownUnknownUnknownnever smokedsmokesnever smokednever smokedformerly smokednever smokednever smokedsmokesUnknownUnknownnever smokedUnknownUnknownUnknownsmokesUnknownformerly smokednever smokedsmokesnever smokedUnknownUnknownsmokesnever smokednever smokedsmokessmokesUnknownUnknownnever smokednever smokedUnknownUnknownUnknownsmokesnever smokedUnknownUnknownnever smokedUnknownformerly smokedformerly smokedformerly smokedformerly smokednever smokednever smokednever smokedsmokesformerly smokedUnknownsmokesnever smokedUnknownnever smokednever smokednever smokednever smokedUnknownnever smokednever smokednever smokedsmokesUnknownnever smokedsmokesnever smokedformerly smokedformerly smokednever smokedUnknownnever smokednever smokedUnknownformerly smokedUnknownsmokesUnknownUnknownUnknownnever smokedformerly smokednever smokedsmokesnever smokednever smokednever smokednever smokedformerly smokedformerly smokednever smokedUnknownUnknownformerly smokedUnknownnever smokedUnknownUnknownUnknownnever smokednever smokedUnknownformerly smokednever smokedUnknownformerly smokedUnknownUnknownsmokesnever smokednever smokedformerly smokedUnknownformerly smokedUnknownUnknownformerly smokedUnknownsmokessmokessmokessmokesnever smokednever smokednever smokednever smokedsmokesnever smokedformerly smokedsmokesformerly smokednever smokedsmokesUnknownsmokesUnknownsmokesUnknownsmokesnever smokedformerly smokednever smokednever smokednever smokedUnknownsmokesnever smokedsmokesUnknownsmokesnever smokednever smokedformerly smokedsmokesnever smokedUnknownUnknownnever smokedUnknownnever smokedsmokessmokesnever smokedUnknownnever smokednever smokedUnknownUnknownnever smokedformerly smokednever smokednever smokedformerly smokedUnknownUnknownsmokessmokesUnknownsmokesformerly smokedUnknownnever smokedformerly smokednever smokedformerly smokednever smokedformerly smokednever smokednever smokednever smokednever smokednever smokednever smokedformerly smokedsmokesUnknownUnknownnever smokedUnknownnever smokednever smokednever smokednever smokednever smokedUnknownUnknownnever smokedUnknownUnknownsmokesUnknownformerly smokednever smokedUnknownsmokesUnknownsmokesUnknownUnknownUnknownnever smokedformerly smokedUnknownsmokesUnknownformerly smokedUnknownUnknownnever smokedUnknownUnknownnever smokednever smokedformerly smokedsmokessmokesformerly smokedUnknownformerly smokednever smokedUnknownUnknownsmokesformerly smokednever smokedformerly smokedsmokesformerly smokedUnknownnever smokedformerly smokednever smokedformerly smokednever smokedformerly smokedUnknownnever smokednever smokednever smokedsmokesUnknownsmokessmokessmokesformerly smokednever smokedUnknownnever smokedsmokesformerly smokednever smokednever smokednever smokednever smokedUnknownsmokesUnknownUnknownUnknownUnknownformerly smokednever smokedformerly smokednever smokedsmokesformerly smokednever smokedformerly smokedUnknownformerly smokedformerly smokedformerly smokedUnknownsmokesformerly smokedsmokesnever smokednever smokednever smokedsmokesnever smokedUnknownnever smokedformerly smokedUnknownsmokessmokesformerly smokedUnknownUnknownUnknownnever smokednever smokednever smokedformerly smokedUnknownUnknownUnknownsmokesnever smokednever smokedUnknownUnknownUnknownUnknownnever smokedformerly smokedformerly smokedUnknownUnknownnever smokedformerly smokednever smokedsmokesUnknownformerly smokedUnknownnever smokedsmokessmokesformerly smokedsmokesformerly smokedformerly smokedsmokesnever smokedformerly smokedUnknownnever smokednever smokednever smokednever smokednever smokednever smokedsmokessmokesnever smokedsmokesformerly smokedformerly smokedsmokesformerly smokednever smokedUnknownsmokesUnknownUnknownformerly smokednever smokedformerly smokedUnknownnever smokedUnknownUnknownsmokesUnknownsmokesnever smokedsmokesnever smokedUnknownUnknownformerly smokednever smokedsmokesUnknownnever smokedsmokesnever smokednever smokednever smokedUnknownUnknownformerly smokedformerly smokednever smokedUnknownnever smokednever smokedUnknownformerly smokedformerly smokedUnknownformerly smokedUnknownnever smokednever smokedUnknownsmokesnever smokedformerly smokednever smokednever smokedUnknownnever smokedsmokesUnknownnever smokedUnknownUnknownUnknownnever smokedUnknownsmokesUnknownformerly smokedsmokesformerly smokednever smokedUnknownUnknownnever smokedUnknownnever smokednever smokednever smokedformerly smokedUnknownnever smokedUnknownsmokesformerly smokedsmokesnever smokedsmokessmokessmokesUnknownnever smokednever smokedUnknownformerly smokedUnknownUnknownUnknownnever smokedUnknownUnknownnever smokednever smokedUnknownsmokesnever smokedsmokessmokesnever smokednever smokedUnknownformerly smokednever smokedsmokesUnknownsmokesnever smokedformerly smokedUnknownUnknownUnknownsmokessmokessmokesnever smokedUnknownformerly smokednever smokedUnknownformerly smokednever smokednever smokedUnknownsmokesformerly smokedsmokessmokesnever smokedformerly smokednever smokedformerly smokednever smokedformerly smokednever smokednever smokedUnknownnever smokedsmokesUnknownnever smokednever smokedUnknownnever smokednever smokedsmokesUnknownnever smokedformerly smokedformerly smokednever smokedUnknownUnknownformerly smokednever smokednever smokednever smokednever smokedsmokesUnknownsmokesUnknownformerly smokedsmokesnever smokedUnknownnever smokedformerly smokednever smokedUnknownUnknownUnknownnever smokedUnknownnever smokedUnknownnever smokedsmokesnever smokednever smokednever smokedUnknownnever smokednever smokedUnknownformerly smokednever smokednever smokedsmokesnever smokedUnknownnever smokednever smokedUnknownformerly smokednever smokedformerly smokednever smokednever smokedUnknownUnknownUnknownUnknownnever smokedformerly smokednever smokedsmokesUnknownUnknownformerly smokedsmokesformerly smokedformerly smokedUnknownnever smokedUnknownUnknownUnknownnever smokednever smokedformerly smokednever smokedUnknownsmokesnever smokednever smokedUnknownUnknownnever smokedUnknownUnknownUnknownUnknownformerly smokedsmokesUnknownnever smokednever smokedUnknownsmokesformerly smokedUnknownnever smokedformerly smokednever smokedUnknownnever smokednever smokedsmokesUnknownUnknownnever smokedUnknownformerly smokedUnknownsmokessmokesUnknownnever smokedformerly smokedsmokesnever smokedsmokesUnknownUnknownUnknownUnknownformerly smokedUnknownUnknownnever smokedUnknownUnknownUnknownnever smokedsmokesnever smokedsmokesUnknownnever smokedUnknownsmokesUnknownsmokesUnknownUnknownUnknownUnknownUnknownsmokesnever smokednever smokedUnknownnever smokedsmokesnever smokednever smokednever smokedUnknownnever smokednever smokedformerly smokednever smokedUnknownnever smokedformerly smokednever smokednever smokedUnknownformerly smokednever smokedsmokessmokesnever smokedformerly smokednever smokedUnknownsmokesUnknownnever smokedformerly smokedUnknownnever smokedformerly smokedsmokessmokesnever smokedformerly smokednever smokedsmokesnever smokednever smokednever smokedUnknownnever smokednever smokedUnknownnever smokedsmokesUnknownformerly smokedUnknownnever smokedUnknownformerly smokedformerly smokednever smokedformerly smokedformerly smokedformerly smokedsmokessmokesformerly smokedformerly smokedformerly smokedformerly smokedUnknownnever smokedUnknownnever smokedsmokesformerly smokedsmokesnever smokedsmokesUnknownUnknownnever smokednever smokedsmokesUnknownformerly smokednever smokednever smokedformerly smokedUnknownUnknownsmokesUnknownUnknownformerly smokedformerly smokedformerly smokednever smokednever smokedUnknownsmokesnever smokednever smokednever smokedUnknownnever smokedUnknownsmokesUnknownUnknownUnknownformerly smokednever smokedUnknownformerly smokednever smokedsmokesnever smokedUnknownUnknownsmokesnever smokedUnknownformerly smokedformerly smokedUnknownUnknownnever smokedformerly smokedsmokesformerly smokedUnknownformerly smokedUnknownformerly smokednever smokednever smokedsmokessmokesUnknownsmokesformerly smokedUnknownnever smokednever smokednever smokedsmokesUnknownnever smokednever smokedUnknownnever smokedformerly smokednever smokedsmokesnever smokedsmokesnever smokednever smokednever smokednever smokedsmokessmokesUnknownformerly smokednever smokedformerly smokedformerly smokedUnknownnever smokedformerly smokedUnknownnever smokedUnknownUnknownnever smokednever smokednever smokedUnknownUnknownformerly smokedformerly smokedformerly smokednever smokednever smokedsmokesUnknownUnknownnever smokedsmokesnever smokednever smokednever smokednever smokedUnknownnever smokedUnknownUnknownUnknownsmokesnever smokednever smokednever smokedUnknownnever smokedUnknownnever smokednever smokednever smokednever smokednever smokedformerly smokedsmokesnever smokedUnknownUnknownUnknownformerly smokednever smokedsmokesformerly smokedformerly smokedUnknownnever smokedUnknownUnknownnever smokednever smokedsmokesnever smokednever smokednever smokedUnknownformerly smokedformerly smokedUnknownformerly smokednever smokednever smokednever smokednever smokedsmokesUnknownnever smokedsmokesnever smokednever smokedUnknownnever smokedsmokessmokesnever smokedformerly smokedsmokesnever smokedUnknownUnknownsmokesformerly smokedsmokesUnknownUnknownUnknownsmokesUnknownformerly smokedUnknownUnknownnever smokednever smokedsmokesUnknownsmokessmokesformerly smokednever smokedsmokesUnknownsmokessmokessmokesUnknownnever smokedformerly smokednever smokedUnknownUnknownformerly smokedsmokesUnknownsmokesformerly smokednever smokednever smokedsmokesnever smokedUnknownnever smokedUnknownnever smokednever smokedformerly smokednever smokedUnknownUnknownnever smokednever smokedformerly smokedformerly smokedUnknownnever smokedsmokessmokesUnknownUnknownsmokesformerly smokedUnknownsmokessmokesUnknownUnknownUnknownformerly smokedUnknownformerly smokedUnknownsmokessmokesnever smokedUnknownnever smokedformerly smokedUnknownUnknownUnknownnever smokednever smokednever smokedUnknownsmokesnever smokedformerly smokednever smokedUnknownUnknownUnknownUnknownnever smokedUnknownUnknownformerly smokedsmokesUnknownnever smokednever smokedsmokesUnknownUnknownnever smokedsmokesnever smokedUnknownnever smokednever smokedUnknownnever smokednever smokednever smokedsmokessmokessmokessmokesnever smokedUnknownsmokesformerly smokedsmokesnever smokedUnknownnever smokedUnknownUnknownnever smokednever smokedUnknownformerly smokedsmokesUnknownsmokesnever smokednever smokedUnknownUnknownsmokessmokesnever smokedsmokesUnknownUnknownnever smokednever smokednever smokednever smokedUnknownnever smokedformerly smokednever smokednever smokedformerly smokedsmokesnever smokedsmokesUnknownnever smokednever smokedUnknownnever smokednever smokednever smokedformerly smokedsmokesUnknownformerly smokedUnknownUnknownnever smokedUnknownUnknownformerly smokedUnknownnever smokednever smokedUnknownUnknownUnknownUnknownUnknownnever smokedUnknownnever smokedformerly smokednever smokedsmokesUnknownsmokesUnknownnever smokedUnknownformerly smokedsmokesUnknownnever smokednever smokedUnknownUnknownnever smokednever smokednever smokednever smokedsmokesnever smokedformerly smokedsmokesUnknownnever smokedformerly smokedformerly smokedsmokessmokesUnknownnever smokednever smokedsmokesformerly smokedformerly smokedformerly smokedsmokessmokesUnknownUnknownsmokesformerly smokedformerly smokednever smokedsmokesUnknownUnknownUnknownformerly smokednever smokedUnknownsmokesformerly smokednever smokednever smokednever smokednever smokednever smokedUnknownsmokesUnknownnever smokednever smokedsmokesformerly smokedformerly smokednever smokedformerly smokednever smokedUnknownUnknownUnknownnever smokedsmokesnever smokednever smokednever smokedUnknownnever smokednever smokedformerly smokedUnknownformerly smokednever smokedUnknownnever smokednever smokedformerly smokednever smokedUnknownnever smokednever smokednever smokedsmokesUnknownnever smokednever smokednever smokednever smokedUnknownnever smokedUnknownnever smokedUnknownnever smokedUnknownUnknownnever smokedUnknownUnknownnever smokedUnknownnever smokednever smokednever smokedformerly smokedformerly smokedformerly smokedformerly smokedformerly smokedUnknownUnknownformerly smokednever smokednever smokedsmokesUnknownnever smokednever smokedformerly smokedUnknownsmokesnever smokedUnknownUnknownUnknownsmokesformerly smokedUnknownformerly smokedUnknownsmokesnever smokedsmokesformerly smokedUnknownnever smokedformerly smokednever smokedUnknownformerly smokednever smokedformerly smokedsmokesUnknownsmokesnever smokednever smokedUnknownsmokesnever smokedsmokessmokessmokesUnknownUnknownnever smokedUnknownnever smokedsmokesUnknownformerly smokednever smokedsmokesUnknownUnknownUnknownnever smokedUnknownnever smokedsmokesformerly smokedUnknownformerly smokednever smokedformerly smokedUnknownformerly smokedformerly smokednever smokedformerly smokednever smokedUnknownformerly smokednever smokednever smokedUnknownformerly smokedUnknownUnknownUnknownsmokesUnknownUnknownsmokesnever smokedsmokesUnknownnever smokedUnknownnever smokedUnknownnever smokedUnknownformerly smokedformerly smokednever smokednever smokednever smokedsmokessmokesformerly smokednever smokedUnknownsmokesnever smokedformerly smokedformerly smokednever smokedUnknownnever smokedUnknownUnknownnever smokedformerly smokedformerly smokednever smokedformerly smokedsmokessmokesnever smokedformerly smokedformerly smokedsmokesnever smokedsmokesnever smokednever smokedUnknownsmokesformerly smokednever smokednever smokedsmokesUnknownUnknownnever smokedformerly smokednever smokedUnknownUnknownnever smokednever smokedsmokesnever smokedformerly smokedformerly smokedsmokesnever smokedUnknownUnknownnever smokedUnknownUnknownnever smokednever smokedformerly smokedUnknownUnknownnever smokednever smokednever smokedformerly smokedUnknownformerly smokednever smokedformerly smokedformerly smokedformerly smokedUnknownformerly smokedUnknownformerly smokednever smokedUnknownsmokesnever smokednever smokednever smokedUnknownUnknownformerly smokedsmokesnever smokedsmokesUnknownUnknownnever smokedsmokesnever smokednever smokedformerly smokedUnknownUnknownnever smokednever smokedUnknownnever smokedUnknownUnknownUnknownsmokesnever smokedUnknownUnknownnever smokedsmokesUnknownnever smokedformerly smokednever smokedformerly smokednever smokedsmokesUnknownnever smokedUnknownsmokesUnknownnever smokedsmokesUnknownUnknownformerly smokedsmokesformerly smokedsmokessmokessmokesUnknownnever smokedUnknownnever smokednever smokednever smokedUnknownnever smokedsmokesUnknownsmokesUnknownnever smokedformerly smokedformerly smokednever smokednever smokedUnknownUnknownnever smokedUnknownsmokesUnknownUnknownUnknownnever smokedsmokesUnknownnever smokedformerly smokednever smokednever smokednever smokedUnknownformerly smokedsmokesnever smokednever smokedUnknownsmokesUnknownUnknownformerly smokedUnknownnever smokedsmokesnever smokedUnknownsmokesformerly smokedformerly smokedformerly smokednever smokedUnknownUnknownUnknownUnknownformerly smokedUnknownnever smokednever smokednever smokedsmokesnever smokedUnknownnever smokednever smokedformerly smokednever smokedUnknownnever smokedsmokesformerly smokednever smokednever smokednever smokedsmokesnever smokednever smokednever smokedsmokesformerly smokednever smokedUnknownsmokessmokesnever smokedUnknownsmokesnever smokednever smokedUnknownnever smokednever smokedUnknownUnknownformerly smokednever smokedUnknownnever smokedformerly smokednever smokedUnknownnever smokedformerly smokedformerly smokedformerly smokedUnknownUnknownnever smokednever smokednever smokedUnknownnever smokedformerly smokedsmokessmokessmokesUnknownsmokesUnknownnever smokedUnknownnever smokednever smokedUnknownformerly smokedsmokesformerly smokedsmokessmokesUnknownnever smokedUnknownnever smokedsmokesUnknownformerly smokedUnknownsmokesformerly smokednever smokedsmokesUnknownsmokesformerly smokedsmokesUnknownnever smokedformerly smokednever smokednever smokedformerly smokedUnknownnever smokednever smokedformerly smokednever smokednever smokedformerly smokednever smokedformerly smokedsmokesformerly smokedformerly smokedUnknownformerly smokedformerly smokednever smokednever smokedUnknownformerly smokedUnknownnever smokednever smokedUnknownsmokesformerly smokedsmokesUnknownformerly smokedUnknownsmokesformerly smokedUnknownformerly smokedUnknownformerly smokedsmokesnever smokedsmokesUnknownUnknownnever smokedsmokesformerly smokedUnknownUnknownformerly smokedUnknownUnknownsmokesUnknownnever smokedUnknownnever smokedformerly smokednever smokedUnknownUnknownformerly smokedsmokesformerly smokednever smokedsmokesformerly smokednever smokednever smokednever smokednever smokedUnknownnever smokednever smokednever smokedUnknownUnknownnever smokedformerly smokednever smokedUnknownnever smokedUnknownnever smokedformerly smokednever smokednever smokednever smokednever smokedsmokesnever smokednever smokedsmokesnever smokednever smokedformerly smokedUnknownnever smokedformerly smokedUnknownnever smokednever smokednever smokednever smokedUnknownsmokesnever smokedUnknownUnknownUnknownsmokesUnknownUnknownUnknownUnknownformerly smokedsmokessmokesnever smokedformerly smokedUnknownsmokessmokesUnknownUnknownnever smokedsmokesUnknownformerly smokedsmokesnever smokedUnknownnever smokedformerly smokedUnknownnever smokedUnknownnever smokedUnknownsmokesnever smokednever smokednever smokedformerly smokedformerly smokednever smokedUnknownnever smokedUnknownUnknownnever smokednever smokedUnknownsmokesUnknownUnknownformerly smokedUnknownsmokesUnknownnever smokedUnknownnever smokednever smokednever smokedUnknownformerly smokedsmokesnever smokedformerly smokedUnknownformerly smokedformerly smokednever smokednever smokedformerly smokedformerly smokednever smokedUnknownUnknownsmokessmokesUnknownformerly smokedformerly smokedsmokesUnknownUnknownUnknownnever smokedUnknownUnknownUnknownsmokessmokesUnknownsmokesnever smokedsmokesnever smokedUnknownformerly smokedsmokesformerly smokedsmokesnever smokednever smokednever smokednever smokednever smokedformerly smokedUnknownformerly smokednever smokedUnknownnever smokednever smokedUnknownformerly smokedUnknownformerly smokednever smokedsmokesformerly smokedformerly smokednever smokedformerly smokedsmokesnever smokedformerly smokedUnknownformerly smokedUnknownnever smokedUnknownnever smokednever smokednever smokedformerly smokedUnknownformerly smokednever smokedUnknownUnknownformerly smokedformerly smokednever smokednever smokedsmokesformerly smokedUnknownformerly smokednever smokedformerly smokednever smokednever smokednever smokedUnknownformerly smokedUnknownformerly smokedUnknownformerly smokedformerly smokedformerly smokedsmokesUnknownnever smokedUnknownUnknownsmokessmokesformerly smokedUnknownformerly smokednever smokednever smokedUnknownUnknownsmokesformerly smokedformerly smokednever smokedsmokesnever smokedUnknownnever smokedsmokesformerly smokedformerly smokedsmokesformerly smokednever smokedUnknownnever smokednever smokedUnknownUnknownUnknownUnknownnever smokednever smokedsmokesnever smokedformerly smokedformerly smokednever smokednever smokednever smokednever smokedUnknownsmokesUnknownnever smokednever smokednever smokednever smokednever smokedUnknownUnknownUnknownUnknownUnknownsmokesUnknownformerly smokednever smokedUnknownUnknownsmokesUnknownnever smokedUnknownformerly smokednever smokednever smokedUnknownnever smokedUnknownformerly smokedUnknownUnknownformerly smokedformerly smokednever smokedsmokesUnknownnever smokedUnknownUnknownnever smokednever smokedUnknownnever smokedsmokesUnknownUnknownUnknownUnknownsmokesUnknownUnknownformerly smokednever smokednever smokedUnknownsmokesnever smokedUnknownformerly smokedUnknownnever smokednever smokedformerly smokedUnknownUnknownnever smokedformerly smokedUnknownUnknownsmokesformerly smokedUnknownnever smokedUnknownUnknownformerly smokedUnknownnever smokedformerly smokedUnknownUnknownnever smokednever smokednever smokednever smokedformerly smokednever smokedsmokessmokesnever smokedsmokesUnknownsmokesnever smokedformerly smokednever smokednever smokednever smokedUnknownnever smokednever smokednever smokedsmokesUnknownnever smokedsmokesnever smokedUnknownUnknownnever smokedUnknownformerly smokedsmokesnever smokednever smokedsmokesnever smokednever smokednever smokednever smokedUnknownUnknownformerly smokednever smokedUnknownformerly smokedUnknownnever smokedUnknownUnknownformerly smokedformerly smokednever smokedUnknownnever smokednever smokedUnknownUnknownUnknownnever smokedUnknownUnknownsmokesnever smokednever smokedUnknownUnknownsmokessmokesnever smokedformerly smokednever smokednever smokedUnknownnever smokednever smokedformerly smokednever smokednever smokednever smokedUnknownnever smokednever smokednever smokedUnknownnever smokednever smokednever smokedformerly smokednever smokedUnknownnever smokednever smokedsmokesnever smokedformerly smokedUnknownformerly smokedUnknownnever smokedformerly smokedsmokessmokesUnknownnever smokedformerly smokedformerly smokedformerly smokedUnknownUnknownnever smokednever smokedUnknownsmokesUnknownnever smokedformerly smokedUnknownUnknownnever smokedsmokesformerly smokedsmokessmokesnever smokednever smokedformerly smokedUnknownUnknownformerly smokedformerly smokednever smokednever smokedformerly smokednever smokednever smokednever smokedsmokesUnknownsmokesUnknownformerly smokedsmokesUnknownUnknownformerly smokedUnknownnever smokedformerly smokednever smokednever smokedsmokesUnknownUnknownnever smokednever smokedUnknownnever smokedUnknownnever smokednever smokedUnknownnever smokednever smokedsmokesUnknownsmokesnever smokednever smokedUnknownnever smokednever smokedUnknownnever smokednever smokedsmokesnever smokednever smokedUnknownformerly smokednever smokedUnknownnever smokedformerly smokednever smokednever smokedUnknownsmokesUnknownUnknownUnknownnever smokednever smokednever smokedsmokesnever smokednever smokednever smokednever smokedUnknownformerly smokedUnknownformerly smokednever smokednever smokednever smokednever smokedUnknownUnknownformerly smokedUnknownnever smokednever smokedformerly smokednever smokednever smokedformerly smokednever smokednever smokedformerly smokednever smokedsmokesnever smokednever smokednever smokedformerly smokedformerly smokedUnknownnever smokedsmokessmokesUnknownUnknownformerly smokednever smokedUnknownUnknownUnknownnever smokedformerly smokedsmokessmokesUnknownnever smokedUnknownUnknownnever smokednever smokedUnknownUnknownUnknownformerly smokedUnknownsmokesnever smokedsmokesnever smokednever smokedUnknownUnknownformerly smokednever smokednever smokedformerly smokedUnknownnever smokedUnknownnever smokedformerly smokedformerly smokedformerly smokedsmokesnever smokedUnknownnever smokednever smokednever smokedUnknownnever smokednever smokedUnknownUnknownnever smokedUnknownformerly smokednever smokednever smokedUnknownUnknownnever smokedUnknownnever smokednever smokednever smokednever smokednever smokednever smokedUnknownnever smokednever smokedformerly smokedformerly smokedUnknownformerly smokedUnknownsmokesformerly smokedUnknownnever smokedUnknownUnknownUnknownUnknownnever smokedformerly smokedformerly smokednever smokedsmokesUnknownsmokessmokesUnknownnever smokedformerly smokedsmokesnever smokednever smokedsmokessmokesnever smokedUnknownUnknownnever smokedformerly smokedformerly smokednever smokedformerly smokednever smokedUnknownUnknownUnknownUnknownsmokesformerly smokednever smokedUnknownnever smokedUnknownUnknownformerly smokedUnknownnever smokedUnknownUnknownnever smokedUnknownsmokesUnknownsmokesUnknownUnknownnever smokedUnknownUnknownformerly smokednever smokednever smokedUnknownformerly smokedsmokesnever smokednever smokedUnknownnever smokedformerly smokednever smokedUnknownnever smokedsmokesnever smokedUnknownnever smokednever smokednever smokedUnknownnever smokednever smokedUnknownUnknownnever smokedsmokesUnknownsmokessmokesUnknownsmokesUnknownformerly smokedformerly smokednever smokedUnknownUnknownUnknownnever smokedsmokesnever smokedUnknownnever smokednever smokedformerly smokednever smokedUnknownUnknownnever smokednever smokedUnknownsmokesnever smokedUnknownnever smokednever smokednever smokedformerly smokedUnknownUnknownnever smokedUnknownnever smokednever smokednever smokedsmokessmokesUnknownUnknownformerly smokedUnknownUnknownnever smokedUnknownUnknownnever smokedformerly smokedUnknownnever smokedsmokesUnknownnever smokedsmokesnever smokedformerly smokednever smokedsmokesnever smokednever smokednever smokedUnknownnever smokednever smokednever smokednever smokednever smokedUnknownUnknownnever smokedformerly smokedUnknownformerly smokedUnknownnever smokedUnknownUnknownnever smokedUnknownnever smokednever smokedUnknownsmokesUnknownnever smokednever smokedsmokesUnknownsmokessmokesnever smokedUnknownnever smokedUnknownsmokesformerly smokedUnknownsmokesnever smokedsmokesUnknownnever smokedUnknownformerly smokedformerly smokedsmokessmokesnever smokedUnknownUnknownUnknownsmokesUnknownsmokesformerly smokedUnknownnever smokedsmokesnever smokedsmokesUnknownformerly smokedformerly smokedUnknownUnknownsmokesUnknownnever smokedsmokesUnknownUnknownnever smokednever smokednever smokedsmokesnever smokednever smokedformerly smokedUnknownUnknownUnknownUnknownformerly smokedUnknownnever smokedsmokesnever smokedformerly smokedsmokesnever smokedsmokesUnknownsmokesUnknownnever smokednever smokednever smokedsmokesUnknownUnknownUnknownnever smokednever smokedformerly smokednever smokedformerly smokednever smokedUnknownsmokesUnknownUnknownnever smokedUnknownUnknownUnknownsmokesUnknownsmokesUnknownformerly smokednever smokedUnknownUnknownnever smokedformerly smokedformerly smokedformerly smokednever smokedUnknownnever smokedsmokesformerly smokedsmokesnever smokednever smokednever smokednever smokedsmokesUnknownUnknownUnknownformerly smokedUnknownsmokesUnknownnever smokednever smokedUnknownUnknownformerly smokednever smokednever smokedsmokesUnknownUnknownformerly smokednever smokedUnknownUnknownUnknownformerly smokedUnknownformerly smokednever smokedformerly smokedformerly smokedformerly smokedsmokesnever smokedsmokesnever smokedformerly smokednever smokedUnknownnever smokedUnknownUnknownnever smokedUnknownUnknownnever smokedsmokesnever smokednever smokednever smokednever smokednever smokedformerly smokedformerly smokedsmokesUnknownnever smokedUnknownUnknownnever smokedformerly smokednever smokedUnknownformerly smokednever smokedsmokesnever smokedUnknownnever smokedUnknownsmokessmokessmokessmokessmokesnever smokedUnknownUnknownUnknownUnknownUnknownsmokesnever smokednever smokedformerly smokedformerly smokednever smokednever smokednever smokedformerly smokedUnknownformerly smokednever smokedUnknownsmokesUnknownsmokesnever smokedUnknownformerly smokedUnknownsmokesUnknownUnknownnever smokednever smokedsmokessmokesformerly smokedformerly smokedformerly smokednever smokedUnknownUnknownnever smokedformerly smokedformerly smokedformerly smokednever smokedUnknownUnknownUnknownnever smokednever smokedUnknownUnknownUnknownnever smokedUnknownsmokesnever smokedformerly smokednever smokedformerly smokedformerly smokedformerly smokedUnknownnever smokedUnknownnever smokedUnknownnever smokedsmokesnever smokedUnknownUnknownUnknownUnknownnever smokednever smokedUnknownsmokesformerly smokednever smokednever smokednever smokednever smokednever smokednever smokednever smokedUnknownnever smokedformerly smokedUnknownnever smokedUnknownformerly smokedsmokesUnknownUnknownUnknownnever smokedsmokessmokessmokesnever smokednever smokedUnknownnever smokednever smokedUnknownformerly smokedUnknownnever smokednever smokednever smokedformerly smokedformerly smokedUnknownsmokesformerly smokedUnknownnever smokednever smokedUnknownnever smokednever smokednever smokedsmokessmokesUnknownformerly smokedsmokesformerly smokednever smokedUnknownsmokesUnknownformerly smokedUnknownUnknownnever smokedUnknownnever smokedsmokesnever smokednever smokedsmokessmokesnever smokednever smokednever smokednever smokednever smokednever smokednever smokednever smokednever smokednever smokedsmokesUnknownsmokesUnknownUnknownsmokesformerly smokedformerly smokedUnknownformerly smokedUnknownUnknownsmokesUnknownnever smokedUnknownnever smokednever smokednever smokedUnknownnever smokedsmokesnever smokedUnknownnever smokednever smokedUnknownformerly smokednever smokednever smokedUnknownUnknownformerly smokedUnknownsmokesUnknownsmokesformerly smokedformerly smokednever smokedUnknownUnknownformerly smokednever smokedsmokesnever smokedsmokesformerly smokedsmokesUnknownnever smokedUnknownUnknownUnknownnever smokedUnknownformerly smokedsmokessmokesnever smokedUnknownnever smokedUnknownsmokesUnknownnever smokedUnknownnever smokedUnknownnever smokedUnknownnever smokednever smokedUnknownformerly smokednever smokedsmokesnever smokedsmokesformerly smokedUnknownnever smokednever smokedUnknownUnknownUnknownsmokesnever smokedUnknownsmokesformerly smokedformerly smokedformerly smokedUnknownUnknownnever smokedUnknownformerly smokednever smokednever smokedsmokesUnknownnever smokedUnknownformerly smokednever smokednever smokednever smokednever smokedUnknownnever smokedUnknownnever smokedformerly smokedUnknownsmokesformerly smokedsmokesnever smokednever smokednever smokedUnknownnever smokedformerly smokedUnknownformerly smokedsmokesUnknownnever smokedformerly smokedUnknownUnknownformerly smokedformerly smokednever smokedsmokesUnknownnever smokedsmokesformerly smokedUnknownformerly smokedsmokessmokesUnknownformerly smokedsmokesnever smokedUnknownnever smokedUnknownnever smokednever smokednever smokednever smokednever smokednever smokedsmokesUnknownnever smokedUnknownformerly smokednever smokednever smokedsmokesformerly smokedsmokesUnknownformerly smokedformerly smokedsmokesnever smokedUnknownUnknownformerly smokednever smokedsmokesUnknownUnknownUnknownUnknownUnknownnever smokednever smokednever smokedUnknownUnknownUnknownnever smokedUnknownnever smokedUnknownsmokesnever smokednever smokednever smokedformerly smokedUnknownUnknownsmokesUnknownsmokesUnknownUnknownsmokesformerly smokedUnknownnever smokedsmokesUnknownnever smokedUnknownnever smokedUnknownnever smokedformerly smokednever smokedUnknownUnknownnever smokednever smokedUnknownUnknownnever smokednever smokedUnknownnever smokednever smokedUnknownformerly smokednever smokednever smokedUnknownUnknownnever smokednever smokedsmokessmokesformerly smokednever smokednever smokednever smokednever smokedUnknownnever smokednever smokednever smokednever smokedUnknownformerly smokedformerly smokednever smokednever smokednever smokednever smokednever smokedformerly smokedformerly smokedformerly smokedsmokesformerly smokednever smokedUnknownnever smokednever smokedformerly smokedUnknownnever smokedsmokesnever smokedUnknownsmokesnever smokedUnknownUnknownnever smokednever smokedsmokesformerly smokednever smokedUnknownformerly smokednever smokednever smokedsmokessmokesnever smokedUnknownsmokesnever smokednever smokedsmokesnever smokednever smokedformerly smokedformerly smokedUnknownUnknownsmokesUnknownUnknownUnknownformerly smokedUnknownformerly smokedformerly smokednever smokednever smokedformerly smokedUnknownUnknownnever smokednever smokednever smokednever smokednever smokedUnknownnever smokedUnknownsmokessmokesformerly smokednever smokednever smokednever smokedUnknownsmokesnever smokedUnknownnever smokedsmokesnever smokednever smokednever smokedUnknownUnknownformerly smokednever smokedUnknownnever smokedsmokesnever smokednever smokedformerly smokedUnknownsmokesUnknownnever smokedUnknownformerly smokedsmokesnever smokednever smokednever smokedUnknownformerly smokedformerly smokednever smokedUnknownnever smokednever smokednever smokedformerly smokedsmokessmokesnever smokedsmokesUnknownformerly smokedformerly smokednever smokednever smokedUnknownformerly smokedUnknownUnknownUnknownnever smokednever smokedUnknownnever smokednever smokedUnknownsmokessmokesnever smokednever smokedsmokesnever smokedUnknownsmokesUnknownUnknownUnknownnever smokedUnknownUnknownUnknownnever smokedformerly smokedUnknownnever smokedUnknownUnknownnever smokedformerly smokednever smokedformerly smokedUnknownnever smokedUnknownformerly smokednever smokedformerly smokednever smokedformerly smokedformerly smokednever smokedsmokesnever smokednever smokednever smokedUnknownformerly smokedUnknownformerly smokednever smokedUnknownnever smokednever smokedUnknownnever smokedUnknownUnknownsmokesnever smokednever smokednever smokednever smokedUnknownnever smokedsmokesUnknownUnknownnever smokedformerly smokedformerly smokedsmokesUnknownUnknownnever smokednever smokedsmokesUnknownUnknownformerly smokednever smokedUnknownformerly smokedUnknownformerly smokedformerly smokedUnknownnever smokedsmokesUnknownformerly smokedsmokesnever smokedformerly smokednever smokedUnknownnever smokedsmokesformerly smokedformerly smokedformerly smokedsmokesnever smokedUnknownnever smokedformerly smokedUnknownUnknownsmokesformerly smokednever smokednever smokednever smokedformerly smokednever smokednever smokednever smokednever smokednever smokednever smokedUnknownsmokesUnknownformerly smokedformerly smokednever smokedUnknownnever smokedformerly smokedformerly smokedformerly smokedsmokessmokesnever smokednever smokedUnknownnever smokednever smokednever smokedformerly smokednever smokednever smokednever smokednever smokednever smokedUnknownUnknownUnknownnever smokednever smokedUnknownnever smokedUnknownformerly smokednever smokedsmokesnever smokedUnknownsmokesformerly smokedsmokesformerly smokedUnknownnever smokednever smokedformerly smokednever smokedUnknownnever smokednever smokedformerly smokedsmokesformerly smokedformerly smokednever smokedUnknownUnknownnever smokedsmokesUnknownformerly smokedsmokessmokesnever smokednever smokedsmokesnever smokedUnknownUnknownnever smokedformerly smokedsmokesnever smokednever smokednever smokedformerly smokedUnknownnever smokednever smokednever smokedformerly smokednever smokedUnknownUnknownUnknownformerly smokedUnknownnever smokedformerly smokednever smokedsmokesnever smokedUnknownnever smokedsmokesUnknownsmokesnever smokednever smokedformerly smokedUnknownformerly smokedsmokessmokesUnknownsmokesUnknownUnknownnever smokednever smokednever smokedUnknownnever smokednever smokedUnknownnever smokednever smokednever smokednever smokedsmokesnever smokedformerly smokedsmokesnever smokedsmokesUnknownUnknownUnknownformerly smokedformerly smokedformerly smokednever smokedUnknownnever smokednever smokednever smokedUnknownUnknownformerly smokednever smokedsmokesformerly smokedsmokesUnknownnever smokedsmokessmokesformerly smokedUnknownsmokesUnknownUnknownUnknownUnknownUnknownUnknownUnknownnever smokednever smokednever smokedUnknownformerly smokedUnknownformerly smokedformerly smokednever smokedsmokesformerly smokedUnknownnever smokedsmokesUnknownUnknownsmokesUnknownnever smokedUnknownUnknownsmokesformerly smokedformerly smokednever smokednever smokedUnknownUnknownformerly smokednever smokednever smokedsmokesformerly smokedUnknownUnknownsmokesnever smokednever smokednever smokedsmokesUnknownnever smokednever smokedformerly smokedsmokesnever smokednever smokedsmokesnever smokednever smokednever smokednever smokednever smokednever smokedformerly smokedUnknownnever smokedUnknownUnknownUnknownsmokesnever smokedformerly smokedUnknownsmokesUnknownsmokesformerly smokednever smokednever smokedUnknownsmokesUnknownUnknownnever smokedUnknownsmokesformerly smokednever smokedsmokesformerly smokednever smokedUnknownnever smokedUnknownUnknownsmokessmokesnever smokedUnknownnever smokedformerly smokedsmokesformerly smokednever smokednever smokednever smokednever smokedformerly smokedUnknownUnknownnever smokedsmokesnever smokednever smokednever smokednever smokednever smokedUnknownnever smokedformerly smokednever smokednever smokednever smokednever smokedsmokesUnknownUnknownformerly smokednever smokednever smokedformerly smokednever smokedUnknownnever smokedsmokesnever smokedUnknownsmokesnever smokedUnknownformerly smokednever smokedUnknownUnknownnever smokedUnknownnever smokednever smokedsmokesUnknownsmokesUnknownformerly smokedUnknownUnknownnever smokednever smokedUnknownnever smokedUnknownnever smokedUnknownnever smokedUnknownnever smokednever smokedformerly smokedUnknownUnknownnever smokedformerly smokedformerly smokednever smokedformerly smokedformerly smokedsmokessmokesnever smokedformerly smokedsmokesnever smokedUnknownformerly smokednever smokedUnknownnever smokedUnknownnever smokednever smokedUnknownsmokesnever smokedUnknownnever smokednever smokednever smokedUnknownformerly smokedformerly smokedformerly smokednever smokednever smokedUnknownformerly smokedUnknownsmokesformerly smokedUnknownnever smokednever smokedUnknownformerly smokedsmokesnever smokedUnknownnever smokedUnknownnever smokednever smokedsmokesformerly smokednever smokednever smokedUnknownformerly smokednever smokednever smokedUnknownUnknownnever smokednever smokednever smokedformerly smokednever smokedUnknownUnknownsmokesnever smokedsmokesUnknownnever smokedUnknownUnknownUnknownnever smokedformerly smokedsmokesUnknownsmokesformerly smokedUnknownformerly smokedUnknownUnknownsmokesnever smokednever smokedsmokesUnknownUnknownnever smokedUnknownUnknownsmokesnever smokedUnknownnever smokedUnknownUnknownnever smokednever smokednever smokedformerly smokedUnknown'] to numeric", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[17], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m df\u001b[38;5;241m.\u001b[39mfillna(\u001b[43mdf\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmean\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m, inplace\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[0;32m 2\u001b[0m df\u001b[38;5;241m.\u001b[39mfillna(df\u001b[38;5;241m.\u001b[39mmedian(), inplace\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n", + "File \u001b[1;32mc:\\Users\\tellsense\\maigit\\.venv\\Lib\\site-packages\\pandas\\core\\frame.py:11693\u001b[0m, in \u001b[0;36mDataFrame.mean\u001b[1;34m(self, axis, skipna, numeric_only, **kwargs)\u001b[0m\n\u001b[0;32m 11685\u001b[0m \u001b[38;5;129m@doc\u001b[39m(make_doc(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmean\u001b[39m\u001b[38;5;124m\"\u001b[39m, ndim\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m2\u001b[39m))\n\u001b[0;32m 11686\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mmean\u001b[39m(\n\u001b[0;32m 11687\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 11691\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs,\n\u001b[0;32m 11692\u001b[0m ):\n\u001b[1;32m> 11693\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmean\u001b[49m\u001b[43m(\u001b[49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mskipna\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnumeric_only\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 11694\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(result, Series):\n\u001b[0;32m 11695\u001b[0m result \u001b[38;5;241m=\u001b[39m result\u001b[38;5;241m.\u001b[39m__finalize__(\u001b[38;5;28mself\u001b[39m, method\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmean\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", + "File \u001b[1;32mc:\\Users\\tellsense\\maigit\\.venv\\Lib\\site-packages\\pandas\\core\\generic.py:12420\u001b[0m, in \u001b[0;36mNDFrame.mean\u001b[1;34m(self, axis, skipna, numeric_only, **kwargs)\u001b[0m\n\u001b[0;32m 12413\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mmean\u001b[39m(\n\u001b[0;32m 12414\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[0;32m 12415\u001b[0m axis: Axis \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 12418\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs,\n\u001b[0;32m 12419\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Series \u001b[38;5;241m|\u001b[39m \u001b[38;5;28mfloat\u001b[39m:\n\u001b[1;32m> 12420\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_stat_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 12421\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmean\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnanops\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnanmean\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mskipna\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnumeric_only\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\n\u001b[0;32m 12422\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32mc:\\Users\\tellsense\\maigit\\.venv\\Lib\\site-packages\\pandas\\core\\generic.py:12377\u001b[0m, in \u001b[0;36mNDFrame._stat_function\u001b[1;34m(self, name, func, axis, skipna, numeric_only, **kwargs)\u001b[0m\n\u001b[0;32m 12373\u001b[0m nv\u001b[38;5;241m.\u001b[39mvalidate_func(name, (), kwargs)\n\u001b[0;32m 12375\u001b[0m validate_bool_kwarg(skipna, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mskipna\u001b[39m\u001b[38;5;124m\"\u001b[39m, none_allowed\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[1;32m> 12377\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_reduce\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 12378\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mskipna\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mskipna\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnumeric_only\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnumeric_only\u001b[49m\n\u001b[0;32m 12379\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32mc:\\Users\\tellsense\\maigit\\.venv\\Lib\\site-packages\\pandas\\core\\frame.py:11562\u001b[0m, in \u001b[0;36mDataFrame._reduce\u001b[1;34m(self, op, name, axis, skipna, numeric_only, filter_type, **kwds)\u001b[0m\n\u001b[0;32m 11558\u001b[0m df \u001b[38;5;241m=\u001b[39m df\u001b[38;5;241m.\u001b[39mT\n\u001b[0;32m 11560\u001b[0m \u001b[38;5;66;03m# After possibly _get_data and transposing, we are now in the\u001b[39;00m\n\u001b[0;32m 11561\u001b[0m \u001b[38;5;66;03m# simple case where we can use BlockManager.reduce\u001b[39;00m\n\u001b[1;32m> 11562\u001b[0m res \u001b[38;5;241m=\u001b[39m \u001b[43mdf\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_mgr\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreduce\u001b[49m\u001b[43m(\u001b[49m\u001b[43mblk_func\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 11563\u001b[0m out \u001b[38;5;241m=\u001b[39m df\u001b[38;5;241m.\u001b[39m_constructor_from_mgr(res, axes\u001b[38;5;241m=\u001b[39mres\u001b[38;5;241m.\u001b[39maxes)\u001b[38;5;241m.\u001b[39miloc[\u001b[38;5;241m0\u001b[39m]\n\u001b[0;32m 11564\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m out_dtype \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m out\u001b[38;5;241m.\u001b[39mdtype \u001b[38;5;241m!=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mboolean\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n", + "File \u001b[1;32mc:\\Users\\tellsense\\maigit\\.venv\\Lib\\site-packages\\pandas\\core\\internals\\managers.py:1500\u001b[0m, in \u001b[0;36mBlockManager.reduce\u001b[1;34m(self, func)\u001b[0m\n\u001b[0;32m 1498\u001b[0m res_blocks: \u001b[38;5;28mlist\u001b[39m[Block] \u001b[38;5;241m=\u001b[39m []\n\u001b[0;32m 1499\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m blk \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mblocks:\n\u001b[1;32m-> 1500\u001b[0m nbs \u001b[38;5;241m=\u001b[39m \u001b[43mblk\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreduce\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfunc\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1501\u001b[0m res_blocks\u001b[38;5;241m.\u001b[39mextend(nbs)\n\u001b[0;32m 1503\u001b[0m index \u001b[38;5;241m=\u001b[39m Index([\u001b[38;5;28;01mNone\u001b[39;00m]) \u001b[38;5;66;03m# placeholder\u001b[39;00m\n", + "File \u001b[1;32mc:\\Users\\tellsense\\maigit\\.venv\\Lib\\site-packages\\pandas\\core\\internals\\blocks.py:404\u001b[0m, in \u001b[0;36mBlock.reduce\u001b[1;34m(self, func)\u001b[0m\n\u001b[0;32m 398\u001b[0m \u001b[38;5;129m@final\u001b[39m\n\u001b[0;32m 399\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mreduce\u001b[39m(\u001b[38;5;28mself\u001b[39m, func) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28mlist\u001b[39m[Block]:\n\u001b[0;32m 400\u001b[0m \u001b[38;5;66;03m# We will apply the function and reshape the result into a single-row\u001b[39;00m\n\u001b[0;32m 401\u001b[0m \u001b[38;5;66;03m# Block with the same mgr_locs; squeezing will be done at a higher level\u001b[39;00m\n\u001b[0;32m 402\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mndim \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m2\u001b[39m\n\u001b[1;32m--> 404\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mvalues\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 406\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mvalues\u001b[38;5;241m.\u001b[39mndim \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m1\u001b[39m:\n\u001b[0;32m 407\u001b[0m res_values \u001b[38;5;241m=\u001b[39m result\n", + "File \u001b[1;32mc:\\Users\\tellsense\\maigit\\.venv\\Lib\\site-packages\\pandas\\core\\frame.py:11481\u001b[0m, in \u001b[0;36mDataFrame._reduce..blk_func\u001b[1;34m(values, axis)\u001b[0m\n\u001b[0;32m 11479\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m np\u001b[38;5;241m.\u001b[39marray([result])\n\u001b[0;32m 11480\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m> 11481\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mop\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvalues\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mskipna\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mskipna\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32mc:\\Users\\tellsense\\maigit\\.venv\\Lib\\site-packages\\pandas\\core\\nanops.py:147\u001b[0m, in \u001b[0;36mbottleneck_switch.__call__..f\u001b[1;34m(values, axis, skipna, **kwds)\u001b[0m\n\u001b[0;32m 145\u001b[0m result \u001b[38;5;241m=\u001b[39m alt(values, axis\u001b[38;5;241m=\u001b[39maxis, skipna\u001b[38;5;241m=\u001b[39mskipna, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwds)\n\u001b[0;32m 146\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m--> 147\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43malt\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvalues\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mskipna\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mskipna\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 149\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m result\n", + "File \u001b[1;32mc:\\Users\\tellsense\\maigit\\.venv\\Lib\\site-packages\\pandas\\core\\nanops.py:404\u001b[0m, in \u001b[0;36m_datetimelike_compat..new_func\u001b[1;34m(values, axis, skipna, mask, **kwargs)\u001b[0m\n\u001b[0;32m 401\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m datetimelike \u001b[38;5;129;01mand\u001b[39;00m mask \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 402\u001b[0m mask \u001b[38;5;241m=\u001b[39m isna(values)\n\u001b[1;32m--> 404\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvalues\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mskipna\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mskipna\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmask\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmask\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 406\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m datetimelike:\n\u001b[0;32m 407\u001b[0m result \u001b[38;5;241m=\u001b[39m _wrap_results(result, orig_values\u001b[38;5;241m.\u001b[39mdtype, fill_value\u001b[38;5;241m=\u001b[39miNaT)\n", + "File \u001b[1;32mc:\\Users\\tellsense\\maigit\\.venv\\Lib\\site-packages\\pandas\\core\\nanops.py:720\u001b[0m, in \u001b[0;36mnanmean\u001b[1;34m(values, axis, skipna, mask)\u001b[0m\n\u001b[0;32m 718\u001b[0m count \u001b[38;5;241m=\u001b[39m _get_counts(values\u001b[38;5;241m.\u001b[39mshape, mask, axis, dtype\u001b[38;5;241m=\u001b[39mdtype_count)\n\u001b[0;32m 719\u001b[0m the_sum \u001b[38;5;241m=\u001b[39m values\u001b[38;5;241m.\u001b[39msum(axis, dtype\u001b[38;5;241m=\u001b[39mdtype_sum)\n\u001b[1;32m--> 720\u001b[0m the_sum \u001b[38;5;241m=\u001b[39m \u001b[43m_ensure_numeric\u001b[49m\u001b[43m(\u001b[49m\u001b[43mthe_sum\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 722\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m axis \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mgetattr\u001b[39m(the_sum, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mndim\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mFalse\u001b[39;00m):\n\u001b[0;32m 723\u001b[0m count \u001b[38;5;241m=\u001b[39m cast(np\u001b[38;5;241m.\u001b[39mndarray, count)\n", + "File \u001b[1;32mc:\\Users\\tellsense\\maigit\\.venv\\Lib\\site-packages\\pandas\\core\\nanops.py:1686\u001b[0m, in \u001b[0;36m_ensure_numeric\u001b[1;34m(x)\u001b[0m\n\u001b[0;32m 1683\u001b[0m inferred \u001b[38;5;241m=\u001b[39m lib\u001b[38;5;241m.\u001b[39minfer_dtype(x)\n\u001b[0;32m 1684\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m inferred \u001b[38;5;129;01min\u001b[39;00m [\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstring\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmixed\u001b[39m\u001b[38;5;124m\"\u001b[39m]:\n\u001b[0;32m 1685\u001b[0m \u001b[38;5;66;03m# GH#44008, GH#36703 avoid casting e.g. strings to numeric\u001b[39;00m\n\u001b[1;32m-> 1686\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCould not convert \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mx\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m to numeric\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 1687\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 1688\u001b[0m x \u001b[38;5;241m=\u001b[39m x\u001b[38;5;241m.\u001b[39mastype(np\u001b[38;5;241m.\u001b[39mcomplex128)\n", + "\u001b[1;31mTypeError\u001b[0m: Could not convert ['MaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleMaleMaleMaleMaleFemaleMaleMaleFemaleMaleFemaleMaleFemaleMaleMaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleMaleMaleFemaleMaleMaleMaleFemaleMaleMaleMaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleMaleMaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleMaleMaleFemaleMaleMaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleMaleMaleMaleMaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleMaleMaleMaleMaleFemaleMaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleMaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleMaleMaleMaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleMaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleMaleMaleMaleMaleMaleFemaleMaleMaleMaleFemaleMaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleMaleMaleFemaleMaleMaleFemaleMaleFemaleMaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleMaleMaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleMaleMaleMaleMaleMaleMaleFemaleFemaleFemaleMaleMaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleMaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleMaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleMaleMaleMaleMaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleMaleMaleMaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleMaleMaleMaleFemaleMaleMaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleMaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleMaleMaleMaleMaleFemaleMaleMaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleMaleMaleMaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleFemaleMaleFemaleMaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleMaleMaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleMaleMaleMaleFemaleFemaleMaleMaleMaleMaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleMaleMaleMaleMaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleMaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleMaleMaleFemaleMaleMaleFemaleMaleFemaleMaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleMaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleMaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleMaleFemaleMaleMaleMaleMaleMaleFemaleMaleMaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleMaleFemaleMaleMaleFemaleMaleFemaleMaleMaleMaleFemaleMaleFemaleMaleMaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleMaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleMaleMaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleMaleMaleMaleMaleMaleFemaleMaleMaleMaleFemaleMaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleMaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleMaleMaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleOtherFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleMaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleMaleFemaleMaleMaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleMaleMaleMaleMaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleMaleFemaleMaleMaleMaleMaleFemaleMaleMaleMaleMaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleMaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleMaleMaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleMaleMaleMaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleMaleMaleFemaleMaleMaleMaleFemaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleMaleMaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleMaleMaleMaleMaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleMaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleMaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleMaleMaleMaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleMaleMaleMaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleFemaleMaleMaleMaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleMaleMaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleMaleMaleMaleMaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleMaleFemaleMaleFemaleMaleMaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleMaleMaleMaleMaleMaleMaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleFemaleMaleMaleMaleFemaleMaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleMaleMaleMaleMaleFemaleMaleFemaleFemaleMaleFemaleMaleFemaleMaleMaleMaleFemaleMaleFemaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleMaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleFemaleFemaleFemaleMaleMaleFemaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleMaleMaleMaleMaleMaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemaleMaleMaleFemaleMaleMaleFemaleFemaleMaleMaleFemaleFemaleMaleFemaleFemaleFemaleMaleFemaleMaleFemaleMaleFemaleMaleFemaleFemaleMaleFemaleFemaleFemaleFemaleFemaleMaleMaleMaleFemaleMaleMaleMaleMaleMaleMaleMaleFemaleFemaleFemaleFemaleFemaleFemaleFemaleMaleFemale'\n 'YesYesYesYesYesYesYesNoYesYesYesYesYesYesYesYesYesYesNoNoYesYesYesYesYesYesYesYesYesYesYesYesYesYesNoNoYesYesNoYesYesYesYesYesYesYesNoYesYesYesNoYesYesYesYesYesYesYesYesYesYesYesYesYesYesNoYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesNoNoYesYesYesYesYesYesYesYesNoYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesNoNoYesYesNoYesYesYesYesYesYesYesYesYesYesYesYesNoNoYesYesYesYesYesYesYesYesYesYesNoYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesNoNoYesYesYesYesNoYesYesNoYesYesYesYesYesYesYesYesYesYesYesNoYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesNoYesYesYesYesYesYesYesNoYesYesYesYesYesYesYesNoNoYesYesYesYesNoYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesNoYesYesYesNoYesNoYesNoYesYesYesYesYesYesYesYesYesYesNoNoYesYesYesYesYesYesYesYesYesYesNoYesYesYesYesNoNoYesNoYesNoYesNoYesNoNoNoYesNoYesYesYesYesYesYesNoYesYesYesYesNoYesYesYesYesYesYesYesYesYesYesYesYesNoNoNoNoYesNoYesYesNoNoNoYesYesYesYesYesNoYesNoYesYesYesYesYesYesYesNoYesYesNoNoYesYesNoYesYesYesYesNoYesYesYesYesYesNoYesYesYesNoYesNoYesNoYesYesYesYesNoNoNoYesNoYesYesNoNoYesYesNoYesYesYesYesYesNoNoNoYesYesYesYesNoNoNoYesYesYesYesYesYesYesNoYesNoYesNoYesNoYesNoNoYesNoYesYesYesNoYesYesYesYesYesYesYesYesYesYesYesNoYesYesNoNoYesNoYesNoNoYesYesYesYesNoNoYesYesNoNoYesYesNoNoNoNoYesYesYesYesNoYesYesYesNoYesYesNoNoNoYesYesYesNoYesYesNoYesYesNoYesYesYesNoYesYesNoYesYesNoNoNoNoYesYesYesYesYesYesYesYesYesYesYesYesYesNoNoYesYesYesYesNoYesYesYesYesYesNoYesYesYesYesYesNoYesYesNoNoYesYesNoYesYesYesYesYesYesNoNoYesNoYesNoYesYesYesNoNoNoYesNoYesNoYesNoYesNoYesNoNoNoNoYesYesYesYesNoYesNoYesNoYesYesNoYesYesNoYesNoYesYesYesYesYesYesYesYesYesYesNoNoYesNoYesYesNoYesNoYesNoYesNoYesYesYesNoNoYesYesYesYesYesYesYesYesYesYesYesNoYesNoYesYesYesYesYesNoYesYesYesYesNoYesNoYesYesYesYesNoNoYesYesYesYesYesYesYesYesNoNoNoYesNoNoYesYesYesYesYesNoNoYesYesYesNoYesNoYesYesYesYesNoYesNoNoNoNoNoNoYesYesYesYesYesNoNoYesYesNoYesYesYesYesYesYesYesNoYesYesYesYesNoYesNoYesYesNoNoNoNoYesYesYesNoNoYesYesNoYesNoNoYesNoYesYesNoYesYesYesYesYesYesNoYesNoNoYesYesYesYesYesYesNoYesNoNoYesYesNoNoYesNoYesNoNoYesYesYesNoYesYesYesNoYesYesYesYesNoYesYesYesNoNoYesYesNoYesYesYesYesYesYesYesNoNoNoYesYesNoNoNoNoYesYesYesYesYesNoYesNoYesYesYesYesYesNoNoYesYesNoNoYesNoYesYesYesYesYesYesYesYesYesNoYesYesNoYesYesNoNoYesYesNoYesNoNoNoYesYesYesYesYesNoYesNoYesYesYesNoYesNoYesYesNoYesYesYesYesNoYesYesYesYesYesNoYesYesYesYesNoNoYesYesYesYesNoYesYesNoYesYesYesYesYesNoNoYesNoYesYesYesYesYesYesYesNoYesYesYesNoNoYesYesYesYesNoYesYesYesYesYesNoNoNoNoYesYesNoNoYesNoYesYesYesNoYesYesYesNoNoNoNoYesYesYesYesYesYesYesYesYesYesNoNoNoNoNoYesNoNoYesNoNoNoNoNoYesNoNoNoYesNoYesYesNoNoNoYesYesNoYesNoNoYesNoYesYesYesNoYesNoYesNoYesYesYesYesNoNoYesNoNoYesYesYesYesYesNoNoYesYesNoYesYesNoYesYesNoYesYesYesYesNoYesNoYesYesYesYesYesYesYesYesYesNoNoYesYesYesNoYesNoYesYesNoYesYesNoYesNoYesNoYesNoYesYesNoYesNoYesYesYesNoYesYesNoYesYesNoYesYesNoYesYesYesYesNoYesNoYesNoYesYesYesYesYesYesYesNoNoNoNoNoYesYesNoNoNoYesYesYesYesYesNoNoYesYesYesYesNoYesNoYesNoYesYesYesNoYesYesYesYesYesYesNoNoNoNoYesYesYesYesYesYesNoYesNoYesYesNoYesYesYesYesYesNoNoNoYesYesYesYesYesNoYesYesNoNoYesYesYesNoYesYesYesYesYesYesYesNoYesYesYesNoNoYesNoYesNoNoYesYesYesNoNoYesYesNoYesYesYesYesNoYesNoNoNoNoYesNoYesYesYesYesNoNoNoYesNoYesYesYesYesYesNoYesYesYesYesNoNoNoNoNoNoNoYesYesYesYesNoYesYesNoNoYesYesYesYesYesNoNoYesYesNoNoNoYesNoYesNoNoYesNoNoNoYesNoYesYesNoYesYesNoYesYesYesNoYesNoNoYesNoNoNoYesYesYesYesNoNoNoYesNoYesYesYesYesYesNoYesYesYesYesNoYesYesYesYesNoNoYesYesNoYesYesNoYesYesNoYesYesNoYesNoYesYesYesNoNoNoYesYesNoYesYesYesYesNoYesYesNoYesYesYesYesYesYesNoYesNoYesYesYesYesYesYesYesYesYesNoNoYesYesYesYesNoYesYesYesNoNoYesYesYesYesNoYesNoYesYesYesNoNoYesYesYesNoNoNoYesYesNoYesYesYesYesYesNoYesYesNoNoYesNoYesNoYesNoYesYesYesYesYesYesYesNoNoNoYesNoYesYesYesYesYesYesYesYesYesYesYesYesNoNoYesNoNoNoYesYesNoNoYesNoYesYesYesYesYesYesYesYesYesNoYesNoNoYesYesYesNoNoYesYesYesYesNoYesNoYesYesYesNoNoNoNoNoYesNoYesNoNoNoYesYesYesYesYesNoYesYesYesYesYesNoNoYesNoYesNoYesYesYesNoNoNoYesYesYesNoNoYesYesNoYesYesYesYesYesYesYesNoYesNoNoYesYesYesYesNoNoYesYesYesNoYesNoYesYesYesYesYesYesYesYesYesYesNoYesYesYesYesYesYesYesYesNoYesYesNoYesNoYesYesYesNoNoNoYesNoYesNoYesYesYesYesNoYesNoYesYesNoYesNoNoYesNoYesYesYesNoYesYesNoYesYesYesYesNoYesNoNoYesYesYesYesYesNoNoYesYesNoNoYesYesYesYesNoYesYesNoNoYesNoNoNoYesYesYesYesNoYesYesNoNoYesYesYesYesYesNoYesNoNoNoYesYesYesYesYesYesYesNoYesYesNoNoYesNoNoNoYesYesYesYesYesYesYesYesYesYesNoYesYesYesYesYesNoYesNoYesYesYesNoYesYesYesYesYesYesNoYesYesYesNoNoYesNoYesYesYesYesYesYesNoYesYesYesYesNoYesYesNoNoYesNoNoYesNoNoYesYesYesNoNoNoYesYesYesYesYesNoNoYesYesNoYesNoYesNoYesYesNoYesYesNoYesYesYesYesNoYesYesYesYesNoYesYesYesYesYesYesYesYesYesYesYesYesYesNoYesYesYesNoNoYesNoYesNoNoYesYesYesYesNoNoYesYesNoYesNoYesYesYesNoYesYesYesNoYesNoYesNoNoYesNoYesYesNoYesYesNoNoNoYesNoYesNoNoNoNoYesNoNoYesYesYesYesYesYesYesNoNoNoYesNoYesNoYesYesYesNoNoYesNoNoYesNoYesYesYesYesNoYesYesNoNoNoYesYesNoYesNoYesYesYesYesYesYesYesYesYesYesYesNoYesYesNoYesYesNoYesYesYesYesYesYesYesNoYesYesYesYesYesYesYesNoNoYesNoYesYesYesYesYesNoYesNoNoYesNoNoNoNoYesNoYesYesNoYesYesNoYesYesYesYesYesYesNoNoNoYesYesNoYesYesYesYesNoNoNoYesYesYesYesYesYesNoYesYesYesNoNoNoNoYesYesYesNoNoYesNoYesYesYesYesYesNoNoNoNoNoYesYesNoYesNoYesYesYesYesNoYesYesNoYesNoNoYesYesNoNoYesNoYesYesNoYesNoYesYesNoYesYesYesNoYesYesYesYesNoYesYesYesYesYesYesNoYesNoNoYesYesNoNoYesNoYesYesYesNoNoYesNoNoNoYesYesYesYesYesNoNoYesYesNoYesNoYesYesYesYesNoNoNoYesNoYesYesYesYesNoYesYesYesYesYesNoYesYesYesYesYesNoYesYesNoYesYesYesYesYesYesYesNoNoYesNoYesYesNoNoYesNoNoNoYesYesYesNoNoNoNoYesYesYesYesYesNoYesYesYesNoYesYesYesNoYesNoNoNoYesYesNoNoYesYesNoNoNoYesNoYesYesNoYesYesYesYesNoYesYesNoYesNoNoYesYesNoYesYesNoYesYesYesYesYesNoNoNoYesYesYesNoYesNoYesYesNoYesYesYesYesYesNoYesNoYesYesYesNoYesNoYesYesYesNoYesNoNoYesYesNoYesNoYesYesNoYesYesYesYesNoYesNoNoNoYesYesYesNoYesYesYesYesYesYesYesYesYesYesYesYesYesNoYesYesNoNoYesYesYesNoNoNoYesYesYesYesYesYesNoYesYesYesYesYesYesYesYesYesNoNoNoYesYesNoYesNoNoNoYesYesYesNoNoYesYesYesNoNoYesYesNoNoYesYesYesNoNoYesYesYesYesYesYesYesNoYesYesYesYesYesYesYesYesYesYesYesNoNoYesNoYesYesYesYesYesYesYesYesNoYesYesYesNoNoNoYesNoYesNoNoYesNoYesYesYesYesYesYesYesYesYesNoYesYesNoYesYesNoYesYesNoNoNoYesYesNoYesYesNoYesYesYesNoYesNoNoNoNoYesYesYesNoNoYesYesYesNoYesYesYesYesYesNoNoYesYesNoYesNoNoYesYesNoYesYesYesYesNoYesYesYesYesNoNoNoNoNoNoYesNoYesYesNoYesYesNoYesYesYesNoYesNoNoNoYesYesYesYesYesNoNoYesYesYesYesYesYesYesYesYesYesNoYesNoNoNoNoNoYesYesNoNoYesYesNoNoYesYesYesYesYesNoYesYesYesNoNoYesNoYesNoYesYesNoNoNoYesYesYesYesNoNoYesNoYesYesYesYesYesNoNoYesNoYesYesYesNoNoNoNoYesYesNoNoYesYesNoYesNoYesYesYesYesYesYesYesNoYesYesYesYesYesNoYesYesNoYesYesYesNoYesNoNoYesNoYesYesYesNoYesYesYesYesNoNoYesNoYesNoNoYesYesYesNoNoYesNoYesYesYesNoNoYesYesNoYesYesYesYesYesNoYesNoYesYesYesYesYesNoYesYesYesNoYesNoYesYesYesYesYesYesNoNoNoNoYesYesNoYesYesYesYesYesYesNoYesNoYesNoYesYesNoYesNoYesYesYesYesYesYesYesYesYesNoYesNoYesYesYesYesYesNoYesYesYesYesYesNoNoYesYesYesYesYesYesYesNoYesNoYesYesYesNoYesYesYesYesYesYesYesYesYesNoYesYesYesYesNoYesYesNoNoYesYesYesYesYesNoNoYesNoNoYesNoYesNoYesNoYesNoNoYesYesYesYesYesYesNoYesNoNoYesYesYesYesNoYesYesYesNoNoYesNoYesYesYesYesNoYesYesYesNoYesNoYesYesNoNoYesYesYesYesNoYesNoNoYesNoYesNoYesNoYesNoNoYesNoNoNoYesYesNoYesYesNoYesYesNoNoYesYesNoNoNoYesNoYesYesYesYesYesNoYesNoNoYesYesYesNoYesNoYesYesNoYesYesYesYesYesYesYesYesYesYesNoNoYesNoYesNoYesNoYesYesYesYesNoNoNoYesNoYesNoYesNoYesYesYesYesNoYesNoYesNoYesYesNoYesYesNoNoYesYesNoYesYesYesNoNoYesYesYesYesYesYesNoYesYesYesYesNoYesNoYesYesYesYesNoYesYesNoNoYesNoYesYesYesYesNoYesNoNoNoYesNoYesNoYesYesNoNoYesYesYesYesYesYesYesYesNoYesYesNoNoYesYesYesNoYesYesYesYesYesNoYesNoYesNoYesYesNoYesYesYesYesYesNoYesYesNoYesYesYesYesYesYesYesNoYesNoNoYesYesYesYesNoYesNoNoNoYesYesNoYesYesNoNoNoNoYesYesYesYesYesNoYesYesYesYesYesNoNoYesYesNoNoYesYesNoYesNoYesNoYesNoYesNoYesYesYesYesYesYesNoYesYesYesYesNoNoNoNoYesYesYesYesYesYesYesYesYesYesNoYesYesNoYesNoYesYesYesYesYesYesYesYesYesNoYesNoYesNoNoYesYesNoYesNoYesNoYesYesYesYesYesYesYesYesYesYesYesYesYesNoYesYesYesYesYesNoYesYesNoYesYesNoNoYesNoYesNoYesNoYesYesNoYesYesNoNoYesYesNoYesYesNoNoYesYesYesYesNoNoYesNoNoYesYesYesYesYesYesYesYesYesNoYesNoYesYesYesNoYesYesNoNoYesYesYesYesNoYesNoNoNoNoYesNoYesYesYesYesYesYesYesNoNoYesNoYesYesYesNoYesNoNoYesNoNoNoYesYesYesNoYesNoYesNoYesNoNoNoYesYesYesNoYesYesYesYesYesYesNoNoYesYesYesYesYesYesYesYesYesNoYesYesNoYesNoYesYesYesNoYesYesYesYesYesNoYesYesNoYesNoYesYesYesYesNoYesYesNoYesNoYesNoYesYesYesNoNoNoYesYesNoYesYesYesNoYesNoYesYesYesYesYesNoYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesNoYesYesNoYesYesYesNoYesYesYesYesYesNoNoYesNoYesYesYesNoYesYesYesYesNoNoYesYesNoNoYesYesYesYesNoYesNoYesYesYesYesNoYesYesYesYesYesYesYesYesYesYesYesNoNoNoNoNoNoYesNoYesYesYesYesNoYesYesNoNoYesYesYesNoNoYesYesNoNoYesYesYesYesYesNoYesNoYesNoYesYesNoNoYesNoNoNoNoYesNoNoYesYesYesNoYesYesNoYesYesYesNoYesNoYesYesNoNoNoYesYesNoYesYesYesYesYesNoNoNoNoNoNoYesYesYesYesYesNoYesNoYesYesNoYesYesYesNoYesYesYesNoYesYesYesNoYesYesNoNoNoYesYesYesYesNoYesNoYesYesNoNoYesYesNoNoNoYesYesNoYesYesYesYesYesNoNoNoNoYesYesNoYesNoYesYesNoYesNoNoYesYesYesYesYesYesYesNoNoYesYesNoYesNoYesYesYesYesYesNoNoYesYesYesYesYesYesYesYesYesNoYesYesNoNoYesYesNoYesYesYesNoYesYesYesNoYesYesYesYesNoYesYesYesNoYesNoYesYesNoYesNoYesYesNoYesYesYesYesNoYesYesYesYesNoYesNoYesYesNoYesYesYesNoYesYesNoYesYesYesYesNoYesNoYesYesYesYesYesNoNoYesYesNoYesNoNoYesYesYesNoYesNoNoNoYesNoYesNoNoYesYesYesYesYesYesYesYesNoYesYesYesYesNoNoYesYesYesYesYesYesYesYesYesYesNoNoNoYesYesNoYesNoYesYesYesYesNoYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesNoNoNoYesNoYesYesNoNoNoYesNoYesYesYesNoYesNoNoYesYesNoNoNoYesNoYesYesYesYesYesNoYesYesYesNoYesYesYesYesYesYesYesNoNoYesNoNoYesYesNoNoNoYesNoYesNoYesYesYesNoNoYesYesYesYesYesYesNoYesNoNoYesYesYesNoYesNoYesYesNoYesYesNoNoYesYesYesYesYesYesNoNoNoNoYesYesNoYesYesYesNoYesNoNoYesYesYesNoYesYesNoNoNoNoNoNoYesNoYesNoYesYesYesYesNoYesNoYesYesNoYesYesNoYesYesYesYesNoYesYesYesYesNoNoNoYesNoNoYesNoYesYesNoYesYesYesNoYesNoYesNoYesYesNoNoYesYesYesYesYesYesYesNoYesNoNoNoYesYesNoYesYesYesNoNoNoYesNoYesYesYesNoYesYesNoYesNoYesNoYesYesYesYesYesNoNoNoNoYesYesNoYesYesYesYesNoNoNoYesYesYesNoYesYesYesYesYesNoYesNoNoYesYesNoNoNoYesNoNoYesYesYesNoYesNoYesYesNoYesNoNoYesNoYesYesNoNoNoYesYesYesYesNoYesYesNoNoYesNoYesNoNoNoYesNoNoYesYesNoYesYesNoYesYesYesNoNoNoYesYesYesYesNoYesNoNoYesYesYesNoYesYesYesYesYesYesNoYesYesYesYesYesYesYesYesNoYesYesYesNoYesYesNoYesYesYesNoNoYesNoNoYesYesYesYesNoNoYesNoYesNoYesNoYesNoYesYesYesNoYesNoYesYesNoNoYesNoNoYesYesYesYesNoYesNoYesNoNoNoNoNoYesYesYesYesYesNoYesYesYesYesYesYesYesNoYesYesYesNoYesYesYesYesYesYesYesYesYesYesNoNoNoYesYesNoNoYesNoYesYesYesYesYesYesNoYesNoNoNoNoYesYesYesNoYesYesYesYesNoYesYesYesYesNoYesYesYesNoNoNoNoNoYesYesYesYesYesYesNoYesYesNoNoYesNoYesNoYesYesYesYesNoNoNoNoYesNoYesYesYesYesYesYesNoYesYesNoNoYesYesNoYesNoYesYesNoYesYesYesNoYesYesYesYesYesYesYesNoNoYesYesNoYesNoYesYesYesYesYesYesYesYesNoNoYesYesYesYesYesYesYesYesYesYesYesYesNoYesYesNoYesNoYesYesNoYesYesYesNoYesYesYesYesYesYesNoNoYesYesNoYesYesYesYesYesNoNoNoNoYesYesYesYesYesYesYesYesYesNoYesNoNoYesYesYesYesYesYesYesYesNoYesYesYesNoYesYesYesNoYesNoNoYesNoNoYesYesYesYesYesNoNoYesYesNoYesYesYesNoNoYesNoYesNoNoYesNoYesYesYesYesYesYesYesYesNoYesNoNoYesNoNoNoNoYesYesYesYesYesYesYesNoNoNoNoNoNoYesYesNoNoYesNoNoNoNoYesYesYesNoNoYesYesYesNoYesYesNoYesYesNoNoYesNoNoNoYesYesNoYesYesYesYesYesNoYesYesYesYesYesYesNoNoYesYesNoNoYesYesYesNoNoYesYesNoYesYesYesYesYesYesYesYesYesNoYesYesNoYesYesNoNoNoYesYesYesNoNoYesYesNoNoYesYesYesNoYesYesYesNoNoYesYesYesNoYesYesYesYesYesNoYesNoYesYesYesNoNoYesNoYesNoNoYesYesYesYesYesNoYesNoNoYesYesYesYesNoNoYesNoNoNoYesNoNoYesYesYesYesNoNoNoYesYesYesYesNoYesYesYesYesNoYesYesYesNoYesNoNoYesYesNoYesNoYesYesNoYesNoNoNoNoNoNoYesYesNoYesYesYesNoNoYesNoYesYesNoNoYesYesYesYesYesYesYesYesYesYesYesYesYesYesNoNoYesYesNoYesYesYesNoYesNoNoNoYesNoNoNoYesNoYesYesYesYesYesYesYesYesYesYesYesNoYesNoNoYesYesNoYesNoYesNoNoYesYesYesYesYesNoNoNoYesYesYesNoNoNoNoYesYesYesYesYesYesNoNoYesNoYesYesYesYesYesYesNoYesYesYesYesYesYesNoNoYesYesNoYesNoYesYesYesYesNoNoYesYesNoNoYesYesYesYesNoNoNoNoYesYesYesYesYesYesYesYesNoNoNoNoYesNoYesYesYesYesYesYesNoYesNoYesYesNoNoYesNoNoYesYesYesNoNoNoYesNoYesYesYesNoYesNoNoNoYesNoYesYesYesNoNoNoNoYesYesYesYesNoYesYesYesNoYesYesNoYesYesYesYesYesYesYesYesYesYesYesYesYesYesNoYesYesYesYesNoYesYesYesNoYesYesYesYesYesNoNoNoYesYesYesYesNoYesNoYesYesYesNoYesYesNoYesYesNoNoNoYesYesYesYesYesYesYesYesYesYesYesNoYesNoYesYesYesNoYesYesYesYesYesYesYesYesNoNoNoNoYesYesNoNoYesYesYesNoYesNoNoYesYesNoYesYesYesYesYesNoYesYesNoNoNoYesYesYesNoYesYesYesNoYesYesYesYesNoNoYesNoYesYesYesNoNoNoYesYesNoYesYesYesYesNoYesYesNoYesNoYesNoYesYesNoNoYesNoYesYesYesYesYesYesNoNoNoYesNoNoNoNoYesYesYesNoNoNoYesNoYesNoNoYesYesNoYesNoYesNoNoYesYesYesYesYesNoNoNoNoYesYesYesYesYesYesYesYesNoNoYesYesYesNoNoNoYesYesYesYesNoYesNoNoNoNoYesNoYesYesYesNoYesNoYesYesNoNoYesNoYesYesYesNoYesYesNoNoNoYesYesNoYesNoNoNoYesYesYesYesYesNoNoYesNoYesYesYesYesNoNoYesYesYesYesYesNoNoYesYesYesNoYesNoNoYesNoNoYesYesYesYesYesNoNoYesNoYesNoYesNoYesYesYesYesYesNoYesYesYesNoNoNoNoYesNoYesNoNoNoYesYesYesNoYesYesNoNoNoYesYesYesYesNoNoYesYesNoYesYesNoYesYesYesNoYesYesNoNoYesYesNoYesNoYesYesYesYesYesNoNoNoNoNoNoNoYesNoYesYesYesYesNoNoYesYesYesYesYesYesNoYesNoNoYesYesNoNoNoYesYesYesYesYesYesYesYesNoYesYesYesYesYesNoYesNoNoYesYesNoYesNoYesYesNoNoNoNoYesYesNoYesNoYesYesNoNoYesYesYesYesYesYesNoYesNoYesYesNoYesYesNoYesYesYesYesYesYesYesNoNoYesNoNoYesYesNoYesYesYesNoNoNoYesYesYesNoYesYesYesYesYesNoNoYesYesYesNoNoYesYesNoYesYesYesYesNoNoYesYesYesYesYes'\n 'PrivateSelf-employedPrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivatePrivateSelf-employedPrivatePrivatePrivateGovt_jobGovt_jobSelf-employedSelf-employedPrivatePrivateSelf-employedPrivatePrivateSelf-employedPrivatePrivatePrivateSelf-employedSelf-employedGovt_jobPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateGovt_jobPrivateSelf-employedPrivateSelf-employedPrivatePrivatePrivatePrivateSelf-employedGovt_jobPrivatePrivatePrivateSelf-employedGovt_jobPrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivateSelf-employedGovt_jobPrivateGovt_jobPrivatePrivateSelf-employedPrivatePrivatePrivateSelf-employedPrivateSelf-employedPrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedSelf-employedPrivatePrivateSelf-employedPrivateGovt_jobGovt_jobGovt_jobGovt_jobPrivateSelf-employedGovt_jobPrivatePrivateSelf-employedPrivateGovt_jobPrivatePrivateSelf-employedPrivateGovt_jobGovt_jobSelf-employedPrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivateGovt_jobSelf-employedPrivateGovt_jobGovt_jobPrivatePrivatePrivatePrivateSelf-employedGovt_jobPrivatePrivateSelf-employedPrivateGovt_jobPrivatePrivateSelf-employedPrivatePrivateSelf-employedPrivateGovt_jobPrivatePrivatePrivateSelf-employedSelf-employedSelf-employedPrivatePrivatePrivateSelf-employedSelf-employedPrivatePrivatechildrenPrivateSelf-employedSelf-employedGovt_jobPrivateGovt_jobSelf-employedSelf-employedSelf-employedPrivateSelf-employedSelf-employedSelf-employedPrivateSelf-employedGovt_jobPrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedGovt_jobPrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivateSelf-employedSelf-employedGovt_jobPrivatePrivateSelf-employedSelf-employedGovt_jobPrivateGovt_jobPrivatePrivateSelf-employedPrivateSelf-employedPrivateSelf-employedGovt_jobPrivatePrivateGovt_jobGovt_jobPrivatePrivatePrivateSelf-employedSelf-employedPrivateSelf-employedPrivateSelf-employedSelf-employedSelf-employedPrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatechildrenSelf-employedSelf-employedPrivatechildrenPrivatePrivatePrivateNever_workedPrivatePrivateSelf-employedPrivateSelf-employedGovt_jobPrivatePrivatePrivatePrivatePrivatePrivatePrivateGovt_jobSelf-employedPrivatePrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivateSelf-employedSelf-employedPrivatePrivatechildrenPrivateGovt_jobPrivatePrivatePrivateSelf-employedPrivatechildrenchildrenchildrenPrivatePrivateGovt_jobPrivateGovt_jobSelf-employedPrivateSelf-employedSelf-employedPrivatePrivatePrivatePrivatechildrenGovt_jobPrivateSelf-employedSelf-employedPrivatePrivatePrivatePrivatePrivateSelf-employedSelf-employedPrivatePrivatePrivatechildrenPrivatePrivateGovt_jobPrivatePrivatechildrenPrivatePrivatePrivatePrivateSelf-employedPrivateSelf-employedchildrenPrivatePrivateGovt_jobPrivatePrivatePrivatePrivateGovt_jobSelf-employedPrivatePrivateGovt_jobPrivateGovt_jobSelf-employedPrivatePrivatePrivatePrivatePrivatePrivateGovt_jobSelf-employedPrivateSelf-employedSelf-employedPrivatechildrenPrivatePrivateSelf-employedSelf-employedPrivatechildrenPrivatePrivatePrivatePrivateGovt_jobGovt_jobchildrenPrivatechildrenPrivatechildrenPrivateGovt_jobchildrenchildrenPrivateSelf-employedPrivateGovt_jobPrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivateSelf-employedPrivatePrivatechildrenchildrenPrivateGovt_jobSelf-employedGovt_jobPrivatePrivatePrivatePrivateSelf-employedSelf-employedGovt_jobSelf-employedchildrenPrivatechildrenPrivatePrivatePrivateGovt_jobchildrenPrivatePrivatePrivatechildrenPrivatePrivatePrivatePrivatePrivateGovt_jobGovt_jobSelf-employedGovt_jobPrivateSelf-employedchildrenPrivatePrivatePrivatePrivatePrivateGovt_jobSelf-employedchildrenGovt_jobSelf-employedPrivateGovt_jobSelf-employedchildrenPrivateSelf-employedPrivatePrivatePrivatePrivatePrivatechildrenchildrenchildrenPrivateSelf-employedPrivatePrivatePrivateSelf-employedPrivatePrivatePrivateSelf-employedPrivateGovt_jobPrivatePrivatePrivateGovt_jobGovt_jobPrivatechildrenSelf-employedSelf-employedchildrenSelf-employedPrivatePrivatePrivateSelf-employedPrivatePrivatePrivateSelf-employedPrivatePrivatePrivatechildrenchildrenchildrenPrivatePrivatePrivatePrivateSelf-employedGovt_jobPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateGovt_jobPrivateSelf-employedSelf-employedPrivatechildrenPrivateSelf-employedPrivatePrivateGovt_jobchildrenPrivateGovt_jobPrivatePrivateSelf-employedPrivatePrivatePrivatePrivatechildrenPrivateSelf-employedPrivatePrivatePrivateGovt_jobSelf-employedSelf-employedPrivatePrivatechildrenPrivatePrivatePrivatechildrenPrivatePrivateSelf-employedchildrenPrivatePrivatePrivatechildrenGovt_jobchildrenPrivatechildrenSelf-employedchildrenPrivatePrivatePrivateSelf-employedSelf-employedPrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedSelf-employedPrivatePrivatechildrenPrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedchildrenchildrenPrivateSelf-employedPrivateGovt_jobNever_workedPrivatechildrenPrivatechildrenPrivatechildrenPrivateGovt_jobPrivateSelf-employedPrivatePrivateGovt_jobGovt_jobPrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivateGovt_jobGovt_jobSelf-employedSelf-employedPrivateGovt_jobGovt_jobPrivatePrivatePrivatePrivateSelf-employedPrivatePrivatechildrenPrivateSelf-employedSelf-employedSelf-employedSelf-employedPrivatePrivateGovt_jobSelf-employedSelf-employedPrivatePrivatePrivatePrivatechildrenchildrenSelf-employedSelf-employedPrivateSelf-employedPrivatePrivatePrivateGovt_jobSelf-employedchildrenPrivateGovt_jobSelf-employedPrivatePrivateGovt_jobchildrenGovt_jobPrivatePrivatePrivatePrivateGovt_jobPrivatePrivatechildrenchildrenPrivatePrivatePrivatePrivatePrivateSelf-employedSelf-employedPrivatechildrenPrivatePrivatechildrenPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivatePrivateSelf-employedSelf-employedPrivatePrivatePrivatePrivatePrivatechildrenPrivatePrivateSelf-employedPrivatechildrenPrivatePrivatePrivateSelf-employedPrivatePrivateGovt_jobchildrenPrivatePrivatechildrenSelf-employedPrivatePrivatePrivateGovt_jobPrivatePrivatePrivatechildrenPrivatePrivatePrivatePrivateGovt_jobSelf-employedGovt_jobchildrenPrivatePrivatechildrenPrivatePrivatePrivatePrivateGovt_jobPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivateGovt_jobSelf-employedPrivatePrivatePrivatePrivatechildrenPrivateSelf-employedchildrenPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivatePrivatechildrenPrivatePrivateSelf-employedPrivatePrivatePrivatePrivateGovt_jobGovt_jobPrivatePrivatePrivatePrivateGovt_jobchildrenGovt_jobGovt_jobchildrenGovt_jobPrivatePrivateGovt_jobGovt_jobGovt_jobGovt_jobGovt_jobPrivateGovt_jobGovt_jobGovt_jobchildrenPrivatePrivatechildrenPrivateGovt_jobPrivateGovt_jobPrivatePrivatechildrenGovt_jobPrivateSelf-employedchildrenPrivateGovt_jobPrivateGovt_jobSelf-employedchildrenPrivatePrivatePrivateSelf-employedPrivatechildrenPrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivatePrivatePrivatePrivatechildrenPrivateSelf-employedGovt_jobGovt_jobPrivatePrivatePrivateSelf-employedNever_workedPrivatePrivateSelf-employedSelf-employedPrivatePrivatechildrenSelf-employedPrivatePrivatePrivateSelf-employedPrivatePrivatePrivateSelf-employedGovt_jobPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatechildrenPrivatePrivatePrivateSelf-employedPrivatechildrenGovt_jobchildrenchildrenSelf-employedPrivatechildrenPrivatePrivatePrivateSelf-employedSelf-employedPrivateGovt_jobSelf-employedSelf-employedPrivatePrivatePrivatePrivateNever_workedPrivateGovt_jobSelf-employedPrivateSelf-employedSelf-employedPrivatePrivateSelf-employedPrivatePrivatechildrenPrivatechildrenGovt_jobPrivateSelf-employedchildrenPrivateNever_workedPrivatechildrenPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatechildrenPrivateGovt_jobchildrenPrivatePrivatechildrenPrivatechildrenGovt_jobPrivatePrivatechildrenSelf-employedPrivatePrivatePrivatePrivateSelf-employedPrivateGovt_jobchildrenchildrenPrivatePrivatechildrenPrivatePrivatePrivatePrivateGovt_jobPrivatechildrenPrivatePrivatechildrenPrivatePrivatechildrenSelf-employedGovt_jobPrivateSelf-employedSelf-employedSelf-employedSelf-employedPrivateGovt_jobPrivateGovt_jobPrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivatechildrenPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateGovt_jobSelf-employedPrivateGovt_jobPrivatePrivatechildrenPrivatePrivatePrivateSelf-employedPrivateSelf-employedSelf-employedPrivatechildrenPrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedGovt_jobSelf-employedPrivatePrivatechildrenSelf-employedPrivateGovt_jobPrivatechildrenPrivatePrivatePrivatePrivateGovt_jobPrivatePrivateGovt_jobSelf-employedPrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivateSelf-employedchildrenPrivatePrivatePrivatePrivatePrivatePrivateSelf-employedchildrenPrivatePrivateGovt_jobGovt_jobSelf-employedPrivateGovt_jobPrivatePrivatePrivatePrivateSelf-employedPrivatechildrenGovt_jobSelf-employedSelf-employedPrivatePrivateSelf-employedPrivatechildrenchildrenPrivatePrivatePrivateGovt_jobPrivatePrivatePrivatechildrenPrivatechildrenPrivateGovt_jobchildrenPrivatePrivatePrivatePrivatePrivatechildrenPrivatechildrenPrivatePrivatePrivateGovt_jobPrivatePrivatePrivateGovt_jobPrivatechildrenPrivatePrivatePrivatechildrenGovt_jobPrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivateGovt_jobPrivatePrivatechildrenGovt_jobGovt_jobPrivatePrivatePrivatePrivatePrivatechildrenSelf-employedPrivatechildrenGovt_jobGovt_jobPrivateSelf-employedSelf-employedPrivatePrivatePrivatechildrenPrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatechildrenPrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivateSelf-employedPrivatechildrenGovt_jobPrivatePrivatechildrenchildrenPrivatePrivateSelf-employedSelf-employedPrivateSelf-employedSelf-employedchildrenPrivateGovt_jobGovt_jobPrivateGovt_jobGovt_jobPrivatePrivateGovt_jobSelf-employedPrivatechildrenchildrenPrivatechildrenPrivatePrivatePrivatePrivatechildrenchildrenchildrenPrivateGovt_jobSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivatePrivatechildrenPrivatePrivatePrivateSelf-employedPrivateGovt_jobchildrenchildrenPrivateSelf-employedchildrenPrivatePrivatePrivateGovt_jobSelf-employedchildrenPrivateSelf-employedPrivateGovt_jobchildrenPrivatePrivatePrivatePrivateSelf-employedchildrenSelf-employedPrivatechildrenSelf-employedSelf-employedPrivateGovt_jobPrivatePrivateGovt_jobGovt_jobPrivatePrivatechildrenPrivatePrivateSelf-employedPrivatechildrenPrivateSelf-employedPrivatePrivatePrivateSelf-employedGovt_jobSelf-employedPrivatePrivatePrivatePrivatePrivateSelf-employedSelf-employedPrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivateSelf-employedPrivatePrivateGovt_jobSelf-employedSelf-employedPrivateSelf-employedGovt_jobPrivatechildrenchildrenPrivatePrivateSelf-employedPrivatechildrenSelf-employedchildrenPrivatePrivatePrivatechildrenchildrenPrivatePrivateGovt_jobPrivateGovt_jobSelf-employedPrivatePrivatechildrenPrivatePrivatePrivatePrivatePrivatechildrenPrivateSelf-employedchildrenchildrenSelf-employedchildrenSelf-employedPrivatePrivatechildrenPrivateGovt_jobGovt_jobPrivatePrivatePrivatePrivatePrivatechildrenchildrenPrivatechildrenPrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatechildrenchildrenPrivatechildrenPrivatechildrenPrivatePrivatePrivatechildrenGovt_jobchildrenPrivatePrivatePrivateGovt_jobPrivatePrivatePrivatePrivatePrivatechildrenSelf-employedPrivatechildrenGovt_jobPrivatePrivatePrivatechildrenPrivatePrivateGovt_jobPrivatechildrenSelf-employedPrivateSelf-employedGovt_jobPrivatePrivateNever_workedPrivatechildrenPrivatePrivatechildrenSelf-employedPrivatePrivatechildrenGovt_jobGovt_jobPrivatePrivatePrivateGovt_jobPrivateSelf-employedSelf-employedGovt_jobGovt_jobchildrenchildrenSelf-employedchildrenPrivatechildrenPrivateGovt_jobPrivatePrivatechildrenSelf-employedPrivateGovt_jobSelf-employedPrivatechildrenPrivatePrivatePrivatePrivateSelf-employedPrivateSelf-employedGovt_jobPrivatePrivateSelf-employedPrivatechildrenPrivateGovt_jobGovt_jobSelf-employedGovt_jobPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateGovt_jobGovt_jobGovt_jobPrivatePrivateSelf-employedPrivatePrivatePrivatePrivatechildrenPrivateSelf-employedPrivatePrivatePrivatePrivateSelf-employedPrivatePrivateSelf-employedSelf-employedchildrenPrivateSelf-employedPrivateSelf-employedGovt_jobPrivatechildrenSelf-employedSelf-employedchildrenPrivatePrivatePrivatePrivatePrivatePrivatechildrenSelf-employedPrivatePrivatePrivateGovt_jobSelf-employedchildrenPrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivateGovt_jobchildrenPrivateGovt_jobchildrenPrivatePrivatePrivatePrivatePrivatePrivatechildrenPrivatePrivatechildrenPrivateGovt_jobPrivatePrivateSelf-employedPrivatePrivatePrivatechildrenPrivatePrivateSelf-employedGovt_jobchildrenGovt_jobSelf-employedPrivatePrivatechildrenGovt_jobGovt_jobPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatechildrenchildrenPrivateGovt_jobPrivatePrivateGovt_jobSelf-employedPrivateGovt_jobPrivatePrivatePrivatePrivateSelf-employedchildrenPrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivateGovt_jobPrivatePrivatePrivatechildrenPrivatechildrenPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivateSelf-employedPrivatechildrenPrivatechildrenSelf-employedPrivateSelf-employedPrivatePrivatePrivatePrivateGovt_jobPrivateGovt_jobPrivateGovt_jobGovt_jobPrivatechildrenchildrenPrivatePrivatePrivateGovt_jobPrivatechildrenPrivatePrivatePrivatePrivatePrivatechildrenPrivatePrivatePrivateGovt_jobPrivateSelf-employedSelf-employedSelf-employedGovt_jobchildrenPrivatePrivateGovt_jobchildrenSelf-employedPrivatePrivateGovt_jobPrivatePrivateSelf-employedPrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivateGovt_jobGovt_jobPrivateSelf-employedPrivatePrivateSelf-employedGovt_jobSelf-employedSelf-employedPrivatechildrenPrivateSelf-employedSelf-employedPrivatePrivateGovt_jobchildrenPrivatechildrenPrivateSelf-employedPrivatePrivatePrivatePrivatechildrenPrivatePrivatechildrenPrivatePrivateSelf-employedPrivatePrivatechildrenPrivatePrivateSelf-employedPrivateGovt_jobNever_workedPrivatechildrenPrivatePrivatechildrenPrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatechildrenPrivatechildrenPrivateSelf-employedPrivatePrivatePrivateGovt_jobPrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatechildrenPrivatePrivatePrivatePrivatePrivatePrivatechildrenPrivatechildrenPrivatePrivateGovt_jobSelf-employedSelf-employedSelf-employedGovt_jobchildrenPrivatePrivatePrivatePrivatechildrenSelf-employedPrivatechildrenSelf-employedPrivatePrivateGovt_jobSelf-employedPrivateGovt_jobPrivateSelf-employedGovt_jobPrivatePrivatePrivatechildrenPrivatePrivatechildrenPrivateGovt_jobPrivateSelf-employedGovt_jobSelf-employedPrivatePrivatePrivateSelf-employedchildrenSelf-employedPrivateGovt_jobSelf-employedPrivatePrivateSelf-employedPrivatePrivateSelf-employedPrivatePrivateGovt_jobGovt_jobPrivateGovt_jobPrivatePrivateGovt_jobPrivateGovt_jobPrivatechildrenPrivatePrivatePrivatePrivateGovt_jobPrivatePrivatePrivatePrivatechildrenSelf-employedPrivatePrivatePrivatePrivateGovt_jobchildrenGovt_jobchildrenSelf-employedPrivateNever_workedSelf-employedPrivatePrivatePrivatechildrenchildrenchildrenPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedGovt_jobSelf-employedPrivatechildrenPrivateSelf-employedPrivatePrivatePrivatechildrenPrivatechildrenPrivateGovt_jobSelf-employedSelf-employedGovt_jobPrivatechildrenchildrenchildrenPrivateSelf-employedPrivatePrivateSelf-employedchildrenPrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatechildrenPrivatePrivateSelf-employedPrivatechildrenPrivateGovt_jobSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatechildrenPrivatePrivatePrivateGovt_jobPrivatePrivateSelf-employedPrivatechildrenPrivatePrivateSelf-employedGovt_jobPrivatePrivatePrivatePrivatechildrenPrivatePrivateGovt_jobchildrenchildrenPrivatechildrenSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivateGovt_jobPrivateSelf-employedPrivatePrivatePrivatechildrenPrivatePrivatePrivateSelf-employedPrivatechildrenPrivatePrivatePrivatePrivateGovt_jobchildrenPrivatePrivatechildrenPrivateSelf-employedPrivateGovt_jobchildrenPrivateSelf-employedGovt_jobPrivatePrivatechildrenGovt_jobPrivatePrivatePrivateSelf-employedPrivateGovt_jobPrivatePrivatePrivateSelf-employedGovt_jobPrivatePrivateGovt_jobGovt_jobchildrenchildrenPrivatechildrenPrivatePrivatechildrenPrivateGovt_jobPrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatechildrenSelf-employedSelf-employedGovt_jobPrivatePrivatePrivateSelf-employedPrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatechildrenSelf-employedGovt_jobPrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivateSelf-employedPrivatePrivatePrivatePrivateSelf-employedSelf-employedPrivatePrivateSelf-employedPrivatePrivatechildrenGovt_jobchildrenPrivatePrivatePrivatechildrenGovt_jobchildrenSelf-employedSelf-employedchildrenSelf-employedGovt_jobPrivateGovt_jobGovt_jobchildrenSelf-employedchildrenPrivatePrivatePrivatechildrenPrivatePrivatePrivatePrivateSelf-employedchildrenPrivatechildrenPrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatechildrenPrivatePrivateGovt_jobSelf-employedchildrenSelf-employedPrivatechildrenPrivatePrivatePrivateSelf-employedPrivateSelf-employedPrivateGovt_jobSelf-employedSelf-employedGovt_jobGovt_jobGovt_jobGovt_jobSelf-employedPrivateSelf-employedPrivatePrivateSelf-employedPrivatePrivatechildrenGovt_jobPrivatePrivatePrivatechildrenPrivatePrivatePrivateGovt_jobPrivatePrivateSelf-employedchildrenPrivateGovt_jobSelf-employedPrivatePrivatePrivateSelf-employedPrivatePrivatechildrenchildrenchildrenSelf-employedPrivatechildrenPrivatechildrenPrivatechildrenPrivatePrivatePrivateGovt_jobPrivateSelf-employedGovt_jobPrivatechildrenPrivatePrivatePrivateGovt_jobPrivatePrivateSelf-employedSelf-employedPrivatechildrenPrivatePrivatePrivateSelf-employedPrivateGovt_jobSelf-employedPrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatechildrenSelf-employedPrivateGovt_jobPrivateGovt_jobPrivatePrivatePrivatechildrenPrivateSelf-employedGovt_jobchildrenchildrenPrivateSelf-employedchildrenGovt_jobchildrenchildrenSelf-employedPrivatePrivateSelf-employedPrivateGovt_jobPrivatePrivatePrivateGovt_jobSelf-employedPrivateSelf-employedPrivatePrivatePrivateSelf-employedchildrenPrivatePrivatePrivatechildrenGovt_jobPrivateSelf-employedPrivatePrivateGovt_jobPrivatePrivateSelf-employedGovt_jobSelf-employedPrivateNever_workedchildrenchildrenPrivatePrivatePrivatePrivatechildrenPrivatePrivateSelf-employedPrivatechildrenGovt_jobSelf-employedPrivateSelf-employedSelf-employedchildrenPrivateSelf-employedPrivatePrivateSelf-employedchildrenPrivatePrivateSelf-employedSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivatechildrenchildrenPrivatePrivatePrivatePrivatePrivatePrivatePrivatechildrenGovt_jobSelf-employedGovt_jobPrivatePrivatePrivatePrivatePrivatePrivateGovt_jobGovt_jobGovt_jobPrivatePrivatePrivatePrivatePrivateGovt_jobPrivateGovt_jobSelf-employedPrivatePrivatePrivateSelf-employedchildrenPrivatechildrenchildrenGovt_jobGovt_jobSelf-employedGovt_jobPrivatechildrenSelf-employedGovt_jobPrivatechildrenchildrenPrivatePrivateSelf-employedGovt_jobSelf-employedchildrenPrivatePrivateSelf-employedPrivatePrivatePrivatechildrenSelf-employedGovt_jobPrivatePrivatePrivatePrivatechildrenPrivatePrivatePrivatePrivateGovt_jobPrivateGovt_jobPrivateGovt_jobPrivateSelf-employedPrivateSelf-employedchildrenchildrenPrivatechildrenPrivatePrivateSelf-employedchildrenchildrenchildrenchildrenPrivateGovt_jobPrivatePrivateSelf-employedSelf-employedchildrenPrivatechildrenSelf-employedGovt_jobGovt_jobSelf-employedPrivatePrivatePrivatechildrenSelf-employedSelf-employedPrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatechildrenPrivatePrivatePrivatechildrenchildrenPrivatePrivatePrivatePrivatePrivateSelf-employedchildrenSelf-employedSelf-employedPrivatechildrenchildrenPrivatePrivateGovt_jobGovt_jobPrivatePrivatePrivatePrivatePrivateSelf-employedchildrenGovt_jobPrivatePrivatePrivatePrivatechildrenPrivatePrivatePrivatePrivatePrivatechildrenPrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivateSelf-employedPrivateSelf-employedchildrenPrivatePrivatePrivatePrivatePrivatePrivateGovt_jobPrivatechildrenSelf-employedchildrenGovt_jobGovt_jobchildrenPrivatechildrenPrivatePrivatePrivatePrivateSelf-employedGovt_jobSelf-employedSelf-employedPrivatechildrenSelf-employedPrivatePrivateGovt_jobPrivatePrivateSelf-employedPrivatePrivatePrivateGovt_jobPrivatePrivatechildrenchildrenPrivatePrivatePrivateSelf-employedPrivateGovt_jobGovt_jobPrivatePrivatechildrenPrivatePrivateSelf-employedPrivateSelf-employedPrivateSelf-employedPrivatePrivateGovt_jobGovt_jobPrivatePrivatePrivateGovt_jobPrivateGovt_jobGovt_jobPrivateGovt_jobPrivatechildrenGovt_jobGovt_jobGovt_jobGovt_jobGovt_jobGovt_jobchildrenchildrenPrivatePrivatechildrenSelf-employedGovt_jobPrivatechildrenPrivatePrivateGovt_jobGovt_jobGovt_jobSelf-employedPrivateGovt_jobPrivatePrivatePrivatePrivatePrivatechildrenSelf-employedPrivatePrivateSelf-employedPrivatechildrenGovt_jobPrivatePrivatePrivatechildrenPrivateGovt_jobPrivatePrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivateSelf-employedPrivatePrivatePrivatechildrenGovt_jobSelf-employedGovt_jobPrivatePrivatePrivateGovt_jobPrivatechildrenPrivateGovt_jobSelf-employedNever_workedPrivatePrivateSelf-employedchildrenPrivateSelf-employedPrivatechildrenSelf-employedPrivateGovt_jobchildrenSelf-employedGovt_jobPrivateSelf-employedPrivatechildrenNever_workedPrivatePrivatePrivatePrivatePrivateSelf-employedGovt_jobPrivatePrivateSelf-employedGovt_jobPrivatePrivateSelf-employedchildrenPrivatePrivatePrivateGovt_jobPrivatePrivatePrivatePrivatePrivateSelf-employedSelf-employedPrivatePrivateSelf-employedPrivateSelf-employedSelf-employedGovt_jobPrivatePrivatechildrenPrivatePrivatechildrenSelf-employedNever_workedGovt_jobPrivatePrivatePrivateGovt_jobPrivatePrivatePrivatechildrenGovt_jobSelf-employedPrivatePrivatePrivatePrivatePrivatePrivateGovt_jobSelf-employedchildrenPrivatechildrenGovt_jobPrivatePrivateGovt_jobchildrenPrivatePrivatePrivatechildrenPrivatePrivateGovt_jobPrivatePrivatePrivatechildrenPrivateSelf-employedPrivatePrivatePrivatePrivateSelf-employedchildrenPrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivatePrivatePrivatePrivateGovt_jobchildrenPrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatechildrenPrivatePrivatePrivatechildrenGovt_jobGovt_jobchildrenGovt_jobGovt_jobPrivatePrivatePrivatePrivateSelf-employedPrivateSelf-employedchildrenSelf-employedPrivatePrivatechildrenSelf-employedPrivatePrivatePrivatePrivateSelf-employedPrivateSelf-employedPrivatePrivateSelf-employedPrivateGovt_jobchildrenPrivatePrivatechildrenPrivatePrivatePrivatePrivateSelf-employedchildrenPrivatePrivateGovt_jobSelf-employedPrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivateGovt_jobPrivateGovt_jobPrivateNever_workedSelf-employedPrivatePrivatechildrenSelf-employedPrivateGovt_jobSelf-employedSelf-employedchildrenchildrenchildrenPrivateSelf-employedPrivatePrivateSelf-employedSelf-employedPrivatePrivateGovt_jobPrivateGovt_jobSelf-employedPrivatePrivatePrivateSelf-employedchildrenPrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivatePrivatechildrenPrivatePrivatePrivateGovt_jobPrivateSelf-employedPrivatePrivatePrivateSelf-employedSelf-employedGovt_jobPrivatePrivatePrivatechildrenPrivatePrivatePrivateSelf-employedGovt_jobPrivateSelf-employedPrivatePrivateGovt_jobPrivatechildrenPrivateGovt_jobPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedchildrenPrivateSelf-employedPrivatePrivatechildrenGovt_jobPrivateSelf-employedPrivatechildrenSelf-employedPrivateGovt_jobSelf-employedPrivatePrivatePrivateSelf-employedPrivatePrivatePrivateSelf-employedPrivateGovt_jobGovt_jobPrivatePrivateGovt_jobPrivatePrivatePrivatechildrenPrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatechildrenPrivatechildrenPrivateSelf-employedPrivateSelf-employedGovt_jobPrivatechildrenPrivatePrivateGovt_jobGovt_jobGovt_jobSelf-employedchildrenPrivateSelf-employedPrivatePrivatechildrenPrivatePrivateGovt_jobPrivatePrivatePrivatePrivatePrivateSelf-employedPrivateSelf-employedSelf-employedPrivateSelf-employedPrivatechildrenPrivateSelf-employedPrivateGovt_jobPrivatePrivatechildrenchildrenSelf-employedPrivateGovt_jobPrivatechildrenPrivatechildrenPrivatechildrenchildrenPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatechildrenSelf-employedGovt_jobchildrenGovt_jobGovt_jobPrivateGovt_jobSelf-employedPrivatechildrenGovt_jobPrivatePrivatePrivateSelf-employedPrivatePrivateGovt_jobSelf-employedSelf-employedGovt_jobchildrenSelf-employedPrivatechildrenPrivatePrivatePrivatePrivatechildrenPrivateGovt_jobSelf-employedPrivateGovt_jobPrivateSelf-employedchildrenSelf-employedPrivateSelf-employedPrivateSelf-employedGovt_jobPrivatePrivatePrivatePrivateSelf-employedGovt_jobPrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatechildrenPrivateGovt_jobPrivatePrivateGovt_jobGovt_jobPrivateGovt_jobPrivateGovt_jobGovt_jobPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateNever_workedSelf-employedSelf-employedGovt_jobchildrenPrivateSelf-employedPrivatePrivateSelf-employedPrivatePrivatechildrenPrivatePrivateGovt_jobGovt_jobSelf-employedSelf-employedPrivateSelf-employedPrivatePrivateGovt_jobSelf-employedPrivatePrivatePrivateSelf-employedSelf-employedchildrenPrivatePrivatePrivatePrivateGovt_jobPrivatechildrenSelf-employedGovt_jobPrivatePrivateGovt_jobPrivatechildrenSelf-employedPrivateGovt_jobPrivatePrivatePrivatePrivatePrivateSelf-employedPrivatechildrenPrivateGovt_jobGovt_jobPrivatePrivatePrivateGovt_jobPrivateSelf-employedchildrenPrivateSelf-employedPrivateSelf-employedPrivatePrivatechildrenGovt_jobSelf-employedPrivateGovt_jobPrivateSelf-employedGovt_jobSelf-employedPrivatePrivatePrivatePrivatechildrenchildrenPrivatePrivateGovt_jobPrivateSelf-employedGovt_jobPrivatePrivateSelf-employedPrivatePrivatePrivatechildrenSelf-employedSelf-employedPrivatePrivateGovt_jobchildrenPrivateGovt_jobchildrenPrivateGovt_jobSelf-employedPrivatePrivatePrivatechildrenPrivatechildrenPrivatechildrenSelf-employedPrivatePrivatechildrenSelf-employedchildrenPrivatechildrenchildrenPrivatePrivateSelf-employedSelf-employedPrivatePrivatechildrenPrivatePrivatePrivatePrivateSelf-employedPrivatechildrenGovt_jobchildrenPrivateSelf-employedchildrenPrivateSelf-employedPrivateGovt_jobPrivateGovt_jobPrivatePrivateGovt_jobPrivatePrivatePrivateGovt_jobchildrenSelf-employedPrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivateGovt_jobchildrenPrivatePrivateGovt_jobPrivatePrivatePrivateSelf-employedSelf-employedPrivateSelf-employedPrivatePrivateGovt_jobPrivatechildrenPrivateSelf-employedSelf-employedPrivatePrivatePrivatechildrenGovt_jobPrivatePrivatePrivatechildrenPrivateGovt_jobPrivateGovt_jobchildrenPrivatePrivatePrivatePrivateGovt_jobPrivatePrivatePrivatePrivatePrivatePrivatePrivatechildrenPrivateSelf-employedPrivateGovt_jobchildrenGovt_jobSelf-employedchildrenPrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivateSelf-employedPrivateSelf-employedchildrenSelf-employedPrivatePrivateGovt_jobchildrenSelf-employedPrivatePrivateSelf-employedPrivatePrivatechildrenGovt_jobPrivateSelf-employedPrivateSelf-employedPrivatePrivateGovt_jobPrivatePrivatePrivateGovt_jobPrivateGovt_jobSelf-employedPrivatechildrenPrivateGovt_jobPrivateNever_workedSelf-employedSelf-employedPrivatechildrenPrivateSelf-employedPrivatePrivatechildrenPrivatePrivatePrivatePrivateGovt_jobchildrenPrivateSelf-employedPrivateSelf-employedchildrenPrivateSelf-employedPrivatePrivatePrivatePrivateSelf-employedPrivatePrivateGovt_jobPrivateSelf-employedPrivateSelf-employedSelf-employedGovt_jobSelf-employedPrivateSelf-employedPrivateSelf-employedchildrenPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivateSelf-employedPrivateGovt_jobSelf-employedchildrenPrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivateGovt_jobGovt_jobPrivatechildrenPrivateGovt_jobSelf-employedchildrenPrivatePrivatechildrenPrivateGovt_jobPrivatePrivatePrivatePrivateSelf-employedPrivatechildrenPrivateSelf-employedPrivateSelf-employedchildrenGovt_jobSelf-employedPrivatePrivatePrivatePrivateGovt_jobPrivateSelf-employedPrivateGovt_jobPrivatechildrenPrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivateGovt_jobSelf-employedchildrenSelf-employedPrivatePrivatePrivatePrivatePrivatePrivateSelf-employedSelf-employedPrivateGovt_jobPrivateGovt_jobPrivateSelf-employedSelf-employedPrivateGovt_jobSelf-employedPrivatechildrenSelf-employedPrivatePrivatePrivatechildrenPrivatePrivateSelf-employedSelf-employedPrivatePrivatePrivatechildrenchildrenPrivatePrivatePrivatePrivatechildrenSelf-employedchildrenPrivatePrivatePrivateGovt_jobPrivateSelf-employedPrivateGovt_jobPrivatePrivatePrivateSelf-employedPrivateGovt_jobPrivateGovt_jobPrivatechildrenPrivatePrivatechildrenPrivateSelf-employedSelf-employedchildrenPrivatePrivatePrivatechildrenSelf-employedchildrenGovt_jobGovt_jobPrivatechildrenchildrenSelf-employedPrivatePrivateSelf-employedGovt_jobPrivatePrivateGovt_jobchildrenPrivateGovt_jobSelf-employedPrivatechildrenPrivatechildrenPrivateSelf-employedPrivateSelf-employedSelf-employedchildrenchildrenSelf-employedSelf-employedSelf-employedSelf-employedSelf-employedSelf-employedchildrenPrivatePrivatechildrenPrivatePrivatePrivatePrivatePrivateSelf-employedPrivateGovt_jobPrivatechildrenPrivatePrivatePrivatePrivatePrivatePrivatePrivatechildrenchildrenchildrenPrivatechildrenPrivatechildrenPrivatechildrenPrivatePrivateSelf-employedPrivatechildrenPrivatechildrenPrivatePrivatechildrenPrivatePrivatechildrenPrivateGovt_jobSelf-employedPrivatechildrenPrivatePrivateGovt_jobGovt_jobPrivatePrivatechildrenPrivateSelf-employedSelf-employedPrivatePrivatePrivateSelf-employedGovt_jobPrivatePrivatePrivatechildrenPrivatePrivatePrivatechildrenPrivatePrivatePrivatePrivateGovt_jobPrivateGovt_jobGovt_jobPrivateSelf-employedGovt_jobchildrenPrivatePrivatePrivatePrivateGovt_jobPrivatePrivateSelf-employedSelf-employedPrivatechildrenchildrenPrivatePrivatechildrenPrivateGovt_jobPrivatePrivatePrivatePrivatechildrenPrivatechildrenPrivatePrivatePrivatePrivatePrivateGovt_jobGovt_jobPrivatechildrenGovt_jobchildrenPrivateGovt_jobGovt_jobGovt_jobPrivateGovt_jobGovt_jobPrivatePrivatechildrenPrivatePrivatePrivatePrivateSelf-employedPrivateGovt_jobPrivateGovt_jobchildrenPrivateSelf-employedPrivatePrivatePrivatePrivatechildrenPrivateSelf-employedSelf-employedPrivatePrivatePrivatePrivatechildrenGovt_jobchildrenPrivatePrivatechildrenSelf-employedchildrenPrivateSelf-employedGovt_jobGovt_jobSelf-employedPrivatePrivatechildrenGovt_jobPrivatePrivatePrivatechildrenGovt_jobPrivatePrivatechildrenPrivatechildrenPrivateGovt_jobPrivatePrivatePrivatechildrenPrivatePrivateGovt_jobPrivateSelf-employedGovt_jobchildrenGovt_jobPrivatePrivatePrivatechildrenPrivateSelf-employedSelf-employedGovt_jobPrivatechildrenPrivatePrivatechildrenPrivateSelf-employedPrivatePrivatePrivatePrivateGovt_jobPrivateGovt_jobPrivatechildrenPrivateGovt_jobPrivateGovt_jobPrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivatechildrenPrivatePrivatePrivatePrivatePrivatePrivatechildrenPrivateGovt_jobSelf-employedPrivateGovt_jobPrivateSelf-employedPrivatechildrenchildrenPrivatechildrenPrivatechildrenPrivatePrivateSelf-employedchildrenSelf-employedSelf-employedPrivatePrivateSelf-employedPrivateSelf-employedGovt_jobPrivatePrivateSelf-employedPrivatePrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatechildrenGovt_jobchildrenPrivateNever_workedSelf-employedPrivateSelf-employedPrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivateSelf-employedSelf-employedchildrenGovt_jobSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatechildrenPrivatePrivateGovt_jobGovt_jobchildrenchildrenPrivateGovt_jobSelf-employedPrivatePrivatePrivateGovt_jobGovt_jobGovt_jobPrivatechildrenchildrenchildrenchildrenSelf-employedPrivateSelf-employedchildrenGovt_jobGovt_jobPrivateGovt_jobchildrenPrivatePrivateSelf-employedPrivatePrivateSelf-employedPrivatePrivatechildrenchildrenchildrenPrivatechildrenSelf-employedGovt_jobPrivatePrivatePrivatePrivatePrivateGovt_jobSelf-employedchildrenPrivatePrivatechildrenPrivatePrivatePrivateSelf-employedGovt_jobPrivatePrivatePrivatechildrenSelf-employedPrivateNever_workedPrivateSelf-employedPrivatePrivateSelf-employedGovt_jobchildrenPrivateGovt_jobSelf-employedchildrenPrivatePrivatechildrenSelf-employedchildrenPrivatePrivatechildrenSelf-employedGovt_jobGovt_jobGovt_jobGovt_jobSelf-employedSelf-employedSelf-employedPrivateSelf-employedPrivatePrivatePrivatePrivateGovt_jobSelf-employedPrivateSelf-employedGovt_jobSelf-employedPrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivateSelf-employedGovt_jobGovt_jobPrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivateGovt_jobchildrenSelf-employedPrivatechildrenPrivatechildrenPrivateSelf-employedPrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivateGovt_jobGovt_jobSelf-employedPrivatechildrenSelf-employedSelf-employedPrivatePrivatePrivatechildrenPrivatePrivateNever_workedPrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatechildrenPrivatechildrenchildrenSelf-employedPrivatePrivateGovt_jobGovt_jobSelf-employedPrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatechildrenPrivatePrivatePrivatePrivatePrivatechildrenPrivateSelf-employedPrivateSelf-employedPrivatePrivatechildrenPrivatePrivatechildrenPrivateGovt_jobPrivatechildrenSelf-employedPrivatePrivateSelf-employedchildrenPrivateSelf-employedchildrenGovt_jobPrivatePrivatePrivateSelf-employedPrivatePrivateSelf-employedchildrenSelf-employedPrivatePrivateGovt_jobchildrenchildrenPrivatePrivatePrivateSelf-employedPrivateSelf-employedPrivateSelf-employedGovt_jobPrivatechildrenPrivatechildrenPrivateGovt_jobSelf-employedPrivatePrivatechildrenSelf-employedchildrenPrivatechildrenSelf-employedSelf-employedPrivatePrivatePrivatechildrenPrivateSelf-employedPrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivateGovt_jobSelf-employedchildrenSelf-employedchildrenSelf-employedGovt_jobPrivatePrivatePrivateGovt_jobPrivatePrivatechildrenGovt_jobGovt_jobPrivatePrivateGovt_jobSelf-employedchildrenchildrenGovt_jobPrivateGovt_jobPrivateSelf-employedPrivatePrivatePrivatechildrenSelf-employedGovt_jobGovt_jobPrivatePrivatePrivateGovt_jobPrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivatePrivateSelf-employedSelf-employedchildrenchildrenSelf-employedGovt_jobSelf-employedPrivatechildrenPrivateSelf-employedPrivatechildrenPrivatePrivatePrivatePrivatePrivateGovt_jobPrivateGovt_jobPrivatechildrenPrivatePrivatePrivatePrivatePrivateSelf-employedPrivateSelf-employedPrivateGovt_jobPrivatePrivateSelf-employedPrivateGovt_jobPrivatePrivatePrivatePrivateGovt_jobPrivatechildrenPrivateSelf-employedGovt_jobPrivateGovt_jobchildrenGovt_jobPrivatechildrenPrivateGovt_jobSelf-employedGovt_jobchildrenchildrenPrivateSelf-employedPrivatechildrenPrivatePrivatePrivateGovt_jobSelf-employedPrivatePrivatePrivatechildrenPrivatePrivateSelf-employedPrivatePrivatechildrenGovt_jobGovt_jobSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatechildrenNever_workedSelf-employedPrivatePrivatePrivatePrivatePrivateSelf-employedPrivateSelf-employedPrivatePrivateGovt_jobchildrenchildrenPrivateGovt_jobPrivatePrivatePrivateGovt_jobPrivatechildrenPrivateGovt_jobchildrenPrivateSelf-employedSelf-employedchildrenPrivatePrivatePrivateSelf-employedSelf-employedSelf-employedPrivatePrivatePrivateSelf-employedPrivateGovt_jobPrivatePrivatePrivatePrivateGovt_jobSelf-employedchildrenGovt_jobGovt_jobPrivatechildrenPrivateGovt_jobchildrenchildrenPrivatePrivateGovt_jobPrivatePrivatechildrenSelf-employedPrivateGovt_jobGovt_jobPrivateSelf-employedPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateGovt_jobSelf-employedPrivateSelf-employedchildrenGovt_jobPrivatechildrenSelf-employedGovt_jobSelf-employedPrivateSelf-employedchildrenchildrenPrivateGovt_jobPrivateSelf-employedPrivatechildrenPrivatechildrenPrivatePrivatePrivateSelf-employedGovt_jobPrivatePrivatePrivateGovt_jobchildrenPrivateGovt_jobPrivatePrivatePrivatePrivatechildrenSelf-employedPrivateGovt_jobPrivatePrivatePrivatePrivatechildrenPrivateGovt_jobchildrenSelf-employedchildrenPrivatePrivateGovt_jobPrivatechildrenchildrenPrivatePrivatePrivatechildrenPrivatePrivatePrivateSelf-employedPrivatePrivatePrivateSelf-employedPrivateGovt_jobPrivateGovt_jobSelf-employedPrivateSelf-employedPrivatechildrenchildrenPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivateSelf-employedGovt_jobGovt_jobGovt_jobchildrenGovt_jobGovt_jobPrivatechildrenPrivatechildrenPrivatePrivateSelf-employedPrivatechildrenPrivatePrivateGovt_jobPrivatePrivateGovt_jobPrivatechildrenPrivatePrivateGovt_jobchildrenPrivatePrivateGovt_jobPrivatePrivateGovt_jobNever_workedPrivatePrivateGovt_jobPrivatePrivateGovt_jobPrivatePrivatePrivatePrivatePrivateGovt_jobPrivateGovt_jobPrivatePrivateSelf-employedPrivatePrivateGovt_jobPrivatePrivatePrivateGovt_jobSelf-employedPrivatePrivatePrivatechildrenGovt_jobPrivatePrivatePrivatechildrenSelf-employedPrivatePrivatechildrenPrivatePrivatePrivateGovt_jobPrivatechildrenPrivatechildrenGovt_jobPrivatePrivatePrivatePrivatePrivatePrivateSelf-employedPrivatePrivateSelf-employedGovt_jobPrivatePrivateSelf-employedGovt_jobchildrenchildrenPrivateSelf-employedSelf-employedPrivateSelf-employedSelf-employedPrivateSelf-employedPrivatePrivateSelf-employedSelf-employedSelf-employedPrivatechildrenSelf-employedPrivatePrivatechildrenGovt_jobPrivatePrivateSelf-employedPrivatePrivatePrivateSelf-employedGovt_jobPrivatePrivateGovt_jobPrivateSelf-employedPrivatePrivateSelf-employedPrivateSelf-employedchildrenPrivatePrivatePrivatePrivateGovt_jobPrivatePrivateSelf-employedSelf-employedSelf-employedPrivatePrivateGovt_jobSelf-employedPrivatechildrenPrivatePrivatePrivateSelf-employedPrivatePrivateGovt_jobGovt_jobPrivatePrivatePrivatePrivateGovt_jobPrivatePrivateGovt_jobchildrenGovt_jobPrivateSelf-employedPrivatePrivateSelf-employedPrivatePrivatechildrenPrivateSelf-employedPrivatePrivatechildrenSelf-employedPrivatechildrenGovt_jobGovt_jobGovt_jobPrivateSelf-employedPrivateSelf-employedNever_workedPrivatechildrenGovt_jobPrivatePrivateSelf-employedSelf-employedPrivatePrivatePrivatechildrenPrivateNever_workedPrivateSelf-employedchildrenPrivatePrivatePrivatechildrenPrivatechildrenSelf-employedGovt_jobGovt_jobPrivatechildrenGovt_jobPrivatechildrenPrivatePrivateSelf-employedPrivateSelf-employedPrivatePrivatePrivateSelf-employedPrivatePrivatePrivatePrivateGovt_jobSelf-employedPrivateSelf-employedSelf-employedSelf-employedPrivatePrivatePrivatechildrenPrivatePrivateGovt_jobPrivatePrivatechildrenPrivatePrivatePrivateSelf-employedGovt_jobPrivatePrivatechildrenPrivatechildrenchildrenPrivatechildrenPrivatePrivatePrivatechildrenGovt_jobchildrenPrivateGovt_jobchildrenPrivatePrivatePrivatePrivatePrivatePrivatechildrenPrivatePrivatePrivatechildrenchildrenPrivateSelf-employedGovt_jobPrivatechildrenchildrenchildrenPrivatePrivatePrivatePrivatePrivatechildrenchildrenSelf-employedSelf-employedPrivatePrivateGovt_jobPrivatePrivatePrivatePrivateGovt_jobPrivateGovt_jobSelf-employedPrivateGovt_jobPrivatePrivateSelf-employedchildrenPrivatechildrenPrivatePrivatePrivatechildrenPrivatePrivatePrivateSelf-employedPrivatechildrenPrivatePrivatePrivateGovt_jobGovt_jobGovt_jobPrivateGovt_jobPrivatePrivatePrivateGovt_jobPrivateSelf-employedSelf-employedPrivatechildrenchildrenchildrenchildrenGovt_jobPrivatePrivatechildrenPrivatePrivateSelf-employedPrivatePrivatePrivateSelf-employedPrivatePrivatechildrenchildrenSelf-employedPrivatePrivateGovt_jobPrivatePrivateSelf-employedPrivateSelf-employedPrivatePrivatePrivatePrivateSelf-employedPrivatechildrenPrivatePrivatePrivatechildrenPrivatePrivatechildrenGovt_jobPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatechildrenPrivatePrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivateGovt_jobchildrenchildrenPrivatePrivateGovt_jobSelf-employedPrivatePrivatechildrenPrivatePrivatePrivatePrivateGovt_jobPrivatePrivatePrivatePrivateGovt_jobPrivateSelf-employedSelf-employedPrivatePrivatePrivatePrivateGovt_jobSelf-employedGovt_jobSelf-employedPrivatechildrenPrivatePrivatePrivatePrivatePrivateGovt_jobPrivatechildrenPrivatePrivatePrivatechildrenPrivatePrivatePrivateSelf-employedSelf-employedGovt_jobPrivatePrivatePrivatePrivatePrivateGovt_jobPrivatePrivateGovt_jobPrivatePrivatechildrenPrivatechildrenGovt_jobPrivatePrivatePrivateGovt_jobPrivateGovt_jobPrivatePrivateSelf-employedPrivateSelf-employedPrivatePrivatePrivateSelf-employedPrivatechildrenPrivatePrivatePrivateGovt_jobPrivatePrivatePrivatechildrenchildrenSelf-employedGovt_jobPrivatePrivatePrivatePrivatePrivateSelf-employedSelf-employedchildrenGovt_jobPrivateGovt_jobGovt_jobchildrenchildrenGovt_jobSelf-employedchildrenPrivateSelf-employedPrivatePrivatePrivatechildrenPrivateSelf-employedSelf-employedPrivateGovt_job'\n 'UrbanRuralRuralUrbanRuralUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanRuralRuralRuralUrbanRuralUrbanRuralUrbanUrbanUrbanRuralRuralRuralRuralUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanRuralRuralRuralUrbanUrbanUrbanUrbanUrbanRuralRuralRuralRuralRuralRuralRuralUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanUrbanRuralRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralUrbanUrbanRuralRuralRuralUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanUrbanUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanRuralRuralRuralUrbanRuralRuralRuralUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanRuralRuralRuralUrbanRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralUrbanRuralUrbanRuralRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanRuralRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanUrbanRuralRuralRuralUrbanRuralRuralRuralRuralRuralRuralUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanUrbanRuralRuralRuralRuralUrbanRuralUrbanUrbanRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralRuralRuralRuralUrbanUrbanRuralRuralRuralUrbanUrbanUrbanUrbanRuralRuralUrbanRuralRuralUrbanRuralUrbanRuralRuralUrbanRuralRuralUrbanRuralUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralRuralRuralRuralRuralUrbanUrbanRuralRuralRuralRuralUrbanRuralRuralRuralUrbanRuralRuralRuralUrbanUrbanUrbanRuralRuralUrbanRuralRuralUrbanUrbanUrbanRuralRuralRuralRuralRuralUrbanRuralUrbanRuralUrbanRuralRuralRuralRuralRuralRuralRuralUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralRuralRuralUrbanUrbanRuralRuralRuralUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanRuralRuralRuralRuralUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanRuralUrbanRuralRuralRuralRuralRuralRuralRuralRuralRuralRuralUrbanUrbanRuralRuralRuralRuralUrbanRuralRuralUrbanUrbanRuralUrbanRuralUrbanRuralRuralUrbanRuralRuralRuralUrbanRuralRuralUrbanRuralRuralUrbanRuralRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralRuralRuralUrbanUrbanRuralUrbanUrbanRuralUrbanRuralUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanRuralRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanRuralRuralUrbanRuralRuralUrbanUrbanUrbanUrbanRuralRuralRuralUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanRuralRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanRuralRuralRuralRuralRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralUrbanRuralRuralRuralUrbanRuralUrbanUrbanUrbanRuralRuralRuralUrbanRuralRuralRuralUrbanUrbanRuralUrbanUrbanRuralRuralUrbanRuralUrbanUrbanRuralUrbanRuralUrbanRuralUrbanRuralUrbanRuralRuralUrbanRuralUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanRuralRuralRuralRuralRuralRuralRuralRuralUrbanUrbanRuralUrbanRuralUrbanRuralRuralRuralUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanRuralRuralRuralUrbanRuralUrbanRuralUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanRuralRuralUrbanRuralRuralRuralUrbanRuralUrbanUrbanUrbanRuralRuralRuralUrbanUrbanRuralUrbanRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanRuralRuralRuralRuralRuralUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanRuralRuralRuralRuralRuralUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanRuralRuralRuralUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanRuralUrbanRuralRuralRuralUrbanUrbanRuralRuralUrbanUrbanRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralUrbanUrbanRuralRuralUrbanRuralRuralUrbanRuralUrbanRuralRuralRuralUrbanRuralRuralUrbanUrbanUrbanRuralRuralUrbanRuralRuralUrbanRuralUrbanRuralUrbanRuralUrbanRuralUrbanRuralRuralUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanRuralRuralRuralRuralRuralRuralUrbanRuralUrbanUrbanUrbanRuralRuralRuralUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralRuralRuralUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanRuralUrbanRuralUrbanUrbanRuralUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanRuralRuralRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralRuralUrbanUrbanRuralRuralRuralUrbanUrbanUrbanRuralUrbanRuralRuralUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralUrbanRuralUrbanRuralRuralRuralUrbanRuralRuralUrbanRuralRuralUrbanRuralUrbanRuralUrbanRuralRuralRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralUrbanUrbanUrbanRuralUrbanRuralUrbanUrbanUrbanRuralRuralUrbanUrbanRuralUrbanUrbanUrbanRuralRuralRuralRuralRuralUrbanUrbanRuralRuralRuralRuralRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanRuralRuralRuralUrbanRuralRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralRuralUrbanRuralUrbanUrbanUrbanRuralUrbanRuralUrbanRuralUrbanUrbanUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanRuralUrbanRuralUrbanRuralRuralRuralRuralUrbanUrbanUrbanUrbanRuralRuralRuralRuralRuralRuralUrbanUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanUrbanRuralRuralUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanRuralRuralRuralRuralRuralRuralUrbanRuralUrbanRuralRuralRuralUrbanRuralRuralUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanRuralUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanRuralRuralUrbanRuralRuralRuralRuralUrbanUrbanRuralRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanRuralRuralUrbanRuralRuralRuralRuralRuralRuralRuralRuralRuralRuralRuralRuralRuralUrbanUrbanUrbanUrbanUrbanRuralRuralRuralRuralUrbanRuralRuralRuralRuralUrbanRuralUrbanRuralRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanRuralRuralUrbanRuralRuralRuralRuralUrbanRuralRuralUrbanRuralRuralRuralUrbanRuralUrbanRuralRuralUrbanRuralRuralRuralRuralUrbanRuralUrbanUrbanRuralRuralRuralRuralUrbanRuralUrbanRuralRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralRuralRuralRuralRuralUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanRuralRuralRuralUrbanRuralRuralUrbanUrbanUrbanRuralUrbanRuralRuralRuralRuralUrbanRuralUrbanRuralUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralRuralRuralRuralUrbanRuralUrbanUrbanUrbanRuralRuralUrbanRuralUrbanUrbanRuralRuralUrbanUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralRuralUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanUrbanRuralRuralUrbanRuralRuralUrbanRuralRuralRuralRuralRuralRuralUrbanRuralUrbanUrbanRuralRuralRuralUrbanRuralRuralUrbanUrbanRuralRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanRuralRuralRuralRuralUrbanRuralRuralUrbanRuralRuralRuralRuralRuralRuralUrbanUrbanRuralRuralRuralRuralUrbanUrbanRuralRuralRuralRuralRuralUrbanUrbanRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanRuralUrbanRuralUrbanUrbanRuralRuralUrbanRuralRuralRuralUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanRuralRuralRuralUrbanUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanRuralRuralRuralUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanRuralUrbanRuralUrbanRuralUrbanUrbanRuralUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanRuralUrbanRuralRuralRuralRuralUrbanRuralUrbanUrbanRuralRuralRuralUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralRuralRuralUrbanUrbanRuralRuralUrbanRuralRuralRuralRuralUrbanRuralRuralRuralRuralUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanRuralRuralUrbanRuralRuralRuralRuralRuralUrbanRuralRuralRuralUrbanRuralRuralUrbanRuralUrbanRuralRuralUrbanUrbanRuralRuralRuralUrbanRuralRuralUrbanUrbanUrbanRuralUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanRuralRuralUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanRuralUrbanRuralRuralRuralUrbanRuralRuralUrbanUrbanUrbanRuralRuralRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralUrbanRuralRuralRuralRuralRuralRuralRuralRuralRuralUrbanRuralRuralUrbanRuralRuralUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralUrbanRuralUrbanUrbanRuralRuralUrbanUrbanRuralRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralRuralRuralUrbanUrbanUrbanUrbanRuralRuralRuralUrbanUrbanRuralRuralUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanRuralUrbanRuralUrbanRuralUrbanRuralUrbanRuralRuralRuralUrbanRuralRuralUrbanRuralUrbanRuralRuralUrbanRuralRuralUrbanUrbanUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanRuralUrbanRuralUrbanRuralRuralRuralRuralUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanRuralRuralUrbanRuralRuralUrbanUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralRuralRuralUrbanRuralRuralRuralRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanRuralUrbanUrbanRuralUrbanRuralUrbanRuralUrbanRuralRuralUrbanRuralRuralUrbanRuralRuralRuralUrbanRuralUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanRuralUrbanUrbanRuralRuralRuralUrbanRuralRuralUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanUrbanRuralRuralRuralUrbanRuralUrbanUrbanUrbanRuralRuralRuralRuralUrbanUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralRuralRuralRuralRuralRuralRuralUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanRuralRuralRuralRuralRuralUrbanRuralRuralRuralUrbanUrbanRuralRuralUrbanRuralRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralRuralUrbanRuralRuralUrbanRuralRuralRuralRuralRuralRuralRuralUrbanUrbanRuralRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanRuralUrbanUrbanUrbanRuralRuralUrbanRuralRuralRuralUrbanRuralRuralUrbanRuralUrbanRuralUrbanRuralUrbanRuralRuralRuralRuralRuralUrbanRuralUrbanRuralUrbanUrbanRuralRuralRuralRuralUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralRuralRuralRuralRuralRuralRuralUrbanRuralUrbanRuralRuralUrbanRuralUrbanRuralRuralRuralRuralRuralRuralUrbanRuralRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanRuralUrbanUrbanRuralRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralRuralRuralUrbanRuralUrbanUrbanUrbanUrbanRuralRuralUrbanRuralRuralRuralUrbanRuralRuralRuralRuralUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralUrbanRuralRuralUrbanRuralRuralUrbanUrbanUrbanRuralRuralUrbanRuralRuralUrbanUrbanRuralRuralRuralRuralRuralRuralUrbanRuralRuralUrbanRuralRuralRuralRuralRuralRuralRuralRuralRuralRuralRuralRuralUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanRuralUrbanUrbanRuralRuralUrbanRuralRuralRuralUrbanRuralRuralUrbanUrbanRuralUrbanUrbanRuralUrbanRuralUrbanUrbanRuralUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanRuralRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanRuralRuralRuralRuralRuralUrbanUrbanRuralRuralRuralUrbanUrbanRuralRuralRuralUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanRuralUrbanUrbanRuralRuralUrbanUrbanRuralUrbanRuralRuralRuralUrbanRuralUrbanUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralRuralRuralRuralRuralUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanRuralRuralUrbanUrbanRuralUrbanUrbanRuralRuralRuralUrbanRuralUrbanRuralUrbanUrbanUrbanRuralUrbanRuralUrbanRuralUrbanRuralUrbanUrbanRuralRuralRuralUrbanRuralUrbanRuralRuralRuralRuralUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanRuralRuralUrbanRuralUrbanUrbanRuralRuralRuralRuralRuralRuralUrbanUrbanRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanRuralRuralUrbanRuralRuralRuralRuralUrbanRuralUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralRuralRuralUrbanRuralRuralUrbanRuralRuralRuralUrbanUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralRuralUrbanUrbanRuralRuralRuralRuralUrbanUrbanRuralRuralUrbanUrbanUrbanRuralRuralUrbanRuralUrbanUrbanUrbanRuralRuralUrbanRuralRuralRuralRuralRuralRuralRuralUrbanUrbanUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanRuralRuralRuralRuralRuralUrbanRuralRuralRuralRuralRuralRuralUrbanUrbanUrbanUrbanRuralRuralRuralUrbanRuralRuralUrbanUrbanRuralRuralUrbanRuralRuralUrbanRuralRuralUrbanRuralRuralUrbanRuralRuralUrbanRuralUrbanUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanRuralRuralUrbanRuralRuralRuralRuralUrbanRuralUrbanRuralUrbanUrbanRuralRuralRuralRuralUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanRuralUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanUrbanRuralRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralRuralUrbanUrbanRuralRuralUrbanUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanRuralUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanRuralRuralUrbanRuralUrbanRuralRuralUrbanRuralUrbanRuralRuralUrbanUrbanRuralRuralUrbanRuralUrbanRuralRuralRuralRuralUrbanRuralRuralUrbanRuralRuralRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralRuralRuralRuralUrbanUrbanRuralRuralRuralRuralRuralUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanRuralUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralRuralRuralRuralUrbanRuralUrbanUrbanUrbanRuralRuralRuralRuralUrbanUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanRuralUrbanUrbanRuralRuralRuralRuralUrbanRuralRuralRuralUrbanUrbanRuralRuralRuralUrbanRuralUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanRuralRuralRuralUrbanRuralRuralUrbanUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanRuralUrbanRuralRuralRuralUrbanUrbanRuralUrbanRuralRuralRuralRuralUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralUrbanRuralUrbanRuralUrbanUrbanRuralRuralRuralRuralUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralRuralRuralUrbanRuralRuralRuralRuralRuralUrbanRuralRuralRuralRuralUrbanUrbanRuralRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralRuralRuralRuralUrbanUrbanRuralUrbanRuralRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanRuralRuralUrbanUrbanRuralUrbanRuralRuralRuralRuralRuralUrbanRuralUrbanRuralRuralRuralRuralUrbanUrbanRuralRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanRuralUrbanRuralRuralUrbanUrbanRuralUrbanUrbanUrbanRuralRuralRuralRuralUrbanUrbanRuralUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanRuralRuralRuralUrbanRuralRuralRuralRuralUrbanUrbanRuralRuralRuralUrbanRuralUrbanUrbanUrbanUrbanRuralRuralUrbanRuralUrbanUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanUrbanRuralUrbanUrbanRuralRuralUrbanRuralUrbanRuralRuralRuralUrbanUrbanUrbanUrbanRuralRuralRuralUrbanRuralRuralRuralRuralRuralRuralUrbanRuralRuralRuralRuralUrbanUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralRuralUrbanRuralUrbanUrbanUrbanRuralRuralRuralUrbanUrbanUrbanUrbanRuralRuralRuralRuralUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralUrbanUrbanUrbanUrbanRuralRuralRuralRuralRuralRuralRuralUrbanRuralUrbanUrbanRuralUrbanUrbanRuralRuralRuralUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralUrbanRuralRuralUrbanRuralRuralRuralRuralUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanRuralUrbanRuralRuralRuralRuralUrbanUrbanRuralUrbanRuralRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanRuralUrbanUrbanRuralRuralUrbanRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralRuralUrbanRuralUrbanRuralRuralRuralRuralRuralUrbanRuralUrbanRuralUrbanUrbanRuralUrbanRuralUrbanUrbanRuralRuralUrbanUrbanUrbanRuralRuralRuralUrbanUrbanRuralUrbanRuralUrbanUrbanRuralRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralRuralUrbanRuralRuralRuralUrbanRuralUrbanRuralRuralUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanRuralRuralRuralUrbanUrbanRuralUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralRuralUrbanRuralUrbanRuralRuralUrbanRuralRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralRuralUrbanUrbanRuralRuralUrbanRuralRuralUrbanRuralRuralUrbanRuralRuralRuralUrbanRuralRuralUrbanRuralUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanRuralRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanRuralRuralUrbanUrbanRuralRuralRuralUrbanUrbanRuralUrbanRuralRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralRuralUrbanRuralUrbanUrbanRuralRuralRuralRuralRuralUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralRuralUrbanRuralUrbanUrbanRuralUrbanRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralUrbanRuralRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralRuralUrbanRuralUrbanUrbanRuralUrbanUrbanRuralUrbanRuralUrbanUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralRuralUrbanUrbanUrbanRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralRuralUrbanRuralRuralRuralRuralUrbanRuralRuralRuralRuralRuralUrbanRuralRuralUrbanUrbanRuralUrbanUrbanRuralUrbanRuralUrbanUrbanRuralUrbanRuralRuralRuralRuralUrbanUrbanRuralRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanRuralUrbanRuralRuralUrbanRuralRuralUrbanRuralRuralRuralRuralUrbanRuralUrbanRuralUrbanRuralUrbanRuralUrbanRuralUrbanUrbanRuralRuralRuralUrbanRuralUrbanRuralRuralRuralUrbanRuralUrbanRuralRuralUrbanUrbanRuralUrbanRuralUrbanUrbanRuralRuralRuralUrbanRuralUrbanUrbanUrbanRuralRuralUrbanRuralRuralUrbanRuralRuralUrbanRuralRuralRuralUrbanUrbanUrbanRuralUrbanRuralRuralRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralRuralUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralRuralRuralUrbanUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanUrbanRuralUrbanRuralUrbanUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanRuralRuralRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanRuralRuralUrbanRuralRuralUrbanUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanRuralRuralRuralUrbanRuralUrbanRuralUrbanUrbanRuralRuralUrbanUrbanRuralRuralRuralUrbanRuralRuralRuralRuralRuralRuralUrbanRuralRuralUrbanRuralUrbanUrbanUrbanRuralRuralRuralUrbanRuralUrbanUrbanUrbanRuralRuralRuralUrbanRuralRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralRuralUrbanUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanRuralRuralRuralUrbanUrbanUrbanUrbanRuralUrbanRuralRuralUrbanUrbanRuralUrbanRuralUrbanUrbanUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanRuralUrbanUrbanRuralRuralUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanRuralRuralRuralRuralRuralRuralRuralUrbanUrbanRuralRuralRuralRuralRuralUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralRuralRuralRuralRuralRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralRuralUrbanUrbanRuralUrbanRuralRuralUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanRuralRuralRuralRuralUrbanUrbanRuralRuralUrbanUrbanUrbanRuralRuralUrbanRuralRuralUrbanUrbanUrbanRuralUrbanRuralRuralRuralRuralRuralUrbanRuralRuralRuralRuralUrbanUrbanUrbanRuralRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralUrbanRuralUrbanRuralRuralRuralUrbanRuralRuralUrbanUrbanRuralRuralRuralUrbanUrbanRuralUrbanRuralRuralUrbanUrbanUrbanRuralRuralUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralRuralRuralRuralRuralRuralRuralRuralRuralRuralRuralRuralUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanRuralRuralRuralUrbanUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanRuralUrbanRuralUrbanRuralUrbanUrbanRuralRuralRuralRuralUrbanRuralRuralUrbanUrbanRuralUrbanRuralRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralRuralUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralRuralUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanRuralUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralRuralRuralRuralUrbanRuralRuralUrbanRuralRuralRuralUrbanRuralUrbanRuralUrbanUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanRuralRuralUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanRuralRuralRuralRuralRuralRuralRuralRuralUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanRuralRuralRuralRuralUrbanUrbanRuralRuralRuralRuralRuralRuralUrbanRuralRuralRuralUrbanUrbanRuralRuralUrbanRuralUrbanRuralRuralRuralUrbanRuralRuralUrbanUrbanRuralRuralRuralRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanRuralRuralRuralUrbanRuralRuralRuralRuralRuralRuralRuralUrbanUrbanRuralRuralRuralUrbanRuralRuralUrbanUrbanUrbanRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanRuralRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralUrbanRuralRuralUrbanUrbanRuralUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanRuralRuralRuralUrbanRuralUrbanRuralUrbanUrbanRuralUrbanRuralRuralUrbanUrbanRuralUrbanRuralUrbanRuralRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralRuralUrbanUrbanUrbanRuralUrbanUrbanRuralRuralRuralRuralRuralUrbanUrbanRuralRuralRuralRuralUrbanRuralUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanRuralRuralUrbanRuralUrbanUrbanRuralRuralRuralUrbanUrbanRuralUrbanUrbanRuralRuralRuralUrbanUrbanUrbanUrbanRuralRuralRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanUrbanRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanUrbanRuralRuralRuralUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralRuralUrbanRuralUrbanRuralRuralRuralRuralUrbanUrbanUrbanRuralRuralRuralRuralUrbanUrbanUrbanRuralRuralUrbanRuralRuralUrbanUrbanUrbanRuralUrbanRuralUrbanRuralRuralUrbanUrbanUrbanRuralRuralRuralUrbanUrbanRuralUrbanUrbanRuralRuralRuralUrbanUrbanUrbanRuralRuralUrbanRuralUrbanRuralRuralRuralRuralRuralUrbanUrbanUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanRuralUrbanRuralUrbanUrbanUrbanUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanRuralRuralUrbanUrbanUrbanRuralRuralUrbanRuralUrbanUrbanRuralUrbanRuralRuralRuralUrbanRuralUrbanRuralRuralUrbanUrbanRuralRuralUrbanRuralUrbanRuralUrbanUrbanRuralRuralUrban'\n 'formerly smokednever smokednever smokedsmokesnever smokedformerly smokednever smokednever smokedUnknownUnknownnever smokedsmokessmokesUnknownnever smokednever smokedsmokessmokesnever smokedUnknownsmokesnever smokednever smokedUnknownformerly smokednever smokedformerly smokedUnknownsmokesformerly smokedsmokesUnknownnever smokedformerly smokednever smokedformerly smokedformerly smokedformerly smokedUnknownnever smokedformerly smokednever smokedsmokesformerly smokedsmokesnever smokedUnknownformerly smokednever smokedsmokesUnknownformerly smokednever smokednever smokednever smokedformerly smokednever smokedformerly smokednever smokednever smokedformerly smokednever smokedsmokesformerly smokedUnknownnever smokednever smokedUnknownformerly smokednever smokedformerly smokedformerly smokedformerly smokednever smokednever smokedformerly smokednever smokedformerly smokednever smokedUnknownUnknownUnknownnever smokednever smokedUnknownsmokessmokesformerly smokedformerly smokedUnknownnever smokednever smokednever smokedUnknownnever smokednever smokedformerly smokedsmokesformerly smokednever smokedUnknownnever smokedformerly smokedUnknownUnknownsmokesformerly smokedsmokesnever smokednever smokedformerly smokedsmokesformerly smokednever smokedUnknownnever smokedsmokessmokesformerly smokednever smokedformerly smokedUnknownsmokesnever smokedUnknownnever smokedformerly smokedUnknownformerly smokedUnknownnever smokednever smokednever smokedformerly smokednever smokednever smokedformerly smokedUnknownformerly smokedUnknownnever smokedsmokesnever smokednever smokednever smokedformerly smokedformerly smokednever smokednever smokednever smokedUnknownformerly smokednever smokedsmokesnever smokednever smokedsmokessmokesformerly smokednever smokedformerly smokedsmokesUnknownnever smokedformerly smokedformerly smokedUnknownnever smokedformerly smokednever smokedformerly smokednever smokedsmokesformerly smokedformerly smokednever smokednever smokedformerly smokedUnknownUnknownnever smokedformerly smokedsmokesUnknownsmokesformerly smokedformerly smokedformerly smokedformerly smokedUnknownformerly smokedformerly smokedsmokessmokessmokesformerly smokedformerly smokedUnknownformerly smokednever smokedUnknownformerly smokednever smokednever smokedsmokesformerly smokednever smokednever smokedUnknownUnknownnever smokedformerly smokednever smokednever smokednever smokedsmokesnever smokedsmokessmokesnever smokedsmokesnever smokedformerly smokedsmokessmokesUnknownnever smokednever smokedsmokesnever smokednever smokedsmokesnever smokedformerly smokedUnknownUnknownUnknownformerly smokednever smokedsmokesformerly smokedformerly smokednever smokedformerly smokedUnknownUnknownformerly smokedUnknownUnknownUnknownnever smokedUnknownformerly smokedUnknownUnknownformerly smokednever smokedsmokesnever smokedUnknownformerly smokednever smokedformerly smokednever smokednever smokedsmokesnever smokedsmokessmokesUnknownsmokessmokesformerly smokednever smokednever smokedsmokesnever smokednever smokednever smokedUnknownUnknownsmokesUnknownUnknownUnknownformerly smokednever smokedUnknownUnknownsmokesUnknownUnknownUnknownformerly smokedUnknownsmokesnever smokedsmokesnever smokedUnknownUnknownformerly smokednever smokedsmokessmokessmokesUnknownUnknownsmokesformerly smokedUnknownUnknownUnknownsmokesnever smokedformerly smokedformerly smokednever smokedformerly smokednever smokedUnknownUnknownUnknownUnknownformerly smokedformerly smokednever smokedUnknownsmokessmokesnever smokedformerly smokedsmokesformerly smokedUnknownUnknownUnknownnever smokednever smokednever smokednever smokedformerly smokedformerly smokedformerly smokednever smokednever smokednever smokedformerly smokednever smokedsmokesformerly smokednever smokednever smokednever smokedsmokesnever smokedsmokesnever smokednever smokedsmokesnever smokednever smokedformerly smokedUnknownUnknownformerly smokednever smokednever smokednever smokedUnknownnever smokednever smokednever smokedformerly smokedsmokesnever smokedUnknownUnknownUnknownformerly smokedUnknownnever smokednever smokedUnknownUnknownnever smokednever smokednever smokedformerly smokedformerly smokednever smokedsmokesnever smokednever smokednever smokednever smokednever smokednever smokedsmokesformerly smokedUnknownnever smokedUnknownsmokesUnknownnever smokedUnknownnever smokednever smokedUnknownUnknownnever smokedsmokesUnknownnever smokedsmokesUnknownnever smokednever smokednever smokedUnknownUnknownUnknownformerly smokednever smokedUnknownnever smokedsmokessmokesformerly smokednever smokedformerly smokedsmokesnever smokednever smokednever smokedformerly smokedUnknownformerly smokednever smokednever smokednever smokedUnknownUnknownUnknownUnknownUnknownnever smokedUnknownnever smokedsmokesnever smokednever smokedUnknownnever smokednever smokedformerly smokedsmokesUnknownUnknownUnknownUnknownformerly smokednever smokednever smokedsmokessmokesnever smokednever smokedUnknownnever smokednever smokedsmokesnever smokedsmokesnever smokedUnknownUnknownformerly smokedsmokesUnknownUnknownUnknownUnknownsmokesnever smokednever smokedUnknownformerly smokedUnknownUnknownformerly smokedUnknownnever smokedformerly smokednever smokedUnknownnever smokedUnknownsmokesformerly smokedformerly smokednever smokedUnknownsmokessmokesformerly smokedUnknownUnknownnever smokedformerly smokedsmokessmokessmokessmokessmokesnever smokedformerly smokedUnknownUnknownnever smokednever smokedsmokesnever smokednever smokedUnknownnever smokednever smokedformerly smokedUnknownformerly smokednever smokedUnknownnever smokedUnknownUnknownnever smokedUnknownnever smokedUnknownnever smokedformerly smokedformerly smokedUnknownnever smokedUnknownUnknownsmokesnever smokednever smokedUnknownformerly smokedUnknownnever smokedUnknownnever smokednever smokedUnknownUnknownnever smokedUnknownnever smokedUnknownnever smokedUnknownnever smokedUnknownformerly smokedUnknownnever smokednever smokedformerly smokedformerly smokedsmokesUnknownnever smokedsmokessmokesformerly smokednever smokedformerly smokedUnknownUnknownformerly smokedUnknownformerly smokedUnknownnever smokedformerly smokedsmokesUnknownsmokesnever smokednever smokedsmokessmokesformerly smokedUnknownnever smokednever smokednever smokednever smokednever smokednever smokedsmokesUnknownnever smokedUnknownsmokesUnknownUnknownnever smokedUnknownsmokesnever smokedUnknownnever smokedsmokesformerly smokedsmokesnever smokednever smokednever smokedUnknownsmokesnever smokedsmokesnever smokednever smokedsmokesnever smokednever smokednever smokedUnknownUnknownnever smokedformerly smokednever smokedformerly smokedUnknownnever smokednever smokedformerly smokednever smokednever smokedUnknownformerly smokedformerly smokedsmokesnever smokednever smokedformerly smokedformerly smokedformerly smokedformerly smokednever smokedUnknownUnknownnever smokedsmokesUnknownnever smokedUnknownnever smokednever smokednever smokednever smokedUnknownformerly smokedUnknownnever smokednever smokednever smokednever smokednever smokednever smokedformerly smokedsmokesUnknownnever smokednever smokednever smokednever smokedUnknownUnknownUnknownformerly smokedformerly smokednever smokednever smokednever smokedUnknownnever smokednever smokedformerly smokednever smokedUnknownUnknownsmokesnever smokednever smokednever smokednever smokedsmokesUnknownsmokessmokesformerly smokedformerly smokedformerly smokedUnknownformerly smokednever smokedformerly smokedUnknownnever smokedsmokesUnknownnever smokedformerly smokedformerly smokedUnknownUnknownsmokessmokessmokessmokesnever smokednever smokednever smokedUnknownnever smokedformerly smokedUnknownsmokesnever smokednever smokedsmokesUnknownsmokesnever smokednever smokedUnknownsmokesnever smokednever smokedsmokesnever smokednever smokednever smokedUnknownformerly smokedUnknownUnknownUnknownUnknownUnknownnever smokednever smokedformerly smokedUnknownnever smokedsmokesnever smokedsmokesnever smokednever smokedUnknownsmokessmokesnever smokednever smokedUnknownnever smokedformerly smokedUnknownnever smokedformerly smokednever smokednever smokedUnknownformerly smokednever smokedUnknownnever smokedUnknownformerly smokednever smokednever smokednever smokednever smokedUnknownnever smokednever smokedsmokesformerly smokednever smokednever smokedsmokesUnknownsmokesnever smokedformerly smokedformerly smokedUnknownUnknownnever smokednever smokedUnknownnever smokednever smokedUnknownnever smokednever smokedUnknownsmokesnever smokedUnknownformerly smokednever smokedUnknownformerly smokedformerly smokednever smokednever smokedsmokesnever smokednever smokedUnknownnever smokedUnknownnever smokedUnknownUnknownsmokesformerly smokedformerly smokednever smokednever smokednever smokedUnknownnever smokedformerly smokednever smokedUnknownnever smokednever smokednever smokedUnknownformerly smokedUnknownsmokesnever smokednever smokednever smokedsmokesUnknownnever smokedsmokessmokessmokesnever smokedsmokesformerly smokednever smokedsmokesnever smokednever smokedUnknownnever smokedformerly smokednever smokednever smokednever smokednever smokedformerly smokednever smokedUnknownnever smokedformerly smokednever smokedformerly smokedsmokesnever smokedformerly smokedformerly smokednever smokednever smokednever smokedformerly smokedsmokesnever smokednever smokedUnknownformerly smokedUnknownsmokesnever smokedUnknownnever smokednever smokedsmokesUnknownsmokesformerly smokednever smokedformerly smokednever smokedsmokesUnknownUnknownsmokesformerly smokedUnknownsmokesformerly smokedformerly smokedformerly smokedUnknownUnknownsmokesUnknownUnknownsmokesnever smokedUnknownUnknownUnknownsmokesformerly smokednever smokednever smokednever smokednever smokednever smokednever smokednever smokedUnknownnever smokedUnknownnever smokednever smokednever smokednever smokedUnknownnever smokednever smokedsmokessmokesnever smokedUnknownUnknownsmokesUnknownnever smokedsmokesnever smokedUnknownsmokesnever smokednever smokedUnknownUnknownnever smokednever smokedformerly smokednever smokednever smokedsmokesnever smokedformerly smokednever smokednever smokedUnknownUnknownsmokesformerly smokedUnknownnever smokedsmokesUnknownnever smokedUnknownsmokesnever smokednever smokedUnknownformerly smokedUnknownUnknownformerly smokedUnknownformerly smokedUnknownnever smokedUnknownUnknownnever smokedUnknownUnknownnever smokednever smokednever smokednever smokedformerly smokedsmokesUnknownUnknownUnknownUnknownnever smokedformerly smokedUnknownUnknownUnknownsmokesformerly smokednever smokedUnknownnever smokedUnknownnever smokednever smokednever smokednever smokedUnknownformerly smokedsmokesnever smokednever smokedsmokesnever smokedUnknownsmokessmokesformerly smokednever smokednever smokednever smokedUnknownUnknownsmokesnever smokedformerly smokednever smokedUnknownUnknownUnknownformerly smokednever smokedsmokesnever smokedformerly smokednever smokedformerly smokednever smokedUnknownnever smokednever smokedformerly smokednever smokedformerly smokedUnknownsmokesUnknownformerly smokednever smokednever smokedUnknownUnknownnever smokedUnknownnever smokednever smokedUnknownnever smokednever smokedformerly smokednever smokedsmokesnever smokedUnknownnever smokedformerly smokednever smokednever smokedUnknownnever smokedformerly smokedUnknownnever smokedUnknownformerly smokedUnknownsmokesnever smokedUnknownformerly smokedUnknownUnknownnever smokedUnknownsmokesUnknownUnknownnever smokednever smokednever smokedUnknownnever smokedformerly smokednever smokedUnknownsmokesnever smokedUnknownsmokesformerly smokedsmokesUnknownnever smokednever smokedformerly smokedUnknownUnknownnever smokedUnknownnever smokedformerly smokednever smokedformerly smokednever smokedUnknownsmokesUnknownUnknownUnknownUnknownformerly smokednever smokednever smokedUnknownsmokesUnknownnever smokedUnknownUnknownnever smokedformerly smokednever smokednever smokedsmokesnever smokednever smokednever smokedUnknownsmokesformerly smokednever smokedUnknownsmokesformerly smokedUnknownnever smokedformerly smokednever smokedUnknownUnknownnever smokednever smokedsmokesnever smokedsmokesnever smokedUnknownnever smokedformerly smokednever smokedformerly smokedsmokesformerly smokedformerly smokedUnknownUnknownnever smokedUnknownnever smokednever smokednever smokedUnknownnever smokednever smokednever smokedsmokesUnknownnever smokednever smokedUnknownformerly smokedsmokesUnknownsmokesformerly smokedformerly smokednever smokedsmokesUnknownformerly smokednever smokedUnknownUnknownnever smokednever smokedUnknownformerly smokedsmokesformerly smokedUnknownUnknownformerly smokednever smokednever smokedUnknownUnknownsmokesUnknownformerly smokednever smokednever smokedformerly smokednever smokedUnknownnever smokedsmokesnever smokedformerly smokedformerly smokednever smokedUnknownsmokesformerly smokedformerly smokednever smokedUnknownUnknownnever smokedUnknownsmokesUnknownUnknownnever smokedUnknownUnknownUnknownnever smokednever smokednever smokedUnknownUnknownnever smokedsmokessmokesformerly smokedsmokesnever smokedUnknownnever smokedformerly smokednever smokedformerly smokedUnknownnever smokedUnknownnever smokedUnknownnever smokednever smokedUnknownUnknownnever smokedformerly smokedUnknownUnknownformerly smokednever smokedformerly smokedUnknownUnknownUnknownnever smokedsmokesnever smokedUnknownsmokesnever smokednever smokednever smokednever smokedUnknownUnknownUnknownUnknownnever smokedUnknownUnknownnever smokednever smokednever smokedformerly smokedformerly smokednever smokednever smokedUnknownsmokesnever smokednever smokednever smokedUnknownnever smokednever smokedsmokesformerly smokednever smokednever smokedUnknownnever smokedformerly smokedUnknownUnknownnever smokednever smokedformerly smokednever smokedformerly smokedformerly smokednever smokednever smokedUnknownnever smokednever smokednever smokednever smokedformerly smokedformerly smokedsmokessmokesnever smokednever smokednever smokedsmokesformerly smokednever smokedsmokesnever smokedsmokesUnknownnever smokednever smokedUnknownUnknownUnknownUnknownformerly smokedformerly smokednever smokedUnknownUnknownformerly smokednever smokednever smokedUnknownUnknownUnknownformerly smokedUnknownnever smokednever smokedsmokessmokesnever smokedUnknownnever smokedsmokesnever smokedformerly smokedformerly smokedUnknownnever smokedsmokesformerly smokedUnknownUnknownUnknownnever smokedsmokesnever smokednever smokedformerly smokednever smokednever smokedsmokesUnknownUnknownnever smokedUnknownUnknownUnknownsmokesUnknownformerly smokednever smokedsmokesnever smokedUnknownUnknownsmokesnever smokednever smokedsmokessmokesUnknownUnknownnever smokednever smokedUnknownUnknownUnknownsmokesnever smokedUnknownUnknownnever smokedUnknownformerly smokedformerly smokedformerly smokedformerly smokednever smokednever smokednever smokedsmokesformerly smokedUnknownsmokesnever smokedUnknownnever smokednever smokednever smokednever smokedUnknownnever smokednever smokednever smokedsmokesUnknownnever smokedsmokesnever smokedformerly smokedformerly smokednever smokedUnknownnever smokednever smokedUnknownformerly smokedUnknownsmokesUnknownUnknownUnknownnever smokedformerly smokednever smokedsmokesnever smokednever smokednever smokednever smokedformerly smokedformerly smokednever smokedUnknownUnknownformerly smokedUnknownnever smokedUnknownUnknownUnknownnever smokednever smokedUnknownformerly smokednever smokedUnknownformerly smokedUnknownUnknownsmokesnever smokednever smokedformerly smokedUnknownformerly smokedUnknownUnknownformerly smokedUnknownsmokessmokessmokessmokesnever smokednever smokednever smokednever smokedsmokesnever smokedformerly smokedsmokesformerly smokednever smokedsmokesUnknownsmokesUnknownsmokesUnknownsmokesnever smokedformerly smokednever smokednever smokednever smokedUnknownsmokesnever smokedsmokesUnknownsmokesnever smokednever smokedformerly smokedsmokesnever smokedUnknownUnknownnever smokedUnknownnever smokedsmokessmokesnever smokedUnknownnever smokednever smokedUnknownUnknownnever smokedformerly smokednever smokednever smokedformerly smokedUnknownUnknownsmokessmokesUnknownsmokesformerly smokedUnknownnever smokedformerly smokednever smokedformerly smokednever smokedformerly smokednever smokednever smokednever smokednever smokednever smokednever smokedformerly smokedsmokesUnknownUnknownnever smokedUnknownnever smokednever smokednever smokednever smokednever smokedUnknownUnknownnever smokedUnknownUnknownsmokesUnknownformerly smokednever smokedUnknownsmokesUnknownsmokesUnknownUnknownUnknownnever smokedformerly smokedUnknownsmokesUnknownformerly smokedUnknownUnknownnever smokedUnknownUnknownnever smokednever smokedformerly smokedsmokessmokesformerly smokedUnknownformerly smokednever smokedUnknownUnknownsmokesformerly smokednever smokedformerly smokedsmokesformerly smokedUnknownnever smokedformerly smokednever smokedformerly smokednever smokedformerly smokedUnknownnever smokednever smokednever smokedsmokesUnknownsmokessmokessmokesformerly smokednever smokedUnknownnever smokedsmokesformerly smokednever smokednever smokednever smokednever smokedUnknownsmokesUnknownUnknownUnknownUnknownformerly smokednever smokedformerly smokednever smokedsmokesformerly smokednever smokedformerly smokedUnknownformerly smokedformerly smokedformerly smokedUnknownsmokesformerly smokedsmokesnever smokednever smokednever smokedsmokesnever smokedUnknownnever smokedformerly smokedUnknownsmokessmokesformerly smokedUnknownUnknownUnknownnever smokednever smokednever smokedformerly smokedUnknownUnknownUnknownsmokesnever smokednever smokedUnknownUnknownUnknownUnknownnever smokedformerly smokedformerly smokedUnknownUnknownnever smokedformerly smokednever smokedsmokesUnknownformerly smokedUnknownnever smokedsmokessmokesformerly smokedsmokesformerly smokedformerly smokedsmokesnever smokedformerly smokedUnknownnever smokednever smokednever smokednever smokednever smokednever smokedsmokessmokesnever smokedsmokesformerly smokedformerly smokedsmokesformerly smokednever smokedUnknownsmokesUnknownUnknownformerly smokednever smokedformerly smokedUnknownnever smokedUnknownUnknownsmokesUnknownsmokesnever smokedsmokesnever smokedUnknownUnknownformerly smokednever smokedsmokesUnknownnever smokedsmokesnever smokednever smokednever smokedUnknownUnknownformerly smokedformerly smokednever smokedUnknownnever smokednever smokedUnknownformerly smokedformerly smokedUnknownformerly smokedUnknownnever smokednever smokedUnknownsmokesnever smokedformerly smokednever smokednever smokedUnknownnever smokedsmokesUnknownnever smokedUnknownUnknownUnknownnever smokedUnknownsmokesUnknownformerly smokedsmokesformerly smokednever smokedUnknownUnknownnever smokedUnknownnever smokednever smokednever smokedformerly smokedUnknownnever smokedUnknownsmokesformerly smokedsmokesnever smokedsmokessmokessmokesUnknownnever smokednever smokedUnknownformerly smokedUnknownUnknownUnknownnever smokedUnknownUnknownnever smokednever smokedUnknownsmokesnever smokedsmokessmokesnever smokednever smokedUnknownformerly smokednever smokedsmokesUnknownsmokesnever smokedformerly smokedUnknownUnknownUnknownsmokessmokessmokesnever smokedUnknownformerly smokednever smokedUnknownformerly smokednever smokednever smokedUnknownsmokesformerly smokedsmokessmokesnever smokedformerly smokednever smokedformerly smokednever smokedformerly smokednever smokednever smokedUnknownnever smokedsmokesUnknownnever smokednever smokedUnknownnever smokednever smokedsmokesUnknownnever smokedformerly smokedformerly smokednever smokedUnknownUnknownformerly smokednever smokednever smokednever smokednever smokedsmokesUnknownsmokesUnknownformerly smokedsmokesnever smokedUnknownnever smokedformerly smokednever smokedUnknownUnknownUnknownnever smokedUnknownnever smokedUnknownnever smokedsmokesnever smokednever smokednever smokedUnknownnever smokednever smokedUnknownformerly smokednever smokednever smokedsmokesnever smokedUnknownnever smokednever smokedUnknownformerly smokednever smokedformerly smokednever smokednever smokedUnknownUnknownUnknownUnknownnever smokedformerly smokednever smokedsmokesUnknownUnknownformerly smokedsmokesformerly smokedformerly smokedUnknownnever smokedUnknownUnknownUnknownnever smokednever smokedformerly smokednever smokedUnknownsmokesnever smokednever smokedUnknownUnknownnever smokedUnknownUnknownUnknownUnknownformerly smokedsmokesUnknownnever smokednever smokedUnknownsmokesformerly smokedUnknownnever smokedformerly smokednever smokedUnknownnever smokednever smokedsmokesUnknownUnknownnever smokedUnknownformerly smokedUnknownsmokessmokesUnknownnever smokedformerly smokedsmokesnever smokedsmokesUnknownUnknownUnknownUnknownformerly smokedUnknownUnknownnever smokedUnknownUnknownUnknownnever smokedsmokesnever smokedsmokesUnknownnever smokedUnknownsmokesUnknownsmokesUnknownUnknownUnknownUnknownUnknownsmokesnever smokednever smokedUnknownnever smokedsmokesnever smokednever smokednever smokedUnknownnever smokednever smokedformerly smokednever smokedUnknownnever smokedformerly smokednever smokednever smokedUnknownformerly smokednever smokedsmokessmokesnever smokedformerly smokednever smokedUnknownsmokesUnknownnever smokedformerly smokedUnknownnever smokedformerly smokedsmokessmokesnever smokedformerly smokednever smokedsmokesnever smokednever smokednever smokedUnknownnever smokednever smokedUnknownnever smokedsmokesUnknownformerly smokedUnknownnever smokedUnknownformerly smokedformerly smokednever smokedformerly smokedformerly smokedformerly smokedsmokessmokesformerly smokedformerly smokedformerly smokedformerly smokedUnknownnever smokedUnknownnever smokedsmokesformerly smokedsmokesnever smokedsmokesUnknownUnknownnever smokednever smokedsmokesUnknownformerly smokednever smokednever smokedformerly smokedUnknownUnknownsmokesUnknownUnknownformerly smokedformerly smokedformerly smokednever smokednever smokedUnknownsmokesnever smokednever smokednever smokedUnknownnever smokedUnknownsmokesUnknownUnknownUnknownformerly smokednever smokedUnknownformerly smokednever smokedsmokesnever smokedUnknownUnknownsmokesnever smokedUnknownformerly smokedformerly smokedUnknownUnknownnever smokedformerly smokedsmokesformerly smokedUnknownformerly smokedUnknownformerly smokednever smokednever smokedsmokessmokesUnknownsmokesformerly smokedUnknownnever smokednever smokednever smokedsmokesUnknownnever smokednever smokedUnknownnever smokedformerly smokednever smokedsmokesnever smokedsmokesnever smokednever smokednever smokednever smokedsmokessmokesUnknownformerly smokednever smokedformerly smokedformerly smokedUnknownnever smokedformerly smokedUnknownnever smokedUnknownUnknownnever smokednever smokednever smokedUnknownUnknownformerly smokedformerly smokedformerly smokednever smokednever smokedsmokesUnknownUnknownnever smokedsmokesnever smokednever smokednever smokednever smokedUnknownnever smokedUnknownUnknownUnknownsmokesnever smokednever smokednever smokedUnknownnever smokedUnknownnever smokednever smokednever smokednever smokednever smokedformerly smokedsmokesnever smokedUnknownUnknownUnknownformerly smokednever smokedsmokesformerly smokedformerly smokedUnknownnever smokedUnknownUnknownnever smokednever smokedsmokesnever smokednever smokednever smokedUnknownformerly smokedformerly smokedUnknownformerly smokednever smokednever smokednever smokednever smokedsmokesUnknownnever smokedsmokesnever smokednever smokedUnknownnever smokedsmokessmokesnever smokedformerly smokedsmokesnever smokedUnknownUnknownsmokesformerly smokedsmokesUnknownUnknownUnknownsmokesUnknownformerly smokedUnknownUnknownnever smokednever smokedsmokesUnknownsmokessmokesformerly smokednever smokedsmokesUnknownsmokessmokessmokesUnknownnever smokedformerly smokednever smokedUnknownUnknownformerly smokedsmokesUnknownsmokesformerly smokednever smokednever smokedsmokesnever smokedUnknownnever smokedUnknownnever smokednever smokedformerly smokednever smokedUnknownUnknownnever smokednever smokedformerly smokedformerly smokedUnknownnever smokedsmokessmokesUnknownUnknownsmokesformerly smokedUnknownsmokessmokesUnknownUnknownUnknownformerly smokedUnknownformerly smokedUnknownsmokessmokesnever smokedUnknownnever smokedformerly smokedUnknownUnknownUnknownnever smokednever smokednever smokedUnknownsmokesnever smokedformerly smokednever smokedUnknownUnknownUnknownUnknownnever smokedUnknownUnknownformerly smokedsmokesUnknownnever smokednever smokedsmokesUnknownUnknownnever smokedsmokesnever smokedUnknownnever smokednever smokedUnknownnever smokednever smokednever smokedsmokessmokessmokessmokesnever smokedUnknownsmokesformerly smokedsmokesnever smokedUnknownnever smokedUnknownUnknownnever smokednever smokedUnknownformerly smokedsmokesUnknownsmokesnever smokednever smokedUnknownUnknownsmokessmokesnever smokedsmokesUnknownUnknownnever smokednever smokednever smokednever smokedUnknownnever smokedformerly smokednever smokednever smokedformerly smokedsmokesnever smokedsmokesUnknownnever smokednever smokedUnknownnever smokednever smokednever smokedformerly smokedsmokesUnknownformerly smokedUnknownUnknownnever smokedUnknownUnknownformerly smokedUnknownnever smokednever smokedUnknownUnknownUnknownUnknownUnknownnever smokedUnknownnever smokedformerly smokednever smokedsmokesUnknownsmokesUnknownnever smokedUnknownformerly smokedsmokesUnknownnever smokednever smokedUnknownUnknownnever smokednever smokednever smokednever smokedsmokesnever smokedformerly smokedsmokesUnknownnever smokedformerly smokedformerly smokedsmokessmokesUnknownnever smokednever smokedsmokesformerly smokedformerly smokedformerly smokedsmokessmokesUnknownUnknownsmokesformerly smokedformerly smokednever smokedsmokesUnknownUnknownUnknownformerly smokednever smokedUnknownsmokesformerly smokednever smokednever smokednever smokednever smokednever smokedUnknownsmokesUnknownnever smokednever smokedsmokesformerly smokedformerly smokednever smokedformerly smokednever smokedUnknownUnknownUnknownnever smokedsmokesnever smokednever smokednever smokedUnknownnever smokednever smokedformerly smokedUnknownformerly smokednever smokedUnknownnever smokednever smokedformerly smokednever smokedUnknownnever smokednever smokednever smokedsmokesUnknownnever smokednever smokednever smokednever smokedUnknownnever smokedUnknownnever smokedUnknownnever smokedUnknownUnknownnever smokedUnknownUnknownnever smokedUnknownnever smokednever smokednever smokedformerly smokedformerly smokedformerly smokedformerly smokedformerly smokedUnknownUnknownformerly smokednever smokednever smokedsmokesUnknownnever smokednever smokedformerly smokedUnknownsmokesnever smokedUnknownUnknownUnknownsmokesformerly smokedUnknownformerly smokedUnknownsmokesnever smokedsmokesformerly smokedUnknownnever smokedformerly smokednever smokedUnknownformerly smokednever smokedformerly smokedsmokesUnknownsmokesnever smokednever smokedUnknownsmokesnever smokedsmokessmokessmokesUnknownUnknownnever smokedUnknownnever smokedsmokesUnknownformerly smokednever smokedsmokesUnknownUnknownUnknownnever smokedUnknownnever smokedsmokesformerly smokedUnknownformerly smokednever smokedformerly smokedUnknownformerly smokedformerly smokednever smokedformerly smokednever smokedUnknownformerly smokednever smokednever smokedUnknownformerly smokedUnknownUnknownUnknownsmokesUnknownUnknownsmokesnever smokedsmokesUnknownnever smokedUnknownnever smokedUnknownnever smokedUnknownformerly smokedformerly smokednever smokednever smokednever smokedsmokessmokesformerly smokednever smokedUnknownsmokesnever smokedformerly smokedformerly smokednever smokedUnknownnever smokedUnknownUnknownnever smokedformerly smokedformerly smokednever smokedformerly smokedsmokessmokesnever smokedformerly smokedformerly smokedsmokesnever smokedsmokesnever smokednever smokedUnknownsmokesformerly smokednever smokednever smokedsmokesUnknownUnknownnever smokedformerly smokednever smokedUnknownUnknownnever smokednever smokedsmokesnever smokedformerly smokedformerly smokedsmokesnever smokedUnknownUnknownnever smokedUnknownUnknownnever smokednever smokedformerly smokedUnknownUnknownnever smokednever smokednever smokedformerly smokedUnknownformerly smokednever smokedformerly smokedformerly smokedformerly smokedUnknownformerly smokedUnknownformerly smokednever smokedUnknownsmokesnever smokednever smokednever smokedUnknownUnknownformerly smokedsmokesnever smokedsmokesUnknownUnknownnever smokedsmokesnever smokednever smokedformerly smokedUnknownUnknownnever smokednever smokedUnknownnever smokedUnknownUnknownUnknownsmokesnever smokedUnknownUnknownnever smokedsmokesUnknownnever smokedformerly smokednever smokedformerly smokednever smokedsmokesUnknownnever smokedUnknownsmokesUnknownnever smokedsmokesUnknownUnknownformerly smokedsmokesformerly smokedsmokessmokessmokesUnknownnever smokedUnknownnever smokednever smokednever smokedUnknownnever smokedsmokesUnknownsmokesUnknownnever smokedformerly smokedformerly smokednever smokednever smokedUnknownUnknownnever smokedUnknownsmokesUnknownUnknownUnknownnever smokedsmokesUnknownnever smokedformerly smokednever smokednever smokednever smokedUnknownformerly smokedsmokesnever smokednever smokedUnknownsmokesUnknownUnknownformerly smokedUnknownnever smokedsmokesnever smokedUnknownsmokesformerly smokedformerly smokedformerly smokednever smokedUnknownUnknownUnknownUnknownformerly smokedUnknownnever smokednever smokednever smokedsmokesnever smokedUnknownnever smokednever smokedformerly smokednever smokedUnknownnever smokedsmokesformerly smokednever smokednever smokednever smokedsmokesnever smokednever smokednever smokedsmokesformerly smokednever smokedUnknownsmokessmokesnever smokedUnknownsmokesnever smokednever smokedUnknownnever smokednever smokedUnknownUnknownformerly smokednever smokedUnknownnever smokedformerly smokednever smokedUnknownnever smokedformerly smokedformerly smokedformerly smokedUnknownUnknownnever smokednever smokednever smokedUnknownnever smokedformerly smokedsmokessmokessmokesUnknownsmokesUnknownnever smokedUnknownnever smokednever smokedUnknownformerly smokedsmokesformerly smokedsmokessmokesUnknownnever smokedUnknownnever smokedsmokesUnknownformerly smokedUnknownsmokesformerly smokednever smokedsmokesUnknownsmokesformerly smokedsmokesUnknownnever smokedformerly smokednever smokednever smokedformerly smokedUnknownnever smokednever smokedformerly smokednever smokednever smokedformerly smokednever smokedformerly smokedsmokesformerly smokedformerly smokedUnknownformerly smokedformerly smokednever smokednever smokedUnknownformerly smokedUnknownnever smokednever smokedUnknownsmokesformerly smokedsmokesUnknownformerly smokedUnknownsmokesformerly smokedUnknownformerly smokedUnknownformerly smokedsmokesnever smokedsmokesUnknownUnknownnever smokedsmokesformerly smokedUnknownUnknownformerly smokedUnknownUnknownsmokesUnknownnever smokedUnknownnever smokedformerly smokednever smokedUnknownUnknownformerly smokedsmokesformerly smokednever smokedsmokesformerly smokednever smokednever smokednever smokednever smokedUnknownnever smokednever smokednever smokedUnknownUnknownnever smokedformerly smokednever smokedUnknownnever smokedUnknownnever smokedformerly smokednever smokednever smokednever smokednever smokedsmokesnever smokednever smokedsmokesnever smokednever smokedformerly smokedUnknownnever smokedformerly smokedUnknownnever smokednever smokednever smokednever smokedUnknownsmokesnever smokedUnknownUnknownUnknownsmokesUnknownUnknownUnknownUnknownformerly smokedsmokessmokesnever smokedformerly smokedUnknownsmokessmokesUnknownUnknownnever smokedsmokesUnknownformerly smokedsmokesnever smokedUnknownnever smokedformerly smokedUnknownnever smokedUnknownnever smokedUnknownsmokesnever smokednever smokednever smokedformerly smokedformerly smokednever smokedUnknownnever smokedUnknownUnknownnever smokednever smokedUnknownsmokesUnknownUnknownformerly smokedUnknownsmokesUnknownnever smokedUnknownnever smokednever smokednever smokedUnknownformerly smokedsmokesnever smokedformerly smokedUnknownformerly smokedformerly smokednever smokednever smokedformerly smokedformerly smokednever smokedUnknownUnknownsmokessmokesUnknownformerly smokedformerly smokedsmokesUnknownUnknownUnknownnever smokedUnknownUnknownUnknownsmokessmokesUnknownsmokesnever smokedsmokesnever smokedUnknownformerly smokedsmokesformerly smokedsmokesnever smokednever smokednever smokednever smokednever smokedformerly smokedUnknownformerly smokednever smokedUnknownnever smokednever smokedUnknownformerly smokedUnknownformerly smokednever smokedsmokesformerly smokedformerly smokednever smokedformerly smokedsmokesnever smokedformerly smokedUnknownformerly smokedUnknownnever smokedUnknownnever smokednever smokednever smokedformerly smokedUnknownformerly smokednever smokedUnknownUnknownformerly smokedformerly smokednever smokednever smokedsmokesformerly smokedUnknownformerly smokednever smokedformerly smokednever smokednever smokednever smokedUnknownformerly smokedUnknownformerly smokedUnknownformerly smokedformerly smokedformerly smokedsmokesUnknownnever smokedUnknownUnknownsmokessmokesformerly smokedUnknownformerly smokednever smokednever smokedUnknownUnknownsmokesformerly smokedformerly smokednever smokedsmokesnever smokedUnknownnever smokedsmokesformerly smokedformerly smokedsmokesformerly smokednever smokedUnknownnever smokednever smokedUnknownUnknownUnknownUnknownnever smokednever smokedsmokesnever smokedformerly smokedformerly smokednever smokednever smokednever smokednever smokedUnknownsmokesUnknownnever smokednever smokednever smokednever smokednever smokedUnknownUnknownUnknownUnknownUnknownsmokesUnknownformerly smokednever smokedUnknownUnknownsmokesUnknownnever smokedUnknownformerly smokednever smokednever smokedUnknownnever smokedUnknownformerly smokedUnknownUnknownformerly smokedformerly smokednever smokedsmokesUnknownnever smokedUnknownUnknownnever smokednever smokedUnknownnever smokedsmokesUnknownUnknownUnknownUnknownsmokesUnknownUnknownformerly smokednever smokednever smokedUnknownsmokesnever smokedUnknownformerly smokedUnknownnever smokednever smokedformerly smokedUnknownUnknownnever smokedformerly smokedUnknownUnknownsmokesformerly smokedUnknownnever smokedUnknownUnknownformerly smokedUnknownnever smokedformerly smokedUnknownUnknownnever smokednever smokednever smokednever smokedformerly smokednever smokedsmokessmokesnever smokedsmokesUnknownsmokesnever smokedformerly smokednever smokednever smokednever smokedUnknownnever smokednever smokednever smokedsmokesUnknownnever smokedsmokesnever smokedUnknownUnknownnever smokedUnknownformerly smokedsmokesnever smokednever smokedsmokesnever smokednever smokednever smokednever smokedUnknownUnknownformerly smokednever smokedUnknownformerly smokedUnknownnever smokedUnknownUnknownformerly smokedformerly smokednever smokedUnknownnever smokednever smokedUnknownUnknownUnknownnever smokedUnknownUnknownsmokesnever smokednever smokedUnknownUnknownsmokessmokesnever smokedformerly smokednever smokednever smokedUnknownnever smokednever smokedformerly smokednever smokednever smokednever smokedUnknownnever smokednever smokednever smokedUnknownnever smokednever smokednever smokedformerly smokednever smokedUnknownnever smokednever smokedsmokesnever smokedformerly smokedUnknownformerly smokedUnknownnever smokedformerly smokedsmokessmokesUnknownnever smokedformerly smokedformerly smokedformerly smokedUnknownUnknownnever smokednever smokedUnknownsmokesUnknownnever smokedformerly smokedUnknownUnknownnever smokedsmokesformerly smokedsmokessmokesnever smokednever smokedformerly smokedUnknownUnknownformerly smokedformerly smokednever smokednever smokedformerly smokednever smokednever smokednever smokedsmokesUnknownsmokesUnknownformerly smokedsmokesUnknownUnknownformerly smokedUnknownnever smokedformerly smokednever smokednever smokedsmokesUnknownUnknownnever smokednever smokedUnknownnever smokedUnknownnever smokednever smokedUnknownnever smokednever smokedsmokesUnknownsmokesnever smokednever smokedUnknownnever smokednever smokedUnknownnever smokednever smokedsmokesnever smokednever smokedUnknownformerly smokednever smokedUnknownnever smokedformerly smokednever smokednever smokedUnknownsmokesUnknownUnknownUnknownnever smokednever smokednever smokedsmokesnever smokednever smokednever smokednever smokedUnknownformerly smokedUnknownformerly smokednever smokednever smokednever smokednever smokedUnknownUnknownformerly smokedUnknownnever smokednever smokedformerly smokednever smokednever smokedformerly smokednever smokednever smokedformerly smokednever smokedsmokesnever smokednever smokednever smokedformerly smokedformerly smokedUnknownnever smokedsmokessmokesUnknownUnknownformerly smokednever smokedUnknownUnknownUnknownnever smokedformerly smokedsmokessmokesUnknownnever smokedUnknownUnknownnever smokednever smokedUnknownUnknownUnknownformerly smokedUnknownsmokesnever smokedsmokesnever smokednever smokedUnknownUnknownformerly smokednever smokednever smokedformerly smokedUnknownnever smokedUnknownnever smokedformerly smokedformerly smokedformerly smokedsmokesnever smokedUnknownnever smokednever smokednever smokedUnknownnever smokednever smokedUnknownUnknownnever smokedUnknownformerly smokednever smokednever smokedUnknownUnknownnever smokedUnknownnever smokednever smokednever smokednever smokednever smokednever smokedUnknownnever smokednever smokedformerly smokedformerly smokedUnknownformerly smokedUnknownsmokesformerly smokedUnknownnever smokedUnknownUnknownUnknownUnknownnever smokedformerly smokedformerly smokednever smokedsmokesUnknownsmokessmokesUnknownnever smokedformerly smokedsmokesnever smokednever smokedsmokessmokesnever smokedUnknownUnknownnever smokedformerly smokedformerly smokednever smokedformerly smokednever smokedUnknownUnknownUnknownUnknownsmokesformerly smokednever smokedUnknownnever smokedUnknownUnknownformerly smokedUnknownnever smokedUnknownUnknownnever smokedUnknownsmokesUnknownsmokesUnknownUnknownnever smokedUnknownUnknownformerly smokednever smokednever smokedUnknownformerly smokedsmokesnever smokednever smokedUnknownnever smokedformerly smokednever smokedUnknownnever smokedsmokesnever smokedUnknownnever smokednever smokednever smokedUnknownnever smokednever smokedUnknownUnknownnever smokedsmokesUnknownsmokessmokesUnknownsmokesUnknownformerly smokedformerly smokednever smokedUnknownUnknownUnknownnever smokedsmokesnever smokedUnknownnever smokednever smokedformerly smokednever smokedUnknownUnknownnever smokednever smokedUnknownsmokesnever smokedUnknownnever smokednever smokednever smokedformerly smokedUnknownUnknownnever smokedUnknownnever smokednever smokednever smokedsmokessmokesUnknownUnknownformerly smokedUnknownUnknownnever smokedUnknownUnknownnever smokedformerly smokedUnknownnever smokedsmokesUnknownnever smokedsmokesnever smokedformerly smokednever smokedsmokesnever smokednever smokednever smokedUnknownnever smokednever smokednever smokednever smokednever smokedUnknownUnknownnever smokedformerly smokedUnknownformerly smokedUnknownnever smokedUnknownUnknownnever smokedUnknownnever smokednever smokedUnknownsmokesUnknownnever smokednever smokedsmokesUnknownsmokessmokesnever smokedUnknownnever smokedUnknownsmokesformerly smokedUnknownsmokesnever smokedsmokesUnknownnever smokedUnknownformerly smokedformerly smokedsmokessmokesnever smokedUnknownUnknownUnknownsmokesUnknownsmokesformerly smokedUnknownnever smokedsmokesnever smokedsmokesUnknownformerly smokedformerly smokedUnknownUnknownsmokesUnknownnever smokedsmokesUnknownUnknownnever smokednever smokednever smokedsmokesnever smokednever smokedformerly smokedUnknownUnknownUnknownUnknownformerly smokedUnknownnever smokedsmokesnever smokedformerly smokedsmokesnever smokedsmokesUnknownsmokesUnknownnever smokednever smokednever smokedsmokesUnknownUnknownUnknownnever smokednever smokedformerly smokednever smokedformerly smokednever smokedUnknownsmokesUnknownUnknownnever smokedUnknownUnknownUnknownsmokesUnknownsmokesUnknownformerly smokednever smokedUnknownUnknownnever smokedformerly smokedformerly smokedformerly smokednever smokedUnknownnever smokedsmokesformerly smokedsmokesnever smokednever smokednever smokednever smokedsmokesUnknownUnknownUnknownformerly smokedUnknownsmokesUnknownnever smokednever smokedUnknownUnknownformerly smokednever smokednever smokedsmokesUnknownUnknownformerly smokednever smokedUnknownUnknownUnknownformerly smokedUnknownformerly smokednever smokedformerly smokedformerly smokedformerly smokedsmokesnever smokedsmokesnever smokedformerly smokednever smokedUnknownnever smokedUnknownUnknownnever smokedUnknownUnknownnever smokedsmokesnever smokednever smokednever smokednever smokednever smokedformerly smokedformerly smokedsmokesUnknownnever smokedUnknownUnknownnever smokedformerly smokednever smokedUnknownformerly smokednever smokedsmokesnever smokedUnknownnever smokedUnknownsmokessmokessmokessmokessmokesnever smokedUnknownUnknownUnknownUnknownUnknownsmokesnever smokednever smokedformerly smokedformerly smokednever smokednever smokednever smokedformerly smokedUnknownformerly smokednever smokedUnknownsmokesUnknownsmokesnever smokedUnknownformerly smokedUnknownsmokesUnknownUnknownnever smokednever smokedsmokessmokesformerly smokedformerly smokedformerly smokednever smokedUnknownUnknownnever smokedformerly smokedformerly smokedformerly smokednever smokedUnknownUnknownUnknownnever smokednever smokedUnknownUnknownUnknownnever smokedUnknownsmokesnever smokedformerly smokednever smokedformerly smokedformerly smokedformerly smokedUnknownnever smokedUnknownnever smokedUnknownnever smokedsmokesnever smokedUnknownUnknownUnknownUnknownnever smokednever smokedUnknownsmokesformerly smokednever smokednever smokednever smokednever smokednever smokednever smokednever smokedUnknownnever smokedformerly smokedUnknownnever smokedUnknownformerly smokedsmokesUnknownUnknownUnknownnever smokedsmokessmokessmokesnever smokednever smokedUnknownnever smokednever smokedUnknownformerly smokedUnknownnever smokednever smokednever smokedformerly smokedformerly smokedUnknownsmokesformerly smokedUnknownnever smokednever smokedUnknownnever smokednever smokednever smokedsmokessmokesUnknownformerly smokedsmokesformerly smokednever smokedUnknownsmokesUnknownformerly smokedUnknownUnknownnever smokedUnknownnever smokedsmokesnever smokednever smokedsmokessmokesnever smokednever smokednever smokednever smokednever smokednever smokednever smokednever smokednever smokednever smokedsmokesUnknownsmokesUnknownUnknownsmokesformerly smokedformerly smokedUnknownformerly smokedUnknownUnknownsmokesUnknownnever smokedUnknownnever smokednever smokednever smokedUnknownnever smokedsmokesnever smokedUnknownnever smokednever smokedUnknownformerly smokednever smokednever smokedUnknownUnknownformerly smokedUnknownsmokesUnknownsmokesformerly smokedformerly smokednever smokedUnknownUnknownformerly smokednever smokedsmokesnever smokedsmokesformerly smokedsmokesUnknownnever smokedUnknownUnknownUnknownnever smokedUnknownformerly smokedsmokessmokesnever smokedUnknownnever smokedUnknownsmokesUnknownnever smokedUnknownnever smokedUnknownnever smokedUnknownnever smokednever smokedUnknownformerly smokednever smokedsmokesnever smokedsmokesformerly smokedUnknownnever smokednever smokedUnknownUnknownUnknownsmokesnever smokedUnknownsmokesformerly smokedformerly smokedformerly smokedUnknownUnknownnever smokedUnknownformerly smokednever smokednever smokedsmokesUnknownnever smokedUnknownformerly smokednever smokednever smokednever smokednever smokedUnknownnever smokedUnknownnever smokedformerly smokedUnknownsmokesformerly smokedsmokesnever smokednever smokednever smokedUnknownnever smokedformerly smokedUnknownformerly smokedsmokesUnknownnever smokedformerly smokedUnknownUnknownformerly smokedformerly smokednever smokedsmokesUnknownnever smokedsmokesformerly smokedUnknownformerly smokedsmokessmokesUnknownformerly smokedsmokesnever smokedUnknownnever smokedUnknownnever smokednever smokednever smokednever smokednever smokednever smokedsmokesUnknownnever smokedUnknownformerly smokednever smokednever smokedsmokesformerly smokedsmokesUnknownformerly smokedformerly smokedsmokesnever smokedUnknownUnknownformerly smokednever smokedsmokesUnknownUnknownUnknownUnknownUnknownnever smokednever smokednever smokedUnknownUnknownUnknownnever smokedUnknownnever smokedUnknownsmokesnever smokednever smokednever smokedformerly smokedUnknownUnknownsmokesUnknownsmokesUnknownUnknownsmokesformerly smokedUnknownnever smokedsmokesUnknownnever smokedUnknownnever smokedUnknownnever smokedformerly smokednever smokedUnknownUnknownnever smokednever smokedUnknownUnknownnever smokednever smokedUnknownnever smokednever smokedUnknownformerly smokednever smokednever smokedUnknownUnknownnever smokednever smokedsmokessmokesformerly smokednever smokednever smokednever smokednever smokedUnknownnever smokednever smokednever smokednever smokedUnknownformerly smokedformerly smokednever smokednever smokednever smokednever smokednever smokedformerly smokedformerly smokedformerly smokedsmokesformerly smokednever smokedUnknownnever smokednever smokedformerly smokedUnknownnever smokedsmokesnever smokedUnknownsmokesnever smokedUnknownUnknownnever smokednever smokedsmokesformerly smokednever smokedUnknownformerly smokednever smokednever smokedsmokessmokesnever smokedUnknownsmokesnever smokednever smokedsmokesnever smokednever smokedformerly smokedformerly smokedUnknownUnknownsmokesUnknownUnknownUnknownformerly smokedUnknownformerly smokedformerly smokednever smokednever smokedformerly smokedUnknownUnknownnever smokednever smokednever smokednever smokednever smokedUnknownnever smokedUnknownsmokessmokesformerly smokednever smokednever smokednever smokedUnknownsmokesnever smokedUnknownnever smokedsmokesnever smokednever smokednever smokedUnknownUnknownformerly smokednever smokedUnknownnever smokedsmokesnever smokednever smokedformerly smokedUnknownsmokesUnknownnever smokedUnknownformerly smokedsmokesnever smokednever smokednever smokedUnknownformerly smokedformerly smokednever smokedUnknownnever smokednever smokednever smokedformerly smokedsmokessmokesnever smokedsmokesUnknownformerly smokedformerly smokednever smokednever smokedUnknownformerly smokedUnknownUnknownUnknownnever smokednever smokedUnknownnever smokednever smokedUnknownsmokessmokesnever smokednever smokedsmokesnever smokedUnknownsmokesUnknownUnknownUnknownnever smokedUnknownUnknownUnknownnever smokedformerly smokedUnknownnever smokedUnknownUnknownnever smokedformerly smokednever smokedformerly smokedUnknownnever smokedUnknownformerly smokednever smokedformerly smokednever smokedformerly smokedformerly smokednever smokedsmokesnever smokednever smokednever smokedUnknownformerly smokedUnknownformerly smokednever smokedUnknownnever smokednever smokedUnknownnever smokedUnknownUnknownsmokesnever smokednever smokednever smokednever smokedUnknownnever smokedsmokesUnknownUnknownnever smokedformerly smokedformerly smokedsmokesUnknownUnknownnever smokednever smokedsmokesUnknownUnknownformerly smokednever smokedUnknownformerly smokedUnknownformerly smokedformerly smokedUnknownnever smokedsmokesUnknownformerly smokedsmokesnever smokedformerly smokednever smokedUnknownnever smokedsmokesformerly smokedformerly smokedformerly smokedsmokesnever smokedUnknownnever smokedformerly smokedUnknownUnknownsmokesformerly smokednever smokednever smokednever smokedformerly smokednever smokednever smokednever smokednever smokednever smokednever smokedUnknownsmokesUnknownformerly smokedformerly smokednever smokedUnknownnever smokedformerly smokedformerly smokedformerly smokedsmokessmokesnever smokednever smokedUnknownnever smokednever smokednever smokedformerly smokednever smokednever smokednever smokednever smokednever smokedUnknownUnknownUnknownnever smokednever smokedUnknownnever smokedUnknownformerly smokednever smokedsmokesnever smokedUnknownsmokesformerly smokedsmokesformerly smokedUnknownnever smokednever smokedformerly smokednever smokedUnknownnever smokednever smokedformerly smokedsmokesformerly smokedformerly smokednever smokedUnknownUnknownnever smokedsmokesUnknownformerly smokedsmokessmokesnever smokednever smokedsmokesnever smokedUnknownUnknownnever smokedformerly smokedsmokesnever smokednever smokednever smokedformerly smokedUnknownnever smokednever smokednever smokedformerly smokednever smokedUnknownUnknownUnknownformerly smokedUnknownnever smokedformerly smokednever smokedsmokesnever smokedUnknownnever smokedsmokesUnknownsmokesnever smokednever smokedformerly smokedUnknownformerly smokedsmokessmokesUnknownsmokesUnknownUnknownnever smokednever smokednever smokedUnknownnever smokednever smokedUnknownnever smokednever smokednever smokednever smokedsmokesnever smokedformerly smokedsmokesnever smokedsmokesUnknownUnknownUnknownformerly smokedformerly smokedformerly smokednever smokedUnknownnever smokednever smokednever smokedUnknownUnknownformerly smokednever smokedsmokesformerly smokedsmokesUnknownnever smokedsmokessmokesformerly smokedUnknownsmokesUnknownUnknownUnknownUnknownUnknownUnknownUnknownnever smokednever smokednever smokedUnknownformerly smokedUnknownformerly smokedformerly smokednever smokedsmokesformerly smokedUnknownnever smokedsmokesUnknownUnknownsmokesUnknownnever smokedUnknownUnknownsmokesformerly smokedformerly smokednever smokednever smokedUnknownUnknownformerly smokednever smokednever smokedsmokesformerly smokedUnknownUnknownsmokesnever smokednever smokednever smokedsmokesUnknownnever smokednever smokedformerly smokedsmokesnever smokednever smokedsmokesnever smokednever smokednever smokednever smokednever smokednever smokedformerly smokedUnknownnever smokedUnknownUnknownUnknownsmokesnever smokedformerly smokedUnknownsmokesUnknownsmokesformerly smokednever smokednever smokedUnknownsmokesUnknownUnknownnever smokedUnknownsmokesformerly smokednever smokedsmokesformerly smokednever smokedUnknownnever smokedUnknownUnknownsmokessmokesnever smokedUnknownnever smokedformerly smokedsmokesformerly smokednever smokednever smokednever smokednever smokedformerly smokedUnknownUnknownnever smokedsmokesnever smokednever smokednever smokednever smokednever smokedUnknownnever smokedformerly smokednever smokednever smokednever smokednever smokedsmokesUnknownUnknownformerly smokednever smokednever smokedformerly smokednever smokedUnknownnever smokedsmokesnever smokedUnknownsmokesnever smokedUnknownformerly smokednever smokedUnknownUnknownnever smokedUnknownnever smokednever smokedsmokesUnknownsmokesUnknownformerly smokedUnknownUnknownnever smokednever smokedUnknownnever smokedUnknownnever smokedUnknownnever smokedUnknownnever smokednever smokedformerly smokedUnknownUnknownnever smokedformerly smokedformerly smokednever smokedformerly smokedformerly smokedsmokessmokesnever smokedformerly smokedsmokesnever smokedUnknownformerly smokednever smokedUnknownnever smokedUnknownnever smokednever smokedUnknownsmokesnever smokedUnknownnever smokednever smokednever smokedUnknownformerly smokedformerly smokedformerly smokednever smokednever smokedUnknownformerly smokedUnknownsmokesformerly smokedUnknownnever smokednever smokedUnknownformerly smokedsmokesnever smokedUnknownnever smokedUnknownnever smokednever smokedsmokesformerly smokednever smokednever smokedUnknownformerly smokednever smokednever smokedUnknownUnknownnever smokednever smokednever smokedformerly smokednever smokedUnknownUnknownsmokesnever smokedsmokesUnknownnever smokedUnknownUnknownUnknownnever smokedformerly smokedsmokesUnknownsmokesformerly smokedUnknownformerly smokedUnknownUnknownsmokesnever smokednever smokedsmokesUnknownUnknownnever smokedUnknownUnknownsmokesnever smokedUnknownnever smokedUnknownUnknownnever smokednever smokednever smokedformerly smokedUnknown'] to numeric" + ] + } + ], + "source": [ + "df.fillna(df.mean(), inplace=True)\n", + "df.fillna(df.median(), inplace=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Разберемся с основными возможностями библиотек Pandas и Matplotlib для\n", + "визуализации данных из датафрейма**" + ] + }, + { + "cell_type": "code", + "execution_count": 150, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Линейная диаграмма" + ] + }, + { + "cell_type": "code", + "execution_count": 154, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz8AAAHDCAYAAAAKmqQIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACruElEQVR4nO3dd3wU1d4G8GcTSKEk1CQgvUjvCAakSC8ilmtFwfKqXOEqdrFixd6xK6iIIAqIiPQOodfQe2hJgJBCQvq8f4Rdtszuzuz03ef7+XCv2Z2dOTt75sz5nTnFJgiCACIiIiIioiAXZnQCiIiIiIiI9MDgh4iIiIiIQgKDHyIiIiIiCgkMfoiIiIiIKCQw+CEiIiIiopDA4IeIiIiIiEICgx8iIiIiIgoJDH6IiIiIiCgkMPghIiIiIqKQwOCHiFxMnToVx44dc/w9ZcoUnDp1yrgEUVAYMmQIHnroIaOTYUrz5s3D9u3bHX/PmTMHu3fvNi5BRADOnz+PihUrYv78+UYnhUhVDH6INDZlyhTYbDbRf61btzY6eR5Wr16NZ599FseOHcPChQsxZswYhIWxqKDArV27FosWLcJzzz3n8V5aWhqefvppNG/eHBUqVEDFihXRqVMnvPnmm8jMzNQ/sQbYtWsXHn/8cRw8eBDr16/H6NGjkZOTY3SyKMRVr14d//d//4eXX37Z6KQQqcomCIJgdCKIgtmUKVNw//334/XXX0fDhg0dr7/11lsIDw9HcnKyganztG/fPvTu3RtpaWkAgCeffBIffvihwakiK7vppptw6dIlLFy40OX1TZs2YciQIbh48SLuuecedOrUCQCwefNmTJ8+Hd26dcOiRYuMSLKuzp49i27duuHQoUMAgFtuuQV//vmnwakiAvbu3YuWLVti6dKl6NOnj9HJIVJFOaMTQBTs7O0LQ4YMcVTuAOD777/HuXPnjEqWV82bN8fhw4eRnJyMGjVqoHHjxkYniSwsPT0d//zzD77++muX1zMzM3HzzTcjPDwc27ZtQ/PmzV3ef+utt/Ddd9/pmVTD1KxZE8nJyUhOTkaFChXQokULo5NEBABo0aIFWrdujSlTpjD4oaDBvixEGisqKgIAhIeH+93WZrNhwoQJLq+9//77sNls6N27t+O1FStWwGaz4Y8//vDYR6VKlXDfffe5vJaZmYlx48ahbt26iIyMRJMmTfDuu++itLTUsc2xY8dgs9kwZcoUVKxYEV27dkXjxo0xZswY2Gw2l33au/Jt3rzZ5Tjnzp3z+A7Hjx/Ho48+imbNmiE6OhrVq1fHbbfd5jKuyG7btm0YNGgQatas6dI98IYbbvB77pzT5f6vQYMGLtvdd999Hq+dOHEC0dHRsNlsLmn766+/MHToUNSuXRuRkZFo3Lgx3njjDZSUlLh8vnfv3qLH7tevn2Mbm82GsWPH4tdff0WzZs0QFRWFTp06YdWqVS77knrO7N83IiICZ8+edXkvKSnJkQbn38mezptuusnj/D3yyCOi3TE/+OADdOvWDdWrV0d0dDQ6deokmvfE/PPPPyguLnY5DwDwzTff4NSpU/joo488Ah8AiI+Px0svveT4u0GDBrjhhhuwaNEitG/fHlFRUWjZsiVmzZrl8Vkp+d1OTp6pVKmSx+f/+OMP2Gw2rFixwvFa7969Xa5XoOwpl33fzuzXS2RkJDp16oQWLVqIXvNievXqhXbt2om+16xZMwwcOBDAlWv7gw8+wMcff4z69esjOjoavXr1En3yvGzZMvTo0QMVK1ZElSpVMHz4cOzdu9dlmwkTJricr8qVK6NLly6YM2eOx/42bNiAQYMGITY2FhUqVECvXr2wdu1a0f25Nwht3rzZUS7ZefstpLjvvvtEf+8mTZq4bGcvY33lC+cy0+7AgQO4+eabUbVqVURHR+Oaa67xOCf2fTvnmdOnT6NBgwbo3LkzLl686Hg9PT0dDz74IOLj4xEVFYV27drhp59+ctnf/v370adPHyQkJCAyMhJ169bF6NGjkZGR4XFMX9etWLkIAP3798fff/8NdhSiYMEnP0QaKywsBABERETI/mxmZiYmTpyo6Ph5eXno1asXTp06hUceeQT16tXDunXrMH78eJw5cwaffPKJ188eOnRIcev7pk2bsG7dOtx5552oU6cOjh07hq+++gq9e/fGnj17UKFCBQBAVlYWBg8eDEEQ8OSTT6Ju3boAgCeeeEL2MZ27GH744Ye4cOGC38+88soryM/P93h9ypQpqFSpEp588klUqlQJy5YtwyuvvILs7Gy8//77LtvWqVPH4/eqVauWy98rV67EjBkz8NhjjyEyMhJffvklBg0ahI0bNzqCDqnnzC48PBxTp051OVeTJ09GVFSU6HeKiorCP//8g/T0dMTFxQEALl26hBkzZiAqKspj+08//RQ33ngjRowYgcLCQkyfPh233XYb5s2bh6FDh/o6rVi3bh2qV6+O+vXru7w+d+5cREdH4z//+Y/Pzzs7ePAg7rjjDowePRqjRo3C5MmTcdttt2HBggXo378/gMDzeyB5Rg6x8U5i5Fzz9957Lx566CEkJye7BKybNm3CgQMHXIJHAPj555+Rk5ODMWPGID8/H59++in69OmDXbt2IT4+HgCwZMkSDB48GI0aNcKECRNw6dIlfP755+jevTu2bt3qUTn+5ZdfAJQ1fHz55Ze47bbbkJycjGbNmgEoC6QGDx6MTp064dVXX0VYWBgmT56MPn36YPXq1ejSpYuk76qmyMhIfP/99y6vVa5cWXTbF154wfEk7ttvv0VKSorX/WZkZKBnz57IycnBY489hoSEBEydOhW33HILfv31V9x1112in7OXfeXLl8f8+fMdgd2lS5fQu3dvHDp0CGPHjkXDhg0xc+ZM3HfffcjMzMTjjz8OAMjNzUWdOnUwbNgwxMTEIDk5GZMmTcKpU6fw999/yz4/7jp16oSPP/4Yu3fvNuU4VSLZBCLS1JtvvikAEI4cOeLyeq9evYRWrVq5vAZAePXVVx1/P/vss0JcXJzQqVMnoVevXo7Xly9fLgAQZs6c6XG8ihUrCqNGjXL8/cYbbwgVK1YUDhw44LLd888/L4SHhwspKSmCIAjC0aNHBQDC5MmTHdvcfvvtQuvWrYW6deu67HPy5MkCAGHTpk0u+zx79qzHd8jLy/NIY1JSkgBA+Pnnnx2vLVy4UAAg/Pbbby7b1q9fXxg6dKjHPsR8++23AgBh8+bNjteGDh0q1K9f32W7UaNGubyWnJwshIWFCYMHDxYACEePHvWZ/kceeUSoUKGCkJ+f73hN7Pd0B8AjfcePHxeioqKEm2++2ecxxc6Z/Xe46667hDZt2jhez83NFWJiYoS7777b43eyp7Nt27bCBx984Hj9l19+EerUqSP06NHD43u4p6ewsFBo3bq10KdPH5/fVxAE4brrrhM6derk8XrVqlWFdu3a+f28Xf369QUAwp9//ul4LSsrS6hVq5bQoUMHx2tS87udnDxTsWJFj3TNnDlTACAsX77c8VqvXr1crtf58+cLAIRBgwYJ7rddqde8mMzMTCEqKkp47rnnXF5/7LHHhIoVKwoXL14UBOHKtR0dHS2cPHnSsd2GDRsEAMITTzzheK19+/ZCXFyccP78ecdrO3bsEMLCwoSRI0c6Xnv11Vc9vsuiRYsEAMLvv/8uCIIglJaWCk2bNhUGDhwolJaWOrbLy8sTGjZsKPTv399jf2fPnnXZ56ZNmzzKJW+/hRRSP7t48WIBgLBy5UqXzzrnC/cy86mnnhIACAsWLHBsk5eXJ7Ro0UJISEgQCgsLBUG4Un4vX75cyM/PF3r37i3ExcUJhw4dcknDJ598IgAQpk6d6nitsLBQSExMFCpVqiRkZ2d7Tf+jjz4qVKpUyfG3r3uGt+9nt27dOgGAMGPGDK+fJbISdnsj0pi9Bbl69eqyPnfq1Cl8/vnnePnll7128cjJycG5c+dc/rmbOXMmevTogapVq7ps169fP5SUlHh0ubLbsmULZs6ciYkTJ3qd7S0rK8tln87dLOyio6Md/11UVITz58+jSZMmqFKlCrZu3eryXQD558mZ/SmH2NMLX8aPH4+OHTvitttu83jPOf32892jRw/k5eVh3759stOYmJjoMvarXr16GD58OBYuXOjoSif1nNnde++92Ldvn6N7259//onY2Fj07dvXazruv/9+TJ482fH35MmTMWrUKNHf2jk9Fy5cQFZWFnr06CGaFnfnz59H1apVPV7Pzs722truTe3atXHzzTc7/o6JicHIkSOxbds2pKamApCf3+XmGffrzd+sbIIgYPz48bj11lvRtWtXn9tKueadxcbGYvjw4fjtt98cXZJKSkowY8YM3HTTTahYsaLL9jfddBOuuuoqx99dunRB165dHVMZnzlzBtu3b8d9992HatWqObZr27Yt+vfvLzrlsf087N27F19//TUqVqyIa6+9FgCwfft2HDx4EHfffTfOnz/v2DY3Nxd9+/bFqlWrPLoiZmRkuJzfrKwsr9/fvo3Y002l7E/sIyMj/W578eJFnDt3DvPnz0fLli0d3Q2Bsmvn0UcfRWpqqsf1UlpaipEjR2L9+vWYP3++x/jK+fPnIyEhweWJUfny5fHYY4/h4sWLWLlypcv2WVlZSEtLw9KlS/HPP/+gZ8+eHmm1l2FyZlK0X79mHKNKFAh2eyPS2PHjx1GhQgXExMTI+tyrr76K2rVr45FHHvHaT/uBBx7wu5+DBw9i586dqFmzpuj76enpoq8///zz6NGjB2644QaMHTtWdBv3cRxiLl26hIkTJ2Ly5Mk4deqUS79x54pN586dUb58eUyYMAE1atRwdHsTG6fhjf3mHBsbK/kza9aswd9//42lS5eKdmnZvXs3XnrpJSxbtgzZ2dku7/mqmHnTtGlTj9euvvpq5OXl4ezZs0hISJB8zuxq1qyJoUOH4scff0Tnzp3x448/eg1k7EaMGIFnn30WGzduRFxcHFasWIFvvvkGa9as8dh23rx5ePPNN7F9+3YUFBQ4Xncfv+KNIDJWICYmRvZ0zk2aNPE45tVXXw2gbPxFQkKC7PwuJ8/k5uZ63a83v/76K3bv3o3ff/8d06ZN87mtlGve3ciRIzFjxgysXr0aPXv2xJIlS5CWloZ7773XY1tvee/3338HUFZWAXB0WXPWokULLFy4ELm5uS5BlfP5iImJwa+//uq4dg8ePAgAGDVqlNf0Z2VluQTHYscW4/5b1K1bF0899ZSjK5hS9uBAShD6v//9D//73/8AwCU4t7N3mzt27JhLAPziiy9i/fr1sNlsyMvL8/jc8ePH0bRpU4/r2L4/++9lN3DgQGzYsAEAMGjQIMyYMcNjn873jEqVKmHYsGH4+OOPHd0exdivX6nXO5HZMfgh0tj+/fsl39Dt9u7diylTpmDq1KkoX7681+1eeeUV9OjRw+W1YcOGufxdWlqK/v3749lnnxXdh73y6GzRokVYsmQJkpKSfKZz0qRJLp/Pzs7Grbfe6rLN//73P0yePBnjxo1DYmIiYmNjYbPZcOedd7oENvXr18fkyZPx+OOPo2PHji77aNu2rc902B07dgzly5dH7dq1JW0PlI3FGDhwIPr06eMycBkoqwD16tULMTExeP3119G4cWNERUVh69ateO6552QFZnJIPWfOHnjgAYwcORL/+9//sGrVKnz//fdYvXq112PUrFkTw4YNw+TJkxEfH4/u3bt7DPoGytZ9uvHGG9GzZ098+eWXqFWrFsqXL4/Jkyf7rcwDZU/yxMbPNG/eHNu3b0dhYWFA4+G8kZvf5eSZqKgojzEUq1evxuuvvy66fWFhIV5++WU8+OCDoteZM6nXvLuBAwciPj4eU6dORc+ePTF16lQkJCRIaphQw+LFiwGUBSN//vknbr/9dsybNw/9+/d35NX3338f7du3F/28e3Dx559/ujQUHThwAGPGjPH4nPNvkZOTgx9//BHjxo1DrVq1cPvttyv+XvYniQkJCX63feaZZzBgwADccsstso6xYcMGTJkyBV988QUefvhhbN++XdKTJm8+//xznDt3Dnv27MHEiRMxevRoTJ061WUb+z2jqKgIW7Zsweuvv47MzEyfC5nar98aNWoEnDYiM2HwQ6Shc+fOYffu3Rg9erSsz40fPx7t27fHHXfc4XO7Nm3aeFRy3GeVa9y4MS5evCi5MiQIAp5//nncfPPNju4r3nTp0gWdO3d2/C3WLeKPP/7AqFGjXNYKys/PF+12MWLECKSkpOC1117DL7/8gqpVq+Kee+6RlG6gbGaojh07Sl6Udc6cOUhKSvLafWvFihU4f/48Zs2a5dKF5OjRo5LT5M7eGu7swIEDqFChgqMlW845sxs8eDCioqJw55134rrrrkPjxo19Bj9AWcA0YsQIxMbGeswyaPfnn38iKioKCxcudKmYOXeZ86V58+aia9YMGzYMSUlJ+PPPP70OBHd36NAhCILg0gJ94MABAHAMxJeb3+XkmfDwcI/9+vpNvvzyS6Snp3s9t86kXvNiabr77rsxZcoUvPvuu5gzZw4eeugh0dklveU9+7mzT0qxf/9+j+327duHGjVqeHSlcz4fw4cPx4YNG/DBBx+gf//+jm5cMTExkn+Pnj17ulSyq1SpIrqd+28xdOhQVKtWDQsWLFAl+NmzZw9q1qwpqRtuy5Yt0a9fP9StW9fruQPgMVnEa6+9hlGjRqF9+/bo3Lkz3nzzTbzxxhuO9+vXr4+dO3eitLTUJX/a9+c+icg111wDoKwsiIuLw8iRI/Hiiy+6TJ3ufM8YPHgwUlJS8NNPP6G4uNjr97OXd5yCnYIFx/wQaaS0tBTPPvssSktLZd2Mk5KS8Ndff+Gdd95RpZvB7bffjqSkJI8FJoGyipv7TW/69OnYuXOn4lnm7MLDwz26PX3++eceU0UDwNatW/Hqq6/inXfewW233YZ+/fpJHouxZ88e7NmzB8OHD5e0fUlJCV544QXcfffdXlul7RVI5/QXFhbiyy+/lHQMMe7B1okTJ/DXX39hwIABjuPJOWd25cqVw8iRI7Fz505J3SGBsq4xFStWREZGhtc8Gh4eDpvN5nLsY8eOiU5pLCYxMREXLlzAkSNHXF4fPXo0atWqhaeeesoRwDhLT0/Hm2++6fLa6dOnMXv2bMff2dnZ+Pnnn9G+fXtHC72c/C43z8iRk5ODt956C0888YTfpwdKr/l7770XFy5cwCOPPOJYMFbMnDlzcOrUKcffGzduxIYNGzB48GAAZTMTtm/fHj/99JNLUJecnIxFixZhyJAhPtNRUlKCwsJCR9fITp06oXHjxvjggw9cpm+2c5+eXQn79SJlSQF/cnJyMH/+fNnr2gwaNAh79uxxPA0DyhotvvrqKyQkJLiM9QPgeGrfrl07PP3003j33Xddph4fMmQIUlNTXbqvFRcX4/PPP0elSpXQq1cvr2mxN0Q5d1MVYw+sfOW7LVu2IDY2Fq1atfK5LyKr4JMfIg1s2rQJDz74IHbt2oWHHnrI503K3aJFi9C/f3/Vuq0888wzmDt3Lm644Qbcd9996NSpE3Jzc7Fr1y788ccfOHbsmEtL66JFi/DQQw/J7qrnzQ033IBffvkFsbGxaNmyJZKSkrBkyRKPFtW8vDzcfffd6N27t+x++wsXLsTTTz8NoGyAsXNXj1OnTiE3NxdTp051qRSePHkSERERPrt7dOvWDVWrVsWoUaPw2GOPwWaz4ZdfflG03kXr1q0xcOBAl6mugbJWYDup58zdG2+8gWeeeUZ0ggEx4eHh2Lt3LwRB8GjRtxs6dCg++ugjDBo0CHfffTfS09MxadIkNGnSBDt37vR7jKFDh6JcuXJYsmQJHn74YcfrVatWxezZszFkyBC0b98e99xzj6NyuHXrVvz2229ITEx02dfVV1+NBx98EJs2bUJ8fDx+/PFHpKWluTyFkprfA8kzcmzduhU1atTw2v3OmdJrvkOHDmjdujVmzpyJFi1aeHQbtWvSpAmuu+46/Pe//0VBQQE++eQTVK9e3SWN77//PgYPHozExEQ8+OCDjqmuvT0dtJ+33NxczJkzB8eOHcO4ceMAAGFhYfj+++8xePBgtGrVCvfffz+uuuoqnDp1CsuXL0dMTEzAUzGXlJRgwYIFAMqClcmTJyM3N1d0/So5fv/9d7z22mu4cOECnn/+eVmfffbZZzFt2jTcfPPNLlNd79mzB7/++ivKlfNe5Xr11Vfx559/4qGHHsLatWsRFhaGhx9+GN988w3uu+8+bNmyBQ0aNMAff/yBtWvX4pNPPnFMGPL666/j1KlTaN26NSIjI7F161ZMnjwZbdu29egyvH37dlSqVAnFxcXYsmULfv75ZwwfPtxn0Lh48WIMGzaMY34oeBgxxRxRsJs6darQrVs34aeffnKZ4tWZt6mubTabsGXLFo9tA53qWhAEIScnRxg/frzQpEkTISIiQqhRo4bQrVs34YMPPnBMv+o8He6pU6dcPl+/fv2Ap7q+cOGCcP/99ws1atQQKlWqJAwcOFDYt2+fxz4ffvhhoXr16qLH9jfVda9evRzTSPv6Zzdq1CgBgPD444+77Mf+vZynul67dq1w7bXXCtHR0ULt2rWFZ5991jEtt/v0xlKmuh4zZowwdepUoWnTpkJkZKTQoUMHl/3IOWfefgdf7/tLp9j7P/zwgyO9zZs3FyZPniw61bE3N954o9C3b1/R906fPi088cQTwtVXXy1ERUUJFSpUEDp16iS89dZbQlZWlmM7ez5YuHCh0LZtW0daxK4BKfk9kDwjZ6prAMLHH3/ssq3YOZN6zfvz3nvvCQCEt99+2+M9+7X9/vvvCx9++KFQt25dITIyUujRo4ewY8cOj+2XLFkidO/eXYiOjhZiYmKEYcOGCXv27BH9LvZ/0dHRQsuWLYWPP/7Yo8zbtm2bcMsttwjVq1cXIiMjhfr16wu33367sHTpUo/9SZ3q2vnYlSpVEjp27Cj88ssvfs+Tv6mub775ZmHw4MHChg0bRD/ra6prQRCEQ4cOCbfeeqsQGxsrREZGCp07dxZmz57tsh/nqa6drVixQrDZbMKnn37qeC0tLc1RFkRERAht2rRxOZ4gCMIff/whXHPNNUJMTIwQHR0tNGnSRHjqqadczqX9mPZ/5cqVE+rXry889thjwoULF0S/nyAIwt69ewUAwpIlS7yeMyKrsQkCl+wlImvr3bs3evfu7XVsxbFjx9CwYUPDVyi32WwYM2YMvvjiC0PTobfVq1ejd+/e2Ldvn+iMY1I0aNAArVu3xrx581RJk1XyjFSffvopnnjiCRw7dgz16tVzec/+Xd5//33H0y4iKcaNG4dVq1Zhy5YtfPJDQYNjfoiISFM9evTAgAED8N577xmdlKAkCAJ++OEH9OrVyyPwIQrU+fPn8f333+PNN99k4ENBhWN+iMjy+vfv73MmokqVKmHEiBE6pojc/fvvv0YnwUUw5Jnc3FzMnTsXy5cvx65du/DXX38ZnSQKItWrVxedqILI6hj8EJHlvfjiiz7fr1Gjhsd6FxTagiHPnD17FnfffTeqVKmCF154ATfeeKPRSSIiMj2O+SEiIiIiopDAMT9ERERERBQSGPwQEREREVFIsOSYn9LSUpw+fRqVK1fmDCRERERERCFMEATk5OSgdu3aCAvz/WzHksHP6dOnUbduXaOTQUREREREJnHixAnUqVPH5zaWDH4qV64MoOwLxsTEGJwaIiIiIiIySnZ2NurWreuIEXyxZPBj7+oWExPD4IeIiIiIiCQNh+GEB0REREREFBIY/BARERERUUhg8ENERERERCGBwQ8REREREYUEBj9ERERERBQSGPwQEREREVFIYPBDREREREQhgcEPERERERGFBAY/REREREQUEhj8EBERERFRSGDwQ0REREREIYHBDxERERERhQQGP0REREREFBIY/FhIWnY+MvMKjU4GEREREZEllTM6ASRNdn4Rur69FABw7J2hBqeGiIiIiMh6+OTHIo6ezTU6CURERERElsbgh4iIiIiIQgKDHyIiIiIiCgkMfoiIiIiIKCQw+CEiIiIiopDA4IcoCOUVFuPBKZvw+6YTRieFiAyWdPg8flxzFIIgGJ0UIjKB9Jx8TFp+CGdzCoxOiiE41bVF8JZFckxeewxL96Vj6b503H5NXaOTQ0QGuuu79QCAhjUr4vpmcQanhoiM9uCUzdh1KgtL96Zh1qPdjU6O7vjkhygIZV0qMjoJRLLkF5Xgpklr8d6CfUYnJWidyMgzOglEZAK7TmUBALamZBqbEIMw+LEIm9EJICLS0Nwdp7H9RCa+XHHY6KQQEVEQY/BDRESGKyopNToJREQUAhj8EBERERFRSGDwQxSE2E2SiKyotJTT+xCRthj8mMj3q49g1taTRieDiIhId2/O24Nr3lqC9Jx8o5NCREGMwY9JHDuXizf/2Ysnf98h+j7bwoiIKJh9v+YozucW4oc1R41OChEFMQY/JsGpiYmIiIiItMXgh4iIDCfw8TYRqaC0VMDt3yThkV82G50UMqlyRieApOEAdiIiMsrFgmJ8vPgAhrathY71qhqdHCKvDqZfxMajGUYng0yMT35Mgo2eRERkVh8tOoAf1hzFLV+uMzopRD4JrFGRH3zyYwJ/7ziNaRtSjE4GEZFhbHy8bWoH03OMTgIRkSoY/JjA/37bZnQSiIiIiIiCHru9EQUjtqITEREReWDwYxHswUpEREREpAyDHyIiIiIKOgLn0CcRDH6IiMhwrKMQkRpsTv2+u769FB8u2m9gasiMGPxYBIdwEBEREfnmPNV1ek4BPl92yMDUkBkx+CEiIvKjqKQUMzefwImMPKOTQhQyCotLUVBcYnQyKMgw+KGQknWpCF+uOISTF8xXgTl5IQ8fLNyP9Jx8o5NCRG5+WncMz/yxEz3eW250UohCgiAI6PbOUrR/bTGKSkqNTg4FEQY/FFLGz9qJ9xbsx80mXKX8zm/X44vlh/Do1K1GJ4WI3CQdPm90EoiCxqoDZ7HxaIbPbQpLSnHuYiEuFZXgdOYlnVJGBcUlWHXgLPKLgveJG4Mfi+BYYHWsOXgOAHA2p8DglHg6eaGscN98/ILBKTHGpcISnMniDS5U2TiwkSgkZOQWYuSPG3H7N0mcjc2EJszdg5E/bsSTv283OimaYfCjgTnbTmHzMd8tGkRasllwiowe7y1H4sRlOHL2otFJIfLA4IxIHRm55mt8pCt+25gCAJi/K9XglGhHVvAzceJEXHPNNahcuTLi4uJw0003Yf9+1ykEe/fuDZvN5vJv9OjRLtukpKRg6NChqFChAuLi4vDMM8+guLhY+bcxgZ0nMzFuxnb85+sko5NCZDhBELDpWAayLhX53fbcxbIb4or9Z7VOFpmQ+RuAGf0QWYEVG/9IX7KCn5UrV2LMmDFYv349Fi9ejKKiIgwYMAC5ubku2z300EM4c+aM4997773neK+kpARDhw5FYWEh1q1bh59++glTpkzBK6+8os43Mtjx8+YbSC/XyQt5eHrmDuw9k210UghlAcRf209hX6r1fo+/tp/GbV8nYehnq41OChERERHKydl4wYIFLn9PmTIFcXFx2LJlC3r27Ol4vUKFCkhISBDdx6JFi7Bnzx4sWbIE8fHxaN++Pd544w0899xzmDBhAiIiIgL4GsHPvR3jUmEJpqw7hv4t49EkrpKqxxo9dQuST2Vj9rZTOPz2EFX3TfKtOngOj0/fDgA49s5QYxMj07ydZwBcGc9EZFYlpQKW7E1Dh7pVEBcT5fF+qHd7s4X6CSDLEDhKmvxQNOYnKysLAFCtWjWX13/99VfUqFEDrVu3xvjx45GXd+VpSFJSEtq0aYP4+HjHawMHDkR2djZ2796tJDkh5ZMlB/Dugn3o99FK1fe970wOgLLKgNVl5hVi9raTuFRo3VlL9pyW/8SH9RQieaZvSsEjv2zB9R+sMDoppsSB6WQkZj9Sk6wnP85KS0sxbtw4dO/eHa1bt3a8fvfdd6N+/fqoXbs2du7cieeeew779+/HrFmzAACpqakugQ8Ax9+pqeKDqwoKClBQcGWAXHa2ebv/6HV9bgnRGcHkGjV5E3acyMS6Tufx/m3tjE6ObnijIJJn+b6ysWa5XhpK2J5ARBQcAg5+xowZg+TkZKxZs8bl9Ycfftjx323atEGtWrXQt29fHD58GI0bNw7oWBMnTsRrr70WaFKDgntdlnVbaXacyAQAzN1xOqSCHyJvPlp8AH9tP4U5j3ZH1YrsZkxERKEloG5vY8eOxbx587B8+XLUqVPH57Zdu3YFABw6dAgAkJCQgLS0NJdt7H97Gyc0fvx4ZGVlOf6dOHEikGQHFS27ILDLFBmJgb22Plt6EMfP5+G71UeMTgqFoL1nsjF720l2owshlwpLsD81R/Q9qdmA9RJSk6zgRxAEjB07FrNnz8ayZcvQsGFDv5/Zvn07AKBWrVoAgMTEROzatQvp6emObRYvXoyYmBi0bNlSdB+RkZGIiYlx+Ueu8otKLHEzuVhQjMV70oJ65WC1BTJ4kzcK8qckwPIiGMYCBoLXlDoGf7oaT8zYwSntDbQ/NQe3f52E9UfO63K8IZ+txsBPVmHF/nT/GyuUlp2Pl2Yna34csjZZwc+YMWMwdepUTJs2DZUrV0ZqaipSU1Nx6VLZTE6HDx/GG2+8gS1btuDYsWOYO3cuRo4ciZ49e6Jt27YAgAEDBqBly5a49957sWPHDixcuBAvvfQSxowZg8jISPW/YZByrn6cu1iA5i8vwMgfNxqWHqlG/7IFD/28GW/9s1fX44Zmdc2aWMc0r6V709D85X8xe9tJo5OiOgY3+trDpRQMc//kjdh4LAN3frtel+MdPVe2HMrcHac1P9bj07dhM8dEkx+ygp+vvvoKWVlZ6N27N2rVquX4N2PGDABAREQElixZggEDBqB58+Z46qmncOutt+Lvv/927CM8PBzz5s1DeHg4EhMTcc8992DkyJF4/fXX1f1mQc650fafy9MJrz54zqDUSLfmUFkaZ2xi10Wr23kyE79vOmGJJ46kjgd/2oyiEgFPzNhhdFJ0x4UTKVik5xT438iiApkdlUKPrAkP/FVy6tati5Ur/U+9XL9+fcyfP1/OoUOe+23X+Zdg5ZOMcOMXawEA8bFR6HV1TYNTQ0Ra4jo/ZCSp1RzWhkgKRev8kDbkBjMh2gU/ZJi9xflgmvhAViIr8Vfshnrdn41spDez3/vIuhj8qEyrG4THXp2OY8lbkkFlmhVbLwOa8ECDdBAREeklkHsfkRQMfixKy25vwdzaEiqtl0Z/y392nsHwSWtx8kKe7M8anXYyF72uWQu2i1gazzdpQoPiYkFyKgZ+vMrrdN1kPQx+NDTm1626DL4rdaocvPJXMpJPZfncXhAEfLHsoC7TTlJoGjNtK3acyMQ+3ixIgU+XHET3d5YhPTtf8b62plzAI79sxokM+QE5wMo6kRakxipGXn+jp27B/rQcjJ221bhESLTpWAbenLcHlwq5nIgvDH409M+uM7j5y7Wa7Nu5MdT5v39OOo4bPl/j87NL9qbjg0UHcN/kTZqkTQrWI8gbOXnjQm4hvlxxCGeyLmmWnmD2++YTeHPeHtM+Ef14yQGczsrH58sOKd7XLV+uw8LdaRhjgQoMEZlPXoABRdalIuTkF6mcGnG3fZ2E79ccxZcrlJeZwYzBj8YKiktV32fyqSyXvrBSqi2ztp7ER4v2QxAEnAqgK5LlmbNup5lQCS6fmrkD7y3Yj9u/STI6KZb07B878f2ao1h3WJ/FDn3xdYmWqhicpQT65Cdkrip9mDTeJlJVQXEJ2r22CG0mLNJ1gegjl9dWInGypromfQiC70e8L87e5fXJjzdP/l62LkevZpySmILHqgNlq8SfyOCTHyUy8/RplTQzv6FNiMc+VpwshoKHVYPls05rKl0qKkGlSFa7zYBPfizCY50fp4JATqvohdzgrOQUFJeguET9p2xEoUoQBOw+naXbdWV01dqidSvLYixF/gTytNVK13GhBj2DSBoGPzq6VFgCQRCQmpWPQZ+swrQNKZI/6+uClttfP9ha8AqLS9Hh9cXo+d5yo5NCOguyrGwqX608jKGfrXE8NTYSf2fjaT0uLDOvUNP9E5nJp0sO4uqX/sWmYxnaHMBKUaABGPzo5EzWJbR4ZQHum7wJE//di32pOXhh9q6A9+c61XXg6Vq2Lw1Z7l1edKhoFBSXYur646rs69j5XOQVluB0lv8ZoYIt8JMqPTsfpRZZDdcaqQx+Xy0/DACYu+O0wSkJfucvFuDmL9fit43SG8SCzelM5TP6kTRWKWODeZ2fj5ccAAC8+tdug1MSmhj86OTPLScBACsPnPU7BeHivWm+p6t2q8ArqdM+MGUz7vjWmMHiL81JNu0sU1bnnEWW709Hl7eX4tFfOcsVBeaRXzZj5uYTRidDU/6aRbRsNvlo8QFsS8nE+FmBN4iFKqX3kPMXCzBh7m7sPaP+shTbUi7ghdm7+FTLjZa3fdYpSAoGPyb0yC9b/E5X7XyBK20dCaW1WKxYMAaSZOfPfLOyrAV/we5UlVKkrYzcAv8bXcYZuNThrwxZuDsNz/yxU6fUmJOWT40DnUI31L2/cB+ue3c5MnIDDy6e+3Mnpqw7hsGfrlYxZWVu/nIdpm1IwWt/71F930qYqdSUek8O0U4bAbtYUIz8IpYr3jD40cHOk5ma7l/Okx/rVf3VEcyPz61MbDD9pMvdrazu5IU8HON0o5LxCg0tajRcTFp+GKcyL+HbVUcC3sduHRYiP3z2oubHsAL7bx6qgYyeja8rD5xF+9cX6XY8q2Hwo4Mbv1iLnSd9dGOTSxBcnwbInvBAvaSEipJSAWsOnkO2TguVhYKkw+fR/OUF+CXpmOTPZOcXYfGeNNPPklNaKuC6d5ej9wcrkFtQbHRySAWhXmyq/eRLzQYpszduma3DgcmSI4nZzqFURo4zzi8y933SSAx+dLL+iLqLCMpd5NQu1G/ggZq89iju+WEDbvvKdXzUgbQc3PLlWqw+eFazYwdSdmpd3h5V4YnGY9O3obhUwMsyBnze9+NGPPTzZry/cJ/i42upqPTKTefcRend+IzC7oNsFApFadn5OCNhohxSh9mDVC1Ysat9KGDwY1GBrvMDgP1AAzBn+ykAwP401/FRD/+8GVtTMnHvDxuNSJZhUjLyDDnu1pRMAMCfW8t+D9bZ9RXMAYK/YlTN715aKmDC3N34PcgnkTC7F0J0ggkrXMZHzl4MqAu0mUONUJ1t1oy41KzKpMQhy/enKz+OzGM6e3u+71Zzq12ecr6/2oXP+Yvaz+LDhiMKBb6uTK2fTP2x5SQW7UnT9BjOVhxIx5R1xwAAt3euq9txlTCiBTsnvwhfrzyMYe1qo3lCjOr7l7I8Ahmj30crFc1kaxUh8BVNiU9+dOKcwYtKFGZ3Fae6Npra91M+YiY1LEhOlbUIMVnb0zP1Xcg1021tNZZb4t6evxeTlh/GoE/Un4kN0K+hz2zdvcyVGnFa1mt8jRmdMHc3+n64AnmF2o3VlHq9s5eOdhj86ITz2muHT5I9cQyHMqOnbsELs3eFzGxtUitnRuUqM1QeeUWpS0oZtcvXendqpMFLEs5fLMCI79fjr8vdneVaffAsnv8ztKeG90Xb+pDv95fvT8fVL/2LyWuPir4/Zd0xHD6biznb1Fnc2b2xWxAE3PHtesff3q6CmZtPoPnLC/DH5TUiSV0MflQkCAJyNWwtcD+W47/lfE79pFhKoIGitxt1qJ9Po8mpkB4/n4vfNqagSGR6bW8ucHFCXZSWCnhpTrLRydBcdn6RaBnEsQDKfLPyCNKz5XdhC/Ny3t9fuB9rD53H49O3B5See3/YiOmbzDGeK/lUFrYcz3B5LZRz2+O/bQMAv2svqdXg8sHC/Vf2KQg4lXkJG49m+PhEGfu6ano/lQ4VHPOjood+3owle8XH86j9dMZ1zA+r4P7ocYo2HcvAxYJiXN8sTvuD+aF1S7lZ8pycOmOv91cAALIvFeGRXo21SdBlJjk9prAvNRtR5cLRoEZFr9us9DNbohmeZCoNULYcz8CtXyXhlg5X4bqmNVRKlX7MHqA9+utW/PHfbrI+4+0ruXdLtCpBEBwLpm97uT+qVoxQff9FJQIiyklrRxe7jtUuKs2UTY+cvYh/dp0xOhkkgk9+VOQt8FGdILiUGHJuSiYqFyxFSjBx29dJuH/yJqQF0AJJ+pHS6hZqpAYXcivAF3ILMeiT1ej9wQqf2+UVBH/f9i+WHQIAzNomrytVcUlpyHS/VGLz8QtGJ8EroxpDnMfNnM+9MuW+WskZN2M7Wr26QPY9z18xsjUl8N/SLA1PZ3MK0OfDlR6vmyV9oY7Bj8F8DbzztaAmrx/zOptj/nVdlDJ7K7DR9Dg9B9Ny8MOao7ou+FoicxTyqcxLGqVEmhdm78LwSWtldXX0xvknXZCcitnb9OmL/38/b0bvD1Zg3k51xiB4k1dYbJonunrd4FiOKfPX9tMoKhHw20Z1J4e55ct1qu7PmV45/GB6jujrSi8xQRDw/eojWHvonLIdhTgGPwb7dOkBr+8N/czLDDc2m+uYH5VvWMF8Pwj0ZufcMq6kVUovZugmpETWpeDodqKl/h+vwhvz9uD7NUe0OYC1sxAAYNqGFOw4kYmV+9VdhHj01C14YsaOgMaZAPLK2BWX0z557TEAZU+C1C7zd5/OQstXFuIpC40vUOMcBEEW98k0wexlUnpQKE2zGSZH8cZms+HzZQcV7WP1wXN485+9GPH9BpVSFZoY/OjE2+X49w7v/UFPZHhvNTXv5a0/vct3LVullJq2IQVDP1uN9Bxrd72T+jQjkCBPTnYZP2sXpq4/LvsYetp+eeFXJUQrDCYqZJQ2yMhdCFoqX0/n3flam01qha+guATd3lmGW75Stwz6emVZAD1rq/cueWarSB9Iu6h4H97yVXA2AF75Us5PcItVeCqqll0ns9D5zSVGJ0NTMxXO3nbigjELjAcbBj86Mct9wyTJcFA7PWY5z0Z5YfYu7D6djd83ixewuQXqzEZotoqQVval5oTELGR6u1ggr4uVKbKbCSrEu05mIT2nANtUCHitTm4XTDHeZntTf/05dfenJj2TNmvrKfziozHp8RnbcD5X4xk2JX5hq/eeIN8Y/OhEq5ZHMraVTssgILegGFPWHsVpFcdNvLtgn2r70lJwtrxKl1tQjO9XH8GJjOBr5Tt6LhetX12IB6Zs0u2YLH3NyeinDiFezBji5TnJXoNBX7dTva9hLbrPhUqjoRUw+FHoo0X7cd/kjX4HnxWoPChZy2somFs8rFT4vPnPHkz4ew9+3aDeYNLtJzJV25e7pMPn8dwfO1UZr6NlDrRCHnjzn71485+9jmlq7fKLSnDkrPLuPgAMiwjsg6OXyxiHY4ZgWMty0QoD79VO494z2Wj28gJ8tGi//411pvbPYf4SxzjOxbEul4Felxp/dFNj8KPQ9pNZWLH/LFKztB/46iAIAbdKSDmckQMG957JxtMzd+Ckyv1azVAOCYKABclnJH+3VQfMO5uLWEXoru/WY8bmEy6LummfDt0OpSt7Y4p7IHnjF2vQ58OVWKfDTD/5xcZNP70vNVvzY+xPLZstT+pMcGbLa8v2pQU84YIcc7adwg2fr1a9TJ674zRKSgV8tuyQpCdAE+buxsE08Rm0AuWt2xvpZ/iktY4ujL5+DdV+KTNUBshwXORUIfsFqfX15N5abXTjdW5BMSpGqp99hn62GqVCWeVn3v96qL5/I83dcdqxYvixd4YamxgNpfjpqvX96iM4kJbjMw9r2RLuvO/07HxUjiqP6IhwzY6nJvsg7znb5a0VI8rm/J+e57uoRJ9CRuxJ3KBPVmt+jQz8ZJXX42tNjez9wJTNiCgXhgNvDla+Mx/Gzdiu6f4BoMMbi9GqdozPbaasO4ZpG1Jw4C0Vvy9jH0M45/+9Z7KRfCoL7epWUSUY9Xc556g07tUv5i1T45MfhezXqq43UJvN5QJX+9D+unf8tf0UWr26EN+sPKzugXFlUbYDqSp17XEjp1KdX1SCGZtSVGtdXX8keBbX9AzGr/x9Ic/3gNU3/9mL3zefxLmLV9ZDypExa5ZazmRdQpe3l6LL28E9u5AgCHj1r2R8t8r3lNjTN6bovnbEwbQcdHxjsXbTdUuw61SWpO3MWJfRc40nLeXkF7uUj95uaYUqjxES+00FQcC/yamqHscoVnvIofWDuGAYQym3+60VunkbgU9+FNLrhmimPuFP/V62FsTEf/fhkV6NDU6Ndk/B3l2wD5PXHkPt2ChUrxSpzUFUUloqYJrKC80FKpBFXr9bfTSgYwXWa7QswyQdPg+grOIVzJJPZeOnpLIZlh7q2Uh0m50nM/HN5eBIz6eSL/+VjAt5RbjgZ/Yy85R+6gh0qmtST2mpgA1HPRuk7OWCmszw+3qrQpggaQ6qPPnx8d7u09K70/oKMr5ffQR7Tmfjg9vaISxMeprVqMeZeR0jK+GTH5VYJTsqTee6w+dQrMIUo3ZmuCl4s3RvOgDgdFa+6fr7u5u747Slp2S+6BaAGHm6j5/PNfDo6sst9B/cnVRxRkEtmLeUkM7ERV1I2pcqPn7oQh4XWNab2e+v7t78Zy9mbTuFlQfVXTyZ9MPgRyFHJB8CN7bSUgF3f2fuVYXN8DN4q+TILeDlBIZ6d1dyZ1TFTosnovf+sFH1fcoVzK17RjR4qHFIq1XQyLdQWH5Cylc0U772VZ6b8dfKK/AxKYzYutEhkOesgsGPQlcmPAgsU5+8EFiLq/NFpPbl5PXxuMrHUYuh6/wYd2gXSleNNhstf1N/v5nYhA3JEseFEBGRb14bCPVNhk/B0gDFeEscgx+Frkx4ENjnA12lWsv87PxdgmVArT1Y1KPlRa2K++kAp0/Xg9Zj0PwN6tT7JvnjWnljkvxlM39T++qy1paFntZpeTak7jvQ3+TouVws3O06gN79FEg5J2aqGK5mdx/SQJjJaqQ7TmTi1w3HjU6G4ebvOoPHftuGPAldqK3CZFnNivS5Jfma6lpOCuSm9uqX/sXWlAsyP0VK7ffSH90sPPKj038HNAmBzJq40Y1ZpaXC5em65afkn51n0OTFf/GXGtNVW5wZWiWVJcF/br/+gxV45JctSDqi/kB6oxjZNXT8rJ1YkHxG8X6893AwQaaU6UzWJQz6ZJVjAWGr8tXAYETwP3zSWrw423Us7Utzdkn7sEYJNmIR+kd/3Yq5O07ju1WBTUxkRgx+VKJ3celcQGvd7e2NeXtUPoI+8os8++Oq/cRCfKpU5ft1ngY6WGTlFWHdYXXHJrmf/71nsvGfr9ZhvY+Kpho54PV5ezDg41X4cNEBj/f2pWbj3QX7vH52zLStAOBY80ltBcUlWHPwnGj+d+F8IqxX39Od0qJD6VP0UPqJfDUq/LbxBEZP3apjaszvzX/2Yl9qDsbPcq2YO9cT1LzzncjIwxMK1n/yePJ5OXUyJk7zTqULRSzIOJV5CVPXiweYpzMv4d4fNmDZvjR1EqASNcuN9Bzz9kaRi8GPQkq7vQUq0OOF0g20/8crNT9GKJ1PX6SMQbvhi9WaT5hx/+RN2Hz8Au78dr3XbdT4zaasOwYA+GL5IY/3Bn2yGpPXHlPhKIF5aXYy7vlhA16YLbGF0kBmGmwdGONLgC9XHMJFvRZu1JmW91Xv406slynzC/00dKjs4V+2YPY2DZ5cW7hAGD9rF1YfPIcHpmzW9DhGPplUcaJfwzH4Uch+qfpb2DFQwTLmRkvebmInMsw1fa91i3V5vH1PX7+HR4UjwJMVLC1TSm5w9skvZm2VUTnRMXMqGXf35YpDuP6DFQGtJWUmaq7z896C/Xh7/l6FKSIt6dk4uuNEpqLPn8m6hM3HfC/IfTBNm27ZUoqh/KISvPXPHmwUWaMJ8F52FhRrGyB6lEkiyTDTeo2BCZ7oh8GPQva8/P7C/Zrs3z4dp/tFE2gWTMs2V+XQKpeSWYqsTI2CbDWp8ZtKvke4bWeV/KQmo+6n/+46g0s6tzi/t2A/jp7LxRfLDsr8pPecITmrmaUQELHJS0Ww1ARNtYIg4IOF+zF7m/wZKbU858E05seZcyU8kKArceIy/OfrJOw6qd8Ml/bfwtfvbf8qX644jO9WH8Xt3yTJOsbb/xjfQCAIgqnLEX9Kg6gtnsGPQmZ4RC6ngJOyEKbx3wgoLCkNaO2aYJlH39vXsI8XMRulZ12tCoeUnz9IsojDwt1pyDJgYcb//rpV8cK6gf4WUhZanrXVvNO/61EBWnXgLFq9uhBzJHRPcl7zRu2AadOxC/hi+SE8MWOHqvs1m4zcQmw6lqHZPUgQBGTkKm/8KvIz06TdluO+n/44k1sP8nzyWfb/YRIujKPnAluE+vfN5igPpHxHNamZH4NpbSwGPwppnY+95TVN+0K7/W1UMDTie/MsqOrtdOtdFqw9ZP4Zo/TIL0qOIQB4fPo2vLdAm6e1apBbmXhR6gxE3gSYj/80KMDwl9ydJzPx5O/SKtvSv7rYb6Jf6Sj3SPdN3ohLRSUYJ2Fg+jmnpwU5+eqOH1Kjwm4FPd9bjtu+TsLy/elet8nMK8Qb8/Zg92n5T1Ve+Ws3Or6xGPN3BT7TnSAIuO7dZQF/3ut+VWq8MkPDq2q8fBlVJnUwiAkeJKuGwY9FOEfvZdfOlb+17gpl9vwuJQC1f4dgeTJkt/7I+YCekJldSYmAHScyva6DpeRX3HM6C39tP41Uk3UBVWLLcetMRx/QOj8yP3P8vOdCtUpZubuK1ehRTKvda8M+6cTSvZ7Bjz04mDB3N35YcxRDP1sje/+/rC9bb+Y9kZkknWcH9ZVPSwUgLVv5eDmtZpjV+6mIFenR2yhYu4Q6Y/CjkBHXqgDXm8MslWddYfHjyds50er3l7LfguIS3PntelM8IVO7svLK3N0YPmkt3vLTTzuQ018QYpOImDneD/T68fedTPyVRUkJ7qz2nbSmtOz1VpHzVbksKinFv7vO4HyASxHsPSN9ogBBELDl+AXkSpjJb4fT+Jz1R87j+9VHUFoquHRxC3Swva4Nhj6SqPRWq0XF3QrBQCAp9PqTm//rSsbgRyGto3BvF5dZ8qAgCNhzOltSAW0Gas+2IlZIeL2pqpxVpFbi1x9x7btdXFKKeTtPI93ETz7+3nEaAPDj2uBZVM0Ih9Iv4q7vvE/77RDCLR5iX33iv3s9Zg4UP0VmKYmDk696t1Z1cl8V2i+XH8Z/f92Km79cp83BnczYdAK3frUOt30tb2D/d6uP4s1/9qLRC/PR8Y3FitJQWFyKQZ+sxrjp2xTtx523e6EaXcJ85QszPljacyYbr/6VbIrJSfzhmB+6wqAxP0YQawFasf8shny2GkM/W21AioKXlr/7D2uOYuy0bej/8SrtDkKKqNWi+Nrfu1XZj1x7Tmfjf79tE+1+5rImlFYVWLcdO/8ppcj+ZuUR3PTFWnUT5YPR3XFNdJsx1OnMSz5nbv03uWy8TUqG+t0q3dnH0+05k+21+68/RSX+P+d1vSObDWsPncP+tBzM2X7a9b2AUuOflo3JNthUL298plfGsX5KOo7Fe6UtjqrH0yZvQaIF4jPJyhmdAKvTuiFBcPt/x+s63ix9fce5l1vojwXYx16Nr2GmANEKlu4r65OedUm9GcKMevyfrfLg7GAj+dpQ+ecbPmkNikoExxM8o+08daVbkNSvejrLvE9GpQj4J1X9phZ45tJ0qmuRL3rf5I2ajBdTeo967Dd1nrzIOZ2CIOherkuZ6tof7z22PN85k3UJtWKjJe5ZW1ZYxoJPfshB60Wr7EHO7W6PvrXMgnK+k9JvX1hSio8XH8B2hQuzacHlNMg6J/o8WzfhE3zTWpCcanQSNGW2vCDW4qx2g83MzSfw0pxdkrqLfLXisKrHNoKc3/jPLScDr3A7fU7vdZyMdiDtouJ9aHFv/kfBDG96UOuep3e3tMSJ6s9854/ey6PYy4GM3EK8MHuXokVwgyf0YfBjevbM5r6uhZ4BuM9DKbyOv199BJ8uPYibJqnTxUTN0+Jyjr2ccLHWJDVay4x6knIm65LiSqoeq1jLPcLoqVuu/GGBElz2uhkapcO8BDzzx05MXZ+CJRK7i2jDbGFnmadmyltTR+xbbD+RiRavLFAhNfqfo5z8IlWfbAcLtcoJj54oMvfstaudia4nxbcxFb9Kdv6VvBzoOXr5r2RM25CC4RLqWt6OYHT3XDUx+FHIiEtVyjGz8orw4uxdpp8C90Ca/9lvrDAQUAozFexiZm4+gcSJy/DCbPlrxjiXiYEUkHI/YqUcYfbfHdA32FY7OM5kJVcTHy5Svg7WmoPn8M6/vmdsFCMlN3pb76akVECbCYvQ7rVFKCi27pMr9cenGJ8GK5G0YLZO5WbbCYvw13Zls/oekvFU09u3Kg2iiVIZ/Chk1Owh/iqYb8/fi183pODWr5TPSuPrK2pdscstKEb3d5fhcR+zzUha50ejMsoKFVupPrhc2flt4wmDU6KtHJ1nJjRyOlSpxw6mfKwVo2eK0jIXabXve37YEPB4UH++WH5I9PVLRVcCnvMX9R9HIZZNQjiGkNQYpte1pfZxAmpcDjANL81ODuhzat5/rDC1t1QMfhTSfMIDoaxrmMfrfj53MF36egJKKC1M/FW6/k1OxZmsfPy13eCB0zrXfLQL1tQRPEWgOfm7yex0WtcDMGvnK3FqdJ0ItgBdj66igMR8YqLMFMpPHoymRp4UBAF3fithqn0JpKSmoLgk4JnxAjF57THvb1oo7+YXlaDQaekM793e9EmPHhj8KKT1TSuvsBhv+lnoUYyEGS5lC6J8L4mkJ0piY368Th2qMEEqMOtvaIZz44vZnozsS5XWuGG2dOvF51of6h5Jnb3oVKsw6/UfTNQ6x0aXia/O3Y08LxNeSE1acamADUczPF53/272ckrpk4WBIbB8Q6DnyFd+ajthEbq8vcTvEIMgGYEAgMGP6RWKLGQpOP7HO73GyZihaqWk3lBaKuDF2bvw+yZztSRL+UpqB96hWlF2tt9LUBFMj/tDXcCToKmYBQK51nS7Ok2U1TWd6prFHQDfZdskL10L3Sm9d0gpX6VkS39dLLVoY5gsYyFuKXU3rRw9l+v1vcKSUmTmFaGwxPegHk54QA5GlZ/+sqCSR7+hdE9YsjcNv25IwbN/7vR4L9Dr3Mw3VUFQpwBz/4oui0gGcALkJkmrUzzwE2u2HAbyiyqZ8jQQZr1vKmtECOyzZgumnb9FXpG1184yYwXNLGmSm47TmZfE96NGYkSYqQFOarHw2t97ZO5YflpcPy5zJtDLP1aBSEO612N4+fIlJsnHamDwo5TG16q3vOZvsSm5i1Gdu1iAMdO2Yu2hc163+XaV59gjOfUGM868Y9aZorS6We46lYVNx8QHaZqtQmYmet+U9Tje+iNXuqOE8m8v9Vozc6OGUs5n4JYvlU+SQ8pZqZ6ptPwwU9CjGpGvZBN/WRILZQdLKGd0AqxO64tWLMPbAK99ce3kBj+v/70H/+w8g392nkHlSPFs8f5Cz6lP5Xz/e3/YKCtNgPwgwAw3DDXSYIKvYWpqn5+C4hJsS8n0cTxz/yJeB6hKTLcZrhs1mf33MrMzWflGJ0FRftRr8girCeS0KL2KvP2OwVbehIpg+t0Y/CikdTkb6BMAud3e5u7Qfja1jSIDH83M0HuoAYWMnEBW6SJ3Wth5MjPgz47/cxdmbVO2joKazHA+zcTftTh1/XFk5xfh0d5N9EmQAXzliGCt71uhsmXPe8EomLKVIOh8nchdu87P9sH0W5gBgx+FjMiQUp7q6HXT0LowkdKKJycNRlYSQqXwMqp/+5Gz3gd0+uMv8JEaGO49kx1wGnx5d8E+LNydKvtzUtNt9crzS3PK1sC4sV1t1KlawRKVZjVJ/b4W/5kNJ9bjwp73fLFqdnS+/87cfAK3da4r8/PqbqcnrcqQQHebU1CMdYe9D0sgeTjmx+TELhT3NT7EqDkwTdNuBDoXegFPYqBuMlQ5oAnvF0FLgIBD6Tn4cc1Rn2PXfI2Z8ya/qASrDpxFfpH3/X614rCi4M4fPfrcn71YoHlg7K87MOB53WxJkbZQoZrnyH1fkhp5VDiummc/Ldv47nFitMxjKRnaLNgqxluWCDQNgeRf53P5zB+ekwIp2bcR1h85b3QSvJJSzbr7uw1Yc+isrP0eSJO+5qP95/bejTp4MPhRSPtub4F9Tq+FvpR+/392nlEnIYHycZqknPv8IukzqMhiRLc3OU/Q3P5WOtvbKS+zCplJv49W4fV5e/D9au9Tm8odawcAL89JxsgfN+J5kRkHg0nXt5filb92u7ymSjZXuJMTGdLynpZdEY2eDSyQLsld314aULAvhRmfBOjN+2RHAe7PSw72lfXkHurI2Yso8jNdMmDM72uziS9Kque1J0B5I8a6w/ICuDu+UWeRWcD4ckpNDH4U0r7FI7DMpmidH7ev5DvDG3+XMup61DJwU2vdA1nHNLBcW7wnTdb2YrlO2weUV3bua2IECfd9DzO3nAQAzNl+ZdydVVpS5fpl/XFN9y8lDwfP7dt4P607psl+7b/j7tPyu5FKbXwJhgCrpFQQXQvQCHN3nEafD1fiwZ82O14zU11Z9nIKQZA/AOCSjx4F7oLlO0vB4EchrTNLoDFMsKzEq3lLg8TfTywVE//dq1oy3G9gRt80MnIL8fKcZK+TCDgnb/XBc/htY4ou6TKK1Fb/QJ78aEnybG8KQ4LMvELc9vU6Y/KB0zVcKgjYfToLxSYvADmhRYjR6Oce+tlqdHh9kaRttWxQESA4FvtcdUBet6xg9Mv647j7+w2a7Nv5V/xru/qT9BSVlJq+/FQDJzxQyKyRsl43VzW/v7cF1Yyi52/75QppK2k7Uzt5zt/3lb+SMW/nGfyy/jiOvTPUY9sTTv3OVx44i5UmuOHpF3d4P5BawbrelWOlyf582SFsOnYBm45dwF1d6kn+nNp5+IOF+7F0Xzqiyqvfrmfmp3FmvQ8FKtD8/5+v1iE6Ilzl1JjXvlTp4znMTBCAifP3Yo1G3Sj19rKPSTC8XauBlMGPT9+O4e2vkv9BLwQBmLfT+8y/JmvbU4TBD/nlqxuBmvfcbu8sk3VsMVpVGuWkwlsKfH2XRbtdu30ZXcgcTLvo8333sRvO9OgXrPfpkVrxFWswM7LSrNexcwuKVd/nkbO+86CD0zlfui8dgIZj8cjFoj1pyLpUhNjo8pK213os6ubj0iav0FIwjYtQSmpF/9/kM/hGZBF10t/FAvMtRq8FdntTTONFTlmOqsqsLaRyZmQhcWb4bcWuVyt0cTLq3Pk6M30+XOn4b19BnBXOrzu1g1Ij7xMP/7zZ/0aXXfeuZwOXlYkFOqsOBMfTCzmU5mezzhyoJzPcv8yQBr0w+FFI68yy4ag5pmb01rfU8heLwtne1BJIH1uznvtQXWF9f2oOPl5ywJBjSz3n04N8bJYUauZOvbO6GZ9obZAxU9yZrOCv5OaILHhqhvDciJlppd5D1x7yX8/R6omaIADbT2Tii2UHJc1Up/RYSml5f/WXPis2NHnDbm8KaX3v89W9yBfnTKy0q8GW4xewxQTdCbyRUxboEdDotR4Hnwqay+ipW4xOggf3m9Xzs3YZlJLgpOc1uPn4BdzzgzaDqENNVl5RyJWfgmDee4bRSx3cNGktACCqvPnHi4nVL1Kz8lGzciTCw1SofZg1k6iMT34UskIj9zMzd8jaXs5X0npMgZGzvTn/trICrMBTQxIZedkt2Zsu+vqFvELVjiH3ulJ6nVj5fvfbxhOytrfSVxV7ihAKtLyv7D6dhXavL8L//SS9ux4A7HJbXPytf/bg7MUCj+2slL/8kvFlZK0TF8DPq/SJh5Svokf3c7XL2nWHz+HaiUtx3+SN6u5YhJXvE+5kBT8TJ07ENddcg8qVKyMuLg433XQT9u/f77JNfn4+xowZg+rVq6NSpUq49dZbkZbmOpg7JSUFQ4cORYUKFRAXF4dnnnkGxcXqD5jVg1lnAHIuJ2ZtU386RDs1K3yB0uOCFDuGloGvEYNmzZmTQ1MwdS/wRY08t/1Epgp7MY/7J2/ES3PKntA99bu8hisA+HTJQbWTpDu18r9YGf1LUtlaU3KeNuTkF2HYF2tcXvtu9VE8OUPk9zHppavp/crtS2f6qRe8Pk+9ZSKsRu3f4ed1Zfl59UHlY838pS1kg5+VK1dizJgxWL9+PRYvXoyioiIMGDAAubm5jm2eeOIJ/P3335g5cyZWrlyJ06dP45ZbbnG8X1JSgqFDh6KwsBDr1q3DTz/9hClTpuCVV15R71uRbuZpuNAnELrjR/SSV1iM1QfPat7XWSvXNKhqdBIUUSvI9XadmLFxxvkrB9G9VJYvlnuf2n75/rOYur5sbNYimYv/AjBs3Jma1KpkqbWfzDzxJ3BbU6R1Bw/kOrfateH8FR+fvt3ntkasBWSWktCMZbKdIMAa3ZlUIGvMz4IFC1z+njJlCuLi4rBlyxb07NkTWVlZ+OGHHzBt2jT06dMHADB58mS0aNEC69evx7XXXotFixZhz549WLJkCeLj49G+fXu88cYbeO655zBhwgRERESo9+10ECL5hHSm143v4Z+3YM2hcxjdq7FOR1SH/fyEmegC9JYSXze7B6Zs0iYxMpnoNIaEQ+kSp/GWyGoVZSuZtiEFNSqJ10tEJ6ox6bV0saAYD7k9vQqUv2DOvu5bqDzBXrg7FXvOZBudDM0F0++paMxPVlZZH9hq1aoBALZs2YKioiL069fPsU3z5s1Rr149JCUlAQCSkpLQpk0bxMfHO7YZOHAgsrOzsXt3YIP7yVMwPZ70x3kyBn/fO9BKnrxJFZSffL1+P/uictM2HPe53anMSzgn0r/dzHafzsKnSw4iv0ifdQsC+cmW71enBbRUEBSND3HPb8UaPgkMrL+/tmmSmgYpr5FyC3enYu4O74st6umF2bvw8C/ik5mITSYkliXMcDueuv64Zouimvlphp2338D5dedy8LyM+90jXvKHFtzLHNXLIB+Vj2CqVwY821tpaSnGjRuH7t27o3Xr1gCA1NRUREREoEqVKi7bxsfHIzU11bGNc+Bjf9/+npiCggIUFFzJiNnZwR9hk3SfLlXQzcPCF7OaSfe1r6y8InS/vADtsXeGqnhUbQ39rKyVs7jU2EqzHq1lZ7Ly0WbCIqx+9nrFxx4/aydmbdVunGCg/tmlThdb81fT6ExWPh77bZvq+915MlPVRhyx4Eetq13tfFpQrF45aLPZdK8J6z0O9oNFGnQfFdS4H2g41bWVK0QyBRz8jBkzBsnJyVizRp3HqL5MnDgRr732mubHIWVOZOShbrUKqu7TiqtlB8M4JedC8Nj5XB9bmt+e0/o0lpjhV1ejtVzu7Gl6EAQgO998k+JYsHgKKc5F8fYTmY4pjTXFPGFZVr91L98nPhMpeQqo29vYsWMxb948LF++HHXq1HG8npCQgMLCQmRmZrpsn5aWhoSEBMc27rO/2f+2b+Nu/PjxyMrKcvw7ccI8N2ezXivpOYG3bgVaee/x3nL8ueVkwMcNlJxH7h6VFbP+gHoTrBW0iaXUqPSr2T2nsLgUv21MwYkMY9e9kGv6JvOUyf6wbhqakg6bY8FwqXzl0+Pnc/HRYu0ntgima8Usdzctuwjer/EY0mDKD7KCH0EQMHbsWMyePRvLli1Dw4YNXd7v1KkTypcvj6VLlzpe279/P1JSUpCYmAgASExMxK5du5CefiVCXbx4MWJiYtCyZUvR40ZGRiImJsblH5nTlyu8z2IUCCkVWrM9qvX2tEpe3Vzf75RTUOw13XmF+oyZUcqop4Rqds/5bvURjLfYQqR7dRjoa6G4nEzELE/m1E7HsM/X4LOl6kxpHkja3Mtab/dgNb+3Huv86MHb15B+rszyTaxNVvAzZswYTJ06FdOmTUPlypWRmpqK1NRUXLpU1koZGxuLBx98EE8++SSWL1+OLVu24P7770diYiKuvfZaAMCAAQPQsmVL3HvvvdixYwcWLlyIl156CWPGjEFkZKT635BCyuvz9uC0watFq8GIm/bprHzHfzu3Tj0/a6f+ifHjfG4h/tpuvnEpSq0/om7rtB4DkTNy5a31ZZYKKQW/WVtP4otl1l/3yF0gXUDVKAmyQ3TR3VDht2wOorJbVvDz1VdfISsrC71790atWrUc/2bMmOHY5uOPP8YNN9yAW2+9FT179kRCQgJmzZrleD88PBzz5s1DeHg4EhMTcc8992DkyJF4/fXX1ftWFLKmbUgxzfTB7qwwI46Y4+fzjE6CKPe1JIzstpfi4xxZ9Xc3HQtGTYfPqjultTdWHBuphw8WHcAHiw5gz+ls/XoIBNHl7v5Vlu0VH1Nig03zs7vxqLW6Lcol/fbluqGetz2z9bJRQtaEB1IK2KioKEyaNAmTJk3yuk39+vUxf/58OYcmkkzWdJ4KrmW5lVo5BYeULVnhMY+e7y83OgmigulmZUb+Kh5/m2S65lCn6xMLlS45M8RQZio9nvtzF2rFRmPnyUxV92u1+yi7AKtD0To/ZK1B4lakdsEU8Do/Iq/5qlimZ+dr1uq7NeWC5gU2K83q4bl05XINSjw1No8PKji+KnuxplD97uFhxn7zQMoAM5Qa3sevGnM+R/640bQ9EaTQ4l6gZs8CAebId3pg8EOkgS5vL0XfD1ciPVt8HI0St3y5DvN3ia+JFWqcC+pQrdiFAjPckLXMX3p9PzOcRyOE2Wwh3/1U63gltM+ucfRsXLPYQzKfGPyQh2B4mHUwTWLXN4nfdWtKpshH/X/4QFpgT3/8FTL/7GJ3GndBVC6HDgPKGlUXB1ZhZ1brdmNFYTZjn8AGW+AllmeZi5WRWgy456SsS+p26fSVU1OdGnOtjsEPmZqUx+tiN5YLeeIFgt71DKt2ebLKzdoaqTSO1N9Rz+vCqnV9rZK9cDef4mrN6G5vKRl5WGTS39mq9yjZJHxNK5ZNaw+pNxGEv4aYkxesP5OuHYMfIpV5Kz7UfqJmwXJaUwyEgpcNsGbNRIKFu9OYdzWWmVekW/bxdpiHf9miTwJUxDHN+uGp1pes2d6IzMjMLVda3XCDtB5IKpN6bRh247VQPhY7Rf7Om9EVbioz8seNRifBkqzUJdPvYsveFhd13kSHclDpIbROo3V+cWX45IdMLdDCV/LnNL7SA9290QGd0ceXygqpNLILoZpdIgzHplHTGm/ChZCNYtZcakQ5pGfsNG8nx8FqobTUCndZ+Rj8UEixQssO4P+mwXogWZXReTeULx2tvvtvG09otGfrMWtV0SoNWpoxwdc3+4M0seS1mbBQ93TogcGPQkbfyMl8nAsQK3UbsDpv1+LSfeKrkuvFCpUOw7KpxPLTqHL2dGbwDPAFTFH/IyIR0md707YwdN97bmGJpsczCsf8kAczxXOBDriU/DmRzTJyC7E/VeJU2X4EWtkwOqi+mF9sbAIkclkvkzW7gJk9QBMEGPID5xVeuQ7EyhS1kmTus0+hivky9ITKb87ghyxP7ZaQXu8tR06BSpV/p5JETir9VaoEQdu64Oksa8znHyoFtdb0HA/gkm8N+AGZZygUWWX5gkAF+/fTQyg1ILLbG1meWKu1ku5mqgU+MH+LuhaM6upn9NMy0o4ZfluxfO13tjeN0mLcgcgftco/tctRb/ci1Q4juvCpfhkz0GPpfbvy1ivFDGVcKGHwQ6am+g3AfXcKdu+tsFJl1XfluyCSzBI3XgMSqUfFSBAEtlkTEemIwY9CfNRKvmhVebJEZZUAyCsjDqVf1DAl3hnV3WHjsQxjDkxkcmZYYFRWCkyQXivo3zJe0ee1Ps2h8isy+CHVmWGGMz0eLXv7mnrcA0xwik1Hy4YIve7rZwwaaxVK3TPl/JTOv7tWlVE9K7mhUrExkhmCFjlyfExuY6VSQY3yX+v7qgCgesUIQ44tiWCt31wJBj8KhVKlQYrDZ3PR58OVuKjSuJlAbySSAzC33eeqON6nLB2q7o580PJaVPI7soxwFcglbbPZeDGpgGeQ3L32926v78m65Hh96sJaobV5MfhRyCpTAsuhtOXq6Llc/LnlpEqp8U/NFn9frWAex5Uw5sf5dqB6gyDvNbrZlnLB6CQEjUDqSGZ4mqyl4P52ocWsEx54s9VH2ab0nmW1y9ZiD+1Ul56Tj+9WHzE6GbrgVNcKWeza1k2wV1akCvQ8WPn8WTfl3h05l2t0EkglujZmS9iBla91sg5mM3Pw9jOYIfAa8f0GpOcUGJ0MXfDJj0KlLFE0JaViILVb0Q2fr0ZmXpH7h0llRl0SnHwkcJY4dyrVDjLzilBSGlwXfnB9G9JTqFRhvE71bbGrR8sxZaES+AAMfhQLlYIjEPtTc/Dx4gOqj6MJVPKpbN2PyexBpJzaN/xX/kqWeFxVD+vlGBYIPMnyAslm3uo3wXpf06M+x6vdHNjtTaFgfPKj1sU58JNVAICsS0WYcGMrlfaqLbVbgYItewiCYFhl7a/tpww5rlKWeKpiBSpeTL9uSJG87eZjGfh98wkUFJeqdnx3zCHkjkFxaAm2uoLZMfhRKBgzrNpfadeprIA/K+UGYO7KZRBmED+06kbw+PTtPt9nXSFwVuv6oRdBAP7zdZLGx+C5J0+aL/CtgA3S7mzM2a54rZsHu71RaLO5/ym9Bi1lS+eyTk5LnpQykhVWuNxdeV8hs1GSJbXoLsz2gdAV7MWjGo1fuqzRp/0hSAIGPwqx25t/wdraEZzfSjlzP4nTH4PU4OUvp0sp+mw2m2gOafXqwkCS5Ds9qu+RrOIPDZef4FN3shoGPwoFab3eNAKd7c3YnyW0M4WulX2nmy5vwKQ2f3kqtK90kmt/Wo7RSVCFe743Qz0o0DSYIe2A9PsX73PqYPCjEFt1LU7Bzyep21vguzclSd3xgu1Lk0/8vb2TUlEJ1ifjoYq/pnXxUgwdDH4U4sViToE2jnC2N4vh+VUFuyqKs8r1ywDKPKz2U/hKrtL7oZ75MtAnIlp2ByTzYvCjkNUKOims9ljVfBW3K+kJxSeDofeNfTNf/vSkJJ/qshaO9ofQRDDeH8g3q90/Q91Lc66s+WXkbye1rGCZog4GPwoF44QHZvpKeq91oE5F9coJdJntTdYeJIx1MtHvRESBsdnMFx4XlWi3phFZn1h+5e3IPzXOkZEBWrkws5VUgWPwo1Apr3i/jDhFko9p0muZgQ3piflNnL+KhkmLD6+kpve3jdIXgSWywtOuYCnjrHCurYCLnCoWJFeUEzNdXIHO9mYWLikz0XkNlHnPtHmZOX+qIVgqFWL0+G6CoF8OcT/O50sPolKUZzUg5XyePgkiSwrWS97IskzybG8BVCQuFZbI/kywY/CjUDDf+JVw7q5m6jq/4P6n2hMeOK/CKf1zfqfYNXG+0zNtzr+XqfMZKfbGvL1GJyGonLyQhw8XHzA6GUFHrfLPxEW8B0Ewf1c4MzXq6q3FKwtU2U8wnUN2e1MoGMf8qMHo2Yf0uEb1Ho9EpBUlWVmvy6DQhONQ/JVyej3TCeQoeWwNJhWZvSZklqqaWdIRCCun3R2DH4WCKC9oRutzJPYYWI/fRVKXPOdNZFQSrV3IWDrxIcl8Q+5DBxtRgovVfk5f9xpr34fk0/q3O5tTgOJS8UYcybO98f6qCgY/CgXnhAfmKb2lVAzULAzMUgn0VxDabAwxSD1KrqFzFwtUTIkX5rgsNWH0U3JSl9yfMye/CAXFnk/hgjjLa8IK52vwp6vxc9Jxo5MRsOJSAQM+XomTF6w/JpDBj0LBeeMKxu/khaLuPsYVt0GZ7YKUWQJqX5Tkp8enb5d3rMAPRRRUsi4Voc2ERej+zjKjkyKL1BLNavcpK6TX6PvJgbSLeGPeHkPToAYGPwoVFpuvH7oZqBUYWDG4dJ3jwHlAvvkrwf6Y7fcwWXIoxKh1RetVMli/BAou209kAgDOXSw0NiEyuRe7NpvxZbHVbwWSZ3szwUWcX2T9ei+DH4UKgjL4UX516VlJFgsqJH8DBbO9yR7zEyJC8TsTiTHbtRDgEEQygBmyjhkq2mQ+ZsibSjH4UYhPfszJLBdnoJUfs6Tf7Fwqcya9Ues5QNWs58CZBZKoK5vNxuudTEnyIHzB+LKH5QrJweBHITNOv2o2Zmv9VIu0yRhCTyh+Z7MI9FozuuJiVWrkdTWekgdrGRvszH7ZhVq2MrIclHoNmz3PWAWDH4WKGfxoSu9JBdQel6Nl9z+zjb8xAm8ErgJdyZtZSRsMKilQQZF1WK6QSTH4IQ9q3LCdg5ZQrgAE2xoeUu5lGbn6Dd7lvdXVF8sPGZ0EcsKgksxPnUwaDHk9GL4DScPghzSnpECRNKmAksLbLTbRcnyGnDiIT3WkscJ5CoZZ/tQUyC9m1nPoL1Xmz51kVlbKO0HWxkchgMGPQsHWsq8WK1RK9RDoeeDZIzJesF2Hzncr3rq0oecEJySd2X8V6VNd88JVA4MfCm0alIhmL2StZseJTAz/Yo2ELXlTICLrCJZ6rBlme1NDMHwHPQRD43Y5oxNApJRRXWJYTurjzm/X41KR+EB+K7SCsSXYlfl/sSuUplWv7yo1jzEnas+sXTS15l4fPpCWg7jKkcYkxoKCIJ6wFD75USgYImAtqFUptfpsb4GSkgojcp4R2d1b4APw+lMLz6I2eF4pVA34eBVWHjir3wH91BUk3VMtcMGao4ZifQx+KCjpUYh5O4RNwjaB7ptc8TyRmUkph6zw9JKkC6onvV6+itT769ztp9VLi0JB9KuYxoXcQvznq3WYvjHF6KTIxuBHoWC8canxjZxb5JUUOnq37Ktx45ISFAW8EyKLs1LW1iOtxj29DL57lxlY4emBMzXS660aZLFTYbikw+eRnp1vdDIk+3TpQWw+fgHPz9pldFJkY/BDQUlyTKrg/i/lo5PXHkOv95fjVOalwA9EllZqgRoAq8GhyAIZM8iZpZu1V16SF4RtvoZbc+gc7vpuPbq8vdT3hiY69xcLio1OQsAY/JDlKXpao/H9f++ZbBw/n4eJ8/dqeyAyradn7jA6CX6ZvRpsVGVL8YQHJqqoAKaqNwUts/3miigsGKw2JtPI327toXPGHTwEMfghTTh3Bwyme0Ggikvk3QTM2m/cbOlyvreatdKx5fgFo5NABtGr7hfYcUx6wVic6Z/maMBb/jPX3cLceK70xamuSXNKLupAx1QFWumwyo1LgGC5vuVkXtbI9foLtktMr+8zb+dpFBSV6nQ0c1GrgYjlu/6MPOdSj82yWh0MfkgTej7uVjNgMcuTDSuME6HgoWd2C6Wbt1nKE7mUpLqopBRjp21TLS1WE0xBS2GJeAAr9h3F8nownQutWa2LoNUx+FEolG7kRgimAkHOQ6zfN5/wvS/mPLKo4LmirUcQgDHTtqJO1Wjc1qmuJscoYcuNZL7uCWbtxivGDLO9+TtdwVSXIOUY/CgUjJeTGoWunlOAix0q0MPLunFr+BW3pWRqt/MgEozXnxHMXi/IvlRkyHEVT3hgskaKHScz8c/OMwDgM/gxV6qJ/FOjCDMy4JRaZwrG5VWMwAkPyPJEH8EHUBI+/+dOXPfuchkHlp4etVm1Ow1RIH7dYM5F9J6Ysd3nKvZ6XadS60OFxVe6MW0+lqFRashKAsmhog2OIiGzmZ62MGggZwx+FOLlZDy1KhjTN/nuakbmfkLAazFwrBeI85fdd5zMwqgfN+qSFl8kD5Z2+qHfX7jf+/6UJogUM3NZKyYYGuSMnfDAOufPQkn1isGPQkGQB7QXDFeKQlrcGILhZkNEyrGIJT255zcz5D+O+SE5GPyQqZn6UbWJkxYyeEMjExg7bavRSVAVi7bQIyU4MPPt2Op4J9MXgx8ytUBba3QppGXNjWBTdfCz2QZSEwUjqVfZvMuTCBDJ4Z6/8otKDEnHs3/sQJ8PV+JSoe/jy70ds21Kfbzzq4PBD1me+EBLAxKiI3Z5IzUF+/USKMWnxaLn1aLJNoVAz92W4xlo/vICvDlvDwB9n7L8vvkkjp7Lxb/JgQXx3qe6Nk9OktKLxApPtqyQRitg8EMeQuqpgpKvKuOzAgQWWkSkiUDKFpZH5vLOv/sAAN+vOQqADRJqk9KLhOc8dDD4odCmQWHnrZB1fjnlfB6+X30EeYXF6icghPBeRRRYpc3XZxgXhSbpswaquz8ivXGRU4U4g4h/AoCiklK/24WSfh+tRGFJKU5lXsKrw1oFthNmPRemnhzD5PQ8dT9cbtkm/fEKIXeB1GFY7SGr45Mf0sXrf+8J6HPBUqG1weZSwSy8HAxuOGKthQYHf7oaO05kGp0MIl0ER+kjzlfRyrqtPt5dsM/oJKjCWzDEIEkGnitdMfhRKFgq51qyAfhl/fGAPmvFJ2tiecJMAz+VOHouF/f+sMHoZBDpQulVGxxXPWllx8kso5PgQkl+FbtV63nfs3pVzEplhf13tWD1zIHBj0JWrJzrLdTOULDniex884xTCvJTrRueR2OZ7fxbvB5JAdpy/EJAnzND4KHGNWTk95B66JCakEpDDH7I8qzyVIVFFhFRcCsstu741t82pgT8WTMEQL6USqgmmK0RQsz+tBzF+/C3npNUZv/NfWHwQx6snKH15O006VV+WqCcJiIJzFbmsmwhNVghmAhFxzNyFX1+7aHzWH/kvEqpMYbs4GfVqlUYNmwYateuDZvNhjlz5ri8f99998Fms7n8GzRokMs2GRkZGDFiBGJiYlClShU8+OCDuHjxoqIvQqFLdJFTHW7fLNcpWCzZm2Z0Ekh32kRcrPCGJvExP/oxWwOCXFa7bO78dr3RSVBEdvCTm5uLdu3aYdKkSV63GTRoEM6cOeP499tvv7m8P2LECOzevRuLFy/GvHnzsGrVKjz88MPyU09Bz4oTSvDmrx/nINd6OUWaPaezjU4CmZzUcYauxan3zwR6Lc3aehKL9qQG+Gkygqa3K43vhcUlpZi0/BC2pQQ2VslMgn2ssNnIXudn8ODBGDx4sM9tIiMjkZCQIPre3r17sWDBAmzatAmdO3cGAHz++ecYMmQIPvjgA9SuXVtukiiIBVog6DEoMFgr22QuQz5bbXQSKEBmq9BoWWalZuXjyd93aHiE4GayrKIKrXtg/LYxBe8v3A8AGNevqeL9WbCtlQKkyZifFStWIC4uDs2aNcN///tfnD9/pW9gUlISqlSp4gh8AKBfv34ICwvDhg3iU+gWFBQgOzvb5Z9ZBGF5ZQmrDpzFpmPmXCNHjwI0GG+UwayopBRL96Yh61KR0UkhGZbuTTc6CRryXlAFUrxkXioMPCnkgUW8fyv2n1V1f7yvhg7ZT378GTRoEG655RY0bNgQhw8fxgsvvIDBgwcjKSkJ4eHhSE1NRVxcnGsiypVDtWrVkJoq/rh84sSJeO2119ROKulE7QLl/MUCjPxxIwDg6MQhoq1LppwBjs1KqrPKzeqLZYfw6dKDaFkrxuikkAx6LEIpQHk+lto9WPDxF5HVLN0XzI0TpCXVg58777zT8d9t2rRB27Zt0bhxY6xYsQJ9+/YNaJ/jx4/Hk08+6fg7OzsbdevWVZxWNbA6q7/zueZuYZRTkQk0HrLZrFPx15JVzsFf208BAPacMc9Ta9JOcUkpclWaTlYKtbvX8b6mP/dfMBh+A6uUzxR6NJ/qulGjRqhRowYOHToEAEhISEB6umu0XlxcjIyMDK/jhCIjIxETE+PyzyyC8dpWu9DV8oGHGQtXsadOC3eLz6ZlxvQTKfHB5T74oWz4pLVo99oinM7M97utUZVclj2kNWYx6Xiu9KV58HPy5EmcP38etWrVAgAkJiYiMzMTW7ZscWyzbNkylJaWomvXrlonhwyg5CYr1p3D/ZVQXPGYFZcyztmDvQrN4Yvlh4xOguF2X56hb+Fu88585usJOosX/ZltcgzSF39+fcnu9nbx4kXHUxwAOHr0KLZv345q1aqhWrVqeO2113DrrbciISEBhw8fxrPPPosmTZpg4MCBAIAWLVpg0KBBeOihh/D111+jqKgIY8eOxZ133smZ3siDvxuCAPFKry6zvalQ22aFnSh4Sa3PKC0HTmf5f8IEBEdXqlCh22LZQVLpVuOez/tx6JD95Gfz5s3o0KEDOnToAAB48skn0aFDB7zyyisIDw/Hzp07ceONN+Lqq6/Ggw8+iE6dOmH16tWIjIx07OPXX39F8+bN0bdvXwwZMgTXXXcdvv32W/W+FSlipbV1vAVHuixyGix3DQvjT0BmJqUk1XchSGllu3XuAGRmet4jS1U4Fu8noUP2k5/evXv7zNALFy70u49q1aph2rRpcg9NOrFapd50yfWSHjUrFBaKTzVltp+eKFSFYvdjNaVlFxidBNXpWT5/uvSgjkcjq9N8zA+RlgSYdFprEWoXzlb53kShSsoVaoN+DThaNmyxPFLmVOYll7/NGEqy0Y2cma7hWQYGPwpZ+ccnZYzsHsh8V8Yq92IrdSUlIhIj977D+xSZFYMf8qB2RU3LFkFBMF93C5b3+uG5JqsLljxstnLY6qyWLxjoKGPFJ6dWbtNj8KOQlX98KxArDpzPuRULDFKPczceXotERObBu7N0DB71xeBHIWZYcayIkt54LRL5xu6XpCsWymRSsmd7I5JCtTLPz34EgYEWEZlTSan/gtDm+B/zYJU1dFhtdlctbTyWYXQSSCd88kOWZ7ayW7+Zm/Q5jlUwCCbyjZcI6clqt6jj5/OMTgLphMEPERGRQfSsIEo9FoMkIgpmDH5IE9q2wl/Z+Y9rjyLzUqGWByMi8ktJ9yE+xaVgxHwtnZ6naunedB2PZk4c80Om5m82t/cW7NcpJWRG+1JzHP/NqXbJimxQr+JzIkOdbjuss5IYdi0ODu8vZL2JT34U4lTL4kK5xUdOnuDNJDTwZyY9pGbnG50ECmK+7utib7F+RGbF4Ic8nMq8ZHQSfJIUMOhQ5npLhpzAT0mQmJNfHPiHgxBvtGRFeuZaqUG4DZwWm6RT415IpCcGPwqxq41/SgpAMxee3pKmV51h4Cer9DkQEfkVaFm1LSVT1XT4JKNskjuGibGSNalxixXAp9tkLQx+FGJrszir3AiN/v0CPU/MdZ7YEEFWlJKRp1p5qVZjUSC7MXNDFalDbj5lniCzYvBDwUmHejAf9RMRUaiQe2/jrVAGp5OVwvWGNMfgh0Ka0U8LAg2U+IyDKHiYrcGE5QvJZbIsbGk9319udBIkMVu5JQeDH9KElt0vJN2YDbwoLVweWBtrbGQgM1z3fsfpaJhIq3R1Jv0oWfsq1BjdBT/UMPghMlCgFYZDZy+qm5BgwHsHkSo45ofkYNwbmqzc4MHghzThfFHwpqi+I2dzjU4CEVmNhSsrIcdiN05mLbISBj8KWax8shyeX5LMzHdfM6eNyE0g2dXKrcCkjAAvi5zy/k0mxeCHNKf2TVHNxffYz5aI1GCF8Q1GT/BCJmT+bEukOgY/CrG1S5xzPcACdQIiIsOodR/JulSkyn5YZJuAxSoXeYXFHq+xcVE61pP0xeBHIWZYbWldeGrREmqFFmAiMg81ioxNxzLw8C9blO+IyAtv8VhBcQmOi6xNc/5iocYpCh6sNeiLwQ9pwmKNVqpiIUZEevt82SG/20htTArh4ts8TNiI5i1JJzIuib5+PpfBD5kTgx+iAIVygEdEroyuqkp54swxP6QF3gvJahj8kCaST2Vptm+Ws0RE2jE6kAt1F3ILseOkdvfQQBWWlGLC3N0er/OeTFZTzugEUHD6ffNJx3/vOZMd8H60fvKvyZgi1hwMYeYbsJnTRkTm8t7C/bod61JRieRtf0k6jl0aNmyStZiwZ6ZkfPJDpmbFa4sz3BCR3qRURKR2T2KwbqxzFwt0O1ZxqfT71ckLnpMaANa8T5sNJ0rSF4MfhZhftcWbMBFZAe8FpBar3fesll5Sh5XHejH4IVMLtD4h9XMcABw81Fz8lkhPamRdNZ84B7KnP7ee9L8RSWK1ooxlL1kNgx+FeM2TOzktwAy+1MNuA2RVamRdo7P/NyuPGJuAIBJmsYqFtVJrTla8exld5ijB4EchK//4wcwqhTHHBxGR2Vil/AxWZo19vD3h2XEyU9+EECnE4IfMTePoksEHEQUDNsQFD6v1CDh8NtfoJJABLuRZdxFbBj9kOWa/x7PbmzHY75yMlJNfZOjxlSwp4M7sZWzQM2lRxq7F5GzZvnSjkxAwBj8UlPQoor0FLrw9EIWeTm8uweZjGYYdP+uS/+DLpHVqcmPW34kNTNphXKkvBj8U0pQ8efHWZa6UpRi5YaUhNHyx/JDRSVAFc6uxWF4QaYvBD5maWBih1qP30lIBv21KUWVfzj5efED1fZK1sbsIEUkVZtLYJyPXumM8iJwx+KGgJOXeMX7WLmxLyVRwDPGj7EvNCXifRGRdgca4c3ecVjchCjFUN5ZJYx+ioMHgh0xNrDIh5cYsZZsZm0/ITQ5RQDgbEpkBgxprYLc3Im0x+CGioMDqAhmNwQWpgWUZkbYY/BAREZEDK98G4w9ApCkGP2Q5HDtORGZk9okt/thyUtJ25v4WwY/rvxFpi8EPBaU5204ZnQQiIiLZOOSHSFsMfsjUxFpSi0tL/X5upsQWTiWKJKSDiIjIXWmp9+drjH2ItMXgh0zN/fYwbUMKBn2y2pC0uCsuYecQIgo+rHxrb37yGa/vhfHRD5GmGPyQpbwwe5fRSXDg/YmInJl8yI9kQfI1TO3YOe/T35/JztcxJUShh8EPmVqwxxcMoNTDc0lEwWDVgbNGJ4EoqDH4IVMzcwukGnXtYGkpNoMTGZeMTgKFOMHUJRaZCRcyJTIOgx+iAB07n2d0EsiJmbpEElkZq+VEFMwY/Chk9nUdSBsnMtQJfHadysLeM9mq7IuIjBUst4Mg+RpERKIY/JCpmbUykabigNSRP25UbV9ERGR+G45mGJ0EopDF4IdMzaSxD8LD1OsYcjanQLV9EZFxBMH3LF5EdpzUgMg4DH7I1JxDDDN1MSwfzkuHiDw9PXOH0UlQjGN+iCiYsQZHpvbd6iOO/+770UoDU+JKzSc/RBQcBAjIvFRkdDIUM08zExGR+hj8kKmdyboytubIWfN0JynH4IeIRJjpCTUREXli8EMUgBX72V+biFwx7iEiMj8GP0QBeGv+XqOTQEQmFAyLV1r/GxARecfgh4iISAXB8uAnWL4HEZEYBj8K8SZBRETBJhieYBERiWHwQ0REpJJgCRk4cQMRBSsGP0RERGoIknghWAI4IiIx5YxOABERUTDYeCzD6CSoojRIgjgiIjF88kNEREQOpezyRkRBjMEPERERERGFBAY/CjWqWdHoJBAREamKs70RUbBi8KPQh7e1NzoJREREqikVBKw6cNboZBARaYLBj0IJsVFGJ4GIiEg1Kxn4EFEQY/BDREREDsfP5xmdBCIizTD4ISIiIiKikMDgh4iIiIiIQoLs4GfVqlUYNmwYateuDZvNhjlz5ri8LwgCXnnlFdSqVQvR0dHo168fDh486LJNRkYGRowYgZiYGFSpUgUPPvggLl68qOiLEBERERER+SI7+MnNzUW7du0wadIk0fffe+89fPbZZ/j666+xYcMGVKxYEQMHDkR+fr5jmxEjRmD37t1YvHgx5s2bh1WrVuHhhx8O/FsQERERERH5UU7uBwYPHozBgweLvicIAj755BO89NJLGD58OADg559/Rnx8PObMmYM777wTe/fuxYIFC7Bp0yZ07twZAPD5559jyJAh+OCDD1C7dm0FX4eIiIiIiEicqmN+jh49itTUVPTr18/xWmxsLLp27YqkpCQAQFJSEqpUqeIIfACgX79+CAsLw4YNG0T3W1BQgOzsbJd/REREREREcqga/KSmpgIA4uPjXV6Pj493vJeamoq4uDiX98uVK4dq1ao5tnE3ceJExMbGOv7VrVtXzWQTEREREVEIsMRsb+PHj0dWVpbj34kTJ4xOEhERERERWYyqwU9CQgIAIC0tzeX1tLQ0x3sJCQlIT093eb+4uBgZGRmObdxFRkYiJibG5R8REREREZEcqgY/DRs2REJCApYuXep4LTs7Gxs2bEBiYiIAIDExEZmZmdiyZYtjm2XLlqG0tBRdu3ZVMzlEREREREQOsmd7u3jxIg4dOuT4++jRo9i+fTuqVauGevXqYdy4cXjzzTfRtGlTNGzYEC+//DJq166Nm266CQDQokULDBo0CA899BC+/vprFBUVYezYsbjzzjs50xsREREREWlGdvCzefNmXH/99Y6/n3zySQDAqFGjMGXKFDz77LPIzc3Fww8/jMzMTFx33XVYsGABoqKiHJ/59ddfMXbsWPTt2xdhYWG49dZb8dlnn6nwdYiIiIiIiMTZBEEQjE6EXNnZ2YiNjUVWVpYpxv80eP4fo5NARERERKS7Y+8MNToJsmIDS8z2RkREREREpBSDHyIiIiIiCgkMfoiIiIiIKCQw+CEiIiIiopDA4IeIiIiIiEICgx8iIiIiIgoJDH6IiIiIiCgkMPghIiIiIqKQwOCHiIiIiIhCAoMfIiIiIiIKCQx+iIiIiIgoJDD4ISIiIiKikMDgR2XVKkYYnQQiIiIiIhLB4IeIiIiIiEICgx8iIiIiIgoJDH5UZjM6AUREREREJIrBj8oEoxNARERERESiGPwQEREREVFIYPCjMnZ7IyIiIiIyJwY/Kosox1NKRERERGRGrKmr7J1b2xqdBCIiIiIiEsHgR2W9rq5pdBKIiIiIiDT37b2djE6CbAx+iIiIiIhItmsbVzc6CbIx+CGigPRuxqecRBQ6msVXNjoJRKZTPsx6oYT1UkxEptChblWjk0BEpJseTWsYnQQi0wkPs948xwx+iCgg4Sw9iCiE2KxXxyPSXDkGP0QUKmxuNYE6VaMNSgkRkfZGJjYwOglEphPG4IeIQkWYW/DToynHABFR8GIDD1FwYPBDRAFxb+xhlxAKdndeU9foJBARkUIMfogoIO5Pfii4Va1Q3ugkGO7exPpGJyHk3NXFPAGne1dfIrImBj9EFBCt6gFD2iRos2NSJCaawY8gGJ0Cc2hbJ1bHY1XR7Vhq+G/vxkYngYj8YPBDRAFxf/KjViz0zMDmKu2J1BShwfR+S5/qpWnL/tC2tTTbdyhrEldJt2NZbSx114bVjE4CEfnB4MdCel3NAeVkHlqM+RnRtZ5qQRSpK6Kc+rcLrX/rJ/pdrer++ORHf+xqRkRqY/BjId0aVzc6Cbr4Y3Si0UkgCbRY2Oytm9uovk9SRxUNxvzYbDaUlGoXUahZb+7XIh4CGP3oLdyCwQ9nhSMyNwY/FjKqWwPc0vEq1fZ3V5d6qu1LTZ0bsNuAFbi3yMZyTEhQq14xEm/d3Brv3dpWtX3aAMzZflq1/TmLLh+u6v7G9WsKDeM0S7Hp+Hw2zGK1FAHA96M6G50MIvLBYsWKNVwdr01/6Kjy4fjo9vb4a0x3VfYXVzlSlf14Uz7cPC12Fmw8ND33Jz+je6kz0Je/lXmN6Foft6s43bPNBhQWl6q2P2df3dNR9Sq6wH5vAPS9Rq04q2SV6Aijk6Cq6Q9fa3QSiFTF4EcDWvSNd9aubhU80quRpsdQQ/WK2gZXcljv9ml+7r3eKkfxyQ/Jo+UTBC26ZbaoFaP6Pq1Iz/LUasGPDcHXgFO1QnAFc0QMfjSgR2Hdv0W84n1o3YYZbDcAcqVn1xcKTlqWEeE2m+qD5aNU7kpHvlWKLGea4EdqMoLx2WAoj3W7rkkNo5NAGmDwowE9ZqdRZVyMxl04zNRDhDMGaYCnVFfexlTxaYQ4XvPWFx5mQ69m5pjl9Nt7pY/jCbacV6pNz1RLaF+3itFJIA0w+NFAlMbd3tSiRmwy0iIrnptlrYiZnMnOLz5RElcpshxWPN0bzw5q5vL6v4/30D0trw5rqcp+tIxPqlWMUJST3rnFdeZBMzXmGE3PuLJSZDn9DuZDrdgoo5NgmFB+8mO2NpR+KvT6UZNVZ+e1Ri3dYhJCqJA0WblgetcE0Ux2/O31FRYGNKhREQ90b6jpcapVFO/f71z9ua2zOpMeaPl0pllCZUWfv9NtNsxQrgC606uBwpITTAiwXOH42V0dfL5vxZ+BtDftoa6WnZ2XwY8GrFJQaJ1O58rCzR3Um6I7EN5u1movghhKxCqu915rjSeBUg1unWB0Ehzs651o3RLZXec+7ldV0W5NFH/nqkO9KpodO5TUqBT8A+LN9gTAn4hw6dW7G9vV1jAl2vrnses0P0ajGhU1P4YlWaSuK4bBjwaskB/e+09b1VoyH+kpPvOcc3Bl+H3DSwJqajzdd6DaWaCfsdgpnXBjK9zVpa6iIEjNSoac6bcri3SvMdNT3LDLfTfVbHU3uhumDd6fNAFAq9rqjWe6tWMdj9di/MxQaKZKvZm6XZW6tZz5+g2VMNO9VM51Z4auu2ueu161fbn/3lpb9lQvydu2qh2Lchr2axcEID7GPNeemYJwM12fcjH4UYHWU1tr4XaJ3VaeHuD7yYjNZsPQtrX87qfEKo/DTKDNVbGY+Yi6ldKBrdTvJyxWCIeH2TDxlraqLsarxA0S8qZdpSjP4MdMq8trkZY2V8V6vKZnVyN/X0nNr/xQT/ndBZc+2dvx30YXYb+rXCYoIVaeP9aniQEp8W7BOHXHwmldFDwzsJn/jWSIk1hhf/kG/+P39M775WSubLtgXE+NUmK+7q7muSMZXyYqYb1auwVYsp+yF+X9PDq/qko02tapgj//m+g5QBhA66vKWm77tzR2kJ6ZCgx/6lWvoHpAPX5wC1X350+wXAFarBUTKHsXLaWVsB5Nr3RrE9uXnlML22DzWrlIiIlS3ILu/PlA9iUWEGvhFQkV0LrVKmiejqFtpDUWlJS6/mY2qDet+NyxTot4KyhImifE4O2b2/jfUAOBnAo53dTU1L6uZwOIO7OX503itFlY3s5EbWAe1LxH3dLxKmx5qZ/k7c0WGMrB4EcDVskOvmK03x66FrMe7eY3+BnZrax7U6f61RAv0i3jrzHXYeeEAYZ32ZBSeH19TyfMf0z/mbP0oMXTSV/nVEn8b1TbgdjXCTNB8PP84Oa4q0s9vCShgizFo72vtNCLBQR6Psm22bz/3p/d1UH1Sod7JalGpSvdXj++o53H9nr9+uXCjc9nAFBdYjc/LWdgq19dvfEVd3et538jiaSv8xNYAWZUBbtjvap+t9G7QdfXOfxqREcdU2K+pxvu+cTbLeqloS2w7vk+svYdER6G6pXMORRAbQx+TEbPAeO+runExtXRsV5Vv60KkeWcFv0T2WF4mA0xUeUNL0CktPomNq6OliqOMQiYBufK1401WpOFG+V/iTsud8VUs3+5nF2JtVxr2e1N6tPQ0b0aY+ItbRzjU9RMkdjl7a/BQ002eP+NbDbl39X557PZgJpuN/bxQ5o7/ttfXjFZHUiS8uE2vHtrG8mNOlKvvQoR4ejTPM7lNS0uFbOc84jwMDSUMejdHKGsNFKe2JnldwCA3s3i/G/kRaBP18z05Me5LlMr1vvT8W6Na6C2hpPJAOYLDOVg8KMCj6ynIEP0aFoDOycMUJIcyaRkXDmPVN1ba8x0YZip8PJH70fJ0RGBBT++AspSJU9+Av+o6rR88nNNA/8trloTq/hEeHkKoUnrr7/Tq+KFa4Nndy3nJz9iX89K5YYYG2y445p6kht15Fy3nepfyb8CBE0H+c8Z093/RhraOWGAa0MfgDiTTpajBb0H/PsqapRckzKHEpWlJfDDAQDeurm1wj24GuI0jrV6pQiv5yOQ7yr33JrpXi0Xgx8NKK28+puByK62Dl3JlPUnNc+l4e1bxERf6b4RVd4cl0OorqZtL3jVrGTLuRbFCv6aGs72FR7I3UmC+BjflTLncyJ2eeva7Q02r7+QIKjfgv6805Med2Iz+zkHh2oHf789dK2q+1NDqcTop3ezOI+xYWoFis77sZ/z9jJmv6xTNRrv/aetKmm5qko0vr6nI6JEno63qCUeUAqCtutXGUHL6ejlUjImMdAAvVvjwKf/V7tRYFjbWni0d2M0rlkRn97pvWtwYOdJ3mesPL7dHLU9CkhliUGSN1IqhnKCH/e+2o+baA0dbzejihHlMOvRbvhrTHePlj09iE1prdaTH6nBXKAFmJIxP0ue7In7ujUQ3Z+v+lfLWjGatbi6f59bOlyFO65Rb8yAO/fpWRMbVcdrN7by+zmxvGzvMvhIr0a4uYPnlM5y9nVDW/9rfkgpFv4e63/9DV/liyAIAVeoxdYVs9nKxjf833Xis75FlQ9HSy8VWkD9ppz61a9MYKBVVfmlG+RNdCIl8L06vhK6N6nhkgfUruDZl0+QMhOZs0qR5bDmuT6SZzP1Z+3zfTCotfQZI71RY8r2/5lsNj0t+brWnPOdv9lo3QVanjzUw3M5DyWNRG3r+J9kwhubzYZnBzXH0qd6o3HNSvjo9vai2wXSbs0nPxQapHR7k3E1NK5ZCZPvvwZ/j70OK5/pbZkFLzvWq2rIujqtr4rBbw919XhdLHAYoOFseYEWYL5aN/2NHWgSV9lra663YGxUYn1Mf+Ra/Pp/nudMCx/d0V7TpyDuXep+e/hajHILCP154fKTjLdubo25Y7vj2YHen2zY+auotqtbBeMH+95PhQj/A97b1In1O04iPMzm9fcWEFhQsOa56/HxHe0BuN/My/4o7/U3FXRd90tORePNm+R3nUka3wcjExuIvlfRS1dXKQ0LHeqWdXdzHxitZvjz/ODm2PhiX9zZ5Urjg5S1XMS2eKxvU7SqHYMfRnVWMYW+y033dDwiY70xb54a0AwPdJc/XbtUSirkenK+7zSNryzvswEcTxDKAp0KbteMlCe3g1qJL5Kt5gxtQ7zM0BjI08fgel7pG4MfDUhtSE8w0cJZdrd0vMplvYF2EqbBdHZ9szi0qRPr8RTI23WoxeJ4YgWL14vawKu9U72qopVIsewj1pIth68Kr7/8KmVmJ/d1fQJ7mFSWRm8ffbhXY8RElUfT+MoYmeg9sH7C6YmjrAkPVM4M91zr+6lRoJMpOH/K3he/XHgY2tapIummKuXJopozbvlSLsyGR68va9F2noIbKFuDKJAbuLcJG/ztShD0X8zRcWw/79/VxTUvtawVg+ua+O6KUyvWe1el//b2rIwPa1db1vVyU3vXJ4SqdXtDWcUtrrLr/VHuzFV2T/a/Gv881sNljJIa5Dwxt0L3oDmPio+r+vTO9vomBL7Pl3MRJ/e0BlKe2MtL90+6T57ibuOLffHVPeIz0+mxfpyUbm+3d3btJSA7WebP1l4x+FGBe4aRckHWrRaNpPF98N1IdVuj5HBOZvOEynikZyN8dHt7jLn+yuP1JnGVMfvRbqquFu2SBg1uCqKFtQmbNOzf3H22NbFTovQsuVd4O15eM6bseL737m1gvvMpda+4Kum6560C6tzv3FfB/ni/pgEdV+n9yL2bob/hE9UqKuu26o2VhhuEh9lwY7vaWPPc9fj0zg4u71WMLBfQZev8GbHKjtIi5/O7OvjfSAI5kwu4fwul5YH7mkHVK0bg3VvbSNpvlQpl+bacU5ApQPBbsUxsVB2jfDRa+CNl0c4vvVQ2geAbh6M2b5O7SB2DrBdvv6PWT67k5p+o8uFeP+OrkWryfdd4NCwEIpCHS41quC4F0K+F75n1uM4PyVa3agXYbDbUcBtQLWe9BzUz3oJxPTF+iHj/8A71qqJOVWUL7OnZ8CW2OrS3s2rk7dB+Tjxn9/M8WYGcP19PMr71EXT/8mAXTH/4yiN9KZU0j/QFkl7HhAee7y17qpfL31K7f8hJhtK8sH58X9dj+/nRKkWaq1JhBHtXpjpVK4jerAOpr3o76zbH++JbRJUP93md2d8b1q62125jcihp+HEfD+XcmCGF+/jGoW1roUJEOUnlzJgAx55c17QGXhvuv/ueki5BPZrW9Pqenkt2Mc6Sr5nMLmzupOTdgH4WQfyz/n5jsSUkhl6eqU3syavd9c3j8MmdyhtY5E548FifJrjXrXHC19NjwFwz+srF4EcD3m6uzt1x7Pmy2Klm2bl+VfT0UXh7HCfAjGe/uZjhUbwWrXHlRQJI5+OMdup/bWRroD2fuHfTEQs2lHbHscGG2Ogrle0aPh7Z92haE9c2qu74O8wG0XE2zqfOPc1SUuvt1It91UY1XVuk6lWvgMpR0hZanPZQV0lr6kjNC7d1qoNpIuejSgXXhgz3aZXdJTau7vN9b+Rk2UY1A+2+JhKAS/zko70bY97/yiY78JdWfxVdbwF88wRpFSXRp0BuX+TZQc1wz7X1JAxKv/LBiios8umcz52vzUBMfzgRy57qhblju+OaBlUx69FuPrd3P+/+AkOgrOL27b2dRJ8EqNllVMp4skAomSVMDrHZ3kxwqzW1Lg2qoZJTee7tdHn26pDb7+3Kfz7eN7AeAlKJdb/9/M4O2PhiX0VrFcklNds/OaCZR5qr+hmWUK+askZxIzH40YBYQXdH57qi3XEKiq7MazxzdKJLVwKt2Fuog7VA9ncOh7S5MghRjdth5chymHL/NbI/J+f8B/JTOT9FLB9uwyO9ymasce+i5m2MxCs3tER8TCReGdYK3ZvUwL43Bnkslnhju9qIj4nEoNauAzsDe1JVRmqg17Wh/+BBEAR0a1xDUvdSb3nBfQa2929rh25+xlsAQImfKcultHB/dHs7n++Lz9ZW1rrYqEZFLHuqt99jSCW1n/qzg5qj9VVlXVD8VTj9Bpxubz8/uDmOvTMUC8b1FG3kkLErh0d7N8GbN7WBzWaT/DRd7aLTfcFQv8d3S0BEuTA0qlkJbetUwczR3dCxnu/xLe6XvP13cN7vwz0bOcbJdGlYDZPu7ogBXgZwl+3DX5rLdj7ax+D/QMaA3tZJ2uyGagc/voop92vbyt2DlKZdUtd+iUMH3BuH5d5nnNcreqL/1fK6sKqQfcLCPMeyySFn/JU9uweS7M/u6oDBrRMcsy66+2tMd3xzbyfZE06YCYMfDVzX1LNidP91DVz+treUFRSXXHlNZuF8xzVl03nKWQPhj9GJjhmNrFsc+1ZepFKp5YKSm17qF1BLjvf1TcS6vcn/tZxnp6leKRKP9GyMP/+b6HEzaualFf2B6xpi/fi+jhm7osqHuyyWaIMNn93VAeue7+sxKUIgT6p8dXsT895/2joCOi3JnYHNTumT1dG9GuOWjp4VO3/lRKvasVj3fB/8O66H6Pvu/bqlCqQ7kvNH/M2OJOXpgcuTHC/b+3uK4utX0bNByPlYYl11XbZ1+1vpk2BvgYDzXl8Y0gLf3NsJ4wc3x6S7vY+lsZP69Of5wc2x741B4scP4HuVSPyMv2W1asVGyaoMR5QL8zptuvvMdNHl/T/Nknv/n/HwtXh20JXJiZynTreb/Wg3dG1YTdZ+1Sblqbuvi3K40/gXpfHrNQ1cz4WU/XntRuvjs85BvFox9/D2tTG8vfyJjwIJ+m9sVxtf3dPJ6xPudnWrYKCPhhArYPCjAvdCf0TX+vhMYiFaWBz4ipb3d2+IGQ9Ln/r3pva10bmBMQWh8+PRV3ys3dBFhYJarJLWPEG8S8tVVZUv3ia2AJ4SYoWtGmN+wsNs6FS/mkd6fZWNvm7I9rfEzrdzcvu1iMeqZ67HS0N9rzliT6/UlsZqFSMwfrD0dUx6Xe2nS6mEe0RnGTNGSa2UeSPlPHhLcu0q0V7XrUqIjcLcsd2x4uneAIC7u0pby8j9d35mYDNE+pkK3PnG66+bn7/FVwH/FYnasVEu+dt5eymL6PoKKtQMjKpWKO/yfW22stnt/GkSVxa4Dm2rbO0Zr9e125esUSkSj/RqLGkKcL8P8Zw2ULPMrCixm5xzXmxYoyKGtqmFRjUq4qcHumDv64Ow5rk+GNbO/0Dzt29ug0Y1KmLCsFai30OA57VSs3IEXhraAm/4mLLcfeYtf7o2qu7S8PnH6G640S39HepVxYxHEl2m7Jebd+zl8tf3dJL1Obm8XZdPD7gS4Lnf05w/4S3/VXaqwAcSiFzbqNrlY7vyVr5ufbl/wDMT+hLozHYcfyaOwY8G7DMYOXPPuPYuG/YKQeMA+uaHh9nQtVH1gPuf69nKGRdTVuFyH7juTo0CVmwdD/eK5B+jE/HViI5oXDOwVnA1eDv/4rO9Bf4kxe92AT7P9/Up52llvxzREfWqV/BbgZL75EcK510N9zODzhsSBmPLuZE4V2Yb16yI1ld5H1Miul8pA3gDvLG1rVMFDS4/0Xv75jaSVnB3b80ec30T7HtjENaP7+t1nSxfrY5PuC2C7DxEyttTJpfrVWQT97FhzhzBtYRJDcQ4Lypt71oodeyRs6VP9cLq5/q4fN8wmw2zHu2Gj+8Q7+ZoPx1/jE7Et/d2cpmRMxD2Cp2d/WfSYukBOQK59LtL6IIKuObF9/7TFpNGdMSyp3uj19U1ER0R7pHnvDV03N21HpY93Rv1qldwGbPrTKyL6P/1aORz7btAFi3v2rA6ejStgQe6N0TNypF4or+XRT+dkvnR7e1kBUD2e8+g1gmqrk8jdgznV+xcTmUAh9/0Uj880rMR/hid6PGer3tfi1oxmHz/Nbj+cq8O97Ih0ssi4tUqRqjeIAposx5fKGPwo5OrL/eNfGN4K9StFo0Jl8cRVKkQgeTXBmLhuJ6ap8H94mkY8GDowLStU8WjcvLo5VlP+rWIx+aX+gV08/3nMdeV5H2t0m7XuUE1DPayOJg/c8d297t4ozTixZlaT37sN0J/feIDLRt9fa5SZDnsfX0QDr012OtCofZWbHfRKsykJde65/tIrkRJNapbA7w0tAUWjOvhWI3bGykLOIpRe20iX8SmwrXZbEiIjcJ3IzvhzmvqOiY6sPNVWXIfA+n81MX+uRedZqAc1q62y9gYKd/c+fzY82tLHxMbiF1mE29pg8f7NnXpHvrcoOb49M72mObWle/I20Pwzi1tfKapcc1KqBRZzqWl22YrG3t3cwfXa3Xd832w8cW+jgpMlQoRGNAqAeXDwwKu1MTHRHpttb6raz3c3OGqgNZ2kZuaWy936ezm9ERQywY5uevDvODnSTUAPHBdA9SoFOHR/c39WtHqe4WH2fDLg13xyrCy3hQNa1TE5Puv8bgOG9S40vMislw4rglwzSN7g04jCfe/V4e1xJInfTd2OvPevcx7zpJyXqPKh2P8kBbo3KCarBnbrqoSjeubxTmOn1NQ7PK+2FNvsad37ouj2j3Z/2o0qlkRX9/TCeMkLM8gpUvoe/9p6/hv+1dTK16tWiG4Zidl8KOCpy8vCuqt+8hvD13ruJnfm9gAq5/t47KIYKXIcrpMdODurmvq4vG+TfH7I54tImK6Nym7SUnpnuFLdafpvR+8riEWjuuJr+/p6DIDmXOF2VslGShreW1V2zU9WrS6OGtbpwoqRvo/RvOEykhs5L2rj3u67cQKOTlrgtjd3rku1jx3Pd69ta3/jTUQHRHukq/dZ9NqVTvWZdV1e9fIq+Mr4+GejfBA94aIj4nEU95aMyWQcnOsWqE8asX6HoQ69nJLu7fp4Kc+6Nn1tHx4GP6vRyNHl0s5A6QBbcbkLfXz5NVxbJGD+wrQ4ipH4Z1b2zomOrCTc+N1CX4uVzicnyiNTKzvUhGy3+ifHuA5i6av49/U/iq8PryVR6MJANGTfleXeh4t6lHlwzG8/VUejTVhYTYMa1fbb3dAwLWl39sTstpVohUNkBYjFjDbX4ssF46P72gf0NgCubHYmze1xhd3d8DX91552h/ImB9vLfDunPOOlONESLgnx1WOwsYX+uElH125AX3H117fLM7jOvz23s4Y3DoBc8eWLWR63eWJA8SmYwbK7stifhjVGXd1qYdPJATH93dv6PPe7cyjO5vLU1HnN7zvw96d/jEZs7g577t3s5pe3wOAnm7dpsXyh9i1NaRNLfRrEYcXhjR3ef2xvk2x7KneGNQ6wWu3fLmcnzja/7NvCwljriR4pFdj1KkajccCnOrebLSZUzLEPNC9Afo2j/OY9m9om1o4ei43oMH2fZrHYdm+dLWSKKpceJj3x+QifnmgK/KKSvDU79ux61RWwMe9oW1tbDiagS4NqsFms4kOuF/8RE/8m5yK2zvXxePTt+FQ+kXRfWnRorbi6d7o/cEKn9v0axGP5FPZiHPqytWtcXWsO3weE29pg0uFJRjWrjZ2ncpE0pHzLp/99/Ee2HDkvMeq7Xai3d7cXqwcVQ45+cWeG7rxtT5Tk7hKOJR+ETe2q43VB8/53ZcnebWdJnGV8ed/E1Gz0pXKXN8W8fj1/7pi+b50jExs4Hj9hctBxss3tFDtsb3z9N2jEuvjp6TjAIA//9vNpX+02Pl/emAz/K9vE9EW834t4kQnOXF3U4famLvjtOh7ga74LWddMACKunkGMnBWzm/nUuERCwbdfpfh7a9Cn+ZxqBxVHh8sOiC6T+cuwflFJY59O+c11/RKTq5D2zqx2Hkyy9GVrGJkOeycMADNXlrg83M1K0fig9vaIbq8Z5crQPsxFs7UuMTkzvwUHRGOG9r67h4uRc+mNTGoVYLPJ3qBkJrfvS0OKofc2f7kalCjIr5yyk9N4iph5TO9vfa0iI8R76JcvVIkJvp5sikmslwYCnyMbxYgBPTbO3eX69ygGva/OQiR5cLx2dKDottXclseIdIp+Pv0zg5YkHwGz/25C4BnD4QP/tMWXd5e6vhbrGwTyzLlw8Pw/Sjfs8EObBWPF4Y0R7s6VbxuI+X0uIyBunx/nnhLG3SuXxWv/b1Hwh68q1YxAqufvT5outEx+FGBzWZz9J93NmlEx8uL0cnPLF/f0wkH03Pw3aojmLNdvMLkbMcrA5CdX4Qe7y33uo3StSTCwmyoFFkuoKcQzsLDbHj7Zt8FaP3qFX1OiaqEv65CYr+lu0d7N0HDGhVdBnH/9EAXnMjIc+na16d5PG7vXAe/bz7peK1FrRi08NE1T2x8j/uNYctL/fHi7F2YuaVsv9UrRuB8bqHfdDub/Wg3HEjLQcd6VZGRW4iJ/+7zOymBUp3qe05o0b1JDa9dzpQWtM4tj7WrRGP9+L6IiS6H8uFhjuBHKm9dhaTq0zweCTFRSM3O93hPrAJV08daTFfSpM4TY/fZ+sTG8ATSNU/OGAGxbm/+2J+ejLm+MSYtP4znB7u2rjp3Ockv8j+5zJs3tcZd3613POmT4odR12D2tpOOblxAWV558LqG+GHNUZ+f/Y+PLqlqTP6il6oVy6P31TXx7q1tsOd0tuxry07qraVZfGXUrRaNzg2qITzM5vL0SK3jBFr0yH16Ne9/13k8Fa9WMQIZl8vz4e1rq/ZkwJlz7xO7ibe0wdK9ZQ1Rb8/fp9qxVj97PebuOI07u9TDC7N2Ye6O06gUWQ4XL3cla1krBttPXmlQ9XoG/fwm9jL64zva4YkZOzzuZ4/2boLtKZm4qUPZk82eTWuiX4t4tKwdg9jo8rjjmnooKhHwS9Jxj8l04mKicOc1dTF90wnHa8Pa1cbfTg1aA1sHNgOazWbDwz1d6zurn70e+1Jz8NDPmwEAHSTM6it2emKiyuP+7g1ROao8np65A0PaJGD+rlQA8hu0giXwARj8aC7QzBJRLgytasdKblWKrVAesRXKY/L912DdoXO4v3tDdHtnmeP9Hk1reAwwDpTei6MaccE90L0hflx7FD/e1xnzdp4BBGDWtlOO9yPKhXl0DSkfHiY64DqxcXWX4McfsdNbvpwNTw+42tHCHVEuzKWCOOORa/HZ0kNenyyIqRxV3hGMPNKrMf7TqQ6qS6hw25mxHLR3ydw5YQDyi0o8Av6Ey93bBEHAdU1qIDu/CA2cKgGP9i6rRPubHMGZ86KMLWvFYM+ZbK8LsN5+TV3RVknnwOLrezph6d40j9W2xSgNyOw+u6sDHv11C57sX9aFt3aVaKx4ujdio8ujwxuLAQBVAujz7V58PdX/any4+ADu797AY1uXCQ9EMpevcueZgc0xrt/VHmtW2Ww23NapDo5n5El6MtA0vjI2vdhPVplTs3KkR8UFAF6+oaVL8DMysT5ae+nq6ixpfB/kFZb4Hf8YL2EGNjFijSvuwa9UP4zqjG9WHcH7/2kHm82GO66ph9JSAa2uikXHelXx6dKDLpVDv2nzc2+5o3NdzNh8Ak8NuNrnmkP++JrVL8xWlhcbiAQHgfL1tZy7qL0xvBU+XXoQU+7vgnt+2IDo8uH45I72ut0D7+pSz2uPBG8a16yIh3s2cjwxaZ5QGbd0dL03xsVE4f96lC1L8Omd7fHG8NbIKSjCgI9XISE2Cs8Mao53/92HHScyAbiux+NSQXc7j97O680d6mBAywSPyaBio8tjhlM3//AwG74f5br0wz3X1sc9XiamcP8Z3hzeGg2qV0DfFvEIsykfEuCsbrUKqFutApY82QvrDp+T9LtUjCyH65vVRFGJ4PH07j+d6mBYu1qICA/D+wv3o22dKmhXNxbL9qVjRFf/9xoT3u4VYfBjciO61sOsrafQReIU1dc3i3PMTuLsF5ExCYFS+uRHrge6N8CqA2d9bmNv6XEe8Gfnf+V2T68Ma4lx/ZsiJqo8+jSPR2mpgJyCYtQPYEXjG9tdhR0nsny25P7+SCJu/yYJAHCnWyFXp2o0hrSpBRtsKCgudUzZ7Dy2qUlcZXx2Vwcs3J3qs3uBL3ICHwA+H9EbZdpDZfk8Jqq86Er0djabDb882MXx33ZP9m+G/i0TJE2a8d5/2uKXpOOOLnoA8N2ozvhi2UE80F28z/yjvRujYkS4RzeXcKdFSAa1TvBYNNYbqeMd/GmWUBlL3RZEtT8BnXhLGyxITsUDXsYB+OIejIzt0wRD29YSnTCk1KlgeWZgM4/3/RU73hbrff828RnUvFGzovnCkOZ4e/4+jOvXFOMkNj7VipU2/f74IS2QdakIt3euK2n7u7rUw28bU/BUf89z+5CXxQz96dsi3mNMQViYzZGm125sJSn4sXcd9DfV9Du3tsEzg5q5jA8NhK8npsmvDURxqaB44pXH+jTBZ8sOebz+zMBmeH/hfgCeA+TvTWyAe64tG9u28YV+CLO55sfbr6mDH9ce1XTdukDc1OEq/Juciuua1HAEOd7YbDZHY+2e16+s9/Tc4OaoUqE8hrathdjo8lg4riciy4W5/Fbhbt18fU08FOgsuL7ccU09/LbxBDrUqwKgrNH5qQGe15OamsRVkjx2CgAm39/F63v2xrJnB115Qr7hhb6SyjzngDQYMPgxuU71q2H9+L6oUUn+LGiP9GyEb1YdUT1Ng1olYNm+dK/9gtXWu1kcksb3QeLEsidZP97XGQ9MKXsUbF/n4OYOdTCkTS2PlvD4mEh8O7IzNjiNu6laUVoLtnPlOSzMJm2lahHhYTbH7H7edGlY1l/5+Pk8NL1c0H1+Vwdk5xe5tMo4F7T/69MEm45luMzm1rFeVSQdOY+KGs6Ytv2V/sjJL3Y8RTHa3V3rYdqGFHw5oqOs6WLFCvzwMJvkRYNv71zXo+J5VZVoTLzF+wQTUeXD8YhTd84eTWtg9cFzGCnhKY+zDvWq4HTmJVmB/eAAu2QE0hps98ZNrXHXt+vx38uzOtpsNq/TUdeuEo1GNSsi+1KxYwFnZ1dbcDXxh3s2xvD2V2lScahWMQLfyiiT3r65Nf7XpwlqX57W/N5r62PGphPY8eoAzWZYrFYxAnd1qYsFyak+89BP93fBigPpGNTK9wycNptNUeDzWJ8mOJ6Rh471vAcPFSSuG+SN/fw+OaCZI/i5Ov5Knh9zfROM7tUYR85eFL0W7OWS2CyZzRNisPXl/oq7sMvh7XzXq1YBKRl5GNQ6AZHlwjHFR6VbikqR5Vzub85jgZ8Z2Aw225UnlHPGdMeJjDyPiR201r5uFWx4oS+qGzwlvDfeZpbzxV/g8+29nbAvNQc9JIxrtRKboHcfJhVkZ2cjNjYWWVlZiIlRvy9sMDmQloOYqPKqVlRLSwWsO3werWrHoKqOhcD+1BzsPZON4e1r4/DZXPy94zQe7NFQtIX/2Llc7D6djSFtEmCz2VBaKuCu79ajSVwlvOVnvJGVpefk45uVR3B313qGrmGkJ0EQcD63UHFrsBEuFZZgx8lMdK5fVdaMj6WlAkoFQdJnkk9l4dzFAvQWeSKsBznjHktKBdjgOgYqM68Ql4pKJD8RIfMpKRU0WyPGLNYdPoeTFy65NIhk5xchv7AEcRZsNV+QfAYnMi55fSp4/mIB1h0+jwGt4lXrfkuB+XbVYew9k4MPb2unygQcViUnNmDwQ0REREREliUnNuA6P0REREREFBIY/BARERERUUhQPfiZMGECbDaby7/mza/MLJGfn48xY8agevXqqFSpEm699VakpaWpnQwiIiIiIiIXmjz5adWqFc6cOeP4t2bNGsd7TzzxBP7++2/MnDkTK1euxOnTp3HLLbdokQwiIiIiIiIHTaa6LleuHBISPKdVzcrKwg8//IBp06ahT58+AIDJkyejRYsWWL9+Pa699lotkkNERERERKTNk5+DBw+idu3aaNSoEUaMGIGUlBQAwJYtW1BUVIR+/fo5tm3evDnq1auHpKQkr/srKChAdna2yz8iIiIiIiI5VA9+unbtiilTpmDBggX46quvcPToUfTo0QM5OTlITU1FREQEqlSp4vKZ+Ph4pKamet3nxIkTERsb6/hXt660Fa2JiIiIiIjsVO/2NnjwYMd/t23bFl27dkX9+vXx+++/Izo6sEXqxo8fjyeffNLxd3Z2NgMgIiIiIiKSRfOprqtUqYKrr74ahw4dQkJCAgoLC5GZmemyTVpamugYIbvIyEjExMS4/CMiIiIiIpJD8+Dn4sWLOHz4MGrVqoVOnTqhfPnyWLp0qeP9/fv3IyUlBYmJiVonhYiIiIiIQpjq3d6efvppDBs2DPXr18fp06fx6quvIjw8HHfddRdiY2Px4IMP4sknn0S1atUQExOD//3vf0hMTORMb0REREREpCnVg5+TJ0/irrvuwvnz51GzZk1cd911WL9+PWrWrAkA+PjjjxEWFoZbb70VBQUFGDhwIL788ku1k0FEREREROTCJgiCYHQi5MrOzkZsbCyysrI4/oeIiIiIKITJiQ00H/NDRERERERkBqp3e9OD/WEVFzslIiIiIgpt9phASoc2SwY/OTk5AMC1foiIiIiICEBZjBAbG+tzG0uO+SktLcXp06dRuXJl2Gw2Q9NiX3D1xIkTHH9EXjGfkBTMJyQF8wlJwXxCUgRLPhEEATk5OahduzbCwnyP6rHkk5+wsDDUqVPH6GS44OKrJAXzCUnBfEJSMJ+QFMwnJEUw5BN/T3zsOOEBERERERGFBAY/REREREQUEhj8KBQZGYlXX30VkZGRRieFTIz5hKRgPiEpmE9ICuYTkiIU84klJzwgIiIiIiKSi09+iIiIiIgoJDD4ISIiIiKikMDgh4iIiIiIQgKDHyIiIiIiCgkMfhSaNGkSGjRogKioKHTt2hUbN240OkmkkVWrVmHYsGGoXbs2bDYb5syZ4/K+IAh45ZVXUKtWLURHR6Nfv344ePCgyzYZGRkYMWIEYmJiUKVKFTz44IO4ePGiyzY7d+5Ejx49EBUVhbp16+K9997T+quRiiZOnIhrrrkGlStXRlxcHG666Sbs37/fZZv8/HyMGTMG1atXR6VKlXDrrbciLS3NZZuUlBQMHToUFSpUQFxcHJ555hkUFxe7bLNixQp07NgRkZGRaNKkCaZMmaL11yOVfPXVV2jbtq1jYcHExET8+++/jveZR8jdO++8A5vNhnHjxjleYz6hCRMmwGazufxr3ry5433mERECBWz69OlCRESE8OOPPwq7d+8WHnroIaFKlSpCWlqa0UkjDcyfP1948cUXhVmzZgkAhNmzZ7u8/8477wixsbHCnDlzhB07dgg33nij0LBhQ+HSpUuObQYNGiS0a9dOWL9+vbB69WqhSZMmwl133eV4PysrS4iPjxdGjBghJCcnC7/99psQHR0tfPPNN3p9TVJo4MCBwuTJk4Xk5GRh+/btwpAhQ4R69eoJFy9edGwzevRooW7dusLSpUuFzZs3C9dee63QrVs3x/vFxcVC69athX79+gnbtm0T5s+fL9SoUUMYP368Y5sjR44IFSpUEJ588klhz549wueffy6Eh4cLCxYs0PX7UmDmzp0r/PPPP8KBAweE/fv3Cy+88IJQvnx5ITk5WRAE5hFytXHjRqFBgwZC27Zthccff9zxOvMJvfrqq0KrVq2EM2fOOP6dPXvW8T7ziCcGPwp06dJFGDNmjOPvkpISoXbt2sLEiRMNTBXpwT34KS0tFRISEoT333/f8VpmZqYQGRkp/Pbbb4IgCMKePXsEAMKmTZsc2/z777+CzWYTTp06JQiCIHz55ZdC1apVhYKCAsc2zz33nNCsWTONvxFpJT09XQAgrFy5UhCEsnxRvnx5YebMmY5t9u7dKwAQkpKSBEEoC7TDwsKE1NRUxzZfffWVEBMT48gbzz77rNCqVSuXY91xxx3CwIEDtf5KpJGqVasK33//PfMIucjJyRGaNm0qLF68WOjVq5cj+GE+IUEoC37atWsn+h7ziDh2ewtQYWEhtmzZgn79+jleCwsLQ79+/ZCUlGRgysgIR48eRWpqqkt+iI2NRdeuXR35ISkpCVWqVEHnzp0d2/Tr1w9hYWHYsGGDY5uePXsiIiLCsc3AgQOxf/9+XLhwQadvQ2rKysoCAFSrVg0AsGXLFhQVFbnklebNm6NevXoueaVNmzaIj493bDNw4EBkZ2dj9+7djm2c92HfhuWP9ZSUlGD69OnIzc1FYmIi8wi5GDNmDIYOHerxWzKfkN3BgwdRu3ZtNGrUCCNGjEBKSgoA5hFvGPwE6Ny5cygpKXHJLAAQHx+P1NRUg1JFRrH/5r7yQ2pqKuLi4lzeL1euHKpVq+ayjdg+nI9B1lFaWopx48ahe/fuaN26NYCy3zEiIgJVqlRx2dY9r/jLB962yc7OxqVLl7T4OqSyXbt2oVKlSoiMjMTo0aMxe/ZstGzZknmEHKZPn46tW7di4sSJHu8xnxAAdO3aFVOmTMGCBQvw1Vdf4ejRo+jRowdycnKYR7woZ3QCiIiC1ZgxY5CcnIw1a9YYnRQyoWbNmmH79u3IysrCH3/8gVGjRmHlypVGJ4tM4sSJE3j88cexePFiREVFGZ0cMqnBgwc7/rtt27bo2rUr6tevj99//x3R0dEGpsy8+OQnQDVq1EB4eLjHjBlpaWlISEgwKFVkFPtv7is/JCQkID093eX94uJiZGRkuGwjtg/nY5A1jB07FvPmzcPy5ctRp04dx+sJCQkoLCxEZmamy/buecVfPvC2TUxMDG94FhEREYEmTZqgU6dOmDhxItq1a4dPP/2UeYQAlHVZSk9PR8eOHVGuXDmUK1cOK1euxGeffYZy5cohPj6e+YQ8VKlSBVdffTUOHTrEssQLBj8BioiIQKdOnbB06VLHa6WlpVi6dCkSExMNTBkZoWHDhkhISHDJD9nZ2diwYYMjPyQmJiIzMxNbtmxxbLNs2TKUlpaia9eujm1WrVqFoqIixzaLFy9Gs2bNULVqVZ2+DSkhCALGjh2L2bNnY9myZWjYsKHL+506dUL58uVd8sr+/fuRkpLikld27drlEiwvXrwYMTExaNmypWMb533Yt2H5Y12lpaUoKChgHiEAQN++fbFr1y5s377d8a9z584YMWKE47+ZT8jdxYsXcfjwYdSqVYtliTdGz7hgZdOnTxciIyOFKVOmCHv27BEefvhhoUqVKi4zZlDwyMnJEbZt2yZs27ZNACB89NFHwrZt24Tjx48LglA21XWVKlWEv/76S9i5c6cwfPhw0amuO3ToIGzYsEFYs2aN0LRpU5eprjMzM4X4+Hjh3nvvFZKTk4Xp06cLFSpU4FTXFvLf//5XiI2NFVasWOEy9WheXp5jm9GjRwv16tUTli1bJmzevFlITEwUEhMTHe/bpx4dMGCAsH37dmHBggVCzZo1RacefeaZZ4S9e/cKkyZNsvTUo6Hm+eefF1auXCkcPXpU2Llzp/D8888LNptNWLRokSAIzCMkznm2N0FgPiFBeOqpp4QVK1YIR48eFdauXSv069dPqFGjhpCeni4IAvOIGAY/Cn3++edCvXr1hIiICKFLly7C+vXrjU4SaWT58uUCAI9/o0aNEgShbLrrl19+WYiPjxciIyOFvn37Cvv373fZx/nz54W77rpLqFSpkhATEyPcf//9Qk5Ojss2O3bsEK677johMjJSuOqqq4R33nlHr69IKhDLIwCEyZMnO7a5dOmS8OijjwpVq1YVKlSoINx8883CmTNnXPZz7NgxYfDgwUJ0dLRQo0YN4amnnhKKiopctlm+fLnQvn17ISIiQmjUqJHLMcjcHnjgAaF+/fpCRESEULNmTaFv376OwEcQmEdInHvww3xCd9xxh1CrVi0hIiJCuOqqq4Q77rhDOHTokON95hFPNkEQBGOeOREREREREemHY36IiIiIiCgkMPghIiIiIqKQwOCHiIiIiIhCAoMfIiIiIiIKCQx+iIiIiIgoJDD4ISIiIiKikMDgh4iIiIiIQgKDHyIiIiIiCgkMfoiIiIiIKCQw+CEiIiIiopDA4IeIiIiIiEICgx8iIiIiIgoJ/w8ClV3Lg3EugQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Линейная диаграмма\n", + "plt.figure(figsize=(10, 5))\n", + "df[\"avg_glucose_level\"].plot(title=\"Линейная диаграмма (Средний уровень глюкозы)\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Cтолбчатая диаграмма" + ] + }, + { + "cell_type": "code", + "execution_count": 158, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAD1sAAAZqCAYAAAAjOOxtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD7qUlEQVR4nOzdf5DWdb3//8cCuovyQ0AE+SjuoqYWagdsCspA4YSIip3CQ1JCZlhmZJaGpqCogVYmWmmYgQl0DE0ssRR18EeSppamYpmBWg4YwoqCQMJ+/3DYrysLLra12ut2m9kZeb9f1+t6Xu+L/cu586qoq6urCwAAAAAAAAAAAAAAAAAAQGFatfQAAAAAAAAAAAAAAAAAAAAALUFsDQAAAAAAAAAAAAAAAAAAFElsDQAAAAAAAAAAAAAAAAAAFElsDQAAAAAAAAAAAAAAAAAAFElsDQAAAAAAAAAAAAAAAAAAFElsDQAAAAAAAAAAAAAAAAAAFElsDQAAAAAAAAAAAAAAAAAAFElsDQAAAAAAAAAAAAAAAAAAFElsDQAAAAAAAPBPWL16dZ599tmsXLmypUcBAAAAAAAAALaR2BoAAAAAAABgG82ZMyeDBg1K+/bt065du/Ts2TMXXXRRS48FSZLDDz88n/3sZ1t6jLe9K664Ij179sy6detaehQAAAAAAACgBYmtAQAAAAAAgLeNp556KieeeGJ69eqVqqqqdOjQIR/84AczderUvPLKKy09XpJk/PjxOeaYY9K+fftceeWVmT9/fm677bacdNJJLT0a5Ne//nVuvfXWfO1rX6u/tmDBglRUVDT46dy5cz7wgQ9k1qxZLThtyxozZkzWr1+fH/zgBy09CgAAAAAAANCC2rT0AAAAAAAAAABJMm/evIwYMSKVlZU57rjj0rt376xfvz733HNPTjvttDz22GOZNm1ai85455135sILL8zkyZMzfvz4Fp0FGvPNb34zgwYNyl577bXZvXHjxuV973tfkuSFF17Itddem09+8pOpra3NF77whX/3qC2uqqoqo0ePzsUXX5wvfvGLqaioaOmRAAAAAAAAgBZQUVdXV9fSQwAAAAAAAABlW7x4cQ444IDstttuueOOO7Lrrrs2uP/nP/858+bNy5e+9KUWmvA1Rx55ZFasWJFf//rXLToHNOb555/P//t//y9XXHFFPvOZz9RfX7BgQQ455JDMmTMnH//4x+uvr1+/Pr169coee+xR7N/pBx98MAcddFBuv/32HHrooS09DgAAAAAAANACWrX0AAAAAAAAAAAXXXRRXn755Vx11VWbhdZJstdee9WH1hUVFVv9GThwYP3rnn/++XzmM59Jt27dUlVVlQMPPDBXX311ozOcc845je43ZsyY+jW/+c1v0rt374wcOTKdO3dO27Zt8773vS9z585tdK83qq6ubrDfihUr8tWvfjX7779/2rVrlw4dOmTo0KF5+OGH69csWLDgTT/zOeeckyR5+umnc9JJJ2WfffZJ27Zt06VLl4wYMSJLlizZbJbf/e53Oeyww9K1a9cGex1xxBGNPp83mjFjRqOzVFdXN1g3ZsyYza49++yzadu2bSoqKhrMduONN2bYsGHp0aNHKisrs+eee+a8887Lhg0bGrx+4MCBjb734MGD69dUVFTk5JNPzqxZs7LPPvukqqoqffv2zV133dVgr6Y+s02fd/vtt8/f//73BvcWLlxYP8MDDzyw2ZxHH330Zs/vxBNPTEVFRXr37t3g+re+9a30798/Xbp0Sdu2bdO3b99cd911m72+MfPmzcurr77a4Dlszfbbb59OnTqlTZs2Da6/+uqrOe+887LnnnumsrIy1dXVOfPMM7Nu3boG64YPH57q6upUVVVll112yVFHHZU//OEPDdY09/eQJLW1tfnyl7+c6urqVFZWZrfddstxxx2X5cuXb9PvS5L07ds3nTt3zo033tikZwYAAAAAAAD852nz5ksAAAAAAAAA/rV+8YtfpFevXunfv/+brr3mmmvq//vuu+/OtGnT8p3vfCc777xzkqRbt25JkldeeSUDBw7Mn//855x88smpqanJnDlzMmbMmNTW1m7xlOzX7//lL3+5wb0XXngh06ZNS7t27TJu3Lh07do1M2fOzP/8z/9k1qxZ+cQnPrFNn/svf/lL5s6dmxEjRqSmpibLli3LD37wgwwYMCCPP/54evTokf3226/BTNOmTcuiRYvyne98p/7aAQcckCT57W9/m3vvvTcjR47MbrvtliVLluTyyy/PwIED8/jjj2eHHXZIkrz44osZOnRo6urqcuqpp2b33Xdv9PM2xaRJk1JTU5Mk+fa3v52VK1e+6WsmTJiQtWvXbnZ9xowZadeuXU499dS0a9cud9xxRyZMmJBVq1blm9/8ZoO1u+22WyZPntzg2htD/TvvvDPXXnttxo0bl8rKynz/+9/PYYcdlvvvv78+cm7qM9ukdevWmTlzZoNnNX369FRVVTX6maqqqjJv3rw8//zz2WWXXZK89nfz2muvTVVV1Wbrp06dmqOOOiqjRo3K+vXr83//938ZMWJEbrrppgwbNmxrjzX33ntvunTpkj322KPR+y+99FKWL1+e5LXQf/bs2Xn00Udz1VVXNVh3wgkn5Oqrr87HP/7xfOUrX8l9992XyZMnZ9GiRbnhhhsarB07dmy6d++e5557Lt/97nczePDgLF68uMFza87v4eWXX87BBx+cRYsW5fjjj0+fPn2yfPny/PznP89f//rXbfp92aRPnz7FnuwNAAAAAAAAJBV1dXV1LT0EAAAAAAAAUK5Vq1alY8eOGT58+GYnRL+ZGTNm5NOf/nQWL1682enJU6dOzSmnnJKZM2dm1KhRSZJ//OMfGTBgQP7whz/kueeeS/v27evXn3XWWfnGN76RjRs31l+rrq7OwIEDM2PGjCSpP616wYIFGTBgQJLXwtm+fftm5cqVeeaZZ7Lddttl0qRJmThxYjZu3NjghOs37rdu3bpst912adWqVf2aJUuWZN99983Xv/71nH322Zt95jFjxmTBggWNnvj7yiuvpG3btg2u/eY3v0m/fv3y4x//OJ/61KeSJLfeemuGDBmSn/zkJxk5cmSD+Xr37p2bbrqp0ef9eldeeWXGjh2bBx54IH379k2SHHHEEXn00UcbzPbGeR977LEccMABGTJkSH75y182+O4am/9zn/tcrrnmmqxYsSKVlZVJXjsxevny5Xn00Ue3ON+m5/76+Z555pnss88+GTp0aH72s59t0zPb9HftE5/4RB599NE88sgjSZI1a9Zk1113zRFHHJHZs2fnt7/9bQ466KAGc7Zu3TrHHXdcvvKVryRJZs6cmTPOOCM1NTVZsWJFg8/xxnn+8Y9/pE+fPtlll11y++23b+0rycEHH5xXXnmlwenayWt/Xw855JDN1rdq1SrnnXdezjzzzPprDz/8cN773vfmhBNOyJVXXll//bTTTsu3vvWt3HHHHY3ulSRz5szJMccc0+CZN/f3MHHixEyaNCk/+9nP8tGPfrTB+rq6us1OlN/a78smJ554Yq655pqsWbNmi2sAAAAAAACA/1yt3nwJAAAAAAAAwL/OqlWrkqRB+Nwcbr755nTv3r3BadPbbbddxo0bl5dffjl33nlng/Xr16+vj3m35n3ve199aJ0kbdu2zUknnZSlS5fmoYceSpL6E4z/+te/bnWvysrK+tB6w4YNeeGFF9KuXbvss88+9XttizdGui+88EL22muv7LTTTg32e+mll5IkXbp02eb32GTTKc6Nnc68NWeccUb69OmTESNGbHbv9fNvOoX54IMPzpo1a/LEE09s84z9+vWrD3yTpGfPnhk+fHhuueWWbNiwYbP33Noz2+RTn/pUnnjiifqg+frrr0/Hjh0zaNCgLc7x6U9/OtOnT6//8/Tp0zN69OgGkf0mr59n5cqVefHFF3PwwQc36e/DCy+8kE6dOm3x/oQJEzJ//vzMnz8/1157bT7xiU/k61//eqZOnVq/5uabb06SnHrqqQ1euykUnzdvXoPra9asyfLly/P73/8+V155Zbp165Z3vetdDdY05/dw/fXX58ADD9wstE6yWWjdVJ06dcorr7witgYAAAAAAIBCia0BAAAAAACAFtWhQ4ck/38A3Fyefvrp7L333psFrfvtt1/9/derra1Nu3bt3nTffffdd7Nrm/bcdHpuv379UlFRkTPOOCNLlizJ8uXLs3z58ganZifJxo0b853vfCd77713Kisrs/POO6dr16555JFH8uKLLzb5s27yyiuvZMKECdl9990b7FdbW9tgv4MOOijbbbddzjnnnPzud7/b4nxbs3z58iRJx44dm/yae+65J7/4xS9y4YUXNhrGPvbYY/noRz+ajh07pkOHDunatWs++clPJslbeh577733Ztfe9a53Zc2aNfn73/+epOnPbJOuXbtm2LBh+dGPfpQk+dGPfrTFcHqTUaNG5U9/+lPuv//+LFmyJAsWLMiYMWMaXXvTTTflAx/4QKqqqtK5c+d07do1l19+eZM/f11d3Rbv7b///hk8eHAGDx6cY445JjNnzswRRxyR8ePH1z+Pp59+Oq1atcpee+3V4LXdu3fPTjvttNnvzaRJk9K1a9f813/9V/1ne+M/nNCc38NTTz2V3r17N+lZNNWmZ/ZWY20AAAAAAADgnU1sDQAAAAAAALSoDh06pEePHnn00UdbdI6lS5eme/fuW13z+tN3t+bAAw/MxIkTM3v27NTU1KRr167p2rVrnn322QbrvvGNb+TUU0/Nhz/84cycOTO33HJL5s+fn/e85z3bFD5v8sUvfjEXXHBBjjnmmPz0pz/Nrbfemvnz56dLly4N9ttjjz0yffr0/PGPf0yfPn22ON/WLFmyJNttt1169OjR5Nd87Wtfy5AhQ3LooYdudq+2tjYDBgzIww8/nEmTJuUXv/hF5s+fnwsvvDBJ3tLzaIqmPrPXO/744/OTn/wkixYtyl133bXFcHqTrl275sgjj8z06dMzY8aMfPCDH9wsZk6Su+++O0cddVSqqqry/e9/PzfffHPmz5+fY489dqsR9SZdunTJypUrm/S5Nxk0aFDWrl2b+++/v8H1pobHJ5xwQm699db86Ec/SlVVVT72sY+9pTD+rXwPzWXlypXZYYcdmvz7DQAAAAAAAPxnadPSAwAAAAAAAAAcccQRmTZtWhYuXJh+/fo1y5577LFHHnnkkWzcuLHBqcNPPPFE/f3Xe/zxx9OnT5+t7llTU5M//vGPm13ftGd1dXX9tYkTJ2bs2LF54oknsmHDhiSpP6V5k+uuuy6HHHJIrrrqqgbXa2trs/POO7/JJ9zcddddl9GjR+fb3/52/bW1a9emtrZ2s7WjRo3KM888k3PPPTfXXHNNOnXqtNl8W/PAAw+kT58+Wz3R+fXmzp2bhQsX5qGHHmr0/oIFC/LCCy/kZz/7WT784Q/XX1+8eHGTZ3qjJ598crNrf/rTn7LDDjuka9euSbbtmW0ydOjQVFVVZeTIkfnQhz6UPffcM3ffffdWZzn++OMzatSodOzYMeecc06ja66//vpUVVXllltuSWVlZf316dOnb3XvTfbdd99cf/31TVq7yauvvpokefnll5O89nuxcePGPPnkk/UntifJsmXLUltbu9nvzV577VUfjg8ePDg9e/bM7Nmz8/nPf75+TXN+D3vuuWez/8MMixcvbvBZAQAAAAAAgLI42RoAAAAAAABocaeffnp23HHHnHDCCVm2bNlm95966qlMnTp1m/Y8/PDDs3Tp0lx77bX111599dVcdtlladeuXQYMGFB//YEHHshTTz3V6InLb9zz/vvvz7333lt/be3atbn88svTvXv39O3bt8H6XXfdNYccckgGDx6cwYMHp6qqqsH91q1bb3Zi8Zw5c/K3v/1tmz7r1va77LLL6mPv13vooYcyceLETJkyJSNGjGh0vi15/PHH8/jjj2f48OFNWr9hw4aceeaZOfbYY/Pe9753i7MnaTD/+vXr8/3vf79J79GYN8bdzz77bG688cZ85CMfqX+/bXlmm7Rp0ybHHXdcHnnkkRx//PFNmuWwww7LjjvumBUrVuSYY45pdE3r1q1TUVHR4L2XLFmSuXPnNuk9+vXrl5UrV+Yvf/lLk9YnyU033ZTktdPYk9f+jifJJZdc0mDdxRdfnCQZNmzYFvdavnx5kmTdunUNrjfn9/Cxj30sDz/8cG644YbN3r8pp3835qGHHkr//v3f0msBAAAAAACAdz4nWwMAAAAAAAAtbs8998zs2bPzv//7v9lvv/1y3HHHpXfv3lm/fn3uvffezJkzJ2PGjNmmPceOHZsf/OAHGTNmTB588MFUV1fnuuuuy69//etccsklad++fZJk0qRJmTp1anr16pXjjjtuq3uefvrpmTVrVoYOHZpx48Zl5513zsyZM/P4449n1qxZadNm2/4X7BFHHJFJkybl05/+dPr3758//OEPmTVrVnr16rVN+7x+v2uuuSYdO3bMu9/97ixcuDC33XZbunTp0mDdmjVrcuyxx2bgwIH50pe+tE3vccstt+SrX/1qkqRt27aZOXNm/b2//e1vWb16dWbOnNnglOy//vWv2X777XPzzTdvcd/+/funU6dOGT16dMaNG5eKiopcc801bzmgTZLevXtnyJAhGTduXCorK+vD7XPPPbd+TVOf2Rudd955Oe2009KpU6cmzdK6dessWrQodXV12XHHHRtdM2zYsFx88cU57LDDcuyxx+b555/P9773vey111555JFH3vQ9hg0bljZt2uS2227L2LFjN7t/9913Z+3atUmSFStW5Oc//3nuvPPOjBw5Mvvuu2+S16Lr0aNHZ9q0aamtrc2AAQNy//335+qrr87RRx+dQw45JEly880354c//GH69++fzp075y9/+UuuvPLK7LjjjvnoRz/a4H2b83s47bTTct1112XEiBE5/vjj07dv3/rPcsUVV9RH40314IMPZsWKFU3+hwMAAAAAAACA/zxiawAAAAAAAOBt4aijjsojjzySb37zm7nxxhtz+eWXp7KyMgcccEC+/e1v57Of/ew27de2bdssWLAg48ePz9VXX51Vq1Zln332yfTp0xuE21deeWWOPvronH/++dlhhx22umfXrl1zzz335Gtf+1ouu+yyrFu3Lvvvv39uuOGGtxRrnnnmmVm9enVmz56da6+9Nn369Mm8efMyfvz4bd4rSaZOnZrWrVtn1qxZWbt2bT74wQ/mtttuy5AhQxqs+/KXv5zly5fnjjvuSEVFxTa9x+TJk/Poo4/W79OYT33qUw1i6yT5/Oc/n+rq6i3u26VLl9x00035yle+krPOOiudOnXKJz/5yQwaNGiz+ZtqwIAB6devX84999w888wzefe7350ZM2bkgAMOqF/T1Gf2Rttvv3123nnnbZqnQ4cOW71/6KGH5qqrrsqUKVNyyimnpKamJhdeeGGWLFnSpNi6W7duOfzww/PTn/600dj60ksvbTB/r169csEFF+S0005rsO6HP/xhevXqlRkzZuSGG25I9+7dc8YZZ2TixIn1a/bYY4+sXr06U6ZMyUsvvZRu3brl0EMPzZlnnpk99tijwX7N+T20a9cud999dyZOnJgbbrghV199dXbZZZcMGjQou+2225s+ozeaM2dOevbs+aan2gMAAAAAAAD/uSrq/pl/BhwAAAAAAACAogwcODADBw7MOeec0+j9JUuWpKam5p86kbo5VFRU5Atf+EK++93vtugc/2533313Bg4cmCeeeCJ77713S4/ztv4e1q1bl+rq6owfP36bT3gHAAAAAAAA/nO0aukBAAAAAAAAAIDmcfDBB+cjH/lILrroopYe5W1v+vTp2W677fK5z32upUcBAAAAAAAAWlCblh4AAAAAAAAAgHeO//7v/85+++23xfvt2rXLqFGj/o0T8Ua//OUvW3qEd4TPfe5zQmsAAAAAAABAbA0AAAAAAABA033961/f6v2dd945M2fO/DdNAwAAAAAAAAD/nIq6urq6lh4CAAAAAAAAAAAAAAAAAADg361VSw8AAAAAAAAAAAAAAAAAAADQEsTWAAAAAAAAAAAAAAAAAABAkdq09ABvxcaNG/Pcc8+lffv2qaioaOlxAAAAAAAAAAAAAAAAAACAt4m6urq89NJL6dGjR1q12vrZ1e/I2Pq5557L7rvv3tJjAAAAAAAAAAAAAAAAAAAAb1PPPvtsdtttt62ueUfG1u3bt0/y2gfs0KFDC08DAAAAAAAAAAAAAAAAAAC8XaxatSq77757fZO8Ne/I2LqioiJJ0qFDB7E1AAAAAAAAAAAAAAAAAACwmU1N8ta0+jfMAQAAAAAAAAAAAAAAAAAA8LYjtgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIoktgYAAAAAAAAAAAAAAAAAAIrUpqUH+FeqHj+v2fZaMmVYs+0FAAAAAAAAAAAAAAAAAAC0PCdbAwAAAAAAAAAAAAAAAAAARRJbAwAAAAAAAAAAAAAAAAAARRJbAwAAAAAAAAAAAAAAAAAARRJbAwAAAAAAAAAAAAAAAAAARRJbAwAAAAAAAAAAAAAAAAAARRJbAwAAAAAAAAAAAAAAAAAARRJbAwAAAAAAAAAAAAAAAAAARRJbAwAAAAAAAAAAAAAAAAAARRJbAwAAAAAAAAAAAAAAAAAARRJbAwAAAAAAAAAAAAAAAAAARRJbAwAAAAAAAAAAAAAAAAAARRJbAwAAAAAAAAAAAAAAAAAARRJbAwAAAAAAAAAAAAAAAAAARRJbAwAAAAAAAAAAAAAAAAAARRJbAwAAAAAAAAAAAAAAAAAARRJbAwAAAAAAAAAAAAAAAAAARRJbAwAAAAAAAAAAAAAAAAAARRJbAwAAAAAAAAAAAAAAAAAARRJbAwAAAAAAAAAAAAAAAAAARRJbAwAAAAAAAAAAAAAAAAAARRJbAwAAAAAAAAAAAAAAAAAARRJbAwAAAAAAAAAAAAAAAAAARRJbAwAAAAAAAAAAAAAAAAAARRJbAwAAAAAAAAAAAAAAAAAARdrm2Pquu+7KkUcemR49eqSioiJz585tcL+uri4TJkzIrrvumrZt22bw4MF58sknG6xZsWJFRo0alQ4dOmSnnXbKZz7zmbz88sv/1AcBAAAAAAAAAAAAAAAAAADYFtscW69evToHHnhgvve97zV6/6KLLsqll16aK664Ivfdd1923HHHDBkyJGvXrq1fM2rUqDz22GOZP39+brrpptx1110ZO3bsW/8UAAAAAAAAAAAAAAAAAAAA26jNtr5g6NChGTp0aKP36urqcskll+Sss87K8OHDkyQ//vGP061bt8ydOzcjR47MokWL8qtf/Sq//e1vc9BBByVJLrvsshx++OH51re+lR49evwTHwcAAAAAAAAAAAAAAAAAAKBptvlk661ZvHhxli5dmsGDB9df69ixY97//vdn4cKFSZKFCxdmp512qg+tk2Tw4MFp1apV7rvvvkb3XbduXVatWtXgBwAAAAAAAAAAAAAAAAAA4J/RrLH10qVLkyTdunVrcL1bt27195YuXZpddtmlwf02bdqkc+fO9WveaPLkyenYsWP9z+67796cYwMAAAAAAAAAAAAAAAAAAAVq1tj6X+WMM87Iiy++WP/z7LPPtvRIAAAAAAAAAAAAAAAAAADAO1yzxtbdu3dPkixbtqzB9WXLltXf6969e55//vkG91999dWsWLGifs0bVVZWpkOHDg1+AAAAAAAAAAAAAAAAAAAA/hnNGlvX1NSke/fuuf322+uvrVq1Kvfdd1/69euXJOnXr19qa2vz4IMP1q+54447snHjxrz//e9vznEAAAAAAAAAAAAAAAAAAAC2qM22vuDll1/On//85/o/L168OL///e/TuXPn9OzZM6ecckrOP//87L333qmpqcnZZ5+dHj165Oijj06S7LfffjnssMPy2c9+NldccUX+8Y9/5OSTT87IkSPTo0ePZvtgAAAAAAAAAAAAAAAAAAAAW7PNsfUDDzyQQw45pP7Pp556apJk9OjRmTFjRk4//fSsXr06Y8eOTW1tbT70oQ/lV7/6VaqqqupfM2vWrJx88skZNGhQWrVqlY997GO59NJLm+HjAAAAAAAAAAAAAAAAAAAANE1FXV1dXUsPsa1WrVqVjh075sUXX0yHDh22uK56/Lxme88lU4Y1214AAAAAAAAAAAAAAAAAAMC/RlNb5CRp9W+aCQAAAAAAAAAAAAAAAAAA4G1FbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABSpTUsPUKLq8fOaZZ8lU4Y1yz4AAAAAAAAAAAAAAAAAAFAiJ1sDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFatPSA/D2UD1+XrPttWTKsGbbCwAAAAAAAAAAAAAAAAAA/lWcbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABRJbA0AAAAAAAAAAAAAAAAAABSpTUsPAFtSPX5es+21ZMqwZtsLAAAAAAAAAAAAAAAAAID/DE62BgAAAAAAAAAAAAAAAAAAiiS2BgAAAAAAAAAAAAAAAAAAiiS2BgAAAAAAAAAAAAAAAAAAiiS2BgAAAAAAAAAAAAAAAAAAiiS2BgAAAAAAAAAAAAAAAAAAiiS2BgAAAAAAAAAAAAAAAAAAiiS2BgAAAAAAAAAAAAAAAAAAiiS2BgAAAAAAAAAAAAAAAAAAiiS2BgAAAAAAAAAAAAAAAAAAiiS2BgAAAAAAAAAAAAAAAAAAiiS2BgAAAAAAAAAAAAAAAAAAiiS2BgAAAAAAAAAAAAAAAAAAiiS2BgAAAAAAAAAAAAAAAAAAitSmpQeAd5Lq8fOaba8lU4Y1214AAAAAAAAAAAAAAAAAAGw7J1sDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFElsDAAAAAAAAAAAAAAAAAABFatPSAwD/vOrx85plnyVThjXLPknzzZQ031xvx5kAAAAAAAAAAAAAAAAAgJbjZGsAAAAAAAAAAAAAAAAAAKBIYmsAAAAAAAAAAAAAAAAAAKBIYmsAAAAAAAAAAAAAAAAAAKBIYmsAAAAAAAAAAAAAAAAAAKBIYmsAAAAAAAAAAAAAAAAAAKBIYmsAAAAAAAAAAAAAAAAAAKBIYmsAAAAAAAAAAAAAAAAAAKBIYmsAAAAAAAAAAAAAAAAAAKBIYmsAAAAAAAAAAAAAAAAAAKBIYmsAAAAAAAAAAAAAAAAAAKBIYmsAAAAAAAAAAAAAAAAAAKBIYmsAAAAAAAAAAAAAAAAAAKBIYmsAAAAAAAAAAAAAAAAAAKBIYmsAAAAAAAAAAAAAAAAAAKBIYmsAAAAAAAAAAAAAAAAAAKBIYmsAAAAAAAAAAAAAAAAAAKBIYmsAAAAAAAAAAAAAAAAAAKBIYmsAAAAAAAAAAAAAAAAAAKBIYmsAAAAAAAAAAAAAAAAAAKBIYmsAAAAAAAAAAAAAAAAAAKBIYmsAAAAAAAAAAAAAAAAAAKBIYmsAAAAAAAAAAAAAAAAAAKBIYmsAAAAAAAAAAAAAAAAAAKBIYmsAAAAAAAAAAAAAAAAAAKBIYmsAAAAAAAAAAAAAAAAAAKBIYmsAAAAAAAAAAAAAAAAAAKBIYmsAAAAAAAAAAAAAAAAAAKBIbVp6AICSVY+f12x7LZkyrNn2aq65mnMmAAAAAAAAAAAAAAAAAGhuTrYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACKJLYGAAAAAAAAAAAAAAAAAACK1Oyx9YYNG3L22WenpqYmbdu2zZ577pnzzjsvdXV19Wvq6uoyYcKE7Lrrrmnbtm0GDx6cJ598srlHAQAAAAAAAAAAAAAAAAAA2KJmj60vvPDCXH755fnud7+bRYsW5cILL8xFF12Uyy67rH7NRRddlEsvvTRXXHFF7rvvvuy4444ZMmRI1q5d29zjAAAAAAAAAAAAAAAAAAAANKpNc2947733Zvjw4Rk2bFiSpLq6Oj/5yU9y//33J3ntVOtLLrkkZ511VoYPH54k+fGPf5xu3bpl7ty5GTly5GZ7rlu3LuvWrav/86pVq5p7bAAAAAAAAAAAAAAAAAAAoDDNHlv3798/06ZNy5/+9Ke8613vysMPP5x77rknF198cZJk8eLFWbp0aQYPHlz/mo4dO+b9739/Fi5c2GhsPXny5Jx77rnNPSoA7yDV4+c1215Lpgxrtr0AAAAAAAAAAAAAAAAAeOdq9th6/PjxWbVqVfbdd9+0bt06GzZsyAUXXJBRo0YlSZYuXZok6datW4PXdevWrf7eG51xxhk59dRT6/+8atWq7L777s09OgAAAAAAAAAAAAAAAAAAUJBmj61/+tOfZtasWZk9e3be85735Pe//31OOeWU9OjRI6NHj35Le1ZWVqaysrKZJwUAAAAAAAAAAAAAAAAAAErW7LH1aaedlvHjx2fkyJFJkv333z9PP/10Jk+enNGjR6d79+5JkmXLlmXXXXetf92yZcvy3ve+t7nHAQAAAAAAAAAAAAAAAAAAaFSr5t5wzZo1adWq4batW7fOxo0bkyQ1NTXp3r17br/99vr7q1atyn333Zd+/fo19zgAAAAAAAAAAAAAAAAAAACNavaTrY888shccMEF6dmzZ97znvfkd7/7XS6++OIcf/zxSZKKioqccsopOf/887P33nunpqYmZ599dnr06JGjjz66uccBAAAAAAAAAAAAAAAAAABoVLPH1pdddlnOPvvsnHTSSXn++efTo0ePnHjiiZkwYUL9mtNPPz2rV6/O2LFjU1tbmw996EP51a9+laqqquYeBwAAAAAAAAAAAAAAAAAAoFHNHlu3b98+l1xySS655JItrqmoqMikSZMyadKk5n57AAAAAAAAAAAAAAAAAACAJmnV0gMAAAAAAAAAAAAAAAAAAAC0BLE1AAAAAAAAAAAAAAAAAABQJLE1AAAAAAAAAAAAAAAAAABQJLE1AAAAAAAAAAAAAAAAAABQJLE1AAAAAAAAAAAAAAAAAABQJLE1AAAAAAAAAAAAAAAAAABQJLE1AAAAAAAAAAAAAAAAAABQpDYtPQAAvFNVj5/XbHstmTKs2fZqrrmacyYAAAAAAAAAAAAAAACAtyMnWwMAAAAAAAAAAAAAAAAAAEUSWwMAAAAAAAAAAPD/sXf/LHaVaxiHnxyWf4KgiOAkgrimsFCwiCiisQxY7IA2iqBgZUpRC1kRFRwkLgUh2BhiIfgFFGGhjbVErQUVdKEISaUGBG3MKQ7MOdF4zDl5k7Uz93XBQNh78sz9BX68AAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRuqUHAAA7Xz9MTe7M46rJHQAAAAAAAAAAAAAAAIAqL1sDAAAAAAAAAAAAAAAAAAChxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRuqUHAAAsoR+mZrfmcdXkzjpuAgAAAAAAAAAAAAAAgJ3My9YAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAECkbukBAACst36YmtyZx1WTO1XruQkAAAAAAAAAAAAAAIDLj5etAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAiia0BAAAAAAAAAAAAAAAAAIBIYmsAAAAAAAAAAAAAAAAAACCS2BoAAAAAAAAAAAAAAAAAAIgktgYAAAAAAAAAAAAAAAAAACKJrQEAAAAAAAAAAAAAAAAAgEhiawAAAAAAAAAAAAAAAAAAIJLYGgAAAAAAAAAAAAAAAAAAiCS2BgAAAAAAAAAAAAAAAAAAIomtAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgUrf0AAAA2An6YWp2ax5XTe6s46aqdrtabgIAAAAAAAAAAAAAADJ52RoAAAAAAAAAAAAAAAAAAIgktgYAAAAAAAAAAAAAAAAAACKJrQEAAAAAAAAAAAAAAAAAgEhiawAAAAAAAAAAAAAAAAAAIJLYGgAAAAAAAAAAAAAAAAAAiCS2BgAAAAAAAAAAAAAAAAAAIomtAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAiia0BAAAAAAAAAAAAAAAAAIBIYmsAAAAAAAAAAAAAAAAAACCS2BoAAAAAAAAAAAAAAAAAAIjULT0AAABgaf0wNbkzj6smdwAAAAAAAAAAAAAAgEvDy9YAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAECkbukBAAAA/Fk/TM1uzeOqyZ113AQAAAAAAAAAAAAAABfCy9YAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABCpW3oAAAAAXIh+mJrcmcdVkztV7TZVtdu1jpsAAAAAAAAAAAAAAJbmZWsAAAAAAAAAAAAAAAAAACCS2BoAAAAAAAAAAAAAAAAAAIgktgYAAAAAAAAAAAAAAAAAACKJrQEAAAAAAAAAAAAAAAAAgEhiawAAAAAAAAAAAAAAAAAAIJLYGgAAAAAAAAAAAAAAAAAAiCS2BgAAAAAAAAAAAAAAAAAAIomtAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAiia0BAAAAAAAAAAAAAAAAAIBIYmsAAAAAAAAAAAAAAAAAACBSt/QAAAAAIFM/TM1uzeOq2a1Wu1puAgAAAAAAAAAAAAAuDi9bAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABE6pYeAAAAAMB/1w9Ts1vzuGpyZx03AQAAAAAAAAAAAMD/ysvWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRuqUHAAAAAEAL/TA1uzWPq2a3AAAAAAAAAAAAAFhfXrYGAAAAAAAAAAAAAAAAAAAiia0BAAAAAAAAAAAAAAAAAIBIYmsAAAAAAAAAAAAAAAAAACCS2BoAAAAAAAAAAAAAAAAAAIgktgYAAAAAAAAAAAAAAAAAACKJrQEAAAAAAAAAAAAAAAAAgEhiawAAAAAAAAAAAAAAAAAAIJLYGgAAAAAAAAAAAAAAAAAAiCS2BgAAAAAAAAAAAAAAAAAAIomtAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAidUsPAAAAAICdrB+mJnfmcdXkDgAAAAAAAAAAAAD/5mVrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAiia0BAAAAAAAAAAAAAAAAAIBIYmsAAAAAAAAAAAAAAAAAACCS2BoAAAAAAAAAAAAAAAAAAIgktgYAAAAAAAAAAAAAAAAAACKJrQEAAAAAAAAAAAAAAAAAgEhiawAAAAAAAAAAAAAAAAAAIJLYGgAAAAAAAAAAAAAAAAAAiCS2BgAAAAAAAAAAAAAAAAAAIomtAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgUrf0AAAAAADg0uqHqdmteVw1uwUAAAAAAAAAAABwqXnZGgAAAAAAAAAAAAAAAAAAiCS2BgAAAAAAAAAAAAAAAAAAIomtAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAiia0BAAAAAAAAAAAAAAAAAIBIYmsAAAAAAAAAAAAAAAAAACCS2BoAAAAAAAAAAAAAAAAAAIgktgYAAAAAAAAAAAAAAAAAACKJrQEAAAAAAAAAAAAAAAAAgEhiawAAAAAAAAAAAAAAAAAAIJLYGgAAAAAAAAAAAAAAAAAAiCS2BgAAAAAAAAAAAAAAAAAAIomtAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAiia0BAAAAAAAAAAAAAAAAAIBIYmsAAAAAAAAAAAAAAAAAACCS2BoAAAAAAAAAAAAAAAAAAIgktgYAAAAAAAAAAAAAAAAAACKJrQEAAAAAAAAAAAAAAAAAgEhiawAAAAAAAAAAAAAAAAAAIJLYGgAAAAAAAAAAAAAAAAAAiCS2BgAAAAAAAAAAAAAAAAAAIomtAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgUrf0AAAAAACAfpia3ZrHVZM767ipqt2ulpsAAAAAAAAAAADgcuVlawAAAAAAAAAAAAAAAAAAIJLYGgAAAAAAAAAAAAAAAAAAiCS2BgAAAAAAAAAAAAAAAAAAIomtAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAiia0BAAAAAAAAAAAAAAAAAIBIYmsAAAAAAAAAAAAAAAAAACCS2BoAAAAAAAAAAAAAAAAAAIgktgYAAAAAAAAAAAAAAAAAACKJrQEAAAAAAAAAAAAAAAAAgEhiawAAAAAAAAAAAAAAAAAAIJLYGgAAAAAAAAAAAAAAAAAAiNQtPQAAAAAAgMtbP0zNbs3jqtktAAAAAAAAAAAA+DtetgYAAAAAAAAAAAAAAAAAACKJrQEAAAAAAAAAAAAAAAAAgEhiawAAAAAAAAAAAAAAAAAAIJLYGgAAAAAAAAAAAAAAAAAAiCS2BgAAAAAAAAAAAAAAAAAAIomtAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAiXZTY+ocffqjHH3+8brjhhtq9e3fdcccd9fnnn29/f+bMmXrppZdq7969tXv37jpw4EB9/fXXF2MKAAAAAAAAAAAAAAAAAADAOTWPrX/88cfav39/XXHFFfXhhx/WF198UW+88UZdf/3127/z+uuv15tvvlnHjh2rEydO1DXXXFMPPPBA/frrr63nAAAAAAAAAAAAAAAAAAAAnFPX+uBrr71WN998c73zzjvbn21ubm7/+8yZM3X06NF64YUX6sEHH6yqqnfffbc2Njbq/fffr0cffbT1JAAAAAAAAAAAAAAAAAAAgD9p/rL1Bx98UHfddVc9/PDDdeONN9a+ffvq7bff3v7+22+/rZMnT9aBAwe2P7vuuuvqnnvuqU8++eScN3/77bc6ffr0WT8AAAAAAAAAAAAAAAAAAAAXovnL1t9880299dZb9eyzz9bzzz9fn332WT311FN15ZVX1hNPPFEnT56sqqqNjY2z/t/Gxsb2d3/06quv1ssvv9x6KgAAAAAAO1Q/TM1uzeOq2a1Wu2w6fy13AQAAAAAAAAAAO0/zl61///33uvPOO+vIkSO1b9++OnToUD355JN17Nix//vm4cOH6+eff97++f777xsuBgAAAAAAAAAAAAAAAAAAEjWPrffu3Vu33377WZ/ddttt9d1331VV1Z49e6qq6tSpU2f9zqlTp7a/+6Orrrqqrr322rN+AAAAAAAAAAAAAAAAAAAALkTz2Hr//v315ZdfnvXZV199VbfccktVVW1ubtaePXvq448/3v7+9OnTdeLEibr33ntbzwEAAAAAAAAAAAAAAAAAADinrvXBZ555pu677746cuRIPfLII/Xpp5/W8ePH6/jx41VVtWvXrnr66afrlVdeqVtvvbU2NzfrxRdfrJtuuqkeeuih1nMAAAAAAAAAAAAAAAAAAADOqXlsfffdd9d7771Xhw8frq2trdrc3KyjR4/WY489tv07zz33XP3yyy916NCh+umnn+r++++vjz76qK6++urWcwAAAAAAAAAAAAAAAAAAAM6peWxdVXXw4ME6ePDgX36/a9eu2traqq2trYvx5wEAAAAAAAAAAAAAAAAAAP7WP5YeAAAAAAAAAAAAAAAAAAAAsASxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABE6pYeAAAAAAAAsO76YWp2ax5XzW4BAAAAAAAAAAAXxsvWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQqVt6AAAAAAAAAP+ffpia3JnHVZM7AAAAAAAAAABwufGyNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEKlbegAAAAAAAAA7Rz9MTe7M46rJnap2m6ra7VrHTQAAAAAAAAAAibxsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAAROqWHgAAAAAAAACsh36YmtyZx1WTOwAAAAAAAAAAF5uXrQEAAAAAAAAAAAAAAAAAgEhiawAAAAAAAAAAAAAAAAAAIJLYGgAAAAAAAAAAAAAAAAAAiCS2BgAAAAAAAAAAAAAAAAAAIomtAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAiia0BAAAAAAAAAAAAAAAAAIBIYmsAAAAAAAAAAAAAAAAAACCS2BoAAAAAAAAAAAAAAAAAAIgktgYAAAAAAAAAAAAAAAAAACKJrQEAAAAAAAAAAAAAAAAAgEhiawAAAAAAAAAAAAAAAAAAIFK39AAAAAAAAACAv9IPU7Nb87hqcsem89dqV8tNAAAAAAAAAPCfvGwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABE6pYeAAAAAAAAAACXSj9MzW7N46rJHZvOX6tdLTcBAAAAAAAAlzcvWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQKRu6QEAAAAAAAAAAJerfpia3ZrHVZM767gJAAAAAAAA1pWXrQEAAAAAAAAAAAAAAAAAgEhiawAAAAAAAAAAAAAAAAAAIJLYGgAAAAAAAAAAAAAAAAAAiCS2BgAAAAAAAAAAAAAAAAAAIomtAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAiia0BAAAAAAAAAAAAAAAAAIBIYmsAAAAAAAAAAAAAAAAAACCS2BoAAAAAAAAAAAAAAAAAAIgktgYAAAAAAAAAAAAAAAAAACKJrQEAAAAAAAAAAAAAAAAAgEjd0gMAAAAAAAAAANjZ+mFqdmseV81utdrVchMAAAAAAACXlpetAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAiia0BAAAAAAAAAAAAAAAAAIBIYmsAAAAAAAAAAAAAAAAAACCS2BoAAAAAAAAAAAAAAAAAAIgktgYAAAAAAAAAAAAAAAAAACKJrQEAAAAAAAAAAAAAAAAAgEhiawAAAAAAAAAAAAAAAAAAIJLYGgAAAAAAAAAAAAAAAAAAiCS2BgAAAAAAAAAAAAAAAAAAIomtAQAAAAAAAAAAAAAAAACASN3SAwAAAAAAAAAAgH/ph6nZrXlcNbsFAAAAAACwU3nZGgAAAAAAAAAAAAAAAAAAiCS2BgAAAAAAAAAAAAAAAAAAIomtAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAiia0BAAAAAAAAAAAAAAAAAIBIYmsAAAAAAAAAAAAAAAAAACCS2BoAAAAAAAAAAAAAAAAAAIgktgYAAAAAAAAAAAAAAAAAACKJrQEAAAAAAAAAAAAAAAAAgEhiawAAAAAAAAAAAAAAAAAAIJLYGgAAAAAAAAAAAAAAAAAAiCS2BgAAAAAAAAAAAAAAAAAAInVLDwAAAAAAAAAAANZXP0zNbs3jqtmtVrtabgIAAAAAAC4/XrYGAAAAAAAAAAAAAAAAAAAiia0BAAAAAAAAAAAAAAAAAIBIYmsAAAAAAAAAAAAAAAAAACCS2BoAAAAAAAAAAAAAAAAAAIgktgYAAAAAAAAAAAAAAAAAACKJrQEAAAAAAAAAAAAAAAAAgEhiawAAAAAAAAAAAAAAAAAAIJLYGgAAAAAAAAAAAAAAAAAAiCS2BgAAAAAAAAAAAAAAAAAAIomtAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAidUsPAAAAAAAAAAAA2An6YWpyZx5XTe4AAAAAAAB/z8vWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRuqUHAAAAAAAAAAAAcHH0w9Ts1jyumtxZx00AAAAAAOTysjUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABCpW3oAAAAAAAAAAAAALK0fpiZ35nHV5E7Vem4CAAAAANhpvGwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRuqUHAAAAAAAAAAAAAJeHfpia3ZrHVZM767ipqt0um85fy10AAAAA5PCyNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAA/2TvjkHrrNs/Dt+G0yZik9QEmgy2xC1CcbAICYJILXbIIs3oonQ8LbZdTEenZLIgpCJS4mIpdBCpAUEqxsEGSlx0yRYaKIlTUxSaBuw7vBA4fyP/vvjE1H6vC57h/M6T+9xD1g8/AAAAAAAAAAAAIJLYGgAAAAAAAAAAAAAAAAAAiCS2BgAAAAAAAAAAAAAAAAAAIomtAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAitfZ6AQAAAAAAAAAAAAB4UoxMzTc2a2VmorFZAAAAAOwON1sDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABE2vXYemZmpp555pk6d+7c9tmDBw+q3W7X4OBgHThwoCYnJ2t9fX23VwEAAAAAAAAAAAAAAAAAANi2q7H17du369NPP62XX3654/z8+fN148aNun79ei0sLNTdu3fr1KlTu7kKAAAAAAAAAAAAAAAAAABAh12LrX/77bd655136rPPPqvnn39++3xjY6OuXLlSH330UR0/fryOHTtWc3Nz9eOPP9bi4uJurQMAAAAAAAAAAAAAAAAAANBh12LrdrtdExMTdeLEiY7zpaWl2tra6jgfHR2tI0eO1K1bt3actbm5Wffv3+94AAAAAAAAAAAAAAAAAAAA/o7Wbgy9du1a/fTTT3X79u0/fbe2tlb79++vgwcPdpwPDQ3V2trajvOmp6frww8/3I1VAQAAAAAAAAAAAOCJNzI138iclZmJRuYAAAAAPC0av9l6dXW13n///friiy+qp6enkZkXL16sjY2N7Wd1dbWRuQAAAAAAAAAAAAAAAAAAQK7GY+ulpaX69ddf65VXXqlWq1WtVqsWFhbq448/rlarVUNDQ/Xw4cO6d+9ex9+tr6/X8PDwjjO7u7urr6+v4wEAAAAAAAAAAAAAAAAAAPg7Wk0PfPPNN+vnn3/uOHvvvfdqdHS0Pvjggzp8+HDt27evbt68WZOTk1VVtby8XHfu3Knx8fGm1wEAAAAAAAAAAAAAAAAAANhR47F1b29vHT16tOPsueeeq8HBwe3z06dP14ULF2pgYKD6+vrq7NmzNT4+XmNjY02vAwAAAAAAAAAAAAAAAAAAsKPGY+vHcenSperq6qrJycna3NyskydP1uXLl/diFQAAAAAAAAAAAAAAAAAAINQ/Elt///33HZ97enpqdna2Zmdn/4mfBwAAAAAAAAAAAAAAAAAA+JOuvV4AAAAAAAAAAAAAAAAAAABgL4itAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAiia0BAAAAAAAAAAAAAAAAAIBIYmsAAAAAAAAAAAAAAAAAACCS2BoAAAAAAAAAAAAAAAAAAIgktgYAAAAAAAAAAAAAAAAAACKJrQEAAAAAAAAAAAAAAAAAgEhiawAAAAAAAAAAAAAAAAAAIJLYGgAAAAAAAAAAAAAAAAAAiCS2BgAAAAAAAAAAAAAAAAAAIomtAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAiia0BAAAAAAAAAAAAAAAAAIBIYmsAAAAAAAAAAAAAAAAAACCS2BoAAAAAAAAAAAAAAAAAAIgktgYAAAAAAAAAAAAAAAAAACK19noBAAAAAAAAAAAAAODfZ2RqvrFZKzMTjc0CAAAA+F+42RoAAAAAAAAAAAAAAAAAAIgktgYAAAAAAAAAAAAAAAAAACKJrQEAAAAAAAAAAAAAAAAAgEhiawAAAAAAAAAAAAAAAAAAIJLYGgAAAAAAAAAAAAAAAAAAiCS2BgAAAAAAAAAAAAAAAAAAIomtAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAiia0BAAAAAAAAAAAAAAAAAIBIYmsAAAAAAAAAAAAAAAAAACCS2BoAAAAAAAAAAAAAAAAAAIgktgYAAAAAAAAAAAAAAAAAACKJrQEAAAAAAAAAAAAAAAAAgEhiawAAAAAAAAAAAAAAAAAAIJLYGgAAAAAAAAAAAAAAAAAAiCS2BgAAAAAAAAAAAAAAAAAAIomtAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAiia0BAAAAAAAAAAAAAAAAAIBIYmsAAAAAAAAAAAAAAAAAACCS2BoAAAAAAAAAAAAAAAAAAIgktgYAAAAAAAAAAAAAAAAAACKJrQEAAAAAAAAAAAAAAAAAgEhiawAAAAAAAAAAAAAAAAAAIFJrrxcAAAAAAAAAAAAAAGjCyNR8Y7NWZiYamwUAAAA8udxsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARGrt9QIAAAAAAAAAAAAAAE+rkan5xmatzEw0NgsAAAD4LzdbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABApNZeLwAAAAAAAAAAAAAAwD9rZGq+kTkrMxONzAEAAIC94mZrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAiia0BAAAAAAAAAAAAAAAAAIBIYmsAAAAAAAAAAAAAAAAAACCS2BoAAAAAAAAAAAAAAAAAAIgktgYAAAAAAAAAAAAAAAAAACKJrQEAAAAAAAAAAAAAAAAAgEhiawAAAAAAAAAAAAAAAAAAIJLYGgAAAAAAAAAAAAAAAAAAiCS2BgAAAAAAAAAAAAAAAAAAIomtAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAiia0BAAAAAAAAAAAAAAAAAIBIYmsAAAAAAAAAAAAAAAAAACCS2BoAAAAAAAAAAAAAAAAAAIgktgYAAAAAAAAAAAAAAAAAACKJrQEAAAAAAAAAAAAAAAAAgEhiawAAAAAAAAAAAAAAAAAAIJLYGgAAAAAAAAAAAAAAAAAAiCS2BgAAAAAAAAAAAAAAAAAAIomtAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAiia0BAAAAAAAAAAAAAAAAAIBIrb1eAAAAAAAAAAAAAAAARqbmG5u1MjPR2CwAAACebm62BgAAAAAAAAAAAAAAAAAAIomtAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAiia0BAAAAAAAAAAAAAAAAAIBIYmsAAAAAAAAAAAAAAAAAACCS2BoAAAAAAAAAAAAAAAAAAIgktgYAAAAAAAAAAAAAAAAAACKJrQEAAAAAAAAAAAAAAAAAgEhiawAAAAAAAAAAAAAAAAAAIJLYGgAAAAAAAAAAAAAAAAAAiCS2BgAAAAAAAAAAAAAAAAAAIomtAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAiia0BAAAAAAAAAAAAAAAAAIBIYmsAAAAAAAAAAAAAAAAAACCS2BoAAAAAAAAAAAAAAAAAAIgktgYAAAAAAAAAAAAAAAAAACKJrQEAAAAAAAAAAAAAAAAAgEhiawAAAAAAAAAAAAAAAAAAIJLYGgAAAAAAAAAAAAAAAAAAiCS2BgAAAAAAAAAAAAAAAAAAIomtAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAiia0BAAAAAAAAAAAAAAAAAIBIYmsAAAAAAAAAAAAAAAAAACCS2BoAAAAAAAAAAAAAAAAAAIgktgYAAAAAAAAAAAAAAAAAACKJrQEAAAAAAAAAAAAAAAAAgEhiawAAAAAAAAAAAAAAAAAAIJLYGgAAAAAAAAAAAAAAAAAAiCS2BgAAAAAAAAAAAAAAAAAAIomtAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAiia0BAAAAAAAAAAAAAAAAAIBIYmsAAAAAAAAAAAAAAAAAACCS2BoAAAAAAAAAAAAAAAAAAIgktgYAAAAAAAAAAAAAAAAAACKJrQEAAAAAAAAAAAAAAAAAgEhiawAAAAAAAAAAAAAAAAAAIJLYGgAAAAAAAAAAAAAAAAAAiCS2BgAAAAAAAAAAAAAAAAAAIomtAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAiia0BAAAAAAAAAAAAAAAAAIBIYmsAAAAAAAAAAAAAAAAAACCS2BoAAAAAAAAAAAAAAAAAAIgktgYAAAAAAAAAAAAAAAAAACKJrQEAAAAAAAAAAAAAAAAAgEhiawAAAAAAAAAAAAAAAAAAIJLYGgAAAAAAAAAAAAAAAAAAiCS2BgAAAAAAAAAAAAAAAAAAIomtAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAiia0BAAAAAAAAAAAAAAAAAIBIYmsAAAAAAAAAAAAAAAAAACCS2BoAAAAAAAAAAAAAAAAAAIgktgYAAAAAAAAAAAAAAAAAACKJrQEAAAAAAAAAAAAAAAAAgEhiawAAAAAAAAAAAAAAAAAAIJLYGgAAAAAAAAAAAAAAAAAAiCS2BgAAAAAAAAAAAAAAAAAAIomtAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAiia0BAAAAAAAAAAAAAAAAAIBIYmsAAAAAAAAAAAAAAAAAACCS2BoAAAAAAAAAAAAAAAAAAIgktgYAAAAAAAAAAAAAAAAAACKJrQEAAAAAAAAAAAAAAAAAgEhiawAAAAAAAAAAAAAAAAAAIJLYGgAAAAAAAAAAAAAAAAAAiCS2BgAAAAAAAAAAAAAAAAAAIomtAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAiia0BAAAAAAAAAAAAAAAAAIBIYmsAAAAAAAAAAAAAAAAAACCS2BoAAAAAAAAAAAAAAAAAAIgktgYAAAAAAAAAAAAAAAAAACKJrQEAAAAAAAAAAAAAAAAAgEhiawAAAAAAAAAAAAAAAAAAIJLYGgAAAAAAAAAAAAAAAAAAiCS2BgAAAAAAAAAAAAAAAAAAIomtAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAiia0BAAAAAAAAAAAAAAAAAIBIYmsAAAAAAAAAAAAAAAAAACCS2BoAAAAAAAAAAAAAAAAAAIgktgYAAAAAAAAAAAAAAAAAACKJrQEAAAAAAAAAAAAAAAAAgEhiawAAAAAAAAAAAAAAAAAAIJLYGgAAAAAAAAAAAAAAAAAAiCS2BgAAAAAAAAAAAAAAAAAAIomtAQAAAAAAAAAAAAAAAACASGJrAAAAAAAAAAAAAAAAAAAgktgaAAAAAAAAAAAAAAAAAACIJLYGAAAAAAAAAAAAAAAAAAAiia0BAAAAAAAAAAAAAAAAAIBIrb1eAAAAAAAAAAAAAAAAnkQjU/ONzVqZmWhsFgAAAM1xszUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQKTGY+vp6el69dVXq7e3tw4dOlRvv/12LS8vd7zz4MGDarfbNTg4WAcOHKjJyclaX19vehUAAAAAAAAAAAAAAAAAAIC/1HhsvbCwUO12uxYXF+vbb7+tra2teuutt+r333/ffuf8+fN148aNun79ei0sLNTdu3fr1KlTTa8CAAAAAAAAAAAAAAAAAADwl1pND/zmm286Pn/++ed16NChWlpaqtdff702NjbqypUrdfXq1Tp+/HhVVc3NzdVLL71Ui4uLNTY21vRKAAAAAAAAAAAAAAAAAAAAf9L4zdb/18bGRlVVDQwMVFXV0tJSbW1t1YkTJ7bfGR0drSNHjtStW7d2nLG5uVn379/veAAAAAAAAAAAAAAAAAAAAP6OXY2t//jjjzp37ly99tprdfTo0aqqWltbq/3799fBgwc73h0aGqq1tbUd50xPT1d/f//2c/jw4d1cGwAAAAAAAAAAAAAAAAAACLCrsXW73a5ffvmlrl279rfmXLx4sTY2Nraf1dXVhjYEAAAAAAAAAAAAAAAAAABStXZr8JkzZ+rrr7+uH374oV544YXt8+Hh4Xr48GHdu3ev43br9fX1Gh4e3nFWd3d3dXd379aqAAAAAAAAAAAAAAAAAABAoMZvtn706FGdOXOmvvzyy/ruu+/qxRdf7Pj+2LFjtW/fvrp58+b22fLyct25c6fGx8ebXgcAAAAAAAAAAAAAAAAAAGBHjd9s3W636+rVq/XVV19Vb29vra2tVVVVf39/Pfvss9Xf31+nT5+uCxcu1MDAQPX19dXZs2drfHy8xsbGml4HAAAAAAAAAAAAAAAAAABgR43H1p988klVVb3xxhsd53Nzc/Xuu+9WVdWlS5eqq6urJicna3Nzs06ePFmXL19uehUAAAAAAAAAAAAAAAAAAIC/1Hhs/ejRo//3nZ6enpqdna3Z2dmmfx4AAAAAAAAAAAAAAAAAAOCxdO31AgAAAAAAAAAAAAAAAAAAAHtBbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkVp7vQAAAAAAAAAAAAAAAPB4RqbmG5u1MjPR2CwAAIB/KzdbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABApNZeLwAAAAAAAAAAAAAAAPy7jUzNNzJnZWaikTlVze1U1dxednp8T+L/FAAATyc3WwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAAAAAAAAAAAAAAAEQSWwMAAAAAAAAAAAAAAAAAAJHE1gAAAAAAAAAAAAAAAAAAQCSxNQAAAAAAAAAAAAAAAAAAEElsDQAAAAAAAAAAAAAAAAAARBJbAwAAAAAAAAAAAAAAAAAAkcTWAAAAAAAAAAAAAAAAAABAJLE1AAAAAAAAAAAAAAAAAAAQSWwNAAAAAAAAAAAAAAAAAABEElsDAAAAAAAAAAAAAAAAAACRxNYAAAAAAAAAAAAAAAAAAEAksTUAAAAAAAAAAAAAAAAAABBJbA0AAAAA/2nvzuNtLvf//z/XskfzzDbsjRDKUKZIqHaUYtOoMtQJJU6hQhMNRKN0FCdRGpGU5GPokFOKDIXSZCzFdqTMw5b9+v3ht9fXDrXOOZ33eu3243677dvtrHWdYz3Pdb3e13ta13sBAAAAAAAAAAAAAAAAAAAgX2KxNQAAAAAAAAAAAAAAAAAAAAAAAAAAAIB8icXWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPIlFlsDAAAAAAAAAAAAAAAAAAAAAAAAAAAAyJfiYh0AAAAAAAAAAAAAAAAAAAAAAAAA8K7K4Fl/2L+1aeTFf8i/4zETAABAXsMvWwMAAAAAAAAAAAAAAAAAAAAAAAAAAADIl1hsDQAAAAAAAAAAAAAAAAAAAAAAAAAAACBfYrE1AAAAAAAAAAAAAAAAAAAAAAAAAAAAgHyJxdYAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8iUWWwMAAAAAAAAAAAAAAAAAAAAAAAAAAADIl1hsDQAAAAAAAAAAAAAAAAAAAAAAAAAAACBfYrE1AAAAAAAAAAAAAAAAAAAAAAAAAAAAgHyJxdYAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8iUWWwMAAAAAAAAAAAAAAAAAAAAAAAAAAADIl1hsDQAAAAAAAAAAAAAAAAAAAAAAAAAAACBfYrE1AAAAAAAAAAAAAAAAAAAAAAAAAAAAgHyJxdYAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8iUWWwMAAAAAAAAAAAAAAAAAAAAAAAAAAADIl1hsDQAAAAAAAAAAAAAAAAAAAAAAAAAAACBfiot1AAAAAAAAAAAAAAAAAAAAAAAAAAB/HlUGz/pD/p1NIy/+Q/4d6c+dSfrjcnnMJP25x++PzAQA+M/wy9YAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8iUWWwMAAAAAAAAAAAAAAAAAAAAAAAAAAADIl1hsDQAAAAAAAAAAAAAAAAAAAAAAAAAAACBfYrE1AAAAAAAAAAAAAAAAAAAAAAAAAAAAgHyJxdYAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8iUWWwMAAAAAAAAAAAAAAAAAAAAAAAAAAADIl1hsDQAAAAAAAAAAAAAAAAAAAAAAAAAAACBfYrE1AAAAAAAAAAAAAAAAAAAAAAAAAAAAgHyJxdYAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8iUWWwMAAAAAAAAAAAAAAAAAAAAAAAAAAADIl1hsDQAAAAAAAAAAAAAAAAAAAAAAAAAAACBfYrE1AAAAAAAAAAAAAAAAAAAAAAAAAAAAgHyJxdYAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8qW4WAcAAAAAAAAAAAAAAAAAAAAAAAAAAAD/nSqDZ/1h/9amkRf/If+Ox0zSH5frz54JyC/4ZWsAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+RKLrQEAAAAAAAAAAAAAAAAAAAAAAAAAAADkSyy2BgAAAAAAAAAAAAAAAAAAAAAAAAAAAJAvsdgaAAAAAAAAAAAAAAAAAAAAAAAAAAAAQL7EYmsAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+RKLrQEAAAAAAAAAAAAAAAAAAAAAAAAAAADkSyy2BgAAAAAAAAAAAAAAAAAAAAAAAAAAAJAvsdgaAAAAAAAAAAAAAAAAAAAAAAAAAAAAQL7EYmsAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+RKLrQEAAAAAAAAAAAAAAAAAAAAAAAAAAADkSyy2BgAAAAAAAAAAAAAAAAAAAAAAAAAAAJAvsdgaAAAAAAAAAAAAAAAAAAAAAAAAAAAAQL7EYmsAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+RKLrQEAAAAAAAAAAAAAAAAAAAAAAAAAAADkS3GxDgAAAAAAAAAAAAAAAAAAAAAAAAAAAABfqgye9Yf9W5tGXvyH/DseM0l/XK4/MhOixy9bAwAAAAAAAAAAAAAAAAAAAAAAAAAAAMiXWGwNAAAAAAAAAAAAAAAAAAAAAAAAAAAAIF9isTUAAAAAAAAAAAAAAAAAAAAAAAAAAACAfInF1gAAAAAAAAAAAAAAAAAAAAAAAAAAAADyJRZbAwAAAAAAAAAAAAAAAAAAAAAAAAAAAMiXWGwNAAAAAAAAAAAAAAAAAAAAAAAAAAAAIF9isTUAAAAAAAAAAAAAAAAAAAAAAAAAAACAfInF1gAAAAAAAAAAAAAAAAAAAAAAAAAAAADyJRZbAwAAAAAAAAAAAAAAAAAAAAAAAAAAAMiXWGwNAAAAAAAAAAAAAAAAAAAAAAAAAAAAIF9isTUAAAAAAAAAAAAAAAAAAAAAAAAAAACAfInF1gAAAAAAAAAAAAAAAAAAAAAAAAAAAADyJRZbAwAAAAAAAAAAAAAAAAAAAAAAAAAAAMiX4mIdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAfp8rgWX/Yv7Vp5MV/yL/jMZPEL1sDAAAAAAAAAAAAAAAAAAAAAAAAAAAAyKdYbA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAgX2KxNQAAAAAAAAAAAAAAAAAAAAAAAAAAAIB8icXWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPIlFlsDAAAAAAAAAAAAAAAAAAAAAAAAAAAAyJdYbA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAgX2KxNQAAAAAAAAAAAAAAAAAAAAAAAAAAAIB8icXWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPIlFlsDAAAAAAAAAAAAAAAAAAAAAAAAAAAAyJdYbA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAgX2KxNQAAAAAAAAAAAAAAAAAAAAAAAAAAAIB8icXWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPIlFlsDAAAAAAAAAAAAAAAAAAAAAAAAAAAAyJdYbA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAgX2KxNQAAAAAAAAAAAAAAAAAAAAAAAAAAAIB8icXWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPIlFlsDAAAAAAAAAAAAAAAAAAAAAAAAAAAAyJdYbA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAgX2KxNQAAAAAAAAAAAAAAAAAAAAAAAAAAAIB8icXWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPIlFlsDAAAAAAAAAAAAAAAAAAAAAAAAAAAAyJdYbA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAgX2KxNQAAAAAAAAAAAAAAAAAAAAAAAAAAAIB8icXWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPKlmC22fvrpp1WlShUlJSWpadOmWrp0aayiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMiHYrLYesqUKRowYICGDh2qTz75RPXr11fbtm31r3/9KxZxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAORDMVls/cQTT6hnz566/vrrVadOHY0bN04FCxbUxIkTYxEHAAAAAAAAAAAAAAAAAAAAAAAAAAAAQD4UF/QHZmVlacWKFbrzzjsj74XDYaWnp2vx4sUn/N8cOnRIhw4dirzetWuXJGn37t2/+VnZh/b/AYkV1Wf9O/6oXB4zSX9cLjJFj5qKDpmiR01Fx2Mm6c89fh4zSdRUtMgUPWoqOmSKHjUVHY+ZpD/3+HnMJFFT0SJT9Kip6JApetRUdDxmkv7c4+cxk0RNRYtM0aOmouMxk/TnHj+PmSRqKlpkih41FR0yRY+aio7HTNKfe/w8ZpKoqWiRKXrUVHTIFD1qKjoeM0l/7vHzmEmipqJFpuhRU9EhU/Soqeh4zCT9ucfPYyaJmooWmaJHTUWHTNGjpqLjMZOUN8cvp93MfvffClk0/60/0JYtW1SxYkV99NFHatasWeT9gQMH6p///Kc+/vjj4/439913n+6///4gYwIAAAAAAAAAAAAAAAAAAAAAAAAAAADIwzZv3qxKlSr95n8n8F+2/k/ceeedGjBgQOR1dna2fvrpJ5UqVUqhUOi/+rd3796typUra/PmzSpatOh/G/UPQaboecxFpuh4zCT5zEWm6HjMJPnMRaboeMwk+cxFpuh4zCT5zEWm6HjMJPnMRaboeMwk+cxFpuh5zEWm6HjMJPnMRaboeMwk+cxFpuh4zCT5zEWm6HjMJPnMRaboeMwk+cxFpuh4zCT5zEWm6HnMRaboeMwk+cxFpuh4zCT5zEWm6HjMJPnMRaboeMwk+cxFpuh4zCT5zEWm6HjMJPnMRaboecxFpuh4zCT5zEWm6HjMJPnMRaboeMwk+cxFpuh4zCT5zEWm6PyRmcxMe/bsUYUKFX73vxv4YuvSpUurQIEC2rZtW673t23bpvLly5/wf5OYmKjExMRc7xUvXvwPzVW0aFE3xZCDTNHzmItM0fGYSfKZi0zR8ZhJ8pmLTNHxmEnymYtM0fGYSfKZi0zR8ZhJ8pmLTNHxmEnymYtM0fOYi0zR8ZhJ8pmLTNHxmEnymYtM0fGYSfKZi0zR8ZhJ8pmLTNHxmEnymYtM0fGYSfKZi0zR85iLTNHxmEnymYtM0fGYSfKZi0zR8ZhJ8pmLTNHxmEnymYtM0fGYSfKZi0zR8ZhJ8pmLTNHzmItM0fGYSfKZi0zR8ZhJ8pmLTNHxmEnymYtM0fGYSfKZi0zR+aMyFStWLKr/Xvi//qR/U0JCgho2bKj58+dH3svOztb8+fPVrFmzoOMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyKcC/2VrSRowYIC6d++uRo0aqUmTJnryySe1b98+XX/99bGIAwAAAAAAAAAAAAAAAAAAAAAAAAAAACAfisli66uuukrbt2/XkCFDlJmZqQYNGmjOnDkqV65c4FkSExM1dOhQJSYmBv7ZJ0Om6HnMRaboeMwk+cxFpuh4zCT5zEWm6HjMJPnMRaboeMwk+cxFpuh4zCT5zEWm6HjMJPnMRaboecxFpuh4zCT5zEWm6HjMJPnMRaboeMwk+cxFpuh4zCT5zEWm6HjMJPnMRaboeMwk+cxFpuh5zEWm6HjMJPnMRaboeMwk+cxFpuh4zCT5zEWm6HjMJPnMRaboeMwk+cxFpuh4zCT5zEWm6HnMRaboeMwk+cxFpuh4zCT5zEWm6HjMJPnMRaboeMwk+cxFpujEKlPIzCzQTwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8KxDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAscBiawAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5EoutAQAAAAAAAAAAAAAAAAAAAAAAAAAAAORLLLYGAAAAAAAAAAAAAAAAAAAAAAAAAAAAkC+x2BoAAAAAAAAAAAAAAAAAAAAAAAAAAABAvsRiawAAAAAAAAAAgD+hQ4cO6dChQ7GOAQAAAAAAgHyK61PID6hzAACQF5lZrCPgv8QY4s9u48aN+uWXXwL9zJCxZQEIQFZWlt566y0tXrxYmZmZkqTy5curefPmysjIUEJCQowTAv+9H3/8URMnTjxhnV933XUqU6ZMjBMiL/riiy80ZsyY4+qqWbNm6tu3r+rUqRN4Jo9zOpmi53GuIlPezYS8jXkqel77Cr/PYz155bXOPY4hmfI2j+dYHjMheh7nz3fffVejRo3S4sWLtXv3bklS0aJF1axZMw0YMEDp6emBZ/LYT4iex/0Mc2f0PG5/HjN55HHbk9j+ouV1/JB3UVN5m8fx85hJYj+DPx7HnkBseLw+heixP45OXqrzbdu2ycxUvnz5WEfBf8DMFAqFYh3jOB5zbdy4UZUrV1ZcXFyso+A3jBkzRkuXLlW7du3UuXNnvfTSSxoxYoSys7N16aWX6oEHHgh0DL///nslJSWpdOnSkqQPPvhA48aN03fffae0tDT16dNHzZo1CyzPr7MVL15chQsXzvX+4cOHtXjxYrVs2ZJMJ1GtWjXNnTtXNWrUiHUUSYo8lCUxMTHGSXJLSEjQqlWrVLt27VhHyeWXX35hLj/GoUOHdPfdd2vp0qW6+OKLNWjQIA0bNkwjR46UJHXo0EHjxo1T0aJFY5z0qIULF6pp06ZKTk6Oyee/8847Wrp0qdq2bauzzz5bCxYs0GOPPRbZz/Tq1SvQPJ988olKlCihqlWrSpJeeumlXPuZvn37qnPnzoFmkvz108nEYp7Kd4utPd4s8HhR12Mmr7k81pS3TOvWrVPbtm21ZcsWNW3aVOXKlZN09ALOxx9/rEqVKmn27NmqXr16oLkknzVFpuh4q/Nly5apbdu2KliwoNLT03PV+fz587V//37NnTtXjRo1CjSX5K+vvGbyWOezZ89Wx44ddeaZZ6pt27a56urdd9/VihUrNGPGDLVt2zawTB7ndDJFz+NcRaa8mymHxzndYyZv+xnmqeh57StvNZXD0/bnsZ5yePuSitc69ziGZIqep/kgh8dzLI+ZcngcQ+bP3zdp0iT16NFDl19++XE1NW/ePE2bNk0TJkxQ165dA8vksZ9yeKxzb8d5HvcznudOb+PncfvzmEnyN3Yetz3J9/bnaU73On6Sv1qXfI3dsTwde3quKU/9lMNbTXkcP4+ZJL/7GY9zp8dtT/K3/XHsmbczSf5qSvLZV94yebw+lcPj/Omtzr3uj72Nndc6/+mnn9SrV6/IQpwxY8boxhtv1MSJExUKhdS0aVO98cYbSklJCTSXJB04cEArVqxQyZIljxuvgwcPaurUqerWrVugmbwt+DyZWC6Ey2uLu2K9aJA6/33Dhg3TI488ojZt2ujDDz9Uv3799Oijj6p///4Kh8MaNWqUevfurfvvvz+wTE2bNtW9996rSy65RDNmzNCll16qSy65RLVr19Y333yjd955R9OnT9cll1wSWKatW7cqIyNDK1asUCgU0jXXXKNnnnkmssB527ZtqlChgo4cOZKvM0nSU089dcL3BwwYoIEDB0YeNHLLLbcEGUuSrwezDBgw4ITvjx49Wl26dFGpUqUkSU888URgmSRpzpw5qlixourWravs7GwNHz5c48aNU2ZmplJSUtS3b18NGjQo0Id7eFwYO2DAAE2ZMkVXX321/u///k/nnnuu3nnnHT300EMKh8MaMmSILrroopNuD0GL5f7473//u/r27av69etr7dq1evrpp3XzzTfrqquuUoECBfTiiy9qxIgRuvXWWwPLVL9+fT3++ONKT0/Xc889p1tuuUU9e/ZU7dq19fXXX+u5557T6NGj9Ze//CWwTB776dJLLz3h+zNmzNB5552nIkWKSJKmT5/+P8+SrxZbe7xZ4PGirsdMXnN5rCmPmS644AIVKlRIL7744nEn1Lt371a3bt104MABzZ07N7BMks+aIlN0PNb5WWedpfr162vcuHHHHdCbmW666SatXr1aixcvDiyT5LOvPGbyWOfS0YPrjIwMPfDAAydsv++++zR9+nStXr06sEwe53QyRc/jXEWmvJtJ8jmne8zkcT/DPBU9j33lsaYkf9ufx3qSfH5JxWOdSz7HkEzR8TYf5PB4juUxk+RzDJk/o1OzZk3deuut6tOnzwnbn3nmGY0aNUpr164NLJPHfpJ81rnH4zyP+xmvc6fH8fO4/XnM5HHsPG57kt/tz9uc7nX8PNa6t7HL4e3Y02tNeesnyWdNeRw/j5kkn/sZj3Onx21P8rn9ceyZdzNJPmvKY195zOTx+pTkc/70WOce98cex85rnd9www1aunSpbrzxRk2bNk3FixfXxo0b9cwzzygcDuvWW29V7dq1NWnSpEBzffPNN2rTpo2+++47hUIhtWjRQpMnT44s+o7FAj2PCz49LoTzurjL02KcHNR5dKpXr65HHnlEl156qVatWqWGDRtq0qRJuvbaayVJb775pgYOHBjo/Fm4cGF99tlnqlq1qs466yx16tRJgwYNirSPGTNGEydO1CeffBJYpu7du+vrr7/WmDFjtHPnTg0ePFihUEjz5s1TiRIltG3bNqWkpCg7OztfZ5KkcDisihUrHvfQgG+//VYVKlRQfHy8QqGQNmzYEGgubw9mCYfDql+/vooXL57r/X/+859q1KiRChUqpFAopAULFgSSJ0etWrU0fvx4nXPOORoxYoQef/xx3X333ZFFqCNGjFD//v1zbZP/ax4XxqampmrixIlKT0/Xhg0bVKNGDU2fPl0ZGRmSji7s79mzpzZt2hRYJkk688wzT/j+ypUrVatWLSUlJUlSoPPnaaedpn79+qlnz55677331K5dOz3++OO6+eabJUkvvPCCHnnkEX3xxReBZSpYsKC+/PJLpaWl6cwzz1Tv3r3Vs2fPSPurr76q4cOHa82aNYFl8thP4XBYLVu2jDzoIMeLL76oDh06ROav559//n8fxvKRpk2bWq9evSw7O/u4tuzsbOvVq5edddZZgWZKT0+3jIwM27Vr13Ftu3btsoyMDGvTpk2+z+Q1l8ea8pgpOTnZPvvss5O2r1692pKTkwNMdJTHmiJTdDzWeVJSkn355Zcnbf/yyy8tKSkpwERHeewrj5k81rnZ0br66quvTtr+1VdfBV5XHud0MkXP41xFpuh4zGTmc073mMnjfoZ5Knoe+8pjTZn52/481pOZWb169ezee+89afvQoUOtbt26ASbyWedmPseQTNHxNh/k8HiO5TGTmc8xZP6MTmJiorua8thPZj7r3ONxnsf9jNe50+P4edz+PGbyOHYetz0zv9uftznd6/h5rHVvY5fD27Gn15ry1k9mPmvK4/h5zGTmcz/jce70uO2Z+dz+OPbMu5nMfNaUx77ymMnj9Skzn/Onxzr3uD/2OHZe6zwlJcU+/PBDMzPLzMy0UChk8+bNi7QvWrTIKlasGHiujh072sUXX2zbt2+3tWvX2sUXX2xVq1a1b7/9NpI1HA4HmumUU06xN954w8zMVq5caQUKFLCXX3450j59+nSrXr16oJlCoZA1aNDAWrdunesvFApZ48aNrXXr1nbuuecGmqly5cr27rvvmpnZ+vXrLRwO21tvvRVpnzdvnqWlpQWayexoX7Vq1cquu+66XH/hcNg6duwYeR0k6jw6ycnJkT4xM4uPj7fPP/888nrTpk1WsGDBQDMVK1bMVq1aZWZmZcuWjfznHOvWrQs8U4UKFezjjz+OvD548KC1b9/eGjRoYDt27IhJPXnMZGZ24403WoMGDeyLL77I9X5cXJytWbMm8Dw5atSoYWPGjDlp+9NPPx3o9jdixAirWrWqzZ8/P9f7se6nxMTEyJxw+umn29SpU3O1v/POOzGZpzZt2mRmZmeccYY9++yzudpfeeUVq1OnTuCZfmvu3LhxY+DzlNnR+rnwwgvtvvvui/wNHTrUwuGw3XzzzZH3gnSivjr22lAs+qpUqVK2fPlyMzu6n1m5cmWu9nXr1sXkfq23fnrttdesUqVKNnHixFzvx2KeyleLrT3eLPB4UddjJjOfuTzWlMdMKSkpNnPmzJO2v/3225aSkhJgoqM81hSZouOxzqtUqWKTJk06afukSZNiclHJY195zOSxzs3MatWqZY8//vhJ2x9//HE79dRTA0zkc04nU/Q8zlVkio7HTGY+53SPmTzuZ5inouexrzzWlJm/7c9jPZn5/JKKxzo38zmGZIqOt/kgh8dzLI+ZzHyOIfNndM4880y74447Tto+cOBAO/PMMwNM5LOfzHzWucfjPI/7Ga9zp8fx87j9eczkcew8bntmfrc/b3O61/HzWOvexi6Ht2NPrzXlrZ/MfNaUx/HzmMnM537G69zpbdsz87n9cewZHY+ZzHzWlMe+8pjJ4/UpM5/zp8c697g/9jh2Xuu8YMGCkcVBZscvmtiwYYMVKlQo8Fxly5a11atXR15nZ2fbTTfdZKmpqbZ+/fqYLNDzuODT40I4r4u7PC3GyUGdR6dq1ao2e/ZsMzP75ptvLBwO51pcOWvWLKtSpUqgmTp06GCDBw82M7O2bdva6NGjc7WPHz/eatSoEWimQoUK2TfffJPrvcOHD1vHjh2tXr16tnr16sDryWOmHNOnT7fKlSvb3/72t8h7HhYRezt+Wbp0qdWsWdNuu+02y8rKMrPY91NKSootXrzYzMzKlStnn3zySa72b775JvDzGY8LY0899VSbPHmymR0dx4SEhFz7wMmTJwc+T5kdfZDPKaecYkOGDLEjR45E3o9lXVWqVMnef/99MzP74YcfLBQK2axZsyLtCxcutEqVKgWaqUuXLnbDDTeYmdkVV1xh99xzT672hx56KPCHR3nsJ7Ojx5Znn322XXrppfbTTz+ZWWzqKe5//9vZfpQvX15Lly5VrVq1Tti+dOlSlStXLtBMxYsX16ZNm3T66aefsH3Tpk2RnzrPz5kkn7k81pTHTD169FC3bt1077336vzzz498/rZt2zR//nwNGzZMf/3rXwPNJPmsKTJFx2Od33777erVq5dWrFhxwjofP368HnvssUAzST77ymMmj3UuSQ888ICuueYaLVy4UOnp6cfV1Zw5c/Tqq68GmsnjnE6m6Hmcq8iUdzNJPud0j5k87meYp6Lnsa881pTkb/vzWE+SVKVKFc2aNUunnnrqCdtnzZqltLS0QDN5rHPJ5xiSKTre5oMcHs+xPGaSfI4h82d0Hn/8cV1yySWaM2fOCWtqw4YNmjVrVqCZPPaT5LPOPR7nedzPeJ07PY6fx+3PYyaPY+dx25P8bn/e5nSv4+ex1r2NXQ5vx55ea8pbP0k+a8rj+HnMJPncz3icOz1ue5LP7Y9jz7ybSfJZUx77ymMmj9enJJ/zp8c697g/9jh2Xuu8Ro0aeuedd9SnTx/Nnj1bSUlJmjdvXmSOmDt3rqpWrRp4rgMHDigu7v8tWQiFQho7dqz69u2rVq1axexawhdffKHU1FStXbtWR44c0RdffKHTTjtNkrRmzRqVLVs20EyDBw/W+eefry5duqh9+/YaMWKE4uPjA83wa6mpqVq8eLFSU1O1bNkyhUIhLV26NNJPH3/8sSpWrBh4rs6dO+uss85Sly5d9M477+i5555TiRIlAs9xLOo8Otdee626deumjIwMzZ8/XwMHDtTtt9+uHTt2KBQKafjw4br88ssDzTRy5Eidc8452rJli1q0aKG7775by5YtU+3atfX1119rypQpGjduXKCZqlWrptWrV6tGjRqR9+Li4vT666/riiuu0CWXXBJoHq+ZcnTq1ElNmjRRt27dNGvWLD3//PMxy5LjtNNO04QJE/TII4+csH3ixImqU6dOoJkaN26sFStWqE+fPmrUqJFeeeUVhUKhQDP8WqdOnTR8+HC99dZbysjI0DPPPKNnn302kutvf/ubGjRoEGimiy66SGPHjtVzzz2nVq1aadq0aapfv36kferUqapevXqgmW666SZdd911eu6557RixQo99thjuuuuu/TVV18pHA5r7Nixuu222wLNJElnn322VqxYoZtuuknNmzfXK6+8olNOOSXwHMfKyMjQDTfcoO7du+vtt99Wt27ddNtttykcDisUCumOO+5QmzZtAs308MMP6+yzz1arVq3UqFEjPf7441q4cGFkP7NkyRK9+eabgWby2E/S0XO/999/X/fff7/q16+v8ePHx2aeCnRpd4yNGTPGEhMT7ZZbbrEZM2bYkiVLbMmSJTZjxgy75ZZbLDk52Z5++ulAM917771WokQJe+KJJ2zVqlWWmZlpmZmZtmrVKnviiSesZMmSNnTo0HyfyWsujzXlMZOZ2ciRIy0lJcVCoZCFw2ELh8MWCoUsJSXFHn744cDzmPmsKTJFx2udT5482Zo2bWpxcXEWCoUsFApZXFycNW3a1KZMmRJ4HjOffeUxk8c6z/Hhhx/aVVddZampqZaQkGAJCQmWmppqV111lX300UcxyeRxTidT9DzOVWTKu5k8zukeM3ndzzBPRc9bX3mtKY/bn8d6mjp1qsXFxVn79u1t9OjRNnnyZJs8ebKNHj3aOnToYAkJCTZt2rTAc3mr8xwex5BMv8/jfJDD4zmWx0wex5D5M3obN260gQMHWsuWLa1mzZpWs2ZNa9mypQ0aNMg2btwYk0we+8ljnXs9zvO2nzHzOXd6HT+P25+3TF7HzuO2Z+Zz+/M4p3scP4+17nHszHwee3qsKY/95LWmPI6fx0xm/vYzHudOj9uemd/tj2PPvJnJzGdNeewrj5nMfF6f8jh/eqxzM3/7Y49jZ+azzl9++WUrUKCAVa9e3RITE+3111+3ChUq2JVXXmmdO3e2hIQEGzNmTOC5GjdubC+++OIJ2/r06WPFixcP/NdQ77nnHitTpoz16NHDqlataoMHD7bU1FQbO3asjRs3zipXrmz9+/cPNFOOPXv2WLdu3axevXr22WefWXx8fMx+HXLUqFGWlJRk6enpVqJECXvqqaesfPnyNnDgQBs8eLAVK1bMHnjggZhkMzM7cuSIDRkyxCpXrmxz5syJaV9R59E5cuSIDR8+3C655BJ76KGHLDs721577TWrXLmylSpVyq677jrbu3dvoJnMjv5SbefOna1IkSKRc+T4+Hhr3ry5vfnmm4HnGThwoLVp0+aEbYcPH7YOHToEXk8eM/1adna2PfTQQ1a+fHkrUKBATH+x+b333rNChQpZ3bp1rX///jZy5EgbOXKk9e/f3+rVq2eFCxe2f/7znzHL99prr1m5cuUsHA7HtJ927txpjRo1surVq1vXrl0tKSnJ0tLS7IILLrCqVatasWLFbMmSJYFm+uGHH6xKlSrWsmVLGzBggCUnJ1uLFi2sZ8+e1rJlS0tISMj1C8BBeeWVV6xv37726quvmtnRGjvnnHOsYcOGdt999+X6ZelYmDhxopUvX97+/ve/x3R/vHfvXuvZs6edfvrp1qtXLzt06JA9+uijlpCQYKFQyFq3bm3btm0LPNfPP/9sgwYNsjp16lhSUpIlJCRYWlqaXXPNNbZs2bLA83jtp2N98MEHVrVq1ZjMU/lqsbWZz5sF3i7qes3kNZfHmvKYKceGDRvso48+so8++sg2bNgQ0yxmPmuKTNHxXOdZWVm2ZcsW27Jli2VlZcU0i5nPvvKYyWOde+dtTjcj07/D21xlRqZoecvkcU73mMnzfoZ5Knqe+sprTXnc/sz81ZO3L6kcy1OdH8vbGJqR6fd4nQ8QPY9jyPyZ93nrJ4917vU4z8zXfsYrz+Pnbfsz85XJ89ix7UXH45xu5m/8PNa617HzeuzpraY89pPXmjLzN35mPjN543Hu9Ljtmfne/jj2zHuZzHzWlMe+8pjJK4/zp8c698jj2Hm1aNEie+yxx+zDDz80M7M1a9ZY165d7bLLLrMXXnghJpkeeughu+iii07a3rt3bwuFQgEm8rvg81heFsJ5X9xlFtvFODmo8z+H7Oxsy8zMjPk58uHDh23Xrl2/2b5p06YAE/nMdDLLly+3J5980n766aeY5vD4YJZjfffdd/bWW2/Znj17YpojKyvLxo4da+3atbNatWpZzZo1rVWrVnbXXXfZ5s2bY5LJ28LYvOKbb76xxo0bWygUiumxy4kcOHDAdu/eHesY7nnrpz179tjKlSvt0KFDgX5uyMws+N/Tjr3Dhw/rxx9/lCSVLl1a8fHxMU4kbdy4UZmZmZKk8uXLq2rVqjFO5DOT5DOXx5rymMkrjzVFpuhQ59Hz2FceM3mscwDICzzO6R4zsZ/BH81rTXnc/gDEBvNB3scYIj/wWOdej/MQHcYv72Ls8j6Pc7pHHmudscMfjZrCH83j3OkV2190PNaUx0ySz5ry2FceMyF6HuscQOx9//33WrFihdLT01WoUKFYx3Ft7969Wr9+vWrVqqXExMRYx8F/wMwUCoViHQPIV3755RfFxcXFOgb+RLKzs7Vnzx4VLVrU1Zy+ceNGVa5cmXpHVPLtYmsAfsyYMUO7du1St27dYh0F+J955pln9OOPP2rIkCGxjoI/kbvuukuZmZmaOHFirKNEeJzTyRQ9j3MVmaLjMRPyNuap6HntK/w+j/Xkldc69ziGZMrbPJ5jecyE6HmcP7t3767NmzdrwYIFsY4S4bGfED2P+xnmzuh53P48ZvLI47Ynsf1Fy+v4Ie+ipvI2j+PnMZPEfgZ/PI49gdjweH0K0WN/HB3qPO85dOiQJLFIN0rbtm2Tmal8+fKxjhJx6NAhff/996pUqRLj+DsWLlyopk2bKjk5OfDPPnTokO6++24tXbpUF198sQYNGqRhw4ZpxIgRCoVC6tChg8aNG6eiRYsGni3Hli1b9Pe//13r1q1TSkqKevTooVq1agWe491339WiRYvUqlUrnXfeeXr//fc1YsQIHTp0SF27dtX1118faJ727dvryiuv1OWXXx6T2vktW7du1fz581WyZEmlp6crISEh0rZv3z49/vjj7q5xBG3OnDmqWLGi6tatq+zsbA0fPlzjxo1TZmamUlJS1LdvXw0aNMjV4lhEj2P035eQkKBVq1apdu3asY5ynPXr16tnz56Bnzt88cUXGjNmjBYvXpzrwW3NmjVT3759VadOnUDz/J4g6zz8P/+EPOSZZ57RAw88EOsYucyYMUMvvvhirGPk4jGT5DOXx5rymGnQoEGBH/BHw2NNkSk6Huv8jTfe0AsvvBDrGMfx2FceM3msc0n64YcftGnTpljHyMXjnE6m6Hmcq8gUHY+ZJJ9zusdMHvczzFPR89hXHmtK8rf9eawn6eiFwb/85S+xjpGLxzqXfI4hmaLjbT7I4fEcy2MmyecYMn9Gp2LFikpLS4t1jFw89pPks849Hud53M94nTs9jp/H7c9jJo9j53Hbk/xuf97mdK/j57HWvY1dDm/Hnl5ryls/ST5ryuP4ecwk+dzPeJw7PW57ks/tj2PP6HjMJPmsKY995TGTx+tTks/502Ode9wfexw7r3XevXt3nXfeeTH57Oeee07du3fX888/L0maMmWKateurWrVqmno0KExyfTuu++qXbt2KlGihAoWLKiCBQuqRIkSateunf7xj3/EJNOqVas0bNiwyAOQjrV79+7Aa/2nn37S5ZdfrtTUVPXu3VtHjhxRjx49lJKSoooVK6p58+baunVroJkk6YUXXtDixYslSQcPHtQNN9ygQoUKqWbNmipcuLBuuummyAL6oNStW1cPPvigNm/eHOjn/ifatGkTs7n8zjvv1GuvvaYmTZpo0qRJ6tOnj8aPH69nn31W48eP17Jly3TPPfcEmqlgwYLavn27pKMLz+rUqaNXX31Vhw8f1qxZs9SwYUOtXr060Ewvv/yy2rVrp3feeUcZGRl64YUXlJGRoUqVKqlq1aq66aabNG3atEAzzZo1S3/5y1+UkpKi3r17a8WKFYF+/sksW7ZMderUUZ8+fXT55ZfrtNNO05o1ayLte/fu1f333x/DhCcW9D65X79+2rlzpyTp4Ycf1ujRo3X77bdr1qxZuuOOO/Tkk0/qkUceCSxPtL788ktVq1Yt0M/817/+lev1ypUr1b17d5199tm6/PLLtXDhwkDzROP77793d4wuxebY89JLLz3h35EjR3TLLbdEXnuyd+9e/fOf/wz0M2fPnq0zzjhDn376qTIyMjRkyBANGTJEGRkZWrVqlc4880zNnTs30Ey/J8g655etj3H++edr48aN2rBhQ6yjRNSqVUtr167VkSNHYh0lwmMmyWcujzXlMZNXHmuKTNGhzqPnsa88ZvJY5wCQF3ic0z1mYj+DP5rXmvK4/XnUrVs3ff/99zzpHn9qzAd5n8cx5JdC8EfzWOdej/MQHcYv72Ls8j6Pc7pHHmvd69hx7Bkdj/3ktaaQd3mcO71eX2T7i47HmvKYSfJZUx77ymMmrzh2+W1m5vaXDj2OnVd33nmnMjMzIwueg/Lkk0/qnnvuUdu2bbV48WL16dNHo0aNUv/+/XXkyBE9/vjjevTRR9WrV6/AMk2aNEk9evTQ5ZdfrrZt26pcuXKSjv5i87x58zRt2jRNmDBBXbt2DSzTvHnz1L59e9WoUUN79uzRvn379Prrr+vcc8+NZKtQoUKgc/oNN9ygpUuX6sYbb9S0adNUvHhxbdy4Uc8884zC4bBuvfVW1a5dW5MmTQoskyRVq1ZNr732mpo2bao77rhD06ZN0xNPPKHatWvr66+/1sCBA5WRkRHowsFwOKySJUtq586dSk9PV8+ePZWRkaG4uLjAMvzamWeeecL3V65cqVq1aikpKUmS9MknnwSWKTU1VRMnTlR6ero2bNigGjVqaPr06crIyJB09CEIPXv2DHTRYDgcVmZmpsqWLauOHTsqOztb06dPV1xcnLKzs3Xttddq7969mjlzZmCZzjjjDF1//fW65ZZbNH/+fLVv317Dhw9X//79JUmPP/643nzzTS1atCiwTOFwWJ9//rnmzZuniRMnas2aNapbt6569Oiha6+9ViVKlAgsy7EuuOACVa5cWc8995z27dunQYMGaerUqXr33Xd1xhlnxGTujEbQ++SkpCR98803Sk1NVd26dTVkyBBdccUVkfZZs2apX79+Wrt2bSB5opWz6DPI8StQoIC2bt2qsmXL6qOPPlLr1q3VvHlzNWnSRCtXrtR7772n+fPnq2XLloFlyqticewZDofVsmVLVa1aNdf7L774ojp06KDixYtLUqCZnnrqqd9s/+GHH/TYY48FWuf169dXRkbGSR/udd9992n69OmBP2zECxZbAwAAAAAAAAAAAAAAAAAAAPivbd26VWPHjtWiRYu0detWhcNhVatWTR07dtR1112nAgUKxDoi/k0JCQlatWqVateuHesoyINq166te++9V9dcc40+/fRTNWnSROPGjdMNN9wgSZowYYLGjh2r5cuXB5apZs2auvXWW9WnT58Ttj/zzDMaNWpUoIvOmjdvrnPPPVfDhw+XmenRRx/Vgw8+qNdff10XXnhhTBYMVqhQQdOmTVPz5s21bds2paSkaO7cubrgggskSR9++KGuuuoqff/994FlknIvGjz11FM1evRoXXjhhZH2999/X127dtW3334bWKZwOKzvv/9eS5cu1cSJEzV79myVKFFC3bp10w033BCT+TM+Pl7p6ek666yzIu+ZmR588EHddNNNKlu2rCQF+uvyBQsW1FdffaXU1FRJR/cvn376qU477TRJ0qZNm3Taaadp3759gWU6drF1amqqXnnlFZ1zzjmR9k8//VQXX3yxtmzZElimwoUL67PPPossFkxISNDy5ctVr149SdJXX32lFi1a6Mcffwws07H9JElLly7VhAkTNGXKFGVlZaljx47q0aNH4L9iW7JkSS1ZskQ1a9aMvDdy5Eg98sgjmjt3rlJTU10utg5ahQoVNH36dJ111lkqX7585Fdtc6xdu1b169fX/v37A801YMCA32zfvn27Xn311UDH79hab9OmjSpXrqwJEyZE2vv166fPPvtM8+fPDyyTJP3444+aOHGiFi9erMzMTElS+fLl1bx5c1133XUqU6ZMoHm8mjx5su644w498MADuv766yPvx8fHa9WqVapTp07gmcLhsFJSUpSQkHDC9qysLGVmZgZa58nJyVq5cqVOPfXUE7Z//fXXatCggQ4cOBBYJslPncfuUTkA8rWNGzdq3bp1SklJ0emnnx7rOMAfZsGCBcfdKOjQoYNq1KgR62j4E9q2bZv+/ve/a8iQIYF95htvvKGLLrpIBQsWDOwz/1PnnXeenn/+eaWlpcUsw9KlS4874G/WrJmaNGkSs0yS9P3336t48eIqXLhwrvcPHz6sxYsXB/7EtR07dmj16tWqX7++SpYsqR9//FETJkzQoUOHdMUVV7i7Wffzzz9r5syZ6tatW6Cfm5WVpbfeeuuEJ5EZGRknPREHfkt2drbC4fAJ3//+++8jNzeC5LHWzUybNm1S5cqVFRcXp6ysLL355ps6dOiQ2rVrp9KlSweeCdFZtWqVVqxYodatW6tatWpas2aNnn76aWVnZ6tTp05q27ZtrCNq3759mjp1auQc+eqrr1apUqUCz5EX6tzMtHDhwkhftW3bVvHx8YFmOHTokMLhcORz169fr4kTJ+q7775TWlqabrjhhuOejpofM3n1/fffKykpKVLPH3zwgcaNGxfpqz59+qhZs2YxTplbLM778O/zdu43ZswYLV26VO3atVPnzp310ksvacSIEcrOztall16qBx54IKa/pCBxfTgv8nYt4cCBA1qxYoVKlix53E3xgwcPaurUqYGft+clsbxulpeuL8aa1/OZAwcO6LXXXjvhoonzzz8/JpnyimrVqmnu3LncM8J/jPuQedPjjz+uyy+/PKb3q/5dsboPIknvvPOOli5dqrZt2+rss8/WggUL9Nhjj0XOZ4L8tUPPvvzySy1ZskTNmjVTrVq19NVXX2n06NE6dOiQunTpEviX273zeC8E+DNbvny50tPTVb16dSUnJ2vt2rW65pprlJWVpdtvv10TJ07UnDlzVKRIkVhHxQmcbMHLkSNHNHLkyMg9rCeeeCKwTH/961915ZVX5lr4FmuffPKJSpQoEbn/8tJLL+W639C3b1917tw5ximPt3nzZg0dOlQTJ04M9HO//fZbtWjRQtLRX2stUKBArsWfrVq10u233x5opu+++07p6eknbT///PN12223BZhIWrNmjV566SVJUigU0sCBA1WpUiVdfvnlmjx5sho3bhxoHknatWuXKlasKEkqV66c4uLilJKSEmmvUKGCdu7cGXiu8uXLa/369UpNTdW+ffuOu5ddpkwZ7dixI/BccXFx6tixozp27KitW7fqhRde0PPPP69Ro0apadOm6tGjh/7yl78ElmfhwoXq3r27mjRpoqFDh0aOiYcPH64+ffrEZMFZamqqFi9erNTUVC1btkyhUEhLly6NLLb++OOPIzUXlFAopFAoJOnogrhixYrlai9evLh+/vnnQDPFx8crKysr8joxMTHX/ZnExMTAF8D9WpMmTdSkSRONGjVKU6dO1YQJE3TBBRfEZFHzwYMHc70ePHiw4uLi1KZNm8D3edEKep/cqVMnDR8+XG+99ZYyMjL0zDPP6Nlnn43U/t/+9jc1aNAgkCzHGj16tBo0aKCiRYuesH3v3r0BJ8rt888/P+6Xf3v27KnWrVsHmmPZsmVq27atChYsqPT09MjDBbZt26annnpKI0eO1Ny5c9WoUaNAc/2eWBx7du7cWWeddZa6dOmid955R88995xKlCgR2OefSFpamh5++GFdeeWVJ2xfuXKlGjZsGGimKlWqaNasWSddbD1r1qzAr2e7qnPLZ1auXGkTJkyw9evXm5nZ559/br1797Ybb7zR5syZE3ieadOm2b59+wL/3GgcOXLkpO9/++23Aac5uXPPPdc2bdoU6xgn9NNPP9mkSZNi8tnz58+3+++/32666Sa7+eab7bHHHrNvvvkmJll69+5te/bsMTOz/fv322WXXWbhcNhCoZCFw2E799xzI+1By87Otg0bNtjhw4fNzOzQoUM2efJkmzRpkm3fvj0mmX5tw4YNNm/ePPvss89imuPjjz+2J5980gYPHmyDBw+2J5980j7++OOYZvJU59u2bbMmTZpYOBy2uLg4C4fD1rBhQytfvrwVKFDA7rjjjpjk+j2xmKcOHjxoWVlZkdfr1q2zu+66y7p06WJ33323bdiwIdA8Zr73x79l5cqVFg6HA/3MUChkRYsWtZ49e9qSJUsC/eyTmTFjxgn/ChQoYGPGjIm8DtK2bdusRYsWFgqFLC0tzZo0aWJNmjSxtLQ0C4VC1qJFC9u2bVugmczMtmzZYo0bN7ZwOGwFChSwrl275toHZ2ZmBl5TH3/8sRUrVsxCoZCVKFHCli9fblWrVrUaNWrYKaecYsnJybZixYpAM/2eWGx7a9eutWrVqllSUpK1atXKrrzySrvyyiutVatWlpSUZNWrV7e1a9cGmimHt3OsHJ6OE3J4OsfatWuXXXHFFZaUlGRly5a1e++913755ZdIeyzmAzOftf7VV19ZWlqahcNhq169um3YsMEaNmxohQoVsoIFC1rp0qVjXls5PJwfe5oT3njjDStQoICVKlXKChcubO+++64VL17c0tPTrW3btlagQAF75ZVXAs1kZla7dm3bsWOHmZl99913VqVKFStWrJg1btzYSpYsaWXLlg38mNhrnV900UW2c+dOMzPbsWOHNW3a1EKhkJUpU8bC4bDVqlXL/vWvfwWaqVWrVvb666+bmdmiRYssMTHR6tWrZ1dddZWdccYZVrBgQfvoo4/yfabfE6trZk2aNLGZM2eamdlbb71l4XDYOnToYIMGDbJOnTpZfHx8pN2LWBx7mpk99thjMd+nnMjMmTPt3nvvtUWLFpnZ0WO+iy66yNq2bWt///vfA8/j8dzvwQcftCJFithll11m5cuXt5EjR1qpUqVs2LBh9tBDD1mZMmVsyJAhgWbyfH34xx9/tAULFkT2zdu3b7eRI0fa/fffb1988UVMMnm7Zu3xWsLXX38d2c7C4bC1bNnStmzZEtNMx/J0Ld3jdTOP1xdPJNb3Zryez6xdu9bS0tKsbNmyVrlyZQuFQnbxxRdb06ZNrUCBAnbFFVdE5i8PqlatGpNzmdGjR5/wr0CBAnbnnXdGXnsQ61r3eM/IzGzz5s259rvvv/++XXPNNdaiRQu79tprAz/H8nwfcv/+/TZhwgS7/vrr7cILL7R27dpZ37597R//+EdM8nisqVAoZAUKFLD09HSbPHmyHTp0KPAM/65YnYuOGzfO4uLirGHDhla0aFF76aWXrEiRItajRw+78cYbLTk52Z588snAc3k7Rp89e7YlJCRYyZIlLSkpyWbPnm1lypSx9PR0O++886xAgQI2f/78wHP9WnZ2ti1YsMCeffZZmzlzZq5tMyhe74WY+bpnlMPTucyxNm/efMLrBllZWfbPf/4z0Cx56bslsbxndPbZZ9t9990Xef3SSy9Z06ZNzezoteEGDRrYLbfcEpNsvyUzM9Puv//+wD/30KFDNmXKFOvXr5917tzZOnfubP369bOpU6fG5LghFApZgwYNrHXr1rn+QqGQNW7c2Fq3bm3nnntu4JnC4bDVqFHDRo4caVu3bg3080+kXr169u6775qZ2fjx4y05OdluueUWGzt2rPXr188KFy5sEyZMiHHK48XqOK9UqVK5rrdWqlQp1xy1du1aK1y4cKCZzjzzzN88lxo4cKCdeeaZASYyK1OmjC1fvvy491977TUrWLCgjR07NvDxq1+/vo0ZM8bMzP7v//7PihQpYo8//nikfezYsXb66acHmsnM7K677rJmzZrZzz//bIMHD7b27dtHjhf27dtnV155pbVp0ybQTOFw+KT3hN577z3r0qWLFSpUKNBMZmY7d+60zp07W9OmTW3dunVmZhYXF2dr1qwJPIuZ2ahRoywpKcnS09OtRIkS9tRTT1n58uVt4MCBNnjwYCtWrJg98MADgWYKhUJWvHhxK1GihMXHx9tLL72Uq33evHlWpUqVQDM1atTI3nrrrcjrXbt2WXZ2duT1u+++azVr1gw0UygU+t37nl9//XVAaf6fc845x8aOHXvCtocfftgSExNjes/oZILeJ+/cudMaNWpk1atXt65du1pSUpKlpaXZBRdcYFWrVrVixYrF5J5NzZo1j9vmjvXpp5/G5Hvy69ats127dlnVqlXtk08+ydW+bt06K1iwYKCZmjZtar169co1D+TIzs62Xr162VlnnRVopmjE6tjT7Oj1lSFDhljlypVtzpw5Fh8fH7N932WXXWYDBw48afvKlSstFAoFmMhs6tSpFhcXZ+3bt7fRo0fb5MmTbfLkyTZ69Gjr0KGDJSQk2LRp0wLN5KnO89Via483pT1+ocDrhWaPXwj5PbHYOXi80XrsCeSdd95plSpVsgULFti+ffts0aJFdsopp9jgwYMDz+Xxy+Qev3jo8UujHuv8qquuso4dO9quXbvs4MGD1rdvX+vWrZuZHf3ib6lSpWJy4/f3xGKe8rgQwOP+2Mxs1apVv/k3ZcqUmJxEPvDAA3bGGWdYKBSy0047zUaNGmU//vhjoDl+nSlnrjzZX9D9dNlll1mzZs3sq6++Oq7tq6++subNm9vll18eaCYzs27dulnTpk1t2bJl9u6771rDhg2tUaNG9tNPP5nZ0eO8oE/Y0tPTrUePHrZ792579NFHrVKlStajR49I+/XXX28dO3YMNNOuXbt+8++DDz4IvKbS09MtIyPDdu3adcK8GRkZgd8kMPN5juXxOMHjOdYtt9xiNWvWtNdff93Gjx9vaWlpdvHFF0du2MdiPjDzWesZGRnWoUMHW716tfXr189q165tGRkZlpWVZQcPHrT27dtbly5dAs3k9fzY25xw5pln2rBhw8zs6A3o4sWL57op99hjj1mDBg0Cy5Pj2BtQ1157rTVv3jyyoHjPnj2Wnp5uV199daCZPNa5We6+6t27t9WpUyfypejNmzdbw4YN7aabbgo0U9GiRSPXClq1amX9+/fP1X7PPffY2Wefne8z/Z5Y3VApVKhQpIaaNm1qI0eOzNX+t7/9zc4444xAM3k87zPzuRjA45fuPZ77nXLKKfbGG2+Y2dFtrUCBAvbyyy9H2qdPn27Vq1cPNJPX68MeH/7l8Zq1x2sJHTt2tIsvvti2b99ua9eutYsvvtiqVq0aWZAQq/tYHq+le7xu5vH6osd7M17PZy666CK78cYbI190GDlypF100UVmZvbNN99YlSpVbOjQoYHn8ra4ORQKWaVKlaxKlSq5/kKhkFWsWNGqVKliVatWDSxPDo+17vGekZm/BzV5vQ/p8QEMHmsqFArZ888/bxkZGRYfH2+lSpWyW2+9NaYPW/d4H8TMrE6dOvbss8+amdmCBQssKSnJnn766Uj7888/b7Vr1w40k8dj9GbNmtndd99tZkePE0qUKGF33XVXpH3w4MF2wQUXBJrJzOeDEz3eC/F4z8jjuYyZz4d/efxuicd7RsnJyZGH8pod/ZJ7fHy8ZWZmmtnRBUsVKlQINFM0eOj6USNGjLCqVase9+COWC7MC4VC9o9//MNuvfVWK126tMXHx1uHDh1s5syZJ314xf9acnJyZLHwGWecETmGyfHKK69YnTp1As91sjkh52/UqFExOc47++yzbfLkySdtnzlzZuALdt977z0rVKiQ1a1b1/r3728jR460kSNHWv/+/a1evXpWuHDhwB/qccEFF9ijjz56wrZXX33V4uPjAx+/l19+2QoUKGDVq1e3xMREe/31161ChQp25ZVXWufOnS0hISGyGDtIhw4dsg4dOliJEiXsggsusKSkJCtYsKDVqFHDChUqZKmpqYEv+oxmIeqJvgsTlIkTJ1r58uXt73//e0wXnJkdnSP79u1rr776qpkd3R7POecca9iwod13332Bz+0vvPBCrr/Fixfnan/ggQeOuwf/vzZ9+vTfnINGjBhh99xzT4CJzFq3bm0///xzoJ8ZjfHjx//m91lGjhwZ+GJ5M5/75KysLBs7dqy1a9fOatWqZTVr1rRWrVrZXXfdZZs3bw40S45rrrnG+vXrd9L2WCxCzblennPt/NfHeTNmzAj8fntSUpJ9+eWXJ23/8ssvLSkpKcBER3ms81/74IMPrGrVqhYOh2O271uzZo0tW7bspO1ZWVkxeVjahx9+aFdddZWlpqZaQkKCJSQkWGpqql111VUxuS/jqc7z1WJrjzelPX6hwOOFZjOfXwjxeAPK443WY08gTz/99MjJUY4ZM2YE/nQlM59fJvf4xUOPXxr1WOdFixa1zz//PPJ67969Fh8fH7k48tJLL9mpp54aaCYzn/OUx4UAHvfHOblOtu879gtQQWfKmaeWL19uvXv3tuLFi1tiYqJdccUVNm/evEDzmJldeOGFdvHFFx93sTKWN3oKFy583NPMjrV8+fLAn8hqZlahQoVcTx/P2d81aNDAduzYEZMb0iVKlIg8vTYrK8vC4XCujCtWrLCKFSsGmunYiyUn+ovFtpecnPybX7xavXq1JScnB5joKI/nWB6PEzyeY6Wmptp7770Xeb19+3Zr0qSJtWnTxg4ePBizxQkea71MmTL26aefmtnRY7xQKGQffPBBpP3DDz+01NTUQDN5PD828zcnFCpUyDZu3GhmR59uGB8fb6tXr460r1+/Pib742OPp6pVq3bc8dOHH35olStXDjSTxzo3y91Xp5566nFfCPvHP/4R+AKFQoUKRS7slitXzlauXJmrfd26dYHXlcdMHs9FzcyKFStmq1atMjOzsmXLRv5zjlg8gdjjeV9OLm+LATx+6d7juV9ycnKuX8CKj4/Pdc1q06ZNMalzj9eHPT78y+M1a4/XEsqWLZvruC47O9tuuukmS01NtfXr18fsfMbjtXSP1808Xl/0eG/G6/lMwYIFcy0oO3TokMXHx0eupb/11lsx+eKat8XNN954ozVo0CDXr3aZxXbbM/NZ6x7vGZn5e1CT1/uQHh/A4LGmjt33bdu2zR5++GGrVauWhcNha9y4sT377LO2e/fuwDN5uw9iduLzmWPPQzdu3Bj4+YzHY/SiRYtGFt4dOXLE4uLicp2bfvbZZ1auXLlAM5n5fHCix3shHu8ZeTyXMfP58C+P3y3xeM8oLS3NFi1aFHm9ZcsWC4VCtn//fjM7Op/HYiGAxwdfenwQtZnZ0qVLrWbNmnbbbbdZVlaWmfm5lpCVlWVTpkyJPOi5QoUKdtdddwW+KL1UqVKRXyAuW7bsCe/NxOI7HB7nBLOjD0LKuRd5Ik8//bT97W9/Cy7Q/2/jxo02cOBAa9mypdWsWdNq1qxpLVu2tEGDBkWuywRp+vTpv7ng7JVXXrHWrVsHmOioRYsW2WOPPWYffvihmR1dMNS1a1e77LLL7IUXXgg8z7Fmz55tN998s1144YXWpk0b6969uz377LO2d+/ewLNcd911gZ/b/bu++eYba9y4sYVCoZheowLyA6/7ZG+2bt0ak0Wmv2XhwoW5/n798I4nn3zSHnnkkUAzValSxSZNmnTS9kmTJllaWlpwgf5/eaXO9+zZYytXrnTxIwM4OU91nq8WW3u8Ke3xCwUeLzSb+f1CiLcbUB5vtIZCocjTaUuXLp0rn9nRL/jF4sKSxy+Te/zioccvjXqs8zJlyuSai/bv32/hcNh27NhhZkf3MYmJiYFmMvM5T3lcCOBxf2x29ML8hAkTbNOmTSf8mzVrVkwXW+c4cOCAvfjii9a6dWsLh8Mx+TLdE088YZUrV871SxKxPEYoVaqULVy48KTt7733npUqVSrAREcVKlTouKfrHz582Dp27Gj16tWz1atXx2ROOPYGReHChXM95frbb78N/EZr0aJF7eGHHz7uoknO3/jx4wPvp5SUlN/8pZS3337bUlJSAkx0lMdzLI/HCR7PsZKTkyNfcsqxe/dua9asmZ133nm2YcOGmJz3eaz1X3/Br3DhwrZu3brI6++++y7w4zyP58dm/uaE8uXLR77k8NNPP1koFMq1LS5dutTKly8fWJ4cx54jV6hQ4biFi5s2bQp83+exzs1y91XZsmVPeD0h6FznnXde5KZJ8+bNj7vIO23atMCvJXjM5PFc1MysQ4cOkcUjbdu2Pe7XDcePH281atQINJPH8z4zn4sBPH7p3uO5X9WqVW327NlmdvRLM+Fw2KZOnRppnzVrVuDn7V6vD3t8+JfHa9YeryUUKVLkuAWMZmZ9+vSxSpUq2fvvvx+TudPjtXQzf9fNPF5f9Hhvxuv5TIUKFWzFihWR1z///LOFQqHIccGGDRticu7gcXHz9OnTrXLlyrm+LB7r83aPte7xnpGZvwc1eb0P6fEBDB5r6mS/bvb+++9b9+7drVChQlaoUKFAM3m8D2JmkWM5M7MffvjBQqGQzZo1K9K+cOFCq1SpUqCZPB6jFy1aNNe1u1/fW4vF9UUznw9O9HgvxOM9I6/nMh4f/uXxuyUe7xndeuutdvrpp9vs2bNtwYIFdu655+ZaHDhnzhw75ZRTAs/l8cGXHh9EnWPPnj3WrVs3q1evnn322Wcx/RXUkx1PffvttzZ06FBLS0sLfOy6dOliN9xwg5mZXXHFFcf9uuhDDz1kdevWDTST2dG586233jpp+6effupiwQuA2Dly5Ijt3Lkz8uA0AP8b7JPxRxozZowlJibaLbfcYjNmzLAlS5bYkiVLbMaMGXbLLbdYcnJyrgfVB4U6xx/JU53HKR8pUqSIduzYoSpVqmjnzp365ZdftGPHjkj7jh07VLhw4Zjla9iwoRo2bKgnnnhCr7/+uiZOnKgLL7xQqamp2rhxY2A5tm/frrS0tMjr0qVL6x//+Ifatm2rdu3a6bnnngssy7Fmz56tUaNGqVGjRnrmmWd0ySWXxCTHsYoUKaK7775bTZs2PWH72rVrdeONNwaaKTExUaFQKPI6HA7ryJEj+uWXXyRJzZs316ZNmwLNJEn33nuvChYsqHA4rC1btui0006LtO3YsUOFChUKPNPevXtVsmRJSVKhQoVUqFAhpaSkRNorV66sbdu2BZ4rZ/wyMzNVr169XG3169fX5s2bA82TmJio3bt3n7R9z549SkxMDDCRzzpv0aKFhgwZokmTJikhIUF33XWXqlWrFqmx7du3q0SJEoFmknzOU02bNtXMmTNVq1YtnXLKKVq1apXq168faV+5cmWk32LBy/44J8uWLVty7ZePtXPnTplZoJmO3fZyJCUlqWvXruratavWrVun559/PtBMktS/f3+de+65uvbaazVz5kyNGjUq8AzHuuqqq9S9e3eNGjVK559/vooWLSpJ2r17t+bPn68BAwbo6quvDjxXtWrVtHr1atWoUSPyXlxcnF5//XVdccUVMTm+qly5sjZs2KAqVapIkiZPnpxrf7x161aVLl060ExnnnmmJKlVq1YnbC9evHjg216PHj3UrVs33XvvvTr//PNVrlw5SdK2bds0f/58DRs2TH/9618DzST5PMfyeJzg8RwrNTVVX375papWrRp5r0iRIpo3b57atGmjTp06BZ5J8lnrFSpU0HfffafU1FRJ0iOPPKKyZctG2mNxnOfx/FjyNyekp6erT58++utf/6opU6aoTZs2uvPOO/X8888rFArpjjvuUIsWLQLLc6zzzz9fcXFx2r17t77++mudfvrpkbZvv/1WpUqVCjSPxzrPcd111ykxMVGHDx/Wxo0bc11PyMzMVPHixQPNM2zYMF100UXat2+frr76at12221au3atateura+//lpPPfWU7rzzznyfyeO5qCSNHDlS55xzjrZs2aIWLVro7rvv1rJlyyJ9NWXKFI0bNy7QTB7P+36tbNmyGjhwoAYOHKgPPvhAEyZMUP/+/dW/f3/t3bs3sBylSpXSt99+q9TUVG3ZskW//PKLvvvuu8gc+u233wZ+PcHjud+1116rbt26KSMjQ/Pnz9fAgQN1++23a8eOHQqFQho+fLguv/zyQDNJPq8PZ2VlKTk5WZIUHx+vggUL5jr/LF26dK5jmSB4vGbt8VpCrVq1tHz5ctWuXTvX+2PGjJEkdejQIfBMks9r6ZK/62Zery96uzfj9Xzmggsu0IABAzRu3DglJibqzjvvVIMGDVSkSBFJ0nfffZfrXCIo48aN05tvvqm2bdtq4MCB6tu3b+AZfq1Tp05q0qSJunXrplmzZsWkrk/EW617vWfUqlUrvfbaa6pXr57OOOMMLVy4MFd/vffee6pYsWJgebzehyxevLj27NkTeb1//3798ssvSkhIkCTVq1dPW7duDTSTx5o60b5Pks455xydc845euqppzRlypRAM3m8DyJJGRkZuuGGG9S9e3e9/fbb6tatm2677TaFw+HI/q9NmzaBZvJ4jF6lShWtXbtWp5xyiiRp8eLFket60tH98bEZg5RT7z///HMkX47q1atry5YtgebxeC/E4z0jr+cyu3btyrV/S0xM1PTp03XFFVfo3HPP1csvvxx4pmN5+W6Jx3tGw4YN09atW9W+fXsdOXJEzZo1yzVeoVBII0aMCDxXyZIl9cgjj+j8888/YfuaNWvUvn37QDMVL15cmzZtynWf6FibNm0K/D5IjsKFC2vSpEmaPHmy0tPTdeTIkZjk+C2pqam67777NHToUP3jH/8I9LMffvhhnX322WrVqpUaNWqkxx9/XAsXLozcb1iyZInefPPNQDNJR+emFStWKCMj44TtoVAo5vccAMRWOBxWsWLFYh3jpO666y5lZmZq4sSJsY4SQaboeMwkxS5XXtsnex0/HNWnTx+VLl1ao0aN0jPPPBM5Ni9QoIAaNmyoF154QVdeeWXgufJanUs+a51MR7mq80CWdDvRpUsXa9q0qb388svWvn17a9u2rZ111ln25Zdf2ldffWWtWrWyyy+/PNBM4XD4hE9cy7F27Vq76667Akx09Omixz4ZNseePXusWbNmVr9+/Zg+XeLTTz+1OnXqWK9evWzfvn0xfQpj69at7eGHHz5p+8qVKy0UCgWYyKxTp0522WWX2d69ey0rK8v69etn1atXj7QvWbIk8Cfdt2rVylq3bh35Gz9+fK72Bx980Fq1ahVoJjOzU045JdcTh5955plcv8izYsWKwPsqFArZjTfeaP3797eyZcse98TTFStWWOnSpQPNdPPNN1taWppNnz498ouQZma7du2y6dOnW5UqVaxv376BZvJY5+vXr7dTTjnF4uLiLD4+3ooXL27vvvtupP3555+P/HpWkDzOUx999JEVK1bMhg4dan/729+sdOnSds8999grr7xiQ4YMseLFi/9m5v8Fj/tjs6O/fPHSSy+dtP2nn36yF154IcBEJ39arBf79++3G2+80WrUqGEFChSI2THCwYMH7aabbrKEhAQLh8OWlJRkSUlJFgqFLCEhwXr37m0HDx4MPNfAgQOtTZs2J2w7fPiwdejQIfDjvPvuu89ee+21k7bfdddddumllwaYyOzZZ5897lcOj5WZmWn33XdfgImOGjlypKWkpOT6pchQKGQpKSmBz5s5PJ5jeTxO8HiO9de//vWkY7N7925r2rRpzM77vNX6jTfeeNw5zLFGjBhh7dq1CzDR/+Pp/NjM35yQmZlpF1xwgRUuXNjatm1rO3futL59+0Zqq0aNGrl+ASYo9913X66/OXPm5Gq//fbbrXPnzoFm8lrn1113Xa6/KVOm5Gq/4447rG3btoHn+uijj+yss8467pcvKlasaE8++WTgeTxm8ngummPdunXWuXNnK1KkSKSf4uPjrXnz5vbmm28GnsfjeZ/Z758n79q1y5599tkAEx39xdoaNWrYsGHDrEmTJta9e3erVauWzZ492+bMmWN169a1v/zlL4FmOtm5Xzgcjtm535EjR2z48OF2ySWX2EMPPWTZ2dn22muvWeXKla1UqVJ23XXX2d69ewPN5PX6cK1atWz+/PmR1++8847t378/8nrJkiWB/2qex2vWHq8lPPTQQ3bRRRedtL13794x2c94vJZ+LC/XzTxeX/R4b8br+cy2bdsix53hcNjS0tJy/Qri66+/bk899VTguXJ8//33dt5559mFF15oW7dujfl5splZdna2PfTQQ1a+fPmYbntmPmvd4z0jM7MvvvjCSpUqZd26dbMHH3zQChcubF26dLHhw4dbt27dLDEx0Z5//vnA8ni9D9m9e3dr1aqVffnll7Zhwwa76qqr7Iwzzoi0L1y40CpXrhxoJo815XHf5/U+yN69e61nz552+umnW69evezQoUP26KOPWkJCgoVCIWvdunXgfenxGH3s2LH2zjvvnLT9zjvvjPzSZpBCoZC1a9fOOnXqZCVKlLCZM2fmal+yZImVK1cu0Ewe74V4vGfk9Vymbt26Nm3atOPeP3z4sHXs2NFSU1MD7yuv3y0x83fPyMzswIEDtmfPnphmOFabNm3swQcfPGl7LK5b33vvvVaiRAl74oknbNWqVZaZmWmZmZm2atUqe+KJJ6xkyZI2dOjQQDOdyObNm+2tt94K/LpijipVqtiPP/4Yk8/+LT///LMNGjTI6tSpY0lJSZaQkGBpaWl2zTXX2LJly2KS6f3337fZs2eftH3v3r22cOHCABNFp1u3bnbuuefGOkYuZIqOx0xmPnORKTpdu3YlUxTIFL1Y5cpr+2Sv4+dxnop1pqysLNuyZYtt2bLFsrKyYpbDLO/VuZnPWifT8WJd5/lqsbXHm9Ieb6p4vND8a16+EOLxBpTXG60nkp2dbWZHM2/evDnwz/f4ZXKPXzz0+KXRE9X5sV8IiVWd79u3z+bOnWszZ8607du3m9n/q/NYefbZZ3/zi/WxulHubSGAx/2xV5s2bbIjR44c936sa/3XZsyYYbfcckvMx3XXrl02f/58e/XVV+3VV1+1+fPn57pBHbTDhw//5ucfPnzYNm3aFGCi37dv376YLEw/ES91vmHDBvvoo4/so48+sg0bNsQ0y2+dY4VCoZicY3k8HvZ4jvXTTz/Z559/ftz7OXW+e/fumF/o8lTrJ5LTVxs2bLAtW7bELIeX82Mzn9ddTmT9+vX22Wef2eHDh2MdJc+IdZ2fzN69e+3AgQMx+/x//etftmTJElfz1LGZNm7cGLMcXs9Fj5WdnW2ZmZkubkB55PE82eOX7nPs2rXLFixYEDn3W7BgQUzP/fKaWF0f9vjwL4/XrPPitYRY8Xgt/URmzJhh/fr1i9mcuWnTJjfXWHJ4vDdzMl7OZ7755hsXOU7E0+LmYy1fvtyefPJJ++mnn2KWwWute7tnlMPbg5pOdB8y1rw+gMFrTeE/d+DAgVwLnIPk8RjdK48PTjzZvZAcsbgX0rdvX3f3jLyey0Tz8K+gF8Z6vGZ2LE/3jDzy+uBLbw+iBmJh8ODBdt1118U6Ri5kio7HTGY+c5EJAP59Hucpj5kA/LFCZs5+kz0GNmzYoP3796tWrVqKi4sL9LO//fZbpaamKhQKBfq5v+Xnn3/Wli1bdNppp52wfc+ePfrkk0/UqlWrgJMdb+bMmVqwYIHuvPNOlS1bNtZx3Ni/f78WLVqkrKwsnXXWWSpdunSsI51QQkKCVq1apdq1a8c6yglt3LhRSUlJSklJiXWUiA0bNighIUGVKlUK/LN3796tFStWKDMzU5JUvnx5NWzYUEWLFg08i3S0zj/88EMdOnSIOs/Dtm/frg0bNig7O1spKSmqUqVKTHJ43B/nNR5rnUz4ozF+0YvlOZbk7zghL51jUefR89ZXb7/9tt577z2X58exnhN+zdvY4c+BugJi5+DBgzp8+LCKFCkS6yj4k9m/f78KFCigxMTEWEeJ8HjNGsfzdi0d/71Y3pvBf27FihVatGiRunXrphIlSsQ6Tp4Q61r3cs/o18xM//rXv5Sdna3SpUsrPj4+1pHcWbt2rQ4dOuTm2k8OrzWFPxeO0aO3b98+FShQQElJSbGOElOe7xnt3r1by5cv17Zt2yTF/lzml19+0f79+0/6+b/88ot++OEHpaWlBZYpr3y3xPM9I5zcxo0bc11LqFq1aowTAQDwv/Hjjz9q4sSJWrx4ca59X/PmzXXdddepTJkyZCLTnyKXN/QT8guPtU6mvCVfLbb+61//qiuvvFLnnHNOrKOc1L59+zR16lStW7dOKSkpuvrqq1WqVCky5ZFcHjJ5rPMBAwac8P3Ro0erS5cukT564okngox1HA/jl9cyVahQQZ07d3aVKVb95LnOv/zySy1ZskTNmjVTrVq19NVXX2n06NE6dOiQunTpovPOOy/wTMfyUlMe++mTTz5RiRIlIjdQXnrpJY0bN07fffed0tLS1LdvX3Xu3DnQTB5rnUzR81hTHjN5HD+P/ZQjZ/5s3ry5Tj31VBfzp8c53Vsmj3WeY8yYMVq6dKnatWunzp0766WXXtKIESOUnZ2tSy+9VA888ECgX9r02lcnqqknn3xSWVlZLo7xpNgf53kdO68OHDigFStWqGTJkqpTp06utoMHD2rq1Knq1q1boJk87v+81pW38fN4fUryWVOSv31fNDZv3qyhQ4dq4sSJsY4SEatM3rY/r/JiP8WqprydO0h5c56KFY/j53H785jJ4/UNj/3k9Xjq9wQ9p3vtJ6/H6R63v98Ti+MEj3PC74lFP3msc69zgsea8thXHmsqr+K8/SiPNeUxUzTYzxzlMVNexTVPIHY81jqZouMxk+QzF5mOWrZsmdq2bauCBQsqPT1d5cqVkyRt27ZN8+fP1/79+zV37lw1atSITGTK07m8yav9xNyJf5fHWidTHhTT39UOWCgUsnA4bDVq1LCRI0fa1q1bYx3JateubTt27DAzs++++86qVKlixYoVs8aNG1vJkiWtbNmytmHDhnyf6US50tLSYp7LY195rPNQKGQNGjSw1q1b5/oLhULWuHFja926tZ177rmB5/I4ftT5f5bJQz95rfPZs2dbQkKClSxZ0pKSkmz27NlWpkwZS09Pt/POO88KFChg8+fPDzSTx5ry2E9mZvXq1bN3333XzMzGjx9vycnJdsstt9jYsWOtX79+VrhwYZswYUKgmTzWOpmi57GmPGbyOH4e+8nM5/xJpuh4rHMzswcffNCKFClil112mZUvX95GjhxppUqVsmHDhtlDDz1kZcqUsSFDhgSayWNfeawpM3/H6R7Hzquvv/7a0tLSItcUWrZsaVu2bIm0Z2ZmWjgcDjyXx/2fx7ryOH4er0+Z+awpj/u+aKxcuTIm88JviUWmE21/P/zwQ6Q9VvOnNx7nqWjEoqY8Hufl1XkqFjyOn8ftz2Mmxi56Ho+nohH0nO61nzwep3vc/qIRdE15nRN+TyyOpzzWucc5wWtNeewrjzWVV3k5b491rXusKY+ZosF+xm+mvIprnkDseKx1MkXHYyYzn7nIdFTTpk2tV69elp2dfVxbdna29erVy8466ywykSnP5/Imr/YTcyf+XR5rnUx5T776ZetwOKx3331XM2fO1CuvvKJdu3bpoosuUs+ePdWuXTuFw+GYZMrMzFTZsmXVpUsXbdy4Uf/3f/+nYsWKae/everUqZPKlCmjV199NV9n8prLayZvdT5y5Eg9++yzeu6553I9eTw+Pl6rVq067smxQfE6fmTKm5m81nnz5s113nnnadiwYZo8ebJuvvlm9e7dW8OHD5ck3XnnnVqxYoXmzZsXWCaP4+exnySpYMGC+vLLL5WWlqYzzzxTvXv3Vs+ePSPtr776qoYPH641a9YElsljrZMpeh5rymMmj+PnsZ8kn/MnmaLjsc4lqXr16nrkkUd06aWXatWqVWrYsKEmTZqka6+9VpL05ptvauDAgVq7dm1gmTz2lceakvwd53kcO686deqkw4cP64UXXtDOnTvVr18/ffHFF1q4cKFSU1O1bds2VahQQUeOHAk0l8f9n8e68jh+Hq9PST5ryuO+T5Lefvvt32zfsGGDbrvttkDrymMmj9ufR177yWNNeTzO8zpPeeRx/Dxufx4zMXbR83g8Jfmb0732k8fjdI/bn+SvprzOCd76SfJZ5x7nBK815bGvPNaUVx7nBI+17rGmPGaSfNaUx77ymMkrjzXlMRPwv+Cx1skUHY+ZJJ+5yBSd5ORkffrpp6pVq9YJ27/66iudccYZOnDgAJnIlKdzeeO1nzzOUx4zIXoea51MeVCsV3sHKRQK2bZt28zMLCsry6ZMmWJt27a1AgUKWIUKFeyuu+6ytWvXxixTtWrVbN68ebnaP/zwQ6tcuXK+z+Q1l/dMXurczGzp0qVWs2ZNu+222ywrK8vMzOLi4mzNmjWBZ8nhffzIlLcymfms86JFi0a2+SNHjlhcXJx98sknkfbPPvvMypUrF2gmj+PnsZ/MzEqVKmXLly83M7OyZcvaypUrc7WvW7fOkpOTA8/lsdbJFB2PNeUxk5m/8fPaTx7nTzJFz1udm5klJyfbt99+G3kdHx9vn3/+eeT1pk2brGDBgoHn8tZXXmvK43Get7HzqmzZsrZ69erI6+zsbLvpppssNTXV1q9fH7NfM/K6//NWVx7Hz+v1KY815XXfl/OLOKFQ6KR/sfrlIE+ZPG5/HnntJ4815fE4z+s85ZHH8fO4/XnMxNhFz+PxlJm/Od1zP3k7Tve4/Zn5qymvc4K3fsrJ5K3OPc4JXmvKY195rCmvPM4JHmvdY015zJSTy1tNeewrj5m88lpT3jIB/wsea51MeTeT11xkik6VKlVs0qRJJ22fNGmSpaWlBRfIyBQtj5nM/Obyxms/eZynPGZC9DzWOpnynnz72Lr4+HhdeeWVmjNnjjZs2KCePXvqlVde0amnnhp4llAoJEk6ePCgUlJScrVVrFhR27dvJ9P/z2Muj5lyeKrzxo0ba8WKFdq+fbsaNWqkzz//PNJ3seRx/MiUdzN5r/NwOKykpCQVK1Ys0lakSBHt2rUrZpk8jZ/Hfrrooos0duxYSVKrVq00bdq0XO1Tp05V9erVA8/lsdbJFB2PNeUxk+Rv/Lz2k+Rz/iRTdLzVuSSVL19eX3zxhSRp7dq1OnLkSOS1JK1Zs0Zly5YNPJfHvvJYU8fm8nKc53HsPDpw4IDi4uIir0OhkMaOHav27durVatW+uabb2KSy+v+z1tdeR2/HJ6uT3msKa/7vpSUFE2fPl3Z2dkn/Pvkk0/IJP/bnxde+8ljTUn+jvO8zlNeeRs/j9ufx0w5OSTG7vd4PJ6S/M3pXvvpWJ6O071tf5K/mvI6J3jrp1/zUuce5wSvNeWxr47lpaa88jgneK31HB5rylMmjzV1LE995TmTJx5rymMm4H/BY62TKe9m8pqLTNG5/fbb1atXL9166616++239fHHH+vjjz/W22+/rVtvvVU33XSTBg4cSCYy5flc3njtJ4/zlMdMiJ7HWidTHhTr1d5BCh3zFL8Tyc7OPu5Xl/7XQqGQ1a1b18444wwrXLiwTZs2LVf7P//5T6tYsWK+z+Q1l9dM3ur811577TUrV66chcPhmP+ytcfxI1PezPRrXuq8Xr16Nnv27Mjrzz77zA4fPhx5/f7771vVqlUDzeRx/Dz2k5nZDz/8YFWqVLGWLVvagAEDLDk52Vq0aGE9e/a0li1bWkJCgs2aNSvwXMfyUuvHItPJeawpj5l+zcP4ee0nj/Mnmf4zHurczOyee+6xMmXKWI8ePaxq1ao2ePBgS01NtbFjx9q4ceOscuXK1r9//5jlM/PRV15ryuNx3rE8jJ1XjRs3thdffPGEbX369LHixYvH5KmsXvd/x/JQVx7Hz+v1KY815XXf1759e7v33ntP2r5y5UoLhUIBJvKZyeP255HXfvJYUx6P87zOUx55HD+P25/HTIxd9DweT5n5m9O99pPH43SP25+Zv5ryOid46yczn3XucU7wWlMe+8pjTXnlcU7wWOsea8pjJjOfNeWxrzxm8spjTXnMBPwveKx1MkXHYyYzn7nIFL3Jkydb06ZNLS4uLvIrsXFxcda0aVObMmVK4HnIlLczec7ljcd+8jhPecyEf4/HWidT3hL3+8ux/zzS0tJUoECBk7aHQiFdcMEFASaShg4dmut14cKFc72eOXOmzjnnnCAjucwk+czlMZPHOv+1zp07q0WLFlqxYoXS0tJilsPj+JEpOh4z/ZqXOu/du7eOHDkSeX366afnap89e7bOO++8QDN5HD+P/SRJFSpU0KeffqqRI0dq5syZMjMtXbpUmzdv1tlnn60PP/xQjRo1CjzXsbzU+rHIdHIea8pjpl/zMH5e+8nj/Emm/4yHOpek+++/X8nJyVq8eLF69uypwYMHq379+ho4cKD279+v9u3b68EHH4xZPslHX3mtKY/HecfyMHZederUSa+99pq6du16XNuYMWOUnZ2tcePGBZ7L6/7vWB7qyuP4eb0+5bGmvO777rjjDu3bt++k7dWrV9d7770XYCKfmTxufx557SePNeXxOM/rPOWRx/HzuP15zMTYRc/j8ZTkb0732k8ej9M9bn+Sv5ryOid46yfJZ517nBO81pTHvvJYU155nBM81rrHmvKYSfJZUx77ymMmrzzWlMdMwP+Cx1onU3Q8ZpJ85iJT9K666ipdddVVOnz4sH788UdJUunSpRUfHx94FjLl/Uyec3njsZ88zlMeM+Hf47HWyZS3hMzMYh0CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIIWjnUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIgFFlsDAAAAAAAAAAAAAAAAAAAAAAAAAAAAyJdYbA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAgX2KxNQAAAAAAAAAAAAAAAAAAAAAAAAAAAIB8icXWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPIlFlsDAAAAAAAAAAAAAAAAAAAAAAAAAAAAyJdYbA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAgX2KxNQAAAAAAAAAAAADApTlz5qhFixYqXry4SpUqpUsuuUTr16+PtH/00Udq0KCBkpKS1KhRI7311lsKhUJauXJl5L/z+eef66KLLlLhwoVVrlw5de3aVT/++GMM/t8AAAAAAAAAAAAAADxisTUAAAAAAAAAAAAAwKV9+/ZpwIABWr58uebPn69wOKxOnTopOztbu3fvVvv27VW3bl198sknevDBBzVo0KBc//udO3fqvPPO0xlnnKHly5drzpw52rZtm6688soY/T8CAAAAAAAAAAAAAHgTMjOLdQgAAAAAAAAAAAAAAH7Pjz/+qDJlyuizzz7TokWLdM899+j7779XUlKSJOm5555Tz5499emnn6pBgwYaNmyYPvjgA82dOzfyb3z//feqXLmyvv76a9WsWTNW/1cAAAAAAAAAAAAAAE7wy9YAAAAAAAAAAAAAAJfWrl2rq6++WtWqVVPRokVVpUoVSdJ3332nr7/+WvXq1YsstJakJk2a5Prfr1q1Su+9954KFy4c+atVq5Ykaf369YH9/wAAAAAAAAAAAAAA+BUX6wAAAAAAAAAAAAAAAJxI+/btlZaWpvHjx6tChQrKzs7W6aefrqysrKj+93v37lX79u318MMPH9eWkpLyR8cFAAAAAAAAAAAAAORBLLYGAAAAAAAAAAAAALizY8cOff311xo/frzOOeccSdKiRYsi7aeeeqpefvllHTp0SImJiZKkZcuW5fo3zjzzTL3xxhuqUqWK4uK4PQ4AAAAAAAAAAAAAOF441gEAAAAAAAAAAAAAAPi1EiVKqFSpUnr22We1bt06LViwQAMGDIi0X3PNNcrOzlavXr305Zdfau7cuXrsscckSaFQSJLUp08f/fTTT7r66qu1bNkyrV+/XnPnztX111+vI0eOxOT/FwAAAAAAAAAAAADAFxZbAwAAAAAAAAAAAADcCYfDmjx5slasWKHTTz9d/fv316OPPhppL1q0qGbOnKmVK1eqQYMGuvvuuzVkyBBJUlJSkiSpQoUK+vDDD3XkyBG1adNGdevWVb9+/VS8eHGFw9wuBwAAAAAAAAAAAABIITOzWIcAAAAAAAAAAAAAAOC/9corr+j666/Xrl27lJycHOs4AAAAAAAAAAAAAIA8IC7WAQAAAAAAAAAAAAAA+E+8+OKLqlatmipWrKhVq1Zp0KBBuvLKK1loDQAAAAAAAAAAAACIGoutAQAAAAAAAAAAAAB5UmZmpoYMGaLMzEylpKToiiuu0PDhw2MdCwAAAAAAAAAAAACQh4TMzGIdAgAAAAAAAAAAAAAAAAAAAAAAAAAAAACCFo51AAAAAAAAAAAAAAAAAAAAAAAAAAAAAACIBRZbAwAAAAAAAAAAAAAAAAAAAAAAAAAAAMiXWGwNAAAAAAAAAAAAAAAAAAAAAAAAAAAAIF9isTUAAAAAAAAAAAAAAAAAAAAAAAAAAACAfInF1gAAAAAAAAAAAAAAAAAAAAAAAAAAAADyJRZbAwAAAAAAAAAAAAAAAAAAAAAAAAAAAMiXWGwNAAAAAAAAAAAAAAAAAAAAAAAAAAAAIF9isTUAAAAAAAAAAAAAAAAAAAAAAAAAAACAfOn/A0vEs7WuOSlOAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(50, 20))\n", + "df[\"age\"].value_counts().plot(kind=\"bar\", title=\"Столбчатая диаграмма (Возраст)\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Гистограмма" + ] + }, + { + "cell_type": "code", + "execution_count": 153, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGdCAYAAAD0e7I1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsiElEQVR4nO3dfVRVdb7H8c9BnnwChJIDBUJFqWlZUkbavZqsTM3xaXIsKnJcOhWWSuXDLWuyB9TKyDK9ukpzpePkGnXKVngdNB0n8gHTshzUwqf0gA3BCRyROPv+0e3cTorp4cA55+f7tdZey/3bv7P54k/x42//9t42y7IsAQAAGCrE3wUAAAA0JcIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBoof4uIBC4XC4dPXpUbdu2lc1m83c5AADgHFiWpe+//16JiYkKCWl4/oawI+no0aNKSkrydxkAAMALhw8f1qWXXtrgccKOpLZt20r68TcrKirKz9UAAIBz4XQ6lZSU5P53vCGEHcl96SoqKoqwAwBAkPm1JSgsUAYAAEYj7AAAAKMRdgAAgNFYswMAgB/U19errq7O32UEtBYtWig0NLTRj4Uh7AAA0Myqq6t15MgRWZbl71ICXqtWrZSQkKDw8HCvz0HYAQCgGdXX1+vIkSNq1aqVLr74Yh5m2wDLsnTq1CkdP35cpaWlSktLO+uDA8+GsAMAQDOqq6uTZVm6+OKL1bJlS3+XE9BatmypsLAwHTx4UKdOnVJkZKRX52GBMgAAfsCMzrnxdjbH4xw+qAMAACBgEXYAAIDRWLMDAEAASJnyQbN+vQMzBjbr1/MnZnYAAIDRCDsAAOCcFBQUqFevXoqJiVFcXJzuuOMOffXVV+7jH3/8sbp166bIyEilp6dr9erVstls2rlzp7vP7t271b9/f7Vp00bx8fG699579e233zZp3YQdAABwTmpqapSbm6vt27ersLBQISEhGjp0qFwul5xOpwYNGqSuXbtqx44devbZZzV58mSPz1dWVurWW2/Vddddp+3bt6ugoEBlZWUaMWJEk9bNmh0AQaehtQ0X0hoEwB+GDx/usf/WW2/p4osv1pdffqnNmzfLZrNp4cKFioyMVOfOnfXNN99ozJgx7v6vv/66rrvuOr3wwgse50hKStLevXt15ZVXNkndzOwAAIBzsm/fPt1111267LLLFBUVpZSUFEnSoUOHVFJSomuuucbjwX833nijx+d37dqlDRs2qE2bNu6tY8eOkuRxOczXmNkBAADnZNCgQerQoYMWLlyoxMREuVwudenSRadOnTqnz1dXV2vQoEGaOXPmaccSEhJ8Xa4bYQcAAPyqf/3rXyopKdHChQt1yy23SJI2b97sPn7VVVfpnXfeUW1trSIiIiRJ27Zt8zjH9ddfr7/85S9KSUlRaGjzRRAuYwEAgF/Vrl07xcXFacGCBdq/f7/Wr1+v3Nxc9/G7775bLpdLY8eO1Z49e7R27Vq99NJLkv7/1Rg5OTmqqKjQXXfdpW3btumrr77S2rVrNWrUKNXX1zdZ7YQdAADwq0JCQrR8+XIVFxerS5cumjhxol588UX38aioKL3//vvauXOnunXrpieeeEJPPfWUJLnX8SQmJuof//iH6uvrddttt6lr166aMGGCYmJifPIOrIZwGQsAgAAQDHcTZmZm6ssvv/RosyzL/eubb75Zu3btcu8vXbpUYWFhSk5OdrelpaVp5cqVTV/szxB2AACATyxZskSXXXaZLrnkEu3atUuTJ0/WiBEj1LJlS7/W5dfLWJs2bdKgQYOUmJgom82m1atXN9j3gQcekM1mU35+vkd7RUWFsrKyFBUVpZiYGI0ePVrV1dVNWzgAADiNw+HQPffco06dOmnixIm68847tWDBAn+X5d+wU1NTo2uvvVZz5849a79Vq1bpk08+UWJi4mnHsrKy9MUXX2jdunVas2aNNm3apLFjxzZVyQAAoAGTJk3SgQMHdPLkSZWWluqVV15Rq1at/F2Wfy9j9e/fX/379z9rn2+++UYPP/yw1q5dq4EDPa9n7tmzRwUFBdq2bZvS09MlSa+99poGDBigl1566YzhCAAAXFgC+m4sl8ule++9V48//riuvvrq044XFRUpJibGHXSkHxdPhYSEaMuWLQ2et7a2Vk6n02MDAABmCuiwM3PmTIWGhuqRRx4543GHw6H27dt7tIWGhio2NlYOh6PB8+bl5Sk6Otq9JSUl+bRuAAB+zc/vYkLDfPH7FLBhp7i4WK+++qoWL17sfhiRr0ydOlVVVVXu7fDhwz49PwAADWnRooUknfMrFi50J06ckCSFhYV5fY6AvfX873//u8rLyz3uza+vr9ejjz6q/Px8HThwQHa7XeXl5R6f++GHH1RRUSG73d7guSMiItyPsgYAoDmFhoaqVatWOn78uMLCwpr0YXrBzLIsnThxQuXl5YqJiXGHRG8EbNi59957lZmZ6dHWr18/3XvvvRo1apQkKSMjQ5WVlSouLlb37t0lSevXr5fL5VKPHj2avWYAAH6NzWZTQkKCSktLdfDgQX+XE/BiYmLOOoFxLvwadqqrq7V//373fmlpqXbu3KnY2FglJycrLi7Oo39YWJjsdruuuuoqSVKnTp10++23a8yYMZo/f77q6uo0btw4jRw5kjuxAAABKzw8XGlpaVzK+hVhYWGNmtH5iV/Dzvbt29WnTx/3/k8vFMvOztbixYvP6RxLly7VuHHj1LdvX4WEhGj48OGaM2dOU5QLAIDPhISEuN8Zhabl17DTu3fv81plfeDAgdPaYmNjtWzZMh9WBQAATMKqKAAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACj+TXsbNq0SYMGDVJiYqJsNptWr17tPlZXV6fJkyera9euat26tRITE3Xffffp6NGjHueoqKhQVlaWoqKiFBMTo9GjR6u6urqZvxMAABCo/Bp2ampqdO2112ru3LmnHTtx4oR27NihadOmaceOHVq5cqVKSkr0m9/8xqNfVlaWvvjiC61bt05r1qzRpk2bNHbs2Ob6FgAAQICzWZZl+bsISbLZbFq1apWGDBnSYJ9t27bpxhtv1MGDB5WcnKw9e/aoc+fO2rZtm9LT0yVJBQUFGjBggI4cOaLExMRz+tpOp1PR0dGqqqpSVFSUL74dAE0oZcoHZ2w/MGNgM1cCwJ/O9d/voFqzU1VVJZvNppiYGElSUVGRYmJi3EFHkjIzMxUSEqItW7Y0eJ7a2lo5nU6PDQAAmClows7Jkyc1efJk3XXXXe705nA41L59e49+oaGhio2NlcPhaPBceXl5io6Odm9JSUlNWjsAAPCfoAg7dXV1GjFihCzL0rx58xp9vqlTp6qqqsq9HT582AdVAgCAQBTq7wJ+zU9B5+DBg1q/fr3HNTm73a7y8nKP/j/88IMqKipkt9sbPGdERIQiIiKarOZzcaY1B6w3AADA9wJ6ZuenoLNv3z797W9/U1xcnMfxjIwMVVZWqri42N22fv16uVwu9ejRo7nLBQAAAcivMzvV1dXav3+/e7+0tFQ7d+5UbGysEhIS9Nvf/lY7duzQmjVrVF9f716HExsbq/DwcHXq1Em33367xowZo/nz56uurk7jxo3TyJEjz/lOLAAAYDa/hp3t27erT58+7v3c3FxJUnZ2tv74xz/qvffekyR169bN43MbNmxQ7969JUlLly7VuHHj1LdvX4WEhGj48OGaM2dOs9QPAAACn1/DTu/evXW2x/ycyyOAYmNjtWzZMl+WBQAADBLQa3YAAAAai7ADAACMRtgBAABGC/jn7AAAgOAQqO+tY2YHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABjNr2Fn06ZNGjRokBITE2Wz2bR69WqP45Zl6amnnlJCQoJatmypzMxM7du3z6NPRUWFsrKyFBUVpZiYGI0ePVrV1dXN+F0AAGCGlCkfnLaZwK9hp6amRtdee63mzp17xuOzZs3SnDlzNH/+fG3ZskWtW7dWv379dPLkSXefrKwsffHFF1q3bp3WrFmjTZs2aezYsc31LQAAgAAX6s8v3r9/f/Xv3/+MxyzLUn5+vp588kkNHjxYkrRkyRLFx8dr9erVGjlypPbs2aOCggJt27ZN6enpkqTXXntNAwYM0EsvvaTExMRm+14AAEBgCtg1O6WlpXI4HMrMzHS3RUdHq0ePHioqKpIkFRUVKSYmxh10JCkzM1MhISHasmVLs9cMAAACj19nds7G4XBIkuLj4z3a4+Pj3cccDofat2/vcTw0NFSxsbHuPmdSW1ur2tpa977T6fRV2QAAIMAE7MxOU8rLy1N0dLR7S0pK8ndJAACgiQRs2LHb7ZKksrIyj/aysjL3MbvdrvLyco/jP/zwgyoqKtx9zmTq1Kmqqqpyb4cPH/Zx9QAAIFAEbNhJTU2V3W5XYWGhu83pdGrLli3KyMiQJGVkZKiyslLFxcXuPuvXr5fL5VKPHj0aPHdERISioqI8NgAAYCa/rtmprq7W/v373fulpaXauXOnYmNjlZycrAkTJui5555TWlqaUlNTNW3aNCUmJmrIkCGSpE6dOun222/XmDFjNH/+fNXV1WncuHEaOXIkd2IBAABJfg4727dvV58+fdz7ubm5kqTs7GwtXrxYkyZNUk1NjcaOHavKykr16tVLBQUFioyMdH9m6dKlGjdunPr27auQkBANHz5cc+bMafbvBQAABCa/hp3evXvLsqwGj9tsNk2fPl3Tp09vsE9sbKyWLVvWFOUBAAADBOyaHQAAAF8g7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMFrAvggUABCYUqZ8cMb2AzMGNnMlwLlhZgcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARuPdWAAQ5HhXFXB2Xs3sfP31176uAwAAoEl4FXauuOIK9enTR++8845Onjzp65oAAAB8xquws2PHDl1zzTXKzc2V3W7XH/7wB23dutXXtQEAADSaV2GnW7duevXVV3X06FG99dZbOnbsmHr16qUuXbpo9uzZOn78uK/rBAAA8Eqj7sYKDQ3VsGHDtGLFCs2cOVP79+/XY489pqSkJN133306duyYr+oEAADwSqPCzvbt2/XQQw8pISFBs2fP1mOPPaavvvpK69at09GjRzV48GBf1QkAAOAVr249nz17thYtWqSSkhINGDBAS5Ys0YABAxQS8mN2Sk1N1eLFi5WSkuLLWgEAjcRt6rgQeRV25s2bp9///ve6//77lZCQcMY+7du315tvvtmo4gAAABrLq7Czb9++X+0THh6u7Oxsb04PAADgM16FnUWLFqlNmza68847PdpXrFihEydOEHIAoAk0dAkKwNl5tUA5Ly9PF1100Wnt7du31wsvvNDoogAAAHzFq5mdQ4cOKTU19bT2Dh066NChQ40uCgACzZlmVQJ9US8zQfAFExa1ezWz0759e3322Wente/atUtxcXGNLgoAAMBXvAo7d911lx555BFt2LBB9fX1qq+v1/r16zV+/HiNHDnS1zUCAAB4zavLWM8++6wOHDigvn37KjT0x1O4XC7dd999rNkBAAABxauwEx4erj//+c969tlntWvXLrVs2VJdu3ZVhw4dfF0fAABAo3gVdn5y5ZVX6sorr/RVLQCA/9Pci4tNWIQKNMSrsFNfX6/FixersLBQ5eXlcrlcHsfXr1/vk+IAAAAay6uwM378eC1evFgDBw5Uly5dZLPZfF0XAACAT3gVdpYvX653331XAwYM8HU9Hurr6/XHP/5R77zzjhwOhxITE3X//ffrySefdAcsy7L09NNPa+HChaqsrFTPnj01b948paWlNWltAAAgOHh163l4eLiuuOIKX9dympkzZ2revHl6/fXXtWfPHs2cOVOzZs3Sa6+95u4za9YszZkzR/Pnz9eWLVvUunVr9evXTydPnmzy+gAAQODzKuw8+uijevXVV2VZlq/r8fDxxx9r8ODBGjhwoFJSUvTb3/5Wt912m7Zu3Srpx1md/Px8Pfnkkxo8eLCuueYaLVmyREePHtXq1aubtDYAABAcvLqMtXnzZm3YsEEffvihrr76aoWFhXkcX7lypU+Ku/nmm7VgwQLt3btXV155pXbt2qXNmzdr9uzZkqTS0lI5HA5lZma6PxMdHa0ePXqoqKiowQcc1tbWqra21r3vdDp9Ui8AAAg8XoWdmJgYDR061Ne1nGbKlClyOp3q2LGjWrRoofr6ej3//PPKysqSJDkcDklSfHy8x+fi4+Pdx84kLy9PzzzzTNMVDgCQxC3tCAxehZ1Fixb5uo4zevfdd7V06VItW7ZMV199tXbu3KkJEyYoMTFR2dnZXp936tSpys3Nde87nU4lJSX5omQAABBgvH6o4A8//KCPPvpIX331le6++261bdtWR48eVVRUlNq0aeOT4h5//HFNmTLFfTmqa9euOnjwoPLy8pSdnS273S5JKisrU0JCgvtzZWVl6tatW4PnjYiIUEREhE9qBIId//P2L95MDjQ9rxYoHzx4UF27dtXgwYOVk5Oj48ePS/rx7qnHHnvMZ8WdOHFCISGeJbZo0cL9EMPU1FTZ7XYVFha6jzudTm3ZskUZGRk+qwMAAAQvr8LO+PHjlZ6eru+++04tW7Z0tw8dOtQjeDTWoEGD9Pzzz+uDDz7QgQMHtGrVKs2ePdu9Xshms2nChAl67rnn9N577+nzzz/Xfffdp8TERA0ZMsRndQAAgODl1WWsv//97/r4448VHh7u0Z6SkqJvvvnGJ4VJ0muvvaZp06bpoYceUnl5uRITE/WHP/xBTz31lLvPpEmTVFNTo7Fjx6qyslK9evVSQUGBIiMjfVYHAAAIXl6FHZfLpfr6+tPajxw5orZt2za6qJ+0bdtW+fn5ys/Pb7CPzWbT9OnTNX36dJ99XQAAYA6vws5tt92m/Px8LViwQNKPgaO6ulpPP/10k79CAgDQfFhADRN4FXZefvll9evXT507d9bJkyd19913a9++fbrooov0pz/9ydc1AgAAeM2rsHPppZdq165dWr58uT777DNVV1dr9OjRysrK8liwDAAA4G9eP2cnNDRU99xzjy9rAXAB43k/kM7854A/A2gsr8LOkiVLznr8vvvu86oYAAAAX/Mq7IwfP95jv66uTidOnFB4eLhatWpF2AEQtHyxIJfZCSCwePVQwe+++85jq66uVklJiXr16sUCZQAAEFC8CjtnkpaWphkzZpw26wMAAOBPXi9QPuPJQkN19OhRX54SAHCBO99Li1wyxC95FXbee+89j33LsnTs2DG9/vrr6tmzp08KAwAA8AWvws4vX7Jps9l08cUX69Zbb9XLL7/si7oA4Lxx+zqAM/H63VgAAADBwKdrdgDA13g3k5kYVzQnr8JObm7uOfedPXu2N18CAADAJ7wKO59++qk+/fRT1dXV6aqrrpIk7d27Vy1atND111/v7mez2XxTJQAAgJe8CjuDBg1S27Zt9fbbb6tdu3aSfnzQ4KhRo3TLLbfo0Ucf9WmRAJqfSYt9eaIxcGHz6qGCL7/8svLy8txBR5LatWun5557jruxAABAQPFqZsfpdOr48eOntR8/flzff/99o4sCgKbGAlmgcYLp75BXMztDhw7VqFGjtHLlSh05ckRHjhzRX/7yF40ePVrDhg3zdY0AAABe82pmZ/78+Xrsscd09913q66u7scThYZq9OjRevHFF31aIAAAQGN4FXZatWqlN954Qy+++KK++uorSdLll1+u1q1b+7Q4AACAxmrUW8+PHTumY8eOKS0tTa1bt5ZlWb6qCwAAwCe8mtn517/+pREjRmjDhg2y2Wzat2+fLrvsMo0ePVrt2rXjjizgAmPSberwXjAtWMWFxauZnYkTJyosLEyHDh1Sq1at3O2/+93vVFBQ4LPiAAAAGsurmZ3/+Z//0dq1a3XppZd6tKelpengwYM+KQwAAMAXvJrZqamp8ZjR+UlFRYUiIiIaXRQAAICveBV2brnlFi1ZssS9b7PZ5HK5NGvWLPXp08dnxQEAADSWV5exZs2apb59+2r79u06deqUJk2apC+++EIVFRX6xz/+4esaASDosXgX8B+vZna6dOmivXv3qlevXho8eLBqamo0bNgwffrpp7r88st9XSMAAIDXzntmp66uTrfffrvmz5+vJ554oilqwjniTc4AAPy6857ZCQsL02effdYUtQAAAPicV5ex7rnnHr355pu+rgUAAMDnvFqg/MMPP+itt97S3/72N3Xv3v20d2LNnj3bJ8UBwYYnCQNA4DmvsPP1118rJSVFu3fv1vXXXy9J2rt3r0cfm83mu+oAAAAa6bzCTlpamo4dO6YNGzZI+vH1EHPmzFF8fHyTFAcAANBY57Vm55dvNf/www9VU1Pj04IAAAB8yasFyj/5ZfgBAAAINOd1Gctms522Jqep1+h88803mjx5sj788EOdOHFCV1xxhRYtWqT09HRJPwaup59+WgsXLlRlZaV69uypefPmKS0trUnrApoKi5yDB09FDh78vbqwnVfYsSxL999/v/tlnydPntQDDzxw2t1YK1eu9Elx3333nXr27Kk+ffroww8/1MUXX6x9+/apXbt27j6zZs3SnDlz9Pbbbys1NVXTpk1Tv3799OWXXyoyMtIndQAAgOB1XmEnOzvbY/+ee+7xaTG/NHPmTCUlJWnRokXuttTUVPevLctSfn6+nnzySQ0ePFiStGTJEsXHx2v16tUaOXJkk9YHAMD5YIbJP84r7Pw8dDSH9957T/369dOdd96pjRs36pJLLtFDDz2kMWPGSJJKS0vlcDiUmZnp/kx0dLR69OihoqIiwg4AAGjcAuWm9vXXX7vX36xdu1YPPvigHnnkEb399tuSJIfDIUmn3foeHx/vPnYmtbW1cjqdHhsAADCTV09Qbi4ul0vp6el64YUXJEnXXXeddu/erfnz5592Se185OXl6ZlnnvFVmQgA57tQlCljABKXlS4UAT2zk5CQoM6dO3u0derUSYcOHZIk2e12SVJZWZlHn7KyMvexM5k6daqqqqrc2+HDh31cOQAACBQBPbPTs2dPlZSUeLTt3btXHTp0kPTjYmW73a7CwkJ169ZNkuR0OrVlyxY9+OCDDZ43IiLCfUcZ8BP+hwcAZgrosDNx4kTdfPPNeuGFFzRixAht3bpVCxYs0IIFCyT9+IyfCRMm6LnnnlNaWpr71vPExEQNGTLEv8UDAICAENBh54YbbtCqVas0depUTZ8+XampqcrPz1dWVpa7z6RJk1RTU6OxY8eqsrJSvXr1UkFBAc/YOUdnms1gJgMAYJKADjuSdMcdd+iOO+5o8LjNZtP06dM1ffr0ZqwKAAAEi4BeoAwAANBYAT+zA7Nw2ez/Bet7lYK1bgAXLmZ2AACA0ZjZaWL8LxgAAP9iZgcAABiNsAMAAIzGZSygGfjicqYvFndzWRXAhYiZHQAAYDRmduB3vJPKe4H+e8ejBnAh4M954GNmBwAAGI2wAwAAjMZlLACAUS7UhfhcTmsYMzsAAMBozOwg6Fyo/2szBeMHoLkxswMAAIzGzA5gIGZPAOD/MbMDAACMRtgBAABG4zIWLkhc5gFwIQj0p6w3F2Z2AACA0ZjZAQDgF3hAn1mY2QEAAEYj7AAAAKMRdgAAgNEIOwAAwGgsUAZ+BbduApB4ZEUwY2YHAAAYjbADAACMxmWsAMLlEgDAT/g3wXeY2QEAAEZjZgdNwhcL+QJ9MWCg1wfAf8735wM/T5oWMzsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEbj1nMAAC4wF9qt7kE1szNjxgzZbDZNmDDB3Xby5Enl5OQoLi5Obdq00fDhw1VWVua/IgEAQEAJmrCzbds2/fd//7euueYaj/aJEyfq/fff14oVK7Rx40YdPXpUw4YN81OVAAAg0ARF2KmurlZWVpYWLlyodu3audurqqr05ptvavbs2br11lvVvXt3LVq0SB9//LE++eQTP1YMAAACRVCEnZycHA0cOFCZmZke7cXFxaqrq/No79ixo5KTk1VUVNTg+Wpra+V0Oj02AABgpoBfoLx8+XLt2LFD27ZtO+2Yw+FQeHi4YmJiPNrj4+PlcDgaPGdeXp6eeeYZX5cKAECTu9AWF/tCQM/sHD58WOPHj9fSpUsVGRnps/NOnTpVVVVV7u3w4cM+OzcAAAgsAR12iouLVV5eruuvv16hoaEKDQ3Vxo0bNWfOHIWGhio+Pl6nTp1SZWWlx+fKyspkt9sbPG9ERISioqI8NgAAYKaAvozVt29fff755x5to0aNUseOHTV58mQlJSUpLCxMhYWFGj58uCSppKREhw4dUkZGhj9KBgAAASagw07btm3VpUsXj7bWrVsrLi7O3T569Gjl5uYqNjZWUVFRevjhh5WRkaGbbrrJHyUDAIAAE9Bh51y88sorCgkJ0fDhw1VbW6t+/frpjTfe8HdZQa2hxW8HZgxs5koAAGi8oAs7H330kcd+ZGSk5s6dq7lz5/qnIAAAENACeoEyAABAYxF2AACA0Qg7AADAaEG3ZgeBh6d5AgACGTM7AADAaMzs4JwxgwMACEbM7AAAAKMRdgAAgNG4jBUEuHwEAID3mNkBAABGI+wAAACjEXYAAIDRCDsAAMBoLFC+QLDIGQBwoWJmBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIwW6u8C4FspUz7wdwkAAAQUZnYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABgtoMNOXl6ebrjhBrVt21bt27fXkCFDVFJS4tHn5MmTysnJUVxcnNq0aaPhw4errKzMTxUDAIBAE9BhZ+PGjcrJydEnn3yidevWqa6uTrfddptqamrcfSZOnKj3339fK1as0MaNG3X06FENGzbMj1UDAIBAEtDP2SkoKPDYX7x4sdq3b6/i4mL9x3/8h6qqqvTmm29q2bJluvXWWyVJixYtUqdOnfTJJ5/opptu8kfZAAAggAT0zM4vVVVVSZJiY2MlScXFxaqrq1NmZqa7T8eOHZWcnKyioqIGz1NbWyun0+mxAQAAMwVN2HG5XJowYYJ69uypLl26SJIcDofCw8MVExPj0Tc+Pl4Oh6PBc+Xl5Sk6Otq9JSUlNWXpAADAj4Im7OTk5Gj37t1avnx5o881depUVVVVubfDhw/7oEIAABCIAnrNzk/GjRunNWvWaNOmTbr00kvd7Xa7XadOnVJlZaXH7E5ZWZnsdnuD54uIiFBERERTlgwAAAJEQM/sWJalcePGadWqVVq/fr1SU1M9jnfv3l1hYWEqLCx0t5WUlOjQoUPKyMho7nIBAEAACuiZnZycHC1btkx//etf1bZtW/c6nOjoaLVs2VLR0dEaPXq0cnNzFRsbq6ioKD388MPKyMjgTiwAACApwMPOvHnzJEm9e/f2aF+0aJHuv/9+SdIrr7yikJAQDR8+XLW1terXr5/eeOONZq4UAAAEqoAOO5Zl/WqfyMhIzZ07V3Pnzm2GigAAQLAJ6DU7AAAAjUXYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBoxoSduXPnKiUlRZGRkerRo4e2bt3q75IAAEAAMCLs/PnPf1Zubq6efvpp7dixQ9dee6369eun8vJyf5cGAAD8zIiwM3v2bI0ZM0ajRo1S586dNX/+fLVq1UpvvfWWv0sDAAB+FurvAhrr1KlTKi4u1tSpU91tISEhyszMVFFR0Rk/U1tbq9raWvd+VVWVJMnpdPq8PlftCZ+fEwCAYNIU/77+/LyWZZ21X9CHnW+//Vb19fWKj4/3aI+Pj9c///nPM34mLy9PzzzzzGntSUlJTVIjAAAXsuj8pj3/999/r+jo6AaPB33Y8cbUqVOVm5vr3ne5XKqoqFBcXJxsNpvPvo7T6VRSUpIOHz6sqKgon50XTYtxC06MW3Bi3IJToIybZVn6/vvvlZiYeNZ+QR92LrroIrVo0UJlZWUe7WVlZbLb7Wf8TEREhCIiIjzaYmJimqpERUVF8Zc4CDFuwYlxC06MW3AKhHE724zOT4J+gXJ4eLi6d++uwsJCd5vL5VJhYaEyMjL8WBkAAAgEQT+zI0m5ubnKzs5Wenq6brzxRuXn56umpkajRo3yd2kAAMDPjAg7v/vd73T8+HE99dRTcjgc6tatmwoKCk5btNzcIiIi9PTTT592yQyBjXELToxbcGLcglOwjZvN+rX7tQAAAIJY0K/ZAQAAOBvCDgAAMBphBwAAGI2wAwAAjEbYaSJz585VSkqKIiMj1aNHD23dutXfJeFn8vLydMMNN6ht27Zq3769hgwZopKSEo8+J0+eVE5OjuLi4tSmTRsNHz78tIdXwr9mzJghm82mCRMmuNsYt8D0zTff6J577lFcXJxatmyprl27avv27e7jlmXpqaeeUkJCglq2bKnMzEzt27fPjxWjvr5e06ZNU2pqqlq2bKnLL79czz77rMd7qIJm3Cz43PLly63w8HDrrbfesr744gtrzJgxVkxMjFVWVubv0vB/+vXrZy1atMjavXu3tXPnTmvAgAFWcnKyVV1d7e7zwAMPWElJSVZhYaG1fft266abbrJuvvlmP1aNn9u6dauVkpJiXXPNNdb48ePd7Yxb4KmoqLA6dOhg3X///daWLVusr7/+2lq7dq21f/9+d58ZM2ZY0dHR1urVq61du3ZZv/nNb6zU1FTr3//+tx8rv7A9//zzVlxcnLVmzRqrtLTUWrFihdWmTRvr1VdfdfcJlnEj7DSBG2+80crJyXHv19fXW4mJiVZeXp4fq8LZlJeXW5KsjRs3WpZlWZWVlVZYWJi1YsUKd589e/ZYkqyioiJ/lYn/8/3331tpaWnWunXrrP/8z/90hx3GLTBNnjzZ6tWrV4PHXS6XZbfbrRdffNHdVllZaUVERFh/+tOfmqNEnMHAgQOt3//+9x5tw4YNs7KysizLCq5x4zKWj506dUrFxcXKzMx0t4WEhCgzM1NFRUV+rAxnU1VVJUmKjY2VJBUXF6uurs5jHDt27Kjk5GTGMQDk5ORo4MCBHuMjMW6B6r333lN6erruvPNOtW/fXtddd50WLlzoPl5aWiqHw+ExbtHR0erRowfj5kc333yzCgsLtXfvXknSrl27tHnzZvXv319ScI2bEU9QDiTffvut6uvrT3t6c3x8vP75z3/6qSqcjcvl0oQJE9SzZ0916dJFkuRwOBQeHn7aC2Lj4+PlcDj8UCV+snz5cu3YsUPbtm077RjjFpi+/vprzZs3T7m5ufqv//ovbdu2TY888ojCw8OVnZ3tHpsz/dxk3PxnypQpcjqd6tixo1q0aKH6+no9//zzysrKkqSgGjfCDi54OTk52r17tzZv3uzvUvArDh8+rPHjx2vdunWKjIz0dzk4Ry6XS+np6XrhhRckSdddd512796t+fPnKzs728/VoSHvvvuuli5dqmXLlunqq6/Wzp07NWHCBCUmJgbduHEZy8cuuugitWjR4rS7P8rKymS32/1UFRoybtw4rVmzRhs2bNCll17qbrfb7Tp16pQqKys9+jOO/lVcXKzy8nJdf/31Cg0NVWhoqDZu3Kg5c+YoNDRU8fHxjFsASkhIUOfOnT3aOnXqpEOHDkmSe2z4uRlYHn/8cU2ZMkUjR45U165dde+992rixInKy8uTFFzjRtjxsfDwcHXv3l2FhYXuNpfLpcLCQmVkZPixMvycZVkaN26cVq1apfXr1ys1NdXjePfu3RUWFuYxjiUlJTp06BDj6Ed9+/bV559/rp07d7q39PR0ZWVluX/NuAWenj17nvZoh71796pDhw6SpNTUVNntdo9xczqd2rJlC+PmRydOnFBIiGdMaNGihVwul6QgGzd/r5A20fLly62IiAhr8eLF1pdffmmNHTvWiomJsRwOh79Lw/958MEHrejoaOujjz6yjh075t5OnDjh7vPAAw9YycnJ1vr1663t27dbGRkZVkZGhh+rxpn8/G4sy2LcAtHWrVut0NBQ6/nnn7f27dtnLV261GrVqpX1zjvvuPvMmDHDiomJsf76179an332mTV48OCAvIX5QpKdnW1dcskl7lvPV65caV100UXWpEmT3H2CZdwIO03ktddes5KTk63w8HDrxhtvtD755BN/l4SfkXTGbdGiRe4+//73v62HHnrIateundWqVStr6NCh1rFjx/xXNM7ol2GHcQtM77//vtWlSxcrIiLC6tixo7VgwQKP4y6Xy5o2bZoVHx9vRUREWH379rVKSkr8VC0sy7KcTqc1fvx4Kzk52YqMjLQuu+wy64knnrBqa2vdfYJl3GyW9bNHIQIAABiGNTsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGO1/AQrGRNj3kvxUAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(8, 5))\n", + "df.plot.hist(column=[\"age\"], bins=80)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Ящик с усами" + ] + }, + { + "cell_type": "code", + "execution_count": 159, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqQAAAHDCAYAAADyXwjWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAuIUlEQVR4nO3dfVjUdb7/8dfMcLsog3fcJcpc4ulmQbszb2o2Sa60u0sOYNtq2d3J9qRuKmXCdnPaEtaOZNoxPXm8tC2z3YhI2c2rjqmxJzIz68Q5HSWDNAXUzBkhRGXm90c/pibxhhr4MPB8XNdcMZ/Pez7zpj/o1ed7Z/F6vV4BAAAAhlhNNwAAAICejUAKAAAAowikAAAAMIpACgAAAKMIpAAAADCKQAoAAACjCKQAAAAwikAKAAAAowikAAAAMIpACgAAAKMIpAC6vPr6ek2bNk2DBg1SaGioLBaL75WcnGy6PQDAzxRiugEAOJNjx47pV7/6lXbv3q0777xTI0eOVEREhCSpqKhI33zzjeEOAQA/F4EUQJdWWlqqXbt2KS8vTwUFBX5zr7zyCoEUALoBDtkD6NJ2794tSbrqqqvOqd5isWjGjBl+YzfeeOMph/aLi4tlsVi0efNm39jq1atlsVhUU1PjG/N4PBo2bJgsFotWr17tG7/jjjtOWfOll16S1WrVH//4x7P2eeTIEc2ePVvJyckKDw/XwIEDNXXqVB06dOi0n7n66qs1fPjwNufOP/98jR8/3q/vxYsXKy0tTRERERowYIAmTJigDz/80FezatUqXXPNNYqNjVV4eLguuugiLVu27JS1k5OTZbFYNGvWrFPmxo8fL4vFohtvvNE3tnnz5lP+3UrSDTfcIIvFon/5l3857e8IoGcikALo0vr27StJfiGxM7344ov69NNPz1r31ltv6a677tKMGTM0b968M9Y2NDTI6XTq2Wef1bXXXqvFixfrt7/9rf7v//5PX3311Wk/d9ttt+m///u/VVlZ6Te+bds27dq1S7feeqtv7O6779asWbOUlJSkBQsWaN68eYqIiND777/vq1m2bJkGDx6s/Px8FRUVKSkpSffdd5+WLl16yndHRERozZo1OnHihG/sq6++0saNG32nUJzJu+++q7/97W9nrQPQM3HIHkCXNnHiRM2bN09/+MMfFBcX53cO6Q/DUUdobm7Wo48+quuuu05vvvnmaeu2b9+u7OxsZWZm6plnnjnruv/6r/+qyspKlZSU6B//8R994w8//LC8Xu9pPzdp0iTNnDlTL730kt8u7EsvvaSoqChlZWVJkjZt2qTVq1frd7/7nRYvXuyry83N9Vt/y5YtioyM9L2fMWOGJkyYoKefflrTp0/3+26n06kdO3Zo3bp1ys7OlvTdjvLIkSO1b9++s/7Oc+fOPeu/RwA9FzukALq0xMREvffee0pLS1NOTo6SkpI0YMAADRgwQG+99VaHfvfSpUv19ddf67HHHjttzRdffKEbbrhBF198sV588UVZrWf/s/raa69p+PDhfmG0lcViOe3n7Ha7Jk6cqLVr1/qCZUtLi/785z8rMzNTUVFRvvUtFkubff9w/R+GUZfLpUOHDunqq6/WF198IZfL5fe5sLAwTZkyRatWrfKNrV69WnfeeedZf9+SkhJt27btnE5lANAzEUgBdHm//OUv9eabb2rIkCEaOHCg3n77bb399tsaOXJkh32ny+VSQUGB5syZo7i4uDZrGhsbNX78eNXX1+vw4cNnDJM/tHv3bqWmpv6kvqZOnao9e/aovLxckvSf//mfqq+v12233ea3fmJiou90h9P5r//6L2VkZCgqKkoxMTEaMGCA8vPzJemUQCpJd955pzZs2KDa2lpt2bJFtbW1uvnmm8/4HS0tLcrPz9eUKVM0bNiw9v66AHoIAimAoLB8+XLt3r1bhYWFysjIUEZGhvr3799h37dgwQJZrVY9+OCDp605dOiQTpw4ofXr12vnzp0qLCzssH5ajR8/XnFxcXrppZckfXe4Pj4+XhkZGe1aZ/fu3Ro3bpwOHTqkp59+Wn/961/19ttva/bs2ZK+uyjqx4YPH67hw4frT3/6k1atWqXs7GxFR0ef8XtWrlypmpoaPfHEE+3qD0DPQiAF0OW5XC49/vjjGjFihKZMmdLh37d//34tXrxYDz/8sHr37n3aul/84hfasGGDbrzxRs2ePVsFBQX67LPPzrr+kCFDTrkw6VzZbDZNnjxZxcXF+uabb1RaWqrf/OY3stlsfuvv379fhw8fPu0669evV3Nzs9atW6d7771X119/vTIyMvwO47flrrvu0ooVK1RcXHzWw/XffvutHn/8cd13330aPHhw+35RAD0KgRRAl1dQUKBDhw5p0aJF53xY/Od4/PHHFRcXp9/+9rdnrBswYIAuuOACSdIf/vAHDRw4UPfcc88ZL0ySpOzsbH3yySd6/fXXT5k722el7662/+abb3TvvfeqoaHB7+r61vW9Xq8ef/zx067fGmB/+H0ul8vvHNG2TJ48Wfv27VNsbKzGjh17xtrFixersbFRv//978/6OwHo2bjKHkCX9uWXX2rJkiW6+eabdeWVV57TZ/bs2aMNGzb43h88eFBNTU1+Yx9//LEk6YMPPtDQoUN13nnn+ebeeustrVmzRmFhYefcZ2RkpJ5//nllZGRo2bJluu+++05b++CDD6q4uFiTJk3SXXfdpcsuu0yHDx/WunXrtHz58tPea7TVJZdcotTUVL366qu68MILdemll/rNp6en67bbbtOSJUtUVVWlCRMmyOPxqLy8XOnp6ZoxY4auvfZahYWF6aabbvIF2xUrVig2Nla1tbWn/e4+ffqotrZWNpvtrP9z8NZbb2n+/Pnq16/fGesAgEAKoEvLz8+X1+vVggULzvkz69ev1/r1608Zv+66604Ze+ihhxQbG6s77rjDN3bxxRfrN7/5Tbt7HTdunO68807l5eVp4sSJfiH3h3r16qXy8nI99thjev311/XCCy8oNjZW48aN08CBA8/pu6ZOnaq5c+f6Xcz0Q6tWrdKwYcO0cuVKPfjgg7Lb7br88ss1ZswYSd/dSL+4uFgPP/ywHnjgAcXHx+uf//mfNWDAAN11111n/O6YmJhz6jEhIaHNm+kDwI9ZvOdyfAgAuqmxY8fqjjvu8AukwWDx4sWaPXu2ampqNGjQINPtAMDPwjmkABBkvF6vVq5cqauvvpowCqBb4JA9gB7tiiuuOO2h9a6msbFR69at06ZNm/Tpp5/qjTfeMN0SAAQEh+wBIEjU1NTI4XAoJiZG9913n+bPn2+6JQAICAIpAAAAjOIcUgAAABhFIAUAAIBRQXlRk8fj0f79+9W7d+9OeWoLAAAA2sfr9ero0aNKTEyU1XrmPdCgDKT79+9XUlKS6TYAAABwFnv37j3rQz+CMpD27t1b0ne/YHR0tOFuAAAA8GNut1tJSUm+3HYmQRlIWw/TR0dHE0gBAAC6sHM5vZKLmgAAAGBUuwPpu+++q5tuukmJiYmyWCwqLS31m/d6vXr00UeVkJCgyMhIZWRkqKqqyq/m8OHDmjJliqKjoxUTE6O7775bDQ0NP+sXAQAAQHBqdyBtbGzU8OHDtXTp0jbnn3rqKS1ZskTLly/X1q1bFRUVpfHjx+vYsWO+milTpuh//ud/9Pbbb6usrEzvvvuupk2b9tN/CwAAAAStn/WkJovFotdff12ZmZmSvtsdTUxMVG5urh544AFJksvlUlxcnFavXq1bbrlFn332mS666CJt27ZNl19+uSRpw4YNuv766/XVV18pMTHxrN/rdrtlt9vlcrk4hxQAAKALak9eC+g5pNXV1aqrq1NGRoZvzG63a+TIkaqoqJAkVVRUKCYmxhdGJSkjI0NWq1Vbt25tc93m5ma53W6/FwAAALqHgAbSuro6SVJcXJzfeFxcnG+urq5OsbGxfvMhISHq27evr+bHCgsLZbfbfS/uQQoAANB9BMVV9nl5eXK5XL7X3r17TbcEAACAAAloII2Pj5ck1dfX+43X19f75uLj43XgwAG/+ZMnT+rw4cO+mh8LDw/33XOUe48CAAB0LwENpA6HQ/Hx8dq4caNvzO12a+vWrRo9erQkafTo0Tpy5Ii2b9/uq3nnnXfk8Xg0cuTIQLYDAACAINDuJzU1NDTo888/972vrq7Wxx9/rL59+2rQoEGaNWuWnnzySQ0dOlQOh0OPPPKIEhMTfVfiX3jhhZowYYLuueceLV++XCdOnNCMGTN0yy23nNMV9gAAAOhe2h1IP/zwQ6Wnp/vez5kzR5J0++23a/Xq1Zo7d64aGxs1bdo0HTlyRFdddZU2bNigiIgI32fWrFmjGTNmaNy4cbJarcrOztaSJUsC8OsAQPBpaWlReXm5amtrlZCQIKfTKZvNZrotAOg0P+s+pKZwH1IA3UVJSYlyc3NVU1PjG0tOTlZRUZGysrLMNQYAP5Ox+5ACAM5dSUmJcnJylJaWpoqKCh09elQVFRVKS0tTTk6OSkpKTLcIAJ2CHVIAMKClpUUpKSlKS0tTaWmprNbv9wc8Ho8yMzNVWVmpqqoqDt8DCErskAJAF1deXq6amhrl5+f7hVFJslqtysvLU3V1tcrLyw11CACdh0AKAAbU1tZKklJTU9ucbx1vrQOA7oxACgAGJCQkSJIqKyvbnG8db60DgO6MQAoABjidTiUnJ6ugoEAej8dvzuPxqLCwUA6HQ06n01CHANB5CKQAYIDNZlNRUZHKysqUmZnpd5V9ZmamysrKtHDhQi5oAtAjtPvG+ACAwMjKylJxcbFyc3M1ZswY37jD4VBxcTH3IQXQY3DbJwAwjCc1AeiO2pPX2CEFAMNsNpvGjh1rug0AMIZzSAEAAGAUgRQAAABGEUgBAABgFIEUAAAARhFIAQAAYBSBFAAAAEYRSAEAAGAUgRQAAABGEUgBAABgFIEUAAAARvHoUAAwjGfZA+jp2CEFAINKSkqUkpKi9PR0TZ48Wenp6UpJSVFJSYnp1gCg0xBIAcCQkpIS5eTkKC0tTRUVFTp69KgqKiqUlpamnJwcQimAHsPi9Xq9pptoL7fbLbvdLpfLpejoaNPtAEC7tbS0KCUlRWlpaSotLZXV+v3+gMfjUWZmpiorK1VVVcXhewBBqT15jR1SADCgvLxcNTU1ys/P9wujkmS1WpWXl6fq6mqVl5cb6hAAOg+BFAAMqK2tlSSlpqa2Od863loHAN0ZgRQADEhISJAkVVZWtjnfOt5aBwDdGYEUAAxwOp1KTk5WQUGBPB6P35zH41FhYaEcDoecTqehDgGg8xBIAcAAm82moqIilZWVKTMz0+8q+8zMTJWVlWnhwoVc0ASgR+DG+ABgSFZWloqLi5Wbm6sxY8b4xh0Oh4qLi5WVlWWwOwDoPNz2CQAM40lNALqj9uQ1dkgBwDCbzaaxY8eabgMAjOEcUgAAABhFIAUAAIBRBFIAAAAYRSAFAACAUQRSAAAAGEUgBQAAgFEEUgAAABhFIAUAAIBRBFIAAAAYRSAFAACAUQRSAAAAGEUgBQAAgFEEUgAAABhFIAUAAIBRBFIAAAAYRSAFAACAUQRSAAAAGEUgBQAAgFEEUgAAABhFIAUAAIBRBFIAAAAYRSAFAACAUQRSAAAAGEUgBQAAgFEEUgAAABhFIAUAAIBRBFIAAAAYRSAFAACAUQRSAAAAGEUgBQAAgFEEUgAAABhFIAUAAIBRBFIAAAAYRSAFAACAUQRSAAAAGEUgBQAAgFEEUgAAABgV8EDa0tKiRx55RA6HQ5GRkRoyZIieeOIJeb1eX43X69Wjjz6qhIQERUZGKiMjQ1VVVYFuBQAAAEEg4IF0wYIFWrZsmf7t3/5Nn332mRYsWKCnnnpKzz77rK/mqaee0pIlS7R8+XJt3bpVUVFRGj9+vI4dOxbodgAAANDFWbw/3LoMgBtvvFFxcXFauXKlbyw7O1uRkZF66aWX5PV6lZiYqNzcXD3wwAOSJJfLpbi4OK1evVq33HLLWb/D7XbLbrfL5XIpOjo6kO0DAAAgANqT1wK+QzpmzBht3LhRu3btkiR98skn+vvf/67rrrtOklRdXa26ujplZGT4PmO32zVy5EhVVFS0uWZzc7PcbrffCwAAAN1DSKAXnDdvntxuty644ALZbDa1tLRo/vz5mjJliiSprq5OkhQXF+f3ubi4ON/cjxUWFurxxx8PdKsAAADoAgK+Q/qXv/xFa9as0csvv6yPPvpIL7zwghYuXKgXXnjhJ6+Zl5cnl8vle+3duzeAHQMAAMCkgO+QPvjgg5o3b57vXNC0tDR9+eWXKiws1O233674+HhJUn19vRISEnyfq6+v18UXX9zmmuHh4QoPDw90qwAAAOgCAr5D+u2338pq9V/WZrPJ4/FIkhwOh+Lj47Vx40bfvNvt1tatWzV69OhAtwMAXV5LS4s2b96stWvXavPmzWppaTHdEgB0qoDvkN50002aP3++Bg0apF/+8pfasWOHnn76ad11112SJIvFolmzZunJJ5/U0KFD5XA49MgjjygxMVGZmZmBbgcAurSSkhLl5uaqpqbGN5acnKyioiJlZWWZawwAOlHAd0ifffZZ5eTk6L777tOFF16oBx54QPfee6+eeOIJX83cuXM1c+ZMTZs2TSNGjFBDQ4M2bNigiIiIQLcDAF1WSUmJcnJylJaWpoqKCh09elQVFRVKS0tTTk6OSkpKTLcIAJ0i4Pch7QzchxRAsGtpaVFKSorS0tJUWlrqd6qTx+NRZmamKisrVVVVJZvNZrBTAPhpjN6HFABwduXl5aqpqVF+fv4p591brVbl5eWpurpa5eXlhjoEgM5DIAUAA2prayVJqampbc63jrfWAUB3RiAFAANab3tXWVnZ5nzr+A9vjwcA3RWBFAAMcDqdSk5OVkFBge+2eK08Ho8KCwvlcDjkdDoNdQgAnYdACgAG2Gw2FRUVqaysTJmZmX5X2WdmZqqsrEwLFy7kgiYAPULA70MKADg3WVlZKi4uVm5ursaMGeMbdzgcKi4u5j6kAHoMbvsEAIa1tLSovLxctbW1SkhIkNPpZGcUQNBrT15jhxQADLPZbBo7dqzpNgDAGM4hBQAAgFEEUgAAABhFIAUAAIBRBFIAAAAYRSAFAACAUQRSAAAAGEUgBQAAgFEEUgAAABhFIAUAAIBRBFIAAAAYRSAFAACAUQRSAAAAGEUgBQAAgFEhphsAgJ6upaVF5eXlqq2tVUJCgpxOp2w2m+m2AKDTsEMKAAaVlJQoJSVF6enpmjx5stLT05WSkqKSkhLTrQFApyGQAoAhJSUlysnJUVpamioqKnT06FFVVFQoLS1NOTk5hFIAPYbF6/V6TTfRXm63W3a7XS6XS9HR0abbAYB2a2lpUUpKitLS0lRaWiqr9fv9AY/Ho8zMTFVWVqqqqorD9wCCUnvyGjukAGBAeXm5ampqlJ+f7xdGJclqtSovL0/V1dUqLy831CEAdB4CKQAYUFtbK0lKTU1tc751vLUOALozAikAGJCQkCBJqqysbHO+dby1DgC6MwIpABjgdDqVnJysgoICeTwevzmPx6PCwkI5HA45nU5DHQJA5yGQAoABNptNRUVFKisrU2Zmpt9V9pmZmSorK9PChQu5oAlAj8CN8QHAkKysLBUXFys3N1djxozxjTscDhUXFysrK8tgdwDQebjtEwAYxpOaAHRH7clr7JACgGE2m01jx4413QYAGMM5pAAAADCKQAoAAACjCKQAAAAwikAKAAAAowikAAAAMIpACgAAAKMIpAAAADCKQAoAAACjuDE+ABjGk5oA9HTskAKAQSUlJUpJSVF6eromT56s9PR0paSkqKSkxHRrANBpCKQAYEhJSYlycnKUlpamiooKHT16VBUVFUpLS1NOTg6hFECPYfF6vV7TTbSX2+2W3W6Xy+VSdHS06XYAoN1aWlqUkpKitLQ0lZaWymr9fn/A4/EoMzNTlZWVqqqq4vA9gKDUnrzGDikAGFBeXq6amhrl5+f7hVFJslqtysvLU3V1tcrLyw11CACdh0AKAAbU1tZKklJTU9ucbx1vrQOA7oxACgAGJCQkSJIqKyvbnG8db60DgO6MQAoABjidTiUnJ6ugoEAej8dvzuPxqLCwUA6HQ06n01CHANB5uA8pABhgs9lUVFSknJwcTZw4URMmTFBkZKSampq0YcMG/fWvf1VxcTEXNAHoEbjKHgAMmjt3rhYtWqSTJ0/6xkJCQjR79mw99dRTBjsDgJ+nPXmNHVIAMKSkpEQLFy7U9ddfr5SUFDU1NSkyMlKff/65Fi5cqFGjRikrK8t0mwDQ4dghBQADWu9D2r9/fx06dEg1NTW+ueTkZPXv319ff/019yEFELS4DykAdHGt9yHdvn17m09q2r59O/chBdBjEEgBwIB9+/ZJkiZMmKDS0lKNGjVKvXr10qhRo1RaWqoJEyb41QFAd0YgBQADDh48KEnKysqS1+vV5s2btXbtWm3evFler1eZmZl+dQDQnXFREwAYMGDAAEnSc889p/nz559yDmmfPn386gCgO2OHFAAMOO+88yRJO3bsUFNTk55//nnt379fzz//vJqamrRjxw6/OgDozrjKHgAMOH78uKKiohQVFSW73a49e/b45gYPHqwjR46osbFRjY2NCgsLM9gpAPw03IcUALq49957TydPnpTb7ZbT6dTcuXNPeVKT1+vVe++9p7Fjx5puFwA6FIEUAAyora2VJL344ot6+OGHVVZW5ptzOBx68cUXdeutt/rqAKA7I5ACgAEJCQmSpCFDhujzzz9XeXm5amtrlZCQIKfTqQ8++MCvDgC6My5qAgADnE6nkpOTVVBQII/H4zfn8XhUWFgoh8Mhp9NpqEMA6DzskAKAATabTUVFRcrOzpbdbldTU5NvrvVc0tdee43HhgLoEdghBQCDLBZLu8YBoDvitk8AYEBLS4tSUlLUv39/1dfXa+/evb65pKQkxcXF6euvv1ZVVRW7pACCErd9AoAurry8XDU1NaqpqTllN/Srr77yBdTy8nJu+wSg2+OQPQAYsG/fPt/PsbGxWrFihWpra7VixQrFxsa2WQcA3RWBFAAM2L9/vySpd+/e+vLLL5WSkqJNmzYpJSVFX375pXr37u1XBwDdWYcE0n379unWW29Vv379FBkZqbS0NH344Ye+ea/Xq0cffVQJCQmKjIxURkaGqqqqOqIVAOiSPvnkE0lSTEyMzj//fKWnp2vy5MlKT0/X+eefr5iYGL86AOjOAh5Iv/nmG1155ZUKDQ3Vm2++qf/93/9VUVGR+vTp46t56qmntGTJEi1fvlxbt25VVFSUxo8fr2PHjgW6HQDokhobGyVJe/fu1bFjx5Sbm6ulS5cqNzdXx44d851D2loHAN1ZwC9qWrBggZKSkrRq1SrfmMPh8P3s9Xr1zDPP6OGHH9bEiRMlSX/6058UFxen0tJS3XLLLYFuCQC6nDFjxqi0tFRhYWH6+uuvVVRU5JsLCQlRWFiYjh8/rjFjxhjsEgA6R8B3SNetW6fLL79ckyZNUmxsrC655BKtWLHCN19dXa26ujplZGT4xux2u0aOHKmKiopAtwMAXdLw4cMlScePH1efPn38dkj79Omj48eP+9UBQHcW8B3SL774QsuWLdOcOXOUn5+vbdu26Xe/+53CwsJ0++23q66uTpIUFxfn97m4uDjf3I81NzerubnZ997tdge6bQDoVAcPHvT9/OMdUqvV2mYdAHRXAd8h9Xg8uvTSS1VQUKBLLrlE06ZN0z333KPly5f/5DULCwtlt9t9r6SkpAB2DACdrzVojh8//pT7kFqtVl177bV+dQDQnQU8kCYkJOiiiy7yG7vwwgu1Z88eSVJ8fLwkqb6+3q+mvr7eN/djeXl5crlcvtcPn2gCAMFowIABkr4Lnw0NDVq0aJFmzJihRYsW6ejRo76nM7XWAUB3FvBAeuWVV2rnzp1+Y7t27dLgwYMlfXeBU3x8vDZu3Oibd7vd2rp1q0aPHt3mmuHh4YqOjvZ7AUAwO++88yRJb775piZNmqTQ0FBdcsklCg0N1aRJk/Tmm2/61QFAdxbwc0hnz56tMWPGqKCgQDfffLM++OADPf/883r++eclSRaLRbNmzdKTTz6poUOHyuFw6JFHHlFiYqIyMzMD3Q4AdElOp1PJycmy2Wz629/+prKyMt+c1WrVkCFD5PF45HQ6DXYJAJ0j4DukI0aM0Ouvv661a9cqNTVVTzzxhJ555hlNmTLFVzN37lzNnDlT06ZN04gRI9TQ0KANGzYoIiIi0O0AQJdks9k0adIk7d69u8353bt3Kycnx3foHgC6M4vX6/WabqK93G637Ha7XC4Xh+8BBKWWlhYlJCSc8aKl2NhY7d+/n1AKICi1J6/xLHsAMGDz5s1nvYL+wIED2rx5c+c0BAAGEUgBwIB33nknoHUAEMwCflETAODsampqfD8PGDBA6enpioqKUmNjozZt2uTbPf1hHQB0VwRSADCgtrZW0nd3Hjl8+LD+8pe/+OZ+eM5oax0AdGcEUgAw4MCBA5Ikr9crm82mm2++WZdffrk+/PBDvfbaa2ppafGrA4DujEAKAAb07t3b9/Px48e1du1arV279ox1ANBdcVETABhwro8E5dGhAHoCAikAGHCujwTl0aEAegICKQAY0HqOaKDqACCYEUgBwIBdu3YFtA4AghmBFAAM2LFjR0DrACCYEUgBwACr9dz+/J5rHQAEM/7SAYAB8fHxAa0DgGBGIAUAA7xeb0DrACCYEUgBwIBzfUY9z7IH0BMQSAHAAHZIAeB7BFIAMCAqKiqgdQAQzAikAGBAaGhoQOsAIJgRSAEAAGAUgRQADIiIiAhoHQAEMwIpABiQnJwc0DoACGYEUgAw4MsvvwxoHQAEMwIpABjQ1NQU0DoACGYEUgAw4MSJEwGtA4BgRiAFAANSUlICWgcAwSzEdAMA0BPZbDa/91FRUbJarfJ4PGpsbDxtHQB0RwRSADDg+PHjfu9/GELPVAcA3RGH7AHAAKv13P78nmsdAAQz/tIBgAFXX311QOsAIJgRSAHAgJ07dwa0DgCCGYEUAAz47LPPAloHAMGMQAoABtTW1ga0DgCCGYEUAAz49ttvA1oHAMGMQAoAAACjCKQAYAC3fQKA7/GXDgAMiIiICGgdAAQzAikAAACMIpACgAEnTpwIaB0ABDMCKQAYEBoaGtA6AAhmBFIAMODkyZMBrQOAYEYgBQADLBZLQOsAIJgRSAHAAHZIAeB7BFIAMIBzSAHgeyGmGwCAYNF0vEW7DzYEZK2IX/xCx44dO6e6yn2ugHznkAG9FBlmC8haABBIBFIAOEe7Dzboxmf/HpC1jg+8XDr81jnVBeo7y2ZepdTz7AFZCwACyeL1er2mm2gvt9stu90ul8ul6Oho0+0A6CECuUPa1NSkK4YmnLXug6paRUZGBuQ72SEF0Jnak9fYIQWAcxQZZgvgDqNdEydO1BtvvHHaiokTJ2pESnyAvg8Aui4uagIAQ0pLSzVx4sQ25yZOnKjS0tLObQgADCGQAoBBpaWl+vbbb3XL7f+kiORLdMvt/6Rvv/2WMAqgR+GQPQAYFhkZqd/PX6iKZ/+u38+8KmDnjAJAsGCHFAAAAEYRSAEAAGAUgRQAAABGEUgBAABgFIEUAAAARhFIAQAAYBSBFAAAAEYRSAEAAGAUgRQAAABGEUgBAABgFIEUAAAARhFIAQAAYBSBFAAAAEYRSAEAAGAUgRQAAABGEUgBAABgFIEUAAAARhFIAQAAYBSBFAAAAEZ1eCD94x//KIvFolmzZvnGjh07punTp6tfv37q1auXsrOzVV9f39GtAAAAoAvq0EC6bds2/fu//7uGDRvmNz579mytX79er776qrZs2aL9+/crKyurI1sBAABAF9VhgbShoUFTpkzRihUr1KdPH9+4y+XSypUr9fTTT+uaa67RZZddplWrVum9997T+++/31HtAAAAoIvqsEA6ffp03XDDDcrIyPAb3759u06cOOE3fsEFF2jQoEGqqKjoqHYAAADQRYV0xKKvvPKKPvroI23btu2Uubq6OoWFhSkmJsZvPC4uTnV1dW2u19zcrObmZt97t9sd0H4BAABgTsB3SPfu3av7779fa9asUUREREDWLCwslN1u972SkpICsi4AAADMC3gg3b59uw4cOKBLL71UISEhCgkJ0ZYtW7RkyRKFhIQoLi5Ox48f15EjR/w+V19fr/j4+DbXzMvLk8vl8r327t0b6LYBAABgSMAP2Y8bN06ffvqp39idd96pCy64QA899JCSkpIUGhqqjRs3Kjs7W5K0c+dO7dmzR6NHj25zzfDwcIWHhwe6VQAAAHQBAQ+kvXv3Vmpqqt9YVFSU+vXr5xu/++67NWfOHPXt21fR0dGaOXOmRo8erVGjRgW6HQAAAHRxHXJR09ksWrRIVqtV2dnZam5u1vjx4/Xcc8+ZaAUAAACGdUog3bx5s9/7iIgILV26VEuXLu2MrwcAAEAXxrPsAQAAYBSBFAAAAEYRSAEAAGAUgRQAAABGEUgBAABgFIEUAAAARhFIAQAAYBSBFAAAAEYRSAEAAGAUgRQAAABGEUgBAABgFIEUAAAARhFIAQAAYBSBFAAAAEYRSAEAAGAUgRQAAABGEUgBAABgFIEUAAAARhFIAQAAYBSBFAAAAEaFmG4AAAKt+lCjGptPmm6jXT4/0OD3z2ATFR4iR/8o020ACFIEUgDdSvWhRqUv3Gy6jZ9s1p8/Nt3CT7bpgbGEUgA/CYEUQLfSujP6zK8vVkpsL8PdnLtjJ1r01TdNGtgnUhGhNtPttMvnBxo0688fB92uNICug0AKoFtKie2l1PPspttol8uTTXcAAGZwURMAAACMIpACAADAKAIpAAAAjCKQAgAAwCgCKQAAAIwikAIAAMAoAikAAACMIpACAADAKAIpAAAAjCKQAgAAwCgCKQAAAIwikAIAAMAoAikAAACMIpACAADAKAIpAAAAjCKQAgAAwKgQ0w0AQKBZQtyqdu+UNaKX6VZ6hGp3gywhbtNtAAhiBFIA3U5ozFblf1Bguo0eJTRmnKTrTbcBIEgRSAF0OyeOjFTRDZM1JJYd0s6w+0CDfrdmt+k2AAQxAimAbsd7MlqO6PN1UT+76VZ6BM8xl7wnD5puA0AQ46ImAAAAGEUgBQAAgFEEUgAAABhFIAUAAIBRBFIAAAAYRSAFAACAUQRSAAAAGEUgBQAAgFEEUgAAABhFIAUAAIBRBFIAAAAYRSAFAACAUQRSAAAAGEUgBQAAgFEEUgAAABgVYroBAAikphMtkqTKfS7DnbTPsRMt+uqbJg3sE6mIUJvpdtrl8wMNplsAEOQIpAC6ld3/PxzNK/nUcCc9T1Q4/0kB8NPw1wNAt3LtL+MlSUNieykyiHYaPz/QoFl//ljP/PpipcT2Mt1Ou0WFh8jRP8p0GwCCFIEUQLfSNypMt1wxyHQbP1lKbC+lnmc33QYAdCouagIAAIBRBFIAAAAYRSAFAACAUQRSAAAAGEUgBQAAgFEEUgAAABgV8EBaWFioESNGqHfv3oqNjVVmZqZ27tzpV3Ps2DFNnz5d/fr1U69evZSdna36+vpAtwIAAIAgEPBAumXLFk2fPl3vv/++3n77bZ04cULXXnutGhsbfTWzZ8/W+vXr9eqrr2rLli3av3+/srKyAt0KAAAAgkDAb4y/YcMGv/erV69WbGystm/frl/96ldyuVxauXKlXn75ZV1zzTWSpFWrVunCCy/U+++/r1GjRgW6JQAAAHRhHX4OqcvlkiT17dtXkrR9+3adOHFCGRkZvpoLLrhAgwYNUkVFRUe3AwAAgC6mQx8d6vF4NGvWLF155ZVKTU2VJNXV1SksLEwxMTF+tXFxcaqrq2tznebmZjU3N/veu93uDusZAAAAnatDd0inT5+uyspKvfLKKz9rncLCQtntdt8rKSkpQB0CAADAtA4LpDNmzFBZWZk2bdqkgQMH+sbj4+N1/PhxHTlyxK++vr5e8fHxba6Vl5cnl8vle+3du7ej2gYAAEAnC3gg9Xq9mjFjhl5//XW98847cjgcfvOXXXaZQkNDtXHjRt/Yzp07tWfPHo0ePbrNNcPDwxUdHe33AgAAQPcQ8HNIp0+frpdffllvvPGGevfu7Tsv1G63KzIyUna7XXfffbfmzJmjvn37Kjo6WjNnztTo0aO5wh4AAKAHCnggXbZsmSRp7NixfuOrVq3SHXfcIUlatGiRrFarsrOz1dzcrPHjx+u5554LdCsAAAAIAgEPpF6v96w1ERERWrp0qZYuXRrorwcAAECQ4Vn2AAAAMIpACgAAAKMIpAAAADCKQAoAAACjCKQAAAAwikAKAAAAowikAAAAMIpACgAAAKMIpAAAADCKQAoAAACjCKQAAAAwikAKAAAAowikAAAAMIpACgAAAKMIpAAAADCKQAoAAACjCKQAAAAwikAKAAAAowikAAAAMIpACgAAAKMIpAAAADCKQAoAAACjCKQAAAAwikAKAAAAowikAAAAMIpACgAAAKMIpAAAADCKQAoAAACjCKQAAAAwikAKAAAAowikAAAAMIpACgAAAKNCTDcAAMGi6XiLdh9s6JC1Pz/Q4PfPjjBkQC9Fhtk6bH0A+KkIpABwjnYfbNCNz/69Q79j1p8/7rC1y2ZepdTz7B22PgD8VARSADhHQwb0UtnMqzpk7WMnWvTVN00a2CdSEaEds4s5ZECvDlkXAH4uAikAnKPIMFuH7jBentxhSwNAl8ZFTQAAADCKQAoAAACjCKQAAAAwikAKAAAAowikAAAAMIpACgAAAKMIpAAAADCKQAoAAACjCKQAAAAwikAKAAAAowikAAAAMIpACgAAAKMIpAAAADAqxHQDP4XX65Ukud1uw50AAACgLa05rTW3nUlQBtKjR49KkpKSkgx3AgAAgDM5evSo7Hb7GWss3nOJrV2Mx+PR/v371bt3b1ksFtPtAMDP5na7lZSUpL179yo6Otp0OwDws3m9Xh09elSJiYmyWs98lmhQBlIA6G7cbrfsdrtcLheBFECPw0VNAAAAMIpACgAAAKMIpADQBYSHh+uxxx5TeHi46VYAoNNxDikAAACMYocUAAAARhFIAQAAYBSBFAAAAEYRSAGgg4wdO1azZs0K6JqrV69WTExMQNcEANMIpAAQRH79619r165dptsAgIAKymfZA0BPFRkZqcjISNNtAEBAsUMKAB3o5MmTmjFjhux2u/r3769HHnlErXfbS05O1pNPPqmpU6eqV69eGjx4sNatW6eDBw9q4sSJ6tWrl4YNG6YPP/zQtx6H7AF0RwRSAOhAL7zwgkJCQvTBBx9o8eLFevrpp/Uf//EfvvlFixbpyiuv1I4dO3TDDTfotttu09SpU3Xrrbfqo48+0pAhQzR16lRxy2gA3RmBFAA6UFJSkhYtWqTzzz9fU6ZM0cyZM7Vo0SLf/PXXX697771XQ4cO1aOPPiq3260RI0Zo0qRJ+od/+Ac99NBD+uyzz1RfX2/wtwCAjkUgBYAONGrUKFksFt/70aNHq6qqSi0tLZKkYcOG+ebi4uIkSWlpaaeMHThwoDPaBQAjCKQAYFBoaKjv59bg2taYx+Pp3MYAoBMRSAGgA23dutXv/fvvv6+hQ4fKZrMZ6ggAuh4CKQB0oD179mjOnDnauXOn1q5dq2effVb333+/6bYAoEvhPqQA0IGmTp2qpqYmXXHFFbLZbLr//vs1bdo0020BQJdi8XIvEQAAABjEIXsAAAAYRSAFAACAUQRSAAAAGEUgBQAAgFEEUgAAABhFIAUAAIBRBFIAAAAYRSAFAACAUQRSAAAAGEUgBQAAgFEEUgAAABhFIAUAAIBR/w/DaJPLKY66EQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(8, 5))\n", + "df[\"bmi\"].plot(kind=\"box\", title=\"Ящик с усами\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Диаграмма с областями" + ] + }, + { + "cell_type": "code", + "execution_count": 160, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGzCAYAAAAFROyYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9eaAdRZX3r192EhIIhIQIRFYRAUVUiMoiILuI4jggCiifIF/QQRxkGBUQZmREHFcUHRRwBPEDFQdEIOyjLGIEwxrIvr793Xff3W931/dH3+6uvauXuwT6p+Hd7q7l1Hbq1KlTpyxCCEGOHDly5MiRI0cPoa/bBOTIkSNHjhw5cvDIBZQcOXLkyJEjR88hF1By5MiRI0eOHD2HXEDJkSNHjhw5cvQccgElR44cOXLkyNFzyAWUHDly5MiRI0fPIRdQcuTIkSNHjhw9h1xAyZEjR44cOXL0HHIBJUcODVzXxfDwMFavXt1tUnLkyJHjDYVcQMmRg0N/fz8uuugiLFq0CFOnTsW8efOw3377oVgsdpu01w2uvfZa7LvvvnBdt9uk5MjRU1i7di0sy8J1113X9rweffRRWJaFRx99NHh3+umn4+Mf/3jb8zZBLqBIcOedd8KyLOm//fffv9vk5WgjVq5ciXe/+924/fbbcf755+Oee+7B0qVL8dBDD2HmzJndJu91gWKxiG9+85u49NJL0dfHsqBarYbvfOc7OOSQQzBnzhxMnz4d++yzDy688EK8+uqrXaI4R443Di699FL85je/wd///vduk4LJ3Sagl/Gv//qveOtb3xo8//u//3sXqcnRCZx//vmYOnUqnnrqKbzpTW/qNjmvS/z85z+Hbds444wzmPfDw8M4/vjjsWzZMpx88sn4xCc+gVmzZmHFihW4/fbb8dOf/hSNRqNLVOfI8frD4Ycfjmq1iqlTpwbvDjroILzrXe/Ct7/9bfziF7/oInW5gKLFBz/4QRx55JHB84033ojh4eHuEZSjrVi2bBkefvhhPPDAA7lw0kbcdNNNOOWUUzB9+nTm/TnnnINnn30Wd955J0477TTm29VXX42vfOUrnSQzR47XPfr6+oRxCAAf//jHccUVV+BHP/oRZs2a1QXKPORbPBL4qzRe/SzDzTffDMuysHbt2uCd67o48MADYVkWbr755uD98uXLcc4552CPPfbA9OnTsWDBAnzmM5/ByMgIk+aVV14p3V6aPDmUJ4888kjsv//+WLZsGd773vdixowZ2H333XHDDTcIZbn88stx8MEHY86cOZg5cyYOO+wwPPLII0w4f9/TsizcddddzLdarYbtt99e2Bf16dxpp53QbDaZOL/61a+C9Gih7ve//z1OOukkLFy4ENOmTcOee+6Jq6++Go7jRNY1AGzatAnnnntuEH/33XfHBRdcELmyLpfL+NKXvoRdd90V06ZNw1ve8hZcd911oC/zfuqppzB9+nSsWrUKb3vb2zBt2jQsWLAA559/PkZHR4U06Trj/9G47rrr8N73vhc77LADZsyYgYMPPhh33nmnlM5f/vKXeM973oNtttkG22+/PQ4//HA88MADAIA3v/nNyvwsy8Kb3/zmIJ3BwUGce+652G233TBp0qQgDM1s0rQ5jVKphAULFgh72TKsWbMGy5cvxzHHHMO8f/rpp/GHP/wB5557riCcAMC0adMYOs455xzMmjULq1evxnHHHYeZM2di4cKFuOqqq5DkgvabbroJlmXh2WefFb594xvfwKRJk7Bp0yYA5mMPCNth/vz5mD59Ot7+9rfjlltuYcLw/WjKlCl485vfjEsuuUTo14VCARdddFHQj/faay9885vfZGx5dDYM+++/P7Po8m0QVP1RBz+u7N+f/vQnJqyq79L95cgjj2Roazab+NrXvobdd98dU6dOxW677YYvf/nLqFarQtrnnHMO8+68887D9OnThf74ox/9KBjbCxcuxJIlS1AoFJgwn/vc57D33ntjm222wdy5c3HUUUfhf//3f4U8Tz755Mi6iRoPUfjOd76DRYsWYcaMGTjiiCPwwgsvMN/9cbB+/XqcfPLJmDVrFt70pjfh+uuvBwA8//zzOOqoozBz5kwsWrQIt912mxGdH/zgB1Eul7F06dJU9KdFrkGRwGcK06ZNSxT/v//7v/H8888L75cuXYrVq1fj05/+NBYsWIAXX3wRP/3pT/Hiiy/iqaeeEhj/j3/8Y2ZC4QWmsbExnHjiifj4xz+OM844A//v//0/XHDBBZg6dSo+85nPAPD2+2+88UacccYZ+OxnP4uJiQn87Gc/w3HHHYe//OUveMc73sGkOX36dNx000049dRTg3e//e1vUavVlOWdmJjAPffcg4985CPBu5tuugnTp08X4t18882YNWsWLr74YsyaNQsPP/wwLr/8chSLRXzrW99S5gEAmzdvxnve8x4UCgWcd9552HfffbFp0ybceeedqFQqjJqSBiEEp5xyCh555BGce+65eMc73oH7778fl1xyCTZt2oTvfOc7AICRkRHUajVccMEFOOqoo/C5z30Oq1atwvXXX4+nn34aTz/9tLRPnHfeeTjssMOCuvrd737HfP/e976HU045BWeeeSYajQZuv/12/MM//APuuecenHTSSUG4r3/967jyyivx3ve+F1dddRWmTp2Kp59+Gg8//DCOPfZYfPe730WpVAIAvPzyy/jGN77BbEPSfeXss8/Ggw8+iM9//vN4+9vfjkmTJuGnP/0p/va3vwn0J2lzGt/+9rcxMDBgFPaJJ54AALzzne9k3v/P//wPAOBTn/qUUToA4DgOjj/+eBx66KG49tprcd999+GKK66Abdu46qqrjNMBgI997GNYsmQJbr31Vhx00EHMt1tvvRVHHnkko1UzGXvVahVHHnkkVq5ciQsvvBC777477rjjDpxzzjkoFAr4p3/6JyYfvx/V63Xcf//9uO666zB9+nRcffXVAIBKpYIjjjgCmzZtwvnnn4/ddtsNTzzxBC677DJs2bIF3/3ud2OVOSt84QtfwLvf/W7m3Vve8hYh3GGHHYbzzjsPQNh/dViyZAn+67/+C6eccgr++Z//Gc8++yy+9a1v4YUXXsAf/vAHgV/6uOKKK/Czn/0Mv/71rxmB58orr8TXv/51HHPMMbjggguwYsUK/PjHP8YzzzyDP//5z5gyZQoAj/9/8pOfxC677ILR0VH85Cc/wfHHH4+XX34Zu+22W5yqSYVf/OIXmJiYwJIlS1Cr1fC9730PRx11FJ5//nnMnz8/COc4Dk444QQcfvjhuPbaa3HrrbfiwgsvxMyZM/GVr3wFZ555Jj760Y/ihhtuwFlnnYXFixdj99131+a93377YcaMGfjzn//M8PWOg+QQ8N3vfpcAIH//+9+Z90cccQR529vexry76aabCACyZs0aQgghtVqN7LbbbuSEE04gAMhNN90UhK1UKkJev/rVrwgA8vjjjwfvrrjiCgKADA0NKWk84ogjCADy7W9/O3hXr9fJO97xDrLTTjuRRqNBCCHEtm1Sr9eZuGNjY2T+/PnkM5/5TPBuzZo1BAA544wzyOTJk0l/f3/w7eijjyaf+MQnCADyrW99S6DzjDPOICeffHLwft26daSvr4+cccYZQjlkdXD++eeTbbbZhtRqNWV5CSHkrLPOIn19feSZZ54Rvrmuq4x31113EQDk3/7t35j3H/vYx4hlWWTlypVMeY4++mhi23YQzm/jH/zgB0z81157jQAgt9xyS/DOT4MGX+ZGo0H2339/ctRRRzFp9fX1kY985CPEcZzIsj3yyCMEAHnkkUeEb9VqlfT19ZHzzz+feX/22WeTmTNnBs9p2tzH4OAg2XbbbYP+LqOHxle/+lUCgExMTDDvP/KRjxAAZGxsTBufLgsA8vnPfz5457ouOemkk8jUqVO1Y0eFM844gyxcuJCp/7/97W/CODYdez4f+eUvfxmEazQaZPHixWTWrFmkWCwSQsJ2oPMghJCFCxeSE088MXi++uqrycyZM8mrr77KhPuXf/kXMmnSJLJ+/XomPbrdfLztbW8jRxxxRPDs96M77rjDsJZCxIn7pje9iXz6058W4tL95YgjjghoW758ObEsi5x++ulMOldeeSUBQO6+++7g3aJFi8jZZ59NCCHkJz/5iXSsDg4OkqlTp5Jjjz2Wad8f/vCHBAD5+c9/rqT9L3/5CwFA7rzzTibPk046SRlHNz6j4LffjBkzyMaNG4P3Tz/9NAFAvvjFLwbv/HHwjW98I3g3NjZGZsyYQSzLIrfffnvw/pVXXiEAyBVXXGFE5z777ENOOOGE2PRniXyLRwJ/y2XevHmx415//fUYGRnBFVdcIXybMWNG8LtWq2F4eBiHHnooAEhXtlGYPHkyzj///OB56tSpOP/88zE4OIhly5YBACZNmhRoFlzXxejoKGzbxrve9S5pnu985zvxtre9Df/93/8NAFi3bh0eeeQRQYVK4zOf+Qzuu+8+9Pf3AwBuueUWLF68GPvss48Qlq6DiYkJDA8P47DDDkOlUsErr7yizMN1Xdx111340Ic+hHe9613Cd9VqCgDuvfdeTJo0CV/4wheY91/60pdACMEf//hH5v3FF1+MSZMmBc+f+tSnMH/+fPzhD39gwplq2ugyj42NYXx8HIcddhhT/3fddRdc18Xll18uaMp0ZZOhXC7DdV3ssMMORuGTtLmPq6++GnPmzBHqVoWRkRFMnjxZ2Nf2j3Bvu+22Run4uPDCC4PflmXhwgsvRKPRwIMPPhgrHQA466yzsHnzZmb789Zbb8WMGTOEbSeTsXfvvfdiwYIFjDHwlClT8IUvfAGlUgmPPfYYk2apVMLw8DA2bdqEn/70p+jv78fRRx8dfL/jjjtw2GGHYfvtt8fw8HDw75hjjoHjOHj88ceZ9CqVChNueHhYuZXqj0V+uyMrNBoNI410s9nE8PAwfve734EQgosvvpj5ftFFF2HSpEnCWAS87eP/+3//Ly655BKmXwDAgw8+iEajgYsuuogZX5/97Gcxe/ZsIT2fP7/88sv43ve+hxkzZgh8x6d1ZGQEtm1Hli0uTj31VEZr9573vAeHHHII7r33XiHs//k//yf4vd122+Etb3kLZs6cyRwXfstb3oLtttvO2KeT38+6iVxAkWDdunWYPHlybAFlfHwc3/jGN3DxxRczKjgfo6Oj+Kd/+ifMnz8fM2bMwLx58wJV2/j4eGw6Fy5cKBx99YUC2ibmlltuwYEHHojp06djhx12wLx58/CHP/xBmeenP/1p3HTTTQC8LZn3vve92HvvvZV0vOMd78D++++PX/ziFyCE4Oabb8anP/1padgXX3wRH/nIRzBnzhzMnj0b8+bNwyc/+UkA+joYGhpCsVhMdMx73bp1WLhwoTD5+Vsj69atAxAKAvvuuy8TbtKkSdh7772ZOgUQMPMoI7J77rkHhx56KKZPn465c+di3rx5+PGPf8yUd9WqVejr68N+++0Xu3w8dthhB+y999648cYb8cADD2BwcBDDw8Oo1+vKOHHbHPDsSX7yk5/g61//utTQLg5mz54NwJsoTdHX14c99tiDeSfr/6b44Ac/iJ133hm33norAE8o/tWvfoUPf/jDQt8xGXvr1q3D3nvvLQicfL/z8fnPfx7z5s3DLrvsgvPPPx9nn302vvjFLwbfX3vtNdx3332YN28e88+35xkcHGTSu+KKK4SwqkXAZz7zGcybNw/bb789tt12W3ziE58w3rYzwfj4uJGx5RNPPIF58+YFCzx+q2jOnDnYeeedhfZ97rnncMYZZ8BxHKm9mF/XfHpTp07FHnvsIbTFzTffHPg/euihh7B06VIsWrSICfPAAw9g3rx52HHHHTF9+nS8853vDOzFsoBs/O2zzz5C2adPny7MVXPmzMEuu+wiLG7mzJmDsbExo/wJIbEXR1kjF1AkWLFiBfbYYw/GKNUE3/zmN9HX14dLLrlE+v3jH/84/uu//guf+9zn8Nvf/hYPPPAA7rvvPgBom8OqX/7ylzjnnHOw55574mc/+xnuu+8+LF26FEcddZQyz09+8pNYuXIlnnrqKdxyyy1KYYPGZz7zGdx000147LHH0N/fL3X0UygUcMQRR+Dvf/87rrrqKtx9991YunQpvvnNbwJoXx2YgtZ0mMDXGC1YsEAZ5n//93+DEys/+tGPcO+992Lp0qX4xCc+kciY0xS//vWvscMOO+C4447D/PnzMW/ePNx+++3K8Ena/Ctf+Qr23ntvnH322cZ07bDDDrBtWxBEfKFQZrvVKUyaNAmf+MQn8Jvf/Aa1Wg2PPPIINm/eHAjQ7cYll1yCpUuX4r777sO3v/1t/Pa3vw3sWQBvfHzwgx/E0qVLpf94Lc95550nhKENqWlcfvnlWLp0Ke69915ceumluPPOO436gAlGR0fRaDS048THgQceKC1LFP7+97/jyCOPxHXXXYef//znqY1TP/ShD2Hp0qW49dZbsffee+Mf//EfBcHgkEMOCer15z//Oer1Oj7ykY8kEo7TgNb2mrw35TtjY2PYcccdE9OVBXIjWQ71eh3PPfccYzBogs2bN+N73/serrnmGmy77bbCyZyxsTE89NBD+PrXv47LL788eP/aa68lpnXz5s0ol8vMSs53ZuUzojvvvBN77LEHfvvb3zLSsGwLyscOO+yAU045JVBZf/zjH49U9Z155pm45JJL8E//9E/42Mc+JlXVP/rooxgZGcFvf/tbHH744cH7NWvWRJZ13rx5mD17tmDFboJFixbhwQcfxMTEBEOXv5r0V0a+NssXUH24rovXXntNMJ586aWXYFmW1CDQx29+8xtMnz4d999/P6Pi9rUVPvbcc0+4rouXXnpJMFxOgoMOOgj/9V//hcMOOwxXXXUVDj30UHzrW9/Cn//8Z2n4uG3+7LPP4vbbb8ddd92lZIQy+ILImjVrcOCBBwbvP/ShD+Gaa67BL3/5y8DgOAqu62L16tXMViLf/+PirLPOwre//W3cfffd+OMf/4h58+bhuOOOE8KZjL1FixZh+fLlcF2X0aLw/c7HfvvtF2hDjjvuONTrdfzrv/4r/v3f/x0LFy7EnnvuiVKpJJyAUmHvvfcWwqqcDR5wwAFB2BNOOAHr16/HLbfcAtu2Yy/UeLz00ksAwPiUUmH77bfHMcccg2effRa/+c1vsGLFCsYAt1gsYsuWLcIJmgMOOAB33HEHZsyYgTvuuAPnnXceli9fHmj2/Lrmx3aj0cCaNWuEenrTm94UbK989KMfxY477ogf//jHwWIKAHbccUcm3l577YX3ve99ePzxxzMxppXNDa+++mrivh0Htm1jw4YNOOWUU9qelw65BoXDbbfdhnq9zuz9muDrX/865s+fj8997nPS7z4T56XXNJb3tm3jJz/5SfDcaDTwk5/8BPPmzcPBBx+szPfpp5/Gk08+qU37M5/5DJYvX45/+Id/MFLNzp07Fx/+8IexfPlyZtVHQ0ZLo9HAj370o8j0+/r6cOqpp+Luu+/GX//6V+G7blVw4oknwnEc/PCHP2Tef+c734FlWTjhhBMAAEcffTSmTZuG73//+4w259Zbb8XAwADDFG3bxm9+8xu85z3v0daPf8SX3vtfu3atcKz31FNPRV9fH6666ipBk5RE01IsFvGpT30Kp5xyCr761a/imGOOwc4776yNE6fN/+Vf/gXve9/7YjOwxYsXA4DQhosXL8bxxx+PG2+8UagbwOsn//zP/yy8p9uUEIIf/vCHmDJlCjN+V61ahVWrVhnRd+CBB+LAAw/EjTfeiN/85jc4/fTTpRO0ydg78cQT0d/fj1//+tdMvB/84AeYNWsWjjjiCC0t/nFa39bp4x//OJ588kncf//9QthCoZCpHYQvVGWh4r/99tsxdepUvP/97zeO4wuFPH/83ve+B8dxBAHlne98J2bOnIm+vj7ceOONWLt2LXOS65hjjsHUqVPx/e9/nxlPP/vZzzA+Ps6cpuMxPj6ORqOh3SIFQg1wHIFdh7vuuis42g4Af/nLX/D0008H/KqdeOmll1Cr1fDe97637XnpkGtQWiiXy/jBD36Aq666CpMmTQIhBL/85S+ZMAMDAyiVSvjlL3+JD37wg4ydyQMPPIBbb71VedR19uzZwTGwZrOJN73pTXjggQeMtAcqLFy4EN/85jexdu1a7LPPPvj1r3+N5557Dj/96U+DI3Mnn3wyfvvb3+IjH/kITjrpJKxZswY33HAD9ttvv+DIqgzHH388hoaGYjnpufnmm3H99dcr1YLvfe97sf322+Pss8/GF77wBViWhf/+7/82noC/8Y1v4IEHHsARRxyB8847D29961uxZcsW3HHHHfjTn/6E7bbbThrvQx/6ED7wgQ/gK1/5CtauXYu3v/3teOCBB/D73/8eF110Efbcc08AnpD11a9+FV/72tdw3HHH4cMf/jBWr16NH/7wh3j7298eGKI9+OCD+NrXvobly5fj7rvv1tJ80kkn4T//8z9x/PHH4xOf+AQGBwdx/fXXY6+99sLy5cuDcHvttRe+8pWv4Oqrr8Zhhx2Gj370o5g2bRqeeeYZLFy4ENdcc41RHflYsmQJqtUqbrzxRuM4cdr8gQceUGpjdNhjjz2w//7748EHHxQE2V/84hc49thj8dGPfhQf+tCHcPTRR2PmzJl47bXXcPvtt2PLli2Mb4/p06fjvvvuw9lnn41DDjkEf/zjH/GHP/wB//qv/8rsyfvCiqnq/ayzzgqEIdX2jsnYO++88/CTn/wE55xzDpYtW4Y3v/nNuPPOO/HnP/8Z3/3udwUt45NPPonJkyfDcRy8+OKL+MEPfoCDDjooWDFfcskl+J//+R+cfPLJOOecc3DwwQejXC7j+eefx5133om1a9cmVsk/99xzmDVrFmzbxrJly/CLX/wCH/7wh1NNtq+99hquuOIK/OpXv8K//Mu/BHZGJjjwwANxzjnn4Oabb0a5XMaxxx6L5557DjfeeCOOP/54nHjiicq4+++/Py699FL8x3/8B04//XQceOCBmDdvHi677DJ8/etfx/HHH49TTjkFK1aswI9+9CO8+93vDtr5+eefx5e+9CUcddRR2GmnnbB582b8/Oc/h+u6gufjoaGhYIt+y5Yt+OY3v4k5c+bgAx/4gPRahkcffRQf+MAHcMUVV+DKK6+MrIO99toL73//+3HBBRegXq/ju9/9LnbYYQd8+ctfNq7HpFi6dCm22WYbfPCDH2x7Xlp04eRQT8I/2mX6zz+W5R9Bfcc73sEcB5UdHdy4cSP5yEc+QrbbbjsyZ84c8g//8A9k8+bNwtEv02PGb3vb28hf//pXsnjxYjJ9+nSyaNEi8sMf/pAJ57ou+cY3vkEWLVpEpk2bRg466CByzz33kLPPPpssWrRIoFd2NFH1PYpO2fc///nP5NBDDyUzZswgCxcuJF/+8pfJ/fffb3wkb926deSss84i8+bNI9OmTSN77LEHWbJkiXCUmsfExAT54he/SBYuXEimTJlC9t57b/Ktb31LeoT3+uuvJ/vuuy+ZMmUKmT9/Pjn//PPJyMhI8P3zn/88Ofzww8l9992nLDONn/3sZ2Tvvfcm06ZNI/vuuy+56aabpOEIIeTnP/85Oeigg8i0adPI9ttvT4444giydOlSIZzueOCvfvUrYlmWQJ/qmHGSNv/whz9sTA+P//zP/ySzZs2SHjmvVCrkuuuuI+9+97vJrFmzyNSpU8nee+9NPv/5zwfHwemyrFq1ihx77LFkm222IfPnzydXXHGFcEx70aJFTF+PwpYtW8ikSZPIPvvsI/1uOvYIIWRgYIB8+tOfJjvuuCOZOnUqOeCAA4TjxDzv6evrI7vssgs5++yzmWOmhHj9+LLLLiN77bUXmTp1Ktlxxx3Je9/7XnLdddcFx5uTHDP2/02ePJksWrSIfOELX4g88h11zPhXv/oV2X///cn3vvc9YZxFHTMmhJBms0muvPJK8uY3v5lMmTKF7LLLLuSSSy4R+g19zNhHrVYj++67L3n3u9/NuAz44Q9/yIztCy64gCnn5s2bySmnnELmz59PpkyZQnbeeWdy8sknkz/96U9CnnS97bjjjuTYY48lTz31lLJ8d999NwFAbrjhBlWVEkLY9vv2t79Ndt11VzJt2jRy2GGHCa4v+DFN1yXvEsOnmz4erRq3hxxyCPnkJz+ppbMTyAWUFvxOEcVgTcO1G6oOmCNHr6NQKJC5c+eSG2+8MXEaKsacBYaGhsjkyZPJVVddJf2ej70cSXDJJZeQXXbZJdLfU7fx7LPPEsuyyLPPPtttUnI/KDly5Ogs5syZgy9/+cv41re+1fWTWzLcfPPNcBwnllfbHDmi8Mgjj+BrX/taYg/lncJ//Md/4GMf+1gmxvppkdugtDBr1iyceeaZUv8lScLlyJFDjUsvvRSXXnppt8lg8PDDD+Oll17Cv//7v+PUU0/tyGmJHG8cPPPMM90mwQg6dwSdRi6gtLDjjjsKRrFpwuXIkWPrwlVXXYUnnngC73vf+/CDH/yg2+TkyPGGh0VIG71F5ciRI0eOHDlyJEBug5IjR44cOXLk6DnkAkqOHDly5MiRo+ewVdqguK6LzZs3Y9ttt+36ZUY5cuTIkSNHDjMQQjAxMYGFCxcKF2ny2CoFlM2bN2PXXXftNhk5cuTIkSNHjgTYsGEDdtllF22YrVJA8V1Eb9iwIZb75Bw5cuTIkSNH91AsFrHrrrtKL5TlsVUKKP62zuzZs3MBJUeOHDly5NjKYGKekRvJ5siRI0eOHDl6DrmAkiNHjhw5cuToOeQCSo4cOXLkyJGj55ALKDly5MiRI0eOnkMuoOTIkSNHjhw5eg65gJIjR44cOXLk6DnkAkqOHDly5MiRo+eQCyg5cuTIkSNHjp5DLqDkyJEjR44cOXoOuYCSI0eOHDly5Og55AJKjhw5cuTIkaPnkAsoOXLkyJEjR46eQy6g5MiRI0eOHDl6DrmAkiNHjhw5cphioh8obuk2FW8I5AJKjhw5cuTIYQLXAQobgDWPAY1yt6l53SMXULKG6wLFzUCj0m1KcuTIkSNHliAEaLZ4e63YXVreAIgloPz4xz/GgQceiNmzZ2P27NlYvHgx/vjHPwbfa7UalixZgh122AGzZs3CaaedhoGBASaN9evX46STTsI222yDnXbaCZdccgls286mNJ2G3QAK64FmNXw3sRkYWelJ2Dly5MiRI0eORIgloOyyyy74j//4Dyxbtgx//etfcdRRR+HDH/4wXnzxRQDAF7/4Rdx9992444478Nhjj2Hz5s346Ec/GsR3HAcnnXQSGo0GnnjiCdxyyy24+eabcfnll2dbqk5hbC0w/Cqw5vHwXbPmaVBq410jK0eb4LrdpiBHjhw53jCwCCEkTQJz587Ft771LXzsYx/DvHnzcNttt+FjH/sYAOCVV17BW9/6Vjz55JM49NBD8cc//hEnn3wyNm/ejPnz5wMAbrjhBlx66aUYGhrC1KlTjfIsFouYM2cOxsfHMXv27DTkp8Pm54ChV7zfbz/d+zu8Etj0V/Zdjq0f1QIwsgqYtROw3a7dpiZHjhzdgGMD6/4MTGwBdj8CmL1ztyna6hBn/k5sg+I4Dm6//XaUy2UsXrwYy5YtQ7PZxDHHHBOE2XfffbHbbrvhySefBAA8+eSTOOCAAwLhBACOO+44FIvFQAsjQ71eR7FYZP7lyNFRjG8AxlZ7zClHjhw5crQdsQWU559/HrNmzcK0adPwuc99Dr/73e+w3377ob+/H1OnTsV2223HhJ8/fz76+/sBAP39/Yxw4n/3v6lwzTXXYM6cOcG/XXfNV7A5ugDX6TYFOXLkyJEcztZl7xlbQHnLW96C5557Dk8//TQuuOACnH322XjppZfaQVuAyy67DOPj48G/DRs2tDW/HDly5MiR43WF4mZg87PAxGC3KTHG5LgRpk6dir322gsAcPDBB+OZZ57B9773PfzjP/4jGo0GCoUCo0UZGBjAggULAAALFizAX/7yFyY9/5SPH0aGadOmYdq0aXFJzfF6xvgmoF4EdnwL0Jefls+RI0cOLUoDwOgq73DHgf/QbWqMkJqzu66Ler2Ogw8+GFOmTMFDDz0UfFuxYgXWr1+PxYsXAwAWL16M559/HoODoQS3dOlSzJ49G/vtt19aUnK8kVAaBLb83TtFlSNHr4CQfCswR48j1bmYjiKWBuWyyy7DCSecgN122w0TExO47bbb8Oijj+L+++/HnDlzcO655+Liiy/G3LlzMXv2bHz+85/H4sWLceihhwIAjj32WOy333741Kc+hWuvvRb9/f346le/iiVLlmzdGpKtp71fPyCtI7+NUnfpyJGDxtAKoFYAFh4ETN6KeVoOPXKe3xHEElAGBwdx1llnYcuWLZgzZw4OPPBA3H///fjgBz8IAPjOd76Dvr4+nHbaaajX6zjuuOPwox/9KIg/adIk3HPPPbjggguwePFizJw5E2effTauuuqqbEuVI0eOHN1As+qp0CdNA950ULepyZFjq0YsAeVnP/uZ9vv06dNx/fXX4/rrr1eGWbRoEe6999442W6dyCXsHDm6B7sBVEeBbXYEJsU2tUsPp975PHPkeJ0hty7MsXUjnZ/BHN2AY7ffTmP4VWDgZaB/eXvzyZEjR9uQCyhJ4brI1SRvJFjdJuD1AdcBBp4H1j/V5nyaQHnAuxcrRzTGNwKloW5TkSMHg1xASYqxNUCjGh0ux+sEuTCaCeyad23A+Ib8xu9eQb0EFDYAqx7KTyDZDfbyVx5Oo3O05MgFlMSoF4Hx9d2mIkenkcsp6eG2vFmSN/hkmBbVMe+4fVoQJ7zc9I0+AQ++CGz4iyeoyDC8AqjlV610CrmAkgb5ZJUjR45uYWSNt1VWHes2Ja8f2HXvIsCxdfLvjg00y52lKUtsZXNWLqB0AvVSzkRydB+EeAw4x+sDTh1oVoDilm5T8vqBb3Sv1O5tZTP8Vo5cQEkFSWelVaR+Zx9+Ddj4V6CxFUvePYfcaDU2RlYCm/4GlEe7TUmOHDlyRCIXULKG2wx/1ye8v3YNqIx4lvI5okEIMPSqZ7inDtQxctqOkVWd6RuNElBYB2xe1v683sh4HXXNHBxytwYdRS6gZA7Fyj7v12oQ4u35Vlor+1rB2wde92f9qYLXQ53WS15Z1/4JcJrR4bPAG8qJ2Ouhk7QbuTYyR28iF1BSgXB/VcH87z3MCGpFoDzcnbyrY96JqJUPhu/87TD/xMfrFiQs6xv9BEXWyGUTQ+QVlaM3kQsoqfA6Gtgjq4ANzwCVLhjzuraXL3F7WIXaw8JlOzCyCtjyQvbt0Y72teuekzFp2m+wdnu9gRDPhk91qibH6xq5gKJCvQT0v5Dh6ZsOTbxO09sqiTsRuE2gPu450MqRozICDL4AFDd1m5JoDL7kjdWxtZKPvSrw5jBCowRM9APrn+zcFugbCc2a2udLDyAXUGRoVoGR1zzJ/dX7Y0aWMcTWO6vNq7lmzWPUW5YDo2vam1c70ZNalF6kqY3wJwOdV81eQnkAGHih21TkyBqEeEepgc5ugep4UBJW4LqJSWkbHBsYfNkT/noUuYAiw/BrQHFzSmNCIgok7RZQxjcAxY1AqT+/JC1He9GsJnNV74+BN5i819vI26StKA0Bm/8GlEc6k5/pAs+pezd+T2zpWRcYuYAiA3HCI8Iy1EuA24OjmZCe7Wix0G5BLkc6EAIMvQJseDq/u6VTaFaBwVe8e4xUIMRbFedIBwIzHmTKa4sbPR9Eqx5KRZYRXBfofx4YeMksPHHZvz2GXEBJgsJ6z5+ECQhBuDTJJ974UNVZXpdtQWVUYctBgbieAF8ayOYumF5Brdi7E/zYWm/bmd9yptdJgy8DG5/JvQV3CgMvxLyXpwOL2saEN4b7l/e0bYkpcgElKUy2f4ZfAzY/23ogMJ5UXcdjSP4FXm80MCrKHtRUbc2Iqs7COu+ytHoE4w1cgvfmyis2KqPA0Apg41+6TYkcxG2t2DUN2Kx57Te0omNkdQQ9aZMGzwHnyMre01zZNe/v6+AyzlxAyRyUEFIdB4ZfBWqS7SKn6e1JyoynJrZ4Rq4rH05GQhbj2a4nOw3UMbSJrkbldbHySAXiRgjHr0PtVW3cm9wLW/MN5a0x4RuTEuJpunrRQDMRDPpdZdQ7ktwpvjW2xjuSv2kZUO/C9rrrxNSY9So/lyMXUFSg27GU0IEZaUnVPsOg9zWHVnhXe4+uEuM5TU913k2Pn4MveaeBipu7R0Onx5Jd9/b5e9iqvSdQ6ZCxX6fxerOnmdgCDLz4OjrdZMAQfA3g6Or2kwN4vLox4Qkq/X/vTJ40+pe/rrf1cgHFBKsejA6jBW2H0oLb9Cb/zX/zzvlnzRyz8MBa6veY29Cr3tXur3c0K0BlyGPsghalzVqDXl3YyFaihfVeHSWhuWc1cj2OJPVWHva2igcNDSZ7FZYVr68Rx+OpnYa/tdJJuLZ3j9fIyuRp9PCQzAUUHSRyhVkk/ycfWTLJEQIMvOytdLKEa2dza22z6hlDbnz6jbH1EajDe3jUdht2guPFOXJ0E47tCWu605k00grSzap5XmngkxksSF9f26+5gJIWUf3YpJ+XB7xVju4IYRJseiZeeKmPORI662q3oyRpXfXggEuyp1/csnXeZs0ft+SZbk9rRDpIm93orbpwnRhGkj1EtwxZ3GU2vsGzFfHt+ppVT4Odqeaa3sJ/xbs6pLGVODrsUeQCSi/AH3/r/pQtk3ud7kumhmN7GivaILIyCoyuhRGzjuullxBPOFn7p63rZJasKkZWAuNdtEtSoZtzbH2i5XsiYy1oGpSHgEohOpzrePYaJMWWcByeFWgySuI3u57haRiOJqfp1YndEhiGXvG8bvvbX67rnYJKmj6PZg0oD27lRtfdRy6gdBQRK4B6KXTrnCMCKVZTlWFv9bTuifBdYR0wvEJzvJZiSEm2OHzGGMtvQq8ihTSQtRO+4ubsb7yOe2y0POwJoLQxale0KfT2sgvUCtFRqmOe0bNMYDBBZdRzpWB6yaivyVjFnVB0mp5zsQ0dNFCvjnq0AMDQy8CmvxlqnWK0bceP4etMDLY+5AJKXIxvCiVtSfs7LsFA2UG1SXfMKKacdUfa+jtmiDaUJZXH3ddT3aZFD9RFaSCcZLLC0CvxT0Z02kCyUQ63Xt2Ul+iluW+psM5zpbDS8CCB0/A0GfxCrFkFqiMsf+0knAYwvt7bigXiC9JZbPXTcHv5ZvfOIRdQTED3k/IgMPKqMuhwqY6BCRvPD0gGmZ3vR241eD0xB7vu3QeSwwy+w7PBl9n3ju0JQyY3nLf7uganEQrZNiWgdKvbZuEUzLcH6abzvzjlaFddExIeH44N6l6l18GVIbmAokX8Hth0CMZrTdRtrqMTeJ5lTVWhybLPkUPE0CuefURbDPZ6vJMmETT9OPyptYktnv3Eqw+kJisVKqOeLZDb4aPwrzfEcO7dUfi+VUZXZ39wgkEvFp5FLqCYYnxTeAV9bLQYXrOs8EnQ40y+q1ANojbWmWz1kaVGpVHprBqbuJ5Pm3FDgz3mpoGM63lr1ky5tmdvYtL32lVOgtDTdGJ+pEi3V+A0vHruhAfctOVuV73ZvpNPwzbemseVBrmAYoqhl4GNy9TfB19R+AmRWJMrPvUcepG+Zg0Y9pwSubxBWG28fd5AGdVvipWHa3tehLdGb7XdcH7Fw7HjTcxZ2xL0CuJsg2jL1IOr6OHXPI3fyGvJ4mfRhu2Y8KPStBvAxEC2d+g4Tc/RZiUDn1hdwORuE7DVoDwMYBiY9xb59y3PtVyAT5J87EEm0Cm4LtCXkRxc3OwZRRb7sWm0iGKliT3nOJgKeKvKwnpg8gxg4duzya8dcG3PhqE8KPoUKWwAdtgLmNSDw7I27m1vlIe6aOdAgIHngUYJ2O19Zv2qwyvLkXIdlfEm3rQdad/qT1mmLjVM1lslru2N58oIsO3OGSYsQS+x5sEXvTJPmx2+MxGwdfYmxU3euN38N5Tm7ImRgo35sy1MFxLoTeQalEhwjafbE6wmlVJ7t4MESELi+EZg8zKzI4y+5kN3z8vEgKd9qI+jXGtguNTAxqGxMN7YWk/TZQIZk29rM/jGawSAK6dhy997y5cGDd+PROLTTyGGyk2M1RKo7/3TV+ObPEG1m9iyXLoqHS3XsXasjvVDhc7TlAg9wHsqo17f2lpheiQ9SthwibcQzuoeIUI8vtqal7YUatgwXsPz/RJbtB7dIsoFFBp2I9pPRbcZ49aE8pB36mGDgTW6fzGiTkCh1Nr+cKo7r5ebWgGAeKdHegkZnwSo2Q6Gx8t4ob8Cuxljq8ZnoH4f6PbFfoMvAasfE+0kWnSW65pJixBP7d5TTry6OEGNrvEc3aU9Lp0WSatgYktGBLSflxECNOzeFEZk6EFdchdRnwDGVifwZthGc/DyCDBzh/jxOt0HxzcBk6YCs+aJ35oxnEDZ9Vgu4adUh4CNf4s/kUZdQJb5imLrYQrmiF8mlxDUqp4Wpl4rY/KsuQaR3N68kdepJ3MdUC96k9rEFmDbhcm39EyqPzJMD+xx2BXPj0zG/vakIMqHFGkSs7RIS0MyeTowbRb7LY0vmtcxcg0Kj9G13VvFyvr4ygd7Vv0WoFn1PESuejhc2Sb1TOkzbqVHVwlGXvW8wJqiW34Wetk3gWN36GqEBOVvlLxtgMGXsj25kjWI8EMRjoSOylJoDRxC0HR6nDdkhtdJOUdXsx6sfQy9IvrXeZ0UOQ1yDQqPwIKaOWsJhrG2HqtNF/0VFztuA2w7LaWsp+yMxDMamzQlXfpxUCvGGxyu0zL4bNkIEMfz0xDbu2Yr02CgmqxKYmYBeAaqPm2ExKfTRMho1jyNEm/I2avCpm98OmVWdNhuwG8j2dZOj1Zpu7G6YKNuO9hnh5ahOM2jSoMJLvfsYEX2kp2v7DhzFgsJWVlKAx6PdB2gjzpQYdf129uReUkyi1OGHuVLuQYlBTaVXPRPNPDcZhP1XIoOQIhny9GpY56jqzwBIwmGVngnPgobvG2fXkdhvWecKqzMiVeGJFem18a9LYn+5ZmQmAno7ifTbjlNr70qw1y83mRcWz0yqFbbIRgrN9FfkPVRw20HEzTKW+0xVSOUB2MZfxOiGhYphBrTcUZIZ/zD9AhyASUl7E6oWGvj3nGx1Y92rnMmPYs/2roXJfYFbm3a+mjWPDfvKgZQHfVO//CW8xP93rtVj3IRDNq7MuoJN0OvUC97bGunUfa2dYpbPOPwRManmroYetXzZxEnTlpkKUzxSdE+jjLMxk1h5O2T4biEe5Mxhl8FNi0TTzAGk/pWLsQ2K9xiSl+e9eM21ozL+FsG9RCVxODLwMa/xp8HttImygUUU/ANHPWsSiPJpWLEDW0ykgoO5ZGWL5ceR9Yr9qGXvWvVx9bEi2fXPSGlmfBYrU693gtaiVrR29YZftXMaVyzIu/jsrL4V81vWvb6MP4rbGj5Ocp2/IxUXbz63OMoDGd1CqRNcOzwGD+N4VfjbUvE6fedHCK1cTFDhZ2a7booNx1sKtQw0cjAqlclaNQUGiv/IEdxK9BOZ4BcQEmImk1a4y3mSDK5Aj1ruK43Qa/9M1BP78fCGKqqKQ+zx7njbKMksjkZ6F3/IjSyZMr1kuI0GpeJb5QchcpIDGGNhAa3HTG8jYCqzxe3hLfX6lBp+abI+Nbk0ZqDoYFNWPHM0kzTTQaqX/gawCiBwrHNFz2u6x0ljnLjsBXA11jZLlc/cbeDxzd5fqJkl086TUgZgq+Z5he6MnuTXlgIpUQuoCTEhgkbhSpntyDsYybsIJmf9GgZr9pVYMNTGacdE/WS5/dg7Z/DAVQvIm5d9diGiYdmlVWDq4oUdcRZBdfxbHxKg/pwtfHW1Qx/SZBJBHjb8W5AV68yOBIhyXWB4kZg3Z+A6nhmpMVCqxxOr53EGVsHrH8q1nH/SNTHPS3uqELI67EqSIRmpaWNMcDwq56WcWQVsG4rvPaiQ8gFFC30o6Zu96qxkoZuk6viswRPitPwHLjVx81OGShWAUp3BkkYXaw4RG1fM/QKsOlvQG2CTTQLp2J2w/NeWljvHefWoVb0VmdZOALLWFhu36IuQcLNmtcHk9wYm3U5qmOZeOnNBMT1tpKzdkqZxGdMp5BVe44ZuqjY8vfwd+zTVm8c5AJKHPDblFuL2J/kJEpaJJ2JeL8QWp80Xar/8Y3AgMSlvut4q6LiBvb92FrvCK8WEWUpbgrvJzFBXCPlpO1VGe0dVXKn6cgoO4s0vVNzMv8YMgRjpEfq/Q2KWhKPrL2w5en3m171yUQhF1BSwaSBe4CJjK3J0B2zBlkUtVlj04njgC02EhJcnwD6/y75oDhN0ZgwV/1G5dsuqATBKKd2o695lzgaom8sxT0jPTCUIpH0OG5p0BM+pTei83m0Qwu6NVRub2F9oYmqIKREzQkkhg8YIhEi6Du96KAJ2o+O06x69lg9doQ5F1AyQzsGuKQz98pq1Qhxac3Qd0MipM2bZyZtKEtHq4d4KmulgTHxtEaDhhc0ApTAoyiI62Syymw6BKNVB3anx4uRIXFKmsoRNkg5EsLzzKu7RolGwybon2inRqRdfVciRI2u9Pw2jchcA3QPuYAiQ2S/SCmtSpOKStOXnDsv4W4uNjBUaV++rgtsKNoYqXTrAjhN3SeRseKg14/hVkdbF7l1YKJ3Hc/B3cZngEZFH1amnqa2BzcWKthYbGJ9oQdc4zu2Zw8U9/oHu+6tamPfDUZja1rQdA6i+xmvntaO23h1pI6GbciLaL6eSVVnmF7UFo5lsVlUxzzj3R5CLqBoEbOHKC03I9IzyqYVaMtzcShKkA8dlqBquxgtTuCVwQqazfasFsZrTYxUbLw02NuTdd0hICYTtW7Vzm/TFDfFMFxOybEUO1DJ8o6RSLMmFTisEuUZubDeMzB2mp6ND80oZcajsjp2msCIt4VkOwTjVRtbioYGiO3cjy9u8k5rrH4kXryhFd79Q/3Px4iUCyRRKI9uwcr+AraURMHPdggK1Sb6h7K+tT6rdmlp1U37q9QWzaOFEIJ1Yw2sG2/Sr3sKuYCiQMMB+ktuMkOodoHAM7js4D4hIUCj4Z25b9YNBAiCRNtQ9abbyk9RtlSryATgVruFShNrRm1snEhJR3modcpHAdq/gfRivJh1a3KSJ7bgYhjQDzb0MrDhaaE8Fu1pttI6glpoGRjTjHWi39x/UNKj1VF9Ng0bsOvhHSxxQByvv4zS1060iR9FJWtsNxEDxS3xtvMy2toaXfU3jPWvxsphkZ/5Bx/c2BrDdm3xqxa1hgsl+gQht0ioNh1MFItYP1YPeHyvmRDEElCuueYavPvd78a2226LnXbaCaeeeipWrGCNGI888khYlsX8+9znPseEWb9+PU466SRss8022GmnnXDJJZfAtjs8AUWgv2Rjc7GBFwYUk7JywKYXHgghmGi4aHZrx0OJDFeZMoMwCg2HgDnFXVgX74ZjbV6KYATYNOFguOJ4V8BTEUfLDQyV6lg3lvJIYK0g98vBEzqyytMoJDkCS2Oi31uJtwM+M6P7PCHitlWj7E3QJk7RZHWjrC8TGpNHfUOiUQag4WFZTmAjr5mdXPLzND3CG4Xa2NZzC7TKSDYSOo1n+NtuCYiOrXAM12XEElAee+wxLFmyBE899RSWLl2KZrOJY489FuUyuzL47Gc/iy1btgT/rr322uCb4zg46aST0Gg08MQTT+CWW27BzTffjMsvvzybEmWEhgNUGg6qzeQCx0TdQaEWP/541cbGcRuvjCRlzEk7Wm900KZLsG7cxst0+evF0C8D4YdpNnSXmwSjVRsvD1bgjJufTGGRUR3Wi97pq01/04drVtUnPwiiV6ixyZVFoPr46GpPIGK0JRJBJjIbc8IaLkGh5oJkMnl2cAzQWUm1ZS24DmLRJVwqGiPu+MaWF1lJ3k4T2Pycd89SUtCkFDdn72ulYzCsU5XvF9MmKW42c5iX9EoOAb0xB/iYHCfwfffdxzzffPPN2GmnnbBs2TIcfvjhwfttttkGCxYskKbxwAMP4KWXXsKDDz6I+fPn4x3veAeuvvpqXHrppbjyyisxdepUIU69Xke9HjLaYrFN7pLj7kMTaAXaLeN1FAo17D91KraJkWy57mCs0oDjugCme9s6ma1czNKZaBBM1B1sO7O9+chQs4GJuo1yzUbTBaYkTikeCAm3mlxCMKkdHn3jaqFsjbGo0wQGX/GEmT2OSEVZZqgX1UeWK8Pp+Z9Em7Ju3EalbmOnWVOw87Y0S4tR3932CRHltybO9lCjBEykmPhpx2FOIzwiP74RmDLD0wLO2yd5+t1AZhN4TJQGgUk8B6P6ZdR4KLWu6XjLScD0bdXhChuARSno7FGkskEZH/c67ty5c5n3t956K3bccUfsv//+uOyyy1CphEz2ySefxAEHHID58+cH74477jgUi0W8+KL8OOM111yDOXPmBP923XXXNGR3DI1aEXXbxUQ1vibEpQWSsTUd9zLZX7axerSK9WP0nQ8ZCEmGE4FvZqNyhpetnN9bq4ZI+OTaNaA64vm4iTr1YoiJuoP+ksP2PxNaTFAaSu8+XTEOijUbG8fFizh7bEs9OfiL+qIQ+84vTUUFdgxue0+dyUjIwn9QtWAwPsw6ipx7aeI2y54dURLQ26WRjh6zQm8NmFgaFBqu6+Kiiy7C+973Puy///7B+0984hNYtGgRFi5ciOXLl+PSSy/FihUr8Nvf/hYA0N/fzwgnAILn/n5eNenhsssuw8UXXxw8F4vFDgkp+hUYsSRfm5KBQFTpJFhRJ0WCfkcIUKw1MW1S9uQkRwfrTJk/FPXZAT8ofPkDSS6l7VOL1P5SE4MjVThkGt60bWL2IEd9HGhqDP8M6AvQbY2HCmmaXDfPuQSjVRdzpvZhOrMgz7iPJbltvV1wbaA0iGa1gD5CwLChwnpgykxg5g7R6RAXbnUU4zUX20xO128Ey45I4+JOTPgxeaKMJKL60F0k5kBLlizBCy+8gD/96U/M+/POOy/4fcABB2DnnXfG0UcfjVWrVmHPPfdMlNe0adMwbdq0pKRmAL8D6DoCtU/LYaLhYBL6sOOsNpHH5EUwVnEwf1YfxBrr0uSu21+XgR/UjXI299lEoUfnPAAdva/DJZ5GIhBQJHyrUHNBXBfbR+1dJmXQ9aLnlXWbudFhex3+9kIK/j9YdjFYbmKD4+Jdb4qzYRwTPeOXhwDEhV0exdqCjXrTwf7btT5VC96WxvgG4MB/lAirYkWPVBwMTtho2i52mElNe025QKZqqg1jNdhSA1uiidWDGFsLTPWFO4ruHitCoi2eCy+8EPfccw8eeeQR7LLLLtqwhxxyCABg5UrvqNyCBQswMMDuj/rPKruVriEpc+UW2cU68OpwDRM13SSbTc/oL9tYN1bDq0MdXAlFrWbjTK6yJUqzlrkx3VjNpQyge2xUyiDTzHUJLgEGyg5eGaqhJnq80kPXVehmaJSB9U+qVfOpV6Zdip9Q0G44BKWajWrDaW937ZrRqrxQddtFqeFgrNJEvdla6FTHgNqY99vwzqlak2C03MBETRJ+dC31oOdl9UYDpYafBomvyEvcdhk3+vqnJO4Oeo8PxhJQCCG48MIL8bvf/Q4PP/wwdt9998g4zz33HABg5513BgAsXrwYzz//PAYHwzPtS5cuxezZs7HffvvFIadD0DSatj3Dj47jwiUEE37HLiXck4yBitITYu91QhrK438ZetCdqNnon3Dw0lDWJ1xaaKu9UPfbjxCgYbtwXOJNmMlTUr9uVjyndmv/JA+T4w0D3zliYBdVLcT3yquDU0fYF6k+6TQFDYvST5OPTmlhs7iks1duz9Yg1hbPkiVLcNttt+H3v/89tt1228BmZM6cOZgxYwZWrVqF2267DSeeeCJ22GEHLF++HF/84hdx+OGH48ADDwQAHHvssdhvv/3wqU99Ctdeey36+/vx1a9+FUuWLOnyNk67QIL/BZ1/89+AGdszYYKeLQw8ybZMecizpp8+uy0Uy5Fke8g8ji+YjFZtzJzSXqOXhuOiWGugYbvqOTLxbliG22hdk0XMM247idVRYJrm9AJDidUL8lu26FR5CEnXbTtZ7yQbn1m64lqAd+1CfQLY9VBgsni6NBqSSpFmmqDyCmuBbXeKH28rQywNyo9//GOMj4/jyCOPxM477xz8+/Wvfw0AmDp1Kh588EEce+yx2HffffGlL30Jp512Gu6+++4gjUmTJuGee+7BpEmTsHjxYnzyk5/EWWedhauuuirbkmWO9CMwEHirY9QxQML6b9jwF+gdJcE71bP2z1vJEQUzGgOfX1yZLAUbyXShQoBinaC/FK0NiFxB8QnHeN02ZGwAl8g+VZF9eaIAuxmxBVgZDhJxCYGzVfT7GOiW2r86pvE03Gt1nCE9Ojt3Gnbd80NCOYiTdj2i5xsTDYJVBRvlZsZ1qrjEM9ofUK+1rRqxNChRBd91113x2GOPRaazaNEi3HvvvXGy7gLCsm6esLFw2ynSb3Eae/OEix23JZjWFx7/aTrA2jEH20wD3rRtH9Aso8+Wn2YKUB5qGY7akjP2EXAdYPPfgXlvAaZMjxe3C1AdM84aAxUb/cVaMPsmmYSbrgvXdjFtioncn8FJljai4RBUmi62marWZinbxsCWHACqtovBV/6KZnUCB+z1ZjUx1MmSVQXP0PGtbybZCKmZ1unWw/gBeIaSw6ZehttUNiFZQgmkdBBFa4+uAebsAkxtg+FwsGqKWLhEHALoL9voL9QwWOrD4t1kWu+wbIQQWEmYT4tUlxCsHm2gr9HEHvFT6Tnkd/Fo4bX6qhETg1O/hyjUj5aFmu1g/Zhn91CzCQZKDkaqDsZrTaweoaznBU+Q6uykWfk/mhVgfJMYYOjllqYmLrqy9N9qsHakgldHmqjJVkqJi2LArNpQTVWb4NWRBuqmd1E5zdj3JZWbwPjAehTGRgxCE7jEu+J+pNTE6PBAqIVUktgug4AUFU5IyxdMD/ftdizA4/QNhW2EoE0l8AQs00sY21nlurRb35wI9/qFuotXR21MNLhwMeguNRyUJ8awqVBHo9Gey107iYwdHeSoOy1bExJ2SEJIsKqst95tGG9ivNjA5EkWZRjqLz0lHTQ2r22lsfZPwHa7iZ8bbfLGmwo9zLQN4Do2xqtNDJQsLNq+97VTOjQdgqZtY6xqY8GsCC0dcb39+kYJmBrvLH3c7ZrgErfCGmBSm42RSwMRxpgJ+mttHKgVxXulDE+jGCNDU6hMUNwo3uRtCl01d9nQM8vdxqGKg8GJOsaqTRy6a2IX3rB9o+JOX7DaBuQaFCkog1YKjksw0SAYLEtUfoENRfjKdYlicHkvqw0HE9Wknch0ZBAjb4yj5Qa2lByQ8Q2apAhQHo5xA2n60Ws1K+ExZSq5zogyrVzKI9LX8tDeSt8seZOA3RDaKJVz669LCNaP2xgo2RxNxJtwK6Oeti6Jx8skRXQdz4PuhMEFhEnRLAOrHs42TbfpGf6mRLDoCV+kTlOSSdYJKn7rYbXCZ7/dq06vI6NOkYnjenaJW0o2Riuy7SVD6nRC71ayFswFFEMMll28NtrE5gkbq0ZqqCmO8cq3D816w0Q9m15DQNCwPe+Tphgq1bByuIqh0VGl7wmrPAQMv+adodfByM22gU7Ux+BLyu9Vh6DMXOiYpA4j4qxcmiJtDSojZhN6IGCqBN52Icxsom5jtGrj1eEaGjJVte/O241zIWDK71nBslp2BF6GQxNlrCnY3rHWTP3PZFegmg3UW9ed2w48g0njhYMIvSzif5SrZNzMXACkqJ9mFtsZXZ61SUhDyQaGqw5e3DgMNyFd1sByueO9IDnJllmPIRdQDDFedzFUamC00oDtElTqrHQ6XPWYBbF5gynzVn95qGq++jbA6hFzB2m+OrDacNSq2GbZuwguatUatxBRKzXNXRaVBsGrw43Y16dHzo0J2sGKG9FpAiXaIFAS12kCw6s8zVVm4POJekbL90nLJmusGaxms+VpWdruxMmWgPazUyiWsLFQx6ZifO1mJ3l8o+Ukz3Xdlr1ZqP0kIBipuqiobmOn+qlLCFYVHKwuRHl8Fks3VnPw2oiNMa0TynQwqtOJzTECJ8lAjmQ3LhhkSIB6w2s7pS/EiO0tqzJK3X3Vg9KHAXIBJSbkbo6BVwZbhrSq67UjNoQteF4TG47aN0fcTlastRiOG9PVfGK06HNjumV3GkiqHWg4Lkp1G8V6wq2yCIGCEIKG04mjrVz6vsdRuw7URj1tC4CJhotGllJsAoyWmxhPvDUpQ4ztyjalzJ+kAIBao1f28PWl6KuPCx5qi3WCgZKNFwcUBv7DrwYal4oNlBs2NhXqCq2rmncNV1wMlhp4ob/9LvIZI1lBpk7Zh7jXk2Nvw8Xtm8m2uwRwGli6pTYUm5r5aOtALqAowXaaWtNkhSDvaLGEbNVASzMnZWZIpi7JULmJsZoLn9Byk8TWanQKTccN9rWjsHHCwcpRG64tF7pqlRI2rX4RtUqplWJGZZa4RJ9oEGyacLAiygNuGjQSGjK2E0KVtmGMpEGXryGYZJeF6ySaLjBea6JmK5bfzUpwQzIhoWHlVuliRkaz63h+XhIWqM+pqdPuBfh0aa4m2DzekG/HypIL6qm3CpwLKCoQdjouVJNv3ZiEjz+x9U5HqjUdDI+X8eJABQ48V/Ibxm2sGG6f5ibNAYWJmh05cH3Vbc0mGCnXMda/Vhpu06oXsOWVv+DFx38jfpRlEavZOCHZJhivNlDQaS+aVcGPRMLMexOxJxxTBu1itOoivKolzlZdI0b4hD03KvkUxsL9ZTvYvusJZEFKdcw7WTay0jyKajtMhx6X6GypTVhv00wjF1AyQ5xGJ4AdrrqcOIaFqUCYP4njc3Bcglq17N3rZ7soNxyMVhoYE4S6pDl0H/7WHj+9uE4T1aaDSj25MBbt+TEIGW3eM/waUNwU49hqr1iqxkHYCp7PiPQ0jlYa6C/ZeDnJJZtZVFHKNAYrDkarOg/URD6Ztl6xPKidhhwd7E/jm4AtzxkH3zjhoCy7TDABmg4Bu+usK3enzoP34ljWIxdQlNA3pqnqLDolgLTL0Mo0mGNn3nfdLttJJEM2NMdZVBEQrCs6WD+ekb0DccwvUmu7YKwQHky3bKRg/QT1l1segFOi3rrttpTUlskYaRcJIuoOMFx28eJARbJibmU0+DKwaZlR56zZQLEm6RucX4268kLSrQ+EENSarnpLDBAuDvTiedvZQ2WndQ2GN6WuHa3g1ZF6YMjMxYqkZ7wup2O8ZusF0dcZcgFFAtViI2Fqrf/qpJBONIOmQG5TtD1IVf5OCyfZM31Z8t7vmJm0mFqpSTAhYTpVm2Ci5mDdWA1Npbl+m+CYGDOnXN0Nsa7UK7HuI4kIm1F7V2tlgzuWelvgrtme8ODbktD9tG7DO6o+slLppZreYt5QtLFqrIFCpcYdXSag3b6vH62i0uT94mhgGKzpEozX3PD24rRIkI40xtDLsCQnHDeXbKweq2NLKRTgmo0GCtUmRkrxhWeXAOWGK3Vl0T9exSvDVUyY3CLe213WCLmAIsFwxfVWIkwDa1pbGABE+8i/8KLHWnbH3lGKDtOe3rxpwoZtkLZv8xEdMqH6mbiAzNDVbUjLnll1bPk7iN3A5gkbK0Zq0hM4vmDi+MddN/8dTDk7ts+dQE0fTIjs65Gq6xlNF9YxfnVGaw5KjahJrXOcdaLuYt2ql1EYVDgozJoUySo8OcyIe3m4huAGYIWxNw0XQKluY2B41Lvrhl68UFuHjtNEMdPTXB42FB2sH29gcyl+2rWmg4JM+yNFgsZV+Jpp2i5GylTdEv+IsG7eCIWMYs1mroitKg5lNJs1OA5BqW6mvSKSXwEcviy9J9HkAooEhTrX2YzRew3sIWO6IpMLV91rR2tYO2pYl4FTAXpyTkgCj2YV2PhXoMEdu2udZGgRYJBQTOlwbA0wuhr1potqw8WEbI+bT27oZcVKN+4FeWzCTcebkLXyjnHR1AGbrudt+cWBiiecGmlq9BiqOEq1dxQqZcnJpNo44NRRbBCMFgoYHRlUxp+o21hXsFGzk9u7BMfUB56n3pJsh6YirYmaLb+TKwKW0/AMriUnyoD2yc0OIShUbWwsxD+ttqFQxZpCA2Ol1jh3HSNnJVtKrl6YyABC6pQBb3+xhqEJVniNpJp4hvP03T19vj8YA1ilNnphzgi5gKKBuW2I54Z5rMoZmqXaa9fEaZb1aXVRTqpye7gugf7UiY8YNCc2ExhfDwy/kjByiLLK2t/YpkNeWMZux66F4SwrkzZdV7SxttDAsLQ9TKWWaEJcAtRsB4R4vn2MwK/sqWyqTRtDFRsv9lcTnHYDVix7RJxN7Xrg/E4+MYWDv3+8hvWFGl4cqKHcJPCKpNdw0ayj0vCOqm+ZsJVemlsJRRXFGHUnI+FHIZxkDwWxlA8n0ZhcHqdUszFA2yVFaI0cQlBuEkyktD8SLjP0EdkOBHazwXQjU+Fvw4SNlaN1jye5LlBL6iagNxfXuYCigdhJ9I24dlSlvs2i8SVpjKwC+l/o4BYATQ4BilsEg8wX+lOosA3KMVZzsKbQaJ06UIS3G2phQXuBlsEGE0FLuyYJWzK4hVqD10bt7PbdJSAtYXHDWBZ3KWV88kDj3M8lnodjAhLaWMSgpFS3UR7ZqA9kMNYrTcc7Pm/goZmOPVJqYKzcwEqjW9GzQaUprysGcRdQ3ZjD6hNBtv0TCQUIbiuDr5d147bcOLawLjJpQTlTHwdGV8vDRqYWwtRY23E8gWzI50kxHLP10l2SKuQCSoYwsbXIDIR43kUHXvAEBX3g7PMvD3sDcc3j2aVpWXBcgkJNTe9YjWCo1MBIiZ0kBun96v7nvRMLqZF1vRGtDFas2RhhLgdLlj8hnjZP5dODAN7Wk1lqiT7R2FK0sS6B2/h4iCJG9T1eHY9WGhhNsP2bpdNCwdurCd/xg8RyCd8rq2qPjvGaqt7j0cnbbzguMM65RLBiJhto9mpFYMMzQFNzko4oH9TBYn41Qa+0rg65gEJhrNLEa6NURzUSMdljj6rI8s6QhGlS33yDNVvvyZIQt7UtkmGXtGuecyj+2nhE56NT0w9VXBRqtqHn3hDD9MRe2gKMrpIH5FZTEw2C1QXxmDW7MurcUDbbB9eHGa97N6G+1PLpUbOBIf4G7sJ69Z1LZlbVBmFaWVVqWD9aw1gt2+Ps8usH2ttW0uPzCbbgqsaO0cRwr402ULPl9kiqqzgCKLUCtBv5eFt66dbiHRhbnJdUesvZ3zYikJUiKW0EEO5k81OLnit0uSu3kQDP/1FkCibfegeTu01AL4EQgkLFRq1phxJ00B9kXZjdNLT4hY3/HyLv/gJTiBjnLiHos1SMRAWC4QrBcLWB7aYBO8+eZBAnS7A0Oi6wbqyBKY0mdhWC+gykiVSys4Q5BBjfCOBNwWN/2cbAeB2Tp/C2MwQj1fbsvzsuYFnEvIQxNXMNl6BQaQTCzoaijfFaE9MmcTlKhUs5YmkAeHOPlpFsk5uUCynqt1h3MVRy4i91lVCNUTk2TjjYZdtkY6nhEGwo2t7FnAkwUmqi0pBvYb42ZuOt8xRsPV4R2XgmqBWB6bPjp5/AgNcIBuXtL4VtIBYzOgFWlstGS5csGgFGVqsvFZXJ1Ulo6jByDQoFy7LCs+c95sK46QCrxmysibxxFOB7Y6HuYrjUwMqRKNuD+GUeq7kYH+FtL9Rdv1Rvolgcx9qxOuwmp7JNdjVoJuAn4LGqiy0lW3LqJu5JGj42sLpg45XhGNsETvorA6oNR3JdQ4jhiovNE+KEOVxxUKwRFKqNZI65qGrdNOEwWo9CtZl4nI3XXQxN1DE0UU9kOKuGWVprRqphWWJeVFe3CUo1O7zMMwH91aaDhmA34aXbP5H81BS9fdSn08zaEjus9U8lzret0PCV9QWZXZD5Xd11N56/Q9uVGfuaQ9vXS/2gjy4D6fLqBeQCShZI1QfMjP4Kde+I6sZCI9rdeYdguwQDZQfrXvhTrCN6vhra4d2xRwymmk3gpNnLj7Ej0HAICpUmyqlutKUSbzVq0yWoNh2MlJuoVifkRSbc30hNR/oOMVJ1sGqkKhgLVhoELwxUMhHYq00HQ7EnT8N8uzAm0ozDLFzyEctj3zwZccZi3SGgfdQNlR1M1JphqryjNh/NMlAdZxMzNdBMbP+SVSMT5k+iuC3UmgTFSPf4YZw1hTpWjhkuOLQroTYs5rL1UJoJcgFFCdl+TdZpmSXadAkKNe+OmwyIyQyEAPWmA9shCpfO2WLjhI3RisEEZ2ITIP2ezaAnsgfqpb/ydh0HIxUHTdMlGOETzw7+6aFG0wVdDw3HhUMIXAWNcfiZN3G2sRCp0Is00ZBsQBiTrK7zqs1OsA7hLs2z1SePLPAG3e21RZlSG00Vv10wu9bDCzNRtTEw0UwhoEp8RSHeOAyCWqH9ZK9qWnIBxRiKBuzA3l61CbmDLx/NKlAtZJBTG7dYgpVY8jwIiXcHknG6sZhbUl8H8th1hzA3yU7U05/i0SNOmh1gWlJprnNoV45xDC4Fvyqp84pIj9syDOcm+eQXmV6HYDE0cPSoTjLGteNoB6hkfQUlMcku6dyiSZcdbuGT57vIJPHOIhdQlIjurPE1lUlsPByAEDjSu0KIl+REP7DxGaDp7xn3oPnTpr953jtToP0s0iCHtq00vHQHy3YrG2JkmDpQanqXh9k1c9oiw0m+CycEeg3x22XjhIOSwtiUQQJnZe3rq9EpF+sRYdY9wSWZgFpZnIQ2ZNUmwWA5pSdXnQdVZfnazycHyi5sgXfzWymJ1L3ZgQBbik2sHmt611P0EHIBhYZqgEWJu0b9RzcY1Am80F+FK1s50B3crnk+UUoDJoRE0pHen4skfmEdsGV5ZBzdVhGR/GoXEt100ILjAuvHbRQkE4XRygnAppKL10ZtFBvhPT38HSOVho2RYslzKb95OTC8QpaUHMSz6RmtOj2r3s0G6rJN1F0MlQyc1kX6GUoP7S26AvTtVWo4qOhOCE1sUVw/ELMfZNRvNpZsrBurY0Mx3ZUIw/3rM6EnFii2blkQtpdtx2V8NtGG5hMNgvXjNqNBTUyGiV/84JeYX91xMVppYM2IuaO3TiAXUDQwH38ec6lRPCGuF1p96iQTVaXpemFLsYma4xUm07lLcdEWjVRGsBkKLjXbSZzaeJ1gqNzEC/16/zQ6VG2PYaxteR8drRJUmrZ3iWULLgFqNS8Pe7wf2PxcrDw2jNtYN9bEAO8jpeOwULddjFadNnjSVfd6m7gAMWGBct13v+TUU68gPCEECHVASOCoLysdQtp0araLDf4JxYguQIi3COAxumk1+tdJhHTN7K36YsHbTq5FCg/67zp21l+2sW6shpeHknoYznKseDUhOAHsMnIBhQLdWYkLwa9J+JHon1Mh6w4SV7jxmEWhnOZoa4aq07R1y58UksLi/spcTcdjVIKPi0T+J8JtHtslKNWcmPYy0Sg1mthSVDBIg7ovxVr5q7F+rI51hSb6mRtsvfxjV53xVle60bZ2rIZGPRS6s/QW66PheNt+bDUn08ZKvzGvVOny8YjkYk+SeItHRbIqtQ1jVbw62ghuAffhuumP49MkrRt38OpIHbVm07siQ8JL6hm0eVmh7Wq7YrMywubXg5YBuYCSBNRAFBUlRPY2Gm03FvS3UDojIUff66XY/uCQenWvPIVgWg9x1d70T3FrLnpFFpF01CSgPBEU9ssKx2dLCTXrhACbi7ahQ7voibNUt7FpXNSyjVZ1Zeou7JZWcLTmYtVYU2pHwU+kcbBpwsamcRsl6XH3pOUX1f1S7z6KGXKiTjCwUfTUTFyCZkOnJSVwiVdXdW4cqHr1hOQG62qjieFSA/0TaQUSfqHJPtouwXjVxsDgAEAcoCa6r4/p8LpH0Kptxjam+2NJhlxAaTs62PAGIveKxOrE7qC/tS9dbcatR1n4bNrCc7akz1n1uVB10Uji8MxPOWqZMx5xKV4LlYw4q+MSbB6vQ1XiLOxbyk1Xb1PRVpjRP1J1MFSqY1gi7dHO6dgtrOglq+0CpYaNUk3ULMWjUB8jThr9ZQerX/k7Gg1KQCAE64aLePWZB1CdKCjjDldcbJpo4qXh6O1e2/Uc8vHaSNKaWMPtzqQLQot75oL4bvCzUGUkSCNOjMy0LT0mp+QCihYpdcAtiIuq7vWCUsOJyJ9b2Sh5aJIyEMi2U6Li1B2C9YU6as3euHBuuOIaevQVUW7YLS0WnxdvJ5AoeeGuIRXqGfqtSXX6AkBUX4j0M9HizvK7eXoLwYZILFrTlkstMmvvdmlhvEYETYbtEkGr03QJRocHsO75/xXSqNsuxmpusH1cUpxpHabUey7xDMGVIN7CJbIuU9V19n0q9jZtp/o1Afo0t4p3A7mAkhV4baE/sxNTRz7mmQyUHPE4GEFXXcXTkDOM5HVQswkmSiUUq3oBZf24zR4bVd6BZAbVRl7NdrytiETekVTf49m4ZI26HX81KgtpuwTlZlzVcTb9pekApQbxLkJMhfR1Hb/X6fLUmHKSVJ6FhDe8PNB0CbaUbbw0WDUWAPk7lwBg/WgFawsNlJqiYExvgb0yWEPZcCEyWiNYW7CxsdgJ7Vr3eOtrY7aBEBaRyFYgvMuQCygakNbpHBL8h4XFNToBkfaD4FVGnWS47ODFwarSu6ci90RQkxw1YLOdcE2qbstEA89tTn5yRg1a60OVe/NzUh8Zgc+axFWfZLKKmx8bWOsIMAY2FurYNNHs2mmsv28pe5fPFdamyD89EpdA6nBRsX1mnKj55Opyqbqkde+PQwxuGNfnU6rZzJFbH3RXIfC8rRrRSoDhch1rxyK2rQ0WbskNREPi6wnlJEvVkq3XI6UGxgo6L7oqxO2FvbHApZELKEpENy6hOz5zBEhUqcZzS61HtcUoHIcbEVwmNZtIL4DLBLrTMZT2iEGbpfiGzbNXU8TddmqhsB4obhBe81fej9UI9IeWVRNQOluBbqDpuChUmkEfjYuaDawp2Mp7bgT7HS6cSwA0RGPGeIjXD+q2E6trF+sabdXqh2PkTLi/CaJyGEvsACjdlhXRWm61B8lyUwsTlSZBtSFu/WZx8s6pJ7cd3DThYIvmsEEv85RcQKEQf4eECD9lfhxoC/mGQwRPj9nLuWGKq0ZqgROowGI/dY8kQK0AEEpIoRJNKodnOVAmGgTrVjwb7QSJAKqr20TGwj1HXo7m1cRIzTFeFSoIeUNhY6GGTQqnXeqjvN2rpNFKE+PCHVFyeipNgolqzUAbka1PimrTxYZxG1XpeCDML0t8bYgsVuAqAUDktYnTSgsmWYt5MTwywoeWxE9PV3/JZU4QqeaupgMUag5WDdfQbPSWfYkJcgFFAUGeV3Qq3RRGWv+jUbcJVo3WwSs/ktBnOgAbVGa2C7w21kQ99qkYc5il3E51ooX+koMNK/6GFatWGlCku4NE994E7dpia1uWKfJJuU9OwbOJMejlPaKVNjU6bjoExbLZanhzoWokyESDYOOEg03FOpZv6S1PoZ1CPbG/nqi7t/gtMbNOnvZkUKluY20huh8RhN65HTsXUN4Y0HQuseMRQdFSbjgGV3QLKccMr8ZAsY5XIo8bt2OWS6cGTpJbOStHBcT/o6crq10sf/HM+E1J6mMnEm8wFU0i6DUPpvHZGHrpqmG7KFSzcD7W8hLaxlvHe7kH1RoOXMldZlqag4EchprQnSiKiUIl5EtSHzQGGKf8D8XlO2M1OV/M2hFkWuQCigba2zMZkIDXyPwgiCdIidCjMpnYJHo+q0UeD9OVmUVt4zguwUDZifZJspVajEfDgJFktKL3T361pyZfr+2TFTqjMcuqFbJJR5IK35cjx3Wazs+nHZ2W2f1FBDXbQXFCZpcUpTll0V9syvl7kIrB9pSfVrkzC1RVrJcHq5l4wW03cgFFAVPRxKTjiBdXqgdf0xX9phj7mWizYDBctjEwYeOFgYRq4lg3eG5FoMplqOAFABRrDuxu7Qun6ivZWRm1bcWWebLxJjMV1NXezvFAkiUfI06P7LQp0XZuE+OyPgAYM/K+nB7FGqFO1IU0OC6ROj/stbXl5G4T0Mtw0GdcQcRXonB8jG9vlxBa4SJg/Th/uyzBSMXlVgvyXtRuN/ZN18V4rRktaLQ0OYzBXUJElijTxW5Cai1LMbL1xJUqVRRqW9++cNboMZ4oIgGBQU/i9v0HShFbNmnyUkaO169JJiPXKKOIj71ylaEBCLLxQ0U0k0MkASKqNkG16bBJKqq2F8dhrkHRgnaFHL/52G2UcNLWdeRSrYmxSjNRZxks2xjnL1qhkXUPjJVe1yw3U4Zj48S1C9WhMj4kHElWwTQcj/j3wJjk0/62HKu5GCprjuMqj7knpY09jZEJnCYw8CLQDDWOY5XsLrTrNFxCsKVkuPIffAUYelUTIK79TloboN6F0g9KTK2M90qeVq/ZlpgiF1AYqNYiho0baA5a9gOiZk2WFRNA1IKYO0QjxJOWWaPcXuqYNC1suZItGpKuNsRkWr8ySMw8aLEk7osTAggXKQNQ2LQxkHn6XDtqdqS112C7BK8MVZU3vQYwlkdVjNsU8foGAYBGGagMA+WBWHHj5N9Ji5fhiovhko1+1e3XLfQ5NaA8BGz+G2DzVy+o7DT4gazwpaRAMvmd5p0xMtPAnB0ZbrtpwqTxXBAnn24iF1AYtEMVaJZmtiZQ3YXpUbv2IgbrVmm0khSDuek6mcPzVYUGJViaETFed/HaqI1RToNWr1eUJ0EcnbO9jLA5oRtyX2NUk16sSNVJZkO2TX3WlfsK4rF+3MCduQBN+FTXTbDhfIPtwVLT2A19cIu4Y7qFqaNN4+q/hTFutibEv6cnKu306NQN8TKMVfX1m+WdW91ALqBIEbqsJ+xrPpjiUwTXJAZhDMBqR9o4SIK50iyPiu/zWVtEg7SMVhjRgcJtjuR1FMY0v5Y+KUZKDYyV43mkHKm6GJqo4cWBCtsvNQyKvSlBpUaXQayDuu35+OExUGqiKTttYZBVnBGSvgm6a+Y5MNHEaArDSaH8OnuIhJN21uuOiYaNQi30dxMfYTz+IEGx4WLNeBMDsU/LdAph+7i2+qbqKPiCvKptZJcy6nPohcVliFxAYWC2vRJ7+yeji2pV6ekRM7cM+qfdMgxkB426bkcT2tyISYupNG1g5ZhNuRfnvrtxGGTnJjE3yhA5c6S4co4A64s2Voz46nyWXqkSxDDvTcUMVoBG1dd9xiwV5AwRaaMUVTzmu3C+OCY1Zn1puOxic6mJWtQ2XsK2GSk1sHqE3o7iOLdiOzUJ9LyOB1s/LnFRHR8U09TnyDxtKcUvyHDFhe30lhEAj/wUDwXLaa1a47SYxDEbYQzuDBNrBTM31TOfUNp+DT0Ba0+sOhatoCO7257lGC41ULddvGPBdOGb7PKyZGitZKiKUBq/KZPIxqamU/BL5xDPIHy8asOaOgF1IYjmmxzjGV1i2BMVK2g12PqQu6FPiVYWQ6U6zOuASGxCsoaFmk0wUm6i/Wf9Ii4xTCClxO/JshRCyI78xoEbS0Dy4BD2AkgvVg+MEwq5BoWGQxl0RR0Z431fqObktA2uFC7Ml0TJ3Txng0BAin0MLzuGHf80iwzp2VIShKTHFnkotJdu/5pGpXCqitcu2bQjy8IEAqgGG4vNthm1q+3Ckuen9s9klqZ5zm04YUWlFwooRnvK2lAE2Wll5On3lgDRbuQaFBrMjcTJk2GV81a6LmVZKYxOfUMaq3uCMSGQLw6o/WPHlrxNAUNBKJ64kTXTlcWU7AVawFDFQcPtjJDZkAqzGuMrzStT6Lu3QSsRk1AGZTAAS6th79EoFPmuarvAlCSEJQAhJNrA03BlHp9FmW5h6m0sjJCFf5II+P1vuEJQshuZ8LG4Za7aJHM7oW4jF1CkMOJ4GphI/IT9GZyqEzMekRhMJkPGvZex/TCsLAmzcLWTb6+MuO6tXEpNgtHUW1Fm9WhHqTQIWm0YhutIzai6mJRcEvw3DW0128yLs2hDoVrnJunLCfu/wXbhQNnBWM3VbgGPVN2AAocAk7QpcqqDCNIzP5Kri9/BaKOlBiytUNQenra2YINI7hyS5S5S54QfewixtniuueYavPvd78a2226LnXbaCaeeeipWrFjBhKnValiyZAl22GEHzJo1C6eddhoGBlg/AOvXr8dJJ52EbbbZBjvttBMuueQS2HYvWFububOObkMDptbs0LZLwHy6NMHyA1VDT7pVWAj6Jlx5TklAqP92CALh2bmYzwLtrovstjuSpTPRcPHKSCNye9Am4so1nSaNRtRpnOSYaHj2WU1ei9J6rDsEhZqDaksAI4AYVooO8xoNSQ5BSvVLR8XKVLkMl+rJbeqavXnLdSwB5bHHHsOSJUvw1FNPYenSpWg2mzj22GNRLpeDMF/84hdx991344477sBjjz2GzZs346Mf/Wjw3XEcnHTSSWg0GnjiiSdwyy234Oabb8bll1+eXakygqmdWNS+YPrOyqbgCTdJmEC7GIdpRcWriaT7rasGJxQr37QtQaJpIsCkvpbDvrgmCpJfqhA83LawxCwEIjldmVGbxNumIiLfXg4hGC03UWlELCYMVq1tBYG4Ymee49a2F7fcJIFwkiSVaBikmEGmtXrUze0ZwZhWU21zUkKSovfsW2Jt8dx3333M880334yddtoJy5Ytw+GHH47x8XH87Gc/w2233YajjjoKAHDTTTfhrW99K5566ikceuiheOCBB/DSSy/hwQcfxPz58/GOd7wDV199NS699FJceeWVmDp1qpBvvV5HvR4asBaLxSRljYGExl+yTWVYpoqZ+MgoPdtxU68yjKFQfSZbLcvjjJTrmAQXtPzdcIAtJQc7bNMniuUZF50u4qqxJKcU1OEthepe5jdFh9EqWz8CUtVJZxkdidzLaZO6vcsb/p59G0GhTtDXx2tB6H5ixRxfXoXymsj2Qd0+pYaNdMbhgGun2x5N05vlzve8d2OVXruHK+2maPZIdYpnfHwcADB37lwAwLJly9BsNnHMMccEYfbdd1/stttuePLJJwEATz75JA444ADMnz8/CHPcccehWCzixRdflOZzzTXXYM6cOcG/XXfdNQ3Z0aC2PAm8SSHxACEmDJSLYIik97MI6bgElWoFAH/iJ0PmJCTVXsbHq3ZdAmwoNLBiuEOrKQAAwZbxGoYyOsqcpQX/5mITTcdfHSu0HNTriVp775Bp1mvaCV/XW0hUAAP02Na7Efxp23YJGjFPqW2ecODENrymfQlkWWNmaRkdN+hWQyry1Zkwdft0pYfe7vmJBRTXdXHRRRfhfe97H/bff38AQH9/P6ZOnYrtttuOCTt//nz09/cHYWjhxP/uf5Phsssuw/j4ePBvw4YNScmOADsA+KZT2+NJviQewOaT0IpNonMfPTQTAPFD0GFMGYJhWdtkTR8lPvrf67aLosmlNkrE14QQRBhaGvQTaRDN5DIudUon0q6856aVIX0FQFXjp6EW+O/QlyVITVIgx7FTbkvERZyFQC9MJHIkraVyk2gF50TpxozEzs+RImhim6ROKrp6Qf9QabTsOZUTWG8LJTQSn+JZsmQJXnjhBfzpT3/Kkh4ppk2bhmnTprU9H/SF8pqxnyLiq1qBTPZyDLUthHhujOv2FJhXTTRdlSbBLNPk2oU2ahq1hzKEfA0IIdKf5rAsCQf18vV3DP37TxhqRlcDU3eQxitUGkanT6JhttXpEqCY1qGaifAq3UJV05UVooxks5sAOzBxkIzuZ5G1QyzyLeUdUVJEpN1OZ5RTSptZH1mIy6Li+HGhGUpGTNAka1p4qRWB6bOzyTslEmlQLrzwQtxzzz145JFHsMsuuwTvFyxYgEajgUKhwIQfGBjAggULgjD8qR7/2Q/TNVhsdQTrQqGfRN2Co18JRq332Ucz7UCMKFqUGlHHftnco4MQ9je1L26avlq1G28Ay/x4GsEwoOiqPBstWl124qtZUcauGfky6UEk6bhRcRQavqbjtl63cc3bAf8baqjr5eXBqC1HBd16phcTcRKInuA3jKnLlKQZBIXhuicj42SyJOiFYbryoW5TECCWgEIIwYUXXojf/e53ePjhh7H77rsz3w8++GBMmTIFDz0UFnDFihVYv349Fi9eDABYvHgxnn/+eQwOhtsTS5cuxezZs7HffvulKUu2YFbGUdXUx0WJ38uUMVRGpYmYn1mc8sS4n0uCPOQg4R5S/Lg9M7nq6Yi1IgySjO41cudpnUCKCTZJk6We0CXxFUkWq3bLg2gSQkmkcJO1A8CkkKVeajgR+cagKSvyDdKRLlRa8ZoZV+OmYjiWCQBUR/ksjUFgUatd40iSdxm1WRQ4bVE3EWuLZ8mSJbjtttvw+9//Httuu21gMzJnzhzMmDEDc+bMwbnnnouLL74Yc+fOxezZs/H5z38eixcvxqGHHgoAOPbYY7HffvvhU5/6FK699lr09/fjq1/9KpYsWdKZbRwT8EoMRKn0LHOV31agDs405daks2LUxu5TNQa4ikxrNlCsd0FA6apM1NriQVodkTJpMyo6UgctgmSZmdBqLNSI6XtO6dpTSE9xw6bd2auW1FpcUf9rpqFkQ6bZh5XUuTapDg/G1lbiaKWBLG6DSbdjbVp2863orQmxBJQf//jHAIAjjzySeX/TTTfhnHPOAQB85zvfQV9fH0477TTU63Ucd9xx+NGPfhSEnTRpEu655x5ccMEFWLx4MWbOnImzzz4bV111VbqSZAwZg4lz2E0f09cmyPbUO2koGIE42UfMZsOlBtyRKt60izYYl723Zlo3WsW0yZOofPyj2/Hqx1wTk46lJEG8k17KVLJIpI2Q0WdGr7ZkwUf5dmq6yyZUNIfCjZWgL4p5JImlLhlLdVSdq/LvRH8yzaPzvJBhNa8jqHgNIUCUy59OI5aAIj/TzWL69Om4/vrrcf311yvDLFq0CPfee2+crDsPYhmvztqy0g0SlwkxvQfliWdq2VhnbmttrxKc3bXujqCXnL13uL2TENoO9UpXb3MOM3YcyYmlmLRNsqvpvHMm8d1BoOQVeiuObCo9mdfWVt5CH6RfpKPPlCSB1foPPWEYkhKCTCorU+/NM/ltxiYw6J+qPky0YdqoXo75pStITI5iO0D6mLLMJJlQpdyyiJV32gRoKJZMJN42RxKSZAubHuuJTHM1a2oDZCoG/Dr14rL122dXgcGXYheUuC2niYMvAo2yJEA2NcfeuZRNmqOlOmBZ1CQfI13Tgy71ifiEJQVFj8niPHtY0POcdNp2rUbSdYDKqNadQSeQCygxYNxH6Y6t1H5wO7qEfh8jA4OgqYdWBoOTgJ8I2zXg23kMtd1MKoNj6p2C0K9TCDlZQZlwXCnBJLyBsFoeAmwTYSfE2kITIC5QLwGVIYMY8QRMH8OlhiZeMrN0p0VKX8wyR4Mq46a/AUS8nFH+20NSBTSdUtMFatUshKMse78+rVQ5ja72BOyhV9Kkkhq5gKIBb0diFo6FpXF1nBztVMVRtGWaTTp31XxaqdCJ1VAirtiOvqJJL2NZWBVBf7NrC824zL+VD5H0VyIpY3UUaMgmzjTtZCBwM6e0oitzoOQ72YpeucpHlIlKKzpINDT1RlygMmKYTkx+M7FFnXYW5dKk4djt9abMI3MuxRttU7/H+ROIjRIwvhHoX541FbGQCygKEJ3KMa5WQrc367/uve0/bSEbjouhSkqvrEKZLS7bqFqW7REbtMzElugwVB6JGEXcRTsToR2dIU5HS70XpQimGVCJ8pUnQ+htq1Zx+8Y3Aev+nD7xuOi4/ZjKh0kcaTQBzWlvDNbKYxw9mV7OGN33EijONbAMqypj8YQAsNU2Ub1qZpMLKCnAr4hkbexSDCrTPpAoseyY5aaxKgYmbJTrKT2IaqGn198Xju0TxqUNEKMqUtLGxlZ3MWgyTIgYTSKGzDbV4ZZ2cLSI9k6TdH1CsfIWUzWfyg38oBDT1YxWD2uSgDY1mVIpHQiXVjdXWJbid1SsaP4dhBWSjbGlGWNBS4QBaqgl61EBIy1yAYUCfxVI+9s8c66RLq0Y8WyXoNSwKRfT8sjaJB1euBHYajyioiAkRcB7dsgo4YSpyeqyF1Vr8SAaGMqN+5LJ3LzWrZNQtxPhP2eWjwwxt58zsMlIGyrLnIOvMZVHcj2MZItSm3uH0IYFgaTH9hxyASUWEkzCAIy6uJHmPU0nIgkt0XVx4qXHZ28NvJCQmgTlSFh1mQzbtiQSN1HZKZ6ktPjRs3DURXvr6AEmSahSJVv2ZrclKJFXg5+EgPFQ+gZAdlsjem1VDN1IrFzTYHJhNTC2lnubQLMmU770cB/KBRQpNArcmNvtciPZuJSoMVjuFc86sR1pAPViojRiT4xJhRMCdH/9ZKJl65b+IJ3AHPk6lf1GG7fhpHHa2AaR1ZBEbI9Jr4aPsdO0xb4cetU7rpoqey/NQt3Vx1N8U3Wj9AJxUgPr6MXC9Mnc1OzawIan9ZE0eRqFTH4wr23IBRQNMlH2SW+q9X9ZstexKFo3VkexXDLPPhFUWy3pzuGb5RsNQQhUGs1mrUHKGu0ShuKeQDOZjKLQxnpTdGrperYHmGyAzDQAyNz4Vn39qSk91E+atNHVwGsPpKLMh8oZZJSg0VfclCL/bMDWaGc6JVE+xIrZVeQCihTi4CewNINYDcaAsxWFJO85UlTSXnWvQXgzeyc1CaZ1IqMpwrmRQdLsejSLcptlqu4XsqVN9zQ7aXuscXwT6do3lE68hScb68lIiZ136i227LZfmZhM1JTbCILPEkWcFN+jNKpWfdyIBhM62gfC/AnRrnFOUGzjvJEVcgFFhmB7RnjVBiTrgPSgLDVcjFTknc0yIVzjkpsQoCzcPR5SEQeTnBqCI4JGavKoUx1ZtEqcNDplkNnKxwp/p0NM5X+M3ZE4KWe5crSVdyuw+WS8FhByCtFhgTG2dBO/n0e/yxbx9HaKNo6Tn1S5TegH4/TNaVDVY7e3kn30Ch0ecgHFGBqPsBEnWYJvidte3/2LdRcrhmooVWraKNJUiltgja40yDVqCEb7qrZcB32DlGdC/tiUMdKstwSqFFFkjcVOsXUnqeGxLD9dGD2DNkvT66fZztGdZWb0lFFVCs3AukIDjmtWUksyIZkjRvnjJD/8qmHuaYUO+fs4vSSoPW1fjQFF9EjuQ9z0eXspZZBGF/QwMTw76x389c72DhDzssA3FnQu6lu/0sgcqtSJ2fayBRJI/LYLOISgWhXv7ohkNqV+iXV4UhgQPrGx9YPAapS9Ox+kiMMkaX1Sttsfuo2ecoOgWDP3LimnTPZWs5UYe+GsV+MKzKqLJv2J7sWURChNTGC83EC8fhCtrcsiNaPaLawHqmMxcmsH/H4Zf1tbmlTsfBOgNJAsXgQy4SaRApzB+4yGJjFYTPYKcg2KBMpJPcn+YIT1e/g1nt1EyC4jGKvEBiZGNhSiykqkZY0cBv3Px4/TQzBdqavR5mO2tq9VM3XsZkYDCdLMjGumC0wVrym7jThDyLe2Mmy7JMKJsQYjLp3dUflnOhKMEhO3dLT6cNXHNleXMvmIhYXyq9ZHUfeRCygSEIs3iFU1cKfssVUwyL2L2+Q8pEbG1GVUJrXpTQ6qbZmY9AjxWfpit65p8Nh0p224lMey26BVkSeZIJ/Mtq0Mt9FSpJY1zHQ6cnGK/W6eY+wvpms9Ahj76tmaVjAyJJAhg1e9JT+0HbmAIoPAoFVeB02gnkz947EqFhtnLasLn9X28OsKVF2Yt62Jxiw5IfyEE/phaV/DmU1yWwdXzKKWkqchc5qWVoJOEZVwbUbvFDDpmtqmmBNjvk2XqoDGQeNtG2YjsCVD9xl09ylgkQsoFCIHrqHDJOP8rOjJJ8V8lzG4hFPf7BlFqOmlWmK81IhYDrZ/EHdOIDDTWcVJMCPHgfSFfwHk9UKUD72CDIgikpQyLKt6rPVChVqSx/jbkonyihlWeTeZTkoyIN+PnUU7WYq664WW5pELKApIFaOSdjVpVPOG12wrpN2jj51GBEq086MYW02ZbG+Yly/6YDAxs/1odQiiooniHGaeNTgoTzRFxCXSn8aQeTqO018FOCaCa1SZkmz18I9mgpKxu3iZ2j0GmSodaZZDkk5L2qdNt9UkCzVW06aPk/2OoGI88MKwii1EqpbD35E7Sr04iwOIwyd1WtNe05XmAkoEYg22RCMzkI2pdCIzMqQnATlZxE2YpEqyl4U0TzV+UKJ5MkkoUdW19fSMJ10x+h9psWJw8lS0mH0RGWnPzg6Q0UYIsLGY0BlW0qIGzcttF8bUlTHHhrVRTfpMShAA/JZVqvS61I9MslUU049qMfJ0mmPuJivG7o+3/JhxHCRpL+1gME2QgO2M8e0SpKEblVhpZApjjQpfdk1aiQJJBMREyJghm/Iebbj2MRi6+dQbL+aCpKNxvBYPbZowE0QvNwnGKg0UyvXUWZvVsQz+jKazNWlXP/Hpi6eTSy+KdHBizYZgNr3WDxIr8Th1zOraehm5BoVG0oku1gJTvqWQ/GZYOTlGRRldDRQ2xEtY8rsN+oR4SHkvCQnU2MIH/kfMdLOA4cmGyDSy0kZ48fSXYMZPe8LI7bZG+2MaN3hqlcMoMRMtmiU8EQD1Zicu82yDLVvcBVAGM4nx5ZwxCyOyB6J95F/wfSQzp3RKmArZWeQfrS/uJnIBRYlsBAaZZpJ3K8Z97ByIAzSz0qJkyVh0Er6x+IVwFZIhUjdYmxtYmXz8rarkYePFUbHIZH5hTP29tAsJ8mj79p4JUvp04hjdaNVFsZZUOOPyMXDB1B3EdXdgTmjdTiHYxrmrQoIN4zbg9MY9PbmA0gbEPTas70/pJsD0YzfY/YwfUzonGlAUl2Erby+WBuZCkeBBrxWQpyODqXeKVBhdjb4R+RUFcRDXNgFIMZ8axaOFd74mDftgZhNWvHEcFSb7eVRn7Ji1cGcO2wUGyjZeGqrCaYcAT/z/JJmIU7SCK5u02yMdmaXanu2ZtWM1YHRVW9KOi1xAkSBKdk22h9dN5VknVu1t3OiJtfWWpTFdtvkQ5i+/SqTSY5JWFN6uAZyAYq7cMbXp8UdChwQDzcCLtSiMQYdoTBonbpRgHEdwNs/V7F3rC0Fn7JSoZAgBag0XTYegkUYTIEk7ffS2GIx0PUXprdy9tl+TALmAooHQvkIf8G0XSGzGyKdjsuIx3ftMxhbjai2o3zHGvFYBn4TwGGqpRKdXk8RRPiRJIMOwTCRKUxGkEfd0FImpdTKDZrqV/FaEfh0wZxrZaUJNv5vaPknGWRbU6PiLiQCfGPryiF/NbLsYAcJ8JWEIzWInTrweRC6gUFBe066OkBqmDF63CjDqjrpsUhaWLYJ+elF9delSKAdY5HIwAeKmp6NNhyihUvW9DWpcIqeGQCWQpejodIJZHZhKi1oRfZVBAEm3QmRor8dfFYxsrAjzh4NZ/+p2kzGISUw8v0RxEjcfm+KlnDGykSHNwqAdir02IRdQpIg4jB7nk9FY6I1e4mmBYgppAbp/XK03atEMiRiWjClZ/HvzLQDxZG/GKzkNLKW4Gp5yS0eNJvboqnin17TZmC8wMrE1kyaiMbpPDFN6xFf6HSUSURESjYSsn8YqaJJFoGn4jLlOQjbK8JPUWs249ds+5AKKBO3aFtH1G+3Jns5s2rQHvPZREYzRJKkqSs+bxeAZVQDhxquQrqKMSfMnmqdkCI9RR28T0gKqWs2f6HQU3cSRqvE29167kU065QHA8fycJKc4ui2SfQfiHS9XbU8kgBWTN9J/Tb0bGwrY8daBYp9PvvSK36dj84y0Gs+emCTUyAWUmDA98Wa2a5JN7zBfM+sSidqCSBZPTEWubyasi0QRwqwfQ1DLYuUqwUjVCew6Y1WDzNQj1intznIV/ZQWg5a0SrbIrAxpcU0MN83S6iusB6pjYDQ/JEtnY1m1dVQ6Ml85JqnG1TabbIUZrmriZWyeguaixcRpZtSOVrPKpJoipbSkdAS5gBIHqusO+MnWTDqJnT1RqN6ylPnDvDqFeKpkAsklgpFGYQpHbCnIAYDRchN2TA+oxqHbaYIv5b+ilk5+n4tOHNb4hRDmHHX5VJNeXGeG6irM6kLDbJJJnmcH1IdmhLQ9pzS5DVecyPSNiIgKkkzRHQ92TfraBb3Aix4nvX05ZIhcQImEuG6NNAqVyxFZkEC9iq+qTYd03pKk2xYRWznZGTBG0eO/i5dfw6EmOiL9aZ65Yf6GWm0DxHEy1UVDypSJRs3Tsjq3nAaiyhxlTNwRNq/bu+CEdp04KH+TcpHDR69NaIOzNRdTwxKB0UoT9SYlpHR4Ds7cWaRBjvrnaFRsgg1FGzW7uwJLLqBkAh2zF7c0xA6rOWbcWwJtKlSaBE1XXiCj00xKDVbUgDTZO5Ihjao5HtIteJNo49oB2eRCTT284oLIKVGNhUwF1q3CSUQKGo2N3RMeraIWEdEOGQlQG0FiXUgmWywGYRQLIxPhjl2zyoS+OMxDVMUMlF1MNFxpiKgU9KHkITdN2Ng4Xsfz/VXp904hvywwDhghw2RgEwQMoKOnELnVE4lxND4xkQb3gRBgw3hTmg+x4leQuWo2o2sLDMNJr/7IVLghcDM5ZqhaPUveZl6GqPTUGapsPAixEjolU+nmQxrUGnFWdUabL9ATnSiAy1JUjwFVbUTfX9OOhpMhqzwsOcmm3T1lcbOxH/Kh2qqMj7GqjbFyA9vNnMbRaLKwjWXgFsB2CGwje632IdegZATTNXu8M/n6UHE6OtHFMJ/pJc8q5i7HeFV1x4Nq1cJOAKar6AgNfNTLGInGTiUyRtRqDAAGSyZut2VtFJ1/RNZh3KjvPCLsoE3FpagU4reFWmeTHskEyfjyJ+FlpXhUEN62q106NtphWRZ5RKcRtxVZbYepNkVMhaUh3XWwjktabgEMxm0rJ3Ne2bvaxFxAiQGa/WXjq4FNM7tuYpiS0aqO/qySpmX0e+rD6OOkhtDZAzI7bGlFuYz4JpOzoTASlRYVuG639tSZekk3oUbov/Sv4/YlXZJR3TA6ZYOQCTPnkdllmwBN09pxG3ZrOzSz4/KmAaXdiEQk0IuTXEyaLPmkbimTMh9vwsmgzBGTx2kXL7GTaxtyASUmoqTNWItK6p0rCaZfwarUwbyOU6bhSNr7OAHFYMWV3m4gwpgz8gCPqSipp5/ogxmklCUSTLz0N6XMaOglVymo6hBDrDDfj4xPAz+ojCddjZApuURurEYwXKH1gObldwhB1XYxUory1WIiFCY4Ohyjioz1AsbFlwdMM6b4updq6nhnR9IYah1fZ3RBZgh5Vjsc+HUWuYASG6bW8W1A5ETCBvY0ghImK5VrDFSlASM2Y9x6EJAMloaZ1n+nGtNKvipmZcI0BKcUAiTq5qjJKjvNSBTElBrCaYQs+rAaTcfFhkIVLm8UbpiVozq+zrxu56o8q7RVBY65YGib0Bo3fZMG1JfZtLcRya9k+caAwaKzk8gFFAqqPdzEZ8YDecBg8o+ZtHHnSTiwZROhVS0Er4q1Jve5javeqM8mC8k2gs9Oa7IoWcQrE0qSeaqI/ioyudCpzcGwi+hPdPETvpmK+rWRhtSwOMnOlBIS/lHP4jZfLWhNakZjsK3jhx6w0Rnp/DImls+FNqdFAbX9iSyh9Bpik/gJT1qZ5EHiCU2dRi6gJESkajPFnkB3tQJmESoNvfMjfRbeRJh2UZTZilyyagibL0tpIgl0qmcqTJwQMeb/OHnIw8atp/jjxeRjtemgUI3TZ1X1nqjyIvNSCvmR22mtxUPCnKkkTF4KCCfoGMf1I8PrIK5IggVgmsmWOhpjfsw4MlFlAsl4k+y1KGH7F6/GE556U0TJBZS4CNrRRairj2kIGrm0NGSCktVfMoneRN0a5dI6ruoz5uChToDEKmOqbZCsVr8xOFTcaowdGW06nBKvnrM+OWCS2srRZnQgE/monbw8UdpxhYMk+SRUNYlun+WvDTEk8QqrXyyKAg39hf9tITTsN6ExCKtNPTqVdN9j5tCqEpVbqV5CLqBkghSdkX80TkoxTSuNvTKaEiSJWAoBhh7s0qR05yLBUeyHJWKakXWWbEmleBuf4ac7YJgARvcqdWGWTZmleT3KM4rebqHjKWzNCBeO6pdmg1dcnau80qYZsTpPt5GpRhwHV+Qofbtm3MFwJU6969NbPVJHk7Mn6sw2C2H+tvNobpbWMPFSjJdqJ5ALKBGQ30fiMUt1U+q+mAxGA7fyaXWEsZG9FNCMo6CImXwY3MT5RoKWjEFPdE/h2zOGpknrViKuoKBYVqni66/njglC/SK6hW820KTPHMHMfJwl0HYY599LHi08gW2s3MTLg1X6LRtGFk/61nvfcFxM1JuakNFJxq0jXYvphaMOLkyMZKz2LBzaiVxAkcBEImePn6qPZ0YqF4nwxgAmTI7/a4BMvAZa3JM6/7XjDrZIHY6lA90mRCSJCpflyORXp7LVapL8MmRy/okSS5WuFQjfDLJmYDH0++woixxNyuf4zrqSBFK4fe8oVJOQfKFl3LgJy6W42UIDWuJG5kfOpaK/30HM5SWjXDrWFRKxFXm9Gl050kHkAooEsaZpy+ImOpOlX1p7DtNOpFuZJ02aaJhdnLFCMFpqYOVwjX8dMx0YKZyYx8gG1k00nRvA0WyOat84ZEWEjXeSITrhhmJrhQ6dfBoyo08URtXj1FLOVmEIczoSrUAM0uVDScQwU42aNIhOOybWHd1nKjYRBRNTOYhPmriJiiFN2yhMWA5BIBYSkKgvuzDB8zkaXasgacNeRC6gGMCCI3FelNRpfcwYxJ8sozud61Lu3mIRk7Kjtizge6u7i9T4b0YrUQ6w2Egso0oxlWZUQfp0CPWvS1AuU9VBk2mzeH2V/5CBJkM2K2ZSpWrhPsaH8GuMtUo8GPI3ZqILQ1SbjhiDmcNj1md7FT16eYz+aGY5q3iftLHUPEcuKsdZJvLLoN7i4rmAokJwZC1yuRn3g0FSJls4vofVMJZkrcHFNDwabaJF6RS44mrDMC/UEXgjOxEyy/xwJSz3TNnZgS1z5BXHWFBnRNkdsJqGaMPnuLSahPfbvbeYtBFSSWRRmoI0SDGh8wFaf1z+NYmp8ZNIdqqbjMOQ8Sql/dYnGnqE7RvVSaPeR2wB5fHHH8eHPvQhLFy4EJZl4a677mK+n3POObAsi/l3/PHHM2FGR0dx5plnYvbs2dhuu+1w7rnnolQqpSpIpxE5GbT2EZJ1iogVcMSqVBoUhGJiaZm7ZMhm1vuVy4+sMjDIPwsaKDfTxotmwoTXqWqb8Tf3WymQFnWREkBLe8Rl3y4tkLZv+gxWzvYZhY32zhMCjKxSZ6P/YIA4K1d29UoLRUKdJ843S6HFoL8I4VPkH1Pgau/OCpW4lXT7M052On0G/SbCczMXe6JG2ftZCnfWgdDXG+JMbAGlXC7j7W9/O66//nplmOOPPx5btmwJ/v3qV79ivp955pl48cUXsXTpUtxzzz14/PHHcd5558Wnvk0wOshA+B/pdCbJ0RsdKURMdWibQYTfrBCQTcriu3hTlfy9iYGgSY5aWogmjMKO1jDlZPSkgKWrDb/BN/3VkApd+2ZTApWQOF7XpZ8wbwLDTu+Hyf60UXZKO7XgHiNnaWsGQjD1smYTVJrygdIZFqcTQM0JiLOmGSzVzQO3EZPjRjjhhBNwwgknaMNMmzYNCxYskH57+eWXcd999+GZZ57Bu971LgDAD37wA5x44om47rrrsHDhwrgkdRVEJogSAkSt5CLfGOUuxOTfpPcR0EqXn+ktAoaJcXaFoZInAfMQZxeWm0TM23r/KwrrdYMwgct/EyJ40SjG/nPim7IlTgPrirPc0vrJoKuYHaOPn2p7ghtMdJpmJsqHdNgy4aDSdCK0PO043UKla1ie7CnhU1d84T7JZHkz2jQFbdnWjdcIJhp1WH19wTvqsybdLl3/oQwTEa+31pYA2mSD8uijj2KnnXbCW97yFlxwwQUYGRkJvj355JPYbrvtAuEEAI455hj09fXh6aeflqZXr9dRLBaZf+0Eszlj1FCW4nfURBN+UbiFMgNh0zE9mldtOlg9ZqNYd+PnyR0HlL43TdWhpXWWAcQlRZ2zqEtRR/HEPLn4R/2WCVLtgq8yb2U7WnWxacJRmDKG0pxnrJg0z+A/rUERX7BO5CpF8UEnuNHvnNiZsiI9857I3seEgh6Vof1IuS5cbqguUjK6DEaDNk4UHWo7njQamvaMr6ijtQ3bRaXhoNqI6xKhw4J5MGfF1TAlyaszyFxAOf744/GLX/wCDz30EL75zW/isccewwknnADH8Rhlf38/dtppJybO5MmTMXfuXPT390vTvOaaazBnzpzg36677po12ckRqfJLwEAiL0tTaB20jFn8tnm8ioFSHa8MVWURqCimjuNkKhSeSPHZasrzj8gxIaJoZGEptR9JmEAE+FWh5m4R2wX6i/XUl9EpelPyCCrZz2RG5PtQAN2x/FBH6E/4TYfQAQQ0HaKoN18NmHyBoCG0I5BNtm3LPWHCRtH0TSgGb2MTyC6ZNJOuVYs48WUy8uJpidPk1C3E3uKJwumnnx78PuCAA3DggQdizz33xKOPPoqjjz46UZqXXXYZLr744uC5WCy2RUiRNl2USwSzVBJAXEFZzLdoYy3f+7bSjZxLYKuudeeNPINHInnJMXuiWLXL0lHCUjy6oOVq+ZzmZcTXUhSYOZSTYyz+m5HWRqQpGTU+xDa3XQLiAtYkWRrxzn4TWPItQc7OSlazfp043Ea3FSnAq2iJD/nWnkjr2pEKarEuDoQ54UGe0W+DujYS5lXvE0iLKjpipZt2+4KTWDXZdVLoskBa3CzmWBWaRcN4VakE3cF8wUeIC0Ac/Nwo1HzrbbT9mPEee+yBHXfcEStXrgQALFiwAIODg0wY27YxOjqqtFuZNm0aZs+ezfxrJ4TJiH6OnVoc6TsiYLC4a71XWD35b63AI5mMaSv2bZWr2BioFlhCuAwatmRyML6aOPqOEvO5RJ1SpHgTrPCiV9xBe9D5xa7iGCt7WoZUQDYpse9I67+apaxkriw3VLYTXF2bFIUQMI66hALJhIxw0per7glcp4nxqnhxYHaMO0wp3TROmH6fhEBpD9emY5aJeMrDqEGN0k7TEkwfjkrG4FQjkfyic0sKJZtVLLbEcLyAR4LQwVupclVfKfyCottou4CyceNGjIyMYOeddwYALF68GIVCAcuWLQvCPPzww3BdF4cccki7yYkB0wnTLHia3IRhJO3E/k/NAG1D5wukfqWaRnzlaISgUGGVbNWUtIjxGbksQALxVRMlUVkMJw65/YPEX4LR9pY8B/OwUcaGrR5hcWKaVpgWhS3uj7kyT5q6F2miLpkFkngVVQYVqE2aUMxy+vkpIsVrXnkSAkOLlCj4iNCoM4WgJsSqj7Kn4D6Zzw1EXK8Y2h1agfsLyfiQ5dZlgSX2Fk+pVAq0IQCwZs0aPPfcc5g7dy7mzp2Lr3/96zjttNOwYMECrFq1Cl/+8pex11574bjjjgMAvPWtb8Xxxx+Pz372s7jhhhvQbDZx4YUX4vTTT+/NEzyJG8hkZS3cyxv8ol1GabteWzqQAdO3orYPiOapPSCkNU4jK80wMSgSY15lkZkk71ZBCLFUCrBYecdl1KbCl6dAMpiQebnZ8n/x21YW+zNKcrdA1ZeGVjorohKEJfEilGilug1fxa72HRGz92vbKtlIUi9uWBj1JmkalqQd4oDrIMoFDydl8lIn9N1Qlh37WrEwIkTYvpQnQlKyBFlkfYL8ZSvyNMOftNWWtF+kasdsEVuD8te//hUHHXQQDjroIADAxRdfjIMOOgiXX345Jk2ahOXLl+OUU07BPvvsg3PPPRcHH3ww/vd//xfTpk0L0rj11lux77774uijj8aJJ56I97///fjpT3+aXanaCtoSRNYtLPZvDP5i9ej9CLLzLFFWj+p97QSry5RQsByjqg6GcuQK1zARk2IrmUPEZKoKr4lGt1M0o6Oj8wJoeqYmCgzKzKFbAGi3pdQJSl9LSpkYQtxMZA+JLVBsxO1XhqFlcqI0QjZCmEl7ZgHCjAIS/DVx6ZAZKUQ9FqOj8uNUuQLqOmJrUI488kitl7n7778/Mo25c+fitttui5v11gOjuUM2bfpMV750VNtFUBKxPwlGyAdJO6G/YPXsL6muruC+THaW+F0TQ4KY31p5mvmC0Uw+qVZEdCKmQQkl30ZeUBBBnlI8Y7LzGB7V79IcixAECQhuc8Q4uvzMLNUJIYKMJB0zWuWfoh8pY2S3qJDP3cZrY+FJqG5+jQF6OaVud7W9Z7xyW35flvYFRVoW3/YSYcZQSko2jIlh70uLrMYbAKLmGR0UoTJBfhePBCp+lB0rMsjYP4LD0KI7Umo6eXu/J9sVwLEl3+OkxX/il566sPQRvAQrn8wbQtxzb09b6yY6Gi16LJGuqPhCt4kJ9URpJujJ+hMBkSjdTFfupnUmI0UygQXvk9SQeV/1akItdifJXitEJ4W8wSPitATPoL2jlxfKHCSCE/8sEy5M8mI0hAqjWKIIbw6aZ/uPpmNFD/FG5XZwpd4SSmjkAooGJn0hjdCSRJqn/3i/w0GnTY+RbVpxipuEd6qyWKTFalWVYgX/UYCN51pU13Op0xiEKOYOitFErCYsJn781jFS5MuYagKLV31ZolaHMdFKyyK0t1rDetUlqIhnYveSnN8mFTAk6ai+RA7uBIJ1BhHCWo/aVogW7MQQ0UKjV+0G/ncSnPSx5EdPOLsJGdXce0Ld7C4JHZeudqEtOWu2WoP6VS5i0sxo2SMXULoGzQCPmLPYTkQ0nJQLZwqe92uEBX2qGgaacAwkY+WymNFMiq45sRyagcxXecQKkX2ZgjlIokYLwerVZDYQK0F6YyxJJhhKE0qagKwNjFcRsp39pMxeN24jhFbD7MRUPeqVWznKdE3LF8UpZFmZChIe1dWGQ63XCJ8YhQjhiqt6YnKJDZ+vEQj3M8J6yi+cqw0VCRNbMya/LiIXUEyglDbN4ikejeLwz8w59cjFTpS79jiURXBFI16inxwIHybYsGYLmlYzr/WxRloTSxweQ/gBr169JVYh8/0gXmzuSbVuMk9Vx+L4b4bnjMSQDP+O0SZc5OCXsLJUJ8i3k4S68IOhqlVXY9EUqSe+sOvyDMckXT6xZJOSsXAZN/3Av4fCcaMgVPrMWq9dihKXhO/mFRj+MtUg+dtlkXWjEKx0wr2kIHRdauWpHjjJkwsopojoOzpWpwrJ943IDiqVLXSDgHC5qVFj7myhZwZeOmMZgUWIN254a9k2nEiKHsA+BS73HIcOvRAVLwkDoU4Qblpfg2q3mCjSvLSCsOQjiSeMiOnw03W8qVdZPRG2SDKxSu6mJRR1lV2Gse2h+0tYobJtRn7Sq9r+8VMuDjeEoibE6M4V0V4pV7v0ForwTbrtQrh/8rip0XJnQABB4IrKTdxilA+U6EWDshOJw4JEO5LUp6upS6YIhH0fN78I1tQryAUUI6huhBVZNftVA+lnmhMn6EHBa5oii/ms1R4IyzxuUBPWlZdUYFAJMozgIvJT8zGhOMUkoUV56kmxzy2G88qfxBV4/PkiI67AM8wYUF3GR4LvBnlKPxoQIpvYo2OxSXARmP7JGTbF9wsjg4WmSzBRF73SBn0gU2Zvklj0wBK0Q0oBMFHy6q/8sCMIJnPZpG7mk8XnL7K8RcnQyF1Akgk/k2TjdRYrkHzj0WEcMN/i6S2QKTPZZ/1aVJMQIPXKCQC8eo1PnETlqeYmvGGo+VZFjI4oX7JKkpBMdsqHUAgQTyJ775sOtW0SSa4+QHzDQm1lC3Wid6xH0x/N3uWXFepnPouecSRLekvaDtyBZqmgQwubEZMPk4XaIWEUkndfXriU1IMqvoTpe6+octNhWvUsTrJxGLysj8UMbxBaFovdNjaZ7MSxar6N5/9KIGzFGrcxJm86lsoltvFk7fc7fQgVXUR/Bl6MR/VJi3kXje5v4EQjF1BoTJ0JBKdLVI3cQalSMpER6YTlBWn6p2G0czj1kUpHvgKRxZUsg3R5+X9SnkhxlczGrw+J3QdRbQFEZKYQtuKvKAw0KUY8V8Z8ZVOOTmhxqe+ikKvcPlNMXnqyRdqiqiHwnGwkvFHpJtknF47Ds2C3O5VZKz+yda3Il4LsDiRZ/MAHkRZm/cE4VsS4Vd/2zaWhoCfyFJsRdDSYvpf3I14YF36xlRWZq5YEejz6YgwXRrxZuUUf/ZofE9xKONZ9RV1GLqBQIIRQAgrzJSqm0WuZ5Cw+yQYKv0cuy9OQRoO9FfVkpZqoeVsXelDTwoOCJjqNKF4ntekJB6gV3EWqZorCII2kDdRKJUzXCt4rosaaTPgvJGQ0xkzE72GS6YapXCLXggRR2sm1WAGS/cK2rXzi1qRHvRLHWktDRACUB7RJBto607k++Gbqs8YruqUbF9IkNLwjVZNJ0jUQxMwyTSIwaYQiAgCWuRsBemtPygpM+ah5Wc1KqclHarbohS9U+O3EKHrFtpJ3rd6UVHIBJSZMDTUBxG70ZGIQP2Gaxtc9ySJ7IfjtAT4eP/FHTjJGDCJ8FylY6LirZiXHDGCBn0UMbmVaitB6QyAqtkiTJgEDesJn9XaE0Uys+EzTS6SOsfR2S/p8Q6FKZlek2tKUTE6Re/d6zZfK9FzZlZVpmfRlXQYZQJKk8VaBZuzG3tLjghAJM9PdRuMnIpVblM1saItmDDVfMeftcuHMUn3n643IuLIfMFoQjRZOO4tcQDFBwGhkLWfmnMxgQaTMw+hoKqN+Dzux8b54pIpU/C4femYTHPvL+ye/i4iA9mkgtdvRQlJ7iRm9rC78ujYQGqKqmH4OtCeqemcRWDz52wvavS3f3oSIn9oMte0B3/YtoYS4zNs4x7TlvY3qT+wn9jGWcCA2YFi78c6Q8QKckoMQMAuS0GlbkoakBUj1N/FZnRdxCSUI+mFpAUbFVzj9n0G9M3zIgNHKU5S91Wl+k5+qko/oCD6q3Vr3BWqdYOL1SNbGTyLd9BhyAUULWVeSnZGXS71haJVQoGK4cZih/BPx6VLF1GoTuEh+51fOLfo0hBUZk7eZEGfK5sOkDRmp4rM+P4p+Tt1CxEaQR+WZhQaWYVMlApUmuzcdthUJvsvIUPQLrTCmaBtFB6AnbbkChhMFSFRv0U9RooY9WpAz8wMSMQkZP8flGVF0sOmwI5JALB2JSIOmh+N/EnYYy/6UgauJTFrjJt2gUZ7EijBuizBzkucFeMZ2Fh0/qs0TzhU+pNvIvSOo5AJKCsRx+yT9btFD30TiVoU1EDLoR6UwxZNHFJJ7658yW2rgSPd/xfjheBQHnTgx0id6COVZUbaFQNdZHANf6nvs8WoSQe2UTJRcZGUiTF2pJkgL8m0V2WrbeK0fEYxfHesEMZnGgHC/ZH/lzcz3G1YQ8oIohCNFGDYfbmImXBtEVl+cyUQpCXEI+zQ/VPUCMM1VVHUSIcgR10y4iJpHAbHyiGonlOoLMiN/ZmLXjw0ZmeyTWBdec5v5AFLlYgk80ZAPSUNy/ZF7Fc48RKxj+ltEvt1CLqAYQT9QE8UP+oUmlcwmRpn6V9bVQ8V0YJ0febojQg8g1ZLKBa1wsoraGzZk9K2fgl2MICxp0mEEJlM1usmgF7hI+J4OIqE1lpM1vw6YvqaagE3Skh2+lzBJCQ0h6B11IgZh+CzPnMWJDLBk59OD33K7MUk/MdUqUqg7gKNLX0auEJKjVxGaNcsQW0H+gv7COzCUwZUEUPEAEs599DsmTgT/kFeTtD+Efc2kj+n5XdRWoZmBtul3s2DeHVkUy5FoL3U2kDpvsrGmku7LJQFyASUuDBovHHtmLR12QnFQ0wNF7JviJErbn4SMLnTBFXR0I8pYWuL2XC+05Hgr/ZtjgsIeuC8jJdQDW0I+dKLq6MF8HnuwRnEDIvyXz1v8pGLfUZMB4f7JkuHrnZu4LQvh3R36iT56kpTYGZnUr36u8V4RNYXqNDUTrwSyLYOGozGoTcDopQoe4sSyvdE0hCIVwzFOffI0c+J3C5Ij2pITcOrhLOsbGv6heA4uatfE8OBKAxHCbc8LkWm3BvpxEb4i3G+Kz0fZrASfDQx7LV2L6zprD0kmLeQCStsQcaomahJTMVxZR2aMFDSiB2crI4wXBY0hJboIRHwtYeh0ujzDC14aCCMmE2bwRjV/Q80YaGHRr17WrDTCvojJMHoCIABUPqIAXtSVBQyNakPafYNZLmfiSg4wmE/W+uYhEYGIIisi+yOeBtE0ufQSwuC/0VNzKKzxte3XP+/fhB3jYf0q+nByYwvNaxLQGJ2eqq/Leqiqz9JpSepVmpWqzVkaZDDX8PF1rnY5L9lNkqQl22lVj+MI8YJLWj02BJZJ/P7Ycp8QzUpY+xWJMYy+pxhk0EHkAkocSGcQ2l7fJI10JMgoaDKrhagMQg7CTrBqJmbqSIrNxkub9xUS/lS4rDd6R30LyOEFKCFDnWgghI+n7W8FckVVrL8lJBcAuYlQKpTS9KumIY2gRPxWdpVbB+qk+HCqSjHtc+qwyglK9TZgtuz0Kjf0FeMHjDjOiW2mTaGpp5iQ9FV5umz+/Fdh+1HTLehATDEUJFiqOhaTa4VhUbMd40ElNxDlBRAxUqWhcrDXqrdUp1R4QUPSzyTfjeyABKlEFpSwf5m+EF2uUHfOjkWXf29CSweRCyhaGIic8VKSfIiYgFuQbf8Eind/ORznlAAdVnoXGMccwHkxJOzePjv4DSuMW2nK2W4YxhIGaTyo3Z5TAkocISkBHeLk4nI8QzGBE8K0vMX8lZPor/wFxuw/uooLIoPHsH7C6lGkJbyQxDHs6ypEbXPwyYu+OMRTH0xrED+Wqg1awZjxQsLx18ox0sY5Lggkk7uun3KaHlfdtmJtcAKOKX3QNC8hGK82ERyB5xK2iEFWSiHOLCJ/TEHPKgnSnJxjheS4nrdNzg/yPFMZkPpBRH4r9KsoPth55AKKDorBoJtPaMWicIZfmMTlAoMFzuU3Cb/I1IyE1x7oKdaEU8dn3WzT+ak8PqiME8ENCnoAt9JSVrCKk/lMKAZHZcalqn6o+qVf8wxfKgjK09RNK6reFm3LpE5VdSOUURqKbUZLKB43zfE2UXw+lDxg8Xv9qvyENEzaXDf+ZOmG8eTfJOOMEdQ141uIE/Z7oQx8vQfJKy4t5QJKbx+WDh1WshDd1osxRJcBUpLANDLzw2wsmLxl6OIEjOBvlG0H9cRSprKTUY9tOR9gHxmNByGQdZ1A+2qkcVKPL3lYHV+OeO4CcgFFA/EIpIoZ0ZE0/g6JiRW9+JVEXMLh3WopMiVmavPHBZF1UN0gC1djoSEirRb0mIDgK4IQUUATGD81WRE2PSMoGQj3KDSZhjVKw+qZavg+iqGo612nqg1EwKBerIiytN4rV0dU2nSzBW3ACxa+COG/0/mfkFIS5qf8Ku5+63OQGzcy5Q4YvSyxqD7P0ia2lQ7R3y3XldJktA0h2baU9dIoJ41WixcwQodkUaVzqibSpnifCCYiDE8bT7/KmDUljVw51al59cfc5m4wdvkgVtA0ks5MQlszXpMtFyj1dMdzLdhe5AKKBkGXZ7S+RAygiKc/x8+HUA1GqkNzmhJmUhSYCz9BSdIN4vLMUpi1qNAmnTdqolbwMeqlnCmqGCL/Ss6k2Elel66ujCZMM2L+JoCZDY56uwEg3BzNT/S+NkrG0BTpBTxM1acQpkckteYz01Zv8a+Dt+h4kvBsYrJ2IUF4X9gQz6XJonL9nM0U0kJIE5N9C9OV3akj11yxeQcCP0MGF4ZOk2oWMTh/Izg9vnXl0AXgRz39LMYV+QMXhoQxxcvwRL4qmIYbDVNJm0fA5wviFrLuSH34hd9mZdrMmAD6Z9QikqVbAD+tSMeWH5a1QUllptMG5AKKAcKFq27CYDuMfOzQg5lysMSnIXsSxkWMSZTw7ySDKypJKh2eWakmQMEo03Va5SaS1QBfcsU3+U/vSTmoVfvALONkJlFKW6E5XBPxwksz1hHRIKqYFjMVEBcgjpwMjh4L/ISpoUdWJk6dzwSRcDRxJ1M/UUdDnT8ryHITExEna9v1T0OIHckSklB1Np5+2gaF7Ydi9XgZSFepka9a7SnclkyE+0T101tLAxY1B0qFW27MRMF4xuPbMYMkU4EAsKhj8UnGMKtpJD7fE+qe9XrLjHPqj0UUgi/TFlQcAuj92sjK1JHKNUYuoFAImo0bfMEqzXRQ0h1AK0KzDJBnRuqJrdX7CAFcVyoyaHICVSIqllwgYNXjNL2c5QDDL03qSFExxnOnon6Cwa+uDe+t5NheJBHcDClRtSuPLUuYPc1spPM4E9YFLCsoWpAezUD5chPVoUH5W0jftuiTmzUoJjkFA9SMH/6t+uQYu/1i5rTOm2zgAitGbOqdjBq6TltvpJ0cku90GjzdPD3yyEQhvLBv2MYQ+xwvwKjoC2nQ2SVIL33knsVfsr7uv5ecICT8RBrSKAqhbIry7VH2RmrCC3XqJoh87wkuYSLEDTKJaDm+nmXlkn3T/eV+80kJGlCICwgG1B1gJmy8zcgFlAgo26jVQbX7vNwEJr/LxIAGAui0AFp/KwFaJwz4MSEwSPpdOPBCgy7/HXtyQaBNMxl5X1hCpEZuzCSs2vsXRqQkjMytPD9ww3QsfjmqSDUMzzMoGZuSObDy/sO6DCfBH6F3ccnyWwtectR2HR9emGgjJjGuXiW8ThFVbI/IY8TBD1dMgosR3lpMGG0CUz6hiB4F49WmkkZPuyfRj0v7S/iTjmGpwvvR6HgkzFk0lEXwRQnZTOOPaT57xkUpnxFvIMr/Vhlqq/uPsEUrBNWlpxttkrIx5SKKcnL00SwmSJ2uBZ4WwoXh30uolbYF7etEjOtpO2X5eP1TWo1+WhIByRekCBVYKvwLmt4oIbczyAWUONBt37S+647b+k8Wp5oX4tCdmjd0BP9e8o1OqvVDXAUadj5qsAcuvRVRRc2zKqAmbxPtizQIz1I4hiPOhJJnNWNjT1bJso9giPJIzF8zAYz+ZOqWXN3mIsOTTABo9dEIY+0gvjp1KSm6LTB6xEnd9RM+PD/m1JMyO55kRIpjUxqMrnul3Vf4Snprd7TREks3U3zvndRciIppKY756hGWSfyvgkwAqiPFPGgniPKEuHeSrTl1HEDqQ4HI38uHkCpdImkz2Ts+DVZ7bfmLv5ZHEpWoqOYBCvKUARQRXKeVe9z+0V7kAooxohhz609kfyCSQaaYFI0n6xaDkhKgjRjE9eAxlabDWb4Tb/BMVBpUdBL42ZCWkaaJ+cIPVp6hU/QQqq5k3IMqexidtHiPaqKQ5ad6xRkpypIzaDuRpQuzqrQexZT9NxJbKF/DRVQU6SZqeW70LCgzBDUHc/hemY1Ikzxg2M+jBlv4HPZoujUczWSkUNfL1PjS/S++vdX1G73gV3QQlqwAokt+Kh9w4YK8TXkN/yyv8ygjT6lTOeZBtiBQ1L9v1yYc/5fR57/VDbaQtuC/Me2ogpGqaAvvpyxdVUpqnhobkqEo992TOqfUyAUUI8gaSs6wGS+TUUwn+OPPLL6FuypfSghh+rmcWbPu4+kQ4cCQGck6tmxA8elHbPFQ4XXOxOiBJ2UEkcYPMiYXMXEF2ckbiSVBvjHH2ynJ82JplE94LSYmvfZcZ8Kk2BYDzRR1zMyE+dA+fUyjaBxT+QxZU23ylpNNZkRKVGAbQQgAlxNWw29EUXf+M5H8CiZfSd/2vrKtZTH1T582kjvY84wgZRVBU2MxExsv4IcTKhtfdo+Q994JfhtP5lGg25m2kYqXiND3w0mfS0vmiI7jjyJPVdMjnhYSw0oPF3DheE2ZfixKer50nOh4DqfBl9a9rh0IWBuUJO2WLXIBRYskjUM1smkywnefSYm2EOFj2IHFwSJh5qqMCdFOKuw5eiKdXwhkpyIoRqsqH1UOwpWFBMxNRbroWCmkuWUAy70nVFw/DKPSjDCyYB4tmuXxfkK40EF9cJMKvR0gMLkoI2luPzrYgpEQHuRhwqjkcfUutSVM0N8W0PY/drKXjBw1Wbp+pRw3XOd16UQiJi7J6zA239ZRR2LDWBY4baU2X6IMK683KwjrMgPLT0U8DSQ2Fz2uOIfpVDjxtIu8Hgn1I9RmcfEIF7D1R7dw08GzC+IMi1VEcYEYm6KAJ0UxdD49OWewiGqLK3y2pGm0+EhAi2aeoPmwkj7ut7EWvv3IBZQIqCZBfSQqVqunWa5oLyCovQmfn0iNN1ZU6nb5hKzyVCnGkU2q8rS5gJBOqAGvUWlBZIjDAHRlUzDKgN/w9SQfrIQKakaV2KYeDxFzCQPoGIz/mo7vTW2BfxeurQghVBchQXwh5UhmS9eDZD2rYnqEDy1z2ifNJmJak9EreSdpsHAsQKgLrzblYwdEImwowDoOoK8Z4GmkJ2M2cYtxLOZRTPfxsFkJFYdKmUmuNZEFf1kyLEkFsS1Ha1jot6q+rIFyq5Yg5B2yFGXuGKL7LLuQ4tJW1RdPG/1syJbEXqQaJz5UDgfDB6N6lo0vny9I7aIIEySkPLxGoxeQCygyWKHnCBXUzaeYGJURJVNWcLeOYeatviU/mimhi7ioNoln9BrYbERkRQB5QJdKWa1Kji4E9146phSssfVowVHaSii3Q6BbmbFxpEXTRYtlUGpWax5CN2WEZoAMo9HQEZf3qHhfZKRwoqbfE+Z7CzqHPEb2HFG0tPLWtAmvgDKaEI2MW02C+JOZqa2PyVjXxA2qhL7HS4zX5zqsbCFNmijjK8EL0EKSft9WTLBCvXHJc3xDTF6SFiVMKruj8DtqcEh81rT+MldCGG4Hie9dsS6Y3zSvC7mG1qI6ag7rIHIBRQrzWUh2DFAyHBBMJtJB5oE/5KhG6NrYS4eeCMTB6mfG98nhiXp43M6PasLbGC5OiwwEskQsSpXOazw8Qz19vdAvgts3VWWEvAzSI7vBC8rTLLgVKVUyufBFq4F1oGjjbYgEhsDVBeHXtX6+8nwseCtxglBjINcsqfq5qA0TvHpK82ZpZl5wK2gS2NyExtZM9WommIA2xnGi6iisFz9qqyla0FCPK+VzZBTN5KZjQfR4Ycaihh46LlO3/FF1Ar4xWHsZEpYrSlspoSTsinz/ooqmiKvOh31v8X1N0tVl/VdYqHBdOCw4FVumAHEJaGFHjTAMfUBOFcMCkftdE16YtIduLPTGEWMgF1CU8PphIh+gQfzouBxjUc5zbM9VTx6E4xmtYR3zAAbD6CNW+dIv2i0o+hc9kHXpEmqSNm0RxXQVydBNUqYfOEYkLY6OGeiPWLJtwf4k0Cke3PAvPSkpJ2KWqbFVI2N4RF9/shWqBILDL78+GUNLKhmqvgnzQSxKWBJhplEaYMpBFI8kvGWaqSt/0jEbePyokOUpnnphb6JmJ30FFzHp7/6eNEgwUYk90qJ4lfrKBunWLk1jsLDipyHalw9l9yIzgKPqW8wDAYXhdQtsfcsuVtQZpsvrj+6/rXSDPMPP7GWM4iLAMsg9mlcC4l1SIp0cE1MG6zZyAUUGZQOpJgvJIUr6Ah8iDuVYfUCY//jBSDF15UClGQOdEksjny3zS80DAHBMlAQvGUaty0UOIqVNjCkfZKJ2Q5KWkVEYW7fBZClhcI7DhaUfuX4jUEVPIkS8VVc4wWBonCiAFyAIod6rGJv6iCcdli+X6CCOyRjhBMttxTHBqdMmhI4TBmLNlqkkqHTEG3v14E9FiMcxeZ5AuG9R7cKPP1WvbvU1pn64CS7ITrMdyU2SNG9SLccs7nJITm6khrqu7/CvwvcuLISCEVsupv517gOUWkIxTdY8PqreuTz8r3xeQTNyLgBagiTrjZfOmX8v0isliO92wpOsLXjQY4fnk72BXECJCyLrRP4dHDKjTUUyqgAUk0HQadihJPkRcg0JfGdAoUpcDGhxnZUuGU2YwNtJGMd/MVFtcN/ZLRQ+AZvaMJbOHZzhID0ErZb6nmaO3hqPLyfLGFT1T/i6JeoVjY5ok606cVUc0sgz2WA12tq6kRq9MuTwX12q9njuxgoZSqNQ1T619JZusYblTF9/T1JgK0Dpv/n02fAyCuhQ+hMPBNwEI52KxSe6tN7v0DuwOPHrYvpCCL8MUY0eOg3Fypme8IVxQZ0G4ybdYPtVyvP8/DjeJM82SFV1akUNwoUnYsKSzGRcTqaBtYT6183SYl9U9TL/hFTkkWW+fnlBgfpO6Fct6oMytGihNUVMJOG9ZIy4inhdRC6gJEY4mNULMr5D0wdSLRXHVj7KZRB+wIWBuUOBFPMOJ6SQObnq8UYToKKTgkNcCQeSMXePwqLvflyXLmc4TK9IAqbrUjRyq83Aw4xUAxENlrlxZSF0OFElTn8LX6kmPr9mqAk6QrulvU+IEnqUq39CtIbSQj/mKGaEpSCMf9Q7hHRSIvT0FgoHlqAtENMh1HZE6LpcMckE/UaRv9D52bZh/stoRFVbiYq6kqZPpUf4r5YYRQKv3/E9j2139ni7WFYLhDE4MdwNFF7bTut+MKlWSEajshZbX9ivzFYIwxTFiTxMgctfO+75b7pTBGI6oZCgGuN8Xq26YgRJ9i9fRrqjKAVhIj4QAERY8KloNOON7UQuoKggmQiF5lLNpZp3OnsDGiHD8TswwiPLkkEukwcIsahuyecus1QnAcO2ZJ1XUCkrJmqeYTDzMkWLbF7QQSEgqQeYrNW4NGQricg02CRoodDlRBk6T5GXyZibp04X7zIhYf0ReNow4k2WTAmIv6KitVYUE2d8f4R0C3S1GkZ62kGJMF82efH0Fd0X1O5bQsEjNHyU3EdCxZddbBeM5Va5SjUbYc5U0BhbP1zS7DvJxBAIAcQxnBylNabNXy1ER0yOwSOBiz75eFINVMJN/kR+UooWFmgEW0uW1TIuZWljl1gymkWS+EUCu/Ws484UsfR400CwoaIpV/nj4atX4Gt8AAv8zhFLhPdR6m1FN36Z6m7lG9dgsc3IBRQKuu0FaloF80IB2aaGzvhUBuEWTyJOfgzfIGL3VvNe0vp/MHNJmQHPIOn8CFxJPRAms2i2qg6l+hxSEubFvANFgsGcI1NF0/+Y1RrzHuIvCWNT3rHDNR6z6gwmVZZGi48b/JWcUgq0dNHKa740dBnYU000QXyKYn/wa4xvJVXu0iOQdCyTZb2sT1LbH01X9O0RTGLSrTMSCIT85OFPDSIdCuqIOkxIP9sHhL5GeE2Q7Lg531atv/zAoPoHQBitFN/TmbQAbr1D92da+8IPRCpNoXwqyGnwunifNBceNOekwwZGzn69S/u1hHZFfuIY9H7wsaTOGvlnAoRbu2AEP8JvPbPNSb0nzG/C2fqEF1by801vIBdQ2oiQGZk0PB9OZLRh36JU29wUoE4bVJqqCcCEVvqcGzfhMAPSwGQumMzlq2JFLAr+9GBxzDdclYdOqthyBW3DjF9ZPhYVXk6bMBFQ+SsnLGbGkkwavLZKkTutveHIUi+eggfVWRY9Ew7fyY58y3z4hC0hpmV6ZUL4m2k6rTBDx6MmAGpbgBGI/C1CeWVxWfiaAsKGJAB9/Fk8Vs+3q2Tya919RS+OxMWDSJo46dFEhaOS7jO8szZdy8sEbZGeVl70Ss5VHQGn31lsc1Olli2u/BIJVje6cSrVaEjqn6WKCuV/j9AyyMZ2FFslit8KauXVSag8wxhESzfNJbly6plyR5ALKDLQA5VfoWuO0OqFhCBpyW/CdGZfze/nGe38zB/MuvxdiPe90JI8nZw6HVHlL3A1AAQO6QtZIRVEOKURYwtBtl+t05TI6413gy/PlJ6z+AxonwWy+PxgF6vTDbYbNDXNpaL7zlaq0A9bj8xpGgIxnECzSKCkqanfLC38ZCfuJIn1r/LtIufwCo2iglbGMVZgAsZqDPg4MrsdwemfP3zR2l4IE+eIUZRDNQFTdjh8XdI0h6+po+VQaO5o+wMipuPCN6qnvhC/bqL4GwGIxdjSyIOZmMiqbHv8bKwWvaxuhB+XLibJd4aDvxJHdYTlplSv8f65rqYudJlFgW5LwvwlQEvb0cfwbz6uBW6cU2CPMRPhv2xa3j9n0gxD2tuDXEBRILT34D/wTNsKNemyz8oM2B+hqhFy+YBT+8qUy9QwZd6qt6X4TqrotFShwi0GnjmyDJcpHiXU+b4MvOC05kS1gqYpUhzUZmjjwgiaBZ84n37WoM/s0I6qhfmbZWSRfbrAMEc/NH1UNKCXSY8+QqqwaFLQJ7Ih3cF3TS8WGCA1ecmYY0CrbBsKYn9hAoSMV0+L+JLQ/yGe4M+ecpBrkHR2S8FJG4qJ82F1sZl2ZeYXsSD89p60XX3hQTX+WAKosUJRRYWXT6nqLU5C0cDmwcbhiBYyoVNmuJA4zNnf9HhSZCNvJyUpHEWuUP9SOyfIihqGk3v5VmUe9i02Tf1pKX9Bphq5BPyYpxOQj7Dm5JmK1DqDXEBRQcuv+YnTJD3p8IJuzSgjRGB2PF0CMfK9Si86P2EIrEcBf6C2HDlZFpOLBf52GXpSpUO1VM6ECUXlIdv6EcvIChX05ETfVRP+4NP0aGBXRYKQp+T4FFn8hBMwDrEcxM+XS0/OZ/nEw4CRPVDanNRppmC5G/YnwkzgdEYRvVLmVTMIyKmRKYFbrsnhy8u70KRoZijyV9YStPp7aHCr6e+0IMtNSNptVb+PBduXVFxmlS7pEcFnug+L9jJ++vKJl3ISJkneA2/XIJ61CspI+C8hbbL7mQjTn6jMlaDDyo6rq6KRQAtJv1NH9iZ78VJT7pHjFXJotqR5nirl09RjkKlDZSkZXQGP5D9z/VfZp2V2aCFd7Nj0v2lboCPIBRQdaJ5B/fX2VP13LNNiA8rSpBmzbHzxk4A4bQtbJ9otGZakoJtSg0EylqW/CWjGqC6ml2KfECb0McGWnARO/i1OO8HWvGgYJqtzS/EeHrMnHPU8QxI5QKvcVPogmm3osIw0Kxeh4FiMypkNJ9Y6PeFRSViyk0SKnLmHQHMoiaxqdX05VZSI/SAIyTSfPFw6cBMhNzGIYyo0LmQmbIYsrj8FfIEFa+TsJ0g9W63LAbkxze4sc1yJCiv4caHSDWkgElsYP7DMroh+poUbCAgdlcX3wh0aKvPvVCSpta6B6E8oocS3DeLbjP5FjTu6HxDQW8Z+PclKyC2KpN8VDBYcaYJ0SKjfIoiEZzD9kvmsb53kPtSzRS6gGMCVrBSkTICZxNggcmU8b0rpdyai6T/M3aRUitSkRPNKasvRpSZvXiWv9LfATHaKiYY5A6fu2KFwFDJCgvC2VsLQ0XrHJCcyBbYuaEYUxoBFr5q9fWkVhbLRz+fItpXfXCR6e0jGGAm4+ZKfjCV9T8rA6XhsPZlM7y7HCsTJIEzFs1MQyZKCOwUniyAThswZZGgvw/Qvjkc7QBDODZtOm27wt/XTj+c5NJWViNUk+oNRtxANw9PtJZ96qVEr1o+lGhs8fH9H3EQZ2JnQrcznzqXKXwVCqPpXxPb+qFyxy4jX8Rw+gppvEuGXy/2VRSDcukXkvGqFjFcP7HflIAnSVWzahpyJGszyzUTJaFe1B2nZTIXkUnOGCddoP3IBhYKlmmAI/0B3Dal9PSscMIyFg8t2Qj4r/ip15jgh2G8qsglFjLjCks80PK8hTFAVAeF7V2ChRPzNvJLb04SNoj4qS7i/8u/8oKV+EALflbo0DRJ+kXlmENOUZcdSKfUuquIjygmVXhF6LEzXD9RQnbHga1ZWk4RqelYYoTWCgi9gZqJiIrQ+c5owJkdJHKiEGj9NWgAP64wZfVx/BAHjm4OAEuS44P5xTcJNavqbyf1BxtUZb9NBh1alQ1pjjp+8JOOb19TKtQH0WBbIlfjloNqBhJOe0IUsC1J7DJol+YsijgcxZaDbjt+yI5SwCr8v8fyLUGmZjBFVi4DlXSTIURLRYsIwtPB9j89Jwb5ofuRveVmAMK+Isbm3grxnUiPtRy6gUJi7zVS4k7cBwI0rhXJB2tD0QFONeeUHLzO6/7IhLSjXloJ0xVHakorDgeSyNxkzeYhvmWT5IjNLCvG6TXoK8V+4nMBElNKhgghBoBEN/1gi4g446oCyROvNXjLGH1/U1F3wm13BqqnjK1vZqagg4hYP+1vcrpAkQ4VhJwwRlu6j9163PaeZHNlnfR8HE4qbtIRnvl/SYeSaDTU46yVLHsvPldHEBxpNceEg8hr+NwnJZsaPbEriBiNhw/nTtMtcFij2UGrN1Zr45dssUllAyJaRGoQ+JApSYsvJ8lZv/CSETFvD9N9ojRAB60leRhkrssjfG8GvN8LRqeoi0Syla8gFFAp9fRamb7ud+KHVUPJjqxEQGp9bS7YEB3ZPOMKGwBIlJjVDlLwl7G9xaiHinOv/kVnfMYFCFkJ8FbBmy8rj0YSZVIM4TCHC9AUWRIUJtpu5eg4Zvp7FiSsVwhRRMwUzD+z4jzvStRUOpgx89SuVxLJn6uC2BeiFhhas4D9KstXFbc3cJBRPeR6qStMbJhH1yGxfampd1heoyiRWH9UPKSLA/xYfA8NNzSLEdlzm+DqjR7Is6WkMS1pRfqM71LYVNQ5NKlbIif5GGEHN8tsreOdKLOLFiTXIhSKJET6YrRMC+fYNz0Z4o3pfKhS5WfBdZp9DIsan5S9QqLiEsFvfQfmp2jJnyMJH6RZS4CiQjcOzx/CTZ9dHaAeDAq8Pn+JyqE4hF1A0YLqMtMNRk7EYiesIbJwgXQVYpkWnEe5U+m/svulQ3+3jvxYnLnn5SPCPYQi8vMAUhVMxBFzIEgNLKsryVbKtV/JdYX+msqgcuWmGqXsifS9Ln9CDn14iMjnR9KqM91gmo54gwz+qg+K6OPQvi3AqeC62x5vk9kq8BZQyTyFBqvT6+bqFsH8IwoPEdkJBhqhlixRYRKpUegn6xl5/m4WeiEMNh2zyZBcM8jESvnBhef45JH3Tm8T5RNgyCGjZdEnmL0V43kYptJ1h7O2YrQtRS8BcYcDkZdJ/ZWGFypKnQ//jQ2oGHTN2iLTGhETC3UC6ncV2AwCXkr6k21h0/5UfM5PPGX72zPuIvi+B62drha2t2hJWXhjaYcQWUB5//HF86EMfwsKFC2FZFu666y7mOyEEl19+OXbeeWfMmDEDxxxzDF577TUmzOjoKM4880zMnj0b2223Hc4991yUSqVUBckUrVZjBqtlCR08vAJeloZhNtJw3LRBQPVQwkz2AdtQ8TSaMei2UQSlTMi6+bWKnFrxgfByjzwGlM7v/PIRAC5/ukX6GKw0pPlSVvxSnh88+6eKWMZAqL/yVToJ4ouThZwRSx3lMSG9POQHlelf4nci/KK7RFQHJQjv+JCH9oskE/gCcwDum6UymmX2PbjtL+JtIemUAmH0sHTs+p8NJ2rh2Df8WYsW9XQENrqcLI3+S+eNVOwrrM1Fq1WIrIVpuHxM71mlAFPICkQIRPUtxRYP6K0iMRV1HlxUZvhK0pCmTiRvfRlBQq2cN3HtQwvSxD93SI8rWoDhR41ijGu3+n16Qz7sReGP69O56OuYfSZc9Vjsa1pY7yJiCyjlchlvf/vbcf3110u/X3vttfj+97+PG264AU8//TRmzpyJ4447DrVaLQhz5pln4sUXX8TSpUtxzz334PHHH8d5552XvBRtAhE6nN9gSVqNn1AQCD0kYDj+b3YY0fYaAmMNVI1JlGGyDi3v0eEgsKQ0CqUjAK9WDcoZTH50HPqZ1QbxVe5yzI92qy+jrRUriBPYlMgENsnEytaIH1kzQRF+/cSWVTb9CAQESbXqgtEcyegKp3YeyrLQUi1X7pAK2aQgjgsmfUZzRv+ReM5gGtfrB5bAHEUtlgx8e8pChz2HmzRkWxPSsc5NB77gRH0X8m2l42tmwtcW8zfc6iCS+MpH4QMtrEmKRwWmJj+iTjekU7yWQGXxQdeCw6TPXXnAdE5ZX2NTZd9a3F8unKDJcLkQPJORPVpgWkRRSYxOyrIklPI0swkSjpTgyDAjcHv/Ux69Jnxe9AXvrXQs38ibo6dVV94Y6kOkO/8OYXLcCCeccAJOOOEE6TdCCL773e/iq1/9Kj784Q8DAH7xi19g/vz5uOuuu3D66afj5Zdfxn333YdnnnkG73rXuwAAP/jBD3DiiSfiuuuuw8KFC1MUJyt4jJK0NlgFFkyp+wiRbZ5wR4GpPUsxn9ZwsSz2rTB2qBfUytYiAOkTbVakK0AuzTDHkIFYlteOxGInf3YIuixNhOrvwuBhyxXuM/tJWoBF78jzKy85iK+Sb21/hZQBgZWKT54fhljCVjJbI3weLVgW4+k3+MZzf1rwESZZEvyzfAFGVkSqYcQ+JKGOVz3TyXKTjh806KHEBTDJC8c526OL5PUzK9D7sn1HhMtdqRCQ6GtWZMRR+fZZRDZXeYlI9+JBFyykjvZ7wWwl8SXw2T9NttgPCWl1VyYUZRPFJEu1BWlNOLxQzk9KzLQujFD2i6zuJIaydAoht7GCv2FZLLAdj6akD+BqR2wHjksy/KwPrYPeEqL9P3T7WMo+xobw4IJdaYt2ZAiHnzJFMFUeXEVBy45U2xJKkFZfiGG1tn0IOKc5LLGWJZkfaKE81OiiNScBfaAFUF+jo+Kafh24VJsz3ILLXze+O4lMbVDWrFmD/v5+HHPMMcG7OXPm4JBDDsGTTz4JAHjyySex3XbbBcIJABxzzDHo6+vD008/LU23Xq+jWCwy/zoDC2h5GGVXc3w3IEyccCiHnYDSI1BPCbsBYQUHufti9bNcCKCP7nHCkuyEEJH5QQ1TCoLRE5LFh5PRBq48rJcUPn5Ir3w1peBKHJ3UxKkOLknagcyxnEP6hHdMrvSqW73PpxTVxFrQsXLVJz+e71hK1oeoY6v81pmQDzVhUGnRTuPkFCmYNhOCExJUQZltWKs1RlT1YMr6vPj0Vio/gdP5K74AAQ/RdbAgJJ99ZDTZWOJTE7We/Jih841j2k3A9GPmj9quAoBku0kcTzSfIYBE6JcIrSTMnU9Rrk1SPQEA66spcvtKVnHCNjZHF903Iujj909d9NGjrzVI/EUkx8sh9gMxt7Cs3XbYlqmA0t/fDwCYP38+837+/PnBt/7+fuy0007M98mTJ2Pu3LlBGB7XXHMN5syZE/zbddddsySbhbRztCZAb7YWwqonEC+s3OCIXyXynUauYnOD0y6UHExoS3M6SSsgORjcDJHUAG/R4GseRJrp1ZXF8DSV1sPlV16ScSzs1bYEHzF/nT8JSzrPK/fag/JYwapYyI0yoCFcEdSTAf0+tJkgwjf+p5Sjce+5ySXoeyTIT0oG88ymSe+b8wab6pMdfLqySqZV4qJ+0f9IW3DRdUVb+7DvLDY8l6tL789LqtRPJ6gFKozUL42qTHy+QQyilDdZ5VdLKGTUfHyuURMDYUJ52dLqQTEd1TZwKCzzPU7aWVtxeB2Gl5BXftrOiI7YB76/uGQS3ZkFimkaZfBF0DCviHqLNKrgU/K0IESgDQLdfBrq1PX0EP630taIr2EhJvMr7COS0AGvC/lBVE11AlvFKZ7LLrsM4+Pjwb8NGzZ0LG+12OAzTF4IoQcVzVAZNibNS+xeak2LL3ETWIJKnQ3DvpftYCqHdeulS/pajtdCwYTdQpJMQgjvVOXfM/Qwq04vfX4/lk/bAgGhHGixN5oqykHYwcl6B47SZJmsI7hVnG9PwOQraRCOTGm6oCdtSQSZUk+TZlDnvpqe+CpkbqKw6JLTgjlvR0CJFYRudwnr9Leqgqy4tCiwtS5f/YcrW5UWsaVJCZLywrkAKzsJcw27EKGnCNlkznRaywKR9hl+pU/rVfnxymcQBblGU3mxZcQYAwjsvmlCOQgdQdoZEdyG7IcNen/As+g4XP+ibC5kDI2lhXAhdRUWclQqGyZduu0JoyWJ0jiAE5jja8aZ9ld8Dx9aIyyoq1a7B40jSUhpM9caf1aobWTHS3eRqYCyYMECAMDAwADzfmBgIPi2YMECDA4OMt9t28bo6GgQhse0adMwe/Zs5l/HIDSUBfZOBg0TZZdNQrKqPsAb0/Epsy5KqFWjRXdSNhbryj7s0DJ2EVyb5wsjnH0Mfx2Z4DU2yN5iYoWFk9UGDYpxU8wwiv2wLEj8Tv+gy0DzW8GfmMHumT7DViLCBKgCx6jpiVUyqfCyCV9ONmVK8qDzCpgwLzpbAHfRoTiZSYRTywq1CsKcLFHHC2nSvwnP/ZlwhHD7/1wdMdsYXENHG5ZTEy3EsoZonXTzBTfaUR6lTWCMYfmGYmyAxMIGNNCMgxlWVpBsuHiQjDICavJVCfZhbCWPghWe1pLQTZi7uFhqaN4SCoycZlqRMS+EBQKYwtV/2GYuBOeI0jHp8z5ZW5OgEl06rBBKzazYolnqbUFpwnTnpgyWubDhaPZHvMKpFc+jIgnoPDIVUHbffXcsWLAADz30UPCuWCzi6aefxuLFiwEAixcvRqFQwLJly4IwDz/8MFzXxSGHHJIlOcnQ6uiONYX7IOP4PHMODeboyVLX1/xwbF/xB7c4mOi8wm9WkAbvgpqdIFrMgKPbG7bUO8HIMTxtJC1MEJULIA3LDwSeFlbbQKi0CTWg5TobkWXIJhXe/RSTgnQi5NuRF9hkcdSCGG3tI4tJz7RhDIWWjKLHa6M+JU1+yKCPEP7Iqc/aIFQIP0mL9aVqd0qYjVBni01FmG9+uYhQP/L0AhfnqjBCXUo0EK2/9NTm1ZJLTVYc4VydyjwRB89BcyuEfKqn+BM73du9BiWt97zgyfYPem4yBvHrkAS00vXHp8Xaani0Be0Gv++HAZiyhIlQfMwKywmABPYW0oEgfcXkwVi7yrgIX0nCJnSLB/VF5ClO+ExbUPXgh6XvCONdNGi4hSjcKami2s9iBUPfsF9lV9gtxD7FUyqVsHLlyuB5zZo1eO655zB37lzstttuuOiii/Bv//Zv2HvvvbH77rvja1/7GhYuXIhTTz0VAPDWt74Vxx9/PD772c/ihhtuQLPZxIUXXojTTz+9R07weJBNLIDMqXHYJXnjV6GRg5HZx30NhwarUm2pRKQm+6FaPlwJWkyH9xN1LUCceDj66VMi1G+fJiEKnUXQ6wnzvjZpJqY7ZS4fcDZmhI1HSIteykZHpcWwLEQdh/NsTEShiNClapWHtFKbRIWj4ftkCfimnwoB1UY8+/QnqPC9ah3OfJTNZhYYgYKltRXM4rdMxMOZQcmlJzFE4Yun2TvQwwu04Z3UTB5c6roX7ETQqmhuhcmUIYKLEmsSCLcpy5bL7+Ruay4NT1fRwoDFHt/xohC6hsXVu7xgsjCtfsFUMFF0Eglf8fsFsSAzCfblFz4eaeXjaz+l2UXcfqm+nkJvGCvNUOId26t/9qwRzRJcRtZo8Up6Mqcbk30pIYlbGKlHKfNdNXyIQTrBaaqgY7ogpE+smyAT1saKBEJp2P/YNrZap8fYZII5htIoEUmb9MI2T2wB5a9//Ss+8IEPBM8XX3wxAODss8/GzTffjC9/+csol8s477zzUCgU8P73vx/33Xcfpk+fHsS59dZbceGFF+Loo49GX18fTjvtNHz/+9/PoDjpYUXdCSPhslbQuOqTLXwStMzAvuQ/eB0qZLNeHg6mYBKasGAxfCQci6KI5TOloDPSHJuaCPxpvw/sACPwJ0CWqSn8JoIZGVYYlvnmnw4JOI9q4Lf0DkLFWgxz833F0OVwSR9XR96g9r/z9DLMVcukNczXovex2QYS+Q+dL9spAh6rIYMxDm2l4a3GvKfSlAWY1ehvTWS0QMevtNkiOH3TMNl14AvKrt+GoYQWHqkW+qDFsk0CapyIEGuSnfQZH0CcEOaf1Ay7tReuOG0h5tbXc/mEdAkyoBX2cZZOcSyp4E0KFks+PYlKyqZOi/rFO7hjjy9RQ8wKt1yJpIx+WOK2NLVcH6DHaqseXGIp7v/mBXgLfUJfsKjJlCeGCksJUWw4i/lIdT06GjVGuE5mhTodWkZU3bEdJidSQo8x5l4dRrWs6eBE9soKhSvmm8gHQk2J1ZoRrGBumETo0AjSY/gCxedBLLh9k5mzBwLf7gHEFlCOPPJIteEVvAn+qquuwlVXXaUMM3fuXNx2221xs+4KZEwsVGiIDN4/bVCauhOmNzYz3TbUvlhgbuCgBQbLzHrasSZjEmkGqQuTGyGskS5Da5+XPwHkniB9uKBXjsSyPHWMf3WrJGq43vHp4Qcee3ZflT9dX35M/jchFlyVBiWiEgkJBTuZalwZjwnXosOiTwO1KoawMfxfMrJc/1gyf319EI8A1C269Awb1mZo/2AF+/HeX6dvUkuQoCZOkScG6dD1K68AX1ig2B8T1vveF3yVCULsBGs0YRPqr2y1R8nDhAB231Qp+bJWDiYLAIK2RJVAoBZne0RQKxaC73xu4YThjyVeIKMKxnzjFgz+FyvIMJwvA6IcAFOEdiDEBbvY8NvdD2W13PJ7/CKwaLAA4kIUmqn+yNYzCeuLollaZ62+Y0nSYa6k4MD7Qgly9reo/HrWwPdY7Jed8MIWozWkaZcsqqg4XvN6IYO2oQUIej6xvHzZdbJXC3LDa3ALNP5vWGeE4gv1KbMwCQQgdY+uwFeNydWHncNWcYqnm/Ad9rDvxBt76a8AUJ+8LRqT+JuRW4PFIF+/44t2KN6z3TcN5anzMDFtgYSt+QyBfvQnU4SX+LXg0AOMoc8NDG+Db5aXML2VwOYqKx3NWDiHYEKp/YEEhgmIszvFsInifh0qEZGXiiuU8Eir/5ujtJUlb3Pgq9f9r3xONLWy30H9ScvHhqNzkThsBVor1sAtVqscLiYLthCqfhhqKlr1EJzasYTSCM0ifNXnp6NBlrY8LIIVem3ybAQTtXTVHvYL+UUV1v9v773jLCvKvPFvnXRz6hymuyfPwAwzAwMM48K6yqyIigFQRNafCuqq6KoYcddFd/ddDO8GI+vrqqjvLkHfNSuKJEUJgkTJMDCEyTOdu2869fvjnFPp1LndAz3TzVDfz6f73ntOhafS8zz11FNVgv+DrBSwX0qicUWP8g+hT4mPxU9NTGHk81pIWkqKOSoTS1JqovpRw8qli+Ly71U7L+Uh5azop/yxSGtEffhMceTVpUyZQiROurjiqF1uFkqhPfdEnGApkJzQY68p9ApmK8j15BOiPeGYAmiGdinxyAg+0YFQNnWqpnZAoQzxEmifMX8XxtNmiDRPMArKLEHFL1S31BC+FgR84vqjOLBFhSBaFhClUUxQ8oFbs/No2BmIkjyurARh1dmLFEYdhAon4kqKYBIWdgIlQa0Hzqhlx7noH18bZWTFyYnKgyiOXCaeBlcG4wqFOsgjgUwQn2jp2lombCzdF9/JBF4/kXDXQ67HFjpKTB5Is6Pwmc8YLWFhfMtBk9hCO6hLQvq2QtTm7EoGOW3tLi0VVPyqsSzF6ltA4sFnuudB2lWnAEqAhpURshDoVJS0OL0UEPuhKu3UoIjGhfJOax8AEFkuwesjZCktrJlcwLOyqiTRcDcdJUwRUAYGdPVGlfYRSo+aWxDKQll7EKqvGrVOJ712iBZVvaM3RWDhETQesY8J9NccYcJHY69j4M9kvtIiYPAzIoPG09cnEZReWoYM+ca0UwSfaIoU8T5Ahe8+c74laBKb0cHHiV4JSRyBUiOpckTkyyqPjoIl9clDA6OgtMIMPFcnnFvNUuUT/4JOsT+zGCPpASngpFsRrAh8K584I6SId0zmoxE7F0WRArFeqNCsNRnKu0OCMIovAMtK2H5INLMeJXHdeRQSmYqCFrykggDjtLC4yowxEAACnxaEXxOOTLNa9gShxuo/Rn+0gBdXjFQE+QtlC+mM1rjlplKVGXGWTFhAGs00adAnfDhxJqyUJ1HhZkXgiqpEQ8JgiFi2DGE2ycpgJdSLTikHAEu4X0QpDSFoWh5G0gMYS3UL/TEKT+I7boS0/Fg/Unag6GbgAERFo+oUZaZOCAIBLMYQP0RB4fPnQgNRGizp+lqFjVu3RJpbQRxTPkkWATJ/ifvXqY7KqpWFLbHpCBL7sLqVXez7QhY+cQQ6qJpUYl6yWpDkg8V9xuQt0lArgvGb6F1M8Y4GDSGgxOL8KXLGTpysgBmbgyXKtPRKrHd1fMiBxHJZrC/pl+QgndUUcROqtSgdehgFJRF6qRS0f9RB46NBZpzCjDUSHsprqghwCmDKraBB0mxwqnNzWUBBGTzx7W/RcowfRtY5hjajO1mCCOJokMsuZJfECNXOrXNIq4fLX3J5wgHFSItok7upH9W9UpnRnSGRMIrRJygtkcLCRqhIoZq08LJpeZjwOvgjxhConICivPHyCTREjE4SkLzsUfs2SFo5jC6sF6ofvhSi4ywJsyACrZyQgOkLz0HDE4AFwURDwaudvamngypWMOFN3fKkOqIITeCI11PwRRgXrI4QMn4iKJyywPAtBwgdQOW+FP1SykGitAU/H+GL5JuioZUHp5h28kFXoPwdUeoiErzqhAVIUhjkDhlb0hHm4zFFXSig6GSpjn81P7EKIn7RUrBK7ymkpRlt2PBT0S6ifCSeGIap2bmW+c+UT+Qjxq3c8v/ok/dJoW8SmXuLy+3cJzNScJVjASivEZk2uR1ki6hoUW7yMMpsSG5r3r7smerXJsoKEuWrboFOmJHNA4yC0gLD6UUJ6/ziEw0nBhDM1vj34ENJjPJO6iudbyzTi0m3PcYUdX2mYXkCI+bP46el6hhUmAa1uVVBU2Zf22mF9ISBKDGyhE5OYfHBQ/hT8VRcXyOAmXIS/aZq3XBnMtXnR/ahCIW8JTgPMiZEpBSDfAEKGyPpRWjYKV4OEu2Y4eEpIOU/ltIfQBhn+lR5F7wfy/Ry4SmULRJm8oYOIvAXvSCW2l/VqwSFRmTQk16HUI9UOm9HXJrjdEdCmtNQdQoYjywbUVra/qEKWQIwpYkwBYDTHKUVn+FLQjPGqfU/tcoSEJ+BglcZAOzPDMbYAQWJWdh04zKoP279olIavD55MkEadTsDABj3OlG3M4oSIgrg4JvqmC62m+wAEbWfuKyLWLXJCQk/Bd7G+0K8vSPhGFcYIhApTN0Sxp5g2mR1pVuSUJs+TBdS/5A6tBJd4CO6PsS22RNmwWaToNCfRtd5xKVBcfk1KrXq/xgssQqKTILoUb2XRCVIfC42RiSD+PsFYD6BUVBaoskEkdiQYSNqBiqNfQHi5jddPMIE72i6D1JHEvkr5Z142imx51NOCVNuJTBrUw1zo3JH9SE70cVN3+LA5wRQADU7iwmvU8usYgw1oV74b42VQxFqPL34gPH5MGbmeZF+JkjlXCEKQInpM9MsD8ejETQtR2boYRmiWb3Ox15ltkmgYRo0pJtzw6hccbEpW560GbJkkg4Ti55HyrSvE0Ik/iiCD77TI8hKbAc5MR+ECVT+VrZaBG0pLvuEM0lpGBEgNJ2zY/tpFJYLRh2oUFbxmfw7rqCKzxPTJlzpTgojpxt8iv5L6kQFiCwwBFSo4yh8zc5jODOEqlPEeKpTypnnEvYfou/fvIvLyhwlBGPpHjSJI/MQYUzEx3rruteFif+GNOGRnulSjfpngg+PJKBFHyMxTKhYsLxiNIONTwi7e9QeQqN8oicknEASkf4kTVfOe9opS6HlJV2ZB8i0tq4H9iltdJAtujP34UMDo6BooB8HSudjW95m1jSlGX1iPqGgIBZfCxfSF89m2J8Zgm/ZYAONWMGykJ3BtFvS5KCY7kBZz5au9dKYsDl5QQceS/Wg5uSD8kgTq+TuHCw7+WxANIkrxBcFWnwQyc8TpCebrQQ7D+pWSmibaMCpQj5MjwjtQsR5ZyxzbXQKigaitfaoHpUIVI4alcJX/HrUcMEjzcyLqs+pmJUkQHRhfEXxkjJlP4kUjlvQ9C0j0jvplAWhEznYqvQIeejKCEuRN/zHqNcNChIqyiGNgtVItpyIfSvYVpvkKEZp/P4obZFFmmLVIc6KxS8RkVR6yfu1YPlg40LOS7QOiM6U/G4lh6UWCdTgt1oenlfcJyekKBzvdTuL/ZlBdi+PCDFusPwi1HlUVKV+4stoEX1im6h8KBonJDi/BYB0OzBTZjQDCEA99OWgYgSB14kWQMYrpP6q9H3JOVyFfN5KnPdyK7CkXChLMaPpXtTsDIYzAywxSXkND6kUl71UOUOV+q/bWZniFgodH7PzC6OgzAhVqZA7ZytNU8vKY4EFJiIdKsStA8EjgRmG3t3xO3Aiy4rYicXBLg4WDXOVHnHlxlePy2ECMskCIpc5qrPIZ2JcWPKQjtFnYRWhF2kzIoOggE/s0EueZzbhdQpLXnHFh9MUJDfhdfJyUICKJ/RSTRyIfhsBLdSS65IK79hvQQhG7/1Y5bGIqDmc4ct9Q9N20lZGcTYuhxEp5GFkwSda6cSycGVF7SFJCnq0eyPsJ6IiKAeT6BHrRwgg6RI1J4f9maFAUdYoMeIt2tEY4csB4dJYpHhRsW3DfiUXMObYq3wV+ryqXJAZmTwFpCVDdimnUs/qlul4PQn0srIobSW895kqHh/DQZOI41t1kBVbI8rPQtXJK8RRrjyFYRt2oCz40VUimgpiPDWshihuM1ze0frcsDEQn2SNpfu4z1s0iSAi/6SCfhSmKfQr3iYk9MUK6VLGIPsTyhF3vI4ic8dg9e5nCqBJ0gE1kdVWqfmI4CRH2qieZqVjiP2a8fZkuXYoYRSUGZDEhHVbAmnsUxQWNnsn/iFMnzEQ1VOfMUmej3xfTTAA/GjGKfolaBgqf0xidFJ1ZglgNNWDCa9d4Bg6oa/MgpWeTYVglAKwhKP5RYauGRFMUWOTGs6pR9N9mPLaWHxfok2cIYkE8Kz2Z4ZQs7Ks7qPa9ClnNGOKzwQAUGIL6ciSQ/RyCWgKmLfkDC1VSPwrBZg/gcDrpVqRIglMpSZuO9coSOLzZMizS972AgVUqHMhbT8M6wttIvYzMTwVaOdhrDCekqcQh49JgflTYG9miRKGl50CmHZKcadBjYITEyhayyJX5Kim33HFTDNeWPMF9THhCkqy0LYyFdyiygQf4fWs7R4KxG4X+XcxC5bSJ6fdIvepkBS/MC1KQsWKyHUt1EmDeFBn6WOpbkx67RhL9UgKetROVWaJoVI5anYOlNixTQV+aI1ldcRqUVk2EhiBvAzJyxf19+hKC/VesKgvN4MjzvifUgHqcpiYji9qNUK1T7tlqQ340r5OMeSFqlseRlM9mHLKM+6GU2WWrPTOUpk5xDAKigYxgTRTgJnSa5FgzDGJQjoxkQ8AgRGwyaA8K25FXsNKY9zrCM6JAAE/yVZmMAHzixPLB2/EIOXdQqIiQBUliytAym/Ig0ZHd8RIk522VGaj1oucri9YGkBs0Gjbqs7bnaim6zjjE9PX95NoN4kw0wvf0VgcUSCHdSRPpnkdxqojeFC18xJzjNpNZKgxIpU2UJWFCFPqFtqQmcv9h58fG9VhZP1qWp7CJPVLMcFP+TcTDuF5LhSy8iPGiSxOQLAjDgjaccpri9WBJOwSZo7ilnVZ2YoLjkg4cf8o0fKlpAuCca8HTcvjYy7h7BeWFmt/K7bUR4X4vPL1/dLX7B4UPyOBp3UiZWVV6s6PBHnYF4i6TBc8qzol+MQGvxSVp++H1mFZuQ7Kwm4QjvEMdelDBWHpUgAjmcEEFq6mEY4NIk+AmCGXpS2Ug0JaDmP9g8Wh0iSLayliX+bKbWycK3OcaBnOJ25sBxhlvCcIN+m2KfkoLSrSpChn8wWjoGih9gq1kVpom1TzlUDqsDIz4IdIU01ENR7bHsvCEcFML9BNVGZqoeoUUbULPK5qZmEDKRoFFOLSgUi9HDPGhaTn0ixcwxgboemWzZ5iig8PXycp+aUA3Tkz03ZJDkMF8z70PhDJravpF0zpAisbEdpIbANA/1wW8GE4Vg1K3yBq3SYpHrq+JpItK7y6cONeB3ziYtxrB4WwzVPWCqQ8fZU+Glq/iI2mlWJCCdAoGACbvUZVqzJtXoSgP0YKZM3KIBLKkfJMAUy6bRhJ92M83BoeqyypPaIXqoIb/B5L9aIurPlX7YLUf7izO6cvPjZ4Tg0rjbqTCb5HNCv9Q4zGHJHFl6GwoxC246tWG9ZNuUXOD8foiNcDnzgY87ilcMLrhG85knIixucpxycCVPolxlXKo24DZ7GsUJDy3wAw5QbWr2m7KLRVgvQG5zkU8WUWSoRbg1m5xMmBTBG/LZ5bnVhalIDCxqRTxoTbDh8WxrxOiY6Y5TRqlDBfvtzElQlOvwVZSVTrSx0TYjb8pu0JrwNN8eoHkc8rj3Tjcr5gFJQZENsWJwzQWXtLC5/R+jizijDFQmYGusEedaBoyQCQzwSJm/Pi9DXtVOBkGO7ike+XIApzi9IN/ygRPL+TZmDRpX5CecR4YcBIKQEBxlNdmPA6Asao0izrK/CFLdUi8wGAKbcIqkSY9Nowkl7EwsttQqNSQnKao7KjbBRPYkxS/Yd/4g4qtrtENYGLwkzJAECDWtLyBldaZAURwrfgeHdA7JM8LwtNIlpx9FYHFZQGZ77szwyydXfJ9wY0XlaBKLUPV51IsJNYCdSzgyiAfcqWXTYrV6aUk24Hxr3OYPsyiZR1uc807RRALN4+yvu4kAz+EaUfNOwMxsMdbMGMtIIm8bRpRGWJUFd8BRpWJjxPJxJ+XHnn/UUcmzw5CoK6lUXNLqBuZ9iyB1tGZvUmq11Be8jn1jTsFEYyA6g7ORYwsHQF3+Xt7cKSFSFosAmBqoyJSpsCqrFUMcYWTIim3Db2smansT89FPifUKDqljCSXsR2MU567UFcAs5TY0oeTdhdFd1Bw2tLGiPKrp4ofebcHmY0nB3EtFvBtFvG/uwQ87OhSj1QQjDudmI6VHKjvsjKr/BTmV8pSo7ynIIrnew5Caw7w5lB1JyCZO3kSYlyh1tNojpoau6zOpQwCsoMoNIghGAcaK2cyA0OZWYVYCTVGzA7QjDhlgOHT0G7b1jpkEEIFohYXpQxKFmIqrtReNymxdeGuZArBbQoWlVMUEuzCYEhhaOpaaVidSMqANHvKaeEKaeCkVQfKGzUnEIgRHSsXl1+EWZ0LE0KUMmZlytS0jkxIXziyP4BhLdNPfLj0HFX5Rdz9gOgOptKig3jNiLbtCEfihb2NyrOmuSc49vI40qHLJDEWW/STCxSpoR4LEggeCgA33Ix6nWHUUQFVM5Tb+0Q6iImADjzZTQTh8k9MSxPNhCWPrHC4+0FVhZj4pZAQ0K9QlXOhTBMWKsz1LjQk/00uJCp2zlhMuFjLN3DrBQUJOiPUVpRfkqjiorctFPEWKorfMfpHk31CqfZymXen1mM4cwAJp0yIv7ElWG+DCLXU5SpL9EGmiA0oz6kWnQpjSmXEOonVnfiFyK2X3AWyrRXwd7MYn72C41zPLE9GR+N+h7r66oVNb6LL+qTMh8Kwo+kenma0XNBkYksgszi5+QwkeoWiWR5NARewuhTPtkrDX9m72m4C8jKYDTVC6rc+SPmrYsfKcpTTgW5fEEX4pDBKCiJILBT8smFbGzqdZOWacU6PiGoW2lEmvWU287WyCPm0bBT7AAmnQDiFpiw88kZCGHF3i34NgiY9Nox6ZSCw+FYPvGZUHSx4Ei6nylDU06ZMZoptwyRMXElShReUZnLaFgpYX2YC4lAGYq+gDHoqpURHhGIJRRNuapzplgFdTuD0VRPkCbhM9hoADdJXKFRLWk1Ox8MYrccDuaizMBjvFicqQhpijw8KgMRMtRyEBVEKqOqRkVKdnREfFC3slIQ2/GhfEZ9oRFdgKnnbFD7S/QjthNMpIHFjQQG34oa1amoOPO2Vpgujcorpsfpj05v1dWpZA0kNj+vhXJFJMpcrheVhQrH4/PuiYblYTpaXhUSidpjON2PSa8DNSsjj2mBvui3uJQp+SnQYFITWBWCOHUry975xELTcgOHTCFdP6zPOuV+GpFAZ/UcmyQAklAn8XCSA7XGXy5qW70VKm5JltKV0pQth+xgN8brCKacMhpWGhNuR0xQ1+2sdPN18pBT79sJdiXpDtDzwS2kzFosKDmsX0fxWGcRFf4gr6pdgEWbUl1ECHyy5HFDYaFhpTCW6hXyluNSILzMNqC3QYRrCcKAk24FxYqoTB16xLmGQYxZK3IE46keTJIs2qceB4XgbZ/ItKMBFDJPQkLzIGHvmbLBOicFJRZqTh6eXwXFpD55IWu5AwoMhRVAdLqKM4Aprx0OGqg6RXRMPxpSJt4+zNc0m5YLxrDDGQ6BaPYX6AnNts1GHZNuEQ6N8g8HszpyEDSBz5zJKKsb8aCvWDUzSiNLjCAwBcVn1OtBk9iw0FBYVUgPcTCS7peYHk8jVNDcbtTdIqZJsLVy0m1HoTHM2JIfLbERqsxmeV4RT6Ig2J8ZRGnqSYHuOF0iQ5MaO2F7JcCVgKjfkSj9sGrHvXa0VZ/h4cX+yPokZ7pRWhRA00pjyi6giTryjT1hPVRQtXPIN/ayNKecEj9YUKCwaufhNsfZ772ZxSDUBxH8lCgAItAglAzyVtjwqeJgHul6cfUrLviiCBTBEkzKn4TYkXnaFmhoUQiWlQR7A7GktESMp7ow3miiFgmNKD8KUOKgZucxZrnI1HzU3Rzc6b2ww5uaIoFni8orayeLtW+AJGWV14UPAhtRW4b9gkCqDB/c74L3vfjsjNdL0E5UuGWPt4GUOKL+xVsvUib4WS5iOFauWOb6ckpE0+BIgpF0H9KoQeTDQNAupFlDsbqd0yEnH8Shcv8PuqA8NsVS+qHCN+Z1wKoTNN1oh118eZxGy+vMRykKQzCZakfD7YLvN1Cs7gjSTHUjRatoWGlGcUQXtyipFj6eZ93OoGln4IjKnlo+EMCVlyYPNYwFJQHqLEZs5CaxY74SYofeH/o86IRSLB9Jkkdhwj+BmbB3VMxLWUYQlCBVWRHz9kOtW0tLqOWLZY/22gfauDDDldIMGEtTZL484cBqke5D3clCnsHIy0VcGQgdJiPFQzpcSg+JqYQDjh8wphPgnLGqB4k1rRR8cf1V9bwnBH6kpIXv61ZKCsLSItEuDT7TE609E16H5N8ROERyeiWntTBdn/CtjlNOCXUrxXasSBYskWzK/rGlurqdFfQfRVgIFUaVEMGyhIUpt4xqeDggpQR1K4OmlUYzLM+kW8Gk1wHRPD7ptaNJPEx6Fc7MQQBiwbdcZlHjuyZ4m6uCQ+wLOqFGhb/gld6sLa+/B6d4BldNBOlFiYnjURQiktBieSqTBATbd5tiP5EaloASFxPpjnALrzyIouU6GllfmZ+TXAey1UNWXuNLN6IiyusisjhRAJaXZgJLagdNvtFSabBUTRl/k0oiWlPC9hjzulB18piyi1KaInidRnUlLhUGoX2tVU4ok7LlP8qjYWcwmupD3Yov74p9TvTJmIicYYU+wpU4foq1T2xMeO0BT6EK/woTbwgXesaOlKBKndHAYT26bZqXVVGmIcsOCoLh9ADGvJ5g3CsVLMk0GvFfjVJ4CGEsKDOCIjgdMmLR4b9IcELuwASiX4IgwMNZFwBMuB3BnEcYWFJCYdyos0+7JWQbw0IwRViCMwimPLCkNf4b0VozJSLvVdQnYXATC3szi+EQisg6oSpB+9ODcNCAQ3yJYY6leuDQGnwrxc+9YNo6Z4QxCUxD+qK8WH0Hfz4ImsSCTcAO3qraWdjiQCVQ4gvpg2fD6jSETvmMBENUn8ycSgKhQaR0+IVkRGAu0QxsOD2A/NTTCPxjUoH/DTizlU4QBi+DSNC0k0eNeIBNQYnNr0hoTLEwYpyanYHXqEO8lVp37g37qek70fem5QF+A1U7z+pryqkA1GcOgiPpRfDpKKZICY5APyUEVacUOu0Ja+7gbRCbMROgDg82avzAraieWH2FASmV0glKIPiRUQAW9wmSBIpAi08s1NwicrW9GiWIV67+nBo+RikICOWb+v1wzMmz8UihCP6py3UEEBQIiv2ZxbDhMzJ0p8EyZdCtoNScCs4RAXfwZGmHDuxEKT/ruwCcdAEYFQQ9021UPhTVjoXRyD9GrDfB2iBt2SUENSePqWCwSJF0B/FJ70GwPz2AytS2IF1iAWgimpzYJOIX4Q4c4ZC+qP64dTYNv6FaoxBadeqglKBq59H0LExbGZTtmlQWThYBBF4hSI6ABiX8tFPCpFNEpr5fCCX4Eob0SX5KAv1i+IAfEYgO+9zPJrB8+5aHNBqcMolXEjZqKAhIi9uuDwWMgnIgCBsyMn3Gt6iqXZFjPNWNdHUvxr0KqnYBog2DM0nxd/AsEOAW9mUGkJvariFJZMIza7tsVicwQBn8rJOI5fABF9oBwkEg5UcQ7CKgPs8D4fou0vCEK+cji0lTNA3Hyh6gQTxMuSWk6tvRIF5QF+lBTKEWmNOpj/3pQaToNJqWx0ziLD22bKYIPYHwwIlMbkex/D7xADqFWiiQQzVUI5gEZZE4IGzdmDBm3rQc2Voi9KEmceCgDoBCtRJV7QKyzTFpd9SUW4FDprggRBxR+Em3AyAOYKeRng77EZtlxc+aiTNKXoaRVB+o74PaDhsT024ZDXAnS59YaFhZiCZ/CgKfWqG4ENtDVXejNIIt26AEo+l++M39mIpOSlYUBMLoF8cVCeuS17GomMWVr3gfYIoxlcNQ6KkOlj6jeoVwjWRQx03YsKkvpKH2S8GiISxLEvYuCsv9DXwlfqDEDCFF6vDhYW9mMRqsz4WpqWOPKaQiHUFudiryVYj3sKA+ESiKhNPYtFKhKkTAVEYqliVYRnP8qeB8HVaXwn/REVvJU/xsEg/7sovRXn0atNkQrGTyf25xFvu50hfYRIhXVZPYmPLa0YQLalmokmLoi1cDIDv3Br8F+kTfHDkT1n+mhG3V0XvRChYprQ3LxbjXGSzzRcko/FO03shH6cu/fZFfxPU+ptDON4yC0gKxO1WUr1JY6Zc4mANG0LDSGM4MIIcqAFWLlmdT0axIcsYiKYx53VBOVQ/jido6H1zTTgmUUrjNYUwy879ALxF/yKjaeTi0jqqVhQM+mADe0SMam8RFtH4azJALsBuTmHLLEmNV10QjJzbZoTX4H4UbT3WhaXkYtQlq4Z03vuXAhzDjIxabXYjlU4W8us0uwliqG07tGcAPZ6WKWXMk3Ye6P4kpSzl+XqgXArlN68SDR6cQO+0zUpYiASFOGIkD+HXEzooh4U6kJiSjm1peAnmWJb73iYWqW4IFimgTZOQnI5/Aq36qyxQB7U3bg4UGIygS5vFzXkR6CZqAoMaEzyMBJzwTBRoQtPmUVVZ2PRHhk4oxQ0SWz6hXyW035VZg1QOlT/Qjk5dGxAEnKuRiWqKQC3bD+FTwTBEErQ8Ci4SVpQpHYeyqfXDaKcCtjTHH+mjMNFh6UdRo6cOCTyg7FZn3ieS2FgoH7lMmKkl6BUWiG2AKU3S+hw05j0htGUn1wPWrqIdWN1ZupnwSeXzE6OV8DwjuI0s1d6Nm52E1JiH6+rF0KW8zRrvYZyNFjXLli5BgCahJLdjCEfUyD1CUnmhAUiEPwpegxDRkh++IZn6nj2hhrjmFcO+f3GpiGtNOCarztqjIq7UYfdufHQL1gyUpmwRpEUsdrYcWxgclERaCocYZpx8bLDGWqoXKgNS4qqYa+x0ymJqTR0O5DVYPTvN4qgvDmUEWj3XGzOLgt5IIP9inM1g2IHF/kyj94VQfJt324N6YcDRRCox7XdiXWSzdnSHOzOR14mjwqDMZeSg1rBTAtkHqZlaqtkXknxTwqSXtHIkYS9PyMJrp43VguWK0wFnZzkozWionHfvGflFxN4Nwdg6Vw6ltqRPw0QMq0CjPyijqdhpjXld45L2abpA3UyiJkGisDwK6NpfDKOxOCqCu8xPwpRb+X1R+1DqV9YLQf0Api2xVkPuRV9LtQOA0TzkV9qhupcKdHBRVOx9bCuFphwI/YStf3McjAFeW1clEPB3mnCokUbOy2J8exGiqV0lfO2NR+ob0SnaiVPq0GE71FRPD6fqr3JZBHsOZwfCR2E5ccYvOcQEU5UT4rzpn82yim7RDZc3OYH9mceDzpNIXKR5iHUCdKAaKIEDilyNSXZmjNOLbo+UrIOLL7GpiqjVaPDoipmwQcVIXjmmLL5dOeB2aNtLJFHXM2wFfCU8ApgAyufndZmwsKAqaTsDYg44qMleq/JYRdQgivY8GnhwuGbICozIMNVyr5+I73+IOWIwBECvYjlgdV8JH/wNTfNx8yAdTw05jynaFWCRQaChlfi5qncgzzuiTz4rZzE1dQqIqM1HNvvo6kYutrrQLcWhwpgH1R/jWTCltzbkyNEpDmcELTilRmSgQ7EZRGKMoCFgfYtxFzFdW4AJnQiLUHa+PmpNHmlZhN6cFRsWXDqp2HqnGPs6kJF8CuV54+eNgdSuYoVUFI3JMJKAgbhq0PiEJoiA+WHtHNclyFBip7AuiKLTggkdUYyijTxZwE267cOptcK7IpF2C25zAlF0IUqfi+RkIaZAVkMDfrKrpf0JdUAhOi63ol/ujqrz5lhtYrcI60+5iYt+ieovGM+HPiIVJtwIbwTilaMTKGLRBXCkNkwYoYLkeaFUsN2EWB5aWZSPya4h886J+SGLmNrWfEeVwQIE/CO3AnF/RDI/Qb0jbyYMPeZyMpXqQqe3DZKoilbFuZzGeLiBFGkjV9sFpjmLSkS13YvuqSiyvQ26/ky1x8TLyskkFVb7yZXcdGnYKY6keTFtioWUFmEK34zSeYhMWCI2XaT5gLCgKJgtL+GFHAFQbozyDUBs3oUk1j0WHSx6MmyvlfBIcNxOykWlL6tLBOmPdTmHSrcQYpi/+UCCddKokL1tL5DhS2gKakrOwXvlTd3FIJ7gyqEtF4iybz9p0bUdhoWFn+I4UzYwDAHI9y3g5iSKUCZ/NyaeV8rRqVlqhkyshDeWdrj5YPIvXP9dnZGaktzAF3/lFcEg400QB42tiOlaLdzK9KtQZoNqf2Tuqoy/O1MX6ZIoeEQ85FNKO6I0UxlAR8YmFupOTllfG0j2oW6nwQEHe3yM/qnGvA1U7h7FUr9QXOJ2CpsroI0K7qX04iOcjmMVHPEcVNLKAkeuDjxEL6lJR1Cem3LK07DuTFVfKIPywnBQiXlUNz9QQrTJqeqoAZqdZR4+EYo2melG1cxj32lmmog+JpBwrdSwr9npeWXcyGM4MoG7l5KgIFEEQC2NeF0bSi1Bz8mgyHiIrkbr0dfoWV7KjcSvyW1nZkXUIRZkX/1EeFzQ41yTaZSQfV68sGYf0qL4zceUrWXYcKhgFRQWx2HKI5aaxLzPErCnizF834KRkHHWHQvQZZ0jRuyZ7TtjMkTMjMZ7M1FUhNOG2o2F54aFpiHfwSHgRG2OpPrY9NRJysvlPFXpiGfTMT6UnUDDiFgOWLmNWIp06AauyAY0ypCwNxepMXV5SSiDSL9EaPnQ94aA4JbIveFc0SEqIRjCcXoQppxzcb6O2H4narQ1TbhnD6X40rLRSdmXGLTFjkXEJM2Wp/LLSKQsyTnewzZKnzbOR27tUiR94JUOeMUr0tFCIRAW3Gd5UK5vQ9f1EKBoLk85XoATWIjrhNa4IAE2Swmi6Hw07jeiguyBOGIZYGE91K0tqcctDJDiYkGVXIPCQctoEo6k+5ngcL7duPKrhKFMEVEVOTiuIU7XzqFtpNC1X4G/Bu8g5Ob5jKFjuqjmiA7lAY2y86awyYl8NvtftLMZTXcKJzxoFhxWIHzYX5THtBhbGKXb+jsIPBIVRNymK7jfzhXYTooXf5cv4YuUS+r8alx97IG7d5uXk/YiXjULmr03J2V6pF6Usajia0JZiuBbD9JDBLPFoEDGKVL4N1Yk9wpXe6rJLXKOmALIOsHTtBjx5xx5galJJXdX2Q1HrOKCNpvSQ6uJF79j9KhRqx5p2K2i4RW0Hi2ny8QAsXBJTU5deOH2KVh+VDeJOkbjXeyC0qJCODkTyhI8tEwghp5wCMo0R1Oy0UF49KAA3W0Zzco+clyac+Cw6t4MzIYpJrx1Wzcekk8eUFSi10bbYppXCpOWGTK0htJogWEhwUVpkwh7zukIGKSpnJDy+Oq7s6fqLyLjEi/xEZh0t5IkKkdjTdf2ou6MN09RBdXiHJJR19Mg9lKuWqkKgYjTVjWx9H8bcdmTa+lHd94Q2bV5enjIBQKz4hXRaIYdASaNCGtEbdbxz3xBZORCVhbqVgdeswSc29qf6YKHBliqiCQe3pBCxadk7H1RS2sUrMHjgOFQFSa571Q9EHhXjqS40YcEjjRj/qTp5VK0cuqYfY2foyHlGY5uwO4wI+KQrmITI4REpTxLPEcusU2a5Mhn9EcsC9WWlf9Jpx7RVDH21eHuqmw+ifPmnPCGTzxEJSuWHbr/q0qE6hZL7hVxb3PE1Prri40KmSSwnb2Dd5FCvfEXQbo9W0pxvGAVFg0SGdgAaZsqxkan0oDa1V2p4n8gddmYhE78bQncnhBw3Ye1Yi/jMbGa64uGj73oGIDJyuUT8XWuK5SUnzrhi9UUB3/ICJ2BBIMv5ySCOF6NZDC8qEuJz9dMnNsbSPbCpDx8WO3JcjUeVPqASFNFScwogoOGWdB6nYadZC1MpDqex6hRgN8f5dkFCEBhMm8yhTjSZR2hYKbh+NbEuVGUjQvJsjK+d840UFijxmcTi1gTZl8e3PEykusNbepMV1/g4ifcnsd3F7xNuG3L+BKp2PtY34sKFC4F4+/MxN+F1gjQcTNgluBYFokMFwoqQ4goZioI6KALBcLofDm1CdwOv/FtDd3TekHCngk4BUMuUlA93Hg8FNbFhCyFZcGGyIdIiKgIshKTsKXmHypo07sM+wuklcLIVNMZ38WUNCoCQcJz4Qpqy4kmFVKNnqo8R61dhmqIqIh2gKSgwUp2pCkUYvmbnQRtVTLtFrSIm9z1N/2bNGleQ5XLIY0FnCZLzBbjfl1FQFhyoYrfXMaM4myaaZ4BlKUxF2JoYn1GCvZPzCmdtCg3qWSVynOTvMr36Dhu/X0QXX/4eCTp57q3HbJSnyOu+GTnbamdTyWn5xFKGZjSQLcR8NYg809HXicwEgpkUF6zBdsqIayTRFhfiVDgRdrYMQQqbIGAoscJbnCNnZx63ZhfgONPhfUJyvpNuBZTYLXcBUQC2RWBZjvBcd8marjyqYNWPnei9bglH/q72RR0DThbm024ZFPkEn6YA6jkqovIVF/yBVWTaLSE4iK7G45G4QihCdHiO+lHT8kDgx8qu8g+5rMIW1ZiACmmE7AIrpSEpBICXymFaLHNI3mSqE+nJYVTDJeJJt4J0dRw1t6DlSXp65RczKYhq3Ys8UFUGgnNo5DDSsfwCPbyfhXxROrcEgnIi0EdFZUvtO/IkUTw5GgiU2LrdhG95gpKmHwOynYu3nc6vRI4ZVwjFtzNj/hUU44OiQjwWFPFB0iCudAGTHGZWolfzTNcx+e2buuWJuI+Gutao90PQUaJnADNAGeTR9yaxpAGvE54AQBx+xwNnmsC+9FDwjIQ+CCQ0vVN5ELYacDoBENXNaCrp8qsoTnxbdRKzFbdHR4xDz6yUfGjgBFi3Mhh3u7R5ib8pAt+QuBKT5JQZX9YoLjqC/c50DmLSa0fdDq4daEh3w9iYcivKNevxshACpPJlAEADFigodIwwSFaOH3PAJvF+FAVphuWxvTR7BqXeRbj5ttjzZBN++BlznBZnkOIEIe57RqHSToT4QQjRqhgIHDE9nm9T2vIr98NW/T3q206uLITX9Q3xU0xE8HcTaIpeB0tlQpTwhW+5GE33oWbnwt8O9meG2MFjch2KfCD+nNeNbjzpyxCvE0spR3xSIfKROG8iii+c5reUX2v+KtMYnfAd0hNusQZRTzSJp6vSoCQMgE9Yo+3xsvKis/zF+4Ear6N7EeYbRkFRIA5GHYYzA4gPkNZxYmZV5RmAkGvr/D6SOr/O7J0s6GI0qcsMAq1q3loBrS0HVYR2lEacsYgnKEuKh8UPXGMHOLG8lXTVvGic1lb1GQ3YVL7CnseVQX09JSskJGb6VcsYlC2L0XRvsAU8VrY4rQ07jZF0P/ZlhqQQs2GSABGsefE2HUt1oeoUMJLu19It5xdHvG3kvGdiwGK7JcVxvDQPr7VEBM+cND9MT6WP34Ir5xV7GAlgFkcOozvwr3UdqFMXSTvjT8Mlr2ZwkL0UJkngxGiPxVPfz55HJCnpapqi0JOsQAD42Tdx6Hw+dONM7I+Wl1aeq2m2gr6epP6YwDi8Yif0EwJd3i3GspCuOJFLApucCU7qTaiKrpg3jdGp+vaI72uhj9y0U1TiAOlS/DyZQw2joCiwQuYXVUySYNN2KplrxF4pCQog8IpyZxAP+kn0BaERHerMT3itVRggDJDkYsT9CpQ0tHGtVtUgxdeFIVb83IMojsjA+NKM/Fstg2ppimb6YhmWd5eQ6RgI3guz6bglRv4tOftKDEcJS1SGoX6SsOxK3VE5XNNKIX7bq542daaaDAJKHEx4nTHLoC7dVmhFk678AFqeVJm0FHKgdMkndYppq7NRrgBFL2Lb6IUdJezSTRpvs4SfLO+k5xEdon+QfNIy0aQRb3sqhGF+HAK/aK146hUaOX99u+l4Y1CGqFzxciTnBU2YAPygNUC2wEX56HiMrLCpYYgwOaJSeCCVKyfSkKTIzdxHRUVbncwg9l2lW6AcvF31kyMxT06/hTGvG/vT/cKxGgsLRkFphZg/ymwYfhLiM1eeJoRLmYRwmvMEAKDkAeWuwZhAjtMVj99kHRmKkhJnHjPOsWaegsWC6WbTIrPN9ywNns9qe2IANy86o2oUBCUdGQS2RVAqVcJ81RhiuyltSIR8JIsUleISO/n2axkWuFAR02ylKM6sSHmWqJSq9XNgfTnZf0LJm+oUXPXWagLYtlC3srI9E326OiykbKboqeGaCbP5+MHhgrIpvMi0BRamPZkl2JdZAmaeF50KVcskIdLsV1UskiYfsmBS+dCBKxTBycEEmc4hIUVZmEnjn4rvOYbT/ajZGYyke4WnokIltzuzeMSOeI9DPYhxNhMk7q8j+oOpebSyCqsKmyrggz/bVZV3IiivM42JOB3aSaCqKCcmlqTciUs5cr/STx4CfzxfmJjMkqUfMhgFRYcZhGNDqbaG5WkGhQi5I8U6jLZjEnR0LwJx0rE0u3v60dPdBTdbRtQxjzryKBR6V+iLI3zKszT97gjVhKybjaQrfS3S1hRNo9hR5S8eUx5k0jkxQrpOOivRqleIwjLEdkOo0JuZtaZYhYmzskhnhhC2fMfp0CkrMysKulmVvGbPX0RtUc6lsWxZ2C8SfD3EtJPybBVG25eUw/fiAjUI62VKQTmkbbRqf5NpDaxsOqUsOLEUimVLN5OUd5UowYXv8f5LAGIL2/x1s1QFVP1pKc/1abC0JQWH06KGJ6ztk7NPZYLt774mvpyY2k+D7w0rhbFUL7vGIqKTT3I4nXp5K7+Pq14EqXKPQDePXMjllbD6etcdFCfSGqNPVXiUcLr4+syJ5jkPLztba/iJdsIpTEJi/ShJsQrArMIJvIe46dBqlKTwzD+MgjIj4o0mCgIAsB0X/gwbolRhL2eh7xil9q7wpxzHTstHsQOA4zqw3ZRWIZCZrjCTI7NhUnqkC5EjnJi2OrBEWuRw8juN0vYshbioKIpxRlI9GPc6wvtWWuWjYxIBPEsKGGvLyBwfq1QruC1ZP4uREVf0dII4mjkG32R+KIcfHFqGXCm+3XkmOnSYUagdQFoRxrKDaFgpjKR6Zp0OcTw5TCuipLNfCCbdNtStNKo2F3bJCq1GiCjhVAGx+oij4BY6+HONEsL8S4S2SpV7Nf0pzmuEgsm0UcDJlcKvSWNKRKut2xxLB1VHyaQ4wrhR9Xiq1pe6XBt9BhGt2DJvSLGXDuhOUACi3/H81HA6qyNi0pArwipP4N+1YzqRb8ZUyngbU5U+wdlX2skYPCPKZEhUfPKFspCrno8sdBgFRQO9Bq4IDSFMIeOFP2UGnnJ0F+3JQqjVrBQASzeZmmQmGkxIEgYjdIe1KU51CiOgICCWg5Rm+ZkznmRK5d+WMJhkYTDptqNuRUfwR+nHZwi6dOOHwAWo29lwnVXv6Ka7qVWELk7cyQ9K+gLNQgJJ8WITf23eQl0oywdxtCqTrj5130U6Z8pH6eeJjJoz0oaTxUi6X5qRtwaBkynIec04Xjmm3Epw4Z5kSdPXYdy5kL1AUpndVFpYrhWCC9Cd7GlZtpYX6GfIcZosiyCXk/0I1P7YnY9bqWTI/KAjDbR1xRUUZheTCBYOxaNyON0SJBWWM2V644gbKuR+6oW7yXjg5H7fyrqUTMNsx5c6fuQ+mnRCd/S+aucAEl1UmJSlyHuAfK4AC4CdzregvxXNceVxIcEoKFq0nJJhpllVBKuFBaJ1+sEn0Tyn4fOsZyOfDxhSWxqwbHU3SCtNPlSSpNmdPBtL8vlYvWIFVq5eKwSVBZheiM0sKMW8pt0S9qcXSRcOzjzw1DTVZRm9AIo/kwVIpi15q100Ew6W2ni+2vImWKsix7yUDTiZMvisKklxkOtD9ZkpFCssjAhLSGJRRwkZz5F8d9RyK1TCK/Lt0FHars3Di/czEceBFDCxXyjBhDTEuuyryDeqZkudsTT49mI9/XI+rWiRlQdZBnPFMN6vCDqyfCtpfAISb8Pos6uYCdOOt3my71Xw3LWAUqUNg90dSHvisWkiDQRtORcDq49DOcuv4NDWu/Bw8doT4u9nRCsH4NbjUS/wudKTdgjbZUkFyxgRw0n3Y8X7nV4Yc7rilpegjvn4mY3CLpfBIgiW34VEdQ62k24bxryu8MZqPd3qs0LaxjHHnoChJSuFdGeydJIEWpQwCwBGQZkRRPkDnl3j8QHQygM/QkcGyHg2iO3FwhAAhBAsG+zDsceegKVrT5AOhVOhm6W0FPqxe3HA7LauYyOVycfCzcSQkzT3Qv9qQDOoKAA7lUuiMGFmqc8n/j6uFEVFoVIYAsv1ILc9j+DDgk2ANatWhgJSnt3EaU6mLeM5grk2mcFYnrq8J9PW3TfEZlNy3vyzlM9jzbpjkWvrVcLQxE6RLXcJ+QXIpxy260pd5xbXtiNwhSaJIerrp2/ZGj1RYuyw/4td1xG1spgFS8xXm6I8RiiQypY04fnvxUcen5gWAKGPiIodgeOm4LhpbTy5P8bpdSxgxbKV6Fi0HJ35lEahDnclhhXTkU9h9eq1yPcs50HEicpMy74zQhxfwaeovAIIld0ky6CunMH3lEOQbV8k0Jw0znTKl0hTcn1KfCyUjhYB2vNxCx+FsFyXUGnRY9vxuGJf6JAiRBOUXO9y1Jx8ODFroSiHbeojWuJR+romvI5/8bALVw1YuJTNI9QdJCpSNuQBfiBpS7+UvdZXEgAAMnVJREFUjkOBtA2sWjKExWtOQMqxccSKFczZicU6YMuM3NmDTwLJLBuGo4BwiJqQTwLjEp9xRtRKAMjvO3JeLJy08yDGUGYCZzyqyVI8HC4KYyvJJpn7k/IY6G6DZZHwZtfW8eKzt7iixH+IQ5PPHC0rYl5xZUjXt9STkZPgq+WWrGtxkChdK3bYuZCETFspZWHNmnVIlXsCBZTEwx0YWinBBP2VDLcSxZQ/1Qci3haSRXDGMUfC/3I60Q6h9rwHS/WdAQBYSKVSml0iMh3MKqXkKaZkWyQ8PE9Vcgk6OrmPTz6fh+MJzvfaizoTiZnxkTpZmWlpcKbl7sgyAgCe60phXY0ES2rP2SBelgC2ReAoCqrEXxKcimUkO+Dnslm4nnBRJ5W/Bn3AjT1jqZBYNG3+IvIZDZ/HrBI6ZDAKSgLEmVPVKcInLqbDveIEgJPKgpJglmhnykK8mZmtal7MOggECSEYGBxCoZ3PbNOeG87cFLoS0bqDicwg8YRaEh8AASwNo9YoFspzLZXhgC6kXbYjKCld+VlrZqd+X7RsDXN2kw77CsMpE49ZKig8fnvfcliEsFNVdUwoODxMpVFNSaeU8Tj57qXaeJFSSLQz8AOBLQmCZIHcul08C2iv6A54CmZ76XQGluNqGTUDTXiugZvKIO8mvLOtmJUIaLWUJefb0soYIpMJhEpbQvVHY53frBwpDwENaZug0jMovIvTAQDZQrvwm4erpFuVhYdNF2dwlJ6psNG7Fj5tqgIoP5856Vb3OWkI0ScC1UItp9Wy3ym8zM1WkquEJjmNJ5dVUtiVHTu2IonT+WLAtygP01YqhacFcz5lJ/Bjnd+PiLwLdPQNJYd5Vu4Jcw+joGihWA6Ihf2ZQdC+DVIP35seRK24GG45zgQBKIdQiR1HbvyBpSv1eSdRN5vO0+L48OiZTqGgalQpfqvBpypeEA5dm73AB9VdGBCvM7Ec+XDt3fbSsTidpTzy5Xa0pYAjViyHV+pmabkWQU/o38DLnMRYEywJoWWjklNPveU/Vi5ZzBiLpMAIAV0bcDPc12LpqnXKEpdKi8xwxTaL1uQ7MgRuJnmZrKsQP9shjoRyJzxZfeRRKLQHs3XZ/E0SmV5UhqHeTuR6lgnhZu4369YchcGVR3MqZuEwq+1fWouRjj3Kaa1Zsx4b1m/E0OqN2nDJy30W2rMWjjjq2ITlWbmN2zMOUrlSLEylX3+0QCw1Ei+LRBvh7aMVyuoWWGWGL6fL6ZM/49996WwckpR5a9p19LF4appEfpdAKwWQLcvXYhBtWrxe9Vb1hL5HhT9YcIQ+kLKB3oHlwdoS0Z8HE/HaUjv3x0rmt/H4juehkkujo7tPORwzCLtkkW7SeOhhFJQWyGbkaZGXLSuSwGJmWxL+DwR8UK25riFkczmMeV0sijr+Vi5ZjCybXc0GMzHtmRg0H4h6j/Jo0MmzA/WE18S0hUjFvpUz0BPW2rPYiSIyqKG+Hqw7ah3a+pbFwtkWwaqlS7D0qBPguY7kYLn+mBPQvSTwb2jt0BzRyTKPoSPvIRdaOVTGn/IcuCl+BDtTUhVBnM/nWfq2YM4VZ1Hqs1b9YdGK9S19k4oZFxvWb2T39ER054oVZB3ElxUYHQSwLGQ9R1DC9UIkJ1h+LEmIxGfAqXRONnND3tqtUyyIZcFyHM1SVlK/40JFljVJStHMSpLjunJ7CYjRTIEjli3FqpVHYmD5OtjapZt4Go4NHHXEEch1LZGpa6mQtVb0VNpKaUfypYqQ9dQ+JCubSUs8QBLf4DGyHYuF/AIL7eK+bu3hi5RCuPFZeKu1IijK16xAoZY9UREiYT+inBbHiy8hA2C7HrlyEp5mHSqFeZegvUs/yeXpCHSECn85YyMtnHBrexkWLpBDrcttEYKh/j50DB0hPc+6BO3Mqje/MApKC/RWCtLuhQiOFQ1aC5Wi7JC4L7OEndPguCl0b3wNsktVb3je4bLFA1FOAiRt3xxsy6K7u0e784RvF1SFhH5mHrzn6OzsRFfB0wxCJS4RmZOlvJfz1yNiEkmzLj28VJYL41kIbxXlrBs6lxKsWn1UYPGQHRIEcuLpEkKQCs+nURl2sARUgcg8+EvNoWNq+jHhGZ/tRncgaSbK7L2ONsd1Y0rMEStX4cgNJ6DYvUyOJBzzTmAh49lYtWIlOrr7kQQ3lWXxKhW+00YWBUF5LHW9DUA+Fz/zpxVSNpG4mq1JM+pfooKesoFs52IAQfTA74vHLXjAQFsGnR2dwbsZ11rlcWQJgo0QoFAstRhLcjoxS8ccwgKwcsVqHHXkGqxYeyxSoYKSFrpEbymNVauOROfgKkaTSmPOJWgfCCzB3JJKkC52JsQJ0NlWgWsR9Pf1gzguLAC5tBsuzQVxLC9unRSrv7+jNOMdaiKtM2G2Piz5SmfQnjPkMzi4hKWlOxRtxZqN7FypCHK/DSaMlqQccUVbjxblTCzU3PatuYBRUBRYFgEI13ojhtCTBfrKaRRyGfT3D6KvnMHaI49C+6Ll0lZPmiQhWghoiwBWOJOKnMCeDTzHwsDAYsEfInK6HUS+0hHLWTSFRqc3RrPS4D2nuatcwOCqY1rOyAGAzMJZNAios5rMZoBwxpErtaNdu/nhwAdayrGxdvVqbFi3Hm4qzdLpzLlSmmnBKy+tVIV+mUiH4P2irnYmpLJpD1lXf8CMa/HE8ymCwYFBLFqyOnSakwXhTOe5tIIPSE7DmXS4BKSZoUazs1wmjcUDA1i2eh0Gerq4BUQ5T6uYdoSdQGEQAjipILxDgFypU2HMeuWiM1yaqsT8SgkKaQeDQyuYiXqwLYtlS5eFlodgu62TDpbSRAW9UirDywQKqm0B5RK/Fbm/uwNLV65DyrExtHhZ4BM2iz4W+FaFu2gsYKCnB73tpWR/kATfG/FxLh1abBMtmmIEknDqLn9vW0CxVEYqK2/lrpT4b0IICoUi+tpLKLd1xKwKzILgKk6XUcGlMsmWgM5iBkdtOA69fQNYuXw1Vq4IlqxS4ThrzxBkwiV02yKCok1YxhnXhpMtay/pBAhynoXOAXEZPSKazELRDOCq3vQAVi9bhkUrNihP5XCdWYJCW7BUxHxWCBFOxebW0iiPnEdQyrjo7O5HKRVu8aehwUWkdwZebOsmNmH+rZB2F46iMrN98QWGofYsdhQ60N+Wg2MT2OH5Ip1DRyLlOVh1xHoWNp0N1ve9bFE42Zt9YZiJlxFCsHqwD9X2PDIFdZ05YLKY6MbI6AhofQpkBr2yknUxRoChvm5UuodALAtZn2JnsQPV0T3BFtBmHT5TEii8XBnV4R0BPWyGmTx6+8sZjO7Iwq9OhP0+iGOnMmg0qkjbQD7tYDgMn3eBaqoN9fF9AAjKpXb4dByWMvOhrA6jBxDSl2oNR6xYAYCvwedSandOqPi4JRcA4DoOAAcOgO7OLkw2RlApFmCvWo8nHroL3e1ldJQzKKxYjcnJSZRyyhKgnbzcISMoc6l7CDuntgEUyLf3w8t5aC5eCQ9VvmRBCFYsX4EnJ4LdIC4Burr7MFlr4GlxO6Jab89CUaEgGOqNnzEyG1TyWSCvOvIm0ODzBrDdwHE55VogloVFlQy82iIMTwNT+57SRi9lXKxbdwwsou+fnZUSgGAc2RZBpa0Tu6b3AQAymSysbD/2bLsPIuOmoOgtpTHpEPRUimgIymZ7Zy9czenNOkgrwERQ9ClFOZ9GOX9EQkxoGEV8UjPYWUZ7bh0eefIZ1Md263dpCek4qQzc+tisLQzRmLcd9cTlwOl4+dLluN8rYWLHoxo6ld8hHeNeJ7L1fRhLdSnBQgtJKGgL+RyAgKf2lzMorViNbCaNiQawdzKNckcPJsb8kE5uRbQtgiOWLcUTOwoY2fmEQhNFqVRGtpDHbg1tWuuk5jPl2BgcHMSO7TYmx/aD+j7LuxUiRT5QPmwAPizbgW5r76JKFiVrOfK5HAghGOztAXp7sGP/KPZN7kKpXMG+yV1RsWYAQVcxhd25MhoTwzMFZhhYNIhKKS6D5gtGQVGQcmyUu/pRKgUzu9WLF6HWVUQql3zbY7rQho4j/wLbdu4FJsZj74fasqDVIQzveAJcoFBpXNsWQVajnACBZaS/fxAT1UdRr0/NWIb2fAqVo4+TrB22RXDUyuUYnhzE1kcfRNNvJDrwcSS/z3g2Cl2LMfLUfVLYjqwDt2Mp8p6NTCGF9PLVSHs20tkCHtoxEioowJKBXmCgF00/yduOwHI8NElg0YkYQitUsi6WrjgCpFnHtu07kPfjbREkPbPw7u1oAzo2BekWHJSPPp4x+VKpjFKpPGOylpdFAZMAgCUdOYy5y7F93MfEzseQccCU38DsH5hwuzqCmfvwZI2lk8qWQCYnEJglgkrKeg7ynYMYe/rBsOqD5ynPUWatMlrtYKEAXOEMlbRg0WnLeUzZhCAckiHPloX7Ctl7KYmwXK5tob9vEdLjVTw1/BQ6wmWhwHJlw7WCcJ7HBWjatVEsFlCb3hOuw8cx0FHEvlobOvsGQJw0xkZ7mEIOAJ5jI5dysG5D0OZTtSa2u2nkMA0vnexo3Lr8wedsJumRoMs5QL57MXY+/bgmrQCOl5rBbytAJQUMrVwJ0GYLR1w97TPI3Vmlc8SypXhq0kLVKbLbcose0MwWURvd3TJFixAUwzFW8oDS6g0AgN6Sj1qpgvFqHc1pPr4910E2XxYUFE6bYwUWif4lqzC5exvGaj4ateqsyxbpgJV8FoWly/DAIw8jXdsPIBgXIx29cKd2orOcRn2Xi572NnjeIHY/dAuKncEREd3FNIbzbaiP70Uhm0Z1OKgz0QJsWwRlzQ64nkoRPZXATWCJk8XjTz2F+tge5DOarenChM61LaxfvQoPb3sKo7ufloKJ56aIB3Z29ywM59gIRkGZAbZFkMnPrFFm2/rgNIrAxL1IK3vGHNvCsv4ejBRzeHrPaDAzJAR95QycFucfiGDWjFmaJJOWYlKOrZ015DwHY1LImWfjveUs6B4XpY5e7BgeR318H/KZFMqdfKZULpfZ90VtOdy/w0XBqrNntkX4+RAkstoE+ZXburB3fB8K7T0Y2f0MAKDQNYSxXYKiJ1JJCNpC7b9cboOvUWqi6wcyB9jzZ7/GDQAEi9py6Bw6go3+iPlkCz6eaY6hrZCD51hor1QwVd0DOyXP0LOeA8t24QMgVtA+oyAoFni4nkoBE9sJ0qk0phpBvaUcG8sWL0FjYm+Cj0MryWNJM/K2nIf60DKk/Cm05Txk1q7HQ088jfrYHlh2a/Myo7GYRs2z0N0r+kUFefAlsjhN7fkU2jZwpbCnmAbpG0Te07fDkt5uoLdb+w4I6jO7mJv5+3p6sTVUUIYGBtDWLs/uM56NdWvWgviNWFqRstamGboW4ctfACJvRaRTrf1NFlUyyDQGUcrnkMmX0NXRjonxUTz26MNQ66eVQ3dfOY3mngz6uruE4wqSlo3jikhPpYBd+wjK7erdSHHkPYLhaQc0rKN82sHOMN2cA+QqXehP17BnsgCSKYJM7sHgyqOxY2QaEzviS6SzgedYWLFiFR7ZNY7hbfcmlsstdKA+tgfd5QLaugdACEFvewVor4D6Psana9j55CPo6OrB1qeeQp5OA4UOjOzdwdJgaQldzrEtrF21Cr7fBBCM6+WLhwAMAQCOWMt3c+U2v47Hs0joUE7QXfBQWbEarkWQyhyYj1Upl8baFcswMdYWu9ogIJegt28Qjj8Z/iRYOTSAen8vxkaH4Tgp7Nv1FHoERcTRLF8tFBgFZQ4x1J5F3h9Ae7kSe0cIQblYhJvK4v7QdH0gntKebQUdnJADFJYyMp6Nnr5BPP1YYOImTgq0UUV3MYXs0lVwHQuPPbU9COtYoeDTI592sDIckB1dFFNj+5ArxMseIes5WLdmHYhyAsvqgS7szlhwaBU0k8f23cBgfz+KXWX0lTeAWh4enBhDzh9DR2cHxvc8zZhiEohlwdbUU28pDXfREhQOVEOZBcpZF9udFDKoomfpUdownmNh8WK+22hRVzvQFfdJ8BwLq1csQ2N6HJZlo78th87cOrjCeSeljIsNRx+Hat3HAw89ANoMGE0hmwaysuNqdzGFYQDt6XidlLNuaB0hSKV5+hYh6O3kSz6ZdAZrli1BfboTToKlIqLLyxTgTe9DPu3gyHX8hFWLkHD5gKCnbwDDoTJfzMcZtdjPHdtCf9/cze7ach6wbDU81FCodGnDREt+urjZtevgaJQ02yJYsqgXk1nAKXbgsX1PoT0N6WwjbV62JQmNlOsiVWnH3p4mxnc+hrQgyFzbQl93FyYxDjcjC6ms52DVkesxE7qLKUxYQHd7WXpeyaVRWbepZdzIz6mYcYDCCux/8n4U81mUMy6WLj8SY/t2oLMjsATkMx7yK6KTgANrQmchBXvJcuR0p6zNEtEcMC00Tz7tAITAAcWRSxejXm3X7pAkloVCNo3CquDKjnXFcrhzzkFzaAiPPf443Kmd6KlkQEZK6Gwrx9KYyRdPhWNbWDKwCNP7g503mefAw22LoMh8pML0LYttnujuqMDx5LHiOg7a2oI2KRblZcbuYhqTlQ7k6OSzpulggdDZHjW5gDA6OopSqYSRkREUi8lLL88G20emcPdTI+grJTPg54p608f0+H4UZrxlVka11kBtYhgF7UFYB4bxyWn4UyPwU3n44/vQ1sNPq52YqqI5OYxiezee3r0fjT2PYXDV0c9JMXquoL4PCgrLsrF3eBSkOoq27uR7cuYLtVodxK/P2mdhrjA5XQNq48gWk++kqddroYIgz6gppRgZG4PbnEYuQVgfKPxmE5T62u23lFI0alNwU1lQSjE5MYZ0OpO4Vff5jGajAcuyntPYqVen4KYOHj86UFQbTYzs2Y72jh5Yth22X3ZWW6bnCvWmj727d6KUz0oW7rHxcdh+reU4OFyxa98IGsNPoXfxEXPCq3eMTmNJRxbLuwozBz4AHIj8NgqKgkOhoBgYGBgYGCxkLAQFZc6nxJ/61KdAwnXY6G/16tXs/fT0NM4//3y0t7cjn8/jjDPOwM6dO+eaDAMDAwMDA4PnMQ6KzX7NmjXYvn07+7vxxhvZuw9+8IP4yU9+gu9973u44YYb8Mwzz+D0008/GGQYGBgYGBgYPE9xUBYNHcdBT0/cC3xkZATf+MY38N///d946UtfCgD41re+hSOOOAI333wzTjjhhFgcAwMDAwMDgxceDooF5eGHH0ZfXx+WLl2Kc845B9u2bQMA3H777ajX69iyZQsLu3r1agwODuKmm25KTK9arWJ0dFT6MzAwMDAwMDh8MecKyqZNm3DppZfiqquuwiWXXIKtW7fipJNOwtjYGHbs2AHP86SzMQCgu7sbO3bs0CcI4OKLL0apVGJ/AwMDiWENDAwMDAwMnv+Y8yWeU089lX1ft24dNm3ahKGhIVx55ZXIZJ7dzpgLL7wQF1xwAfs9OjpqlBQDAwMDA4PDGAf9YItyuYyVK1fikUceQU9PD2q1GoaHh6UwO3fu1PqsREilUigWi9KfgYGBgYGBweGLg36yzvj4OB599FG8+c1vxsaNG+G6Lq655hqcccYZAIAHH3wQ27Ztw+bNmw82KQYGcw7q+8AMp9oaGCwYWM68HrhoYHAgmHMF5cMf/jBOO+00DA0N4ZlnnsFFF10E27Zx9tlno1Qq4bzzzsMFF1yAtrY2FItFvO9978PmzZvNDh6D5xUopfAn9gP1yWdxb7CBwfyAAoCbhZWryHcGGRgsQMy5gvLUU0/h7LPPxt69e9HZ2YkTTzwRN998MzrDOz3+7d/+DZZl4YwzzkC1WsUpp5yCr371q3NNhoHBQYU/sR9WYxIdXZ1IZzLsfhIDg4UKCorpqSns2b0b/gRg5194x8EbPL9gjrpXYI66N5gJ1PfhjzyDrq5OlCuGyRs8vzC8fx927doNq9RnlnsMEnFYHnVvYHDYw2+AAEg/y11pBgbzicDiB+M7ZbDgYRQUA4NnCbOsY/B8hOm3Bs8XGAXFwMDAwMDAYMHhoG8zNjB4IaHW8NH0D41bl20ReI6ZYxgYGByeMAqKgcEcodbwce/TI5ioHpq1/VzKwdr+0mGlpDzx+OM4ctUK/P7WP2D9+g3zTc5zxsv/8mQctW49Pv8v/3rI8nzn28/FyPAIrvj+/ztkeRoYHAwYBcXAYI7Q9Ckmqg24jgXPPrjr/LVmkNehstYYGBgYHGoYBcXAYI7h2QQp1z7IuTRRN5swDAwMDmMcPrZhAwODGfGrX/4SW17yYvR1dWCgtxtnvPY1eOzRRwEAL33xSfi7T1wohd+9ezdKuQxu/O1vAQDbt2/H6a95NdpLBRy5cgWuuPwyHLFyOb78xS/MKv8HH3gAW17yYrQV89i4fh2uveYa5FIufvKjH2nDf/c730ZfV4f07Cc/+hFyKVd69vOf/hQnvegEtBXzGOzrwRtffyZ7t3//frz93Leiv7sTHeUiXnvaq/DIww+z99ueeAJnvu616O/uRGelhGM3rMdVv/gFe/+nP92L1572KnS1lbF4oB/nve0t2LNnz6zKq6JareLCj30Uy5cMobNSwotPfBF+c8MNAILzIdpLBfzyqqukOD/+0Q/R3V7B5OQkAOCpJ5/Em990Nvq6OrCopwtvOON0PPH448+KHgODhQyjoBgYvIAwOTmB973/A/jt72/GT6/6JSzLwhvfcCZ838dZbzwb3//elRDPbvx/37sSvX19+LMTTwQAvOPct2H79mdw1dW/xn9dcQW+9Y3/xO5du2aVd7PZxBtffyYymSyuv/F3+NJXv4pPX/TJ51ymq37+c7zxDWfilJefit/f8gf89KpfYuNxx7H3f/3283DH7X/Elf/vB7j2N78FpRSnv+bVqNfrAIAPvv9vUK1W8ctrrsWtt9+Bf/xf/4x8Pg8AGB4exitOeRnWb9iA3/7+ZvzwJz/Frp278OZzzn5WtF7wgb/BrbfcjG9/979wy21/xOtOPxOvPe2VeOThh1EsFnHqK16JK6+4TIpzxWWX4VWvfjWy2Szq9Tpe86pXIl/I41fXXodfX3cDcvkcXnvaq1Cr1Z5lDRoYLEyYJR4DgxcQXvu606Xfl/yfr2Oovxf3338fTj/z9fjohz+E3//ud0whufKKy/H6N5wFQggefOABXHftNfjt72/CMRuPBQB85ZKvYd2aI2aV9zW//jUee+xR/OLqX7Pbyy/69D/itFe8/DmV6XOfvRhnvuEN+Lu/v4g9W7duPQDgkYcfxs9++hNcc/0NOGHziwAA3/z2d7Bq2RL85Mc/wulnnIknn9yG177udKxdexQAYMnSpSydr13yVaxfvwGf/sd/Ys/+4/98HSuXLcHDDz2EFStXzprOJ7dtw3e//W08+Mhj6O3rAwB84IILcPWvfonvfufb+PQ//hPOeuPZePu5b8Xk5CSy2SxGR0dx1S9+jsuu/D4A4PvfuxK+7+Or//F/2F06X/v6N9DX1YHf3HADtvzlXz6bKjQwWJAwFhQDgxcQHnn4YbzlzX+FNatWoqejDUeuXA4AeHLbk+js7MTJW/4SV1z23wCAx7duxS0334yzzg6sBQ8/9BAcx8GGo49h6S1bvhyVSmVWeT/80INYtGiAKScAcKxg6Xi2uPuuu/AXL3mp9t2DDzwAx3Fw3PGb2LP29nasWLkSDz7wAADgPee/F5+9+J9x8l/8Of7pHz6Ne+65m4W95+678ZsbrkdXW5n9Hb1uLQDgscceOyA6/3TvvWg2m1i/9kgpvRt/+xtsDdM65dRT4boufvbTnwAAfviD/0GhWMRLTz6Z0fPoo4+gu73C4i/q6cL09DS2PvboAdFjYLDQYSwoBgYvILz+9NdhYHAQX77kP9Db2wuf+jju6A2oh8sDZ519Nj5ywQfxL//+BVx5xeVYs3YtsyzMByzLgnpdWL1Rl35nnuOVA2899zxs+cuX4apf/BzX/PrX+N+f+ywu/uzn8O7z34vx8XG84pWvwj/+r3+Oxevp7T2gfMYnxmHbNm686RbYtuxEnQuXlDzPw2tfdzquvDywXF15+eU488zXw3ECVj0xPo6jjzkG37z0O7H0O8ILWQ0MDhcYC4qBwQsEe/fuxUMPPYiPXfgJvOSlL8XqI47A8P79UphXnfZqTE9P4+pf/hJXXn45zjr7TezdipUr0Wg0cNedd7Bnjz7yCPYraSRhxcpVeOqpJ7Fz50727PbbbmsZp6OjE2NjY5iYmGDP7r7rLinM2qOOwvXXXauNv2r1ajQaDfzh1lvYs7179+Lhhx7C6iP40tSigQG8/Z1/jcuu/B7+5gMfxLe++Q0AwIajj8b9992HocWLsWz5cukvl8vNqtwR1q/fgGazid27d8fSEq1KZ539Jlz9q1/ivvv+hBuuv45ZsCJ6Hn3kEXR2dcXSKJVKB0SPgcFCh1FQDAzmGLUmRbXePKh/teaBn39SqVTQ3t6Ob37j63j0kUdw/XXX4eMf/YgUJpfL4VWvfjX+4dMX4YEH7scb3nAWe7dq9Wq85KUn473veTdu+8OtuPPOO/De89+NTCbD/CFa4eQtW7B06TK887xzcc89d+Om3/8O//CpvweAxPjHHX88stksLvrk3+GxRx/FFZdfhv/7Xdl6cOHffhLfu+IK/NM/fBoP3H8/7r33HvzL//48AGD5ihV41Wmvxnvf/W78/nc34u6778J5b30L+vr68arTXg0A+MiHLsDVv/oVHt+6FXfc8Uf85obrsXp1oLz89bvejX379+Gtb/4r3H7bH/DYo4/i6l/9Cn/9jvPQbDZnWfMBVqxcibPOPhvvOPdt+NEPf4DHt27FbX+4FZ//3Gdx1c9/zsKdeNJJ6O7pwblv+f+wePESaXnqrLPfhPb2Dpx15un43Y034vGtW/GbG27Ahz/4ATz91FMHRI+BwUKHUVAMDOYItkWQSzmoN3xMVJsH9a/e8JFLObCt2R8IZ1kWLv3uf+HOP96B447ZgI995EP4Xxd/NhburDe+CffcfTf+7MQTMTA4KL37+je/ha6ubrzs5Jfi7De8Hm879zzkCwWk0+mZ68e2cfn3vo+JiXH8+Ys24/x3vQsf/ViwrTmVEL+trQ3f+Na38aurrsLxG4/G9664An/7d/LOnz9/8Yvxfy+7HD/76U+w+fhj8cpTXobb//AH9v4/vv6f2HDM0Tjzda/FS//8JFBK8T8/+jFcN9iq7DebuOD9f4Nj1h+F1572KixfsQL/9sUvAQB6+/pwzXU3oNls4tWvfAWO33g0PvbhD6FUKsOyDpx9fu3r38Cb/uqvcOFHP4oNR63BWa8/E3+87TYsGhxgYQgheP0bzsI9d98tWU8AIJvN4pfXXItFAwN401mvxzHrj8J7/vqdmJ6eRmGGq+sNDJ5vIFRd4H0eYHR0FKVSCSMjIyjO8aDcPjKFu58aQV/pua1rGxy+oI0a6NguDA4NxQTrC+0unqefegorly3BT3/xS7zkpXpH1Va46fe/w5aX/AXuue8BLF22bO4JNIihOj2NbU88AVLoAnG8+SbHYIFix+g0lnRksbyrMKfpHoj8Nk6yBgZziPlWGA42rr/uOkyMj2PN2rXYsWM7/u4TF2JoaDFOPOmkWcX/8Y9+iFwuj+XLl+PRRx/FRz90ATa/6EVGOTEwMIjBKCgGBgazRr1ex0V//0k8vvUx5AsFnHDCZnzz0u/AdV1cftl/42/Of4823uDgEG678y6MjY3hk5/4BJ58chvaOzrwkpe+FBd/9vOHuBRzgye3bcPGDesS399+592xJTIDA4PZwyzxKDBLPAYzodUSzwsZY2Nj2CXs0BHhui4Gh4YOMUUHF41Go+UR80OLF7PtwQsJZonHYDYwSzwGBgaHDQqFAgqFuWVmCxmO42DZ8uXzTYaBwWGLw3vB3MDAwMDAwOB5CaOgGBgYGBgYGCw4GAXFwMDAwMDAYMHBKCgGBgYGBgYGCw7GSdbAYC7RrAF+49DkZTmAbXZhGBgYHJ4wCoqBwVyhWQN5+naQ+sTMYecA1M2B9m88ICXl5X95Mo5atx6f/5d/nTM6vvudb+NjH/4Qntm1Z87SNDAwMDAKioHBXMFvgNQnQG3v4Fs2mrUgL78x71aUM1//Bpzy8lPnlQYDA4PDD0ZBMTCYa9ge4ByCA9yatYOfxyyQyWSQyZiDDQ0MDOYWxknWwOAFhmajgQve/zfo7WzHYF8P/uFTFyE6UPqIlcvx2Yv/GW8/963oaitj9Ypl+NlPfoLdu3fjDWecjq62Mo7feDT+ePttLL3vfufb6OvqmK/iGBgYHKYwCoqBwQsM//V/vwvbcXDDjb/H5/7lX/GlL/w7Lv3mN9j7L3/xC9i8+UX4/S1/wMtffirefu5b8Y5z34Y3vulN+N3Nt2Lp0mV4x7nn4nl4S4aBgcHzCEZBMTB4gWHRogF87n//C1auWoU3nv0mvOs95+PLX/wie/+yl78c573jnVi+YgU+/rd/h9HRUWw89licfsaZWLFyJS748IfxwAP3Y2fCvTsGBgYGcwGjoBgYvMBw3KbjQQhhvzdtOgGPPPIwms0mAGDtWn5Db3d3NwBgzdq17FlXV/Bs9+5dh4JcAwODFyiMgmJgYCDBdbnvfKTIuI4be+b7/qElzMDA4AUFo6AYGLzAcNutf5B+33rrLVi+fAVs254nigwMDAziMNuMDQzmGodi++9zyOPJJ7fhYx/5MM57+ztw55134D+++hVc/NnPzSFxBgYGBs8dRkExMJgrWA6omwtOkj0ESgp1c8Fx9weIN53zV5iemsKLT3wRbNvGe977Ppz79nccBAoNDAwMnj0IfR7uFRwdHUWpVMLIyAiKxeKcpr19ZAp3PzWCvpI5eMpAD9qogY7twuDQEFJp5UA2cxePwQJHdXoa2554AqTQBeKY/mOgx47RaSzpyGJ5V2FO0z0Q+W0sKAYGc4lDccy9gYGBwQsAxknWwMDAwMDAYMHBKCgGBgYGBgYGCw5GQTEwMDAwMDBYcDAKioHBs8Tz0L/cwMD0W4PnDYyTrIHBgcJ24QPYtWM72jo64LrGKdbg+YF6vYZ9e/bAB2Db7ozhDQzmE0ZBMTA4QBBCYBd7MDWxD9uf2T7f5BgYHBB824Nd7JHuYzIwWIgwCoqBwbMAsR3YhU6A+oDfnG9yDAxmB8uGTSyjnBg8L2AUFAODZwlCCEBswDJ32BgYGBjMNYyTrIGBgYGBgcGCw7wqKF/5ylewePFipNNpbNq0Cbfeeut8kmNgYGBgYGCwQDBvCsoVV1yBCy64ABdddBH++Mc/Yv369TjllFOwa9eu+SLJwMDAwMDAYIFg3i4L3LRpE4477jh8+ctfBgD4vo+BgQG8733vw8c//nEpbLVaRbVaZb9HRkYwODiIJ598cs4vC9wxMoV7nxlFbzE9c2ADAwMDA4PDEDvHqhhqz2BZ59xfFjgwMIDh4WGUSqWWYefFSbZWq+H222/HhRdeyJ5ZloUtW7bgpptuioW/+OKL8elPfzr2fGBg4KDSaWBgYGBgYDD3GBsbW5gKyp49e9BsNtHd3S097+7uxgMPPBALf+GFF+KCCy5gv33fx759+9De3j7n2+Ui7e5gWGcMTP0ebJj6Pbgw9XvwYer44GK+65dSirGxMfT19c0Y9nmxzTiVSiGVSknPyuXyQc2zWCyawXEQYer34MLU78GFqd+DD1PHBxfzWb8zWU4izIuTbEdHB2zbxs6dO6XnO3fuRE9Pz3yQZGBgYGBgYLCAMC8Kiud52LhxI6655hr2zPd9XHPNNdi8efN8kGRgYGBgYGCwgDBvSzwXXHAB3vKWt+DYY4/F8ccfj3//93/HxMQE3va2t80XSQCC5aSLLrootqRkMDcw9XtwYer34MLU78GHqeODi+dT/c7bNmMA+PKXv4zPf/7z2LFjBzZs2IAvfvGL2LRp03yRY2BgYGBgYLBAMK8KioGBgYGBgYGBDuYuHgMDAwMDA4MFB6OgGBgYGBgYGCw4GAXFwMDAwMDAYMHBKCgGBgYGBgYGCw5GQRHwla98BYsXL0Y6ncamTZtw6623zjdJCxK/+c1vcNppp6Gvrw+EEPzwhz+U3lNK8fd///fo7e1FJpPBli1b8PDDD0th9u3bh3POOQfFYhHlchnnnXcexsfHpTB33303TjrpJKTTaQwMDOBzn/vcwS7agsDFF1+M4447DoVCAV1dXXjta1+LBx98UAozPT2N888/H+3t7cjn8zjjjDNiBx9u27YNr3zlK5HNZtHV1YWPfOQjaDQaUpjrr78exxxzDFKpFJYvX45LL730YBdv3nHJJZdg3bp17CTNzZs34xe/+AV7b+p2bvGZz3wGhBB84AMfYM9MHT97fOpTnwIhRPpbvXo1e39Y1S01oJRSevnll1PP8+g3v/lN+qc//Ym+4x3voOVyme7cuXO+SVtw+PnPf07/9m//lv7P//wPBUB/8IMfSO8/85nP0FKpRH/4wx/Su+66i7761a+mS5YsoVNTUyzMy1/+crp+/Xp6880309/+9rd0+fLl9Oyzz2bvR0ZGaHd3Nz3nnHPovffeSy+77DKayWTo1772tUNVzHnDKaecQr/1rW/Re++9l9555530Fa94BR0cHKTj4+MszLve9S46MDBAr7nmGnrbbbfRE044gb7oRS9i7xuNBl27di3dsmULveOOO+jPf/5z2tHRQS+88EIW5rHHHqPZbJZecMEF9L777qNf+tKXqG3b9Kqrrjqk5T3U+PGPf0x/9rOf0Yceeog++OCD9BOf+AR1XZfee++9lFJTt3OJW2+9lS5evJiuW7eOvv/972fPTR0/e1x00UV0zZo1dPv27exv9+7d7P3hVLdGQQlx/PHH0/PPP5/9bjabtK+vj1588cXzSNXCh6qg+L5Pe3p66Oc//3n2bHh4mKZSKXrZZZdRSim97777KAD6hz/8gYX5xS9+QQkh9Omnn6aUUvrVr36VVioVWq1WWZiPfexjdNWqVQe5RAsPu3btogDoDTfcQCkN6tN1Xfq9732Phbn//vspAHrTTTdRSgMl0rIsumPHDhbmkksuocVikdXpRz/6UbpmzRopr7POOouecsopB7tICw6VSoX+53/+p6nbOcTY2BhdsWIFvfrqq+mLX/xipqCYOn5uuOiii+j69eu17w63ujVLPABqtRpuv/12bNmyhT2zLAtbtmzBTTfdNI+UPf+wdetW7NixQ6rLUqmETZs2sbq86aabUC6Xceyxx7IwW7ZsgWVZuOWWW1iYP//zP4fneSzMKaecggcffBD79+8/RKVZGBgZGQEAtLW1AQBuv/121Ot1qY5Xr16NwcFBqY6POuoo6cbwU045BaOjo/jTn/7EwohpRGFeSH2+2Wzi8ssvx8TEBDZv3mzqdg5x/vnn45WvfGWsHkwdP3c8/PDD6Ovrw9KlS3HOOedg27ZtAA6/ujUKCoA9e/ag2WxKDQYA3d3d2LFjxzxR9fxEVF+t6nLHjh3o6uqS3juOg7a2NimMLg0xjxcCfN/HBz7wAfzZn/0Z1q5dCyAov+d5sRu91Tqeqf6SwoyOjmJqaupgFGfB4J577kE+n0cqlcK73vUu/OAHP8CRRx5p6naOcPnll+OPf/wjLr744tg7U8fPDZs2bcKll16Kq666Cpdccgm2bt2Kk046CWNjY4dd3c7bXTwGBgYz4/zzz8e9996LG2+8cb5JOaywatUq3HnnnRgZGcH3v/99vOUtb8ENN9ww32QdFnjyySfx/ve/H1dffTXS6fR8k3PY4dRTT2Xf161bh02bNmFoaAhXXnklMpnMPFI29zAWFAAdHR2wbTvm6bxz50709PTME1XPT0T11aoue3p6sGvXLul9o9HAvn37pDC6NMQ8Dne8973vxU9/+lNcd911WLRoEXve09ODWq2G4eFhKbxaxzPVX1KYYrF42DE6FZ7nYfny5di4cSMuvvhirF+/Hl/4whdM3c4Bbr/9duzatQvHHHMMHMeB4zi44YYb8MUvfhGO46C7u9vU8RyiXC5j5cqVeOSRRw67/msUFATMauPGjbjmmmvYM9/3cc0112Dz5s3zSNnzD0uWLEFPT49Ul6Ojo7jllltYXW7evBnDw8O4/fbbWZhrr70Wvu+zyyI3b96M3/zmN6jX6yzM1VdfjVWrVqFSqRyi0swPKKV473vfix/84Ae49tprsWTJEun9xo0b4bquVMcPPvggtm3bJtXxPffcIymCV199NYrFIo488kgWRkwjCvNC7PO+76NarZq6nQOcfPLJuOeee3DnnXeyv2OPPRbnnHMO+27qeO4wPj6ORx99FL29vYdf/z2kLrkLGJdffjlNpVL00ksvpffddx995zvfScvlsuTpbBBgbGyM3nHHHfSOO+6gAOi//uu/0jvuuIM+8cQTlNJgm3G5XKY/+tGP6N13301f85rXaLcZH3300fSWW26hN954I12xYoW0zXh4eJh2d3fTN7/5zfTee++ll19+Oc1msy+Ibcbvfve7aalUotdff720lXBycpKFede73kUHBwfptddeS2+77Ta6efNmunnzZvY+2kr4spe9jN555530qquuop2dndqthB/5yEfo/fffT7/yla+8ILZpfvzjH6c33HAD3bp1K7377rvpxz/+cUoIob/61a8opaZuDwbEXTyUmjp+LvjQhz5Er7/+erp161b6u9/9jm7ZsoV2dHTQXbt2UUoPr7o1CoqAL33pS3RwcJB6nkePP/54evPNN883SQsS1113HQUQ+3vLW95CKQ22Gn/yk5+k3d3dNJVK0ZNPPpk++OCDUhp79+6lZ599Ns3n87RYLNK3ve1tdGxsTApz11130RNPPJGmUina399PP/OZzxyqIs4rdHULgH7rW99iYaampuh73vMeWqlUaDabpa973evo9u3bpXQef/xxeuqpp9JMJkM7Ojrohz70IVqv16Uw1113Hd2wYQP1PI8uXbpUyuNwxbnnnkuHhoao53m0s7OTnnzyyUw5odTU7cGAqqCYOn72OOuss2hvby/1PI/29/fTs846iz7yyCPs/eFUt4RSSg+tzcbAwMDAwMDAoDWMD4qBgYGBgYHBgoNRUAwMDAwMDAwWHIyCYmBgYGBgYLDgYBQUAwMDAwMDgwUHo6AYGBgYGBgYLDgYBcXAwMDAwMBgwcEoKAYGBgYGBgYLDkZBMTAwMDAwMFhwMAqKgYGBgYGBwYKDUVAMDAwMDAwMFhyMgmJgYGBgYGCw4PD/A6swlR46RS0fAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(8, 5))\n", + "df[[\"avg_glucose_level\", \"bmi\"]].plot(\n", + " kind=\"area\", alpha=0.2, title=\"Диаграмма с областями (Ср. уровень глюкозы, bmi)\"\n", + ")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Диаграмма рассеяния" + ] + }, + { + "cell_type": "code", + "execution_count": 161, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 161, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADK8klEQVR4nOy9eXxU1f3//5pkhmRCtskGhC0JRJRNASFAAEEtblUQ9fcRtVjLVyuitlXqUq1Li8W1/VSL+qlFrFWwVSla+/moqBFkDZKwaiEQICxCQshCNkgy9/dHvJN775x7zzl37p25M5zn4+FDMpncOXOXc97nvbzeLkmSJAgEAoFAIBDEKHGRHoBAIBAIBAKBnQhjRyAQCAQCQUwjjB2BQCAQCAQxjTB2BAKBQCAQxDTC2BEIBAKBQBDTCGNHIBAIBAJBTCOMHYFAIBAIBDGNO9IDcAJ+vx9Hjx5FSkoKXC5XpIcjEAgEAoGAAUmScOrUKeTm5iIuTt9/I4wdAEePHkX//v0jPQyBQCAQCAQmOHToEPr166f7e2HsAEhJSQHQdbJSU1MjPBqBQCAQCAQsNDY2on///oF1XA9h7ACB0FVqaqowdgQCgUAgiDJoKSgiQVkgEAgEAkFMI4wdgUAgEAgEMY0wdgQCgUAgEMQ0wtgRCAQCgUAQ0whjRyAQCAQCQUwjjB2BQCAQCAQxjTB2BAKBQCAQxDTC2BEIBAKBQBDTCGNHIBAIBAJBTCOMHYFAIBAIBDGNaBchEAgEAgEjlTVNOHiyBXmZPZGf1TPSwxEwIowdgUAgEAgo1Lecwb3Lt2JNRU3gtSmF2Xhp9iikJXkiODIBCyKMJRAIBAIBhXuXb8W6vSdUr63bewL3LC+P0IgEPAhjRyAQCAQCAyprmrCmogadkqR6vVOSsKaiBvtPNEdoZAJWhLEjEAgEAoEBB0+2GP7+QK0wdpyOMHYEAoFAIDBgYEaS4e/zMkWistMRxo5AIBA4iMqaJpTsrhahEQdRkJ2MKYXZiHe5VK/Hu1yYUpjt6Kqs1bur8cfP9+ArRWL12YioxhIIBAIHIKp9nM1Ls0fhnuXlqutTPDgLL80eFcFR6XOwthkzF69DXUt74DVfkgcfzp+E/pnGnqpYxCVJmoyrs5DGxkakpaWhoaEBqampkR6OQCA4C5mzpBTr9p5QJcHGu1woHpyFN+eOi+DI7CXadGv2n2jGgdpmx4931G8+VRk6Mr4kD8ofmx6BEdkD6/otPDsCgUAQYeRqHy3Kah8nL6xmiFZPVn6Ws40coCt0RTJ0AKCupR1fVdRgcmF2mEcVWUTOjkAgEESYs7HaR+jW2MfWw/WGvy+rqgvPQByEMHYEAoEgwpxt1T5Ct8ZeLuiXbvj70QN84RmIgxDGjkAgEESYaK72McPZ6MkKJxcNyYFPJxToS/KcdSEsQBg7AoFA4Ahemj0KxYOzVK85udonFKLFk2WXDEA45AU+nD8pyOCRq7HORkSCskAgEDiAtCQP3pw7LmqqfUJB9mTpVZ9F+nvblTwdzqTs/plJKH9sOr6qqEFZVR1GD/CdlR4dGVF6DlF6LhAIBOGmoaU9SLfGKdVYdskAnK3yAnYiSs8FAoFA4FjMeLLCocljlwzA2Sgv4CSEsSMQCASCiMGiWxPO8A9L8rQZo8Su4wrYEAnKAoFAIHA04dTksSt5OlqSsmMVYewIBAKBwLGEW5OnIDvZsGzbrPcl1uQFoq1hrQhjCQQCgcCxhDv8U1nTZNhqIZTcmmhrJkoiWtt8CGNHIBAIBI4l3OEfO42rWJAXMAopOrmiTISxBAKBQOBYwh3+CYdxlZ/VE9OG5ESdoRPNbT6EsSMQRDnRFjsXCHgJp7p0rOXWWEk0t/kQYSyBIEqJ1ti5QMBLuMM/sZBbYwfRXFEmFJQhFJQF0YlQYxUI7CWac2vswmnzDuv6LcJYAkEUEs2xcyuIhdBdLHyHWEf4AoKJ1oa1IowlEEQhZ6saayyE7mLhO8Q6Zq5ROFpZOIForSgTnh2BIAqJ5th5KIRTSdcuYuE7mCVavFk816i+5QzmLCnFxS+sxm1LN2Pa819izpJSNOho9UQjpOsWbRVlwrMjEEQhcsWIXuw8WiYgHmKhkWIsfAczRJM3i/caRavuDAtG1622+TSzJ8sJXi9h7AgEUcrZVjESC6G7WPgOZogmg4DnGsW68Uq+bjWY+nyJSmVaz3B1kpErjB2BIEqJ1ti5WWIhdBcL34GXaDAIlJ4HnmtEM4w2Vp6w5dkMh6dE/7ohqJ2GnuHqJCNXGDsCQZSTnxXbRo5MLITuYuE78OJkb5ae52FCQSZK95+kXiOaYfTwip2q44bq0bDSU0IzmGjXTYnScJUkCQdPtiDe5XKUkSsSlAUCQdQQrWWvSmLhO/AQKW8WSzK0nufB5QLTNdJTWyZhRRK6FcntrAnVtOtG4p7lZYHjznm91PC94VZbjqhnZ9GiRVixYgX+85//wOv1YuLEiXjmmWcwZMiQwHumTp2K1atXq/7upz/9KV599dXAz1VVVZg3bx5KSkqQnJyMW2+9FYsWLYLbLRxXAkEsEQuhu1j4DjyE25vF6v0wCq+t31eLkgVTAYB6jUi5cyRC9WhYFQ5kDS3pXTcjvjnayPQ+IPwh24h6dlavXo358+dj48aNWLVqFdrb2zF9+nQ0N6stvttvvx3fffdd4L9nn3028LvOzk5cddVVOHPmDNavX4+//vWveOONN/DYY4+F++sIBIIwEW1lrySi7TuEUjYeTm8Wq/eDNbxGu0ay8VqyYCqW3jYWi2aNoB7XzLm0oi8Vrxgp6br5kjxBhoP8s5/BJopUj7GIuj4+/vhj1c9vvPEGcnJysGXLFkyZMiXwelJSEnr37k08xqeffopvvvkGn332GXr16oULLrgAv/3tb/Hggw/iiSeeQI8ePWz9DgKBQBDLWJEnYrc3S84/iXeB6v3ozikxPiav50HOnausaTJ838sle7H5QF3gZ9ZzaUU4kDd/inTdMpJ6BHmyhuamYiejVydSIVtHxXkaGhoAABkZGarX3377bbz11lvo3bs3rr76avz6179GUlLXhd+wYQNGjBiBXr16Bd5/2WWXYd68edi1axdGjQo+qadPn8bp06cDPzc2srveBAKBPThBiyMW4DmPLO+1sqLG6mR6kiFmxD3Ly7DzSPd870vyoKGlHX7Fe0INrxmF7VK9bpQdrFe9n/VcWhEONGswaa+b1gCSJAkXv7Ca+LcA8Le549Dhl4TODgD4/X78/Oc/R3FxMYYPHx54/aabbsLAgQORm5uL7du348EHH8Tu3buxYsUKAMCxY8dUhg6AwM/Hjh0jftaiRYvw5JNP2vRNBAIBD07S4ohmeM6jFXktTigbJxliRmhzShpb25GW5FGVUtM8DywGIimPZ9SAdHx9sC7ovTznMlRtLSvzp7QGkNFxJxdmMx/XLhxj7MyfPx87d+7E2rVrVa/fcccdgX+PGDECffr0wSWXXIJ9+/Zh0KBBpj7r4Ycfxn333Rf4ubGxEf379zc3cIFAEBJO0uKIZnjOI+t7rS4bt9J7p2eIkYgD4EdwTglJM0YPHmOSFP45UNuM25Zu1j0+y7m0Ihxolxip00VOHWHs3H333fjoo4+wZs0a9OvXz/C9RUVFAIC9e/di0KBB6N27N0pL1SVux48fBwDdPJ+EhAQkJCRYMHKBQBAKTvccRAs855HnvVaVjdvhvePRgeHJKbFSIE/p/aB1UOfJEQolHGhX/pQEZ3eIj2g1liRJuPvuu/HPf/4TX3zxBfLz86l/s3XrVgBAnz59AAATJkzAjh07UF1dHXjPqlWrkJqaiqFDh9oyboFAYA1WVJgI+M4jz3v1dGR4K2rsaH5KM8T+Nncclt42FiULpuJFDu8CqTKJt4qJhFXn0iqsrgZ0eoPbiBo78+fPx1tvvYVly5YhJSUFx44dw7Fjx9Da2goA2LdvH377299iy5YtOHDgAD788EPMmTMHU6ZMwciRIwEA06dPx9ChQ/GjH/0I27ZtwyeffIJHH30U8+fPF94bgcDhnI3tE+yA5zzynvNQy8atMBRI0IyHyYXZgcWcR/xPxqyBaESsCkradY2tJKLGziuvvIKGhgZMnToVffr0Cfz397//HQDQo0cPfPbZZ5g+fTrOPfdc3H///bjuuuvwr3/9K3CM+Ph4fPTRR4iPj8eECRNwyy23YM6cOfjNb34Tqa8lEAgYcdpuN1rhOY+85zzU8ISd3jse44H0XiPyMnsG9HCsKlPXavKULJiKN+eOc0wivlktpWjw0LokWiDxLKCxsRFpaWloaGhAampqpIcjEJxVNLS0ByU20vI5RJl6MDznkee9c5aU6lbZsCSQV9Y0GZYllyyYGvI15Mk/Ub738Q92Eb9bUUEG3HFxqvNjVKbulER60nPB8qyEmlNFu8Zv/mQcOiV7Ss9Z129h7EAYOwIBD3YZGiwLlihTp2N24Se91ypDJVSDyS70jL72Tj+hESiQ6lWXqTvFKCc9FxMHZUKSgA2VtdTx3vTaRqzfVwstEwdlYtnt45m+B+kaxwFBpf1WP6/C2OFAGDsCAR0nGBpOXTRjlZLd1Ybl0ktvG4tpQ3KoxzHjvQsna/ZUo/xQPUYP8KFvujdkgbxwPyuk54IE6VmhGbRj83xMis+ka+xL8qCxtR2dimFZ/byyrt+OKD0XCATOJ9J6OKJMPfxYlUDu1OanJKNkeK7xhrfDL1ENvHA+Kzx6Q6RnZdP+YI+OEq0Qot730F7jeJeL2Pk8Us9rRBOUBQJBdOCEaotoSIJ0MqE08rTqs5wWSCAZJbTO3TQDj+VZsfJa8OgNyaifFePsa+0loz3zckk7zcsU7udVeHYEAgEVq5V0zSDK1M0RSkiF97rrfdbCmcPx6MqdtoV1zOTG6HlE5ATkOJdacZm1pQLtnGn7c8nnobb5tKn8HtpzQUL5rBTlZxi8U5+NlScMvXROe16FsSMQCKg4YeKysq+PFTihIszuRp68113vs2YsXovG1g5TYzDCyJCjGQ80o2RobqrKKGHVw6GdM63naN3eGkx9vsR0Eq/ec0GC9KwUZCdjQkGmKpGZhYdX7DQcr9OeV2HsCAQCKk6ZuJzQf8cJidrhauTJc92NPovUf8qK3A2yccVmPNCMkpdmj8ahky0oP1SH0QN8ljWzZOnPxWsIkp4LUjWW8llRGsqv3jKGmEDe1t6J0gMnqZ+vN14nPK8ywtgRCARMOGHickKia6QTtXnGYEX4kfW6m8kdYR0DCX3jis14KMhOhk9TFi2T5vXg8Q922RL6Y4HXEDR6LrSv1becwZwlpcTvdrLljOq9s/+8MaTxOuF5lRHGjkAgYCISE5demCaURoihjifSFWHhbuTJet3N5I4YjYEWouMxKvQaoup1PG9obcdazTmWDaYnrhlqOC6z54EEryFIei60rxkZyk9c091PsrKmiTu0pTfeSD2vSoSxIxAIuAjHxOWEUBEJs54SK/N7eMZgZfiRdt2NPivV60ZjawfTGFivvRmjQnluaOfRr/lZNpiUmjTKccnXmNZaQpv4bITVuXA0Q1n53Wgl+CScXCQgSs8FAoHjcGoHZV5PiRwyuPiF1bht6WZMe/5LzFlSigYdj4IdYwhn80m9z3rrJ0VI9ar31qleN56aOTzoGKzX3kxzT3W/K/a/02Pd3hO4860tqms853V9EUagK/E5UvB4w2gl+FomFGRG3HtjhPDsCAQCR+GEUJEevJ4SO/J7eMcgh6HW7KmxPNkWCPZakUJec5aUBlVjNbZ24JGVO4PUfHmuPSmfSK+H1bj8jKA8HJLCL4/npVOSsKGyFnEcdtNLs0cD6PIyHW9ow0Mrdui+12pJBx5vmF4Jvh4W2I62IowdgUDgKJyg6WMEa8KunUab0Ri0xoddIUGj4ypDXjzngffak/KJMpJ6EM9Nh98fZHg2tLQH9W6aNJjcG8sIFmNAa4zmZ3V5mYywOizEU6Yuoy3B12P9vlpHq5gLY0cgEDgKJ2j6GMGasGun0UYagy/JY9jUUokV1WNWVYT9a9tRSJAweoDP9LXX5hNpz40kScT+T350VW5p+12R+jyFCskgtlrSgaXrOclQNkLpiTrW0IaHKZ4oSZIirj9FQhg7AkfhBKE2gb3QrrFTNH1o0BJ2w2G0KccgN4NUsnZvDdHrEKp3ycqKsN+v2hP4ty/Jg7EDfSirqrc0obpkd7Xhe7X9rrTGJC3cpAdL09CFM4dhxuJ1Ku+SXj6THrxdz9U9rEDNM5LP5WrKefz9p7uxg6AO7YRmr8LYETgCp1bfCKyD5xo7QdMnVMJhtHVXALnIrQ8okQqz1WN2ea3qWtpRUd2E4sFZXNeeNt5QPUa0cFMcEJQjVDw4iyk36tGVu5jymYwgednW7wsuG1d63uTvRjMElddSW6GmZVeQOnR49aeMEMaOwBE4QahNYC+0a8yS6Bpt2GW0kQxHM5Cqx6wo+1Yel1dkr761HbdPyceTM4ZRrz3reEM1PAuyk+GOc6GDYD3GxwHFg7JNXWMr8rpC7XpOK8l2K7Kvadc9WB068kUFMsLYEUQcJ1ffCNig7axp1/iGV9dj84G6wOukRNdoxC4hxnlvlXEJvul5HiRJQsnu6sC47Nh0mNHDKauqw+TCbOq54hlvKIbn6t3VREMHADr9YDbOtLB4yEg5MMrnzWzXc/m4xxvaDN+r/N5m+2hFuqgAEMaOwAE4vfpGoA/rzpp2jbccrFP9HGtePSuNNjPKtmPyfCpjclx+Bjr8flXS7ljNe2RCrZoys0COHuCjvod3kxSK4Vmy29hz8vm31XjimmHc15hmCL78xV5sVjwbpDycCwfSzxXtuEZovX9mSswjXVQACGNH4ACcXn0j0Id1Zx3N7m+nsWk/vTGjlrumDUZeZs/AIv/4B7uCrpvW4NSiNGB4n1meBTLd62HKdTG7STJjeGb0NM4bzEruwXU8GaP+XO44F8qq6lWvkfJwyqvqv9cL6qCWk8tq1trj6r2X1OyVNAYjJg5yhtigUFAWRBw9JdR4lwtTGFzZ0Y6s6Lr/RHOkh8KEPN41e2qwpqImaIJVGioyeteYNgEdqA39nETb+aXDqHinQPZiTBuSA+n766O9brRkZjePcp4C3gWyMCeZ6X08uSah8sORuYa/v4ryey3dz1C1bn+uDr/EpIUjd5UfPTBd9frEQZmYUJCpem30wHTUtbQzHdeqZq+S5IxnUHh2BI4gFqpveIm2CjTepFjtzpp0jUcP9OFrA49CKF69aDu/rBTlZ9Lf9D2k3bnZrtyH61oD/96039h42VRZyxzy0rL5YB2TR49WGaSXY2OGguxkjMvzoZQQ5huX5wtUbNFkM6xKLCeh9d6Rup4fqG3GbUv1y8wXzRqB3mmJljY53VBZq9tPLJwIY0fgCCLRUTvSRFsFGmm8RmgNFb22BbI+jNXl2dF2flkpyE7GxEGZRG+JtmKIpNditiu30k9Sc+q04XtPNHX/PtSGnXrQjhvvgir52gxKA+a1OWOJoo0LZw7DnCWlTEY17zPEg/w9jbqeSxSPTt90L9Hro5Q4CJU1FTW4860tWH7H+JCPxYMwdgSOItqrb1iJtgo0nvJW3m7WT80cjkdW7rTUqxdt55eG1mvwys1jdHtCKVHqtSiPoWcsGZGbnhgwHrJTEg3fK6Hb0DDTokBu2EkTn9RLqk5NdKuE8ni9CUZewW2H64nGuhKSUc3zDPH05+LZGOhdizh0bUbmvF4aeE025B5ductyT9SGyvC3lhDGjkAQAaKtAo0nFKFnqOh5WuTF2EqvHm28Gytro8KDaLTosqjg6pX2pyaSp/6UhHicOt0Z9Hqa16M6Pq0C6IVPu1WR9QxaUhPOeJcLRQXBDTv1jJU9x8lif41tapE+Xo8eqbR/TUUNpjxXgobWboPSygo2JWMGko9LgldtmRROTvv+WihZt/cEZixeFyR4aIRW4sCIjYpQZzgQxo5AEAHMVqBFqp0GbbzPXj8C3zW06XbUZvW0WPWdaONV9vdxch4PLRTHqoKrXTi1xoDMqdOdGDvQpypLTvN6VAs8AHx9sA6pifFobAs2jLToGbTxLhdmLF4b1CahvcOPTVXkXl5PXDM0cP9X1TYHjUsPXpE+vTJ57edZWcH27HUj8F1jm2F4l4Se907ve2pTBuJdLpVHR0ZOfGZBNlLdcXHMXqBwN0kXxo5AEAF4FV0jnWxLc38/8J6x8RBuTxZP6MSpeTxW9p/i4box/fDsDedT+yY1tnXqejb0xqvMGXl05c4gr0FDaztR/0U+hjLRdWCmPblAPKX9tFATT4L9A++rnyGSN4wETZiztvk00QBiNZRZkL25aUkeqhElU1TAnmhvBcLYEQgiBE8FmhOSbXnc37w6O3ZoKbF2d3ZqHg+vcJ+eXgsvEroXwuWlVYbvnTW6H569/nymZpn3LCvDTk3vJC08BVRVJqrK2O4z/iouPYVqs1VwJG8Y7fwGC3PWYOrzJap7grQRMas/89z1I5GVkqBrRNH6iYUbYewIBBGCtQLNKcm2PO5v7bgi0cmct3O10/KkeAzEypomSwwdABiv2nEbL/wusC9u31AMHV4Yc50B8N1nPKX9MsmJblVoMNQqOFJ4l3Z+g4U5EXRPkDYirDk2WrJSElSd4rXQPGThztkRooICQYSRxd70HnyWHX44kcdLCw9px/XS7FEoHpylei0cWkpy6CQ33biCiNe7ZLdQGo/YplntHC0TCtRqt7SFXxmKkL1LevAsqlYvTMr7jHbd5NJ+FuJdLviSPGjWJHXLeTTKz9K7nkYonyGzwpxKSIKfZkOg9OeFbiiHE+HZEQgcjlPbafCOK9xaSqQ8J7k8mxZy4D2uXflTrKFOMwtWmteNBkXOjPwdlBRkJyPd60E9IRE43esJaiUQqnfJTKKrXghJ25izvuUMsx4OqbR/XJ4Pu483qZKUeybEE78zKceIJw9HRvsMmRHmJKENgep5XVO97qA2FHpNZLXwGMrhQBg7AoHDiUQIyM5xhUtLiZTn1NjajjRNbguvdymc+VOsBmJBdjIu1Fn0RvVLQ4q3h45mTB3KD9UbVtGRDB0AqG9tN11arQcp0VXZy0t7n5EMI+UxlOeK57qRzvvjH+xCk6aKTfuzEXpVaXrfjfQM6d0Ps/+8kavRqlbHSM+oJhlnpCayJKPRSPwyEv2yhLEjEEQBdrfTMFvS7tQ2H/p5Tl15DH+bOw4dfonp+yrPjdxXKvi49uZPsRiIe6vJOR37a1uw9fFJqgXSl+QhqgGbqaKTJCkkdV29FgXK76x3n8midzTM5r0p82VIf88TmtOTWTDzDGnvB55Tn+b16OoYnWw5E2RU6xlnSvSMxqdnjQySF/AlefDMrJHsA7YIYewIBFGAXSGgUEMyTm3zQVukO/ySYXIlQD43w/umGv5NpJKcV++uNvTAfFVRg8mKPB+SJ4Ak408Lj738xV5iqTgP/XxeapdzvfuMVb04VOkD2t/zKB4rDUTZ8AwF3karDa3tWKsx3LTaTVpoRp+e0UiSF1DqAoUTYewIBFGE1SEgq0IyTmvzYUWeE+nc0CqKePKn9LxpPF42+b1rdhvngJRV1QUMCiPRPF4Zf5qoHgs8DTuV95mVOkS060ZLAh6Wm4odR9iqzV4u2avSwyG1+eB5Bs2ED7UeKfmcrdlTg05J3+PJ6+lzQhWpjDB2BBEhUkrAgm7Muvaj4dqFmuekG7b4/lAsuip66HnTSH2I9ITheLtnjx7Q3d6BpySYtriZLVtWYrZhJ68OkX7X8gzq5x5taDX8/c1FA1FUkBnwOs16eR0xcdkd50LZwXrVa0YJziwGgZWCktreWFoPr5WevnB7QYWxIwgrkVYCFnTD69qPtmsXSj4R7dwMzU1VCeTx5CnpedNIfYj0hOFOtZ5B+eEGps/zJXk0YSL2kmArFlL9qh4gVdNzS3k/0YxqXm/N7uOniO/bfZzFI2OcFKMUYjSqSuPxYgFdz2BVbTO2HlYnkSvPzSGLZAe0rKmowby3t2DZ7d1hTVrlVllVPfPxw11FKowdQVhxghKwoAvexSIS1y4UL1Io+US0c/PSTaMBIOi4tPEaedPIO/zgnf/avTXM+SG+JA8+nD9J9Rqvdg6xTQhHjopeVU+qlxy+ufOtLfDEx1GNah7v3erd1aoyeyUNrR34x+ZDyE4NVgOWKcrPMPyOSiFGqzSPAOBny8tVYoXpXg8Kc5JV3pOBmV7u47I27Fy/LzisSS5/T2duXBqpKlJh7AjChlOUgAVd8CwW4b52VnqRzOQTsZwbpaIt63itWAhpRsZ1o/tiQGaSbjk5L6TFbdLgbGw7XE9sxOlL8mDFXcWGVT1GXdo3VNYiTuNI0TOqWb13Ww/XG37HB97fHvi3nmE1oSCTmOukFWK0MqykbdhaT+gddrDWOMSmxIyO0SaN0rG8iVizpzogW9Dhl3Db0uDrSSJS1ZrC2BGEjXA3gxTQYV0swn3taF4ku/KGWLRHFs4cHiROx5pkauVCqIckAT+75Bzd3/PK+JM8ZJIkqXRWlMieKFK1G2vzyeDWB2SjmrTwkgy8C/qlG36eEj3D6tVbgoUG9YQY9ZrmWpHjFAokHaMdhxvw+1V7dP9Ga1uTDPuxeT4Y8ez1I/BdQ5tlBrgZhLEjCBtOVQI+m2EN9Vh57WhVSLQqjhteWa/a3dK6O7MYRkaeGa32CKncmTXJ1IqwEI2CbPJ3lM/DiVNthn+vl52i9JDRjBWa8WvW6DObR3bRkBzmRql6hpVEyXWiGcpmlI6t4P7p52B43zRdHaOBGUmGxs54jdIxaSNSdrAe7jgXMSfJHefCA++pO7pHIs9PGDuCsOFUJWABPdRjxbXjqUIyQlvuvLaCnMS7cOZwPKrJE9GbaGmeJFq5sxHaBfqBy8/BzMUnVFtmlwtmmm0TuWpkrupn3sotFhl/s8av0iAw4/0IJY/srZ8UYcbL65iThLXXTe+z5r29JSgspGco3/TaRi5NHCv44chcw+eTluB8uK6FqZxc7/7Vnu9I5WgKY0cQVpyquCugE+q146lCMkK7GPpB7u48Y/FaQnVT8ERLy0dSao+YybnRLtA/WlIatAB0+rt2wJIEaoNVXkjnXY9xeT5bNh0kg2tCQSaKCjJUi/+kwmx0+P3YVHnS8jyyZz7ZzdUpXdtVXu+z1u+rDdLh0RPps/jSAug6N8mJ8cQEbG0+EQlaPtOjK3fiYK11SddCZ0dwVuBUxd2zHZZQTyjXjrcKKVT0q5uCJ1qaAaPUHrlwoHFughK9qiCjsuTkhHg0aTpo86LMueH1RLnj2Xpof7T9qOHv/739KO6+uDDwM8ngKt1/EsWDs1CyYKrqfmpoabc8j4znPJCuG6/eEMlQlr5PvrYavWo3Uj4RCVo+k12l7UJnR3BW4DTF3bMVM1VPZq6dleW4VqCcaHnyR8qr6uFL8uhqxtAajNJ20c0hGjoAcOLU6YBIH+95J5UakzjZfMZ4DE2nA/+meWAAdTIza9IxzSxzK0q6eM6DVV3lAbWhTGs1wgOpt5vZjQgtn4kl6mcm+dqtLbmzGWHsCGwnGhR3z1bCpZ1jZRWSFVUtyhCFXj4SCdljNDbPp9IVKR6s30hRCW0XzRLloH3/FxTJpjyeKBmWHfd5vY0X7mG5aYF/0wyNjZUnVOfMyABXJqHT7gFlqJB2//E0hjXLTsZ2Ekq0ieuy10mvoom0EWGZfz+cPwnXaBp28ngZtSKbLByuYy+ZtwJh7AhsI9oUd882wqmdQ1Ne1XpKjNBOrF2elnZ0ahYFsmovOaGalI9kxF3TBiMvs2eQYZOW5DE8ZzxVQXqkJXmQn9kTZYfqqe/9+mAd0r0enGpjP78slXU5aYmGv89KSQj8m2ZoPLxiZ+DfUxQ5O0pISei0cmcWg1a+H/qmew2NMmojUNhTVj40N1VlJPHkyPHMv/0zk1D+2HR8VVGDsqo6jB7gg98v4VYD7Zz/V5yHEy1nUDwoC2MG+nSlCPQIr19HGDsCGxFqyc4m3No5egnOpHwDw+No1IvjXcCMxepeRKleN96eW4SnP97NlFCtzUeKd7lUIQgtsoFj5vyQdtGpie4gATk9Gls7kNgjHlMKs5nOWX1rsCdKz0Bkrazjqcbi8ZzpfR9SEnrZQb2QIrtBOy4/Ax1+v2qhNtMTasxAX8jd30m8NJus1M2Cmfl3cmF2wGu0vPSg4fH/su4AAGBl+VH4kjwYPSCdq11EvAhjCWIBoZbsfMKte2SU4Kx9/fEPdlHL3OX/z1lSGlR11djagac/3s2dx6A0YOySSUjxujGib7rq+bigvw/tnX6U7j/JFEpbv68WJQum4tDJFpQfqkNDczteX39A92+uG90Pz15/fuA8ZCT1CKmyriA7GRMHZRLLqCcOCq4A4vWcsRAIKWoMDVaDVnmfKSEZBDTPkPK4NJE+FvTudVasmH9rThnnZSmpa2lHI4OnUQmtuarVCGNHYAtCLdn5REr3SM8jonydtcyddVLnqRqjKSibkUlQHldvgS0qyEDx4Cxmg+Ce5WXMeSASAElxja2oitSzyUiv0wT5QuGui8khxdW7q4MaaALqhp08BgHtfpCPy1bPpibN61aVjocqx2HF/Jud0oPrMzs5L/HoAfz5ZKEgjB2BLQi15OjAqbpHrIux2Uldm7TJo6DMA6ugn9JbI4+bFkr7hiMhdMWWw3h4RbCKrZ4hyNLQVK+MekNlcEUXj9YP0CWyyKpJ445zqb7HwdpmzNSENeWGqP0zu+cl3nuH1WCj5e4M1+ScTRyUCUmCpWXpVsy/tIaxoRLuthHC2BHYglBLjg6crntE88rwlB8D+kmbpKRYPWE4HngX+QO1zZg2JMcwlCYnw7K2l0jzuoNyKeTv9sQ1Q5mNPp6GpmY1bmSG56ZiB6PX6oimqkdr6ABdYZZrFq9F+WPTA6/xGgSsOTC042pzzlhDaTxYMf8ahSqt4KuKmrAaPGY8bgIBEy/NHoXiwVmq15zgNRAEk5/VU7XIRgs85ccAecFaW1GD9ftqg3JllOEMM8iLPI8icl5mV3ilZHc19p9oJj5DQ3PZ9VrG5vnQQKh0k7/bxS+sxm1LN2Pa819izpJSzHurTHfhVUJb0ONdrsB3MKOxxKM0rHyrkWhjXUs7vlIYXbJBEO9SG8TxLhemFGYT1ZpZ7hGW48rPm/T931t97wHAwpnDkOpV+zNSvW48NXO47t+s3l2NP36+J3CeXrl5DKbYZJCUVYW3T5jw7Ahsw+leA0H0w7M71/Mw0Awms/llvIt8mteDxz/YRQ2lGXUcB4BnrxuJ7xpbMXqADx1+CbcZlA8rWbu3hugt0mtoqldC745Th99oJeIkeEJ04wsyA2G3NbuNPUhlVXUqbwItjCsf91iDcfPUA7XNgf5RLPleZo/Lcx8+unIXMXH/kZU7gzxGRqE/5Rx+rKFNFQ4NBZGzI4g5YkEtORqFEaNxzLzwuOvNqjibzS/jFVJsaG3H2r3qxVovlEb+zl0qzg+8vz3wGo9qLy0spg1NGbW9UKJXIk5CFtFj1awZl+cLMhCNyE3zqn7W25DVt5zBnCWlzMd9uWSvqrRfL9/LquPq6ZTJSdl9UhO5kq9pob+q2mZs//64VpDu9YicHUHsEc2LbjQKI0bjmEOBNcmaZnzoqdWavWd59GVktAYHT2VQqteDBs2CxeMhoaE0+ngMR70S8VH90rDjaKPKOOJRXplSmI32Tj9XTpRS7FCJdkPGmmslN+FUGiRAl17QnW9twfI7xoeUqL1Fo92jl8tD8swYoTRcaaG/YY99jOYz3UrK7jgXOv3qdG1eUcXCnGSOd1uDMHYEthELi240CiOaGXM0G6Ss4VKj0EtKohvuOFeQMKFRfgMLVunLaENpwSKIwJzXg8NVrEnMSrQLl2z0SZIU6Lllpv2HtkR81svrgru/c4y3tb0jyMigweKl40moHjUgHV/riAlqq9LMJGqzGr88hg6gPg/Ufm1n1C0jOvwS3HEu1bXT61avx+aDdaLruYBOtCxM0WgoKIlGYUTeMdttkNp1r5KOSwuXGoVeTrV1QCvoqpffwIORkB2pwkqPeBcChobyO8rfuWR3tekxaknWqDknJ8ajrb0zSGV4QkEmkwiijFJ12sibAHR5eGhH1Xo9jFB66fT0d2RoXqv7f1AIP7pyTg7XteoaO4C6A72VzXCV/cSqaptDaj9C69dGosMv4bnrRyIrJcGwW70Rouu5QJdo8pRYaShEyriLRmFE3jHbZZDada+GclzauWHdRZuBJpg4qTAb2w/Xo75VL+G322tjpp0BD02athUNrR0oPRBclk8SQWRtQ0HzJgzI8OLgSWOFXR6vVfHgLDxw2TkY9ZtPiUm4lSeaAgYQ7Vy+sKoi8G9aOEZpP1tZ+qzsJzYww2vwTjKbFEbYRYqO8zwcbWjFDRf2D/zM6m2UCbfWmjB2ooho8pRYYShE2riLRmFEK6qTrFjk7bpXQzmuWYPACqNWa7BrvT1GFVbaUI9eOwOrNFFYci9IIogsbSjk89Cbkui68NoRkCSg/FAd4l0uPP8pX/uFCQWZ+N2sEaqwptbQAbpyUiY/V6J6zZfkwbg8H7YcrKd6rfZVNxn+vqigW5jPTKNQllwYmlFIQluubwa9aqpwtFwxgzB2ooRoC6lYYShE2riLRmFEK6uTzC7yZu9VFtXeUJ4BvXNDW1BCMWqNDHblosAThtL7vnrrcprXjaa2Ti69H1a0Ioj1LeR+Sg2tZ4KMIG3eh0y614PX1uwPKc/J5VIvurSwmZK6lnbsPt7E1LrD6L7R9ggzY2wP1agtW8V4hRFG87Lp0TfdSwytKnGSQrswdqKEaAuphGooOMW4c9LDyopV1UlmF3nee9UO1V499EJIpORKK4xaq1R3SWhLwfXaDTS0dgR1PbcKrUK13vedsXhdkOZLJyHR1ZfkQV5GUsgJ3ev3qZODeRf0htZ23D4lH0/OGMakLzO8b6qqT5l8/4aKUm3ZKo2bsQN9qnvaTM4OAGqneMBZWmvC2IkSojGkEoqh4BTjzkkPKys81Ul2eK4iJcPP8gzonRtSciXtXrXSE2WmTJ2nFPyuaYMR7wLKD3Xlpdy7vDykpFYZpaFi9H1JnyUhOETX6ZdQfrgh5HEB6jnCzIIuCxDKTUON8Hriia8r7xGeBGXlMyh/tjaB3iwetzp76KIhOYh38TfyVELzuDtBa00YO1FCNIZUQjEUnGbcOeFh5YVlzHZ4rmj3qrKEWZbL18JjEJCOS/ve2nPDc6/a5YkiXQtfUpd2DqkUnCdE8vIXe1UaN+PyfNh9vAkNioToVE0VFgtmtXf04P18I5Rep4uG5OjKDuihzEkxuvf0dHamPPeFqpP5hQPZFYOLB2dh4cxhXAKErGi9XpU1TSEZOoBz0ymUCGMnijCzMDmhTN2MoRCNxl00YpfninSvjsvPQIffr3J/0xR+WQwC0nHNJrKz3Kt2eaJI14KW8Ctj9LykEhqBbjlYj+LBWbh9Sj7Kquq4W0uYMbjCjdZr9OH8Sbhm8Vpmg6efT/19SPeekc5OgyZsV15Vr5un5EvyYMVdxapncM6SUi4BQh5jVflcbdp/kvJudpyWTqFEGDtRhB27TycTjfky0YrVnisjfRklNIVfFoPAjq7RelgRmqIZ7NprwfrMk56X0QPTibk68nifnDEsoDXDU5XDY3BplanDhfbe6Z+ZhPLHpuOrihqUVdGrvGhCjnmZPbGxstZQZ0dJpyTpigfJBti078vAzQgQaiUDjFCfG7YWHvzH7cYJm25h7IQZKy66lbtPJxON+TJG8Fx7J0wOViDfq7pNOL+fRPVUe2kGQbgT2a0ITZnxxrI88xJh0Wpt7yS8kzxeM6XRWkjfd8xAe5KjZXjbfEwuzMbkwmyqcadNvpZRXot/bTtibtAElNfCTEiQ9/rJ91nfdIpHjsHQ0TvnTtp0R9TYWbRoEVasWIH//Oc/8Hq9mDhxIp555hkMGTIk8J62tjbcf//9eOedd3D69GlcdtllePnll9GrV6/Ae6qqqjBv3jyUlJQgOTkZt956KxYtWgS32zm2XDgvulMqmawiGvNllPBceydNDlYaXLTJW1ti69REditCU3Z5Y0kbHB7PGU8YSm/jRDK4bKh4B9C1wI7Lz4AnPs6U95dmHJDCTVqyU6xpjAmYvxZmuGdZGXNJO4sRpXfOnbTpZrYGZs2axXzQFStWML1v9erVmD9/PsaOHYuOjg786le/wvTp0/HNN9+gZ8+uC/+LX/wC//73v/Huu+8iLS0Nd999N2bNmoV169YBADo7O3HVVVehd+/eWL9+Pb777jvMmTMHHo8Hv/vd75jHbDfhvOhOqWQSdMFz7Z0wOdhhcNHUYx+84lz08yU5PpHdqtAUiVCuvVnPmTKpuyA7GRMKMnVL2JXobZzmvVUW9PesYR5eUr1uPHvdSPTPTMKaPdWBSjNaN23ZiP/miHHV14lTp6ljKMrPYB6vnD+l7f5Ound4qvPMhAmtaBD79KwR6JWWaJsultUwGztpaWmWf/jHH3+s+vmNN95ATk4OtmzZgilTpqChoQFLlizBsmXLcPHFFwMAli5divPOOw8bN27E+PHj8emnn+Kbb77BZ599hl69euGCCy7Ab3/7Wzz44IN44okn0KNHj6DPPX36NE6f7r6RGxutF21SEu6L7rRKprMZnmvvlMnBDoOLZRcdLYnsduSShXrteT1nRQUZaO8MTuru5Fw1WbV+7KCxtQMPrtgOd1ycaa+pEUcb6MrERgZimtetSlIuHpyFp2YOxyMrdxLvHa0nlXSfTSjIhMsFlVL20Fy1xg8LVoQs+/q8hoal0zbdzMbO0qVL7RwHAKChocvSzsjospa3bNmC9vZ2XHrppYH3nHvuuRgwYAA2bNiA8ePHY8OGDRgxYoQqrHXZZZdh3rx52LVrF0aNCp6AFi1ahCeffNLmb9NNuC+6qGRyDjzX3gmTg10Gl9UGuHJhCHciux25ZKFee9r51erAfPtdIxo0VUlrK2q4F8G8zJ6Ba7HTIn0cAMjL8OIApQ2C3LJC6zXk8ZoaodcOQcsz143ADE3XcbnnVockqe4RksJ0e6cf897eojJgphRmY+HM4UHv9cTH4aXZo3Cy5YyqEeitjFV0VkIL8zlt0206qaWjowNffvkl9u3bh5tuugkpKSk4evQoUlNTkZxs3ByNhN/vx89//nMUFxdj+PCui3zs2DH06NED6enpqvf26tULx44dC7xHaejIv5d/R+Lhhx/GfffdF/i5sbER/fv3J77XCiJx0Z1UyRQrybZm4Ln2Tpgc7DK4rDLAjUJs2w7XMYcyrMDKXLJQr73R+U1JdKs0dgAQy695DJ14lwtFBRl4/INdluvAAMDSnxQB6Lrfjje04SED5WDtuHm8pnr4kjzM99CjK3cFqUM3tnbgkZU78ebccap7hGRwkbxCXarTa4OOqzTk5ONuDKM3TYleAreM0zbdpoydgwcP4vLLL0dVVRVOnz6NH/zgB0hJScEzzzyD06dP49VXX+U+5vz587Fz506sXbvWzJC4SEhIQEJCgu2fIxOJi+6ESiYnJdtGCp5r74TJwU6Dy4wBvnp3daAb9eTCbJ0QWw2mPl+iWsCj7T6z4trzlJ6HSqrXjfYOPzZVsWu0aHVg9FR7Rw9IV1Wh0dSL9dhYWRuY+3iqm2SvDAtWhKlJ6KlOkz2s/BngLA1GaRyua6WKeC6cOSzI65XqdeMpgtfKbkwZOz/72c9w4YUXYtu2bcjM7G4odu211+L222/nPt7dd9+Njz76CGvWrEG/fv0Cr/fu3RtnzpxBfX29yrtz/Phx9O7dO/Ce0tJS1fGOHz8e+J1TiJSnJZKVTE5ItnUCPNc+0h45Ow0uHgP8YG0zZmonSR3RtE4p2FPhtPuMxbsZ6rUn68CcsMXYaWhtD/IWGTEuz4d/3DkxoHEzeoAPL5fsI3o1EtzqkJtZ/R5lHymaeKWSEX3TkerVN5J5WkCEWk7Octyi/EzKu4MZlNMTFdXNIY1BeX71Nhc0r1c4MWXsfPXVV1i/fn1Q8m9eXh6OHGHXHZAkCffccw/++c9/4ssvv0R+fr7q92PGjIHH48Hnn3+O6667DgCwe/duVFVVYcKECQCACRMm4KmnnkJ1dTVycroEmVatWoXU1FQMHTrUzNezBTOelmgO/zgl2dYJ8Fx7J3jk7Da4WAxwraED8LUScMp9ZuTdrG0+rXq+rbr2yvPLE+Lg2e2bFQnsm+5Fh1+CJJHDN0DX69rrRron+2ck4WAtmwHBU32kZyiTruXYPOO8HrvKyUMNac+4oC+uGpmLA7XNiHe5MOf1Ut33stwXpHPmtDXAlLHj9/vR2RksVnX48GGkpKQwH2f+/PlYtmwZPvjgA6SkpARybNLS0uD1epGWloa5c+fivvvuQ0ZGBlJTU3HPPfdgwoQJGD9+PABg+vTpGDp0KH70ox/h2WefxbFjx/Doo49i/vz5YQ1VscIy0cdC+McJybZOg8fLFkmPXKQNrtW7qy1pUglE/j676+0yVeIpIPdNKlH1pVI+31Ze+9w0dh0Yve7vVlB6oA43vLKe2Rt0oLYZkiSpjEHtPfnX9fvxxvqDTMfjMc70FmOSp3oLh3erIDs5qEJLDznXqr41+DmYOChTNS4zHqOs5ATVfabnzS0qyAiqdiNBOmdOWwNMGTvTp0/Hf//3f+PPf/4zAMDlcqGpqQmPP/44rrzySubjvPLKKwCAqVOnql5funQpfvzjHwMA/vCHPyAuLg7XXXedSlRQJj4+Hh999BHmzZuHCRMmoGfPnrj11lvxm9/8xsxXcwSxEP5xQrLt2U6onsFIGVxbD9cb/t4F9iyFSN5nlTVNQYaOTINmEVM+36TrZvZa0nbkWq0UUvd3I3i8QTx6Oy+X7FWF32RjUHlPThuSw2zsmEFbVm+kY6SHMm9IkiQmQwfo8qS2nukgGodaO9SMx6ioIJO5ojEtyRMwMmnJ4spz5rQ1wJSx88ILL+Cyyy7D0KFD0dbWhptuugkVFRXIysrC8uXLmY8jMeweEhMTsXjxYixevFj3PQMHDsT//u//Mn+uk3Ga688sTki2jRSRDj9Gu2fwgn7phr8f3jcVOxS6IqydwcPNpv3sIST5+b7h1fWqRZ6kq8JzLWkLTlGB2ktg1HvM7K5fhsVADTQuPVivep202btoSA7SvR6i98MKrOjorsxrKcwxrlK+f/o5GN43LWAYKTWQlJDCfDykJMQHVdHJ95SypF15fGV7FiOU58xpa4ApY6dfv37Ytm0b3nnnHWzfvh1NTU2YO3cubr75Zni9XqvHeFbhNNdfKEQ62TbcOMXIiHbP4EVDcuBL8hBDWb4kD/51z2RTncHDj3FpLgltWESvLNnoWiqNbSsUn1l3/buONBg21mRBr4u43mbvX3cHdzJ3x7ngl6Sgflkk9WISdnV031ttbCi40N0ItITStyuUxOdTpzuxdq/aQCWVtJPgvZ+ctAaYMnba2tqQmJiIW265xerxnPU4zfUXCpHO/Qg3VhoZet4hmtcoVjyDH84PXsSUJcFKr7B8n5lpGWDnPcnTSkCGJbdE71rqGds8qr0kaM+xbBhtp4Qf9fjb3HHo8EvIy+yJA7XNuM1AIE+72UvxujGib7omaTgjyBump15M8pzZ1dGdJwvKSn0uEtox88wPPAaMk9YAU8ZOTk4Orr32Wtxyyy245JJLEBdH63wjYMVprj8rCDX3I9JhIRasMjL0FqyFM4fh0ZVk17PSaxQrnsH+mUkof2y6qlR5cmE26lvOYM6SUuqC5YRGqzy9pszonmivpV4y9IMrtmPZ7eNVC44vyRO0YNHOA+05poUftblW8pymNExpqQ3azR5pg1G6v5ZYOp7q1V94WRZj0iJvplWDHpnJ3QU1VuhzmUGZY2RlxWgkCy5kTFkpf/3rX9HS0oIZM2agb9+++PnPf46vv/7a6rGdtbw0exSKB2epXnOGWz68yAvbxS+sxm1LN2Pa819izpLSIJl7J8BiZLCg5x2asXidrtdISSx5BgFgcmE2fnbJOYEFUU+BlrTI3/nWlqDjGXnf7ODVW8ZgisbLNHFQJiYUqLVRRg9ka02gRKlga5QMvX5fd47HtCE5yM/qact5kMOPJNK8wYrEVvUT0y7wJN0l5f2gPA8yekZWZU0TSnZXY/+J5sAiX7JgKpbeNhYlC6bixRutm5PHa+4JnnWA9F4zPLxiB/NcSzqPTsaUZ+faa6/Ftddei1OnTuG9997D8uXLMX78eBQUFOCWW27BY489ZvU4zyqc5PqLJNGUe2KFkWHkHWJVU41Fz6AMr+S/NpEzEiE+o2dZ+9qcJaVcu3NlbyJaMvSmylrbzoPS82oUfuyfmUSd0+wU6ZPvB2VJuy/Jw+1J1XopWL0q8S4XkhPdQZV4QJd3Uns+JI7Al/Y+o1VNseDUudYsIcWfUlJScNttt+HTTz/F9u3b0bNnz7A22Ix1os1ythL9XVv3hOwkZCMj3qVOSo13uTClMJvpGpqt+NB6jWLVM2jm/ChF9azyvpmB9CxrX+PdnasNaONkaAndXopN+41bPLCeB5Ln9cEV23Fub7VasVKRmDan2Z2rcsebX6vGe9FzJUGG35qKGlz9p7XMni/SdZtQkImJg9SemuLBWfjo7klBnr4phdl49ZYxQcc1432Tz+84E/liWpw615rFdCNQoCtR+cMPP8SyZcvw8ccfo1evXvjlL39p1dgEZzHRmHsSauWB2Z2H1msUq55BM4ub0gRweoiPp+xb66WjJUOv2HJYVQZtBOt5mPdWWVA+EimURtMQUmJ3rspeTem0nu4N6XU9zxeP9w4A07MZqvfNioRqGSfOtWYwZex88sknWLZsGVauXAm3243rr78en376KaZMmWL1+ARnKbSFn9ZxNxLQjAzaRE9LUNUmsfKUD8cCZha3IkUehNkQH0+CvBXJ9Kxl30qMkqHTvG6UVdVTP5cn1FlZ08SUeA3oawjpJUSH2kvOCCuEofUWf9LzpvcM0hKxrdjsWZVQHelNgFWYztn54Q9/iDfffBNXXnklPB7nC5UJogN5sTje0Gb4vg6zzXnCgHaCY60Aonkexgz0qRRVYyE0xQtpAk/zeoh5EFpZfb2/1zuPPJVbdlV58RjQr94yJui7jc3zMTcC5bmfaKEwEloNIb2cEKPvrDUmSe998L3tKD3APz5WQln8We8TKzZ7pHNjJFaoJRby/JSYMnaOHz/O1QNLIKBBmgSMiKbdBmuiNc3zEIuhKV5IEzhJVFBeQIDgBZL1PPIkyNutscRjQCtVcGm6Ndp2EUZjUMO/2eDVdlF+Z5qRoHxvvEVeX15PKgt68gDz3t6CZbePD7xG8/LybPZYEqrj0PVsKRPLY20zZcrYSUlJwb59+7B06VLs27cPf/zjH5GTk4P/+7//w4ABAzBs2DCrxymIcUiLBYlo223wxt5pnodYC02ZRXseSAYMSZNHr6JGC891s1tjieQdohlX8ufRwiXadhGsYyjKVyffGkHTEGLRdmE1JmnhNdaclXF5GUj0xFuq/MsqDwDQvbzxri6VZTObHtIcM4nSLoIHp+qimTJ2Vq9ejSuuuALFxcVYs2YNnnrqKeTk5GDbtm1YsmQJ3nvvPavHKYhheEqKo223wRt7tzK52KmTjl1oDZhQvC1WlkDr5Vdorw/Pgs5qXPHmKRmN4YlrhqraUEwclElcvLVhxdEDfYZNQJWJ0yTDiuf70q6FNmeFJkhppSeVJg/w0bYjGN4vndLmo0sccc7r3d463nCp0Rwje8nM4JR2OXqYMnYeeughLFy4EPfdd58qnHXxxRfjT3/6k2WDE5wd0CaoRbNGoDfB1R4NmK0ACsWD4/RJJxyE6m2xsgRae41J10cvt8bMgq41rljzlGjnTJnrMaUwG8/MGhnUfkGvoSSrhpAs/rf8ju6QDs/3pV0Lryde9bMnPo6pAaYV1Jw6bfj7F1ZVBP6t1+Yj1esJEvozGy612kvsdF00U8bOjh07sGzZsqDXc3JycOIEPRQhECihTVDjCYJbdmKlRyQSIn9On3TCQajVLFaUQPN4T7TJu0bj5Q1xsHoLeXSM1u09gUdW7mT2EPBUTWnF/7TaVVpYO23TuqnbPcdkpyQyv5d0fuNdUHl0ZJzQ9y4aevKZMnbS09Px3XffIT8/X/V6eXk5+vbta8nABGcPTlH9tcsjYnfnX6VxJn0/uWhx0qTDg1nD0wpNnVBLoHm8J7Q8ErYF3TjEQdvJ8+gYae8n2rXRGlw7DzfghVX6HdLveHMzKqq7xex8SR40trajU9PJnLXTNm83dTvgaQxLOr88ndCVmG0qzEM06KKZMnZuvPFGPPjgg3j33Xfhcrng9/uxbt06LFiwAHPmzLF6jIKzgHAaBFZU3/Bgl8gfyTgbnptq8BfOmHRYCNXwtMKA5rluVnlPWCuASM9LqCEOMzpGvPdTVW0zth+uR0PLGcP37a1Wq/Y2tLQzVwuRrgVvN3UzsAgmsjaGJY2LxYBXjkG/FcZwPKoTfjS7qYsGXTSXREvXJ3DmzBnMnz8fb7zxBjo7O+F2u9HZ2YmbbroJb7zxBuLj4+kHcRCNjY1IS0tDQ0MDUlONFwuBvYTDINBLgjTSnyhZMNVxRgIpD4JW+eLE70GC9N2UJfgsNLS0c3f2thvafTZWo6VEGy8txCGjd921CzTpnBnBej8drG3GzMXriD3eePjb3HHo8Evc84OdzzePYR7q+dV7LsblZ8ATH6c6ri+py/jVGs+pXjcaWzuIz5YyCZ3nfJTsrjY0JpfeNhbThuQwH48H1vXblGenR48eeO211/DrX/8aO3fuRFNTE0aNGoXCwkLTAxYIgMglzUXSDWvGnawbDvn+/9oS22gq2bcq/u/EthlWaymZDXEYLdBmW1YYYYWhA3Tpy5hZNO0MlfN4hENpCQLoe8A7/P6gMeg1DzZqKqxNQjcytJXzltNbsQAh9sYaMGAABgwYYNVYBAJL4Vk0I/GwhhKq4S2xjaaSfasNT6dpE9mhpcR7/7Lo9MhjCDXEvHp3NbOhQ1N8tlpfxgrtHDOGudnzG6oqMg96BpvevHWhjsQAqaN7JGA2du677z7mg/7+9783NRiBwEp4Fs1oq5qiLW4vzR4NAI7xaPAQDbtEPVi8dHZ4nHjuX94FOtTxbj1cb/j72ybmYcqQ7MBxZ/95o26Pr1D0ZSQTqs80rDDMzZxfpbFE8+qZRe9+0Ju3UhLJ5gSlmC5sMBs75eX6beWVuJzyzQRnPbyLpt1J0krs6mqsXdyiyciRYfluThNMNOOls9rjxHr/ml2gzY73gn7phr+/+LwcTC7MDvyst4RoO5HzFg/YUYBgpWFu9vzyVNHp5ewYobwfjOatekJ/OiBYHTpSMBs7JSUl3Ac/fPgwcnNzERdHy9UWCKyH11sTzhwPu7oaR1O4ygi977Zw5nDdFhCRFEx0grYR6/1rtnLGrIF50ZAc+DSVVDK+JI/K0DFqqaCFJ4fL7OaCpcIq0rIZNCkCbQUbSazQCKXBxqPFpMQJVaAh5ezQGDp0KLZu3YqCggI7P0Yg0MWMQRCOHA8rdoROTMC1Cr3vJlejKDFjVFjpGWJZSGWBvHBcI9r9y9tk0gr9qQ/nT8I1i9eqFl5fkgcfzp+kep+ZxZRFX4Z3c8HznZ2w6SCPQb/fldkkaR4vkhInhJ5tNXZMVLULBJbiVIPAyh2h0xJwrUT53ayo0rJDOJK2kN6zrAw7j3Yni0faE2V1MjML/TOTUP7YdHxVUYOyqjqMHuBTeXRYx8YyXjP6U1pvVqgVVuF+Hs30uzKTJF2QnazrpXPHuSBJiKgwrBG2GjsCgVNwokHghB1hNGFF6M+OcBMtLLRLYehY8XmhYnUyM4/XanJhNtHIoY2NBE87jm8010CL0ptlRYVVpOAZg9a7yWKwVdY06VbWdfiloGo6J81nwtgRCCKEE3aEToIWWuLtCUU6vpWtNOTxHmtoM3yfdsm2skWB2XCcVcnMdnitSGObOCgTkgRVlRZXOw7KZ/LkpTgh/yQUjLybNGOJdm7umjY4oFjttPlMGDsCQYRxwo4wkrCGlsz2hJKxahEjjdcMvL2MaGPgEYFj3clHwmtF2gTIrQ9oUNtxMIhtRrP0AQt2Sl7I95ET5zNby6REGbpAIKBhNPlqeWn2KBQPzlK9ZtQTSolVixhpvCRokysp12TOklJc/MJq3LZ0M6Y9/yXmLCkN+m56Y9A7Z0bHzc/qiWlDcnQXJ5pHxMhrFSrKsbF+X9o1HjPQp/pZLy9lSmF2ULf1eJcLUwqzHbmQsyJ7vrQhQtbrFs3nxlZjRyQoCwRnB5U1TSjZXc29yPFOvvKuv2TBVCy9bSze/MlY1Gn6/+j9vRUTtd54SUwqzMbEQZnMn8e6oPOeMx7DSIvZ6psDtaEbOzIs31e+/1zfn1u9c/7unRMD907Jgql4c+44oieMZFQ7Kf/ELCzeTRLK53vhzGFI9aqDQqleN56aOTzovU4ipDDW3r17sW/fPkyZMgVerxeSJKm8Od988w1yc3NDHqRAwIrTxOZinVCrm0IVuOPtCRVqUjhtvE/PGoFeaYmGjTV5ck1I+T20MWysPKFqJWCHeKU2HKTFylAPNW9oeZmqNcrEQZkYl5+hm9/DEmaJ1Xw6Xu8m6fn2JXnQqBEQbGztwAPvbw9qRhrpykMlpoyd2tpa/Nd//Re++OILuFwuVFRUoKCgAHPnzoXP58MLL7wAAOjfv7+lgxUI9LCjpFhAJ9TqplBDS7x/H+oiRvu8Ik0fIKPPM6sDQxvDwyt2Bv5NK7k2K145aXA22jv9KN1/0vZSY9r31VZabao8ieLBWShZMJV4jXk2RE7NPzELr+QF6fnWayS6obIWWj3KSFceKjFl7PziF7+A2+1GVVUVzjvvvMDr//Vf/4X77rsvYOwIBHpY7YFxgoLt2YYV1U1Guh0+HX0Q7d+b0Ssyu4hZ8Xkkw/xCTS6JFqXRZnTOtNBKrkMRr2T1WoWKrncJXTlFWg9Tp8KbpeyQLjZEXbB6N/WebyP0rkVUtYtQ8umnn+KTTz5Bv379VK8XFhbi4MGDlgxMEJvYMeFYXVIsYMOK6iYj3Y66lnamaxduvaKFM4djhkYNWJmzQINkmJdX1X8fHuhg0r5h7SIu5zKxVCHR0BqI4Qz1kK7x0NxUVdm7Fu39JzZEXbBeN7OtIUg4oVzflLHT3NyMpKRg1+LJkyeRkJAQ8qDOJs62HBM7JpxY18VwKlZUN0Wqa3QoPLpyJxo1TSkbWzvwyMqd1HvYyDCva2lnEmUzswgNzU1V5bVYaQySvGRWz2ukayxJEi5+YbXu3yjvP6dtiJww79O8mzzJ6bKXTQ8nlOubMnYmT56MN998E7/97W8BdJWY+/1+PPvss5g2bZqlA4xVosWlGu4eQmY+I9Z1MZyKFS0vnNA1modQ72GaodJ6ppM6BjMVUi/NHg0AthuDds9r2mvMev85ZUMULfM+YBw+TNOEUScVZqPD78emSvtzuMxiqvT82WefxZ///GdcccUVOHPmDB544AEMHz4ca9aswTPPPGP1GGOSUMpBwwGP5gcrZsseaUSz9kO0E2qJrpXXLhwlr6Hew7zJtqQ5Qe+c6TFxUGbASDDS1DGL8rxbOa+xXE/W+88pGyKnz/taSOd3UmE2vlwwLaiE/5Wbxzi6XN+UZ2f48OHYs2cP/vSnPyElJQVNTU2YNWsW5s+fjz59+lg9xpjDaS5VEnaEm+yccM7mPlORdIlbEUIK9dqFc7cc6j1MK+U20guildCned1o0ITXAMAuuTNWJWneeY3nerLef1Y23jVLNMz72rlECpKN7CaSOVxmMK2zk5aWhkceecTKsZw1OMWlqoddD6WdE47THzQ7cJJLPJQQUqjXLpyJp1bcw7rJtkfYk2215yzeBVW7DCUbKmttWUhZlaRlWOc1M9eT5f6L9IbIyfO+3lwiywsooV0Lp4oJmzJ2Pv74YyQnJ2PSpEkAgMWLF+O1117D0KFDsXjxYvh8xmWUZzu8MvLhxs6H0u4JR2/Sc0JCIA8s44216hIzBlMkdsuh3sOhJtsqMSuuSIN2/5kpS2aZ1+y8npHeEDkllCajvMaPf7AraC5Zu7eGKBypdy2ctPkiYcrY+eUvfxnIzdmxYwfuu+8+3H///SgpKcF9992HpUuXWjrIWIHm9nVKMpedD2W4JxynP4BaWMcbDS5xK6AtupHYLVt1D/Mk20qSZNjR3apnlvX+46kI45nXwnE9I+V5sNKzHcrmjTX8aKSQDURfab8pY2f//v0YOnQoAOD999/H1Vdfjd/97ncoKyvDlVdeaekAYwma29cpOSbhiG+HS5nU6Q8gQN9hkcbrZJe4FbAuupHcLVt9D5M8RuPyM9Dh96u8PsrzoLx3rHhmWZ8XnoownnnNzuvphI2PE/LTeMOPeji5tJ+EKWOnR48eaGnpmmw/++wzzJkzBwCQkZGBxkZjxc6zFZrb929zx2FyYXYYR2RMpOPbVuD0BzCUBE+nucStwIzR54TEU6sgeYz0zsOdb20J6kNE6wlFg+d5oZ33J2cMM+X1svN6OmHjE+n8NDPhR62GjpNL+40wZexMmjQJ9913H4qLi1FaWoq///3vAIA9e/YEqSoLuqDdDIfrWgzd1OEm0vFtK4jUA8jqYg4lwTOWFvlQq3piwTBXInuMjIwPUh8iWk8oGrzPi9F5T2No9aGHHdfTaRufSOWn8YYfiwoy4I6Lo16LaNh8mTJ2/vSnP+Guu+7Ce++9h1deeQV9+/YFAPzf//0fLr/8cksHGCvwNO9zUk5JuMJNMlYmEof7AeRxMVuR4Bkri7wZo0+SJNV9Eu2GOQnawsTaE4qVcDdV1cOO40aD54GGFd/BTPgxLcnDVNo/cVAm1u+rDfqdrPMUaUwZOwMGDMBHH30U9Pof/vCHkAcUq+jtxEk4LackHNgRTw+394PHxWxFgmcseN/MGH0vf7EXmw92t1SQ75NwG+Z2Y0YpGTC/cIe7qSoNK48bDZ4HGlZ8B7PhR5Zr0d5Bbhih93q4MaWgDACdnZ14//33sXDhQixcuBD//Oc/0dlJlzo/myGpUZJQuiVZCYd6rJ3YpSwaqsIvK/KirTVk9a6llQmedinjhgNeo8+X5EFZVb3qdScr0IaCnlIyTTfZrY1vcbBw5nCketV7YJ4mp3Zjdp6LBZV1q76D0Zxodi6prGlSbUCUbD5Y54h1yZRnZ+/evbjyyitx5MgRDBkyBACwaNEi9O/fH//+978xaNAgSwcZK2h34sca2vDwih2672fZoTmhwiBUYkFbg9fFbFeCZ7TBY/SNHpiuapIp45SEczsghSqHUbp9d9Bqhg0wanL6xDVDI6ZVZcU8FwthXyu+gx1z4iaN8KCWjZW1EX82TRk79957LwYNGoSNGzciIyMDAFBbW4tbbrkF9957L/79739bOshYQ3YJbq0iW8IyLG5JJ1QYhEo44ul2hzjMuJjtSvCMJoxi/eleD+pb2wM/t7Ybe46dkHfhtG7fPNA2HXrl7+HAinkuFsK+Vn4Ha/WGjI914tTpiBfgmDJ2Vq9erTJ0ACAzMxNPP/00iouLLRtcrPP7VRW6v2NxSzqtwsAssRBPN5PvYGbiijYlaBb05lyloQPAsJ0CENn7JJzdvitrmkI+HgmekOKaihrMe3sLlt0+3paxKLF6nouF3K5QvoMd92pRfqbh719YtceyzzKLqZydhIQEnDp1Kuj1pqYm9OjRI+RBnQ3QEjMXTD+Hegy7uoiHG3l3T8IpmfwsmM0PYomT29GFnoZdeWDK41bWNKl0YVjQTlpOyLuwu5u18pzZ9dzzJkSv31ere29Yee/EyjznFOy4V43mcC2RyrEz5dn54Q9/iDvuuANLlizBuHFdLsRNmzbhzjvvxDXXXGPpAGMV2gNc23KGeoxY8IjI6O3uHdpTjoidbvJwhivt8lKQjju8byr3cQblJKOiutu7Eem8Czs9rKRzNjbPuPeg2eeep2JUZpMmF8OOeyeW5rlIY+e9+srNY4LC8iQiFXkwZey8+OKLuPXWWzFhwgR4PF03cEdHB6655hr88Y9/tHSAsYQcgoh3AccaWg3fy1pG6EvyoI6wu/dFUc6H0e7ero7NdqLnYjYbggp3uNIuw4p03G8MEm31+MmkfIwvyHRM3oWdOWekc1Z2sB6+JA8aWzu4SsRZ7j9SHpkRWpPIjnsnlgQ0I42d96odBThWYsrYSU9PxwcffIC9e/fi22+/BQCcd955GDx4sKWDixVYFWIBvge4sqaJaOgAQF1Le9QYCbEg+GVEqLvdcJ4fuwwrveOaKRzq5/MSDUoeYzIaxCuNrkVdSzvGDvSpyn31PFw89592wYp3AXNe36w7xvEF3aELO43yWKikshKz9284vGRKBXC7P4sHU8aOzODBg4WBwwCPQizPAxwrRkKsu6lD3e2G8/zYdU/xJL/S0JZW8yzmdolX2uFhpZ2zuy4ejLzMnlQPl5n7T2lMTijIJHpeJxSo8+nC6TVwgkePBasLCkK9f8PpJXOaR85UgvJ1112HZ555Juj1Z599FjfccEPIg4ol9MTmtCyaNQIlC6bizbnjmCfdWDESYkHwSw9esUES4Tw/dt1TZtWAWcbAk3BpR3Imi4fVTMIuy7WgJbdbcf+9essYTNE0KZ5SmI1XbxnDPd5QiRYBTbsKCqy4f8MltBruz6JhyrOzZs0aPPHEE0GvX3HFFXjhhRdCHVNMwbqj7Z2WyP0Am7WcV++uxtbD9Rg9wOeYTuux6qa2arcbrvNj125M77hxLr5QltZTwhM6sSvMQrvG9ywrU4kAsu7ErfAYWXH/sXpVnLaTjyR25C5Zdf+G00vmJI+cKWNHr8Tc4/GgsZE/4TCWYd3Rmt318CyCB2ubMXPxOtXk6Uvy4MP5k9A/07qdtxmc9FBYiVW7XaPzY7Wr3IxhZTb5ddLgbJxqPYPyww1MY9PmovEs5naFWWjXWKt2zKpRY0VOnpXeFhYRuljdtPAQKaOa9/4Np96QE7SNTBk7I0aMwN///nc89thjqtffeecdDB061JKBxQoF2ckYm+cjytzLjM3zhSWWrTV0gK5J85rFa1H+2HRTn281PA9FNAjsFWQnM+c8sKA8P3aViPPcU6Ekv8rHveDJT7nGp5zUeRZzWszebE8pM14rWaPG6PqbXdyUz4UV3hYrrvHZRKSM6mhJW4gUpoydX//615g1axb27duHiy++GADw+eefY/ny5Xj33XctHWAscOvEPENj59aJeSEv3DQjYfXuasNd4lcVNY4JadGItn5gLp01VO91VuzW3mExPENNfl29uzpIKZlGXmZP1fPCupjTei+H0lOK5NEYlK3WA9Ki1ajRwru46T0XT80cjkdW7jTtbQn1GpvFqZsZ2rjsMkrCESZ06jm3AlPGztVXX42VK1fid7/7Hd577z14vV6MHDkSn332GS666CKrxxj1DO1jLJz21/UHVMaQHQv31sP1hr8vq6qLGmMnmvqBVdY0Efs+Aca7e9qk44RWIVaMgXZfKol3uTAuPwOPf7BL9bkTB2ViXH6GyntGWszt3BmTPBobK2sNdUZophXv4qb3XDyycqdpb0sk7jOnbmZYx2WnUWJXmNCp59xKTJeeX3XVVbjqqqusHEvMYnTzp3rdKDtYr3q/HQv3Bf3SDX8/eoCxKqtTcMIizwOvS5t10nGC7IAVY6Ddl0qKB2ehw+8PWtA3VZ5E8eAslCyYGtYEWpJBqvRo0HJclBo1eiycORwzFq9VeWVTvW48NXN40FhYngveEPGxhjbD91lxn2nPo5nNTDg8EjzjWjhzGGZo0gZI140Xu8KE0bSBNEtIOjsCdkgW+agB6fj6YHB4y46F+6IhOYaVHdHi1bEijyGcxhCvN4F10olk/F6pBB7qGGj35Yq7iqndvuXn5RBD5aMVO2OeHX6o+VqPrtyJxtYO1WuNrR0Bb42MVcYvjwAqENp9ptcKgxTy15sTw+WR4N1kPbpyl+F1szttgYdo20CaxZSxExcXB5dBwkFnZ6fpAcUqJIt859EGorEjY/Xu/K254zBj8XpVboI7zoW35xZZ9hl2Y1UeQ7jcszzeBJ5JJxJlvqRz6UvyoKGlXZUPwzuGD+dPwjUa74WySlA+TsnuasPjzHm9NPBvOxNoeXbBr94S3C9IHhsNlvtBkiTLDE+AXQDVivuM9FlbDOZDIHhODJdHgseYpF23G15db3vaAg9O8BKHA1PGzj//+U/Vz+3t7SgvL8df//pXPPnkk5YMLFZRWuQPvLfN8L1W786f+XhPUGNNSQKe/nh31LgqrcpjCKd7ltWbwDvphLvMl3QuG1vbkabxzPCOoX9mEsofm46vKmpQVlWnq//EI0xoVwIt7y44FOOKqt+zvAw7j3SXtdMMT7N5YCRCvc/Mtg9RzolWeiSsTDqmXTetQRfpcNHZUuVlytiZMWNG0GvXX389hg0bhr///e+YO3duyAOLdSprmozL0QeaL0fX+7xYcVWyLvJO+c6sCx7vpBPOMl/9c9lVzfe3uePQ4ZeCxsDjrp9cmB1k5LCUUZOw6xqb3QWbMa5o94O2iaqe4blw5jDMWVJK9C7VNp8OnF/ad3t61gj0Sku05D4z2z7kcF2LpbpJdiQd066b1qCL1BysfLZioaE0DUtzdsaPH4877rjDykPGLLQH9ccT88L6edHkqmRd5J32nWkLntnQVDgEu2jnssMvYdqQnMDPoYYPecqojbD6GodzF1yQnYyJgzJ1q/mCF02y4TlnSWmQR25tRQ2mPl+iWuAuHGhcpFBkQhdKD7PtQ5RVo1Zci7veLgs6v3qij6ybLF3dJRjLH4RrPuLJy4qmhtI0TPXGItHa2ooXX3wRffv2Zf6bNWvW4Oqrr0Zubi5cLhdWrlyp+v2Pf/xjuFwu1X+XX3656j0nT57EzTffjNTUVKSnp2Pu3LloajLutuoEaA/q0L5pYf08vYnBTE8fO45BIj/LuE+OlQuTXd9BC62XzOrd1fjj53vwFeNizwrt+9HOZbwLqr8PtYcPrYy6ZMFULL1tLN78ibHr32oXfLj7uDGIFgchG55y6IrUG8sPBO3kvz5Yh3Svx5LvRruf9M4jTddRWTUqG4MkJg6iG2YsshBKJKpYQDek53g0xZgMV7iIpzE10GWExQKmPDs+n0+VoCxJEk6dOoWkpCS89dZbzMdpbm7G+eefj5/85CeYNWsW8T2XX345li5dGvg5ISFB9fubb74Z3333HVatWoX29nbcdtttuOOOO7Bs2TLObxVewp1gyvt5ViT2mjmGlVVT4VaPpcHy3fS8Vgdrm4N24la0+gjdjQ+kej2Y8/rmwGu8FTVaeMuow52obXeuVHe1m4tYyUWDJ39ES31re9D14/luPM+LXvuQbYfr0KCpZALIVaN6xiCLkbhpv/G51Yo+8uT/kQyjUEVErYAnL0vGaCMcTQKEpoydP/zhDypjJy4uDtnZ2SgqKoLPx67XcsUVV+CKK64wfE9CQgJ69+5N/N23336Ljz/+GJs3b8aFF14IAHjppZdw5ZVX4vnnn0dubi7zWCKBlZOm2d5Eep9nRWIvzzHsqpoK9RxbcR7MfDdtaMquVh883490LlO9nqBOzrwVNVqcnqjNs8PngbfsW9uOwkz+CInrRvfDs9efbyoPjOd+0jPsD9W26FbnKamsadI1BjdU0ttxAMbWh/Iq8+b/WVFpZgc8xq+dG+FIYMrY+fGPf2zxMPT58ssvkZOTA5/Ph4svvhgLFy5EZmaX63LDhg1IT08PGDoAcOmllyIuLg6bNm3CtddeSzzm6dOncfr06cDPkWpeakWCqR19a6xI7OU9xry3yoImrjUVNbjzrS1Yfodxw0QjQjnHViU4h2ow2dXqI9TKongXVB4dGZ6KGhJOTtQG7Kvw4w0vjBlI98DwJHXLSDCXB2b2edF+VorXjRF901XHGtE3Hale9XwWak5eUX6G4d8rRR+tKD0P9bmwAh7jV2/DYNdcbTfMxs727duZDzpy5EhTg9Fy+eWXY9asWcjPz8e+ffvwq1/9CldccQU2bNiA+Ph4HDt2DDk5Oaq/cbvdyMjIwLFjx3SPu2jRorCVyLN4XEJJMLWjb40Vib28k0NoOzQ6kVKPDUdLBbOtPmjXaGNlLdF4kM8lTfdGm5DJGlpycqK2XeXO0vd/z4J8HlgNPJLnywgWZWcSVhUEhEtYk0f00crSc7PPhVl4GsM+OWMYdSNs91xtF8zGzgUXXACXy0WVQHe5XJaJCt54442Bf48YMQIjR47EoEGD8OWXX+KSSy4xfdyHH34Y9913X+DnxsZG9O/fP6SxagmHq8+u0morEnt5jrFp/0nD926kNExkgcXotEM9NhwtFcy2+qBdI2VfJ9K9S/v7MQN92Hww2PPAci3sktsPFbvKnYfnGvfPU6LccbMYeCTP169W7AhJ2ZmEFfNGuIU1WUUfrSw913surMZMY9g0Sql5OOZqu2A2dvbv32/nOJgoKChAVlYW9u7di0suuQS9e/dGdbV6d9nR0YGTJ0/q5vkAXXlA2kRnqwmHmJ1dpdVWTCK0Y0iShJLd1d9PgBQDmvsbdMNjdNqhHksrd3TTyk9gX6sPnhAH6d6lXWPtAutL8uguLNprQZPb52H17mpsPVyvK1aoJBwdrUn3mVYzR4uejhEPSsMoFGVnPczOG8pzHu58LZ4QKE/pudHz+u68iWEJudrRGNbOudpumI2dgQMH2jkOJg4fPoza2lr06dMHADBhwgTU19djy5YtGDNmDADgiy++gN/vR1FR5FoghEvMzk7NDyuSPknHGJefgQ6/X9XjaGweXd/DLKxGp13qsUa6GgBUrTuMMGqpEAqsIQ69e5d2n1TVNmP74Xq441x4/IP9htdC2XPLiufnYG1zUGK3fM7a/X6VUcNTlRaKAJtuPsf3/9dLOtYz0sxWxNiV58Qzb+j1xjKiurENf/x8T8BwNfM9aA1c9ZA/a82eapQf0jeeK2uaDHPseJuymsFsY1ja/VSUbzwXhzJX242pBOUPP/yQ+LrL5UJiYiIGDx6M/Px86nGampqwd+/ewM/79+/H1q1bkZGRgYyMDDz55JO47rrr0Lt3b+zbtw8PPPAABg8ejMsuuwwAcN555+Hyyy/H7bffjldffRXt7e24++67ceONN0a0EitcYnahTrxGWDEZko7x+Ae7gha8soP1SPd6UN8a/D1Y9DL04DE67VKPtcogZW2pwIv2Gh1vaMNDivCVFu29y1MqTyLQL+iV9SrXvhGszV71KtimvfClysicUpiN9k4/SjUuej2jmGUh04N2nw3NTVW1gOAxFMyEya1edHnmDdJGpOxgPXxJHjS2dqi8Qy4A8XEuPPh+972p7Z9mJnxohdCl9u+dIGbKOwYeY19P6NJornZCmbopY2fmzJnE/B35NZfLhUmTJmHlypWGpehff/01pk2bFvhZzqO59dZb8corr2D79u3461//ivr6euTm5mL69On47W9/qwpBvf3227j77rtxySWXIC4uDtdddx1efPFFM1/LMngXOLM3QqgTLwtmEnv1ElqNjI/61naM1cSy5YfN7PnheeBp18yseqzVekqklgpWoLxGRugZZyyl8kbQynKNxqCXA6P3+Vpv2tq9NcRKGTNGMW0ho91nL80ejUMnmw09B0Bker7xPIe03E6juaCuJXguiI9zBV03XukFM+dM+Z1JGzWzidN2L/68axDPuXnlZvYQqJPK1E0ZO6tWrcIjjzyCp556CuPGdZ2I0tJS/PrXv8ajjz6KtLQ0/PSnP8WCBQuwZMkS3eNMnTrV8KH45JNPqGPJyMhwnIAg6wIX6o3ghB0EYN2O566LByMvs6epHA8SPA+8nSKPZkKCkdoJWXEejErl9aCF+4zGQJqod1FyYFSfTYkk8hjFLAJseud3XH4GHv9gF/V+D3fPN555yqq5oLVDXeSiF+5llV7gPWesxQq8idNFBWzXOFR4nmM7m9s6qUzdVLuIn/3sZ/j973+PSy65BCkpKUhJScEll1yC5557Dr/85S9RXFyM//7v/8aqVausHm/UQJP9B0KX1A9Hnx6WNgms34NlvPlZ3S0gQj0/NDl5OUla/m4s18wM8uQgtzgoWTAVb84dR5zc6lvOYM6SUlz8wmrctnQzpj3/JeYsKQ0S7rOTUM8DrVReCUN+tuEY9NohWCn7RzKKWVsqkK5nh9+PcRqNl+LBWXC5wHS/s2xySJhtecLzHFo1F9AStpWUVdG9grznLNSWCnrPkCTpX2OrW9KwPsdm7yflXE2CpUw9nJjy7Ozbtw+pqcGlkqmpqaisrAQAFBYW4sQJ9psl1qBZv1bszuz0RrDu0KwuFVVK5Vuxe9VzHO462qBKkpa/m53idCwhQbvDE6G0rGCFViqvRCuMp4VWhWS2ezYrviSPqnIwP6tnyErkmypPonhwFkoWTA2cX0mSVPejDOl+593khOJBZnm+JUniTiynNctkzNsHwCa9QO/t5gpcYx7NIxkWoUvaNSbNR6F4e1ifY7s2zU4rUzdl7IwZMwa//OUv8eabbyI7u8t9WFNTgwceeABjx44FAFRUVFiuXRON6C1wVoWg7JLKZ110rSoVXThzGOYsKbW0m7XRzkLbe0f53eyulNDDrAHMUlptRcsKVmil8ivuKlZNvnJXbpIBTAtP0Cbq1EQ3Gtu6r7U7zoVOv7rhg7YCSkldS7tpo5h2PQEEOsXTBBpDCUkbPctPXDPU0PilPd/3LCvDTkYvDMtcMDQ3lfl4ALv0gpFxlZbkwZzXSwOvDe/LrnnEI3RJu8ZKrNzgRGo+c1qZuiljZ8mSJZgxYwb69esXMGgOHTqEgoICfPDBBwC6Kq0effRR60YaY1hlTdtRQsqz6JqV9teWb8oLHiss+jQ8u3678h144DUcjUqrtc1Bw53QalQqL1fPyIRisLNo/fxjcxXWV9aieFAWpg/tTV5gj7AtsDxGsZUJ8jwKvSytC1i9CVaGm0LxfpDglV7Q6+2mNcpZ7wWAb2PJ06ohnPORXbmfTitTN2XsDBkyBN988w0+/fRT7NmzJ/DaD37wA8TFdaUBzZw507JBxiJWh6CstN7tTHzW09YwCmWQ6PBLIQvAkeD9bjyCdTR4DUfW5qDhTmgF+ErlQzXY9b2Fw1XewpXlR/Gvwu/w0uxR2Ha4LmBs+/0Sbl26memzeM4Zj6CklQq9Zrue8whHyt6wUBLLZbRzl1Fp87ypg0xLLwT3dnOpPDpa9No60Foq6GGmT5kVRSbhEMokYbZM3S5MGTtAV6fzyy+/HJdffrnue0aMGIH//d//PWvDWbSbLNzdmlmxa5cJmOsGTOLlkr0qA4lXAE4P1gebx6vCCs+Cx9MclOUayXkXVucp8ZTKmzXY9bqQP7RiOzZVarVzaoL0f3haNciwLEJHG1oNf3+kTv17HoVeqwwjJXqG3MKZwzFD46VL6hGPptNsbYF457SOTrIJ1dHpt0R6Qb7PlpceNHzfoJxkVFR3SzGwtlQwgrdPWShFJjzaOXblfvKUqduNaWOHhQMHDqC9PXxVJE6B9SYLd7dmVuzaZZrtBqwk3uVCqteNsoP1qtd5BeBIx+V5sK/50zo0aEQQ61ra8cM/rcW2x9l0P0jQFjzZgF5Nif8rm4PSrhGL4ehkSAb02ooaotehU0Jw2IIjFCPDtggZh1q1t72e0UYiVMPICK0h99CK7UHnjGbomG1vUVnThFIdL2/pgTqLvZDG1+cnk/IxviDT0rnZSGjVakODJ3Rt18bbSWucrcbO2QpvfkTkEsj0sXKXKS/QxyldxLVuYzl5UDnRjhqQjq8JniAzAnBKeHRvqmqbgwwdmYZWNt0PvWPnZ/X8PqepBuWHut31cgkz645QWaFidI1YDUfe72AVtOPS2i/wYJSoLMPT5yk3LdHwWP18XtXPPPNGqD2djFCG1yprmohhCBm9UI9Z78um/fqfBQCbLKzgKdKU/2sZ/72QqB1zs/K4dhgadmrnmMEJa5wwdiwmEvkRdmBFgzzeCittN+BJ33sYth2uDyz8HX4JtxnkV/AkfbLsPkleutx040Xs82+rmSZ70rEnFGTC5YJqgZlSmI0Ovz8oJKMHqUKFdI14DEee72CFZ8gqcToeBmWrwxZdWkxQVfTxtG+ghceUQnlm5w2WRUT7LB9raFN1tDcaF8340Av1mIfPGyZjxtguyE7GhIJMy7u/82KHoWE275KmfB3NCGPHYlhvMmXTw04JjglhaTEzmWpLillITXTD20N9O7Z3+jHv7S2qhZ/WKJBHFZnFICHttr+rN/ZQZSX3oB5X79ikiVcvJENCr0KFdI0O1DYzG44838GKKi/W49IMWhZvjYxe2MKsUiwtPBZK7psZ5GeZryVIeEM9LN4WJaEa23Z0fzeLld6PcGoxRQvC2LEY2k2WkdRD19sR7TeX8mHl6SIOAI1tHVireT9p4ddrFKgXXgjFRaz3HWhr5/n9000fmwTN0Fkw/Rx0ShJThYryGtF2cbS8FLu8mFYJVY7Lz4AnPo75POuFLfQWIeWGRU/PSQ9tNQpP5VY4CXeoh+Zt0Qo8htqOwEk5JVbCm3QciV5r4UYYOxZDu8le+HSPrrcjlm4uM+EFFu+F3ChQKxaX6nXjqZnDg94fymRmNkSi18fHimOTuGpkrqkJOtQqDLu8EVYJVcobB+W1/9WKHYZhC5ZwCGvfJCO0dibt3me5p1jhOb8soR7SOdM7jyznl+RtkcO7Sg0eI8kKuR0B6/3nhJwSq2Hd6MVK6gUNW42d//mf/0GvXr3s/AhHoneT3T/9HMxYvE7372Lp5jKjccOD0tABuipsHnh/u+5uzkws2ux3YKnUMXNsbUgmUk1KZezS5zArVKln0CoXMr2whVaTR36d5Gnl7ZtEQrsYh6PPnQzvZ/GcM1Kek/zeR1fuZDq/RhVLSkj5ZkrC3Y7AabBu9KzetESqiTENU8bOiy++SHzd5XIhMTERgwcPxpQpU3DTTTeFNLhoRe8mY5ULD1e3cjsxU/IaKqTdXCixaCPPh8tF3m37GDU4zJwfbR8p2SgJZXIJxfNltT6H8nsYtZtgFacjHVeudmPJL9OTMwjFo6NkY2VtYAx2ap1o4f0svXvkptc2BlVqkSq31u09gRmL16LRoEULCWWOETGcTHlsIhP4YyOcBgHNa2WVoe30vB9Txs4f/vAH1NTUoKWlBT5fV8JoXV0dkpKSkJycjOrqahQUFKCkpOSsFRQEgm8y1t28lbs4Hqx+AElegzSvO6gvlfx6U1sndeF3uYwnOe1uLpS+QACwcOYwzNCIB/ZMiA/yLMnUtbQze+ZIYm1G3DVtcCCxWDYI9JIreScXs2580nfQCynqwRMW4jm/RpMvS35ZqHIGNJQVUVMKs/HUzOF4ROP9sEtk1IxHT3vOjErSlcihZ9LrLJ5ss+c83O0IWHCiQWAkvsq6eQOcn/djytj53e9+hz//+c/4y1/+gkGDBgEA9u7di5/+9Ke44447UFxcjBtvvBG/+MUv8N5771k64GiGtpu3YxfHgl0PYHcfrG7NmJF904kLNGmiJ5VhD8hIwsFa/cmvtul04N+h9gUCgEdX7grakTbpGDoyyh270bV8dOXOoGMbIR9PPiarN0KJ1Qbtg+8HC87RQopaeMNCrJ7Pu94uC1qQ11TUYN7bW7Ds9u6x0RZT5fXkCT8WasqyjVi39wQeWbkzbMmyoSbm0krSeaBdTzMh30i0I2DBiQaBkfgq6+YiGvJ+TBk7jz76KN5///2AoQMAgwcPxvPPP4/rrrsOlZWVePbZZ3HddddZNtBYwUjgi6dKyMoFy64H0MiIOtlyJmiS1Zt8la/9a9tR/H7VHt3PVJqQofYFMitYp92xk4wonnAIyQjmnVzsMGiNusqzJoiaCQuxeD6NPA/r9/Hly2iv54SCTJTuP0kMASn7Jm2srDXUs1GivW7hWhjMf5Z1QSJapZlR2K2oIAPuuDjife00wmEQmFkbrMjZCYd0QqiYMna+++47dHQE70g7Ojpw7NgxAEBubi5OnToV2uhiEO2Oyh3n0hW20964di1YRg/gmj3VpnWAaCEkEqREYuWEnJ1irGGTnZwQ+HeofYFoDzCLhoue0RiqurMVPclCNWg37TcWOWRJELUyLKR8XniUeHnyp9btPYGiggwUD87Srf5iLe0n4YRFQQ/l+aWVpCvRqixrYak046m4c+r5C3eDZda1gSVnJ1LNRK3ElLEzbdo0/PSnP8Vf/vIXjBrVNQmXl5dj3rx5uPjiiwEAO3bsQH5+vnUjjTGMdlR6N257px+l+7WNDUMLW9AewDmvb1aNgdWw4g0hsVZr5KapJfa19FVI8IfaF4j2AGsThkno7dpCVXe2oieZcmw8jUDle+pEk7G4Isve34rO9KTnpTDH+Dto7wbWlgqdkoT1+2pRsmBqYCx658yobFsPJywKWvTmo3F5PmIfK21e3uiBPsPKKZbvzFNx51Ro93q8CyoNIR5C2cwcoqwB9y4vw44j3QKZ4W4mahWmjJ0lS5bgRz/6EcaMGQOPp+sLd3R04JJLLsGSJUsAAMnJyXjhhResG2kMozVIiI0N99YQvQihhi14FhseTwBvCIm1WoNXjySULsMsgnWsaBfoUNWdeZIKadfinuVl2EmZzAB+fRmWBFErDALS87KvptnwGFolXu1ieryhDQ8ZhKAO1DZj2pAc6iT+yJXnYebL65i8FzzJoOFEbyEdPSA96B6UFbw7JIlY7RbqQhjN7Qz0n3kg1evh2lgq1wzp+zVAC2t4bOvhesNxK+cGIPzNRK3ClLHTu3dvrFq1Cv/5z3+wZ09X/sSQIUMwZMiQwHumTZtmzQhjGNLicaHOLog2V5oNW/B4P2gPj/IB5A0hsVZrWKHBMuvldcyVB3oPcFt7B/cCrTVqjSYHlgaYrEmFtHP2zVG2yYwnkdgoQVT73VyM6R88uUtGz4tR3yNlubMRrB6YH72+iVkQUL5uPF42uzHyCm4+WAdtuk1ja0cg0Vo59lAXQidWMZmBdB5SvR40aJ5lvWfQTA82Wnjsgn7phn+vvXsj1Uw0VEwZO2vXrsWkSZNw7rnn4txzz7V6TGcN/++vX6NMY9hof2Yl3uUKuEB5LX3eEmiWMMKUwmxMHJSJTZUnmUNILJ9n1l0q7wgPnWzhqjzoriirRvmheowe4EPfdK8qDGeEnET5+Ae7iBO1dnJgLSfnVcElnTM5l0K7FpPuE55EYr0EUR7jnoSZ3KXhuamqHlWsyatWuOVX765mfqZkWL1sZuBROpahnV+WewcgV2bK3ku9MazeXY2th7ueudfW7HdcFZMZJEKzGZ6yfNKGQ7tZ0UIzzC8akhPIHeVBz4hyakjRlLFz8cUXo2/fvpg9ezZuueUWDB1KTjYVkKlvOYPb3/ya7MGh/K022S8OXRPJnNdLA6/xWvpmSqCV6HmRxuUHJ3KaQft5PLtE3tALWz5IMvPYiwdnob3TbzhRmykn5/Vwkc7ZUI0hoGVj5YmAEUZb9J6eNQK90hINd3OkUnCaoUM7Lu08eHvEG/7eiFC9EbTwAAk9LxuLJpQepHtYT+k4lDC3EpbnSG8MD1x2Dn70einVUHRSWTMrocgs0KpDzSqsV9Y0mWpH4sT8MiNMGTtHjx7FO++8g+XLl+Ppp5/GyJEjcfPNN2P27Nno16+f1WOMekg5OVsokzzpxiWVWaYledDYqp4UaJY+ixdI7+94SqA3VAYncsqy76EoEvO4S3knFxZDbi9FO+X+6edgeN+0wPkleYF4vCe8DTBZVXD1xibz8IqdgX9fONC423yRQWhI/m6sInQ8xzU6D6leN8oO1qvez+MNMOOWVz7rtPCAEpqXjUUTSg/SPayndEwKc/PmVAHB5eQ8Y5i57wTX4qvnYXBa24JQZRZoG46huakqryCrYW5lRaSTMWXsZGVl4e6778bdd9+N/fv3Y9myZfjrX/+Khx9+GFOmTMEXX3xh9TijEtJuZkTfVFVmux56rQGUZZbxLpfKoyOjZ+kTvUB9jb1ASsyWQCt3h6Td8uiB6bpVTXUt7VizpwadUnBlEsldypK4R0JpJHR3s3aZ6nr+Q0VjTlqLEOVEzXIulfkcoargAmDO1yqv4us2r8WMCB2rMBzpPIwakE70GpnxBlTVNmP74Xq441zcFZTpXg/qNZsREkkJ8Wg63ck0HqVRwpLbxfoM6J0b1pwqJeVV9SirqguEfXnGQH3ANGg3KE7N7+ExKkjPFc3L9tLs0QCMKwRJWOW9czohNwLNz8/HQw89hPPPPx+//vWvsXo1Wy7D2cC9y7direYhpxk6LgCTC7OZyixpC6nW0jfjBQq1BPrlkr0qQ4YkKnigthm3Ld2sewylccZTKcRryC2cOSyosSEvEwoyIUlSwHPGE26inssv9mLzQeNzyTv58JRc17W0B3WaZg/r8K+YrKleJA8M7Z5iEkqrbcZMTasQudqof6b6WhlVLO3VJJO744AOTbya1dABuo2SG15dT3y2th6qC+S6mAlPaEMnZjxySuHP5ATzoUQzOFGlGOAzKkjPFas3l3cO0DuuC8Z2p54YpNM8ajIhGTvr1q3D22+/jffeew9tbW2YMWMGFi1aZNXYohqzDQO9nrjATU5L9OKx9HW9QN/fzdpcIJ4SaL0HMDkxPshjs6aiBne+tQXL7xhvSnxNb1dL6orMa8iR8mWMGDvQpzI+5PYW2pADKVGb5EnKy+xpHJKpqtc9F2YnFa2hcKyhzVD1V9ufi/VzeUToZFhVmGWUzwvtnmLJN9AaOkCXp/GaxWtR/tj0wGu0iqWSBVNxuK4FZVV16JOaiAfe1z+/LEKVMtpQ+Nq9NRizcJXKwElN5J/ieUInLPAYcmZgyWsJR34PbZGnGStK9W29MdpV3k0qUulJ8TYermtR6QI51aMmY8rYefjhh/HOO+/gyJEjmD59Ov74xz9ixowZSEoy5w6LRcxOEi3tfkx+9gv8+57JQbtHLTyWPpMX6GhwvJfFSucJIwDBi5iRZowWvV0tCZoh1zfdG7hOvMapL8mDd+dNVHkTSAaXXqJ2lydpeJAnaUJBJooKMlS7ab0wn5UTuGwc9E03Fm3U9ueSYZno9ZrAGmE2HyPUaiqjSqq6lnZ8VVET2AiwhB+nDcnB5MJsLC+tMnzvoJyeqDhurBEkozWK/BLg1xh5eg1rSZgJnfBA8xTIY3C5pCDPlxFKD4PVKsUs8x/PIk9TgqaNza7yblKRSjPFSFXm9E0pzEaH349NlXyit+HElLGzZs0a/PKXv8T/9//9f8jKyrJ6TDFBKJNEY1sHfvintfjnXRNNGRokS59ateJRu5o7/H7c+dYW3WoN7SSgfQA3VtYaVtooWwkYacboQUvwVqI15MblZ6DD71d5YHhCXoC6TF32zvAkaut5kkr3n0Tx4CyULJhqaUhGD9JE7fs+3NnJUNnBOtFX1jRxGzoAXz5GbfNpZh0jGrRKqrKquoCxw1cZZ7zcH6kzVqW2E73Qid5GxB3ngiSBWVpiQKYXB2tbAz+TqrGKB2ehqa0dZYfqmcet9GRZ1baAx4DhCZsZGSt6hhXpdSvLu/XmLp4AqN5G0UkVc6aMnXXr1gEAvvnmG3z99dc4c+aM6vfXXHNN6COLcgqyk7k0RLQ0tLYzVWCwWvrUqhVNiESvUmLe21t0G++pQwfGj4oy2mvGC8aTivDSTaNx6GRLQN+DpNlBC3mR4E0uVk7ENHd76f5aHGtsgzvOBZpOM62RohKldsnkwmziRN3Q0o40zQKnXAhp4UPlRC9/XpyJLFeS+B95YanB1OdLVOPV0zFi1ZehVVKNHtBdnWb0rI8d6FMdvyjfWFW65Yy9IR8ttNJ+o41Ih18KCuUasXDmCPTzJRk2+qVVCJLQCnZa0baA1YAxGzZTGit6hhVrCx2zyOfseIP9BrYTkplNGTv79+/Htddei+3bt8PlcgUWOdf3E1pnZ3gfWKey5NaxQZOwWWjuQL0cBeUkwFsJpUXuC6RdfNdWBC82LKXKMjxeMFpTQS3pXk+QoB8JE3mcqkm2mjJh/P7T3arkdJon6UFFXgctwZMlCZWUbJua6CaGOfzo8lxpc5rqW84wJXDLE/3IJz7hCqNo0dpH+gtLsDCbno4R6479oiE5upVU6V5PUC6bnhxBheb1guxk5gotGrzPAglaaT/NiL/rYnUOl5E6+eTCbKIytfL60MLtWkbkpgY936RQME9eC48BY0XYTM+wYm2hwwuv9pgV9xnPhswuTBk79957L/Ly8vDZZ58hPz8fpaWlqK2txf3334/nn3/e6jFGLWlJHny5YBr+35ubmQ0KPXh7YC2cOQyPriSr9vJUQpHQ3vjy4qikvKped1JnLSkmQWsqqKW+tT1kUUMteqrIRmir8LT9ZoygJXiyuOav+dM6NGiuBc0Q6fBLmDYkJ/Azr2ZRKIYO0OVdXLOnGp0SmIQNleg9LyRhwzUVNZj39hYsu3286vXCnGSi10IrKrl6d7Wu8VLfqs7vqaxpssTQAYAxefRGtEYYldLLsISFlMbKh/Mn4RpNoqsvyYO35hYFGcpWiBjuONqIeI1VTAoF88w3PAZMqGEzI8OKR1mZB9bnWE/bzQxmqgKtxpSxs2HDBnzxxRfIyspCXFwc4uLiMGnSJCxatAj33nsvysvLrR5n1JKW5MG7d07EDa+sx5aDdSFbyKw9sGYsXme4KzBTCcVDpyShvjW4VFme4JThFNqDcP8PzoEfUiD0ctNrG02Vw1qFniqyGXh2TdoET55kW62hwwJL53S7UTZHHJtn7C0kwVpGvX5fbZDAo154ZvPBOtV7WfJ7/H4JWw/XBy3MofDtd/yhVyUdfklliFlB/8wklD82HV9V1AR0diYXZjMrg/MUK8hoc4ZkgwCAylhnhceACTUR3mwhi9mwEM9zzKPtRsMJasumjJ3Ozk6kpKQA6BIYPHr0KIYMGYKBAwdi9+7dlg4wFjCaOHlhWYB4dgUF2cmYOCjTNuNBW6oc50JQyItWHvuCQrNjSmE2Wk+H5jEwgzKkYyavQI8ETxxa29nMHW2CJ6trvmQ3v5Gi9b7xTMosVTdmKDtYz93DRxlq3EkxSjYpkuZ5dve0/J4/r65Esw25OFaUdCsTrUmYDdNMLsxWebNYw0JmihV4x0aDZsAodbRCTYQ3W8hi1nigXc9Fs0agNyGHS+m9s3O9sBNTxs7w4cOxbds25Ofno6ioCM8++yx69OiBP//5zygoKLB6jFEPr/XuS+rqgksqlza7ACnRTgK8zh0eb8SJU6cxbUhO4PNG/ebToMmssa2DubLDbu+CXn8Zv18KqOha6ZJtYzR0AP0ETxoZPfmTGbWXgWdSHkbpuUWCRV/GjLruA+9tYw71KA/NsrtX5sMZeSNYDJ14lwtjBqajotq6xR6gn1dlojXx7ynHZ8nF4DGYrGxdEIo3gWTAFBVkoL3TTywcCWe3b1ILHVZo9/V4Sg4XALxy85igczO8b6phaD5qE5QfffRRNDd3aUH85je/wQ9/+ENMnjwZmZmZ+Pvf/27pAGMBXuv93N6pcLlATbCjJcXqofUO8fa9GdyrJ/YwaoEcbej2RBhpl3T4JeZWGnaibdMxZmA6th2uw61Lux9sHkVYbRhPC+vaLSd4AvwKqT8cmYvfr6rg+psNlbWqNh1GibXpXg9enH1BoCv85MJsolFLIt7lwrj8DHjiQ88LIPE1R07LeEXSvFE4Jc3rDsrXGpfnw+7jTapwYTJHCwhlyEAOAcW5XHjh0z30PzZg0uBsbDtcRyz7V95TehylzDGH61oNfw/whYXMeDriXa6QKq9IkKpcaZWHZsrBzRh3StkLXkINuwHd5+bvm6uwobIWxYOyMGagz9DbHbVhrMsuuyzw78GDB+M///kPTp48CZ/PF6jIEnQj32BrK2qYPCKsCXbHTvEbO6GEJ2SuGpmL/zm/Lw7UNuOrPTV4fd0B3fd64rr3hrTchkuH9sKLs0fjQG0z1uyuxtL1B7nHFgpj83zwetSPRFlVfZAnh7aAaV3B5z/5iSmNGRl3nAtvzy0CYE6KvSA7GePyfCjlTGZVxubH5vkMk3CVuTVTCrPxyk1jcMvrm1TnLt4F9OzhRqMiDJnqdePRq87FMx+HtqjrwWpMasvcjcIpDa0dWLtXbZhtOViP4sFZuH1KfiBX5fNvj+MNg3t41qi+uPqC3KBr2Tfdiw6/ZHozo2THkXr8+ZYLcefbW4htL+iwS0jowbPAFmQnUzcIWkYPSFelCVihKCzDoqMVSsJwJPpSmQm7KeedOJdaXXxl+VH4kjwYO9CHsqp6yw1Pqwi5N5ZMRga/HPzZgHyTzB7XH981tAaVopJgTbDj6aosE0p4Qmb0AF9gElhNyQepPnU68G8W7RK56SLLjtFqdh87FaQaaiZkpXQFmxXTUyJJwG///W2Q90NPTE9GmQT+2pyxQRMcz6LCUwG3pqIG5Yfqgs5dpwSVoQMAja0duGVJaVAyPQmeVgo8yOcRYNce0etO/uSMYQFvSblGu0pLfnZP1fPNWxLMQl1LO+58ewsxadgI+d7pk5Zo+D6lhIQRPAvsnuP0OVKJtvzdjoXVbO6SWaVvWqpAKJ4SI202rQ4X6Z4khfLrWtpRUd1EVIq3yvAMFcuMHYEaKyYumvV+0ZAc7soF3n5DWrSub1o+SFZyj8C/jcabkujGvcvLLc1X4IW3VJqlOsqKHARZhVmbHkHSN5pSmI0HLjsHP3q9VPV6mteDIb3UJdNejxsTCjJRuv8kNVeKN6/rFOO51EumJ6ENMVpJQ+sZpoaoNJTP7A9H9lE1xNRyfr80VaIrb2l/j3iAJe9Z2d5Ca+RoF2OSHhOpcSnAJyEhL7Br9lSrwp1azFQO6rUwsRLeEvNQW0hMUrRfsMtTojxnek1vC3OSseVgverv9DaA9a3tuH1KPlOPr0ggjB2b4J24SLBY7yRdC1qugNmEQJLrm5YPctXIXOp4fUkedPrZF73UxHhc0D8jIqXQSobnpmIHoZ+YElqCJw9BvZBAFtObsbdG1eoB6FLk1oax1u09gaKC4L5dToXHOONhTUUNrv7TWjS1hV7dpC1L1lMYTk2MV4X+zKit/3BkX1w7ui/Kqupw8EQLVpQf0X2vtupKbzHedrg+yNjo8Afv5pXeMBZYF39aqFtJOEMkvLkuPC0kJJ1Q4TOzRuIRjYKyGU8JS+hbr+ktb+i7rKqO2F/PCZ3QhbFjA6FqkvA8xCRdi77pXuZkMdpi/MBlQ9Du9wftxJQ3r14+yLg8XyDerbzRyx+bjn9sPoT1lSdQPCgLOSkJuJVR2FA2uPpnJgXcsMcb2vCQQaduO0j3euDrmUB9X6i6SrzwGAGyIrYZ/ZpIYKdxxhtq1Kva05Yl/+XW4PChXG2ppMyENEVBds+At2b17mpDY2f0AB+1zcdXFTW6GTodfgnPXT8SWSkJTL2btMx7qyyoEGJNRQ3ufGsLlt/RLebIE5pP9brx1MzhzGMIFdZQHEt+jyRJ1JYrj6zcGVKVF6uBaVQ4wstn3xzHHxSbX1L/s0h1QhfGjg2EGrrg6Tguo3VRs+5CaIvxebmp1LyCCQWZQdoLsoqzVjVVe/OvLD+KgZnGnbZ/MDQHPRPcKB6UhRsu7B94XZk8GE58SR4Mzk5m2rlZ2TXaLlhCQ1aqqSrh0eQJGGeUViThYGiuutSWtSw53qUWSpQxYxRfNTI3MEfQxApf/KyCqvVFuw5HG1pVzx9PE1i9ik9tWP2iITlI83qYQlmNrR14cMV23V59PIspy1zLGoqjzf/3LCujSjNoE5+1Y2IZL6t3icebZoQ7zoVvjp5SvabXYzESndCFsWMDoSxwT88agcuH9w7aQfA+wFZ1Q9eG0kgPkF712LWL16L8UIPqvaSbv6rWOBl51Tdd/XJWlh/Fv7Z9F3QedJP8LExonVuch9Qkj6HnTJ6g/r65Csca2wKToZkERC2piW40n+60NHzDA0lNNS+zJx755w7iNdXru6UtX9cKJbLA0/HerqTml2aPxqGTzYFFj9RcVjmpy4n3ZhqikhjdP42rXQnPOdP9TI0mD+tiumn/ScPjblSIOQLAkF7JTOETvV59PIspT24N63tpcypP02Ft3iaPgclaPWam0EWL3vNOIlKd0IWxYwN6iy8LRQWZzC5fI/TiwIB6V2CkoNzlhel2y0uKKjElpOqxypqmIENHf6zsKCcy5fdYOHMYZmjizmleD/Iyk5jHYURhrxTcOG4AAHqzQmUTT1+SB2/PLcLTH6sFEScVZmP74XrmPkmNbR1B+R9WCxyyotxpkgTGphRm48HLz8EtS0qJ5c4dkhQwlqpqm5lDmDI8RqLWA2MVD7y7jeopsaohqpYphdnc7UpCDadqCxP4SrHZy9cra5q480S0300eg1InKlTvB897aZsvnmvBstkkjYGlekwZSgt1LhmQkcQtJBpuoUFh7NjEwpnDMUOTiCuTmujGqbaOoCnAl+RBY+sZZpevEeSHgly9004qtQCw62iDyoMxPNe4U7fy5v3bhgPUMZpBnshueHW9KvxCyoNobO1A5QnyQ691ldMSRM12aa9racdNf9mEkZrdU8uZDu6GkNr3h9PQ0TMy87N6EvMK5hDKyRtbO/DIyp144pqhgdd4KgrNeGlemj0aAAJje/C97Sg9EOxp4BEABMDV/sUKQ8eudiUktLt02Ujl6WennAty04zD1HFxCGyorFRQVupEher94NXZIXnWeQxvUsoBzxhoc9TLX+y1rIURwOetkgm30KAwdmzi0ZU7dbVDGts6EB8HdGpsjIaWdtz7jnETVa3Ll4T+QxFcvbN2b43uAqJN2qTd0Mqb9z/HThm8M3S0bnm9XmB6sf+G1nbTCwiv547UeZ238gYAk0aTXegZmfIiovT20CZlbV7L23OLcPOSTcRS+VKVmjVf6Xma1xOU0xWv097Aij5TdpHu9aBvujdgCFhpEJD44+xRcMe5AgUPAzKSgiooaf3slHMBTYX5gfe6PaG0DZVZlJ3tZWP9GGVcPFWrWi8FKb+HVjiihJRywDMGo+qxVK8bZRQNKF7CXYhhBmHs2ABLNZbW0AG6bhha/kJt02lqchrPZMizU5aHrFeJohzLub1TsaHSOFYfClY4NTr8UiDsRgtNaScz0s7NSbB6QeJdCCpTN0JrZMoen7mT8ph3/dq/f/pj6IreaT1GrG0ogC6D9oZX1lu6g40E9a3tag9rX3sMAhn5XMvXgKefHbmSlP1+MOMhYM1/W7+vlut+UPY/i6ekWpF6pZFyayYOygzSzokDEKcJI+04Uo/G1nauXCCtp4QU2u+ZEB9RLTMlIowVA9i58/pg61E8/6m6CzhvglyoaN2xpF3I1CHZWLr+gK3jCBWenjzxLqhKio1yoiKJXq+p1MR4NBJ0ZHgMHUBfOVj5WTy9w5QueJLonaRYFMx0xDbjQXM6ZgwCXuSQldvl4upnR5oLivLZVJYBcx6CQTk9UVHN1quP5X6QnyFtArheg2aj9ypZt/cExuUHSydoDR2gy1N9zeK1KH9seuA1Xq2fR1fuCoouNJ22LncsVEQYKwaw09jYpymzJu2s9SqAjOApAfa66YuZmUmLFNqzi9REd1BPHr3cEXecK6j3k6xu6jSUVVNr9nS1beiTmogH3g+fDpGZkJA2YZK0Mzbj0XCmSRoadqdqXf3SV8zXUC8fibUIwgrmTipAUUHm9z31agw3WSynLtXrRqffj1JNFZnsaVHOEcWDs3Cq7Qw2VKqLIPTC6hsqa1GyYCqArnu+urFNVdCgPYasfC1D8tYo9YZk9KILEahncAzC2LGBUKqxaLDsrPUqgIwYlpuqyqbvSpZuV+389eK9oerLxLtcSE6MD7mHFA+NbR1BCYhGO1glTgtdzS3OR23L6YAOUX3LmSB9I6fz+093qzwE8v2nJBweDQGfsXqwVu3FXlNRgynPlahy5aYUZuORK8/DLZq8LKso+r4XXX5WTxxrCL2nHkltHOjOeQw1WfxAbTOmDclBflZP/PFz4wa4WuXrB9/fQVQ6fuD97apKXVp0gVf6ghWe44owVoxgdU4HT7VIXUs7bl6yCeWPTVeImblU1QlaqjQPR4ffj54J6qoMvXgvqRrAqNO21oPTMyG8ho7M39YfwOQh2ZZXgVgNzeu2ZN1+AF06RL/7329RmJNiia6KErsmR5ldGkOGdJ/ZvSvVPmOkJGlt2EYQjLYoYN3eE7j5L+wyCzzIKu0yPCEzPWj3mTLX78XPK4zfTEAZvmFpjqzMG2Kt1KVtNsfotDExixnRURHGihHSkjx44pqhlpWI8oYGlC5Q+QHQi/e6XMHu6FOE/A5avFdrqetVZGlDVaxNI63m9fUH8Pr3Lm+7kz5DYUBGErMx1tXPhi+8VqjJebhwoA97q5tUi1Myh2iYGaw2ZHhEzmS0z1hDazu+/U5t2ERI0zGq6ZQkWwwdAHDHd0kKsiYSW4Fykd5/gr1CUplbw6x8/XkFcwXixsraoFAwadPgS/Lg3XkTqarePKR63Xhm1khVGx/aBjvcCGPHRiLtdte6QEnepvNyU5i1H2gLknISWL27mnmxccL6EelrpeXpWSPQKy0ReZk98eb6/Vi6/qBtn5Xu7QGg29jZV9OEU23qSbL5dOf3oaUOS0OzdnmMrErEPKUxgJx2n5zt8FZYWYFSaJXHtioenIWFM4dzhZh5PLSvr92Phxl6BNa1tAf6cwFA/wx9w4gVWUPrzbnjAiFF3gpXuxHGjk3Ut5zBr/4Z3uaUWrTy7rL2g7Kc98NtRyxRmJ3wfdxcpmS3Pfkiw/vao4jrtMS9IsX5lLimVH5YNYvqWtqDVJz1Stf1Xte2ixiqyRWzCruup93583a1t4hlrA7Z0sLGSm99bppxM+BZo/ri6gtyVWKbXMrXHPfCPg4drnuWl1k6j5oRNhRhrBjh9je/ttXtT8Md58LkwmyiJo9SAM6KvigA0Kl5KjN6WtfRdsH0czCsbxryMnviQG0zbuNsL8CD3bkpLEwoULfpmDYkG2/YWMbP833vunhw4DrkZfZEy+l2zFi8XpXE7Y5z4bzeKdhBMGLO65OKeVMHofxQXUCTx87rGW0MyumJiuNsZdSCLkJ9Xt1xgFJEPjslAdWnTjP97XcNxu+7dnTfgHedRX9Nxsw8xPP+XTblnbEKG5JK5e1GGDs2UFnTxKX0agcdfklX7VapyXPRkBwkJ8Sh6XRoU0bpgZNYs6canVKXxf7Dkbn4/Sr+5D0SV43MDTwYVbX2LgTaxL3R/dOx/Ui9ajJ0x7kwsl8ath1qMF3a31WB5iYqPH/zXWOQyrCZHBQ7kCtQZBb++z9B1Wodfolo6ABdiZTKJMsLHdDB3FFIYUg6sQC7PVAkGQrtZ1o1hqQe6mcrzetmNnaMPj7Nq+4nxlMEMZrSvkaJGW83z2njkSXRemtYG1KHA2Hs2IBTKnu0BpdeM9HWdmt8GcokN7sWMbu8LspqAiX7a5uDklIlqcvgSfW6mePcKYnBlW1GrSyUrKmowah+aThwsiXi6qcPvLfNUkO+vKoeKYnxxIT4UHCCh84MkWwJwsOwXHur0kh6W1rjJjnBmg2A9hiVNfzztzZs645zYfn/K1K9R9udXctz149EVkpCUMiL5BV5csawgHe1tLIWDzLk6piFVZaE5K1xkvgq7fwLTGC3gnEoyCWKMn8vrbJFyK/Mwjj6AYU3x65z63IBbWc6guLpdS3tQbknnZKE0gN1QQqpeqR53WjWJLo2cU7S5YcbsOKuYvxt7jj84geFePa6kVx/TyKpB//jb7UicackWW7oAEASh4qzgI3bJuZh6W1jUbJgKsaY2MzQKo9oaPsVN5/uRLrXunC5jGxcxHM8HqQN0dMf71a9Rptms1ISAvo7QJdXpHhwluo9slckP6tn4L3HThn3+AoVbw/1s3Ren1SM05T463lr7nq7LCh0J/cpCzfCs2MDBdnJ1C7adkJzOyqbiW7Yz65qyuPOtNJ+UrpGC7KTgzqWW0GHX0LZoQb6GxWwfEe9+8DM+dlYWYvZ4wZgcmE2tdKBBV9SD7Sc4Zsoo6X0WmtcxhKFOckR8QBdfF5OICzjMpE0PzQ3hSgcqdxM8Mwxdpa0A8Bfbh2LE6dOY92+EygelIV/bfsuyNMie5u0z7OZhN14l0vVkoZUUELKc+HNu+T1pGo9uev31SLNSzcdKmuadFWz1++rDeoUbzfC2LGJJbeOxdTnSyISdkj0xBmGppTTVIa3B/Nxx5gw4Fjj6mleD5raOoguW2WyrmTQydyJtHUYTyo8eQcudOuJVDeGvps7Um/vjjCSRIlNxszEgkzcflEB8jJ74l/bjliWD8eKL0mdf+LryT5vyFw6tBdenD06sHDHu1yYoemmnuCOQ5vWhRMhuooDcnDDhf0BANOH9g7KP9H2CdSiTdjV26h1taTp1qRR5lcqC0pI9Of0dlvhSdWKwJJU9DdRNtKbFJvucCCMHZtIS/LgywXTcP2r68O+C6Pl4BQVdLsg0yhVU7dNzMOU71WG87N64qbXNnL1uNHG9rWlxzJDeiUj0eNWTSTj8jPQ4ferknULc5KZP9sJ0HRZePIO3t9yGA/ZGJsXOJeURDc+2HoExYOyABNeFR6PSYI7DqcVBocvyYMP50/SvIvfnPTExakW7jlLSoMaVZ62ydDpCqFJ3I1vlcieljV7qlF+qKsPYd90r6FwrNJbY7RR0yb5k4wHPZyQI0ryZNWcOmP4NzVNbEngViGMHRtJS/Lgf340xjIVZSuYOCgTVbXN+HDbEYwe4EPvlETD9w/NTQ1IowPAKzeP4WqDcd/0IYFSZSOlztIDdShZMBWHTjYHJpLX1uwPyqHZWxMdCZwyNK8Na+5OSkJ8WIXTnIgvyYPB2ckoq6q3VNjQKZVuRnzyzXEAXS1BzMBztv5y64UAukRJ5cbCWrJTjPVlSLT7uw0ZvTJsuzxy2hAaC1rRu/qWM0HNaacUZmPioExsqjypDm+ha/5Xemt4Nmok40EPJyXeKs9Zdoqx9y87mf8eCgVh7NiMnU1BaRT2Umt2XDjQh2+ONuJWha5Josf4UTmuCZdodze0jtqyR4hFUfOeZWVUgbloyRlhhWUfGw2LcTioa2lHp1/iqoLT47nrR+JoQytGD/DhcF0rk/KsnfB4XsLB5MLsICNn9e5qbD3ctREx04NKKXJqhTdC64Eywszzk5fZU/WdXy7ZF9Sbak1FDUbkpsCluYB+APWae3SvCQ//gdpmVQsIkuFz1ILmp1ahzK+k3SPKCEM4EMZOGCBpDYwd6MMVI/rgNx99Y9vnzi0uQFFBZiBGPuvldUEhpDZKyGu7JmmXtLtJ87qJjTy1qsq0BD0hxU/GzETttMXTKsoO1Vt2rJ9dcg4AYHmpfa04WBms6U8WScqq6uD3S4FFfkBGEmYuXqcyMFMT+ZYObc6PFVWVPCEvbXd2GiP7pWLWy+uYjOodR8k9ALXPn5nn8ckPd+JAbbcxQ9JKMxPWtIvDdS1MOUppXo8QFYxFlFn1GytPAHBhfEEmGluNY5pKzCxecsuB/KyuHYqZ3XCyZlK7d/nWoNCSXsdybaVpQXaybs4OwFehpNeOQNBFrBo7VrFu34lA4qkVnbJDxzkL1mtrKqmNh3kMcHecC2/P7dKckT0lfVKNw+eRZvthZ2y8lIYO0F22vez2bq20ovyMcA9Ll8+/PY6+6d5AU1YjLTFRjRWj1LecweMf7FJ5RJIoISQl3h7xaDnDl0WvvJG2Hq7n+luZCYO6FwIeuXMguLywsqYp5FJRuUu7NqFPoMauehZtb6xo5ZyclEgPQYWTxARphg4vkgQ8/q9d2FvdFHFRzFhAO68WZCdjQkFmUIgtEvzfjmN4g7FpcbgbgToptymmIXlEWjiUi3kNHQB49+tDgX+b7YGVpUhENBNnVwoC0koRWfD2iGM2dJyzV44dZo3ph5IFU7H0trF48ydjIz0c03R+L2ew/0SzI6pZYplOScLmA3W2GToJ7rPvSd+kMWxevWUMphASycPNccY2G0D4G4FG1NhZs2YNrr76auTm5sLlcmHlypWq30uShMceewx9+vSB1+vFpZdeiooKtb7EyZMncfPNNyM1NRXp6emYO3cumpqcs0sCuj0i4U5Q/mfZ4cC/LxqSA18Sv9qoO657IjETZ1ff0KFPSjxicYOjrEw9GnABgd5Y/TN6mrqnnMALn+7BbUs3Y9rzX+LJD3dFejiCELj74sKAsvjf5o7DlMLsILXmeJeLO8/Iyew5rs4TklMl5I3I/T84x7LPssuUPFwX3k1GRI2d5uZmnH/++Vi8eDHx988++yxefPFFvPrqq9i0aRN69uyJyy67DG1t3RVCN998M3bt2oVVq1bho48+wpo1a3DHHXeE6yswEamdozZn5sP5k4IWp2SKrL7Si1KQnYyJg9jzGyYOUicoWxFb5mtgJ0JdVvP62kpc/MLqgKEQC2GJA5zJqwJnkZ2cgMmF2fjZJedgcmE2Fs4cjlSNwm/PhHhbKhqH9021/JgA3cCobzkT8EwqkWzYUHvi7TF3yqrCGw6PqKl7xRVX4IorriD+TpIk/Pd//zceffRRzJgxAwDw5ptvolevXli5ciVuvPFGfPvtt/j444+xefNmXHhhlzbESy+9hCuvvBLPP/88cnNzicc+ffo0Tp/udrc1NtqbjJYRod3vub3VD2L/zCSUPzYdi7+owNq9JzC5MBuXD+9tqAOkdTXyPEva9xZkh9fTssfm6ha7Oz9r4Sm1tQu7z6kgugj3M0CiqCAzoCyel9kTj3+wK0issOm0dYbOL6cPQYfkZxIVNAvtlK4oP4oV32suTfnewHt05U6unEpWzthUCaKUIggHjvXr7d+/H8eOHcOll14aeC0tLQ1FRUXYsGEDbrzxRmzYsAHp6ekBQwcALr30UsTFxWHTpk249tpricdetGgRnnzySdu/A9Blgf9YoWsTTgb3SlFNAnEuqEpIN1SexGtfVerquPiSPEGtGniS4OSmo7JOxDdH+HpPOZlR/dKQ4u1hy+SiR6QNHV5iJZlZoE+kDZ3z+6UFFX6QsHKcz33a3eDzQhMNUa1mTUUNrvnTWpyKMi2ufr7wNsx2rLFz7NgxAECvXr1Ur/fq1Svwu2PHjiEnJ0f1e7fbjYyMjMB7SDz88MO47777Aj83Njaif//+Vg1dxe1vfh0xV/+yTQdVYmnuOFdQcq/R2Opa2lW7luG5/C7be5aXGfaO4SUO9lUa8eBNcKua9O063IDnV+2J9LACOMHQ2H2crD8iCA1RkdjNziMNsDqrhKeJ8xaHGPOsVa5Jnjiuwhg7CXc1lmONHTtJSEhAQoL9UtWVNU1BHWPDyS6NkRHq5GhG9M9KQwcARkewm7wSufxTjpFnmZDPtxM7u0GzcrarPtuldTR6YHpE5xUn0RVhCf0s3/+Dc+CHFGiPMeLxj3GKoRgi2sxNWt/EcBLuaizHGju9e/cGABw/fhx9+vQJvH78+HFccMEFgfdUV6tbEHR0dODkyZOBv48kkS5ptfq2tvsx0S4Octfzq0b2xobKWhQPysINF/bHqN986ojEWKu9VlYSbT3EYpFhuanU9ies/G3uOHT4pUCfudsiFBqPVV5QeGXH5vmYDJ1oxCnGWbpQUO4mPz8fvXv3xueffx4wbhobG7Fp0ybMmzcPADBhwgTU19djy5YtGDNmDADgiy++gN/vR1FRUaSGHsAKSfSziQvzfKod65iB6dh2uC4Qj19ZfhS//egbx3gMwt3egieEF2s9xKKF564fiayUhECOm1XJq0frW3GssQ3uOJcQR7OZs9Vrpk1zcMcBdqUJ1p9tCspNTU3Yu3dv4Of9+/dj69atyMjIwIABA/Dzn/8cCxcuRGFhIfLz8/HrX/8aubm5mDlzJgDgvPPOw+WXX47bb78dr776Ktrb23H33Xfjxhtv1K3ECifdTUBrRGsDCuPyfPjHnRMDOTByLy9tKwonGDqy0RH2lAnRA4KZSDVP7fDbszo8qGi26+VQXheEh7wMLw6cdE5DThpJPeLQcqb7XnXHueDXTGh210Nsqqw9e4ydr7/+GtOmTQv8LCcN33rrrXjjjTfwwAMPoLm5GXfccQfq6+sxadIkfPzxx0hM7O6r8vbbb+Puu+/GJZdcgri4OFx33XV48cUXw/5d9CA1AXUSPdwunOmI7ArqS/LghRsuAICQe3mFg6EWhid4cEI+qhNKjVloPt0ZEYPn4RU7A//mSegfmJnE3KzSSXkXgi7suM/iXUDx4Gxb1g6loQNEJtk97HtFyQ4VoiijsbERaWlpaGhoQGqqtSJRpC7hkea560fiaEMrRg/wobyqDr9fVUH/IxuRc3PenDsuUCq/encN3lh/IKLjUjKsdzI6AUwanI2bigbYoq0RDSQnxFveOykaPttuCnOSHdUfS+AMShZMBdBVuXS8oQ0PKapro52SBVMt8eywrt+OzdmJFUg9sSJNVkpCoONz33RvxI2dTknCmooa3PDK+oiXS+ux61jXQvSfY034y9r9ER5N5DDToy0WPttu9glDR0DgQG0zpg3JCXi7Y4UJBZlhT1AWwV8biVRPLBrxLldAarwgOxmjB6Tb9lnn5LDf0E41dATdRDKEFQ3hM7OIwJSAhLI824p7JNEd+SV/SmE2Xr1lTNg/V3h2bCTSped6zHm9NPDvKYXZ6Oiwb8fcw23ce0sgEAhknCIa6gR8SerybLPVvXOL85Ca5MHoAT4crmtVCc2GC2WVYrg9OjLC2LGRaCg9X7u3xtYdcyQSeQUCQXQSbi0vJ1PXYk159i0T8gLHqLRJfyvRHYc2g/Ktow2tgdSJSBF5n1YMI5eex2vbjzuIWA4N2E1ehjfSQwh6gGld7AWCsxkn9LLi4UBtMyprmlCyuxqb9p80dYxDJ5tVaQtpXusbUxsZOgBwqrWd2KU9nIhqLNhbjbXtUB0WvLtdVFrEIH+bOw5H61uxobIWB080o/yQvY1OC3N6okLRdXxKYTZemj0Kn+w6hvWVJ1A8KAs5KQm4VajrCqIcu8JZS28bG1ChPtbQFpGQDg8j+qZih4Uq7Tx9v+xCnrfSkqwxuljXb2HswB5jp77lDOa9VcbVJVwQXdBct1bTK8WD46e6tYcmDsqEJEF1j2kNIoEgGrEr3FSyYCqqapux9XA9+qQm4oH3nW3sWI0TcqKUUiNWIIwdDuwwduYsKbVUWydaxNwEkSWachIEgnBjh9BkfBzQGWkLIgoJt86OyNmxAbnk3EqEoSNgQdwmAoE+Vhs6Y/N8wtAxyYHa8HqgRTWWDTi15NzpRKqfkUAQaYRHLnqwowO9tglnZk8Papud2S7HKtxx4S3cEcaODURDybkTefjK89DP50VZVd1ZGU+3Em2jP4GzGW5xIurZRDgNxbEDfZhcmB34ucoi70SHX8Kz14/Adw1tGD3AhxVlh/HP8qOWHFtJvMuFVK8bja0dERe7DXc/LmHs2IBccu6kfljRgAvA5MJsTC7MxoufR7aFRbQjDJ3ook009zSNywWEa932uOMC/fvyMnviaIN1nc4feK97c3dOTrJlx1WS6nXj7blFePrj3ZavT7zJz0p16HAgjB2beGn2KNzylw3YcfRUpIcSNRQVZGL17mpsPVyPXYet2+WKEIHA6QhpCvOE00Gwfl+tqglwoU1GSYVN4n+NrR14+uPdeHPuOOw/0YwDtc2obmzDgxZ40Z1urgtjxybSkjyQIiwmGG0VXFe/9JUtXa1FiEAgENjBPg6jZHhuKrOivF2eKrnpsqzMLFdDLfzoW5w6HZwvmeRx4UynPSGnA7Whq0PzIIwdm6isacLOCC+wPdxxUeUet8PQAYAXZ4/GoZMtKD9Uh4aWM3h93UFbPkcgEJxdGNkAaV4PVs4vxoHaZuRl9kRVbbMtgp9mtHOCDQ3yF2nrkOCCPZt2kaAcI1hdkWXmho6koeOkBNl7lpdF3PAUCARnFw2tXdVU04bkALCv1NqPrjYxPJvFvMyegdyj6sY2nNL52y5jzh4309ZD9apkb7sRxo5NWF2RFRfnQnKP+Kgpze6b7nWMkq8wdAQCQSRQelDsrNLl9Yo/8N42bD4Q2bYR+2vCuz4IUUGbKMhOxvC+1vXZ6vBLUWPoAMBehxg6dpEiGm4KBAIKNY1tqiacTmkMvSXC/bEAID9bVGPFDE/NHI4Zi9dHehiG8CTN8RBFedGm0HP7CgQCgYxSK2xKYTYevPwc3LKkHnUtkRUMdELhygX908P6ecLYsZHz+/swoSDTcc1An7t+JLJSEpCX2ROSJKlKKQUCgbVEW1WkwB7W7T2BW5bUo7E1ejz0dnKkzjqNIhZEGMtmHOCxVJHm9WDMQF+kh+FY4h12vQTRj/Z5ixez7llJpyShrqU94srFTiHcZ0F4dmyksqYJ6/dFzquT6FGXnqd5PRjSK1nlyRmea11eUSzQKeahsHI2CD7eNW1woI9SvAuY87r15ccCQbTRz+cN6+eJPYaNRLohaH+fOvs/zgV8rcnA32UiXyfRY+1tE+9yhV1zQeAMzgYvozvOhfysnpg2JEcY0wLB92w7VB/WzxOeHRuJdENQrQQ9KSnOzNz72pwLsf1QPdbuPYG+6V68V3bE5Ai76JkQPSX1gtBRNjw8XNeCrx1QGWInR+paA5omIkx69mJGKy2WOdF0OqyfJ4wdGynITsaFA30xNZnHuYB7l5dbWk0gDJ2zh9REt6rh4cDMyG4IwsFLX1TgSH1bpIchiDDJiW7mue5sCO9ecl6vsH6eCGPZzJJbx8KX5In0MCzDL5E9RHpYqTUkiH60k/3B2siGesOBMHSij/g4WK6H03y6E74kT9Bx410IWiPOhnmzny+8Gx3h2bGZtCQPvlwwDbcs2XhWNqP0eoT4nkAgiC46/cDYgenYbKFXXq7GGjvQpzpu8eBsvDR7FE62nAn00crP6onBv/o3OmI47rWpslY0Ao010pI8+Nc9k1H89Odn3S5vS4Qlye0kwe3C6Y5YdzYLBGcn143ph2dvOB8HaptxrKEND6/YQf8jBu66uLs6TzZsgK51Qv53ZU2TrYbO8L6pEW+jI0rPY5D6ljO4d/lWSwydVI64rxOI4Y0JRva1ducnEJztuFyAU2RoKo6fwo3jBiA/qydW76627LhydZ7Wq/H30ips2F+L4kFZ6PDbO3M6weM+viAzrJ8njJ0wcPubX1vWi+SDuyfhcF0Lyqrq0CfViwfe3677Xq279Gwk3mWPdk5KghtlVfXWH1ggOIsZkJHkmDwupfiflaZHh0ZOe8fhelz78vrA6yvLj8IuJY54lwvJifG2NQFlNVYnFGSGNYQFiARlW6lvOYPrX1mPzQfqLJOLP1DbjMmF2fjZJefgWKOx3PZFQ7JRsmAqlt42Fs9cN8KaAUQRqYlu23RNTp3uEEqoAoHlOOeZyklJDPzbShmRvMyeqKxpCjQIVRo6Mna1Fxk1IB0NNrar6KHRVkjzejAuT62lNaUwG6/eMsa2MeghPDs2cu/yrZZ3l3XHuQKaHQdOGO+ATjSdCbhLSyx0w2o9RikJcTh12hkBq1mj+mJgVhJGD/Chwy/htqVCrTbcnA1lswJ7OFgb3n5JRrQrQklyx/J1e0+oNjm82jlpXjce/2AX1lTUWDdQCnOL8zDpnGzkZfbExspaW6VQtDmMDa3tQR7wHUfq0djajrQwVykLY8cmKmuabLmhf/Ovb4LEAvXISUlQiJmF7heNd7lQPDgLb84dh/0nmh0pfz++IBPZqQno50tCVW1zpIdzVuKkvAuBwCyjB6g9Ei/NHoV7lper5vVJhdnYeqiOOY+yobUDa/eyrwueeBfaQ3RPTz03B5MLswEAGytPhHQsM2i9VnUt7bhm8VqUPzY9rOMQxo5N2NUqYi+joQMAf99chWc/2W3ZZ6d63Xhq5nAACHiMXvy8wrLjs+KOcwU9QPLryhymwpzkcA5L8D2iw7cg2nHHuQIGgkxakgdvzh2HNXuqUX6oHqMH+NA33avqNcgCz/PRYUEcXjlXFuWHNylYj7qWdnxVURN0ju1EGDs2YVerCJ5bv+qktS7hxtYOPLJyJ96cO04RSmM3vqxgSmE2Hrp8CG5eskklbuiOc8GvmUX21oR3bALnIUJqAjN0+CXsP9GsSqKVq2qVnh27N1RW3LvxLhdKdlcjL7MnCrKTHVPRW1ZVJ4ydaKe+5Qye+PCbSA/D8km+U5KwpqIGN7yynrnKy4rFZvp5OZg9fqBKk6L8sen4x+ZDWF95AoU5yXjukz1BfxcNoZSBGUkRbxgby0TBLSAIkb7piSpZj4mDMiFJwIbK2sBrw3NTsZOz6fGBWrWxc+/yrVi3Vx0GcvqGKt3rwZzXSwM/j83zOcLQAYDctPB2PRfGjg3cu3wr1oYxAS3csBo6PXvE4XSHRAw58dBP4yUj7bCilWnn5uDic7NRfqgraW/J2gORHpJAEFU8fd1ISJIUCC3J3oI1e2pQfqgOowf44PdLuJWzWMGtqP/Wy8F0+oaqvlXd2seuknMzZKUkhPXzhLFjMXYlJkcjre1+S/I3Xl93AK+vOwCgK4zV3ulH6f6ToR/YAazfW4M31h+I9DAEUUZ8XFdLg7Od1EQ3XluzXzXnEj07JnpNHa5rxerd1dh6uN7yPlmCrhL8cCKMHYuxKyRhZ5w13evBqTbrdWPsSFS1y5CMVBx7T7WoGBPwIwydruaZhTkpQaGl9ftqg977DWcICwB+869daG0XJ9pq5KrecIsKCmPHYuxKTJY75ja2Wm+U1Le2OyZpLZw8cNkQtPv9Adf3nCWlQToaAoHAOQztnYJz+qSgeFAWxgz0MVdCmdl4sRg6vDo7rJjJMYoWigdn4aXZo8L+ucLYsZiC7GRcONBnuXBToGNuno857sqTHHy2GToAcPnw3jh4sgX9fF0GKklHY+xAHyqqm1Sx7+SEeDSd7gz7eAWCs51vjp3CN8dOYWX5UQzP5Q9NWc1oi+b6+Djgs/umBpqDHqhtjilB1EWzRqB3WqKqyCTcCGPHBpbcOhZTny9RlUZbxV3Tujvmxrtcqkx7LReK3liGKHeFUwqzsXDmsKD3eHu4sfqX0/DJru+wvrKrSV9WSkJMTUQCQTRiJjRlBbNG9cXVF+QGFu5Rv/k05LleDktOG5IDAJBizLvcz+cNa5k5CWHs2EBakgdfLpiG//fmZsuz3+UHLD+rq78KD11hsHZVvyhetVu73LYpCfFwx8fZYiCysKaiBj98aS2aNR6bdXtrVIbryvKjuHCgj3QI29G26SBdT7uuj1NISYjHKQavmjvOhfN6p2BHjIYCIk2COw6nOyJ7p/F8epzLuhzCguyeAaOksqbJsjnro21HMLxfetgTd8NBqBW5ViAagdpEWpIH7945EW/+ZKxtn0FLhtb25WpoaUeqV92PZHA2nyjWiH5p8Gl6mrhDbNHrjnPhtTljMaJvuur1NG94e6c0EpK0OyUETWZfH6yDOwJPzrfH1Au3XwLGaAyvoSZc+/Ec3yUvI7zaGFrO65OGKZodYkpCfND7OvwSzvj9Id+bAjJnImzo8GJlMdX5/dMD/7ayIOWFVRW4belmTHv+S9z7Tjn33/Pc6uGevpxgwAnPjs1Y3XX739uP4u6LCwHQk6G105EfXQv3L6efg4qaJu4kPwDYdrgBJQum4nBdC8qqujQsXi7Zpyrz5EWSgHlvb0Gjphvvqdb2oNYQviQP8jN7ouxQvenPs4JIzPXaPCFSk71ET/DCT4OnsifF6wEQuWaNpQdOomTBVACghnJ3H3O24Fs0E/l9Oh9WVq8druu+/+0qSNl1hN8jOWYgez7nGJtSHLSRgkhVXpEQxo7NWP0wVNZ0lyoXZCfDl+ThdqM+92mX2vDK8qNITeS/BTZV1uLGcQMwuTAblTVNIRk6QHfytRY/ENQCoq6lHZ1+tkXMHefC/9wyBgve2xax8JjdaN3DZTbnaO00MQlbzYHaZkwbkoP8rJ548sOdkR6OJVgZZhHYS23Tads/w8ytMGt0Pzx7/fmBJOfHP9gVVF0a73JhXH4GPBp3rlXVuIOzk1WNqiNVeUVCGDs2U5CdjCmF2VhbUWNJLkV+dk9VJ/NQF3EzN7gEBMZwvKGN+n6rYR1zh1/CX9buR/lj0/FVRQ3Kquqw63AjPv32uM0jjBx2O5xYJmG7+1EpXeJbI+zhswph6IQHK+7NrORu5V8ntXpxobtBMwAsnDkcMxavVa0RqV43Ov3BoqzNpzuCNs65aQk42sBn2CV6nJsZI4ydMPDS7FG4/tX1KovXLGt21+CFT4P7QIWTZZsO4uEVOyI6BlY2VNZi/4lmTC7MxuTCbCwvPRjTxo4TGNY31XYPkGxse02E7QSxgzbMTWN431TsUNybviQPGlraVZsEmpetqKC7c7gZz71dm4GigszAc5GX2ROP/HNH0Ga4rqUdpYRQl5yb+Le549Dhl5CX2RP/2nYEv19VwTUG7XO/bu8J3LO8HE9cMzQwLlF6HqPUt5zBvLfKLDF0khPiHFFKzhJPdlK36Y2VtYEHrCg/k/JugRmUk6RROa52cTIjnnbPsrKYFVwTdME6fwztk4JvvjvFbPC8OHs0AARCPRlJPYK0tSYNzkZ51Uli1V9qohuSJAW6iJvBjs3AuDwfHv9gV8gK84frWtE7LREAcH6/dO6/114FuXm0VubjpdmjkJYU3gIUYezYzL3Lt4ac0wKAS0wQ6FpUJAm2qAGzhErCsbtnpbbptGrHM3FQJlFSnneXeDai3fXKCYh9070ql/6H8yfhGo0LPd3rQWFOsspgN5NQHSl9lVjHrg2KL8mDwdnJKKuqZ56P3PEutDNUd2w/0shVhXSgtlnljUlL8uDNueOw/0RzwACSJEm3aKOxrUP1OzPChg9efi76+ZKYtNJY8CV5IEkIapthBqXH3kw/MRbWVNTgzre2YPkd4205vh4uKdbUi0zQ2NiItLQ0NDQ0IDXVugtcWdPEVemk5elZI9Dre9XJjZW13KEjrS6L3WhVMq0Q27KCgRlJqoV4QkEmXC51Dx07VK9jkeEaI5bUdFG5c5NzpUYP8OG1NfuJCZPJiW40tEb+Pjkb+UlxHk62nEHxoCx819DKHbbQQ9uKpaq2JSh/JBKc06sn9hzvLvIgeRmWlx7EwyvYEt/N6FotvW1sQKcHAGb/eaMlG+Joo2TBVEtCWqzrt/Ds2EioyWtFBZmBm+Ff245w//1dF3erLa/ZXY2l6w+GNB4aWpVM0u4+ElRprkPp/pMoHpyFkgXhk2fX7prjXS64XGSxLa2HyUmGmHJXmpfZE/f9vRzlhxpU71lTUYPblm7CivmTArlSlTVNRBd7pyRF3NA5myuhfjQhLzDHrN5dbdlxa061oa61HblpXbpMD63YHvF5AAAqjqsb75JySrqeVjbMFARow19na0N1ZXpBOBDGjo2YLTuXQwPK2HB2SgL9DzUo1ZatnMj00C7c/TOTVJVQfVIT8cD74U9s1osjA+GTZ0/qEY/mM905AD0T4nWryrTnsa3DOX24Dte1YnJhdkDBW2voyJQdasD+E82QJAkHT7bgWASq9liJc7lwft9UbD/SGFVNYPMyvDhwslvzJT4uND0ZKyv55I3VyvKjeOj97ZbrjZmFJadkbJ59CukTB2WqFvjKmiZiSP1sINw2njB2HEhRQQbaO/2qBzDUFgXThuTgDZs9O3oJe33TvejwS45b8DZW1gY8FLyaRT09LjS3s8/gre1qg6XpNHvJP0/uk92J4coJ6m8bDhi+95a/bMSRemddcxIdfgn7TjQj1eu2xfugvSZx6MoVUX6WNtTKwtKfFAHoTrad8ae13FISB2qbA4svz+bMl+RBp19i+jynGDqsbD5Qh5QEN05xPKOsaG3pcJeuJ3ni0MLQzT0cKKvawoEwdmyivuWMKcnvsd8bNVodhPKqeqR5PVwuf6Xa8kVDcpDmdaOhNXzdzetbzuDe5VtDrhBQYmXvJ2UO1Ng8H9dCx2PoAMFhEqvCJtqQlyfehTM2ri7K8laaQjGLoeOUqr3Gtg7bdppezQKTluTBh/MnYX9tE8oP1WP0AB/Kq+q482UO17UEvGyrd1eb0syKd7mYK4ueu34kjja0YvQAH/qme0PKRww3yQnxQQrkRthh6ADdUhhmDEwraHWIoRMJhLFjE/cu32qqauTrg3XEyV/ObeCpyjqhUfr86O7JQTk0viQPCnNSsOVgXcgufOUuEeg6B1ZUCChJ5lT6ZK1Ks7pha7jQhrzabUw+SU10W1LeqiQuxNAL9fhgN47tOnPanXRdSzt++Ke1qo1LYQ5fjzoA+Pzb6kCO3NbD9Ybv1fMuKSuBaGPo9Ev42SXnAABKwhAWt5I+aV5L5D+sQDlPyqKzpMT9VK8bja3B/fpIpCa60Xy6k/peJ2wsZLTrhd04V+4wipGTMc2sO7Q/uWvaYJQsmIqlt43FM7NGGL73kvN6qX6Wc2ievX4EZo7KxXPXj0T5Y9Px2pwLUTw4S/XedBNNOGtOtaFkdzX2n2gOnAOrcyCaOAwdX5IHH84vDvpusYydKSeNbR2WGjpAl6FjZ7NOM41Rw4HWQ2tmIc5K7oHKmiaU7K5G79REw/dqy4hTvcEhW9oYlLeW3R6JZEJz11DY6xBDB+gK96/eXY0/fr4HX1XUYOHMYUj1qv0OqV433p5bxDwvn9s7JermuXA36RWeHRuwMw7rjnMFko4ra4wf4H6+JJW+jC/JoworrSw/in9t+w4LZw4L+lsza+YD79mv0UDbpf9kYh5OtnaV0t5wYX8AUOlo7DzcgBdWRVaBGrA2HBftdPgljMhNxQ4b9HNeuqlbRO54QxseihLlbxY+2XUMzyvU1PV0onxJHvzrnsmBZ8Cstst4RY6FnkfCKl65ZQwABGQL5r9VhsYQQkt2ezRYKvriXS6MGpCOWS+vUxma7jgX/Jpz2Njagac/3q2au+JdwJzXyRWjpQfqAikQ0YKyoWo4EMaODdjpLlPeIDSjSqs060vyoFGzo1y39wRmLF4X1HE81HLgSAm/vb7+AIBuQ07W0JANxB0Ud79daDWPRjuknDzUCh7iMQ3K6vW4dFgvvHjTaByobUZ1YxsetKBqz/f9dQcQtorEcLJL84z5/VKQweP7Pj8I6O6btLzUXKHC1wdOqsIOL80eFaQ+bBUdfgkDM5LQ4ZcgSQjJ0LETZWNN5Xkg6U8VD87C9sP1qNfMraTnRK4Sk/N78rN6UkOHTlDX5yEcDVWVCGPHBuzcsSsdfzRXstbgICXg6nUcDxX5+bXLg8Gyk5I1NN6cO07xavhFLcbl+fCPOyeqVFrzs3pizpJS23bGrNiRLzN6YDp3DlRumpd5UmelrqVdlQwaa560oKR3dBk8ykRipe5VN+aegX+WHQl4S4Fg9eE1e2qwdN0BU8fW8vIXex25eGuLPOSu3mlJnqDnG4DqtaraZtzKqeVltlouGshM5pdTCQVh7NiAnTdlkcaVbFQu7YTJfaim95FVLRnGDKCrQ2t3RwCQndIj5M/mQVZoBdQdiQF7d8bh5rnrRyIrJcG0QGOn4p6w8vmJlsWCpyqNtoHISklQGSVaivIzOEbWjctFHqGVXlM5MbesKvRjhYrWGys/yydbzgQZNUDw86197UMTwrDKKjm90CHPvcOb+Gwn40XpefRTkJ0cJKtvBSRBqnCqkprx0ihzJoxizkBXRQFrpZVSHZqWi6Fc8KxsBEpSRS4enIUnZwwjToZatDvjaM4pyUpJCEmgUfkXepO6GaVjs80aw422G7cRtBAo7TsXZCdjQkEmd4uCIb2N8/CyU4yTpFkw4xXkoTAnmTkZ/NkbzgeAoGc5TREe5eECjsaa8lyi/RzSBmkwx3cqHpyFp2YOxyMrd1q+yRqX50Oix606rp5cyoSCTFPnMBSEsWMTT80cjhmL15v6W1LvJqWHQMaKRGg9Sz/eFVyxofXS0I6rfFhZwhN/nD0K7jhXl9pyWqIq4VmLUh2alqit3R3pNQLlZZjmfChd2jwPMuv3YIGn1xSP8UAzdFl2oEZod3mkSX1oLvsGgrRYmHletJO1mU0Mq1Gs10vOl+TBiruKqSFQvQWSxKu3jAk6vzRD4JxeKYbHNOsx+tvccejwS2Fp2/LnORcC6DJgjjW0GfYbPFDbjGlDcixblC8akqPridd6vOW5RAtv41JAfX7l76I8Bu08DNfMc0brkzacR+oqT1rLwoEwdmzi/P4+TCnMxtqKGtUiQXM5Lvt/RZj4fQkhKQashOaW1y5QJOVWPUu/eHCwy5b2UCkhPay08crfU84z+GjbMaYJ3UirgjT5v3Jz8ETP21UeUHutaF4cFng1N0gGqd71JCVMjhnI/p0nFWajw+/HpsqTTOeYZKzoiVqSdnlmJnUlZu4/7T2gF7bgaXCb5vXg/H7pmmeLbBSTesnJCcb9M5OoIVC9BZI4LhPnl6Z4a+QxSvN60NSmvX+77h1lXhGPV3CKzj2ph/I+490kWYXRNe6QJOa5RBsy09vATRyUqZO3xb7J0pvn9NYn7di091m4PToyous57Ot63tDSTrRqH7p8CG58baMqZNOzRzw+/tkU9M/kyyvQ2+EVFWTAHRdHtKj1Ys4sN6TRjpIlfGP09+pEYv3zp+1SzPteve/LmjCsN14r0PseJAPGzPVk+c561zPUc2y0y9P7ey12338sz8Ch2pagBSs1sWvfqHymlYYKz2Sv7BSvt1DJWL2I3PTaRt1Fc9nt46l/b+b+1V77UO9JmueB9bPseL5leK4xC2aeTSWROg9WwLp+C2MH9hk7MnoTkhU3PO0mt3oyDPWhssIoMSKU7xvqxGklet/DCdcz1DFYfY3svv/0ID2/Vi9i4caq8xPK/WvVPWnXZzkZs89WNJ+HmDF2nnjiCTz55JOq14YMGYL//Oc/AIC2tjbcf//9eOedd3D69GlcdtllePnll9GrVy/S4YjYbeyEg3C7CSO54NmN2Ykzmom27xfL958TcML5CecYnPB9nUA0noeYMnbee+89fPbZZ4HX3G43srK68lrmzZuHf//733jjjTeQlpaGu+++G3FxcVi3bh3zZ8SCsSMQCAQCwdkG6/odFQnKbrcbvXv3Dnq9oaEBS5YswbJly3DxxRcDAJYuXYrzzjsPGzduxPjx9BizQCAQCASC2CYqGoFWVFQgNzcXBQUFuPnmm1FVVQUA2LJlC9rb23HppZcG3nvuuediwIAB2LBhg+7xTp8+jcbGRtV/AoFAIBAIYhPHGztFRUV444038PHHH+OVV17B/v37MXnyZJw6dQrHjh1Djx49kJ6ervqbXr164dixY7rHXLRoEdLS0gL/9e+vrzYqEAgEAoEgunF8GOuKK64I/HvkyJEoKirCwIED8Y9//ANer9fUMR9++GHcd999gZ8bGxuFwSMQCAQCQYzieM+OlvT0dJxzzjnYu3cvevfujTNnzqC+vl71nuPHjxNzfGQSEhKQmpqq+k8gEAgEAkFsEnXGTlNTE/bt24c+ffpgzJgx8Hg8+PzzzwO/3717N6qqqjBhwoQIjlIgEAgEAoFTcHwYa8GCBbj66qsxcOBAHD16FI8//jji4+Mxe/ZspKWlYe7cubjvvvuQkZGB1NRU3HPPPZgwYYKoxBIIBAKBQAAgCoydw4cPY/bs2aitrUV2djYmTZqEjRs3Iju7S530D3/4A+Li4nDdddepRAUFAoFAIBAIgCgQFQwHQlRQIBAIBILog3X9jrqcHYFAIBAIBAIeHB/GCgeyc0uICwoEAoFAED3I6zYtSCWMHQCnTp0CAKG1IxAIBAJBFHLq1CmkpaXp/l7k7ADw+/04evQoUlJS4HK5LDuuLFZ46NAhkQsURYjrFp2I6xadiOsWnTjlukmShFOnTiE3NxdxcfqZOcKzAyAuLg79+vWz7fhCuDA6EdctOhHXLToR1y06ccJ1M/LoyIgEZYFAIBAIBDGNMHYEAoFAIBDENMLYsZGEhAQ8/vjjSEhIiPRQBByI6xadiOsWnYjrFp1E23UTCcoCgUAgEAhiGuHZEQgEAoFAENMIY0cgEAgEAkFMI4wdgUAgEAgEMY0wdgQCgUAgEMQ0wtixicWLFyMvLw+JiYkoKipCaWlppIckULBo0SKMHTsWKSkpyMnJwcyZM7F7927Ve9ra2jB//nxkZmYiOTkZ1113HY4fPx6hEQtIPP3003C5XPj5z38eeE1cN2dy5MgR3HLLLcjMzITX68WIESPw9ddfB34vSRIee+wx9OnTB16vF5deeikqKioiOGJBZ2cnfv3rXyM/Px9erxeDBg3Cb3/7W1Ufqqi5bpLAct555x2pR48e0uuvvy7t2rVLuv3226X09HTp+PHjkR6a4Hsuu+wyaenSpdLOnTulrVu3SldeeaU0YMAAqampKfCeO++8U+rfv7/0+eefS19//bU0fvx4aeLEiREctUBJaWmplJeXJ40cOVL62c9+FnhdXDfncfLkSWngwIHSj3/8Y2nTpk1SZWWl9Mknn0h79+4NvOfpp5+W0tLSpJUrV0rbtm2TrrnmGik/P19qbW2N4MjPbp566ikpMzNT+uijj6T9+/dL7777rpScnCz98Y9/DLwnWq6bMHZsYNy4cdL8+fMDP3d2dkq5ubnSokWLIjgqgRHV1dUSAGn16tWSJElSfX295PF4pHfffTfwnm+//VYCIG3YsCFSwxR8z6lTp6TCwkJp1apV0kUXXRQwdsR1cyYPPvigNGnSJN3f+/1+qXfv3tJzzz0XeK2+vl5KSEiQli9fHo4hCghcddVV0k9+8hPVa7NmzZJuvvlmSZKi67qJMJbFnDlzBlu2bMGll14aeC0uLg6XXnopNmzYEMGRCYxoaGgAAGRkZAAAtmzZgvb2dtV1PPfcczFgwABxHR3A/PnzcdVVV6muDyCum1P58MMPceGFF+KGG25ATk4ORo0ahddeey3w+/379+PYsWOq65aWloaioiJx3SLIxIkT8fnnn2PPnj0AgG3btmHt2rW44oorAETXdRONQC3mxIkT6OzsRK9evVSv9+rVC//5z38iNCqBEX6/Hz//+c9RXFyM4cOHAwCOHTuGHj16ID09XfXeXr164dixYxEYpUDmnXfeQVlZGTZv3hz0O3HdnEllZSVeeeUV3HffffjVr36FzZs3495770WPHj1w6623Bq4Nad4U1y1yPPTQQ2hsbMS5556L+Ph4dHZ24qmnnsLNN98MAFF13YSxIzjrmT9/Pnbu3Im1a9dGeigCCocOHcLPfvYzrFq1ComJiZEejoARv9+PCy+8EL/73e8AAKNGjcLOnTvx6quv4tZbb43w6AR6/OMf/8Dbb7+NZcuWYdiwYdi6dSt+/vOfIzc3N+qumwhjWUxWVhbi4+ODqj+OHz+O3r17R2hUAj3uvvtufPTRRygpKUG/fv0Cr/fu3RtnzpxBfX296v3iOkaWLVu2oLq6GqNHj4bb7Ybb7cbq1avx4osvwu12o1evXuK6OZA+ffpg6NChqtfOO+88VFVVAUDg2oh501n88pe/xEMPPYQbb7wRI0aMwI9+9CP84he/wKJFiwBE13UTxo7F9OjRA2PGjMHnn38eeM3v9+Pzzz/HhAkTIjgygRJJknD33Xfjn//8J7744gvk5+erfj9mzBh4PB7Vddy9ezeqqqrEdYwgl1xyCXbs2IGtW7cG/rvwwgtx8803B/4trpvzKC4uDpJ22LNnDwYOHAgAyM/PR+/evVXXrbGxEZs2bRLXLYK0tLQgLk5tJsTHx8Pv9wOIsusW6QzpWOSdd96REhISpDfeeEP65ptvpDvuuENKT0+Xjh07FumhCb5n3rx5UlpamvTll19K3333XeC/lpaWwHvuvPNOacCAAdIXX3whff3119KECROkCRMmRHDUAhLKaixJEtfNiZSWlkput1t66qmnpIqKCuntt9+WkpKSpLfeeivwnqefflpKT0+XPvjgA2n79u3SjBkzHFnCfDZx6623Sn379g2Unq9YsULKysqSHnjggcB7ouW6CWPHJl566SXp/2/vbl6h7+I4jn9mkhmSSBLy0CywGBqSFRtKKbOwoCgLCxYsPGwsPGywEH8BSomyUcrGLLDwkPIcpQkbKRRCJMqcezddrvta3N1d7rnnXO9X/Vbfc359T7/69WnOmZns7GwTGxtrysrKzPb2dqRbwg8k/fKanp4Oj3l7ezPt7e0mOTnZxMfHm7q6OnN9fR25pvFLP4cdntv/09LSkvF6vcblcpmCggIzMTHxpR4KhczAwIBJS0szLpfLVFVVmWAwGKFuYYwxz8/PprOz02RnZxu32208Ho/p6+sz7+/v4THR8twcxvzwU4gAAACW4cwOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEQlZaXl1VeXq6kpCSlpKSotrZWFxcX4frW1pZ8Pp/cbrdKS0u1uLgoh8Ohw8PD8JiTkxPV1NQoISFBaWlpam5u1t3dXQRWA+A7EXYARKXX11f19PRod3dXKysrcjqdqqurUygU0vPzs/x+vwoLC7W/v6+hoSH19vZ+mf/4+KjKykoVFxdrd3dXy8vLur29VUNDQ4RWBOC78K/nAKxwd3en1NRUHR8fa2NjQ/39/bq6upLb7ZYkTU1NqbW1VQcHB/L5fBoeHtb6+roCgUD4HldXV8rKylIwGFReXl6klgLgN+OTHQBR6ezsTI2NjfJ4PEpMTFRubq4k6fLyUsFgUEVFReGgI0llZWVf5h8dHWltbU0JCQnhq6CgQJK+bIcBiH4xkW4AAP4Nv9+vnJwcTU5OKiMjQ6FQSF6vVx8fH/9o/svLi/x+v0ZHR/9WS09P/93tAoggwg6AqHN/f69gMKjJyUlVVFRIkjY2NsL1/Px8zc7O6v39XS6XS5K0s7Pz5R4lJSVaWFhQbm6uYmJ4FQI2YxsLQNRJTk5WSkqKJiYmdH5+rtXVVfX09ITrTU1NCoVCamtr0+npqQKBgMbHxyVJDodDktTR0aGHhwc1NjZqZ2dHFxcXCgQCamlp0efnZ0TWBeB7EHYARB2n06n5+Xnt7e3J6/Wqu7tbY2Nj4XpiYqKWlpZ0eHgon8+nvr4+DQ4OSlL4HE9GRoY2Nzf1+fmp6upqFRYWqqurS0lJSXI6eTUCNuHbWAD+CHNzc2ppadHT05Pi4uIi3Q6A/xAb1QCsNDMzI4/Ho8zMTB0dHam3t1cNDQ0EHeAPRNgBYKWbmxsNDg7q5uZG6enpqq+v18jISKTbAhABbGMBAACrcQoPAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALDaX+oHINpz9N7CAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df.plot.scatter(x=\"age\", y=\"avg_glucose_level\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Круговая диаграмма" + ] + }, + { + "cell_type": "code", + "execution_count": 163, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAGrCAYAAACVJgNuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABGeElEQVR4nO3dd3hT9eIG8DerSbpXuigUKBvKKhspQ6YoQ4EfSwoIIoIoOLh4r4oIF+9lCCKIs3AVRAFBxQEyRUAQKHuVtowWuvdukvP7AxsJbelKe06S9/M8PNqTk+TNaZM355zvOUcmCIIAIiIiiZGLHYCIiKgsLCgiIpIkFhQREUkSC4qIiCSJBUVERJLEgiIiIkliQRERkSSxoIiISJJYUEREJEksKCI7lJOTAx8fH2zatMk0bfLkyXB2dhYxVd2RyWRYuHCh6ecNGzZAJpPhxo0bomWytLFjx2LMmDFix6gRuy+okj/MkydPlrrtk08+gUwmw4gRI2AwGERIR1Q7Vq9eDRcXF4wdO1bsKBVat24dNmzYIHYMqzN//nxs374dZ8+eFTtKtdl9QZVnx44dmDlzJnr16oUtW7ZAoVCIHYnIIoqLi7F69WpMmzbNKv6u66Kgnn76aeTn5yMoKKhWn6cudejQAZ06dcKKFSvEjlJtLKgyHDx4EOPGjUOrVq3www8/QKPRiB2JyGJ27dqF5ORkyW/+ycvLq7PnUigU0Gg0kMlkdfacdWHMmDH49ttvkZOTI3aUamFBPeDMmTMYPnw4/P39sXv3bri5uZnd3qdPH7Rp0wanTp1Cjx49oNVq0ahRI6xfv940T05ODpycnPDiiy+Wevy4uDgoFAosXboUwN+bGMv6FxcXZ7rf/v370atXLzg5OcHd3R3Dhw/H5cuXzR574cKFZvd3cXFBly5dsHPnTrP5Dh8+jNGjR6NBgwZQq9WoX78+5s6di/z8/FJ5t23bhk6dOsHFxcXssZcvX16p5Tl58uQyX9vkyZPN5mvYsGGpaVu3boVMJkPDhg3Npi9fvhw9evSAl5cXtFotQkNDsW3btlLPXd5yXbx4MYB7X0RkMhm+/vprvP766/Dz84OTkxOGDRuG27dvV2uZlbze9u3bl8qzdOlSyGSyUvt5SnKtWrWq1H1atGgBmUyG2bNnm6alpaXhlVdeQUhICJydneHq6oohQ4ZUelPOzp070bBhQwQHB5d5e3x8PEaMGAFnZ2fodDq88sorpTZxG41GrFq1Cq1bt4ZGo4Gvry9mzJiB9PR0s/m+++47DB06FAEBAVCr1QgODsY777xT6vHuf1+FhYXB0dERr7/+Oho2bIiLFy/i0KFDpuXUp0+fSr1OACgsLMTcuXOh0+ng4uKCYcOGmb2vSpS1D+rkyZMYNGgQvL29Te/zqVOn1upyiIqKwlNPPQU/Pz9oNBoEBgZi7NixyMzMNJvvyy+/RGhoKLRaLTw9PTF27NhSf7MAMGDAAOTm5uLXX3+t9DKTEqXYAaQkOjoagwcPhlqtxu7du+Hv71/mfOnp6XjssccwZswYjBs3Dt988w1mzpwJBwcHTJ06Fc7Ozhg5ciS+/vprrFy50mwzyldffQVBEDBhwgSzx1y0aBEaNWpkNs3T0xMAsHfvXgwZMgSNGzfGwoULkZ+fjzVr1qBnz544ffp0qQ/wL774AgCQkpKCdevWYfTo0bhw4QKaN28O4N4Hf15eHmbOnAkvLy+cOHECa9asQVxcHLZu3Wp6nGPHjmHMmDFo164d3n33Xbi5uSElJQVz586t0nJVq9X49NNPTT9Pmzatwvvo9Xr885//LPO21atXY9iwYZgwYQKKioqwZcsWjB49Grt27cLQoUPN5h0wYAAmTZpkNu3B8liyZAlkMhnmz5+PpKQkrFq1Cv3798eZM2eg1WoBVH6ZAYBSqcTFixcRGRmJDh06mKZv2LCh3LVxjUaDiIgIvPTSS6ZpR48exc2bN0vNGxMTg507d2L06NFo1KgREhMT8dFHH6F37964dOkSAgICynyO+x+3Y8eOZd5mMBgwaNAgdO3aFcuXL8fevXuxYsUKBAcHY+bMmab5ZsyYgQ0bNmDKlCmYM2cOYmNj8cEHHyAyMhJHjhyBSqUyvWZnZ2fMmzcPzs7O2L9/P958801kZWVh2bJlZs+dmpqKIUOGYOzYsZg4cSJ8fX3Rp08fvPDCC3B2djb9Pfj6+j709d1v2rRp+PLLLzF+/Hj06NED+/fvL/U3UpakpCQMHDgQOp0O//jHP+Du7o4bN27g22+/NZvPksuhqKgIgwYNQmFhIV544QX4+fkhPj4eu3btQkZGhunL8pIlS/DGG29gzJgxmDZtGpKTk7FmzRqEhYUhMjIS7u7upnytWrWCVqvFkSNHMHLkyEovN8kQ7FxERIQAQNi1a5cQHBwsABAGDhxY7vy9e/cWAAgrVqwwTSssLBTat28v+Pj4CEVFRYIgCMLu3bsFAMLPP/9sdv+2bdsKvXv3LvX8f/75Z7nPWfLYqamppmlnz54V5HK5MGnSJNO0t956S3jwV7pnzx4BgPDNN9+YpuXl5ZV6jqVLlwoymUy4efOmadqCBQsEAMLdu3dN02JjYwUAwrJly8rNe7/x48cLzs7OZtOcnJyE8PBws2lBQUFm09atWyeo1Wqhb9++QlBQkNm8D+YvKioS2rRpI/Tr189sOgBh1qxZ5WY7cOCAAECoV6+ekJWVZZr+zTffCACE1atXl/ucglD2MgsPDxecnJyEJ554Qpg9e7Zp+uHDhwWtViuMGDFCcHJyKpVz1KhRglKpFE6ePGma/swzzwjjx48v9ToKCgoEg8Fg9hixsbGCWq0WFi1aVO7rFQRBKC4uFmQymfDyyy+Xui08PFwAUOoxOnToIISGhpq9FgDCpk2bzOb75ZdfSk0va7nNmDFDcHR0FAoKCkzTSt5X69evLzV/69atzd4zlXXmzBkBgPD888+bTS9Zpm+99ZZpWsn7MDY2VhAEQdixY0eF70tLL4fIyEgBgLB169Zyn/PGjRuCQqEQlixZYjb9/PnzglKpLDVdEAShWbNmwpAhQ8p9TCnjJr6/TJ48Gbdv38b48eOxZ8+eUt+K76dUKjFjxgzTzw4ODpgxYwaSkpJw6tQpAED//v0REBBgNoz3woULOHfuHCZOnFjpXHfv3sWZM2cwefJk0xoVALRt2xYDBgzATz/9VOo+KSkpSElJweXLl7F+/Xo4OTmhW7dupttL1goAIDc3FykpKejRowcEQUBkZKTptuzsbMjlcrNvZFVVUFBQ5X14eXl5WLRoEWbPno0GDRqUuv3+/Onp6cjMzESvXr1w+vTpamWcNGkSXFxcTD+PGjUK/v7+Zsu2ssusxNSpU7F582YUFhYCACIiIvDkk0+W2mRcwtfXF0OHDkVERASAe8vgm2++wZQpU0rNq1arIZffe+saDAakpqbC2dkZzZs3r3AZpKWlQRAEeHh4lDvPc889Z/Zzr169EBMTY/p569atcHNzw4ABA0x/aykpKQgNDYWzszMOHDhgmvf+5ZadnY2UlBT06tULeXl5uHLlSqnXVdbrra6S39+cOXPMpt+/llqekr/5Xbt2obi4uMx5LL0cSv42du/eXe7+t2+//RZGoxFjxowxe04/Pz80bdrU7DlLeHh4ICUlpcLXLEUsqL+kpaXhyy+/xMaNG9G+fXu8+OKLpbb7lggICICTk5PZtGbNmgGAaRu2XC7HhAkTsHPnTtMf26ZNm6DRaDB69OhK5yrZxFOyee5+LVu2REpKCnJzc82m63Q66HQ6tGrVCnv37sWmTZtQv3590+23bt0yFV7JfobevXsDgNlr7t69O4xGI1588UVER0cjJSWl1Lb1iqSkpJT7oVyelStXoqCgAK+//nqZt+/atQvdunWDRqOBp6cndDodPvzww3J/XxVp2rSp2c8ymQxNmjQx2x9R2WVWYujQoVAqlfjuu++Qm5tbbtncb8qUKaZS27p1Kzw8PNCvX79S8xmNRrz33nto2rQp1Go1vL29odPpcO7cuUovA6GcC2lrNBrodDqzaR4eHma/96ioKGRmZsLHx8f0t1byLycnB0lJSaZ5L168iJEjR8LNzQ2urq7Q6XSmL2gPZq1Xrx4cHBwqlb8ybt68CblcXmpfW1nvpQf17t0bTz31FN5++214e3tj+PDhiIiIMH3hACy/HBo1aoR58+bh008/hbe3NwYNGoS1a9eaLaeoqCgIgoCmTZuWes7Lly+bPWcJQRCsdvAH90H9ZdmyZabi+Pjjj9GtWzcsWLAA69atq/ZjTpo0CcuWLcPOnTsxbtw4bN68GY8//niVP7CrqmSHaG5uLrZv344xY8Zg165dGDBgAAwGAwYMGIC0tDTMnz8fLVq0gJOTE+Lj4zF58mQYjUbT44wdOxanT5/GmjVr8PHHH1cry40bN0oVwMOkpKRg2bJlWLBggdkaY4nDhw9j2LBhCAsLw7p16+Dv7w+VSoWIiAhs3ry5WhkrUpVlVkKlUmHixImIiIhAXl4evLy80K9fP9P+wbIMHToUDg4O2LlzJyIiIhAeHm5aU7rfv//9b7zxxhuYOnUq3nnnHXh6ekIul+Oll14qM8v9PD09IZPJyv2iUZlh50ajsdRBvvcrKbiMjAz07t0brq6uWLRoEYKDg6HRaHD69GnMnz+/VNb71zLEJpPJsG3bNvzxxx/44YcfsHv3bkydOhUrVqzAH3/8AWdn51pZDitWrMDkyZPx3XffYc+ePZgzZw6WLl2KP/74A4GBgTAajZDJZPj555/L/F2VdaB1enp6ld6DUsKC+ktYWJjp/zt37oxZs2Zh7dq1mDRpktnmMQC4c+cOcnNzzdairl27BgBmAxbatGmDDh06YNOmTQgMDMStW7ewZs2aKuUqOS7j6tWrpW67cuUKvL29S63N9e/f3/T/w4cPx/Hjx7F8+XIMGDAA58+fx7Vr17Bx40azwQNljfKRy+VYvnw5zp8/j9jYWKxbtw6JiYmV3kSZnJyMW7duYdy4cZWaHwAWL14MFxeXMkdAAsD27duh0Wiwe/duqNVq0/SSTWPVERUVZfazIAi4fv062rZtCwBVWmb3mzp1Ktq1a4fbt28jPDy8wm+xSqUSTz/9NJYsWYKLFy/i888/L3O+bdu2oW/fvvjss8/MpmdkZMDb27vC5wgODkZsbOxD53uY4OBg7N27Fz179nxoqRw8eBCpqan49ttvzd5fVX3u6n77DwoKgtFoRHR0tNlaU1nvpfJ069YN3bp1w5IlS7B582ZMmDABW7ZswbRp02ptOYSEhCAkJAT/+te/cPToUfTs2RPr16/H4sWLERwcDEEQ0KhRI9NWm4fR6/W4ffs2hg0bVunXLCXcxFeOJUuWwN/fH88++yz0er3ZbXq9Hh999JHp56KiInz00UfQ6XQIDQ01m/fpp5/Gnj17sGrVKnh5eWHIkCFVyuHv74/27dtj48aNyMjIME2/cOEC9uzZg8cee+yh9zcYDCgqKjJtmij51nX/Jh5BELB69eoy779mzRrs378fmzZtQv/+/dGzZ89KZy/Zjzd8+PBKzX/jxg18+OGHWLhwYblveIVCAZlMZjY898aNG6WG0lfF//73P2RnZ5t+3rZtG+7evWv6XVV1mZVo3bo1QkNDcenSpVJD6MszdepUnD9/HmFhYWjcuHGZ8ygUilKb6LZu3Yr4+PhKPUf37t3LPHNKZY0ZMwYGgwHvvPNOqdv0er3p77Ss5VZUVFTlrRJOTk5mf/uVVfL7e//9982mlzWc/0Hp6emllnHJ6M+S95Kll0NWVlapz5qQkBDI5XLTcz755JNQKBR4++23S+UTBAGpqalm0y5duoSCggL06NGjwtcsRVyDKoeLiwvWrFmDJ598EitWrMD8+fNNtwUEBOA///kPbty4gWbNmuHrr7/GmTNn8PHHH5uGlZYYP348XnvtNdOZKR68vTKWLVuGIUOGoHv37njmmWdMw8zd3NzMzidW4ssvvwRwbxPfzp07cePGDdOO4RYtWiA4OBivvPIK4uPj4erqiu3bt5e5yefixYt47bXXsHDhQnTu3LlKmdeuXYt//etf0Ol0iI6ORnR0tOk2vV6PmJgY/PrrrxgwYIBp+qFDh9CyZcuH7qsZOnQoVq5cicGDB2P8+PFISkrC2rVr0aRJE5w7d65KGUt4enrikUcewZQpU5CYmIhVq1ahSZMmmD59OoCqLbMH7d+/H4WFhWVurixLyX7Fh30jf/zxx7Fo0SJMmTIFPXr0wPnz57Fp06ZyC+1Bw4cPxxdffIFr165V6lv4g3r37o0ZM2Zg6dKlOHPmDAYOHAiVSoWoqChs3boVq1evxqhRo9CjRw94eHggPDwcc+bMgUwmwxdffFHu/q/yhIaG4sMPP8TixYvRpEkT+Pj4lLlv7kHt27fHuHHjsG7dOmRmZqJHjx7Yt28frl+/XuF9N27ciHXr1mHkyJEIDg5GdnY2PvnkE7i6upq+FFp6Oezfvx+zZ8/G6NGj0axZM+j1enzxxRdQKBR46qmnANxbe128eDEWLFiAGzduYMSIEXBxcUFsbCx27NiBZ599Fq+88orpMX/99Vc4Ojqavc+sSt0OGpSeioZ5Dx8+XHB0dBRiYmIEQbg3HLZ169bCyZMnhe7duwsajUYICgoSPvjgg3Kf47HHHhMACEePHq3y85fYu3ev0LNnT0Gr1Qqurq7CE088IVy6dMlsnpJh5iX/tFqt0KpVK+G9994TjEajab5Lly4J/fv3F5ydnQVvb29h+vTpwtmzZwUAQkREhCAI94Yyt23bVnjkkUcEvV5vum9lh5nfn6O8f/cPHQ4KChIACDt27DB7nPDw8FLDzD/77DOhadOmglqtFlq0aCFERESUOcQelRxm/tVXXwkLFiwQfHx8BK1WKwwdOtRs6Hhll1lJ3geHkT/4esoaZv6wnA/eXlBQILz88suCv7+/oNVqhZ49ewrHjh0TevfuXanh2IWFhYK3t7fwzjvvVJhNEMo+fEEQBOHjjz8WQkNDBa1WK7i4uAghISHCa6+9Jty5c8c0z5EjR4Ru3boJWq1WCAgIEF577TXTIRgHDhwwzVfyvipLQkKCMHToUMHFxaXU301F8vPzhTlz5gheXl6m4f+3b9+ucJj56dOnhXHjxgkNGjQQ1Gq14OPjIzz++ONmhwFYejnExMQIU6dOFYKDgwWNRiN4enoKffv2Ffbu3VvqObdv3y488sgjgpOTk+Dk5CS0aNFCmDVrlnD16lWz+bp27SpMnDix0stLauy+oKrqYW+k8owYMUIIDg6upUTS9OAH0IMiIiKqdWyLJZUU1MOOO7FVixYtEho1amT25YNsS2RkpCCTyYTIyEixo1Qb90HVsrt37+LHH3/E008/LXYUIpO5c+ciJycHW7ZsETsK1ZJ3330Xo0aNKvO0W9aC+6BqSWxsLI4cOYJPP/0UKpXK7MBeezBhwoSHnpImODjYereL2wBnZ+cyj5mxFgkJCQ+9XavV1vrhHFJnC18+WFC15NChQ5gyZQoaNGiAjRs3ws/PT+xIdapkoEZ5evXqhV69etVRGrI15Z0ns0R4eDivIWUDZIJQxSE1REQi27t370NvDwgIQKtWreooDdUWFhQREUkSB0kQEZEksaCIiEiSWFBERCRJLCgiIpIkFhQREUkSC4qIiCSJBUVERJLEgiIiIkliQRERkSSxoIiISJJYUEREJEksKCIikiQWFBERSRILioiIJIkFRUREksSCIiIiSWJBERGRJLGgiIhIklhQREQkSSwoIiKSJBYUERFJEguKiIgkiQVFRESSxIIiIiJJYkEREZEksaCIiEiSWFBERCRJLCgiIpIkFhQREUkSC4qIiCSJBUVERJLEgiIiIkliQRERkSSxoIiISJJYUEREJEksKCIikiQWFBERSRILioiIJIkFRUREksSCIiIiSVKKHYDIFugNRiTnFCIpqxDJ2YUo1BthFIS//xkBoyBAEPDXtJKf//5/owColXK4O6rgrnWAu6MKbloV3BxVcNWoxH6JRHWOBUX0EEajgJScQiRmFSIpuwCJWYVIzCow+//ErEKk5RbCKNReDqVcBg8nB/i4qOHjooavqwY+rhr4uqrh66JBoKcWwTpnqBTcKEK2QyYIQi2+rYisx52MfJyPz8TF+ExcuJOFK3ezkJhdCENtNo8FqRQyBOuc0cLPBS38Xe/9188Vfm4asaMRVQsLiuzSzdRcXIjPwoU7mbgQn4lLd7KQmlskdqxa4eGoQvO/yqql/73/NvdzgUalEDsa0UOxoMjmxabk4lxcBi7EZ+JCfBYu3slEVoFe7FiiksuAhl5OaBvohl5NdejVzBs+LlzTImlhQZHNycwvxtHrKTh0LRmHo1IQn5EvdiTJk8mAFn6uCGvmjd5NdejU0BMOSu7PInGxoMjqCYKA8/GZOHg1GYeuJePM7Qyr2W8kVY4OCnRr7IWwpt4Ia6ZDY52z2JHIDrGgyCoVG4w4Gp2KPRcTsPdyIhKzCsWOZNMCPbQIa6ZDWFMdejbxgguHvVMdYEGR1cgp1OPAlSTsuZSIg1eTkG3n+5HEopTL0KOJN0aHBmJga1+olRxsQbWDBUWSd/pWOr46fgu7zt1FfrFB7Dh0HzetCsPbB2B0aH2EBLqJHYdsDAuKJCmroBg7TsfjqxO3cCUhW+w4VAkt/FwwulN9jOxQD55ODmLHIRvAgiJJOXUzHZuP38JP57m2ZK1UChkebeGL0Z0C0ae5DxRymdiRyEqxoEh0mfnF2HE6Dlv+vM21JRvj46LGyI71MDq0Ppr4cCQgVQ0LikRz8kYaNp+4t7ZUUGwUOw7Vsi4NPTGjd2P0a+EDmYxrVVQxFhTVKUEQ8NP5BKzZH8W1JTvVws8Fz/UOxhPtArj5jx6KBUV1Zs/FBLy3NwqX72aJHYUkoL6nFs+GBWN0aCDPC0hlYkFRrTtwNQnv/XoN5+IyxY5CEuTtrMZzvRtjYrcgFhWZYUFRrfk9KgUrf72K07cyxI5CVsDHRY1ZfZtgbJf6PPiXALCgqBYcj0nFil+v4URsmthRyAoFuGkwq18TjOlUnxdgtHMsKLKY07fSsXLPNfx+PUXsKGQDAj20eGVgc4zoUE/sKCQSFhTV2KU7WVi2+woOXE0WOwrZoG6NPbF4RBs08XEROwrVMRYUVVt+kQHv7b2Gz3+PhZ6Xt6BapFLIMK1XY8zp1xRaB+6fshcsKKqW364l4187L+BWWp7YUciOBHposfCJ1ujfylfsKFQHWFBUJak5hXhn1yXsPHNH7Chkxwa08sXCYa1Rz10rdhSqRSwoqrRtp+Kw5MdLSM8rFjsKEbQqBeY82hTTejXiaD8bxYKiCt1MzcXrO87jyPVUsaMQldLM1xnvDG+Dro29xI5CFsaConLpDUZ8fDgG7++L4slcSfKe7FgP/3ysJbyc1WJHIQthQVGZztzOwD+2n+MJXcmqeDk54L3/a4+wZjqxo5AFsKDITLHBiGW7r+LTwzHgyHGyRjIZMLN3MF4e2JxnS7dyLCgyuZ2Wh9lfReLs7QyxoxDVWJeGnnh/XAf4uWnEjkLVxIIiAMDuiwl4detZZBXoxY5CZDGeTg5YOaYd+jT3ETsKVQMLys4V6Y1Y+vNlRBy5IXYUolohkwEzwoLxysBmUHI4ulVhQdmxuPQ8zNp0Gmd5nSayA52CPLBmfAf4u/HgXmvBgrJTR66nYPbm0zzoluyKh6MKK8a0Q78WPFWSNWBB2aFPfovBu79cgYHD9MgOyWTAs70a49VBzbnJT+JYUHYkv8iA+dvP4fuzPI8eUccG7vjo6U7QufDAXqliQdmJ22l5ePaLU7h8N0vsKESS0cDTEV880wVBXk5iR6EysKDswLm4DEyO+BNpuUViRyGSHG9nB0RM7oKQQDexo9ADWFA27lh0Kqb/7yRyCnl8E1F5nBwU+OjpTnikqbfYUeg+LCgbtvdSImZtPo1CPU/0SlQRB4Ucy8e0w7B2AWJHob+woGzUjsg4vLr1HC/FTlQFMhnwxtBWmPpII7GjEFhQNmnj0RtY+MNF8DdLVD3P9Q7GP4a0EDuG3WNB2Zg1+6Kw4tdrYscgsnpPdQzEf54K4bFSImJB2ZDFuy7h099jxY5BZDP6Ntdh3YRQaB0UYkexSywoG2AwCljw7Tl8czJO7ChENqdDA3d8Ht4ZHk4OYkexOywoK1ekN+LFLZH4+UKC2FGIbFZzXxdsebYbS6qOsaCsWH6RAc9+cRKHo1LEjkJk89oGumHz9G5wVivFjmI3uPfPSukNRszcdIrlRFRHzsVlYuqGP1FQbBA7it1gQVmp13ecx8GryWLHILIrJ2LT8OwXp1DEg9/rBAvKCq3cc5UDIohE8tu1ZMz5KpKXq6kDLCgrs/n4Lby//7rYMYjs2i8XEzB/+zmxY9g8FpQV2Xc5EW98d0HsGEQEYNupOCzffVXsGDaNBWUlIm+lY/ZmblYgkpIPDlzHl3/cFDuGzWJBWYHYlFw8s/Ek8jl6iEhy3vr+IvZc5HGItYEFJXEpOYUI//wELzZIJFEGo4A5WyJx6ma62FFsDgtKwnIL9ZgS8SdupeWJHYWIHqKg2IhpG/9EbEqu2FFsCgtKovQGI57fdBrn4zPFjkJElZCeV4yZX57igbwWxIKSqH/tvIBD13ggLpE1uZKQjTd2cqStpbCgJGj7qThs+fO22DGIqBq2norDNyf5/rUEFpTExCTn8FgnIiv35ncXcCUhS+wYVo8FJSGFegNmb45EXhG3YRNZs4JiI57/8jRyCvViR7FqLCgJ+fePl3HpLr91EdmCmJRcng6phlhQErH7YgI2HuMR6US25Mdzd7Hx6A2xY1gtFpQExGfk47Vt/KZFZIuW/HgZZ29niB3DKrGgRKY3GPHiV5HIzC8WOwoR1YIigxGzNp9GZh7f41XFghLZe3uv4SRPkUJk0+LS8/Hy1jMQBJ7suSpYUCI6cj0FHx6MFjsGEdWBvZeT8NFvMWLHsCosKJGk5BTipa/PgFfPILIfy3dfxWWO1K00FpQIBEHAvG/OIjm7UOwoRFSH9EYBr+84z019lcSCEsGXx2/hN55nj8guRd7KwKbjt8SOYRVYUHUsKasA//3litgxiEhE//3lCpKyC8SOIXksqDq2aNclZBfw9CdE9iyrQI93dl0WO4bksaDq0KFrydh17q7YMYhIAn44e4eX1KkAC6qOFBQbeJ0YIjLzxs4LvMDhQ7Cg6sj7+6J46XYiMnMrLQ/v74sSO4ZksaDqQHRyDj45zAP0iKi0Tw7H4FpittgxJIkFVQfe2XUJxQYe90BEpRUbBPyTx0aViQVVy/ZfScTBq9wRSkTl+/NGOr7+k5eJfxALqhYVG4xYzKGkRFQJS3++gpQcnl3mfiyoWhRxJBYxKblixyAiK5CZX4wVe66JHUNSWFC1JDm7EGv2XRc7BhFZkW2nbiMunaN9S7CgasmqvdeQXcgzRhBR5RUbBKw9wC+2JVhQtSAhswBbT8aJHYOIrNC2U3G4zWMmAbCgasVHv0WjyGAUOwYRWSGuRf2NBWVhqTmF2HKCw0WJqPq2n+ZaFMCCsrjPfo9FPs+tRUQ1wLWoe1hQFpSZX4wvjt0UOwYR2QCuRbGgLOp/R29w5B4RWUSxQcAH++17LYoFZSF5RXp8fiRW7BhEZEPsfS2KBWUhm4/fQnpesdgxiMiG6I0C1uy338txsKAsoFBvwMe/8XIaRGR5356Ot9u1KBaUBWw9GYekbJ7kkYgsz57XolhQNaQ3GLH+ULTYMYjIhu2IjLfLM52zoGrouzN3EJeeL3YMIrJhxQbBLq8XxYKqIV7KnYjqwpY/b8FotK+r7rKgauBCfCauJGSLHYOI7MDttHwcirKvq3OzoGpg+2mesZyI6s6mP+zrTDUsqGoqNhjx/Zk7YscgIjty4Goy7mTYzz5vFlQ1HbyajNTcIrFjEJEdMRgFbLGjwRIsqGrafoqb94io7m0/FQdBsI/BEiyoakjPLcL+K0lixyAiOxSfkY9jMalix6gTLKhq+P7sHV4xl4hEs/1UvNgR6gQLqho4eo+IxPTLhbvIK7L9S/uwoKooKjEb5+IyxY5BRHYst8iAn88niB2j1rGgqmgb156ISALsYUsOC6oKDEYBOyPtY9svEUnbsZhUJGYViB2jVrGgquD36ylIzLK/MwoTkfQIAnDoqm2f+ogFVQU77GCVmoisx8Frtn24CwuqkoxGAYeu2fa3FSKyLoejUqC34UNeWFCVdPFOFtLzisWOQURkkl2gx6mb6WLHqDUsqEo6fJ1rT0QkPQdteMsOC6qSfo9KETsCEVEpB214oAQLqhIKig04acOr0URkvS7fzbLZ4eYsqEo4HpuGIr3t7ogkIut28KptjuZjQVXCkevcvEdE0mWrm/lYUJVwmPufiEjCfr9um8PNWVAVSMkpxJWELLFjEBGVy1aHm7OgKnDkegrs5OKVRGTFDtjgZj4WVAW4eY+IrIEtDpRgQVWAxz8RkTW4kpCNzHzbOtuNTRTU2rVr0bBhQ2g0GnTt2hUnTpywyONeT8pGgo0eX0BEtufSHdvaX271BfX1119j3rx5eOutt3D69Gm0a9cOgwYNQlJSzVd3j0WnWiAhEVHduHSXBSUpK1euxPTp0zFlyhS0atUK69evh6OjIz7//PMaP/b5eF7anYisB9egJKSoqAinTp1C//79TdPkcjn69++PY8eO1fjxbe3bCBHZNlv7zLLqgkpJSYHBYICvr6/ZdF9fXyQkJNTosfUGI64l5tToMYiI6tL1pGybOi2bVRdUbbqenGNTv2gisn3FBgFRSdlix7AYqy4ob29vKBQKJCYmmk1PTEyEn59fjR7b1rblEpF9sKXPLqsuKAcHB4SGhmLfvn2maUajEfv27UP37t1r9Ni29EsmIvthS/uhlGIHqKl58+YhPDwcnTp1QpcuXbBq1Srk5uZiypQpNXrcKwm2s5pMRPbDlr5cW31B/d///R+Sk5Px5ptvIiEhAe3bt8cvv/xSauBEVV1P4gAJIrI+l21oDUomCDwV6oNyC/Vo/dZusWMQEVXL4df6or6no9gxasyq90HVluhkrj0RkfW6aCOb+VhQZYhJzhU7AhFRtdnKQAmr3wdVG6xlDcpYmIeMw18iL+oYjHmZcPBpDI/+z0Lt36zUvKm7P0DOmV/g0W86XDsPf+jj6rNTkHFwA/JjTkHQF0Lp7g+vx16C2r8pACDz+LfIOrEdAODW9Sm4dnnSdN/CO1eRtmcd/CathEyusOCrJaLKik2xjS/ZLKgyWEtBpf6yBsXJN+H9+MtQOHsi9+IBJG75FwKmrYPSxds0X961oyi8cxUKZ88KH9NQkIOEL1+DpkFb+IxeCLmjG/TpdyDXOAMAipJikfn7JuhGvQkIApK3L4KmUUc46BpCMBqQunstvAbPZjkRiSg52zauwsBNfGWITckTO0KFjMWFyLt6BO59p0BTvw1UHgFwf2QCVB7+yI782TSfPjsFab9+BO/HXwHkFX8fyfpjG5Su3vAe+hLUAc2hcveDtlFHqDz8AQDFqXFQ6RpCG9QO2obtodI1RHFq3L37Ht8OTf3WZa7BEVHdSc4uFDuCRXANqgxW8cs1GgDBCJlCZTZZplSjMO4iAEAQjEjZtRKuXZ+Egy6oUg+bf/04NI06InnnUhTcvgCFsxdcOjwGl/aDAQAOuobQp8dDn5UECIA+LR4O3kEoTr+LnPN74R++yqIvk4iqzio+wyqhWmtQ/fr1Q0ZGRqnpWVlZ6NevX00ziS4zv0jsCBWSqx2hDmiBzKNboM9OhWA0IOfiARTeuQJDbjqAe2tDMrkCLqHDKv24xRkJyI78CUqPAPiOWQSXDo8hfd/HyDl/72wdKu/6cA+bhMSv30DiN2/AvXc4VN71kbb7A3j0mYL82NO489nzuBMxBwW3L9TKayeih8sq0KNQbxA7Ro1Vaw3q4MGDKCoq/SFeUFCAw4cP1ziUmLIKilFssI5Dw7wefxmpP69G/LpwQCaHg18wnFqGoTDhOgoTriPr1PfwD18NmUxW+QcVBKj9msCjdzgAwME3GMUpN5F95ic4hzwKAPfWqDo8ZrpLzvl9kDlooa7XAvGfPAf/SSthyE5Fyvf/Rb0Zn0GmVJX5VERUe1JyilDPXSt2jBqpUkGdO3fO9P+XLl0yu6SFwWDAL7/8gnr16lkunQjSc6W/9lRC5eEPv/HvwlhUAGNRHpTOnkj+7j9Qufuh8PZFGHMzEf/hfad8EoxIP/AZsk5+h8CZZV/QUeHsAZV3A/Pn8aqPvKtHypzfkJeJzCOb4Tv+Pyi8cw0qzwCoPOtB5VkPgkGP4vR4OOgaWuolE1ElJWcX2ldBtW/fHjKZDDKZrMxNeVqtFmvWrLFYODGk5xWLHaHK5A4ayB00MBTkID/2NDz6TIFj8x7QNGxnNl/SN2/CqXU/OIf0L+eRAHW9VihOizObVpwWD6WrT5nzp+//FC6dR0Dp6o2ihGsQDPdtVjAaACMvWUIkBlvYD1WlgoqNjYUgCGjcuDFOnDgBnU5nus3BwQE+Pj5QKKx7eLE1rUHlx5wCACg960GffhfpBz+HyjMQziH9IVMoodC6mt9BroTCyQMqr0DTpMQtr0PbtDtcQ58AALh2Ho6EL19F5rFv4NjiERTdvYacs7/Ac9Ds0s8fG4nitHh4DZ0LAHDwawZ9Whzyo09Cn50CyBVQelr3GjWRtbK7ggoKujcSzGjD34rTrKigjIV5yPhtI/TZKVBoXODYvAfcwyZBpqj8r7U4PQHq/L+POlf7N4Nu5D+RcWgjMo58BaWbLzz6TYdz677mz11ciLS966EbNh8y2b2xNkpXb3j0n4GUn1dBplDBa+hcyFVqy7xYIqoSWyioap8sNioqCgcOHEBSUlKpwnrzzTctEk4Mnx6OweIfL4sdg4ioRiZ2a4DFI0LEjlEj1RrF98knn2DmzJnw9vaGn5+f2SgxmUxm1QWVnmc9a1BEROWxhTWoahXU4sWLsWTJEsyfP9/SeUSXlmt9gySIiB5kCwVVrQN109PTMXr0aEtnkQRrGiRBRFSe5Bw7LajRo0djz549ls4iCdzER0S2IMMGtgZVaxNfkyZN8MYbb+CPP/5ASEgIVCrzMwXMmTPHIuHEwIIiIltQbAOjras1iq9Ro0blP6BMhpiYmBqFElPnJXttYtstEdk3lUKGqCWPVTyjhFVrDSo2NtbSOSRDb7D+bx1ERHqjdZxT9GF4PagHKORcJERk/QQBMFp5SVVrDWrq1KkPvf3zz8s+Eak1UCmqcOZvIiIJ0xsFOMit9zOtWgWVnp5u9nNxcTEuXLiAjIwMq78elMKKf5lERPcz2OMa1I4dO0pNMxqNmDlzJoKDg2scSkxKFhTVgT6e6ZjkdRlacEAO1R6F8CgA6z2Bd7XPxVeWq1evok+fPrh7966lHrLOPbriIKKTc8WOQXZA51CMlwKvYrDwOzwTj0Jm1IsdiWzN63cBB0exU1SbRUcEREdHQ6+37jeZkoMkqI4kF6nwz5g2CI19DgNlH2FX4Fzk6DqKHYtsibxaG8kko1rp582bZ/azIAi4e/cufvzxR4SHh1skmFi4D4rEEJWrxezrnQF0Rhf3LLygO4MuOfuhTr8mdjSyZnLr3bwHVLOgIiMjzX6Wy+XQ6XRYsWJFhSP8pE7JUXwkshMZrng6IwxAGB7TpeBZ95Nok7EPyux4saORtbHygrLoPihb8OS6Izh9K0PsGERmZDIBk/zjMdHpBIKT90FekF7xnci+yRTAW2lip6iRGm2gTE5OxtWrVwEAzZs3N7sEvLXiPiiSIkGQYeOdQGxEIJwUI/BcvRg8qTqGgMSDkOnzxY5HUmTl+5+Aag6SyM3NxdSpU+Hv74+wsDCEhYUhICAAzzzzDPLy8iydsU5xHxRJXa5BjhW3mqBn9NPoUrQemwJeR6p/GAQb+EAiC3JwEjtBjVWroObNm4dDhw7hhx9+QEZGBjIyMvDdd9/h0KFDePnlly2dsU5xHxRZE44EpHI5Wf8WrWrtg/L29sa2bdvQp08fs+kHDhzAmDFjkJycbKl8dW5yxAkcvGq9+YkAcCQgAUE9gSk/iZ2iRqq1TSAvLw++vr6lpvv4+Fj9Jj5nNTeTkPW7fyTgUF0KplvxSMCFBwvw9iHz67Q195LjymznCu+75UIxxm3Px/DmSuwc+/cBq8uPFuK/R+495vyeDni5h9p02/E4PZ7/qQDHpzlZ95llnLzFTlBj1fo07t69O9566y3873//g0ajAQDk5+fj7bffRvfu3S0asK75uWrEjkBkUT8me+PH5MGQyQbdNxJwL+QFGWJHq7TWOjn2Tvq7YJSV2DlxI8OIV/YUoFcD86HW5xINePNAIXaNd4QgAI9/lYeBwUqE+CqgNwp47scCfPy41rrLCbCJTXzVKqhVq1Zh8ODBCAwMRLt27QAAZ8+ehVqttvpLwfu5saDINlnzSEClHPBzrvwuc4NRwIRv8/F2HzUO3zIgo+DvPRlXUoxo66tAv0b3Pv7a+spxJcWIEF8Flh0pQlgDJTrXs+7jhwDYb0GFhIQgKioKmzZtwpUrVwAA48aNw4QJE6DVai0asK75u1l3fqLKKBkJuAJNoHMYi5cCr2KI8TA8Eo9CJhjEjldKVJoRASuyoVEC3esrsPRRDRq4lV9Yiw4VwsdJhmc6OuDwLfPyDfGR41qqAbcyjRAE4FqqEW185IhOMyLiTDFOPWv9o98A2O8mvqVLl8LX1xfTp083m/75558jOTkZ8+fPt0g4MXANiuxNyUjAf6INmjpNxkv+F9C78CCckyMrvnMd6FpPgQ3DtWjuLcfdbAFvHypEr4hcXJjpDBd16c1wv9/S47PIYpx5ruyiaalT4N+PajDgi3v7y5c+qkFLnQL9/5eL/w5QY3e0HgsPFkKlAFYP1iAsyEr3SzvaaUF99NFH2Lx5c6nprVu3xtixY626oPxZUGTHonK1mPXXOQG7umdhtu4Muubsg0N6lGiZhjRVmf6/rS/QNVCBoFXZ+OZiMZ7p6GA2b3ahgKd35OOTJzTwdix/Deu5Tg54rtPf9914pgguahm6ByrQ/IMc/DndCXFZAsZuy0fsi85QK61wf5S9buJLSEiAv79/qek6nc6qL7UBAD4uaijkMqu/0BdRTR3PcMXxB0YChqTvhSLnjqi53DUyNPOS43qasdRt0elG3MgQ8MRX+QDubdoreSsrF2Xh6mxnBHuaF1dKnhFvHyrEb1OccDzegGZecjT1UqCpF1BsvLcJMMTXCvdJ2WtB1a9fH0eOHEGjRo3Mph85cgQBAQEWCSYWpUIOb2cHJGbxQnJEJe4fCRjuH4+JTsfROHmfKCMBc4oERKcZ8XTb0ms1LbzlOD/TfNPev/YXIrtIwOrBGtR3K32fubsLMbebGoGucvwZb0Dxfb2nNwowWOt3VXvdBzV9+nS89NJLKC4uNl3ifd++fXjttdes/kwSAODnpmVBEZVBEGTYcCcQGxAIJ8VIPFcvFk+qjiAg8VCtjQR8ZU8BnmimRJC7HHeyjXjrYCEUchnGtbm36W/SjnzUc5FhaX8NNEoZ2viYr+24a+6V0oPTAeDXaD2upRqwccS9Tfud6ylwJcWIn6OKcTtLgEImQ3MvKzw/p1wFaD3ETlFj1SqoV199FampqXj++edRVHTvYDeNRoP58+djwYIFFg0oBn9XDc6KHYJI4u6NBAzGCgTDRz0OLwVcwWDhd4uPBIzLMmLc9nyk5gvQOcrwSAMF/njGCTqne8VxK9MIuazqJZJfLGD2zwX4epQWctm9Egt0lWPNEA2mfFcAtRLYOEIDrcoK9z85egEyK8z9gBpdbiMnJweXL1+GVqtF06ZNoVarK76TFVj4/UVsOHpD7BhEVqmpUz7m+p9HWOEhyYwEtDv1OgHT94mdosZqNH7S2dkZnTt3tlQWyeBIPqLqi8rV4vnrXQB0QVf3LLygi0SXnP2ijgS0O97NxE5gEVY6wL928VgoIsu4NxKwN4DeeFyXgunuf6JN+j7RRwLaPO+mYiewCCvc+1f7eDYJIsvbleyN4VFD0Cz1v3jb8z+4Xv8pGDXuYseyTRZYg/rtt9/wxBNPICAgADKZDDt37qx5ripiQZWhvicLiqi2GAQ5Iu7UR/+opxCS/QE+8FmEO/UGQ1DyfWcxFiio3NxctGvXDmvXrrVAoOqp0SAJW9Z+0R5k5BWLHYPIbvioi++NBMTv8EiQ5jkBrYJcCfwzAVCoKp63kmQyGXbs2IERI0ZY7DErg2tQ5Wjl7yp2BCK7klSowuuxIegYOxMD5R/jp8C5yNW1FzuW9fFsbNFyEhMHSZSjlb8rjkanih2DyC7dGwn49zkBORKwCnzbiJ3AYlhQ5WgVwDUoIikwHwmYjOkeJ9EmbS8UOdZ93s9a4xcidgKLYUGVgwVFJD27knXYlTwEir+uDjzB6YRo5wSULBaU7Wuic4ZaKUehvvQZk4lIXCUjASNQH06KkZhZLwZPqo7CvxbPCWg1WFC2T6mQo4WfC87GZYodhYgeItcgx/JbTbAcTe6dE7DeFQw2HoZH4jH7GwnopANc/CzyUDk5Obh+/brp59jYWJw5cwaenp5o0KCBRZ6jIhxm/hA8Jx+R9WrmlIeX/C+id+EBOCWfETtO3WjcF5i00yIPdfDgQfTt27fU9PDwcGzYsMEiz1ERFtRDfHcmHi9uOSN2DCKqoe4emZjtfQads/fBIeN6xXewVn0WAH3+IXYKi+Emvofo2MD6r6dCRMCxdDccS7eDkYCNwsROYFFcg6pAp8V7kZLDixcS2RqFzIjwgHiMd7SRkYAqJ+AfN23mIF2AZ5KoUIcG7mJHIKJaYBDk+Dz+vnMC+lr5OQGDuttUOQEsqApxMx+R7cs1yLH8ZhP0iJ6ErsXrsTlgAdL8HoEgK32ZeMmysc17ADfxVejUzTQ89eExsWMQkQiama4OfFD6IwGfPQQEtBc7hUWxoCpgNArotGQv0nKLxI5CRCKS9EhArQfwagwgt62NYhzFVwG5XIY+zXX49nS82FGISET3jwQc5pOEZ9xOoU26REYCNnzE5soJ4D6oShnQ0lfsCEQkId8n+fx1deBlWOQlgasDN+ot3nPXIm7iq4TcQj06vPMrinhePiIqh5PCiOcDozFSeQz+iQch0xfU3ZPP+hPQ1fwqulLDgqqkSZ+fwG/XksWOQURWwEddXHfnBHTxB16+UnuPLyJu4qukAS19xI5ARFYiqVCF12NC0PHG8xgk/xg/B76EXO92tfNkNrp5D+AaVKXdzcxH96X7xY5BRFbs75GAe+GQEW2ZBx2xHmg/zjKPJTEsqCoY+v5hXLyTJXYMIrIBw3ySMM3tFFrXZCSgXAW8eh3Quls0m1RwmHkVPNrSlwVFRBbxfZIPvk+6d3Xg8IB4THA8gcZJeyErrMI16IL72mw5AVyDqpLzcZl44oPfxY5BRDbKSWHErMBojFQehV/ioYpHAo74EGg/vm7CiYAFVUXd/r0PCVl1OHyUiOySn7oIL9a7isHG3+Ce+EfpkYAKh3ub9zRu4gSsAxzFV0X9OJqPiOpAQqEDFsSEoMONWRii+Ag/B75oPhIw+FGbLieAa1BVduBKEqZs+FPsGERkp3p6ZGKWdyTadekDp5ChYsepVVyDqqKeTbzh7ewgdgwislNH0t0w/eajkDUfJHaUWseCqiIHpRyjO9UXOwYR2bHBbfzh6GD7g7BZUNUwvksDyGVipyAie/VUaD2xI9QJFlQ11Pd0RFgzndgxiMgO1XPXontjL7Fj1AkWVDVN6BokdgQiskNPdqwHmcw+NuGwoKqpXwsfBLhpxI5BRHbmyY6BYkeoMyyoalLIZRjbpYHYMYjIjnRu6IFG3k5ix6gzLKgaGNu5PpQcLUFEdWRar8ZiR6hTLKga8HHVYEArXg6eiGpfsM4JA+3s84YFVUMTu3GwBBHVvmfDGtvN4IgSLKga6hHshcZ2tE2YiOqej4saIzvYz+CIEiyoGpLJZBjflYMliKj2TOnZCA5K+/u4tr9XXAtGhQZCbYd/PERU+1zUSkzoZp9fgvmpagHujg52dWwCEdWdcV0bwFWjEjuGKFhQFvJCvyZ2uQpORLXHQSHH1J6NxI4hGn6iWkiAuxYTuC+KiCxoWPsA+NnxGWtYUBY0q28TODooxI5BRDZAJgNmhNnXgbkPYkFZkLezGlN6NhQ7BhHZgH7NfdDU10XsGKJiQVnYs2HBcNXY/oXEiKh2zegdLHYE0bGgLMxNq+IfFhHVSJeGnujSyFPsGKJjQdWCKT0bwtvZQewYRGSF5DLgjcdbiR1DElhQtcDRQYmZfZqIHYOIrNCo0ECEBLqJHUMSWFC1ZGK3BrygIRFViYtaiVcHtRA7hmSwoGqJWqnAC482FTsGEVmRFx5tAp2LWuwYksGCqkWjQwPR0MtR7BhEZAUaezthih2fNaIsLKhapFTIMXdAM7FjEJEV+OfQllAp+JF8Py6NWjasXQA6BXmIHYOIJKx3Mx0ebWlfV8utDBZULZPJZFgyMgQqhX1dCZOIKkelkHFYeTlYUHWguZ8LpvWy73NqEVHZJnVviCY+zmLHkCQWVB158dGmaODJARNE9DcvJwe82J+jfcvDgqojGpUCi4a3FjsGEUnIywOb2+3FCCuDBVWH+jT3weNt/cWOQUQS0DrAFWM71xc7hqSxoOrYwmGt4eHIb0xE9sxBKcfy0e0gl3Pw1MOwoOqYt7Mabw9vI3YMIhLRa4Oao6W/q9gxJI8FJYJh7QIwuLWf2DGISAS9mnrjmUd4xojKYEGJZPHINvB04iU5iOyJp5MDVoxuB5mMm/YqgwUlEm9nNd4exlF9RPbk3SdD4OPKqxxUFgtKRE+0C8BjIdzUR2QPxnVpgIHctF8lLCiR/XtkCAI9tGLHIKJa1FjnhDd5OqMqY0GJzN3RAesnhkKj4q+CyBapFDK8P7YDtA4KsaNYHX4qSkCbem5YPCJE7BhEVAvmDWiONvV4CffqYEFJxKjQQEzs1kDsGERkQd0be2FGGE8UXV0sKAl564nW6NjAXewYRGQBbloVVv4fzxZREywoCVEp5PhwYii8ndViRyGiGpDJgP88FQJ/Nw6AqgkWlMT4umqwdnwHKPmti8hqvfhoUwxuwxND1xQLSoK6NvbCgsdaih2DiKrhiXYBeKl/M7Fj2AQWlEQ980gjPNEuQOwYRFQF7QLdsGxUW7Fj2AwWlIT996m2aOHnInYMIqoEP1cNPpnUCRoVj3eyFBaUhGkdFFg/MRQuGqXYUYjoIbQqBT4N78Tz7FkYC0riGno7Yd2EjnBQ8FdFJEUKuQzvj+vAg3FrAT/1rECvpjq8P44j+4ikaNHw1hjQylfsGDaJBWUlBrfxw7LRbcHLyBBJx+y+TTCha5DYMWwWC8qKjOwQiHd4uXgiSXiqYyBeGdRc7Bg2jQVlZSZ2C8Lrj7UQOwaRXQtrpsN/nuIJnmsbC8oKPRsWjDmPNhU7BpFdCg3ywIcTOkLJgUu1jkvYSs0b0AzPPNJI7BhEdqV7Yy988UwXOKl56EddYEFZsTceb4VxXeqLHYPILvRupkPElM5wdGA51RUWlJVbMiIEw3hKJKJaNbCVL88SIQIWlJWTy2VYOaYd+rfkcRhEteHxtv73DpZX8uOyrnGJ2wClQo61EzqgdzOd2FGIbMpTHQOxemwHDogQiUwQBEHsEGQZeoMRC749j62n4sSOQmT1xndtgCUj2kDGo+NFw4KyQav3RuG9vdfEjkFktab0bIi3nmgtdgy7x4KyUdtOxWHBt+dQbOCvl6gqnu8TjNcG82B4KWBB2bDfo1Iw88tTyC7Uix2FyCrMG9CMB8FLCAvKxl1JyMKUiD9xN7NA7ChEkqVSyPDm463wdPeGYkeh+7Cg7EBCZgEmR5zAlYRssaMQSY63swPWTQhFl0aeYkehB7Cg7ER2QTGe33Qah6NSxI5CJBntAt2w/ulQ+LtpxY5CZWBB2ZHiv4ahb+MwdCKMDg3E4pFtoFby7BBSxYKyQ6v2XsOqvVFixyASBfc3WQ8WlJ365cJdvLbtHLIKOMKP7Ie3sxrrJnTk/iYrwYKyY7fT8jB782mcjcsUOwpRrWtX3x3rJ3bk/iYrwoKyc0V6I979+Qo+PxIrdhSiWjOmUyDeGcH9TdaGBUUAgD0XE/DqtnPIzC8WOwqRxXB/k3VjQZFJXHoe5n19FidupIkdhajGmvg4Y9motujQwEPsKFRNLCgyYzQKWP9bNN779RrP40dWSSmXYUbvxpjzaFNu0rNyLCgq04X4TMz9+gyiknLEjkJUaS39XbFsVFu0qecmdhSyABYUlaug2IB3f76CjcdugH8lJGUOCjlm9W2C5/sGQ8WLC9oMFhRV6PeoFLzx3QXEpuSKHYWolHaBbvjvqHZo7ucidhSyMBYUVUqR3ohPf4/BB/uvI6/IIHYcIqiVcswd0AzTezWGQs6r3toiFhRVSUJmAf7902V8f/aO2FHIjoUGeeC/o9oiWOcsdhSqRSwoqpbjMal46/uLvIQH1SmtSoFXBzXH5B4NIedak81jQVG1GYwCNh2/iRV7rvEAX6pVMhkwsn09vDyoOeq581RF9oIFRTWWlluEZbuv4us/b8HIvyaysJ5NvLBgSEsOHbdDLCiymPNxmXjr+ws4fStD7ChkA5r7uuAfj7VA3+Y+YkchkbCgyKIEQcC3p+Ox8tdriM/IFzsOWaF67lrMebQJRoXW5+g8O8eColpRbDDiuzN3sP5QNK7zbBRUCb6uaszq2wRjOzeAg5IH2xILimqZIAjYcykR6w5G4+ztDLHjkAR5Ozvgud7BmNgtCBoVz51Hf2NBUZ05Gp2CDw9G43BUithRSAK8nR3wzCONEd4jCI4OSrHjkASxoKjOnY/LxIeHruOXCwkc9WeHQoM8MKl7EIa08eemPHooFhSJJiY5Bx8disGOyHgUGYxix6FapFUpMLx9AJ7uHoTWARwuTpXDgiLRJWQW4NPDMfjm5G1kFejFjkMW1MjbCRO6NsDoTvXhplWJHYesDAuKJKNQb8D+y0nYERmPg1eTuVZlpeQyoF8LX0zqHoReTb0hk3GoOFUPC4okKSOvCD+cu4sdp+N44K+V8HRywP91ro8JXRsg0MNR7DhkA1hQJHk3U3OxIzIeOyPjcSM1T+w4dB8XtRJ9WvhgUGtfDGjly0usk0WxoMiqnL6Vjh2n47Hr3B2k5/EEtWLwdVWjf0tfDGzth+6NvTgSj2oNC4qsUrHBiINXk/H92Ts4HJWMDJZVrWri44yBre6VUrtAN+5XojrBgiKrZzQKOBefid+uJeO3a8k4czsDeh5gVSNyGdC+vjsGtvbDwFa+aMwLA5IIWFBkc7IKinH0egoOR6XgRGwaonguwEoJ8nJEu0B3dA/2wqMtfeDjohE7Etk5FhTZvNScQvx5Iw3HY9NwPCYNVxKy7P4MFh6OKrQNdEf7+u5o38Ad7QPd4eHkIHYsIjMsKLI7WQXFOHs7A9cSc3A9KRvXk3IQlZRjs/uxHJRytA5wRbtAd3Ro4I52ge5o6O0kdiyiCrGgiP6SnF2IqKRsRP9VWFGJ9/6bklModrRKcVDIEeihRX1PRzTwdERTX2e0C3RHS39XjrQjq8SCIqpAZl4xopKyEZWUgxupucjILUZGfhEy8oqRmX/vX0ZeMfKLDbWWQS4DPJ3U8HVVw9dVA19XNXxcNKjn/lcheTnC31UDOS/wRzaEBUVkIUV6IzLyi5D1V2GVFFhGfjGy8oshl8mgUsrgoJDDQSmHSlHy79401X3THZQy0+3ujironNVQKrgWRPaFBUVERJLEr2RERCRJLCgiIpIkFhQREUkSC4qIiCSJBUVERJLEgiIiIkliQRERkSSxoIiISJJYUEREJEksKCIikiQWFBERSRILioiIJIkFRUREksSCIiIiSWJBERGRJLGgiIhIklhQREQkSSwoIiKSJBYUERFJEguKiIgkiQVFRESSxIIiIiJJYkEREZEksaCIiEiSWFBERCRJLCgiIpIkFhQREUkSC4qIiCSJBUVERJLEgiIiIkliQRERkSSxoIiISJJYUEREJEksKCIikiQWFBERSRILioiIJIkFRUREksSCIiIiSWJBERGRJLGgiIhIklhQREQkSSwoIiKSJBYUERFJEguKiIgkiQVFRESSxIIiIiJJYkEREZEk/T/nAOL9RnwpLgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(8, 5))\n", + "df[\"heart_disease\"].value_counts().plot(\n", + " kind=\"pie\", autopct=\"%1.1f%%\", title=\"Круговая диаграмма (heart_disease)\"\n", + ")\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.7" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/labs/lab1/newHealthcareDataset.csv b/labs/lab1/newHealthcareDataset.csv new file mode 100644 index 0000000..58f499c --- /dev/null +++ b/labs/lab1/newHealthcareDataset.csv @@ -0,0 +1,5111 @@ +id,gender,age,hypertension,heart_disease,ever_married,work_type,Residence_type,avg_glucose_level,bmi,smoking_status,stroke +9046,Male,67.0,0,1,Yes,Private,Urban,228.69,36.6,formerly smoked,1 +51676,Female,61.0,0,0,Yes,Self-employed,Rural,202.21,,never smoked,1 +31112,Male,80.0,0,1,Yes,Private,Rural,105.92,32.5,never smoked,1 +60182,Female,49.0,0,0,Yes,Private,Urban,171.23,34.4,smokes,1 +1665,Female,79.0,1,0,Yes,Self-employed,Rural,174.12,24.0,never smoked,1 +56669,Male,81.0,0,0,Yes,Private,Urban,186.21,29.0,formerly smoked,1 +53882,Male,74.0,1,1,Yes,Private,Rural,70.09,27.4,never smoked,1 +10434,Female,69.0,0,0,No,Private,Urban,94.39,22.8,never smoked,1 +27419,Female,59.0,0,0,Yes,Private,Rural,76.15,,Unknown,1 +60491,Female,78.0,0,0,Yes,Private,Urban,58.57,24.2,Unknown,1 +12109,Female,81.0,1,0,Yes,Private,Rural,80.43,29.7,never smoked,1 +12095,Female,61.0,0,1,Yes,Govt_job,Rural,120.46,36.8,smokes,1 +12175,Female,54.0,0,0,Yes,Private,Urban,104.51,27.3,smokes,1 +8213,Male,78.0,0,1,Yes,Private,Urban,219.84,,Unknown,1 +5317,Female,79.0,0,1,Yes,Private,Urban,214.09,28.2,never smoked,1 +58202,Female,50.0,1,0,Yes,Self-employed,Rural,167.41,30.9,never smoked,1 +56112,Male,64.0,0,1,Yes,Private,Urban,191.61,37.5,smokes,1 +34120,Male,75.0,1,0,Yes,Private,Urban,221.29,25.8,smokes,1 +27458,Female,60.0,0,0,No,Private,Urban,89.22,37.8,never smoked,1 +25226,Male,57.0,0,1,No,Govt_job,Urban,217.08,,Unknown,1 +70630,Female,71.0,0,0,Yes,Govt_job,Rural,193.94,22.4,smokes,1 +13861,Female,52.0,1,0,Yes,Self-employed,Urban,233.29,48.9,never smoked,1 +68794,Female,79.0,0,0,Yes,Self-employed,Urban,228.7,26.6,never smoked,1 +64778,Male,82.0,0,1,Yes,Private,Rural,208.3,32.5,Unknown,1 +4219,Male,71.0,0,0,Yes,Private,Urban,102.87,27.2,formerly smoked,1 +70822,Male,80.0,0,0,Yes,Self-employed,Rural,104.12,23.5,never smoked,1 +38047,Female,65.0,0,0,Yes,Private,Rural,100.98,28.2,formerly smoked,1 +61843,Male,58.0,0,0,Yes,Private,Rural,189.84,,Unknown,1 +54827,Male,69.0,0,1,Yes,Self-employed,Urban,195.23,28.3,smokes,1 +69160,Male,59.0,0,0,Yes,Private,Rural,211.78,,formerly smoked,1 +43717,Male,57.0,1,0,Yes,Private,Urban,212.08,44.2,smokes,1 +33879,Male,42.0,0,0,Yes,Private,Rural,83.41,25.4,Unknown,1 +39373,Female,82.0,1,0,Yes,Self-employed,Urban,196.92,22.2,never smoked,1 +54401,Male,80.0,0,1,Yes,Self-employed,Urban,252.72,30.5,formerly smoked,1 +14248,Male,48.0,0,0,No,Govt_job,Urban,84.2,29.7,never smoked,1 +712,Female,82.0,1,1,No,Private,Rural,84.03,26.5,formerly smoked,1 +47269,Male,74.0,0,0,Yes,Private,Rural,219.72,33.7,formerly smoked,1 +24977,Female,72.0,1,0,Yes,Private,Rural,74.63,23.1,formerly smoked,1 +47306,Male,58.0,0,0,No,Private,Rural,92.62,32.0,Unknown,1 +62602,Female,49.0,0,0,Yes,Private,Urban,60.91,29.9,never smoked,1 +4651,Male,78.0,0,0,Yes,Private,Rural,78.03,23.9,formerly smoked,1 +1261,Male,54.0,0,0,Yes,Private,Urban,71.22,28.5,never smoked,1 +61960,Male,82.0,0,1,Yes,Private,Urban,144.9,26.4,smokes,1 +1845,Female,63.0,0,0,Yes,Private,Urban,90.9,,formerly smoked,1 +7937,Male,60.0,1,0,Yes,Govt_job,Urban,213.03,20.2,smokes,1 +19824,Male,76.0,1,0,Yes,Private,Rural,243.58,33.6,never smoked,1 +37937,Female,75.0,0,1,No,Self-employed,Urban,109.78,,Unknown,1 +47472,Female,58.0,0,0,Yes,Private,Urban,107.26,38.6,formerly smoked,1 +35626,Male,81.0,0,0,Yes,Self-employed,Urban,99.33,33.7,never smoked,1 +36338,Female,39.0,1,0,Yes,Private,Rural,58.09,39.2,smokes,1 +18587,Female,76.0,0,0,No,Private,Urban,89.96,,Unknown,1 +15102,Male,78.0,1,0,Yes,Private,Urban,75.32,,formerly smoked,1 +59190,Female,79.0,0,1,Yes,Private,Rural,127.29,27.7,never smoked,1 +47167,Female,77.0,1,0,Yes,Self-employed,Urban,124.13,31.4,never smoked,1 +8752,Female,63.0,0,0,Yes,Govt_job,Urban,197.54,,never smoked,1 +25831,Male,63.0,0,1,Yes,Private,Rural,196.71,36.5,formerly smoked,1 +38829,Female,82.0,0,0,Yes,Private,Rural,59.32,33.2,never smoked,1 +66400,Male,78.0,0,0,Yes,Private,Urban,237.75,,formerly smoked,1 +58631,Male,73.0,1,0,Yes,Self-employed,Urban,194.99,32.8,never smoked,1 +5111,Female,54.0,1,0,Yes,Govt_job,Urban,180.93,27.7,never smoked,1 +10710,Female,56.0,0,0,Yes,Private,Urban,185.17,40.4,formerly smoked,1 +55927,Female,80.0,1,0,Yes,Private,Rural,74.9,22.2,never smoked,1 +65842,Female,67.0,1,0,Yes,Self-employed,Rural,61.94,25.3,smokes,1 +19557,Female,45.0,0,0,Yes,Private,Rural,93.72,30.2,formerly smoked,1 +7356,Male,75.0,0,0,Yes,Private,Urban,104.72,,Unknown,1 +17013,Male,78.0,1,0,No,Private,Urban,113.01,24.0,never smoked,1 +17004,Female,70.0,0,0,Yes,Private,Urban,221.58,47.5,never smoked,1 +72366,Male,76.0,0,0,Yes,Private,Urban,104.47,20.3,Unknown,1 +6118,Male,59.0,0,0,Yes,Private,Urban,86.23,30.0,formerly smoked,1 +7371,Female,80.0,1,0,Yes,Self-employed,Rural,72.67,28.9,never smoked,1 +70676,Female,76.0,0,0,Yes,Govt_job,Rural,62.57,,formerly smoked,1 +2326,Female,67.0,1,0,Yes,Private,Rural,179.12,28.1,formerly smoked,1 +27169,Female,66.0,1,0,Yes,Govt_job,Rural,116.55,31.1,formerly smoked,1 +50784,Male,63.0,0,0,Yes,Private,Rural,228.56,27.4,never smoked,1 +19773,Female,52.0,0,0,Yes,Private,Rural,96.59,26.4,never smoked,1 +66159,Female,80.0,0,1,Yes,Self-employed,Rural,66.72,21.7,formerly smoked,1 +36236,Male,80.0,1,0,Yes,Private,Urban,240.09,27.0,never smoked,1 +71673,Female,79.0,0,0,Yes,Private,Urban,110.85,24.1,formerly smoked,1 +45805,Female,51.0,0,0,Yes,Private,Urban,165.31,,never smoked,1 +42117,Male,43.0,0,0,Yes,Self-employed,Urban,143.43,45.9,Unknown,1 +57419,Male,59.0,0,0,Yes,Private,Rural,96.16,44.1,Unknown,1 +26015,Female,66.0,0,0,Yes,Self-employed,Urban,101.45,,Unknown,1 +26727,Female,79.0,0,0,No,Private,Rural,88.92,22.9,never smoked,1 +66638,Female,68.0,1,0,No,Self-employed,Urban,79.79,29.7,never smoked,1 +70042,Male,58.0,0,0,Yes,Private,Urban,71.2,,Unknown,1 +32399,Male,54.0,0,0,Yes,Private,Rural,96.97,29.1,smokes,1 +3253,Male,61.0,0,1,Yes,Private,Rural,111.81,27.3,smokes,1 +71796,Female,70.0,0,1,Yes,Private,Rural,59.35,32.3,formerly smoked,1 +14499,Male,47.0,0,0,Yes,Private,Urban,86.94,41.1,formerly smoked,1 +49130,Male,74.0,0,0,Yes,Private,Urban,98.55,25.6,Unknown,1 +28291,Female,79.0,0,1,Yes,Private,Urban,226.98,29.8,never smoked,1 +51169,Male,81.0,0,0,Yes,Private,Urban,72.81,26.3,never smoked,1 +66315,Female,57.0,0,0,No,Self-employed,Urban,68.02,37.5,never smoked,1 +37726,Female,80.0,1,0,Yes,Self-employed,Urban,68.56,26.2,Unknown,1 +54385,Male,45.0,0,0,Yes,Private,Rural,64.14,29.4,never smoked,1 +2458,Female,78.0,0,0,Yes,Private,Rural,235.63,32.3,never smoked,1 +35512,Female,70.0,0,0,Yes,Self-employed,Rural,76.34,24.4,formerly smoked,1 +56841,Male,58.0,0,1,Yes,Private,Rural,240.59,31.4,smokes,1 +8154,Male,57.0,1,0,Yes,Govt_job,Urban,78.92,27.7,formerly smoked,1 +4639,Female,69.0,0,0,Yes,Govt_job,Urban,82.81,28.0,never smoked,1 +12363,Male,64.0,0,1,Yes,Govt_job,Urban,74.1,28.8,Unknown,1 +63973,Female,77.0,0,0,Yes,Govt_job,Rural,190.32,31.4,never smoked,1 +45277,Female,74.0,0,0,Yes,Private,Rural,231.61,34.6,formerly smoked,1 +4712,Female,81.0,0,1,Yes,Self-employed,Rural,78.7,19.4,Unknown,1 +33175,Female,57.0,0,0,Yes,Govt_job,Urban,110.52,28.5,Unknown,1 +2346,Male,58.0,0,0,Yes,Private,Urban,82.3,,smokes,1 +42072,Female,50.0,1,0,Yes,Private,Rural,73.18,30.3,formerly smoked,1 +12062,Female,54.0,0,0,Yes,Self-employed,Rural,191.82,40.4,smokes,1 +30456,Female,79.0,0,0,Yes,Private,Rural,93.05,24.2,never smoked,1 +59125,Female,53.0,0,0,Yes,Govt_job,Urban,64.17,41.5,never smoked,1 +56546,Male,79.0,0,1,Yes,Private,Rural,129.98,22.6,formerly smoked,1 +48405,Male,80.0,0,1,Yes,Private,Urban,68.53,24.2,smokes,1 +36706,Female,76.0,0,0,Yes,Self-employed,Urban,106.41,,formerly smoked,1 +41069,Female,45.0,0,0,Yes,Private,Rural,224.1,56.6,never smoked,1 +71639,Female,68.0,0,0,No,Govt_job,Urban,82.1,27.1,Unknown,1 +53401,Male,71.0,1,1,No,Govt_job,Rural,216.94,30.9,never smoked,1 +60744,Male,61.0,1,0,Yes,Self-employed,Rural,76.11,27.3,smokes,1 +7547,Male,74.0,0,0,Yes,Private,Urban,72.96,31.3,smokes,1 +31720,Female,38.0,0,0,No,Self-employed,Urban,82.28,24.0,formerly smoked,1 +5563,Female,77.0,0,0,Yes,Private,Urban,105.22,31.0,never smoked,1 +68798,Female,58.0,0,0,Yes,Private,Rural,59.86,28.0,formerly smoked,1 +72918,Female,53.0,1,0,Yes,Private,Urban,62.55,30.3,Unknown,1 +13491,Male,80.0,0,0,Yes,Private,Rural,259.63,31.7,smokes,1 +44033,Male,56.0,1,0,Yes,Private,Rural,249.31,35.8,never smoked,1 +14164,Female,72.0,0,0,Yes,Private,Urban,219.91,,Unknown,1 +50522,Female,72.0,0,0,Yes,Govt_job,Urban,131.41,28.4,never smoked,1 +3352,Male,78.0,1,0,Yes,Self-employed,Urban,93.13,,formerly smoked,1 +70943,Female,80.0,0,0,Yes,Private,Urban,73.54,24.0,Unknown,1 +37132,Male,82.0,0,0,Yes,Govt_job,Urban,200.59,29.0,formerly smoked,1 +48796,Female,75.0,0,0,Yes,Govt_job,Urban,62.48,,Unknown,1 +53440,Female,73.0,1,0,Yes,Private,Rural,190.14,36.5,never smoked,1 +16817,Female,78.0,1,0,No,Private,Urban,130.54,20.1,never smoked,1 +69551,Male,69.0,1,0,No,Private,Rural,182.99,36.5,never smoked,1 +31563,Female,38.0,0,0,Yes,Private,Rural,101.45,,formerly smoked,1 +20387,Female,68.0,1,0,Yes,Self-employed,Rural,206.09,26.7,never smoked,1 +71279,Female,71.0,0,0,Yes,Govt_job,Urban,263.32,38.7,never smoked,1 +55824,Male,76.0,0,0,Yes,Private,Urban,140.1,29.9,formerly smoked,1 +11762,Female,76.0,0,0,Yes,Private,Urban,207.28,34.9,Unknown,1 +29281,Male,76.0,1,0,Yes,Self-employed,Rural,194.37,27.0,formerly smoked,1 +30683,Female,75.0,0,0,Yes,Private,Rural,199.2,26.6,Unknown,1 +20439,Male,82.0,0,1,Yes,Govt_job,Rural,103.68,25.0,never smoked,1 +45965,Female,59.0,0,0,Yes,Private,Rural,116.44,23.8,smokes,1 +8045,Female,74.0,1,0,Yes,Private,Urban,70.28,21.8,never smoked,1 +37651,Female,69.0,1,1,No,Self-employed,Urban,72.17,36.8,never smoked,1 +17308,Female,72.0,1,0,Yes,Private,Urban,221.79,30.0,never smoked,1 +67981,Male,66.0,0,0,Yes,Private,Urban,151.16,27.5,formerly smoked,1 +41241,Male,65.0,0,0,Yes,Self-employed,Urban,68.43,,formerly smoked,1 +62861,Female,78.0,0,0,Yes,Private,Urban,67.29,24.6,never smoked,1 +72081,Female,57.0,1,0,Yes,Govt_job,Rural,67.41,32.9,never smoked,1 +58978,Female,70.0,0,1,Yes,Private,Rural,239.07,26.1,never smoked,1 +11933,Female,79.0,0,0,Yes,Private,Rural,169.67,,Unknown,1 +46703,Male,68.0,0,1,Yes,Private,Urban,223.83,31.9,formerly smoked,1 +32503,Female,80.0,0,0,Yes,Self-employed,Urban,76.57,34.1,never smoked,1 +12482,Male,68.0,0,0,Yes,Self-employed,Urban,77.82,27.5,smokes,1 +56939,Female,55.0,0,0,Yes,Self-employed,Rural,92.98,25.6,never smoked,1 +24669,Female,77.0,0,1,Yes,Private,Rural,231.56,36.9,never smoked,1 +43054,Female,50.0,0,0,Yes,Private,Rural,102.16,31.4,smokes,1 +59437,Female,57.0,0,0,Yes,Private,Urban,221.89,37.3,smokes,1 +66258,Female,71.0,0,0,Yes,Self-employed,Urban,195.71,34.1,formerly smoked,1 +34567,Female,81.0,1,0,Yes,Self-employed,Rural,74.02,25.0,never smoked,1 +50931,Female,76.0,0,0,Yes,Private,Urban,57.92,,formerly smoked,1 +16590,Male,71.0,0,1,Yes,Private,Urban,81.76,,smokes,1 +69768,Female,1.32,0,0,No,children,Urban,70.37,,Unknown,1 +20426,Female,78.0,1,0,No,Private,Urban,203.87,45.7,never smoked,1 +3512,Female,70.0,1,0,Yes,Self-employed,Urban,89.13,34.2,formerly smoked,1 +42899,Male,78.0,0,0,Yes,Self-employed,Urban,133.19,23.6,formerly smoked,1 +63453,Female,56.0,0,0,Yes,Govt_job,Rural,162.23,27.3,Unknown,1 +43364,Male,79.0,1,0,Yes,Private,Rural,75.02,,never smoked,1 +44993,Female,79.0,1,0,No,Govt_job,Urban,98.02,22.3,formerly smoked,1 +210,Male,81.0,0,0,Yes,Self-employed,Rural,91.54,31.4,never smoked,1 +28939,Male,64.0,0,0,Yes,Self-employed,Rural,111.98,,formerly smoked,1 +60739,Female,79.0,1,1,No,Self-employed,Rural,60.94,,never smoked,1 +67432,Female,60.0,0,0,Yes,Private,Urban,97.43,26.4,smokes,1 +2182,Female,80.0,1,0,Yes,Self-employed,Rural,91.02,32.9,formerly smoked,1 +40899,Female,78.0,0,0,Yes,Self-employed,Rural,60.67,,formerly smoked,1 +14431,Male,72.0,1,0,Yes,Self-employed,Rural,185.49,37.1,never smoked,1 +62466,Female,80.0,0,0,Yes,Private,Urban,64.44,45.0,never smoked,1 +36841,Male,78.0,1,0,Yes,Self-employed,Rural,56.11,25.5,formerly smoked,1 +33486,Female,80.0,0,0,Yes,Govt_job,Urban,110.66,,Unknown,1 +65105,Male,81.0,0,0,Yes,Private,Urban,213.22,26.1,Unknown,1 +54567,Female,46.0,0,0,Yes,Private,Urban,78.18,30.8,never smoked,1 +66204,Male,59.0,0,0,Yes,Private,Urban,111.04,32.0,formerly smoked,1 +39912,Female,32.0,0,0,Yes,Private,Rural,76.13,29.9,smokes,1 +8003,Female,77.0,0,0,No,Private,Urban,81.32,,Unknown,1 +28378,Male,61.0,1,1,Yes,Private,Urban,112.24,37.4,smokes,1 +41081,Male,63.0,0,0,Yes,Private,Rural,137.3,31.7,formerly smoked,1 +16077,Male,63.0,0,1,Yes,Self-employed,Urban,116.69,34.5,formerly smoked,1 +67895,Female,82.0,1,1,Yes,Govt_job,Urban,215.94,27.9,formerly smoked,1 +30184,Male,82.0,0,0,Yes,Private,Rural,86.62,29.5,formerly smoked,1 +66955,Male,61.0,0,1,Yes,Private,Urban,209.86,,Unknown,1 +24905,Female,65.0,0,0,Yes,Private,Urban,205.77,46.0,formerly smoked,1 +66071,Male,51.0,1,0,Yes,Private,Urban,112.16,42.5,formerly smoked,1 +36255,Male,59.0,0,0,Yes,Self-employed,Rural,118.03,35.5,smokes,1 +69112,Male,68.0,1,1,Yes,Private,Rural,271.74,31.1,smokes,1 +23410,Female,72.0,0,0,Yes,Private,Rural,97.92,26.9,smokes,1 +64373,Male,59.0,0,0,Yes,Private,Urban,200.62,35.8,formerly smoked,1 +58267,Male,70.0,1,0,Yes,Private,Rural,242.52,45.5,formerly smoked,1 +35684,Male,69.0,0,0,Yes,Private,Rural,93.81,28.5,Unknown,1 +18937,Male,79.0,0,0,Yes,Private,Rural,114.77,,formerly smoked,1 +491,Female,74.0,0,0,Yes,Self-employed,Urban,74.96,26.6,never smoked,1 +54695,Male,74.0,0,0,Yes,Private,Urban,167.13,,Unknown,1 +68627,Male,80.0,1,1,Yes,Private,Urban,175.29,31.5,formerly smoked,1 +8580,Female,77.0,0,0,Yes,Self-employed,Rural,90.0,32.0,never smoked,1 +28484,Female,78.0,0,0,Yes,Self-employed,Rural,109.47,30.8,never smoked,1 +62019,Male,54.0,0,0,Yes,Govt_job,Rural,87.85,31.1,smokes,1 +51314,Female,78.0,0,0,Yes,Private,Urban,106.74,33.0,formerly smoked,1 +37060,Female,81.0,0,0,Yes,Private,Rural,80.13,23.4,never smoked,1 +35578,Male,78.0,0,0,No,Self-employed,Urban,90.19,26.9,never smoked,1 +54921,Male,78.0,1,0,Yes,Self-employed,Rural,134.8,33.6,Unknown,1 +33454,Female,63.0,0,0,Yes,Govt_job,Rural,106.58,23.9,Unknown,1 +33943,Female,39.0,0,0,Yes,Private,Urban,83.24,26.3,never smoked,1 +62439,Female,51.0,0,0,Yes,Govt_job,Rural,103.43,27.3,formerly smoked,1 +31179,Male,63.0,0,0,Yes,Private,Urban,208.65,30.7,never smoked,1 +66866,Female,48.0,0,0,Yes,Private,Urban,74.11,20.5,never smoked,1 +2548,Female,81.0,0,0,Yes,Self-employed,Urban,95.84,21.5,never smoked,1 +68025,Female,79.0,0,1,No,Private,Urban,205.33,31.0,smokes,1 +2390,Male,78.0,0,0,Yes,Self-employed,Urban,116.1,27.1,never smoked,1 +29552,Female,55.0,1,1,Yes,Private,Urban,210.4,40.0,smokes,1 +25904,Female,76.0,1,1,Yes,Self-employed,Urban,199.86,,smokes,1 +31421,Male,73.0,0,1,Yes,Govt_job,Rural,219.73,28.6,never smoked,1 +20463,Male,81.0,1,1,Yes,Private,Urban,250.89,28.1,smokes,1 +68023,Male,79.0,0,0,Yes,Private,Rural,72.73,28.4,never smoked,1 +12689,Female,63.0,0,0,Yes,Govt_job,Rural,205.35,42.2,formerly smoked,1 +54724,Female,81.0,0,0,No,Govt_job,Urban,70.3,25.8,smokes,1 +8899,Male,49.0,0,0,No,Private,Rural,104.86,31.9,smokes,1 +39186,Female,57.0,0,1,Yes,Private,Urban,216.58,31.0,Unknown,1 +32729,Female,81.0,0,0,Yes,Private,Rural,184.4,27.5,never smoked,1 +39105,Male,74.0,0,0,Yes,Self-employed,Rural,60.98,,never smoked,1 +31154,Female,39.0,0,0,Yes,Self-employed,Urban,97.76,29.6,smokes,1 +69959,Female,80.0,1,0,No,Private,Urban,66.03,35.4,never smoked,1 +10552,Female,81.0,0,0,Yes,Self-employed,Rural,81.95,16.9,never smoked,1 +12917,Female,79.0,0,0,Yes,Private,Urban,97.73,21.5,smokes,1 +68356,Female,73.0,0,0,Yes,Self-employed,Urban,70.94,34.4,never smoked,1 +23368,Female,77.0,1,0,Yes,Self-employed,Urban,199.84,28.0,formerly smoked,1 +25974,Male,78.0,0,0,Yes,Self-employed,Urban,218.46,26.8,Unknown,1 +1210,Female,68.0,0,0,Yes,Private,Rural,211.06,39.3,Unknown,1 +28493,Male,57.0,0,0,Yes,Private,Urban,86.3,31.7,Unknown,1 +36857,Male,77.0,0,0,Yes,Self-employed,Rural,162.14,32.6,formerly smoked,1 +1836,Female,51.0,1,0,Yes,Private,Urban,88.2,28.4,never smoked,1 +32221,Male,60.0,0,1,Yes,Private,Urban,91.92,35.9,smokes,1 +10548,Male,66.0,0,0,Yes,Private,Rural,76.46,21.2,formerly smoked,1 +52282,Male,57.0,0,0,Yes,Private,Rural,197.28,34.5,formerly smoked,1 +45535,Male,68.0,0,0,Yes,Private,Rural,233.94,42.4,never smoked,1 +40460,Female,68.0,1,1,Yes,Private,Urban,247.51,40.5,formerly smoked,1 +17739,Male,57.0,0,0,Yes,Private,Rural,84.96,36.7,Unknown,1 +49669,Female,14.0,0,0,No,children,Rural,57.93,30.9,Unknown,1 +27153,Female,75.0,0,0,Yes,Self-employed,Rural,78.8,29.3,formerly smoked,1 +34060,Male,71.0,1,0,Yes,Self-employed,Rural,87.8,,Unknown,1 +43424,Female,78.0,0,0,Yes,Private,Rural,78.81,19.6,Unknown,1 +30669,Male,3.0,0,0,No,children,Rural,95.12,18.0,Unknown,0 +30468,Male,58.0,1,0,Yes,Private,Urban,87.96,39.2,never smoked,0 +16523,Female,8.0,0,0,No,Private,Urban,110.89,17.6,Unknown,0 +56543,Female,70.0,0,0,Yes,Private,Rural,69.04,35.9,formerly smoked,0 +46136,Male,14.0,0,0,No,Never_worked,Rural,161.28,19.1,Unknown,0 +32257,Female,47.0,0,0,Yes,Private,Urban,210.95,50.1,Unknown,0 +52800,Female,52.0,0,0,Yes,Private,Urban,77.59,17.7,formerly smoked,0 +41413,Female,75.0,0,1,Yes,Self-employed,Rural,243.53,27.0,never smoked,0 +15266,Female,32.0,0,0,Yes,Private,Rural,77.67,32.3,smokes,0 +28674,Female,74.0,1,0,Yes,Self-employed,Urban,205.84,54.6,never smoked,0 +10460,Female,79.0,0,0,Yes,Govt_job,Urban,77.08,35.0,Unknown,0 +64908,Male,79.0,0,1,Yes,Private,Urban,57.08,22.0,formerly smoked,0 +63884,Female,37.0,0,0,Yes,Private,Rural,162.96,39.4,never smoked,0 +37893,Female,37.0,0,0,Yes,Private,Rural,73.5,26.1,formerly smoked,0 +67855,Female,40.0,0,0,Yes,Private,Rural,95.04,42.4,never smoked,0 +25774,Male,35.0,0,0,No,Private,Rural,85.37,33.0,never smoked,0 +19584,Female,20.0,0,0,No,Private,Urban,84.62,19.7,smokes,0 +24447,Female,42.0,0,0,Yes,Private,Rural,82.67,22.5,never smoked,0 +49589,Female,44.0,0,0,Yes,Govt_job,Urban,57.33,24.6,smokes,0 +17986,Female,79.0,0,1,Yes,Self-employed,Urban,67.84,25.2,smokes,0 +29217,Female,65.0,1,0,Yes,Private,Rural,75.7,41.8,Unknown,0 +72911,Female,57.0,1,0,Yes,Private,Rural,129.54,60.9,smokes,0 +47175,Female,49.0,0,0,Yes,Private,Rural,60.22,31.5,smokes,0 +4057,Male,71.0,0,0,Yes,Private,Urban,198.21,27.3,formerly smoked,0 +48588,Female,59.0,0,0,Yes,Private,Urban,109.82,23.7,never smoked,0 +70336,Female,25.0,0,0,Yes,Private,Urban,60.84,24.5,never smoked,0 +66767,Female,67.0,0,0,Yes,Govt_job,Rural,94.61,28.4,smokes,0 +45801,Female,38.0,0,0,No,Private,Rural,97.49,26.9,never smoked,0 +36275,Female,54.0,0,0,Yes,Private,Rural,206.72,26.7,never smoked,0 +11577,Female,70.0,0,0,Yes,Self-employed,Rural,214.45,31.2,never smoked,0 +67210,Male,27.0,0,0,Yes,Self-employed,Urban,82.9,25.0,Unknown,0 +29908,Female,47.0,0,0,Yes,Private,Urban,103.26,25.4,Unknown,0 +45222,Male,58.0,1,0,No,Private,Urban,55.78,27.5,smokes,0 +33759,Female,3.0,0,0,No,children,Urban,73.74,16.0,Unknown,0 +40311,Female,58.0,0,0,Yes,Private,Urban,149.75,27.0,Unknown,0 +26325,Male,14.0,0,0,No,Govt_job,Urban,82.34,31.6,Unknown,0 +65460,Female,32.0,0,0,Yes,Private,Rural,62.6,25.1,formerly smoked,0 +36811,Female,23.0,0,0,No,Private,Urban,94.09,30.9,never smoked,0 +71750,Female,55.0,0,0,Yes,Private,Urban,55.42,24.8,Unknown,0 +70970,Female,17.0,0,0,No,Self-employed,Urban,82.18,23.4,Unknown,0 +42203,Male,59.0,0,0,Yes,Private,Urban,117.92,29.4,smokes,0 +55680,Male,13.0,0,0,No,children,Urban,114.84,18.3,Unknown,0 +11014,Male,4.0,0,0,No,children,Rural,79.17,20.0,Unknown,0 +44338,Female,16.0,0,0,No,children,Rural,110.63,19.5,Unknown,0 +20980,Male,67.0,0,0,Yes,Private,Urban,190.7,36.0,formerly smoked,0 +34974,Female,22.0,0,0,No,Private,Rural,79.81,27.7,Unknown,0 +71379,Female,45.0,0,0,Yes,Govt_job,Urban,113.63,27.5,smokes,0 +58261,Female,66.0,0,0,Yes,Private,Rural,141.24,28.5,never smoked,0 +67318,Male,58.0,1,0,Yes,Govt_job,Rural,56.96,26.8,smokes,0 +28526,Male,69.0,0,0,Yes,Self-employed,Rural,203.04,33.6,never smoked,0 +8831,Female,58.0,0,0,Yes,Private,Rural,94.3,29.1,Unknown,0 +65199,Female,53.0,0,0,Yes,Self-employed,Urban,81.51,28.5,Unknown,0 +43454,Female,78.0,0,0,No,Self-employed,Urban,137.74,34.9,formerly smoked,0 +7282,Male,44.0,0,0,Yes,Private,Rural,81.84,25.1,never smoked,0 +18518,Male,66.0,0,0,Yes,Private,Rural,242.3,35.3,smokes,0 +41648,Male,27.0,0,0,Yes,Private,Rural,102.64,26.4,smokes,0 +49003,Male,43.0,0,0,Yes,Private,Urban,146.01,31.5,smokes,0 +16371,Female,13.0,0,0,No,children,Urban,75.42,40.1,Unknown,0 +42807,Male,51.0,0,0,Yes,Govt_job,Urban,220.49,43.1,Unknown,0 +40181,Female,30.0,0,0,Yes,Private,Urban,61.45,36.7,smokes,0 +66174,Male,46.0,0,0,Yes,Self-employed,Rural,88.19,29.3,formerly smoked,0 +45538,Female,43.0,0,0,Yes,Self-employed,Rural,115.22,21.2,Unknown,0 +6319,Female,79.0,0,0,Yes,Private,Urban,97.93,31.2,Unknown,0 +68249,Female,27.0,0,0,Yes,Private,Rural,85.6,21.4,Unknown,0 +55232,Female,38.0,0,0,Yes,Private,Rural,79.83,27.9,smokes,0 +11120,Female,78.0,1,0,Yes,Private,Urban,218.46,34.3,never smoked,0 +41940,Male,57.0,0,1,Yes,Private,Rural,62.2,31.0,formerly smoked,0 +72214,Male,61.0,0,0,Yes,Self-employed,Urban,69.15,27.7,formerly smoked,0 +37089,Female,37.0,1,0,Yes,Self-employed,Rural,127.71,36.0,never smoked,0 +68614,Female,48.0,0,0,Yes,Private,Rural,216.7,38.7,formerly smoked,0 +1686,Female,29.0,0,0,No,Private,Urban,71.89,27.6,never smoked,0 +22284,Male,22.0,0,0,No,Private,Rural,103.56,25.1,Unknown,0 +39038,Male,11.0,0,0,No,children,Rural,79.03,16.5,Unknown,0 +21956,Female,22.0,0,0,No,Private,Urban,69.94,22.8,Unknown,0 +52134,Male,53.0,0,0,Yes,Private,Rural,90.12,35.4,Unknown,0 +30171,Male,27.0,0,0,No,Govt_job,Urban,95.1,24.3,formerly smoked,0 +4480,Male,76.0,0,0,Yes,Private,Rural,234.58,34.3,formerly smoked,0 +2982,Female,57.0,1,0,Yes,Private,Rural,235.85,40.1,never smoked,0 +65535,Male,8.0,0,0,No,children,Rural,78.05,25.7,Unknown,0 +29865,Female,21.0,0,0,No,Private,Rural,89.44,21.9,smokes,0 +54918,Female,18.0,0,0,No,Private,Rural,111.38,38.4,smokes,0 +59368,Female,78.0,0,0,Yes,Private,Urban,243.5,26.1,never smoked,0 +65836,Female,78.0,1,0,Yes,Private,Urban,182.2,30.5,formerly smoked,0 +21130,Male,33.0,0,0,Yes,Self-employed,Urban,229.92,25.9,smokes,0 +1703,Female,52.0,0,0,Yes,Private,Urban,82.24,54.7,formerly smoked,0 +16934,Female,51.0,0,0,Yes,Self-employed,Rural,89.84,29.9,Unknown,0 +28799,Male,11.0,0,0,No,children,Rural,90.69,18.6,Unknown,0 +32689,Female,48.0,0,0,Yes,Private,Urban,84.38,27.1,Unknown,0 +56357,Female,82.0,0,1,No,Private,Urban,215.6,24.9,never smoked,0 +18051,Female,54.0,0,0,Yes,Govt_job,Rural,91.61,25.2,never smoked,0 +40840,Female,49.0,0,0,Yes,Private,Rural,138.16,19.4,never smoked,0 +10449,Female,24.0,0,0,Yes,Private,Urban,75.23,29.0,never smoked,0 +38805,Female,37.0,0,0,Yes,Private,Rural,75.18,48.2,formerly smoked,0 +31091,Male,34.0,0,1,Yes,Private,Urban,106.23,,formerly smoked,0 +45053,Male,64.0,0,0,Yes,Govt_job,Urban,239.64,34.6,formerly smoked,0 +61837,Female,66.0,0,0,Yes,Self-employed,Urban,58.95,24.6,never smoked,0 +9487,Female,23.0,0,0,No,Private,Urban,99.92,25.8,never smoked,0 +49713,Male,68.0,0,0,Yes,Private,Rural,116.23,26.1,never smoked,0 +17608,Female,55.0,0,0,Yes,Govt_job,Urban,118.82,29.0,formerly smoked,0 +28102,Female,25.0,0,0,No,Private,Rural,66.3,27.2,never smoked,0 +1506,Female,48.0,0,0,No,Govt_job,Urban,101.41,20.7,smokes,0 +28333,Female,79.0,1,1,Yes,Self-employed,Urban,200.28,30.0,formerly smoked,0 +62608,Female,47.0,0,0,Yes,Private,Urban,136.8,37.3,never smoked,0 +40670,Female,20.0,0,0,No,Private,Rural,96.57,34.1,never smoked,0 +4630,Female,60.0,0,0,Yes,Private,Rural,66.42,23.6,never smoked,0 +21284,Female,32.0,0,0,Yes,Private,Urban,98.09,25.2,smokes,0 +49421,Female,66.0,1,0,Yes,Private,Rural,205.23,39.5,never smoked,0 +5973,Male,43.0,0,0,Yes,Private,Urban,86.78,23.5,smokes,0 +42996,Female,36.0,0,0,No,Govt_job,Rural,126.82,23.3,never smoked,0 +66333,Male,52.0,0,0,Yes,Self-employed,Urban,78.4,64.8,never smoked,0 +46785,Female,29.0,0,0,Yes,Private,Urban,63.69,28.1,smokes,0 +54312,Female,76.0,1,0,Yes,Self-employed,Urban,209.58,,never smoked,0 +21408,Female,39.0,0,0,Yes,Self-employed,Rural,89.86,24.4,never smoked,0 +49916,Male,76.0,0,0,Yes,Private,Rural,110.99,29.8,formerly smoked,0 +7559,Female,0.64,0,0,No,children,Urban,83.82,24.9,Unknown,0 +71038,Male,34.0,0,0,Yes,Private,Urban,137.96,35.1,Unknown,0 +69037,Female,72.0,0,0,Yes,Private,Rural,210.78,32.3,formerly smoked,0 +58617,Female,43.0,0,0,Yes,Self-employed,Rural,118.89,43.6,never smoked,0 +69064,Female,57.0,0,0,No,Self-employed,Rural,72.55,21.0,never smoked,0 +9404,Female,44.0,0,0,Yes,Private,Rural,107.41,47.3,never smoked,0 +8171,Female,4.0,0,0,No,children,Rural,93.25,16.6,Unknown,0 +28286,Male,44.0,0,0,Yes,Private,Rural,74.91,37.5,never smoked,0 +43232,Female,18.0,0,0,No,Private,Urban,80.05,24.2,never smoked,0 +10159,Male,41.0,0,0,Yes,Private,Urban,99.8,31.6,never smoked,0 +34402,Female,23.0,0,0,Yes,Private,Rural,91.97,21.6,formerly smoked,0 +58282,Female,53.0,0,0,Yes,Govt_job,Rural,64.4,31.0,smokes,0 +64489,Male,56.0,0,0,Yes,Govt_job,Rural,73.02,31.1,never smoked,0 +22706,Female,0.88,0,0,No,children,Rural,88.11,15.5,Unknown,0 +71539,Male,25.0,0,0,No,Private,Urban,138.29,27.3,Unknown,0 +28637,Female,14.0,0,0,No,children,Rural,72.36,20.5,Unknown,0 +64553,Female,53.0,0,0,Yes,Private,Rural,68.76,35.6,formerly smoked,0 +31741,Male,4.0,0,0,No,children,Rural,106.22,16.7,Unknown,0 +69936,Female,39.0,0,0,Yes,Private,Urban,101.52,41.8,never smoked,0 +46527,Male,53.0,1,1,Yes,Govt_job,Rural,109.51,41.9,never smoked,0 +22537,Male,5.0,0,0,No,children,Rural,85.84,16.4,Unknown,0 +50611,Male,4.0,0,0,No,children,Rural,110.15,17.1,Unknown,0 +13547,Female,37.0,0,0,Yes,Private,Urban,91.72,29.2,never smoked,0 +63732,Male,70.0,1,0,Yes,Self-employed,Urban,251.6,27.1,never smoked,0 +9608,Male,24.0,0,0,No,Private,Urban,123.1,37.9,never smoked,0 +10504,Male,55.0,0,0,Yes,Govt_job,Rural,97.4,44.6,formerly smoked,0 +37090,Female,70.0,0,0,Yes,Private,Rural,68.34,22.8,formerly smoked,0 +60148,Male,34.0,0,0,Yes,Private,Urban,80.81,33.2,never smoked,0 +9637,Male,26.0,0,0,Yes,Private,Rural,120.31,22.3,smokes,0 +44862,Female,39.0,0,0,Yes,Private,Rural,83.51,26.4,never smoked,0 +52173,Male,38.0,0,0,No,Self-employed,Urban,74.09,39.6,never smoked,0 +5708,Female,20.0,0,0,No,Private,Urban,91.6,28.1,never smoked,0 +23462,Female,17.0,0,0,No,Private,Urban,87.52,39.2,never smoked,0 +2374,Male,60.0,1,0,Yes,Private,Rural,213.37,36.0,never smoked,0 +11091,Female,75.0,0,0,Yes,Self-employed,Rural,75.39,37.8,never smoked,0 +70374,Female,31.0,0,0,Yes,Private,Rural,122.41,40.3,smokes,0 +15528,Male,58.0,1,0,Yes,Private,Rural,223.36,41.5,formerly smoked,0 +65357,Female,5.0,0,0,No,children,Rural,84.59,17.7,Unknown,0 +49465,Female,13.0,0,0,No,children,Urban,70.16,21.2,never smoked,0 +31143,Female,22.0,0,0,No,Private,Rural,107.52,41.6,Unknown,0 +66972,Female,52.0,0,0,Yes,Govt_job,Urban,80.88,23.8,smokes,0 +55810,Female,61.0,0,0,Yes,Self-employed,Rural,93.48,23.7,Unknown,0 +37031,Female,78.0,0,1,Yes,Govt_job,Urban,70.21,24.8,never smoked,0 +34608,Male,57.0,0,0,Yes,Private,Rural,86.67,39.0,Unknown,0 +36007,Female,21.0,0,0,Yes,Private,Rural,101.37,37.9,never smoked,0 +14123,Female,22.0,0,0,Yes,Private,Rural,105.22,31.1,never smoked,0 +48298,Female,80.0,0,0,Yes,Private,Rural,70.31,23.2,Unknown,0 +54975,Male,7.0,0,0,No,Self-employed,Rural,64.06,18.9,Unknown,0 +27213,Male,64.0,1,0,Yes,Self-employed,Rural,178.29,36.1,never smoked,0 +44749,Female,64.0,0,0,No,Govt_job,Rural,81.6,36.3,smokes,0 +46468,Female,38.0,0,0,Yes,Self-employed,Urban,147.48,40.5,Unknown,0 +10913,Male,12.0,0,0,No,children,Urban,86.86,25.4,never smoked,0 +51983,Female,33.0,0,0,Yes,Private,Rural,71.16,46.5,smokes,0 +27029,Female,3.0,0,0,No,children,Urban,73.2,16.8,Unknown,0 +22320,Female,37.0,0,0,Yes,Private,Urban,203.81,46.6,never smoked,0 +45719,Female,22.0,0,0,No,Private,Rural,82.0,26.4,never smoked,0 +129,Female,24.0,0,0,No,Private,Urban,97.55,26.2,never smoked,0 +20351,Male,75.0,0,0,Yes,Govt_job,Urban,94.29,35.2,Unknown,0 +530,Female,12.0,0,0,No,children,Rural,75.22,20.9,Unknown,0 +55351,Male,63.0,0,0,Yes,Private,Urban,90.07,36.8,Unknown,0 +67431,Female,52.0,0,0,Yes,Private,Urban,73.73,34.4,formerly smoked,0 +20546,Female,68.0,0,0,Yes,Private,Urban,79.58,22.2,never smoked,0 +6107,Female,5.0,0,0,No,children,Urban,77.88,13.8,Unknown,0 +50305,Female,56.0,1,0,Yes,Private,Rural,205.26,40.3,never smoked,0 +52342,Female,43.0,0,0,Yes,Private,Rural,58.63,28.4,smokes,0 +59906,Female,40.0,0,0,Yes,Private,Rural,139.9,31.7,smokes,0 +59729,Male,53.0,0,0,Yes,Private,Urban,211.03,34.2,formerly smoked,0 +53144,Female,52.0,0,1,Yes,Private,Urban,72.79,54.7,never smoked,0 +3655,Male,31.0,0,0,Yes,Govt_job,Rural,91.65,24.6,formerly smoked,0 +11999,Female,63.0,0,0,Yes,Govt_job,Rural,79.92,,smokes,0 +12985,Female,69.0,0,0,Yes,Self-employed,Rural,225.47,36.9,never smoked,0 +38119,Male,64.0,0,0,Yes,Govt_job,Urban,94.48,31.1,never smoked,0 +3355,Female,64.0,0,0,Yes,Private,Urban,82.34,31.9,never smoked,0 +22091,Female,62.0,0,0,Yes,Self-employed,Urban,180.63,31.8,formerly smoked,0 +5010,Female,2.0,0,0,No,children,Rural,92.48,18.0,Unknown,0 +67177,Male,53.0,0,0,Yes,Private,Rural,116.66,28.5,formerly smoked,0 +58600,Male,65.0,1,0,Yes,Private,Urban,112.09,29.5,never smoked,0 +56681,Female,22.0,0,0,No,Private,Urban,130.34,22.0,never smoked,0 +56716,Female,26.0,0,0,No,Private,Urban,82.59,29.4,never smoked,0 +65946,Male,53.0,0,0,Yes,Private,Rural,123.87,28.8,Unknown,0 +61350,Male,20.0,0,0,No,Govt_job,Rural,98.7,26.2,Unknown,0 +17291,Female,63.0,1,0,Yes,Self-employed,Rural,227.1,26.9,Unknown,0 +61465,Male,13.0,0,0,No,children,Rural,55.39,23.2,Unknown,0 +18108,Male,21.0,0,0,No,Govt_job,Urban,66.07,27.9,Unknown,0 +48368,Female,65.0,0,0,Yes,Self-employed,Rural,104.21,36.8,never smoked,0 +36471,Male,65.0,0,0,Yes,Private,Urban,145.15,28.9,Unknown,0 +15689,Male,42.0,0,0,Yes,Govt_job,Urban,68.19,31.0,never smoked,0 +8233,Male,72.0,0,1,Yes,Self-employed,Rural,97.53,29.4,smokes,0 +46436,Male,13.0,0,0,No,children,Urban,122.31,15.3,never smoked,0 +23221,Male,29.0,0,0,No,Private,Urban,83.51,37.1,never smoked,0 +31830,Male,59.0,0,0,Yes,Self-employed,Urban,86.46,30.5,Unknown,0 +15296,Female,42.0,0,0,Yes,Private,Rural,112.06,38.2,never smoked,0 +7351,Male,13.0,0,0,No,Private,Urban,92.14,23.2,never smoked,0 +66196,Male,75.0,0,1,No,Private,Rural,201.76,30.2,formerly smoked,0 +17718,Female,33.0,1,0,Yes,Private,Urban,74.44,45.2,smokes,0 +31164,Female,43.0,0,0,Yes,Private,Rural,95.93,21.8,Unknown,0 +48272,Female,11.0,0,0,No,children,Rural,87.51,24.4,Unknown,0 +2893,Female,7.0,0,0,No,children,Rural,72.35,17.0,Unknown,0 +34376,Female,16.0,0,0,No,children,Rural,113.47,19.5,Unknown,0 +18498,Female,44.0,0,0,No,Private,Rural,103.78,49.8,formerly smoked,0 +56735,Female,78.0,0,0,Yes,Self-employed,Rural,115.43,27.8,never smoked,0 +8595,Male,25.0,0,0,Yes,Private,Rural,95.59,25.1,never smoked,0 +621,Male,69.0,0,0,Yes,Private,Rural,101.52,26.8,smokes,0 +1307,Female,61.0,1,0,Yes,Private,Rural,170.05,60.2,smokes,0 +35846,Female,43.0,1,0,No,Self-employed,Rural,217.3,27.5,never smoked,0 +28645,Female,38.0,1,0,Yes,Private,Urban,196.01,28.1,never smoked,0 +5835,Male,68.0,0,0,Yes,Private,Urban,92.21,27.3,Unknown,0 +46474,Male,26.0,0,0,Yes,Private,Rural,100.09,27.4,never smoked,0 +69687,Female,18.0,0,0,No,Self-employed,Rural,93.88,22.2,never smoked,0 +2953,Female,43.0,0,0,Yes,Private,Rural,75.05,22.9,smokes,0 +11838,Female,43.0,0,0,Yes,Govt_job,Rural,70.08,26.6,never smoked,0 +9179,Female,32.0,0,0,No,Private,Urban,74.2,23.0,smokes,0 +38165,Female,81.0,0,0,No,Private,Rural,69.01,32.6,never smoked,0 +63050,Male,25.0,0,0,No,Private,Rural,96.17,22.1,Unknown,0 +22470,Male,61.0,0,0,Yes,Govt_job,Urban,184.15,,Unknown,0 +71585,Female,66.0,0,0,Yes,Govt_job,Urban,87.24,22.5,formerly smoked,0 +15649,Male,54.0,1,0,Yes,Private,Rural,198.69,,smokes,0 +11974,Male,11.0,0,0,No,children,Urban,82.58,25.5,Unknown,0 +3009,Female,53.0,0,0,Yes,Self-employed,Rural,96.88,31.4,Unknown,0 +32361,Female,78.0,0,1,Yes,Self-employed,Urban,73.32,26.0,Unknown,0 +41523,Male,9.0,0,0,No,children,Rural,94.59,20.0,Unknown,0 +53910,Female,48.0,0,0,Yes,Self-employed,Rural,132.08,31.6,smokes,0 +67548,Female,31.0,0,0,Yes,Private,Urban,98.99,31.2,never smoked,0 +50441,Male,20.0,0,0,No,Private,Rural,104.48,21.7,never smoked,0 +16927,Male,21.0,0,0,Yes,Private,Rural,98.01,24.2,Unknown,0 +28265,Female,42.0,0,0,Yes,Self-employed,Rural,79.14,25.0,formerly smoked,0 +33404,Male,35.0,0,0,Yes,Private,Urban,89.32,36.7,Unknown,0 +50965,Male,53.0,0,0,No,Private,Rural,65.24,28.9,Unknown,0 +21077,Male,60.0,0,0,Yes,Private,Rural,80.98,29.7,formerly smoked,0 +12982,Male,74.0,0,0,Yes,Self-employed,Urban,186.17,44.3,Unknown,0 +66570,Female,23.0,0,0,No,Private,Rural,69.24,51.0,never smoked,0 +29158,Female,55.0,0,0,Yes,Private,Rural,111.19,39.7,formerly smoked,0 +34299,Female,71.0,0,0,Yes,Private,Urban,93.28,34.7,never smoked,0 +54375,Male,5.0,0,0,No,children,Rural,122.19,35.0,Unknown,0 +37832,Female,14.0,0,0,No,children,Rural,129.53,21.3,never smoked,0 +21058,Female,15.0,0,0,No,children,Rural,114.53,29.1,Unknown,0 +7696,Female,66.0,0,0,No,Private,Urban,93.73,23.9,smokes,0 +34668,Female,56.0,0,0,Yes,Private,Urban,77.49,36.0,formerly smoked,0 +68483,Female,60.0,0,0,Yes,Private,Urban,65.38,41.2,formerly smoked,0 +6072,Female,57.0,0,0,Yes,Private,Urban,94.18,27.1,never smoked,0 +51112,Male,29.0,0,0,Yes,Self-employed,Urban,118.7,33.2,Unknown,0 +69673,Female,76.0,0,0,Yes,Govt_job,Urban,96.29,25.4,smokes,0 +71238,Male,52.0,1,0,Yes,Private,Rural,74.64,30.7,smokes,0 +63958,Female,42.0,0,0,Yes,Private,Urban,96.99,34.8,formerly smoked,0 +34511,Female,71.0,0,0,Yes,Private,Rural,100.61,19.2,Unknown,0 +24892,Male,64.0,0,0,Yes,Private,Rural,97.08,31.7,Unknown,0 +29496,Female,39.0,0,0,Yes,Private,Rural,84.79,35.7,never smoked,0 +19939,Female,46.0,0,0,Yes,Private,Rural,78.75,37.8,formerly smoked,0 +27832,Female,51.0,0,0,Yes,Private,Rural,82.93,29.7,smokes,0 +27757,Male,31.0,0,0,Yes,Private,Urban,88.78,35.8,smokes,0 +31279,Male,22.0,0,0,No,Private,Urban,122.1,23.6,smokes,0 +25099,Male,41.0,0,0,No,Govt_job,Rural,74.81,39.7,smokes,0 +67733,Female,28.0,0,0,Yes,Private,Urban,183.45,40.5,smokes,0 +9201,Female,44.0,0,0,Yes,Self-employed,Urban,114.94,21.4,never smoked,0 +33123,Female,68.0,0,0,Yes,Self-employed,Rural,104.38,40.8,formerly smoked,0 +21713,Male,49.0,0,0,Yes,Private,Urban,102.91,24.7,Unknown,0 +22622,Male,10.0,0,0,No,children,Rural,108.79,21.0,Unknown,0 +6726,Female,31.0,0,0,Yes,Private,Urban,73.31,45.0,never smoked,0 +17242,Male,67.0,0,0,Yes,Self-employed,Urban,68.52,26.2,never smoked,0 +16380,Male,40.0,0,0,Yes,Private,Rural,89.77,,smokes,0 +9729,Male,70.0,0,0,Yes,Private,Urban,102.64,28.3,never smoked,0 +56974,Female,38.0,0,0,Yes,Govt_job,Urban,70.92,41.6,never smoked,0 +29933,Female,5.0,0,0,No,children,Rural,86.11,19.0,Unknown,0 +65574,Female,54.0,0,0,Yes,Private,Urban,129.16,32.4,never smoked,0 +17019,Female,30.0,0,0,Yes,Govt_job,Urban,113.85,34.0,never smoked,0 +41800,Female,23.0,0,0,Yes,Private,Rural,79.35,39.4,formerly smoked,0 +7621,Female,31.0,0,0,Yes,Private,Rural,80.79,28.7,Unknown,0 +6855,Male,72.0,1,0,Yes,Self-employed,Urban,114.01,31.8,formerly smoked,0 +5374,Male,23.0,0,0,No,Private,Rural,93.74,31.2,never smoked,0 +31564,Female,25.0,0,0,Yes,Private,Rural,90.65,20.9,Unknown,0 +26028,Male,51.0,0,0,Yes,Private,Urban,98.41,32.1,never smoked,0 +71808,Female,20.0,0,0,No,Private,Urban,127.18,31.0,Unknown,0 +56998,Female,12.0,0,0,No,children,Urban,138.06,23.1,Unknown,0 +14712,Male,57.0,0,0,Yes,Private,Urban,89.44,26.7,never smoked,0 +23094,Male,65.0,0,0,Yes,Self-employed,Urban,105.61,27.9,Unknown,0 +43134,Female,16.0,0,0,No,Private,Rural,155.43,27.3,never smoked,0 +40622,Female,43.0,0,0,Yes,Private,Rural,80.83,51.5,Unknown,0 +39383,Female,30.0,0,0,Yes,Private,Urban,80.19,20.4,never smoked,0 +63606,Male,29.0,0,0,Yes,Govt_job,Urban,60.34,29.6,formerly smoked,0 +46438,Female,54.0,0,0,Yes,Self-employed,Urban,79.3,30.6,formerly smoked,0 +65144,Female,57.0,0,0,Yes,Self-employed,Urban,98.44,33.6,Unknown,0 +545,Male,42.0,0,0,Yes,Private,Rural,210.48,71.9,never smoked,0 +36331,Male,18.0,0,0,No,Private,Rural,70.34,24.2,Unknown,0 +42359,Male,9.0,0,0,No,children,Urban,122.22,17.7,Unknown,0 +20751,Female,26.0,0,0,Yes,Private,Rural,75.29,22.6,smokes,0 +34641,Male,40.0,0,0,No,Private,Rural,100.35,28.1,never smoked,0 +15791,Male,77.0,0,0,Yes,Private,Urban,193.83,26.5,never smoked,0 +68241,Female,15.0,0,0,No,children,Urban,126.96,28.7,Unknown,0 +67780,Female,76.0,0,0,Yes,Private,Urban,183.34,39.5,formerly smoked,0 +68275,Male,52.0,0,0,Yes,Private,Urban,247.69,35.1,Unknown,0 +13129,Female,55.0,0,0,Yes,Self-employed,Rural,76.2,27.9,never smoked,0 +60902,Male,5.0,0,0,No,children,Rural,71.43,19.3,Unknown,0 +37629,Female,55.0,0,0,No,Private,Rural,93.36,28.4,never smoked,0 +58439,Male,36.0,0,0,No,Private,Urban,61.29,26.7,never smoked,0 +62936,Male,46.0,0,0,Yes,Private,Urban,103.62,40.9,Unknown,0 +29010,Male,5.0,0,0,No,children,Rural,100.52,17.2,Unknown,0 +36561,Female,39.0,0,0,Yes,Govt_job,Rural,191.47,28.3,never smoked,0 +44912,Male,12.0,0,0,No,children,Urban,67.06,16.1,Unknown,0 +59829,Male,67.0,0,1,Yes,Private,Urban,144.1,27.6,never smoked,0 +45238,Female,1.8,0,0,No,children,Urban,58.26,16.5,Unknown,0 +47811,Female,72.0,0,0,Yes,Self-employed,Urban,239.82,35.8,never smoked,0 +61511,Female,0.32,0,0,No,children,Rural,73.71,16.2,Unknown,0 +55424,Female,64.0,1,0,Yes,Private,Rural,88.53,24.6,never smoked,0 +36942,Male,27.0,0,0,No,Private,Urban,114.79,32.0,Unknown,0 +61697,Male,25.0,0,0,No,Private,Rural,113.8,35.3,formerly smoked,0 +55138,Female,81.0,0,0,No,Self-employed,Urban,71.91,19.2,Unknown,0 +39399,Female,32.0,0,0,No,Self-employed,Urban,65.3,40.4,never smoked,0 +17148,Male,57.0,0,0,Yes,Private,Urban,189.57,30.7,never smoked,0 +721,Female,52.0,1,0,Yes,Self-employed,Urban,114.25,24.3,formerly smoked,0 +40448,Male,54.0,0,0,Yes,Private,Urban,81.26,26.4,formerly smoked,0 +58007,Female,36.0,0,0,Yes,Private,Urban,87.88,34.7,smokes,0 +15095,Male,18.0,0,0,No,Private,Urban,112.17,31.7,Unknown,0 +11960,Male,45.0,0,0,Yes,Private,Rural,99.97,35.6,never smoked,0 +56179,Male,29.0,0,0,No,Private,Urban,207.58,22.8,smokes,0 +24592,Female,51.0,1,0,Yes,Private,Urban,109.16,28.0,smokes,0 +67744,Female,23.0,0,0,No,Private,Urban,74.46,35.6,formerly smoked,0 +8328,Female,54.0,0,0,Yes,Private,Rural,118.51,40.6,never smoked,0 +32437,Female,54.0,0,0,Yes,Self-employed,Urban,107.47,29.3,formerly smoked,0 +44315,Male,18.0,0,0,No,Self-employed,Rural,182.86,21.0,Unknown,0 +68245,Female,26.0,0,0,Yes,Private,Rural,59.17,20.0,Unknown,0 +25483,Male,72.0,0,0,Yes,Private,Rural,215.64,26.7,formerly smoked,0 +47732,Male,5.0,0,0,No,children,Rural,163.7,18.4,Unknown,0 +50118,Female,65.0,0,1,Yes,Private,Rural,196.36,34.5,formerly smoked,0 +55420,Female,42.0,0,0,No,Private,Rural,139.77,27.7,Unknown,0 +55709,Female,47.0,0,0,Yes,Self-employed,Urban,141.23,21.1,never smoked,0 +15311,Female,24.0,0,0,Yes,Private,Urban,89.99,24.4,formerly smoked,0 +53660,Male,57.0,0,0,Yes,Private,Urban,108.53,19.4,smokes,0 +56553,Male,51.0,0,0,Yes,Private,Urban,63.61,42.3,Unknown,0 +30480,Male,48.0,0,0,Yes,Private,Urban,85.54,32.2,smokes,0 +31988,Female,56.0,0,0,Yes,Private,Urban,100.83,26.8,never smoked,0 +59807,Female,30.0,0,0,Yes,Private,Urban,59.82,25.4,never smoked,0 +45585,Female,63.0,1,0,Yes,Private,Urban,105.95,23.5,smokes,0 +39639,Female,46.0,0,0,Yes,Private,Rural,188.11,50.2,smokes,0 +52063,Female,53.0,0,0,Yes,Self-employed,Urban,71.15,26.1,formerly smoked,0 +40639,Female,1.08,0,0,No,children,Rural,60.53,17.5,Unknown,0 +31090,Male,15.0,0,0,No,children,Rural,205.5,24.2,never smoked,0 +64174,Female,59.0,1,0,Yes,Private,Urban,204.86,30.8,never smoked,0 +8544,Female,24.0,0,0,No,Self-employed,Rural,115.03,23.4,never smoked,0 +27377,Male,53.0,0,0,Yes,Private,Rural,79.87,30.9,never smoked,0 +3361,Female,39.0,0,0,Yes,Govt_job,Rural,97.89,23.6,never smoked,0 +61408,Male,23.0,0,0,No,Never_worked,Urban,125.26,18.7,never smoked,0 +33552,Male,31.0,0,0,Yes,Private,Rural,114.32,27.7,smokes,0 +31364,Male,5.0,0,0,No,children,Urban,92.23,16.7,Unknown,0 +7446,Male,44.0,0,0,Yes,Private,Urban,83.51,31.2,never smoked,0 +9906,Female,1.8,0,0,No,children,Urban,102.34,17.0,Unknown,0 +65130,Male,40.0,0,0,Yes,Private,Rural,144.48,29.8,smokes,0 +27794,Male,7.0,0,0,No,children,Rural,88.39,19.7,Unknown,0 +48993,Female,56.0,0,0,Yes,Private,Rural,228.08,29.1,Unknown,0 +30753,Male,42.0,0,0,Yes,Govt_job,Urban,93.79,27.2,never smoked,0 +46809,Male,48.0,0,0,Yes,Private,Rural,147.14,22.3,Unknown,0 +22853,Male,82.0,0,0,No,Self-employed,Rural,106.43,27.0,smokes,0 +12465,Female,52.0,0,0,No,Private,Rural,88.04,42.1,never smoked,0 +64849,Female,42.0,0,0,Yes,Private,Urban,92.2,34.2,Unknown,0 +39659,Female,73.0,0,0,Yes,Govt_job,Urban,219.53,40.9,never smoked,0 +24183,Female,55.0,0,0,Yes,Govt_job,Rural,75.56,29.4,smokes,0 +71533,Male,50.0,0,0,Yes,Private,Urban,158.31,32.8,formerly smoked,0 +35565,Male,43.0,0,0,Yes,Private,Urban,111.43,21.9,smokes,0 +34558,Male,33.0,0,0,Yes,Private,Rural,219.97,39.6,never smoked,0 +42553,Female,80.0,0,0,Yes,Private,Rural,148.91,28.3,never smoked,0 +39601,Female,33.0,0,0,Yes,Private,Urban,69.4,47.8,never smoked,0 +46891,Female,74.0,0,0,Yes,Private,Rural,68.34,39.3,Unknown,0 +38987,Male,65.0,0,1,Yes,Self-employed,Urban,58.37,28.0,smokes,0 +21886,Female,40.0,0,0,Yes,Private,Urban,71.2,27.1,never smoked,0 +5353,Male,52.0,0,1,No,Private,Rural,101.5,31.2,smokes,0 +44300,Female,66.0,0,0,Yes,Govt_job,Urban,92.04,23.1,never smoked,0 +48144,Female,20.0,0,0,No,Govt_job,Rural,73.0,20.8,never smoked,0 +46218,Female,51.0,0,0,Yes,Self-employed,Urban,111.15,34.1,smokes,0 +39745,Female,60.0,0,0,Yes,Self-employed,Rural,58.65,30.1,never smoked,0 +13517,Male,59.0,0,0,Yes,Private,Urban,100.54,35.8,never smoked,0 +36355,Male,58.0,0,0,Yes,Govt_job,Rural,111.73,34.6,never smoked,0 +22678,Female,42.0,0,0,Yes,Govt_job,Urban,97.78,29.8,Unknown,0 +2532,Male,28.0,0,0,No,Private,Rural,85.79,26.7,Unknown,0 +52512,Male,57.0,0,0,Yes,Private,Rural,98.54,30.2,never smoked,0 +3579,Female,66.0,0,1,Yes,Private,Urban,94.62,29.7,formerly smoked,0 +3130,Female,56.0,0,0,Yes,Private,Rural,112.43,54.6,never smoked,0 +5545,Male,48.0,0,0,Yes,Self-employed,Urban,99.67,23.3,formerly smoked,0 +63693,Male,37.0,0,0,No,Private,Urban,67.39,35.6,Unknown,0 +34363,Female,27.0,0,0,Yes,Private,Urban,95.12,27.0,never smoked,0 +23650,Male,15.0,0,0,No,children,Rural,85.06,21.6,never smoked,0 +53515,Male,61.0,0,0,Yes,Private,Rural,214.05,29.4,formerly smoked,0 +33528,Female,80.0,0,1,Yes,Self-employed,Urban,79.09,22.8,never smoked,0 +23046,Female,43.0,0,0,Yes,Self-employed,Urban,98.09,17.3,never smoked,0 +11068,Male,53.0,0,0,Yes,Self-employed,Urban,76.36,29.8,Unknown,0 +62233,Female,70.0,0,0,No,Self-employed,Urban,98.42,36.4,formerly smoked,0 +7291,Female,58.0,0,0,No,Private,Urban,82.01,34.7,formerly smoked,0 +36814,Female,49.0,0,0,Yes,Private,Rural,56.11,28.7,smokes,0 +48265,Male,65.0,0,0,Yes,Govt_job,Rural,111.85,26.7,never smoked,0 +10139,Female,54.0,0,0,Yes,Self-employed,Urban,92.39,22.1,never smoked,0 +12662,Male,74.0,1,0,Yes,Self-employed,Urban,112.54,27.7,formerly smoked,0 +43174,Female,56.0,0,0,Yes,Private,Urban,63.71,40.5,formerly smoked,0 +72823,Female,79.0,0,0,Yes,Private,Urban,70.35,23.0,formerly smoked,0 +30567,Male,71.0,1,0,Yes,Private,Urban,94.65,25.3,formerly smoked,0 +41927,Female,28.0,0,0,Yes,Private,Rural,64.64,22.1,never smoked,0 +54866,Female,9.0,0,0,No,children,Rural,57.27,28.0,Unknown,0 +20364,Female,4.0,0,0,No,children,Urban,107.25,12.0,Unknown,0 +21117,Female,36.0,0,0,No,Self-employed,Rural,77.12,28.4,never smoked,0 +50491,Male,78.0,0,0,Yes,Self-employed,Urban,55.32,29.6,smokes,0 +61013,Male,52.0,0,0,No,Private,Rural,69.37,36.2,Unknown,0 +71010,Female,80.0,0,0,No,Self-employed,Urban,57.57,22.8,never smoked,0 +23551,Male,28.0,0,0,Yes,Private,Urban,87.43,55.7,Unknown,0 +10997,Female,38.0,0,0,Yes,Private,Rural,98.73,24.3,never smoked,0 +12738,Male,56.0,0,0,Yes,Private,Rural,81.18,26.9,never smoked,0 +57772,Female,75.0,0,0,Yes,Govt_job,Rural,56.23,25.3,never smoked,0 +16615,Male,76.0,1,0,Yes,Self-employed,Rural,69.61,35.3,never smoked,0 +62999,Male,10.0,0,0,No,children,Rural,59.49,18.3,Unknown,0 +68995,Female,48.0,1,0,No,Private,Rural,118.14,,formerly smoked,0 +66184,Male,40.0,0,0,Yes,Govt_job,Rural,100.26,26.0,Unknown,0 +53010,Male,82.0,0,0,Yes,Self-employed,Rural,56.75,21.0,never smoked,0 +967,Male,61.0,0,1,Yes,Private,Urban,88.27,,never smoked,0 +31145,Female,17.0,0,0,No,Private,Urban,67.81,55.7,never smoked,0 +54338,Female,58.0,0,0,Yes,Govt_job,Rural,77.46,27.6,never smoked,0 +22870,Male,12.0,0,0,No,children,Urban,76.26,20.5,never smoked,0 +13223,Female,53.0,0,0,Yes,Govt_job,Rural,86.39,30.2,never smoked,0 +57523,Female,26.0,0,0,Yes,Private,Urban,116.38,21.9,formerly smoked,0 +67932,Female,48.0,0,0,Yes,Private,Rural,75.74,28.8,smokes,0 +10255,Male,25.0,0,0,Yes,Private,Rural,92.14,36.2,Unknown,0 +68131,Female,27.0,0,0,No,Private,Rural,149.95,25.9,never smoked,0 +29873,Male,31.0,1,0,Yes,Govt_job,Urban,92.11,,never smoked,0 +54182,Female,16.0,0,0,No,Private,Rural,74.98,21.4,never smoked,0 +61300,Male,20.0,0,0,No,Private,Urban,55.25,20.4,never smoked,0 +15274,Female,2.0,0,0,No,children,Rural,79.89,31.6,Unknown,0 +53016,Female,1.8,0,0,No,children,Urban,130.61,14.4,Unknown,0 +28848,Male,28.0,0,0,No,Private,Urban,94.26,23.7,Unknown,0 +27012,Male,32.0,0,0,No,Private,Urban,94.34,30.2,formerly smoked,0 +7745,Female,35.0,0,0,Yes,Private,Urban,109.03,19.5,formerly smoked,0 +20541,Female,52.0,1,0,Yes,Private,Rural,81.03,32.6,never smoked,0 +5892,Female,55.0,1,0,Yes,Private,Rural,99.82,34.2,never smoked,0 +66883,Female,42.0,0,0,Yes,Self-employed,Urban,140.08,43.0,never smoked,0 +43196,Female,52.0,0,0,Yes,Self-employed,Urban,59.54,42.2,Unknown,0 +12593,Female,18.0,0,0,No,Private,Urban,80.33,19.7,never smoked,0 +51514,Female,13.0,0,0,No,children,Urban,131.51,41.7,never smoked,0 +15553,Female,45.0,0,0,Yes,Private,Rural,89.21,21.6,formerly smoked,0 +45796,Female,29.0,0,0,Yes,Private,Rural,91.45,24.2,never smoked,0 +31840,Female,12.0,0,0,No,children,Rural,90.58,19.2,Unknown,0 +58767,Female,37.0,0,0,Yes,Private,Urban,91.45,25.8,Unknown,0 +14391,Female,30.0,0,0,Yes,Private,Rural,89.63,23.2,smokes,0 +22321,Female,44.0,0,0,Yes,Private,Urban,124.06,20.8,never smoked,0 +38184,Female,79.0,1,0,Yes,Private,Rural,99.47,28.4,never smoked,0 +13997,Male,38.0,0,0,Yes,Private,Urban,88.97,30.2,never smoked,0 +41673,Female,45.0,0,0,Yes,Private,Rural,80.93,23.1,never smoked,0 +27796,Female,66.0,0,0,Yes,Private,Urban,102.07,16.7,smokes,0 +18390,Female,19.0,0,0,No,Private,Rural,91.69,39.5,Unknown,0 +63409,Female,49.0,0,0,Yes,Private,Urban,63.71,33.8,smokes,0 +9752,Female,66.0,0,0,Yes,Govt_job,Rural,200.49,34.6,smokes,0 +72882,Male,47.0,0,0,Yes,Private,Rural,75.3,25.0,formerly smoked,0 +49744,Female,59.0,0,0,Yes,Private,Urban,240.71,43.9,formerly smoked,0 +49086,Female,23.0,0,0,No,Private,Urban,60.5,27.1,formerly smoked,0 +40866,Female,79.0,0,0,Yes,Self-employed,Rural,131.85,25.9,Unknown,0 +47523,Female,37.0,0,0,No,Self-employed,Rural,134.39,22.7,formerly smoked,0 +63561,Male,78.0,0,0,Yes,Private,Urban,56.18,27.1,never smoked,0 +51422,Female,70.0,1,0,Yes,Private,Rural,113.64,25.6,formerly smoked,0 +56870,Female,34.0,0,0,No,Private,Rural,156.57,28.4,Unknown,0 +3590,Female,28.0,1,0,No,Private,Rural,80.4,57.5,never smoked,0 +60665,Male,29.0,0,0,No,Private,Urban,59.26,35.8,smokes,0 +40791,Female,13.0,0,0,No,children,Rural,63.26,19.5,Unknown,0 +54304,Female,22.0,0,0,Yes,Private,Urban,86.24,31.2,never smoked,0 +22485,Male,56.0,0,0,Yes,Private,Urban,197.1,43.6,formerly smoked,0 +18430,Female,81.0,0,0,Yes,Self-employed,Urban,90.9,31.2,formerly smoked,0 +19234,Female,28.0,0,0,No,Private,Rural,84.59,23.5,Unknown,0 +52454,Male,9.0,0,0,No,children,Rural,121.8,18.7,Unknown,0 +13365,Male,50.0,0,0,Yes,Private,Rural,77.65,24.4,smokes,0 +60983,Male,70.0,0,0,Yes,Private,Urban,64.41,29.4,smokes,0 +14615,Female,30.0,0,0,No,Private,Urban,75.19,37.0,smokes,0 +50277,Female,51.0,0,0,Yes,Self-employed,Rural,67.97,29.4,smokes,0 +50811,Male,24.0,0,0,No,Private,Urban,119.34,38.5,never smoked,0 +16575,Male,17.0,0,0,No,Private,Rural,94.92,23.5,never smoked,0 +1246,Female,43.0,0,0,Yes,Govt_job,Rural,107.42,,never smoked,0 +11176,Male,9.0,0,0,No,children,Rural,85.02,16.3,Unknown,0 +30712,Male,50.0,0,0,Yes,Private,Urban,103.51,35.9,never smoked,0 +31308,Female,49.0,0,0,Yes,Private,Urban,114.5,35.9,formerly smoked,0 +9612,Male,6.0,0,0,No,children,Urban,70.78,20.3,Unknown,0 +3325,Male,30.0,0,0,Yes,Self-employed,Rural,95.01,32.3,smokes,0 +52808,Male,73.0,0,0,Yes,Private,Urban,84.11,27.9,never smoked,0 +41513,Female,20.0,0,0,Yes,Private,Urban,74.02,22.3,never smoked,0 +36109,Male,42.0,0,0,Yes,Private,Urban,78.49,31.8,smokes,0 +53336,Female,79.0,0,0,Yes,Govt_job,Urban,74.22,29.7,Unknown,0 +56831,Female,55.0,0,0,Yes,Private,Urban,55.34,27.1,smokes,0 +52580,Female,27.0,0,0,No,Private,Rural,75.04,24.5,never smoked,0 +55592,Male,71.0,0,0,Yes,Private,Rural,109.73,28.9,never smoked,0 +33723,Female,9.0,0,0,No,children,Urban,95.81,,Unknown,0 +26235,Male,23.0,0,0,No,Private,Rural,96.78,24.6,smokes,0 +16685,Female,71.0,1,0,Yes,Private,Urban,194.62,31.6,never smoked,0 +44583,Female,56.0,0,1,Yes,Private,Rural,70.02,32.3,never smoked,0 +25315,Male,31.0,0,0,Yes,Private,Urban,222.21,41.1,smokes,0 +58227,Female,64.0,0,0,Yes,Govt_job,Rural,62.41,30.0,never smoked,0 +60810,Male,46.0,0,0,Yes,Self-employed,Urban,55.83,26.4,never smoked,0 +34612,Male,55.0,0,0,Yes,Govt_job,Rural,65.12,30.0,never smoked,0 +8320,Male,2.0,0,0,No,children,Rural,73.62,20.8,Unknown,0 +25595,Female,58.0,1,0,Yes,Private,Urban,85.83,44.0,formerly smoked,0 +30550,Female,78.0,0,0,No,Private,Urban,103.86,30.6,Unknown,0 +49529,Female,1.16,0,0,No,children,Urban,60.98,17.2,Unknown,0 +13367,Female,35.0,0,0,Yes,Private,Rural,82.69,29.1,Unknown,0 +33585,Female,64.0,0,0,Yes,Private,Rural,250.2,27.4,Unknown,0 +49785,Female,18.0,0,0,No,Private,Rural,128.97,23.5,Unknown,0 +6886,Male,19.0,0,0,No,Private,Rural,84.31,31.8,never smoked,0 +38609,Male,47.0,0,0,Yes,Govt_job,Rural,74.8,23.5,never smoked,0 +22159,Female,54.0,1,0,No,Private,Urban,97.06,28.5,formerly smoked,0 +37413,Female,39.0,0,0,Yes,Private,Urban,77.54,32.7,Unknown,0 +4169,Female,37.0,0,0,No,Private,Rural,92.78,54.2,never smoked,0 +40055,Female,17.0,0,0,No,Private,Rural,173.43,25.6,smokes,0 +18888,Female,20.0,0,0,Yes,Private,Urban,79.08,41.2,never smoked,0 +45283,Female,31.0,0,0,Yes,Private,Urban,106.18,27.0,smokes,0 +42503,Female,56.0,0,0,Yes,Private,Rural,114.21,21.3,never smoked,0 +23645,Female,31.0,0,0,No,Private,Rural,91.08,34.3,never smoked,0 +62382,Male,82.0,0,0,Yes,Private,Urban,105.77,29.5,Unknown,0 +59521,Male,33.0,0,0,Yes,Private,Rural,74.88,31.6,smokes,0 +55386,Male,42.0,0,0,Yes,Private,Rural,123.15,26.1,smokes,0 +22685,Male,20.0,0,0,No,Private,Rural,184.25,27.5,never smoked,0 +46745,Male,22.0,0,0,Yes,Govt_job,Rural,117.69,26.5,never smoked,0 +72547,Male,61.0,0,0,Yes,Private,Rural,55.26,33.2,Unknown,0 +26973,Female,31.0,0,0,Yes,Private,Urban,106.51,40.2,never smoked,0 +41033,Female,31.0,0,0,Yes,Govt_job,Rural,55.27,32.5,formerly smoked,0 +5046,Male,17.0,0,0,No,Self-employed,Urban,98.42,23.4,Unknown,0 +71442,Female,30.0,0,0,Yes,Private,Rural,99.2,32.5,never smoked,0 +49624,Male,69.0,0,0,Yes,Private,Urban,98.92,23.9,formerly smoked,0 +10572,Female,63.0,0,0,Yes,Private,Rural,92.7,29.5,never smoked,0 +55847,Male,19.0,0,0,No,Private,Rural,106.7,24.0,never smoked,0 +42441,Male,7.0,0,0,No,children,Urban,152.81,17.7,Unknown,0 +28910,Female,51.0,0,0,Yes,Private,Urban,82.59,26.2,formerly smoked,0 +10381,Female,38.0,1,0,Yes,Self-employed,Urban,91.0,33.3,never smoked,0 +14387,Male,2.0,0,0,No,children,Urban,93.88,17.4,Unknown,0 +31956,Female,58.0,0,0,Yes,Private,Urban,76.99,29.0,never smoked,0 +17813,Female,69.0,0,1,Yes,Private,Rural,254.6,21.7,Unknown,0 +24665,Female,64.0,1,0,Yes,Private,Rural,93.99,37.8,formerly smoked,0 +13683,Female,31.0,0,0,Yes,Private,Urban,109.68,41.8,never smoked,0 +7387,Female,59.0,1,0,Yes,Private,Rural,92.04,24.2,never smoked,0 +57011,Female,54.0,0,0,Yes,Private,Rural,111.41,31.1,never smoked,0 +22384,Female,24.0,0,0,Yes,Private,Rural,97.92,23.1,never smoked,0 +24108,Male,19.0,0,0,No,Private,Urban,65.61,25.1,Unknown,0 +50053,Male,17.0,0,0,No,Private,Urban,62.37,41.3,never smoked,0 +69427,Female,29.0,0,0,No,Private,Urban,101.28,22.7,never smoked,0 +21688,Female,42.0,0,0,Yes,Private,Rural,88.31,24.0,smokes,0 +60777,Female,31.0,0,0,Yes,Govt_job,Rural,103.55,20.5,formerly smoked,0 +64732,Female,29.0,0,0,No,Private,Urban,60.26,20.4,never smoked,0 +42710,Female,23.0,0,0,No,Private,Urban,79.39,27.6,never smoked,0 +46683,Female,25.0,0,0,No,Private,Urban,122.01,27.0,smokes,0 +58909,Female,14.0,0,0,No,children,Rural,78.09,26.4,Unknown,0 +51125,Female,66.0,0,0,Yes,Private,Urban,89.7,34.9,smokes,0 +29077,Female,77.0,0,0,Yes,Private,Rural,95.1,35.0,never smoked,0 +4970,Male,79.0,0,0,Yes,Self-employed,Rural,112.64,28.5,formerly smoked,0 +58291,Female,52.0,0,0,Yes,Private,Rural,79.8,32.3,formerly smoked,0 +18616,Female,41.0,0,0,Yes,Private,Urban,82.2,23.9,Unknown,0 +99,Female,31.0,0,0,No,Private,Urban,108.89,52.3,Unknown,0 +55529,Male,39.0,0,0,Yes,Private,Rural,114.32,26.4,never smoked,0 +12204,Female,51.0,0,0,No,Govt_job,Rural,116.14,20.9,never smoked,0 +21397,Female,40.0,0,0,Yes,Govt_job,Urban,122.74,23.3,Unknown,0 +64633,Female,48.0,0,0,Yes,Private,Urban,94.04,32.7,never smoked,0 +23016,Male,55.0,0,0,Yes,Private,Rural,86.6,26.5,never smoked,0 +18412,Male,41.0,0,0,Yes,Private,Rural,82.32,27.9,Unknown,0 +67412,Female,39.0,0,0,Yes,Private,Rural,83.83,30.3,never smoked,0 +37545,Male,41.0,0,0,No,Govt_job,Urban,106.98,27.6,never smoked,0 +10324,Female,5.0,0,0,No,children,Urban,93.88,14.6,Unknown,0 +14491,Male,38.0,0,0,Yes,Govt_job,Urban,70.53,40.9,smokes,0 +64582,Male,40.0,1,0,Yes,Govt_job,Rural,212.01,28.4,never smoked,0 +25514,Male,12.0,0,0,No,children,Rural,65.88,23.7,Unknown,0 +7663,Male,20.0,0,0,No,Govt_job,Rural,106.97,27.9,formerly smoked,0 +66220,Male,53.0,0,0,Yes,Private,Urban,126.35,25.2,never smoked,0 +71793,Female,21.0,0,0,No,Private,Urban,129.16,34.4,Unknown,0 +25458,Female,70.0,1,0,Yes,Govt_job,Rural,88.66,36.7,formerly smoked,0 +69645,Male,61.0,0,0,Yes,Govt_job,Rural,112.95,22.2,formerly smoked,0 +53695,Male,70.0,0,0,Yes,Govt_job,Urban,81.59,27.2,never smoked,0 +26692,Female,38.0,0,0,Yes,Govt_job,Rural,76.82,27.3,never smoked,0 +33400,Male,59.0,0,0,Yes,Govt_job,Rural,73.75,27.3,smokes,0 +67078,Female,36.0,1,0,Yes,Private,Urban,91.56,42.2,never smoked,0 +32352,Female,31.0,0,0,Yes,Govt_job,Rural,104.55,26.4,never smoked,0 +22540,Female,65.0,0,0,Yes,Govt_job,Urban,84.84,39.4,Unknown,0 +26999,Male,61.0,1,1,Yes,Govt_job,Rural,86.06,34.8,never smoked,0 +65218,Male,2.0,0,0,No,children,Rural,109.1,20.0,Unknown,0 +30102,Male,52.0,0,0,Yes,Private,Rural,68.35,34.1,never smoked,0 +49521,Female,33.0,0,0,Yes,Private,Urban,121.04,31.4,Unknown,0 +54643,Male,5.0,0,0,No,children,Rural,160.83,17.8,Unknown,0 +29134,Female,32.0,0,0,Yes,Private,Rural,85.62,46.1,smokes,0 +68281,Female,54.0,0,0,Yes,Govt_job,Urban,74.23,28.1,formerly smoked,0 +40350,Female,51.0,0,0,No,Private,Urban,110.76,24.7,formerly smoked,0 +33410,Female,39.0,0,0,No,Govt_job,Urban,79.44,22.7,never smoked,0 +39375,Female,40.0,0,0,Yes,Private,Rural,119.52,34.6,never smoked,0 +2543,Female,19.0,0,0,Yes,Private,Rural,90.42,21.4,never smoked,0 +45289,Female,9.0,0,0,No,children,Urban,109.32,27.4,Unknown,0 +12106,Male,53.0,1,0,Yes,Govt_job,Rural,78.16,36.6,never smoked,0 +10792,Female,23.0,0,0,No,Private,Rural,79.13,32.9,formerly smoked,0 +19153,Female,19.0,0,0,No,Self-employed,Urban,84.06,24.7,never smoked,0 +47876,Male,1.0,0,0,No,children,Rural,89.3,21.4,Unknown,0 +25283,Female,48.0,0,0,Yes,Private,Urban,69.21,33.1,never smoked,0 +12270,Male,71.0,0,0,Yes,Govt_job,Rural,186.45,26.7,never smoked,0 +49949,Male,44.0,0,0,Yes,Private,Urban,58.47,24.4,never smoked,0 +50826,Female,53.0,0,0,Yes,Govt_job,Rural,189.49,25.8,Unknown,0 +28681,Female,70.0,1,0,Yes,Self-employed,Urban,99.6,34.3,formerly smoked,0 +41615,Female,1.4,0,0,No,children,Rural,126.18,18.1,Unknown,0 +14147,Male,49.0,0,0,Yes,Private,Urban,186.32,43.8,smokes,0 +41537,Female,17.0,0,0,No,Private,Rural,62.49,26.9,never smoked,0 +62332,Female,40.0,0,0,Yes,Private,Rural,74.51,36.6,never smoked,0 +25488,Female,46.0,0,0,Yes,Self-employed,Urban,94.63,24.9,never smoked,0 +45759,Female,32.0,0,0,Yes,Private,Rural,91.98,27.6,smokes,0 +71929,Male,2.0,0,0,No,children,Rural,56.77,20.9,Unknown,0 +14807,Female,40.0,0,0,Yes,Private,Urban,75.87,30.3,never smoked,0 +16110,Female,19.0,0,0,No,Private,Rural,77.19,37.4,smokes,0 +40970,Male,43.0,0,0,Yes,Private,Urban,135.75,35.9,smokes,0 +28933,Female,46.0,0,0,Yes,Private,Rural,100.15,50.3,smokes,0 +11709,Male,71.0,0,0,No,Private,Urban,95.08,31.5,never smoked,0 +37154,Female,31.0,0,0,Yes,Private,Urban,125.38,24.4,smokes,0 +16809,Male,41.0,0,0,Yes,Private,Urban,111.71,38.9,formerly smoked,0 +13907,Male,65.0,0,0,Yes,Self-employed,Rural,94.64,28.6,never smoked,0 +2314,Male,52.0,0,0,Yes,Private,Urban,226.7,,smokes,0 +70380,Female,20.0,0,0,No,Private,Urban,112.96,27.5,never smoked,0 +63058,Female,77.0,0,1,Yes,Private,Rural,183.1,,never smoked,0 +54071,Female,51.0,0,0,Yes,Private,Urban,105.36,43.7,Unknown,0 +67405,Female,37.0,0,0,Yes,Private,Urban,84.13,27.0,never smoked,0 +28024,Male,49.0,0,0,Yes,Private,Rural,102.47,29.3,formerly smoked,0 +11730,Female,62.0,1,0,Yes,Govt_job,Rural,77.04,34.7,never smoked,0 +2549,Female,17.0,0,0,No,Private,Rural,83.23,,never smoked,0 +17245,Female,28.0,0,0,Yes,Private,Rural,87.01,39.9,never smoked,0 +70852,Male,80.0,0,0,Yes,Private,Rural,56.99,26.7,never smoked,0 +60957,Male,45.0,0,0,Yes,Private,Rural,73.01,24.8,formerly smoked,0 +19742,Female,37.0,0,0,Yes,Private,Urban,106.35,29.7,never smoked,0 +10782,Female,3.0,0,0,No,children,Rural,80.63,15.9,Unknown,0 +61742,Male,26.0,0,0,No,Private,Urban,103.61,31.4,never smoked,0 +4808,Female,71.0,0,0,Yes,Self-employed,Urban,91.35,,formerly smoked,0 +13571,Male,58.0,0,0,Yes,Govt_job,Urban,194.04,27.8,never smoked,0 +49928,Female,59.0,0,0,Yes,Govt_job,Rural,111.99,35.5,formerly smoked,0 +52688,Male,74.0,1,0,Yes,Private,Rural,57.51,31.7,smokes,0 +24099,Male,17.0,0,0,No,Private,Rural,68.49,33.2,never smoked,0 +65698,Female,62.0,0,0,Yes,Private,Urban,60.2,27.7,formerly smoked,0 +47885,Male,37.0,0,0,Yes,Self-employed,Urban,160.0,31.9,formerly smoked,0 +13948,Female,19.0,0,0,No,Never_worked,Urban,86.96,25.8,never smoked,0 +17351,Female,59.0,0,0,Yes,Private,Rural,237.15,27.7,never smoked,0 +820,Female,59.0,1,0,Yes,Private,Rural,99.06,23.4,never smoked,0 +55721,Male,62.0,0,1,Yes,Self-employed,Urban,56.31,24.3,formerly smoked,0 +72310,Male,80.0,1,1,Yes,Self-employed,Urban,84.31,30.3,smokes,0 +24115,Female,54.0,0,0,Yes,Private,Rural,90.92,29.1,never smoked,0 +65766,Female,27.0,0,0,No,Private,Rural,104.33,20.1,never smoked,0 +42482,Female,4.0,0,0,No,children,Urban,62.61,21.2,Unknown,0 +25627,Male,81.0,1,0,Yes,Self-employed,Urban,231.19,31.6,formerly smoked,0 +7122,Female,41.0,0,0,No,Private,Rural,94.3,41.6,Unknown,0 +48755,Male,27.0,0,0,Yes,Private,Rural,104.48,36.4,smokes,0 +33551,Female,51.0,1,0,Yes,Private,Urban,72.62,30.5,never smoked,0 +62716,Female,59.0,0,0,Yes,Self-employed,Urban,81.64,32.8,Unknown,0 +68438,Female,51.0,0,0,Yes,Private,Rural,90.78,32.3,never smoked,0 +41148,Male,71.0,0,1,Yes,Private,Urban,70.71,30.1,never smoked,0 +14924,Male,48.0,0,0,Yes,Private,Urban,72.36,34.7,smokes,0 +47950,Female,49.0,0,0,Yes,Self-employed,Urban,59.76,29.7,Unknown,0 +8008,Female,35.0,0,0,No,Govt_job,Urban,83.76,,smokes,0 +56089,Female,25.0,0,0,Yes,Private,Rural,63.64,31.3,formerly smoked,0 +9262,Female,31.0,0,0,Yes,Private,Rural,76.26,35.6,never smoked,0 +71896,Female,68.0,0,0,Yes,Private,Rural,82.06,35.2,formerly smoked,0 +38623,Male,39.0,0,0,No,Private,Urban,110.91,27.6,never smoked,0 +26503,Female,32.0,0,0,No,Private,Rural,77.16,35.2,smokes,0 +5475,Female,39.0,0,0,Yes,Private,Rural,69.58,28.1,Unknown,0 +15525,Female,63.0,0,0,Yes,Private,Urban,96.26,31.8,Unknown,0 +48748,Female,69.0,0,0,Yes,Private,Rural,87.27,23.3,smokes,0 +11745,Female,29.0,0,0,Yes,Private,Urban,65.36,28.8,formerly smoked,0 +17733,Female,1.72,0,0,No,children,Rural,109.51,19.5,Unknown,0 +71591,Female,58.0,0,0,Yes,Private,Urban,89.03,30.0,smokes,0 +11743,Female,32.0,0,0,Yes,Private,Urban,91.34,25.5,formerly smoked,0 +67864,Male,63.0,0,0,Yes,Private,Rural,57.82,28.8,formerly smoked,0 +34857,Male,57.0,0,0,Yes,Self-employed,Urban,81.15,40.2,formerly smoked,0 +34995,Female,77.0,0,0,Yes,Private,Rural,115.29,32.9,Unknown,0 +3606,Male,8.0,0,0,No,children,Urban,111.02,22.4,Unknown,0 +22952,Female,21.0,0,0,No,Govt_job,Urban,111.61,36.9,smokes,0 +32554,Female,16.0,0,0,No,children,Rural,109.02,19.8,Unknown,0 +45893,Female,8.0,0,0,No,children,Urban,106.51,12.3,Unknown,0 +72020,Male,71.0,0,1,Yes,Self-employed,Rural,207.32,32.4,smokes,0 +57879,Female,74.0,0,0,Yes,Private,Urban,87.11,24.8,never smoked,0 +53538,Female,7.0,0,0,No,children,Urban,61.68,16.4,Unknown,0 +17006,Male,19.0,0,0,No,Private,Rural,119.04,35.9,Unknown,0 +36638,Male,64.0,0,0,Yes,Private,Urban,86.05,23.0,Unknown,0 +41097,Female,23.0,1,0,No,Private,Urban,70.03,78.0,smokes,0 +36618,Male,75.0,0,1,Yes,Self-employed,Urban,207.64,30.5,formerly smoked,0 +37290,Male,80.0,0,0,Yes,Self-employed,Rural,236.84,26.8,never smoked,0 +54620,Male,40.0,0,0,Yes,Private,Urban,78.11,35.3,never smoked,0 +42108,Female,24.0,0,0,No,Govt_job,Rural,100.97,27.9,never smoked,0 +19681,Female,74.0,0,0,Yes,Self-employed,Urban,99.21,22.1,never smoked,0 +6988,Female,52.0,0,0,Yes,Self-employed,Urban,113.21,38.3,never smoked,0 +25287,Male,54.0,0,0,Yes,Private,Urban,92.95,41.0,never smoked,0 +224,Female,23.0,0,0,No,Private,Urban,110.16,,never smoked,0 +56679,Male,19.0,0,0,No,Private,Rural,142.57,22.8,Unknown,0 +27146,Female,23.0,0,0,No,Private,Rural,92.87,30.1,never smoked,0 +16556,Male,13.0,0,0,No,Never_worked,Rural,111.48,20.8,Unknown,0 +5934,Female,51.0,0,0,Yes,Private,Urban,123.0,31.7,never smoked,0 +58999,Male,60.0,0,0,Yes,Govt_job,Urban,100.54,30.1,never smoked,0 +28261,Male,79.0,0,1,Yes,Self-employed,Urban,106.68,30.8,never smoked,0 +35222,Female,75.0,0,0,Yes,Private,Urban,86.4,42.6,never smoked,0 +44105,Female,69.0,1,0,Yes,Self-employed,Urban,61.81,37.1,Unknown,0 +65256,Female,57.0,0,0,Yes,Self-employed,Rural,128.28,34.2,never smoked,0 +62709,Female,47.0,0,0,Yes,Private,Rural,204.63,43.4,never smoked,0 +36698,Female,33.0,0,0,Yes,Private,Urban,89.98,18.7,smokes,0 +7273,Female,51.0,0,0,Yes,Self-employed,Urban,232.89,34.0,smokes,0 +20044,Female,47.0,0,0,Yes,Private,Rural,98.58,23.2,never smoked,0 +54769,Male,15.0,0,0,No,Private,Urban,57.94,41.7,Unknown,0 +57372,Male,1.0,0,0,No,children,Rural,123.21,15.1,Unknown,0 +30605,Female,20.0,0,0,No,Private,Urban,76.34,20.6,smokes,0 +13622,Male,6.0,0,0,No,children,Rural,92.98,18.9,Unknown,0 +12686,Male,50.0,0,0,No,Govt_job,Rural,92.81,26.6,never smoked,0 +39250,Male,31.0,0,0,Yes,Private,Urban,85.16,30.1,smokes,0 +2879,Female,15.0,0,0,No,Self-employed,Urban,90.1,32.1,never smoked,0 +59684,Female,3.0,0,0,No,children,Urban,65.15,15.1,Unknown,0 +48830,Male,30.0,0,0,Yes,Private,Urban,104.62,33.5,smokes,0 +56986,Male,17.0,0,0,No,Never_worked,Urban,113.25,23.4,never smoked,0 +47924,Male,24.0,0,0,No,Private,Urban,59.28,43.2,never smoked,0 +16402,Female,5.0,0,0,No,children,Urban,93.07,19.1,Unknown,0 +40889,Male,33.0,0,0,No,Private,Rural,77.42,26.1,Unknown,0 +4083,Female,30.0,0,0,No,Private,Rural,73.69,17.3,never smoked,0 +59336,Male,66.0,1,0,Yes,Private,Rural,74.9,32.1,never smoked,0 +5684,Male,40.0,0,0,No,Private,Urban,88.27,,formerly smoked,0 +48843,Female,27.0,0,0,No,Private,Urban,58.39,30.4,never smoked,0 +5694,Male,21.0,0,0,No,Private,Rural,102.05,29.9,never smoked,0 +3673,Female,55.0,0,0,Yes,Private,Rural,112.47,32.8,smokes,0 +44481,Female,19.0,0,0,No,Private,Rural,72.84,22.7,never smoked,0 +10538,Male,75.0,1,1,Yes,Self-employed,Urban,195.03,28.7,formerly smoked,0 +9648,Female,71.0,0,1,Yes,Private,Urban,170.95,35.2,never smoked,0 +19101,Female,16.0,0,0,No,Private,Urban,87.98,22.4,never smoked,0 +31867,Female,49.0,0,0,No,Private,Rural,65.81,32.3,Unknown,0 +11973,Female,10.0,0,0,No,children,Urban,124.6,18.6,Unknown,0 +23633,Female,37.0,0,0,Yes,Private,Rural,83.65,42.1,smokes,0 +52549,Male,59.0,0,0,Yes,Govt_job,Rural,88.81,38.0,formerly smoked,0 +59178,Female,7.0,0,0,No,children,Urban,86.75,22.3,Unknown,0 +37349,Female,61.0,0,0,Yes,Private,Rural,123.36,33.4,never smoked,0 +44281,Male,34.0,0,0,No,Private,Rural,89.68,23.2,smokes,0 +55599,Female,9.0,0,0,No,children,Rural,69.87,18.0,Unknown,0 +45224,Female,46.0,0,0,Yes,Private,Rural,109.22,20.1,never smoked,0 +54747,Male,0.88,0,0,No,children,Rural,157.57,19.2,Unknown,0 +2751,Male,50.0,0,0,Yes,Govt_job,Urban,110.73,28.7,smokes,0 +6090,Male,19.0,0,0,Yes,Private,Urban,99.14,28.1,never smoked,0 +46385,Female,21.0,0,0,Yes,Private,Urban,59.15,22.6,never smoked,0 +46323,Female,2.0,0,0,No,children,Rural,165.11,18.0,Unknown,0 +28122,Female,37.0,0,0,Yes,Self-employed,Rural,77.44,21.4,formerly smoked,0 +50843,Male,20.0,0,0,No,Private,Rural,100.33,27.8,Unknown,0 +64464,Male,50.0,0,0,Yes,Private,Urban,57.93,27.6,Unknown,0 +66922,Male,61.0,1,1,No,Private,Rural,148.24,32.2,formerly smoked,0 +66494,Male,48.0,0,0,Yes,Private,Urban,91.96,24.9,Unknown,0 +42786,Male,82.0,0,1,Yes,Self-employed,Rural,72.93,27.1,formerly smoked,0 +33401,Male,64.0,0,0,Yes,Private,Rural,84.27,24.6,Unknown,0 +24174,Female,50.0,0,0,Yes,Govt_job,Rural,124.45,24.6,never smoked,0 +60211,Male,1.4,0,0,No,children,Urban,90.51,18.9,Unknown,0 +53279,Male,0.24,0,0,No,children,Rural,118.87,16.3,Unknown,0 +61715,Male,55.0,0,0,Yes,Private,Rural,56.42,31.8,never smoked,0 +37830,Female,29.0,0,0,No,Private,Urban,73.67,21.0,Unknown,0 +2454,Male,4.0,0,0,No,children,Rural,89.11,20.1,Unknown,0 +60663,Male,70.0,1,0,Yes,Private,Rural,74.04,29.1,never smoked,0 +46875,Male,35.0,0,0,Yes,Private,Urban,145.23,32.3,never smoked,0 +69091,Female,80.0,0,1,Yes,Private,Rural,100.8,29.4,never smoked,0 +1821,Female,54.0,0,0,Yes,Private,Urban,85.22,50.2,never smoked,0 +44978,Male,39.0,0,0,Yes,Govt_job,Rural,72.49,44.9,formerly smoked,0 +3437,Female,26.0,0,0,No,Private,Urban,82.61,28.5,smokes,0 +6355,Female,6.0,0,0,No,children,Rural,72.07,19.5,Unknown,0 +10762,Female,41.0,0,0,Yes,Private,Rural,79.85,45.0,Unknown,0 +58567,Female,42.0,0,0,Yes,Private,Rural,84.86,22.8,Unknown,0 +62187,Male,9.0,0,0,No,children,Urban,131.89,25.5,Unknown,0 +84,Male,55.0,0,0,Yes,Private,Urban,89.17,31.5,never smoked,0 +8521,Male,71.0,0,0,Yes,Private,Rural,227.91,31.6,formerly smoked,0 +72779,Female,14.0,0,0,No,children,Urban,131.77,31.0,Unknown,0 +45824,Female,77.0,1,0,Yes,Self-employed,Urban,102.01,29.5,Unknown,0 +61838,Female,50.0,0,0,Yes,Govt_job,Urban,128.63,23.1,Unknown,0 +57212,Male,49.0,0,0,No,Private,Urban,144.1,30.7,smokes,0 +62668,Female,51.0,0,0,Yes,Self-employed,Urban,143.15,44.7,formerly smoked,0 +33142,Male,79.0,0,0,Yes,Self-employed,Rural,116.67,33.5,never smoked,0 +17437,Female,63.0,0,0,Yes,Self-employed,Rural,85.6,25.9,Unknown,0 +38303,Female,66.0,0,0,Yes,Self-employed,Urban,142.12,28.3,never smoked,0 +12396,Female,20.0,0,0,No,Private,Urban,100.81,26.8,Unknown,0 +36484,Female,37.0,0,0,Yes,Govt_job,Urban,69.17,27.8,never smoked,0 +60047,Male,22.0,0,0,No,Private,Rural,58.38,36.0,never smoked,0 +16542,Female,60.0,0,0,Yes,Govt_job,Urban,86.34,22.1,never smoked,0 +18805,Male,39.0,0,0,Yes,Private,Urban,95.44,38.4,never smoked,0 +17869,Female,53.0,0,0,Yes,Private,Urban,94.78,30.1,Unknown,0 +6793,Female,55.0,0,0,Yes,Private,Rural,109.59,26.2,formerly smoked,0 +49265,Female,63.0,0,0,Yes,Private,Rural,79.26,26.6,smokes,0 +6606,Female,57.0,0,0,Yes,Private,Urban,78.46,32.6,never smoked,0 +23031,Male,82.0,0,0,Yes,Self-employed,Rural,85.29,27.0,never smoked,0 +69330,Male,56.0,0,0,Yes,Private,Rural,156.18,25.3,smokes,0 +22902,Male,41.0,1,0,Yes,Private,Urban,69.52,31.9,never smoked,0 +69622,Female,8.0,0,0,No,children,Urban,65.32,18.4,Unknown,0 +4807,Male,34.0,0,0,No,Private,Urban,108.47,30.4,smokes,0 +9641,Male,75.0,0,0,Yes,Private,Urban,105.63,28.2,smokes,0 +10313,Male,57.0,0,0,Yes,Private,Urban,77.93,35.7,formerly smoked,0 +12097,Female,72.0,0,0,Yes,Private,Urban,95.2,35.0,never smoked,0 +58037,Male,21.0,0,0,No,Private,Rural,78.52,27.2,never smoked,0 +45323,Female,51.0,0,0,Yes,Private,Urban,114.89,23.0,never smoked,0 +34281,Female,15.0,0,0,No,Private,Rural,95.43,25.0,Unknown,0 +7990,Female,24.0,0,0,Yes,Private,Rural,84.08,24.5,Unknown,0 +57622,Female,30.0,0,0,Yes,Govt_job,Rural,110.55,30.9,smokes,0 +39120,Female,82.0,0,0,No,Self-employed,Urban,82.21,26.0,never smoked,0 +68344,Female,62.0,0,0,Yes,Private,Urban,82.38,27.2,formerly smoked,0 +66752,Female,79.0,0,0,Yes,Govt_job,Urban,93.89,30.4,never smoked,0 +11691,Female,19.0,0,0,No,Private,Rural,75.08,21.7,Unknown,0 +5077,Male,45.0,0,0,Yes,Private,Urban,76.72,29.1,Unknown,0 +13319,Female,5.0,0,0,No,children,Rural,84.93,17.6,Unknown,0 +49279,Male,57.0,0,1,Yes,Private,Urban,76.5,29.2,formerly smoked,0 +53815,Female,31.0,0,0,No,Private,Urban,65.47,28.1,never smoked,0 +42856,Male,61.0,0,0,Yes,Private,Urban,99.16,26.6,smokes,0 +51579,Male,27.0,0,0,No,Self-employed,Rural,63.53,26.9,never smoked,0 +10752,Female,61.0,0,0,Yes,Private,Rural,78.65,36.2,formerly smoked,0 +42133,Female,53.0,0,0,Yes,Self-employed,Urban,63.78,25.9,never smoked,0 +4842,Female,76.0,0,0,No,Self-employed,Urban,77.52,40.9,formerly smoked,0 +58138,Male,57.0,0,0,Yes,Private,Rural,111.64,31.5,never smoked,0 +58203,Male,9.0,0,0,No,children,Urban,97.84,23.3,Unknown,0 +65053,Female,34.0,0,0,Yes,Private,Urban,113.01,37.6,never smoked,0 +24168,Male,51.0,1,0,Yes,Private,Urban,56.48,39.8,never smoked,0 +5824,Male,61.0,0,0,Yes,Private,Rural,204.5,35.1,formerly smoked,0 +6965,Female,19.0,0,0,No,Private,Rural,96.02,21.9,never smoked,0 +8332,Female,50.0,0,0,Yes,Private,Rural,206.25,53.4,formerly smoked,0 +61973,Female,80.0,1,1,Yes,Private,Rural,115.52,34.4,Unknown,0 +42821,Female,13.0,0,0,No,Private,Rural,60.69,24.0,smokes,0 +18687,Male,55.0,0,0,Yes,Self-employed,Urban,93.67,29.3,Unknown,0 +72642,Male,67.0,0,0,Yes,Govt_job,Urban,67.79,26.0,formerly smoked,0 +54782,Female,30.0,0,0,No,Self-employed,Rural,56.07,31.3,never smoked,0 +55862,Male,67.0,1,1,Yes,Private,Rural,254.63,31.0,never smoked,0 +24437,Female,82.0,0,0,Yes,Private,Rural,96.63,26.5,Unknown,0 +10367,Male,5.0,0,0,No,children,Rural,84.3,16.0,Unknown,0 +42550,Female,81.0,0,0,Yes,Self-employed,Rural,246.34,21.1,never smoked,0 +14178,Female,48.0,0,0,Yes,Private,Rural,195.16,42.2,Unknown,0 +65429,Female,66.0,0,0,Yes,Govt_job,Rural,93.34,27.7,never smoked,0 +66530,Female,38.0,0,0,Yes,Private,Urban,162.3,23.6,never smoked,0 +43146,Male,8.0,0,0,No,children,Urban,106.4,18.3,Unknown,0 +3509,Male,47.0,1,0,Yes,Private,Urban,110.25,44.3,never smoked,0 +57497,Male,27.0,0,0,No,Private,Rural,69.7,27.3,never smoked,0 +15220,Female,53.0,1,0,Yes,Private,Urban,87.03,55.2,formerly smoked,0 +4813,Male,27.0,0,0,No,Private,Urban,112.98,44.7,never smoked,0 +31166,Female,36.0,0,0,Yes,Govt_job,Rural,82.47,33.1,smokes,0 +9051,Female,50.0,0,0,Yes,Private,Urban,75.88,30.0,never smoked,0 +28669,Female,32.0,0,0,Yes,Private,Urban,84.63,40.1,Unknown,0 +59894,Female,58.0,0,0,Yes,Govt_job,Rural,109.56,23.1,never smoked,0 +18684,Female,73.0,0,0,Yes,Self-employed,Rural,89.45,30.3,formerly smoked,0 +35866,Female,62.0,0,0,Yes,Private,Rural,91.65,30.5,never smoked,0 +51907,Female,50.0,0,0,Yes,Self-employed,Urban,121.14,22.8,never smoked,0 +7250,Female,51.0,0,0,No,Private,Rural,87.77,42.0,Unknown,0 +16147,Female,19.0,0,0,No,Private,Rural,106.56,29.9,never smoked,0 +18306,Female,30.0,0,0,No,Private,Rural,93.88,24.0,formerly smoked,0 +69143,Female,45.0,0,0,No,Private,Rural,153.76,36.7,Unknown,0 +61769,Male,30.0,0,0,No,Private,Urban,88.65,22.2,never smoked,0 +26134,Female,28.0,0,0,Yes,Private,Urban,111.22,25.5,Unknown,0 +67603,Male,70.0,0,0,Yes,Self-employed,Urban,223.68,34.3,formerly smoked,0 +66772,Female,0.32,0,0,No,children,Rural,55.86,16.0,Unknown,0 +41861,Female,23.0,0,0,No,Private,Rural,63.73,25.6,smokes,0 +954,Male,18.0,0,0,No,Private,Rural,103.94,23.3,never smoked,0 +37888,Male,41.0,0,0,Yes,Private,Rural,92.49,41.6,Unknown,0 +34326,Male,52.0,0,0,Yes,Private,Urban,229.2,35.6,formerly smoked,0 +42329,Female,77.0,0,0,Yes,Private,Rural,75.06,22.0,Unknown,0 +23565,Male,34.0,0,0,Yes,Private,Urban,85.57,26.8,Unknown,0 +27323,Female,67.0,0,0,Yes,Self-employed,Urban,68.61,31.9,never smoked,0 +57854,Male,1.64,0,0,No,children,Urban,56.3,19.7,Unknown,0 +18414,Female,23.0,0,0,No,Private,Rural,193.22,,smokes,0 +72836,Female,59.0,0,0,Yes,Private,Urban,65.98,31.1,Unknown,0 +17708,Male,62.0,0,0,Yes,Govt_job,Rural,204.57,34.4,Unknown,0 +66321,Male,47.0,0,0,Yes,Govt_job,Urban,64.99,33.2,never smoked,0 +53817,Female,71.0,1,0,Yes,Self-employed,Rural,66.12,,never smoked,0 +66678,Female,22.0,0,0,No,Private,Urban,73.4,21.6,never smoked,0 +56734,Male,33.0,0,0,Yes,Govt_job,Urban,82.83,25.4,Unknown,0 +32240,Female,27.0,0,0,No,Private,Urban,93.55,41.6,never smoked,0 +28127,Female,44.0,0,0,Yes,Private,Rural,90.4,33.1,formerly smoked,0 +20347,Female,18.0,0,0,No,Private,Rural,98.1,21.8,never smoked,0 +40824,Male,47.0,0,0,Yes,Private,Rural,142.02,30.0,Unknown,0 +38678,Female,66.0,0,0,Yes,Self-employed,Rural,251.46,35.2,smokes,0 +29380,Female,42.0,1,0,Yes,Private,Rural,89.96,35.6,never smoked,0 +809,Male,13.0,0,0,No,children,Urban,71.73,,Unknown,0 +65453,Female,56.0,1,0,Yes,Govt_job,Urban,82.44,27.8,smokes,0 +9415,Female,69.0,0,0,Yes,Self-employed,Urban,80.85,29.3,formerly smoked,0 +30989,Female,65.0,0,0,Yes,Self-employed,Rural,220.52,37.2,smokes,0 +65258,Male,53.0,0,0,Yes,Private,Urban,86.73,26.1,Unknown,0 +67052,Female,36.0,0,0,Yes,Private,Urban,76.93,21.6,never smoked,0 +62756,Female,69.0,0,0,Yes,Self-employed,Urban,113.1,22.7,never smoked,0 +69224,Male,19.0,0,0,No,Private,Rural,96.84,30.2,formerly smoked,0 +13323,Male,3.0,0,0,No,children,Urban,100.91,18.0,Unknown,0 +59940,Male,15.0,0,0,No,children,Urban,116.5,27.8,Unknown,0 +49042,Female,59.0,1,0,No,Private,Rural,57.26,23.5,never smoked,0 +66362,Female,61.0,0,0,Yes,Private,Urban,129.31,41.2,Unknown,0 +46093,Female,28.0,0,0,Yes,Private,Rural,56.47,22.7,never smoked,0 +10370,Male,52.0,0,0,Yes,Govt_job,Urban,86.06,29.2,formerly smoked,0 +156,Female,33.0,0,0,Yes,Private,Rural,86.97,42.2,never smoked,0 +11105,Male,80.0,0,0,Yes,Private,Urban,78.78,24.0,formerly smoked,0 +22363,Female,47.0,0,0,Yes,Private,Rural,195.04,45.5,never smoked,0 +46072,Male,2.0,0,0,No,children,Rural,103.25,19.4,Unknown,0 +65667,Female,48.0,0,0,Yes,Private,Rural,134.59,28.2,smokes,0 +47848,Male,1.56,0,0,No,children,Rural,93.74,20.1,Unknown,0 +71440,Female,26.0,0,0,Yes,Private,Urban,90.66,27.2,Unknown,0 +35231,Male,62.0,0,0,Yes,Govt_job,Urban,91.68,26.5,Unknown,0 +59734,Male,1.72,0,0,No,children,Urban,75.79,17.6,Unknown,0 +1893,Female,38.0,0,0,Yes,Private,Urban,91.68,42.8,formerly smoked,0 +32733,Female,28.0,0,0,Yes,Private,Rural,106.68,29.3,never smoked,0 +34728,Female,67.0,0,0,Yes,Private,Rural,82.31,21.3,never smoked,0 +30352,Male,57.0,0,0,Yes,Private,Rural,90.06,29.8,Unknown,0 +61338,Female,40.0,0,0,Yes,Private,Rural,65.47,24.1,smokes,0 +59275,Male,10.0,0,0,No,children,Rural,58.03,35.2,Unknown,0 +45497,Female,55.0,0,0,No,Private,Rural,83.09,18.8,never smoked,0 +19996,Female,7.0,0,0,No,children,Urban,88.6,17.4,Unknown,0 +50371,Male,56.0,0,0,Yes,Private,Urban,63.18,31.5,Unknown,0 +32687,Male,37.0,0,0,Yes,Private,Rural,78.42,29.9,never smoked,0 +35295,Male,69.0,0,0,Yes,Private,Urban,65.08,27.3,formerly smoked,0 +15746,Female,45.0,0,0,Yes,Govt_job,Urban,79.47,28.1,never smoked,0 +31517,Female,28.0,0,0,Yes,Private,Rural,95.52,28.9,never smoked,0 +43268,Female,52.0,1,0,No,Private,Urban,73.0,25.2,smokes,0 +54540,Male,46.0,0,0,Yes,Private,Rural,138.07,24.3,never smoked,0 +20973,Male,45.0,0,0,Yes,Govt_job,Rural,86.99,37.9,never smoked,0 +56245,Female,21.0,0,0,No,Private,Urban,112.07,28.2,never smoked,0 +9225,Male,4.0,0,0,No,children,Rural,105.76,18.4,Unknown,0 +45955,Female,45.0,0,0,Yes,Private,Urban,55.67,23.1,smokes,0 +3532,Female,71.0,0,0,Yes,Private,Urban,90.55,39.4,formerly smoked,0 +41291,Female,46.0,0,0,Yes,Private,Rural,218.65,29.5,never smoked,0 +53943,Female,3.0,0,0,No,children,Rural,111.21,18.3,Unknown,0 +52550,Female,79.0,0,0,Yes,Govt_job,Urban,83.56,28.7,smokes,0 +47414,Female,71.0,1,0,Yes,Private,Urban,116.76,32.9,formerly smoked,0 +38804,Male,74.0,0,0,Yes,Private,Rural,83.5,26.7,Unknown,0 +72861,Female,52.0,0,0,Yes,Private,Urban,69.3,20.1,never smoked,0 +53276,Female,49.0,0,0,Yes,Private,Urban,67.55,17.6,formerly smoked,0 +30944,Female,32.0,0,0,Yes,Private,Rural,80.28,43.7,never smoked,0 +33622,Male,62.0,1,0,Yes,Private,Urban,211.49,41.1,Unknown,0 +26191,Female,78.0,0,0,No,Private,Urban,67.96,26.8,Unknown,0 +69312,Female,48.0,0,0,Yes,Self-employed,Urban,99.29,31.2,never smoked,0 +39661,Male,18.0,0,0,Yes,Private,Rural,140.52,27.4,never smoked,0 +20162,Female,80.0,0,0,Yes,Private,Rural,75.62,25.1,smokes,0 +48989,Female,34.0,0,0,No,Govt_job,Rural,120.06,33.0,never smoked,0 +30411,Female,40.0,0,0,No,Private,Rural,117.45,30.7,smokes,0 +47735,Female,59.0,0,0,Yes,Private,Rural,224.71,42.9,never smoked,0 +51162,Female,11.0,0,0,No,children,Rural,122.75,14.3,Unknown,0 +8598,Female,35.0,0,0,Yes,Govt_job,Urban,82.39,33.2,never smoked,0 +57347,Female,29.0,0,0,No,Govt_job,Rural,57.02,43.0,formerly smoked,0 +4683,Male,23.0,0,0,No,Private,Urban,115.98,22.3,never smoked,0 +55775,Female,59.0,0,0,Yes,Private,Rural,226.11,32.8,formerly smoked,0 +32645,Female,44.0,0,0,Yes,Private,Rural,97.59,30.5,smokes,0 +46643,Female,62.0,0,0,Yes,Private,Rural,82.57,36.0,formerly smoked,0 +782,Female,32.0,0,0,No,Private,Urban,79.34,26.5,formerly smoked,0 +63565,Female,2.0,0,0,No,children,Rural,125.68,20.1,Unknown,0 +13602,Male,73.0,1,0,Yes,Self-employed,Rural,102.06,,Unknown,0 +28326,Female,79.0,0,0,Yes,Private,Urban,65.59,28.1,never smoked,0 +26389,Female,2.0,0,0,No,children,Urban,120.85,16.2,Unknown,0 +16906,Male,43.0,0,0,Yes,Govt_job,Urban,101.65,30.0,never smoked,0 +35140,Male,43.0,0,0,Yes,Govt_job,Urban,210.94,31.3,never smoked,0 +16837,Male,62.0,1,0,Yes,Private,Rural,77.92,26.7,never smoked,0 +2750,Male,73.0,1,1,Yes,Self-employed,Rural,230.68,37.7,Unknown,0 +47585,Female,31.0,0,0,No,Self-employed,Urban,62.68,35.8,never smoked,0 +37404,Male,42.0,0,0,Yes,Private,Urban,55.22,27.0,never smoked,0 +39518,Female,20.0,0,0,No,Private,Rural,78.94,20.7,never smoked,0 +70678,Female,55.0,0,1,No,Private,Rural,109.69,22.2,smokes,0 +542,Female,3.0,0,0,No,children,Urban,79.63,,Unknown,0 +38649,Female,23.0,0,0,No,Private,Rural,79.33,41.5,never smoked,0 +53266,Female,33.0,0,0,Yes,Private,Urban,79.91,33.5,never smoked,0 +26031,Female,14.0,0,0,No,Private,Rural,84.46,21.8,Unknown,0 +1191,Female,79.0,0,1,Yes,Private,Urban,68.4,22.1,formerly smoked,0 +36820,Male,64.0,1,0,Yes,Private,Rural,78.43,30.2,smokes,0 +62783,Female,76.0,0,0,Yes,Private,Urban,198.02,38.7,Unknown,0 +10133,Male,46.0,0,0,Yes,Private,Urban,85.35,32.1,smokes,0 +19778,Male,80.0,0,0,No,Self-employed,Rural,204.17,41.3,formerly smoked,0 +38255,Male,21.0,0,0,No,Private,Urban,82.71,20.1,formerly smoked,0 +41565,Female,33.0,0,0,No,Private,Urban,121.19,22.1,never smoked,0 +39423,Female,32.0,0,0,Yes,Private,Rural,106.02,24.9,smokes,0 +68908,Female,0.72,0,0,No,children,Urban,66.36,23.0,Unknown,0 +22440,Female,49.0,0,0,Yes,Private,Urban,267.76,29.3,formerly smoked,0 +28418,Female,41.0,0,0,Yes,Private,Rural,107.18,22.8,never smoked,0 +22566,Male,37.0,0,0,Yes,Private,Rural,74.58,31.6,Unknown,0 +7055,Female,58.0,0,0,Yes,Private,Urban,80.92,19.4,Unknown,0 +69177,Female,79.0,0,0,Yes,Private,Rural,90.77,22.5,never smoked,0 +33162,Female,23.0,0,0,No,Private,Rural,90.84,31.6,never smoked,0 +44764,Female,78.0,1,0,Yes,Self-employed,Rural,59.2,29.1,Unknown,0 +32157,Male,51.0,0,0,Yes,Private,Rural,217.71,,formerly smoked,0 +61983,Female,41.0,0,0,Yes,Private,Urban,133.76,43.4,smokes,0 +72268,Male,68.0,0,0,Yes,Self-employed,Urban,61.36,26.5,formerly smoked,0 +39467,Female,30.0,0,0,No,Private,Rural,118.62,29.7,Unknown,0 +20282,Male,1.88,0,0,No,children,Rural,77.91,21.8,Unknown,0 +51159,Female,32.0,0,0,No,Govt_job,Urban,68.98,23.4,formerly smoked,0 +7167,Female,20.0,0,0,No,Private,Rural,112.08,23.0,never smoked,0 +59147,Male,20.0,0,0,No,Private,Urban,96.2,21.5,never smoked,0 +18192,Male,10.0,0,0,No,children,Rural,93.11,14.6,Unknown,0 +14049,Male,8.0,0,0,No,children,Rural,115.54,28.5,Unknown,0 +35927,Male,65.0,0,0,Yes,Private,Urban,88.57,29.0,smokes,0 +28150,Female,65.0,1,0,Yes,Private,Urban,180.76,26.9,Unknown,0 +8727,Male,46.0,0,0,Yes,Self-employed,Urban,83.12,29.6,formerly smoked,0 +7516,Male,53.0,0,0,Yes,Self-employed,Urban,94.89,28.5,never smoked,0 +6419,Female,79.0,0,0,No,Private,Rural,239.52,25.5,never smoked,0 +20425,Male,43.0,0,0,Yes,Self-employed,Rural,99.15,30.5,formerly smoked,0 +59878,Female,56.0,0,0,Yes,Self-employed,Urban,124.16,23.0,never smoked,0 +69355,Male,3.0,0,0,No,children,Rural,86.38,22.8,Unknown,0 +5858,Male,32.0,0,0,No,Private,Rural,93.68,31.4,never smoked,0 +39823,Female,41.0,0,0,Yes,Govt_job,Rural,229.86,35.2,smokes,0 +37053,Male,53.0,0,0,Yes,Govt_job,Rural,78.73,23.3,never smoked,0 +2082,Male,35.0,0,0,Yes,Private,Rural,115.92,,formerly smoked,0 +48073,Male,67.0,0,0,Yes,Govt_job,Rural,93.71,31.2,formerly smoked,0 +16449,Female,33.0,0,0,Yes,Govt_job,Rural,76.66,24.8,never smoked,0 +5447,Female,21.0,0,0,No,Private,Rural,112.38,25.8,Unknown,0 +27145,Female,26.0,0,0,No,Private,Rural,89.3,48.4,smokes,0 +30328,Female,69.0,1,0,Yes,Govt_job,Rural,103.44,43.1,formerly smoked,0 +739,Female,73.0,0,0,Yes,Self-employed,Rural,79.69,,formerly smoked,0 +44224,Male,15.0,0,0,No,Private,Rural,61.61,27.8,never smoked,0 +533,Female,3.0,0,0,No,children,Rural,94.12,21.4,Unknown,0 +45554,Female,1.24,0,0,No,children,Urban,62.4,22.1,Unknown,0 +32884,Female,80.0,1,0,Yes,Private,Urban,210.96,31.8,never smoked,0 +55744,Male,2.0,0,0,No,children,Urban,76.25,20.1,Unknown,0 +28414,Male,50.0,0,0,Yes,Private,Urban,103.48,29.1,smokes,0 +25767,Female,30.0,0,0,No,Private,Urban,96.42,22.6,Unknown,0 +71319,Male,15.0,0,0,No,Private,Rural,78.59,25.1,Unknown,0 +70031,Female,71.0,1,0,Yes,Private,Rural,195.25,33.3,never smoked,0 +23604,Male,4.0,0,0,No,children,Rural,103.76,15.9,Unknown,0 +46576,Male,2.0,0,0,No,children,Rural,68.52,20.8,Unknown,0 +31293,Male,11.0,0,0,No,children,Urban,92.17,19.5,Unknown,0 +70610,Female,45.0,0,0,Yes,Private,Rural,81.02,39.0,never smoked,0 +6044,Male,22.0,0,0,No,Govt_job,Rural,94.33,23.1,never smoked,0 +62284,Male,63.0,0,0,Yes,Self-employed,Rural,78.43,18.8,never smoked,0 +5821,Female,50.0,0,0,Yes,Private,Rural,217.39,50.6,Unknown,0 +22295,Female,25.0,0,0,No,Private,Urban,82.77,36.3,Unknown,0 +27583,Male,49.0,0,0,Yes,Private,Rural,88.13,32.8,never smoked,0 +9696,Male,39.0,0,0,Yes,Private,Urban,102.77,35.8,smokes,0 +1164,Female,43.0,0,0,No,Private,Rural,101.75,26.7,smokes,0 +48781,Male,67.0,0,0,Yes,Private,Rural,113.34,26.3,formerly smoked,0 +50947,Male,48.0,0,0,Yes,Private,Urban,63.33,26.5,smokes,0 +47844,Female,38.0,0,0,Yes,Private,Urban,69.34,43.7,never smoked,0 +45209,Female,14.0,0,0,No,Private,Rural,118.81,24.7,Unknown,0 +49412,Male,63.0,0,0,Yes,Govt_job,Urban,66.13,46.2,never smoked,0 +43088,Male,37.0,0,0,No,Private,Urban,67.53,49.5,formerly smoked,0 +16355,Male,20.0,0,0,No,Private,Urban,96.58,43.3,never smoked,0 +43172,Female,60.0,0,0,Yes,Private,Urban,57.89,30.9,formerly smoked,0 +43155,Female,13.0,0,0,No,children,Rural,78.38,38.7,Unknown,0 +11882,Male,34.0,0,0,No,Private,Urban,94.15,28.6,never smoked,0 +45669,Male,22.0,0,0,No,Private,Urban,89.53,30.2,Unknown,0 +65339,Female,46.0,0,0,Yes,Private,Urban,127.75,30.5,never smoked,0 +60399,Male,53.0,0,0,Yes,Self-employed,Rural,76.79,33.9,Unknown,0 +59604,Female,28.0,0,0,Yes,Private,Rural,141.15,28.6,never smoked,0 +22488,Female,62.0,0,0,Yes,Govt_job,Urban,88.63,24.5,never smoked,0 +33187,Female,6.0,0,0,No,children,Urban,201.25,,Unknown,0 +44192,Female,11.0,0,0,No,children,Urban,130.15,17.2,Unknown,0 +16114,Male,66.0,0,0,No,Private,Urban,108.03,27.2,never smoked,0 +35293,Female,80.0,0,0,Yes,Self-employed,Rural,104.07,19.3,formerly smoked,0 +728,Male,8.0,0,0,No,children,Urban,88.83,18.5,Unknown,0 +45788,Male,53.0,0,1,Yes,Private,Rural,197.79,32.0,Unknown,0 +52150,Male,63.0,1,1,Yes,Private,Urban,150.45,44.5,formerly smoked,0 +26172,Male,31.0,0,0,Yes,Private,Rural,100.39,37.0,never smoked,0 +67814,Male,43.0,0,0,Yes,Govt_job,Rural,79.92,30.8,formerly smoked,0 +12618,Male,79.0,0,1,Yes,Self-employed,Urban,96.79,24.7,Unknown,0 +28952,Male,8.0,0,0,No,children,Rural,86.84,18.3,Unknown,0 +39123,Male,38.0,0,0,Yes,Private,Rural,61.27,44.0,Unknown,0 +53967,Female,80.0,0,0,Yes,Self-employed,Rural,72.61,27.6,never smoked,0 +34772,Female,49.0,0,0,Yes,Private,Rural,82.41,45.4,smokes,0 +43124,Female,50.0,0,0,Yes,Govt_job,Urban,74.72,28.5,never smoked,0 +51916,Male,13.0,0,0,No,children,Rural,57.37,17.6,Unknown,0 +68003,Male,46.0,1,0,Yes,Private,Rural,73.72,,smokes,0 +59157,Male,73.0,1,0,Yes,Private,Urban,88.34,27.5,never smoked,0 +54383,Male,60.0,0,0,Yes,Private,Rural,101.34,32.8,never smoked,0 +6928,Male,44.0,0,0,Yes,Private,Rural,119.01,29.5,never smoked,0 +321,Female,79.0,0,0,No,Self-employed,Rural,71.98,36.4,never smoked,0 +21857,Female,5.0,0,0,No,children,Urban,84.91,26.1,Unknown,0 +33526,Female,51.0,0,0,Yes,Self-employed,Rural,91.63,35.3,Unknown,0 +37327,Female,71.0,0,0,Yes,Private,Urban,214.77,,Unknown,0 +55976,Male,5.0,0,0,No,children,Rural,145.71,18.1,Unknown,0 +56090,Female,65.0,0,0,Yes,Self-employed,Rural,167.31,27.1,never smoked,0 +38350,Female,81.0,0,0,Yes,Self-employed,Urban,63.65,23.0,Unknown,0 +6040,Female,46.0,0,0,No,Private,Rural,79.63,55.0,Unknown,0 +17639,Male,44.0,0,0,Yes,Govt_job,Rural,87.49,26.6,never smoked,0 +1678,Female,54.0,1,0,Yes,Private,Rural,98.74,,never smoked,0 +27572,Female,25.0,0,0,No,Private,Rural,92.82,24.1,never smoked,0 +57668,Male,49.0,0,0,Yes,Govt_job,Urban,72.2,30.3,formerly smoked,0 +22001,Male,80.0,0,1,Yes,Govt_job,Rural,181.23,32.2,formerly smoked,0 +54184,Female,22.0,0,0,No,Private,Urban,63.37,26.5,never smoked,0 +27966,Female,61.0,0,0,Yes,Private,Urban,74.82,30.6,never smoked,0 +4702,Female,3.0,0,0,No,children,Rural,97.6,25.8,Unknown,0 +38123,Male,50.0,0,0,Yes,Private,Rural,93.04,41.9,smokes,0 +47345,Male,45.0,0,0,Yes,Private,Rural,97.12,29.2,never smoked,0 +17222,Male,55.0,1,0,Yes,Self-employed,Rural,82.81,44.3,never smoked,0 +45048,Female,21.0,0,0,No,Private,Urban,134.45,29.1,never smoked,0 +30084,Male,0.8,0,0,No,children,Rural,98.67,17.5,Unknown,0 +7195,Male,50.0,0,1,No,Private,Urban,85.82,31.9,never smoked,0 +16260,Male,73.0,0,1,Yes,Self-employed,Rural,189.45,32.2,never smoked,0 +52457,Female,58.0,0,1,Yes,Private,Rural,144.16,26.0,smokes,0 +50650,Male,30.0,0,0,No,Private,Rural,82.56,25.4,formerly smoked,0 +35913,Female,55.0,1,0,Yes,Private,Urban,206.4,54.8,never smoked,0 +52306,Male,57.0,0,0,Yes,Self-employed,Urban,67.97,27.9,never smoked,0 +132,Female,80.0,0,0,Yes,Govt_job,Urban,84.86,,Unknown,0 +8951,Female,77.0,1,0,Yes,Self-employed,Urban,71.7,32.8,never smoked,0 +64752,Female,29.0,0,0,No,Private,Urban,72.02,34.0,formerly smoked,0 +51285,Female,46.0,0,0,Yes,Private,Urban,61.81,25.5,Unknown,0 +14349,Female,40.0,0,0,Yes,Private,Urban,103.09,35.6,Unknown,0 +40571,Male,29.0,0,0,No,Private,Urban,73.75,28.3,never smoked,0 +40624,Female,37.0,0,0,Yes,Private,Rural,156.7,36.9,never smoked,0 +13072,Female,35.0,0,0,Yes,Self-employed,Urban,70.87,22.1,formerly smoked,0 +66310,Male,54.0,0,0,Yes,Self-employed,Rural,138.47,31.5,never smoked,0 +58101,Female,56.0,0,1,Yes,Private,Rural,64.66,26.7,formerly smoked,0 +22969,Female,26.0,0,0,Yes,Private,Rural,91.88,24.9,formerly smoked,0 +28904,Female,75.0,0,0,Yes,Self-employed,Rural,74.79,32.4,never smoked,0 +6563,Female,44.0,0,0,No,Private,Rural,78.18,32.2,never smoked,0 +55315,Male,63.0,0,0,Yes,Private,Rural,77.82,30.3,Unknown,0 +47537,Female,17.0,0,0,No,Private,Rural,112.23,28.7,never smoked,0 +45945,Male,46.0,0,1,Yes,Private,Urban,178.76,24.1,never smoked,0 +65849,Female,47.0,0,0,Yes,Private,Rural,121.43,25.3,never smoked,0 +31125,Female,50.0,0,0,Yes,Private,Rural,94.22,24.8,never smoked,0 +5103,Female,49.0,0,0,Yes,Private,Rural,67.27,,formerly smoked,0 +54526,Male,76.0,1,0,Yes,Self-employed,Rural,197.58,34.8,formerly smoked,0 +67309,Male,47.0,0,0,Yes,Private,Rural,86.37,39.2,smokes,0 +2275,Female,47.0,0,0,Yes,Private,Urban,112.09,24.7,smokes,0 +29869,Male,49.0,0,0,Yes,Private,Urban,199.96,28.6,never smoked,0 +15757,Male,71.0,0,0,Yes,Private,Urban,85.33,27.7,never smoked,0 +38523,Female,65.0,0,0,No,Self-employed,Rural,86.33,33.1,never smoked,0 +65388,Female,40.0,0,0,No,Private,Urban,80.47,27.3,smokes,0 +60816,Female,82.0,1,0,Yes,Private,Urban,62.46,20.3,formerly smoked,0 +67350,Female,64.0,0,0,Yes,Govt_job,Rural,78.85,33.9,never smoked,0 +40124,Male,72.0,0,0,Yes,Self-employed,Rural,72.09,,smokes,0 +20370,Female,50.0,0,0,Yes,Self-employed,Rural,103.81,28.3,never smoked,0 +35188,Female,40.0,0,0,No,Private,Urban,78.04,32.4,smokes,0 +28716,Female,74.0,0,0,Yes,Self-employed,Rural,94.67,19.7,Unknown,0 +56166,Female,30.0,0,0,Yes,Govt_job,Rural,62.25,33.7,never smoked,0 +47159,Male,68.0,0,0,Yes,Private,Urban,155.17,35.5,never smoked,0 +26242,Male,6.0,0,0,No,children,Urban,83.28,20.0,Unknown,0 +36226,Male,4.0,0,0,No,children,Urban,132.41,16.3,Unknown,0 +47357,Female,60.0,0,0,Yes,Private,Rural,62.78,36.4,Unknown,0 +33167,Female,59.0,0,0,Yes,Private,Urban,89.96,28.1,Unknown,0 +21042,Female,72.0,0,0,Yes,Self-employed,Rural,103.25,26.9,formerly smoked,0 +71062,Female,62.0,0,0,Yes,Private,Rural,126.99,29.4,formerly smoked,0 +32723,Female,13.0,0,0,No,children,Rural,102.27,17.2,never smoked,0 +49646,Male,72.0,0,1,Yes,Self-employed,Rural,113.63,26.5,Unknown,0 +35737,Male,1.08,0,0,No,children,Urban,86.09,19.5,Unknown,0 +24256,Male,35.0,0,0,Yes,Private,Rural,108.08,30.6,formerly smoked,0 +62340,Male,54.0,0,0,Yes,Private,Urban,108.34,31.9,never smoked,0 +39927,Male,40.0,0,0,Yes,Private,Rural,56.07,26.6,never smoked,0 +30677,Female,3.0,0,0,No,children,Urban,82.91,19.9,Unknown,0 +50453,Male,2.0,0,0,No,children,Urban,94.75,18.0,Unknown,0 +17398,Male,41.0,0,0,Yes,Private,Rural,101.79,26.7,Unknown,0 +20938,Female,61.0,0,0,Yes,Private,Rural,88.41,25.3,formerly smoked,0 +21850,Male,58.0,0,0,Yes,Govt_job,Urban,101.05,31.4,Unknown,0 +14241,Male,17.0,0,0,No,Private,Urban,85.07,21.1,never smoked,0 +43905,Female,64.0,0,0,No,Govt_job,Rural,108.1,17.9,never smoked,0 +40144,Female,32.0,0,0,No,Self-employed,Rural,93.17,27.5,smokes,0 +7806,Female,42.0,0,0,Yes,Private,Urban,158.89,37.6,smokes,0 +63984,Male,39.0,0,0,Yes,Private,Rural,205.77,24.1,never smoked,0 +13504,Female,10.0,0,0,No,children,Urban,112.34,18.1,Unknown,0 +62272,Female,78.0,0,0,Yes,Private,Urban,119.03,31.0,never smoked,0 +5878,Female,68.0,0,0,Yes,Private,Urban,237.21,26.6,smokes,0 +62767,Female,24.0,0,0,Yes,Private,Urban,89.68,38.7,never smoked,0 +239,Male,59.0,1,1,Yes,Private,Rural,246.53,27.2,formerly smoked,0 +3184,Female,45.0,0,0,Yes,Private,Urban,89.05,27.8,formerly smoked,0 +51959,Male,12.0,0,0,No,children,Rural,81.74,28.3,Unknown,0 +2092,Female,37.0,0,0,Yes,Private,Rural,98.12,27.5,never smoked,0 +69239,Female,43.0,0,0,Yes,Self-employed,Rural,105.59,43.3,smokes,0 +68235,Male,12.0,0,0,No,children,Rural,86.0,20.1,formerly smoked,0 +3956,Male,13.0,0,0,No,children,Urban,65.51,25.9,Unknown,0 +42703,Male,74.0,0,0,Yes,Self-employed,Urban,61.78,25.8,Unknown,0 +34436,Female,2.0,0,0,No,children,Rural,109.56,16.4,Unknown,0 +39258,Female,59.0,0,0,Yes,Self-employed,Urban,65.82,29.4,never smoked,0 +40513,Female,21.0,0,0,No,Private,Urban,90.16,28.9,smokes,0 +48648,Female,55.0,0,0,Yes,Private,Urban,64.45,26.7,never smoked,0 +48836,Female,14.0,0,0,No,children,Urban,91.85,27.8,never smoked,0 +71444,Female,53.0,0,0,Yes,Private,Rural,97.89,38.7,formerly smoked,0 +33983,Male,75.0,0,0,Yes,Govt_job,Rural,206.33,26.8,never smoked,0 +35372,Male,37.0,0,0,Yes,Govt_job,Rural,74.29,36.1,never smoked,0 +31849,Female,49.0,0,0,Yes,Private,Rural,107.4,26.7,smokes,0 +2772,Male,55.0,0,0,Yes,Private,Urban,87.72,27.0,Unknown,0 +11148,Male,57.0,0,0,Yes,Private,Rural,85.99,21.2,Unknown,0 +62387,Female,45.0,0,0,Yes,Private,Urban,100.84,21.0,never smoked,0 +50775,Male,46.0,0,0,No,Private,Urban,124.61,37.4,Unknown,0 +3807,Female,12.0,0,0,No,children,Urban,86.55,26.5,Unknown,0 +51339,Male,12.0,0,0,No,children,Rural,90.42,28.9,Unknown,0 +69259,Female,77.0,0,0,Yes,Private,Rural,100.85,29.5,smokes,0 +32826,Male,6.0,0,0,No,children,Urban,87.74,17.7,Unknown,0 +12414,Male,76.0,1,0,Yes,Private,Rural,80.15,34.9,formerly smoked,0 +21381,Female,52.0,0,0,Yes,Private,Urban,107.29,28.1,never smoked,0 +29375,Male,62.0,0,0,Yes,Private,Urban,206.98,36.8,smokes,0 +62452,Male,82.0,1,0,Yes,Private,Rural,227.28,33.3,never smoked,0 +68650,Male,69.0,0,1,Yes,Private,Rural,80.43,29.2,Unknown,0 +47622,Male,78.0,0,1,Yes,Self-employed,Urban,228.7,34.0,Unknown,0 +57124,Male,37.0,0,0,Yes,Private,Urban,120.07,33.9,smokes,0 +19382,Female,50.0,0,0,Yes,Private,Rural,93.47,28.7,never smoked,0 +44179,Female,41.0,0,0,Yes,Private,Urban,80.77,21.1,never smoked,0 +50098,Male,54.0,0,0,Yes,Private,Rural,150.27,38.2,smokes,0 +24674,Male,43.0,0,0,Yes,Private,Urban,81.94,27.7,smokes,0 +72361,Female,37.0,0,0,Yes,Private,Urban,70.75,35.8,Unknown,0 +14563,Male,9.0,0,0,No,children,Urban,83.83,27.1,Unknown,0 +40237,Female,11.0,0,0,No,children,Urban,73.66,20.5,never smoked,0 +36523,Male,56.0,1,0,Yes,Private,Urban,102.37,35.6,never smoked,0 +65970,Female,5.0,0,0,No,children,Rural,77.83,15.6,Unknown,0 +1577,Female,17.0,0,0,No,Private,Urban,70.01,43.0,Unknown,0 +51109,Female,6.0,0,0,No,children,Rural,119.88,17.8,Unknown,0 +5984,Male,25.0,0,0,Yes,Private,Rural,78.29,,smokes,0 +46373,Female,57.0,0,0,Yes,Private,Rural,169.97,25.8,never smoked,0 +13062,Male,18.0,0,0,No,Private,Rural,123.79,20.5,Unknown,0 +47770,Male,2.0,0,0,No,children,Urban,80.98,19.9,Unknown,0 +32459,Female,76.0,0,0,Yes,Govt_job,Rural,84.21,24.4,never smoked,0 +12687,Male,1.0,0,0,No,children,Urban,101.31,18.3,Unknown,0 +7725,Male,54.0,0,0,Yes,Private,Urban,86.26,35.1,formerly smoked,0 +67217,Female,45.0,0,0,Yes,Private,Urban,92.86,35.1,formerly smoked,0 +49976,Female,54.0,0,1,Yes,Private,Urban,140.28,37.1,formerly smoked,0 +71318,Male,67.0,0,0,Yes,Govt_job,Rural,244.28,29.4,formerly smoked,0 +42201,Male,53.0,0,0,Yes,Private,Urban,124.16,31.7,never smoked,0 +11232,Male,47.0,0,0,Yes,Private,Rural,93.55,31.4,never smoked,0 +14709,Male,44.0,0,0,Yes,Private,Urban,99.34,33.1,never smoked,0 +57137,Male,65.0,0,0,Yes,Private,Urban,59.87,28.5,smokes,0 +36858,Female,40.0,0,0,Yes,Private,Rural,72.76,24.0,formerly smoked,0 +50373,Female,3.0,0,0,No,children,Rural,68.34,18.0,Unknown,0 +51124,Male,81.0,0,0,Yes,Self-employed,Urban,61.1,27.6,smokes,0 +13191,Female,24.0,0,0,No,Private,Rural,120.77,16.9,never smoked,0 +47330,Male,9.0,0,0,No,children,Rural,60.39,16.4,Unknown,0 +42191,Female,52.0,0,0,Yes,Govt_job,Urban,126.34,35.1,never smoked,0 +35332,Female,63.0,0,0,Yes,Private,Rural,93.24,28.8,never smoked,0 +49341,Female,78.0,0,0,Yes,Private,Rural,154.75,17.6,never smoked,0 +64750,Female,22.0,0,0,No,Private,Rural,62.81,21.3,never smoked,0 +70259,Female,2.0,0,0,No,children,Rural,65.96,19.7,Unknown,0 +36960,Female,79.0,0,0,Yes,Private,Rural,79.53,37.3,never smoked,0 +12992,Female,49.0,0,0,Yes,Private,Rural,96.85,35.5,never smoked,0 +4692,Female,74.0,0,0,Yes,Govt_job,Urban,251.99,25.5,never smoked,0 +62460,Male,62.0,0,0,Yes,Private,Rural,115.13,30.0,smokes,0 +72132,Male,16.0,0,0,No,children,Urban,102.3,21.9,Unknown,0 +41402,Male,62.0,0,0,Yes,Self-employed,Urban,78.99,45.5,never smoked,0 +40253,Male,27.0,0,0,No,Private,Rural,191.79,,smokes,0 +63577,Female,50.0,1,0,Yes,Self-employed,Rural,68.8,34.9,never smoked,0 +11726,Female,49.0,0,0,Yes,Govt_job,Rural,83.84,19.3,formerly smoked,0 +13736,Male,24.0,0,0,Yes,Private,Urban,94.66,32.1,formerly smoked,0 +43913,Female,21.0,0,0,No,Private,Rural,107.98,26.9,never smoked,0 +41870,Male,17.0,0,0,No,Never_worked,Rural,61.01,32.5,Unknown,0 +37907,Female,22.0,0,0,No,Private,Urban,135.64,19.5,never smoked,0 +15987,Male,13.0,0,0,No,children,Urban,92.65,31.7,never smoked,0 +57166,Female,21.0,0,0,No,Private,Rural,121.11,21.0,Unknown,0 +44950,Male,51.0,1,0,Yes,Private,Rural,163.56,,formerly smoked,0 +47627,Male,8.0,0,0,No,children,Urban,107.69,20.3,Unknown,0 +42460,Male,48.0,0,0,Yes,Self-employed,Rural,216.88,,smokes,0 +8723,Female,16.0,0,0,No,Private,Rural,70.15,21.5,Unknown,0 +52559,Male,18.0,0,0,No,Private,Urban,83.02,40.4,Unknown,0 +937,Male,7.0,0,0,No,children,Urban,87.94,,Unknown,0 +41271,Male,68.0,1,0,Yes,Govt_job,Urban,222.29,30.1,never smoked,0 +66893,Male,49.0,1,0,Yes,Govt_job,Urban,139.43,40.2,formerly smoked,0 +21491,Female,80.0,0,0,Yes,Private,Urban,213.11,34.7,never smoked,0 +51806,Male,31.0,0,0,Yes,Private,Rural,77.23,25.9,smokes,0 +59412,Female,25.0,0,0,Yes,Private,Urban,58.48,23.7,never smoked,0 +742,Female,39.0,0,0,No,Govt_job,Rural,87.33,34.3,never smoked,0 +42902,Male,35.0,0,0,Yes,Private,Rural,102.34,34.3,never smoked,0 +43059,Female,71.0,0,0,Yes,Self-employed,Rural,151.3,26.3,never smoked,0 +61512,Female,71.0,0,0,Yes,Self-employed,Urban,144.23,22.1,formerly smoked,0 +10943,Female,40.0,0,0,Yes,Govt_job,Rural,110.6,33.3,formerly smoked,0 +11447,Female,41.0,0,0,Yes,Govt_job,Urban,80.28,37.3,never smoked,0 +29233,Male,2.0,0,0,No,children,Rural,111.02,20.5,Unknown,0 +17762,Female,3.0,0,0,No,children,Rural,114.88,19.1,Unknown,0 +46284,Male,53.0,1,0,Yes,Self-employed,Urban,227.51,34.7,formerly smoked,0 +1405,Male,1.88,0,0,No,children,Urban,111.65,16.3,Unknown,0 +38493,Male,60.0,1,1,Yes,Private,Urban,201.01,28.0,never smoked,0 +57953,Female,5.0,0,0,No,children,Urban,129.01,17.2,Unknown,0 +30746,Female,30.0,0,0,Yes,Private,Rural,124.08,41.1,Unknown,0 +16949,Female,49.0,1,0,Yes,Govt_job,Rural,107.91,25.0,Unknown,0 +45297,Male,68.0,1,0,Yes,Private,Rural,95.4,27.5,never smoked,0 +40251,Female,23.0,0,0,No,Private,Rural,65.9,21.5,never smoked,0 +27013,Male,2.0,0,0,No,children,Urban,78.98,15.1,Unknown,0 +7586,Male,24.0,0,0,No,Self-employed,Rural,111.33,29.6,formerly smoked,0 +26452,Female,41.0,0,0,Yes,Private,Rural,104.36,30.2,never smoked,0 +16378,Female,63.0,0,0,Yes,Govt_job,Urban,123.87,34.9,Unknown,0 +5137,Male,64.0,0,0,Yes,Self-employed,Rural,210.0,30.7,formerly smoked,0 +4559,Male,38.0,0,0,No,Private,Rural,86.86,36.5,Unknown,0 +45357,Female,1.24,0,0,No,children,Rural,113.96,21.5,Unknown,0 +45257,Female,38.0,0,0,Yes,Private,Rural,81.28,33.2,smokes,0 +34386,Female,43.0,0,0,Yes,Private,Rural,102.5,50.2,never smoked,0 +15219,Female,27.0,0,0,No,Private,Rural,78.05,22.3,never smoked,0 +39202,Female,61.0,1,1,Yes,Private,Urban,237.58,,formerly smoked,0 +9076,Male,42.0,0,0,Yes,Self-employed,Urban,86.07,27.3,Unknown,0 +72824,Male,46.0,0,0,Yes,Private,Rural,59.05,28.3,formerly smoked,0 +64132,Male,67.0,0,1,Yes,Self-employed,Rural,95.88,31.9,Unknown,0 +52987,Female,34.0,0,0,Yes,Govt_job,Rural,70.18,24.9,Unknown,0 +17827,Male,51.0,0,0,Yes,Private,Rural,111.13,32.7,formerly smoked,0 +29378,Female,77.0,0,0,Yes,Private,Urban,79.3,26.4,Unknown,0 +29327,Female,30.0,0,0,No,Self-employed,Urban,65.84,24.8,smokes,0 +48609,Female,81.0,0,1,Yes,Private,Rural,123.49,30.7,smokes,0 +4833,Female,12.0,0,0,No,children,Rural,207.45,25.4,smokes,0 +8085,Male,18.0,0,0,No,Private,Rural,143.45,32.0,smokes,0 +41820,Female,35.0,0,0,Yes,Govt_job,Rural,89.11,24.4,never smoked,0 +72474,Female,82.0,0,0,Yes,Govt_job,Rural,58.3,20.4,never smoked,0 +32094,Male,53.0,1,0,Yes,Self-employed,Urban,78.68,29.5,never smoked,0 +66818,Male,75.0,0,0,Yes,Govt_job,Urban,98.91,24.4,never smoked,0 +49057,Female,32.0,0,0,No,Private,Rural,67.92,22.8,smokes,0 +18070,Female,27.0,0,0,No,Private,Rural,73.0,20.0,never smoked,0 +17860,Male,56.0,0,0,Yes,Private,Rural,97.5,36.3,formerly smoked,0 +17078,Male,71.0,0,0,Yes,Private,Urban,108.43,32.8,smokes,0 +23836,Male,78.0,0,0,Yes,Private,Urban,90.43,34.4,formerly smoked,0 +5296,Female,44.0,0,0,No,Private,Urban,76.3,30.5,never smoked,0 +48184,Male,62.0,0,0,Yes,Private,Rural,121.27,29.7,smokes,0 +9511,Male,27.0,0,0,No,Private,Urban,119.67,36.9,Unknown,0 +19389,Female,42.0,0,1,Yes,Govt_job,Urban,226.93,34.2,smokes,0 +25559,Female,66.0,0,1,Yes,Govt_job,Rural,76.11,37.0,Unknown,0 +11770,Female,25.0,0,0,Yes,Govt_job,Urban,93.23,,smokes,0 +34496,Female,82.0,0,0,Yes,Private,Urban,253.16,47.5,Unknown,0 +8096,Female,49.0,0,0,Yes,Private,Urban,101.02,24.2,smokes,0 +49709,Female,77.0,1,0,Yes,Self-employed,Rural,238.53,30.6,never smoked,0 +19735,Female,59.0,0,0,Yes,Private,Rural,79.18,52.8,formerly smoked,0 +31415,Female,54.0,0,0,Yes,Private,Urban,207.79,38.6,never smoked,0 +71322,Female,38.0,0,0,Yes,Private,Rural,196.2,32.8,never smoked,0 +72337,Female,55.0,0,0,Yes,Private,Urban,231.76,42.9,never smoked,0 +25454,Female,13.0,0,0,No,children,Rural,93.3,25.9,Unknown,0 +15310,Female,45.0,0,0,Yes,Private,Urban,110.47,24.7,smokes,0 +10245,Female,54.0,0,0,Yes,Self-employed,Rural,77.52,35.8,never smoked,0 +29224,Male,30.0,0,0,Yes,Private,Urban,91.23,,smokes,0 +7550,Female,51.0,0,0,Yes,Private,Rural,216.92,31.2,Unknown,0 +57917,Female,47.0,0,0,Yes,Private,Urban,157.01,26.1,smokes,0 +24219,Male,25.0,0,0,Yes,Private,Urban,93.51,30.8,never smoked,0 +49023,Male,61.0,1,0,Yes,Self-employed,Rural,102.54,40.5,never smoked,0 +51020,Female,55.0,0,0,Yes,Private,Rural,87.78,25.2,formerly smoked,0 +52089,Female,23.0,0,0,No,Private,Urban,126.67,28.7,smokes,0 +29095,Male,71.0,1,0,Yes,Self-employed,Rural,93.6,,never smoked,0 +41424,Male,59.0,0,1,Yes,Self-employed,Rural,194.98,30.4,Unknown,0 +7297,Male,4.0,0,0,No,children,Rural,99.96,15.2,Unknown,0 +68994,Male,65.0,0,0,Yes,Private,Urban,58.87,36.6,never smoked,0 +25935,Female,50.0,0,0,No,Self-employed,Urban,77.67,34.5,Unknown,0 +29910,Male,42.0,0,0,Yes,Private,Urban,83.14,23.7,never smoked,0 +24567,Male,51.0,0,0,Yes,Self-employed,Urban,69.18,35.7,smokes,0 +54858,Male,66.0,0,0,Yes,Govt_job,Rural,218.54,38.9,smokes,0 +36679,Female,22.0,1,0,No,Private,Urban,71.22,40.0,never smoked,0 +59339,Male,5.0,0,0,No,children,Urban,82.41,18.4,Unknown,0 +18754,Male,19.0,0,0,No,Self-employed,Rural,82.07,29.0,never smoked,0 +34312,Female,47.0,0,0,Yes,Self-employed,Urban,73.0,20.6,never smoked,0 +57798,Male,12.0,0,0,No,children,Rural,127.25,28.2,Unknown,0 +37759,Female,53.0,0,0,Yes,Private,Rural,72.63,66.8,Unknown,0 +11605,Female,26.0,0,0,No,Private,Rural,108.2,26.2,never smoked,0 +47558,Male,62.0,1,1,Yes,Private,Urban,123.95,34.8,formerly smoked,0 +54264,Female,81.0,1,0,Yes,Private,Urban,58.71,34.5,never smoked,0 +47893,Male,63.0,0,0,Yes,Private,Rural,98.46,30.6,never smoked,0 +3178,Female,25.0,0,0,Yes,Private,Rural,68.78,55.1,formerly smoked,0 +61924,Male,8.0,0,0,No,children,Rural,133.63,18.8,Unknown,0 +18141,Male,76.0,0,1,Yes,Self-employed,Rural,101.43,29.1,Unknown,0 +58015,Female,44.0,0,0,No,Private,Rural,65.3,22.1,smokes,0 +354,Female,65.0,0,0,Yes,Private,Urban,72.49,28.9,smokes,0 +5777,Female,54.0,0,0,Yes,Private,Urban,65.49,34.7,Unknown,0 +43271,Female,24.0,0,0,No,Govt_job,Urban,63.4,20.3,smokes,0 +46210,Female,65.0,0,0,Yes,Self-employed,Rural,105.29,25.1,formerly smoked,0 +39714,Male,12.0,0,0,No,children,Urban,64.08,18.2,Unknown,0 +21785,Female,33.0,0,0,No,Private,Urban,78.34,25.5,never smoked,0 +36620,Female,74.0,0,0,Yes,Private,Rural,66.32,34.4,formerly smoked,0 +49495,Female,18.0,0,0,No,Private,Rural,168.15,48.5,never smoked,0 +21720,Female,77.0,0,0,Yes,Private,Rural,93.48,25.2,formerly smoked,0 +6304,Male,48.0,1,0,Yes,Self-employed,Urban,79.2,32.5,never smoked,0 +18887,Male,52.0,0,0,Yes,Private,Rural,107.45,42.1,formerly smoked,0 +30214,Male,23.0,0,0,No,Private,Rural,83.86,19.5,never smoked,0 +66419,Male,25.0,0,0,Yes,Private,Rural,119.96,27.7,never smoked,0 +57468,Female,44.0,0,0,Yes,Private,Rural,70.58,25.1,never smoked,0 +24218,Female,78.0,0,0,No,Private,Rural,87.7,29.6,never smoked,0 +69792,Female,37.0,0,0,Yes,Govt_job,Urban,65.29,32.9,never smoked,0 +6372,Female,32.0,0,0,Yes,Private,Urban,97.14,55.9,never smoked,0 +34664,Male,67.0,0,0,Yes,Private,Urban,110.68,25.1,formerly smoked,0 +40931,Female,41.0,0,0,Yes,Govt_job,Urban,91.93,24.7,smokes,0 +28559,Male,2.0,0,0,No,children,Urban,88.54,17.5,Unknown,0 +15166,Female,75.0,1,0,Yes,Private,Urban,183.0,20.8,Unknown,0 +49815,Female,17.0,0,0,No,Govt_job,Rural,115.93,23.3,never smoked,0 +1625,Female,13.0,0,0,No,children,Urban,99.13,22.8,Unknown,0 +56309,Female,25.0,0,0,Yes,Private,Rural,69.24,26.6,never smoked,0 +30116,Female,57.0,0,0,Yes,Private,Rural,102.28,25.5,never smoked,0 +52034,Male,31.0,0,0,Yes,Private,Urban,71.31,25.8,never smoked,0 +35584,Male,61.0,0,0,Yes,Private,Rural,89.75,25.4,never smoked,0 +2898,Male,46.0,0,0,Yes,Private,Urban,87.66,57.3,never smoked,0 +16593,Male,47.0,0,0,No,Private,Rural,237.17,,Unknown,0 +17175,Female,15.0,0,0,No,children,Urban,81.11,20.2,Unknown,0 +63663,Male,47.0,0,0,Yes,Private,Urban,178.33,27.7,never smoked,0 +10603,Female,68.0,0,0,Yes,Private,Rural,81.38,23.1,Unknown,0 +40544,Male,0.4,0,0,No,children,Urban,109.56,14.3,Unknown,0 +49152,Female,40.0,0,0,No,Private,Rural,70.45,23.3,smokes,0 +1231,Female,62.0,0,0,Yes,Govt_job,Rural,73.44,23.4,Unknown,0 +43672,Female,45.0,0,0,Yes,Private,Urban,146.44,22.8,formerly smoked,0 +25107,Female,47.0,0,0,Yes,Private,Urban,65.04,30.9,never smoked,0 +39286,Female,35.0,0,0,Yes,Self-employed,Rural,151.25,28.4,Unknown,0 +32766,Male,51.0,0,0,No,Private,Rural,106.41,41.9,smokes,0 +15988,Male,60.0,1,0,Yes,Private,Urban,197.09,34.3,Unknown,0 +9011,Male,59.0,0,0,Yes,Private,Urban,93.58,25.1,smokes,0 +38043,Female,1.24,0,0,No,children,Rural,122.04,10.3,Unknown,0 +71721,Female,18.0,0,0,No,Private,Rural,80.06,31.8,Unknown,0 +14832,Female,81.0,0,1,Yes,Private,Urban,84.93,31.8,Unknown,0 +38094,Male,15.0,0,0,No,Self-employed,Urban,68.4,23.0,never smoked,0 +49789,Female,73.0,0,0,No,Govt_job,Urban,62.99,25.4,formerly smoked,0 +47350,Female,0.08,0,0,No,children,Urban,139.67,14.1,Unknown,0 +33525,Male,53.0,0,0,Yes,Govt_job,Urban,113.4,35.1,smokes,0 +12318,Male,45.0,0,0,Yes,Self-employed,Urban,101.92,26.9,Unknown,0 +54553,Male,70.0,1,0,Yes,Private,Urban,65.98,33.0,formerly smoked,0 +45976,Male,56.0,0,0,Yes,Private,Urban,84.3,22.1,Unknown,0 +43675,Female,7.0,0,0,No,children,Urban,61.42,20.8,Unknown,0 +12915,Female,66.0,0,0,Yes,Govt_job,Rural,85.52,30.0,never smoked,0 +4542,Female,53.0,0,0,Yes,Govt_job,Urban,83.79,44.0,Unknown,0 +65801,Female,20.0,0,0,No,Private,Urban,73.83,16.6,Unknown,0 +59953,Female,15.0,0,0,No,Private,Rural,69.38,28.4,never smoked,0 +60973,Male,51.0,0,0,Yes,Private,Urban,66.11,26.3,never smoked,0 +68739,Male,34.0,0,0,Yes,Private,Urban,149.62,39.4,formerly smoked,0 +35829,Female,33.0,0,0,Yes,Private,Urban,242.84,15.7,smokes,0 +53909,Female,53.0,1,0,Yes,Private,Urban,202.66,34.1,smokes,0 +5799,Male,69.0,0,1,Yes,Private,Rural,216.9,29.8,formerly smoked,0 +43772,Female,28.0,0,0,No,Private,Urban,103.78,23.6,Unknown,0 +3154,Female,81.0,0,0,Yes,Self-employed,Rural,114.88,18.3,formerly smoked,0 +45754,Female,20.0,0,0,No,Private,Urban,75.94,28.3,never smoked,0 +57485,Female,1.48,0,0,No,children,Rural,55.51,18.5,Unknown,0 +6128,Male,2.0,0,0,No,children,Rural,93.74,18.4,Unknown,0 +22623,Male,77.0,0,0,Yes,Private,Urban,71.44,24.1,smokes,0 +37082,Female,38.0,0,0,Yes,Govt_job,Urban,58.29,25.5,formerly smoked,0 +64541,Male,23.0,0,0,Yes,Private,Urban,115.83,25.3,never smoked,0 +47037,Female,67.0,0,0,Yes,Private,Urban,102.71,39.9,formerly smoked,0 +48614,Male,59.0,0,0,Yes,Govt_job,Urban,99.69,28.8,smokes,0 +15969,Female,41.0,0,0,Yes,Self-employed,Rural,102.89,37.2,formerly smoked,0 +17752,Male,76.0,0,1,Yes,Private,Urban,79.05,,Unknown,0 +50889,Female,21.0,0,0,No,Govt_job,Rural,56.63,49.8,never smoked,0 +56459,Male,41.0,0,0,Yes,Private,Rural,87.34,34.3,formerly smoked,0 +34163,Male,54.0,0,0,Yes,Private,Rural,109.51,29.0,never smoked,0 +4538,Female,29.0,0,0,No,Private,Urban,81.43,,formerly smoked,0 +14222,Female,25.0,0,0,No,Private,Urban,78.59,37.2,never smoked,0 +31461,Female,48.0,0,1,Yes,Self-employed,Urban,101.22,,formerly smoked,0 +34001,Female,6.0,0,0,No,children,Urban,78.26,19.4,Unknown,0 +48964,Male,21.0,0,0,No,Private,Rural,105.47,26.2,never smoked,0 +40393,Female,32.0,0,0,No,Private,Urban,68.19,21.1,never smoked,0 +16488,Female,57.0,1,0,Yes,Private,Urban,210.0,,never smoked,0 +47947,Female,64.0,0,0,Yes,Self-employed,Rural,114.47,31.6,smokes,0 +51149,Male,70.0,0,0,Yes,Private,Urban,66.85,29.3,Unknown,0 +17079,Male,44.0,0,0,Yes,Private,Rural,94.71,28.4,smokes,0 +44781,Female,60.0,0,1,Yes,Private,Urban,208.05,35.3,smokes,0 +29385,Female,56.0,0,0,Yes,Private,Rural,222.6,40.1,smokes,0 +53610,Male,53.0,0,0,Yes,Private,Urban,80.81,39.0,formerly smoked,0 +48210,Male,59.0,0,0,Yes,Private,Rural,64.51,31.5,never smoked,0 +48072,Female,53.0,1,0,Yes,Private,Urban,151.56,28.5,Unknown,0 +32776,Male,63.0,0,0,Yes,Private,Urban,199.14,28.5,never smoked,0 +8960,Female,42.0,0,0,No,Self-employed,Rural,73.41,56.0,smokes,0 +63491,Female,63.0,0,0,Yes,Private,Urban,109.65,28.6,formerly smoked,0 +51883,Female,52.0,0,0,Yes,Govt_job,Rural,69.11,35.2,never smoked,0 +20460,Female,62.0,0,0,Yes,Private,Urban,114.41,32.5,never smoked,0 +47181,Female,68.0,0,0,Yes,Private,Urban,103.46,35.9,never smoked,0 +35432,Female,36.0,0,0,Yes,Private,Rural,95.36,25.1,never smoked,0 +44010,Female,3.0,0,0,No,children,Urban,57.33,16.8,Unknown,0 +50841,Female,40.0,0,0,Yes,Private,Rural,191.48,27.9,smokes,0 +71044,Female,8.0,0,0,No,children,Rural,71.63,16.3,Unknown,0 +1842,Male,58.0,0,0,Yes,Private,Urban,94.0,,Unknown,0 +34720,Male,45.0,0,1,Yes,Private,Rural,93.77,,Unknown,0 +9489,Female,65.0,0,0,Yes,Private,Urban,84.75,21.4,Unknown,0 +28725,Female,28.0,0,0,No,Private,Rural,89.24,32.7,formerly smoked,0 +30290,Female,40.0,0,0,Yes,Private,Urban,70.13,23.6,never smoked,0 +13723,Female,65.0,0,0,Yes,Private,Urban,82.26,19.8,formerly smoked,0 +26328,Male,58.0,1,0,Yes,Private,Urban,200.16,33.1,never smoked,0 +60104,Male,44.0,0,0,Yes,Private,Urban,80.73,28.1,smokes,0 +48722,Female,54.0,0,0,Yes,Private,Urban,75.09,38.9,formerly smoked,0 +14481,Female,79.0,0,0,Yes,Self-employed,Urban,80.57,23.8,never smoked,0 +67963,Female,62.0,1,0,No,Private,Rural,77.04,33.8,formerly smoked,0 +70752,Male,37.0,0,0,Yes,Private,Urban,145.26,26.7,Unknown,0 +52419,Male,66.0,0,0,Yes,Private,Urban,190.4,,formerly smoked,0 +14711,Male,63.0,0,0,Yes,Self-employed,Urban,82.08,32.2,formerly smoked,0 +26366,Female,27.0,0,0,No,Private,Rural,103.35,28.1,formerly smoked,0 +12436,Male,6.0,0,0,No,children,Urban,97.46,21.3,Unknown,0 +36722,Female,30.0,0,0,Yes,Private,Urban,123.65,44.0,smokes,0 +37698,Female,15.0,0,0,No,children,Urban,87.96,21.5,formerly smoked,0 +55235,Female,50.0,0,0,Yes,Self-employed,Urban,85.92,37.3,smokes,0 +20468,Female,32.0,0,0,Yes,Private,Urban,80.8,44.8,never smoked,0 +14677,Female,33.0,0,0,Yes,Self-employed,Rural,99.3,21.4,never smoked,0 +44171,Male,62.0,0,0,Yes,Private,Rural,62.56,32.3,never smoked,0 +70344,Male,82.0,0,0,Yes,Private,Urban,144.2,35.4,smokes,0 +8470,Female,71.0,0,0,Yes,Private,Urban,71.38,19.7,never smoked,0 +42743,Female,20.0,0,0,No,Private,Urban,95.5,31.3,Unknown,0 +13949,Female,44.0,0,0,Yes,Govt_job,Urban,67.06,35.5,never smoked,0 +61096,Male,57.0,0,0,Yes,Private,Rural,70.16,25.8,formerly smoked,0 +19239,Female,50.0,0,0,Yes,Govt_job,Urban,104.24,32.8,Unknown,0 +70447,Male,50.0,0,0,Yes,Private,Rural,122.48,35.9,smokes,0 +6879,Female,44.0,0,0,No,Govt_job,Urban,215.9,41.8,smokes,0 +37451,Female,47.0,0,0,Yes,Govt_job,Rural,108.56,27.3,formerly smoked,0 +5686,Male,35.0,0,0,Yes,Private,Urban,69.88,27.7,Unknown,0 +4789,Male,8.0,0,0,No,children,Rural,91.54,13.4,Unknown,0 +897,Male,3.0,0,0,No,children,Rural,65.85,17.0,Unknown,0 +69553,Female,29.0,0,0,Yes,Private,Rural,60.74,20.0,never smoked,0 +58438,Male,36.0,0,0,No,Private,Rural,233.52,40.9,never smoked,0 +29104,Female,19.0,0,0,No,Private,Urban,110.7,38.5,never smoked,0 +26862,Female,41.0,0,0,Yes,Govt_job,Rural,78.93,30.9,formerly smoked,0 +38036,Female,23.0,0,0,No,Private,Urban,124.5,33.4,Unknown,0 +36666,Male,14.0,0,0,No,children,Urban,57.95,17.1,Unknown,0 +16316,Male,35.0,0,0,Yes,Private,Rural,92.82,28.6,Unknown,0 +61365,Male,45.0,0,0,Yes,Private,Rural,58.25,24.0,smokes,0 +12512,Female,52.0,1,0,Yes,Private,Rural,213.54,32.0,never smoked,0 +31835,Male,19.0,0,0,No,Private,Urban,74.86,28.4,never smoked,0 +4099,Female,21.0,0,0,No,Private,Urban,78.35,20.3,Unknown,0 +26893,Male,8.0,0,0,No,children,Urban,101.26,33.8,Unknown,0 +35143,Female,35.0,0,0,Yes,Private,Urban,86.87,43.2,Unknown,0 +1486,Female,33.0,0,0,Yes,Private,Rural,124.01,22.7,Unknown,0 +5043,Female,53.0,0,0,Yes,Private,Urban,83.41,29.9,never smoked,0 +2513,Male,59.0,0,1,Yes,Govt_job,Urban,188.69,,formerly smoked,0 +5451,Male,34.0,0,0,Yes,Private,Rural,86.51,,formerly smoked,0 +3640,Female,31.0,0,0,No,Self-employed,Rural,70.65,29.9,Unknown,0 +17835,Female,43.0,0,0,No,Self-employed,Rural,92.4,22.7,Unknown,0 +26826,Female,61.0,0,0,Yes,Self-employed,Urban,73.36,16.1,never smoked,0 +45713,Female,57.0,0,0,Yes,Govt_job,Urban,219.5,33.8,formerly smoked,0 +37660,Male,11.0,0,0,No,children,Rural,105.73,22.6,never smoked,0 +24782,Male,36.0,0,0,Yes,Private,Rural,83.79,25.5,smokes,0 +63416,Female,16.0,0,0,No,Private,Urban,58.02,22.5,Unknown,0 +16953,Female,60.0,0,0,Yes,Govt_job,Rural,61.94,27.9,formerly smoked,0 +42082,Male,13.0,0,0,No,children,Rural,99.71,23.5,Unknown,0 +51660,Female,69.0,0,0,Yes,Self-employed,Rural,63.19,32.2,never smoked,0 +27135,Male,69.0,1,0,Yes,Private,Rural,107.11,,smokes,0 +54058,Female,22.0,0,0,No,Private,Urban,56.84,29.9,smokes,0 +24272,Male,63.0,0,0,Yes,Govt_job,Rural,217.66,28.7,formerly smoked,0 +16028,Female,45.0,0,0,Yes,Private,Rural,77.19,37.2,smokes,0 +49645,Male,58.0,0,0,No,Private,Rural,76.22,22.2,formerly smoked,0 +54347,Male,61.0,0,0,Yes,Self-employed,Rural,155.32,26.6,formerly smoked,0 +4861,Female,30.0,0,0,Yes,Private,Urban,70.67,24.6,smokes,0 +54353,Female,78.0,1,1,Yes,Private,Urban,227.16,41.7,never smoked,0 +71016,Female,68.0,0,0,Yes,Private,Rural,58.69,26.2,formerly smoked,0 +33768,Female,16.0,0,0,No,Self-employed,Urban,88.85,27.1,Unknown,0 +62681,Female,38.0,1,0,Yes,Private,Urban,137.94,41.8,never smoked,0 +41007,Female,39.0,0,0,Yes,Private,Urban,60.6,34.2,never smoked,0 +35450,Female,51.0,0,0,Yes,Private,Rural,93.67,19.2,never smoked,0 +62793,Male,37.0,0,0,Yes,Private,Urban,79.56,25.2,never smoked,0 +66592,Male,16.0,0,0,No,Private,Rural,122.46,18.7,never smoked,0 +33462,Male,39.0,0,0,Yes,Private,Urban,92.32,43.0,never smoked,0 +29804,Male,24.0,1,0,Yes,Private,Rural,80.63,28.2,smokes,0 +33906,Male,51.0,0,0,Yes,Govt_job,Urban,92.32,34.7,smokes,0 +43510,Female,50.0,1,0,Yes,Govt_job,Urban,59.89,25.5,never smoked,0 +21202,Female,27.0,0,0,Yes,Private,Urban,80.57,39.8,smokes,0 +7222,Female,73.0,0,0,Yes,Self-employed,Urban,88.52,20.8,formerly smoked,0 +13561,Female,65.0,0,0,Yes,Private,Urban,88.82,28.2,formerly smoked,0 +29179,Female,76.0,1,1,Yes,Private,Rural,102.08,31.0,smokes,0 +5511,Male,66.0,0,0,Yes,Self-employed,Urban,71.38,,formerly smoked,0 +20825,Female,53.0,0,0,Yes,Govt_job,Rural,84.9,21.6,never smoked,0 +67144,Female,65.0,0,0,Yes,Self-employed,Urban,82.21,26.2,Unknown,0 +15515,Female,48.0,0,0,Yes,Self-employed,Rural,209.9,,smokes,0 +3753,Male,31.0,0,0,Yes,Private,Urban,74.05,26.0,Unknown,0 +27279,Male,1.72,0,0,No,children,Urban,90.46,22.5,Unknown,0 +48759,Female,45.0,0,0,Yes,Private,Rural,176.48,24.0,formerly smoked,0 +69524,Male,56.0,0,0,Yes,Self-employed,Urban,94.07,31.5,never smoked,0 +28443,Male,62.0,0,0,Yes,Self-employed,Urban,85.12,36.3,formerly smoked,0 +38578,Female,35.0,0,0,No,Private,Urban,71.81,25.4,Unknown,0 +66502,Male,16.0,0,0,No,Private,Rural,111.93,32.2,never smoked,0 +50978,Female,31.0,0,0,Yes,Govt_job,Urban,94.4,39.8,Unknown,0 +9034,Male,5.0,0,0,No,children,Urban,70.0,18.6,Unknown,0 +16582,Male,26.0,0,0,Yes,Private,Rural,95.57,30.7,smokes,0 +28500,Male,10.0,0,0,No,children,Urban,91.98,16.4,Unknown,0 +70241,Female,22.0,0,0,No,Private,Urban,66.29,20.5,smokes,0 +32452,Female,82.0,0,1,Yes,Self-employed,Rural,211.88,28.7,never smoked,0 +45573,Female,50.0,0,0,Yes,Private,Rural,76.55,29.0,smokes,0 +64412,Female,47.0,0,0,Yes,Private,Urban,56.67,24.4,never smoked,0 +66647,Male,31.0,0,0,Yes,Private,Rural,100.52,29.9,Unknown,0 +39450,Male,22.0,0,0,No,Private,Rural,58.96,25.3,Unknown,0 +57109,Female,12.0,0,0,No,children,Rural,81.66,23.5,formerly smoked,0 +3591,Female,63.0,1,0,Yes,Private,Rural,96.77,20.5,never smoked,0 +25138,Female,78.0,1,0,Yes,Private,Rural,91.63,33.5,smokes,0 +17277,Male,4.0,0,0,No,children,Urban,97.51,22.0,Unknown,0 +35333,Male,76.0,1,0,Yes,Private,Rural,225.6,29.0,never smoked,0 +18861,Male,32.0,0,0,No,Private,Rural,95.58,,smokes,0 +15120,Female,81.0,1,0,Yes,Self-employed,Rural,210.23,30.7,never smoked,0 +29221,Female,39.0,0,0,Yes,Private,Urban,92.82,37.4,never smoked,0 +11412,Female,59.0,0,0,Yes,Private,Rural,234.82,51.8,never smoked,0 +38858,Male,2.0,0,0,No,children,Rural,65.67,16.6,Unknown,0 +6802,Female,37.0,0,0,Yes,Private,Urban,74.51,29.5,Unknown,0 +8644,Female,78.0,0,1,Yes,Private,Rural,81.99,27.3,formerly smoked,0 +54579,Female,75.0,0,0,Yes,Self-employed,Urban,87.69,27.5,formerly smoked,0 +41935,Male,34.0,0,0,No,Private,Rural,125.29,33.9,never smoked,0 +17926,Female,48.0,0,0,Yes,Govt_job,Rural,111.64,27.9,Unknown,0 +13862,Female,13.0,0,0,No,Never_worked,Urban,70.93,22.9,never smoked,0 +64523,Male,54.0,1,0,Yes,Private,Urban,89.93,32.1,never smoked,0 +66065,Male,13.0,0,0,No,children,Rural,137.45,18.2,Unknown,0 +71869,Female,24.0,0,0,No,Private,Rural,72.06,30.2,formerly smoked,0 +11024,Female,76.0,0,0,Yes,Private,Rural,97.9,31.3,formerly smoked,0 +46035,Male,1.0,0,0,No,children,Urban,84.85,20.3,Unknown,0 +24630,Male,57.0,0,0,Yes,Private,Rural,230.59,23.2,formerly smoked,0 +11238,Male,46.0,0,0,Yes,Private,Rural,92.81,30.8,Unknown,0 +54946,Female,26.0,0,0,No,Private,Urban,168.15,22.9,never smoked,0 +24229,Female,56.0,0,0,Yes,Self-employed,Urban,224.63,42.8,never smoked,0 +29934,Male,34.0,0,0,Yes,Private,Urban,108.12,22.2,Unknown,0 +28998,Male,25.0,0,0,No,Private,Rural,85.17,28.7,smokes,0 +19805,Male,60.0,0,0,No,Private,Urban,84.14,32.3,never smoked,0 +63668,Male,22.0,0,0,No,Private,Rural,85.57,24.2,formerly smoked,0 +24876,Male,35.0,0,0,Yes,Private,Urban,82.81,23.9,never smoked,0 +34719,Male,48.0,1,0,No,Private,Urban,110.53,34.2,never smoked,0 +48769,Female,38.0,0,0,Yes,Private,Rural,61.88,29.0,Unknown,0 +22536,Female,12.0,0,0,No,children,Urban,85.04,29.9,never smoked,0 +8760,Female,22.0,0,0,No,Private,Urban,140.4,23.0,smokes,0 +53126,Female,0.64,0,0,No,children,Urban,62.27,17.3,Unknown,0 +18179,Male,13.0,0,0,No,Private,Rural,99.44,21.0,never smoked,0 +38242,Female,78.0,0,1,Yes,Self-employed,Rural,88.9,34.3,Unknown,0 +68708,Female,23.0,0,0,No,Private,Urban,64.1,19.8,Unknown,0 +12366,Female,35.0,0,0,No,Private,Urban,97.58,24.3,Unknown,0 +42465,Female,78.0,1,0,Yes,Private,Rural,58.66,16.4,never smoked,0 +24638,Male,50.0,0,0,Yes,Govt_job,Urban,88.24,32.6,Unknown,0 +58587,Male,61.0,0,0,Yes,Private,Urban,61.32,23.7,smokes,0 +9170,Male,60.0,0,0,Yes,Self-employed,Urban,185.71,,Unknown,0 +36545,Male,43.0,0,0,Yes,Private,Rural,62.99,27.0,formerly smoked,0 +19467,Male,60.0,1,0,Yes,Private,Urban,86.04,25.6,smokes,0 +16868,Female,51.0,0,0,Yes,Private,Rural,83.3,34.0,formerly smoked,0 +47608,Female,21.0,0,0,No,Private,Urban,208.17,24.9,never smoked,0 +38440,Male,16.0,0,0,No,Private,Rural,133.2,26.3,Unknown,0 +23543,Female,25.0,0,0,No,Private,Rural,81.54,43.1,Unknown,0 +65396,Female,36.0,0,0,Yes,Private,Rural,146.61,39.6,never smoked,0 +34621,Female,8.0,0,0,No,children,Urban,79.33,15.2,Unknown,0 +23561,Female,48.0,0,0,Yes,Private,Rural,84.56,41.8,never smoked,0 +16091,Male,14.0,0,0,No,Private,Rural,103.44,20.1,never smoked,0 +63597,Female,60.0,0,0,Yes,Private,Urban,185.31,39.3,never smoked,0 +57533,Male,61.0,1,0,Yes,Private,Urban,102.53,28.3,formerly smoked,0 +59370,Female,60.0,0,0,Yes,Private,Urban,65.78,27.5,Unknown,0 +57285,Male,56.0,0,0,No,Private,Rural,62.6,33.9,never smoked,0 +17515,Female,9.0,0,0,No,children,Rural,81.18,20.0,Unknown,0 +23988,Female,45.0,0,0,Yes,Private,Rural,76.68,34.8,smokes,0 +34958,Male,14.0,0,0,No,children,Urban,92.86,20.7,formerly smoked,0 +30620,Male,37.0,0,0,No,Private,Urban,90.95,24.6,smokes,0 +31811,Female,52.0,0,1,Yes,Private,Urban,85.66,39.4,never smoked,0 +1818,Female,30.0,0,0,No,Govt_job,Urban,88.2,,smokes,0 +5478,Female,60.0,0,0,Yes,Self-employed,Urban,203.04,,smokes,0 +26830,Female,47.0,0,0,Yes,Self-employed,Rural,68.37,29.4,smokes,0 +25883,Female,82.0,1,0,Yes,Self-employed,Urban,77.32,24.8,Unknown,0 +43657,Male,64.0,0,0,Yes,Govt_job,Rural,187.87,32.3,never smoked,0 +71917,Male,12.0,0,0,No,children,Rural,213.87,25.3,never smoked,0 +61299,Female,79.0,1,0,Yes,Private,Rural,119.62,39.0,Unknown,0 +24603,Male,77.0,0,0,Yes,Private,Urban,222.85,29.4,formerly smoked,0 +70654,Female,25.0,0,0,No,Private,Rural,100.82,31.9,Unknown,0 +49485,Female,26.0,0,0,No,Private,Rural,136.1,26.4,Unknown,0 +61641,Male,14.0,0,0,No,children,Rural,149.42,20.6,Unknown,0 +12600,Female,42.0,0,0,Yes,Self-employed,Rural,79.99,26.3,never smoked,0 +11566,Male,37.0,0,0,Yes,Private,Rural,118.21,23.6,Unknown,0 +72108,Male,8.0,0,0,No,children,Rural,56.3,18.0,Unknown,0 +35117,Female,78.0,0,0,Yes,Self-employed,Rural,84.49,26.4,never smoked,0 +22967,Male,18.0,0,0,No,Private,Rural,89.61,22.0,never smoked,0 +28913,Male,78.0,0,0,Yes,Private,Rural,100.09,30.5,Unknown,0 +70857,Female,55.0,0,0,Yes,Govt_job,Urban,198.36,29.1,smokes,0 +42229,Female,68.0,0,0,Yes,Self-employed,Rural,93.61,24.9,never smoked,0 +23459,Female,47.0,0,0,Yes,Private,Rural,75.43,36.4,smokes,0 +2209,Female,47.0,0,0,Yes,Govt_job,Urban,100.31,31.2,smokes,0 +38673,Female,51.0,0,0,Yes,Private,Rural,105.63,32.8,never smoked,0 +42184,Male,43.0,0,0,Yes,Self-employed,Rural,82.84,31.6,never smoked,0 +59250,Female,78.0,0,0,Yes,Govt_job,Urban,58.88,35.8,Unknown,0 +29525,Male,63.0,0,0,Yes,Private,Urban,92.27,35.2,formerly smoked,0 +42713,Female,45.0,0,0,Yes,Private,Urban,115.23,28.0,never smoked,0 +16066,Female,53.0,1,1,Yes,Private,Urban,196.25,24.9,smokes,0 +33692,Female,12.0,0,0,No,children,Rural,85.97,35.7,Unknown,0 +29232,Female,56.0,0,0,Yes,Private,Urban,114.33,30.7,smokes,0 +70122,Female,29.0,0,0,Yes,Private,Rural,72.52,33.9,never smoked,0 +25305,Male,10.0,0,0,No,children,Rural,99.87,,formerly smoked,0 +66110,Female,55.0,0,0,Yes,Private,Rural,63.47,27.8,Unknown,0 +69461,Female,49.0,0,0,Yes,Govt_job,Urban,90.58,23.2,Unknown,0 +7885,Female,23.0,0,0,No,Private,Rural,92.26,17.1,Unknown,0 +60050,Female,53.0,0,0,Yes,Self-employed,Urban,113.74,31.6,smokes,0 +21608,Male,56.0,1,0,Yes,Govt_job,Urban,72.79,23.8,smokes,0 +32150,Female,56.0,0,0,Yes,Self-employed,Rural,94.71,29.6,smokes,0 +48069,Female,61.0,0,0,Yes,Private,Rural,194.53,45.0,never smoked,0 +24066,Female,45.0,0,0,Yes,Private,Urban,72.65,25.6,Unknown,0 +39242,Male,80.0,1,1,Yes,Private,Urban,86.68,27.7,formerly smoked,0 +57618,Female,47.0,0,0,Yes,Self-employed,Rural,140.39,25.5,never smoked,0 +14599,Female,3.0,0,0,No,children,Rural,77.87,18.3,Unknown,0 +27479,Male,63.0,0,0,Yes,Self-employed,Rural,104.7,21.0,formerly smoked,0 +10238,Female,68.0,1,0,Yes,Private,Urban,95.82,28.6,never smoked,0 +49014,Female,76.0,0,0,Yes,Govt_job,Urban,204.05,23.5,never smoked,0 +67063,Male,62.0,0,0,Yes,Self-employed,Urban,130.56,36.1,Unknown,0 +38488,Female,30.0,0,0,Yes,Private,Urban,67.78,29.2,smokes,0 +33298,Female,44.0,0,0,Yes,Private,Urban,105.29,27.6,formerly smoked,0 +48739,Male,47.0,0,0,Yes,Self-employed,Urban,135.19,36.0,smokes,0 +52428,Male,25.0,0,0,No,Private,Urban,116.12,20.4,smokes,0 +61171,Female,31.0,0,0,No,Private,Rural,59.63,19.9,never smoked,0 +40878,Male,71.0,0,0,Yes,Self-employed,Rural,56.43,29.2,formerly smoked,0 +61247,Female,32.0,0,0,No,Private,Rural,199.18,27.9,never smoked,0 +27799,Male,72.0,0,0,Yes,Private,Rural,209.26,38.1,formerly smoked,0 +2824,Female,44.0,0,0,Yes,Govt_job,Urban,91.21,24.1,never smoked,0 +12376,Male,63.0,0,0,Yes,Govt_job,Urban,95.16,37.8,formerly smoked,0 +72435,Female,37.0,0,0,Yes,Private,Urban,217.11,29.1,never smoked,0 +46864,Male,54.0,0,1,Yes,Govt_job,Urban,222.46,35.7,never smoked,0 +2019,Male,20.0,0,0,No,Private,Rural,70.96,,Unknown,0 +26154,Male,56.0,0,0,Yes,Private,Rural,82.44,34.5,never smoked,0 +47972,Female,25.0,0,0,No,Govt_job,Rural,74.11,34.1,smokes,0 +47751,Female,19.0,0,0,No,Private,Urban,131.23,21.1,Unknown,0 +25405,Male,62.0,0,0,Yes,Govt_job,Urban,187.52,57.7,never smoked,0 +34525,Female,27.0,0,0,No,Private,Rural,83.26,22.2,never smoked,0 +13755,Male,5.0,0,0,No,children,Rural,99.07,20.5,Unknown,0 +56019,Female,20.0,0,0,No,Private,Urban,76.63,26.2,never smoked,0 +67942,Male,21.0,0,0,No,Private,Rural,65.09,23.5,never smoked,0 +43806,Male,44.0,0,0,Yes,Private,Urban,142.31,29.1,smokes,0 +39849,Male,39.0,1,0,No,Private,Urban,80.99,39.8,Unknown,0 +7344,Male,38.0,0,0,Yes,Govt_job,Rural,237.74,21.2,never smoked,0 +1741,Male,77.0,0,0,Yes,Private,Urban,74.26,,formerly smoked,0 +52220,Female,26.0,0,0,No,Private,Rural,154.08,20.2,formerly smoked,0 +20129,Male,51.0,0,0,Yes,Private,Rural,78.29,30.8,never smoked,0 +61178,Male,39.0,0,0,Yes,Private,Urban,164.67,33.8,Unknown,0 +48226,Female,5.0,0,0,No,children,Rural,59.61,17.1,Unknown,0 +1151,Female,59.0,0,0,Yes,Self-employed,Urban,67.75,21.3,formerly smoked,0 +6672,Male,67.0,0,0,Yes,Private,Urban,92.73,,never smoked,0 +10333,Female,45.0,0,0,Yes,Private,Urban,90.35,22.3,never smoked,0 +11134,Male,43.0,0,0,Yes,Private,Rural,77.86,28.9,never smoked,0 +25199,Female,80.0,0,0,Yes,Private,Rural,71.88,26.7,never smoked,0 +66490,Male,42.0,1,0,Yes,Govt_job,Urban,118.82,41.0,smokes,0 +10390,Female,8.0,0,0,No,children,Urban,67.33,16.7,Unknown,0 +33144,Female,68.0,0,0,No,Govt_job,Urban,121.66,29.1,smokes,0 +72497,Female,5.0,0,0,No,children,Rural,111.92,23.6,Unknown,0 +16783,Male,57.0,0,1,Yes,Self-employed,Urban,92.82,27.8,formerly smoked,0 +727,Male,44.0,0,0,Yes,Private,Rural,95.46,31.4,smokes,0 +51935,Male,16.0,0,0,No,Never_worked,Urban,59.99,28.2,never smoked,0 +44177,Female,60.0,0,0,Yes,Self-employed,Rural,68.96,30.8,Unknown,0 +2421,Female,58.0,0,0,Yes,Private,Urban,90.26,36.1,never smoked,0 +48693,Female,43.0,0,0,Yes,Private,Rural,91.9,32.7,formerly smoked,0 +5723,Female,50.0,0,0,Yes,Private,Urban,91.08,26.4,never smoked,0 +29470,Female,1.48,0,0,No,children,Rural,118.55,20.7,Unknown,0 +71590,Female,5.0,0,0,No,children,Rural,102.04,18.5,Unknown,0 +16600,Male,9.0,0,0,No,children,Rural,65.52,33.5,Unknown,0 +28309,Female,67.0,0,0,Yes,Private,Urban,82.09,14.1,never smoked,0 +41911,Female,21.0,0,0,Yes,Private,Rural,149.9,23.4,Unknown,0 +3390,Female,36.0,0,0,Yes,Private,Rural,100.33,23.2,never smoked,0 +31806,Female,70.0,0,0,Yes,Private,Urban,91.25,36.0,Unknown,0 +68750,Male,57.0,0,0,Yes,Private,Rural,89.81,35.6,never smoked,0 +32840,Female,52.0,0,0,Yes,Private,Urban,97.32,21.8,smokes,0 +49797,Female,28.0,0,0,No,Private,Rural,75.53,34.9,never smoked,0 +72096,Female,41.0,0,0,Yes,Private,Rural,121.44,20.4,never smoked,0 +13503,Male,81.0,0,0,Yes,Self-employed,Urban,83.52,25.0,never smoked,0 +41536,Female,33.0,0,0,Yes,Govt_job,Rural,57.92,22.3,Unknown,0 +17441,Female,31.0,0,0,No,Self-employed,Rural,75.27,27.3,never smoked,0 +62238,Female,42.0,0,0,No,Private,Urban,80.24,28.9,never smoked,0 +737,Male,10.0,0,0,No,children,Urban,88.69,30.4,Unknown,0 +4627,Male,34.0,0,0,No,Private,Urban,69.09,36.9,formerly smoked,0 +47208,Female,70.0,0,0,Yes,Self-employed,Rural,62.67,27.7,never smoked,0 +6844,Male,33.0,0,0,Yes,Private,Urban,98.74,44.4,never smoked,0 +60001,Female,58.0,0,0,Yes,Private,Rural,56.51,28.2,smokes,0 +44503,Female,25.0,0,0,No,Private,Rural,65.95,35.0,never smoked,0 +44938,Female,1.4,0,0,No,children,Urban,129.07,20.6,Unknown,0 +40371,Female,47.0,0,0,Yes,Private,Urban,62.47,26.5,never smoked,0 +39011,Female,14.0,0,0,No,children,Urban,69.82,25.1,never smoked,0 +1460,Female,82.0,0,0,Yes,Private,Urban,99.68,22.2,Unknown,0 +48364,Male,52.0,0,0,Yes,Govt_job,Urban,223.35,27.3,formerly smoked,0 +30285,Male,72.0,0,1,Yes,Self-employed,Rural,74.36,27.3,never smoked,0 +21472,Male,52.0,0,1,Yes,Self-employed,Rural,102.97,41.9,formerly smoked,0 +71182,Female,61.0,1,0,Yes,Govt_job,Urban,153.38,38.8,never smoked,0 +33412,Female,15.0,0,0,No,Private,Rural,87.1,18.3,never smoked,0 +16061,Female,1.56,0,0,No,children,Urban,113.4,19.5,Unknown,0 +60266,Male,6.0,0,0,No,children,Rural,94.88,17.2,Unknown,0 +70965,Male,3.0,0,0,No,children,Urban,82.73,20.8,Unknown,0 +56736,Male,18.0,0,0,No,Private,Rural,67.8,23.8,Unknown,0 +6537,Female,53.0,0,0,Yes,Self-employed,Urban,84.85,24.7,never smoked,0 +41827,Male,58.0,0,0,Yes,Private,Rural,135.89,23.1,formerly smoked,0 +49480,Female,31.0,0,0,No,Private,Urban,106.13,22.4,never smoked,0 +36704,Female,29.0,0,0,Yes,Self-employed,Rural,74.33,29.9,smokes,0 +8884,Female,5.0,0,0,No,children,Rural,109.4,20.0,Unknown,0 +49775,Male,40.0,0,0,Yes,Private,Rural,75.4,28.7,Unknown,0 +25777,Male,75.0,0,0,Yes,Private,Rural,87.69,26.2,formerly smoked,0 +2070,Male,52.0,0,0,Yes,Private,Urban,95.85,29.6,smokes,0 +15752,Male,39.0,0,0,Yes,Private,Urban,90.36,30.8,formerly smoked,0 +45915,Female,40.0,0,0,No,Private,Rural,63.45,32.7,formerly smoked,0 +48775,Female,78.0,1,0,Yes,Self-employed,Rural,201.07,21.8,Unknown,0 +65697,Female,39.0,0,0,Yes,Private,Urban,122.91,35.7,never smoked,0 +65229,Female,17.0,0,0,No,Private,Rural,55.41,25.4,Unknown,0 +56889,Male,45.0,1,0,Yes,Private,Urban,60.99,32.8,Unknown,0 +6596,Male,0.56,0,0,No,children,Rural,111.77,21.1,Unknown,0 +46577,Female,13.0,0,0,No,Private,Urban,77.63,31.7,never smoked,0 +63455,Male,26.0,0,0,Yes,Private,Urban,70.61,20.0,never smoked,0 +21724,Female,42.0,0,0,Yes,Self-employed,Urban,124.34,34.7,formerly smoked,0 +29863,Male,44.0,0,0,No,Private,Urban,103.44,28.0,never smoked,0 +69249,Female,3.0,0,0,No,children,Urban,124.5,16.4,Unknown,0 +8968,Female,42.0,0,0,Yes,Private,Urban,208.06,,smokes,0 +20310,Male,25.0,0,0,No,Govt_job,Urban,75.5,24.6,never smoked,0 +11450,Female,41.0,0,0,Yes,Self-employed,Urban,98.85,24.6,never smoked,0 +31999,Male,51.0,0,1,Yes,Private,Rural,96.06,30.3,Unknown,0 +34133,Female,20.0,0,0,No,Private,Rural,93.74,23.7,Unknown,0 +44202,Female,25.0,0,0,Yes,Private,Urban,65.6,33.5,never smoked,0 +72311,Male,18.0,0,0,No,Private,Urban,113.24,24.9,Unknown,0 +18704,Female,37.0,0,0,Yes,Private,Rural,94.77,48.9,Unknown,0 +36518,Female,51.0,0,0,Yes,Private,Urban,145.22,31.4,Unknown,0 +35651,Male,2.0,0,0,No,children,Urban,112.92,18.4,Unknown,0 +13749,Female,38.0,0,0,Yes,Private,Rural,84.79,24.2,formerly smoked,0 +21521,Male,64.0,0,1,Yes,Private,Urban,103.28,34.3,smokes,0 +27163,Female,60.0,1,0,Yes,Private,Urban,109.0,,Unknown,0 +8882,Male,22.0,0,0,No,Govt_job,Rural,96.18,25.1,never smoked,0 +32016,Male,71.0,1,0,Yes,Private,Rural,186.95,33.3,never smoked,0 +14287,Female,32.0,0,0,Yes,Private,Urban,68.66,22.6,Unknown,0 +60139,Female,32.0,0,0,Yes,Self-employed,Rural,128.72,26.3,smokes,0 +2447,Female,63.0,0,0,Yes,Private,Urban,85.04,29.7,formerly smoked,0 +42500,Male,0.24,0,0,No,children,Rural,146.97,18.5,Unknown,0 +44391,Male,54.0,0,0,Yes,Private,Urban,65.69,21.4,never smoked,0 +12741,Female,25.0,0,0,Yes,Private,Rural,97.52,45.5,formerly smoked,0 +15418,Female,80.0,0,0,Yes,Self-employed,Rural,90.43,34.2,never smoked,0 +69482,Female,31.0,0,0,Yes,Govt_job,Urban,81.71,32.7,Unknown,0 +32270,Male,53.0,0,0,Yes,Private,Rural,198.24,38.1,never smoked,0 +50983,Male,35.0,0,0,Yes,Private,Rural,90.51,26.7,never smoked,0 +6493,Male,31.0,0,0,No,Private,Urban,97.78,22.6,smokes,0 +45399,Male,60.0,0,0,Yes,Private,Urban,80.74,27.7,Unknown,0 +67099,Male,0.56,0,0,No,children,Rural,57.02,20.7,Unknown,0 +19585,Female,21.0,0,0,No,Private,Rural,93.0,25.7,never smoked,0 +26247,Female,78.0,0,0,Yes,Private,Rural,95.37,17.3,Unknown,0 +25818,Male,59.0,0,0,Yes,Govt_job,Rural,96.25,23.3,formerly smoked,0 +34261,Male,0.64,0,0,No,children,Rural,86.74,16.2,Unknown,0 +64128,Male,10.0,0,0,No,children,Urban,63.08,20.5,smokes,0 +62817,Male,60.0,0,0,Yes,Private,Urban,129.16,33.6,smokes,0 +69339,Male,11.0,0,0,No,children,Urban,99.79,20.2,Unknown,0 +25919,Male,48.0,1,0,Yes,Self-employed,Urban,83.34,49.3,never smoked,0 +71978,Female,50.0,0,0,Yes,Private,Urban,95.01,26.2,formerly smoked,0 +1473,Male,69.0,1,0,Yes,Private,Urban,229.21,30.1,smokes,0 +66546,Female,20.0,0,0,No,Private,Urban,80.08,25.1,never smoked,0 +56584,Female,22.0,0,0,No,Private,Rural,62.0,32.7,smokes,0 +38316,Male,55.0,0,0,Yes,Private,Rural,118.69,26.4,Unknown,0 +15647,Female,57.0,0,0,No,Private,Rural,77.57,21.0,Unknown,0 +59933,Female,29.0,0,0,No,Private,Rural,108.75,24.1,Unknown,0 +3429,Female,32.0,0,0,No,Govt_job,Urban,108.23,20.4,Unknown,0 +60963,Female,54.0,0,0,Yes,Private,Rural,151.33,30.9,formerly smoked,0 +67689,Male,37.0,0,0,Yes,Self-employed,Rural,82.43,39.1,Unknown,0 +31689,Female,58.0,0,0,Yes,Private,Rural,107.17,27.7,Unknown,0 +23240,Female,41.0,0,0,Yes,Private,Rural,91.46,29.5,never smoked,0 +30850,Male,72.0,0,0,Yes,Private,Urban,81.05,30.3,Unknown,0 +38920,Male,0.48,0,0,No,children,Urban,73.02,,Unknown,0 +66080,Female,32.0,0,0,No,Private,Urban,114.37,37.8,Unknown,0 +57263,Female,54.0,0,0,Yes,Private,Urban,100.29,30.2,never smoked,0 +60126,Female,79.0,0,0,Yes,Private,Urban,68.37,24.2,smokes,0 +64393,Male,56.0,0,0,No,Self-employed,Rural,87.95,25.2,never smoked,0 +69285,Female,45.0,0,0,Yes,Private,Urban,73.27,22.2,smokes,0 +24428,Male,6.0,0,0,No,children,Rural,131.43,17.7,Unknown,0 +59642,Female,45.0,0,0,Yes,Private,Urban,107.29,29.6,never smoked,0 +12064,Male,60.0,0,0,Yes,Private,Rural,68.24,32.2,Unknown,0 +59737,Female,65.0,0,0,Yes,Private,Urban,74.01,28.7,smokes,0 +19352,Female,57.0,0,0,Yes,Private,Urban,95.4,19.5,Unknown,0 +61903,Male,58.0,0,0,No,Govt_job,Rural,95.75,38.5,smokes,0 +47701,Male,8.0,0,0,No,children,Urban,104.51,20.6,Unknown,0 +15225,Male,18.0,0,0,No,Private,Rural,108.87,21.5,Unknown,0 +66431,Male,49.0,0,0,Yes,Private,Urban,209.06,43.8,Unknown,0 +57236,Male,2.0,0,0,No,children,Rural,86.57,18.0,Unknown,0 +48453,Female,52.0,0,0,Yes,Private,Urban,120.25,28.2,Unknown,0 +8031,Female,63.0,0,0,Yes,Self-employed,Rural,85.51,26.6,smokes,0 +39139,Female,57.0,0,0,Yes,Private,Rural,84.18,35.5,never smoked,0 +4838,Female,50.0,0,0,Yes,Govt_job,Urban,82.37,30.7,never smoked,0 +22689,Male,12.0,0,0,No,children,Rural,96.15,18.7,Unknown,0 +37752,Female,35.0,0,0,Yes,Private,Rural,74.55,22.4,never smoked,0 +32320,Female,35.0,0,0,Yes,Self-employed,Urban,114.45,25.2,smokes,0 +14889,Male,64.0,0,0,Yes,Govt_job,Rural,113.68,24.2,never smoked,0 +13964,Female,42.0,0,0,Yes,Private,Rural,107.91,20.5,never smoked,0 +31746,Female,62.0,0,0,Yes,Private,Rural,83.85,24.5,never smoked,0 +17492,Female,3.0,0,0,No,children,Urban,101.3,24.8,Unknown,0 +1499,Female,43.0,0,0,Yes,Govt_job,Rural,72.13,42.6,never smoked,0 +34396,Female,52.0,1,0,Yes,Private,Urban,94.98,23.8,never smoked,0 +36750,Male,64.0,1,0,Yes,Private,Rural,228.42,42.3,formerly smoked,0 +68816,Male,59.0,0,0,Yes,Private,Rural,93.9,42.2,never smoked,0 +16129,Female,81.0,0,0,Yes,Self-employed,Urban,93.13,26.1,Unknown,0 +64006,Female,15.0,0,0,No,Private,Urban,121.6,22.8,never smoked,0 +51845,Male,50.0,0,0,Yes,Govt_job,Rural,84.4,42.3,formerly smoked,0 +30692,Male,73.0,0,0,Yes,Private,Rural,82.13,28.5,never smoked,0 +65712,Male,19.0,0,0,No,Private,Urban,73.33,23.0,never smoked,0 +42161,Female,30.0,0,0,Yes,Private,Urban,75.88,32.8,Unknown,0 +16938,Female,40.0,0,0,Yes,Self-employed,Rural,212.97,49.8,formerly smoked,0 +16113,Female,47.0,0,0,Yes,Govt_job,Rural,100.41,23.8,never smoked,0 +29388,Female,66.0,0,0,Yes,Private,Urban,202.05,31.7,smokes,0 +65109,Male,47.0,0,0,Yes,Private,Urban,71.42,34.9,smokes,0 +61242,Female,41.0,1,0,Yes,Govt_job,Rural,107.5,54.0,never smoked,0 +65252,Female,63.0,0,0,Yes,Govt_job,Rural,55.57,26.8,formerly smoked,0 +49615,Female,12.0,0,0,No,children,Urban,58.14,21.3,never smoked,0 +63511,Male,1.32,0,0,No,children,Rural,78.53,19.8,Unknown,0 +14089,Female,46.0,0,0,Yes,Private,Urban,78.79,42.4,smokes,0 +16987,Female,8.0,0,0,No,children,Urban,96.62,16.4,Unknown,0 +53399,Male,74.0,0,0,Yes,Private,Rural,65.28,28.2,never smoked,0 +36946,Male,74.0,0,0,Yes,Private,Rural,92.67,26.3,formerly smoked,0 +55522,Female,4.0,0,0,No,children,Rural,206.25,17.0,Unknown,0 +27954,Female,26.0,0,0,No,Private,Urban,114.18,23.3,never smoked,0 +5355,Male,63.0,0,0,Yes,Govt_job,Rural,231.69,56.1,formerly smoked,0 +69069,Female,48.0,0,1,No,Private,Rural,101.89,25.1,smokes,0 +11539,Female,24.0,1,0,No,Private,Urban,107.22,35.3,smokes,0 +16847,Male,47.0,0,0,No,Private,Rural,101.99,36.3,never smoked,0 +15873,Male,70.0,0,0,Yes,Private,Rural,72.56,30.4,formerly smoked,0 +15415,Male,41.0,1,1,Yes,Private,Urban,94.47,43.9,never smoked,0 +22891,Female,42.0,0,0,Yes,Self-employed,Urban,98.76,26.4,smokes,0 +7394,Female,57.0,1,0,No,Private,Rural,116.93,28.3,never smoked,0 +29915,Female,51.0,0,0,No,Private,Rural,219.96,42.3,never smoked,0 +62607,Male,15.0,0,0,No,Private,Urban,75.77,38.0,never smoked,0 +24404,Male,11.0,0,0,No,children,Urban,124.35,32.7,Unknown,0 +69666,Female,27.0,0,0,Yes,Self-employed,Urban,88.97,28.8,never smoked,0 +54997,Female,53.0,0,0,Yes,Self-employed,Rural,72.49,38.5,never smoked,0 +6199,Female,52.0,0,0,Yes,Govt_job,Rural,107.27,30.1,Unknown,0 +4635,Female,68.0,0,0,Yes,Private,Rural,97.96,31.3,never smoked,0 +3305,Male,65.0,0,0,Yes,Private,Urban,197.69,28.4,smokes,0 +24342,Female,23.0,0,0,No,Private,Rural,112.3,26.6,Unknown,0 +65093,Female,43.0,0,0,Yes,Self-employed,Urban,75.77,20.4,formerly smoked,0 +46261,Male,55.0,0,0,Yes,Private,Urban,76.51,34.7,Unknown,0 +42624,Female,52.0,0,0,Yes,Private,Urban,93.14,32.5,never smoked,0 +24735,Female,21.0,0,0,No,Private,Rural,80.84,30.7,Unknown,0 +50671,Male,78.0,1,1,Yes,Self-employed,Rural,199.88,29.6,formerly smoked,0 +1679,Male,35.0,0,0,Yes,Private,Rural,77.48,,formerly smoked,0 +66680,Female,49.0,1,0,Yes,Private,Rural,65.34,39.4,never smoked,0 +34248,Male,50.0,1,0,No,Private,Urban,81.96,,formerly smoked,0 +65336,Female,27.0,0,0,Yes,Private,Urban,98.71,26.1,formerly smoked,0 +68333,Female,52.0,1,0,No,Private,Rural,170.22,27.2,formerly smoked,0 +60210,Female,22.0,0,0,No,Private,Urban,73.5,41.3,smokes,0 +11573,Female,19.0,0,0,No,Private,Rural,72.39,,smokes,0 +67890,Male,77.0,0,1,Yes,Private,Urban,102.96,20.9,formerly smoked,0 +49254,Male,57.0,1,0,Yes,Private,Urban,80.72,41.5,formerly smoked,0 +9199,Male,13.0,0,0,No,Self-employed,Urban,74.19,31.1,formerly smoked,0 +35402,Male,14.0,0,0,No,Private,Urban,77.12,24.5,formerly smoked,0 +25996,Female,29.0,0,0,Yes,Private,Urban,81.2,23.0,Unknown,0 +8345,Female,49.0,0,0,Yes,Private,Rural,114.76,24.7,never smoked,0 +63219,Male,1.24,0,0,No,children,Urban,109.97,19.3,Unknown,0 +8770,Male,21.0,0,0,No,Self-employed,Urban,92.87,37.0,never smoked,0 +22370,Male,36.0,1,0,No,Govt_job,Urban,113.05,31.0,smokes,0 +25930,Male,42.0,0,0,Yes,Private,Urban,68.24,33.1,formerly smoked,0 +33478,Female,56.0,0,0,No,Private,Rural,74.35,26.6,smokes,0 +23009,Male,46.0,0,0,Yes,Private,Urban,91.08,27.7,never smoked,0 +24885,Male,79.0,0,1,Yes,Self-employed,Urban,88.83,40.3,smokes,0 +58591,Female,25.0,0,0,No,Private,Rural,134.33,19.5,Unknown,0 +44777,Male,67.0,0,0,Yes,Private,Rural,208.78,26.7,Unknown,0 +46363,Male,37.0,0,0,Yes,Private,Rural,66.17,26.1,never smoked,0 +36377,Female,44.0,0,0,Yes,Private,Rural,222.29,38.2,never smoked,0 +15440,Female,36.0,0,0,Yes,Private,Rural,114.16,21.3,smokes,0 +56420,Male,17.0,1,0,No,Private,Rural,61.67,97.6,Unknown,0 +39531,Male,50.0,1,0,Yes,Private,Rural,220.36,40.9,formerly smoked,0 +55220,Male,53.0,0,0,Yes,Private,Urban,76.03,27.3,never smoked,0 +30731,Female,39.0,0,0,No,Self-employed,Urban,73.06,20.9,never smoked,0 +14479,Female,71.0,0,1,Yes,Private,Urban,187.88,29.2,formerly smoked,0 +40471,Female,18.0,0,0,No,Private,Urban,79.89,17.9,Unknown,0 +7384,Male,55.0,0,0,No,Self-employed,Rural,79.02,38.0,Unknown,0 +53422,Male,52.0,0,0,Yes,Private,Rural,191.66,26.1,smokes,0 +59745,Female,27.0,0,0,Yes,Private,Urban,76.74,53.9,Unknown,0 +24721,Male,24.0,0,0,No,Private,Urban,72.29,22.2,Unknown,0 +9644,Male,72.0,0,0,Yes,Private,Urban,92.59,24.6,formerly smoked,0 +50837,Male,41.0,0,0,Yes,Self-employed,Rural,80.42,33.4,formerly smoked,0 +67941,Female,29.0,0,0,No,Self-employed,Rural,62.47,34.4,formerly smoked,0 +43590,Female,26.0,0,0,Yes,Private,Rural,63.94,17.6,never smoked,0 +29014,Female,23.0,0,0,Yes,Private,Rural,77.73,19.2,never smoked,0 +66051,Male,43.0,0,0,Yes,Self-employed,Rural,115.79,31.8,Unknown,0 +70783,Female,43.0,0,0,Yes,Private,Urban,96.3,28.1,smokes,0 +10716,Female,49.0,0,0,Yes,Private,Rural,107.46,32.1,never smoked,0 +7868,Male,13.0,0,0,No,children,Rural,108.33,17.4,never smoked,0 +58350,Female,26.0,0,0,No,Govt_job,Rural,89.37,20.2,never smoked,0 +18927,Female,10.0,0,0,No,children,Urban,93.64,23.4,Unknown,0 +19550,Male,39.0,0,0,Yes,Private,Urban,217.75,39.5,never smoked,0 +31372,Female,41.0,0,0,Yes,Private,Rural,83.44,21.5,Unknown,0 +55262,Male,25.0,0,0,Yes,Private,Rural,93.88,24.3,smokes,0 +50238,Male,10.0,0,0,No,children,Urban,55.34,15.3,Unknown,0 +2868,Female,54.0,0,0,Yes,Govt_job,Rural,102.61,32.4,Unknown,0 +51343,Male,7.0,0,0,No,children,Rural,62.08,16.1,Unknown,0 +56324,Female,53.0,0,0,Yes,Self-employed,Rural,81.76,34.3,formerly smoked,0 +42047,Female,55.0,0,0,Yes,Self-employed,Urban,59.2,43.8,never smoked,0 +36486,Male,6.0,0,0,No,children,Urban,55.61,19.6,Unknown,0 +62456,Female,72.0,0,0,Yes,Self-employed,Urban,226.88,36.7,formerly smoked,0 +64980,Female,42.0,0,0,Yes,Govt_job,Urban,65.66,33.7,never smoked,0 +65962,Male,50.0,0,0,Yes,Private,Urban,58.7,38.9,smokes,0 +47521,Female,55.0,1,0,Yes,Govt_job,Urban,186.4,28.0,never smoked,0 +41501,Female,47.0,0,0,Yes,Govt_job,Urban,122.32,23.9,Unknown,0 +47582,Male,3.0,0,0,No,children,Urban,59.05,16.6,Unknown,0 +63938,Female,49.0,0,0,Yes,Self-employed,Urban,149.13,42.9,smokes,0 +49627,Female,12.0,0,0,No,children,Urban,82.39,17.1,never smoked,0 +61291,Male,28.0,0,0,Yes,Private,Rural,169.49,27.2,Unknown,0 +53032,Male,40.0,0,0,Yes,Private,Rural,80.25,30.3,formerly smoked,0 +45040,Male,55.0,0,0,Yes,Private,Urban,203.81,33.9,formerly smoked,0 +56791,Male,9.0,0,0,No,children,Urban,170.76,20.0,Unknown,0 +37320,Female,77.0,0,0,Yes,Private,Rural,80.85,19.4,Unknown,0 +72514,Male,18.0,0,0,No,Private,Rural,120.58,21.5,never smoked,0 +3842,Male,73.0,0,0,Yes,Private,Rural,86.57,28.5,formerly smoked,0 +38143,Female,67.0,1,0,Yes,Private,Urban,90.01,34.4,smokes,0 +54296,Male,58.0,0,0,Yes,Self-employed,Rural,68.84,43.7,formerly smoked,0 +48435,Female,2.0,0,0,No,children,Rural,155.14,13.7,Unknown,0 +42212,Female,38.0,0,0,Yes,Private,Urban,158.48,33.7,formerly smoked,0 +47607,Male,5.0,0,0,No,children,Rural,92.56,18.0,Unknown,0 +16535,Female,34.0,0,0,No,Private,Rural,90.15,27.9,formerly smoked,0 +66677,Male,78.0,0,0,Yes,Private,Rural,80.09,21.8,never smoked,0 +57270,Female,57.0,0,0,Yes,Private,Rural,189.44,35.8,never smoked,0 +22414,Female,17.0,0,0,No,Private,Rural,70.03,23.1,smokes,0 +63401,Female,71.0,0,0,Yes,Self-employed,Rural,249.29,30.3,smokes,0 +32252,Female,19.0,0,0,No,Private,Rural,72.52,32.0,Unknown,0 +17950,Male,56.0,0,0,Yes,Private,Urban,96.93,25.0,smokes,0 +53990,Male,64.0,0,1,Yes,Private,Urban,211.35,30.7,formerly smoked,0 +20565,Male,13.0,0,0,No,children,Rural,85.87,24.3,Unknown,0 +59993,Male,40.0,0,0,Yes,Private,Rural,60.96,11.5,never smoked,0 +42830,Male,80.0,0,1,Yes,Private,Urban,120.09,30.7,never smoked,0 +34721,Female,62.0,1,0,Yes,Govt_job,Urban,92.13,33.7,never smoked,0 +5157,Male,79.0,1,0,Yes,Self-employed,Urban,83.07,26.5,smokes,0 +48851,Female,9.0,0,0,No,children,Rural,77.67,17.6,Unknown,0 +26084,Female,77.0,1,0,Yes,Self-employed,Urban,109.51,,never smoked,0 +23413,Female,26.0,0,0,No,Private,Urban,97.24,22.5,never smoked,0 +49970,Male,1.72,0,0,No,children,Rural,127.29,18.5,Unknown,0 +72414,Male,16.0,0,0,No,Private,Urban,134.8,22.4,never smoked,0 +21374,Female,40.0,0,0,Yes,Private,Urban,74.65,25.3,formerly smoked,0 +69623,Male,46.0,0,0,Yes,Private,Urban,85.84,37.3,never smoked,0 +40378,Male,45.0,1,0,Yes,Self-employed,Urban,90.43,39.7,smokes,0 +4671,Female,59.0,0,0,No,Private,Urban,74.35,28.0,never smoked,0 +17295,Female,31.0,0,0,Yes,Self-employed,Urban,206.59,41.4,smokes,0 +55466,Female,69.0,0,1,Yes,Private,Urban,196.33,25.3,never smoked,0 +65419,Male,73.0,0,1,Yes,Govt_job,Rural,70.23,28.1,never smoked,0 +34448,Female,56.0,0,0,Yes,Self-employed,Urban,242.94,41.2,never smoked,0 +14406,Female,80.0,0,1,Yes,Self-employed,Rural,103.06,28.8,never smoked,0 +924,Female,60.0,0,0,Yes,Govt_job,Urban,80.86,31.0,smokes,0 +71339,Female,40.0,0,0,Yes,Govt_job,Urban,114.32,28.3,smokes,0 +31443,Female,30.0,0,0,Yes,Govt_job,Urban,83.91,23.9,Unknown,0 +49672,Female,66.0,0,0,Yes,Govt_job,Rural,152.02,44.2,formerly smoked,0 +394,Male,78.0,1,0,Yes,Self-employed,Rural,75.19,27.6,never smoked,0 +63362,Female,37.0,0,0,Yes,Private,Urban,60.61,35.7,formerly smoked,0 +59928,Female,41.0,0,0,Yes,Self-employed,Rural,89.14,37.4,formerly smoked,0 +62289,Female,34.0,0,0,Yes,Private,Urban,97.23,27.5,Unknown,0 +59464,Female,18.0,0,0,No,Private,Rural,135.19,23.4,never smoked,0 +18680,Male,69.0,0,0,Yes,Self-employed,Urban,78.48,25.8,formerly smoked,0 +19439,Male,67.0,0,1,Yes,Private,Rural,97.24,,Unknown,0 +27017,Male,28.0,0,0,No,Private,Urban,75.92,22.8,never smoked,0 +8277,Female,3.0,0,0,No,children,Urban,93.3,19.5,Unknown,0 +14099,Female,57.0,0,0,Yes,Govt_job,Urban,97.39,38.0,Unknown,0 +37128,Male,34.0,0,0,Yes,Private,Rural,134.61,23.4,never smoked,0 +57774,Male,50.0,0,0,Yes,Private,Rural,104.02,29.5,never smoked,0 +64033,Male,55.0,0,1,No,Private,Urban,56.9,28.2,never smoked,0 +72701,Male,2.0,0,0,No,children,Rural,112.66,14.2,Unknown,0 +59130,Female,27.0,0,0,No,Private,Rural,226.75,28.9,Unknown,0 +48472,Male,57.0,0,0,Yes,Private,Rural,76.28,31.4,formerly smoked,0 +67956,Female,73.0,0,0,Yes,Private,Urban,90.01,32.4,formerly smoked,0 +35602,Female,52.0,0,0,Yes,Govt_job,Rural,107.84,22.0,formerly smoked,0 +13818,Female,65.0,0,0,Yes,Private,Rural,71.06,26.4,never smoked,0 +34661,Male,48.0,1,0,Yes,Private,Urban,185.0,26.1,never smoked,0 +64895,Male,54.0,1,0,Yes,Self-employed,Rural,104.42,37.6,smokes,0 +21969,Male,8.0,0,0,No,children,Urban,89.57,18.8,Unknown,0 +38320,Male,45.0,1,0,Yes,Private,Rural,136.2,23.8,Unknown,0 +42040,Female,48.0,0,0,Yes,Govt_job,Urban,128.23,49.4,never smoked,0 +31857,Female,77.0,0,0,Yes,Self-employed,Rural,104.23,23.8,smokes,0 +64494,Female,34.0,0,0,Yes,Private,Urban,133.82,20.4,never smoked,0 +34764,Female,33.0,0,0,Yes,Private,Rural,80.82,40.3,never smoked,0 +20673,Male,39.0,0,0,Yes,Private,Rural,102.35,23.6,never smoked,0 +64817,Male,39.0,0,0,Yes,Self-employed,Rural,88.48,34.3,never smoked,0 +72450,Male,40.0,0,0,Yes,Private,Rural,88.81,32.7,Unknown,0 +13988,Female,46.0,0,0,Yes,Private,Rural,75.09,28.7,never smoked,0 +54985,Female,1.0,0,0,No,children,Urban,199.83,24.5,Unknown,0 +6049,Female,5.0,0,0,No,children,Rural,73.69,24.8,Unknown,0 +13380,Male,14.0,0,0,No,children,Urban,111.27,23.2,Unknown,0 +64371,Female,49.0,0,0,Yes,Self-employed,Rural,68.44,23.0,smokes,0 +50295,Female,45.0,0,0,Yes,Private,Urban,65.36,39.3,never smoked,0 +14404,Female,13.0,0,0,No,children,Urban,94.12,20.1,never smoked,0 +58645,Female,76.0,0,0,Yes,Private,Rural,96.24,25.4,never smoked,0 +19419,Male,14.0,0,0,No,children,Rural,91.25,23.8,Unknown,0 +24518,Female,20.0,0,0,No,Private,Rural,77.29,28.4,never smoked,0 +53494,Female,9.0,0,0,No,children,Rural,125.09,15.4,Unknown,0 +42599,Female,78.0,0,1,Yes,Private,Urban,107.18,28.2,never smoked,0 +68370,Male,49.0,0,0,Yes,Private,Urban,130.07,26.0,never smoked,0 +57813,Female,55.0,0,0,Yes,Private,Urban,57.3,41.5,never smoked,0 +1329,Female,43.0,0,0,No,Govt_job,Rural,101.35,32.2,never smoked,0 +15255,Female,16.0,0,0,No,Private,Rural,94.03,25.7,never smoked,0 +65680,Male,58.0,0,1,Yes,Self-employed,Urban,227.81,33.0,formerly smoked,0 +32974,Male,67.0,0,0,Yes,Govt_job,Urban,66.67,35.0,smokes,0 +5863,Female,71.0,0,0,Yes,Private,Urban,240.81,27.4,never smoked,0 +10584,Male,8.0,0,0,No,children,Urban,88.02,16.4,Unknown,0 +38675,Female,18.0,0,0,No,Private,Urban,152.87,31.5,Unknown,0 +47600,Female,47.0,0,0,Yes,Private,Urban,96.04,29.2,Unknown,0 +48246,Male,59.0,0,0,Yes,Private,Urban,60.35,25.9,formerly smoked,0 +61743,Male,28.0,0,0,No,Govt_job,Urban,118.66,32.3,never smoked,0 +3879,Female,20.0,0,0,No,Private,Urban,89.03,,smokes,0 +58086,Male,67.0,0,0,Yes,Private,Urban,58.51,30.4,formerly smoked,0 +53957,Male,71.0,0,0,Yes,Self-employed,Urban,96.04,45.1,formerly smoked,0 +40137,Female,56.0,0,0,Yes,Self-employed,Rural,110.92,25.9,Unknown,0 +70500,Female,44.0,0,0,No,Private,Rural,92.72,36.6,never smoked,0 +35085,Female,6.0,0,0,No,children,Rural,108.23,18.6,Unknown,0 +43872,Female,78.0,0,0,Yes,Private,Rural,56.34,27.5,Unknown,0 +62951,Female,32.0,0,0,Yes,Private,Rural,61.83,31.3,never smoked,0 +43244,Female,40.0,0,0,Yes,Private,Rural,131.99,37.5,never smoked,0 +31198,Female,63.0,0,0,Yes,Self-employed,Rural,136.81,23.1,smokes,0 +23223,Male,51.0,0,0,Yes,Private,Rural,239.28,35.0,never smoked,0 +38474,Male,22.0,0,0,Yes,Govt_job,Urban,131.3,27.0,never smoked,0 +4591,Female,82.0,0,0,Yes,Self-employed,Rural,117.75,29.8,never smoked,0 +1451,Female,17.0,0,0,No,Private,Urban,78.46,23.5,Unknown,0 +37150,Female,34.0,0,0,Yes,Private,Rural,83.53,48.5,formerly smoked,0 +65632,Male,42.0,0,0,Yes,Private,Rural,145.5,31.8,formerly smoked,0 +62834,Female,32.0,0,0,Yes,Private,Urban,88.33,20.0,Unknown,0 +21826,Male,73.0,0,0,Yes,Self-employed,Rural,101.25,29.4,formerly smoked,0 +21036,Female,47.0,0,0,Yes,Private,Urban,131.43,24.3,never smoked,0 +55566,Female,34.0,0,0,Yes,Private,Rural,231.5,45.4,never smoked,0 +46923,Male,64.0,0,1,Yes,Private,Rural,82.89,29.5,never smoked,0 +63990,Male,52.0,1,0,Yes,Self-employed,Rural,192.37,49.2,never smoked,0 +2265,Male,49.0,0,0,Yes,Private,Rural,79.64,,smokes,0 +2860,Male,55.0,0,0,Yes,Private,Rural,82.88,29.4,Unknown,0 +15964,Female,64.0,1,0,Yes,Private,Rural,99.4,29.1,never smoked,0 +46483,Male,23.0,0,0,No,Private,Urban,77.75,38.8,smokes,0 +33284,Male,18.0,0,0,No,Private,Rural,75.03,23.4,never smoked,0 +61895,Female,65.0,0,0,Yes,Private,Rural,220.47,48.7,never smoked,0 +48875,Male,12.0,0,0,No,children,Rural,196.91,19.7,Unknown,0 +36589,Female,61.0,0,0,Yes,Self-employed,Urban,180.8,20.3,never smoked,0 +28651,Male,66.0,0,0,Yes,Private,Urban,247.48,33.5,smokes,0 +45033,Male,59.0,0,0,Yes,Govt_job,Urban,216.0,36.7,smokes,0 +32166,Male,47.0,1,0,Yes,Private,Urban,75.64,24.4,never smoked,0 +34188,Female,47.0,0,0,Yes,Govt_job,Urban,95.07,38.8,formerly smoked,0 +58359,Female,71.0,1,0,Yes,Private,Urban,129.97,44.2,smokes,0 +59347,Male,62.0,0,0,Yes,Private,Urban,124.26,33.4,never smoked,0 +12849,Female,28.0,0,0,Yes,Private,Urban,87.92,32.5,Unknown,0 +6104,Female,7.0,0,0,No,children,Rural,85.15,15.1,Unknown,0 +29694,Female,68.0,0,0,Yes,Private,Rural,95.36,21.5,smokes,0 +30806,Male,37.0,0,0,Yes,Self-employed,Urban,87.16,30.4,formerly smoked,0 +20316,Female,75.0,0,0,Yes,Govt_job,Rural,219.39,33.4,smokes,0 +58253,Male,5.0,0,0,No,children,Urban,71.92,18.2,Unknown,0 +57679,Male,1.08,0,0,No,children,Urban,167.66,18.7,Unknown,0 +39956,Female,34.0,0,0,No,Private,Rural,87.21,38.4,Unknown,0 +7683,Male,49.0,0,0,Yes,Self-employed,Rural,220.47,36.4,smokes,0 +9197,Female,8.0,0,0,No,children,Urban,80.47,20.6,Unknown,0 +58543,Female,50.0,0,0,Yes,Govt_job,Urban,89.95,48.9,formerly smoked,0 +6968,Male,2.0,0,0,No,children,Rural,111.32,18.2,Unknown,0 +35838,Female,1.16,0,0,No,children,Urban,65.01,17.0,Unknown,0 +57549,Female,76.0,0,0,Yes,Self-employed,Urban,110.07,31.8,never smoked,0 +59200,Male,18.0,0,0,No,Private,Urban,60.56,33.0,never smoked,0 +24289,Male,82.0,0,0,Yes,Private,Urban,89.83,24.7,smokes,0 +6206,Female,67.0,0,0,Yes,Self-employed,Rural,90.35,28.1,Unknown,0 +28227,Female,27.0,0,0,Yes,Private,Urban,71.5,40.3,smokes,0 +35229,Male,57.0,0,0,Yes,Govt_job,Urban,71.71,35.2,smokes,0 +23176,Female,51.0,1,0,Yes,Private,Urban,173.96,31.2,formerly smoked,0 +3045,Male,68.0,1,0,Yes,Private,Urban,96.06,37.6,never smoked,0 +22386,Female,56.0,0,0,Yes,Private,Urban,113.2,38.7,smokes,0 +1077,Male,77.0,0,1,Yes,Govt_job,Rural,106.03,,Unknown,0 +57903,Female,52.0,1,0,Yes,Self-employed,Rural,111.38,,smokes,0 +22108,Female,18.0,0,0,No,Private,Rural,73.29,28.1,smokes,0 +55982,Female,63.0,0,0,Yes,Self-employed,Urban,65.71,29.2,smokes,0 +55465,Female,31.0,0,0,Yes,Private,Rural,60.41,31.1,Unknown,0 +29258,Female,37.0,0,0,No,Private,Urban,89.11,24.1,never smoked,0 +38432,Female,64.0,0,0,Yes,Private,Urban,63.32,18.7,formerly smoked,0 +49666,Male,47.0,0,0,Yes,Self-employed,Urban,85.68,39.6,never smoked,0 +59904,Female,1.8,0,0,No,children,Urban,162.93,15.7,Unknown,0 +32365,Male,42.0,0,0,Yes,Private,Rural,89.22,53.8,Unknown,0 +15351,Male,37.0,0,0,Yes,Private,Rural,91.68,32.4,formerly smoked,0 +61000,Female,69.0,0,1,No,Private,Urban,198.33,42.7,smokes,0 +77,Female,13.0,0,0,No,children,Rural,85.81,18.6,Unknown,0 +17466,Male,73.0,0,0,No,Govt_job,Rural,79.59,31.4,smokes,0 +57569,Male,48.0,0,0,Yes,Private,Rural,106.74,33.7,formerly smoked,0 +9026,Female,78.0,1,0,Yes,Self-employed,Urban,191.33,24.5,never smoked,0 +54590,Female,21.0,0,0,No,Private,Rural,59.52,33.7,never smoked,0 +54301,Male,54.0,0,0,Yes,Private,Rural,206.52,35.4,smokes,0 +170,Male,43.0,0,0,Yes,Govt_job,Rural,80.07,,never smoked,0 +52554,Male,19.0,0,0,No,Private,Rural,64.92,22.5,Unknown,0 +10649,Female,82.0,0,0,Yes,Private,Urban,80.0,33.6,never smoked,0 +28258,Female,80.0,0,0,Yes,Self-employed,Urban,75.06,29.7,Unknown,0 +22269,Female,69.0,1,0,Yes,Govt_job,Urban,112.2,,never smoked,0 +12557,Female,21.0,0,0,No,Self-employed,Urban,91.18,25.7,never smoked,0 +2846,Female,46.0,0,0,Yes,Private,Rural,85.81,20.2,formerly smoked,0 +61219,Female,14.0,0,0,No,Never_worked,Urban,148.37,22.7,never smoked,0 +65321,Male,6.0,0,0,No,children,Rural,64.55,17.4,Unknown,0 +23946,Female,3.0,0,0,No,children,Rural,97.31,22.2,Unknown,0 +56312,Male,47.0,0,0,No,Private,Rural,111.15,23.8,never smoked,0 +20256,Male,34.0,0,0,Yes,Private,Urban,80.97,28.7,never smoked,0 +26993,Female,41.0,0,0,Yes,Private,Rural,89.88,33.1,formerly smoked,0 +58599,Female,67.0,0,0,Yes,Private,Rural,62.66,28.0,formerly smoked,0 +27849,Female,5.0,0,0,No,children,Urban,122.25,16.7,Unknown,0 +33367,Male,20.0,0,0,No,Private,Rural,87.08,27.1,never smoked,0 +61764,Female,63.0,0,0,Yes,Private,Rural,85.0,26.4,smokes,0 +13620,Female,73.0,0,0,Yes,Self-employed,Urban,100.49,23.7,smokes,0 +39308,Male,62.0,0,0,Yes,Private,Urban,145.37,33.3,Unknown,0 +1275,Male,0.88,0,0,No,children,Urban,112.19,18.9,Unknown,0 +34336,Male,50.0,1,0,Yes,Govt_job,Rural,79.73,25.5,smokes,0 +1505,Male,71.0,0,1,Yes,Self-employed,Rural,101.13,35.9,formerly smoked,0 +31887,Female,30.0,0,0,Yes,Private,Urban,101.98,23.2,Unknown,0 +60258,Female,80.0,0,1,Yes,Self-employed,Rural,98.39,22.2,smokes,0 +63450,Female,64.0,0,0,Yes,Self-employed,Rural,128.04,34.0,smokes,0 +35178,Male,7.0,0,0,No,children,Urban,98.12,20.4,Unknown,0 +3099,Female,36.0,0,0,No,Private,Urban,216.96,34.5,Unknown,0 +43903,Male,79.0,0,0,Yes,Self-employed,Rural,94.92,31.9,Unknown,0 +9013,Female,35.0,0,0,Yes,Private,Rural,83.27,19.8,formerly smoked,0 +60158,Female,28.0,0,0,No,Private,Rural,96.86,29.0,Unknown,0 +15579,Male,72.0,0,0,Yes,Self-employed,Rural,99.73,36.7,formerly smoked,0 +8563,Female,12.0,0,0,No,children,Rural,91.71,21.3,Unknown,0 +61573,Male,25.0,0,0,No,Private,Rural,65.77,23.7,smokes,0 +43827,Female,27.0,0,0,Yes,Private,Urban,161.57,25.7,smokes,0 +43090,Female,62.0,1,0,Yes,Self-employed,Rural,74.32,34.0,never smoked,0 +46068,Male,58.0,0,0,No,Self-employed,Rural,170.93,30.7,Unknown,0 +12469,Female,30.0,0,0,Yes,Private,Urban,74.43,44.8,never smoked,0 +58820,Male,56.0,0,0,Yes,Private,Rural,86.36,27.7,formerly smoked,0 +31893,Female,28.0,0,0,Yes,Private,Rural,97.06,23.2,Unknown,0 +45259,Male,47.0,0,0,Yes,Private,Rural,110.38,30.1,Unknown,0 +63779,Female,16.0,0,0,No,Private,Rural,79.03,29.3,Unknown,0 +71250,Female,29.0,0,0,Yes,Private,Rural,62.48,29.5,never smoked,0 +55051,Male,26.0,0,0,Yes,Private,Rural,55.62,25.8,never smoked,0 +2520,Female,26.0,0,0,Yes,Private,Rural,84.9,26.2,never smoked,0 +3715,Male,55.0,0,0,Yes,Private,Rural,232.81,28.8,Unknown,0 +21206,Female,29.0,0,0,No,Private,Rural,86.55,29.8,smokes,0 +60159,Female,29.0,0,0,No,Govt_job,Rural,118.61,26.5,never smoked,0 +3113,Female,33.0,0,0,No,Private,Rural,80.21,27.8,formerly smoked,0 +62126,Female,19.0,1,0,No,Private,Rural,65.96,29.0,never smoked,0 +51275,Female,10.0,0,0,No,children,Urban,61.34,19.1,Unknown,0 +3115,Female,3.0,0,0,No,children,Urban,116.6,17.1,Unknown,0 +9986,Female,60.0,0,0,Yes,Private,Urban,85.13,24.6,Unknown,0 +35974,Female,16.0,0,0,No,Private,Rural,86.32,18.3,Unknown,0 +46488,Male,35.0,0,0,Yes,Private,Rural,69.22,42.8,never smoked,0 +54172,Female,41.0,0,0,Yes,Private,Urban,140.93,46.5,Unknown,0 +21804,Female,19.0,0,0,No,Private,Urban,83.43,38.4,Unknown,0 +50402,Female,79.0,0,0,Yes,Private,Urban,207.95,26.0,formerly smoked,0 +36317,Female,41.0,0,0,Yes,Private,Rural,134.29,26.8,smokes,0 +44676,Male,1.64,0,0,No,children,Urban,115.12,21.1,Unknown,0 +3724,Female,51.0,0,0,Yes,Govt_job,Urban,86.25,29.0,never smoked,0 +69668,Female,33.0,0,0,Yes,Self-employed,Rural,112.94,43.0,never smoked,0 +59274,Female,33.0,0,0,Yes,Govt_job,Rural,73.54,36.6,smokes,0 +29676,Male,48.0,0,0,No,Private,Urban,80.86,27.5,Unknown,0 +37655,Male,45.0,0,0,Yes,Private,Rural,83.91,40.2,Unknown,0 +16980,Female,61.0,0,0,No,Private,Rural,69.91,37.1,never smoked,0 +40213,Male,31.0,0,0,No,Private,Rural,95.62,32.0,smokes,0 +47831,Male,60.0,1,0,No,Private,Urban,63.95,32.2,never smoked,0 +40977,Male,51.0,0,0,Yes,Private,Rural,122.5,20.6,Unknown,0 +39129,Male,53.0,0,0,Yes,Govt_job,Rural,86.0,24.1,never smoked,0 +40837,Male,52.0,0,0,Yes,Govt_job,Urban,120.27,25.0,never smoked,0 +59000,Female,42.0,0,0,Yes,Govt_job,Urban,56.71,25.2,Unknown,0 +44510,Female,56.0,0,0,Yes,Private,Rural,131.63,27.6,never smoked,0 +3793,Male,14.0,0,0,No,Private,Urban,79.36,48.8,never smoked,0 +32215,Female,40.0,0,0,No,Private,Urban,120.77,27.6,never smoked,0 +35296,Female,58.0,0,0,Yes,Private,Rural,100.42,39.5,smokes,0 +69502,Female,52.0,1,0,Yes,Private,Urban,155.86,27.2,smokes,0 +67620,Male,30.0,0,0,Yes,Govt_job,Rural,66.01,26.3,smokes,0 +27664,Female,47.0,0,0,Yes,Private,Urban,86.99,28.9,smokes,0 +49555,Female,34.0,0,0,Yes,Govt_job,Urban,90.55,30.0,never smoked,0 +16812,Female,82.0,0,1,Yes,Self-employed,Rural,229.58,23.7,Unknown,0 +63665,Female,31.0,0,0,Yes,Private,Urban,60.06,25.5,smokes,0 +68141,Female,58.0,0,0,Yes,Private,Rural,65.66,24.6,formerly smoked,0 +33674,Female,47.0,0,0,Yes,Private,Urban,104.7,20.7,smokes,0 +30432,Male,65.0,1,0,Yes,Self-employed,Urban,113.86,36.4,never smoked,0 +10886,Female,13.0,0,0,No,children,Rural,99.49,23.4,Unknown,0 +62629,Male,37.0,1,0,Yes,Private,Urban,165.99,32.3,never smoked,0 +67758,Male,9.0,0,0,No,children,Urban,114.99,18.8,Unknown,0 +41244,Female,7.0,0,0,No,children,Urban,79.58,15.5,Unknown,0 +50309,Female,37.0,0,0,No,Govt_job,Rural,77.37,21.4,never smoked,0 +6480,Male,62.0,0,0,No,Govt_job,Urban,93.55,31.7,never smoked,0 +27007,Male,14.0,0,0,No,Self-employed,Urban,187.22,29.7,Unknown,0 +63912,Female,77.0,0,0,Yes,Govt_job,Rural,167.59,34.3,formerly smoked,0 +37483,Male,36.0,0,0,Yes,Private,Urban,98.03,22.1,smokes,0 +29855,Female,3.0,0,0,No,children,Urban,88.79,21.5,Unknown,0 +22136,Male,78.0,1,1,No,Self-employed,Urban,92.9,30.4,smokes,0 +66637,Female,49.0,0,0,Yes,Govt_job,Urban,117.34,21.6,never smoked,0 +2244,Male,44.0,0,0,Yes,Private,Urban,80.75,30.9,never smoked,0 +22259,Male,10.0,0,0,No,children,Rural,77.51,21.9,Unknown,0 +19088,Male,8.0,0,0,No,children,Urban,105.63,19.2,Unknown,0 +61010,Female,60.0,0,0,Yes,Private,Urban,114.34,30.3,smokes,0 +49574,Female,56.0,0,0,Yes,Private,Rural,227.04,23.0,smokes,0 +12336,Female,73.0,0,0,Yes,Self-employed,Urban,87.56,24.1,never smoked,0 +3668,Female,65.0,0,0,Yes,Govt_job,Urban,84.47,52.7,smokes,0 +6034,Female,34.0,0,0,Yes,Self-employed,Rural,96.26,27.6,Unknown,0 +61418,Male,13.0,0,0,No,children,Rural,116.64,23.9,Unknown,0 +68725,Female,80.0,0,0,Yes,Private,Urban,79.57,26.9,never smoked,0 +464,Male,46.0,0,0,Yes,Private,Rural,78.44,23.9,never smoked,0 +42225,Female,80.0,0,0,Yes,Self-employed,Urban,64.15,40.5,never smoked,0 +51254,Female,65.0,0,0,No,Private,Urban,74.5,32.0,never smoked,0 +59164,Female,24.0,0,0,No,Private,Urban,70.32,20.5,Unknown,0 +70429,Female,33.0,0,0,Yes,Private,Urban,84.48,44.5,never smoked,0 +54253,Male,11.0,0,0,No,children,Urban,144.08,16.2,formerly smoked,0 +47937,Female,57.0,0,0,Yes,Self-employed,Rural,78.14,35.8,never smoked,0 +66882,Female,19.0,0,0,No,Govt_job,Urban,133.58,24.0,never smoked,0 +7411,Male,82.0,0,0,Yes,Private,Urban,214.42,33.9,formerly smoked,0 +39593,Female,39.0,0,0,Yes,Private,Urban,80.63,36.0,smokes,0 +6239,Female,14.0,0,0,No,Private,Rural,233.71,22.9,never smoked,0 +35378,Female,60.0,1,0,No,Private,Urban,96.0,44.5,smokes,0 +54012,Female,3.0,0,0,No,children,Urban,74.52,17.5,Unknown,0 +69835,Female,57.0,0,0,Yes,Private,Rural,131.4,32.3,never smoked,0 +44591,Male,79.0,0,0,Yes,Private,Urban,216.4,30.3,never smoked,0 +4709,Female,65.0,0,0,Yes,Private,Rural,108.8,33.5,Unknown,0 +20393,Female,67.0,1,0,Yes,Private,Urban,97.06,30.9,never smoked,0 +27626,Female,60.0,0,0,No,Govt_job,Rural,266.59,25.5,never smoked,0 +45864,Female,36.0,0,0,No,Private,Rural,55.58,30.0,never smoked,0 +68685,Male,36.0,0,0,Yes,Govt_job,Urban,65.87,32.2,formerly smoked,0 +28711,Female,26.0,0,0,No,Private,Urban,89.28,21.7,smokes,0 +44962,Male,71.0,0,0,Yes,Govt_job,Urban,56.12,24.7,Unknown,0 +7892,Male,78.0,0,0,Yes,Private,Urban,74.7,28.8,formerly smoked,0 +11744,Male,77.0,0,0,Yes,Self-employed,Urban,83.06,27.0,Unknown,0 +12279,Male,74.0,0,0,Yes,Private,Urban,227.94,26.0,Unknown,0 +20740,Female,50.0,0,0,Yes,Self-employed,Rural,84.88,27.1,never smoked,0 +58257,Male,9.0,0,0,No,children,Urban,64.2,18.5,Unknown,0 +36547,Male,1.64,0,0,No,children,Rural,137.22,18.8,Unknown,0 +559,Female,54.0,0,0,Yes,Private,Urban,81.44,31.5,formerly smoked,0 +13728,Male,8.0,0,0,No,children,Rural,90.26,18.1,Unknown,0 +4400,Female,36.0,0,0,Yes,Private,Urban,68.48,24.3,never smoked,0 +68524,Female,38.0,0,0,Yes,Private,Urban,100.02,28.0,never smoked,0 +24096,Female,34.0,1,0,Yes,Self-employed,Urban,100.61,,Unknown,0 +65643,Female,7.0,0,0,No,children,Urban,156.82,17.3,Unknown,0 +30186,Female,5.0,0,0,No,children,Urban,81.66,17.2,Unknown,0 +11904,Male,14.0,0,0,No,children,Rural,112.22,26.9,Unknown,0 +20257,Male,0.88,0,0,No,children,Urban,90.62,22.4,Unknown,0 +2822,Female,30.0,0,0,Yes,Private,Rural,72.49,25.8,never smoked,0 +18072,Female,39.0,0,0,Yes,Govt_job,Urban,107.47,21.3,Unknown,0 +34896,Female,17.0,0,0,No,Private,Rural,92.11,43.0,never smoked,0 +53328,Female,14.0,0,0,No,Private,Rural,70.54,24.4,formerly smoked,0 +28303,Female,52.0,0,0,Yes,Self-employed,Rural,205.0,30.1,never smoked,0 +44325,Male,78.0,0,0,Yes,Self-employed,Rural,126.39,21.3,smokes,0 +8579,Female,2.0,0,0,No,children,Rural,89.72,17.8,Unknown,0 +29229,Male,32.0,0,0,Yes,Private,Urban,92.08,28.4,smokes,0 +48406,Male,0.88,0,0,No,children,Urban,85.38,23.4,Unknown,0 +3761,Female,50.0,0,0,Yes,Self-employed,Rural,95.25,24.3,never smoked,0 +65324,Female,48.0,0,0,Yes,Govt_job,Rural,75.91,27.8,Unknown,0 +7658,Male,66.0,0,0,Yes,Govt_job,Rural,203.44,30.5,formerly smoked,0 +35997,Male,78.0,0,1,Yes,Self-employed,Urban,243.73,,smokes,0 +34383,Male,46.0,0,0,Yes,Private,Urban,88.23,25.8,Unknown,0 +8646,Female,54.0,0,0,Yes,Private,Rural,97.47,26.7,never smoked,0 +46653,Female,81.0,1,1,Yes,Private,Rural,59.28,28.1,never smoked,0 +1099,Female,15.0,0,0,No,children,Rural,101.15,22.2,Unknown,0 +61676,Male,77.0,0,0,Yes,Self-employed,Urban,68.38,25.1,Unknown,0 +38131,Female,59.0,0,0,Yes,Self-employed,Rural,55.46,20.9,never smoked,0 +61848,Female,48.0,0,0,Yes,Private,Urban,113.87,28.9,never smoked,0 +56228,Male,76.0,0,1,Yes,Self-employed,Urban,67.03,,never smoked,0 +4949,Male,49.0,0,0,Yes,Private,Rural,96.35,35.9,never smoked,0 +46688,Female,44.0,0,0,No,Private,Urban,127.21,29.8,smokes,0 +30491,Female,39.0,0,0,Yes,Private,Urban,78.9,26.7,never smoked,0 +43478,Male,34.0,0,0,Yes,Private,Urban,59.91,28.4,formerly smoked,0 +25443,Male,50.0,0,0,No,Private,Urban,160.94,26.7,smokes,0 +52519,Male,62.0,0,0,Yes,Private,Rural,59.61,32.5,Unknown,0 +24361,Female,38.0,0,0,Yes,Private,Urban,87.94,43.8,never smoked,0 +29514,Female,43.0,0,0,Yes,Private,Rural,97.55,28.3,formerly smoked,0 +35893,Male,28.0,0,0,No,Private,Urban,116.02,36.6,formerly smoked,0 +58568,Female,58.0,0,0,Yes,Private,Rural,127.32,33.1,smokes,0 +63303,Male,28.0,0,0,No,Private,Urban,75.5,27.0,smokes,0 +70625,Male,18.0,0,0,No,Private,Urban,79.35,23.6,Unknown,0 +54807,Male,62.0,1,1,Yes,Private,Rural,176.25,,never smoked,0 +18820,Male,31.0,0,0,No,Private,Rural,108.56,21.8,never smoked,0 +64029,Male,55.0,1,0,Yes,Private,Urban,168.06,23.5,smokes,0 +72703,Female,54.0,0,0,Yes,Private,Urban,75.52,28.7,formerly smoked,0 +11394,Male,73.0,0,1,Yes,Private,Rural,82.15,31.6,formerly smoked,0 +12298,Male,26.0,0,0,No,Self-employed,Urban,200.28,31.9,formerly smoked,0 +70845,Male,73.0,0,1,Yes,Private,Rural,62.44,25.2,smokes,0 +44494,Female,38.0,0,0,Yes,Private,Rural,84.31,25.9,smokes,0 +30953,Male,75.0,1,1,Yes,Private,Rural,221.43,32.5,Unknown,0 +47861,Male,81.0,0,0,Yes,Private,Urban,165.47,28.1,Unknown,0 +13465,Female,20.0,0,0,No,Private,Rural,96.69,27.4,smokes,0 +62454,Female,12.0,0,0,No,children,Urban,63.98,21.2,formerly smoked,0 +52593,Male,78.0,0,1,Yes,Private,Urban,145.03,26.8,formerly smoked,0 +91,Female,42.0,0,0,No,Private,Urban,98.53,18.5,never smoked,0 +22056,Female,71.0,1,0,Yes,Private,Urban,105.55,,smokes,0 +45469,Male,16.0,0,0,No,children,Rural,134.23,30.6,Unknown,0 +41284,Male,4.0,0,0,No,children,Rural,62.48,19.9,Unknown,0 +20112,Male,79.0,0,1,Yes,Private,Urban,213.38,,Unknown,0 +45627,Male,60.0,0,0,Yes,Private,Rural,70.52,26.5,formerly smoked,0 +4174,Female,45.0,1,0,Yes,Private,Urban,93.21,43.8,never smoked,0 +31660,Male,23.0,0,0,No,Private,Rural,82.39,31.8,Unknown,0 +36196,Male,21.0,0,0,No,Private,Rural,88.29,36.6,smokes,0 +19769,Female,67.0,0,0,Yes,Self-employed,Rural,80.18,22.9,formerly smoked,0 +8341,Male,10.0,0,0,No,children,Rural,84.02,18.7,never smoked,0 +42172,Female,24.0,0,0,Yes,Self-employed,Rural,69.72,29.6,never smoked,0 +14372,Male,50.0,0,0,Yes,Self-employed,Urban,192.16,43.6,never smoked,0 +61252,Male,79.0,0,1,Yes,Private,Rural,82.27,,never smoked,0 +15251,Male,14.0,0,0,No,children,Urban,101.87,20.3,never smoked,0 +67800,Female,13.0,0,0,No,children,Rural,77.55,21.3,Unknown,0 +10416,Male,71.0,0,1,Yes,Private,Urban,215.72,39.2,smokes,0 +19504,Female,66.0,0,0,Yes,Private,Rural,87.84,52.8,Unknown,0 +7476,Male,32.0,0,0,No,Govt_job,Rural,91.93,30.2,never smoked,0 +55526,Male,46.0,0,0,Yes,Govt_job,Urban,58.63,35.3,never smoked,0 +452,Male,48.0,1,0,Yes,Private,Urban,173.14,37.0,smokes,0 +55790,Female,45.0,0,0,Yes,Private,Urban,106.83,32.1,formerly smoked,0 +38541,Male,55.0,0,0,Yes,Private,Urban,84.44,30.5,formerly smoked,0 +23748,Female,31.0,0,0,Yes,Private,Urban,92.16,22.8,never smoked,0 +18790,Male,25.0,0,0,No,Private,Urban,85.96,34.5,formerly smoked,0 +45751,Male,73.0,1,0,Yes,Self-employed,Rural,202.57,37.4,never smoked,0 +72369,Female,14.0,0,0,No,children,Rural,65.41,19.5,Unknown,0 +7171,Female,56.0,0,0,Yes,Govt_job,Urban,102.51,55.7,Unknown,0 +52826,Male,60.0,0,0,Yes,Private,Rural,62.6,30.4,Unknown,0 +42556,Male,27.0,0,0,Yes,Private,Urban,150.1,25.3,never smoked,0 +507,Female,28.0,0,0,Yes,Private,Rural,94.15,23.1,smokes,0 +56746,Male,46.0,1,0,Yes,Private,Urban,65.5,30.7,never smoked,0 +54072,Female,11.0,0,0,No,children,Urban,81.31,18.8,never smoked,0 +49760,Female,63.0,0,0,Yes,Private,Rural,78.96,28.6,never smoked,0 +61821,Female,59.0,0,0,Yes,Private,Rural,123.47,27.5,Unknown,0 +65481,Male,57.0,0,0,Yes,Private,Urban,90.4,26.5,never smoked,0 +6174,Female,35.0,0,0,No,Private,Urban,71.59,40.3,never smoked,0 +68224,Male,54.0,0,0,Yes,Private,Rural,209.5,37.9,formerly smoked,0 +61559,Male,7.0,0,0,No,children,Urban,86.6,17.1,Unknown,0 +65564,Female,48.0,0,0,Yes,Private,Urban,57.43,53.5,formerly smoked,0 +18890,Male,69.0,1,0,Yes,Private,Rural,87.93,33.6,never smoked,0 +58936,Male,59.0,0,0,Yes,Private,Rural,203.16,43.4,Unknown,0 +67667,Female,72.0,1,0,Yes,Self-employed,Rural,112.12,30.5,never smoked,0 +68138,Male,49.0,0,0,Yes,Private,Urban,92.02,38.1,never smoked,0 +50363,Female,73.0,1,0,Yes,Private,Rural,60.98,29.9,formerly smoked,0 +4740,Female,24.0,0,0,No,Private,Urban,86.35,32.7,never smoked,0 +39683,Male,26.0,0,0,No,Private,Rural,71.26,28.6,Unknown,0 +49903,Male,27.0,0,0,No,Private,Urban,72.61,38.5,never smoked,0 +63457,Female,78.0,0,1,No,Self-employed,Urban,110.78,22.9,never smoked,0 +18595,Female,77.0,0,0,Yes,Private,Urban,99.78,38.0,never smoked,0 +64912,Female,59.0,0,0,Yes,Self-employed,Rural,201.45,43.8,smokes,0 +68382,Male,0.32,0,0,No,children,Urban,127.78,20.8,Unknown,0 +69510,Male,39.0,0,0,Yes,Private,Rural,121.32,26.8,never smoked,0 +29872,Female,35.0,0,0,Yes,Private,Urban,83.89,25.5,never smoked,0 +1924,Male,54.0,0,0,Yes,Private,Rural,74.06,,never smoked,0 +67243,Female,75.0,0,1,Yes,Private,Urban,206.15,25.4,never smoked,0 +3494,Female,80.0,0,0,Yes,Private,Rural,102.9,26.7,Unknown,0 +37307,Female,35.0,0,0,Yes,Private,Urban,65.48,50.5,never smoked,0 +41175,Female,22.0,0,0,No,Govt_job,Urban,123.23,21.3,Unknown,0 +48303,Male,39.0,0,0,Yes,Private,Rural,71.3,34.7,never smoked,0 +31473,Male,6.0,0,0,No,children,Rural,79.05,17.9,Unknown,0 +31402,Female,62.0,0,0,Yes,Self-employed,Rural,102.21,36.3,never smoked,0 +18996,Female,13.0,0,0,No,children,Urban,105.22,18.4,Unknown,0 +2573,Male,56.0,0,0,Yes,Govt_job,Rural,84.58,34.5,Unknown,0 +60683,Male,53.0,0,1,Yes,Govt_job,Urban,77.3,33.4,never smoked,0 +70537,Male,5.0,0,0,No,children,Rural,74.79,19.4,Unknown,0 +63193,Female,44.0,0,0,Yes,Private,Rural,88.75,25.6,Unknown,0 +12228,Male,13.0,0,0,No,children,Rural,97.97,24.5,never smoked,0 +58107,Female,59.0,0,0,Yes,Private,Rural,79.18,30.0,Unknown,0 +28647,Female,35.0,0,0,Yes,Private,Urban,81.33,28.9,never smoked,0 +57086,Female,52.0,0,0,Yes,Private,Urban,126.68,28.1,never smoked,0 +5505,Female,76.0,0,0,Yes,Private,Urban,196.61,23.0,never smoked,0 +44112,Female,51.0,0,0,Yes,Self-employed,Urban,219.92,33.5,formerly smoked,0 +56645,Female,79.0,0,0,Yes,Govt_job,Rural,79.16,34.8,formerly smoked,0 +16652,Female,69.0,0,0,Yes,Self-employed,Urban,99.68,17.6,formerly smoked,0 +32445,Female,78.0,0,0,Yes,Self-employed,Urban,79.55,21.1,formerly smoked,0 +18752,Male,60.0,0,0,Yes,Private,Rural,87.86,29.0,formerly smoked,0 +35152,Male,10.0,0,0,No,children,Urban,76.92,15.8,Unknown,0 +70081,Male,42.0,1,0,Yes,Self-employed,Rural,77.24,41.2,Unknown,0 +72340,Male,21.0,0,0,No,Private,Urban,120.94,29.7,formerly smoked,0 +67112,Female,56.0,0,0,Yes,Private,Rural,77.66,40.8,never smoked,0 +42323,Male,59.0,0,0,Yes,Govt_job,Rural,231.95,33.2,never smoked,0 +35022,Female,69.0,0,0,Yes,Private,Urban,111.48,37.0,smokes,0 +21625,Female,25.0,0,0,Yes,Private,Urban,84.25,24.5,Unknown,0 +49972,Male,63.0,0,0,Yes,Self-employed,Rural,216.38,34.5,never smoked,0 +44142,Male,25.0,0,0,No,Private,Rural,95.01,28.0,never smoked,0 +364,Female,58.0,0,0,Yes,Private,Urban,105.74,26.8,formerly smoked,0 +59669,Female,28.0,0,0,Yes,Private,Rural,58.41,21.0,Unknown,0 +69900,Female,46.0,0,0,Yes,Govt_job,Urban,56.89,23.8,smokes,0 +12753,Male,53.0,0,0,Yes,Private,Urban,86.25,29.3,never smoked,0 +10273,Female,37.0,0,0,Yes,Private,Rural,86.49,24.4,Unknown,0 +30824,Male,12.0,0,0,No,children,Rural,115.47,22.6,Unknown,0 +587,Female,14.0,0,0,No,children,Rural,92.22,22.8,Unknown,0 +55856,Female,60.0,0,0,Yes,Private,Rural,83.16,29.7,smokes,0 +47196,Male,42.0,0,0,Yes,Private,Rural,110.68,32.4,formerly smoked,0 +67724,Female,65.0,0,0,Yes,Private,Rural,70.06,35.8,Unknown,0 +23488,Male,80.0,1,0,Yes,Self-employed,Urban,213.33,31.1,formerly smoked,0 +2849,Male,32.0,0,0,Yes,Private,Urban,93.52,31.9,Unknown,0 +12134,Female,53.0,0,0,Yes,Govt_job,Rural,87.62,33.7,smokes,0 +24058,Female,50.0,0,0,Yes,Govt_job,Rural,77.67,25.6,never smoked,0 +15117,Female,23.0,0,0,No,Private,Rural,95.66,19.9,smokes,0 +72915,Female,45.0,0,0,Yes,Private,Urban,172.33,45.3,formerly smoked,0 +61836,Female,0.8,0,0,No,children,Urban,106.59,15.5,Unknown,0 +13116,Male,49.0,0,0,Yes,Private,Urban,87.06,28.3,never smoked,0 +48146,Male,70.0,0,1,Yes,Private,Rural,93.02,40.2,formerly smoked,0 +72819,Female,82.0,0,0,Yes,Self-employed,Urban,243.59,24.3,never smoked,0 +20070,Male,23.0,0,0,No,Private,Urban,86.7,24.6,Unknown,0 +8778,Female,79.0,0,0,Yes,Self-employed,Rural,97.81,26.6,formerly smoked,0 +13764,Female,74.0,0,0,Yes,Private,Urban,116.04,30.9,never smoked,0 +2005,Male,78.0,0,1,Yes,Self-employed,Urban,169.43,23.5,formerly smoked,0 +8616,Female,50.0,0,0,Yes,Private,Rural,68.41,23.9,smokes,0 +51524,Female,34.0,0,0,Yes,Private,Rural,94.44,34.2,Unknown,0 +50541,Male,47.0,0,0,Yes,Govt_job,Urban,73.48,34.9,smokes,0 +21971,Female,52.0,0,0,Yes,Govt_job,Rural,183.87,26.2,never smoked,0 +32183,Female,67.0,0,0,Yes,Private,Rural,66.08,36.2,never smoked,0 +30145,Female,62.0,0,0,Yes,Private,Rural,72.19,22.4,Unknown,0 +30482,Female,18.0,0,0,No,Private,Rural,101.09,19.3,smokes,0 +30790,Female,75.0,1,0,Yes,Govt_job,Urban,88.83,41.7,never smoked,0 +63337,Female,42.0,0,0,Yes,Private,Rural,69.99,46.0,smokes,0 +66264,Male,29.0,0,0,Yes,Govt_job,Urban,102.4,26.9,smokes,0 +641,Male,52.0,0,0,Yes,Govt_job,Rural,87.26,40.1,smokes,0 +42412,Female,18.0,0,0,No,Private,Urban,146.59,27.7,Unknown,0 +65693,Male,67.0,0,0,Yes,Govt_job,Rural,59.0,29.5,Unknown,0 +3746,Female,66.0,0,0,Yes,Private,Urban,76.83,26.0,never smoked,0 +71304,Male,5.0,0,0,No,children,Urban,101.83,22.7,Unknown,0 +34935,Female,18.0,0,0,No,Govt_job,Urban,90.92,16.0,never smoked,0 +29173,Male,52.0,0,0,Yes,Govt_job,Urban,67.5,27.7,smokes,0 +26474,Female,44.0,0,0,Yes,Govt_job,Urban,97.16,33.1,Unknown,0 +56857,Male,46.0,1,0,Yes,Govt_job,Urban,85.62,33.1,formerly smoked,0 +13529,Female,36.0,0,0,Yes,Govt_job,Rural,129.43,29.7,never smoked,0 +61979,Female,61.0,0,0,Yes,Govt_job,Urban,106.01,34.0,smokes,0 +70886,Female,7.0,0,0,No,children,Rural,114.82,33.3,Unknown,0 +27693,Female,15.0,0,0,No,children,Urban,121.39,27.0,Unknown,0 +59762,Male,61.0,0,0,Yes,Private,Urban,227.98,14.2,Unknown,0 +57308,Male,20.0,0,0,No,Private,Urban,78.97,19.4,never smoked,0 +3701,Female,2.0,0,0,No,children,Urban,84.12,15.3,Unknown,0 +61339,Male,47.0,0,0,Yes,Self-employed,Urban,95.04,28.7,never smoked,0 +24965,Female,25.0,0,0,No,Govt_job,Rural,103.15,21.0,smokes,0 +33952,Male,66.0,1,0,Yes,Private,Urban,82.91,28.9,formerly smoked,0 +39042,Male,2.0,0,0,No,children,Urban,70.93,20.3,Unknown,0 +43039,Female,63.0,0,0,Yes,Private,Rural,153.6,28.0,formerly smoked,0 +59915,Female,53.0,0,0,No,Private,Urban,129.43,29.6,never smoked,0 +4727,Female,33.0,0,0,Yes,Govt_job,Rural,81.0,30.2,formerly smoked,0 +16481,Female,23.0,0,0,No,Govt_job,Rural,71.81,22.2,Unknown,0 +15018,Female,23.0,0,0,No,Govt_job,Urban,84.46,28.4,formerly smoked,0 +49702,Female,81.0,0,0,Yes,Self-employed,Rural,101.32,29.6,formerly smoked,0 +48017,Male,55.0,0,0,Yes,Private,Urban,62.56,28.6,never smoked,0 +15313,Female,69.0,1,0,Yes,Govt_job,Urban,208.2,32.6,formerly smoked,0 +22231,Male,58.0,0,0,Yes,Private,Urban,199.42,29.0,never smoked,0 +45461,Female,70.0,0,0,Yes,Private,Urban,91.28,30.1,Unknown,0 +30678,Female,48.0,0,0,Yes,Private,Urban,77.99,31.2,formerly smoked,0 +57904,Male,15.0,0,0,No,Private,Urban,190.13,20.7,never smoked,0 +67483,Male,31.0,1,0,Yes,Private,Urban,149.68,45.1,never smoked,0 +5646,Female,2.0,0,0,No,children,Rural,92.3,14.8,Unknown,0 +67911,Male,80.0,0,0,No,Self-employed,Rural,235.54,37.4,formerly smoked,0 +16856,Female,69.0,0,0,Yes,Private,Rural,84.46,19.9,Unknown,0 +37972,Female,52.0,0,0,Yes,Private,Rural,68.7,16.0,Unknown,0 +62414,Male,80.0,1,0,Yes,Self-employed,Urban,178.89,27.4,Unknown,0 +50485,Male,54.0,0,0,Yes,Private,Rural,227.74,33.4,smokes,0 +47405,Female,2.0,0,0,No,children,Rural,100.66,18.5,Unknown,0 +70928,Male,39.0,0,0,Yes,Govt_job,Urban,73.62,33.4,Unknown,0 +4679,Female,38.0,0,0,Yes,Private,Rural,100.05,20.8,smokes,0 +15070,Male,76.0,0,1,Yes,Private,Rural,213.8,22.0,never smoked,0 +25625,Female,45.0,0,0,No,Private,Rural,103.94,32.5,smokes,0 +35123,Female,1.24,0,0,No,children,Urban,84.2,19.2,Unknown,0 +20165,Female,77.0,0,0,Yes,Private,Urban,250.8,32.9,never smoked,0 +41730,Female,46.0,0,0,No,Govt_job,Rural,112.29,23.5,Unknown,0 +38761,Female,50.0,0,0,Yes,Private,Urban,65.98,21.7,never smoked,0 +4797,Female,52.0,0,0,Yes,Private,Urban,99.1,29.1,Unknown,0 +19199,Female,73.0,1,0,Yes,Private,Rural,217.84,,never smoked,0 +30402,Male,41.0,0,0,Yes,Private,Urban,104.34,30.3,Unknown,0 +25088,Female,40.0,0,0,No,Private,Rural,217.0,29.4,formerly smoked,0 +54756,Female,59.0,0,0,Yes,Private,Rural,57.47,30.1,formerly smoked,0 +19590,Male,48.0,0,0,Yes,Govt_job,Urban,78.24,32.9,never smoked,0 +23332,Female,42.0,0,0,Yes,Private,Rural,94.38,34.0,never smoked,0 +16971,Female,26.0,0,0,No,Private,Urban,100.31,38.6,never smoked,0 +11727,Male,39.0,0,0,Yes,Self-employed,Urban,74.29,29.3,smokes,0 +60255,Female,34.0,0,0,No,Private,Rural,103.43,43.6,smokes,0 +38796,Female,54.0,0,0,Yes,Private,Urban,99.83,22.7,formerly smoked,0 +46498,Female,57.0,0,0,Yes,Private,Urban,217.4,36.6,never smoked,0 +41042,Female,1.56,0,0,No,children,Urban,71.81,22.6,Unknown,0 +35069,Female,50.0,1,1,No,Govt_job,Urban,79.79,25.6,smokes,0 +61103,Female,64.0,1,0,Yes,Self-employed,Urban,190.92,31.4,never smoked,0 +25095,Male,44.0,0,0,Yes,Govt_job,Urban,94.76,26.0,formerly smoked,0 +55607,Male,38.0,0,0,Yes,Private,Urban,101.43,27.0,formerly smoked,0 +63029,Male,32.0,0,0,Yes,Private,Rural,115.86,33.3,never smoked,0 +2919,Male,17.0,0,0,No,Private,Rural,95.27,17.3,Unknown,0 +60003,Male,81.0,0,0,Yes,Govt_job,Rural,89.02,26.9,never smoked,0 +46256,Male,15.0,0,0,No,Private,Urban,77.55,24.8,Unknown,0 +23659,Female,5.0,0,0,No,children,Urban,75.86,20.0,Unknown,0 +2952,Male,70.0,1,1,Yes,Private,Rural,93.62,35.8,never smoked,0 +49229,Male,52.0,0,0,No,Govt_job,Rural,72.71,36.9,formerly smoked,0 +2457,Female,67.0,0,1,Yes,Self-employed,Rural,94.45,29.6,formerly smoked,0 +23508,Female,17.0,0,0,No,Never_worked,Rural,88.57,31.1,never smoked,0 +28364,Male,61.0,0,0,Yes,Private,Urban,84.12,25.1,formerly smoked,0 +31360,Female,31.0,0,0,No,Private,Urban,89.11,51.9,smokes,0 +19335,Male,58.0,0,0,Yes,Self-employed,Rural,99.83,36.3,smokes,0 +40390,Female,12.0,0,0,No,children,Rural,150.03,28.2,never smoked,0 +63936,Female,30.0,0,0,No,Private,Urban,69.67,35.8,formerly smoked,0 +24832,Female,65.0,0,0,Yes,Self-employed,Urban,77.46,30.9,formerly smoked,0 +25219,Female,23.0,0,0,No,Private,Urban,100.54,22.1,smokes,0 +42393,Male,14.0,0,0,No,children,Rural,142.38,17.6,never smoked,0 +17951,Male,27.0,0,0,No,Self-employed,Rural,110.87,29.5,smokes,0 +17443,Female,53.0,0,0,Yes,Private,Urban,73.6,27.0,never smoked,0 +52242,Female,58.0,1,0,Yes,Govt_job,Rural,59.52,33.2,never smoked,0 +45931,Male,9.0,0,0,No,children,Urban,142.68,24.4,Unknown,0 +7828,Male,59.0,1,0,Yes,Self-employed,Urban,182.9,34.4,smokes,0 +21547,Female,46.0,0,0,Yes,Govt_job,Urban,75.28,36.7,formerly smoked,0 +42305,Female,41.0,0,0,No,Private,Rural,100.75,27.2,never smoked,0 +9442,Male,55.0,0,0,Yes,Self-employed,Rural,163.82,27.5,never smoked,0 +57047,Female,43.0,0,0,Yes,Private,Urban,110.42,32.6,smokes,0 +2538,Female,5.0,0,0,No,children,Rural,105.18,,Unknown,0 +28461,Male,15.0,0,0,No,Never_worked,Rural,79.59,28.4,Unknown,0 +16433,Female,36.0,0,0,Yes,Private,Rural,107.99,25.5,never smoked,0 +50681,Female,36.0,0,0,Yes,Private,Rural,90.22,28.7,formerly smoked,0 +71327,Female,47.0,0,0,No,Private,Rural,143.45,23.8,never smoked,0 +46699,Female,18.0,0,0,No,Private,Rural,78.57,34.4,Unknown,0 +25248,Male,19.0,0,0,No,Private,Rural,79.82,26.1,Unknown,0 +35315,Male,65.0,0,0,Yes,Self-employed,Urban,95.88,28.5,never smoked,0 +63144,Male,17.0,0,0,No,Govt_job,Urban,123.04,29.6,never smoked,0 +21517,Male,54.0,0,0,Yes,Private,Urban,92.34,29.4,smokes,0 +29789,Female,46.0,0,0,Yes,Private,Rural,116.84,28.2,never smoked,0 +52207,Female,59.0,0,0,Yes,Self-employed,Urban,90.04,28.7,formerly smoked,0 +19209,Female,48.0,0,0,Yes,Govt_job,Rural,255.17,38.1,formerly smoked,0 +42041,Female,38.0,0,0,Yes,Private,Rural,217.55,,smokes,0 +58153,Female,18.0,0,0,No,Private,Urban,123.66,22.2,never smoked,0 +27717,Female,56.0,0,0,Yes,Self-employed,Urban,112.16,25.7,Unknown,0 +35106,Male,3.0,0,0,No,children,Urban,88.43,17.7,Unknown,0 +47730,Female,41.0,0,0,No,Private,Urban,86.03,26.4,never smoked,0 +20657,Female,67.0,0,0,Yes,Private,Urban,227.96,32.8,Unknown,0 +63411,Female,60.0,0,0,Yes,Private,Rural,85.6,34.5,Unknown,0 +18671,Female,47.0,0,0,Yes,Govt_job,Rural,111.68,39.5,never smoked,0 +3843,Female,24.0,0,0,No,Private,Urban,73.49,23.5,never smoked,0 +1225,Male,43.0,0,0,Yes,Private,Urban,87.82,38.8,formerly smoked,0 +40264,Female,17.0,0,0,No,Private,Rural,99.29,21.2,Unknown,0 +72451,Female,45.0,0,0,Yes,Private,Rural,63.73,32.0,Unknown,0 +20292,Female,24.0,0,0,Yes,Private,Urban,85.55,63.3,never smoked,0 +31201,Female,79.0,0,0,No,Self-employed,Urban,79.2,32.6,never smoked,0 +59359,Male,79.0,0,0,Yes,Self-employed,Urban,105.93,25.2,never smoked,0 +57985,Female,27.0,0,0,Yes,Private,Urban,94.19,27.4,formerly smoked,0 +2885,Male,72.0,1,0,Yes,Private,Rural,231.71,,Unknown,0 +59743,Male,64.0,0,1,Yes,Self-employed,Rural,69.28,38.6,formerly smoked,0 +11544,Female,34.0,0,0,Yes,Private,Urban,71.37,32.9,never smoked,0 +11969,Female,50.0,0,0,Yes,Self-employed,Urban,110.18,26.0,formerly smoked,0 +42929,Female,58.0,0,0,Yes,Self-employed,Rural,59.68,29.2,formerly smoked,0 +72776,Male,26.0,0,0,Yes,Govt_job,Urban,94.24,29.2,formerly smoked,0 +21438,Female,50.0,0,0,Yes,Private,Rural,82.1,26.4,Unknown,0 +51084,Female,80.0,0,0,Yes,Private,Urban,62.62,23.1,formerly smoked,0 +13440,Male,2.0,0,0,No,children,Urban,107.83,21.2,Unknown,0 +15533,Male,46.0,0,0,No,Private,Urban,107.59,26.2,formerly smoked,0 +50903,Female,29.0,0,0,Yes,Private,Urban,116.98,23.4,never smoked,0 +35276,Female,6.0,0,0,No,children,Rural,84.1,19.8,Unknown,0 +44472,Male,32.0,0,0,Yes,Self-employed,Urban,160.64,20.4,smokes,0 +23587,Female,16.0,0,0,No,Never_worked,Urban,84.4,25.9,never smoked,0 +66794,Female,44.0,0,0,Yes,Govt_job,Rural,81.13,34.1,never smoked,0 +35854,Female,23.0,0,0,No,Private,Urban,88.19,18.3,never smoked,0 +60907,Male,48.0,0,0,Yes,Private,Rural,127.13,35.0,Unknown,0 +12449,Female,34.0,0,0,Yes,Private,Rural,119.61,26.4,Unknown,0 +54371,Male,78.0,0,0,Yes,Govt_job,Urban,143.47,27.6,formerly smoked,0 +8106,Female,42.0,0,0,Yes,Private,Rural,84.6,27.0,smokes,0 +2013,Male,14.0,0,0,No,Private,Rural,110.72,,never smoked,0 +61785,Female,40.0,0,0,No,Private,Rural,158.93,31.3,smokes,0 +2707,Male,10.0,0,0,No,children,Rural,68.94,18.0,Unknown,0 +49120,Female,39.0,0,0,Yes,Govt_job,Rural,69.38,22.1,Unknown,0 +30752,Female,42.0,0,0,No,Self-employed,Urban,72.0,34.4,never smoked,0 +64972,Male,47.0,0,0,Yes,Private,Rural,57.76,33.2,smokes,0 +49537,Male,14.0,0,0,No,Private,Rural,108.65,23.1,never smoked,0 +315,Male,45.0,0,0,Yes,Private,Rural,65.42,39.7,never smoked,0 +62814,Male,58.0,0,0,No,Private,Rural,78.93,40.7,formerly smoked,0 +7665,Female,73.0,0,0,Yes,Private,Rural,98.34,30.9,Unknown,0 +28108,Female,62.0,0,0,Yes,Private,Rural,82.57,27.5,Unknown,0 +50536,Female,62.0,0,1,Yes,Govt_job,Urban,124.37,28.3,never smoked,0 +8655,Female,51.0,0,1,Yes,Self-employed,Urban,100.96,33.4,never smoked,0 +760,Male,0.8,0,0,No,children,Urban,75.22,33.1,Unknown,0 +47501,Female,57.0,0,0,Yes,Private,Urban,59.85,41.5,never smoked,0 +16863,Female,8.0,0,0,No,children,Rural,104.75,17.1,Unknown,0 +51342,Female,69.0,0,0,Yes,Govt_job,Rural,70.98,30.0,Unknown,0 +35759,Female,16.0,0,0,No,Private,Rural,92.77,24.9,Unknown,0 +17270,Female,56.0,0,0,Yes,Private,Urban,82.12,32.5,smokes,0 +53862,Female,41.0,0,0,Yes,Govt_job,Rural,106.35,26.1,never smoked,0 +40951,Female,1.24,0,0,No,children,Rural,77.33,19.2,Unknown,0 +56976,Female,42.0,0,0,Yes,Private,Urban,96.01,38.7,Unknown,0 +37299,Male,57.0,0,0,Yes,Private,Urban,107.49,29.5,never smoked,0 +33247,Male,20.0,0,0,No,Private,Rural,88.47,28.1,smokes,0 +32560,Female,8.0,0,0,No,children,Rural,87.92,14.1,Unknown,0 +10973,Male,43.0,0,0,Yes,Private,Urban,91.13,33.9,never smoked,0 +3816,Male,62.0,0,0,Yes,Private,Rural,80.72,26.0,formerly smoked,0 +50215,Male,42.0,0,0,No,Govt_job,Rural,59.83,52.8,never smoked,0 +10351,Male,50.0,0,0,Yes,Private,Urban,67.02,,formerly smoked,0 +69665,Female,63.0,0,0,Yes,Private,Rural,60.22,29.2,never smoked,0 +14976,Male,80.0,0,1,Yes,Private,Rural,82.41,26.3,smokes,0 +28183,Female,13.0,0,0,No,children,Urban,75.78,23.6,Unknown,0 +33085,Female,20.0,0,0,No,Private,Rural,102.42,18.6,never smoked,0 +13386,Female,71.0,0,1,Yes,Self-employed,Rural,98.45,29.7,Unknown,0 +15601,Female,50.0,0,0,Yes,Private,Urban,93.51,30.9,smokes,0 +22254,Female,76.0,0,0,Yes,Private,Rural,113.68,22.8,Unknown,0 +15539,Female,41.0,0,0,Yes,Private,Rural,97.41,25.5,never smoked,0 +58235,Male,76.0,0,0,Yes,Private,Urban,58.65,25.6,smokes,0 +21162,Female,78.0,0,0,Yes,Self-employed,Rural,81.68,23.0,Unknown,0 +67880,Male,5.0,0,0,No,children,Urban,148.52,20.6,Unknown,0 +42545,Male,29.0,1,0,Yes,Private,Urban,77.55,,formerly smoked,0 +48359,Female,43.0,0,0,Yes,Private,Rural,142.12,28.4,smokes,0 +54815,Female,49.0,0,0,Yes,Private,Urban,125.3,29.7,formerly smoked,0 +6233,Male,70.0,1,0,Yes,Self-employed,Rural,118.81,26.0,smokes,0 +52225,Male,24.0,0,0,No,Private,Urban,84.16,37.5,smokes,0 +50463,Female,41.0,0,0,Yes,Private,Urban,78.74,42.3,smokes,0 +49084,Male,20.0,0,0,No,Private,Urban,57.51,21.4,Unknown,0 +61889,Male,34.0,0,0,Yes,Private,Urban,61.11,29.3,never smoked,0 +25525,Male,32.0,0,0,Yes,Private,Urban,78.3,31.0,Unknown,0 +9730,Male,27.0,0,0,Yes,Private,Urban,76.19,22.0,never smoked,0 +30622,Female,44.0,0,0,Yes,Govt_job,Rural,115.99,20.9,never smoked,0 +26480,Male,20.0,0,0,No,Private,Rural,100.8,45.9,never smoked,0 +65895,Female,52.0,0,0,Yes,Private,Urban,98.27,61.2,Unknown,0 +4913,Female,57.0,0,0,Yes,Private,Rural,93.85,29.1,never smoked,0 +20676,Male,29.0,0,0,No,Private,Rural,94.69,28.4,smokes,0 +52410,Female,16.0,0,0,No,Private,Urban,136.23,22.6,Unknown,0 +57944,Female,35.0,0,0,Yes,Govt_job,Rural,56.12,24.2,smokes,0 +20290,Female,5.0,0,0,No,children,Rural,93.03,16.3,Unknown,0 +10875,Male,63.0,0,0,Yes,Private,Rural,196.81,35.9,never smoked,0 +2393,Male,59.0,1,0,Yes,Private,Rural,87.81,29.8,formerly smoked,0 +66464,Male,63.0,0,0,Yes,Private,Urban,222.66,37.0,formerly smoked,0 +40548,Male,52.0,0,0,Yes,Private,Rural,223.58,35.8,never smoked,0 +19699,Female,50.0,0,0,No,Private,Urban,85.77,21.1,never smoked,0 +205,Female,43.0,0,0,Yes,Private,Rural,88.23,37.6,Unknown,0 +54805,Female,27.0,0,0,No,Self-employed,Urban,73.65,24.8,Unknown,0 +53195,Male,30.0,0,0,No,Private,Urban,141.8,31.9,never smoked,0 +9107,Female,8.0,0,0,No,children,Rural,92.65,17.5,Unknown,0 +65196,Male,75.0,1,0,Yes,Private,Rural,198.79,,smokes,0 +58833,Male,14.0,0,0,No,Private,Rural,61.04,17.6,Unknown,0 +4309,Female,23.0,0,0,Yes,Private,Rural,102.88,38.9,Unknown,0 +55462,Male,6.0,0,0,No,children,Urban,123.39,15.2,Unknown,0 +51746,Female,37.0,0,0,Yes,Govt_job,Rural,67.07,27.4,never smoked,0 +59335,Male,38.0,0,0,Yes,Govt_job,Rural,69.88,27.9,smokes,0 +65644,Male,3.0,0,0,No,children,Urban,57.02,16.1,Unknown,0 +52790,Female,26.0,0,0,No,Govt_job,Urban,123.81,39.0,never smoked,0 +42681,Female,58.0,0,0,Yes,Govt_job,Rural,73.36,36.6,formerly smoked,0 +33697,Male,57.0,0,0,Yes,Private,Rural,90.54,33.7,never smoked,0 +51963,Male,58.0,0,0,Yes,Private,Urban,69.24,27.6,never smoked,0 +13375,Male,76.0,0,0,Yes,Private,Urban,192.39,31.0,never smoked,0 +37526,Female,68.0,1,1,Yes,Private,Rural,233.3,,Unknown,0 +59454,Female,79.0,0,0,Yes,Self-employed,Urban,74.35,28.5,formerly smoked,0 +23600,Male,34.0,0,0,Yes,Private,Rural,71.94,31.4,smokes,0 +61245,Male,75.0,0,0,Yes,Self-employed,Rural,82.35,25.3,never smoked,0 +53489,Male,11.0,0,0,No,children,Rural,73.28,17.2,never smoked,0 +42284,Male,71.0,1,0,Yes,Self-employed,Rural,97.57,26.9,Unknown,0 +69089,Female,40.0,0,0,Yes,Private,Rural,83.3,32.0,smokes,0 +68970,Female,24.0,0,0,No,Private,Urban,85.07,22.5,Unknown,0 +42938,Male,0.64,0,0,No,children,Urban,60.4,17.3,Unknown,0 +11327,Female,82.0,0,0,Yes,Self-employed,Urban,79.96,27.0,formerly smoked,0 +5464,Male,32.0,0,0,Yes,Private,Rural,70.96,33.1,Unknown,0 +56995,Female,81.0,0,0,Yes,Private,Urban,82.86,25.0,never smoked,0 +53646,Female,33.0,1,0,No,Private,Rural,97.87,,smokes,0 +45139,Female,79.0,0,1,Yes,Private,Rural,201.38,31.1,never smoked,0 +38354,Female,62.0,0,0,Yes,Self-employed,Urban,91.82,19.6,Unknown,0 +15566,Male,39.0,0,0,Yes,Private,Rural,91.85,24.7,smokes,0 +4793,Female,60.0,1,0,Yes,Self-employed,Urban,99.23,48.0,formerly smoked,0 +59223,Male,48.0,0,0,Yes,Private,Urban,68.13,38.0,formerly smoked,0 +30927,Male,24.0,0,0,No,Private,Rural,93.76,24.0,formerly smoked,0 +966,Female,70.0,1,0,Yes,Self-employed,Rural,103.89,30.0,never smoked,0 +62923,Female,17.0,0,0,No,Private,Urban,87.39,24.6,Unknown,0 +30627,Female,56.0,0,0,Yes,Govt_job,Urban,89.53,23.1,Unknown,0 +17236,Female,3.0,0,0,No,children,Urban,66.61,17.4,Unknown,0 +27566,Male,65.0,0,0,Yes,Private,Rural,236.14,43.1,Unknown,0 +6368,Male,72.0,0,1,Yes,Private,Urban,99.76,27.1,formerly smoked,0 +33876,Male,10.0,0,0,No,children,Urban,87.09,14.3,Unknown,0 +52164,Male,29.0,0,0,Yes,Private,Urban,193.81,46.8,never smoked,0 +32446,Female,44.0,0,0,Yes,Private,Rural,97.27,26.0,never smoked,0 +56855,Male,46.0,0,0,Yes,Private,Urban,137.77,29.3,never smoked,0 +43837,Male,33.0,0,0,Yes,Private,Urban,105.19,50.1,smokes,0 +5477,Male,63.0,0,1,Yes,Self-employed,Urban,82.72,,never smoked,0 +64974,Male,0.24,0,0,No,children,Urban,58.35,18.6,Unknown,0 +33976,Male,55.0,0,0,Yes,Private,Urban,68.79,27.0,never smoked,0 +31019,Female,56.0,0,0,Yes,Private,Urban,94.19,25.7,never smoked,0 +4699,Male,50.0,0,0,No,Govt_job,Rural,121.17,25.5,formerly smoked,0 +60276,Male,78.0,1,1,Yes,Self-employed,Rural,106.41,27.3,never smoked,0 +24420,Male,63.0,0,0,Yes,Private,Rural,104.79,24.1,Unknown,0 +28478,Female,31.0,0,0,Yes,Private,Urban,82.18,42.7,never smoked,0 +63236,Male,65.0,0,0,Yes,Private,Urban,96.81,41.2,smokes,0 +6324,Male,51.0,0,0,Yes,Private,Rural,107.42,20.2,formerly smoked,0 +62059,Male,60.0,0,0,Yes,Private,Rural,69.2,30.9,never smoked,0 +28400,Male,69.0,0,0,Yes,Self-employed,Urban,92.73,27.7,never smoked,0 +5841,Female,23.0,0,0,No,Private,Urban,86.11,22.3,never smoked,0 +5681,Male,46.0,0,0,Yes,Private,Rural,111.78,39.4,smokes,0 +16587,Female,16.0,0,0,No,Private,Urban,122.26,34.2,never smoked,0 +3477,Female,26.0,0,0,No,Private,Rural,78.16,20.1,never smoked,0 +23890,Female,44.0,1,0,Yes,Govt_job,Rural,105.77,36.8,never smoked,0 +3803,Female,56.0,0,0,Yes,Private,Urban,102.97,,smokes,0 +34068,Female,23.0,0,0,Yes,Govt_job,Urban,77.53,33.9,formerly smoked,0 +60145,Female,38.0,0,0,Yes,Private,Urban,77.35,27.7,never smoked,0 +11702,Female,18.0,0,0,No,Never_worked,Urban,82.36,22.7,Unknown,0 +50508,Female,63.0,0,1,Yes,Self-employed,Rural,239.95,32.2,smokes,0 +65473,Male,23.0,0,0,No,Private,Urban,61.96,22.0,smokes,0 +51257,Male,32.0,0,0,No,Private,Rural,72.1,23.2,never smoked,0 +47810,Male,8.0,0,0,No,children,Rural,107.97,26.7,Unknown,0 +38737,Male,77.0,0,0,Yes,Self-employed,Urban,60.77,23.0,smokes,0 +39060,Female,41.0,0,0,Yes,Private,Urban,71.06,23.4,never smoked,0 +56804,Female,34.0,0,0,No,Govt_job,Urban,60.36,24.1,never smoked,0 +45099,Male,25.0,0,0,Yes,Self-employed,Urban,83.33,31.5,Unknown,0 +22221,Female,35.0,0,0,Yes,Self-employed,Urban,65.33,26.1,never smoked,0 +57134,Male,15.0,0,0,No,children,Urban,113.28,23.7,never smoked,0 +57609,Male,1.64,0,0,No,children,Urban,170.88,20.8,Unknown,0 +6132,Male,4.0,0,0,No,children,Urban,103.34,18.8,Unknown,0 +31600,Female,33.0,0,0,No,Private,Rural,106.08,32.5,formerly smoked,0 +51497,Male,28.0,0,0,Yes,Self-employed,Urban,156.45,24.3,never smoked,0 +48455,Female,37.0,0,0,Yes,Private,Urban,60.05,24.1,Unknown,0 +13049,Female,50.0,0,0,Yes,Private,Rural,114.05,32.5,never smoked,0 +9079,Female,76.0,0,1,Yes,Self-employed,Urban,202.21,39.3,formerly smoked,0 +68568,Female,72.0,0,0,Yes,Self-employed,Rural,57.28,23.9,never smoked,0 +72867,Male,16.0,0,0,No,Private,Rural,99.49,22.0,Unknown,0 +53121,Male,44.0,0,0,Yes,Private,Urban,63.6,37.3,never smoked,0 +33779,Male,46.0,0,1,Yes,Govt_job,Urban,80.01,33.0,formerly smoked,0 +52367,Male,46.0,0,0,Yes,Private,Urban,58.42,24.7,formerly smoked,0 +29314,Female,73.0,1,1,Yes,Govt_job,Urban,67.38,32.8,formerly smoked,0 +18366,Female,29.0,0,0,Yes,Self-employed,Rural,73.58,29.8,Unknown,0 +32522,Male,19.0,0,0,No,Private,Urban,103.92,24.1,Unknown,0 +3980,Female,27.0,0,0,No,Private,Rural,80.22,21.6,never smoked,0 +5350,Female,36.0,0,0,Yes,Private,Rural,103.76,27.1,never smoked,0 +3428,Female,61.0,0,0,Yes,Self-employed,Urban,77.06,27.0,never smoked,0 +62552,Female,9.0,0,0,No,children,Rural,90.22,18.7,Unknown,0 +51085,Female,25.0,0,0,No,Private,Urban,181.3,35.8,never smoked,0 +60586,Female,68.0,0,0,Yes,Private,Rural,85.29,27.1,formerly smoked,0 +59988,Female,26.0,1,0,Yes,Private,Urban,107.59,33.1,smokes,0 +34122,Female,17.0,0,0,No,Private,Urban,87.72,25.9,smokes,0 +11392,Male,75.0,0,0,Yes,Private,Rural,70.73,26.7,smokes,0 +53632,Male,34.0,0,0,No,Govt_job,Urban,72.75,22.2,Unknown,0 +32202,Male,53.0,0,0,Yes,Private,Rural,95.47,26.0,smokes,0 +52489,Female,18.0,0,0,No,Private,Urban,70.54,23.5,Unknown,0 +13374,Male,48.0,0,0,Yes,Private,Urban,100.03,23.5,never smoked,0 +66370,Female,5.0,0,0,No,children,Rural,59.78,15.9,Unknown,0 +259,Male,79.0,0,0,Yes,Private,Urban,198.79,24.9,never smoked,0 +12092,Male,16.0,0,0,No,Private,Rural,90.39,26.5,never smoked,0 +38263,Female,32.0,0,0,Yes,Private,Rural,147.04,35.7,Unknown,0 +1666,Male,70.0,0,0,Yes,Govt_job,Urban,202.55,,formerly smoked,0 +48922,Male,55.0,1,1,Yes,Private,Rural,64.92,32.1,smokes,0 +58061,Female,70.0,1,0,Yes,Self-employed,Rural,154.6,28.5,formerly smoked,0 +50283,Female,51.0,0,0,Yes,Private,Urban,95.98,40.1,smokes,0 +26605,Female,39.0,0,0,Yes,Private,Rural,102.51,26.6,smokes,0 +10396,Male,79.0,1,0,No,Private,Urban,96.52,21.7,Unknown,0 +14695,Male,80.0,1,0,Yes,Self-employed,Rural,232.12,28.8,never smoked,0 +2579,Female,34.0,0,0,Yes,Self-employed,Rural,78.12,32.0,Unknown,0 +71061,Male,59.0,0,0,Yes,Govt_job,Urban,70.04,31.4,never smoked,0 +41250,Female,54.0,0,0,Yes,Private,Rural,97.61,32.1,smokes,0 +53923,Female,22.0,0,0,No,Private,Urban,113.11,19.8,Unknown,0 +54139,Female,21.0,0,0,No,Private,Rural,71.06,25.3,formerly smoked,0 +32430,Female,4.0,0,0,No,children,Rural,104.95,28.8,Unknown,0 +14928,Female,26.0,0,0,No,Private,Urban,81.94,26.0,smokes,0 +32457,Male,62.0,0,0,Yes,Private,Urban,96.37,30.7,formerly smoked,0 +59718,Female,33.0,0,0,Yes,Private,Rural,114.16,43.3,never smoked,0 +4948,Male,51.0,0,0,Yes,Self-employed,Rural,93.58,35.2,smokes,0 +40870,Female,75.0,0,0,Yes,Govt_job,Urban,73.89,20.9,Unknown,0 +2218,Male,42.0,0,0,Yes,Private,Rural,107.83,35.3,smokes,0 +57494,Female,82.0,1,0,Yes,Self-employed,Urban,107.21,27.0,formerly smoked,0 +1534,Female,61.0,0,0,Yes,Private,Rural,99.35,26.1,smokes,0 +69329,Female,62.0,0,0,Yes,Private,Rural,203.57,29.1,Unknown,0 +39852,Male,59.0,1,1,Yes,Govt_job,Rural,81.51,32.6,never smoked,0 +65358,Female,31.0,0,0,Yes,Private,Rural,69.26,21.8,formerly smoked,0 +36488,Male,12.0,0,0,No,children,Urban,111.47,32.3,never smoked,0 +55567,Female,76.0,0,1,Yes,Private,Rural,86.09,28.1,never smoked,0 +33562,Male,71.0,0,1,Yes,Govt_job,Rural,72.94,32.3,formerly smoked,0 +20006,Female,15.0,0,0,No,Private,Urban,76.77,21.7,Unknown,0 +47696,Male,44.0,0,0,Yes,Private,Rural,60.32,25.0,never smoked,0 +60117,Male,30.0,0,0,No,Private,Rural,133.24,28.9,never smoked,0 +5032,Female,47.0,0,0,Yes,Private,Rural,65.01,21.7,formerly smoked,0 +5780,Female,47.0,0,0,Yes,Private,Urban,74.63,45.3,never smoked,0 +52236,Female,60.0,0,0,Yes,Private,Rural,230.78,40.2,never smoked,0 +59752,Male,62.0,0,0,Yes,Private,Urban,72.5,22.5,formerly smoked,0 +47005,Female,47.0,0,0,Yes,Private,Urban,68.48,21.3,never smoked,0 +4750,Male,78.0,0,0,Yes,Private,Urban,85.03,26.1,formerly smoked,0 +65127,Female,35.0,0,0,Yes,Private,Urban,80.76,28.8,smokes,0 +4498,Male,71.0,0,1,Yes,Private,Urban,204.98,,formerly smoked,0 +32203,Female,57.0,0,0,Yes,Self-employed,Rural,95.36,32.4,formerly smoked,0 +27436,Male,12.0,0,0,No,children,Urban,110.33,20.4,Unknown,0 +34999,Male,26.0,0,0,Yes,Private,Urban,89.18,25.9,formerly smoked,0 +4213,Male,33.0,0,0,No,Self-employed,Rural,91.53,38.8,formerly smoked,0 +71669,Male,60.0,0,0,Yes,Private,Rural,65.16,30.8,never smoked,0 +36803,Female,35.0,0,0,No,Private,Rural,74.53,24.6,never smoked,0 +17725,Female,10.0,0,0,No,children,Rural,93.29,20.6,Unknown,0 +57983,Male,50.0,0,0,Yes,Govt_job,Urban,227.89,38.8,formerly smoked,0 +68089,Female,44.0,0,0,Yes,Private,Urban,121.46,40.4,Unknown,0 +3135,Female,73.0,0,0,No,Self-employed,Rural,69.35,,never smoked,0 +563,Female,41.0,0,0,Yes,Private,Rural,216.71,36.2,never smoked,0 +19364,Female,7.0,0,0,No,children,Rural,74.96,18.8,Unknown,0 +34590,Male,45.0,0,0,Yes,Self-employed,Rural,75.25,27.6,smokes,0 +55459,Female,60.0,0,0,No,Private,Rural,91.82,28.3,formerly smoked,0 +38724,Female,49.0,1,0,Yes,Govt_job,Urban,56.37,39.4,smokes,0 +52968,Female,45.0,0,0,Yes,Self-employed,Rural,149.15,33.5,Unknown,0 +35716,Female,55.0,1,0,Yes,Private,Urban,202.67,40.4,formerly smoked,0 +51421,Female,54.0,0,0,Yes,Private,Rural,65.38,25.9,Unknown,0 +72525,Female,39.0,0,0,Yes,Private,Urban,90.31,27.6,smokes,0 +33009,Male,76.0,0,0,Yes,Self-employed,Rural,221.8,44.7,formerly smoked,0 +35437,Female,28.0,0,0,Yes,Private,Rural,73.39,30.8,Unknown,0 +37253,Female,70.0,1,0,Yes,Private,Urban,147.12,22.3,formerly smoked,0 +46171,Male,28.0,0,0,Yes,Private,Urban,109.85,27.9,Unknown,0 +18143,Male,79.0,0,0,Yes,Self-employed,Rural,103.21,22.9,formerly smoked,0 +35330,Male,30.0,0,0,Yes,Private,Urban,81.25,27.3,smokes,0 +32127,Female,26.0,0,0,Yes,Govt_job,Urban,84.69,25.0,never smoked,0 +69834,Female,57.0,0,0,Yes,Govt_job,Rural,87.1,48.3,smokes,0 +56311,Female,16.0,0,0,No,Private,Rural,81.92,22.7,Unknown,0 +13439,Male,40.0,1,0,Yes,Private,Urban,90.91,39.1,Unknown,0 +36366,Male,77.0,0,0,Yes,Govt_job,Urban,64.4,27.8,never smoked,0 +13111,Female,67.0,1,0,Yes,Private,Rural,85.48,,smokes,0 +28932,Female,36.0,0,0,Yes,Private,Rural,67.29,36.7,formerly smoked,0 +67521,Female,40.0,1,0,Yes,Private,Urban,124.48,38.5,Unknown,0 +65688,Male,2.0,0,1,No,children,Urban,62.89,29.4,Unknown,0 +58761,Male,52.0,0,0,Yes,Private,Urban,87.51,30.5,formerly smoked,0 +21192,Female,78.0,0,0,Yes,Private,Urban,93.15,23.6,Unknown,0 +72348,Female,22.0,0,0,No,Private,Urban,64.87,20.6,Unknown,0 +1825,Male,33.0,0,0,Yes,Self-employed,Urban,90.68,31.7,smokes,0 +25674,Male,40.0,0,0,Yes,Private,Urban,104.64,24.9,Unknown,0 +33035,Female,20.0,0,0,No,Private,Urban,92.44,33.4,never smoked,0 +54297,Male,19.0,0,0,No,Private,Rural,120.46,22.2,Unknown,0 +9122,Male,25.0,0,0,Yes,Private,Urban,89.87,26.5,never smoked,0 +1218,Female,23.0,0,0,No,Private,Urban,105.28,27.1,formerly smoked,0 +57210,Female,28.0,0,0,Yes,Private,Rural,131.8,30.3,never smoked,0 +37096,Female,6.0,0,0,No,children,Rural,66.33,18.6,Unknown,0 +38243,Female,37.0,0,0,Yes,Private,Rural,101.07,26.4,Unknown,0 +17198,Female,10.0,0,0,No,children,Rural,83.37,17.8,formerly smoked,0 +70884,Female,34.0,0,0,Yes,Private,Urban,79.8,37.4,smokes,0 +51809,Female,60.0,0,0,Yes,Self-employed,Rural,103.17,32.1,formerly smoked,0 +40602,Female,22.0,0,0,No,Private,Urban,62.52,38.2,never smoked,0 +65116,Female,62.0,1,0,Yes,Self-employed,Urban,75.78,,smokes,0 +70455,Female,52.0,0,0,Yes,Govt_job,Urban,110.36,39.1,formerly smoked,0 +41618,Male,61.0,0,0,No,Private,Rural,140.07,29.5,never smoked,0 +21209,Female,10.0,0,0,No,children,Rural,84.86,28.6,never smoked,0 +26103,Male,36.0,0,0,Yes,Private,Rural,106.85,40.1,never smoked,0 +10436,Female,29.0,0,0,Yes,Private,Rural,102.07,31.8,never smoked,0 +16550,Female,69.0,0,1,No,Govt_job,Urban,202.38,34.6,Unknown,0 +17697,Female,62.0,0,0,Yes,Govt_job,Urban,67.07,24.5,never smoked,0 +10744,Male,62.0,0,1,Yes,Govt_job,Rural,73.7,26.2,never smoked,0 +7799,Female,79.0,0,0,No,Self-employed,Urban,77.59,33.0,never smoked,0 +57183,Male,13.0,0,0,No,children,Rural,69.16,22.3,Unknown,0 +121,Female,38.0,0,0,Yes,Private,Urban,91.44,,Unknown,0 +32604,Male,49.0,0,0,Yes,Self-employed,Rural,215.81,58.1,never smoked,0 +49883,Female,41.0,0,0,Yes,Private,Rural,65.4,36.9,formerly smoked,0 +68242,Male,56.0,0,0,Yes,Private,Urban,139.72,43.9,never smoked,0 +33726,Female,8.0,0,0,No,children,Urban,72.81,18.2,Unknown,0 +56255,Female,24.0,0,0,No,Private,Urban,149.17,23.1,never smoked,0 +46455,Female,61.0,0,0,Yes,Private,Urban,125.74,32.6,Unknown,0 +13270,Female,40.0,0,0,No,Govt_job,Urban,90.21,41.2,never smoked,0 +38067,Female,22.0,0,0,No,Private,Urban,139.48,28.6,formerly smoked,0 +9160,Female,80.0,1,0,Yes,Private,Urban,90.77,26.0,never smoked,0 +52843,Female,60.0,1,1,Yes,Private,Urban,220.24,36.8,never smoked,0 +67343,Female,57.0,0,0,Yes,Private,Rural,81.42,35.8,never smoked,0 +50805,Female,55.0,0,0,Yes,Private,Urban,102.36,24.2,never smoked,0 +10826,Female,39.0,0,0,Yes,Self-employed,Urban,82.85,22.9,smokes,0 +60358,Female,51.0,0,0,Yes,Private,Urban,102.11,23.1,never smoked,0 +72231,Female,47.0,0,0,Yes,Self-employed,Rural,195.61,,never smoked,0 +58586,Male,77.0,1,1,Yes,Self-employed,Urban,80.92,28.9,smokes,0 +50499,Female,32.0,0,0,Yes,Private,Rural,71.8,26.5,never smoked,0 +18986,Female,45.0,0,0,No,Self-employed,Urban,88.47,29.3,never smoked,0 +51177,Female,49.0,0,0,Yes,Private,Urban,67.68,24.8,formerly smoked,0 +575,Male,13.0,0,0,No,children,Rural,98.65,20.1,Unknown,0 +47321,Female,74.0,0,0,Yes,Private,Rural,83.58,18.2,never smoked,0 +7754,Female,72.0,0,0,Yes,Self-employed,Rural,104.04,34.7,formerly smoked,0 +66270,Female,57.0,0,0,Yes,Private,Rural,69.4,24.0,Unknown,0 +2814,Male,51.0,1,0,No,Govt_job,Urban,106.22,29.0,never smoked,0 +52847,Female,55.0,0,0,Yes,Private,Rural,112.46,27.3,never smoked,0 +60235,Male,73.0,0,1,Yes,Private,Rural,72.42,27.6,never smoked,0 +10981,Male,12.0,0,0,No,children,Rural,96.73,20.4,never smoked,0 +62833,Female,6.0,0,0,No,children,Urban,107.4,17.7,Unknown,0 +26267,Female,76.0,0,0,Yes,Self-employed,Urban,267.61,27.9,smokes,0 +69918,Female,38.0,1,0,Yes,Private,Rural,109.46,41.5,never smoked,0 +44927,Female,50.0,0,0,Yes,Govt_job,Rural,120.05,27.4,Unknown,0 +20169,Female,75.0,0,0,Yes,Private,Rural,106.33,27.8,Unknown,0 +31481,Female,1.16,0,0,No,children,Urban,97.28,17.8,Unknown,0 +27721,Male,32.0,0,0,Yes,Private,Rural,83.13,32.0,smokes,0 +71419,Male,12.0,0,0,No,children,Urban,97.35,37.3,Unknown,0 +25642,Male,32.0,0,0,No,Private,Urban,79.54,28.1,Unknown,0 +31932,Female,13.0,0,0,No,children,Urban,76.55,29.1,Unknown,0 +13629,Male,1.32,0,0,No,children,Urban,56.11,22.9,Unknown,0 +38258,Female,63.0,0,0,Yes,Private,Rural,91.36,38.8,formerly smoked,0 +70602,Female,29.0,0,0,No,Private,Rural,79.27,29.0,smokes,0 +60056,Male,53.0,0,0,Yes,Private,Urban,113.21,28.6,smokes,0 +31156,Female,49.0,0,0,Yes,Private,Urban,105.99,29.8,never smoked,0 +69643,Male,81.0,0,0,Yes,Private,Rural,59.93,28.9,formerly smoked,0 +23171,Male,66.0,0,0,Yes,Private,Rural,88.83,29.1,Unknown,0 +42309,Female,42.0,0,0,Yes,Private,Urban,73.37,,smokes,0 +2877,Female,61.0,0,0,Yes,Private,Urban,115.42,16.7,smokes,0 +37011,Female,52.0,0,0,Yes,Private,Rural,71.93,34.1,Unknown,0 +355,Male,8.0,0,0,No,children,Rural,96.43,25.7,Unknown,0 +53252,Male,82.0,0,0,No,Self-employed,Urban,161.95,30.8,never smoked,0 +3553,Female,43.0,0,0,Yes,Govt_job,Urban,104.55,23.9,smokes,0 +72178,Female,4.0,0,0,No,children,Urban,71.25,18.8,Unknown,0 +11817,Male,58.0,0,0,Yes,Govt_job,Urban,160.87,,formerly smoked,0 +26468,Female,45.0,0,0,Yes,Govt_job,Urban,82.02,41.8,smokes,0 +13176,Female,62.0,1,0,Yes,Private,Urban,78.02,36.4,never smoked,0 +67032,Male,42.0,0,0,No,Govt_job,Urban,115.21,28.7,Unknown,0 +39784,Female,72.0,0,0,Yes,Self-employed,Urban,65.12,28.3,never smoked,0 +56156,Other,26.0,0,0,No,Private,Rural,143.33,22.4,formerly smoked,0 +15230,Female,9.0,0,0,No,children,Rural,80.55,15.1,Unknown,0 +25218,Female,31.0,0,0,Yes,Govt_job,Urban,88.2,22.7,never smoked,0 +39637,Female,20.0,0,0,No,Private,Rural,147.42,26.6,Unknown,0 +26777,Male,22.0,0,0,No,Private,Rural,86.53,20.8,never smoked,0 +60533,Female,23.0,0,0,No,Private,Rural,91.95,23.0,Unknown,0 +44375,Female,57.0,1,0,Yes,Self-employed,Rural,63.72,35.8,smokes,0 +49848,Male,52.0,0,0,Yes,Private,Rural,63.78,29.9,never smoked,0 +65413,Female,64.0,0,0,Yes,Private,Urban,55.64,43.4,never smoked,0 +31161,Female,26.0,0,0,No,Govt_job,Urban,88.88,36.3,never smoked,0 +61787,Male,54.0,0,0,Yes,Self-employed,Urban,114.61,40.1,formerly smoked,0 +53482,Male,32.0,0,0,No,Self-employed,Rural,56.08,35.9,formerly smoked,0 +71387,Female,66.0,0,0,Yes,Govt_job,Rural,59.62,32.4,never smoked,0 +7577,Male,13.0,0,0,No,children,Urban,75.85,20.3,Unknown,0 +34400,Female,77.0,1,0,Yes,Self-employed,Rural,176.71,33.2,never smoked,0 +45175,Male,18.0,0,0,No,Private,Urban,80.07,22.3,Unknown,0 +71192,Male,11.0,0,0,No,children,Rural,56.33,18.1,Unknown,0 +26997,Female,16.0,0,0,No,Private,Urban,87.16,28.2,never smoked,0 +33532,Female,73.0,0,1,Yes,Private,Rural,102.46,29.7,never smoked,0 +33704,Male,44.0,1,0,Yes,Private,Rural,84.1,,Unknown,0 +51897,Male,36.0,0,0,Yes,Private,Rural,161.0,29.0,smokes,0 +43016,Male,10.0,0,0,No,children,Urban,70.7,25.4,Unknown,0 +3370,Female,54.0,0,0,Yes,Private,Rural,81.26,26.5,Unknown,0 +39984,Female,42.0,0,0,Yes,Govt_job,Rural,157.67,22.7,formerly smoked,0 +59232,Female,52.0,0,0,Yes,Self-employed,Urban,89.59,27.5,Unknown,0 +57896,Male,32.0,0,0,Yes,Private,Urban,64.02,23.8,smokes,0 +21917,Male,43.0,0,0,Yes,Govt_job,Rural,110.69,35.6,Unknown,0 +66435,Female,28.0,0,0,Yes,Private,Rural,71.97,27.2,never smoked,0 +3442,Female,79.0,0,0,No,Self-employed,Rural,82.07,30.4,Unknown,0 +48064,Male,11.0,0,0,No,children,Rural,65.07,21.5,never smoked,0 +13358,Female,75.0,0,0,Yes,Self-employed,Rural,207.62,31.8,never smoked,0 +64986,Male,55.0,0,0,Yes,Private,Urban,108.64,29.5,never smoked,0 +6032,Male,78.0,0,0,Yes,Self-employed,Urban,201.58,30.6,Unknown,0 +52924,Female,48.0,0,0,Yes,Private,Urban,116.2,27.6,formerly smoked,0 +69979,Male,73.0,0,0,Yes,Self-employed,Rural,231.43,23.0,smokes,0 +50489,Female,56.0,0,0,Yes,Govt_job,Urban,112.62,24.8,never smoked,0 +20094,Male,54.0,1,0,Yes,Private,Urban,220.26,28.0,formerly smoked,0 +16618,Female,55.0,0,0,Yes,Private,Urban,84.37,22.2,Unknown,0 +63280,Female,65.0,0,0,Yes,Private,Rural,82.83,27.8,formerly smoked,0 +14551,Female,69.0,0,0,No,Private,Urban,102.48,30.2,formerly smoked,0 +22098,Female,29.0,0,0,Yes,Self-employed,Rural,69.12,26.8,never smoked,0 +17771,Female,64.0,1,0,Yes,Govt_job,Urban,211.12,22.0,never smoked,0 +11803,Female,16.0,0,0,No,Private,Rural,95.38,34.3,formerly smoked,0 +34356,Female,75.0,0,0,Yes,Private,Rural,108.72,29.2,formerly smoked,0 +26528,Female,17.0,0,0,No,Private,Rural,88.65,30.3,never smoked,0 +51554,Male,42.0,0,0,Yes,Private,Urban,177.91,,Unknown,0 +2296,Male,78.0,1,0,Yes,Self-employed,Urban,90.19,,Unknown,0 +10624,Male,24.0,0,0,Yes,Private,Rural,73.78,21.4,smokes,0 +1681,Female,68.0,0,0,No,Private,Urban,82.85,,smokes,0 +36375,Male,50.0,0,0,Yes,Private,Rural,59.48,26.6,Unknown,0 +8117,Male,52.0,0,0,Yes,Private,Rural,75.77,30.0,formerly smoked,0 +49849,Female,82.0,0,0,Yes,Private,Rural,80.96,33.7,formerly smoked,0 +19436,Male,56.0,0,0,Yes,Private,Rural,82.4,30.9,smokes,0 +10523,Male,56.0,0,0,Yes,Private,Urban,78.93,31.1,Unknown,0 +39322,Male,18.0,0,0,No,Private,Urban,80.59,23.0,Unknown,0 +53265,Female,33.0,0,0,Yes,Self-employed,Urban,70.59,20.2,Unknown,0 +40379,Female,57.0,0,0,Yes,Private,Rural,98.57,31.6,never smoked,0 +66841,Male,30.0,0,0,No,Private,Rural,61.87,23.9,Unknown,0 +38900,Female,52.0,0,0,Yes,Private,Urban,68.88,26.1,Unknown,0 +18180,Female,3.0,0,0,No,children,Urban,66.25,15.8,Unknown,0 +1183,Male,39.0,0,0,Yes,Private,Rural,84.18,,smokes,0 +22964,Male,44.0,0,0,Yes,Govt_job,Rural,69.23,28.7,smokes,0 +64597,Female,33.0,0,0,Yes,Private,Rural,73.2,28.9,Unknown,0 +23893,Male,24.0,0,0,Yes,Private,Urban,103.45,25.1,smokes,0 +51564,Female,24.0,0,0,No,Govt_job,Urban,104.86,19.8,never smoked,0 +14410,Male,54.0,0,1,Yes,Govt_job,Urban,90.3,30.8,smokes,0 +4964,Female,72.0,1,0,Yes,Private,Rural,90.87,22.1,never smoked,0 +15020,Female,37.0,0,0,No,Govt_job,Rural,76.21,20.4,Unknown,0 +27380,Female,36.0,0,0,Yes,Private,Rural,74.14,31.2,formerly smoked,0 +21523,Female,22.0,0,0,No,Govt_job,Urban,87.25,24.9,smokes,0 +8819,Female,68.0,0,0,Yes,Govt_job,Rural,215.33,27.0,formerly smoked,0 +68408,Male,24.0,0,0,No,Private,Urban,88.38,20.1,smokes,0 +8976,Female,35.0,0,0,Yes,Private,Rural,104.4,24.4,never smoked,0 +22290,Female,32.0,0,0,Yes,Private,Urban,104.92,22.6,never smoked,0 +7700,Female,52.0,0,0,Yes,Private,Urban,106.54,22.4,never smoked,0 +40503,Male,21.0,0,0,No,Private,Rural,62.91,26.2,never smoked,0 +47917,Female,82.0,1,0,No,Private,Rural,61.47,22.9,never smoked,0 +30303,Male,33.0,0,0,No,Private,Rural,88.5,32.6,formerly smoked,0 +63864,Male,62.0,0,0,Yes,Private,Rural,107.61,31.3,Unknown,0 +24177,Female,57.0,1,0,Yes,Private,Urban,90.77,43.9,formerly smoked,0 +57274,Male,14.0,0,0,No,Never_worked,Urban,137.91,41.8,never smoked,0 +37213,Male,60.0,0,0,Yes,Self-employed,Rural,212.02,,Unknown,0 +59992,Female,63.0,1,0,Yes,Self-employed,Urban,228.2,37.7,never smoked,0 +27382,Female,50.0,0,0,Yes,Govt_job,Urban,92.15,20.8,never smoked,0 +61017,Female,12.0,0,0,No,children,Urban,126.32,21.6,Unknown,0 +61699,Male,80.0,0,0,Yes,Private,Rural,94.96,22.1,formerly smoked,0 +14489,Female,74.0,0,0,No,Self-employed,Urban,89.52,39.2,Unknown,0 +54053,Male,46.0,0,0,Yes,Private,Rural,66.59,36.7,formerly smoked,0 +38348,Female,66.0,0,0,Yes,Private,Urban,80.1,32.0,never smoked,0 +17668,Male,26.0,0,0,Yes,Self-employed,Urban,73.72,25.9,smokes,0 +11792,Female,70.0,0,0,Yes,Private,Urban,90.49,28.9,formerly smoked,0 +22917,Female,62.0,0,0,Yes,Private,Urban,92.99,29.3,formerly smoked,0 +36204,Male,15.0,0,0,No,children,Rural,62.57,32.3,never smoked,0 +49554,Male,67.0,0,0,Yes,Private,Rural,65.51,33.2,formerly smoked,0 +72594,Male,63.0,0,0,Yes,Private,Urban,95.29,31.6,smokes,0 +28027,Female,42.0,0,0,Yes,Govt_job,Urban,83.7,20.6,never smoked,0 +54177,Female,49.0,1,0,Yes,Govt_job,Rural,63.16,23.3,formerly smoked,0 +32602,Male,78.0,0,1,Yes,Self-employed,Urban,87.77,30.8,Unknown,0 +1213,Female,31.0,0,0,Yes,Self-employed,Urban,87.23,,formerly smoked,0 +21534,Male,67.0,0,0,Yes,Private,Urban,260.85,,Unknown,0 +6852,Female,52.0,1,0,Yes,Self-employed,Rural,104.45,,never smoked,0 +3379,Female,61.0,0,0,Yes,Private,Urban,87.52,23.7,Unknown,0 +41146,Male,41.0,0,0,Yes,Private,Rural,113.65,49.3,never smoked,0 +20391,Female,73.0,0,0,Yes,Govt_job,Rural,65.93,30.3,never smoked,0 +69379,Female,64.0,1,0,Yes,Self-employed,Urban,93.78,24.4,never smoked,0 +34778,Male,65.0,0,0,Yes,Private,Rural,223.9,28.2,formerly smoked,0 +49270,Female,81.0,0,0,Yes,Private,Urban,77.54,33.8,Unknown,0 +55407,Female,47.0,0,0,Yes,Private,Urban,93.18,42.6,formerly smoked,0 +36744,Male,40.0,0,0,Yes,Self-employed,Rural,169.74,31.9,never smoked,0 +26603,Male,46.0,1,0,Yes,Self-employed,Urban,101.93,34.0,Unknown,0 +71414,Female,2.0,0,0,No,children,Urban,125.03,19.8,Unknown,0 +14517,Male,56.0,0,0,Yes,Private,Urban,82.25,30.5,formerly smoked,0 +69050,Male,54.0,0,0,Yes,Private,Urban,85.81,21.7,formerly smoked,0 +52080,Female,26.0,0,0,No,Private,Rural,85.27,24.6,never smoked,0 +27493,Female,45.0,0,0,Yes,Private,Urban,86.06,38.1,never smoked,0 +6295,Female,57.0,0,0,Yes,Govt_job,Urban,104.36,19.2,smokes,0 +20375,Female,78.0,0,0,Yes,Private,Urban,78.29,30.1,formerly smoked,0 +29017,Male,2.0,0,0,No,children,Urban,93.55,23.3,Unknown,0 +56635,Male,76.0,1,0,Yes,Self-employed,Rural,207.96,34.5,formerly smoked,0 +4280,Female,51.0,0,0,Yes,Govt_job,Rural,105.52,30.8,never smoked,0 +22896,Female,54.0,0,0,Yes,Private,Rural,109.27,43.8,formerly smoked,0 +70297,Female,36.0,0,0,Yes,Private,Urban,91.34,29.9,never smoked,0 +47776,Female,57.0,0,0,Yes,Govt_job,Rural,176.78,50.4,never smoked,0 +53141,Female,25.0,0,0,No,Private,Rural,67.73,22.6,never smoked,0 +16145,Female,7.0,0,0,No,children,Rural,73.27,19.5,Unknown,0 +41593,Female,76.0,0,0,Yes,Self-employed,Rural,70.29,33.4,formerly smoked,0 +50651,Female,45.0,0,0,No,Private,Rural,91.47,24.2,Unknown,0 +11111,Female,66.0,1,0,Yes,Govt_job,Urban,205.01,52.7,formerly smoked,0 +15803,Female,45.0,0,0,Yes,Private,Rural,73.87,25.6,Unknown,0 +71597,Female,79.0,1,0,Yes,Private,Rural,64.44,26.9,formerly smoked,0 +22804,Female,25.0,0,0,No,Private,Rural,111.65,35.2,formerly smoked,0 +64498,Female,53.0,0,0,Yes,Private,Rural,90.65,22.1,formerly smoked,0 +41182,Female,35.0,1,0,Yes,Private,Urban,94.2,34.4,smokes,0 +56606,Female,78.0,0,0,Yes,Self-employed,Urban,56.95,26.0,Unknown,0 +36958,Female,32.0,0,0,Yes,Private,Rural,92.37,26.9,never smoked,0 +14877,Male,0.56,0,0,No,children,Rural,127.23,20.1,Unknown,0 +65988,Female,26.0,0,0,No,Private,Rural,191.78,24.7,Unknown,0 +50001,Female,34.0,0,0,Yes,Govt_job,Rural,86.36,32.1,smokes,0 +27034,Female,65.0,0,0,Yes,Govt_job,Urban,82.72,29.8,smokes,0 +8950,Female,15.0,0,0,No,Private,Urban,113.57,27.5,formerly smoked,0 +31850,Female,17.0,0,0,No,Private,Urban,89.58,22.8,Unknown,0 +14288,Female,71.0,0,0,Yes,Private,Rural,91.85,27.6,formerly smoked,0 +3180,Female,42.0,0,0,Yes,Govt_job,Urban,88.89,33.0,never smoked,0 +13899,Male,30.0,0,0,Yes,Private,Urban,79.55,33.7,never smoked,0 +23730,Female,75.0,0,0,Yes,Self-employed,Urban,108.62,25.1,Unknown,0 +6011,Male,9.0,0,0,No,children,Urban,78.24,15.3,Unknown,0 +14376,Male,47.0,0,0,Yes,Private,Rural,88.49,22.2,smokes,0 +22052,Female,75.0,1,0,No,Self-employed,Rural,91.85,21.4,formerly smoked,0 +24836,Female,61.0,0,0,Yes,Private,Rural,72.01,26.0,formerly smoked,0 +11861,Male,61.0,0,0,Yes,Self-employed,Rural,81.96,29.9,never smoked,0 +25613,Female,27.0,0,0,Yes,Private,Urban,70.56,28.6,smokes,0 +71496,Female,55.0,0,0,Yes,Private,Urban,71.02,21.2,never smoked,0 +24074,Female,2.0,0,0,No,children,Rural,99.75,16.0,Unknown,0 +44937,Female,51.0,0,0,Yes,Govt_job,Urban,127.2,22.7,never smoked,0 +72082,Female,45.0,0,0,Yes,Self-employed,Rural,69.76,25.3,smokes,0 +53271,Male,36.0,0,0,Yes,Private,Rural,74.63,31.6,formerly smoked,0 +34077,Male,46.0,0,0,Yes,Govt_job,Rural,102.27,38.9,formerly smoked,0 +42330,Female,48.0,0,0,Yes,Private,Rural,73.56,27.1,smokes,0 +69487,Female,79.0,0,0,Yes,Self-employed,Urban,57.77,24.1,formerly smoked,0 +70973,Female,50.0,0,0,Yes,Govt_job,Urban,151.25,31.5,never smoked,0 +44986,Female,79.0,0,0,Yes,Self-employed,Urban,78.32,32.0,Unknown,0 +2633,Male,32.0,0,0,Yes,Private,Rural,71.5,31.8,never smoked,0 +21834,Female,36.0,0,0,Yes,Private,Urban,84.7,34.0,never smoked,0 +49196,Female,27.0,0,0,Yes,Private,Urban,127.28,23.4,Unknown,0 +22939,Female,22.0,0,0,No,Private,Rural,80.72,29.3,Unknown,0 +55400,Female,5.0,0,0,No,children,Rural,73.92,17.2,Unknown,0 +30870,Male,9.0,0,0,No,children,Urban,93.24,31.9,Unknown,0 +247,Male,31.0,0,0,No,Private,Urban,72.6,31.6,never smoked,0 +7979,Female,26.0,0,0,No,Private,Rural,69.77,23.2,never smoked,0 +56189,Male,43.0,0,0,No,Govt_job,Urban,84.43,30.0,smokes,0 +3984,Female,33.0,0,0,Yes,Private,Rural,84.13,26.3,never smoked,0 +49753,Male,34.0,0,0,No,Self-employed,Rural,81.54,31.8,formerly smoked,0 +71719,Male,66.0,0,0,Yes,Govt_job,Rural,57.17,25.5,formerly smoked,0 +11313,Female,44.0,0,0,Yes,Private,Rural,86.15,21.3,never smoked,0 +38070,Female,56.0,0,0,Yes,Private,Rural,163.02,29.6,never smoked,0 +50455,Female,67.0,0,0,Yes,Self-employed,Urban,110.41,28.7,never smoked,0 +31766,Male,18.0,0,0,No,Private,Rural,102.58,30.8,never smoked,0 +24245,Male,55.0,0,0,Yes,Private,Urban,90.97,32.1,Unknown,0 +50726,Male,61.0,0,0,Yes,Private,Rural,140.96,34.0,smokes,0 +29955,Male,0.08,0,0,No,children,Rural,70.33,16.9,Unknown,0 +64742,Male,48.0,0,0,No,Self-employed,Rural,64.18,32.1,never smoked,0 +48518,Male,44.0,0,0,Yes,Self-employed,Rural,127.57,22.6,never smoked,0 +42999,Female,68.0,0,0,Yes,Private,Urban,109.23,31.3,never smoked,0 +71447,Male,52.0,0,1,Yes,Private,Urban,124.49,29.0,never smoked,0 +61437,Male,15.0,0,0,No,Govt_job,Rural,142.82,27.6,never smoked,0 +50428,Male,2.0,0,0,No,children,Rural,75.69,17.7,Unknown,0 +8816,Male,60.0,0,0,Yes,Private,Urban,74.08,35.9,Unknown,0 +49556,Female,37.0,0,0,Yes,Govt_job,Urban,75.98,33.8,Unknown,0 +67654,Female,5.0,0,0,No,children,Rural,57.8,17.6,Unknown,0 +21989,Female,25.0,0,0,No,Private,Urban,76.44,48.3,Unknown,0 +46434,Male,52.0,1,0,Yes,Govt_job,Urban,214.43,39.9,smokes,0 +3205,Female,79.0,0,0,Yes,Self-employed,Urban,79.03,11.3,Unknown,0 +68692,Male,61.0,1,0,Yes,Private,Urban,66.46,31.5,formerly smoked,0 +44531,Male,36.0,0,0,Yes,Private,Urban,56.42,29.6,never smoked,0 +70392,Male,34.0,0,0,Yes,Private,Rural,112.72,19.4,Unknown,0 +37025,Female,2.0,0,0,No,children,Urban,114.02,18.1,Unknown,0 +68965,Male,43.0,0,0,Yes,Private,Urban,72.33,36.2,smokes,0 +53843,Female,1.48,0,0,No,children,Rural,55.59,17.9,Unknown,0 +5236,Female,49.0,0,0,Yes,Private,Rural,73.48,33.0,never smoked,0 +32110,Female,2.0,0,0,No,children,Urban,105.05,20.4,Unknown,0 +17893,Female,82.0,0,0,Yes,Self-employed,Urban,84.78,33.6,formerly smoked,0 +65794,Female,81.0,1,0,Yes,Private,Rural,164.77,34.5,never smoked,0 +65955,Male,81.0,1,1,No,Private,Rural,220.64,30.0,never smoked,0 +53924,Female,1.08,0,0,No,children,Urban,159.39,12.8,Unknown,0 +70674,Male,60.0,0,0,Yes,Self-employed,Urban,69.53,26.2,never smoked,0 +56410,Male,1.88,0,0,No,children,Urban,81.42,13.5,Unknown,0 +9955,Female,58.0,0,0,No,Private,Urban,83.93,25.6,formerly smoked,0 +8410,Female,8.0,0,0,No,children,Rural,98.9,18.8,Unknown,0 +46854,Female,9.0,0,0,No,children,Urban,82.64,14.5,Unknown,0 +8168,Female,34.0,0,0,Yes,Private,Rural,112.54,23.4,formerly smoked,0 +30405,Female,23.0,0,0,No,Private,Rural,75.25,39.7,formerly smoked,0 +1301,Female,74.0,0,0,No,Self-employed,Urban,204.77,40.8,never smoked,0 +42348,Male,72.0,0,1,Yes,Self-employed,Urban,63.86,29.5,smokes,0 +38560,Male,47.0,0,0,Yes,Private,Rural,72.2,33.0,Unknown,0 +48129,Female,56.0,0,0,Yes,Private,Urban,80.08,25.6,never smoked,0 +10511,Male,5.0,0,0,No,children,Urban,101.61,33.1,Unknown,0 +42481,Male,27.0,0,0,Yes,Private,Urban,114.32,28.1,Unknown,0 +59872,Female,38.0,0,0,Yes,Private,Rural,80.82,49.3,never smoked,0 +56282,Male,13.0,0,0,No,Private,Rural,90.6,16.9,never smoked,0 +6540,Female,41.0,0,0,Yes,Private,Rural,93.67,35.9,Unknown,0 +31378,Female,50.0,0,0,Yes,Self-employed,Rural,87.15,32.1,never smoked,0 +32317,Female,41.0,0,0,Yes,Private,Urban,80.72,34.1,smokes,0 +9948,Male,6.0,0,0,No,children,Urban,83.16,15.1,Unknown,0 +35182,Female,62.0,0,0,Yes,Govt_job,Rural,98.14,42.0,Unknown,0 +5655,Male,4.0,0,0,No,children,Urban,83.13,16.8,Unknown,0 +51762,Female,59.0,0,0,Yes,Private,Rural,134.24,28.8,Unknown,0 +68193,Male,63.0,0,0,Yes,Self-employed,Urban,248.37,32.2,smokes,0 +49459,Male,9.0,0,0,No,children,Rural,61.75,16.2,Unknown,0 +54776,Male,41.0,0,0,No,Private,Urban,70.55,44.2,Unknown,0 +45701,Female,72.0,0,1,No,Self-employed,Rural,124.38,23.4,formerly smoked,0 +7953,Female,45.0,0,0,Yes,Private,Rural,92.21,31.0,never smoked,0 +65508,Male,80.0,0,0,Yes,Govt_job,Urban,148.72,28.7,never smoked,0 +68539,Female,19.0,0,0,No,Private,Urban,79.25,23.6,Unknown,0 +12022,Male,37.0,0,0,Yes,Govt_job,Urban,82.09,35.7,smokes,0 +3348,Female,58.0,1,0,Yes,Private,Urban,194.53,39.5,never smoked,0 +58466,Male,77.0,0,0,Yes,Private,Rural,98.84,27.3,Unknown,0 +50434,Male,38.0,0,0,Yes,Govt_job,Rural,135.74,31.3,formerly smoked,0 +49974,Male,49.0,0,0,Yes,Private,Rural,66.55,33.4,Unknown,0 +54574,Female,20.0,0,0,No,Private,Urban,115.69,29.2,never smoked,0 +39342,Male,23.0,0,0,No,Private,Rural,67.76,26.0,never smoked,0 +2972,Male,55.0,0,0,No,Govt_job,Rural,88.65,18.1,formerly smoked,0 +32717,Male,16.0,0,0,No,children,Rural,106.11,22.4,Unknown,0 +14063,Male,81.0,0,1,No,Self-employed,Rural,95.49,29.4,Unknown,0 +71724,Female,23.0,0,0,No,Private,Urban,59.07,21.6,never smoked,0 +4753,Male,82.0,0,1,Yes,Self-employed,Urban,228.92,27.9,formerly smoked,0 +62076,Male,48.0,0,0,Yes,Private,Rural,62.89,29.6,Unknown,0 +6665,Male,56.0,0,0,Yes,Private,Rural,96.84,30.2,Unknown,0 +51385,Male,61.0,0,0,Yes,Private,Rural,81.25,43.4,smokes,0 +66973,Male,43.0,0,0,Yes,Private,Urban,92.71,30.5,formerly smoked,0 +59671,Female,39.0,0,0,No,Private,Rural,85.59,33.2,Unknown,0 +3946,Female,22.0,0,0,Yes,Private,Urban,89.06,27.7,never smoked,0 +17623,Male,41.0,0,0,No,Self-employed,Urban,87.44,33.5,Unknown,0 +50644,Male,37.0,0,0,Yes,Private,Urban,64.07,28.0,Unknown,0 +54294,Female,65.0,0,0,Yes,Govt_job,Urban,79.39,31.5,formerly smoked,0 +46767,Female,8.0,0,0,No,children,Rural,67.84,24.0,Unknown,0 +12911,Female,51.0,0,0,Yes,Private,Rural,81.73,27.4,never smoked,0 +16109,Male,63.0,0,0,Yes,Private,Urban,105.52,37.9,formerly smoked,0 +47499,Female,48.0,0,0,Yes,Govt_job,Rural,77.55,26.2,Unknown,0 +8790,Female,17.0,0,0,No,Private,Urban,127.42,22.4,Unknown,0 +11259,Female,53.0,0,0,Yes,Private,Urban,227.68,,never smoked,0 +12003,Female,75.0,0,0,Yes,Private,Rural,226.73,43.7,never smoked,0 +71099,Female,51.0,0,0,Yes,Self-employed,Urban,89.74,28.4,never smoked,0 +62090,Male,51.0,0,0,No,Self-employed,Rural,219.17,29.8,never smoked,0 +10138,Female,41.0,0,0,Yes,Private,Urban,74.85,24.8,formerly smoked,0 +71424,Female,75.0,1,0,Yes,Self-employed,Urban,55.96,34.8,never smoked,0 +44759,Male,57.0,0,0,Yes,Private,Urban,215.92,27.4,smokes,0 +21953,Female,33.0,0,0,No,Private,Urban,84.4,,smokes,0 +52234,Female,72.0,0,0,Yes,Govt_job,Urban,104.05,33.5,never smoked,0 +46461,Female,52.0,0,0,Yes,Private,Urban,62.54,35.0,smokes,0 +6973,Male,11.0,0,0,No,children,Rural,87.54,24.4,Unknown,0 +5068,Female,28.0,0,0,No,Private,Urban,76.81,28.3,smokes,0 +65277,Female,78.0,1,0,No,Self-employed,Rural,198.12,29.1,never smoked,0 +52679,Female,82.0,0,0,Yes,Self-employed,Rural,78.0,31.3,formerly smoked,0 +36728,Male,74.0,0,0,Yes,Private,Urban,79.44,32.8,never smoked,0 +46797,Female,31.0,0,0,Yes,Private,Rural,75.82,29.1,never smoked,0 +63898,Female,53.0,1,0,Yes,Private,Urban,240.86,31.9,never smoked,0 +11371,Male,0.24,0,0,No,children,Urban,89.28,14.2,Unknown,0 +13155,Female,67.0,1,0,Yes,Govt_job,Rural,263.56,26.3,never smoked,0 +27125,Female,17.0,0,0,No,Private,Urban,81.13,22.8,never smoked,0 +15383,Female,29.0,0,0,Yes,Private,Urban,118.44,24.8,never smoked,0 +19828,Female,56.0,1,0,Yes,Private,Rural,97.37,34.1,smokes,0 +6289,Female,15.0,0,0,No,children,Urban,80.51,21.5,Unknown,0 +44243,Female,29.0,0,0,No,Private,Rural,78.88,26.1,never smoked,0 +40167,Female,79.0,1,1,Yes,Govt_job,Rural,83.61,21.4,smokes,0 +38078,Female,82.0,1,1,Yes,Private,Urban,73.19,33.5,never smoked,0 +34257,Male,17.0,0,0,No,Govt_job,Urban,68.91,23.0,Unknown,0 +21653,Male,8.0,0,0,No,children,Rural,104.3,18.5,Unknown,0 +63764,Male,23.0,0,0,No,Private,Urban,87.87,23.4,never smoked,0 +22194,Female,36.0,0,0,Yes,Private,Urban,96.7,31.4,Unknown,0 +16010,Male,47.0,0,0,Yes,Private,Rural,91.05,31.1,formerly smoked,0 +5074,Male,24.0,0,0,No,Private,Rural,200.14,37.7,smokes,0 +10243,Female,60.0,0,0,Yes,Govt_job,Urban,73.04,25.3,never smoked,0 +52588,Female,63.0,0,0,Yes,Private,Rural,85.81,35.6,never smoked,0 +56996,Male,44.0,0,0,Yes,Private,Urban,65.41,24.8,smokes,0 +28315,Male,38.0,0,0,Yes,Private,Rural,108.68,32.7,never smoked,0 +15104,Female,26.0,0,0,Yes,Private,Rural,88.79,24.9,never smoked,0 +26604,Female,18.0,0,0,No,Private,Rural,107.82,26.0,never smoked,0 +27916,Male,18.0,0,0,No,Private,Urban,97.39,22.8,never smoked,0 +60249,Male,13.0,0,0,No,Private,Urban,141.09,24.0,Unknown,0 +45787,Male,13.0,0,0,No,children,Urban,122.38,20.3,Unknown,0 +65526,Female,47.0,0,0,Yes,Private,Urban,77.91,30.3,formerly smoked,0 +72354,Female,80.0,1,0,Yes,Self-employed,Rural,103.6,23.7,never smoked,0 +38938,Female,24.0,0,0,No,Private,Rural,159.7,25.7,Unknown,0 +39017,Female,72.0,0,0,Yes,Govt_job,Rural,118.22,21.9,formerly smoked,0 +13219,Male,5.0,0,0,No,children,Urban,84.5,15.8,Unknown,0 +3003,Female,51.0,0,0,Yes,Govt_job,Rural,85.59,30.5,never smoked,0 +34543,Female,82.0,0,0,Yes,Self-employed,Rural,84.42,25.7,Unknown,0 +21762,Male,5.0,0,0,No,children,Rural,100.98,19.0,Unknown,0 +22003,Male,66.0,0,0,Yes,Private,Rural,81.11,28.8,formerly smoked,0 +6731,Female,53.0,0,0,No,Private,Rural,235.45,,formerly smoked,0 +19032,Female,15.0,0,0,No,Private,Rural,79.2,22.4,never smoked,0 +55370,Female,53.0,0,0,Yes,Private,Urban,207.71,32.4,Unknown,0 +57288,Female,78.0,0,0,Yes,Private,Rural,99.84,36.6,never smoked,0 +31925,Female,62.0,0,0,Yes,Private,Rural,98.05,27.9,never smoked,0 +8264,Male,41.0,0,0,Yes,Self-employed,Rural,105.9,27.7,Unknown,0 +448,Female,49.0,0,0,Yes,Private,Rural,107.55,,Unknown,0 +38783,Female,41.0,0,0,Yes,Self-employed,Urban,146.21,34.3,Unknown,0 +45961,Female,78.0,0,0,Yes,Private,Urban,79.94,26.7,never smoked,0 +27518,Male,14.0,0,0,No,Self-employed,Rural,72.28,19.0,Unknown,0 +51106,Female,1.48,0,0,No,children,Rural,123.1,20.6,Unknown,0 +42251,Male,71.0,1,1,Yes,Self-employed,Rural,67.06,26.7,smokes,0 +33115,Male,32.0,0,0,Yes,Private,Rural,82.68,29.2,never smoked,0 +31701,Male,16.0,0,0,No,Private,Rural,125.89,21.3,never smoked,0 +21661,Female,68.0,0,0,Yes,Govt_job,Urban,228.05,51.9,Unknown,0 +18837,Male,0.56,0,0,No,children,Urban,98.23,14.1,Unknown,0 +57777,Female,59.0,0,0,Yes,Self-employed,Urban,90.06,28.9,smokes,0 +62610,Male,32.0,0,0,Yes,Private,Urban,119.9,30.9,smokes,0 +2730,Male,58.0,0,0,Yes,Private,Urban,94.53,36.1,never smoked,0 +51116,Female,40.0,0,0,Yes,Self-employed,Urban,64.66,25.0,formerly smoked,0 +22607,Female,41.0,0,0,Yes,Private,Urban,103.79,28.6,never smoked,0 +11595,Female,21.0,0,0,No,Private,Urban,88.51,20.5,never smoked,0 +24355,Female,1.88,0,0,No,children,Rural,97.26,16.7,Unknown,0 +32563,Male,55.0,0,0,Yes,Govt_job,Urban,92.59,36.6,never smoked,0 +18266,Female,67.0,0,0,Yes,Private,Rural,102.89,26.4,never smoked,0 +60088,Male,49.0,1,0,Yes,Self-employed,Rural,92.26,33.1,formerly smoked,0 +14912,Female,42.0,0,0,Yes,Private,Rural,80.0,27.5,never smoked,0 +49939,Female,54.0,0,0,Yes,Self-employed,Urban,56.75,26.9,never smoked,0 +64534,Female,25.0,0,0,Yes,Private,Urban,104.66,23.9,never smoked,0 +62914,Male,62.0,0,0,Yes,Private,Rural,60.39,26.9,Unknown,0 +4297,Male,75.0,0,0,Yes,Govt_job,Urban,223.14,27.8,never smoked,0 +20399,Female,72.0,1,0,Yes,Private,Urban,105.51,32.7,never smoked,0 +1112,Female,14.0,0,0,No,Private,Urban,83.42,28.7,never smoked,0 +13276,Female,38.0,0,0,Yes,Private,Urban,71.06,22.6,Unknown,0 +1260,Male,59.0,0,0,Yes,Govt_job,Urban,101.24,26.5,never smoked,0 +40509,Female,23.0,0,0,No,Private,Urban,91.19,28.3,never smoked,0 +15241,Female,63.0,1,1,No,Govt_job,Urban,174.43,24.3,never smoked,0 +31344,Male,82.0,0,0,Yes,Self-employed,Urban,214.51,24.0,formerly smoked,0 +55169,Male,34.0,0,0,Yes,Private,Rural,72.64,32.4,never smoked,0 +55740,Female,8.0,0,0,No,children,Urban,62.69,28.7,Unknown,0 +62513,Female,28.0,0,0,Yes,Private,Rural,141.16,36.7,never smoked,0 +18040,Female,49.0,0,0,Yes,Govt_job,Rural,89.61,27.7,never smoked,0 +10374,Female,24.0,0,0,Yes,Private,Rural,76.42,24.8,smokes,0 +37209,Male,17.0,0,0,No,Never_worked,Rural,124.38,31.2,never smoked,0 +62306,Female,69.0,1,0,Yes,Self-employed,Urban,111.81,26.1,formerly smoked,0 +54101,Female,58.0,0,0,Yes,Self-employed,Rural,57.57,26.8,Unknown,0 +12259,Male,50.0,0,0,Yes,Private,Urban,77.82,26.7,formerly smoked,0 +37634,Male,5.0,0,0,No,children,Urban,60.09,19.6,Unknown,0 +22548,Female,34.0,0,0,Yes,Private,Urban,91.02,25.8,never smoked,0 +65407,Female,64.0,0,0,Yes,Self-employed,Rural,65.46,32.5,formerly smoked,0 +50723,Male,47.0,0,0,Yes,Private,Rural,131.19,28.3,smokes,0 +20890,Female,61.0,0,0,Yes,Private,Rural,79.89,24.5,smokes,0 +52472,Male,14.0,0,0,No,children,Urban,74.54,25.2,Unknown,0 +42859,Female,57.0,0,0,Yes,Private,Urban,231.31,32.3,never smoked,0 +3167,Male,53.0,0,1,Yes,Private,Urban,91.57,30.1,formerly smoked,0 +56469,Male,67.0,0,0,Yes,Private,Urban,238.78,35.7,formerly smoked,0 +23851,Female,57.0,0,0,No,Private,Rural,87.18,20.0,formerly smoked,0 +30571,Female,38.0,0,0,Yes,Govt_job,Rural,78.94,23.5,Unknown,0 +67786,Female,13.0,0,0,No,children,Rural,69.01,23.4,Unknown,0 +41404,Female,37.0,0,0,Yes,Private,Rural,110.28,22.3,never smoked,0 +33960,Male,39.0,1,0,Yes,Self-employed,Urban,71.66,28.7,never smoked,0 +70833,Female,13.0,0,0,No,Private,Urban,62.57,20.9,Unknown,0 +65731,Male,57.0,0,0,Yes,Self-employed,Urban,83.64,29.4,smokes,0 +57968,Female,11.0,0,0,No,children,Urban,107.18,27.6,Unknown,0 +57539,Female,68.0,0,0,Yes,Private,Rural,233.59,43.9,never smoked,0 +17745,Male,79.0,1,0,Yes,Self-employed,Urban,84.88,28.7,formerly smoked,0 +33252,Female,24.0,0,0,No,Private,Rural,97.95,34.7,Unknown,0 +69789,Female,44.0,0,0,Yes,Private,Rural,58.19,37.1,Unknown,0 +40076,Female,46.0,0,0,Yes,Private,Rural,70.11,24.2,never smoked,0 +10323,Female,66.0,0,0,Yes,Private,Urban,112.77,22.7,smokes,0 +23514,Female,61.0,0,0,Yes,Self-employed,Urban,75.46,29.3,formerly smoked,0 +37395,Female,16.0,0,0,No,Private,Urban,63.63,20.0,smokes,0 +8240,Female,37.0,0,0,Yes,Private,Urban,100.22,22.7,smokes,0 +9620,Female,43.0,0,0,Yes,Govt_job,Rural,81.77,25.4,never smoked,0 +7092,Female,27.0,0,0,Yes,Private,Rural,94.25,37.6,never smoked,0 +50216,Male,44.0,1,0,Yes,Self-employed,Rural,188.13,44.7,formerly smoked,0 +59506,Male,14.0,0,0,No,Private,Rural,164.7,26.3,Unknown,0 +43397,Male,81.0,0,1,Yes,Self-employed,Rural,68.27,25.0,Unknown,0 +62384,Male,52.0,0,1,No,Self-employed,Rural,79.81,,formerly smoked,0 +10651,Male,54.0,1,0,Yes,Govt_job,Rural,100.12,32.3,formerly smoked,0 +69750,Female,77.0,0,0,Yes,Self-employed,Urban,151.23,24.9,never smoked,0 +55455,Male,27.0,0,0,No,Private,Rural,112.41,33.7,never smoked,0 +34230,Female,35.0,0,0,Yes,Self-employed,Urban,205.97,26.6,formerly smoked,0 +65154,Female,30.0,0,0,Yes,Private,Urban,112.19,53.4,never smoked,0 +36298,Female,48.0,0,0,Yes,Self-employed,Rural,71.93,41.7,never smoked,0 +13171,Female,15.0,0,0,No,children,Urban,190.89,22.0,never smoked,0 +62983,Female,26.0,0,0,Yes,Private,Urban,138.02,20.3,smokes,0 +44834,Female,38.0,0,0,Yes,Private,Rural,66.16,42.7,Unknown,0 +67411,Male,29.0,0,0,No,Private,Rural,105.73,28.2,smokes,0 +5455,Male,49.0,0,0,Yes,Private,Rural,78.34,32.5,Unknown,0 +49267,Female,55.0,0,0,Yes,Private,Urban,102.1,22.5,formerly smoked,0 +60464,Male,52.0,0,0,Yes,Private,Urban,97.37,26.5,smokes,0 +56286,Male,49.0,0,0,Yes,Private,Urban,193.87,41.0,Unknown,0 +5223,Female,21.0,0,0,No,Private,Rural,78.32,27.0,Unknown,0 +53302,Female,24.0,0,0,Yes,Private,Rural,130.0,25.9,formerly smoked,0 +59309,Male,18.0,0,0,No,Self-employed,Urban,74.0,23.7,Unknown,0 +69824,Male,52.0,0,0,Yes,Private,Rural,111.04,30.0,never smoked,0 +13173,Male,70.0,1,0,Yes,Private,Urban,214.77,15.0,formerly smoked,0 +52579,Female,51.0,0,0,Yes,Self-employed,Rural,97.25,21.5,never smoked,0 +59451,Male,58.0,0,0,Yes,Private,Urban,79.95,25.9,never smoked,0 +56875,Female,46.0,0,0,Yes,Govt_job,Urban,162.24,24.3,smokes,0 +16774,Female,79.0,0,0,No,Self-employed,Urban,74.36,39.2,Unknown,0 +61672,Female,11.0,0,0,No,children,Urban,69.68,14.4,Unknown,0 +25811,Female,61.0,0,0,Yes,Private,Urban,98.35,26.6,never smoked,0 +7780,Male,51.0,0,0,Yes,Self-employed,Urban,75.73,30.7,never smoked,0 +58149,Female,21.0,0,0,No,Private,Rural,85.86,35.4,Unknown,0 +38742,Female,71.0,0,0,Yes,Private,Urban,80.34,29.2,never smoked,0 +29613,Female,13.0,0,0,No,Private,Rural,73.76,26.7,Unknown,0 +20655,Male,16.0,0,0,No,Private,Rural,94.96,21.5,never smoked,0 +53897,Female,61.0,0,0,Yes,Private,Urban,108.18,19.1,never smoked,0 +29792,Female,49.0,0,0,Yes,Private,Rural,85.23,25.4,Unknown,0 +15990,Male,65.0,1,0,Yes,Govt_job,Rural,189.88,34.0,never smoked,0 +45112,Male,40.0,0,0,No,Govt_job,Urban,197.11,23.9,never smoked,0 +28385,Female,44.0,0,0,Yes,Private,Rural,100.08,20.9,smokes,0 +63423,Male,11.0,0,0,No,children,Rural,68.62,18.2,Unknown,0 +187,Female,20.0,0,0,No,Private,Rural,84.07,27.6,smokes,0 +18891,Male,24.0,0,0,No,Govt_job,Rural,99.65,50.3,never smoked,0 +34657,Female,44.0,0,0,Yes,Self-employed,Urban,82.33,24.5,never smoked,0 +40546,Male,5.0,0,0,No,children,Urban,94.49,16.6,Unknown,0 +56755,Male,41.0,0,0,Yes,Private,Rural,108.71,24.0,never smoked,0 +71097,Female,23.0,0,0,No,Private,Urban,64.94,18.8,never smoked,0 +21025,Female,7.0,0,0,No,children,Urban,98.22,34.0,Unknown,0 +69020,Female,74.0,0,0,Yes,Private,Urban,83.5,25.8,never smoked,0 +48883,Male,61.0,0,0,Yes,Govt_job,Rural,192.47,30.3,never smoked,0 +71297,Female,80.0,1,0,Yes,Private,Urban,125.89,28.9,smokes,0 +52216,Female,35.0,0,0,Yes,Private,Urban,87.72,21.3,never smoked,0 +20421,Female,43.0,0,0,Yes,Private,Rural,68.94,26.8,never smoked,0 +36896,Male,25.0,0,0,Yes,Private,Rural,66.51,29.2,Unknown,0 +23535,Male,72.0,0,1,Yes,Self-employed,Urban,85.82,25.0,formerly smoked,0 +1323,Female,45.0,0,0,Yes,Private,Rural,87.47,21.5,never smoked,0 +47309,Male,9.0,0,0,No,children,Urban,87.74,17.1,Unknown,0 +34161,Male,33.0,1,0,Yes,Private,Rural,85.12,32.5,never smoked,0 +57405,Male,53.0,0,0,Yes,Self-employed,Urban,103.37,26.9,formerly smoked,0 +15824,Female,67.0,0,0,Yes,Private,Rural,81.68,30.4,never smoked,0 +32103,Male,59.0,0,0,Yes,Self-employed,Urban,76.51,29.8,never smoked,0 +18205,Female,1.32,0,0,No,children,Rural,110.17,20.3,Unknown,0 +71420,Male,27.0,0,0,No,Govt_job,Rural,65.12,41.1,smokes,0 +298,Female,41.0,0,0,Yes,Self-employed,Rural,76.66,,Unknown,0 +15136,Male,64.0,0,1,Yes,Private,Rural,109.88,33.9,Unknown,0 +9879,Female,55.0,0,1,Yes,Private,Urban,199.38,39.0,Unknown,0 +68302,Female,40.0,0,0,Yes,Private,Urban,65.77,31.2,never smoked,0 +65507,Male,33.0,0,0,Yes,Private,Rural,55.72,38.2,never smoked,0 +63949,Female,33.0,0,0,Yes,Govt_job,Urban,75.67,44.7,never smoked,0 +62475,Male,39.0,1,0,Yes,Private,Rural,88.18,33.5,smokes,0 +35648,Female,74.0,0,0,Yes,Self-employed,Rural,95.94,27.0,never smoked,0 +72276,Male,38.0,0,0,Yes,Private,Urban,86.93,31.1,never smoked,0 +49661,Male,53.0,0,0,Yes,Govt_job,Urban,85.17,29.2,never smoked,0 +31590,Male,22.0,0,0,No,Private,Urban,111.1,26.6,never smoked,0 +8584,Female,5.0,0,0,No,children,Rural,92.0,17.9,Unknown,0 +7964,Male,24.0,0,0,No,Private,Urban,97.47,24.2,formerly smoked,0 +25130,Female,27.0,0,0,Yes,Private,Urban,79.21,19.5,Unknown,0 +3531,Male,41.0,0,0,Yes,Private,Rural,83.97,28.5,formerly smoked,0 +6529,Female,20.0,0,0,No,Private,Urban,98.55,21.3,never smoked,0 +22272,Female,71.0,1,0,Yes,Private,Rural,202.98,41.3,never smoked,0 +40702,Female,65.0,0,0,No,Govt_job,Urban,60.7,31.3,never smoked,0 +1656,Male,38.0,0,0,Yes,Private,Urban,92.22,40.8,never smoked,0 +51988,Female,25.0,0,0,Yes,Private,Rural,79.94,36.6,Unknown,0 +48323,Male,53.0,0,0,Yes,Govt_job,Rural,83.68,26.7,Unknown,0 +35155,Female,50.0,0,0,Yes,Self-employed,Urban,69.92,18.7,formerly smoked,0 +46314,Female,1.24,0,0,No,children,Rural,136.96,15.2,Unknown,0 +12906,Female,55.0,0,0,Yes,Self-employed,Rural,95.32,26.8,never smoked,0 +24961,Female,38.0,0,0,Yes,Private,Rural,107.78,25.1,never smoked,0 +14000,Female,72.0,1,1,Yes,Private,Urban,198.32,31.3,formerly smoked,0 +23047,Male,43.0,0,0,Yes,Private,Urban,100.16,59.7,never smoked,0 +6827,Male,30.0,0,0,Yes,Private,Urban,96.02,29.8,never smoked,0 +44656,Female,69.0,1,0,Yes,Private,Rural,112.69,33.5,formerly smoked,0 +59801,Female,61.0,0,0,Yes,Private,Urban,60.61,24.5,never smoked,0 +51073,Female,34.0,0,0,Yes,Self-employed,Urban,79.77,33.6,never smoked,0 +34966,Female,43.0,0,0,Yes,Self-employed,Urban,87.41,39.7,formerly smoked,0 +41122,Female,62.0,0,0,Yes,Private,Rural,226.38,47.4,never smoked,0 +4449,Male,48.0,0,0,Yes,Govt_job,Rural,124.64,26.4,smokes,0 +54726,Female,37.0,0,0,Yes,Private,Urban,69.42,33.0,never smoked,0 +1772,Female,64.0,0,0,Yes,Govt_job,Urban,77.68,31.4,never smoked,0 +4850,Male,51.0,0,0,Yes,Private,Rural,112.79,27.2,never smoked,0 +44886,Male,69.0,1,0,Yes,Self-employed,Rural,236.79,35.7,formerly smoked,0 +26076,Female,75.0,1,0,Yes,Self-employed,Rural,219.82,29.5,formerly smoked,0 +54962,Female,27.0,0,0,No,Private,Urban,82.05,21.0,Unknown,0 +1116,Female,49.0,0,0,No,Govt_job,Rural,104.08,26.6,never smoked,0 +28247,Male,82.0,0,0,No,Self-employed,Urban,101.57,24.3,smokes,0 +39563,Female,36.0,0,0,Yes,Private,Rural,71.32,43.9,smokes,0 +49553,Male,1.88,0,0,No,children,Rural,143.97,,Unknown,0 +14872,Male,45.0,1,0,Yes,Self-employed,Rural,239.19,52.5,Unknown,0 +57598,Female,64.0,0,0,Yes,Private,Rural,78.45,27.0,formerly smoked,0 +70022,Male,32.0,0,0,No,Private,Rural,61.11,32.7,never smoked,0 +70365,Female,15.0,0,0,No,Private,Urban,87.29,29.4,Unknown,0 +57219,Female,1.64,0,0,No,children,Rural,82.49,15.1,Unknown,0 +28344,Male,34.0,0,0,Yes,Private,Urban,83.15,32.1,Unknown,0 +50785,Male,17.0,0,0,No,Private,Rural,83.26,32.9,never smoked,0 +17251,Female,76.0,1,0,Yes,Self-employed,Urban,78.7,27.6,formerly smoked,0 +48459,Male,61.0,0,0,Yes,Self-employed,Urban,111.94,26.5,smokes,0 +68843,Male,30.0,0,0,Yes,Private,Rural,104.77,19.2,smokes,0 +27523,Female,18.0,0,0,No,Private,Urban,104.26,25.9,Unknown,0 +61651,Male,48.0,0,0,Yes,Private,Rural,113.84,21.9,never smoked,0 +22877,Male,0.16,0,0,No,children,Urban,114.71,17.4,Unknown,0 +52859,Female,4.0,0,0,No,children,Urban,61.54,13.2,Unknown,0 +55631,Male,38.0,0,0,Yes,Private,Rural,133.62,25.2,never smoked,0 +7003,Female,27.0,0,0,Yes,Private,Rural,111.96,28.2,never smoked,0 +68447,Female,50.0,0,0,No,Private,Urban,112.44,31.5,Unknown,0 +13817,Male,19.0,0,0,No,Private,Urban,123.61,25.2,Unknown,0 +12117,Male,8.0,0,0,No,children,Urban,84.68,14.5,Unknown,0 +40210,Male,78.0,0,1,Yes,Self-employed,Rural,206.62,28.0,formerly smoked,0 +23360,Male,0.8,0,0,No,children,Rural,114.54,15.1,Unknown,0 +28447,Female,53.0,1,0,Yes,Private,Rural,216.88,31.4,smokes,0 +72398,Female,73.0,1,0,Yes,Private,Urban,110.38,26.3,never smoked,0 +7859,Male,34.0,0,0,Yes,Private,Urban,99.23,,smokes,0 +20140,Male,58.0,0,0,Yes,Govt_job,Rural,204.92,39.6,never smoked,0 +46903,Female,62.0,0,0,Yes,Private,Urban,56.74,28.9,never smoked,0 +61333,Female,78.0,0,0,No,Self-employed,Rural,68.35,31.4,Unknown,0 +7403,Female,51.0,0,0,Yes,Private,Urban,83.52,34.3,Unknown,0 +69370,Male,78.0,0,0,Yes,Govt_job,Urban,59.74,27.0,formerly smoked,0 +43549,Female,40.0,1,0,Yes,Private,Rural,81.59,27.2,never smoked,0 +2903,Female,35.0,0,0,No,Private,Rural,123.83,23.8,never smoked,0 +70268,Male,82.0,0,0,Yes,Private,Urban,226.84,25.3,formerly smoked,0 +11003,Female,46.0,0,0,Yes,Self-employed,Rural,93.2,32.6,Unknown,0 +61475,Female,51.0,1,0,Yes,Private,Rural,85.84,31.8,never smoked,0 +27608,Female,53.0,0,0,Yes,Govt_job,Urban,74.64,22.4,Unknown,0 +9923,Male,55.0,0,1,Yes,Private,Urban,80.17,28.0,never smoked,0 +28091,Female,43.0,0,0,Yes,Govt_job,Urban,85.03,23.9,formerly smoked,0 +59749,Male,81.0,0,0,Yes,Private,Urban,234.35,25.3,formerly smoked,0 +8719,Male,12.0,0,0,No,children,Urban,116.25,16.4,formerly smoked,0 +58154,Female,20.0,0,0,No,Private,Urban,66.55,26.9,smokes,0 +31712,Female,53.0,0,0,Yes,Private,Urban,88.38,25.4,never smoked,0 +14249,Female,1.32,0,0,No,children,Urban,81.05,18.7,Unknown,0 +30693,Female,22.0,0,0,No,Private,Urban,68.4,37.5,never smoked,0 +18866,Female,75.0,0,0,Yes,Self-employed,Urban,96.95,41.4,never smoked,0 +36909,Female,66.0,0,0,Yes,Self-employed,Rural,66.24,37.5,never smoked,0 +63562,Male,7.0,0,0,No,children,Rural,91.81,15.8,Unknown,0 +29352,Female,26.0,0,0,No,Private,Urban,84.86,37.6,never smoked,0 +44024,Female,14.0,0,0,No,Private,Rural,118.88,30.5,never smoked,0 +24068,Female,32.0,0,0,Yes,Private,Urban,85.91,22.1,Unknown,0 +57602,Male,6.0,0,0,No,children,Rural,115.4,19.2,Unknown,0 +16536,Female,42.0,0,0,Yes,Self-employed,Rural,75.34,38.0,never smoked,0 +6639,Male,4.0,0,0,No,children,Rural,100.19,18.7,Unknown,0 +6528,Male,75.0,0,0,Yes,Govt_job,Urban,200.73,25.7,formerly smoked,0 +42594,Male,80.0,1,0,Yes,Govt_job,Urban,114.09,30.1,never smoked,0 +59045,Female,52.0,0,0,Yes,Private,Urban,67.3,36.3,never smoked,0 +31608,Male,11.0,0,0,No,children,Rural,96.91,20.4,Unknown,0 +47949,Male,14.0,0,0,No,children,Rural,116.2,20.9,Unknown,0 +41362,Female,74.0,0,0,Yes,Self-employed,Rural,72.54,28.4,never smoked,0 +18187,Male,58.0,0,0,Yes,Private,Rural,96.01,33.8,Unknown,0 +8983,Female,80.0,1,0,Yes,Private,Urban,89.16,24.0,never smoked,0 +20098,Female,31.0,0,0,Yes,Self-employed,Rural,108.64,43.3,never smoked,0 +3777,Female,28.0,1,0,Yes,Govt_job,Rural,83.66,36.4,never smoked,0 +11651,Female,25.0,0,0,Yes,Private,Rural,81.21,37.9,never smoked,0 +28527,Male,71.0,0,0,No,Private,Urban,86.96,32.6,never smoked,0 +63282,Female,51.0,0,0,Yes,Govt_job,Rural,92.95,23.9,never smoked,0 +37038,Male,15.0,0,0,No,children,Urban,95.86,18.1,Unknown,0 +4528,Male,45.0,1,0,No,Private,Rural,85.52,36.4,never smoked,0 +41665,Male,53.0,0,0,Yes,Govt_job,Rural,159.39,29.2,never smoked,0 +26539,Male,69.0,0,0,Yes,Self-employed,Urban,202.51,30.8,formerly smoked,0 +25325,Female,42.0,0,0,Yes,Private,Rural,82.24,23.8,formerly smoked,0 +69462,Female,4.0,0,0,No,children,Rural,109.81,17.9,Unknown,0 +29816,Male,64.0,1,0,Yes,Private,Rural,91.85,31.8,formerly smoked,0 +47784,Female,5.0,0,0,No,children,Rural,123.49,19.5,Unknown,0 +18181,Male,44.0,0,0,Yes,Private,Rural,105.49,31.5,smokes,0 +8614,Male,78.0,0,1,Yes,Self-employed,Urban,101.53,24.1,formerly smoked,0 +347,Female,16.0,0,0,No,Private,Urban,89.45,,Unknown,0 +61336,Female,69.0,0,0,Yes,Self-employed,Urban,126.04,35.9,never smoked,0 +27647,Male,80.0,0,1,Yes,Self-employed,Rural,95.49,31.6,Unknown,0 +25676,Female,7.0,0,0,No,children,Rural,89.38,19.0,Unknown,0 +65894,Female,2.0,0,0,No,children,Urban,82.3,18.8,Unknown,0 +2291,Female,80.0,1,0,Yes,Self-employed,Urban,218.0,33.5,Unknown,0 +25630,Female,69.0,0,0,Yes,Self-employed,Urban,79.7,25.0,never smoked,0 +38575,Male,58.0,1,0,Yes,Self-employed,Rural,209.15,52.9,formerly smoked,0 +29326,Female,75.0,0,0,Yes,Self-employed,Rural,70.22,24.8,formerly smoked,0 +59292,Female,60.0,0,0,Yes,Self-employed,Rural,83.57,24.5,never smoked,0 +52051,Female,75.0,0,0,Yes,Self-employed,Urban,60.6,40.4,smokes,0 +64508,Female,10.0,0,0,No,children,Urban,97.24,20.2,Unknown,0 +36593,Male,38.0,0,0,No,Private,Rural,162.72,31.9,smokes,0 +39834,Male,28.0,0,0,No,Private,Urban,73.27,25.4,smokes,0 +54111,Female,3.0,0,0,No,children,Urban,92.62,15.4,Unknown,0 +53476,Female,31.0,0,0,Yes,Private,Urban,90.0,38.6,never smoked,0 +479,Female,59.0,1,0,Yes,Private,Rural,78.28,31.0,formerly smoked,0 +37237,Female,31.0,0,0,No,Private,Rural,87.81,26.4,smokes,0 +5496,Female,45.0,0,0,Yes,Private,Urban,202.66,,never smoked,0 +56075,Female,58.0,0,0,Yes,Private,Rural,196.5,37.7,never smoked,0 +46130,Female,57.0,0,0,Yes,Self-employed,Urban,142.31,35.2,smokes,0 +7730,Male,31.0,0,0,No,Private,Rural,94.96,54.7,smokes,0 +12380,Male,43.0,0,0,Yes,Govt_job,Rural,83.78,21.6,never smoked,0 +15324,Female,40.0,0,0,No,Private,Urban,86.1,23.9,Unknown,0 +11658,Male,1.08,0,0,No,children,Rural,74.5,,Unknown,0 +22778,Male,34.0,0,0,Yes,Private,Urban,66.96,26.1,never smoked,0 +4128,Female,55.0,0,0,Yes,Private,Rural,76.7,39.7,formerly smoked,0 +36825,Female,39.0,0,0,Yes,Private,Rural,103.12,29.9,formerly smoked,0 +1454,Female,42.0,0,0,No,Private,Urban,84.03,31.4,never smoked,0 +12674,Male,44.0,0,0,Yes,Private,Rural,74.15,34.5,formerly smoked,0 +55375,Male,69.0,1,0,Yes,Private,Rural,73.29,29.4,never smoked,0 +3726,Male,16.0,0,0,No,Private,Urban,115.16,26.9,Unknown,0 +48652,Female,8.0,0,0,No,children,Urban,83.55,22.4,Unknown,0 +68657,Female,1.48,0,0,No,children,Urban,61.53,20.5,Unknown,0 +17337,Female,1.88,0,0,No,children,Rural,100.74,18.6,Unknown,0 +44831,Female,69.0,0,0,No,Private,Urban,59.31,31.4,smokes,0 +68420,Female,13.0,0,0,No,children,Urban,63.22,18.5,formerly smoked,0 +39632,Female,53.0,0,0,Yes,Private,Urban,209.5,41.8,never smoked,0 +49095,Female,16.0,0,0,No,children,Urban,64.51,21.2,Unknown,0 +46292,Male,64.0,0,0,Yes,Private,Rural,90.07,28.6,never smoked,0 +43492,Female,7.0,0,0,No,children,Urban,113.95,16.0,Unknown,0 +55766,Male,41.0,0,0,Yes,Private,Rural,119.32,30.6,Unknown,0 +17740,Male,65.0,0,0,Yes,Private,Rural,99.12,29.0,formerly smoked,0 +64189,Male,61.0,0,0,Yes,Self-employed,Rural,152.84,28.6,Unknown,0 +24202,Male,63.0,0,0,Yes,Private,Rural,78.23,34.8,never smoked,0 +32514,Male,1.8,0,0,No,children,Urban,68.8,,Unknown,0 +9866,Female,54.0,0,0,Yes,Private,Urban,76.05,42.0,Unknown,0 +54816,Female,14.0,0,0,No,children,Rural,116.49,30.3,never smoked,0 +59880,Male,45.0,0,0,Yes,Private,Rural,99.91,30.9,Unknown,0 +20625,Male,51.0,1,0,Yes,Private,Urban,76.1,32.1,smokes,0 +65969,Male,8.0,0,0,No,children,Rural,121.99,19.6,Unknown,0 +56923,Male,52.0,1,0,Yes,Private,Rural,116.21,32.8,smokes,0 +44001,Female,39.0,0,0,Yes,Private,Urban,55.28,31.5,Unknown,0 +51852,Female,13.0,0,0,No,children,Rural,219.81,,Unknown,0 +27176,Female,69.0,0,0,Yes,Private,Rural,103.73,34.7,never smoked,0 +70874,Male,71.0,1,0,Yes,Govt_job,Urban,153.08,21.5,Unknown,0 +34287,Female,73.0,0,0,Yes,Self-employed,Rural,98.69,27.6,Unknown,0 +23052,Female,54.0,0,0,Yes,Private,Rural,94.11,28.6,formerly smoked,0 +67499,Male,10.0,0,0,No,children,Rural,117.03,21.1,never smoked,0 +5380,Female,26.0,0,0,Yes,Private,Urban,91.35,23.8,never smoked,0 +20154,Female,41.0,0,0,Yes,Private,Rural,82.48,33.5,Unknown,0 +29546,Male,71.0,0,0,Yes,Govt_job,Rural,99.76,33.4,formerly smoked,0 +3718,Female,46.0,0,0,Yes,Govt_job,Urban,111.1,23.3,smokes,0 +43734,Male,15.0,0,0,No,Private,Rural,122.25,21.0,never smoked,0 +41917,Female,29.0,0,0,No,Private,Urban,84.19,21.2,never smoked,0 +8050,Male,8.0,0,0,No,children,Urban,84.6,18.4,Unknown,0 +44426,Female,21.0,0,0,Yes,Private,Urban,126.35,26.9,never smoked,0 +34700,Female,56.0,1,0,No,Self-employed,Urban,87.5,20.2,formerly smoked,0 +70230,Female,14.0,0,0,No,Self-employed,Rural,77.52,21.9,never smoked,0 +68721,Female,78.0,0,0,Yes,Private,Rural,133.13,24.2,Unknown,0 +23170,Female,36.0,0,0,No,Private,Urban,96.1,29.6,never smoked,0 +5731,Female,57.0,1,0,Yes,Private,Urban,108.61,38.1,smokes,0 +62791,Male,79.0,1,1,Yes,Self-employed,Rural,205.23,22.0,never smoked,0 +18943,Male,26.0,0,0,No,Govt_job,Rural,76.74,29.8,Unknown,0 +45472,Male,22.0,0,0,Yes,Private,Urban,138.55,24.0,never smoked,0 +3942,Male,72.0,0,1,Yes,Private,Urban,234.27,26.9,never smoked,0 +30201,Female,54.0,0,0,Yes,Private,Urban,75.16,38.0,never smoked,0 +38284,Male,8.0,0,0,No,children,Rural,77.08,16.9,Unknown,0 +53552,Female,62.0,0,0,Yes,Private,Urban,101.19,23.4,never smoked,0 +59663,Female,28.0,0,0,No,Private,Urban,107.74,38.5,never smoked,0 +68631,Female,50.0,0,0,Yes,Private,Rural,62.32,21.6,Unknown,0 +49900,Male,7.0,0,0,No,children,Urban,56.32,15.9,Unknown,0 +18140,Female,33.0,0,0,Yes,Private,Rural,131.28,25.1,never smoked,0 +52340,Male,55.0,0,0,Yes,Private,Urban,67.02,41.1,smokes,0 +2327,Female,25.0,0,0,No,Private,Rural,76.72,21.5,Unknown,0 +55137,Female,25.0,0,0,No,Private,Urban,125.98,21.0,smokes,0 +458,Female,37.0,0,0,Yes,Govt_job,Urban,72.09,24.1,smokes,0 +57044,Male,58.0,0,0,Yes,Private,Urban,88.05,30.6,Unknown,0 +71548,Male,45.0,0,0,Yes,Govt_job,Urban,55.47,19.8,smokes,0 +67438,Female,60.0,0,0,Yes,Govt_job,Rural,145.94,29.2,Unknown,0 +36524,Male,66.0,0,1,Yes,Private,Rural,239.21,33.7,formerly smoked,0 +61827,Male,80.0,0,0,Yes,Self-employed,Rural,196.08,31.0,formerly smoked,0 +31454,Female,38.0,0,0,Yes,Govt_job,Rural,93.93,21.5,never smoked,0 +15663,Female,11.0,0,0,No,children,Urban,76.74,19.1,Unknown,0 +4707,Female,63.0,0,0,Yes,Private,Urban,83.74,21.4,Unknown,0 +55885,Male,19.0,0,0,No,Private,Urban,119.58,24.8,Unknown,0 +47563,Female,17.0,0,0,No,Private,Rural,68.66,35.1,never smoked,0 +63729,Female,19.0,0,0,No,Private,Urban,65.79,28.6,smokes,0 +5286,Female,40.0,0,0,Yes,Govt_job,Urban,176.38,35.7,never smoked,0 +29878,Male,49.0,0,0,Yes,Private,Urban,175.74,45.4,Unknown,0 +42628,Female,69.0,0,1,No,Private,Urban,193.45,34.5,never smoked,0 +5006,Female,46.0,0,0,Yes,Self-employed,Rural,85.84,21.2,never smoked,0 +11250,Male,78.0,0,0,Yes,Self-employed,Rural,93.85,22.7,formerly smoked,0 +41858,Female,63.0,0,1,Yes,Private,Rural,86.21,39.1,never smoked,0 +15742,Female,3.0,0,0,No,children,Rural,75.41,21.9,Unknown,0 +27300,Female,1.8,0,0,No,children,Rural,95.28,16.5,Unknown,0 +34965,Female,18.0,0,0,No,Private,Urban,95.87,23.0,never smoked,0 +65748,Female,46.0,0,0,Yes,Private,Urban,180.45,22.5,never smoked,0 +44635,Female,8.0,0,0,No,children,Urban,95.39,20.4,Unknown,0 +72284,Female,53.0,0,0,Yes,Private,Rural,60.77,28.7,smokes,0 +20217,Female,38.0,0,0,Yes,Govt_job,Urban,102.84,22.4,never smoked,0 +44259,Female,74.0,0,0,Yes,Private,Urban,130.37,26.3,Unknown,0 +52668,Female,24.0,0,0,No,Private,Urban,65.44,23.6,never smoked,0 +37446,Male,78.0,0,0,Yes,Private,Rural,79.84,25.9,never smoked,0 +46895,Male,60.0,0,0,Yes,Private,Rural,62.61,30.7,never smoked,0 +57667,Male,12.0,0,0,No,children,Urban,70.07,24.5,formerly smoked,0 +41962,Female,32.0,0,0,Yes,Private,Rural,108.8,24.0,Unknown,0 +25495,Male,5.0,0,0,No,children,Urban,112.11,20.1,Unknown,0 +2029,Female,40.0,0,0,Yes,Private,Rural,92.35,38.0,never smoked,0 +13993,Female,19.0,0,0,No,Private,Urban,76.57,26.6,Unknown,0 +18876,Female,28.0,0,0,Yes,Private,Urban,69.5,24.5,never smoked,0 +22865,Female,61.0,0,0,Yes,Private,Rural,219.38,,never smoked,0 +365,Female,44.0,1,0,Yes,Private,Rural,69.48,41.3,never smoked,0 +37631,Male,50.0,0,0,Yes,Govt_job,Urban,89.18,34.8,smokes,0 +5500,Female,50.0,0,1,Yes,Govt_job,Urban,68.09,35.5,smokes,0 +53217,Female,18.0,0,0,No,Private,Rural,92.71,24.1,Unknown,0 +56712,Male,1.64,0,0,No,children,Rural,56.21,19.0,Unknown,0 +10055,Female,37.0,0,0,No,Govt_job,Rural,72.08,,formerly smoked,0 +4959,Female,5.0,0,0,No,children,Urban,82.56,16.6,Unknown,0 +22155,Female,39.0,0,0,Yes,Private,Urban,78.24,28.6,Unknown,0 +22860,Female,65.0,0,0,Yes,Govt_job,Rural,84.66,22.4,never smoked,0 +6960,Female,26.0,0,0,No,Govt_job,Urban,90.35,38.6,Unknown,0 +57209,Male,42.0,0,0,Yes,Govt_job,Rural,68.12,32.0,Unknown,0 +66581,Female,34.0,0,0,Yes,Private,Rural,59.14,40.1,never smoked,0 +17347,Female,45.0,0,0,Yes,Govt_job,Urban,85.64,32.0,formerly smoked,0 +58422,Male,43.0,0,0,Yes,Govt_job,Rural,56.08,23.9,Unknown,0 +19043,Female,40.0,0,0,No,Private,Rural,99.0,25.0,never smoked,0 +52897,Male,35.0,0,0,No,Private,Urban,93.6,28.5,smokes,0 +16329,Female,2.0,0,0,No,children,Urban,105.75,19.8,Unknown,0 +40353,Female,61.0,0,0,Yes,Private,Urban,114.09,25.7,never smoked,0 +56778,Male,64.0,1,0,Yes,Private,Urban,57.42,28.0,smokes,0 +41153,Female,32.0,0,0,Yes,Private,Urban,100.01,37.2,never smoked,0 +63725,Male,23.0,0,0,No,Private,Urban,62.0,24.8,formerly smoked,0 +19675,Female,51.0,0,0,Yes,Self-employed,Rural,103.61,39.2,never smoked,0 +72784,Female,52.0,0,0,Yes,Private,Rural,118.46,61.6,smokes,0 +8541,Female,75.0,0,0,Yes,Govt_job,Rural,94.77,27.2,never smoked,0 +45565,Female,40.0,0,0,Yes,Private,Urban,72.12,38.0,never smoked,0 +36431,Male,39.0,0,0,Yes,Govt_job,Rural,155.23,36.2,never smoked,0 +6171,Male,6.0,0,0,No,children,Urban,90.6,16.6,Unknown,0 +29419,Female,32.0,0,0,Yes,Private,Urban,81.92,38.0,never smoked,0 +65673,Female,55.0,0,0,No,Self-employed,Rural,67.1,31.4,never smoked,0 +64662,Female,23.0,0,0,No,Private,Rural,58.01,35.3,never smoked,0 +51693,Female,52.0,0,0,Yes,Private,Rural,173.9,35.8,never smoked,0 +50495,Male,58.0,1,0,Yes,Private,Rural,106.27,28.6,never smoked,0 +37086,Male,17.0,0,0,No,Private,Rural,60.57,34.0,Unknown,0 +71396,Male,3.0,0,0,No,children,Urban,105.34,15.5,Unknown,0 +27854,Female,23.0,0,0,No,Private,Rural,96.28,31.1,never smoked,0 +53759,Male,56.0,0,0,Yes,Self-employed,Urban,122.73,37.5,formerly smoked,0 +14407,Male,45.0,0,0,No,Self-employed,Urban,104.12,37.7,Unknown,0 +887,Female,14.0,0,0,No,Private,Urban,69.74,24.2,formerly smoked,0 +13328,Female,45.0,0,0,Yes,Private,Rural,106.95,33.4,Unknown,0 +62507,Female,57.0,0,0,Yes,Private,Urban,94.63,33.0,never smoked,0 +51797,Female,35.0,0,0,Yes,Private,Urban,86.97,25.7,Unknown,0 +61536,Female,8.0,0,0,No,children,Rural,76.12,19.4,Unknown,0 +71221,Female,42.0,0,0,Yes,Govt_job,Urban,99.94,33.4,never smoked,0 +6948,Male,8.0,0,0,No,children,Urban,91.53,18.0,Unknown,0 +66083,Male,62.0,0,0,Yes,Private,Rural,145.46,40.1,never smoked,0 +21238,Female,43.0,0,0,Yes,Private,Urban,74.86,26.9,never smoked,0 +70992,Female,8.0,0,0,No,children,Urban,74.42,22.5,Unknown,0 +20376,Male,40.0,0,0,Yes,Self-employed,Urban,70.07,27.6,smokes,0 +6613,Male,2.0,0,0,No,children,Urban,89.85,23.3,Unknown,0 +27818,Female,27.0,0,0,No,Private,Rural,104.21,35.7,never smoked,0 +3062,Female,47.0,0,0,Yes,Self-employed,Rural,157.77,28.4,never smoked,0 +11692,Female,53.0,0,0,No,Govt_job,Urban,101.81,29.4,smokes,0 +25070,Male,62.0,0,0,Yes,Govt_job,Rural,103.0,31.9,Unknown,0 +39556,Male,50.0,0,0,Yes,Self-employed,Urban,101.85,25.1,smokes,0 +18437,Male,26.0,0,0,No,Private,Urban,85.92,35.6,smokes,0 +59540,Female,19.0,0,0,No,Private,Rural,56.85,21.1,never smoked,0 +13857,Male,0.32,0,0,No,children,Urban,89.04,17.8,Unknown,0 +57924,Female,45.0,0,0,Yes,Govt_job,Rural,63.01,31.5,never smoked,0 +38069,Male,45.0,0,0,Yes,Private,Rural,65.48,26.6,Unknown,0 +48871,Female,54.0,0,0,Yes,Private,Rural,68.6,44.8,smokes,0 +63420,Male,64.0,1,0,Yes,Private,Urban,81.68,31.3,formerly smoked,0 +67665,Male,2.0,0,0,No,children,Urban,65.21,17.2,Unknown,0 +50638,Female,66.0,0,0,Yes,Govt_job,Urban,72.53,25.3,smokes,0 +43892,Female,73.0,0,0,Yes,Private,Rural,81.78,28.8,never smoked,0 +9335,Female,31.0,0,0,No,Private,Rural,116.85,49.9,smokes,0 +38830,Female,1.88,0,0,No,children,Rural,80.83,18.0,Unknown,0 +14019,Female,58.0,0,0,Yes,Private,Urban,96.21,23.5,never smoked,0 +65888,Male,12.0,0,0,No,children,Rural,117.04,18.1,Unknown,0 +62986,Female,60.0,1,0,Yes,Private,Rural,78.26,41.7,formerly smoked,0 +61409,Male,32.0,1,0,No,Govt_job,Urban,58.24,,formerly smoked,0 +72041,Male,23.0,0,0,No,Private,Urban,82.53,20.7,smokes,0 +51584,Male,26.0,0,0,No,Private,Urban,71.25,30.3,smokes,0 +56476,Male,36.0,0,0,Yes,Private,Rural,129.73,27.8,never smoked,0 +51740,Female,3.0,0,0,No,children,Urban,115.47,18.9,Unknown,0 +45983,Male,21.0,0,0,No,Private,Urban,56.79,20.4,Unknown,0 +16079,Female,67.0,0,0,Yes,Private,Urban,100.16,31.8,Unknown,0 +24920,Female,35.0,0,0,Yes,Govt_job,Rural,97.6,44.8,smokes,0 +72818,Female,26.0,0,0,No,Private,Rural,90.54,37.1,Unknown,0 +65944,Female,47.0,0,0,Yes,Self-employed,Urban,105.88,39.9,smokes,0 +63836,Male,81.0,1,1,Yes,Govt_job,Rural,217.94,24.1,formerly smoked,0 +46729,Female,1.64,0,0,No,children,Urban,69.89,18.1,Unknown,0 +44642,Male,52.0,0,0,Yes,Govt_job,Urban,93.28,36.3,never smoked,0 +70693,Female,28.0,0,1,Yes,Private,Rural,111.27,19.1,smokes,0 +54065,Female,45.0,0,0,Yes,Private,Urban,91.04,21.1,never smoked,0 +9926,Male,20.0,0,0,No,Private,Urban,87.2,28.9,smokes,0 +29201,Male,1.56,0,0,No,children,Rural,109.12,18.9,Unknown,0 +33308,Female,65.0,0,0,No,Private,Urban,216.64,43.3,formerly smoked,0 +15937,Male,45.0,1,0,Yes,Self-employed,Rural,74.28,37.2,formerly smoked,0 +53748,Male,77.0,0,0,Yes,Self-employed,Urban,57.6,32.2,Unknown,0 +47803,Male,37.0,0,0,Yes,Govt_job,Urban,173.97,26.3,Unknown,0 +41554,Female,50.0,0,0,Yes,Private,Rural,65.25,25.4,smokes,0 +69435,Female,0.56,0,0,No,children,Urban,80.92,18.3,Unknown,0 +41049,Female,30.0,0,0,Yes,Private,Rural,124.37,21.4,never smoked,0 +13859,Female,31.0,0,0,No,Private,Urban,102.39,22.9,smokes,0 +24257,Male,4.0,0,0,No,children,Rural,90.42,16.2,Unknown,0 +14417,Male,65.0,1,0,Yes,Private,Rural,79.17,29.6,Unknown,0 +45260,Female,68.0,0,0,Yes,Self-employed,Urban,71.08,21.5,never smoked,0 +12807,Female,63.0,1,0,Yes,Private,Urban,81.54,24.2,never smoked,0 +71417,Male,46.0,0,0,No,Private,Urban,159.67,37.3,never smoked,0 +37479,Female,54.0,0,0,Yes,Private,Urban,93.96,33.3,smokes,0 +23850,Male,66.0,0,0,Yes,Private,Urban,103.01,33.1,never smoked,0 +17791,Female,29.0,0,0,Yes,Govt_job,Rural,92.49,22.2,never smoked,0 +2544,Male,78.0,0,0,Yes,Private,Urban,208.85,24.4,formerly smoked,0 +4961,Male,56.0,0,0,Yes,Govt_job,Urban,122.39,30.3,Unknown,0 +2702,Female,57.0,0,0,Yes,Private,Rural,65.91,28.2,Unknown,0 +11208,Female,2.0,0,0,No,children,Rural,70.25,17.0,Unknown,0 +4077,Male,49.0,0,0,Yes,Private,Urban,219.7,53.8,Unknown,0 +36548,Male,31.0,0,0,Yes,Govt_job,Urban,65.7,30.4,formerly smoked,0 +71596,Female,47.0,0,0,Yes,Private,Urban,67.08,22.3,Unknown,0 +61050,Male,37.0,0,0,Yes,Govt_job,Rural,107.58,25.3,never smoked,0 +6172,Female,79.0,0,0,Yes,Private,Rural,208.05,,smokes,0 +15098,Female,65.0,0,0,Yes,Private,Rural,95.87,29.8,never smoked,0 +34895,Male,61.0,0,0,Yes,Private,Urban,68.17,43.8,formerly smoked,0 +6443,Female,66.0,0,0,Yes,Private,Urban,95.37,34.5,smokes,0 +67635,Male,24.0,0,0,No,Private,Urban,90.0,25.5,never smoked,0 +19931,Male,66.0,0,0,Yes,Self-employed,Rural,106.1,31.5,smokes,0 +57302,Female,64.0,1,0,Yes,Private,Rural,56.13,39.2,Unknown,0 +26197,Female,38.0,0,0,Yes,Private,Rural,104.03,47.3,smokes,0 +54982,Female,7.0,0,0,No,children,Rural,157.01,17.0,Unknown,0 +13398,Female,63.0,0,0,Yes,Private,Urban,84.35,38.2,never smoked,0 +21101,Male,71.0,0,0,Yes,Private,Rural,67.99,31.1,never smoked,0 +39958,Male,18.0,0,0,No,Private,Rural,118.93,22.4,never smoked,0 +51894,Female,65.0,0,0,Yes,Private,Rural,185.28,32.0,smokes,0 +56001,Male,57.0,0,0,Yes,Private,Rural,82.08,24.7,Unknown,0 +56137,Female,62.0,0,0,Yes,Private,Urban,88.32,36.3,Unknown,0 +25900,Male,1.8,0,0,No,children,Rural,85.16,20.2,Unknown,0 +69213,Male,35.0,0,0,No,Private,Rural,69.54,27.4,never smoked,0 +38613,Female,50.0,0,0,Yes,Govt_job,Rural,62.12,29.6,never smoked,0 +27660,Female,73.0,1,0,No,Self-employed,Rural,198.3,54.3,formerly smoked,0 +33790,Female,23.0,0,0,No,Private,Rural,100.06,28.6,never smoked,0 +50845,Female,32.0,0,0,Yes,Govt_job,Urban,101.13,43.9,formerly smoked,0 +44628,Female,38.0,0,0,Yes,Private,Rural,91.09,22.2,never smoked,0 +38951,Female,50.0,0,0,Yes,Self-employed,Rural,61.54,28.4,Unknown,0 +52792,Female,39.0,0,0,Yes,Private,Urban,62.02,23.7,smokes,0 +27675,Female,7.0,0,0,No,children,Urban,103.11,18.3,Unknown,0 +6903,Female,15.0,0,0,No,children,Rural,77.57,18.3,Unknown,0 +35463,Male,67.0,0,0,Yes,Private,Urban,97.34,28.9,never smoked,0 +172,Male,8.0,0,0,No,children,Urban,78.76,,Unknown,0 +16876,Female,32.0,0,0,Yes,Private,Rural,67.1,27.1,Unknown,0 +60926,Male,5.0,0,0,No,children,Urban,79.89,13.8,Unknown,0 +21333,Male,56.0,1,0,Yes,Private,Rural,206.66,21.9,smokes,0 +69183,Male,49.0,0,0,No,Private,Urban,95.79,24.0,Unknown,0 +2313,Female,75.0,0,1,Yes,Self-employed,Urban,83.88,,smokes,0 +8041,Female,11.0,0,0,No,children,Rural,93.51,20.8,Unknown,0 +68171,Male,61.0,0,0,Yes,Self-employed,Urban,116.78,39.8,formerly smoked,0 +27948,Male,76.0,0,0,Yes,Self-employed,Rural,117.63,26.2,never smoked,0 +45673,Female,34.0,0,0,Yes,Private,Rural,60.01,43.9,Unknown,0 +50810,Male,20.0,0,0,No,Private,Rural,64.6,27.3,Unknown,0 +2467,Female,79.0,1,0,Yes,Self-employed,Rural,92.43,,never smoked,0 +64165,Female,24.0,0,0,No,Private,Urban,71.63,22.0,formerly smoked,0 +22352,Female,39.0,0,0,Yes,Self-employed,Urban,87.79,40.0,formerly smoked,0 +62990,Female,55.0,0,0,Yes,Govt_job,Rural,99.64,20.1,formerly smoked,0 +1737,Female,16.0,0,0,No,Private,Rural,86.53,42.2,never smoked,0 +26357,Male,36.0,0,0,No,Private,Urban,200.68,25.8,Unknown,0 +28013,Female,38.0,0,0,Yes,Self-employed,Urban,98.37,27.2,never smoked,0 +24727,Male,20.0,0,0,No,Private,Rural,117.98,30.9,smokes,0 +37608,Female,38.0,0,0,No,Private,Urban,218.6,47.9,formerly smoked,0 +13870,Female,52.0,0,0,Yes,Private,Urban,101.3,33.1,smokes,0 +4655,Male,49.0,0,0,Yes,Private,Urban,79.51,37.8,never smoked,0 +55356,Female,80.0,0,0,Yes,Self-employed,Urban,223.26,25.4,never smoked,0 +49400,Male,75.0,0,0,Yes,Private,Rural,97.22,28.4,never smoked,0 +38132,Female,13.0,0,0,No,Private,Rural,172.27,16.6,never smoked,0 +50136,Female,54.0,1,0,Yes,Private,Urban,221.83,35.1,smokes,0 +3094,Male,28.0,0,0,No,Private,Urban,74.61,32.7,Unknown,0 +42727,Female,61.0,0,0,Yes,Private,Rural,60.91,29.8,Unknown,0 +41500,Male,0.16,0,0,No,children,Rural,69.79,13.0,Unknown,0 +33185,Male,59.0,0,0,No,Govt_job,Urban,83.6,27.5,formerly smoked,0 +7057,Male,12.0,0,0,No,children,Urban,83.95,23.6,Unknown,0 +48244,Female,38.0,0,0,No,Private,Rural,77.5,36.9,smokes,0 +69559,Male,15.0,0,0,No,Never_worked,Urban,64.29,16.7,Unknown,0 +61757,Male,31.0,0,0,Yes,Self-employed,Rural,61.1,26.5,never smoked,0 +10541,Male,52.0,1,0,Yes,Private,Rural,100.71,37.0,never smoked,0 +48169,Female,61.0,0,0,Yes,Self-employed,Urban,65.21,27.7,Unknown,0 +64202,Male,50.0,0,0,Yes,Private,Rural,119.77,23.5,Unknown,0 +7069,Female,41.0,0,0,Yes,Private,Rural,102.39,40.4,formerly smoked,0 +52050,Male,20.0,0,0,No,Private,Urban,59.67,27.7,never smoked,0 +31692,Male,67.0,0,0,Yes,Private,Rural,83.16,28.3,never smoked,0 +11192,Female,45.0,0,0,Yes,Private,Rural,218.1,55.0,smokes,0 +69404,Male,73.0,0,0,Yes,Govt_job,Rural,76.45,28.7,Unknown,0 +42700,Female,52.0,0,0,Yes,Private,Rural,200.46,25.0,Unknown,0 +7638,Female,51.0,0,0,Yes,Private,Urban,95.7,24.8,formerly smoked,0 +7298,Female,56.0,0,0,Yes,Self-employed,Rural,70.23,35.5,never smoked,0 +43615,Female,49.0,0,0,Yes,Self-employed,Urban,75.15,25.0,Unknown,0 +18134,Male,10.0,0,0,No,children,Rural,95.8,17.3,Unknown,0 +19324,Female,51.0,0,0,Yes,Govt_job,Urban,90.67,37.8,Unknown,0 +18827,Male,57.0,0,0,Yes,Self-employed,Rural,84.79,32.8,formerly smoked,0 +68291,Male,76.0,0,0,Yes,Private,Urban,147.5,28.7,Unknown,0 +70661,Female,28.0,0,0,No,Private,Rural,134.12,28.8,formerly smoked,0 +6019,Female,57.0,0,0,Yes,Private,Urban,82.62,28.4,never smoked,0 +56616,Male,39.0,0,0,Yes,Private,Rural,125.11,24.9,formerly smoked,0 +14399,Female,41.0,0,0,Yes,Private,Urban,92.14,29.6,formerly smoked,0 +8009,Female,72.0,1,1,Yes,Private,Urban,217.79,26.1,formerly smoked,0 +30961,Male,45.0,0,0,Yes,Private,Rural,95.62,29.5,smokes,0 +24201,Male,33.0,0,0,Yes,Private,Rural,93.8,23.9,never smoked,0 +18032,Male,62.0,0,1,Yes,Private,Rural,90.61,25.8,smokes,0 +62396,Female,27.0,0,0,Yes,Private,Urban,139.2,36.2,never smoked,0 +67055,Female,31.0,0,0,Yes,Private,Rural,77.01,31.3,formerly smoked,0 +51024,Female,24.0,0,0,Yes,Private,Urban,105.26,26.1,never smoked,0 +60774,Male,1.88,0,0,No,children,Rural,68.35,19.1,Unknown,0 +35039,Female,28.0,0,0,No,Private,Rural,99.07,17.6,never smoked,0 +46141,Female,24.0,0,0,No,Private,Rural,147.74,21.4,Unknown,0 +54240,Female,30.0,0,0,Yes,Govt_job,Urban,61.29,24.0,Unknown,0 +15929,Male,38.0,0,0,Yes,Govt_job,Rural,98.92,25.5,never smoked,0 +19849,Female,1.64,0,0,No,children,Urban,90.74,19.9,Unknown,0 +43282,Male,0.72,0,0,No,children,Rural,159.79,19.9,Unknown,0 +50372,Male,57.0,0,0,Yes,Private,Rural,233.47,35.5,never smoked,0 +5834,Female,27.0,0,0,No,Govt_job,Urban,85.53,26.9,smokes,0 +69847,Female,30.0,0,0,Yes,Self-employed,Urban,76.7,24.2,never smoked,0 +67277,Male,42.0,0,0,Yes,Private,Rural,67.87,30.0,never smoked,0 +41181,Male,36.0,0,0,Yes,Private,Urban,77.26,30.9,never smoked,0 +36388,Male,44.0,1,0,Yes,Private,Rural,91.28,26.5,never smoked,0 +49272,Male,59.0,0,0,Yes,Govt_job,Urban,129.19,30.6,never smoked,0 +52024,Female,61.0,0,0,Yes,Govt_job,Urban,97.86,19.1,formerly smoked,0 +58508,Female,18.0,0,0,No,Govt_job,Rural,112.33,23.2,formerly smoked,0 +64159,Female,44.0,0,0,Yes,Private,Rural,110.41,30.5,smokes,0 +29453,Male,16.0,0,0,No,children,Rural,91.58,15.8,Unknown,0 +52838,Male,13.0,0,0,No,children,Urban,58.86,16.9,never smoked,0 +43024,Male,9.0,0,0,No,children,Rural,76.88,18.0,Unknown,0 +8247,Male,0.16,0,0,No,children,Urban,109.52,13.9,Unknown,0 +42159,Female,81.0,1,0,Yes,Self-employed,Urban,181.23,36.7,never smoked,0 +37761,Female,38.0,0,0,Yes,Private,Urban,103.58,30.8,formerly smoked,0 +27624,Female,58.0,0,0,Yes,Self-employed,Rural,81.96,34.6,never smoked,0 +40242,Male,5.0,0,0,No,children,Rural,104.55,16.3,Unknown,0 +4383,Female,64.0,0,0,Yes,Govt_job,Urban,76.12,38.2,formerly smoked,0 +58577,Female,38.0,0,0,Yes,Govt_job,Rural,64.27,27.3,never smoked,0 +59916,Female,56.0,0,0,Yes,Private,Rural,200.98,30.4,smokes,0 +44526,Male,58.0,0,0,Yes,Govt_job,Urban,101.96,34.5,never smoked,0 +12990,Male,9.0,0,0,No,children,Rural,84.17,17.4,Unknown,0 +14414,Female,34.0,0,0,Yes,Private,Rural,85.79,32.0,never smoked,0 +46343,Female,79.0,0,0,Yes,Private,Urban,71.46,33.4,Unknown,0 +29539,Male,62.0,1,0,Yes,Self-employed,Rural,95.49,40.2,smokes,0 +10924,Female,60.0,0,0,Yes,Private,Rural,87.62,30.1,smokes,0 +30248,Female,42.0,0,0,No,Private,Rural,118.55,46.2,smokes,0 +39769,Female,59.0,0,0,Yes,Self-employed,Urban,82.14,35.6,smokes,0 +28778,Female,54.0,0,0,Yes,Private,Urban,219.67,29.4,smokes,0 +65257,Male,59.0,0,0,Yes,Private,Urban,135.84,27.3,never smoked,0 +7233,Male,15.0,0,0,No,children,Rural,74.83,17.4,Unknown,0 +67773,Female,14.0,0,0,No,children,Urban,60.37,26.9,Unknown,0 +14993,Male,5.0,0,0,No,children,Rural,67.28,17.7,Unknown,0 +59054,Male,17.0,0,0,No,Private,Rural,77.79,23.6,Unknown,0 +22554,Female,13.0,0,0,No,children,Rural,88.51,27.7,Unknown,0 +72512,Female,48.0,0,0,Yes,Self-employed,Urban,90.38,38.0,smokes,0 +56195,Male,37.0,0,0,Yes,Govt_job,Urban,156.69,35.2,never smoked,0 +7524,Female,69.0,0,1,Yes,Private,Urban,207.6,,never smoked,0 +45795,Female,74.0,0,0,Yes,Private,Urban,158.9,32.4,formerly smoked,0 +64433,Male,54.0,0,0,Yes,Private,Urban,247.97,36.1,formerly smoked,0 +70106,Female,64.0,0,1,Yes,Private,Rural,114.71,30.6,never smoked,0 +50072,Female,26.0,0,0,No,Private,Rural,58.55,29.0,never smoked,0 +52530,Male,55.0,0,0,Yes,Govt_job,Urban,231.15,22.3,never smoked,0 +768,Female,74.0,0,0,Yes,Self-employed,Urban,68.18,27.3,formerly smoked,0 +40255,Female,0.48,0,0,No,children,Rural,118.75,17.4,Unknown,0 +50073,Female,41.0,0,1,No,Private,Rural,186.54,39.0,formerly smoked,0 +52439,Male,68.0,0,1,Yes,Private,Rural,96.14,26.7,never smoked,0 +65379,Male,9.0,0,0,No,children,Urban,69.52,24.2,Unknown,0 +38605,Female,36.0,0,0,Yes,Private,Rural,101.93,22.8,smokes,0 +35772,Male,17.0,0,0,No,Private,Urban,71.58,25.6,Unknown,0 +38014,Male,24.0,0,0,Yes,Private,Urban,83.1,21.9,smokes,0 +68330,Female,69.0,0,0,Yes,Self-employed,Rural,110.96,25.9,never smoked,0 +47271,Male,38.0,0,0,Yes,Govt_job,Urban,122.83,30.6,Unknown,0 +26330,Female,69.0,0,0,Yes,Private,Urban,91.65,25.7,formerly smoked,0 +24022,Female,32.0,0,0,No,Private,Urban,84.1,33.3,Unknown,0 +45622,Female,25.0,0,0,No,Private,Rural,118.85,23.8,smokes,0 +60732,Male,2.0,0,0,No,children,Urban,89.32,17.2,Unknown,0 +53694,Male,79.0,0,0,No,Self-employed,Urban,128.72,31.0,Unknown,0 +11280,Female,28.0,0,0,Yes,Private,Urban,98.05,24.7,never smoked,0 +28734,Female,16.0,0,0,No,Never_worked,Urban,102.1,27.1,never smoked,0 +12693,Male,31.0,0,0,Yes,Private,Urban,108.62,,smokes,0 +17683,Male,66.0,0,0,Yes,Self-employed,Urban,96.19,38.3,smokes,0 +36155,Female,57.0,1,0,Yes,Private,Urban,98.07,50.9,formerly smoked,0 +31390,Female,61.0,0,0,Yes,Private,Rural,71.4,29.2,formerly smoked,0 +10636,Female,74.0,0,0,Yes,Self-employed,Rural,82.27,23.6,formerly smoked,0 +71659,Female,70.0,0,0,Yes,Govt_job,Rural,158.33,33.5,never smoked,0 +52305,Female,8.0,0,0,No,children,Rural,102.5,16.3,Unknown,0 +9602,Female,49.0,0,0,Yes,Private,Urban,72.18,30.8,Unknown,0 +68407,Male,30.0,0,0,Yes,Govt_job,Urban,95.94,31.1,never smoked,0 +72011,Male,51.0,0,0,No,Self-employed,Rural,87.15,26.4,formerly smoked,0 +40568,Female,10.0,0,0,No,children,Urban,82.59,18.6,formerly smoked,0 +50206,Female,34.0,0,0,Yes,Private,Rural,89.31,37.3,formerly smoked,0 +41191,Male,40.0,0,0,Yes,Private,Rural,64.84,26.6,never smoked,0 +7129,Male,3.0,0,0,No,children,Urban,107.52,17.6,Unknown,0 +45485,Female,45.0,0,0,Yes,Self-employed,Urban,92.76,22.3,Unknown,0 +32023,Male,4.0,0,0,No,children,Urban,79.16,20.2,Unknown,0 +33064,Male,52.0,0,1,Yes,Private,Urban,87.0,30.9,never smoked,0 +60896,Male,68.0,0,1,Yes,Private,Rural,145.25,31.5,never smoked,0 +2109,Female,8.0,0,0,No,children,Urban,125.14,29.7,Unknown,0 +27705,Female,82.0,0,1,Yes,Self-employed,Rural,88.6,32.5,Unknown,0 +36850,Male,36.0,0,0,Yes,Govt_job,Urban,57.59,32.8,Unknown,0 +52500,Female,42.0,0,0,Yes,Govt_job,Urban,59.43,25.4,never smoked,0 +43698,Female,27.0,0,0,No,Govt_job,Rural,65.43,27.2,Unknown,0 +49901,Male,55.0,0,0,Yes,Govt_job,Urban,154.03,31.6,smokes,0 +69120,Female,31.0,0,0,Yes,Self-employed,Rural,139.81,39.6,never smoked,0 +25510,Male,82.0,0,0,Yes,Self-employed,Urban,111.81,19.8,formerly smoked,0 +60416,Female,57.0,0,0,Yes,Self-employed,Urban,106.84,29.6,never smoked,0 +15135,Female,78.0,0,1,Yes,Private,Rural,221.06,25.5,formerly smoked,0 +34660,Male,55.0,0,0,Yes,Self-employed,Urban,69.97,25.8,formerly smoked,0 +11713,Male,51.0,0,0,Yes,Private,Rural,77.07,32.1,formerly smoked,0 +40704,Male,80.0,0,0,No,Private,Urban,59.49,25.6,Unknown,0 +71298,Female,17.0,0,0,No,Private,Rural,109.39,26.3,never smoked,0 +54497,Female,61.0,0,0,Yes,Private,Rural,93.97,39.4,Unknown,0 +30129,Female,62.0,0,0,Yes,Govt_job,Urban,163.17,25.6,never smoked,0 +44965,Female,14.0,0,0,No,Self-employed,Urban,124.39,34.0,Unknown,0 +38549,Female,62.0,0,0,Yes,Private,Urban,212.62,35.8,never smoked,0 +39236,Female,56.0,0,0,No,Self-employed,Urban,128.63,24.9,smokes,0 +50545,Male,41.0,0,0,Yes,Govt_job,Urban,84.1,29.3,never smoked,0 +28435,Female,59.0,0,0,Yes,Self-employed,Urban,77.6,23.4,Unknown,0 +4631,Male,29.0,0,0,Yes,Private,Urban,70.51,24.5,Unknown,0 +9912,Male,39.0,0,0,Yes,Private,Rural,109.19,29.8,Unknown,0 +43028,Male,66.0,0,0,Yes,Self-employed,Rural,55.23,28.9,Unknown,0 +38894,Female,35.0,0,0,Yes,Private,Urban,120.15,27.3,never smoked,0 +41238,Female,36.0,0,0,Yes,Private,Urban,72.16,23.2,never smoked,0 +51828,Male,35.0,0,0,Yes,Private,Rural,95.89,34.2,Unknown,0 +64196,Male,26.0,0,0,No,Private,Urban,64.68,23.3,smokes,0 +10626,Female,31.0,0,0,No,Private,Rural,70.51,26.9,formerly smoked,0 +4117,Female,56.0,0,0,Yes,Self-employed,Rural,81.77,21.8,never smoked,0 +37993,Female,36.0,0,0,Yes,Govt_job,Urban,66.47,26.9,never smoked,0 +57765,Female,41.0,0,0,Yes,Govt_job,Rural,146.08,29.9,never smoked,0 +7841,Female,50.0,0,0,Yes,Private,Urban,91.68,22.4,never smoked,0 +18398,Female,42.0,0,0,Yes,Private,Rural,108.96,27.5,never smoked,0 +50210,Male,79.0,0,0,Yes,Self-employed,Urban,113.41,35.0,never smoked,0 +52461,Male,57.0,0,0,Yes,Private,Urban,111.08,27.9,never smoked,0 +32523,Male,68.0,0,1,Yes,Private,Urban,217.74,25.5,Unknown,0 +49509,Female,25.0,0,0,Yes,Private,Rural,78.5,28.6,never smoked,0 +16377,Male,69.0,0,0,Yes,Private,Urban,89.06,34.8,formerly smoked,0 +13902,Female,42.0,0,0,Yes,Private,Urban,74.8,50.6,Unknown,0 +44047,Male,37.0,0,0,Yes,Govt_job,Rural,80.2,30.9,never smoked,0 +34184,Female,2.0,0,0,No,children,Rural,76.52,14.8,Unknown,0 +11312,Female,78.0,0,0,Yes,Self-employed,Rural,208.99,31.4,formerly smoked,0 +39616,Female,36.0,0,0,Yes,Private,Urban,99.72,22.3,smokes,0 +57322,Male,10.0,0,0,No,children,Urban,102.97,19.1,Unknown,0 +28011,Male,39.0,1,0,Yes,Private,Rural,197.36,27.4,Unknown,0 +242,Male,4.0,0,0,No,children,Urban,98.56,17.5,Unknown,0 +18178,Female,48.0,0,0,Yes,Private,Urban,86.06,36.2,never smoked,0 +51823,Male,72.0,0,0,Yes,Self-employed,Urban,123.08,25.4,smokes,0 +23439,Male,63.0,0,1,No,Private,Urban,75.0,25.7,smokes,0 +12594,Female,28.0,0,0,Yes,Private,Rural,105.9,28.6,smokes,0 +2692,Female,80.0,0,0,Yes,Self-employed,Urban,73.87,33.7,never smoked,0 +26062,Male,49.0,0,0,Yes,Private,Rural,78.04,37.9,never smoked,0 +6805,Male,57.0,0,0,No,Private,Urban,107.74,28.4,Unknown,0 +45817,Female,59.0,0,0,Yes,Private,Rural,60.64,20.0,never smoked,0 +66306,Female,43.0,0,0,Yes,Private,Rural,82.57,29.1,never smoked,0 +62167,Female,47.0,0,0,Yes,Private,Rural,115.98,27.6,Unknown,0 +16627,Male,54.0,0,0,Yes,Self-employed,Rural,110.38,27.6,formerly smoked,0 +34285,Male,57.0,0,0,Yes,Private,Rural,92.59,24.2,Unknown,0 +71151,Male,56.0,0,0,Yes,Private,Urban,82.64,31.0,never smoked,0 +2580,Male,66.0,0,1,No,Govt_job,Urban,70.28,34.5,never smoked,0 +11891,Male,18.0,0,0,No,Govt_job,Urban,106.54,27.0,never smoked,0 +57080,Female,81.0,1,1,Yes,Self-employed,Urban,59.11,20.7,formerly smoked,0 +47456,Male,30.0,0,0,Yes,Private,Rural,58.89,26.1,formerly smoked,0 +56139,Male,8.0,0,0,No,children,Urban,129.66,19.2,Unknown,0 +12857,Male,55.0,0,0,Yes,Self-employed,Rural,73.57,28.0,smokes,0 +40980,Male,79.0,1,0,Yes,Self-employed,Urban,72.04,23.6,formerly smoked,0 +47668,Female,49.0,0,0,Yes,Private,Rural,125.63,57.2,Unknown,0 +72792,Female,53.0,1,0,Yes,Private,Rural,77.94,33.0,never smoked,0 +37728,Female,26.0,0,0,Yes,Private,Urban,68.99,22.2,never smoked,0 +47410,Female,14.0,0,0,No,children,Rural,111.76,24.8,Unknown,0 +56450,Male,25.0,0,0,No,Private,Rural,65.36,24.7,never smoked,0 +9189,Female,20.0,0,0,No,Private,Urban,80.27,27.9,never smoked,0 +71966,Female,18.0,0,0,No,Never_worked,Urban,81.73,21.6,never smoked,0 +59272,Male,38.0,0,0,Yes,Private,Rural,79.22,34.8,smokes,0 +45563,Female,72.0,0,1,Yes,Self-employed,Urban,142.63,32.9,smokes,0 +19907,Female,52.0,0,0,Yes,Private,Rural,97.05,28.0,Unknown,0 +40163,Female,82.0,1,0,Yes,Private,Urban,222.52,,formerly smoked,0 +62738,Male,71.0,0,1,Yes,Private,Rural,70.38,25.0,smokes,0 +51651,Male,46.0,0,0,Yes,Private,Rural,114.46,24.7,formerly smoked,0 +39940,Female,33.0,0,0,Yes,Private,Urban,64.62,27.3,never smoked,0 +8122,Female,37.0,0,0,Yes,Private,Urban,94.12,34.2,Unknown,0 +71057,Female,54.0,0,0,Yes,Private,Rural,70.19,39.1,smokes,0 +67921,Female,5.0,0,0,No,children,Urban,55.35,22.7,Unknown,0 +12834,Male,45.0,0,0,Yes,Private,Urban,115.52,33.9,formerly smoked,0 +56567,Male,14.0,0,0,No,children,Urban,60.7,18.6,Unknown,0 +11872,Male,5.0,0,0,No,children,Urban,69.24,16.7,Unknown,0 +6574,Female,35.0,0,0,Yes,Self-employed,Urban,103.29,20.6,never smoked,0 +5294,Female,20.0,0,0,Yes,Private,Rural,92.74,20.1,Unknown,0 +10870,Male,51.0,0,0,Yes,Private,Rural,232.64,45.2,never smoked,0 +15062,Male,40.0,0,0,Yes,Govt_job,Urban,82.46,25.3,smokes,0 +46454,Female,79.0,0,0,Yes,Govt_job,Urban,63.57,32.4,never smoked,0 +31795,Male,61.0,0,0,Yes,Self-employed,Urban,73.24,34.9,never smoked,0 +62395,Male,33.0,0,0,Yes,Private,Urban,78.43,43.7,smokes,0 +42760,Female,27.0,0,0,Yes,Private,Urban,57.46,23.0,smokes,0 +27119,Female,28.0,0,0,No,Private,Rural,104.16,21.5,never smoked,0 +47113,Female,67.0,0,0,Yes,Self-employed,Rural,110.42,24.9,never smoked,0 +36045,Female,35.0,0,0,Yes,Private,Rural,119.4,22.9,never smoked,0 +54871,Female,78.0,0,0,Yes,Private,Urban,119.13,25.0,never smoked,0 +48824,Female,20.0,0,0,No,Private,Rural,120.22,21.3,never smoked,0 +67356,Female,43.0,0,0,Yes,Private,Urban,80.8,46.1,never smoked,0 +70670,Female,27.0,0,0,Yes,Private,Rural,57.96,64.4,never smoked,0 +58477,Female,45.0,0,0,Yes,Private,Urban,81.24,37.0,never smoked,0 +53636,Female,11.0,0,0,No,children,Urban,88.79,21.3,never smoked,0 +24262,Female,31.0,0,0,Yes,Private,Rural,70.91,28.3,never smoked,0 +33886,Female,30.0,0,0,No,Private,Rural,87.12,31.1,smokes,0 +59126,Female,27.0,0,0,No,Private,Urban,126.09,25.1,Unknown,0 +31697,Female,34.0,0,0,Yes,Private,Urban,76.42,27.6,smokes,0 +10018,Male,19.0,0,0,No,Private,Rural,56.33,29.4,Unknown,0 +52447,Female,3.0,0,0,No,children,Rural,131.81,14.1,Unknown,0 +23238,Male,53.0,0,1,Yes,Private,Rural,95.23,35.2,smokes,0 +4148,Male,81.0,0,0,Yes,Self-employed,Urban,71.18,23.9,formerly smoked,0 +63404,Female,44.0,0,0,Yes,Private,Rural,87.71,34.0,formerly smoked,0 +13540,Female,59.0,0,0,Yes,Self-employed,Rural,115.68,27.1,Unknown,0 +44288,Male,43.0,0,0,Yes,Private,Rural,207.37,29.5,formerly smoked,0 +23194,Male,32.0,1,0,No,Private,Rural,74.43,,Unknown,0 +751,Female,5.0,0,0,No,children,Rural,75.1,20.7,Unknown,0 +7047,Female,31.0,0,0,Yes,Private,Rural,69.72,39.5,smokes,0 +68020,Male,47.0,0,0,Yes,Private,Urban,111.84,33.7,Unknown,0 +11325,Female,12.0,0,0,No,children,Rural,111.08,23.2,never smoked,0 +25636,Male,40.0,0,0,Yes,Private,Rural,201.96,30.1,Unknown,0 +60602,Female,49.0,0,0,Yes,Govt_job,Urban,68.68,28.8,never smoked,0 +51856,Male,38.0,1,0,Yes,Private,Rural,56.9,92.0,never smoked,0 +13031,Female,15.0,0,0,No,children,Urban,91.16,38.0,never smoked,0 +19498,Female,81.0,0,1,No,Self-employed,Urban,99.44,27.7,Unknown,0 +51476,Male,48.0,0,0,Yes,Private,Urban,78.85,43.2,never smoked,0 +49762,Female,24.0,0,0,No,Private,Rural,123.89,24.1,smokes,0 +23449,Male,47.0,0,0,Yes,Self-employed,Rural,90.44,28.7,never smoked,0 +51374,Female,13.0,0,0,No,children,Rural,138.44,34.8,Unknown,0 +41263,Female,16.0,0,0,No,Private,Urban,75.06,23.5,never smoked,0 +6599,Male,64.0,1,0,Yes,Self-employed,Rural,85.66,28.5,never smoked,0 +16320,Female,11.0,0,0,No,children,Urban,102.76,20.3,Unknown,0 +64670,Female,55.0,0,0,Yes,Govt_job,Urban,71.79,43.0,formerly smoked,0 +35941,Male,38.0,0,0,Yes,Private,Urban,167.16,18.3,never smoked,0 +64931,Male,37.0,0,0,Yes,Private,Rural,131.05,27.2,never smoked,0 +27416,Female,34.0,0,0,Yes,Private,Rural,86.92,22.0,Unknown,0 +43433,Female,52.0,0,0,Yes,Self-employed,Rural,59.62,50.8,Unknown,0 +21366,Female,50.0,0,0,Yes,Private,Urban,103.72,35.4,formerly smoked,0 +14658,Female,37.0,0,0,Yes,Private,Rural,77.1,55.9,Unknown,0 +7538,Female,55.0,0,0,Yes,Self-employed,Rural,94.75,27.9,smokes,0 +52092,Female,2.0,0,0,No,children,Rural,77.72,19.8,Unknown,0 +45372,Male,68.0,0,0,Yes,Self-employed,Rural,76.09,26.0,smokes,0 +63043,Female,27.0,0,0,No,Private,Urban,61.8,26.8,formerly smoked,0 +67,Female,17.0,0,0,No,Private,Urban,92.97,,formerly smoked,0 +68034,Female,53.0,1,0,Yes,Govt_job,Urban,83.73,32.5,never smoked,0 +63026,Male,5.0,0,0,No,children,Rural,79.33,15.0,Unknown,0 +18352,Female,3.0,0,0,No,children,Rural,108.32,14.2,Unknown,0 +36087,Female,20.0,0,0,No,Private,Rural,103.65,17.0,formerly smoked,0 +27480,Male,19.0,0,0,No,Private,Rural,86.19,26.2,never smoked,0 +38074,Female,31.0,0,0,Yes,Private,Urban,131.42,24.9,smokes,0 +66690,Female,63.0,0,0,Yes,Self-employed,Urban,69.46,26.6,never smoked,0 +31131,Female,49.0,0,1,Yes,Private,Rural,76.78,22.7,smokes,0 +26884,Female,72.0,0,0,Yes,Self-employed,Urban,103.78,32.7,formerly smoked,0 +26935,Female,50.0,1,0,Yes,Private,Urban,213.43,36.7,smokes,0 +17569,Male,41.0,0,0,Yes,Self-employed,Rural,93.52,31.5,Unknown,0 +24585,Male,40.0,0,0,Yes,Govt_job,Urban,115.07,36.9,never smoked,0 +53954,Male,17.0,0,0,No,Private,Rural,69.45,27.6,Unknown,0 +13286,Male,3.0,0,0,No,children,Rural,81.0,20.7,Unknown,0 +7653,Female,33.0,0,0,No,Private,Urban,83.16,20.2,Unknown,0 +59027,Female,12.0,0,0,No,children,Rural,108.63,23.4,never smoked,0 +70318,Male,23.0,0,0,No,Private,Rural,88.06,25.3,Unknown,0 +15422,Male,31.0,0,0,No,Govt_job,Rural,80.57,28.2,formerly smoked,0 +56692,Female,65.0,0,0,Yes,Self-employed,Urban,248.24,27.0,smokes,0 +45395,Female,43.0,0,0,Yes,Private,Urban,57.79,24.8,smokes,0 +39977,Female,22.0,0,0,No,Private,Urban,87.4,34.8,never smoked,0 +14553,Male,7.0,0,0,No,children,Urban,76.63,17.3,Unknown,0 +40998,Female,81.0,0,0,Yes,Self-employed,Rural,58.01,27.8,never smoked,0 +71900,Female,10.0,0,0,No,children,Urban,77.43,16.2,Unknown,0 +3318,Female,18.0,0,0,No,Private,Rural,101.12,,smokes,0 +41481,Female,5.0,0,0,No,children,Rural,64.45,21.7,Unknown,0 +24854,Female,24.0,0,0,No,Self-employed,Urban,79.42,21.4,never smoked,0 +22330,Female,45.0,0,0,Yes,Self-employed,Urban,82.94,29.3,Unknown,0 +14892,Female,46.0,1,0,Yes,Private,Rural,81.58,36.2,never smoked,0 +36710,Male,64.0,0,0,Yes,Private,Urban,62.21,28.3,Unknown,0 +29267,Male,25.0,0,0,No,Private,Rural,229.94,23.5,never smoked,0 +17098,Female,12.0,0,0,No,children,Urban,116.06,25.9,Unknown,0 +61384,Male,81.0,1,0,Yes,Private,Urban,117.77,27.1,never smoked,0 +69732,Male,65.0,0,0,Yes,Self-employed,Urban,66.69,21.5,never smoked,0 +61238,Female,40.0,0,0,Yes,Private,Rural,122.23,30.5,Unknown,0 +18696,Male,81.0,0,0,No,Private,Urban,168.68,23.4,formerly smoked,0 +25643,Male,36.0,0,0,Yes,Private,Rural,119.9,37.6,never smoked,0 +63333,Female,32.0,0,0,Yes,Self-employed,Urban,110.33,24.0,smokes,0 +23210,Male,31.0,0,0,No,Private,Rural,77.95,25.1,never smoked,0 +2647,Male,55.0,0,0,Yes,Private,Rural,80.35,28.7,smokes,0 +60934,Male,39.0,0,0,Yes,Private,Urban,57.38,41.8,formerly smoked,0 +50412,Female,17.0,0,0,No,Private,Urban,96.47,25.6,Unknown,0 +1192,Female,31.0,0,0,No,Govt_job,Rural,70.66,27.2,never smoked,0 +55361,Female,36.0,0,0,Yes,Self-employed,Urban,202.06,24.4,never smoked,0 +50141,Female,5.0,0,0,No,children,Urban,91.3,20.7,Unknown,0 +12963,Female,29.0,0,0,No,Self-employed,Rural,67.56,19.6,Unknown,0 +55337,Female,2.0,0,0,No,children,Rural,126.12,24.8,Unknown,0 +23989,Female,62.0,0,0,Yes,Self-employed,Urban,86.4,32.6,smokes,0 +26025,Female,45.0,0,0,Yes,Govt_job,Urban,103.22,20.5,never smoked,0 +67711,Female,18.0,0,0,No,Private,Rural,88.85,36.2,Unknown,0 +53105,Female,29.0,0,0,Yes,Private,Urban,63.9,45.4,smokes,0 +10696,Female,52.0,0,0,Yes,Private,Urban,81.32,27.6,formerly smoked,0 +43656,Male,59.0,1,0,Yes,Govt_job,Rural,253.93,,formerly smoked,0 +52361,Male,69.0,1,1,Yes,Private,Urban,78.11,34.7,formerly smoked,0 +57343,Female,71.0,0,0,Yes,Private,Urban,134.65,32.4,Unknown,0 +23339,Male,3.0,0,0,No,children,Rural,194.75,,Unknown,0 +51408,Male,33.0,0,0,Yes,Govt_job,Rural,77.94,28.7,never smoked,0 +47886,Female,43.0,1,0,Yes,Govt_job,Rural,56.94,45.3,Unknown,0 +21407,Male,39.0,0,0,Yes,Private,Rural,117.03,40.3,formerly smoked,0 +34026,Female,60.0,0,0,Yes,Private,Rural,207.84,38.9,never smoked,0 +53004,Female,54.0,0,0,Yes,Govt_job,Rural,228.26,46.0,never smoked,0 +18833,Male,61.0,0,0,Yes,Self-employed,Rural,84.43,32.4,smokes,0 +69222,Male,0.24,0,0,No,children,Urban,57.09,19.4,Unknown,0 +32610,Female,11.0,0,0,No,children,Urban,94.89,27.5,never smoked,0 +57645,Female,75.0,0,0,Yes,Govt_job,Rural,132.46,26.2,Unknown,0 +21677,Female,64.0,0,0,Yes,Private,Rural,75.13,31.1,formerly smoked,0 +50410,Female,78.0,0,0,No,Govt_job,Rural,76.64,34.6,never smoked,0 +25051,Female,14.0,0,0,No,Private,Rural,91.32,24.3,never smoked,0 +31642,Female,66.0,0,0,Yes,Self-employed,Rural,85.9,34.6,never smoked,0 +60455,Male,48.0,0,0,Yes,Private,Urban,76.19,28.5,never smoked,0 +52172,Female,44.0,0,0,Yes,Private,Rural,85.77,32.1,Unknown,0 +69647,Male,30.0,0,0,No,Private,Urban,63.42,28.0,never smoked,0 +24972,Male,1.48,0,0,No,children,Rural,112.02,20.9,Unknown,0 +13172,Female,61.0,0,0,Yes,Self-employed,Urban,203.76,33.8,never smoked,0 +31911,Female,54.0,0,0,Yes,Govt_job,Urban,98.44,25.8,formerly smoked,0 +34415,Female,22.0,0,0,No,Govt_job,Urban,79.57,31.8,Unknown,0 +53219,Male,47.0,0,0,Yes,Private,Urban,63.98,26.8,smokes,0 +7924,Female,67.0,0,0,Yes,Private,Urban,101.46,25.9,formerly smoked,0 +72491,Male,53.0,0,0,Yes,Private,Urban,74.66,29.2,smokes,0 +59058,Female,45.0,0,0,Yes,Govt_job,Rural,68.66,25.3,never smoked,0 +52619,Female,65.0,0,0,Yes,Private,Rural,205.78,41.7,never smoked,0 +36162,Male,39.0,1,0,Yes,Private,Rural,111.24,38.8,never smoked,0 +68371,Male,57.0,0,0,Yes,Private,Urban,134.76,29.1,Unknown,0 +21067,Female,45.0,0,0,Yes,Self-employed,Urban,110.1,30.9,never smoked,0 +25718,Female,28.0,0,0,Yes,Private,Urban,100.8,39.3,formerly smoked,0 +24421,Male,30.0,0,0,No,Private,Urban,113.08,41.8,Unknown,0 +69528,Female,31.0,0,0,Yes,Private,Urban,56.48,26.2,formerly smoked,0 +56594,Female,70.0,0,0,Yes,Private,Urban,77.77,33.8,smokes,0 +35095,Female,17.0,0,0,No,Private,Urban,104.02,26.1,Unknown,0 +30002,Male,44.0,1,0,Yes,Self-employed,Rural,83.59,24.1,never smoked,0 +71143,Male,65.0,0,0,Yes,Self-employed,Urban,179.67,30.7,formerly smoked,0 +32669,Male,6.0,0,0,No,children,Urban,91.89,22.4,Unknown,0 +17174,Male,15.0,0,0,No,children,Rural,78.9,23.0,Unknown,0 +2818,Female,80.0,0,0,No,Self-employed,Rural,230.74,30.2,formerly smoked,0 +30650,Male,54.0,0,0,Yes,Govt_job,Rural,216.19,30.3,formerly smoked,0 +3013,Female,79.0,0,0,Yes,Self-employed,Rural,83.7,28.7,never smoked,0 +42806,Female,60.0,1,0,Yes,Private,Rural,200.66,36.3,smokes,0 +6390,Female,12.0,0,0,No,children,Rural,73.99,16.3,Unknown,0 +46647,Female,36.0,0,0,No,Private,Urban,228.5,34.5,never smoked,0 +6625,Female,54.0,0,0,Yes,Self-employed,Urban,70.43,20.8,smokes,0 +49605,Male,63.0,0,0,Yes,Private,Urban,74.39,31.0,formerly smoked,0 +72940,Female,2.0,0,0,No,children,Urban,102.92,17.6,Unknown,0 +24783,Female,28.0,0,0,No,Private,Urban,87.91,22.7,formerly smoked,0 +22515,Female,38.0,1,0,Yes,Private,Rural,118.55,38.4,smokes,0 +3700,Male,37.0,0,0,Yes,Private,Urban,232.29,40.8,smokes,0 +53802,Male,80.0,0,1,Yes,Private,Rural,125.32,32.9,Unknown,0 +49955,Male,43.0,0,0,No,Private,Urban,78.98,31.3,formerly smoked,0 +2456,Male,60.0,1,0,Yes,Govt_job,Rural,100.2,28.5,smokes,0 +71515,Female,66.0,0,0,Yes,Private,Rural,200.91,27.6,never smoked,0 +44662,Female,45.0,0,0,Yes,Govt_job,Rural,95.24,40.2,Unknown,0 +38661,Female,29.0,0,0,No,Private,Urban,56.64,24.7,never smoked,0 +15978,Male,4.0,0,0,No,children,Urban,80.48,17.7,Unknown,0 +35210,Female,48.0,0,0,Yes,Private,Urban,112.96,25.4,never smoked,0 +49930,Female,68.0,0,0,Yes,Private,Rural,236.04,28.5,never smoked,0 +27789,Female,57.0,0,0,Yes,Private,Urban,73.0,26.2,never smoked,0 +45325,Female,29.0,0,0,No,Private,Urban,61.13,26.0,never smoked,0 +31092,Female,30.0,0,0,Yes,Private,Urban,88.56,45.3,never smoked,0 +40705,Female,47.0,0,0,Yes,Self-employed,Rural,66.16,31.5,never smoked,0 +28513,Female,73.0,0,0,Yes,Private,Rural,88.98,20.6,smokes,0 +12367,Female,66.0,0,0,Yes,Self-employed,Urban,94.39,29.4,Unknown,0 +63915,Female,39.0,0,0,Yes,Private,Urban,87.39,57.9,never smoked,0 +10166,Male,66.0,0,0,No,Govt_job,Rural,77.91,39.1,Unknown,0 +35999,Female,52.0,0,0,Yes,Private,Urban,86.85,23.8,formerly smoked,0 +8964,Female,34.0,0,0,No,Private,Rural,94.37,38.1,never smoked,0 +38207,Female,79.0,1,0,Yes,Self-employed,Rural,76.64,19.5,never smoked,0 +52681,Female,39.0,0,0,Yes,Private,Urban,254.95,35.5,smokes,0 +38980,Male,61.0,0,0,Yes,Govt_job,Urban,107.33,26.4,formerly smoked,0 +33924,Female,26.0,0,0,No,Private,Urban,80.94,22.2,smokes,0 +10135,Female,37.0,0,0,No,Private,Rural,112.02,29.1,Unknown,0 +46517,Female,66.0,0,1,Yes,Private,Rural,196.58,41.9,formerly smoked,0 +65966,Female,16.0,0,0,No,Private,Urban,89.14,22.6,formerly smoked,0 +56575,Female,51.0,1,0,Yes,Govt_job,Urban,69.94,33.3,smokes,0 +43138,Male,15.0,0,0,No,Private,Urban,55.79,21.3,never smoked,0 +36633,Male,1.72,0,0,No,children,Urban,73.08,20.4,Unknown,0 +11632,Male,60.0,0,0,Yes,Private,Urban,96.02,28.7,Unknown,0 +31153,Male,66.0,0,0,Yes,Self-employed,Rural,189.82,28.8,formerly smoked,0 +52247,Female,75.0,0,0,Yes,Govt_job,Urban,89.68,38.7,never smoked,0 +61987,Female,40.0,0,0,Yes,Private,Urban,101.06,32.3,smokes,0 +64416,Female,52.0,0,0,Yes,Govt_job,Rural,62.66,37.9,Unknown,0 +31708,Female,13.0,0,0,No,children,Urban,84.03,25.3,Unknown,0 +62296,Female,44.0,0,0,Yes,Govt_job,Rural,108.38,27.7,Unknown,0 +53976,Female,37.0,0,0,No,Private,Rural,78.79,25.1,Unknown,0 +16446,Male,2.0,0,0,No,children,Rural,76.12,16.8,Unknown,0 +51329,Female,48.0,0,0,Yes,Private,Rural,68.01,27.7,never smoked,0 +33560,Female,81.0,0,1,Yes,Govt_job,Urban,90.11,28.6,never smoked,0 +37866,Female,76.0,0,0,Yes,Self-employed,Urban,193.61,37.6,never smoked,0 +8553,Female,58.0,0,0,Yes,Govt_job,Rural,195.74,32.7,Unknown,0 +5654,Female,11.0,0,0,No,children,Rural,94.77,22.7,Unknown,0 +17238,Female,9.0,0,0,No,children,Urban,85.0,16.0,Unknown,0 +45252,Male,54.0,0,0,Yes,Private,Urban,141.37,23.5,never smoked,0 +14444,Female,37.0,0,0,No,Self-employed,Urban,90.71,45.8,Unknown,0 +46503,Female,16.0,0,0,No,Private,Rural,106.8,20.8,never smoked,0 +18578,Male,11.0,0,0,No,children,Rural,121.66,16.7,Unknown,0 +917,Female,32.0,0,0,Yes,Private,Urban,85.18,22.2,smokes,0 +60981,Female,26.0,0,0,No,Private,Rural,130.07,33.1,never smoked,0 +28873,Female,21.0,0,0,No,Private,Rural,74.24,32.7,never smoked,0 +25446,Female,45.0,0,0,Yes,Govt_job,Urban,79.98,41.4,never smoked,0 +54127,Female,40.0,0,0,Yes,Self-employed,Urban,106.76,24.1,formerly smoked,0 +63478,Female,41.0,0,0,Yes,Private,Urban,76.34,28.0,Unknown,0 +15464,Female,71.0,1,1,Yes,Private,Rural,221.24,24.2,Unknown,0 +63312,Male,16.0,0,0,No,Private,Urban,80.55,23.5,smokes,0 +55681,Female,7.0,0,0,No,children,Rural,63.98,23.0,Unknown,0 +63804,Female,27.0,0,0,No,Private,Rural,55.93,20.3,smokes,0 +10321,Female,22.0,0,0,Yes,Private,Rural,73.94,24.8,Unknown,0 +56339,Female,79.0,0,0,Yes,Self-employed,Rural,65.58,26.1,Unknown,0 +56277,Female,38.0,0,0,Yes,Private,Rural,83.8,24.2,smokes,0 +33657,Female,64.0,0,0,Yes,Private,Urban,95.87,19.3,formerly smoked,0 +7054,Male,4.0,0,0,No,children,Rural,112.83,18.2,Unknown,0 +72393,Female,23.0,0,0,Yes,Govt_job,Rural,84.93,24.2,never smoked,0 +68059,Male,35.0,0,0,Yes,Govt_job,Rural,103.08,41.5,smokes,0 +14996,Male,66.0,0,0,Yes,Self-employed,Rural,85.98,28.0,Unknown,0 +841,Male,34.0,0,0,Yes,Private,Urban,83.75,37.0,never smoked,0 +22880,Female,19.0,0,0,No,Private,Urban,125.43,32.2,Unknown,0 +1552,Male,73.0,0,0,Yes,Private,Urban,101.58,35.9,never smoked,0 +68853,Female,70.0,0,0,Yes,Private,Rural,149.8,47.6,Unknown,0 +49190,Female,45.0,0,0,Yes,Private,Rural,112.55,32.1,never smoked,0 +49277,Female,34.0,0,0,No,Private,Urban,70.87,55.7,formerly smoked,0 +711,Male,81.0,0,0,Yes,Private,Rural,92.96,22.2,never smoked,0 +1953,Female,0.72,0,0,No,children,Rural,112.19,20.1,Unknown,0 +34900,Male,13.0,0,0,No,Never_worked,Urban,85.08,14.6,Unknown,0 +13237,Male,57.0,0,1,Yes,Self-employed,Urban,112.37,28.4,never smoked,0 +61684,Female,38.0,0,0,Yes,Private,Urban,151.26,20.6,never smoked,0 +28382,Male,21.0,0,0,No,Private,Urban,73.81,19.8,Unknown,0 +13768,Female,38.0,0,0,Yes,Private,Urban,77.2,23.4,Unknown,0 +32726,Female,41.0,0,0,No,Private,Urban,76.08,25.1,never smoked,0 +65729,Female,26.0,0,0,Yes,Private,Rural,123.98,30.1,never smoked,0 +6422,Female,48.0,0,0,Yes,Self-employed,Urban,108.51,33.3,Unknown,0 +11382,Male,18.0,0,0,No,Private,Rural,98.07,24.0,never smoked,0 +31703,Male,66.0,0,0,Yes,Self-employed,Urban,85.82,27.8,never smoked,0 +33439,Female,27.0,0,0,No,Private,Rural,86.21,21.4,Unknown,0 +5647,Female,18.0,0,0,No,Private,Urban,99.01,25.5,formerly smoked,0 +1847,Female,20.0,0,0,No,Govt_job,Rural,79.53,,never smoked,0 +12900,Male,11.0,0,0,No,children,Rural,80.08,21.8,never smoked,0 +28367,Female,7.0,0,0,No,children,Rural,69.47,18.9,Unknown,0 +71551,Female,54.0,0,0,No,Private,Urban,85.07,21.9,Unknown,0 +13846,Male,43.0,0,0,Yes,Govt_job,Rural,88.0,30.6,never smoked,0 +61667,Female,61.0,0,0,Yes,Private,Rural,144.14,29.8,never smoked,0 +46079,Male,31.0,0,0,No,Private,Urban,78.8,28.7,smokes,0 +7871,Female,40.0,0,0,Yes,Private,Urban,86.78,35.5,smokes,0 +60964,Female,71.0,1,0,Yes,Govt_job,Rural,105.72,29.1,formerly smoked,0 +72562,Female,57.0,0,0,Yes,Private,Rural,64.37,32.8,never smoked,0 +63773,Female,13.0,0,0,No,children,Rural,146.1,22.8,never smoked,0 +53998,Female,21.0,0,0,No,Private,Urban,58.66,31.3,never smoked,0 +16617,Female,63.0,1,0,Yes,Govt_job,Urban,192.5,29.0,never smoked,0 +54117,Male,7.0,0,0,No,children,Rural,103.5,19.0,Unknown,0 +5987,Female,78.0,0,0,Yes,Private,Urban,89.42,24.1,never smoked,0 +72215,Female,66.0,0,0,Yes,Self-employed,Rural,212.92,21.4,never smoked,0 +39796,Male,41.0,0,0,No,Self-employed,Rural,60.73,28.0,never smoked,0 +12345,Male,11.0,0,0,No,children,Urban,73.18,27.6,never smoked,0 +65636,Male,55.0,0,0,Yes,Private,Urban,82.26,28.7,Unknown,0 +47356,Female,42.0,0,0,Yes,Private,Urban,87.4,24.5,formerly smoked,0 +27859,Male,51.0,0,0,Yes,Private,Rural,86.95,25.0,formerly smoked,0 +41715,Female,79.0,1,0,Yes,Self-employed,Rural,74.0,29.6,never smoked,0 +38617,Male,28.0,0,0,Yes,Self-employed,Urban,73.98,29.9,never smoked,0 +32638,Female,73.0,1,0,Yes,Self-employed,Rural,124.78,35.6,never smoked,0 +47799,Female,42.0,0,0,Yes,Private,Urban,191.94,27.9,never smoked,0 +41942,Female,37.0,0,0,Yes,Private,Urban,247.87,42.6,never smoked,0 +69010,Male,78.0,0,0,Yes,Private,Rural,83.2,21.2,formerly smoked,0 +47144,Female,74.0,0,0,Yes,Self-employed,Urban,88.62,28.5,formerly smoked,0 +65103,Female,59.0,0,0,Yes,Private,Urban,81.51,25.6,formerly smoked,0 +6472,Female,78.0,0,0,Yes,Govt_job,Urban,101.76,,smokes,0 +27596,Female,82.0,1,0,Yes,Private,Urban,115.71,31.1,formerly smoked,0 +59522,Male,71.0,1,0,Yes,Private,Rural,229.73,30.4,never smoked,0 +51512,Female,19.0,0,0,No,Private,Rural,57.4,22.9,Unknown,0 +53821,Male,18.0,0,0,No,Private,Rural,100.47,31.9,never smoked,0 +51532,Female,53.0,0,0,Yes,Govt_job,Rural,81.36,48.8,never smoked,0 +50070,Female,62.0,1,0,Yes,Self-employed,Rural,261.67,43.0,formerly smoked,0 +41654,Male,3.0,0,0,No,children,Rural,110.2,21.8,Unknown,0 +5714,Female,49.0,1,0,Yes,Govt_job,Rural,98.9,35.5,never smoked,0 +2304,Male,51.0,0,0,Yes,Govt_job,Rural,95.19,24.3,smokes,0 +8543,Female,53.0,0,0,Yes,Private,Rural,105.28,23.1,never smoked,0 +45279,Female,10.0,0,0,No,children,Rural,83.03,18.5,Unknown,0 +57870,Male,54.0,0,0,Yes,Private,Rural,89.41,42.4,smokes,0 +56961,Female,40.0,0,0,No,Govt_job,Rural,70.56,32.3,never smoked,0 +8623,Female,3.0,0,0,No,children,Urban,78.79,22.6,Unknown,0 +21346,Female,12.0,0,0,No,children,Rural,70.13,17.8,Unknown,0 +36922,Male,56.0,0,0,Yes,Private,Rural,62.68,18.4,never smoked,0 +19814,Female,43.0,0,0,No,Private,Urban,71.77,26.9,never smoked,0 +22151,Female,28.0,0,0,No,Govt_job,Rural,77.99,32.0,smokes,0 +47802,Male,28.0,0,0,No,Private,Urban,256.74,23.4,formerly smoked,0 +25404,Male,56.0,0,0,Yes,Private,Rural,93.72,31.4,never smoked,0 +43487,Female,14.0,0,0,No,children,Urban,63.74,22.4,Unknown,0 +58313,Female,63.0,0,0,Yes,Self-employed,Urban,60.67,28.9,formerly smoked,0 +16629,Female,29.0,0,0,Yes,Private,Urban,112.08,27.4,never smoked,0 +60675,Female,48.0,1,0,Yes,Govt_job,Rural,221.08,57.2,never smoked,0 +1119,Male,47.0,0,1,Yes,Govt_job,Urban,101.81,28.4,smokes,0 +64864,Male,63.0,1,0,Yes,Private,Rural,60.17,23.5,smokes,0 +55244,Male,40.0,0,0,Yes,Self-employed,Rural,65.29,28.3,never smoked,0 +23568,Female,40.0,0,0,Yes,Private,Urban,153.24,38.2,Unknown,0 +56979,Male,55.0,0,0,Yes,Private,Rural,61.42,33.3,smokes,0 +66006,Female,43.0,0,0,Yes,Private,Urban,86.67,33.3,never smoked,0 +40447,Female,59.0,0,0,Yes,Private,Rural,82.42,28.8,never smoked,0 +62798,Female,78.0,1,0,Yes,Private,Rural,100.54,32.1,smokes,0 +38397,Female,27.0,0,0,No,Private,Urban,111.48,28.9,never smoked,0 +66945,Female,49.0,0,0,Yes,Private,Urban,85.33,25.5,never smoked,0 +44992,Male,14.0,0,0,No,Private,Urban,126.57,25.9,formerly smoked,0 +50009,Female,17.0,0,0,No,Private,Urban,81.51,19.5,formerly smoked,0 +5170,Male,42.0,0,0,Yes,Govt_job,Rural,67.97,23.8,Unknown,0 +16263,Female,36.0,0,0,Yes,Self-employed,Urban,77.92,24.9,Unknown,0 +16024,Male,19.0,0,0,No,Private,Urban,80.54,18.5,smokes,0 +47057,Male,55.0,0,0,Yes,Self-employed,Urban,76.47,30.6,Unknown,0 +34045,Female,8.0,0,0,No,children,Urban,87.15,16.1,Unknown,0 +59691,Female,56.0,0,0,Yes,Govt_job,Urban,86.07,32.5,Unknown,0 +49261,Male,54.0,0,0,No,Private,Rural,106.52,27.4,formerly smoked,0 +30734,Male,15.0,0,0,No,children,Rural,94.24,30.2,Unknown,0 +72184,Female,43.0,0,0,Yes,Self-employed,Urban,89.73,23.5,formerly smoked,0 +37440,Male,52.0,0,0,Yes,Govt_job,Urban,208.39,36.0,formerly smoked,0 +54400,Female,62.0,0,0,Yes,Self-employed,Rural,128.61,24.8,never smoked,0 +56547,Male,54.0,0,0,Yes,Private,Rural,57.56,27.5,never smoked,0 +13598,Male,60.0,0,0,Yes,Self-employed,Urban,227.23,40.0,formerly smoked,0 +24246,Male,7.0,0,0,No,children,Urban,77.76,18.1,Unknown,0 +29276,Male,3.0,0,0,No,children,Urban,72.76,18.8,Unknown,0 +20979,Female,39.0,0,0,No,Private,Rural,90.11,23.6,never smoked,0 +46048,Male,60.0,0,0,Yes,Govt_job,Rural,203.27,29.7,never smoked,0 +35217,Female,60.0,1,0,Yes,Private,Urban,234.5,43.7,never smoked,0 +11816,Female,46.0,0,0,Yes,Self-employed,Urban,71.12,27.3,never smoked,0 +48721,Male,26.0,0,0,No,Private,Urban,190.67,20.2,never smoked,0 +24163,Female,12.0,0,0,No,children,Rural,116.04,23.8,Unknown,0 +8022,Male,16.0,0,0,No,Private,Urban,82.95,21.4,never smoked,0 +10950,Female,2.0,0,0,No,children,Urban,112.75,25.1,Unknown,0 +21830,Female,82.0,0,0,Yes,Private,Urban,82.63,17.9,smokes,0 +26594,Female,32.0,0,0,Yes,Private,Urban,92.75,34.5,smokes,0 +14789,Female,62.0,0,0,Yes,Private,Rural,117.63,27.1,formerly smoked,0 +46670,Female,75.0,1,0,Yes,Self-employed,Rural,197.06,26.1,never smoked,0 +31426,Female,81.0,1,0,Yes,Govt_job,Urban,216.07,43.4,never smoked,0 +64435,Female,37.0,0,0,Yes,Private,Rural,76.03,33.2,never smoked,0 +68789,Female,28.0,0,0,No,Private,Urban,62.44,37.2,Unknown,0 +56254,Female,25.0,0,0,No,Private,Rural,108.82,41.3,smokes,0 +17478,Male,44.0,0,0,Yes,Govt_job,Urban,101.66,35.4,never smoked,0 +59908,Female,11.0,0,0,No,children,Rural,121.15,26.1,Unknown,0 +34130,Male,54.0,1,0,Yes,Private,Rural,116.44,24.5,never smoked,0 +22282,Male,52.0,1,0,Yes,Govt_job,Rural,116.62,,smokes,0 +21110,Female,43.0,0,0,Yes,Private,Urban,93.3,32.7,never smoked,0 +71622,Female,56.0,0,0,Yes,Private,Urban,144.33,29.2,never smoked,0 +10056,Female,37.0,0,0,Yes,Private,Urban,98.02,20.4,never smoked,0 +2424,Male,60.0,0,0,Yes,Private,Urban,80.67,33.5,Unknown,0 +24736,Female,4.0,0,0,No,children,Urban,94.27,14.0,Unknown,0 +8920,Female,51.0,0,0,Yes,Self-employed,Rural,76.35,33.5,formerly smoked,0 +62715,Male,82.0,0,1,Yes,Private,Urban,57.56,27.5,never smoked,0 +70615,Female,56.0,0,0,Yes,Govt_job,Urban,179.14,35.3,Unknown,0 +43507,Female,60.0,0,0,Yes,Private,Rural,63.49,30.1,never smoked,0 +43035,Male,35.0,0,0,Yes,Private,Rural,145.18,32.6,smokes,0 +44799,Female,32.0,0,0,Yes,Private,Rural,66.3,47.5,never smoked,0 +49053,Female,45.0,0,0,No,Private,Rural,120.56,31.6,never smoked,0 +33102,Male,10.0,0,0,No,children,Rural,69.2,23.5,formerly smoked,0 +59405,Female,68.0,1,0,Yes,Private,Urban,150.74,40.3,Unknown,0 +18283,Female,51.0,0,0,Yes,Govt_job,Urban,81.38,34.1,smokes,0 +4929,Male,8.0,0,0,No,children,Urban,78.48,16.1,Unknown,0 +37289,Female,63.0,0,0,Yes,Self-employed,Rural,203.87,26.4,never smoked,0 +6202,Male,4.0,0,0,No,children,Urban,87.0,19.0,Unknown,0 +24106,Female,33.0,0,0,Yes,Private,Rural,84.68,34.7,formerly smoked,0 +32126,Female,56.0,0,1,Yes,Private,Urban,91.89,23.3,smokes,0 +56322,Male,49.0,0,1,Yes,Govt_job,Rural,88.97,32.6,never smoked,0 +54869,Female,30.0,0,0,Yes,Private,Urban,116.98,26.0,never smoked,0 +40887,Male,16.0,0,0,No,children,Urban,135.82,35.1,never smoked,0 +29764,Female,1.8,0,0,No,children,Rural,96.62,18.6,Unknown,0 +38287,Male,54.0,0,0,Yes,Private,Rural,106.53,30.4,formerly smoked,0 +53426,Male,49.0,0,0,Yes,Private,Rural,58.42,32.8,formerly smoked,0 +14943,Female,17.0,0,0,No,Private,Rural,79.62,21.6,never smoked,0 +65351,Male,11.0,0,0,No,children,Urban,141.84,23.3,Unknown,0 +61830,Male,51.0,0,0,Yes,Private,Rural,78.05,31.4,never smoked,0 +71777,Male,74.0,1,1,Yes,Private,Rural,77.16,26.3,never smoked,0 +69059,Female,42.0,0,0,Yes,Private,Urban,86.3,20.1,never smoked,0 +11908,Female,69.0,0,0,Yes,Self-employed,Urban,83.55,28.3,formerly smoked,0 +24955,Female,22.0,0,0,No,Private,Rural,102.0,40.4,smokes,0 +61477,Female,25.0,0,0,No,Private,Urban,68.07,18.6,smokes,0 +724,Male,17.0,0,0,No,Private,Rural,81.77,44.7,never smoked,0 +22614,Male,64.0,0,0,No,Self-employed,Rural,82.62,25.3,smokes,0 +61997,Female,50.0,0,0,Yes,Private,Urban,102.03,28.3,Unknown,0 +6605,Male,52.0,1,0,Yes,Govt_job,Urban,235.06,39.9,formerly smoked,0 +46987,Female,65.0,0,1,Yes,Private,Rural,57.52,,formerly smoked,0 +70428,Female,37.0,0,0,Yes,Govt_job,Urban,76.98,34.7,never smoked,0 +2267,Female,31.0,0,0,Yes,Self-employed,Urban,82.31,31.9,never smoked,0 +25476,Female,52.0,0,0,Yes,Private,Urban,83.84,35.0,Unknown,0 +52960,Female,56.0,0,0,Yes,Self-employed,Urban,98.14,32.7,formerly smoked,0 +56600,Female,43.0,0,0,Yes,Private,Rural,84.04,30.6,Unknown,0 +9394,Male,11.0,0,0,No,children,Rural,92.24,27.9,Unknown,0 +42400,Female,2.0,0,0,No,children,Urban,94.92,20.4,Unknown,0 +36210,Female,16.0,0,0,No,Private,Rural,112.7,29.6,never smoked,0 +34416,Male,23.0,0,0,No,Private,Urban,74.34,23.5,never smoked,0 +37192,Female,40.0,0,0,Yes,Private,Urban,72.99,46.4,Unknown,0 +20237,Male,15.0,0,0,No,Private,Urban,104.9,27.4,never smoked,0 +60635,Male,48.0,0,0,Yes,Private,Rural,99.96,25.2,never smoked,0 +32571,Male,33.0,0,0,Yes,Private,Urban,85.27,25.8,Unknown,0 +52368,Male,46.0,0,0,Yes,Private,Urban,60.32,33.3,smokes,0 +66786,Female,53.0,0,0,Yes,Private,Rural,94.14,27.7,smokes,0 +12668,Male,68.0,0,0,Yes,Self-employed,Urban,195.43,28.9,never smoked,0 +64155,Male,60.0,0,0,Yes,Govt_job,Rural,200.25,33.1,never smoked,0 +17885,Male,57.0,0,0,No,Govt_job,Rural,90.31,38.1,smokes,0 +18930,Female,51.0,0,0,Yes,Govt_job,Urban,95.33,27.9,never smoked,0 +15728,Female,0.4,0,0,No,children,Rural,85.65,17.4,Unknown,0 +71846,Female,76.0,0,0,Yes,Govt_job,Urban,223.64,27.1,smokes,0 +37515,Female,46.0,0,0,Yes,Govt_job,Rural,76.43,22.7,Unknown,0 +25763,Female,23.0,0,0,No,Private,Urban,98.66,28.3,Unknown,0 +16566,Male,9.0,0,0,No,children,Urban,75.84,21.5,Unknown,0 +30836,Female,53.0,0,0,Yes,Private,Urban,85.46,30.0,never smoked,0 +68060,Male,4.0,0,0,No,children,Urban,81.33,18.6,Unknown,0 +51958,Female,62.0,1,0,No,Private,Urban,199.78,45.2,Unknown,0 +45285,Male,37.0,0,0,Yes,Private,Urban,176.42,39.7,Unknown,0 +19271,Female,82.0,1,1,Yes,Self-employed,Urban,101.56,31.5,never smoked,0 +6576,Female,33.0,0,0,Yes,Private,Urban,84.48,23.2,formerly smoked,0 +6850,Male,3.0,0,0,No,children,Urban,93.21,27.3,Unknown,0 +25798,Male,14.0,0,0,No,Private,Urban,72.88,26.5,never smoked,0 +28611,Male,16.0,0,0,No,Private,Urban,84.1,19.3,Unknown,0 +15061,Male,40.0,0,0,Yes,Govt_job,Rural,72.84,26.1,Unknown,0 +40323,Female,18.0,0,0,No,Private,Urban,70.89,19.8,never smoked,0 +40842,Female,29.0,0,0,Yes,Private,Rural,108.14,25.1,formerly smoked,0 +23765,Female,56.0,0,0,Yes,Govt_job,Rural,244.3,37.3,never smoked,0 +66287,Male,33.0,0,0,Yes,Private,Rural,88.04,30.3,formerly smoked,0 +50804,Male,2.0,0,0,No,children,Rural,65.84,16.1,Unknown,0 +25927,Male,36.0,0,0,Yes,Private,Rural,106.73,25.1,never smoked,0 +41970,Male,30.0,0,0,No,Private,Urban,106.03,26.7,Unknown,0 +54206,Female,31.0,0,0,No,Govt_job,Urban,80.88,29.3,formerly smoked,0 +46691,Male,16.0,0,0,No,children,Urban,140.1,38.7,never smoked,0 +37553,Male,58.0,0,0,Yes,Private,Urban,127.4,35.8,formerly smoked,0 +27507,Female,19.0,0,0,No,Private,Urban,87.72,21.7,never smoked,0 +68209,Male,47.0,0,0,Yes,Govt_job,Rural,58.23,31.4,formerly smoked,0 +42841,Male,59.0,0,0,Yes,Private,Rural,69.37,26.9,formerly smoked,0 +51889,Female,40.0,0,0,Yes,Private,Urban,58.64,33.0,never smoked,0 +72725,Female,26.0,0,0,No,Govt_job,Urban,59.67,24.5,smokes,0 +18605,Female,17.0,0,0,No,Never_worked,Urban,78.08,44.9,never smoked,0 +23599,Female,30.0,0,0,No,Private,Urban,105.08,25.5,never smoked,0 +45530,Female,19.0,0,0,No,Private,Urban,89.3,22.1,never smoked,0 +56425,Female,78.0,0,0,Yes,Govt_job,Rural,61.38,24.3,Unknown,0 +69972,Female,55.0,0,0,Yes,Private,Rural,56.11,32.4,formerly smoked,0 +5774,Male,59.0,0,0,Yes,Private,Urban,223.16,,Unknown,0 +13307,Male,57.0,0,0,Yes,Govt_job,Urban,75.53,33.1,formerly smoked,0 +72188,Male,33.0,0,0,No,Private,Urban,107.47,26.7,never smoked,0 +60226,Female,35.0,0,0,Yes,Private,Urban,76.0,37.9,Unknown,0 +34940,Male,32.0,0,0,Yes,Private,Urban,90.28,39.6,never smoked,0 +4403,Female,55.0,0,0,Yes,Private,Urban,65.22,19.8,never smoked,0 +33051,Male,28.0,0,0,No,Private,Urban,86.24,30.0,Unknown,0 +37668,Male,25.0,0,0,Yes,Govt_job,Urban,166.38,23.1,never smoked,0 +27276,Female,45.0,0,0,Yes,Private,Urban,78.91,34.3,Unknown,0 +37808,Female,34.0,0,0,No,Govt_job,Urban,226.28,38.4,Unknown,0 +21678,Male,33.0,0,0,Yes,Private,Urban,90.73,32.8,smokes,0 +40087,Male,65.0,0,0,Yes,Private,Rural,172.86,34.4,never smoked,0 +38658,Female,62.0,0,0,Yes,Self-employed,Rural,213.92,44.6,never smoked,0 +30353,Male,36.0,0,0,Yes,Private,Urban,92.23,32.8,never smoked,0 +28803,Male,31.0,0,0,Yes,Private,Urban,79.81,26.4,never smoked,0 +10445,Male,54.0,0,0,Yes,Govt_job,Rural,81.78,27.3,Unknown,0 +12812,Female,53.0,0,0,Yes,Private,Rural,102.0,32.4,never smoked,0 +72289,Female,44.0,0,0,Yes,Private,Rural,68.42,43.2,smokes,0 +30433,Male,77.0,0,0,Yes,Private,Urban,94.68,33.6,Unknown,0 +37640,Female,67.0,0,0,Yes,Govt_job,Rural,125.33,26.4,Unknown,0 +54378,Female,48.0,0,0,Yes,Self-employed,Urban,212.19,46.9,never smoked,0 +34138,Male,42.0,0,0,Yes,Private,Urban,89.0,36.3,formerly smoked,0 +72160,Male,72.0,1,1,Yes,Private,Rural,60.98,34.9,formerly smoked,0 +44447,Male,49.0,0,0,Yes,Private,Urban,58.19,29.6,smokes,0 +5927,Female,1.32,0,0,No,children,Rural,67.68,16.5,Unknown,0 +44233,Female,45.0,0,0,Yes,Govt_job,Rural,84.99,35.4,Unknown,0 +56021,Female,63.0,1,0,Yes,Private,Urban,62.13,23.6,never smoked,0 +65038,Female,33.0,0,0,Yes,Private,Rural,57.1,33.1,never smoked,0 +3595,Male,32.0,0,0,Yes,Private,Urban,97.95,40.2,smokes,0 +25783,Female,0.48,0,0,No,children,Rural,94.06,14.8,Unknown,0 +68268,Female,63.0,0,0,Yes,Self-employed,Urban,93.88,34.8,Unknown,0 +7564,Male,70.0,0,0,Yes,Private,Rural,90.3,33.5,formerly smoked,0 +26723,Female,57.0,0,0,Yes,Private,Urban,83.14,31.9,never smoked,0 +9995,Male,8.0,0,0,No,children,Urban,118.66,16.1,Unknown,0 +68074,Male,54.0,0,0,Yes,Private,Rural,100.47,50.2,formerly smoked,0 +8385,Male,37.0,0,0,Yes,Private,Urban,90.78,35.9,Unknown,0 +21796,Male,59.0,0,0,Yes,Private,Urban,66.46,39.6,formerly smoked,0 +53115,Female,78.0,0,0,Yes,Govt_job,Urban,73.56,27.5,formerly smoked,0 +27623,Female,59.0,0,0,Yes,Private,Urban,200.8,32.3,Unknown,0 +70823,Female,10.0,0,0,No,children,Urban,57.28,15.4,never smoked,0 +5173,Male,21.0,0,0,No,Private,Rural,92.87,28.4,smokes,0 +21852,Male,2.0,0,0,No,children,Rural,96.47,19.5,Unknown,0 +24711,Female,55.0,0,0,Yes,Govt_job,Urban,99.44,25.0,formerly smoked,0 +21967,Female,20.0,0,0,Yes,Private,Urban,77.96,26.3,smokes,0 +36793,Female,38.0,1,0,Yes,Private,Rural,60.13,39.6,never smoked,0 +37492,Female,33.0,0,0,Yes,Private,Rural,88.17,38.6,formerly smoked,0 +45658,Male,14.0,0,0,No,Private,Rural,84.41,33.9,never smoked,0 +6264,Male,32.0,0,0,Yes,Private,Rural,72.34,32.2,Unknown,0 +37507,Female,32.0,0,0,No,Private,Rural,68.72,25.1,never smoked,0 +50557,Female,68.0,0,0,Yes,Self-employed,Urban,222.58,37.4,smokes,0 +21973,Male,70.0,0,0,Yes,Private,Rural,66.06,30.1,formerly smoked,0 +53346,Female,24.0,0,0,Yes,Private,Rural,156.43,27.0,formerly smoked,0 +41210,Male,44.0,0,0,No,Self-employed,Urban,105.76,32.4,formerly smoked,0 +29078,Male,39.0,0,0,Yes,Govt_job,Rural,73.07,26.8,smokes,0 +24873,Female,81.0,0,0,Yes,Private,Rural,99.48,27.2,never smoked,0 +15387,Male,19.0,0,0,No,Private,Rural,79.6,36.7,Unknown,0 +63880,Female,69.0,0,0,Yes,Self-employed,Urban,70.0,36.0,never smoked,0 +49833,Female,42.0,0,0,Yes,Govt_job,Rural,112.98,37.2,formerly smoked,0 +43773,Male,8.0,0,0,No,children,Urban,61.07,19.1,Unknown,0 +53095,Male,8.0,0,0,No,children,Rural,63.43,21.8,Unknown,0 +56185,Female,28.0,0,0,No,Private,Urban,73.2,26.5,smokes,0 +57043,Female,66.0,0,0,Yes,Self-employed,Urban,102.73,35.0,formerly smoked,0 +55545,Female,66.0,0,0,Yes,Self-employed,Rural,74.88,32.6,never smoked,0 +60899,Female,47.0,0,0,Yes,Private,Urban,122.43,23.9,never smoked,0 +16136,Female,78.0,0,0,Yes,Self-employed,Urban,84.21,33.7,never smoked,0 +11843,Female,65.0,0,0,Yes,Self-employed,Rural,80.42,29.4,formerly smoked,0 +3609,Male,78.0,0,0,Yes,Private,Urban,80.44,29.0,never smoked,0 +29172,Female,68.0,0,0,Yes,Self-employed,Rural,80.63,20.2,never smoked,0 +49894,Female,78.0,1,1,Yes,Private,Rural,206.53,,never smoked,0 +6048,Female,65.0,0,0,Yes,Private,Urban,104.12,27.4,never smoked,0 +16029,Female,70.0,0,0,Yes,Self-employed,Rural,96.82,25.0,never smoked,0 +63022,Female,59.0,0,0,Yes,Self-employed,Urban,88.1,30.7,never smoked,0 +40041,Male,31.0,0,0,No,Self-employed,Rural,64.85,23.0,Unknown,0 +6924,Female,32.0,0,0,Yes,Private,Rural,102.87,26.6,smokes,0 +22590,Male,5.0,0,0,No,children,Urban,83.75,18.1,Unknown,0 +25878,Male,55.0,0,0,Yes,Self-employed,Rural,97.68,47.1,formerly smoked,0 +11169,Female,61.0,0,0,Yes,Private,Urban,97.58,29.7,formerly smoked,0 +44355,Female,48.0,0,0,Yes,Private,Rural,74.16,19.9,never smoked,0 +31113,Female,1.16,0,0,No,children,Urban,86.0,13.3,Unknown,0 +46514,Female,50.0,0,0,Yes,Govt_job,Urban,100.93,32.7,never smoked,0 +67466,Male,63.0,1,0,Yes,Private,Urban,232.78,31.8,formerly smoked,0 +3612,Male,67.0,0,0,Yes,Private,Rural,86.96,31.4,formerly smoked,0 +66590,Female,43.0,0,0,Yes,Self-employed,Urban,67.5,20.4,formerly smoked,0 +19611,Male,59.0,0,0,Yes,Private,Urban,81.21,33.2,smokes,0 +47216,Male,47.0,0,0,Yes,Private,Rural,110.14,30.5,smokes,0 +55591,Male,50.0,0,0,Yes,Private,Urban,120.44,30.3,never smoked,0 +24381,Male,51.0,0,1,Yes,Self-employed,Urban,187.47,34.2,never smoked,0 +8037,Male,44.0,0,1,No,Govt_job,Urban,94.62,34.4,Unknown,0 +23911,Female,39.0,0,0,No,Private,Rural,89.57,48.1,never smoked,0 +31596,Female,24.0,0,0,No,Private,Urban,95.31,22.8,never smoked,0 +44647,Male,62.0,0,0,No,Govt_job,Rural,75.07,30.5,never smoked,0 +51486,Female,61.0,0,0,Yes,Private,Rural,106.65,35.9,formerly smoked,0 +18263,Female,78.0,0,0,Yes,Self-employed,Urban,234.06,33.7,never smoked,0 +41930,Male,15.0,0,0,No,Private,Rural,144.15,24.1,never smoked,0 +45922,Female,23.0,0,0,No,Private,Urban,58.81,25.4,never smoked,0 +52934,Male,79.0,0,0,Yes,Self-employed,Urban,242.62,25.5,never smoked,0 +18020,Male,57.0,0,0,Yes,Private,Urban,93.04,29.2,never smoked,0 +2044,Female,70.0,0,1,Yes,Self-employed,Rural,65.68,,Unknown,0 +63467,Male,9.0,0,0,No,children,Urban,150.0,17.4,Unknown,0 +38642,Male,55.0,0,0,Yes,Private,Urban,63.56,29.9,Unknown,0 +5387,Female,82.0,0,0,No,Private,Rural,96.98,21.5,never smoked,0 +68417,Female,19.0,0,0,No,Private,Rural,66.7,24.7,never smoked,0 +22477,Male,41.0,0,0,Yes,Private,Rural,79.66,25.1,Unknown,0 +23968,Female,79.0,0,0,Yes,Govt_job,Rural,90.16,34.4,never smoked,0 +8111,Female,23.0,0,0,No,Private,Rural,104.09,27.9,Unknown,0 +15282,Female,77.0,0,0,Yes,Private,Rural,90.96,31.5,formerly smoked,0 +54395,Female,78.0,1,0,Yes,Self-employed,Rural,152.38,31.8,never smoked,0 +25408,Female,24.0,0,0,Yes,Self-employed,Rural,114.54,30.1,smokes,0 +69284,Female,81.0,1,0,Yes,Self-employed,Urban,174.54,26.4,never smoked,0 +28348,Female,46.0,0,0,Yes,Private,Rural,106.47,27.2,Unknown,0 +46015,Female,29.0,0,0,No,Private,Urban,73.63,22.5,smokes,0 +69047,Female,59.0,0,0,Yes,Govt_job,Urban,98.52,29.8,formerly smoked,0 +39706,Male,41.0,0,0,Yes,Self-employed,Rural,62.93,26.1,smokes,0 +9143,Female,17.0,0,0,No,Private,Urban,67.87,24.9,formerly smoked,0 +64879,Female,8.0,0,0,No,children,Rural,120.43,23.5,Unknown,0 +17130,Female,23.0,0,0,No,Private,Rural,76.56,30.1,never smoked,0 +16420,Female,45.0,0,0,Yes,Private,Urban,108.03,37.3,never smoked,0 +7529,Male,67.0,0,0,Yes,Private,Rural,83.16,25.5,formerly smoked,0 +54022,Female,78.0,0,0,Yes,Self-employed,Rural,67.9,35.3,never smoked,0 +35660,Male,18.0,0,0,No,Private,Rural,115.46,27.6,Unknown,0 +50605,Female,35.0,0,0,Yes,Private,Rural,123.94,28.7,never smoked,0 +27803,Female,54.0,0,0,Yes,Govt_job,Urban,231.54,29.9,never smoked,0 +68981,Female,71.0,1,0,Yes,Govt_job,Urban,219.8,34.2,formerly smoked,0 +61505,Female,24.0,0,0,No,Private,Rural,187.99,24.9,smokes,0 +70677,Male,60.0,0,0,Yes,Private,Rural,234.45,36.8,formerly smoked,0 +49620,Male,75.0,0,0,Yes,Private,Rural,75.47,24.5,formerly smoked,0 +5319,Male,48.0,0,0,Yes,Private,Rural,98.24,34.6,never smoked,0 +51100,Male,62.0,0,0,Yes,Govt_job,Rural,66.2,30.0,Unknown,0 +163,Female,20.0,0,0,No,Private,Rural,94.67,28.8,Unknown,0 +55140,Male,69.0,1,0,No,Private,Urban,75.95,28.6,never smoked,0 +52882,Female,60.0,0,0,Yes,Govt_job,Rural,111.79,23.6,smokes,0 +54344,Female,12.0,0,0,No,children,Rural,80.89,20.1,Unknown,0 +2550,Female,28.0,0,0,Yes,Govt_job,Rural,86.91,21.1,formerly smoked,0 +58610,Female,55.0,0,0,Yes,Private,Urban,59.36,34.1,smokes,0 +16902,Female,70.0,0,1,Yes,Self-employed,Urban,240.69,,smokes,0 +60603,Female,51.0,0,0,No,Private,Rural,66.67,29.5,never smoked,0 +808,Female,16.0,0,0,No,Private,Rural,87.54,37.8,never smoked,0 +61881,Male,56.0,0,0,No,Self-employed,Urban,139.87,31.2,smokes,0 +41600,Male,52.0,0,0,Yes,Private,Rural,67.92,31.1,never smoked,0 +12786,Female,59.0,0,0,Yes,Private,Urban,83.62,34.2,Unknown,0 +11935,Female,9.0,0,0,No,children,Rural,110.97,17.7,Unknown,0 +44655,Female,34.0,0,0,Yes,Private,Rural,70.53,39.2,never smoked,0 +48644,Female,47.0,0,0,Yes,Self-employed,Rural,115.91,22.2,formerly smoked,0 +41527,Male,46.0,0,0,Yes,Private,Urban,59.74,29.5,smokes,0 +50975,Male,49.0,0,0,Yes,Private,Rural,62.64,27.0,never smoked,0 +49179,Male,10.0,0,0,No,children,Rural,84.81,16.8,never smoked,0 +27509,Female,76.0,1,0,Yes,Self-employed,Urban,78.68,23.3,never smoked,0 +19191,Male,82.0,0,0,Yes,Private,Urban,217.57,33.5,formerly smoked,0 +25149,Female,3.0,0,0,No,children,Rural,79.76,15.6,Unknown,0 +42626,Female,76.0,1,0,Yes,Govt_job,Rural,63.28,28.2,never smoked,0 +2578,Male,16.0,0,0,No,Govt_job,Rural,78.48,22.6,never smoked,0 +55975,Female,44.0,0,0,Yes,Govt_job,Rural,70.48,20.2,never smoked,0 +62182,Female,17.0,0,0,No,Private,Rural,120.96,22.2,formerly smoked,0 +12037,Female,73.0,0,0,Yes,Self-employed,Rural,77.29,22.6,never smoked,0 +21963,Male,31.0,0,0,Yes,Private,Urban,108.51,26.7,Unknown,0 +26250,Male,17.0,0,0,No,Self-employed,Urban,113.85,22.9,Unknown,0 +13960,Female,18.0,0,0,No,Never_worked,Urban,97.65,21.5,Unknown,0 +56573,Male,73.0,0,0,Yes,Private,Rural,121.83,30.3,formerly smoked,0 +10659,Female,8.0,0,0,No,children,Urban,81.53,14.8,Unknown,0 +50763,Male,42.0,0,0,Yes,Govt_job,Urban,58.35,24.3,never smoked,0 +62075,Female,40.0,0,0,Yes,Private,Urban,65.42,17.4,formerly smoked,0 +10119,Male,79.0,0,0,Yes,Private,Rural,69.34,29.0,never smoked,0 +48127,Male,53.0,0,0,Yes,Self-employed,Urban,109.09,26.3,smokes,0 +65892,Female,58.0,0,0,Yes,Self-employed,Urban,66.71,51.7,never smoked,0 +33370,Female,48.0,0,0,Yes,Private,Rural,114.92,29.2,Unknown,0 +59049,Female,17.0,0,0,No,Private,Rural,120.58,18.3,never smoked,0 +53896,Female,23.0,0,0,No,Private,Rural,165.36,21.9,smokes,0 +21980,Male,9.0,0,0,No,children,Urban,66.11,16.3,Unknown,0 +70497,Female,81.0,1,1,Yes,Private,Rural,126.34,27.4,smokes,0 +58652,Female,16.0,0,0,No,Never_worked,Rural,68.27,20.4,never smoked,0 +30335,Male,21.0,0,0,No,Private,Rural,92.86,23.2,never smoked,0 +26305,Male,29.0,0,0,No,Self-employed,Rural,96.77,30.3,formerly smoked,0 +31227,Male,8.0,0,0,No,children,Rural,89.24,16.7,Unknown,0 +5581,Female,39.0,0,0,Yes,Private,Rural,89.32,31.0,formerly smoked,0 +1989,Male,37.0,0,0,Yes,Private,Rural,107.06,,smokes,0 +43803,Female,64.0,0,0,Yes,Private,Urban,65.63,33.5,smokes,0 +41395,Male,9.0,0,0,No,children,Urban,123.66,17.0,Unknown,0 +71784,Male,17.0,0,0,No,Private,Rural,63.82,19.4,smokes,0 +57979,Male,8.0,0,0,No,children,Rural,108.06,14.6,Unknown,0 +54437,Male,62.0,0,0,Yes,Self-employed,Rural,136.18,32.2,Unknown,0 +67159,Male,73.0,1,0,No,Govt_job,Urban,71.29,37.7,never smoked,0 +7230,Male,48.0,0,0,Yes,Govt_job,Rural,76.58,27.4,never smoked,0 +68306,Male,17.0,0,0,No,Private,Rural,119.58,25.0,never smoked,0 +33087,Female,10.0,0,0,No,children,Urban,109.3,20.1,Unknown,0 +40850,Female,74.0,0,0,Yes,Govt_job,Urban,111.94,21.7,never smoked,0 +57612,Male,62.0,0,0,Yes,Private,Urban,81.64,38.2,never smoked,0 +37029,Male,5.0,0,0,No,children,Rural,97.64,17.0,Unknown,0 +338,Female,43.0,0,0,Yes,Private,Rural,110.32,28.4,never smoked,0 +9565,Female,39.0,0,0,No,Private,Rural,79.0,30.0,never smoked,0 +3623,Female,37.0,0,0,Yes,Self-employed,Urban,95.08,34.1,never smoked,0 +69723,Male,15.0,0,0,No,Private,Urban,137.27,19.3,never smoked,0 +47662,Female,36.0,0,0,No,Self-employed,Urban,57.83,21.6,smokes,0 +58495,Male,34.0,0,0,Yes,Private,Rural,84.08,32.9,never smoked,0 +71222,Male,75.0,1,0,Yes,Private,Urban,234.51,27.2,formerly smoked,0 +37865,Male,53.0,0,0,Yes,Private,Urban,142.64,27.8,smokes,0 +20185,Female,61.0,0,0,Yes,Self-employed,Rural,69.77,29.9,never smoked,0 +41875,Female,45.0,0,0,Yes,Private,Urban,71.4,28.4,smokes,0 +67602,Female,17.0,0,0,No,Private,Urban,79.61,24.1,Unknown,0 +40387,Female,17.0,0,0,No,Private,Rural,77.46,24.0,Unknown,0 +43208,Female,19.0,0,0,No,Private,Urban,96.85,23.4,Unknown,0 +54324,Female,54.0,1,0,No,Govt_job,Urban,182.22,32.6,formerly smoked,0 +51110,Female,51.0,0,0,Yes,Self-employed,Urban,67.26,33.1,formerly smoked,0 +36969,Female,44.0,0,0,Yes,Private,Rural,60.02,33.8,formerly smoked,0 +48118,Female,82.0,0,0,Yes,Self-employed,Urban,113.45,30.3,never smoked,0 +4607,Female,49.0,0,0,Yes,Self-employed,Urban,112.31,36.9,Unknown,0 +62471,Female,34.0,0,0,Yes,Self-employed,Rural,68.53,29.7,never smoked,0 +43821,Female,63.0,1,0,Yes,Private,Rural,57.15,38.8,never smoked,0 +7218,Female,79.0,0,0,Yes,Private,Rural,214.73,30.9,never smoked,0 +23427,Female,81.0,0,0,Yes,Private,Rural,91.82,36.9,Unknown,0 +66014,Female,14.0,0,0,No,children,Urban,71.8,18.8,Unknown,0 +41652,Female,31.0,0,0,No,Private,Urban,63.41,25.5,formerly smoked,0 +16605,Male,57.0,0,0,Yes,Private,Urban,106.24,32.3,never smoked,0 +42091,Male,32.0,0,0,Yes,Govt_job,Rural,83.01,25.8,smokes,0 +66067,Male,66.0,0,0,Yes,Private,Rural,67.92,31.1,formerly smoked,0 +50222,Female,22.0,0,0,No,Private,Rural,74.99,27.9,smokes,0 +41214,Female,1.32,0,0,No,children,Rural,75.22,18.6,Unknown,0 +72386,Female,20.0,0,0,No,Private,Urban,61.88,20.1,never smoked,0 +14918,Female,41.0,0,0,Yes,Private,Urban,65.67,26.7,smokes,0 +55457,Female,48.0,0,0,Yes,Private,Urban,110.18,30.3,smokes,0 +63323,Male,49.0,1,0,Yes,Self-employed,Rural,119.3,30.4,formerly smoked,0 +35446,Male,73.0,0,0,Yes,Govt_job,Rural,208.69,30.0,Unknown,0 +8208,Male,19.0,0,0,No,Private,Rural,95.18,24.9,smokes,0 +5131,Female,51.0,0,0,Yes,Private,Urban,107.72,60.9,Unknown,0 +68157,Male,1.08,0,0,No,children,Rural,83.27,24.3,Unknown,0 +4795,Female,31.0,0,0,No,Private,Rural,90.29,38.7,Unknown,0 +7581,Male,4.0,0,0,No,children,Urban,81.87,18.6,Unknown,0 +47383,Male,1.8,0,0,No,children,Urban,153.31,17.1,Unknown,0 +14036,Male,44.0,0,0,Yes,Private,Rural,101.46,29.4,Unknown,0 +25942,Female,4.0,0,0,No,children,Urban,72.49,16.9,Unknown,0 +24018,Male,55.0,0,0,Yes,Private,Rural,86.58,34.2,never smoked,0 +27801,Female,34.0,0,0,Yes,Private,Urban,113.26,27.6,never smoked,0 +52978,Female,30.0,0,0,Yes,Private,Urban,84.92,47.8,never smoked,0 +15593,Female,7.0,0,0,No,children,Urban,128.17,18.9,Unknown,0 +11098,Male,75.0,0,0,Yes,Govt_job,Rural,93.93,24.4,formerly smoked,0 +12015,Male,14.0,0,0,No,children,Urban,99.87,25.2,Unknown,0 +47348,Female,61.0,0,0,Yes,Private,Urban,129.31,30.7,formerly smoked,0 +44155,Female,55.0,0,0,Yes,Govt_job,Urban,89.43,26.1,formerly smoked,0 +62656,Female,14.0,0,0,No,children,Rural,101.6,25.3,never smoked,0 +8838,Female,36.0,0,0,No,Private,Rural,66.55,32.8,smokes,0 +42563,Female,57.0,1,1,Yes,Private,Rural,231.72,45.7,formerly smoked,0 +31254,Female,20.0,0,0,No,Private,Urban,96.69,24.6,Unknown,0 +27922,Male,32.0,0,0,Yes,Private,Rural,102.13,32.3,never smoked,0 +1696,Female,43.0,0,0,Yes,Private,Urban,100.88,47.6,smokes,0 +54162,Male,43.0,0,0,Yes,Private,Rural,66.22,34.4,Unknown,0 +70396,Female,1.08,0,0,No,children,Urban,109.33,18.2,Unknown,0 +65907,Female,49.0,0,0,Yes,Private,Urban,206.53,44.5,smokes,0 +49451,Female,53.0,0,0,Yes,Private,Rural,83.91,36.6,Unknown,0 +68601,Female,18.0,0,0,No,Private,Urban,67.92,19.4,never smoked,0 +13236,Female,13.0,0,0,No,children,Rural,73.48,22.9,Unknown,0 +65998,Male,5.0,0,0,No,children,Rural,101.31,20.0,Unknown,0 +5875,Female,37.0,0,0,Yes,Private,Urban,103.66,36.1,smokes,0 +47427,Male,49.0,0,0,Yes,Self-employed,Urban,70.73,27.3,formerly smoked,0 +29734,Female,45.0,0,0,No,Govt_job,Rural,77.45,42.2,formerly smoked,0 +72715,Female,50.0,0,1,Yes,Private,Urban,193.8,26.4,never smoked,0 +59847,Female,12.0,0,0,No,children,Rural,114.34,23.6,never smoked,0 +59911,Male,12.0,0,0,No,children,Urban,69.25,18.6,Unknown,0 +13583,Female,5.0,0,0,No,children,Rural,88.44,18.0,Unknown,0 +22897,Male,39.0,0,0,Yes,Private,Rural,84.09,31.1,formerly smoked,0 +11898,Female,41.0,0,0,Yes,Private,Urban,87.06,30.0,never smoked,0 +14785,Female,41.0,0,0,Yes,Private,Rural,92.64,43.8,never smoked,0 +45163,Female,47.0,0,0,Yes,Private,Urban,99.36,23.8,smokes,0 +57254,Female,57.0,0,0,Yes,Private,Rural,135.63,36.2,formerly smoked,0 +30658,Male,16.0,0,0,No,children,Rural,82.44,32.6,Unknown,0 +32617,Male,3.0,0,0,No,children,Urban,81.88,18.0,Unknown,0 +65376,Female,65.0,0,0,Yes,Self-employed,Urban,95.44,25.5,smokes,0 +1731,Female,80.0,0,0,No,Self-employed,Urban,72.71,29.9,never smoked,0 +38441,Female,58.0,0,0,Yes,Private,Urban,65.45,32.1,never smoked,0 +22147,Female,74.0,0,0,Yes,Private,Urban,203.01,25.4,never smoked,0 +50663,Female,62.0,0,0,Yes,Govt_job,Urban,110.84,23.4,smokes,0 +19165,Male,33.0,0,0,Yes,Private,Urban,83.12,23.4,Unknown,0 +60562,Female,21.0,0,0,No,Private,Rural,55.12,21.8,never smoked,0 +22013,Female,17.0,0,0,No,Private,Rural,105.91,30.8,never smoked,0 +39936,Female,49.0,0,0,Yes,Private,Rural,61.57,37.9,formerly smoked,0 +6517,Female,24.0,0,0,Yes,Govt_job,Urban,83.1,42.5,smokes,0 +62576,Female,56.0,0,0,Yes,Private,Urban,66.32,23.4,never smoked,0 +18636,Female,26.0,0,0,Yes,Govt_job,Urban,72.56,35.4,never smoked,0 +24299,Male,54.0,1,0,Yes,Self-employed,Rural,97.99,32.3,smokes,0 +40826,Female,42.0,0,0,No,Private,Urban,63.27,27.0,never smoked,0 +53323,Female,34.0,0,0,No,Govt_job,Urban,79.6,46.3,never smoked,0 +28717,Female,56.0,1,0,Yes,Private,Rural,177.56,30.1,never smoked,0 +53028,Female,39.0,0,0,Yes,Private,Rural,81.31,34.7,never smoked,0 +57757,Female,77.0,0,0,Yes,Self-employed,Rural,59.91,18.3,never smoked,0 +54795,Female,12.0,0,0,No,children,Rural,132.85,16.2,never smoked,0 +70267,Male,65.0,0,0,Yes,Private,Rural,198.84,33.2,formerly smoked,0 +34084,Male,7.0,0,0,No,children,Urban,77.12,18.6,Unknown,0 +20258,Male,25.0,0,0,No,Private,Urban,87.17,25.1,never smoked,0 +65333,Female,31.0,0,0,Yes,Private,Rural,96.03,24.1,Unknown,0 +56629,Female,14.0,0,0,No,Private,Rural,83.56,33.1,Unknown,0 +22417,Female,5.0,0,0,No,children,Rural,80.93,24.8,Unknown,0 +49925,Female,60.0,0,0,Yes,Private,Rural,84.54,23.4,smokes,0 +72696,Female,53.0,0,0,Yes,Private,Urban,70.51,54.1,never smoked,0 +39708,Male,55.0,0,0,Yes,Private,Rural,56.87,28.9,formerly smoked,0 +60426,Female,69.0,0,0,Yes,Self-employed,Urban,67.55,38.1,Unknown,0 +70540,Female,39.0,0,0,Yes,Private,Urban,243.52,37.2,smokes,0 +37622,Female,0.32,0,0,No,children,Urban,108.63,19.6,Unknown,0 +44813,Female,34.0,0,0,No,Private,Rural,69.06,29.0,smokes,0 +47153,Female,80.0,0,0,Yes,Private,Urban,73.89,26.7,formerly smoked,0 +8175,Male,20.0,0,0,No,Private,Urban,84.49,20.5,never smoked,0 +61528,Female,45.0,0,0,Yes,Govt_job,Urban,73.71,34.1,never smoked,0 +38771,Female,41.0,0,0,No,Govt_job,Urban,129.01,42.4,Unknown,0 +31189,Male,54.0,0,0,Yes,Govt_job,Urban,72.96,37.7,smokes,0 +27804,Male,23.0,0,0,No,Private,Rural,110.23,39.1,Unknown,0 +41842,Male,75.0,0,0,Yes,Govt_job,Rural,79.49,28.9,Unknown,0 +11962,Male,36.0,0,0,Yes,Private,Urban,89.33,30.7,never smoked,0 +45404,Female,75.0,0,0,Yes,Private,Rural,68.38,33.8,Unknown,0 +4062,Male,72.0,0,1,Yes,Private,Rural,238.27,,smokes,0 +63650,Female,47.0,0,0,Yes,Govt_job,Urban,135.79,32.1,formerly smoked,0 +72186,Female,15.0,0,0,No,Private,Rural,82.19,40.5,never smoked,0 +40240,Male,40.0,1,0,Yes,Self-employed,Urban,93.2,24.8,smokes,0 +25931,Female,71.0,0,0,Yes,Self-employed,Urban,208.31,31.8,formerly smoked,0 +21292,Male,38.0,0,0,Yes,Private,Rural,111.33,27.0,never smoked,0 +25391,Female,10.0,0,0,No,children,Rural,69.84,13.7,Unknown,0 +65469,Male,11.0,0,0,No,children,Rural,121.71,23.4,never smoked,0 +29487,Male,0.72,0,0,No,children,Urban,80.08,16.4,Unknown,0 +63575,Male,9.0,0,0,No,children,Urban,84.4,14.9,Unknown,0 +30457,Female,53.0,1,0,Yes,Govt_job,Rural,98.61,38.8,smokes,0 +5951,Male,28.0,1,0,No,Private,Urban,86.61,38.6,smokes,0 +8690,Female,81.0,0,0,Yes,Private,Urban,80.44,32.2,never smoked,0 +32147,Male,1.32,0,0,No,children,Rural,107.02,,Unknown,0 +47691,Male,16.0,0,0,No,Private,Rural,97.23,30.6,never smoked,0 +25982,Male,24.0,0,0,No,Private,Rural,91.21,28.1,formerly smoked,0 +70058,Female,62.0,1,0,Yes,Self-employed,Urban,103.69,35.2,smokes,0 +61868,Female,62.0,0,0,Yes,Private,Urban,74.12,21.8,formerly smoked,0 +46086,Female,59.0,0,0,Yes,Private,Urban,71.08,28.1,never smoked,0 +68596,Female,19.0,0,0,No,Private,Urban,58.39,28.2,never smoked,0 +10281,Female,51.0,1,0,Yes,Self-employed,Rural,176.34,28.4,never smoked,0 +31409,Male,38.0,0,0,Yes,Private,Rural,73.76,37.4,never smoked,0 +54067,Female,26.0,0,0,No,Private,Rural,67.21,21.8,formerly smoked,0 +9731,Male,13.0,0,0,No,children,Urban,87.98,19.8,Unknown,0 +24009,Male,4.0,0,0,No,children,Urban,94.23,16.2,Unknown,0 +61694,Male,55.0,0,0,Yes,Self-employed,Rural,111.36,33.6,never smoked,0 +7453,Female,44.0,0,0,Yes,Private,Urban,84.07,21.2,smokes,0 +66405,Female,31.0,0,0,Yes,Private,Urban,117.31,28.4,never smoked,0 +2138,Male,58.0,0,0,Yes,Govt_job,Urban,84.94,,never smoked,0 +66650,Female,17.0,0,0,No,Private,Urban,68.86,41.1,never smoked,0 +59945,Female,23.0,0,0,No,Private,Urban,132.88,24.9,never smoked,0 +16245,Male,51.0,1,0,Yes,Self-employed,Rural,211.83,56.6,never smoked,0 +68094,Female,46.0,0,0,Yes,Private,Rural,124.92,28.8,Unknown,0 +64661,Female,81.0,0,0,No,Self-employed,Urban,57.42,33.7,never smoked,0 +61376,Male,38.0,0,0,Yes,Private,Urban,215.69,38.6,formerly smoked,0 +47236,Female,50.0,0,0,Yes,Private,Urban,154.67,33.8,never smoked,0 +875,Female,34.0,0,0,No,Private,Urban,67.66,22.4,never smoked,0 +63986,Male,60.0,0,0,Yes,Private,Rural,153.48,37.3,never smoked,0 +55410,Female,50.0,0,0,Yes,Self-employed,Urban,62.63,23.4,never smoked,0 +63287,Female,49.0,0,0,Yes,Private,Urban,77.93,39.1,smokes,0 +3720,Female,2.0,0,0,No,children,Rural,80.3,21.2,Unknown,0 +20274,Male,47.0,0,0,Yes,Private,Urban,106.69,31.2,Unknown,0 +50338,Female,34.0,0,0,Yes,Private,Urban,83.07,28.0,formerly smoked,0 +58209,Female,22.0,0,0,No,Private,Urban,140.14,21.1,never smoked,0 +20634,Female,11.0,0,0,No,children,Urban,92.65,15.7,never smoked,0 +3251,Male,54.0,0,0,Yes,Private,Urban,111.37,29.1,formerly smoked,0 +12677,Female,60.0,0,0,Yes,Private,Rural,99.0,26.1,never smoked,0 +45160,Male,3.0,0,0,No,children,Rural,78.24,16.2,Unknown,0 +67940,Female,46.0,0,0,Yes,Govt_job,Rural,83.88,27.1,never smoked,0 +8145,Male,30.0,0,0,No,Private,Urban,86.21,28.8,smokes,0 +39393,Female,63.0,0,0,Yes,Private,Urban,57.06,37.9,never smoked,0 +57710,Female,50.0,0,0,Yes,Private,Rural,112.25,21.6,Unknown,0 +12487,Male,65.0,0,0,Yes,Private,Urban,81.06,30.1,smokes,0 +16513,Male,78.0,0,0,Yes,Private,Urban,104.37,29.7,never smoked,0 +42297,Female,36.0,0,0,Yes,Private,Urban,124.31,26.4,Unknown,0 +63656,Female,18.0,0,0,No,Private,Urban,101.95,46.0,formerly smoked,0 +56233,Female,44.0,0,0,No,Private,Rural,116.95,26.1,never smoked,0 +22591,Female,4.0,0,0,No,children,Urban,99.76,23.2,Unknown,0 +23757,Female,60.0,0,0,No,Private,Urban,105.48,28.4,Unknown,0 +19601,Female,19.0,0,0,No,Private,Urban,100.6,20.5,never smoked,0 +61801,Male,15.0,0,0,No,Private,Urban,65.05,24.6,Unknown,0 +949,Male,20.0,0,0,No,Private,Rural,75.9,32.2,never smoked,0 +10995,Male,76.0,1,0,Yes,Private,Rural,267.6,30.5,never smoked,0 +1503,Male,31.0,0,0,No,Private,Urban,215.07,,smokes,0 +37431,Female,39.0,0,0,Yes,Govt_job,Urban,109.03,24.9,Unknown,0 +53697,Male,58.0,0,1,Yes,Private,Rural,225.35,26.5,smokes,0 +67012,Male,64.0,1,0,Yes,Private,Rural,196.26,34.5,Unknown,0 +30525,Female,79.0,0,0,Yes,Govt_job,Urban,95.42,21.5,formerly smoked,0 +25860,Female,11.0,0,0,No,children,Rural,123.04,15.9,Unknown,0 +21743,Male,4.0,0,0,No,children,Urban,85.88,17.7,Unknown,0 +25833,Female,43.0,0,0,Yes,Private,Rural,107.43,26.5,never smoked,0 +64652,Female,44.0,0,0,Yes,Private,Rural,56.85,24.4,never smoked,0 +45710,Female,37.0,0,0,Yes,Govt_job,Rural,102.15,26.6,Unknown,0 +27853,Female,34.0,0,0,Yes,Self-employed,Rural,88.68,23.9,never smoked,0 +5964,Female,59.0,0,0,Yes,Private,Urban,182.52,30.1,Unknown,0 +6976,Female,40.0,0,0,Yes,Private,Urban,93.97,23.6,never smoked,0 +11145,Female,8.0,0,0,No,children,Urban,104.03,18.4,Unknown,0 +39229,Female,24.0,0,0,Yes,Private,Rural,67.99,32.1,never smoked,0 +14189,Male,18.0,0,0,No,Private,Rural,83.37,24.4,Unknown,0 +49929,Male,20.0,0,0,No,Private,Rural,124.66,27.3,never smoked,0 +56328,Female,70.0,0,0,Yes,Private,Rural,212.87,34.8,never smoked,0 +26742,Female,68.0,0,0,Yes,Govt_job,Urban,96.75,28.4,formerly smoked,0 +63158,Male,17.0,0,0,No,Private,Urban,63.28,40.2,Unknown,0 +27435,Female,17.0,0,0,No,Private,Urban,82.64,31.1,Unknown,0 +10829,Female,21.0,0,0,No,Private,Rural,71.34,24.0,never smoked,0 +70593,Female,38.0,0,0,Yes,Private,Rural,183.43,38.1,formerly smoked,0 +42647,Female,59.0,0,0,Yes,Govt_job,Urban,101.19,29.9,formerly smoked,0 +48109,Female,79.0,0,1,Yes,Private,Rural,88.51,24.5,never smoked,0 +40732,Female,50.0,0,0,Yes,Self-employed,Rural,126.85,49.5,formerly smoked,0 +58635,Female,72.0,0,0,Yes,Self-employed,Urban,74.17,35.5,formerly smoked,0 +844,Female,54.0,0,0,Yes,Private,Urban,76.04,29.5,smokes,0 +14688,Female,44.0,0,0,Yes,Private,Urban,73.87,28.8,smokes,0 +23026,Female,48.0,0,0,Yes,Private,Rural,99.07,22.1,never smoked,0 +30463,Male,29.0,0,0,No,Private,Urban,82.93,29.4,formerly smoked,0 +50140,Female,44.0,0,0,Yes,Govt_job,Rural,133.24,45.0,smokes,0 +36837,Female,61.0,0,0,Yes,Self-employed,Urban,69.88,27.1,never smoked,0 +57333,Female,58.0,0,0,Yes,Govt_job,Rural,69.12,28.3,Unknown,0 +19826,Female,81.0,0,0,Yes,Self-employed,Rural,86.05,20.1,formerly smoked,0 +37713,Male,29.0,0,0,Yes,Private,Urban,185.27,31.3,never smoked,0 +6278,Male,5.0,0,0,No,children,Urban,97.46,17.6,Unknown,0 +15517,Female,35.0,0,0,Yes,Private,Urban,81.9,24.5,never smoked,0 +25326,Female,40.0,0,0,No,Private,Rural,99.58,24.1,Unknown,0 +57034,Female,37.0,0,0,No,Private,Rural,124.54,31.3,never smoked,0 +70718,Male,33.0,0,0,Yes,Private,Rural,153.34,31.5,never smoked,0 +47461,Female,35.0,0,0,Yes,Private,Urban,112.35,29.9,Unknown,0 +50091,Female,38.0,0,0,No,Govt_job,Urban,160.76,30.2,smokes,0 +62416,Female,26.0,0,0,Yes,Private,Rural,73.29,27.8,never smoked,0 +5288,Male,10.0,0,0,No,children,Urban,108.08,15.6,Unknown,0 +66951,Female,72.0,0,0,Yes,Private,Urban,206.49,26.3,never smoked,0 +28335,Male,21.0,0,0,Yes,Private,Rural,77.42,24.8,never smoked,0 +67465,Female,20.0,0,0,No,Private,Rural,117.59,17.1,never smoked,0 +67426,Female,1.24,0,0,No,children,Rural,61.94,20.3,Unknown,0 +19508,Female,26.0,0,0,No,Private,Urban,116.68,18.7,formerly smoked,0 +65405,Female,79.0,0,0,No,Private,Urban,253.86,28.8,formerly smoked,0 +49773,Female,78.0,0,0,Yes,Private,Urban,203.36,28.7,formerly smoked,0 +57159,Male,56.0,0,0,Yes,Self-employed,Rural,125.87,24.6,never smoked,0 +69710,Female,46.0,0,0,No,Self-employed,Rural,64.09,25.3,never smoked,0 +58834,Male,55.0,0,0,Yes,Govt_job,Urban,65.33,29.7,Unknown,0 +42007,Male,41.0,0,0,No,Private,Rural,70.15,,formerly smoked,0 +5121,Male,30.0,0,0,Yes,Private,Urban,96.84,21.1,Unknown,0 +44878,Male,53.0,0,0,Yes,Private,Rural,175.92,26.9,smokes,0 +40220,Male,32.0,0,0,No,Private,Rural,100.65,26.2,formerly smoked,0 +19692,Male,38.0,0,0,No,Private,Rural,112.39,26.3,Unknown,0 +27616,Male,33.0,0,0,Yes,Govt_job,Rural,81.1,24.8,never smoked,0 +19801,Female,44.0,0,0,Yes,Private,Rural,98.3,25.0,never smoked,0 +21467,Male,44.0,0,0,Yes,Private,Urban,89.68,34.6,Unknown,0 +25102,Female,51.0,0,0,Yes,Govt_job,Urban,95.16,42.7,formerly smoked,0 +28788,Male,40.0,0,0,Yes,Private,Urban,191.15,,smokes,0 +29028,Female,41.0,0,0,Yes,Private,Rural,91.04,24.5,never smoked,0 +15581,Male,5.0,0,0,No,children,Urban,101.87,19.3,Unknown,0 +16738,Female,42.0,0,0,Yes,Private,Rural,96.86,29.3,never smoked,0 +31836,Female,6.0,0,0,No,children,Urban,91.05,22.1,Unknown,0 +43496,Female,46.0,0,0,Yes,Govt_job,Urban,55.84,27.8,never smoked,0 +52677,Female,47.0,0,0,Yes,Private,Urban,84.04,24.7,never smoked,0 +11630,Female,25.0,0,0,No,Private,Urban,92.06,25.3,smokes,0 +53478,Female,40.0,0,0,Yes,Private,Urban,89.61,41.2,formerly smoked,0 +38349,Female,49.0,0,0,Yes,Govt_job,Urban,69.92,47.6,never smoked,0 +48425,Male,21.0,0,0,No,Private,Rural,89.29,23.4,never smoked,0 +64420,Female,61.0,0,0,Yes,Govt_job,Rural,120.23,22.7,Unknown,0 +60271,Male,78.0,0,0,Yes,Private,Urban,60.22,29.7,formerly smoked,0 +38009,Male,41.0,0,0,Yes,Private,Urban,223.78,32.3,never smoked,0 +11184,Female,82.0,0,0,Yes,Self-employed,Rural,211.58,36.9,never smoked,0 +68967,Male,39.0,0,0,Yes,Private,Urban,179.38,27.7,Unknown,0 +66684,Male,70.0,0,0,Yes,Self-employed,Rural,193.88,24.3,Unknown,0 +7789,Female,31.0,0,0,Yes,Private,Urban,89.01,37.4,never smoked,0 +40112,Female,37.0,0,0,No,Private,Urban,118.41,25.1,never smoked,0 +65814,Male,21.0,0,0,No,Private,Urban,138.51,24.3,never smoked,0 +49598,Male,80.0,0,0,Yes,Self-employed,Urban,120.03,24.3,formerly smoked,0 +15599,Female,21.0,0,0,No,Private,Urban,91.01,28.7,never smoked,0 +62425,Female,5.0,0,0,No,children,Urban,61.98,16.8,Unknown,0 +52652,Male,81.0,0,0,Yes,Private,Rural,135.32,35.8,Unknown,0 +71957,Female,35.0,0,0,Yes,Private,Rural,58.72,40.0,smokes,0 +17231,Female,24.0,0,0,No,Private,Urban,90.42,24.3,never smoked,0 +30379,Female,52.0,0,0,Yes,Govt_job,Urban,104.0,25.6,smokes,0 +63997,Male,70.0,0,0,Yes,Private,Urban,102.5,37.8,Unknown,0 +39935,Female,34.0,0,0,Yes,Private,Rural,174.37,23.0,never smoked,0 +8203,Male,17.0,0,0,No,Private,Rural,106.56,21.0,Unknown,0 +27446,Female,8.0,0,0,No,children,Urban,76.31,15.5,Unknown,0 +42709,Male,1.72,0,0,No,children,Urban,77.28,17.1,Unknown,0 +22691,Female,29.0,0,0,Yes,Self-employed,Urban,90.52,28.0,never smoked,0 +37680,Male,55.0,0,0,Yes,Govt_job,Rural,108.35,40.8,formerly smoked,0 +24552,Female,44.0,0,0,Yes,Private,Rural,72.03,37.5,smokes,0 +72914,Female,19.0,0,0,No,Private,Urban,90.57,24.2,Unknown,0 +29540,Male,67.0,0,0,Yes,Private,Rural,97.04,26.9,smokes,0 +53525,Female,72.0,0,0,Yes,Private,Urban,83.89,33.1,formerly smoked,0 +65411,Female,51.0,0,0,Yes,Private,Urban,152.56,21.8,Unknown,0 +26214,Female,63.0,0,0,Yes,Self-employed,Rural,75.93,34.7,formerly smoked,0 +22190,Female,64.0,1,0,Yes,Self-employed,Urban,76.89,30.2,Unknown,0 +56714,Female,0.72,0,0,No,children,Rural,62.13,16.8,Unknown,0 +4211,Male,26.0,0,0,No,Govt_job,Rural,100.85,21.0,smokes,0 +6369,Male,59.0,1,0,Yes,Private,Rural,95.05,30.9,never smoked,0 +56799,Male,76.0,0,0,Yes,Govt_job,Urban,82.35,38.9,never smoked,0 +32235,Female,45.0,1,0,Yes,Govt_job,Rural,95.02,,smokes,0 +28048,Male,13.0,0,0,No,children,Urban,82.38,24.3,Unknown,0 +68598,Male,1.08,0,0,No,children,Rural,79.15,17.4,Unknown,0 +41512,Male,57.0,0,0,Yes,Govt_job,Rural,76.62,28.2,never smoked,0 +64520,Male,68.0,0,0,Yes,Self-employed,Urban,91.68,40.8,Unknown,0 +579,Male,9.0,0,0,No,children,Urban,71.88,17.5,Unknown,0 +7293,Male,40.0,0,0,Yes,Private,Rural,83.94,,smokes,0 +68398,Male,82.0,1,0,Yes,Self-employed,Rural,71.97,28.3,never smoked,0 +36901,Female,45.0,0,0,Yes,Private,Urban,97.95,24.5,Unknown,0 +45010,Female,57.0,0,0,Yes,Private,Rural,77.93,21.7,never smoked,0 +22127,Female,18.0,0,0,No,Private,Urban,82.85,46.9,Unknown,0 +14180,Female,13.0,0,0,No,children,Rural,103.08,18.6,Unknown,0 +18234,Female,80.0,1,0,Yes,Private,Urban,83.75,,never smoked,0 +44873,Female,81.0,0,0,Yes,Self-employed,Urban,125.2,40.0,never smoked,0 +19723,Female,35.0,0,0,Yes,Self-employed,Rural,82.99,30.6,never smoked,0 +37544,Male,51.0,0,0,Yes,Private,Rural,166.29,25.6,formerly smoked,0 +44679,Female,44.0,0,0,Yes,Govt_job,Urban,85.28,26.2,Unknown,0 diff --git a/labs/lab2/lab2.ipynb b/labs/lab2/lab2.ipynb new file mode 100644 index 0000000..291baf4 --- /dev/null +++ b/labs/lab2/lab2.ipynb @@ -0,0 +1,58 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "ename": "FileNotFoundError", + "evalue": "[Errno 2] No such file or directory: 'neo.csv'", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[1], line 7\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mseaborn\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01msns\u001b[39;00m\n\u001b[0;32m 5\u001b[0m \u001b[38;5;66;03m# Вывод всех столбцов\u001b[39;00m\n\u001b[1;32m----> 7\u001b[0m df \u001b[38;5;241m=\u001b[39m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread_csv\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mneo.csv\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[0;32m 8\u001b[0m \u001b[38;5;28mprint\u001b[39m(df\u001b[38;5;241m.\u001b[39mcolumns)\n", + "File \u001b[1;32mc:\\Users\\tellsense\\maigit\\.venv\\Lib\\site-packages\\pandas\\io\\parsers\\readers.py:1026\u001b[0m, in \u001b[0;36mread_csv\u001b[1;34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend)\u001b[0m\n\u001b[0;32m 1013\u001b[0m kwds_defaults \u001b[38;5;241m=\u001b[39m _refine_defaults_read(\n\u001b[0;32m 1014\u001b[0m dialect,\n\u001b[0;32m 1015\u001b[0m delimiter,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1022\u001b[0m dtype_backend\u001b[38;5;241m=\u001b[39mdtype_backend,\n\u001b[0;32m 1023\u001b[0m )\n\u001b[0;32m 1024\u001b[0m kwds\u001b[38;5;241m.\u001b[39mupdate(kwds_defaults)\n\u001b[1;32m-> 1026\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_read\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilepath_or_buffer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32mc:\\Users\\tellsense\\maigit\\.venv\\Lib\\site-packages\\pandas\\io\\parsers\\readers.py:620\u001b[0m, in \u001b[0;36m_read\u001b[1;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[0;32m 617\u001b[0m _validate_names(kwds\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnames\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m))\n\u001b[0;32m 619\u001b[0m \u001b[38;5;66;03m# Create the parser.\u001b[39;00m\n\u001b[1;32m--> 620\u001b[0m parser \u001b[38;5;241m=\u001b[39m \u001b[43mTextFileReader\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilepath_or_buffer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 622\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m chunksize \u001b[38;5;129;01mor\u001b[39;00m iterator:\n\u001b[0;32m 623\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m parser\n", + "File \u001b[1;32mc:\\Users\\tellsense\\maigit\\.venv\\Lib\\site-packages\\pandas\\io\\parsers\\readers.py:1620\u001b[0m, in \u001b[0;36mTextFileReader.__init__\u001b[1;34m(self, f, engine, **kwds)\u001b[0m\n\u001b[0;32m 1617\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moptions[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhas_index_names\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m kwds[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhas_index_names\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[0;32m 1619\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles: IOHandles \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m-> 1620\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_engine \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_make_engine\u001b[49m\u001b[43m(\u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mengine\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32mc:\\Users\\tellsense\\maigit\\.venv\\Lib\\site-packages\\pandas\\io\\parsers\\readers.py:1880\u001b[0m, in \u001b[0;36mTextFileReader._make_engine\u001b[1;34m(self, f, engine)\u001b[0m\n\u001b[0;32m 1878\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m mode:\n\u001b[0;32m 1879\u001b[0m mode \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m-> 1880\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles \u001b[38;5;241m=\u001b[39m \u001b[43mget_handle\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 1881\u001b[0m \u001b[43m \u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1882\u001b[0m \u001b[43m \u001b[49m\u001b[43mmode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1883\u001b[0m \u001b[43m \u001b[49m\u001b[43mencoding\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mencoding\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1884\u001b[0m \u001b[43m \u001b[49m\u001b[43mcompression\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcompression\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1885\u001b[0m \u001b[43m \u001b[49m\u001b[43mmemory_map\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmemory_map\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1886\u001b[0m \u001b[43m \u001b[49m\u001b[43mis_text\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mis_text\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1887\u001b[0m \u001b[43m \u001b[49m\u001b[43merrors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mencoding_errors\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstrict\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1888\u001b[0m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstorage_options\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1889\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1890\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 1891\u001b[0m f \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles\u001b[38;5;241m.\u001b[39mhandle\n", + "File \u001b[1;32mc:\\Users\\tellsense\\maigit\\.venv\\Lib\\site-packages\\pandas\\io\\common.py:873\u001b[0m, in \u001b[0;36mget_handle\u001b[1;34m(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)\u001b[0m\n\u001b[0;32m 868\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(handle, \u001b[38;5;28mstr\u001b[39m):\n\u001b[0;32m 869\u001b[0m \u001b[38;5;66;03m# Check whether the filename is to be opened in binary mode.\u001b[39;00m\n\u001b[0;32m 870\u001b[0m \u001b[38;5;66;03m# Binary mode does not support 'encoding' and 'newline'.\u001b[39;00m\n\u001b[0;32m 871\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ioargs\u001b[38;5;241m.\u001b[39mencoding \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m ioargs\u001b[38;5;241m.\u001b[39mmode:\n\u001b[0;32m 872\u001b[0m \u001b[38;5;66;03m# Encoding\u001b[39;00m\n\u001b[1;32m--> 873\u001b[0m handle \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mopen\u001b[39;49m\u001b[43m(\u001b[49m\n\u001b[0;32m 874\u001b[0m \u001b[43m \u001b[49m\u001b[43mhandle\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 875\u001b[0m \u001b[43m \u001b[49m\u001b[43mioargs\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 876\u001b[0m \u001b[43m \u001b[49m\u001b[43mencoding\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mioargs\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mencoding\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 877\u001b[0m \u001b[43m \u001b[49m\u001b[43merrors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43merrors\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 878\u001b[0m \u001b[43m \u001b[49m\u001b[43mnewline\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m 879\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 880\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 881\u001b[0m \u001b[38;5;66;03m# Binary mode\u001b[39;00m\n\u001b[0;32m 882\u001b[0m handle \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mopen\u001b[39m(handle, ioargs\u001b[38;5;241m.\u001b[39mmode)\n", + "\u001b[1;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'neo.csv'" + ] + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "# Вывод всех столбцов\n", + "\n", + "df = pd.read_csv(\"neo.csv\")\n", + "print(df.columns)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.7" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lec1.ipynb b/lec1.ipynb new file mode 100644 index 0000000..b25e191 --- /dev/null +++ b/lec1.ipynb @@ -0,0 +1,713 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Работа с NumPy" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "matrix = \n", + " [[4 5 0]\n", + " [9 9 9]] \n", + "\n", + "tmatrix = \n", + " [[4 9]\n", + " [5 9]\n", + " [0 9]] \n", + "\n", + "vector = \n", + " [4 5 0 9 9 9] \n", + "\n", + "tvector = \n", + " [[4]\n", + " [5]\n", + " [0]\n", + " [9]\n", + " [9]\n", + " [9]] \n", + "\n", + "list_matrix = \n", + " [array([4, 5, 0]), array([9, 9, 9])] \n", + "\n", + "matrix as str = \n", + " [[4 5 0]\n", + " [9 9 9]] \n", + "\n", + "matrix type is \n", + "\n", + "vector type is \n", + "\n", + "list_matrix type is \n", + "\n", + "str_matrix type is \n", + "\n", + "formatted_vector = \n", + " 4; 5; 0; 9; 9; 9 \n", + "\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "matrix = np.array([[4, 5, 0], [9, 9, 9]])\n", + "print(\"matrix = \\n\", matrix, \"\\n\")\n", + "\n", + "tmatrix = matrix.T\n", + "print(\"tmatrix = \\n\", tmatrix, \"\\n\")\n", + "\n", + "vector = np.ravel(matrix)\n", + "print(\"vector = \\n\", vector, \"\\n\")\n", + "\n", + "tvector = np.reshape(vector, (6, 1))\n", + "print(\"tvector = \\n\", tvector, \"\\n\")\n", + "\n", + "list_matrix = list(matrix)\n", + "print(\"list_matrix = \\n\", list_matrix, \"\\n\")\n", + "\n", + "str_matrix = str(matrix)\n", + "print(\"matrix as str = \\n\", str_matrix, \"\\n\")\n", + "\n", + "print(\"matrix type is\", type(matrix), \"\\n\")\n", + "\n", + "print(\"vector type is\", type(vector), \"\\n\")\n", + "\n", + "print(\"list_matrix type is\", type(list_matrix), \"\\n\")\n", + "\n", + "print(\"str_matrix type is\", type(str_matrix), \"\\n\")\n", + "\n", + "formatted_vector = \"; \".join(map(str, vector))\n", + "print(\"formatted_vector = \\n\", formatted_vector, \"\\n\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Работа с Pandas DataFrame\n", + "\n", + "https://pandas.pydata.org/docs/user_guide/10min.html" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Работа с данными - чтение и запись CSV" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "\n", + "df = pd.read_csv(\"data/titanic.csv\", index_col=\"PassengerId\")\n", + "\n", + "df.to_csv(\"test.csv\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Работа с данными - основные команды" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Index: 891 entries, 1 to 891\n", + "Data columns (total 11 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Survived 891 non-null int64 \n", + " 1 Pclass 891 non-null int64 \n", + " 2 Name 891 non-null object \n", + " 3 Sex 891 non-null object \n", + " 4 Age 714 non-null float64\n", + " 5 SibSp 891 non-null int64 \n", + " 6 Parch 891 non-null int64 \n", + " 7 Ticket 891 non-null object \n", + " 8 Fare 891 non-null float64\n", + " 9 Cabin 204 non-null object \n", + " 10 Embarked 889 non-null object \n", + "dtypes: float64(2), int64(4), object(5)\n", + "memory usage: 83.5+ KB\n", + " count mean std min 25% 50% 75% max\n", + "Survived 891.0 0.383838 0.486592 0.00 0.0000 0.0000 1.0 1.0000\n", + "Pclass 891.0 2.308642 0.836071 1.00 2.0000 3.0000 3.0 3.0000\n", + "Age 714.0 29.699118 14.526497 0.42 20.1250 28.0000 38.0 80.0000\n", + "SibSp 891.0 0.523008 1.102743 0.00 0.0000 0.0000 1.0 8.0000\n", + "Parch 891.0 0.381594 0.806057 0.00 0.0000 0.0000 0.0 6.0000\n", + "Fare 891.0 32.204208 49.693429 0.00 7.9104 14.4542 31.0 512.3292\n", + " Survived Pclass Sex Age SibSp Parch Fare Cabin\n", + "PassengerId \n", + "1 0 3 male 22.0 1 0 7.2500 NaN\n", + "2 1 1 female 38.0 1 0 71.2833 C85\n", + "3 1 3 female 26.0 0 0 7.9250 NaN\n", + "4 1 1 female 35.0 1 0 53.1000 C123\n", + "5 0 3 male 35.0 0 0 8.0500 NaN\n", + " Survived Pclass Sex Age SibSp Parch Fare Cabin\n", + "PassengerId \n", + "887 0 2 male 27.0 0 0 13.00 NaN\n", + "888 1 1 female 19.0 0 0 30.00 B42\n", + "889 0 3 female NaN 1 2 23.45 NaN\n", + "890 1 1 male 26.0 0 0 30.00 C148\n", + "891 0 3 male 32.0 0 0 7.75 NaN\n", + " Survived Pclass Sex Age SibSp Parch Fare Cabin\n", + "PassengerId \n", + "804 1 3 male 0.42 0 1 8.5167 NaN\n", + "756 1 2 male 0.67 1 1 14.5000 NaN\n", + "470 1 3 female 0.75 2 1 19.2583 NaN\n", + "645 1 3 female 0.75 2 1 19.2583 NaN\n", + "79 1 2 male 0.83 0 2 29.0000 NaN\n", + " Survived Pclass Sex Age SibSp Parch Fare Cabin\n", + "PassengerId \n", + "860 0 3 male NaN 0 0 7.2292 NaN\n", + "864 0 3 female NaN 8 2 69.5500 NaN\n", + "869 0 3 male NaN 0 0 9.5000 NaN\n", + "879 0 3 male NaN 0 0 7.8958 NaN\n", + "889 0 3 female NaN 1 2 23.4500 NaN\n" + ] + } + ], + "source": [ + "df.info()\n", + "\n", + "print(df.describe().transpose())\n", + "\n", + "cleared_df = df.drop([\"Name\", \"Ticket\", \"Embarked\"], axis=1)\n", + "print(cleared_df.head())\n", + "print(cleared_df.tail())\n", + "\n", + "sorted_df = cleared_df.sort_values(by=\"Age\")\n", + "print(sorted_df.head())\n", + "print(sorted_df.tail())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Работа с данными - работа с элементами" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PassengerId\n", + "1 22.0\n", + "2 38.0\n", + "3 26.0\n", + "4 35.0\n", + "5 35.0\n", + " ... \n", + "887 27.0\n", + "888 19.0\n", + "889 NaN\n", + "890 26.0\n", + "891 32.0\n", + "Name: Age, Length: 891, dtype: float64\n", + "Survived 0\n", + "Pclass 2\n", + "Name Kantor, Mr. Sinai\n", + "Sex male\n", + "Age 34.0\n", + "SibSp 1\n", + "Parch 0\n", + "Ticket 244367\n", + "Fare 26.0\n", + "Cabin NaN\n", + "Embarked S\n", + "Name: 100, dtype: object\n", + "Kantor, Mr. Sinai\n", + " Age Name\n", + "PassengerId \n", + "100 34.0 Kantor, Mr. Sinai\n", + "101 28.0 Petranec, Miss. Matilda\n", + "102 NaN Petroff, Mr. Pastcho (\"Pentcho\")\n", + "103 21.0 White, Mr. Richard Frasar\n", + "104 33.0 Johansson, Mr. Gustaf Joel\n", + "... ... ...\n", + "196 58.0 Lurette, Miss. Elise\n", + "197 NaN Mernagh, Mr. Robert\n", + "198 42.0 Olsen, Mr. Karl Siegwart Andreas\n", + "199 NaN Madigan, Miss. Margaret \"Maggie\"\n", + "200 24.0 Yrois, Miss. Henriette (\"Mrs Harbeck\")\n", + "\n", + "[101 rows x 2 columns]\n", + " Survived Pclass \\\n", + "PassengerId \n", + "1 0 3 \n", + "2 1 1 \n", + "3 1 3 \n", + "\n", + " Name Sex Age \\\n", + "PassengerId \n", + "1 Braund, Mr. Owen Harris male 22.0 \n", + "2 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 \n", + "3 Heikkinen, Miss. Laina female 26.0 \n", + "\n", + " SibSp Parch Ticket Fare Cabin Embarked \n", + "PassengerId \n", + "1 1 0 A/5 21171 7.2500 NaN S \n", + "2 1 0 PC 17599 71.2833 C85 C \n", + "3 0 0 STON/O2. 3101282 7.9250 NaN S \n", + "Survived 0\n", + "Pclass 3\n", + "Name Braund, Mr. Owen Harris\n", + "Sex male\n", + "Age 22.0\n", + "SibSp 1\n", + "Parch 0\n", + "Ticket A/5 21171\n", + "Fare 7.25\n", + "Cabin NaN\n", + "Embarked S\n", + "Name: 1, dtype: object\n", + " Survived Pclass\n", + "PassengerId \n", + "4 1 1\n", + "5 0 3\n", + " Survived Pclass\n", + "PassengerId \n", + "4 1 1\n", + "5 0 3\n" + ] + } + ], + "source": [ + "print(df[\"Age\"])\n", + "\n", + "print(df.loc[100])\n", + "\n", + "print(df.loc[100, \"Name\"])\n", + "\n", + "print(df.loc[100:200, [\"Age\", \"Name\"]])\n", + "\n", + "print(df[0:3])\n", + "\n", + "print(df.iloc[0])\n", + "\n", + "print(df.iloc[3:5, 0:2])\n", + "\n", + "print(df.iloc[[3, 4], [0, 1]])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Работа с данными - отбор и группировка" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['male' 'female']\n", + "male count = 577\n", + "female count = 314\n", + "Total count = 891\n", + " Pclass Survived Count\n", + "0 1 0 80\n", + "1 1 1 136\n", + "2 2 0 97\n", + "3 2 1 87\n", + "4 3 0 372\n", + "5 3 1 119\n" + ] + } + ], + "source": [ + "s_values = df[\"Sex\"].unique()\n", + "print(s_values)\n", + "\n", + "s_total = 0\n", + "for s_value in s_values:\n", + " count = df[df[\"Sex\"] == s_value].shape[0]\n", + " s_total += count\n", + " print(s_value, \"count =\", count)\n", + "print(\"Total count = \", s_total)\n", + "\n", + "print(df.groupby([\"Pclass\", \"Survived\"]).size().reset_index(name=\"Count\")) # type: ignore" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Визуализация - Исходные данные" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Pclass Survived Age\n", + "PassengerId \n", + "1 3 0 22.0\n", + "2 1 1 38.0\n", + "3 3 1 26.0\n", + "4 1 1 35.0\n", + "5 3 0 35.0\n", + "... ... ... ...\n", + "886 3 0 39.0\n", + "887 2 0 27.0\n", + "888 1 1 19.0\n", + "890 1 1 26.0\n", + "891 3 0 32.0\n", + "\n", + "[714 rows x 3 columns]\n" + ] + } + ], + "source": [ + "data = df[[\"Pclass\", \"Survived\", \"Age\"]].copy()\n", + "data.dropna(subset=[\"Age\"], inplace=True)\n", + "print(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Визуализация - Сводка пяти чисел\n", + "\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Age \n", + " min q1 q2 median q3 max\n", + "Pclass \n", + "1 0.92 27.0 37.0 37.0 49.0 80.0\n", + "2 0.67 23.0 29.0 29.0 36.0 70.0\n", + "3 0.42 18.0 24.0 24.0 32.0 74.0\n", + " Age \n", + " low_iqr iqr high_iqr\n", + "Pclass \n", + "1 0.0 22.0 82.0\n", + "2 3.5 13.0 55.5\n", + "3 0.0 14.0 53.0\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAHNCAYAAADWsJtQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQtklEQVR4nO3deVxU5f4H8M8Aw7AOiLJeQUkUVDDLErguuLCEShBQWfcWprdbiSvYgr9ya8Hcl1BbDCs1u3IVlVxAU9R0vEoXL5YaGC6JIG6ggOMwnN8fXs5tAo1BhpkDn/fr5QvnnOec8z3DgfnwnOecIxMEQQARERGRRJgZuwAiIiIifTC8EBERkaQwvBAREZGkMLwQERGRpDC8EBERkaQwvBAREZGkMLwQERGRpDC8EBERkaQwvBAREZGkMLwQmQiZTIZZs2YZu4w2b9++fZDJZNi3b999282aNQsymQxXrlxpncJaQH3NRG0dwwu1eWvWrIFMJtP55+LigqFDh2LHjh3GLu+B/fTTT5g1axbOnj1r7FKoGYYMGaJzbDo5OeHxxx/H559/jrq6OmOXR2SSLIxdAFFrmTNnDry9vSEIAsrKyrBmzRqMGDEC27Ztw6hRo4xdXrP99NNPmD17NoYMGYKuXbsauxxqhs6dOyM1NRUAUF5eji+//BLjxo3Dzz//jLlz5xq5OiLTw/BC7UZkZCQee+wx8fW4cePg6uqKr7/+WtLhpTXV1tairq4OlpaWxi6lTXFwcMBf//pX8fUrr7wCX19ffPTRR3j33Xchl8uNWB2R6eFpI2q3HB0dYW1tDQsL3QxfVVWF5ORkeHp6QqFQwNfXFwsWLED9A9hramrg5+cHPz8/1NTUiMtdu3YN7u7u+POf/wytVgsAGDNmDOzs7PDLL78gIiICtra28PDwwJw5c9CUB7r/+9//RmRkJJRKJezs7DB8+HCoVCpx/po1a/D0008DAIYOHSqeevij8RwbN25Er169YGVlBX9/f2zevBljxozR6bk5e/YsZDIZFixYgCVLlqBbt25QKBT46aefAADfffcdBg0aBFtbWzg6OiI6OhonT57U2c7v11mvsbEZMpkMEyZMwLp16+Dr6wsrKyv069cP+/fvb7D8xYsXMXbsWLi6ukKhUKB37974/PPPG7T79ddfERMTA1tbW7i4uGDq1KlQq9X3fW9+78qVK3jmmWegVCrRsWNHTJ48Gbdv3xbnh4SE4OGHH250WV9fX0REROi1PQCwsbFBUFAQqqqqUF5eLk4/cuQIRowYgQ4dOsDW1hZ9+vTB0qVL77uu9PR0DBs2DC4uLlAoFOjVqxdWrlzZoN2xY8cQERGBTp06wdraGt7e3hg7dqxOmw0bNqBfv36wt7eHUqlEQEDAH26fyBDY80LtRkVFBa5cuQJBEHD58mUsX74ct27d0vmLVxAEPPnkk9i7dy/GjRuHvn37YteuXXj99ddx8eJFLF68GNbW1vjiiy8wYMAA/N///R8WLVoEAEhMTERFRQXWrFkDc3NzcZ1arRZPPPEEgoKCMG/ePOzcuRMzZ85EbW0t5syZc896f/zxRwwaNAhKpRJvvPEG5HI5Pv74YwwZMgS5ubkIDAzE4MGDMWnSJCxbtgzTp09Hz549AUD82phvv/0Wzz77LAICApCamorr169j3Lhx+NOf/tRo+/T0dNy+fRt///vfoVAo4OTkhN27dyMyMhIPPfQQZs2ahZqaGixfvhwDBgzADz/80OzTV7m5ufjmm28wadIkKBQKrFixAk888QT+9a9/wd/fHwBQVlaGoKAgMew4Oztjx44dGDduHCorKzFlyhQAd0Pm8OHDcf78eUyaNAkeHh746quv8N133+lV0zPPPIOuXbsiNTUVKpUKy5Ytw/Xr1/Hll18CAF544QW8/PLLOHHihFgjABw9ehQ///wz3n777Wa9F7/88gvMzc3h6OgIAMjJycGoUaPg7u6OyZMnw83NDSdPnkRWVhYmT558z/WsXLkSvXv3xpNPPgkLCwts27YN48ePR11dHRITEwEAly9fRnh4OJydnfHWW2/B0dERZ8+exaZNm8T15OTk4LnnnsPw4cPx4YcfAgBOnjyJ77///r7bJzIIgaiNS09PFwA0+KdQKIQ1a9botM3MzBQACO+9957O9Pj4eEEmkwlFRUXitJSUFMHMzEzYv3+/sHHjRgGAsGTJEp3lEhISBADCxIkTxWl1dXXCyJEjBUtLS6G8vFycDkCYOXOm+DomJkawtLQUzpw5I04rKSkR7O3thcGDB4vT6re9d+/eJr0fAQEBQufOnYWbN2+K0/bt2ycAELp06SJOKy4uFgAISqVSuHz5ss46+vbtK7i4uAhXr14Vpx0/flwwMzMTXnzxRZ39/+06682cOVP4/a+f+u/LsWPHxGnnzp0TrKyshKeeekqcNm7cOMHd3V24cuWKzvKjR48WHBwchOrqakEQBGHJkiUCAOEf//iH2Kaqqkrw8fFp0vtVX+OTTz6pM338+PECAOH48eOCIAjCjRs3BCsrK+HNN9/UaTdp0iTB1tZWuHXr1n23ExISIvj5+Qnl5eVCeXm5cPLkSWHSpEkCACEqKkoQBEGora0VvL29hS5dugjXr1/XWb6urq5Bzb9V/378VkREhPDQQw+Jrzdv3iwAEI4ePXrPOidPniwolUqhtrb2vvtD1Bp42ojajbS0NOTk5CAnJwdr167F0KFD8be//U3nr8vt27fD3NwckyZN0lk2OTkZgiDoXJ00a9Ys9O7dGwkJCRg/fjxCQkIaLFdvwoQJ4v/rewzu3LmD3bt3N9peq9UiOzsbMTExeOihh8Tp7u7ueP7553Hw4EFUVlbq/R6UlJSgoKAAL774Iuzs7MTpISEhCAgIaHSZuLg4ODs7i68vXbqE/Px8jBkzBk5OTuL0Pn36ICwsDNu3b9e7rnrBwcHo16+f+NrLywvR0dHYtWsXtFotBEHAP//5T0RFRUEQBFy5ckX8FxERgYqKCvzwww8A7n4v3d3dER8fL67PxsYGf//73/Wqqb53ot7EiRPF9QN3x6tER0fj66+/Fk8FarVafPPNN+Ipqz9y6tQpODs7w9nZGT179sTy5csxcuRI8VTYv//9bxQXF2PKlCliT0y9P7o02traWvx/fe9jSEgIfvnlF1RUVACAuM6srCxoNJpG1+Po6Iiqqirk5OT84f4QGRrDC7Ub/fv3R2hoKEJDQ/GXv/wF3377LXr16iUGCQA4d+4cPDw8YG9vr7Ns/WmYc+fOidMsLS3x+eefo7i4GDdv3kR6enqjHyRmZmY6AQQAevToAQD3vLy5vLwc1dXV8PX1bTCvZ8+eqKurw4ULF5q+8/9VX7+Pj0+DeY1NAwBvb+9G13Gv2q5cuYKqqiq9awOA7t27N5jWo0cPVFdXo7y8HOXl5bhx4wY++eQT8cO+/t9LL70E4O4pkPo6fXx8GnxPGqtbn5q6desGMzMzne/diy++iPPnz+PAgQMAgN27d6OsrAwvvPBCk7bRtWtX5OTkYPfu3Th48CBKS0uRlZWFTp06AQDOnDkDADqnpZrq+++/R2hoqDg2ydnZGdOnTwcAMbyEhIQgLi4Os2fPRqdOnRAdHY309HSd8UHjx49Hjx49EBkZic6dO2Ps2LHYuXOn3vUQtQSOeaF2y8zMDEOHDsXSpUtRWFiI3r17672OXbt2AQBu376NwsLCBh/0bcFv/3LX1716BeoHNOur/r4nf/3rX5GQkNBomz59+jRr3U3V2D5FRETA1dUVa9euxeDBg7F27Vq4ubkhNDS0Seu0tbVtclt9nDlzBsOHD4efnx8WLVoET09PWFpaYvv27Vi8eLH4fspkMmRkZEClUmHbtm3YtWsXxo4di4ULF0KlUsHOzg4uLi7Iz8/Hrl27sGPHDuzYsQPp6el48cUX8cUXX7R47UT3w54Xatdqa2sBALdu3QIAdOnSBSUlJbh586ZOu1OnTonz6/3nP//BnDlz8NJLL+GRRx7B3/72N/Ev2d+qq6vDL7/8ojPt559/BoB7Dmx1dnaGjY0NTp8+3WDeqVOnYGZmBk9PTwB/fNrgt+rrLyoqajCvsWn3W8e9auvUqZN4qqRDhw64ceNGg3a/7cH6rcLCwgbTfv75Z9jY2Ig9LPb29tBqtWIv2u//ubi4iHWeOXOmwVVdjdV9P7+vqaioCHV1dTrfO3Nzczz//PPIyMjA9evXkZmZieeee05n4PaD6NatGwDgxIkTei23bds2qNVqbN26Fa+88gpGjBiB0NDQewbSoKAgvP/++zh27BjWrVuHH3/8ERs2bBDnW1paIioqCitWrMCZM2fwyiuv4Msvv2zysUPUUhheqN3SaDTIzs6GpaWleFpoxIgR0Gq1+Oijj3TaLl68GDKZDJGRkeKyY8aMgYeHB5YuXYo1a9agrKwMU6dObXRbv12fIAj46KOPIJfLMXz48Ebbm5ubIzw8HFu2bNE5PVFWVob169dj4MCBUCqVACAGhcZCwu95eHjA398fX375pRjYgLtX+RQUFPzh8sDdcTd9+/bFF198obPNEydOIDs7GyNGjBCndevWDRUVFfjPf/4jTrt06RI2b97c6LoPHz4sjlkBgAsXLmDLli0IDw+Hubk5zM3NERcXh3/+85+NfpD/9rLiESNGoKSkBBkZGeK06upqfPLJJ03az3ppaWk6r5cvXw4A4rFQ74UXXsD169fxyiuvNLiK7UE9+uij8Pb2xpIlSxp8n38fzn6rPjz9tk1FRQXS09N12l2/fr3Bevr27QsA4qmjq1ev6sw3MzMTe7n0vfyc6EHxtBG1Gzt27BB7UC5fvoz169ejsLAQb731lhgEoqKiMHToUPzf//0fzp49i4cffhjZ2dnYsmULpkyZIv4F/N577yE/Px979uyBvb09+vTpgxkzZuDtt99GfHy8zge4lZUVdu7ciYSEBAQGBmLHjh349ttvMX36dJ2BsL/33nvvIScnBwMHDsT48eNhYWGBjz/+GGq1GvPmzRPb9e3bF+bm5vjwww9RUVEBhUIh3tejMR988AGio6MxYMAAvPTSS7h+/To++ugj+Pv76wSa+5k/fz4iIyMRHByMcePGiZdKOzg46DyfafTo0XjzzTfx1FNPYdKkSaiursbKlSvRo0cPnZBSz9/fHxERETqXSgPA7NmzxTZz587F3r17ERgYiJdffhm9evXCtWvX8MMPP2D37t24du0aAODll1/GRx99hBdffBF5eXlwd3fHV199BRsbmybtY73i4mI8+eSTeOKJJ3D48GGsXbsWzz//fIN7uzzyyCPw9/fHxo0b0bNnTzz66KN6bed+zMzMsHLlSkRFRaFv37546aWX4O7ujlOnTuHHH38UT1/+Xnh4uNhbUh+qPv30U7i4uODSpUtiuy+++AIrVqzAU089hW7duuHmzZv49NNPoVQqxWP5b3/7G65du4Zhw4ahc+fOOHfuHJYvX46+ffve99J8IoMw2nVORK2ksUulrayshL59+worV67UudRUEATh5s2bwtSpUwUPDw9BLpcL3bt3F+bPny+2y8vLEywsLHQufxaEu5ezPv7444KHh4d4OWtCQoJga2srnDlzRggPDxdsbGwEV1dXYebMmYJWq9VZHr+7VFoQBOGHH34QIiIiBDs7O8HGxkYYOnSocOjQoQb7+OmnnwoPPfSQYG5u3qTLgDds2CD4+fkJCoVC8Pf3F7Zu3SrExcUJfn5+Ypv6S6Xnz5/f6Dp2794tDBgwQLC2thaUSqUQFRUl/PTTTw3aZWdnC/7+/oKlpaXg6+srrF279p6XSicmJgpr164VunfvLigUCuGRRx5pdF/KysqExMREwdPTU5DL5YKbm5swfPhw4ZNPPtFpd+7cOeHJJ58UbGxshE6dOgmTJ08Wdu7cqdel0j/99JMQHx8v2NvbCx06dBAmTJgg1NTUNLrMvHnzBADCBx98cN91/1ZISIjQu3fvJrU9ePCgEBYWJtjb2wu2trZCnz59hOXLlzeo+be2bt0q9OnTR7CyshK6du0qfPjhh8Lnn38uABCKi4sFQbh7nD333HOCl5eXoFAoBBcXF2HUqFE6l61nZGQI4eHhgouLi2BpaSl4eXkJr7zyinDp0qUm7ytRS5EJQhNu80lEzTJmzBhkZGQ0uUfDmPr27QtnZ2ejXQork8mQmJjY4JSdlCxduhRTp07F2bNn4eXlZexyiNosjnkhamc0Go04ULnevn37cPz4cQwZMsQ4RbUBgiBg9erVCAkJYXAhMjCOeSFqZy5evIjQ0FD89a9/hYeHB06dOoVVq1bBzc0Nr776qrHLk5yqqips3boVe/fuRUFBAbZs2WLskojaPIYXonamQ4cO6NevHz777DOUl5fD1tYWI0eOxNy5c9GxY8cW396KFSuQmJiI/v3748iRIy2+fmMrLy/H888/D0dHR0yfPh1PPvmksUsiavM45oWIDGrAgAEoKSnB2bNnUVhYeM87+RIRNRXHvBCRwRQXF+PQoUNYtGgRnJ2dsW7dOmOXRERtAMMLERnMunXr0KFDB4wcORLx8fGNhperV6/ihRdegFKphKOjIxISEnD8+HHIZDKsWbNGp+2pU6cQHx8PJycnWFlZ4bHHHsPWrVtbaW+IyFQwvBCRwaxbtw6xsbGwtLTEc889h8LCQhw9elScX1dXh6ioKHz99ddISEjA+++/j0uXLjX63KIff/wRQUFBOHnyJN566y0sXLgQtra2iImJuecde4mobeKYFyIyiLy8PDz22GPIyclBaGgoBEGAl5cX4uLisGTJEgDApk2bxNeTJ08GcDfQhIWF4bvvvkN6ejrGjBkDAAgNDcXly5dx9OhRKBQKAHcvTx44cCDKy8vF50URUdvHnhciMoh169bB1dUVQ4cOBXD3JnTPPvssNmzYID5VeufOnZDL5Xj55ZfF5czMzJCYmKizrmvXruG7777DM888g5s3b+LKlSu4cuUKrl69ioiICBQWFuLixYutt3NEZFQML0TU4rRaLTZs2IChQ4eiuLgYRUVFKCoqQmBgIMrKyrBnzx4Ad58u7e7u3uB5Q7+/IqmoqAiCIOCdd94Rny5d/2/mzJkA7j6viojaB97nhYha3HfffYdLly5hw4YN2LBhQ4P569atQ3h4eJPXV1dXBwCYNm0aIiIiGm3DS7CJ2g+GFyJqcevWrYOLiwvS0tIazNu0aRM2b96MVatWoUuXLti7dy+qq6t1el+Kiop0lnnooYcAAHK5HKGhoYYtnohMHgfsElGLqqmpgaurK55++mmsXr26wfxDhw5hwIAB2LBhAywsLBAfH9+kAbtDhw7Ff/7zH5w4cQLu7u466ywvL4ezs7PB942ITAN7XoioRW3duhU3b968523yg4KCxBvWbd68Gf3790dycjKKiorg5+eHrVu34tq1awDuDvKtl5aWhoEDByIgIAAvv/wyHnroIZSVleHw4cP49ddfcfz48VbZPyIyPoYXImpR69atg5WVFcLCwhqdb2ZmhpEjR2LdunW4ceMGvv32W0yePBlffPEFzMzM8NRTT2HmzJkYMGAArKysxOV69eqFY8eOYfbs2VizZg2uXr0KFxcXPPLII5gxY0Zr7R4RmQCeNiIik5OZmYmnnnoKBw8exIABA4xdDhGZGIYXIjKqmpoaWFtbi6+1Wi3Cw8Nx7NgxlJaW6swjIgJ42oiIjGzixImoqalBcHAw1Go1Nm3ahEOHDuGDDz5gcCGiRrHnhYiMav369Vi4cCGKiopw+/Zt+Pj44LXXXsOECROMXRoRmSiGFyIiIpIUPh6AiIiIJIXhhYiIiCTF5Abs1tXVoaSkBPb29jo3qCIiIqK2SxAE3Lx5Ex4eHjAzu3/fismFl5KSEnh6ehq7DCIiIjKCCxcuoHPnzvdtY3Lhxd7eHsDd4pVKpZGraTs0Gg2ys7MRHh4OuVxu7HKIGsXjlKSCx2rLq6yshKenp5gD7sfkwkv9qSKlUsnw0oI0Gg1sbGygVCr5g0Ymi8cpSQWPVcNpypARDtglIiIiSWF4ISIiIklheCEiIiJJYXghIiIiSWF4ISIiIklheCEiIiJJYXghIiIiSWF4ISIiIklheCEiIiJJ0Su8aLVavPPOO/D29oa1tTW6deuGd999F4IgiG0EQcCMGTPg7u4Oa2trhIaGorCwsMULJyIiovZJr/Dy4YcfYuXKlfjoo49w8uRJfPjhh5g3bx6WL18utpk3bx6WLVuGVatW4ciRI7C1tUVERARu377d4sUTERFR+6PXs40OHTqE6OhojBw5EgDQtWtXfP311/jXv/4F4G6vy5IlS/D2228jOjoaAPDll1/C1dUVmZmZGD16dAuXT0RERO2NXuHlz3/+Mz755BP8/PPP6NGjB44fP46DBw9i0aJFAIDi4mKUlpYiNDRUXMbBwQGBgYE4fPhwo+FFrVZDrVaLrysrKwHcfeiVRqNp1k61ddXV1Th9+rRey9yqUeNQwRnYO6pgZ61o8nK+vr6wsbHRt0SiZqn/mefPPpk6HqstT5/3Uq/w8tZbb6GyshJ+fn4wNzeHVqvF+++/j7/85S8AgNLSUgCAq6urznKurq7ivN9LTU3F7NmzG0zPzs7mh+Y9nDlzBsnJyc1adp6e7RcuXIhu3bo1a1tEzZWTk2PsEoiahMdqy6murm5yW73Cyz/+8Q+sW7cO69evR+/evZGfn48pU6bAw8MDCQkJehcKACkpKUhKShJfV1ZWwtPTE+Hh4VAqlc1aZ1tXXV2NgQMH6rXMz5cq8PrmnzD/qV7o4e7Q5OXY80KtSaPRICcnB2FhYZDL5cYuh+ieeKy2vPozL02hV3h5/fXX8dZbb4mnfwICAnDu3DmkpqYiISEBbm5uAICysjK4u7uLy5WVlaFv376NrlOhUEChaHgaQy6X84C4BwcHB/Tv31+vZSzPXYXi8B34930Ufbt0NFBlRC2DP/8kFTxWW44+76NeVxtVV1fDzEx3EXNzc9TV1QEAvL294ebmhj179ojzKysrceTIEQQHB+uzKSIiIqJG6dXzEhUVhffffx9eXl7o3bs3/v3vf2PRokUYO3YsAEAmk2HKlCl477330L17d3h7e+Odd96Bh4cHYmJiDFE/ERERtTN6hZfly5fjnXfewfjx43H58mV4eHjglVdewYwZM8Q2b7zxBqqqqvD3v/8dN27cwMCBA7Fz505YWVm1ePFERETU/ugVXuzt7bFkyRIsWbLknm1kMhnmzJmDOXPmPGhtRERERA3w2UZEREQkKQwvREREJCkML0RERCQpDC9EREQkKQwvREREJCkML0RERCQpDC9EREQkKQwvREREJCkML0RERCQpDC9EREQkKQwvREREJCkML0RERCQpDC9EREQkKQwvREREetBqtcjNzcX+/fuRm5sLrVZr7JLaHYYXIiKiJtq0aRN8fHwQFhaGRYsWISwsDD4+Pti0aZOxS2tXGF6IiIiaYNOmTYiPj0dAQAAOHDiAr7/+GgcOHEBAQADi4+MZYFoRwwsREdEf0Gq1SE5OxqhRo5CZmYnAwEBYW1sjMDAQmZmZGDVqFKZNm8ZTSK2E4YWIiOgPHDhwAGfPnsX06dNhZqb70WlmZoaUlBQUFxfjwIEDRqqwfWF4ISIi+gOXLl0CAPj7+zc6v356fTsyLIYXIiKiP+Du7g4AOHHiRKPz66fXtyPDYnghIiL6A4MGDULXrl3xwQcfoK6uTmdeXV0dUlNT4e3tjUGDBhmpwvaF4YWIiOgPmJubY+HChcjKykJMTAxUKhVqamqgUqkQExODrKwsLFiwAObm5sYutV2wMHYBREREUhAbG4uMjAwkJydj8ODB4nRvb29kZGQgNjbWiNW1LwwvRERETRQbG4vo6Gjs3bsXO3bsQGRkJIYOHcoel1bG8EJERKQHc3NzhISEoKqqCiEhIQwuRsAxL0RERCQpDC9EREQkKQwvREREeuBTpY2P4YWIiKiJ+FRp08DwQkQmgX/NkqnjU6VNh17hpWvXrpDJZA3+JSYmAgBu376NxMREdOzYEXZ2doiLi0NZWZlBCieitoN/zZKp41OlTYte4eXo0aO4dOmS+C8nJwcA8PTTTwMApk6dim3btmHjxo3Izc1FSUkJb9pDRPfFv2ZJCvhUadOi131enJ2ddV7PnTsX3bp1Q0hICCoqKrB69WqsX78ew4YNAwCkp6ejZ8+eUKlUCAoKarmqiahN+P1fs1qtFlevXhX/mo2JicG0adMQHR3Ne2mQUfGp0qal2Tepu3PnDtauXYukpCTIZDLk5eVBo9EgNDRUbOPn5wcvLy8cPnz4nuFFrVZDrVaLrysrKwEAGo0GGo2mueXR79TW1opf+b6SqcjNzcXZs2fx1VdfQavVisdm/dfXX38dgwcPxt69exESEmLMUqmdq//jPT8/H4GBgQ2O1fz8fLEdf8c2jz7vW7PDS2ZmJm7cuIExY8YAAEpLS2FpaQlHR0eddq6urigtLb3nelJTUzF79uwG07Ozs2FjY9Pc8uh3LtwCAAuoVCpcbPyJ7kStbv/+/QCAX3/9FVevXhWn15+SrqmpAQDs2LEDVVVVrV8g0X9ptVq4uLggKSkJKSkp4qmjnJwc8anSrq6uqKysxPbt241crTRVV1c3uW2zw8vq1asRGRkJDw+P5q4CAJCSkoKkpCTxdWVlJTw9PREeHg6lUvlA66b/OX7+GlBwDEFBQXjYy8nY5RABAGxtbbFo0SJ07txZ/Gs2JycHYWFhkMvlUKlUAIDIyEj2vJDR1dbWYvTo0Vi9ejWSk5NRVlYGV1dXLFy4EMeOHcOGDRsQFRVl7DIlq/7MS1M0K7ycO3cOu3fv1hlI5+bmhjt37uDGjRs6vS9lZWVwc3O757oUCgUUCkWD6XK5HHK5vDnlUSMsLCzEr3xfyVQMHToUXbt2xbx585CZmSlOl8vlMDc3x/z58+Ht7c0H35FJeOaZZ2BhYYHk5GRxbCfAp0q3FH0+m5p1n5f09HS4uLhg5MiR4rR+/fpBLpdjz5494rTTp0/j/PnzCA4Obs5miKiNMzc3x8KFC5GVlYWYmBioVCrU1NRApVIhJiYGWVlZWLBgAYMLmYzY2FgUFRUhJycHSUlJyMnJQWFhIYNLK9O756Wurg7p6elISEgQ/5oHAAcHB4wbNw5JSUlwcnKCUqnExIkTERwczCuNiOieYmNjkZGRgeTkZAwePFiczr9myVTxqdLGp3d42b17N86fP4+xY8c2mLd48WKYmZkhLi4OarUaERERWLFiRYsUSkRtV2xsLKKjo7F3717s2LEDkZGRPFVERPekd3gJDw+HIAiNzrOyskJaWhrS0tIeuDAial/41ywRNRWfbURERESSwvBCREREksLwQkRERJLC8EJERESSwvBCREREksLwQkQmQavVIjc3F/v370dubi60Wq2xSyIiE8XwQkRGt2nTJvj4+CAsLAyLFi1CWFgYfHx8dB5BQkRUj+GFiIxq06ZNiI+PR0BAAA4cOICvv/4aBw4cQEBAAOLj4xlgiKgBhhciMhqtVovk5GSMGjUKmZmZCAwMhLW1NQIDA5GZmYlRo0Zh2rRpPIVERDoYXojIaA4cOICzZ89i+vTpMDPT/XVkZmaGlJQUFBcX48CBA0aqkKghjs8yPoYXIjKaS5cuAQD8/f0bnV8/vb4dkbFxfJZpYHghIqNxd3cHAJw4caLR+fXT69sRGRPHZ5kOhhciMppBgwaha9eu+OCDD1BXV6czr66uDqmpqfD29sagQYOMVCHRXRyfZVoYXojIaMzNzbFw4UJkZWUhJiYGKpUKNTU1UKlUiImJQVZWFhYsWMAnTJPRcXyWabEwdgFE1L7FxsYiIyMDycnJGDx4sDjd29sbGRkZiI2NNWJ1RHdxfJZpYc8LERldbGwsioqKkJOTg6SkJOTk5KCwsJDBhUwGx2eZFoYXIjIJ5ubmCAkJweDBgxESEsJTRWRSOD7LtPC0ERER0R+oH58VHx+P6OhohIWFobCwEOfOnUNOTg6+/fZbZGRkMHS3EoYXIiKiJoiNjcW0adOwePFiZGVlidMtLCwwbdo0nuZsRQwvRERETbBp0yYsWLAAI0eOFHteunfvjpycHCxYsABBQUEMMK2E4YWIiOgP/P4+L1qtFtu3b8eIESMwYcIExMTEYNq0aYiOjuapo1bAAbtEZBL4vBgyZbzPi2lheCEio+PzYsjU8T4vpoXhhYiMis+LISngfV5MC8MLERkNnxdDUsH7vJgWDtglIqOpH0fw9ddfw8zMTCek1I8j+POf/4wDBw5gyJAhxiuU2j3e58W0MLwQkdFwHAFJCe/zYjoYXojIaH47jiAoKKjBfI4jIFPy2/u8hIeH4+eff0aPHj2QnZ3N+7y0Mo55ISKj4TgCkorfjs/asmULXn31VYSGhuLVV1/Fli1bOD6rlbHnhYiMhuMISCo4Psu0MLwQkVFxHAFJAcdnmRa9TxtdvHgRf/3rX9GxY0dYW1sjICAAx44dE+cLgoAZM2bA3d0d1tbWCA0NRWFhYYsWTURtR/04gieeeAJLly7FhAkTsHTpUjzxxBNYsGAB7/NCJoH3eTEteoWX69evY8CAAZDL5dixYwd++uknLFy4EB06dBDbzJs3D8uWLcOqVatw5MgR2NraIiIiArdv327x4olI2n4/juC1115DaGgoXnvtNY4jIJPC8VmmRa/TRh9++CE8PT2Rnp4uTvP29hb/LwgClixZgrfffhvR0dEAgC+//BKurq7IzMzE6NGjG6xTrVZDrVaLrysrKwEAGo0GGo1Gv72he6qtrRW/8n0lU5Gbm4uzZ8/iq6++wp07d7Bv3z7s378fCoUCQ4YMweuvv47Bgwdj7969CAkJMXa51M59+OGHGD16NJ588kkMHz4cv/zyC3755Rfs2bMH27dvx4YNG1BXV9cg3FDT6PPZpFd42bp1KyIiIvD0008jNzcXf/rTnzB+/Hi8/PLLAIDi4mKUlpYiNDRUXMbBwQGBgYE4fPhwo+ElNTUVs2fPbjA9OzsbNjY2+pRH93HhFgBYQKVS4WLjvZ5ErW7//v0A7p46iouLw+XLlwEAixYtgouLC55//nkAwI4dO1BVVWW0OokAQKFQIDo6Glu3bsW3334rTjczM0N0dDQUCgW2b99uxAqlrbq6usltZYIgCE1tbGVlBQBISkrC008/jaNHj2Ly5MlYtWoVEhIScOjQIQwYMAAlJSU65/2eeeYZyGQyfPPNNw3W2VjPi6enJ65cuQKlUtnkHaH7O37+GuI/PYaMlx/Dw15Oxi6HCMDdnpewsDAAwMiRIzFt2jSUlpbCzc0NCxYsED8gcnJy2PNCRrd582aMHj0akZGRCAsLw5kzZ9CtWzfk5ORgx44d2LBhA5566iljlylZlZWV6NSpEyoqKv7w81+v8GJpaYnHHnsMhw4dEqdNmjQJR48exeHDh5sVXhor3sHBoUnFU9Pln7uKmJUqZL4WhL5dOhq7HCIAwJ07d2Bra4uOHTvi119/hSAI2L59O0aMGAGZTIbOnTvj6tWrqKqqgqWlpbHLpXZMq9XCx8cHAQEByMzMhFarFY9Vc3NzxMTE4MSJEygsLOSl/c2kz+e/XgN23d3d0atXL51pPXv2xPnz5wEAbm5uAICysjKdNmVlZeI8IqJ6hw4dQm1tLS5fvozY2FioVCrU1NRApVIhNjYWly9fRm1trc4fTETGUH+fl+nTp8PMTPejs/4+L8XFxThw4ICRKmxf9AovAwYMwOnTp3Wm/fzzz+jSpQuAu4N33dzcsGfPHnF+ZWUljhw5guDg4BYol4jakvp7Ynz11VcoKCjA4MGD8dxzz2Hw4ME4ceIEvvrqK512RMbC+7yYFr3Cy9SpU6FSqfDBBx+gqKgI69evxyeffILExEQAgEwmw5QpU/Dee+9h69atKCgowIsvvggPDw/ExMQYon4ikrD608vdunVDUVERcnJykJSUhJycHBQWFuKhhx7SaUdkLLzPi4kR9LRt2zbB399fUCgUgp+fn/DJJ5/ozK+rqxPeeecdwdXVVVAoFMLw4cOF06dPN3n9FRUVAgChoqJC39LoPv599orQ5c0s4d9nrxi7FCJRbW2t0LVrVyEqKkrQarXCnTt3hMzMTOHOnTuCVqsVoqKiBG9vb6G2ttbYpVI7x2PV8PT5/Nf7DrujRo1CQUEBbt++jZMnT4qXSdeTyWSYM2cOSktLcfv2bezevRs9evRooahFRG1J/bONsrKyEBMTozPmJSYmBllZWViwYAEHQJLR8Vg1LXy2EREZVWxsLDIyMjB16lQMHjxYnN6lSxdkZGTw2UZkMuqP1eTkZJ1j1dvbm8dqK9O754WIqKWpVCqUlJToTLt48SJUKpWRKiJqXGxsbKPjsxhcWhd7XojIqN544w3Mnz8frq6umD17NhQKBdRqNWbOnIn58+cDuPvMNCJTYW5ujpCQEFRVVSEkJISnioyAPS9EZDR37tzB4sWL4erqil9//RVjx45Fhw4dMHbsWPz6669wdXXF4sWLcefOHWOXSkQmhOGFiIxmxYoVqK2txXvvvQcLC92OYAsLC8yZMwe1tbVYsWKFkSokIlPE8EJERnPmzBkAd69ibEz99Pp2REQAwwsRGVG3bt0AAFlZWY3Or59e347IFGi1WuTm5mL//v3Izc2FVqs1dkntDsMLERnN+PHjYWFhgbfffhu1tbU682prazFjxgxYWFhg/PjxRqqQSNemTZvg4+ODsLAwLFq0CGFhYfDx8cGmTZuMXVq7wvBCREZjaWmJqVOnoqysDJ07d8Znn32Ga9eu4bPPPkPnzp1RVlaGqVOn8onSZBI2bdqE+Ph4BAQE4MCBA/j6669x4MABBAQEID4+ngGmFfFSaSIyqvrLoBcvXqzTw2JhYYHXX3+dl0mTSdBqtUhOTsaoUaOQmZkJrVaLq1evIjAwEJmZmYiJicG0adMQHR3NS6dbAXteiMjo5s2bh6qqKixYsAAjRozAggULUFVVxeBCJuPAgQM4e/Yspk+fDjMz3Y9OMzMzpKSkoLi4GAcOHDBShe0Le16IyCRYWlpi0qRJ8PHxwYgRIyCXy41dEpHo0qVLAAB/f/9G59dPr29HhsXwQkQGU11djVOnTjW5/a0aNQ4VnEGHTsdgZ63Qa1t+fn6wsbHRt0SiJnF3dwcAnDhxAkFBQQ3mnzhxQqcdGRbDCxEZzKlTp9CvXz+9l2vOyaK8vDw8+uijzViS6I8NGjQIXbt2xQcffIDMzEydeXV1dUhNTYW3tzcGDRpknALbGYYXIjIYPz8/5OXlNbn96Us3kLSxAIueDoCvu6Pe2yIyFHNzcyxcuBDx8fGIiYnB66+/jpqaGqhUKsyfPx9ZWVnIyMjgYN1WwvBCRAZjY2OjV2+I2bmrUByoQU//h9G3S0cDVkakv9jYWGRkZCA5ORmDBw8Wp3t7eyMjI4NPlm5FDC9ERERNFBsbi+joaOzduxc7duxAZGQkhg4dyh6XVsbwQkREpAdzc3OEhISgqqoKISEhDC5GwPu8EBERkaQwvBAREZGkMLwQERGRpDC8EBERkaQwvBAREZGkMLwQERGRpDC8EBERkaQwvBAREZGkMLwQERGRpDC8EBERkaTw8QBERNSuVVdX49SpU3otc6tGjUMFZ9Ch0zHYWSv0WtbPzw82NjZ6LUO6GF6IiKhdO3XqFPr169esZec1Y5m8vDy9nrZODekVXmbNmoXZs2frTPP19RUT6+3bt5GcnIwNGzZArVYjIiICK1asgKura8tVTERE1IL8/PyQl5en1zKnL91A0sYCLHo6AL7ujnpvjx6M3j0vvXv3xu7du/+3Aov/rWLq1Kn49ttvsXHjRjg4OGDChAmIjY3F999/3zLVEhERtTAbGxu9e0LMzl2F4kANevo/jL5dOhqoMroXvcOLhYUF3NzcGkyvqKjA6tWrsX79egwbNgwAkJ6ejp49e0KlUiEoKKjR9anVaqjVavF1ZWUlAECj0UCj0ehbHt1DbW2t+JXvK5kqHqckFTxWW54+76Pe4aWwsBAeHh6wsrJCcHAwUlNT4eXlhby8PGg0GoSGhopt/fz84OXlhcOHD98zvKSmpjY4FQUA2dnZHNDUgi7cAgALqFQqXDxh7GqIGsfjlKSCx2rLq66ubnJbvcJLYGAg1qxZA19fX1y6dAmzZ8/GoEGDcOLECZSWlsLS0hKOjo46y7i6uqK0tPSe60xJSUFSUpL4urKyEp6enggPD4dSqdSnPLqP4+evAQXHEBQUhIe9nIxdDlGjeJySVPBYbXn1Z16aQq/wEhkZKf6/T58+CAwMRJcuXfCPf/wD1tbW+qxKpFAooFA0vMxMLpdDLpc3a53UUP3YJAsLC76vZLJ4nJJU8Fhtefq8jw90kzpHR0f06NEDRUVFcHNzw507d3Djxg2dNmVlZY2OkSEiIiJqjge6z8utW7dw5swZvPDCC+jXrx/kcjn27NmDuLg4AMDp06dx/vx5BAcHt0ixbVXxlSpUqWsNuo0z5VXi199eIdbSbBUW8O5ka7D1ExER6fUpNm3aNERFRaFLly4oKSnBzJkzYW5ujueeew4ODg4YN24ckpKS4OTkBKVSiYkTJyI4OPieg3XpbnAZumBfq20vOaPA4NvYO20IAwwRERmMXuHl119/xXPPPYerV6/C2dkZAwcOhEqlgrOzMwBg8eLFMDMzQ1xcnM5N6uje6ntcljzbFz4udobbTo0aWfsOY9SQYNjqeSvrpiq6fAtTvsk3eC8SERG1b3qFlw0bNtx3vpWVFdLS0pCWlvZARbVHPi528P+Tg8HWr9FoUOoMPNqlAweXERGRpPGp0kRERCQpDC9EREQkKQwvREREJCkML0RERCQpDC9EREQkKQwvREREJCkML0RERCQpDC9EREQkKQwvREREJCkML0RERCQpDC9EREQkKQwvREREJCkML0RERCQpDC9EREQkKQwvREREJCkML0RERCQpDC9EREQkKQwvREREJCkML0RERCQpDC9EREQkKQwvREREJCkML0RERCQpDC9EREQkKQwvREREJCkML0RERCQpDC9EREQkKQwvREREJCkML0RERCQpDC9EREQkKQwvREREJCkPFF7mzp0LmUyGKVOmiNNu376NxMREdOzYEXZ2doiLi0NZWdmD1klEREQE4AHCy9GjR/Hxxx+jT58+OtOnTp2Kbdu2YePGjcjNzUVJSQliY2MfuFAiIiIioJnh5datW/jLX/6CTz/9FB06dBCnV1RUYPXq1Vi0aBGGDRuGfv36IT09HYcOHYJKpWqxoomIiKj9smjOQomJiRg5ciRCQ0Px3nvvidPz8vKg0WgQGhoqTvPz84OXlxcOHz6MoKCgButSq9VQq9Xi68rKSgCARqOBRqNpTnmSUltbK3415P7Wr9uQ22itfaG2i8cQSQWP1Zanz/uod3jZsGEDfvjhBxw9erTBvNLSUlhaWsLR0VFnuqurK0pLSxtdX2pqKmbPnt1genZ2NmxsbPQtT3Iu3AIACxw8eBDn7Ay/vZycHIOtu7X3hdqe+mNIpVLh4gljV0N0bzxWW151dXWT2+oVXi5cuIDJkycjJycHVlZWehfWmJSUFCQlJYmvKysr4enpifDwcCiVyhbZhin7saQSCwpUGDhwIHp7GG5/NRoNcnJyEBYWBrlcbpBttNa+UNt1/Pw1oOAYgoKC8LCXk7HLIbonHqstr/7MS1PoFV7y8vJw+fJlPProo+I0rVaL/fv346OPPsKuXbtw584d3LhxQ6f3paysDG5ubo2uU6FQQKFQNJgul8sN9iFrSiwsLMSvrbG/hnxfW3tfqO3hMURSwWO15enzPuoVXoYPH46CggKdaS+99BL8/Pzw5ptvwtPTE3K5HHv27EFcXBwA4PTp0zh//jyCg4P12RQRERFRo/QKL/b29vD399eZZmtri44dO4rTx40bh6SkJDg5OUGpVGLixIkIDg5udLAuERERkb6adbXR/SxevBhmZmaIi4uDWq1GREQEVqxY0dKbISIionbqgcPLvn37dF5bWVkhLS0NaWlpD7pqIiIiogb4bCMiIiKSFIYXIiIikhSGFyIiIpIUhhciIiKSlBa/2oj0J7OoRHHlaZhZGe6e+rW1tSipLcHJayfFmyu1tOLKW5BZNP0OiURERM3B8GIC5I5HMP1fH7TKtlbsNOxl63LH4QBGGHQbRETUvjG8mADNjUAsHPk8urkYtufl+4PfY8DAAQbreTlz+RYmrTtjkHUTERHVY3gxAUKtEt5KX/Tq6GCwbWg0GhRbFKOnU0+DPYej7nYFhNpyg6ybiIioHsMLETVZ8ZUqVKlrDbb+M+VV4ldD9RDWs1VYwLuTrUG3QUSGwfBCRE1SfKUKQxfsa5VtJWcU/HGjFrB32hAGGCIJYnghoiap73FZ8mxf+BhofFZVjRpZ+w5j1JBg2ForDLINACi6fAtTvsk3aC8SERkOwwsR6cXHxQ7+fzLM+CyNRoNSZ+DRLh0MNjaLiKSPN6kjIiIiSWF4ISIiIklheCEiIiJJYXghIiIiSWF4ISIiIklheCEiIiJJYXghIiIiSWF4ISIiIklheCEiIiJJYXghIiIiSWF4ISIiIklheCEiIiJJ4YMZiYioTSm+UmXwJ4afKa8Sv1pYGPaj1FZhAe9OtgbdhtQwvBARUZtRfKUKQxfsa7XtJWcUtMp29k4bwgDzGwwvRETUZtT3uCx5ti98XOwMt50aNbL2HcaoIcGwtVYYbDtFl29hyjf5Bu9JkhqGFyIianN8XOzg/ycHg61fo9Gg1Bl4tEsHyOVyg22HGscBu0RERCQpDC9EREQkKXqFl5UrV6JPnz5QKpVQKpUIDg7Gjh07xPm3b99GYmIiOnbsCDs7O8TFxaGsrKzFiyYiIqL2S6/w0rlzZ8ydOxd5eXk4duwYhg0bhujoaPz4448AgKlTp2Lbtm3YuHEjcnNzUVJSgtjYWIMUTkRERO2TXgN2o6KidF6///77WLlyJVQqFTp37ozVq1dj/fr1GDZsGAAgPT0dPXv2hEqlQlBQUMtVTURERO1Ws6820mq12LhxI6qqqhAcHIy8vDxoNBqEhoaKbfz8/ODl5YXDhw/fM7yo1Wqo1WrxdWVlJYC7I7k1Gk1zy5OM2tpa8ash97d+3YbcRmvtCxlHa3x/W+M4BXistmVt6Xcq0L6OVX32T+/wUlBQgODgYNy+fRt2dnbYvHkzevXqhfz8fFhaWsLR0VGnvaurK0pLS++5vtTUVMyePbvB9OzsbNjY2OhbnuRcuAUAFjh48CDOGe6WBKKcnByDrbu194VaV2t+fw15nAI8VtuytvQ7FWhfx2p1dXWT2+odXnx9fZGfn4+KigpkZGQgISEBubm5+q5GlJKSgqSkJPF1ZWUlPD09ER4eDqVS2ez1SsWPJZVYUKDCwIED0dvDcPur0WiQk5ODsLAwg92ToLX2hYyjNb6/rXGcAjxW27K29DsVaF/Hav2Zl6bQO7xYWlrCx8cHANCvXz8cPXoUS5cuxbPPPos7d+7gxo0bOr0vZWVlcHNzu+f6FAoFFIqGdyeUy+Xt4sY/9c/EsLCwaJX9NeT72tr7Qq2rNb+/hv7557HadrWl36lA+zpW9dm/B77Dbl1dHdRqNfr16we5XI49e/YgLi4OAHD69GmcP38ewcHBD7oZIjIBMotKFFeehpmVYfqva2trUVJbgpPXThr0YXfFlbcgs2j6X3lEZFr0+u2QkpKCyMhIeHl54ebNm1i/fj327duHXbt2wcHBAePGjUNSUhKcnJygVCoxceJEBAcH80ojojZC7ngE0//1gcG3s2LnCoNvQ+44HMAIg2+HiFqeXuHl8uXLePHFF3Hp0iU4ODigT58+2LVrF8LCwgAAixcvhpmZGeLi4qBWqxEREYEVKwz/S4iIWofmRiAWjnwe3Qz0wLva2lp8f/B7DBg4wKA9L2cu38KkdWcMtn4iMiy9fjusXr36vvOtrKyQlpaGtLS0ByqKiEyTUKuEt9IXvToa5oF3Go0GxRbF6OnU06Dn9+tuV0CoLTfY+onIsPhsIyIiIpIUhhciIiKSFIYXIiIikhSGFyIiIpIUww3npyap0WgBACcuVhh0O1U1ahwrB9zOXYetdcObAraEosu3DLJeIiKi32J4MbIz//3Af2tTQStszQJfFR01+FZsFTysiIjIcPgpY2Thve8+OqGbix2s5eYG287pSxVIzijAwvgA+Lob5jJX4G5w8e5ka7D1ExERMbwYmZOtJUb39zL4duofq97N2Rb+fzJceCEiIjI0DtglIiIiSWF4ISIiIklheCEiIiJJYXghIiIiSWF4ISIiIklheCEiIiJJYXghIiIiSWF4ISIiIknhTeqIiKhNkVlUorjyNMys7Ay2jdraWpTUluDktZOwsDDcR2lx5S3ILCoNtn6pYnghIqI2Re54BNP/9UGrbGvFzhUG34bccTiAEQbfjpQwvBARUZuiuRGIhSOfRzcXw/a8fH/wewwYOMCgPS9nLt/CpHVnDLZ+qWJ4ISKiNkWoVcJb6YteHQ33HDeNRoNii2L0dOoJuVxusO3U3a6AUFtusPVLFcMLETVJjUYLADhxscJg26iqUeNYOeB27jpsrRUG207R5VsGWzcRGR7DCxE1yZn/fuC/tanAwFuywFdFRw28jbtsFfwVSCRF/MkloiYJ7+0GAOjmYgdrublBtnH6UgWSMwqwMD4Avu6G6/IH7gYX7062Bt0GERkGwwsRNYmTrSVG9/cy6DZqa2sBAN2cbeH/J8OGFyKSLt6kjoiIiCSF4YWIiIgkheGFiIiIJIXhhYiIiCSF4YWIiIgkheGFiIiIJEWv8JKamorHH38c9vb2cHFxQUxMDE6fPq3T5vbt20hMTETHjh1hZ2eHuLg4lJWVtWjRRERE1H7pFV5yc3ORmJgIlUqFnJwcaDQahIeHo6qqSmwzdepUbNu2DRs3bkRubi5KSkoQGxvb4oUTERFR+6TXTep27typ83rNmjVwcXFBXl4eBg8ejIqKCqxevRrr16/HsGHDAADp6eno2bMnVCoVgoKCWq5yIiIiapce6A67FRV3H9Dm5OQEAMjLy4NGo0FoaKjYxs/PD15eXjh8+HCj4UWtVkOtVouvKysrAdx9YqdGo3mQ8ug36u9cWltby/eVTBaPU3pQrXUM1a/b0Mdpe/qZ0Gf/mh1e6urqMGXKFAwYMAD+/v4AgNLSUlhaWsLR0VGnraurK0pLSxtdT2pqKmbPnt1genZ2NmxsbJpbHv3OhVsAYAGVSoWLJ4xdDVHjeJzSg6o/hg4ePIhzdobfXk5OjkHX39r7Y0zV1dVNbtvs8JKYmIgTJ07g4MGDzV0FACAlJQVJSUni68rKSnh6eiI8PBxKpfKB1k3/c/z8NaDgGIKCgvCwl5OxyyFqFI9TelA/llRiQYEKAwcORG8Pw32GaDQa5OTkICwsDHK53GDbaa39MQX1Z16aolnhZcKECcjKysL+/fvRuXNncbqbmxvu3LmDGzdu6PS+lJWVwc3NrdF1KRQKKBSKBtPlcrlBD4j2xsLCQvzK95VMFY9TelCtfQwZ+rOqPf1M6LN/el1tJAgCJkyYgM2bN+O7776Dt7e3zvx+/fpBLpdjz5494rTTp0/j/PnzCA4O1mdTRERERI3Sq+clMTER69evx5YtW2Bvby+OY3FwcIC1tTUcHBwwbtw4JCUlwcnJCUqlEhMnTkRwcDCvNCIiIqIWoVd4WblyJQBgyJAhOtPT09MxZswYAMDixYthZmaGuLg4qNVqREREYMWKFS1SLBEREZFe4UUQhD9sY2VlhbS0NKSlpTW7KCIiIqJ7eaD7vBAREZmSGo0WAHDiYoVBt1NVo8axcsDt3HXYWje86KSlFF2+ZbB1SxnDCxERtRln/vth/9amglbYmgW+KjraCtsBbBX8uP4tvhtERNRmhPe+e1uObi52sJabG2w7py9VIDmjAAvjA+Dr7mCw7QB3g4t3J1uDbkNqGF6IiKjNcLK1xOj+XgbfTv1t+7s528L/T4YNL9SQXvd5ISIiIjI2hhciIiKSFIYXIiIikhSGFyIiIpIUhhciIiKSFIYXIiIikhSGFyIiIpIUhhciIiKSFIYXIiIikhSGFyIiIpIUhhciIiKSFIYXIiIikhSGFyIiIpIUhhciIiKSFIYXIiIikhSGFyIiIpIUhhciIiKSFIYXIiIikhSGFyIiIpIUhhciIiKSFIYXIiIikhSGFyIiIpIUhhciIiKSFIYXIiIikhSGFyIiIpIUhhciIiKSFL3Dy/79+xEVFQUPDw/IZDJkZmbqzBcEATNmzIC7uzusra0RGhqKwsLClqqXiIiI2jm9w0tVVRUefvhhpKWlNTp/3rx5WLZsGVatWoUjR47A1tYWERERuH379gMXS0RERGSh7wKRkZGIjIxsdJ4gCFiyZAnefvttREdHAwC+/PJLuLq6IjMzE6NHj36waomIiKjd0zu83E9xcTFKS0sRGhoqTnNwcEBgYCAOHz7caHhRq9VQq9Xi68rKSgCARqOBRqNpyfLatdraWvEr31cyVTxOSSp4rLY8fd7HFg0vpaWlAABXV1ed6a6uruK830tNTcXs2bMbTM/OzoaNjU1LlteuXbgFABZQqVS4eMLY1RA1jscpSQWP1ZZXXV3d5LYtGl6aIyUlBUlJSeLryspKeHp6Ijw8HEql0oiVtS3Hz18DCo4hKCgID3s5GbscokbxOCWp4LHa8urPvDRFi4YXNzc3AEBZWRnc3d3F6WVlZejbt2+jyygUCigUigbT5XI55HJ5S5bXrllYWIhf+b6SqeJxSlLBY7Xl6fM+tuh9Xry9veHm5oY9e/aI0yorK3HkyBEEBwe35KaIiIiondK75+XWrVsoKioSXxcXFyM/Px9OTk7w8vLClClT8N5776F79+7w9vbGO++8Aw8PD8TExLRk3URERNRO6R1ejh07hqFDh4qv68erJCQkYM2aNXjjjTdQVVWFv//977hx4wYGDhyInTt3wsrKquWqJiIionZL7/AyZMgQCIJwz/kymQxz5szBnDlzHqgwIiIiosbw2UZEREQkKQwvREREJCkML0RERCQpDC9EREQkKQwvREREJCkML0RERCQpDC9EREQkKQwvREREJCkML0RERCQpDC9EREQkKQwvREREJCkML0RERCQpDC9EREQkKQwvREREJCkML0RERCQpDC9EREQkKQwvREREJCkWxi6AiNqu6upqnDp1qklta2pqMOuDeSj592m8XuCLWdPfgLW1dZO35efnBxsbm+aWSkQSwvBCRAZz6tQp9OvXT+/ldl86jd3bt+q1TF5eHh599FG9t0VE0sPwQkQG4+fnh7y8vPu2SUpKQm5uLuRyOZ55djRsOnVG9ZVf8Y9vNkCj0SAkJASLFi1q0raIqH1geCEig7Gxsblvb0hNTQ1yc3NhaWmJmzdvQiaTYfv27RgxYjY+X/0Z7O3tkZubi549e+p1ComI2jYO2CUio3n99dcB3O19AYBly5bhk08+wbJlywAAU6ZM0WlHRASw54WIjKiwsBAAcOXKFdja2qK2thYAsH37drz11ltISEjQaUdEBLDnhYiMqHv37gCAzz77DB07dsSqVauQnp6OVatWoWPHjli9erVOOyIigOGFiIzo/fffF///yy+/YOzYsejQoQPGjh2LX375pdF2REQML0RkNOnp6eL/HR0dER4ejkWLFiE8PByOjo6NtiMi4pgXIjKaM2fOAAC6dOmCc+fOYd++fTrz66fXtyMiAtjzQkRG1K1bNwDAuXPnGp1fP72+HRERwPBCREb0t7/9Tfy/paUl3njjDaxcuRJvvPEGLC0tG21HRMTTRhKkz/Ni6p2+dAPq0iKcPGGNuquOTV6Oz4shQ0pLSxP/7+DggK5du0KhUKBr165wcHBAeXm52O7NN980VplEZGIMFl7S0tIwf/58lJaW4uGHH8by5cvRv39/Q22uXWnu82IA4Pkv9GvP58WQIa1duxYA8Mgjj6CgoADjx48X51lYWKBv377Iz8/H2rVrGV6ISGSQ8PLNN98gKSkJq1atQmBgIJYsWYKIiAicPn0aLi4uhthku9KU58X83q0aNb7dexgjhwbDzlqh17aIDOXOnTsAgPj4eKhUKixfvhzfffcdhg0bhokTJ+LDDz9Efn6+2I7IEFqzNxtgj3ZLkAmCILT0SgMDA/H444/jo48+AgDU1dXB09MTEydOxFtvvXXfZSsrK+Hg4ICKigoolcqWLq3d0mg0/31mzAjI5XJjl0MEAHj11Vfx8ccfw8bGBhUVFRAEQTxOZTIZHBwcUF1djVdeeQWrVq0ydrnURv3www/N7s1uDvZoN06fz/8WDy937tyBjY0NMjIyEBMTI05PSEjAjRs3sGXLFp32arUaarVap3hPT09cuXKF4aUFaTQa5OTkICwsjOGFTEZNTQ0cHBwAAM7OzpgxYwZsbW1RVVWFOXPmiGNeKioq+GBGMpjq6mqcPn1ar2Vu1aix68BRRAx6XK/ebADw9fVlz0sjKisr0alTpyaFlxY/bXTlyhVotVq4urrqTHd1dW20Wy41NRWzZ89uMD07O5vfXAPIyckxdglEOvr3749//etfKC8vx8SJExudv3fvXiNURnR/fw7ohps3ruHmDf2Wu3TpkkHqkbrq6uomtzX61UYpKSniE2WB//W8hIeHs+elBbHnhUzViBEjEBcXh23btjWYFxUVhX/+859GqIro/vg7teVVVlY2uW2Lh5dOnTrB3NwcZWVlOtPLysrg5ubWoL1CoYBC0bDLTS6X84AwAL6vZIq2bt2KmpoaJCUlQaVSISgoCIsWLeKpIjJ5/J3acvR5H1v8JnWWlpbo168f9uzZI06rq6vDnj17EBwc3NKbI6I2wtraGsuWLcOsWbOwbNkyBhciuieDnDZKSkpCQkICHnvsMfTv3x9LlixBVVUVXnrpJUNsjoiIiNoRg4SXZ599FuXl5ZgxYwZKS0vRt29f7Ny5s8EgXiIiIiJ9GWzA7oQJEzBhwgRDrZ6IiIjaKT6YkYiIiCSF4YWIiIgkheGFiIiIJIXhhYiIiCSF4YWIiIgkheGFiIiIJIXhhYiIiCTF6A9m/D1BEADo94Am+mMajQbV1dWorKzkczjIZPE4Jangsdry6j/363PA/ZhceLl58yYAwNPT08iVEBERUWu7efMmHBwc7ttGJjQl4rSiuro6lJSUwN7eHjKZzNjltBmVlZXw9PTEhQsXoFQqjV0OUaN4nJJU8FhteYIg4ObNm/Dw8ICZ2f1HtZhcz4uZmRk6d+5s7DLaLKVSyR80Mnk8TkkqeKy2rD/qcanHAbtEREQkKQwvREREJCkML+2EQqHAzJkzoVAojF0K0T3xOCWp4LFqXCY3YJeIiIjoftjzQkRERJLC8EJERESSwvBCREREksLwQkRERJLC8NLG7d+/H1FRUfDw8IBMJkNmZqaxSyJqIDU1FY8//jjs7e3h4uKCmJgYnD592thlETWwcuVK9OnTR7w5XXBwMHbs2GHsstodhpc2rqqqCg8//DDS0tKMXQrRPeXm5iIxMREqlQo5OTnQaDQIDw9HVVWVsUsj0tG5c2fMnTsXeXl5OHbsGIYNG4bo6Gj8+OOPxi6tXeGl0u2ITCbD5s2bERMTY+xSiO6rvLwcLi4uyM3NxeDBg41dDtF9OTk5Yf78+Rg3bpyxS2k3TO7ZRkREFRUVAO5+KBCZKq1Wi40bN6KqqgrBwcHGLqddYXghIpNSV1eHKVOmYMCAAfD39zd2OUQNFBQUIDg4GLdv34adnR02b96MXr16GbusdoXhhYhMSmJiIk6cOIGDBw8auxSiRvn6+iI/Px8VFRXIyMhAQkICcnNzGWBaEcMLEZmMCRMmICsrC/v370fnzp2NXQ5RoywtLeHj4wMA6NevH44ePYqlS5fi448/NnJl7QfDCxEZnSAImDhxIjZv3ox9+/bB29vb2CURNVldXR3UarWxy2hXGF7auFu3bqGoqEh8XVxcjPz8fDg5OcHLy8uIlRH9T2JiItavX48tW7bA3t4epaWlAAAHBwdYW1sbuTqi/0lJSUFkZCS8vLxw8+ZNrF+/Hvv27cOuXbuMXVq7wkul27h9+/Zh6NChDaYnJCRgzZo1rV8QUSNkMlmj09PT0zFmzJjWLYboPsaNG4c9e/bg0qVLcHBwQJ8+ffDmm28iLCzM2KW1KwwvREREJCm8wy4RERFJCsMLERERSQrDCxEREUkKwwsRERFJCsMLERERSQrDCxEREUkKwwsRERFJCsMLERERSQrDCxEZzZAhQzBlyhRjl0FEEsPwQkQPZMyYMZDJZJDJZOLTdufMmYPa2lpjl0ZEbRQfzEhED+yJJ55Aeno61Go1tm/fjsTERMjlcqSkpBi7NCJqg9jzQkQPTKFQwM3NDV26dMFrr72G0NBQbN26FQDw/fffY8iQIbCxsUGHDh0QERGB69evN7qer776Co899hjs7e3h5uaG559/HpcvXxbnX79+HX/5y1/g7OwMa2trdO/eHenp6QCAO3fuYMKECXB3d4eVlRW6dOmC1NRUw+88EbU69rwQUYuztrbG1atXkZ+fj+HDh2Ps2LFYunQpLCwssHfvXmi12kaX02g0ePfdd+Hr64vLly8jKSkJY8aMwfbt2wEA77zzDn766Sfs2LEDnTp1QlFREWpqagAAy5Ytw9atW/GPf/wDXl5euHDhAi5cuNBq+0xErYfhhYhajCAI2LNnD3bt2oWJEydi3rx5eOyxx7BixQqxTe/eve+5/NixY8X/P/TQQ1i2bBkef/xx3Lp1C3Z2djh//jweeeQRPPbYYwCArl27iu3Pnz+P7t27Y+DAgZDJZOjSpUvL7yARmQSeNiKiB5aVlQU7OztYWVkhMjISzz77LGbNmiX2vDRVXl4eoqKi4OXlBXt7e4SEhAC4G0wA4LXXXsOGDRvQt29fvPHGGzh06JC47JgxY5Cfnw9fX19MmjQJ2dnZLbuTRGQyGF6I6IENHToU+fn5KCwsRE1NDb744gvY2trC2tq6yeuoqqpCREQElEol1q1bh6NHj2Lz5s0A7o5nAYDIyEicO3cOU6dORUlJCYYPH45p06YBAB599FEUFxfj3XffRU1NDZ555hnEx8e3/M4SkdExvBDRA7O1tYWPjw+8vLxgYfG/s9F9+vTBnj17mrSOU6dO4erVq5g7dy4GDRoEPz8/ncG69ZydnZGQkIC1a9diyZIl+OSTT8R5SqUSzz77LD799FN88803+Oc//4lr1649+A4SkUnhmBciMpiUlBQEBARg/PjxePXVV2FpaYm9e/fi6aefRqdOnXTaenl5wdLSEsuXL8err76KEydO4N1339VpM2PGDPTr1w+9e/eGWq1GVlYWevbsCQBYtGgR3N3d8cgjj8DMzAwbN26Em5sbHB0dW2t3iaiVsOeFiAymR48eyM7OxvHjx9G/f38EBwdjy5YtOr0z9ZydnbFmzRps3LgRvXr1wty5c7FgwQKdNpaWlkhJSUGfPn0wePBgmJubY8OGDQAAe3t7cYDw448/jrNnz2L79u0wM+OvOaK2RiYIgmDsIoiIiIiain+SEBERkaQwvBAREZGkMLwQERGRpDC8EBERkaQwvBAREZGkMLwQERGRpDC8EBERkaQwvBAREZGkMLwQERGRpDC8EBERkaQwvBAREZGk/D9ugScqxGJphgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "def q1(x):\n", + " return x.quantile(0.25)\n", + "\n", + "\n", + "# median = quantile(0.5)\n", + "def q2(x):\n", + " return x.quantile(0.5)\n", + "\n", + "\n", + "def q3(x):\n", + " return x.quantile(0.75)\n", + "\n", + "\n", + "def iqr(x):\n", + " return q3(x) - q1(x)\n", + "\n", + "\n", + "def low_iqr(x):\n", + " return max(0, q1(x) - 1.5 * iqr(x))\n", + "\n", + "\n", + "def high_iqr(x):\n", + " return q3(x) + 1.5 * iqr(x)\n", + "\n", + "\n", + "quantiles = data[[\"Pclass\", \"Age\"]].groupby([\"Pclass\"]).aggregate([\"min\", q1, q2, \"median\", q3, \"max\"])\n", + "print(quantiles)\n", + "\n", + "iqrs = data[[\"Pclass\", \"Age\"]].groupby([\"Pclass\"]).aggregate([low_iqr, iqr, high_iqr])\n", + "print(iqrs)\n", + "\n", + "data.boxplot(column=\"Age\", by=\"Pclass\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Визуализация - Гистограмма" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGdCAYAAAAIbpn/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAqDklEQVR4nO3de3RU5b3/8c+QG0FyETC3kkDkKkIoImDKpShUbktF8CxUOAalWm1QIFoBrSC1NFQWVDwi9JwDiR5FhC7wWkGIEEqLKGhA9Ge4GAFLuFQlIaEkkHl+f7CY5ZgLyTDJnmd4v9aatdjP3rPzfWabyce9n70flzHGCAAAwELNnC4AAADAVwQZAABgLYIMAACwFkEGAABYiyADAACsRZABAADWIsgAAABrEWQAAIC1Qp0uoLG53W4dOXJEUVFRcrlcTpcDAADqwRijU6dOKSkpSc2a1X7eJeiDzJEjR5ScnOx0GQAAwAeHDx9W27Zta10f9EEmKipK0vkPIjo62uFqAABAfZSWlio5Odnzd7w2QR9kLlxOio6OJsgAAGCZiw0LYbAvAACwFkEGAABYiyADAACsFfRjZAAAaErGGJ07d05VVVVOlxLQQkJCFBoaesmPRiHIAADgJ5WVlSouLtbp06edLsUKLVq0UGJiosLDw33eB0EGAAA/cLvdKioqUkhIiJKSkhQeHs6DWGthjFFlZaVOnDihoqIiderUqc6H3tWFIAMAgB9UVlbK7XYrOTlZLVq0cLqcgBcZGamwsDAdPHhQlZWVat68uU/7YbAvAAB+5OuZhcuRPz4rPm0AAGAtggwAALAWY2QAAGhk7We822Q/6+t5o3x+77Zt2zRgwAANHz5c777bdDVfCs7IAAAASdKyZcv08MMPa8uWLTpy5IjT5dQLQQYAAKisrEyvv/66HnroIY0aNUq5uble69966y116tRJzZs314033qiXXnpJLpdLJ0+e9GyzdetWDRw4UJGRkUpOTtYjjzyi8vLyRq2bIAMAALRq1Sp17dpVXbp00YQJE7R8+XIZYyRJRUVFuuOOOzR69Gjt2rVLv/rVr/Tkk096vf/AgQMaPny4xo4dq927d+v111/X1q1bNXny5EatmzEywCWq7dr3pVynBoCmtmzZMk2YMEGSNHz4cJWUlCg/P1+DBw/Wn//8Z3Xp0kXz58+XJHXp0kV79uzR3LlzPe/Pzs7W+PHjNXXqVElSp06d9Pzzz+vnP/+5lixZ4vNzYi6GMzIAAFzmCgsL9dFHH+muu+6SJIWGhmrcuHFatmyZZ32fPn283tO3b1+v5V27dik3N1ctW7b0vIYNG+Z54nFj4YwMAACXuWXLluncuXNKSkrytBljFBERoRdeeKFe+ygrK9OvfvUrPfLII9XWpaSk+K3WHyPIAABwGTt37pxefvllLViwQDfffLPXutGjR+u1115Tly5d9Ne//tVr3ccff+y1fN111+mLL75Qx44dG73mHyLIAABwGXvnnXf0/fffa9KkSYqJifFaN3bsWC1btkyrVq3SwoULNX36dE2aNEkFBQWeu5ouTIw5ffp03XDDDZo8ebJ++ctf6oorrtAXX3yhDRs21Pusji8YIwMAwGVs2bJlGjp0aLUQI50PMjt27NCpU6f0l7/8RWvWrFFaWpqWLFniuWspIiJCkpSWlqb8/Hzt3btXAwcOVK9evTRr1iyvy1WNgTMyAAA0skC+i/Htt9+udV3fvn09t2CnpaXp1ltv9aybO3eu2rZt63U3Up8+ffT+++83XrE1cPSMzJIlS5SWlqbo6GhFR0crPT1d7733nmf9mTNnlJmZqdatW6tly5YaO3asjh075mDFAABcnl588UV9/PHH+uqrr/R///d/mj9/vjIyMpwuy9kg07ZtW82bN087d+7Ujh07dNNNN+m2227T559/LkmaNm2a3n77ba1evVr5+fk6cuSIxowZ42TJAABclvbt26fbbrtN3bp10zPPPKNHH31UTz/9tNNlyWUunDMKEK1atdL8+fN1xx136KqrrtKKFSt0xx13SJK+/PJLXXPNNdq2bZtuuOGGeu2vtLRUMTExKikpUXR0dGOWjssUD8QDIJ2/ilBUVKTU1NRGe/hbsKnrM6vv3++AGexbVVWllStXqry8XOnp6dq5c6fOnj2roUOHerbp2rWrUlJStG3bNgcrBQAAgcLxwb6fffaZ0tPTdebMGbVs2VJr165Vt27dVFBQoPDwcMXGxnptHx8fr6NHj9a6v4qKClVUVHiWS0tLG6t0AADgMMfPyHTp0kUFBQXavn27HnroIWVkZOiLL77weX/Z2dmKiYnxvJKTk/1YLQAAdQuwERsBzR+fleNBJjw8XB07dlTv3r2VnZ2tnj17atGiRUpISFBlZaXX9OCSdOzYMSUkJNS6v5kzZ6qkpMTzOnz4cCP3AAAAKSwsTJJ0+vRphyuxx4XP6sJn5wvHLy39mNvtVkVFhXr37q2wsDDl5eVp7Nixks5PWnXo0CGlp6fX+v6IiAjPw3kAAGgqISEhio2N1fHjxyVJLVq08Dz1Ft6MMTp9+rSOHz+u2NhYhYSE+LwvR4PMzJkzNWLECKWkpOjUqVNasWKFNm/erPXr1ysmJkaTJk1SVlaWWrVqpejoaD388MNKT0+v9x1LAAA0pQtXDC6EGdQtNja2zqss9eFokDl+/LjuueceFRcXKyYmRmlpaVq/fr1+8YtfSJL+9Kc/qVmzZho7dqwqKio0bNgwvfjii06WDABArVwulxITExUXF6ezZ886XU5ACwsLu6QzMRcE3HNk/I3nyKCx8RwZAPA/654jAwAA0FAEGQAAYC2CDAAAsBZBBgAAWIsgAwAArEWQAQAA1iLIAAAAaxFkAACAtQgyAADAWgQZAABgLYIMAACwFkEGAABYiyADAACsRZABAADWIsgAAABrEWQAAIC1CDIAAMBaBBkAAGAtggwAALAWQQYAAFiLIAMAAKxFkAEAANYiyAAAAGsRZAAAgLUIMgAAwFoEGQAAYC2CDAAAsBZBBgAAWCvU6QKAQNR+xrvV2r6eN8qBSgAAdeGMDAAAsBZBBgAAWIsgAwAArEWQAQAA1iLIAAAAaxFkAACAtQgyAADAWgQZAABgLYIMAACwFkEGAABYiykKYK2aphGQmEoAAC4nnJEBAADWIsgAAABrEWQAAIC1CDIAAMBaBBkAAGAtggwAALCWo0EmOztbffr0UVRUlOLi4jR69GgVFhZ6bTN48GC5XC6v14MPPuhQxQAAIJA4GmTy8/OVmZmpDz/8UBs2bNDZs2d18803q7y83Gu7+++/X8XFxZ7Xs88+61DFAAAgkDj6QLx169Z5Lefm5iouLk47d+7UoEGDPO0tWrRQQkJCU5cHAAACXECNkSkpKZEktWrVyqv91VdfVZs2bdS9e3fNnDlTp0+frnUfFRUVKi0t9XoBAIDgFDBTFLjdbk2dOlX9+/dX9+7dPe1333232rVrp6SkJO3evVvTp09XYWGh1qxZU+N+srOzNWfOnKYqGwGoIVMX1LZtoKipvtqmYGDKBgCXo4AJMpmZmdqzZ4+2bt3q1f7AAw94/t2jRw8lJiZqyJAhOnDggDp06FBtPzNnzlRWVpZnubS0VMnJyY1XOAAAcExABJnJkyfrnXfe0ZYtW9S2bds6t+3Xr58kaf/+/TUGmYiICEVERDRKnQAAILA4GmSMMXr44Ye1du1abd68WampqRd9T0FBgSQpMTGxkasDAACBztEgk5mZqRUrVujNN99UVFSUjh49KkmKiYlRZGSkDhw4oBUrVmjkyJFq3bq1du/erWnTpmnQoEFKS0tzsnQAABAAHA0yS5YskXT+oXc/lJOTo4kTJyo8PFwbN27Uc889p/LyciUnJ2vs2LH67W9/60C1AAAg0Dh+aakuycnJys/Pb6JqAACAbQLqOTIAAAANQZABAADWIsgAAABrEWQAAIC1CDIAAMBaAfFkXyAYNWSeJACAbzgjAwAArEWQAQAA1iLIAAAAaxFkAACAtQgyAADAWgQZAABgLYIMAACwFkEGAABYiyADAACsRZABAADWIsgAAABrEWQAAIC1CDIAAMBaBBkAAGAtggwAALAWQQYAAFiLIAMAAKxFkAEAANYiyAAAAGsRZAAAgLUIMgAAwFqhThcAoGHaz3jX6RLqVFN9X88b5UAlAC4HnJEBAADWIsgAAABrEWQAAIC1CDIAAMBaBBkAAGAtggwAALAWQQYAAFiLIAMAAKxFkAEAANYiyAAAAGsRZAAAgLUIMgAAwFoEGQAAYC2CDAAAsBZBBgAAWIsgAwAArEWQAQAA1iLIAAAAazkaZLKzs9WnTx9FRUUpLi5Oo0ePVmFhodc2Z86cUWZmplq3bq2WLVtq7NixOnbsmEMVAwCAQOJokMnPz1dmZqY+/PBDbdiwQWfPntXNN9+s8vJyzzbTpk3T22+/rdWrVys/P19HjhzRmDFjHKwaAAAEilAnf/i6deu8lnNzcxUXF6edO3dq0KBBKikp0bJly7RixQrddNNNkqScnBxdc801+vDDD3XDDTc4UTYAAAgQATVGpqSkRJLUqlUrSdLOnTt19uxZDR061LNN165dlZKSom3bttW4j4qKCpWWlnq9AABAcAqYION2uzV16lT1799f3bt3lyQdPXpU4eHhio2N9do2Pj5eR48erXE/2dnZiomJ8bySk5Mbu3QAAOCQgAkymZmZ2rNnj1auXHlJ+5k5c6ZKSko8r8OHD/upQgAAEGgcHSNzweTJk/XOO+9oy5Ytatu2rac9ISFBlZWVOnnypNdZmWPHjikhIaHGfUVERCgiIqKxSwYAAAHA0TMyxhhNnjxZa9eu1QcffKDU1FSv9b1791ZYWJjy8vI8bYWFhTp06JDS09ObulwAABBgHD0jk5mZqRUrVujNN99UVFSUZ9xLTEyMIiMjFRMTo0mTJikrK0utWrVSdHS0Hn74YaWnp3PHEgAAcDbILFmyRJI0ePBgr/acnBxNnDhRkvSnP/1JzZo109ixY1VRUaFhw4bpxRdfbOJKAQBAIHI0yBhjLrpN8+bNtXjxYi1evLgJKgIAADYJmLuWAAAAGoogAwAArEWQAQAA1vIpyHz11Vf+rgMAAKDBfAoyHTt21I033qhXXnlFZ86c8XdNAAAA9eLTXUuffPKJcnJylJWVpcmTJ2vcuHGaNGmS+vbt6+/6AFyi9jPerdb29bxRjbJfAGhqPp2R+elPf6pFixbpyJEjWr58uYqLizVgwAB1795dCxcu1IkTJ/xdJwAAQDWXNNg3NDRUY8aM0erVq/XHP/5R+/fv12OPPabk5GTdc889Ki4u9ledAAAA1VxSkNmxY4d+/etfKzExUQsXLtRjjz2mAwcOaMOGDTpy5Ihuu+02f9UJAABQjU9jZBYuXKicnBwVFhZq5MiRevnllzVy5Eg1a3Y+F6Wmpio3N1ft27f3Z60AAABefAoyS5Ys0X333aeJEycqMTGxxm3i4uK0bNmySyoOAACgLj4FmX379l10m/DwcGVkZPiyewAAgHrxaYxMTk6OVq9eXa199erVeumlly65KAAAgPrwKchkZ2erTZs21drj4uL0hz/84ZKLAgAAqA+fgsyhQ4eUmpparb1du3Y6dOjQJRcFAABQHz4Fmbi4OO3evbta+65du9S6detLLgoAAKA+fBrse9ddd+mRRx5RVFSUBg0aJEnKz8/XlClTdOedd/q1QCCYBMpj/Wurwx9TFwBAU/IpyDzzzDP6+uuvNWTIEIWGnt+F2+3WPffcwxgZAADQZHwKMuHh4Xr99df1zDPPaNeuXYqMjFSPHj3Url07f9cHAABQK5+CzAWdO3dW586d/VULAABAg/gUZKqqqpSbm6u8vDwdP35cbrfba/0HH3zgl+IAAADq4lOQmTJlinJzczVq1Ch1795dLpfL33UBAABclE9BZuXKlVq1apVGjhzp73oAAADqzafnyISHh6tjx47+rgUAAKBBfAoyjz76qBYtWiRjjL/rAQAAqDefLi1t3bpVmzZt0nvvvadrr71WYWFhXuvXrFnjl+IAAADq4lOQiY2N1e233+7vWgAAABrEpyCTk5Pj7zoASTw632k1ff589gACmU9jZCTp3Llz2rhxo/785z/r1KlTkqQjR46orKzMb8UBAADUxaczMgcPHtTw4cN16NAhVVRU6Be/+IWioqL0xz/+URUVFVq6dKm/6wQAAKjGpzMyU6ZM0fXXX6/vv/9ekZGRnvbbb79deXl5fisOAACgLj6dkfnb3/6mf/zjHwoPD/dqb9++vf75z3/6pTAAAICL8emMjNvtVlVVVbX2b775RlFRUZdcFAAAQH34FGRuvvlmPffcc55ll8ulsrIyzZ49m2kLAABAk/Hp0tKCBQs0bNgwdevWTWfOnNHdd9+tffv2qU2bNnrttdf8XSMAAECNfAoybdu21a5du7Ry5Urt3r1bZWVlmjRpksaPH+81+BcAAKAx+RRkJCk0NFQTJkzwZy0AAAAN4lOQefnll+tcf8899/hUDAAAQEP4FGSmTJnitXz27FmdPn1a4eHhatGiBUEGAAA0CZ/uWvr++++9XmVlZSosLNSAAQMY7AsAAJqMz3Mt/VinTp00b968amdrAAAAGovfgox0fgDwkSNH/LlLAACAWvk0Ruatt97yWjbGqLi4WC+88IL69+/vl8IAAAAuxqcgM3r0aK9ll8ulq666SjfddJMWLFjgj7oAAAAuyqcg43a7/V0HAABAg/l1jAwAAEBT8umMTFZWVr23XbhwYa3rtmzZovnz52vnzp0qLi7W2rVrvS5bTZw4US+99JLXe4YNG6Z169Y1uGYAABB8fAoyn376qT799FOdPXtWXbp0kSTt3btXISEhuu666zzbuVyuOvdTXl6unj176r777tOYMWNq3Gb48OHKycnxLEdERPhSMgAACEI+BZlbbrlFUVFReumll3TllVdKOv+QvHvvvVcDBw7Uo48+Wq/9jBgxQiNGjKhzm4iICCUkJPhSJgAACHI+jZFZsGCBsrOzPSFGkq688kr9/ve/9/tdS5s3b1ZcXJy6dOmihx56SN9++22d21dUVKi0tNTrBQAAgpNPZ2RKS0t14sSJau0nTpzQqVOnLrmoC4YPH64xY8YoNTVVBw4c0BNPPKERI0Zo27ZtCgkJqfE92dnZmjNnjt9qQPBoP+NdR99vq8u13wDs4FOQuf3223XvvfdqwYIF6tu3ryRp+/bt+s1vflPrWBdf3HnnnZ5/9+jRQ2lpaerQoYM2b96sIUOG1PiemTNneg1GLi0tVXJyst9qAgAAgcOnILN06VI99thjuvvuu3X27NnzOwoN1aRJkzR//ny/FvhDV199tdq0aaP9+/fXGmQiIiIYEAwAwGXCpyDTokULvfjii5o/f74OHDggSerQoYOuuOIKvxb3Y998842+/fZbJSYmNurPAQAAdvApyFxQXFys4uJiDRo0SJGRkTLGXPSW6x8qKyvT/v37PctFRUUqKChQq1at1KpVK82ZM0djx45VQkKCDhw4oMcff1wdO3bUsGHDLqVsAAAQJHy6a+nbb7/VkCFD1LlzZ40cOVLFxcWSpEmTJtX71mtJ2rFjh3r16qVevXpJOv+gvV69emnWrFkKCQnR7t27deutt6pz586aNGmSevfurb/97W9cOgIAAJJ8PCMzbdo0hYWF6dChQ7rmmms87ePGjVNWVla9b8EePHiwjDG1rl+/fr0v5QEAgMuET0Hm/fff1/r169W2bVuv9k6dOungwYN+KQwAAOBifLq0VF5erhYtWlRr/+6777jsAwAAmoxPQWbgwIF6+eWXPcsul0tut1vPPvusbrzxRr8VBwAAUBefLi09++yzGjJkiHbs2KHKyko9/vjj+vzzz/Xdd9/p73//u79rBAAAqJFPQaZ79+7au3evXnjhBUVFRamsrExjxoxRZmbmZfWMl9oe3f71vFFNXAkQXGr63eL3CkBNGhxkzp49q+HDh2vp0qV68sknG6MmAACAemnwGJmwsDDt3r27MWoBAABoEJ8G+06YMEHLli3zdy0AAAAN4tMYmXPnzmn58uXauHGjevfuXW2OpYULF/qlOAAAgLo0KMh89dVXat++vfbs2aPrrrtOkrR3716vbRoy1xIAAMClaFCQ6dSpk4qLi7Vp0yZJ56ckeP755xUfH98oxQEAANSlQWNkfjwv0nvvvafy8nK/FgQAAFBfPg32vaCuCR8BAAAaW4OCjMvlqjYGhjExAADAKQ0aI2OM0cSJEz0TQ545c0YPPvhgtbuW1qxZ478KAQAAatGgIJORkeG1PGHCBL8WAwAA0BANCjI5OTmNVQdQp9rmtcLlo6FzmzFfE3B5uKTBvgAAAE4iyAAAAGsRZAAAgLUIMgAAwFoEGQAAYC2CDAAAsBZBBgAAWIsgAwAArEWQAQAA1iLIAAAAazVoigIAuFw0dEoEAM7gjAwAALAWQQYAAFiLIAMAAKxFkAEAANYiyAAAAGsRZAAAgLUIMgAAwFoEGQAAYC2CDAAAsBZBBgAAWIspCgA4prZpAACgvjgjAwAArEWQAQAA1iLIAAAAaxFkAACAtQgyAADAWgQZAABgLYIMAACwlqNBZsuWLbrllluUlJQkl8ulN954w2u9MUazZs1SYmKiIiMjNXToUO3bt8+ZYgEAQMBxNMiUl5erZ8+eWrx4cY3rn332WT3//PNaunSptm/friuuuELDhg3TmTNnmrhSAAAQiBx9su+IESM0YsSIGtcZY/Tcc8/pt7/9rW677TZJ0ssvv6z4+Hi98cYbuvPOO5uyVAAAEIACdoxMUVGRjh49qqFDh3raYmJi1K9fP23btq3W91VUVKi0tNTrBQAAglPAzrV09OhRSVJ8fLxXe3x8vGddTbKzszVnzpxGre1iaps/5ut5oy5pWwDBrabvA74LgLoF7BkZX82cOVMlJSWe1+HDh50uCQAANJKADTIJCQmSpGPHjnm1Hzt2zLOuJhEREYqOjvZ6AQCA4BSwQSY1NVUJCQnKy8vztJWWlmr79u1KT093sDIAABAoHB0jU1ZWpv3793uWi4qKVFBQoFatWiklJUVTp07V73//e3Xq1Empqal66qmnlJSUpNGjRztXNAAACBiOBpkdO3boxhtv9CxnZWVJkjIyMpSbm6vHH39c5eXleuCBB3Ty5EkNGDBA69atU/PmzZ0qGQAABBBHg8zgwYNljKl1vcvl0u9+9zv97ne/a8KqAACALQJ2jAwAAMDFEGQAAIC1CDIAAMBaBBkAAGCtgJ2iAACaSm1ThTTWPph2APAfzsgAAABrEWQAAIC1CDIAAMBaBBkAAGAtggwAALAWQQYAAFiLIAMAAKxFkAEAANYiyAAAAGsRZAAAgLWYouAyVNOj1HlkOmzlj+kFgl1tnxG/9wgGnJEBAADWIsgAAABrEWQAAIC1CDIAAMBaBBkAAGAtggwAALAWQQYAAFiLIAMAAKxFkAEAANYiyAAAAGsRZAAAgLWYawlAo2M+JN8xTxJQN87IAAAAaxFkAACAtQgyAADAWgQZAABgLYIMAACwFkEGAABYiyADAACsRZABAADWIsgAAABrEWQAAIC1mKKgCV2uj2m/XPsN1MYfvxNMXQCcxxkZAABgLYIMAACwFkEGAABYiyADAACsRZABAADWIsgAAABrBXSQefrpp+VyubxeXbt2dbosAAAQIAL+OTLXXnutNm7c6FkODQ34kgEAQBMJ+FQQGhqqhIQEp8sAAAABKKAvLUnSvn37lJSUpKuvvlrjx4/XoUOHnC4JAAAEiIA+I9OvXz/l5uaqS5cuKi4u1pw5czRw4EDt2bNHUVFRNb6noqJCFRUVnuXS0tKmKhcAADSxgA4yI0aM8Pw7LS1N/fr1U7t27bRq1SpNmjSpxvdkZ2drzpw5TVUiAIs05hxHwaKhczjVtD3zPaEpBfylpR+KjY1V586dtX///lq3mTlzpkpKSjyvw4cPN2GFAACgKVkVZMrKynTgwAElJibWuk1ERISio6O9XgAAIDgFdJB57LHHlJ+fr6+//lr/+Mc/dPvttyskJER33XWX06UBAIAAENBjZL755hvddddd+vbbb3XVVVdpwIAB+vDDD3XVVVc5XRoAAAgAAR1kVq5c6XQJAAAggAX0pSUAAIC6EGQAAIC1CDIAAMBaBBkAAGAtggwAALBWQN+1dDlr6GPCG7KPS62Dx48D8EVDvtf88R2IywNnZAAAgLUIMgAAwFoEGQAAYC2CDAAAsBZBBgAAWIsgAwAArEWQAQAA1iLIAAAAaxFkAACAtQgyAADAWkxRYBl/TDsAAIGksb7XAmWag0CpI1hxRgYAAFiLIAMAAKxFkAEAANYiyAAAAGsRZAAAgLUIMgAAwFoEGQAAYC2CDAAAsBZBBgAAWIsgAwAArEWQAQAA1mKuJUjyz1wnzAMF2KUhv7ONtW1DBfL3TCDXFsw4IwMAAKxFkAEAANYiyAAAAGsRZAAAgLUIMgAAwFoEGQAAYC2CDAAAsBZBBgAAWIsgAwAArEWQAQAA1mKKAjQYj+EGAhe/nxdX02f09bxRDlRSf7Ud16auOxA/O87IAAAAaxFkAACAtQgyAADAWgQZAABgLYIMAACwFkEGAABYy4ogs3jxYrVv317NmzdXv3799NFHHzldEgAACAABH2Ref/11ZWVlafbs2frkk0/Us2dPDRs2TMePH3e6NAAA4LCADzILFy7U/fffr3vvvVfdunXT0qVL1aJFCy1fvtzp0gAAgMMC+sm+lZWV2rlzp2bOnOlpa9asmYYOHapt27bV+J6KigpVVFR4lktKSiRJpaWlfq/PXXHa7/sEADQ9f/yNaOjfhIb8zNr23Rh/2xpaR2PVcGG/xpg6twvoIPOvf/1LVVVVio+P92qPj4/Xl19+WeN7srOzNWfOnGrtycnJjVIjAMB+Mc/Z+TOdqPvHGruGU6dOKSYmptb1AR1kfDFz5kxlZWV5lt1ut7777ju1bt1aLpfrkvdfWlqq5ORkHT58WNHR0Ze8v0AU7H0M9v5J9DEYBHv/JPoYDBqzf8YYnTp1SklJSXVuF9BBpk2bNgoJCdGxY8e82o8dO6aEhIQa3xMREaGIiAivttjYWL/XFh0dHZT/Uf5QsPcx2Psn0cdgEOz9k+hjMGis/tV1JuaCgB7sGx4ert69eysvL8/T5na7lZeXp/T0dAcrAwAAgSCgz8hIUlZWljIyMnT99derb9++eu6551ReXq57773X6dIAAIDDAj7IjBs3TidOnNCsWbN09OhR/fSnP9W6deuqDQBuKhEREZo9e3a1y1fBJNj7GOz9k+hjMAj2/kn0MRgEQv9c5mL3NQEAAASogB4jAwAAUBeCDAAAsBZBBgAAWIsgAwAArEWQaaDFixerffv2at68ufr166ePPvrI6ZJ8smXLFt1yyy1KSkqSy+XSG2+84bXeGKNZs2YpMTFRkZGRGjp0qPbt2+dMsT7Kzs5Wnz59FBUVpbi4OI0ePVqFhYVe25w5c0aZmZlq3bq1WrZsqbFjx1Z7AGOgWrJkidLS0jwPokpPT9d7773nWW9z32ozb948uVwuTZ061dNmez+ffvppuVwur1fXrl09623vnyT985//1IQJE9S6dWtFRkaqR48e2rFjh2e97d837du3r3YMXS6XMjMzJQXHMayqqtJTTz2l1NRURUZGqkOHDnrmmWe85kFy7Dga1NvKlStNeHi4Wb58ufn888/N/fffb2JjY82xY8ecLq3B/vrXv5onn3zSrFmzxkgya9eu9Vo/b948ExMTY9544w2za9cuc+utt5rU1FTz73//25mCfTBs2DCTk5Nj9uzZYwoKCszIkSNNSkqKKSsr82zz4IMPmuTkZJOXl2d27NhhbrjhBvOzn/3Mwarr76233jLvvvuu2bt3ryksLDRPPPGECQsLM3v27DHG2N23mnz00Uemffv2Ji0tzUyZMsXTbns/Z8+eba699lpTXFzseZ04ccKz3vb+fffdd6Zdu3Zm4sSJZvv27earr74y69evN/v37/dsY/v3zfHjx72O34YNG4wks2nTJmOM/cfQGGPmzp1rWrdubd555x1TVFRkVq9ebVq2bGkWLVrk2cap40iQaYC+ffuazMxMz3JVVZVJSkoy2dnZDlZ16X4cZNxut0lISDDz58/3tJ08edJERESY1157zYEK/eP48eNGksnPzzfGnO9TWFiYWb16tWeb//f//p+RZLZt2+ZUmZfkyiuvNP/7v/8bdH07deqU6dSpk9mwYYP5+c9/7gkywdDP2bNnm549e9a4Lhj6N336dDNgwIBa1wfj982UKVNMhw4djNvtDopjaIwxo0aNMvfdd59X25gxY8z48eONMc4eRy4t1VNlZaV27typoUOHetqaNWumoUOHatu2bQ5W5n9FRUU6evSoV19jYmLUr18/q/taUlIiSWrVqpUkaefOnTp79qxXP7t27aqUlBTr+llVVaWVK1eqvLxc6enpQdU3ScrMzNSoUaO8+iMFzzHct2+fkpKSdPXVV2v8+PE6dOiQpODo31tvvaXrr79e//Ef/6G4uDj16tVL//M//+NZH2zfN5WVlXrllVd03333yeVyBcUxlKSf/exnysvL0969eyVJu3bt0tatWzVixAhJzh7HgH+yb6D417/+paqqqmpPFI6Pj9eXX37pUFWN4+jRo5JUY18vrLON2+3W1KlT1b9/f3Xv3l3S+X6Gh4dXm1TUpn5+9tlnSk9P15kzZ9SyZUutXbtW3bp1U0FBgfV9u2DlypX65JNP9PHHH1dbFwzHsF+/fsrNzVWXLl1UXFysOXPmaODAgdqzZ09Q9O+rr77SkiVLlJWVpSeeeEIff/yxHnnkEYWHhysjIyPovm/eeOMNnTx5UhMnTpQUHP+NStKMGTNUWlqqrl27KiQkRFVVVZo7d67Gjx8vydm/GwQZXBYyMzO1Z88ebd261elS/KpLly4qKChQSUmJ/vKXvygjI0P5+flOl+U3hw8f1pQpU7RhwwY1b97c6XIaxYX/o5WktLQ09evXT+3atdOqVasUGRnpYGX+4Xa7df311+sPf/iDJKlXr17as2ePli5dqoyMDIer879ly5ZpxIgRSkpKcroUv1q1apVeffVVrVixQtdee60KCgo0depUJSUlOX4cubRUT23atFFISEi1kebHjh1TQkKCQ1U1jgv9CZa+Tp48We+88442bdqktm3betoTEhJUWVmpkydPem1vUz/Dw8PVsWNH9e7dW9nZ2erZs6cWLVoUFH2Tzl9aOX78uK677jqFhoYqNDRU+fn5ev755xUaGqr4+Pig6OcPxcbGqnPnztq/f39QHMfExER169bNq+2aa67xXD4Lpu+bgwcPauPGjfrlL3/paQuGYyhJv/nNbzRjxgzdeeed6tGjh/7zP/9T06ZNU3Z2tiRnjyNBpp7Cw8PVu3dv5eXledrcbrfy8vKUnp7uYGX+l5qaqoSEBK++lpaWavv27Vb11RijyZMna+3atfrggw+Umprqtb53794KCwvz6mdhYaEOHTpkVT9/yO12q6KiImj6NmTIEH322WcqKCjwvK6//nqNHz/e8+9g6OcPlZWV6cCBA0pMTAyK49i/f/9qjz3Yu3ev2rVrJyl4vm8kKScnR3FxcRo1apSnLRiOoSSdPn1azZp5R4aQkBC53W5JDh/HRh1KHGRWrlxpIiIiTG5urvniiy/MAw88YGJjY83Ro0edLq3BTp06ZT799FPz6aefGklm4cKF5tNPPzUHDx40xpy/jS42Nta8+eabZvfu3ea2226z6nZIY4x56KGHTExMjNm8ebPXrZGnT5/2bPPggw+alJQU88EHH5gdO3aY9PR0k56e7mDV9TdjxgyTn59vioqKzO7du82MGTOMy+Uy77//vjHG7r7V5Yd3LRljfz8fffRRs3nzZlNUVGT+/ve/m6FDh5o2bdqY48ePG2Ps799HH31kQkNDzdy5c82+ffvMq6++alq0aGFeeeUVzzbB8H1TVVVlUlJSzPTp06uts/0YGmNMRkaG+clPfuK5/XrNmjWmTZs25vHHH/ds49RxJMg00H/913+ZlJQUEx4ebvr27Ws+/PBDp0vyyaZNm4ykaq+MjAxjzPlb6Z566ikTHx9vIiIizJAhQ0xhYaGzRTdQTf2TZHJycjzb/Pvf/za//vWvzZVXXmlatGhhbr/9dlNcXOxc0Q1w3333mXbt2pnw8HBz1VVXmSFDhnhCjDF2960uPw4ytvdz3LhxJjEx0YSHh5uf/OQnZty4cV7PWLG9f8YY8/bbb5vu3bubiIgI07VrV/Pf//3fXuuD4ftm/fr1RlKNdQfDMSwtLTVTpkwxKSkppnnz5ubqq682Tz75pKmoqPBs49RxdBnzg8fyAQAAWIQxMgAAwFoEGQAAYC2CDAAAsBZBBgAAWIsgAwAArEWQAQAA1iLIAAAAaxFkAACAtQgyAADAWgQZAABgLYIMAACwFkEGAABY6/8DtPi+4IjxfqwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "data.plot.hist(column=[\"Age\"], bins=80)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Визуализация - Точечная диаграмма" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAGwCAYAAACJjDBkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAw8UlEQVR4nO3deXRUVb728acyQghJIGEmgUAYRAwEAxIG0QZRRL04cmlEaBVbhRbQRkARnBB9udxmUnEAAbVlukLT0toiQhSkhQgBgRYCBIIyQwZIEITs9w+bMkVVhdQmsZL4/ayVtahdu3b9dp1zdj1UTp04jDFGAAAA8EmAvwsAAACoiAhRAAAAFghRAAAAFghRAAAAFghRAAAAFghRAAAAFghRAAAAFoL8XUBlVVhYqAMHDqh69epyOBz+LgcAAJSAMUYnT55U/fr1FRBQ/GdNhKgycuDAAcXGxvq7DAAAYGH//v1q2LBhsX0IUWWkevXqkn7eCBEREX6uBgAAlEReXp5iY2Od7+PFIUSVkQu/wouIiCBEAQBQwZTkVBxOLAcAALBAiAIAALBAiAIAALBAiAIAALBAiAIAALBAiAIAALBAiAIAALBAiAIAALBAiAIAALDg1xBljNFDDz2kmjVryuFwKD093S917N2716/PDwAAKh6//tmXTz75RHPmzNHq1avVpEkTxcTE+LOcCid1xxEtTf9BDkm3t2uors1qOe97YkG6vt57XClNYjTp7jbO/unf56hdXA2Xvs8v26av9hxTl4RaGntLK2f7jJUZWrv7mLo2q6VHr08odow9R09p34kCNY6upviYai41Xtzf07jFjeGt3dtr4qm+os95U+u62neiQF/uPKp/H8xzq8PTa+etveOEFTp88qzqRYTqq6d6OPs+NHeDvtmfrfaNamrmgORi6/PWt+vLK/VD7o+Kjaqq1FG/K3Z7JY7/RHlnzisyNFCbn7up2L7e2r3N21t9ntq7T1qlfdkFio+upjfuS3Zut4nLt3scY8H6LK3LPK7OTWN0daMa2neiQB98vU/bD+a51eFtv+n/5jptOZCrtg2j9O6DHYut2du+5Mvr4a3dU31F53d38i9/kNzbfuqpv7fn88aXY86XNcGXY9xbf2+vhy/Hvre+3sb2xJc1xVt/b/PGb4vDGGP89eQzZszQpEmTtG/fPn+VIOnnT6Li4+O1adMmtW3btlTGzMvLU2RkpHJzc0v9b+ftO56vW6evUd6P51zaI6oE6k/XJ2jCxzvcHhMW5FDBuV82dY2wYP35huZ6+m/b3PqO7NFMkz7LcGsPDw3UqTPnXcZ474EOeuWTnfoi46iz/dpmtfTkTc01YNZ6ZRf85GyvFhKg/LOFbuO+fV+y5q3b5zbGi31aa+zSrW7t0/slKTIs2O016fPqWpfnqxEWrHG3XKERC7e4PacnQ69tohlf7HFrv7d9Q7234fsSjdGuQXVt/OGkW/ufezbXrDWZLvWFBUoF5926KjkuQmlZeW7t1ybU1Be7TpSojsT64dpy4JRb+5Bu8Xo1NbNEY9yVVF+LNx1wa+/Tpq6Wbj5UojG8GXp9vGam7tW5wksvP0Oui9erq91r7t+hod5fX7LtMq53S63eedxtX7o9qV6J94/+1zTU+1+7P9/Qbk00I9V9vwl0SOeLTC8owKGZ/dtp5P9tcdtPJ92ZqIff3+jyejgkeXp1pvVtq9uSGri1ezoGLj5mL5h6Txs9+9F2tzpG3tBcT3lYE66sH6FtB37ZJ69tVktP3thcA2avdxvD05rQLjZSW37I1bkih39QgEPvPdBBr63eU6Jjv1PTaBkjrdtz3KXvI92aaMDs9S6vXVCAQ8uGdFarBpEu88gpOKvHPkgv0ZrirX+HxjW04/BJ5Z7+Zf2tERasZUO6KDY6zG0MVDy+vH/7LUQNGjRIc+fOdd5u1KiR9uzZo1deeUVvvvmmDh06pObNm+uZZ57RXXfdJUlavXq1rr/+en3yyScaPXq0vvvuO6WkpGj+/Pn65ptv9Pjjj+uHH37QLbfcorffflthYT/v0J988olefPFFbd26VYGBgUpJSdHUqVPVtGlTSZ5D1NatWzVy5Eh9+eWXqlatmnr27Km//OUvJf60rCxDVNLzn7osXP4UFOCQMdL5IrtRoMMhh0MleoMs+piLx4ioGqS80+fc2jsnxGjeAx1cHl+eXhOUT572sfP++z/kZdn7cm+3tl/zGCjuGPe0JlxqrJIc+yV57MV17HrpZpe2+2at19pdx0q0pnjr702NsGBtGtfzkv1Q/vny/u23c6KmTp2q559/Xg0bNtTBgwe1YcMGTZw4UfPmzdPMmTO1bds2jRgxQvfee69SU1NdHvvss89qxowZ+uqrr7R//37dc889mjJliv76179q+fLl+vTTTzV9+nRn//z8fD3++ONKS0vTypUrFRAQoNtvv12Fhe6fikhSTk6Ofve73ykpKUlpaWn65JNPdPjwYd1zzz1e53PmzBnl5eW5/JSF1B1HylVYOFdo3BaY88b4FKAuPObi29kFP3ls/yLjqDKP5TvbyttrgvLJ075UUY1ctNnl9q99DBR3jHtaEy411sW3PR37JXnsxXUsStvvvL3n6Cl9kXG0RGtKcf29yS74SV8W+cQKvw1+OycqMjJS1atXV2BgoOrWraszZ87opZde0meffaaUlBRJUpMmTbRmzRq98cYb6tatm/OxL774ojp37ixJeuCBBzRmzBjt3r1bTZo0kSTdddddWrVqlUaNGiVJuvPOO12ee/bs2apVq5a2b9+u1q1bu9U2Y8YMJSUl6aWXXnJ5TGxsrHbu3KnmzZu7PWbixIl67rnnLvNVubT073PK/Dkqgr3H853nJvCa4Ldm3Z5jLrc5Bjxbu/uY8/yofScKiu1bdE0pSX9PNmZlc37Ub0y5ucTBrl27VFBQoBtuuEHh4eHOn3nz5mn37t0ufRMTE53/rlOnjsLCwpwB6kLbkSNHnLczMjLUr18/NWnSRBEREWrcuLEkKSsry2Mtmzdv1qpVq1zqaNmypSS51XLBmDFjlJub6/zZv3+/x36Xq23DqDIZt6JpHP3LYsdrgt+alCaupxVwDHjWuekvr1OjmsWfr1R0TSlJf0/axdXw+TGo2Pz67byiTp36+STY5cuXq0ED15MmQ0NDXW4HB/9yAqDD4XC5faGt6K/qbr31VjVq1EhvvfWW6tevr8LCQrVu3Vpnz571Wsutt96qV155xe2+evXqeXxMaGioW51loVuL2qoRFlxufn3lr3Oiiv6Psby9JiifKtM5URd/S+/XPgYqyjlRRb+l16RWuK5tVsvrOVEXf0vPW39vaoQF8ynUb1C5+SSqVatWCg0NVVZWlhISElx+YmOL/7pqcY4fP64dO3Zo7Nix6t69u6644gplZ2cX+5h27dpp27Ztaty4sVst1apd+uuwZW3ZkC6KqOKefyOqBGpc7ys8PiYsyOFyu0ZYsF6+3f1XmZI0sqf7ryuln7/pc/EYy4Z0VucE1/8Vd06I0bIhnVXjom+7hId43t1m3ZfsZYwuHtun90tyG2PZkC5uz1cjLFjT+rb1+Jye/On6ph7b7+tY8v0vOdbzSYgjezZ3qy8s0GNXdWwc6bH9+ubRJa6jbYPqHtu9zdGTvsnu3wCTpNvbev6PhC/+dH1TBQU4Lt1RpbNdxvW+wuO+5Mv+4e35vNUXeNH0ggIcmnVfssf9dNZ9yW6vh7dXx1vNno6Bi4/ZomN4qsPbmnBlfdf92tsx7m1NaBcbpaCLDv+gAIcWDO5Y4mO/U9NopTSJduu7YHBHt9fuwrfzLja9X1KJ1xRv/Ts0rqnIqq7r74Vv5+G3x6+XOJgyZYqmTJmivXv3SpLGjh2rmTNnavLkyerSpYtyc3O1du1aRUREaODAgc5v52VnZysqKkqSNGfOHA0fPlw5OTnOcZ999lktXbpU6enpKiwsVO3atdWrVy+NHz9eWVlZGj16tDZs2KAlS5aoT58+bt/OO3DggNq2batu3brpySefVM2aNbVr1y7Nnz9fb7/9tgIDvbz7FVGW38674MuMo1qy8QdJxu06USMXbda6Pcdcri3zZcZRbczKdruuyYsfbdeaXUfdriX02qpd+jLjqMu1ZbyNkXksX3uP57tdd8VTf0/jFjeGt3Zvr4mn+oo+Z6+r6mnv8XytzTimbQdy3erw9Np5a+/00mc6mHfG7TpRD7+bpg37Trhdp8hTfd76dnvlc+3POe12nShP26vN+E+U6+E6Ud62rad2b/P2Vp+n9hsmr1bm8XzFR1fTmwPbO7fbKx//2+MYi9L2a+3uY+rcNEbJjWtq7/F8LVifpa0Hct3q8LbfDHj7X0r/PsflOlHeava2L/nyenhr91Rf0fkV/VTE237qqb+35/PGl2POlzXBl2PcW39vr4cvx763vt7G9sSXNcVbf2/zRsXn0/u38aO//OUvplGjRs7bhYWFZsqUKaZFixYmODjY1KpVy9x4440mNTXVGGPMqlWrjCSTnZ3tfMw777xjIiMjXcYdP368adOmjfP2ihUrzBVXXGFCQ0NNYmKiWb16tZFklixZYowxJjMz00gymzZtcj5m586d5vbbbzdRUVGmatWqpmXLlmb48OGmsLCwRHPLzc01kkxubq4vLwkAAPAjX96//fpJVGX2a3wSBQAASleFuE4UAABARUaIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsECIAgAAsGAVolatWuX1vjfeeMO6GAAAgIrCKkTddNNNGjlypH766Sdn27Fjx3Trrbdq9OjRpVYcAABAeWX9SdSSJUvUvn17bd++XcuXL1fr1q2Vl5en9PT0Ui4RAACg/LEKUZ06dVJ6erpat26tdu3a6fbbb9eIESO0evVqNWrUqLRrBAAAKHesTyzfuXOn0tLS1LBhQwUFBWnHjh0qKCgozdoAAADKLasQ9fLLLyslJUU33HCDtm7dqvXr12vTpk1KTEzUunXrSrtGAACAcscqRE2dOlVLly7V9OnTVaVKFbVu3Vrr16/XHXfcoeuuu66USwQAACh/gmwe9O233yomJsalLTg4WJMmTdItt9xSKoUBAACUZ1afRMXExCgnJ0dvv/22xowZoxMnTkiSNm7cqISEhFItEAAAoDyy+iRqy5Yt6tGjhyIjI7V3714NHjxYNWvW1IcffqisrCzNmzevtOsEAAAoV6w+iRoxYoQGDRqkjIwMValSxdl+880364svvii14gAAAMorq0+i0tLS9Oabb7q1N2jQQIcOHbrsogAAAMo7q0+iQkNDlZeX59a+c+dO1apV67KLAgAAKO+sQtRtt92m559/3vm38xwOh7KysjRq1CjdeeedpVogAABAeWQVoiZPnqxTp06pdu3aOn36tLp166amTZsqPDxcEyZMKO0aAQAAyh2rc6IiIyO1YsUKrVmzRlu2bNGpU6d09dVXq3v37qVdHwAAQLnk0ydR69at00cffeS83aVLF1WrVk2vvfaa+vXrp4ceekhnzpwp9SIBAADKG59C1PPPP69t27Y5b3/77bcaPHiwbrjhBo0ePVp///vfNXHixFIvEgAAoLzxKUSlp6e7/Mpu/vz56tChg9566y09/vjjmjZtmhYuXFjqRQIAAJQ3PoWo7Oxs1alTx3k7NTVVvXr1ct5u37699u/fX3rVAQAAlFM+hag6deooMzNTknT27Flt3LhRHTt2dN5/8uRJBQcHl26FAAAA5ZBPIermm2/W6NGj9eWXX2rMmDEKCwtT165dnfdv2bJFTZs2LfUiAQAAyhufLnHwwgsv6I477lC3bt0UHh6uuXPnKiQkxHn/7Nmz1bNnz1IvEgAAoLxxGGOMrw/Kzc1VeHi4AgMDXdpPnDih8PBwl2D1W5WXl6fIyEjl5uYqIiLC3+UAAIAS8OX92/pim57UrFnTZjgAAIAKx+rPvgAAAPzWEaIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIAAAAsEKIkDRo0SH369PF3GQAAoAIJ8ncB8N2eo6f0deZx7Tx8Ul98d0y5P57V9S3raNLdbZx9ZqzM0Nrdx9S1WS09en2C1zZJen7ZNn2155i6JNTS2FtaXfK5950oUOPoaoqPqeZsT91xROnf56hdXA11bVar2HZvdXgbe8H6LK3LPK7OTWN0d3JssX298VSHtzG6T1qlfdkFio+uphVPXOdsf2juBn2zP1vtG9XUzAHJkqSOE1bo8MmzqhcRqq+e6uHse8XYf+j0OaOwIIe2v3izs71o//cGd9S+EwV69N00nT5nFB4coK0v9HL2TXrun8o+fU41qwZp4/gbne03/yVVu47lq3ntcE37fTvtO1Ggx+dvUvbpc6pdLVjzH+7knNfNU1IvWceFuru+vFI/5P6o2KiqSh31O49zeX1AsvN1HLkw3W2M5Bc+1bH8n9zqGPJumrPmj4Zd63GOix/trH0nCjTp438r83iBrqwXocWPdva4Xd64L7nYsT2N2zi6mt79aq/Hff2JBen6eu9xpTSJcR5H/d9cpy0HctW2YZTefbCjx/2gX4c45+tRWGjc9rGi26rovD3t097qKNp2S2I953McyD7tcQxP+6m3Y9yXNcFTbcWN4Ym3Oooei8YY57/X7zle4mPflzXI2+vva7sn3uoojXXMF0XraBBV1fk8WcfzPdbni7Ksu6LV4TDGGL88czkyaNAg5eTkaOnSpaU2Zl5eniIjI5Wbm6uIiIhSGTOn4KwefX+jvtp93Gufodc10YzVe0o03hM9EjT5s11u7bPuS1b3VnXcnvuxD9L1RcZRZ9u1zWrpyZuaa8Cs9cou+MnZXiMsWK//vp0e+etGl/bw0ECdOnPe/fkGJGvuv/a5jf1ItyYaMHu9zhX+sosGBTiU2CBCG/fnuvSd3i9JkWHBbmPvO56vPq+udakjqmqwmtUO14Z92S5jNIwM0V/TfnAbo1N8lL7KzHFr96Rm1QCdOF3o1h4dFqDjBe7tnkRVlXJOu7fH16yizBM/lmgMb2LCAnSshHXUCgvU0QL37VUa4qOqKDOnZHNp17C6Nn5/skzqeKBTnGZ9lVWivr1a1dbH24+UqG9oUIDOnHN/ne9p10Afph9w26eH/a6px2OxpIICHBrctbFeT80sUf8/90jQ/3h4vie6J2jyypLVMfS6eM1Y7f58CwZ31DVNo13aPt16UA+9t9Gt77R72mrxph9cjn1vggKkxAZR2rg/x9l2bbNaevLG5how28Ma1L+dHnn/4jUoQKd/KtT5wqLjOvQ/d1+lPy/61m27TL4rUU8s3uLWvmxIZ7VqEOlSn6e1pkZYsP7fXVfpkfc2uY1xVf0Ibfq+ZOuYLzzV4U2NsGAtG9JFsdFhJRrb2/tAadTti7Kuw5f37woXoq677jpdddVVCgwM1Ny5cxUSEqIXX3xRv//97zV06FAtXrxYderU0fTp09WrVy+dP39eDz30kD7//HMdOnRIcXFxevTRRzVs2DDnmBeHqMLCQr3yyit68803dejQITVv3lzPPPOM7rrrrhLXWRYh6r5Z60u02JSGvS/3dnvutbuO6XyR3SXQ4ZDDIZfFwVagw+E29vkS7pqBDoc6J8Ro3gMd3O5Lev7TEi0mvjwfgOJdvH40Hr3ca9/LOfZKcw3yRVCAQ7teutmlraRrjTfFrWO+8LWOGmHB2jSuZ4n6ensfKI26fVHWdfjy/l0hz4maO3euYmJitH79ev3pT3/SI488orvvvludOnXSxo0b1bNnTw0YMEAFBQUqLCxUw4YNtWjRIm3fvl3jxo3TU089pYULF3odf+LEiZo3b55mzpypbdu2acSIEbr33nuVmprq9TFnzpxRXl6ey09p2nP01K8WoCTpxY+2uz33xQvdeWNKbfHyNLYvj/0i46gyj+W7tKfuOFLixYQABZSe11b98mnW88u2Fdv3co690lyDfHGu0GhR2n7nbV/WGm+8rWO+sKkju+AnfVmC95bi3gcut25flJc6LqiQIapNmzYaO3asmjVrpjFjxqhKlSqKiYnR4MGD1axZM40bN07Hjx/Xli1bFBwcrOeee07JycmKj49X//799Yc//MFriDpz5oxeeuklzZ49WzfeeKOaNGmiQYMG6d5779Ubb7zhtaaJEycqMjLS+RMbW/zvzX2170RBqY53KWt2/XJQ/drPbWvvcdeDJ/37HP8UAvzGFX1T/mrPMT9WUnbW7v5lXqW51ly8jvnCto6NWdmX7HOp94HLqdsX5aWOCyrkieWJiYnOfwcGBio6OlpXXXWVs61OnZ/P5zly5OfzF1599VXNnj1bWVlZOn36tM6ePau2bdt6HHvXrl0qKCjQDTfc4NJ+9uxZJSUlea1pzJgxevzxx5238/LySjVINapZst9Zl5YuCb+ccPhrP7etxtGuJxa2bRjln0KA37iiJyx3ahKj7w6d8mM1ZaNz0xjnv0tzrbl4HfOFbR3t4mpcss+l3gcup25flJc6LqiQn0QFB7ueOOZwOFzaHA6HpJ/PbZo/f77+/Oc/64EHHtCnn36q9PR0/eEPf9DZs2c9jn3q1M8H+/Lly5Wenu782b59uxYvXuy1ptDQUEVERLj8lKYmtcJ1reU3KWwU/ebMhecO/M/rekGgw6GgAMfFD7XiaWxfHntts1pu387o1qK2apTwJENfng9A8Yp+S2/cbVcW2/dyjr3SXIN8ERTgcPmWni9rjTfe1jFf2NRRIyy4RN/SK+594HLr9kV5qeOCChmifLF27Vp16tRJjz76qJKSkpSQkKDdu3d77d+qVSuFhoYqKytLCQkJLj+l/Ss6X03vl6ROF33r5WJ/ur5piccb2bO5x/ZZ9yV7fO7OCTEubZ0TYrRsSGe3g7ZGWLAWDO7o1l491PMHn7PuS/Y49oLBHd0WyKAAh9rFRrr1nd7P86eEy4Z0casjqmqw2jdy/Z9X54QY3dfR8/bt0vTS/0u7oFa1QJ/aPYkO83xYNo2uWuIxvPGljjrhZfdBtS9zSY4t3f+QFDW4S+MS9+3dus6lO/1HaJDnbdg3uYHHfdrbsVhSQQGOUjn2fanD2/MtGNzRrc3TmiJJ0/q2dTv2vQkKkNrFRrm0+b4GBSjwok0TFODQtL5tPW4Xb+3LhnTWxTytNTXCgjXrvmSPYyQ1LPk65gtPdXhz4dt5JeXtfaA06vZFealDqqDfzmvbtq2mTJnibGvcuLGGDx+u4cOHO9scDoeWLFmirKwsPfPMM1q4cKHi4+P17rvvatq0aYqPj1d6erok92/njR07VjNnztTkyZPVpUsX5ebmau3atYqIiNDAgQNLVGdZfDvvgsxj+fp6z3FlHD6p1TuOKve0+3WiXlu1S19mHHW5dounNunnk8jX7DpaoutEZR7L197j+W7X5fgy46g2ZmW7XXvEU7u3OryNvShtv9buPuZyfRVvfb3xVIe3MW6YvFqZx/PdrhP18Ltp2rDvhMv1dzq99JkO5p1xu05Uq7H/UIGH6zMV7f/+QynaezxfQ95NU4GH60S1e+6fOuHhOlG3TP1CO4+cUvPa4Zre/2rtPZ6vJ+Zv0on/XCdqwSOdnfPqPSX1knVcqLvbK59rf85pt+tEFZ3LGwPbO1/HUYs2u43R4YVPdeQ/14kqWsef3v/GWXPR6yUVneP/DemivcfzNfmT77T7WL7bdaKKbpc3B7YvdmxP4zaOrqb3/7XP474+ctFmrdtzzOUaSAPe/pfSv89xu05U0f2gf8dGztdDkts+VnRbFZ23p33aWx1F225rW9/5HIdyf/Q4hqf91Nsx7sua4Km24sbwxFsdRY9FSc5/p+09UeJj35c1yNvr72u7J97qKI11zBdF62hYI8z5PN9nF3iszxdlWXd5qKPSX+LAlxDVq1cvPfzww1qyZIkcDof69eunyMhIffzxx15DlDFG06ZN0+uvv649e/YoKipK7dq101NPPaVrr/1lISxOWYYoAABQNip1iKooCFEAAFQ8lf46UQAAAP5GiAIAALBAiAIAALBAiAIAALBAiAIAALBAiAIAALBAiAIAALBAiAIAALBAiAIAALBQdn9h9DfuwoXg8/Ly/FwJAAAoqQvv2yX5gy6EqDJy8uRJSVJsbPF/rBIAAJQ/J0+eVGRkZLF9+Nt5ZaSwsFAHDhxQ9erV5XA4Lnu8vLw8xcbGav/+/ZX2b/Exx4qvss9PYo6VQWWfn8QcL4cxRidPnlT9+vUVEFD8WU98ElVGAgIC1LBhw1IfNyIiotIeEBcwx4qvss9PYo6VQWWfn8QcbV3qE6gLOLEcAADAAiEKAADAAiGqgggNDdX48eMVGhrq71LKDHOs+Cr7/CTmWBlU9vlJzPHXwonlAAAAFvgkCgAAwAIhCgAAwAIhCgAAwAIhCgAAwAIhqoJ49dVX1bhxY1WpUkXXXHON1q9f7++SrH3xxRe69dZbVb9+fTkcDi1dutTlfmOMxo0bp3r16qlq1arq0aOHMjIy/FOshYkTJ6p9+/aqXr26ateurT59+mjHjh0ufX788UcNGTJE0dHRCg8P15133qnDhw/7qWLfvf7660pMTHRe5C4lJUUff/yx8/6KPr+Lvfzyy3I4HBo+fLizraLP8dlnn5XD4XD5admypfP+ij6/C3744Qfde++9io6OVtWqVXXVVVcpLS3NeX9FXm8aN27stg0dDoeGDBkiqXJsw/Pnz+uZZ55RfHy8qlatqqZNm+qFF15w+bt2ft2GBuXe/PnzTUhIiJk9e7bZtm2bGTx4sImKijKHDx/2d2lW/vGPf5inn37afPjhh0aSWbJkicv9L7/8somMjDRLly41mzdvNrfddpuJj483p0+f9k/BPrrxxhvNO++8Y7Zu3WrS09PNzTffbOLi4sypU6ecfR5++GETGxtrVq5cadLS0kzHjh1Np06d/Fi1b5YtW2aWL19udu7caXbs2GGeeuopExwcbLZu3WqMqfjzK2r9+vWmcePGJjEx0QwbNszZXtHnOH78eHPllVeagwcPOn+OHj3qvL+iz88YY06cOGEaNWpkBg0aZL7++muzZ88e889//tPs2rXL2acirzdHjhxx2X4rVqwwksyqVauMMZVjG06YMMFER0ebjz76yGRmZppFixaZ8PBwM3XqVGcff25DQlQF0KFDBzNkyBDn7fPnz5v69eubiRMn+rGq0nFxiCosLDR169Y1kyZNcrbl5OSY0NBQ88EHH/ihwst35MgRI8mkpqYaY36eT3BwsFm0aJGzz7///W8jyaxbt85fZV62GjVqmLfffrtSze/kyZOmWbNmZsWKFaZbt27OEFUZ5jh+/HjTpk0bj/dVhvkZY8yoUaNMly5dvN5f2dabYcOGmaZNm5rCwsJKsw179+5t7r//fpe2O+64w/Tv398Y4/9tyK/zyrmzZ8/qm2++UY8ePZxtAQEB6tGjh9atW+fHyspGZmamDh065DLfyMhIXXPNNRV2vrm5uZKkmjVrSpK++eYb/fTTTy5zbNmypeLi4irkHM+fP6/58+crPz9fKSkplWp+Q4YMUe/evV3mIlWebZiRkaH69eurSZMm6t+/v7KysiRVnvktW7ZMycnJuvvuu1W7dm0lJSXprbfect5fmdabs2fP6r333tP9998vh8NRabZhp06dtHLlSu3cuVOStHnzZq1Zs0a9evWS5P9tyB8gLueOHTum8+fPq06dOi7tderU0XfffeenqsrOoUOHJMnjfC/cV5EUFhZq+PDh6ty5s1q3bi3p5zmGhIQoKirKpW9Fm+O3336rlJQU/fjjjwoPD9eSJUvUqlUrpaenV4r5zZ8/Xxs3btSGDRvc7qsM2/Caa67RnDlz1KJFCx08eFDPPfecunbtqq1bt1aK+UnSnj179Prrr+vxxx/XU089pQ0bNuixxx5TSEiIBg4cWKnWm6VLlyonJ0eDBg2SVDn2UUkaPXq08vLy1LJlSwUGBur8+fOaMGGC+vfvL8n/7xmEKKAMDRkyRFu3btWaNWv8XUqpa9GihdLT05Wbm6vFixdr4MCBSk1N9XdZpWL//v0aNmyYVqxYoSpVqvi7nDJx4X/ykpSYmKhrrrlGjRo10sKFC1W1alU/VlZ6CgsLlZycrJdeekmSlJSUpK1bt2rmzJkaOHCgn6srXbNmzVKvXr1Uv359f5dSqhYuXKj3339ff/3rX3XllVcqPT1dw4cPV/369cvFNuTXeeVcTEyMAgMD3b5RcfjwYdWtW9dPVZWdC3OqDPMdOnSoPvroI61atUoNGzZ0ttetW1dnz55VTk6OS/+KNseQkBAlJCTo6quv1sSJE9WmTRtNnTq1Uszvm2++0ZEjR9SuXTsFBQUpKChIqampmjZtmoKCglSnTp0KP8eLRUVFqXnz5tq1a1el2IaSVK9ePbVq1cql7YorrnD+2rKyrDf79u3TZ599pgcffNDZVlm24ciRIzV69Gj993//t6666ioNGDBAI0aM0MSJEyX5fxsSosq5kJAQXX311Vq5cqWzrbCwUCtXrlRKSoofKysb8fHxqlu3rst88/Ly9PXXX1eY+RpjNHToUC1ZskSff/654uPjXe6/+uqrFRwc7DLHHTt2KCsrq8LM0ZPCwkKdOXOmUsyve/fu+vbbb5Wenu78SU5OVv/+/Z3/ruhzvNipU6e0e/du1atXr1JsQ0nq3Lmz2+VFdu7cqUaNGkmqHOuNJL3zzjuqXbu2evfu7WyrLNuwoKBAAQGuUSUwMFCFhYWSysE2LPNT13HZ5s+fb0JDQ82cOXPM9u3bzUMPPWSioqLMoUOH/F2alZMnT5pNmzaZTZs2GUnmf//3f82mTZvMvn37jDE/f101KirK/O1vfzNbtmwx//Vf/1VhvnJsjDGPPPKIiYyMNKtXr3b5+nFBQYGzz8MPP2zi4uLM559/btLS0kxKSopJSUnxY9W+GT16tElNTTWZmZlmy5YtZvTo0cbhcJhPP/3UGFPx5+dJ0W/nGVPx5/jEE0+Y1atXm8zMTLN27VrTo0cPExMTY44cOWKMqfjzM+bny1MEBQWZCRMmmIyMDPP++++bsLAw89577zn7VPT15vz58yYuLs6MGjXK7b7KsA0HDhxoGjRo4LzEwYcffmhiYmLMk08+6ezjz21IiKogpk+fbuLi4kxISIjp0KGD+de//uXvkqytWrXKSHL7GThwoDHm56+sPvPMM6ZOnTomNDTUdO/e3ezYscO/RfvA09wkmXfeecfZ5/Tp0+bRRx81NWrUMGFhYeb22283Bw8e9F/RPrr//vtNo0aNTEhIiKlVq5bp3r27M0AZU/Hn58nFIaqiz7Fv376mXr16JiQkxDRo0MD07dvX5fpJFX1+F/z97383rVu3NqGhoaZly5bmzTffdLm/oq83//znP40kjzVXhm2Yl5dnhg0bZuLi4kyVKlVMkyZNzNNPP23OnDnj7OPPbegwpshlPwEAAFAinBMFAABggRAFAABggRAFAABggRAFAABggRAFAABggRAFAABggRAFAABggRAFAABggRAFAABggRAFAEWsW7dOgYGBLn/MFQA84c++AEARDz74oMLDwzVr1izt2LFD9evX93dJAMopPokCgP84deqUFixYoEceeUS9e/fWnDlzXO5ftmyZmjVrpipVquj666/X3Llz5XA4lJOT4+yzZs0ade3aVVWrVlVsbKwee+wx5efn/7oTAfCrIEQBwH8sXLhQLVu2VIsWLXTvvfdq9uzZuvBhfWZmpu666y716dNHmzdv1h//+Ec9/fTTLo/fvXu3brrpJt15553asmWLFixYoDVr1mjo0KH+mA6AMsav8wDgPzp37qx77rlHw4YN07lz51SvXj0tWrRI1113nUaPHq3ly5fr22+/dfYfO3asJkyYoOzsbEVFRenBBx9UYGCg3njjDWefNWvWqFu3bsrPz1eVKlX8MS0AZYRPogBA0o4dO7R+/Xr169dPkhQUFKS+fftq1qxZzvvbt2/v8pgOHTq43N68ebPmzJmj8PBw58+NN96owsJCZWZm/joTAfCrCfJ3AQBQHsyaNUvnzp1zOZHcGKPQ0FDNmDGjRGOcOnVKf/zjH/XYY4+53RcXF1dqtQIoHwhRAH7zzp07p3nz5mny5Mnq2bOny319+vTRBx98oBYtWugf//iHy30bNmxwud2uXTtt375dCQkJZV4zAP/jnCgAv3lLly5V3759deTIEUVGRrrcN2rUKH3++edauHChWrRooREjRuiBBx5Qenq6nnjiCX3//ffKyclRZGSktmzZoo4dO+r+++/Xgw8+qGrVqmn79u1asWJFiT/NAlBxcE4UgN+8WbNmqUePHm4BSpLuvPNOpaWl6eTJk1q8eLE+/PBDJSYm6vXXX3d+Oy80NFSSlJiYqNTUVO3cuVNdu3ZVUlKSxo0bx7WmgEqKT6IAwNKECRM0c+ZM7d+/39+lAPADzokCgBJ67bXX1L59e0VHR2vt2rWaNGkS14ACfsMIUQBQQhkZGXrxxRd14sQJxcXF6YknntCYMWP8XRYAP+HXeQAAABY4sRwAAMACIQoAAMACIQoAAMACIQoAAMACIQoAAMACIQoAAMACIQoAAMACIQoAAMDC/wfGGnH4UTTIJwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGwCAYAAACzXI8XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLqUlEQVR4nO3dfVwVdfo//tfhHgQO9yDJrRLeJN5DqGkmRa5r+cvM/LRlZdtWaKt2s9Jv07XaoFtL09zM1G68yW01u9FuSDEV71BKswgEBUNuJOBwk4Aw3z+Ik0cOcxg4Z2aO83o+HuexMdecwzU7DueamWveb50gCAKIiIiI7JCD0gkQERERdRcLGSIiIrJbLGSIiIjIbrGQISIiIrvFQoaIiIjsFgsZIiIislssZIiIiMhuOSmdgK21traipKQEXl5e0Ol0SqdDREREXSAIAmpraxEaGgoHh86vu1zxhUxJSQnCwsKUToOIiIi6obi4GH369Ok0fsUXMl5eXgDa/o/w9vZWOBsiIiLqCoPBgLCwMOP3eGeu+EKm/XaSt7c3CxkiIiI7Y6kthM2+REREZLdYyBAREZHdYiFDREREdouFDBEREdktFjJERERkt1jIEBERkd1iIUNERER2i4UMERER2S0WMkRERGS3WMgQERGR3VK0kGlpacHTTz+NqKgouLu7o2/fvnj22WchCIJxHUEQsGjRIvTu3Rvu7u5ISkpCXl6eglm3Kaiow67cchSer1c6FSIiIs1SdK6lF154AW+++SbWr1+PQYMG4ciRI7jvvvug1+vx6KOPAgBefPFFLFu2DOvXr0dUVBSefvppJCcn4+TJk3Bzc5M95+qGJjy6MQd78iqMy8bFBGL5zGHQezjLng8REZGW6YRLL3/I7M9//jOCg4OxZs0a47Jp06bB3d0d77//PgRBQGhoKB577DE8/vjjAICamhoEBwdj3bp1uPPOOy3+DoPBAL1ej5qaGqtMGnnPmkPYl38eLZf83+ao02FMvwC8Ozu+x59PREREXf/+VvTW0ujRo5GRkYGff/4ZAPDdd99h7969mDRpEgCgsLAQpaWlSEpKMr5Hr9cjISEBWVlZZj+zsbERBoPB5GUtBRV12JNXYVLEAECLIGBPXgVvMxEREclM0VtLCxcuhMFgQP/+/eHo6IiWlhb8+9//xl133QUAKC0tBQAEBwebvC84ONgYu1xaWhqWLFlik3zP/NogGj9dWY+ogF42+d1ERETUkaJXZD788EN88MEH2LBhA44ePYr169fj5Zdfxvr167v9mampqaipqTG+iouLrZZvhJ+HaDzSn0UMERGRnBS9IvPEE09g4cKFxl6XwYMH48yZM0hLS8OsWbMQEhICACgrK0Pv3r2N7ysrK8PQoUPNfqarqytcXV1tkm90oCfGxQR22iPDqzFERETyUvSKTENDAxwcTFNwdHREa2srACAqKgohISHIyMgwxg0GAw4ePIjExERZc223fOYwjOkXYLJsTL8ALJ85TJF8iIiItEzRKzJTpkzBv//9b4SHh2PQoEE4duwYXn31Vdx///0AAJ1Oh3nz5uG5555DTEyM8fHr0NBQTJ06VZGc9R7OeHd2PArP1+N0ZT0i/XvxSgwREZFCFC1kli9fjqeffhqPPPIIysvLERoair/97W9YtGiRcZ0nn3wS9fX1ePDBB1FdXY2xY8di586diowhc6moABYwRERESlN0HBk5WHscGSIiIrI9uxhHhoiIiKgnWMgQERGR3WIhQ0RERHaLhQwRERHZLRYyREREZLdYyBAREZHdYiFDREREdouFDBEREdktFjJERERkt1jIEBERkd1iIUNERER2i4UMERER2S0WMkRERGS3WMgQERGR3XJSOgEiIiKyTwUVdTjzawMi/XshKqCXIjmwkCEiIiJJqhua8OjGHOzJqzAuGxcTiOUzh0Hv4SxrLry1RERERJI8ujEH+/LPmyzbl38eczcekz0XFjJERETUZQUVddiTV4EWQTBZ3iII2JNXgcLz9bLmw0KGiIiIuuzMrw2i8dOVLGSIiIhIpSL8PETjkf7yNv2ykCEiIqIuiw70xLiYQDjqdCbLHXU6jIsJlP3pJRYyREREJMnymcMwpl+AybIx/QKwfOYw2XPh49dEREQkid7DGe/Ojkfh+XqcrqznODJERERkf6IClCtg2vHWEhEREdktFjJERERkt1jIEBERkd1ij0w3ZeaWI+dsNYaH++K6mECl0yEiItIkFjISnamsx9QV+1DV0Gxc5uvhjO0pYxHmLz5IEBEREVkXby1JdHkRAwBVDc24ZcVehTIiIiJSRkFFHXbllss+v9KleEVGgszc8g5FTLuqhmZ8m1fB20xERHTFq25owqMbc7Anr8K4bFxMIJbPHAa9h7OsufCKjAQ5Z6tF40eLquRJhIgAqONskEiLHt2Yg335502W7cs/j7kbj8mei6KFTGRkJHQ6XYdXSkoKAODChQtISUmBv78/PD09MW3aNJSVlSmW79A+PqLx4eG+8iRCpHHVDU24Z80h3PBKJu5bexgTXt6Ne9YcQk0nV0yJyHoKKuqwJ68CLYJgsrxFELAnr0L2EwtFC5nDhw/j3LlzxtdXX30FAJg+fToAYP78+fjkk0+wZcsWZGZmoqSkBLfddpti+Y6PDYKTg85szMlBx9tKRDJR09kgkdac+bVBNH66Ut5CRtEemcBA0y/+9PR09O3bF+PHj0dNTQ3WrFmDDRs24IYbbgAArF27FgMGDMCBAwdw7bXXmv3MxsZGNDY2Gn82GAxWy7egog4XWwWzsYutAgrP1ys+VDPRla79bPByl54N8jgksp0IP/EndCP9NTr7dVNTE95//33cf//90Ol0yM7ORnNzM5KSkozr9O/fH+Hh4cjKyur0c9LS0qDX642vsLAwq+WotiqUSIt4HBIpKzrQE+NiAuGoM71D4ajTYVxMoOwnEqopZLZt24bq6mrce++9AIDS0lK4uLjAx8fHZL3g4GCUlpZ2+jmpqamoqakxvoqLi62Wo9qqUCIt4nFIpLzlM4dhTL8Ak2Vj+gVg+cxhsueimsev16xZg0mTJiE0NLRHn+Pq6gpXV1crZWWqvQrdl3/epMnJUafDmH4BvJxNJAMeh0TK03s4493Z8Sg8X4/TlfWI9FduFmxVXJE5c+YMvv76azzwwAPGZSEhIWhqakJ1dbXJumVlZQgJCZE5wz+oqQol0ioeh0TqEBXQCxNigxQ9gVDFFZm1a9ciKCgIkydPNi4bMWIEnJ2dkZGRgWnTpgEAcnNzUVRUhMTERKVSVVUVSqRVPA6JqJ3ihUxrayvWrl2LWbNmwcnpj3T0ej1mz56NBQsWwM/PD97e3pg7dy4SExM7fWJJTlEB/MNJpDQeh0SkeCHz9ddfo6ioCPfff3+H2NKlS+Hg4IBp06ahsbERycnJWLlypQJZEhERkRrpBEEwPzDKFcJgMECv16Ompgbe3t5Kp0NERERd0NXvb1U0+xIRERF1BwsZIiIislssZIiIiMhusZAhIiIiu8VChoiIiOyW4o9fExF1V0FFHc782sAB8Yg0jIUMEdmd6oYmPLoxB3vyKozLxsUEYvnMYdB7OCuYGRHJjbeWiMjuPLoxB/vyz5ss25d/HnM3HlMoIyJSCgsZIrIrBRV12JNXYTLzNQC0CAL25FWg8Hy9QpkRkRJYyHRTZm45Xs/4Gd9ecmmbiGzvzK8NovHTlSxkiORSUFGHXbnlip5AsEdGojOV9Zi6Yh+qGpqNy3w9nLE9ZSzC/D0UzIxIGyL8xI+zSH82/RLZmpr61HhFRqLLixgAqGpoxi0r9iqUEZG2RAd6YlxMIBx1OpPljjodxsUE8uklIhmoqU+NhYwEmbnlHYqYdlUNzbzNRCST5TOHYUy/AJNlY/oFYPnMYQplRKQdautT460lCXLOVovGjxZV4bqYQHmSIdIwvYcz3p0dj8Lz9ThdWc9xZIhk1JU+NTmPRxYyEgzt4yMaHx7uK08iRAQAiApgAUMkN7X1qfHWkgTjY4NE47waQ0REVzq19amxkJEgM7dcNM4eGSIi0gI19anx1pIE7JEhIiJSV58ar8hIwB4ZIiKiPwiXPbmkBF6RkWB8bBB83J1R/VvHR7B93J15NYaIiDSBA+LZsZggT0nLiYiIrjQcEM9OFVTU4fCZKrOxw2eqOFkdERFd8dQ2IB4LGQk4WR2RuqhhwjoirVHbdyF7ZCRQ2yBARFqlpvvzRFqjtu9CXpGRIDpQvA+GI4wSyUNN9+eJtIYD4tmxzYeKRONbjhTLlAmRdqnt/jyRFnFAPDuVVVgpGt936jymjwyTKRsibVLbhHVEWtQ+IN6en8txrLgaw8N9FRuChIWMBIlR/th2rKTT+Ji+AZ3GiMg61HZ/nkiL1NSnxltLEsyIDxeN82oMke2p7f48kRapqU+NhYwEnDSSSB3UdH+eSGvU1qfGW0sScNJIInX44/58BY4VVyl6f55Ia9TWp6b4FZlffvkFf/nLX+Dv7w93d3cMHjwYR44cMcYFQcCiRYvQu3dvuLu7IykpCXl5eYrkykkjidShuqEJ96w5hHveOYSlX+Xh7jWHcM+aQ6hp6DgPGhFZl9r61BQtZKqqqjBmzBg4Oztjx44dOHnyJF555RX4+v5RELz44otYtmwZVq1ahYMHD6JXr15ITk7GhQsXZM93fGyQaJxnhETyUNP9eSKtUVufmqKFzAsvvICwsDCsXbsW8fHxiIqKwk033YS+ffsCaLsa89prr+Gf//wnbr31VsTFxeHdd99FSUkJtm3bZvYzGxsbYTAYTF7WwnFkiJSntvvzRFqkpj41RQuZ7du3Y+TIkZg+fTqCgoIwbNgwrF692hgvLCxEaWkpkpKSjMv0ej0SEhKQlZVl9jPT0tKg1+uNr7Aw6z1J1JVxZIjIttQ2zwuRFrX3qe16/HqsvW8Udj1+Pd6dHa/IFCGKFjIFBQV48803ERMTgy+++AIPP/wwHn30Uaxfvx4AUFpaCgAIDg42eV9wcLAxdrnU1FTU1NQYX8XF1rtKkhjlLxrnODJEtqe2+/NEWiZcdmVUCYo+tdTa2oqRI0fi+eefBwAMGzYMJ06cwKpVqzBr1qxufaarqytcXV2tmabRjPhw/P/bTuBia8cd5+Sg4zgyRDKIDvTE6L7+2H+q4xXS0X39OY4MkQw4IN7vevfujYEDB5osGzBgAIqK2npRQkJCAABlZWUm65SVlRljctueMgZODqYNTk4OOmxPGaNIPkRa1NlJoApODok0QU0N94oWMmPGjEFubq7Jsp9//hkREREAgKioKISEhCAjI8MYNxgMOHjwIBITE2XNtd3Aq/TIf/5PeOn2OEwdFoqXbo9D/vN/wsCr9IrkQ6Q1BRV1yCow36+WVVDJZl8iG1Nbw72ihcz8+fNx4MABPP/888jPz8eGDRvw1ltvISUlBQCg0+kwb948PPfcc9i+fTuOHz+Oe+65B6GhoZg6daqSqePHEgN+OmdAbmmtonkQaQ2bfYmUpbZjUNEemVGjRmHr1q1ITU3FM888g6ioKLz22mu46667jOs8+eSTqK+vx4MPPojq6mqMHTsWO3fuhJubmyI5f3niHB58/6jx559K6/D23kKsuWckJg4MFnknEVkDm32JlKW2Y1AnqKHl2IYMBgP0ej1qamrg7e3d48+LXPhZp7HT6ZN7/PlEZNk9aw5hX/55k0vbjjodxvQLwLuz4xXMjEgb5DgGu/r9rfgUBfbkme0/iMaf+/SkTJkQaZuaBuMi0iI1HYOcNFKC/QXiA97tzefs10RyaB+Ma/PhImQVVGJM3wAOf0Ako/ZjsPB8PU5X1iPSv5diQx+wkJFgdHQAfiqt6zQ+th/nWiKSw5nKekxdsQ9Vv08Sue1YCZ7//EdsTxmLMH/x+/dEZD1RAcoVMO14a0mCRbcMEo3/888DReNEZB2XFjHtqhqaccuKvQplRERKYSEj0Zp7RkpaTkTWlZlb3qGIaVfV0Ixv83iLl0hLWMhINHFgME6nT8aIMB+4OztgZLgPTqdP5qPXRDLJOVstGj9aVCVPIkSkCixkJNqfX4HIhZ8hu7gavzW34khRNSIXfoaDZuZ9ISLrG9rHRzQ+PNxXnkSISBVYyEj0f28fMrt8xuoDMmdCpE3jY4Pg28mkdL4ezrguhk33RHIpqKjDrtxyRacG4VNLEryRkScaX7krH49M6CdTNkTatT1lLG5ZsdekV8bXwxnbU8YqmBWRdnD2azu175T4ODJsMiSSR5i/B44tugkvThtsnLz12KKb+Og1kUzUNPs1r8hIMKZvALIKfu00zkvaRPK4/Gxw27ESfPLdOUXOBom0pn3268tdOvu1nGPL8IqMBHMmxojGeVuJSB5qOhsk0hq1zX7NQkaCgorOR/UFoGizE5FWtJ8Ntlw23+2lZ4NEZDtqm/2ahYwEaqtCibSIxyGRsqIDPTEuJhCOOp3JckedDuNiAmWfsoCFjARqq0KJtIjHIZHyOPu1nYoO9ERcqBe+L6ntEIu7ylvxibOItCA60BPXhHrhhJnjcHAoj0MiOXD2aztmrogBgO9/McicCZF2mStiAOB4CY9DIjlx9ms705UB8YjItngcEtGlWMhIwAHxiJTH45CILsVCRoIxfQNE4xwQj8j2eBwS0aVYyEjAAfGIlMfjkIguxUJGAg6IR6QOm/96raTlRHTlYiEjAQfiIlKHhL7+OJ0+GdNH9EEfXzdMH9EHp9MnI6Gvv9KpEZHM+Pi1BByIi0gdzlTWY+qKfahqaAYAbMk+i69/LMP2lLGcAZtIY3hFRoLoQE/RuNLP0hNpxaVFTLuqhmbcsmKvQhkRkVJYyEjA8SuIlJeZW96hiGlX1dDMx6+JNIaFjAQcv4JIeTlnq0XjR4uq5EmEiLD5UBHmbT6GLUeKFcuBPTISjOkbgKyCXzuNc/wKItsb2sdHND483FeeRIg07PjZavx/K/fjYqsAANh2rASp/zuO7SljMPAqvay58IqMBBy/gkh542OD4OSgMxtzctDxhIJIBpcWMe0utgq4ZcU+2XNhISPB5kNFonElL60RaUVBRV2HP6DtLrYKHM+JyMY2HyoSPQbl/i5kISNBVmGlaNxSDw0R9RzHcyJSltq+CxUtZP71r39Bp9OZvPr372+MX7hwASkpKfD394enpyemTZuGsrIyxfJNjBIfbMvSHDBE1HMcz4lIWWr7LlT8isygQYNw7tw542vv3j/GgZg/fz4++eQTbNmyBZmZmSgpKcFtt92mWK4z4sPRya15OOiA6SPD5E2ISIOiAz1xTaiX2djgUG+O50RkYzPiw+HUSfXg5CD/d6HiTy05OTkhJCSkw/KamhqsWbMGGzZswA033AAAWLt2LQYMGIADBw7g2muVmVOlk9uCnS4nIus7UVJrdvnxEoPMmRBpU9xVPjhaXG12udwUvyKTl5eH0NBQREdH46677kJRUVtDbXZ2Npqbm5GUlGRct3///ggPD0dWVlann9fY2AiDwWDyspZntv8gGn/u05NW+11EZB4HpiRSVkFFndkiBgCOFlfL3nCvaCGTkJCAdevWYefOnXjzzTdRWFiI6667DrW1tSgtLYWLiwt8fHxM3hMcHIzS0tJOPzMtLQ16vd74Cguz3iWu/QXiDUx78zkgHpGtcWBKImWpreFe0VtLkyZNMv53XFwcEhISEBERgQ8//BDu7u7d+szU1FQsWLDA+LPBYLBaMTM6OgA/ldZ1Gh/bj+NXENkaB6YkUpbaGu4Vv7V0KR8fH1x99dXIz89HSEgImpqaUF1dbbJOWVmZ2Z6adq6urvD29jZ5WcuiWwaJxv/554FW+11EZB4HpiRSVnSgJ3w9nM3GfD2cZW+4V1UhU1dXh1OnTqF3794YMWIEnJ2dkZGRYYzn5uaiqKgIiYmJiuTHHhkiddj8V/PN/p0tJyLrKaioE524Ve4eGUVvLT3++OOYMmUKIiIiUFJSgsWLF8PR0REzZ86EXq/H7NmzsWDBAvj5+cHb2xtz585FYmKiYk8ssUeGSB0S+vrjdPpkPLElB1kFlUiMDsBL04conRaRJnSlR0bOqzKKFjJnz57FzJkzUVlZicDAQIwdOxYHDhxAYGDbPe6lS5fCwcEB06ZNQ2NjI5KTk7Fy5UrF8mWPDJE6nKmsx9QV+4xnhVuyz+LrH8uwPWUswvzF798TUc+orUdGJwjCFT0CisFggF6vR01NjVX6ZSIXftZp7HT65B5/PhFZNuyZL81e2vb1cMaxRTcpkBGRtvR76nOz8y05OeiQ//yfrPI7uvr9raoeGbVjjwyR8jJzy0Xvz/PxayLbyswtF500Uu5jkIWMBOyRIVJeztlq0fjRoip5EiHSKLUdgyxkJBgdLT4RFntkiGxvaB8f0fjwcF95EiHSKLUdgyxkJOA4MkTKGx8bBKdOZm91ctBxQDwiGxsfGyQal/sYZCEjAXtkiJRXUFEnen9e7jEsiLRm86Ei0fiWI8UyZdKGhYwE7JEhUp7a5nkh0pqswkrRuKX50KyNhYwE7JEhUp7axrAg0prEKH/R+Ji+4t+V1sZCRgL2yBApT23zvBBpzYz4cNE+tekjrTNRc1exkJEgM7dcNM7xK4hsT23zvBBp0faUMR2KGScHHbanjJE9FxYyEqjt2XkiLWKPDJHyQn3dMfqyW0ij+wbgKl/5pwhhISOB2p6dJ9Ii9sgQKe/RjTnYl2/a1Lsv/zzmbjwmey4sZCQIs/AHtI8ClSiR1kQHemJkhPmThlERvuyRIbKxgoo67MmrQMtlUzW2CAL25FXIfnuXhYwEvKRNpA755eZnoc/rZDkRWY/avgtZyEjwaU6JaPzz78/JlAmRdmXmlqP6N/PNvtW/cdJIIltT23chCxkJfjhXIxo//ku1PIkQaRib7omUpbbvQhYyEnBAPCLlsemeSFlq+y5kISMBB8QjUp7aJqwj0hq1fReykJFAbRNlEWkRB6YkUtYbGXmi8ZW78mXKpA0LGQnUNlEWkRaxR4ZIWZa+6+Q+mWAhI4HaJsoi0iL2yBApy9J3ndy3d1nISDAjPlw0LvdEWURaND42SHTCOvbIENnWnIkxovFHJvSTKZM2LGQkKKgQH2yLk9UR2V5BRR0utgpmYxdbBR6HRDamtn5RFjISqG00QyIt4nFIpCy19Yt2u5BpampCbm4uLl68aM18VI2T1REpj8chkbLU1i8quZBpaGjA7Nmz4eHhgUGDBqGoqO0S09y5c5Genm71BNUkOtBTNM7J6ohsj8chkbLU1i8quZBJTU3Fd999h927d8PNzc24PCkpCZs3b7ZqcmqjtmfnibTome0/iMaf+/SkTJkQaZPavgslFzLbtm3DG2+8gbFjx0Kn++PJgUGDBuHUqVNWTU5t1PbsPJEW7S8QPw735vM4JLIltX0XSi5kKioqEBTUcYjw+vp6k8LmSqS2Z+eJtEht87wQaY3avgslFzIjR47EZ599Zvy5vXh5++23kZiYaL3MVEhtz84TaZHa5nkh0hq1fRc6SX3D888/j0mTJuHkyZO4ePEiXn/9dZw8eRL79+9HZmamLXJUlbirvPH9Lwazy4lIHgN7e+HkuVqzy4lIWyRfkRk7dixycnJw8eJFDB48GF9++SWCgoKQlZWFESNG2CJH1SioqDNbxADA978YOBAXkQwKKurMFjEAcPJcLY9DIhuz+2ZfAOjbty9Wr16NQ4cO4eTJk3j//fcxePDgHiWSnp4OnU6HefPmGZdduHABKSkp8Pf3h6enJ6ZNm4aysrIe/Z6e4EBcRMrjcUikLLtv9jUYDGZftbW1aGpq6lYShw8fxn/+8x/ExcWZLJ8/fz4++eQTbNmyBZmZmSgpKcFtt93Wrd9hDRyIi0h5PA6JlBWqdxeN9/EVP0atTXIh4+PjA19f3w4vHx8fuLu7IyIiAosXL0Zra2uXPq+urg533XUXVq9eDV/fP2atrampwZo1a/Dqq6/ihhtuwIgRI7B27Vrs378fBw4ckJq2VXAgLiLl8TgkUlZ4gHih0sdPvNCxNsmFzLp16xAaGoqnnnoK27Ztw7Zt2/DUU0/hqquuwptvvokHH3wQy5Yt6/IovykpKZg8eTKSkpJMlmdnZ6O5udlkef/+/REeHo6srKxOP6+xsbHD1SJr4UBcRMpT24R1RFrzw9ka0fiPJdb73u0KyU8trV+/Hq+88gruuOMO47IpU6Zg8ODB+M9//oOMjAyEh4fj3//+N5566inRz9q0aROOHj2Kw4cPd4iVlpbCxcUFPj4+JsuDg4NRWlra6WempaVhyZIl0jaqizgQF5HyujJhndxDpBNpSVGVuvrUJF+R2b9/P4YNG9Zh+bBhw4xXSsaOHWucg6kzxcXF+Pvf/44PPvjAZKqDnkpNTUVNTY3xVVxsvbMzDsRFpDy1TVhHpDVq+y6UXMiEhYVhzZo1HZavWbMGYWFtZ0GVlZUm/S7mZGdno7y8HMOHD4eTkxOcnJyQmZmJZcuWwcnJCcHBwWhqakJ1dbXJ+8rKyhASEtLp57q6usLb29vkZS0ciItIeWqbsI5Ia9T2XSj51tLLL7+M6dOnY8eOHRg1ahQA4MiRI/jxxx/x0UcfAWh7CmnGjBminzNx4kQcP37cZNl9992H/v374x//+AfCwsLg7OyMjIwMTJs2DQCQm5uLoqIixUYQ7kqPDIsZItvqSo8Mixki23lsc45o/Ikt3+Gl6UPkSQbdKGRuueUW5ObmYtWqVfj5558BAJMmTcK2bdtQV1cHAHj44Yctfo6XlxeuueYak2W9evWCv7+/cfns2bOxYMEC+Pn5wdvbG3PnzkViYiKuvfZaqWlbBXtkiJTHHhkiZR08LX4MZln4rrQ2yYUMAERGRhqfSjIYDNi4cSNmzJiBI0eOoKWlxWrJLV26FA4ODpg2bRoaGxuRnJyMlStXWu3zpRodHYCfSus6jbNHhsj2EqP8se1YSadx9sgQ2VZCpD/OVv3SaTzRQg+NtekEQRC688Y9e/ZgzZo1+OijjxAaGorbbrsN06ZNM95uUguDwQC9Xo+amhqr9MtELvys09jp9Mk9/nwisozHIZGy5DgGu/r9LanZt7S0FOnp6YiJicH06dPh7e2NxsZGbNu2Denp6aorYqytK/cFici2Cio6vyoKgHMtEdmY3c61NGXKFMTGxuL777/Ha6+9hpKSEixfvtyWuamO2u4LEmkR51oiUpbdzrW0Y8cOzJ49G0uWLMHkyZPh6Ohoy7xUKSFSfPwKue8LEmkR51oiUpalPrTrYlQ6jszevXtRW1uLESNGICEhAW+88QbOn9fWFYhXZgwVjcv5uBmRVkUHesLXw9lszNfDmXMtEdnYnIkxovFHJvSTKZM2XS5krr32WqxevRrnzp3D3/72N2zatAmhoaFobW3FV199hdraWlvmqQqc44VIeQUVdahqaDYbq2poZo8MkY1l5paLxlV7a6ldr169cP/992Pv3r04fvw4HnvsMaSnpyMoKAi33HKLLXJUja6MX0FEtsUeGSJl5ZytFo0fLaqSJ5HfSS5kLhUbG4sXX3wRZ8+excaNG62Vk2pxjhci5bFHhkhZQ/v4iMaHh4tPUWRtPSpk2jk6OmLq1KnYvn27NT5OtTjHCxERad342CB4dDKcroeTipt9iYjUgLeWiJTXcFHacltiISPBbW/sFY3fvnKfTJkQadfbmadE4+98WyBTJkTapLbBYVnISPBjmfiTWT+cM8iUCZF2/VQufhyeLOVxSGRLahscloWMBAOCvUTjg3r3fC4nIhI3Iky8kXBUhJ9MmRBpk9oGh2UhI8H/5owVjf/3kTEyZUKkXW/NEp/TbdXdI2XKhEib1DY4LAsZCdgjQ6Q8DkxJpCz2yNgx9sgQKY8DUxIpiz0ydow9MkTK48CURMoaGCL+XXdNqF6mTNqwkJGAPTJEyuPAlETKmnlthGjc0jFqbSxkJCioqBONc7I6Itv709JM0fifX98jUyZE2vRtrvikkPvyeGtJtTiiKJHy8i2cMPxcLn7CQUQ986OFsZp+KKmRKZM2LGQk4GR1RMrrFyB+nF0d5ClTJkTaZKkPjXMtqVh0oPgfyCgLf2CJqOc+nz9eNP7p38fJlAmRNs2ZGCMaf2RCP5kyacNCRoI3MvJE4yt35cuUCZF2cRwZImXd9VaWaPzutw/IlEkbFjISWBqf4ts88QYoIuo5jiNDpKzvLfTA5JytlieR37GQkUBt9wWJtMjP3UU0HtDLVaZMiLQpzsI4MUP7+MiTyO9YyEigtvuCRFqk7+UsGvdyd5IpEyJt+uDBRNH4ew9cK1MmbVjISOTpYv7/ss6WE5F1WTrbGx4uPjs2EV1Z+O0rQWZuOeqaWs3G6ppa2SNDJIPjZ8Xvz1uKE1HPXJeeIRof/8I3MmXShoWMBJYamI4WVcmTCJGGsemeSFm/1FwQjRdX/yZTJm1YyEjAS9pEymPTPZGyrtK7icbDfNxlyqQNCxkJxscGicb5B5TI9th0T6SsbxdOFI1n/uMGmTJpw0JGgme2/yAaf+7TkzJlQqRdPA6JlPXg+sOi8YfeOyJTJm0ULWTefPNNxMXFwdvbG97e3khMTMSOHTuM8QsXLiAlJQX+/v7w9PTEtGnTUFZWpli++wvE783vzee9eSJb43FIpKzsYvF+0MNnfpUpkzaKFjJ9+vRBeno6srOzceTIEdxwww249dZb8cMPbWdc8+fPxyeffIItW7YgMzMTJSUluO222xTLd3S0+L35sf14a4nI1ngcEikrwkd8AuUoP3nnHdQJgiDI+hst8PPzw0svvYTbb78dgYGB2LBhA26//XYAwE8//YQBAwYgKysL117btQF3DAYD9Ho9ampq4O3t3eP8Ihd+1mnsdPrkHn8+EVnG45BIOa9n/IylX3U+9+D8G2Pw94lX9/j3dPX7WzU9Mi0tLdi0aRPq6+uRmJiI7OxsNDc3IykpybhO//79ER4ejqysziesamxshMFgMHlZy2Obc0TjT2z5zmq/i4jMU9uEdURas/HAGdH45oPiE7tam+KFzPHjx+Hp6QlXV1c89NBD2Lp1KwYOHIjS0lK4uLjAx8fHZP3g4GCUlpZ2+nlpaWnQ6/XGV1hYmNVyPXhafLK6LAv37omo59Q2YR2R1pyvbxKNl9c1ypRJG8ULmdjYWOTk5ODgwYN4+OGHMWvWLJw82f2nDlJTU1FTU2N8FRcXWy3XhEh/0XiihXv3RNRzapuwjkhrInwt9Mj4y9sjo3gh4+Lign79+mHEiBFIS0vDkCFD8PrrryMkJARNTU2orq42Wb+srAwhISGdfp6rq6vxKaj2l7W8MmOoaPyl6UOs9ruIyDy1TVhHpDUZT0wQjX/12PXyJPI7xQuZy7W2tqKxsREjRoyAs7MzMjL+mNMhNzcXRUVFSEwU/0NmK5sPid/323LEeld/iMg89qoRKWviS7tE4ze+slueRH6n6Hz3qampmDRpEsLDw1FbW4sNGzZg9+7d+OKLL6DX6zF79mwsWLAAfn5+8Pb2xty5c5GYmNjlJ5asLatQvEdm36nzmD7Sej05RNQRe9WIlHWmqkE0XlhZL1MmbRQtZMrLy3HPPffg3Llz0Ov1iIuLwxdffIEbb7wRALB06VI4ODhg2rRpaGxsRHJyMlauXKlYvolR/th2rKTTuKU5YIio5xIi/XG26pdO4+xVI7KtgF4uKK3tvOE3yNNVxmxUOI6MtXEcGaIrD49DIuVwHBk79kZG5zsOAFbuypcpEyLtuu2NvaLx21fukykTIm16b/9p0fgHFuLWxkJGgn2nxO+9f5vHOV6IbO3HslrR+A/nrDcIJhF19GtDs2j8vIW4tbGQkcBSD8x1MZzjhcjWBgR7icYH9bbekAtE1NFVejfReJiPu0yZtGEhI8GciTGi8Ucm9JMpEyLt+t+csaLx/z4yRqZMiLTp24UTReOZ/7hBpkzasJAhIiIiu8VCRgI2+xIpjwPiESlLbRO3spCRgM2+RMrjgHhEylLbxK0sZCRgsy+R8jh5K5Gy1DZxKwsZCdjsS6Q8Tt5KpCy1TdzKQkaCzNxy0ThvLRHZHo9DImWNfPZL0Xi8hbi1sZCRwNJ9v6NFVfIkQqRhPA6JlHW+XnzAu3ILcWtjISOBpft+w8N95UmESMN4HBIpK6CXs2g8yELc2ljISDA+Nkg0zmZfItvjcUikrCNP3yQaP2Qhbm0sZCTYfKhINL7lSLFMmRBp14PrD4vGH3rviEyZEGnTtf/+SjQ++vmvZcqkDQsZCbIKxcevsDTODBH1XHaxeA/M4TO/ypQJkTaV1TaJxs8ZGmXKpA0LGQkSo8THr7A0zgwR9dyIMPEemFERfjJlQqRN/hZ6YALZI6NeM+LDRePTR4bJlAmRdr01a5RofNXdI2XKhEibXrpjqGj8BQtxa2MhIwHvzRMp709LM0Xjf359j0yZEGnTEx/miMb/YSFubSxkJOC9eSLl5Z+vF43/XF4nUyZE2lRpYZyYCo4jo168N0+kvH4BvUTjVwd5ypQJkTaxR8aO8d48kfI+nz9eNP7p38fJlAmRNrFHhoiIiOxWhJ+HaDzSX/yqqbWxkJGAA+IRKY9N90TKej/rjGj8gwPicWtjISMBB8QjUh6b7omUtb9A/Ltub768M9CzkJGAA+IRKY9N90TKGh0t/l03tp+8852xkJGAA+IRKY9N90TKWnTLINH4P/88UKZM2rCQkeCZ7T+Ixp/79KRMmRBpV2ZuuWj82zx5L2sTaU3MU5+Jxq+2ELc2FjISqO2+IJEW5ZytFo0fLRLvoSGinmluFY83WYhbGwsZCdR2X5BIi4b28RGNDw8X76Ehop5xtlA5uMhcWbCQkUBt9wWJtGh8bJBo/LoYnlAQ2VLe85NF4z9biFsbCxkJOI4MkfLeyMgTja/clS9TJkTaNOjpHaLxayzErY2FjAQcR4ZIeZaOMzb7EtlWvYUmmTpLTTRWpmghk5aWhlGjRsHLywtBQUGYOnUqcnNzTda5cOECUlJS4O/vD09PT0ybNg1lZWWK5MtxZIiUZ+k4460lIttyd9KJxj0sxK1N0UImMzMTKSkpOHDgAL766is0NzfjpptuQn19vXGd+fPn45NPPsGWLVuQmZmJkpIS3HbbbYrkOyM+HE4O5neQk4OO48gQyWDOxBjR+CMT+smUCZE2rbQwVtMKmcdy0gmCIMj6G0VUVFQgKCgImZmZGDduHGpqahAYGIgNGzbg9ttvBwD89NNPGDBgALKysnDttdd2+IzGxkY0NjYafzYYDAgLC0NNTQ28vb17nOPJX2pwy4p9uNj6x/9tTg46bE8Zg4FX6Xv8+URk2cFTlZix+kCH5Zv/ei0S+opfOSWinolbvBOGxpZO43pXR3y35OYe/x6DwQC9Xm/x+1tVPTI1NTUAAD+/tiHGs7Oz0dzcjKSkJOM6/fv3R3h4OLKyssx+RlpaGvR6vfEVFmbdqyQDr9Ij//k/YWxfP3i5OeK6fv7If/5PLGKIZJTQ1x+n0ydjUG8vuDjqcE1vL5xOn8wihkgGYkUMANRYiFubagqZ1tZWzJs3D2PGjME111wDACgtLYWLiwt8fHxM1g0ODkZpaanZz0lNTUVNTY3xVVxs3SeJvjxxDpELP8PeU7+i9kILvs2vROTCz5BxUpm+HSIt2ppdjMiFn+GHc7VoahFw4lwtIhd+hu3HflE6NaIrnq+7k2jcz0Lc2lRTyKSkpODEiRPYtGlTjz7H1dUV3t7eJi9revD9o2aXz373iFV/DxF1bv6W780uf3RzjryJEGnQscXJovGjFuLWpopCZs6cOfj000+xa9cu9OnTx7g8JCQETU1NqK6uNlm/rKwMISEhMmfJuZaI1OAxC8XKE1u+kycRIo0a+eyXovF4C3FrU7SQEQQBc+bMwdatW/HNN98gKirKJD5ixAg4OzsjIyPDuCw3NxdFRUVITEyUO13OtUSkAgdPi4/nlGXhOCWinjlf3ywaL7cQtzZ5b2RdJiUlBRs2bMDHH38MLy8vY9+LXq+Hu7s79Ho9Zs+ejQULFsDPzw/e3t6YO3cuEhMTzT6xZGujowPwU2ldp3HOtURkewmR/jhb1XkvTKKFOdGIqGcCejmLFjNBvZxlzEbhx691OvNjsqxduxb33nsvgLYB8R577DFs3LgRjY2NSE5OxsqVK7t8a6mrj291VeTCzqcnP50u7/wSRFrF45BIWXIcg139/lb0ikxXaig3NzesWLECK1askCEjIiIisieqaPa1F5ysjkh5bPYlUlbc4p2i8SEW4tbGQkYCTlZHpDw2+xIpiwPi2TFOVkekvIRI8dF72exLZFvero6icb2FuLWxkJGAk9URKe+VGUNF4y9NHyJPIkQa9b2FeZSsMc+SFCxkJNh8qEg0vuWIdadDIKKOMnPLReO8xUtkW3e9ZX6uw3Z3v91xQldbYiEjQVah+L15Sz00RNRzOWerReNHi6rkSYRIo74vqRGNWzpGrY2FjASJUeL35i310BBRzw3t4yMaHx7uK08iRBoVF6oXjVs6Rq2NhYwEM+LDRePTR4bJlAmRdo2PDRKNs+meyLY+eFB8iqD3HpB35H0WMhKwR4ZIeeyRIVLWdekZovHxL3wjUyZtWMhIwB4ZIuWxR4ZIWb/UXBCNF1f/JlMmbVjISMAeGSLlsUeGSFlX6d1E42E+7jJl0oaFjATskSFS3vjYIPh6mJ9d19fDmT0yRDb27cKJovHMf9wgUyZtWMhIUFBRJxovPF8vUyZE2rY9ZWyHYsbXwxnbU8YqlBGRdqht3kFFZ7+2N2d+bRCNn66sR1RAL5myIdKuMH8PHFt0E77Nq8DRoioMD/fllRgimXRl3kE5R7rnFRkJIvw8ROOR/ixiiOR0lY874vr4oI+v+LFJRNYzIMRbND7Iwjgz1sYrMhJEB3pidF9/7D/V8eml0X39eTWGSCbVDU14dGMO9lzyqPW4mEAsnzkM+k76Z4jIOq6LDcQ7+093Gh8TI++DL7wiI5EgSFtORNb36MYc7Ms3vby9L/885m48plBGRNqhtrsTLGQkKKioQ1aB+bFksgoq2exLJIOCijrsyatAy2VnDy2CgD15FTwOiWzs8+/PicZ3HBePWxsLGQm60uxLRLbF45BIWV1p9pUTCxkJ1HY5jUiLeBwSKcvS4K9yP0HIQkaC6EBPjIsJhKNOZ7LcUafDuJhANvsSySA60FN0QDweh0S2NWdijGhczkevARYyki2fOQxj+plWo2P6BWD5zGEKZUSkLQUVdahqaDYbq2poZo8MkY2pbXBYPn4tkd7DGe/Ojkfh+XqcrqxHpH8vngESyYgDUxIpS23HIAuZbooKYAFDpAT2yBApS23HIG8tEZFdYa8akbLU1qfGQoaI7A571YiUo7Y+Nd5a6qaCijqc+bWBPTJECmCvGpFy2CNj5zjHC5F6sFeNSH7skbFznOOFiIi0LDrQUzTOHhkV4xwvRESkdZsPFYnGtxwplimTNixkJOAcL0REpHVZheYnT25naS4ma1O0kNmzZw+mTJmC0NBQ6HQ6bNu2zSQuCAIWLVqE3r17w93dHUlJScjLy1MmWajvviAREZHcEqP8ReOW5mKyNkULmfr6egwZMgQrVqwwG3/xxRexbNkyrFq1CgcPHkSvXr2QnJyMCxcuyJxpG45fQUREWjcjPlw0Pn1kmEyZtFH0qaVJkyZh0qRJZmOCIOC1117DP//5T9x6660AgHfffRfBwcHYtm0b7rzzTrPva2xsRGNjo/Fng8Fg1ZyXzxyGuRuPmTy1xPEriIhIKzJzy0Xj3+ZVyDoDtmofvy4sLERpaSmSkpKMy/R6PRISEpCVldVpIZOWloYlS5bYLC+OX0FERFqWc7ZaNH60qErWQka1zb6lpaUAgODgYJPlwcHBxpg5qampqKmpMb6Ki23TPR0V0AsTYoNYxBARkaYM7eMjGh8e7itPIr9T7RWZ7nJ1dYWrq6vSaRAREV2RxscGwc1JhwsXhQ4xN2edrFdjABVfkQkJCQEAlJWVmSwvKyszxoiIiEh+5ooYALjQbH65Lam2kImKikJISAgyMjKMywwGAw4ePIjExEQFMyMiItKuu97KEo3f/fYBmTJpo+itpbq6OuTn5xt/LiwsRE5ODvz8/BAeHo558+bhueeeQ0xMDKKiovD0008jNDQUU6dOVS5pIlKNzNxy5JytxvBwX9kvZxNp1fclNaJxS83A1qZoIXPkyBFMmDDB+POCBQsAALNmzcK6devw5JNPor6+Hg8++CCqq6sxduxY7Ny5E25ubkqlTEQqcKayHlNX7ENVQ7Nxma+HM7anjEWYv/jAlUTUM3Gheuwr+LXTuKVmYGvTCYIg/w0tGRkMBuj1etTU1MDb21vpdIjICoY986VJEdPO18MZxxbdpEBGRNoSufCzTmOn0ydb5Xd09ftbtT0yRETmZOaWmy1iAKCqoRnfXjJYJRFZX1cGxJMTCxkisitdGYyLiGxHbccgCxkisitqG4yLSGvUdgyykCEiuzI+NghODjqzMScH+QfjItKa8bFBonEOiEdEJKKgog4XW80/o3CxVUDh+XqZMyLSFvbIEBH1wJlfG0TjpytZyBDZEntkiIh6IMJPfJyYSH9O5EpkS+yRISLqgehAT/h6OJuN+Xo4c0Z6IhtjjwwRUQ8UVNSJjiPDHhki22KPDBFRD7BHhkhZ7JEhIuoB9sgQKYs9MkREPRAd6InRff3Nxkb39WePDJGNjY8Ngrer+TmnvV2d2CNDRGRJZ1PdXtlT4BKpR33TRUnLbYmFDBHZlYKKOmQVVJqNZRVUstmXyMY2HypCSycnDS0CsOVIsaz5sJDppoKKOuzKLecfTSKZsdmXSFlZheZPJNrtO3VepkzamL/JRZ2qbmjCoxtzsOeSx8vGxQRi+cxh0HcytgURWQ+bfYmUlRjlj23HSjqNj+kbIGM2vCIj2aMbc7Av37Ta3Jd/HnM3HlMoIyJtiQ70FJ00ks2+RLY1Iz5cND59ZJhMmbRhISNBQUUd9uRVoOWyjsIWQcCevAreZiKSQWZuueikkXIPxkWkNQ+uPywaf+i9IzJl0oaFjAS8N0+kPLUNxkWkNdnF4sfY4TO/ypRJGxYyEvDePJHy1DYYF5HWjAgTP8ZGRfjJlEkbFjISRAd6YlxMIBx1pvfnHXU6jIsJ5L15IhmobcI6Iq15a9Yo0fiqu0fKlEkbFjISLZ85DGP6mXZkj+kXgOUzhymUEZG2bD5UJBqXewwLIq1R2zHIx68l0ns4493Z8djzczmOFVdjeLgvzwCJZNSVMSzkfmqCSEvUdgyykJGI48gQKUttY1gQaY3ajkHeWpKI48gQKUttY1gQaY3ajkEWMhJwHBki5WXmlovGOY4MkW1xHBk7xnFkiJTHcWSIlMVxZOwYx5EhUh7HkSFSFseRsWPRgZ5IjPY3G0uM9uc4MkQy4DgyRMriODJ2Tmd+rrpOlxORdbFHhkhZz2z/QTT+3KcnZcqkDQsZCQoq6rD/lPnn5/efqmSzL5EMtuX8IhrfelQ8TkQ9s7/gvGh8b768JxN2UcisWLECkZGRcHNzQ0JCAg4dOqRIHmz2JVJe3YWLovHaxmaZMiHSpnBfdfWLqr6Q2bx5MxYsWIDFixfj6NGjGDJkCJKTk1FeLn552RbY7EukvMF99KLxIRaagYmoZ0J93UXjIXo3mTJpo/pC5tVXX8Vf//pX3HfffRg4cCBWrVoFDw8PvPPOO7LnwkkjiZT357hQ0fhkC3Ei6hm/Xi6i8QBPV5kyaaPqQqapqQnZ2dlISkoyLnNwcEBSUhKysrLMvqexsREGg8HkZU2cNJJIWdGBnoiPNP/4Z3ykL08oiGxMbScTqp5r6fz582hpaUFwcLDJ8uDgYPz0009m35OWloYlS5bYLKf2SSMLz9fjdGU9Iv178Q8nkcxW3zMKczceMzvnGRHZVtvJhB8One448F18pJ/s34mqLmS6IzU1FQsWLDD+bDAYEBZm/XkfogJYwBAphScURMpafc9I1ZxMqLqQCQgIgKOjI8rKykyWl5WVISQkxOx7XF1d4eoq7/05IlIGTyiIlKGmkwlV98i4uLhgxIgRyMjIMC5rbW1FRkYGEhMTFcyMiIiIogJ6YUJskKInFKq+IgMACxYswKxZszBy5EjEx8fjtddeQ319Pe677z6lUyMiIiKFqb6QmTFjBioqKrBo0SKUlpZi6NCh2LlzZ4cGYCIiItIenSAIgtJJ2JLBYIBer0dNTQ28vb2VToeIiIi6oKvf36rukSEiIiISw0KGiIiI7BYLGSIiIrJbLGSIiIjIbrGQISIiIrvFQoaIiIjsFgsZIiIisluqHxCvp9qHyTEYDApnQkRERF3V/r1tabi7K76Qqa2tBQCbzIBNREREtlVbWwu9Xt9p/Iof2be1tRUlJSXw8vKCTqez2ucaDAaEhYWhuLj4ih0x+Erfxit9+4Arfxu5ffbvSt9Gbl/3CYKA2tpahIaGwsGh806YK/6KjIODA/r06WOzz/f29r4i/3Fe6krfxit9+4Arfxu5ffbvSt9Gbl/3iF2JacdmXyIiIrJbLGSIiIjIbrGQ6SZXV1csXrwYrq6uSqdiM1f6Nl7p2wdc+dvI7bN/V/o2cvts74pv9iUiIqIrF6/IEBERkd1iIUNERER2i4UMERER2S0WMkRERGS3WMj8bs+ePZgyZQpCQ0Oh0+mwbds2i+/ZvXs3hg8fDldXV/Tr1w/r1q3rsM6KFSsQGRkJNzc3JCQk4NChQ9ZPvgukbt///vc/3HjjjQgMDIS3tzcSExPxxRdfmKzzr3/9CzqdzuTVv39/G25F56Ru3+7duzvkrtPpUFpaarKeWvYfIH0b7733XrPbOGjQIOM6atqHaWlpGDVqFLy8vBAUFISpU6ciNzfX4vu2bNmC/v37w83NDYMHD8bnn39uEhcEAYsWLULv3r3h7u6OpKQk5OXl2WozOtWd7Vu9ejWuu+46+Pr6wtfXF0lJSR3+DZrbzzfffLMtN8Ws7mzfunXrOuTu5uZmso5a9h/QvW28/vrrzR6HkydPNq6jln345ptvIi4uzji4XWJiInbs2CH6HjUcfyxkfldfX48hQ4ZgxYoVXVq/sLAQkydPxoQJE5CTk4N58+bhgQceMPmy37x5MxYsWIDFixfj6NGjGDJkCJKTk1FeXm6rzeiU1O3bs2cPbrzxRnz++efIzs7GhAkTMGXKFBw7dsxkvUGDBuHcuXPG1969e22RvkVSt69dbm6uSf5BQUHGmJr2HyB9G19//XWTbSsuLoafnx+mT59usp5a9mFmZiZSUlJw4MABfPXVV2hubsZNN92E+vr6Tt+zf/9+zJw5E7Nnz8axY8cwdepUTJ06FSdOnDCu8+KLL2LZsmVYtWoVDh48iF69eiE5ORkXLlyQY7OMurN9u3fvxsyZM7Fr1y5kZWUhLCwMN910E3755ReT9W6++WaTfbhx40Zbb04H3dk+oG1E2EtzP3PmjElcLfsP6N42/u9//zPZvhMnTsDR0bHDcaiGfdinTx+kp6cjOzsbR44cwQ033IBbb70VP/zwg9n1VXP8CdQBAGHr1q2i6zz55JPCoEGDTJbNmDFDSE5ONv4cHx8vpKSkGH9uaWkRQkNDhbS0NKvmK1VXts+cgQMHCkuWLDH+vHjxYmHIkCHWS8xKurJ9u3btEgAIVVVVna6j1v0nCN3bh1u3bhV0Op1w+vRp4zK17kNBEITy8nIBgJCZmdnpOnfccYcwefJkk2UJCQnC3/72N0EQBKG1tVUICQkRXnrpJWO8urpacHV1FTZu3GibxLuoK9t3uYsXLwpeXl7C+vXrjctmzZol3HrrrTbIsGe6sn1r164V9Hp9p3E17z9B6N4+XLp0qeDl5SXU1dUZl6l1HwqCIPj6+gpvv/222Zhajj9ekemmrKwsJCUlmSxLTk5GVlYWAKCpqQnZ2dkm6zg4OCApKcm4jj1pbW1FbW0t/Pz8TJbn5eUhNDQU0dHRuOuuu1BUVKRQht0zdOhQ9O7dGzfeeCP27dtnXH6l7T8AWLNmDZKSkhAREWGyXK37sKamBgA6/Ju7lKXjsLCwEKWlpSbr6PV6JCQkKL4fu7J9l2toaEBzc3OH9+zevRtBQUGIjY3Fww8/jMrKSqvm2h1d3b66ujpEREQgLCysw9m/mvcf0L19uGbNGtx5553o1auXyXK17cOWlhZs2rQJ9fX1SExMNLuOWo4/FjLdVFpaiuDgYJNlwcHBMBgM+O2333D+/Hm0tLSYXefyPgx78PLLL6Ourg533HGHcVlCQgLWrVuHnTt34s0330RhYSGuu+461NbWKphp1/Tu3RurVq3CRx99hI8++ghhYWG4/vrrcfToUQC44vZfSUkJduzYgQceeMBkuVr3YWtrK+bNm4cxY8bgmmuu6XS9zo7D9n3U/r9q249d3b7L/eMf/0BoaKjJF8PNN9+Md999FxkZGXjhhReQmZmJSZMmoaWlxRapd0lXty82NhbvvPMOPv74Y7z//vtobW3F6NGjcfbsWQDq3X9A9/bhoUOHcOLEiQ7HoZr24fHjx+Hp6QlXV1c89NBD2Lp1KwYOHGh2XbUcf1f87NfUcxs2bMCSJUvw8ccfm/SQTJo0yfjfcXFxSEhIQEREBD788EPMnj1biVS7LDY2FrGxscafR48ejVOnTmHp0qV47733FMzMNtavXw8fHx9MnTrVZLla92FKSgpOnDihWL+OrXVn+9LT07Fp0ybs3r3bpCH2zjvvNP734MGDERcXh759+2L37t2YOHGiVfPuqq5uX2JiosnZ/ujRozFgwAD85z//wbPPPmvrNHukO/twzZo1GDx4MOLj402Wq2kfxsbGIicnBzU1Nfjvf/+LWbNmITMzs9NiRg14RaabQkJCUFZWZrKsrKwM3t7ecHd3R0BAABwdHc2uExISImeqPbJp0yY88MAD+PDDDztcQrycj48Prr76auTn58uUnXXFx8cbc79S9h/Q9tTAO++8g7vvvhsuLi6i66phH86ZMweffvopdu3ahT59+oiu29lx2L6P2v9XTftRyva1e/nll5Geno4vv/wScXFxoutGR0cjICBAsX3Yne1r5+zsjGHDhhlzV+P+A7q3jfX19di0aVOXThCU3IcuLi7o168fRowYgbS0NAwZMgSvv/662XXVcvyxkOmmxMREZGRkmCz76quvjGcXLi4uGDFihMk6ra2tyMjI6PR+o9ps3LgR9913HzZu3GjyqGBn6urqcOrUKfTu3VuG7KwvJyfHmPuVsP/aZWZmIj8/v0t/QJXch4IgYM6cOdi6dSu++eYbREVFWXyPpeMwKioKISEhJusYDAYcPHhQ9v3Yne0D2p76ePbZZ7Fz506MHDnS4vpnz55FZWWl7Puwu9t3qZaWFhw/ftyYu5r2H9CzbdyyZQsaGxvxl7/8xeK6Su1Dc1pbW9HY2Gg2pprjz2ptw3autrZWOHbsmHDs2DEBgPDqq68Kx44dE86cOSMIgiAsXLhQuPvuu43rFxQUCB4eHsITTzwh/Pjjj8KKFSsER0dHYefOncZ1Nm3aJLi6ugrr1q0TTp48KTz44IOCj4+PUFpaqvrt++CDDwQnJydhxYoVwrlz54yv6upq4zqPPfaYsHv3bqGwsFDYt2+fkJSUJAQEBAjl5eWq376lS5cK27ZtE/Ly8oTjx48Lf//73wUHBwfh66+/Nq6jpv0nCNK3sd1f/vIXISEhwexnqmkfPvzww4Jerxd2795t8m+uoaHBuM7dd98tLFy40Pjzvn37BCcnJ+Hll18WfvzxR2Hx4sWCs7OzcPz4ceM66enpgo+Pj/Dxxx8L33//vXDrrbcKUVFRwm+//ab67UtPTxdcXFyE//73vybvqa2tFQSh7d/E448/LmRlZQmFhYXC119/LQwfPlyIiYkRLly4oPrtW7JkifDFF18Ip06dErKzs4U777xTcHNzE3744QfjOmrZf4LQvW1sN3bsWGHGjBkdlqtpHy5cuFDIzMwUCgsLhe+//15YuHChoNPphC+//FIQBPUefyxkftf+OO7lr1mzZgmC0PZ43Pjx4zu8Z+jQoYKLi4sQHR0trF27tsPnLl++XAgPDxdcXFyE+Ph44cCBA7bfGDOkbt/48eNF1xeEtsfNe/fuLbi4uAhXXXWVMGPGDCE/P1/eDfud1O174YUXhL59+wpubm6Cn5+fcP311wvffPNNh89Vy/4ThO79G62urhbc3d2Ft956y+xnqmkfmts2ACbH1fjx403+DQqCIHz44YfC1VdfLbi4uAiDBg0SPvvsM5N4a2ur8PTTTwvBwcGCq6urMHHiRCE3N1eGLTLVne2LiIgw+57FixcLgiAIDQ0Nwk033SQEBgYKzs7OQkREhPDXv/5VkWK7O9s3b9484/EVHBws/OlPfxKOHj1q8rlq2X+C0P1/oz/99JMAwFgQXEpN+/D+++8XIiIiBBcXFyEwMFCYOHGiSc5qPf50giAIVrq4Q0RERCQr9sgQERGR3WIhQ0RERHaLhQwRERHZLRYyREREZLdYyBAREZHdYiFDREREdouFDBEREdktFjJERERkt1jIEJHduP766zFv3jyl0yAiFWEhQ0Syuvfee6HT6aDT6Ywz7T7zzDO4ePGi0qkRkR1yUjoBItKem2++GWvXrkVjYyM+//xzpKSkwNnZGampqUqnRkR2hldkiEh2rq6uCAkJQUREBB5++GEkJSVh+/btAIB9+/bh+uuvh4eHB3x9fZGcnIyqqiqzn/Pee+9h5MiR8PLyQkhICP7v//4P5eXlxnhVVRXuuusuBAYGwt3dHTExMVi7di0AoKmpCXPmzEHv3r3h5uaGiIgIpKWl2X7jiciqeEWGiBTn7u6OyspK5OTkYOLEibj//vvx+uuvw8nJCbt27UJLS4vZ9zU3N+PZZ59FbGwsysvLsWDBAtx77734/PPPAQBPP/00Tp48iR07diAgIAD5+fn47bffAADLli3D9u3b8eGHHyI8PBzFxcUoLi6WbZuJyDpYyBCRYgRBQEZGBr744gvMnTsXL774IkaOHImVK1ca1xk0aFCn77///vuN/x0dHY1ly5Zh1KhRqKurg6enJ4qKijBs2DCMHDkSABAZGWlcv6ioCDExMRg7dix0Oh0iIiKsv4FEZHO8tUREsvv000/h6ekJNzc3TJo0CTNmzMC//vUv4xWZrsrOzsaUKVMQHh4OLy8vjB8/HkBbkQIADz/8MDZt2oShQ4fiySefxP79+43vvffee5GTk4PY2Fg8+uij+PLLL627kUQkCxYyRCS7CRMmICcnB3l5efjtt9+wfv169OrVC+7u7l3+jPr6eiQnJ8Pb2xsffPABDh8+jK1btwJo638BgEmTJuHMmTOYP38+SkpKMHHiRDz++OMAgOHDh6OwsBDPPvssfvvtN9xxxx24/fbbrb+xRGRTLGSISHa9evVCv379EB4eDienP+5wx8XFISMjo0uf8dNPP6GyshLp6em47rrr0L9/f5NG33aBgYGYNWsW3n//fbz22mt46623jDFvb2/MmDEDq1evxubNm/HRRx/h119/7fkGEpFs2CNDRKqRmpqKwYMH45FHHsFDDz0EFxcX7Nq1C9OnT0dAQIDJuuHh4XBxccHy5cvx0EMP4cSJE3j22WdN1lm0aBFGjBiBQYMGobGxEZ9++ikGDBgAAHj11VfRu3dvDBs2DA4ODtiyZQtCQkLg4+Mj1+YSkRXwigwRqcbVV1+NL7/8Et999x3i4+ORmJiIjz/+2OSqTbvAwECsW7cOW7ZswcCBA5Geno6XX37ZZB0XFxekpqYiLi4O48aNg6OjIzZt2gQA8PLyMjYXjxo1CqdPn8bnn38OBwf+WSSyJzpBEASlkyAiIiLqDp56EBERkd1iIUNERER2i4UMERER2S0WMkRERGS3WMgQERGR3WIhQ0RERHaLhQwRERHZLRYyREREZLdYyBAREZHdYiFDREREdouFDBEREdmt/wf4yAhTFGuyBAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df.plot.scatter(x=\"Age\", y=\"Sex\")\n", + "\n", + "df.plot.scatter(x=\"Pclass\", y=\"Age\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Визуализация - Столбчатая диаграмма" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGrCAYAAADqwWxuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAqnElEQVR4nO3deXhU5aHH8d8kIRtkJg2QTPKQsIrsaxAjiAgpIVhkVZZUiXLhyqKFWGlzryyCvUGuCkW223uvBIUIUgsCAkJZwhZQ0oKK7AWDDyThgsmwJYRk7h88TDslLIGEeRO+n+c5z+PMec+Zd2Da+XLOmRmL0+l0CgAAwCBenp4AAADAPyNQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcH09P4F6UlJTo9OnTCgoKksVi8fR0AADAXXA6nbpw4YIiIiLk5XX7YySVMlBOnz6tyMhIT08DAADcg1OnTqlOnTq3HVMpAyUoKEjS9SdotVo9PBsAAHA3HA6HIiMjXe/jt1MpA+XGaR2r1UqgAABQydzN5RlcJAsAAIxDoAAAAOMQKAAAwDiV8hqUu1VcXKyioiJPTwOGqVatmry9vT09DQDAbVTJQHE6ncrOzlZeXp6npwJDBQcHy2638z06AGCoKhkoN+IkNDRUgYGBvAnBxel06vLly8rNzZUkhYeHe3hGAIDSVLlAKS4udsVJzZo1PT0dGCggIECSlJubq9DQUE73AICBqtxFsjeuOQkMDPTwTGCyG68PrlECADNVuUC5gdM6uB1eHwBgtiobKAAAoPIiUAAAgHGq3EWyt5W+98E91lPRD+6xKpGTJ0+qfv36+utf/6o2bdpU2ONMmTJFK1eu1L59+yrsMQAAFYcjKIZITEyUxWLR9OnT3e5fuXJlma+XqFevnmbNmlWOsys/kZGROnPmjFq0aOHpqQAADEagGMTf31/vvPOOfvrpJ09P5Z7czSdivL29Zbfb5ePzcB28AwCUDYFikNjYWNntdqWkpNx23GeffabmzZvLz89P9erV03vvveda17VrV/3www8aP368LBbLLY++OJ1OTZkyRVFRUfLz81NERIRee+0113qLxaKVK1e6bRMcHKzU1FRJ10/VWCwWLVu2TE899ZT8/f01f/58BQQEaN26dW7brVixQkFBQbp8+bJru3379qmkpER16tTR/Pnz3cb/9a9/lZeXl3744QdJUl5env7lX/5FtWvXltVqVbdu3bR//363baZPn66wsDAFBQVp+PDhKigouO2fIQDAbPwz1iDe3t76j//4Dw0dOlSvvfaa6tSpc9OYzMxMPf/885oyZYoGDRqkXbt2afTo0apZs6YSExP1pz/9Sa1bt9bIkSM1YsSIWz7WZ599ppkzZ2rp0qVq3ry5srOzb3rTvxu//e1v9d5776lt27by9/fX9u3blZaWpvj4eNeYJUuWqG/fvjd9N42Xl5eGDBmitLQ0jRo1ym18p06dVLduXUnSc8895wofm82m//qv/1L37t115MgRhYSE6NNPP9WUKVM0d+5cde7cWR9//LFmz56tBg0alPn5APCAB3l94L3iusIHjiMohunXr5/atGmjyZMnl7r+/fffV/fu3TVx4kQ1btxYiYmJGjt2rP7zP/9TkhQSEiJvb28FBQXJbrfLbreXup+srCzZ7XbFxsYqKipKjz322G2D5lbGjRun/v37q379+goPD1dCQoJWrlypy5cvS5IcDoe++OILJSQklLp9QkKCdu7cqaysLElSSUmJli5d6hq/Y8cOffXVV1q+fLmio6P1yCOP6N1331VwcLD++Mc/SpJmzZql4cOHa/jw4Xr00Uf19ttvq1mzZmV+LgAAcxAoBnrnnXe0aNEiHTx48KZ1Bw8eVKdOndzu69Spk44ePari4uK7foznnntOV65cUYMGDTRixAitWLFC165dK/Nco6Pd/1XRq1cvVatWTatWrZJ0/UiN1WpVbGxsqdu3adNGTZs2VVpamiQpPT1dubm5eu655yRJ+/fv18WLF1WzZk3VqFHDtZw4cULHjx+XdP3PpGPHjm77jYmJKfNzAQCYg0AxUJcuXRQXF6fk5OQKe4zIyEgdPnxY8+bNU0BAgEaPHq0uXbq4LnS1WCxyOp1u25R2EWz16tXdbvv6+mrgwIGu4EhLS9OgQYNue1FsQkKC2/iePXu6fkfp4sWLCg8P1759+9yWw4cP64033rj3PwAAgNEIFENNnz5dq1evVkZGhtv9TZs21c6dO93u27lzpxo3buz60TtfX9+7OpoSEBCg3r17a/bs2dq6dasyMjL07bffSpJq166tM2fOuMYePXrUddrmThISErR+/XodOHBAmzdvvuXpnRuGDh2q7777TpmZmfrjH//oNr5du3bKzs6Wj4+PGjVq5LbUqlXL9WeyZ88et33u3r37ruYKADATF8kaqmXLlkpISNDs2bPd7n/99dfVoUMHTZs2TYMGDVJGRobmzJmjefPmucbUq1dP27Zt0+DBg+Xn5+d6I/9HqampKi4uVseOHRUYGKjFixcrICDAdWFqt27dNGfOHMXExKi4uFi/+c1vVK1atbuae5cuXWS325WQkKD69evfdPrln9WrV09PPPGEhg8fruLiYj377LOudbGxsYqJiVHfvn01Y8YMNW7cWKdPn9YXX3yhfv36KTo6Wr/61a+UmJio6OhoderUSUuWLNGBAwe4SBYAKrGHK1Aq2VXYU6dO1bJly9zua9eunT799FNNmjRJ06ZNU3h4uKZOnarExES37f71X/9VDRs2VGFh4U2naqTrHxmePn26kpKSVFxcrJYtW2r16tWuUyvvvfeeXnrpJT355JOKiIjQ73//e2VmZt7VvC0Wi4YMGaIZM2Zo0qRJd7VNQkKCRo8erRdffFEBAQFu+1q7dq3+/d//XS+99JLOnj0ru92uLl26KCwsTJI0aNAgHT9+XBMmTFBBQYEGDBigUaNG6csvv7yrxwYAmMfiLO3dy3AOh0M2m035+fmyWq1u6woKCnTixAnVr19f/v7+HpohTMfrBDAIHzN+aNzu/fufcQ0KAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECrR161ZZLBbl5eVV6OMkJiaqb9++FfoYAICq4aH6qnvLW5YH9ljOyWX/gt6zZ89q0qRJ+uKLL5STk6Of/exnat26tSZNmqROnTpVwCyve+KJJ3TmzBnZbLYKewwAAMrioQoU0w0YMEBXr17VokWL1KBBA+Xk5GjTpk06d+7cPe3P6XSquLhYPj63/2v29fWV3W6/p8cAAKAicIrHEHl5edq+fbveeecdPf3006pbt64ee+wxJScn69lnn9XJkydlsVi0b98+t20sFou2bt0q6e+natatW6f27dvLz89PH374oSwWiw4dOuT2eDNnzlTDhg3dtsvLy5PD4VBAQIDWrVvnNn7FihUKCgrS5cuXJUmnTp3S888/r+DgYIWEhKhPnz46efKka3xxcbGSkpIUHBysmjVrasKECaX+aCEAAKUhUAxRo0YN1ahRQytXrlRhYeF97eu3v/2tpk+froMHD2rgwIGKjo7WkiVL3MYsWbJEQ4cOvWlbq9WqX/ziF0pLS7tpfN++fRUYGKiioiLFxcUpKChI27dv186dO1WjRg317NlTV69elXT915BTU1P14YcfaseOHTp//rxWrFhxX88LAPDwIFAM4ePjo9TUVC1atEjBwcHq1KmT/u3f/k3ffPNNmfc1depU/fznP1fDhg0VEhKihIQEffLJJ671R44cUWZmphISEkrdPiEhQStXrnQdLXE4HPriiy9c45ctW6aSkhL9z//8j1q2bKmmTZtq4cKFysrKch3NmTVrlpKTk9W/f381bdpUCxYs4BoXAMBdK1OgpKSkqEOHDgoKClJoaKj69u2rw4cPu43p2rWrLBaL2/LKK6+4jcnKytIzzzyjwMBAhYaG6o033tC1a9fu/9lUcgMGDNDp06e1atUq9ezZU1u3blW7du2Umppapv1ER7v/LPjgwYN18uRJ7d69W9L1oyHt2rVTkyZNSt2+V69eqlatmlatWiVJ+uyzz2S1WhUbGytJ2r9/v44dO6agoCDXkZ+QkBAVFBTo+PHjys/P15kzZ9SxY0fXPn18fG6aFwAAt1KmQElPT9eYMWO0e/dubdy4UUVFRerRo4cuXbrkNm7EiBE6c+aMa5kxY4ZrXXFxsZ555hldvXpVu3bt0qJFi5SamqpJkyaVzzOq5Pz9/fXzn/9cEydO1K5du5SYmKjJkyfLy+v6X9U/XsdRVFRU6j6qV6/udttut6tbt26u0zZpaWm3PHoiXb9oduDAgW7jBw0a5LrY9uLFi2rfvr327dvnthw5cqTU00YAAJRVmQJl/fr1SkxMVPPmzdW6dWulpqYqKytLmZmZbuMCAwNlt9tdi9Vqda3bsGGDvv/+ey1evFht2rRRfHy8pk2bprlz57quX8DfNWvWTJcuXVLt2rUlSWfOnHGt+8cLZu8kISFBy5YtU0ZGhv72t79p8ODBdxy/fv16HThwQJs3b3YLmnbt2uno0aMKDQ1Vo0aN3BabzSabzabw8HDt2bPHtc21a9duep0AAHAr93UNSn5+viQpJCTE7f4lS5aoVq1aatGihZKTk13XMkhSRkaGWrZsqbCwMNd9cXFxcjgcOnDgQKmPU1hYKIfD4bZUNefOnVO3bt20ePFiffPNNzpx4oSWL1+uGTNmqE+fPgoICNDjjz/uuvg1PT1db7755l3vv3///rpw4YJGjRqlp59+WhEREbcd36VLF9ntdiUkJKh+/fpup2sSEhJUq1Yt9enTR9u3b9eJEye0detWvfbaa/rxxx8lSb/61a80ffp0rVy5UocOHdLo0aMr/IvgAABVxz0HSklJicaNG6dOnTqpRYsWrvuHDh2qxYsXa8uWLUpOTtbHH3+sX/7yl6712dnZbnEiyXU7Ozu71MdKSUlx/cvcZrMpMjLyXqdtrBo1aqhjx46aOXOmunTpohYtWmjixIkaMWKE5syZI0n68MMPde3aNbVv317jxo3T22+/fdf7DwoKUu/evbV///7bnt65wWKxaMiQIaWODwwM1LZt2xQVFeW6CHb48OEqKChwHS17/fXX9cILL2jYsGGKiYlRUFCQ+vXrV4Y/EQDAw8zivMcvpxg1apTWrVunHTt2qE6dOrcct3nzZnXv3l3Hjh1Tw4YNNXLkSP3www/68ssvXWMuX76s6tWra+3atYqPj79pH4WFhW4fvXU4HIqMjFR+fr7b6SNJKigo0IkTJ1S/fn35+/vfy1PDQ4DXCWCQ9L2ensGdPcVF/uXB4XDIZrOV+v79z+7pCMrYsWO1Zs0abdmy5bZxIsl1auDYsWOSrl+wmZOT4zbmxu1bfZupn5+frFar2wIAAKquMgWK0+nU2LFjtWLFCm3evFn169e/4zY3LuQMDw+XJMXExOjbb79Vbm6ua8zGjRtltVrVrFmzskwHAABUUWX6LZ4xY8YoLS1Nn3/+uYKCglzXjNhsNgUEBOj48eNKS0tTr169VLNmTX3zzTcaP368unTpolatWkmSevTooWbNmumFF17QjBkzlJ2drTfffFNjxoyRn59f+T9DAABQ6ZTpCMr8+fOVn5+vrl27Kjw83LUsW7ZM0vXvz/jzn/+sHj16qEmTJnr99dc1YMAArV692rUPb29vrVmzRt7e3oqJidEvf/lLvfjii5o6dWr5PjMAAFBplekIyp2up42MjFR6evod91O3bl2tXbu2LA9dZvwwHW6H1wcAmK3K/RZPtWrVJMntu1eAf3bj9XHj9QIAMEuZjqBUBt7e3goODnZdhBsYGCiLxeLhWcEUTqdTly9fVm5uroKDg+Xt7e3pKQEASlHlAkX6+8eV//GTQsA/Cg4OvuXH2gEAnlclA8VisSg8PFyhoaG3/EE9PLyqVavGkRMAMFyVDJQbvL29eSMCAKASqnIXyQIAgMqPQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABinTIGSkpKiDh06KCgoSKGhoerbt68OHz7sNqagoEBjxoxRzZo1VaNGDQ0YMEA5OTluY7KysvTMM88oMDBQoaGheuONN3Tt2rX7fzYAAKBKKFOgpKena8yYMdq9e7c2btyooqIi9ejRQ5cuXXKNGT9+vFavXq3ly5crPT1dp0+fVv/+/V3ri4uL9cwzz+jq1avatWuXFi1apNTUVE2aNKn8nhUAAKjULE6n03mvG589e1ahoaFKT09Xly5dlJ+fr9q1aystLU0DBw6UJB06dEhNmzZVRkaGHn/8ca1bt06/+MUvdPr0aYWFhUmSFixYoN/85jc6e/asfH197/i4DodDNptN+fn5slqt9zp9AIAJ0vd6egZ39lS0p2dQJZTl/fu+rkHJz8+XJIWEhEiSMjMzVVRUpNjYWNeYJk2aKCoqShkZGZKkjIwMtWzZ0hUnkhQXFyeHw6EDBw6U+jiFhYVyOBxuCwAAqLruOVBKSko0btw4derUSS1atJAkZWdny9fXV8HBwW5jw8LClJ2d7Rrzj3FyY/2NdaVJSUmRzWZzLZGRkfc6bQAAUAncc6CMGTNG3333nZYuXVqe8ylVcnKy8vPzXcupU6cq/DEBAIDn+NzLRmPHjtWaNWu0bds21alTx3W/3W7X1atXlZeX53YUJScnR3a73TXmq6++ctvfjU/53Bjzz/z8/OTn53cvUwUAAJVQmY6gOJ1OjR07VitWrNDmzZtVv359t/Xt27dXtWrVtGnTJtd9hw8fVlZWlmJiYiRJMTEx+vbbb5Wbm+sas3HjRlmtVjVr1ux+ngsAAKgiynQEZcyYMUpLS9Pnn3+uoKAg1zUjNptNAQEBstlsGj58uJKSkhQSEiKr1apXX31VMTExevzxxyVJPXr0ULNmzfTCCy9oxowZys7O1ptvvqkxY8ZwlAQAAEgqY6DMnz9fktS1a1e3+xcuXKjExERJ0syZM+Xl5aUBAwaosLBQcXFxmjdvnmust7e31qxZo1GjRikmJkbVq1fXsGHDNHXq1Pt7JgAAoMq4r+9B8RS+BwUAqhC+B+Wh8cC+BwUAAKAiECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAME6ZA2Xbtm3q3bu3IiIiZLFYtHLlSrf1iYmJslgsbkvPnj3dxpw/f14JCQmyWq0KDg7W8OHDdfHixft6IgAAoOooc6BcunRJrVu31ty5c285pmfPnjpz5oxr+eSTT9zWJyQk6MCBA9q4caPWrFmjbdu2aeTIkWWfPQAAqJJ8yrpBfHy84uPjbzvGz89Pdru91HUHDx7U+vXr9fXXXys6OlqS9MEHH6hXr1569913FRERcdM2hYWFKiwsdN12OBxlnTYAAKhEKuQalK1btyo0NFSPPvqoRo0apXPnzrnWZWRkKDg42BUnkhQbGysvLy/t2bOn1P2lpKTIZrO5lsjIyIqYNgAAMES5B0rPnj310UcfadOmTXrnnXeUnp6u+Ph4FRcXS5Kys7MVGhrqto2Pj49CQkKUnZ1d6j6Tk5OVn5/vWk6dOlXe0wYAAAYp8ymeOxk8eLDrv1u2bKlWrVqpYcOG2rp1q7p3735P+/Tz85Ofn195TREAABiuwj9m3KBBA9WqVUvHjh2TJNntduXm5rqNuXbtms6fP3/L61YAAMDDpcID5ccff9S5c+cUHh4uSYqJiVFeXp4yMzNdYzZv3qySkhJ17NixoqcDAAAqgTKf4rl48aLraIgknThxQvv27VNISIhCQkL01ltvacCAAbLb7Tp+/LgmTJigRo0aKS4uTpLUtGlT9ezZUyNGjNCCBQtUVFSksWPHavDgwaV+ggcAADx8ynwEZe/evWrbtq3atm0rSUpKSlLbtm01adIkeXt765tvvtGzzz6rxo0ba/jw4Wrfvr22b9/udg3JkiVL1KRJE3Xv3l29evVS586d9Yc//KH8nhUAAKjULE6n0+npSZSVw+GQzWZTfn6+rFarp6cDALgf6Xs9PYM7eyr6zmNwR2V5/+a3eAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcXw8PQF4nuUti6encEfOyU5PTwEA8ABxBAUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGCcMgfKtm3b1Lt3b0VERMhisWjlypVu651OpyZNmqTw8HAFBAQoNjZWR48edRtz/vx5JSQkyGq1Kjg4WMOHD9fFixfv64kAAICqo8yBcunSJbVu3Vpz584tdf2MGTM0e/ZsLViwQHv27FH16tUVFxengoIC15iEhAQdOHBAGzdu1Jo1a7Rt2zaNHDny3p8FAACoUnzKukF8fLzi4+NLXed0OjVr1iy9+eab6tOnjyTpo48+UlhYmFauXKnBgwfr4MGDWr9+vb7++mtFR0dLkj744AP16tVL7777riIiIm7ab2FhoQoLC123HQ5HWacNAAAqkXK9BuXEiRPKzs5WbGys6z6bzaaOHTsqIyNDkpSRkaHg4GBXnEhSbGysvLy8tGfPnlL3m5KSIpvN5loiIyPLc9oAAMAw5Roo2dnZkqSwsDC3+8PCwlzrsrOzFRoa6rbex8dHISEhrjH/LDk5Wfn5+a7l1KlT5TltAABgmDKf4vEEPz8/+fn5eXoaAADgASnXIyh2u12SlJOT43Z/Tk6Oa53dbldubq7b+mvXrun8+fOuMQAA4OFWroFSv3592e12bdq0yXWfw+HQnj17FBMTI0mKiYlRXl6eMjMzXWM2b96skpISdezYsTynAwAAKqkyn+K5ePGijh075rp94sQJ7du3TyEhIYqKitK4ceP09ttv65FHHlH9+vU1ceJERUREqG/fvpKkpk2bqmfPnhoxYoQWLFigoqIijR07VoMHDy71EzwAAODhU+ZA2bt3r55++mnX7aSkJEnSsGHDlJqaqgkTJujSpUsaOXKk8vLy1LlzZ61fv17+/v6ubZYsWaKxY8eqe/fu8vLy0oABAzR79uxyeDoAAKAqsDidTqenJ1FWDodDNptN+fn5slqtnp5OpWd5y+LpKdyRc3Kle5kCuFvpez09gzt7KvrOY3BHZXn/5rd4AACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGCcSvFbPADKER/pBFAJcAQFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHT/EAAHAHleFHVaWq9cOqHEEBAADGIVAAAIBxOMUDwDiV4XB6VTqUDpiIIygAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACM4+PpCVRp6Xs9PQMAAColjqAAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA45R4oU6ZMkcVicVuaNGniWl9QUKAxY8aoZs2aqlGjhgYMGKCcnJzyngYAAKjEKuQISvPmzXXmzBnXsmPHDte68ePHa/Xq1Vq+fLnS09N1+vRp9e/fvyKmAQAAKimfCtmpj4/sdvtN9+fn5+t///d/lZaWpm7dukmSFi5cqKZNm2r37t16/PHHK2I6AACgkqmQIyhHjx5VRESEGjRooISEBGVlZUmSMjMzVVRUpNjYWNfYJk2aKCoqShkZGbfcX2FhoRwOh9sCAACqrnIPlI4dOyo1NVXr16/X/PnzdeLECT355JO6cOGCsrOz5evrq+DgYLdtwsLClJ2dfct9pqSkyGazuZbIyMjynjYAADBIuZ/iiY+Pd/13q1at1LFjR9WtW1effvqpAgIC7mmfycnJSkpKct12OBxECgAAVViFf8w4ODhYjRs31rFjx2S323X16lXl5eW5jcnJySn1mpUb/Pz8ZLVa3RYAAFB1VXigXLx4UcePH1d4eLjat2+vatWqadOmTa71hw8fVlZWlmJiYip6KgAAoJIo91M8v/71r9W7d2/VrVtXp0+f1uTJk+Xt7a0hQ4bIZrNp+PDhSkpKUkhIiKxWq1599VXFxMTwCR4AAOBS7oHy448/asiQITp37pxq166tzp07a/fu3apdu7YkaebMmfLy8tKAAQNUWFiouLg4zZs3r7ynAQAAKrFyD5SlS5fedr2/v7/mzp2ruXPnlvdDAwCAKoLf4gEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcTwaKHPnzlW9evXk7++vjh076quvvvLkdAAAgCE8FijLli1TUlKSJk+erL/85S9q3bq14uLilJub66kpAQAAQ3gsUN5//32NGDFCL730kpo1a6YFCxYoMDBQH374oaemBAAADOHjiQe9evWqMjMzlZyc7LrPy8tLsbGxysjIuGl8YWGhCgsLXbfz8/MlSQ6Ho+Inez8uXfT0DO5OgacncGfG/11XJpXhdclr8uHCa7LcmP66vDE/p9N5x7EeCZT/+7//U3FxscLCwtzuDwsL06FDh24an5KSorfeeuum+yMjIytsjjCLbbrN01MA3PCahIkqy+vywoULstluP1ePBEpZJScnKykpyXW7pKRE58+fV82aNWWxWDw4s8rP4XAoMjJSp06dktVq9fR0AF6TMA6vyfLjdDp14cIFRURE3HGsRwKlVq1a8vb2Vk5Ojtv9OTk5stvtN4338/OTn5+f233BwcEVOcWHjtVq5X94MAqvSZiG12T5uNORkxs8cpGsr6+v2rdvr02bNrnuKykp0aZNmxQTE+OJKQEAAIN47BRPUlKShg0bpujoaD322GOaNWuWLl26pJdeeslTUwIAAIbwWKAMGjRIZ8+e1aRJk5Sdna02bdpo/fr1N104i4rl5+enyZMn33QKDfAUXpMwDa9Jz7A47+azPgAAAA8Qv8UDAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKHA5deqUXn75ZU9PAw+ZK1euaMeOHfr+++9vWldQUKCPPvrIA7PCw+zgwYNauHCh68drDx06pFGjRunll1/W5s2bPTy7hwffgwKX/fv3q127diouLvb0VPCQOHLkiHr06KGsrCxZLBZ17txZS5cuVXh4uKTrv88VERHBaxIPzPr169WnTx/VqFFDly9f1ooVK/Tiiy+qdevWKikpUXp6ujZs2KBu3bp5eqpVHoHyEFm1atVt1//tb3/T66+/zpsBHph+/fqpqKhIqampysvL07hx4/T9999r69atioqKIlDwwD3xxBPq1q2b3n77bS1dulSjR4/WqFGj9Lvf/U6SlJycrMzMTG3YsMHDM636CJSHiJeXlywWi273V26xWHgzwAMTFhamP//5z2rZsqWk6z/FPnr0aK1du1ZbtmxR9erVCRQ8UDabTZmZmWrUqJFKSkrk5+enr776Sm3btpUkfffdd4qNjVV2draHZ1r1cQ3KQyQ8PFx/+tOfVFJSUuryl7/8xdNTxEPmypUr8vH5+0+CWSwWzZ8/X71799ZTTz2lI0eOeHB2eFhZLBZJ1/9R5+/vL5vN5loXFBSk/Px8T03toUKgPETat2+vzMzMW66/09EVoLw1adJEe/fuven+OXPmqE+fPnr22Wc9MCs8zOrVq6ejR4+6bmdkZCgqKsp1Oysry3WNFCoWgfIQeeONN/TEE0/ccn2jRo20ZcuWBzgjPOz69eunTz75pNR1c+bM0ZAhQ4hmPFCjRo1yO6XYokULt6N869at4wLZB4RrUAAAgHE4ggIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAsCjunbtqnHjxnl6GgAMQ6AAuG+JiYmyWCyyWCzy9fVVo0aNNHXqVF27ds3TUwNQSfnceQgA3FnPnj21cOFCFRYWau3atRozZoyqVaum5ORkT08NQCXEERQA5cLPz092u11169bVqFGjFBsb6/qByp07d6pr164KDAzUz372M8XFxemnn34qdT8ff/yxoqOjFRQUJLvdrqFDhyo3N9e1/qefflJCQoJq166tgIAAPfLII1q4cKEk6erVqxo7dqzCw8Pl7++vunXrKiUlpeKfPIByxxEUABUiICBA586d0759+9S9e3e9/PLL+v3vfy8fHx9t2bLllj8AWFRUpGnTpunRRx9Vbm6ukpKSlJiYqLVr10qSJk6cqO+//17r1q1TrVq1dOzYMV25ckWSNHv2bK1atUqffvqpoqKidOrUKZ06deqBPWcA5YdAAVCunE6nNm3apC+//FKvvvqqZsyYoejoaM2bN881pnnz5rfc/uWXX3b9d4MGDTR79mx16NBBFy9eVI0aNZSVlaW2bdsqOjpa0vXfTrkhKytLjzzyiDp37iyLxaK6deuW/xME8EBwigdAuVizZo1q1Kghf39/xcfHa9CgQZoyZYrrCMrdyszMVO/evRUVFaWgoCA99dRTkq7Hh3T9t1KWLl2qNm3aaMKECdq1a5dr28TERO3bt0+PPvqoXnvtNW3YsKF8nySAB4ZAAVAunn76ae3bt09Hjx7VlStXtGjRIlWvXl0BAQF3vY9Lly4pLi5OVqtVS5Ys0ddff60VK1ZIun59iSTFx8frhx9+0Pjx43X69Gl1795dv/71ryVJ7dq104kTJzRt2jRduXJFzz//vAYOHFj+TxZAhSNQAJSL6tWrq1GjRoqKinL79ddWrVpp06ZNd7WPQ4cO6dy5c5o+fbqefPJJNWnSxO0C2Rtq166tYcOGafHixZo1a5b+8Ic/uNZZrVYNGjRI//3f/61ly5bps88+0/nz5+//CQJ4oLgGBUCFSk5OVsuWLTV69Gi98sor8vX11ZYtW/Tcc8+pVq1abmOjoqLk6+urDz74QK+88oq+++47TZs2zW3MpEmT1L59ezVv3lyFhYVas2aNmjZtKkl6//33FR4errZt28rLy0vLly+X3W5XcHDwg3q6AMoJR1AAVKjGjRtrw4YN2r9/vx577DHFxMTo888/dzvKckPt2rWVmpqq5cuXq1mzZpo+fbreffddtzG+vr5KTk5Wq1at1KVLF3l7e2vp0qWSpKCgINdFuR06dNDJkye1du1aeXnxf3VAZWNxOp1OT08CAADgH/HPCgAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMb5f33b2pExYE9QAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot = data.groupby([\"Pclass\", \"Survived\"]).size().unstack().plot.bar(color=[\"pink\", \"green\"])\n", + "plot.legend([\"Not survived\", \"Survived\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Визуализация - Временные ряды" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 243 entries, 0 to 242\n", + "Data columns (total 6 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 my_date 243 non-null object \n", + " 1 my_value 243 non-null float64 \n", + " 2 bullet 2 non-null object \n", + " 3 bulletClass 2 non-null object \n", + " 4 label 2 non-null object \n", + " 5 date 243 non-null datetime64[ns]\n", + "dtypes: datetime64[ns](1), float64(1), object(4)\n", + "memory usage: 11.5+ KB\n", + " my_date my_value bullet bulletClass label date\n", + "0 28.03.2023 76.5662 NaN NaN NaN 2023-03-28\n", + "1 31.03.2023 77.0863 NaN NaN NaN 2023-03-31\n", + "2 01.04.2023 77.3233 NaN NaN NaN 2023-04-01\n", + "3 04.04.2023 77.9510 NaN NaN NaN 2023-04-04\n", + "4 05.04.2023 79.3563 NaN NaN NaN 2023-04-05\n", + ".. ... ... ... ... ... ...\n", + "238 20.03.2024 92.2243 NaN NaN NaN 2024-03-20\n", + "239 21.03.2024 92.6861 NaN NaN NaN 2024-03-21\n", + "240 22.03.2024 91.9499 NaN NaN NaN 2024-03-22\n", + "241 23.03.2024 92.6118 NaN NaN NaN 2024-03-23\n", + "242 26.03.2024 92.7761 NaN NaN NaN 2024-03-26\n", + "\n", + "[243 rows x 6 columns]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHGCAYAAABeq3DqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChdUlEQVR4nOzdd3xT9foH8M/JaNK994aWvRHKEhCZooBywYEyHCBe9aL3yhWvoIheRP2J4zq5iqgo6FVBVEAEWbIrlA2lLbRQ2tKZDrqS5/dHmkPTpOOkSXvSPu/Xqy9Ncs75PpyTnDz5ToGICIwxxhhjMqJo7QAYY4wxxuriBIUxxhhjssMJCmOMMcZkhxMUxhhjjMkOJyiMMcYYkx1OUBhjjDEmO5ygMMYYY0x2VK0dgC0MBgMyMzPh6ekJQRBaOxzGGGOMNQERobi4GGFhYVAoGq4jccoEJTMzE5GRka0dBmOMMcZskJGRgYiIiAa3ccoExdPTE4DxH+jl5dXK0TDGGGOsKXQ6HSIjI8Xv8YY4ZYJiatbx8vLiBIUxxhhzMk3pnsGdZBljjDEmO5ygMMYYY0x2OEFhjDHGmOw4ZR8UxhhjbY9er0dVVVVrh8GaQa1WQ6lU2uVYnKAwxhhrVUSErKwsFBYWtnYozA58fHwQEhLS7HnKOEFhjDHWqkzJSVBQENzc3HgCTidFRCgrK0NOTg4AIDQ0tFnH4wSFMcZYq9Hr9WJy4u/v39rhsGZydXUFAOTk5CAoKKhZzT3cSZYxxlirMfU5cXNza+VImL2YrmVz+xNxgsIYY6zVcbNO22Gva8kJCmOMMcZkhxMUxlibVF6lb+0QGGPNwAkKY6zNWbPvIros3oKd53JaOxTGZOPixYsQBAHHjh1r7VCahBMUxlibYjAQPtyVAgA4kJrfytEwxmzFCQpjrE05kJqHq0XlAIDCsspWjoYxZitOUBhzcuezi5F4qaC1w5CN7/68Iv5/AScoTomIUFZZ3Sp/RNTkOEeOHIknnngCCxYsgK+vL4KDg7Fq1SqUlpZizpw58PT0RFxcHDZv3gwiQlxcHN544w2zYxw7dgyCIODChQsNlnXffffh7rvvNnuuqqoKAQEB+PzzzwEAW7ZswbBhw+Dj4wN/f3/cfvvtSElJqfeYn332GXx8fMye27Bhg8UonI0bN6Jfv37QarXo0KEDli5diurq6sZOT7PxRG2MOTEiwn2rDqDoehUSF4+Bl1bd2iG1qrLKamw+eVV8XFDG67o4o+tVenRbsrVVyj790ji4uTT9q3HNmjVYuHAhDh06hPXr12P+/Pn44YcfcOedd+K5557DypUr8cADDyA9PR0PPvggVq9ejX/84x/i/qtXr8bw4cMRFxfXYDkzZszAtGnTUFJSAg8PDwDA1q1bUVZWhjvvvBMAUFpaiqeffhq9evVCSUkJlixZgjvvvBPHjh2DQmFbfcSePXswc+ZMvPPOO7j55puRkpKCuXPnAgBeeOEFm47ZVFyDwpgTKyirQm5JJar0hMJS/jLeeioLZZV6mH4AchMPc7TevXvj+eefR3x8PBYtWgStVouAgAA88sgjiI+Px5IlS5CXl4fjx49j9uzZOHfuHA4dOgTAWAPy1Vdf4cEHH2y0nHHjxsHd3R0//PCD+NxXX32FSZMmwdPTEwAwdepU3HXXXYiLi0OfPn3w6aef4sSJEzh9+rTN/76lS5fi2WefxaxZs9ChQweMGTMGy5Ytw0cffWTzMZuKa1AYc2KZhdfF/6+o5mG139c074zpGoxfT2dzDYqTclUrcfqlca1WthS9evUS/1+pVMLf3x89e/YUnwsODgZgnPp90KBBmDhxIj799FMMHDgQmzZtQkVFBaZNm9ZoOSqVCtOnT8fatWvxwAMPoLS0FBs3bsS6devEbZKTk7FkyRIcPHgQubm5MBgMAID09HT06NFD0r/LJCkpCX/88QdeeeUV8Tm9Xo/y8nKUlZU5dAZgTlAYc2KmzqAAUFFtaMVIWl9WUTn2XsgFADw4LBa/ns5GYVkliIhnKXUygiBIamZpTWq1ebOqIAhmz5nee6Zk4eGHH8YDDzyAlStXYvXq1bj77rub/CU/Y8YMjBgxAjk5Odi2bRtcXV0xfvx48fU77rgD0dHRWLVqFcLCwmAwGNCjRw9UVlqvSVQoFBZ9bupOT19SUoKlS5firrvusthfq9U2KW5bOcc7gDFm1dWi2jUo7TtB2XDsCoiAgTF+6BXhDQCo0hNKK/Xw0PCtjsnDbbfdBnd3d3zwwQfYsmULdu/e3eR9hwwZgsjISKxfvx6bN2/GtGnTxGQoLy8P586dw6pVq3DzzTcDAPbu3dvg8QIDA1FcXIzS0lK4u7sDgMUcKf369cO5c+ca7SPjCPypZcyJZRbWrkFpv008RITvEi8DAO7sFw5XtRIuKgUqqw0oKK3kBIXJhlKpxOzZs7Fo0SLEx8dj8ODBkva/77778OGHH+L8+fP4/fffxed9fX3h7++Pjz/+GKGhoUhPT8ezzz7b4LESEhLg5uaG5557Dk8++SQOHjyIzz77zGybJUuW4Pbbb0dUVBT+8pe/QKFQICkpCSdPnsTLL78sKXapuJMsY06sdg1KZTuuQTl9VYfknBK4qBS4rWcoBEGAr5vxlyUPNWZy89BDD6GyshJz5syRvO+MGTNw+vRphIeHY+jQoeLzCoUC69atQ2JiInr06IGnnnoKr7/+eoPH8vPzw5dffolffvkFPXv2xNdff40XX3zRbJtx48bhp59+wq+//ooBAwZg0KBBWLlyJaKjoyXHLhX/rGDMiV0t5D4oAHDichEAICHWD96uxsTE180F2boK7ijLHGbnzp0Wz128eNHiubr9PK5cuQK1Wo2ZM2dKLrNr1671ztUyevRoixE7tbeNiYmx2HfKlCmYMmWK2XOPPPKI2eNx48Zh3LiW77TMCQpjTiyTa1AAAOn5ZQCAGH938TlfNxcAPNSYyUdFRQWuXbuGF198EdOmTRNH+DDrJDfx7N69G3fccQfCwsIgCAI2bNhg9joRYcmSJQgNDYWrqytGjx6N5ORks23y8/MxY8YMeHl5wcfHBw899BBKSkqa9Q9hrL0xGAjZOq5BAYCMAmOiFunnKj7n617TxFPKCQqTh6+//hrR0dEoLCzEa6+9Zvba2rVr4eHhYfWve/furRRx65Jcg1JaWorevXvjwQcftDrs6LXXXsM777yDNWvWIDY2FosXL8a4ceNw+vRpcUjSjBkzcPXqVWzbtg1VVVWYM2cO5s6di6+++qr5/yLG2onckgpU6W9U17bnGpSMmhqUKL8bwzV9ampQuImHycXs2bMxe/Zsq69NmjQJCQkJVl+rO5S5vZCcoEyYMAETJkyw+hoR4a233sLzzz+PyZMnAwA+//xzBAcHY8OGDbjnnntw5swZbNmyBYcPH8ZNN90EAHj33Xdx22234Y033kBYWFgz/jmMtR+ZteZAAdr3KB5TghLheyNBqd1J1mAgKBQ8F4qcSVkDpy3y9PQUZ4R1dva6lnYdxZOWloasrCyMHj1afM7b2xsJCQnYv38/AGD//v3w8fERkxPA2LFHoVDg4MGDVo9bUVEBnU5n9sdYe3e11iyyQPutQSmtqEZeTTNOlH/tBMVYg/L5/ku4/xPr9xbW+ky1A2VlZa0cCbMX07Vsbs2PXTvJZmVlAYBFx5/g4GDxtaysLAQFBZkHoVLBz89P3Kau5cuXY+nSpfYMlTGnZ1mD0j4TlIwC483Q21VttlhisNeNWS73peS1eFysaZRKJXx8fJCTkwMAcHNz45l/nRQRoaysDDk5OfDx8YFSKW3ZgLqcYhTPokWL8PTTT4uPdTodIiMjWzEixlof16AYZeRbdpAFgDHdgvHXWzrivd+Ny83rDQQlN/PIUkhICACISQpzbj4+PuI1bQ67JiimgLKzsxEaGio+n52djT59+ojb1H0TVldXIz8/v95/kEajgUajsWeojDk90zo8GpUCFdWGdtsHJd1KB1kA0KqVePyWeDFBKa/Sw51nlJUlQRAQGhqKoKAgi7VgmHNRq9XNrjkxseunNTY2FiEhIdi+fbuYkOh0Ohw8eBDz588HAAwePBiFhYVITExE//79AQA7duyAwWCotwczY8ySaQ6UaH83nM8uabc1KIfT8gEAUX7uFq9pVDe62XGCIn9KpdJuX27M+Un+tJaUlODChQvi47S0NBw7dgx+fn6IiorCggUL8PLLLyM+Pl4cZhwWFibOVNe1a1eMHz8ejzzyCD788ENUVVXh8ccfxz333MMjeBiTwDSLbLS/O85nl7TLPigXcoqx9bSx79qdfcMtXlcoBHFNnutV7bOGiTFnJTlBOXLkCG655RbxsalvyKxZs/DZZ59h4cKFKC0txdy5c1FYWIhhw4Zhy5YtZssyr127Fo8//jhuvfVWKBQKTJ06Fe+8844d/jmMtQ/VegNyio0JSmyAseagPSYo7/2eAiJgbLdgdA6xPkRTW5OglFe1v/PDmDOTnKCMHDmywTHOgiDgpZdewksvvVTvNn5+fjwpG2PNkF1cAQMBaqWAUG9j8t/emnhOXinChmNXAACPj6p/KXitWgldeTXKuQaFMafCqxkz5oRMI3hCvLXQqo1t9u2tk+zLP58GETC5Txh6RfjUu117PT+MOTtOUBhzQqY5UEK9XcWOoO2piaegtBIHUo2dYxeO79Lgtlq18fxwEw9jzoUTFMackKkGJdRbC5d2mKBcqhlaHOKlRbiPa4PbutbUoHATD2POhRMUxpzQVbMaFOMXcHvqg1Lf3CfWaMQEpf2cH8baAk5QGHNCmTU1KGE+7bMGJT2vFID52jv10XINCmNOiRMUxpzQVSt9UCrbUSfQS3lNr0HR1pyf8nZ0fhhrC3haRcac0NWiG31QqvTGmpN2VYNS08QTLaEG5XolJyiMOROuQWHMyVRU65FbUgkACPNxFZt42mMflMim1KCo218TGGNtAScojDmZrFqLBPq6qcVOsu3lC7i8So8sXc00/01KULgPCmPOiBMUxpxMZs0aPGE+rhAEoVYflPaRoFwuuA4iwN1FCT93l0a35wSFMefECQpjTqZ2/xMAtSZqax9fwGezdACMiyQKgtDo9mInWR5mzJhT4QSFMSdTewQPALEPioGMiwi2dTvO5AAAhsb5N2l7rQvXoDDmjDhBYczJ1J4DBYDYBwVo2X4oabmlKLpe1WLlAYDeQPj9nDFBubVrcJP20dacn/J20gTGWFvBCQpjTiarnhoUoOUSlDNXdRjz5i7MWX2owdXN7e1oegEKyqrg7arGTdG+TdqH+6Aw5pw4QWHMyYgLBdbUoCgVAlQKY1+Mluoo+/Pxq6g2EP5ML8Txy0UtUiYA/FbTvDOycyBUyqbdvm4sFsgJCmPOhBMUxpyMqZNsmPeNRfJcWrij7G9nssX/X3c4o0XKBIDtNeWO6hLU5H24BoUx58QJCmNO5HqlHoVlxn4fphoUAC061PhyQRnOZhWLj388dqVFvvzT88qQnFMCpULAyE5SEhQexcOYM+IEhTEnkllTe+KhUcFLqxafb8kFA387bazFGBDjiwAPDUor9ThxxfHNPKZamwExvvB2Uzey9Q1iJ1muQWHMqXCCwpgTuVpo6iCrNXu+JWeT3XT8KgBgXPcQ9I/2AQAkXipweLk7zhr7n4xu4ugdE42piaedzBPDWFvBCQpjTsRUgxLq42r2fEv1QblcUIbESwUQBOCO3mHoXzOS5k8HJyjF5VU4mJYHoOnDi01cxT4o3MTDmDPhBIUxJ2KqQQmzqEFpmT4om5KMtScJsX4I9tLeSFDSCxw63Hj3+VxU6QkdAtwRG+AuaV8excOYc+IEhTEnQUS1prmvrwbFsQnKHxdyAQATe4YCALqHeUOtFJBbUimuMOwIptE7t3ZteudYE9MongquQWHMqahaOwDGWOPKq/SY9J+9OJ9dAsB8BA9wowbF0bUEV2pmsY0P9gRg/PLvEe6No+mF+DO9ANH+0mo3msJgw+yxtZkSlEq9AXoDQam4sX5Ptq4cPx7LRHJOMUZ3DcaYbsFNWt+HMeZ4nKAw5gTOZhWLyQlg2Uk2xMv42LTSsSMQkZighNfqA9M/yhdH0wuReKkAd/aNsHu5p6/qUFBWBXcXpdikJIWpiQcA+iz9FT7uani7quGlVeNoeiGu1yR13xy5jNlDYvDipO52i50xZjtu4mHMCeSXVpg9rtsPIzbAAwCQllsCR8krrURltQGCAAR73UiQTElD4qVCh5S7P8XYOTahgz/UTZw9tjZtrbWKiiuqkZF/HSev6LAvJQ/Xq/ToE+mDu/qGAwB+PnHVPkEzxpqNa1AYcwL5pcbJ2Xzc1Pi/ab0R4etm9npsoDFhScstdVgMpg66gR4as/V/+tUkKOeydCipqIaHxr63lX0pxn4vQzo2bfXiuhQK8yabdXMH4XqlHkXXqxDgocHQOH9kFpXj+6NXUFhWCSLiZh7GZIATFMacgKkGZWSnQKv9MDoEOD5BuSKuomzeQTfYS4twH1dcKbyOpIxCDI0LsFuZVXoDDqXlAwAG25ig1BYf5IFBHSyP4+fmUlMeoaSiGp7apk8ExxhzDG7iYcwJmGpQfN1drL4eU5Og5JZUouh6lUNiyLTS/8TkRjOPfedDOZWpQ2mlHj5uanQN8Wr28e7qZ72PjKuLUuxobFpKgDHWujhBYcwJmGpQ/OtJUDw0KgR5agAAFx1Ui2JKUOp20AWAflE+AIzzodjT0Zrj9Y/ytWiqkeK1qb0wIyEKDw2LrXcbv5pzm19aaXM5jDH74QSFMSfQWA0KcKPjrKOaea4W1UwSZ7UGxQ+AcUZZg8F+E7YlZRQCAHpH+jTrONMHROKVO3ua9Z2py6emmaegjBMUxuSAExTGnEBjNSgA0KGmo2zqNceM5KmvDwoAdAn1hKtaCV15NVLqlF9WWY2M/DKczy5GUkYhTmfqmjzr7DE7JShN4edu7HfCTTyMyQN3kmVMxsqr9Ei5ViI2O/i61Z+gmGaXvVZSUe82tiq6XoVLecaamTAfyyYetVKBXhHeOJiWjz/TC8SJ3M5lFWPye3st1sFZMbUndp2/hmh/d/xzfBerZRaWVeJinnF22t4R3vb851hlqkHhJh7G5IFrUBiTsZXbzmPiO3vFL2p/j/oTFEctinel8DqmfbgPBWVV8HVTo2Ogh9XtrHWU/fVUFsqrDFApBPi6GSdIA4DXt57HLyey8OGuFJRVVls9XtLlIgDGpiufBhIze/F1M9WgcILCmBxwgsKYjO2tWfvGxM9dU++2jlgU7+SVItz53h84n12CIE8Nvnw4Ae71zHNiaoY5c7VYfC6xppPrvyZ2xdElY/Hp7AEAgNyaWh4i4HSmzurx9py/ZjxuC9SeADeGGudzgsKYLHATD2MyVa03ILnW9PaCALEGwhqNWIPS/ARlx9ls/HT8KraezEJppR6dgz3x6ZwBVocYm5j6x+jKjX04DAbC0fRCADdqV3pFeMNVrRSnlweMSdBNMX5mxyqv0uN/f14GANzRO6zZ/56muNFJlvugMCYHnKAwJlOpuaWo1N9orlEIgtlCd3Vp7dTEU6U34G9fH0NxhbHpZWicPz64vz+8Gpm8zDS5WXF5dU38JSi6XgWtWoGuocY5TNRKBW6K8cWe5Bs1Qyet1KBsPnkVhWVVCPPWYmRn6SsY28I0zJibeBiTB05QGJOpM1fNv7j1jQzfNfVBud7MGpSkjEIxOXn7nj6Y0CO0weG5Jp5a4+1Ed70KRIQ/a9bm6RXhY7aGzuCO/tiTnAulQoDeQDh5pUh8rVpvwPazOXhh4ykAwD0DoxpMyuzJp6YPimlIN2OsdXGCwphMnc0qbnyjWuzVB+WPC8bF+W7rGYLJfcKbvJ8pQak2EK5X6fFtYgYA4KY6KxDfNzAKZ68WY3inQPzj2yQk55RgU1Im9iRfw6+ns8Vhvv2ifDBnaEyz/i1ScA0KY/LCCQpjMmWqQXF3UaK0Uo/uYQ1P9W5q4qmobl4Tzx/i4nzS1tRxd1FBIQAGAr46mI7DFwugVStw/6Bos+183Fzwzr19QUR4fetZZOsq8MTXR8XX/dxdMKVPOBaO7yz+m1qCLw8zZkxWOEFhTKbO1oyGWTXrJqTlluKWRvpiaFXN7yRbWlEtTi8vddE/hUKAh0YFXXk13tmeDAB4bGSc1YndAEAQBLw/oz9W/5GG89nFSIj1x4SeIRgY4weVsuUHGJqaeCqqDbheqYerS8slR4wxS5ygMCZDBaWVyNIZp5bvGe7dpNoMVxfjl3pz+qB8eyQDVXpCjL8bYvzdJO/vqVVDV14NXU1H2caSqv7RvuIIn9bmoVFBq1agvMqAjIIydKqZbI4x1jp4HhTGZOhMlrF5J9LPVRwd0xhNM2tQKqsN+Gh3KgDg4Zs7QBCkd0419UMx8WtgYjm5EQRBTJb21Zl/hjHW8jhBYUyGTJOddQ1puN9JbbWHGTd1rZvaNh67gqtF5Qjy1OAv/SMk7w/AYihyQ2sHydGwuEAAwN6ajsKMsdbDCQpjMnS2poNsl1ApCcqNj7PUjrJEhM/2XQQAzBkaa3Pn1No1KO4uyhbt5GoPw2r63RxIzUO13r5LBjDGpOEEhTEZMg0x7hrS9H4QtZOBComTtSVeKsCpTB20agXuHRgpad/aaicoztS8Y9ItzAs+bmqUVFSLawExxloHJyiMyUy13oBz2TUJioQaFLVSAVXNpGZSO8qurqk9mdInvFkL89XuL+PfwLpBcqVUCBjS0R8AsDeZ+6Ew1po4QWFMZi7mlaKy2gA3FyWi/KSNpNHasB7P1aLr2HIyCwAwa0iMpPLqql2D4mz9T0xM/VD+4I6yjLUqhyQoxcXFWLBgAaKjo+Hq6oohQ4bg8OHD4uuzZ8+GIAhmf+PHj3dEKIw5ndM1HWQ7h3hCIXGad3E22eqmJyhrD6RDbyAkxPpJqrGxpnYNip/TJijGfih/phegtGbKf8ZYy3NIgvLwww9j27Zt+OKLL3DixAmMHTsWo0ePxpUrV8Rtxo8fj6tXr4p/X3/9tSNCYczpiB1kJYzgMbkx1LhpfVDKq/T4+lA6AGB2M2tPgDo1KB7O18QDAFH+boj0c0W1gXAoLb+1w2Gs3bJ7gnL9+nV89913eO211zB8+HDExcXhxRdfRFxcHD744ANxO41Gg5CQEPHP11cekzUx1tpMU9x3DZU+UZjU9Xh+On4VeaWVCPPWYky3YMnl1eXlWrsPinPWoAA3alH2cD8UxlqN3ROU6upq6PV6aLVas+ddXV2xd+9e8fHOnTsRFBSEzp07Y/78+cjLq3/egYqKCuh0OrM/xtoqcQSPDc0tpunZm9JJloiwpqZz7P2Do+0yvbzZKB6nTlC4Hwpjrc3uCYqnpycGDx6MZcuWITMzE3q9Hl9++SX279+Pq1evAjA273z++efYvn07VqxYgV27dmHChAnQ663fVJcvXw5vb2/xLzLS9mGQjMlZYVklrhYZp7jvLGGIsYlpPZ6KJiQof6YX4MSVIrioFLhnQJTksqzxMmvicd4EZXBHfwgCcC67GDnF5a0dDmPtkkP6oHzxxRcgIoSHh0Oj0eCdd97BvffeC4XCWNw999yDSZMmoWfPnpgyZQp++uknHD58GDt37rR6vEWLFqGoqEj8y8jIcETYjLU60wyyEb6uFrOyNkXt2WQb89m+SwCAKX3C7Fbb4ezDjE383F3E1aP38ayyjLUKhyQoHTt2xK5du1BSUoKMjAwcOnQIVVVV6NChg9XtO3TogICAAFy4cMHq6xqNBl5eXmZ/jLVFabmlAID4IA+b9m9qH5RsXTk2nzDWaDZ3aHFtzj5RW22mZh7uh8JY63DoPCju7u4IDQ1FQUEBtm7dismTJ1vd7vLly8jLy0NoaKgjw2FM9rJrVjAO8Xa1af+mzoPyw9ErqDYQbor2Rfcwb5vKssbXzQUalQJatcKpO8kCQEIHPwBA0uXC1g2EsXZK1fgm0m3duhVEhM6dO+PChQt45pln0KVLF8yZMwclJSVYunQppk6dipCQEKSkpGDhwoWIi4vDuHHjHBEOY05DTFC8tI1saZ0pQbneSBPPpqRMAMBd/WxbFLCh8lfPHgBBEJxuHZ66wn2MSeK14opWjoSx9skhCUpRUREWLVqEy5cvw8/PD1OnTsUrr7wCtVqN6upqHD9+HGvWrEFhYSHCwsIwduxYLFu2DBqN87ZZM2YPpgQl2Mu2z0JjTTwnLhfhq0PpOJWpg1IhYHyPENsCbcCQmiG6zi6gZh6XoutVqKw2wEXFE28z1pIckqBMnz4d06dPt/qaq6srtm7d6ohiGXN6WTrjr/VgbxtrUEwTtVmZSdZgIDz6ZSKuFF4HYJzrw5mHAjuaj6saSoUAvYGQV1qBUBub3RhjtuGfBIzJSI6pBsWzeU081lYzTrpcKCYn7i5KzBtuvdM6M1IoBLEfTW5xZStHw1j745AaFMaYdBXVeuSVGr8IQ2ysQTFN1Fa3iUdvIPxSM2pnUu8wvHNv32ZE2n4EeGiQU1yB3BLuh8JYS+MEhTGZMHXGdFEq4OsmfQ4UANDU9JOoPZNscnYx7np/H4prFr67raf9+520VQGeGuAqcI0TFMZaHDfxMCYTpg6yQV4aCIK0VYxNrA0z/nBXqpic+Lu7YESnoGZG2n4E1MzlwjUojLU8rkFhTCayTR1kbRxiDFjOJHutuEIcUrxscneM7hYsNgOxxgXWjOThPiiMtTxOUBiTiayi5s2BAlgOM/76UDoq9Qb0ifTBA4Njmh1je2Maasw1KIy1PG7iYUwmsotNc6DYnqC4mmpQqg2orDbgiwPG9XbmDI1pdnztUYCnsYknr5QTFMZaGicojMmEqQbF1knaAMDNxVgpmldSgV9OXMW14goEeWowoQcvI2GLAG7iYazVcILCmExcLTQmKKE+tk8I1iPcCy5KBS4XXMfrW88BAB4YFM2zoNqodhOP3kA4frkQBgO1clSMtQ9812JMJjKLjJOohdk4BwoAeGrVGBLnDwC4UngdLioF7kuIskt87ZEpQckvq8THu1Mx6T9/YNWe1FaOirH2gRMUxmTAYCBxmHFzalAAYEy3YPH/J/UOg78Hr3FlKz93F7i5KEEE/LcmMfnh6JVWjoqx9oETFMZkILekAlV6gkIAgj2bl1CM6RoM0zQqs4fEND+4dkypEDCko3HxQ9Msv2ezipGeV2axLRGBiJt/GLMXHmbMmAxk1nSQDfLUQqVs3u+GIC8t/nNvP1Tq9egR7m2P8Nq1kZ0D8duZbLPn3t2RjM4hnmLSMmdIDGavPgx3jRIfP3ATfHkRRsaajRMUxmTgas0ifqE+tvc/qW1iLx61Yy8jOweK/++hUaGkohrfJl422ya7qBynr+oAADP+exDr5w2Cp9a25QoYY0bcxMOYDJhqUMK8m9f/hNlfhK8bOgd7AgCen9gVY7oFY1hcACb1DkPvSB8AwIkrReL2p6/q8M/vjnNzD2PNxDUojMmAWIPSjBE8zHHeuqcPDl/Mx/SbInHPwBujor7YfxFJGYVIyy0FYOyzohCAX05k4csDl3j2XsaagWtQGJOBq0X2GcHDHKNrqBdmDo6BQmG+iKNphFR1zdwoo7sG4dkJXQEAr/xyRkxcGGPScYLCmAzYYw4U1vIC6gzh9nPXYM6QGAyN80d5lQFPf3MM1XpDK0VXv8pqgzhzMWN1ERH+uJCLwrLWnUGZExTGZCDbtFAgJyhOxd/DfLROgIcLFAoBr/+lNzw1KhxNL8RHu+U3sduSjScx5NXt+P1cTmuH0i5VVhvw17V/4t6PD+CDnSk4nalrlT5L1obGH76Yj3tXHcCM/x5s9UkJOUFhrJUZDIRrNavlNmehQNbyAtzNa1D8a4YXh/m44sVJ3QEAb/12Hqcyiyz2bU3rDmfAQMCc1Ye5M28r2HX+Gn4+cRX7U/OwYstZ3PbOHgz893b849skHE0vaLE4PtyVik7Pb8aJy0U4cbkIsz49hGkf7seB1Hy4KBVo7VUdOEFh7Vp5lR7/+DYJW05mtVoMBWWVqNIb7wSBzZykjbUsL1cV1Mob/VL8ajX53NUvHGO7BaNKT3h6fRIqqvWtEWKj9l7Ibe0Q2qSi61VYe/ASkrOLLV77+XgmAGBIR3/c2iUIrmolrhVX4H+JlzH/yz9bLMYVW86iSk94ct1RTHn/D+w6fw0qhYB7B0bi92dG4p/ju7RYLNbwKB7Wrq07lI7/JV7G/xIv4+KrE1slhpxiY+1JgIcL1M2cpI21LEEQ4O+uQVbNMgUBtSZoEwQB/76rJxIvFeBcdjFWbkvGsxNa94YPAHqDccZi06/jLSezcHN8YMM7Mck+2JmCD3elAABujg/Ag0NjMaJTICr1Bmw7bZz47x/jOqNflC8qqvU4lJaPWZ8eQpauHNeKKxz+YyW/9Eb/ElNn7hh/N6x5cCCi/d0dWnZT8d2QtWuF16vE/2+tqm7TGjyBnty844xq90Opu+5RgIcG/76rJwDgo90pLVp9X5/80kqzqvvMmiHuzL5ME/cBwJ7kXMz57DDGrNyFhf87jtJKPcJ9XNG3Zh4djUqJm+MDERNgTAzOZumsHdKuEi9ZvhcHxPjJJjkBOEFh7ZyP643ZPgvLqhrY0nFMNSjBXty844xqj+TxszLF/bjuIZjSJwxEwJvbzrdkaFbllVaYPc4s5NE8jnCxplbi/6b1xiM3x8JTq0LKtVL8mGRs3nny1jgIgvmw9a4hXgCAs1ctm4Xs7cilfIvn4oI8HF6uFJygsHZNX+uX5JVW+iWZozOtw8MJijMy1aAIAuDrZn16+6fHdIZSIWBPci6OZRS2YHSWcouNVfumKV1MQ9yZ/VRWG3C5wLig5M2dAvCvid2w79lRmD+yIzoHe+K9+/rh7gFRFvt1CTHOWHzmagvUoFy0rEHhBIUxGSmtqBb/v9USlGIewePMTDUovm4u9S70GOXvhil9wgEAH9X0SwAAXXkV9qXkYs2+izhvpTOlI+TWjBjrWbOQZHF5NYrLW6f2sK1Kzy+DgQB3FyUCa94fnlo1/jm+C7Y+NbzetbK6hBprUM5kOfa9cLmgDH9aaW6UW4LCnWRZu1ZaWStBKWidBCWba1CcmmlosbXmndoevjkW3/15GdtOZ2PZT6fx+7kcpF67MdNsj3Av/PTEzQ6NFbiRoET5uyMttxS68mpcLSrnxQ3tyNTpNDbQ3aIZpyFdQ401KBdyilGlNzis0/yafRdhIGBonD+q9YSDaflwUSkQ4evmkPJsxTUorF0rq7gx9LO1a1CCuAbFKZlqvgI9Gk4wu4Z6oXekD6oNhE/2ponJianv0YWckhbpqJ1bYmziCfBwQVjN0grNfe+fzy7Gf/ekYvkvZ/D0+mOY9ekhrD+c3uxYnVVabgkAIEZih9NwH1f4uKlRpSf8eCzTEaGhuLwK6w5nAAAeGhaL2JqOuR0DPaBUND2Zaglcg8LaNTnUoOToahIUrkFxSrd2DcK9A6MwqXdYo9veMyASSTV9UJ4a3Qn3D4qCp1aNzos3o7zKgLzSSovp8+3NVIMS4KFBmI8rzmYV42ozOsqWVlTj7o/2o6BOJ/MDqXkY1z0EPm4N1yy1RWm5xv4nHQKkJSiCIGDe8I5YseUs/v3LGYzuGgzvevo12erdHRdQXF6NuCAPjOwUJMbatab/i5xwgsLatdauQSEi5BQbvxy4D4pz8tSqsbxmKHFjpvQJx57ka+gU7Gk2iiPYU4ssXTkuF1x3eIKSV3Jj3p0wH+N77mozOsquP5yBgrIqBHtpcHuvMAR5avDNkQykXCvFd39ewUPDYu0StzNJvWasQYkNlD5k96Fhsfg2MQOp10qx9VQWpg+ItGtcq/9IAwD8a2JXKBQCpt8UgWq9Abf1tN4vpjVxgsLaNbMalMLrICJJbcbN9Wd6Aar0BJVCcPgXE2t9ri5KvD+jv8XzEb6uNQlKGfrUzI3hKDeaeDQI9W5eE0+13oBP9hq/8J68NR4zEqIBAO4aFZ7fcBLLfjqN1GsleO62rnDXtI+vm4pqPZIuFwIAutQMG5bCRaVAQqw/Uq+V2n2E1cs/n0GVnnBL50Dc0jkIgDHBnjeio13LsRfug8LatdqjePJLKzHjvwdxIaekRco2GAgvbToNALizbzhcVPxxbK/CfWsShRZoZjQ18fh7aMQaFFvLPZ9dgiuF1+GpUWFqvwjx+Sl9w+GpNSYkaw+mY8fZ9rMoYeKlApRXGRDgoRGHDUtl6pdk6kBvD7+fy8GOszlQKQQ8f3s3ux3XkfiOyNq1skpjE8+EHiHQqBTYl5KHCW/vxutbz6K8yrFrp2xMuoKky0Xw0KjwzPjODi2LyVtETYJy2cEJChEhr1Yn2a41w1qPXCpARn6Z5OOZkp1wX1do1UrxeQ+NCt/NH2KxXXuwN9m4ttHN8QE218aG1DT3Zuvsc96q9AYs+8n4Y2jO0Bh0DJTXcOL6cILC2jVTE88jwztg21MjcEvnQFTpCe/9noKXfz7tsHKr9Aas3JYMAJg/siOCeJr7di3cxzi809H9oPJKK1GpN0AQgCBPLbqEeOHm+ADoDYQPas3P0lSm9VysDbHuFOyJ+wcZJyMrqLXuS1u3p1aCYitTf7SsIvvUoKzZdxGp10rh7+6CJ26Nt8sxW0L7aBRkrB6lNZ1kPTQqRPm74dPZA/D5/kt44cdTOJhqORW0vXx75DLS88sQ4OGCOUNjHFYOcw43alCk12JIYVp3J9BDIzYpPjEqHnuSc/G/I5fxxKg4sV9KU+TVJB6+9cwB41czgqfuCJ+26mJuKU5mFgEAhsU1P0HJKS5H4qV8nM8uge56FXTlVajSE2YOjm7ynCW5JRV4e7vxx9Az4zrDy4nmu+EEhbVrpj4obi7G6mlBEDA0zh+A/X691FVepce7O4w3jMdGxsHNhT+G7V3tPiiO7KhtSlBM858AwMBYPyTE+uFgWj4+2pWKFyd1b/Lx8mvW9fGvJ0ExDTHOL3PuGpS03FJ4u6rh5+6CsspqbD2VhVs6B1kMof5odwqIgFs6BzZrXqMQb+O+uSWVmPrBfovXkzIKsW7uoCa9T/7v1/MoLq9Gj3AvTLvJfiOCWgI38bB2q1pvQEW1AQDgXitJCKn5BVlcUY2SWp1oramsNuBv647ig51Nrx5fezAdV4vKEeqtxX0JlutxsPYnvCZhKK3UQ3e94fdcc1ypme8k3Me8luSJUcZq/68PpYvD3puioSae2s8XOnGCkpRRiLErd2H26kMoLq/C3R8dwFPrk7D8l7Nm22Xkl+G7xCsAgMduiWtWmb5uarjUmkU2zFuLqf0iMHtIDDQqBQ6m5Tep4/HJK0VYVzNh3gt3dJfdRGyN4QSFtVtltTrBumnMO/h51AyJbKwW5WBaHjYey8Qbv55DUROqsUsrqvH+7xcAGIdl1u5YyNovrVoJ15r3QtF1xzWHXBVrUMx/3Q+N80ffKB9UVBvw3z1pTT6eqcNt/TUoxuaEglLnbOIhIrzyi3Fo7vHLRXjm2+M4ccXYhPPDsSswGIwz/5ZWVGPeF4mo1BuQEOuHATF+zSpXEAQE1Vrd/O4BUfi/6b3x4qTumDPUOK/Mh430GSIyjhIkAib1Dmt2TK2BExTWbpkmaVMpBLNfK8CNKtbGhvkdv2y8WekNhJ3nG/9F89m+i8grrUS0vxv+0j+i0e1Z+2Ealqtz4MJ9pnk1wurUoAiCgCdralG+PHBJrBlpzI0aFOtz+JhqUAqctAbltzM5OJR2oy/allNZ4v9XVhtw/EoRNiVlYsybu3D6qg4BHi548+4+dim79sSNfaJ8xP+f0tc4Y/H57IanQ/j5xFUcupgPrVqBZyd0sUtMLY0TFNZuldTqf1K3Ldc0zO9qIzUopmnLAePNrCHVegM+3p0KwDjNuaMWAmPOyZSgFJc7vomnboICACM7B6JHuBfKKvX45khGk47XWBOPr5vzJijVegNe3XwGAMyaRlQKAbd0DgQAzFl9CE98fRSZReUI93HFqpk3WTSf2UpTa16kPhE+4v9H1nSOLarpNGvN9Uo9/v2zMfb5I+KsXm9nwHdI1m6V1Qwx9rAyw6XUGhQA2HkuB1V6Q73b5hRXoOh6FdRKAXc0Yd0W1r6YVhN2aA1KTROPtS9RQRDE6c7PZRU36XimUTz+HvUkKDWJS3mVAdcrHTuvkL2tO2ycrt/P3QVzhsSIz3cP98aEHsbzVFBWBa1agadGd8L2v49A3yhfu5Vfu3m59no87hqV2KRW39w1n/6RJiZN80Z0sFtMLY0TFNZumYYYu1lLULwaX6MkR1eOLF05FALgpVWhuLzaLGGpy3SsYC+t03VWY47n6BqUimo9rtWsnF3fL+poP+PaMZfyShs9XpXeIPaXqa8Gxd1FCbXS+F53plqUkopqvPXbeQDAk6PikNDBX3ztpmhfTOgZghGdAnFX33Bs//tI/G20/fuTTepj/BHTt1bzjkmEn7EWZdvpbHy4KwVHLuZDX9MfpkpvwOf7LwIA/j62k1P3c+PxjazdMtWguLtYfoBNNShZReWorDZYnYY+qSYZiQvyQJSfO347k42j6QXoH239V5SpuSjUmydlY5ZM81MUO6gGxfSLXKtWwLeeFXKj/Y1ffJfyGp+PxZRwCMKNppy6BEGAr5sLcoorkF9a6TRNDR/vTkVuSSVi/N1wX0I0rtWaCbd/tC88tWqseXCgQ2N4dERHRPu7YUSnIIvXIn1dkZRRiLd+Sxaf83FTY0SnQAR6aJCtq0CAhwtu7+XcNbVcg8LarRt9UOqvQfntTA5uenmb1dE8m09eBQDcFOMnJiWJlwrqLc+0pL2UibBY++HoGhRT7V6Un1u982dE1SQoeaWVjQ6xN/U/8XFVN1gjaEpeCp1ksjaDgcQaiIXju8BFpUCYtxYdA93hqVFhYGzLjIbRqpW4s2+E1dqpSD/zSdq8tCoUllVh47FM/Ldm8ca7B0Q6/fpeXIPC2i3TOjzumvprUABAV16NnedycM/AG3OWFF2vwi8njAnKX/pHoFpvrF5NvFQAIkJBWRV2nM2Bv7sLbuli/AXENSisIV6ujq1B+TEpEwAwumtw/TFojZOR5ZdW4lJeKbqHede7bWMdZE183WuGGjtJE8/ZrGIUllXBQ6PC2G7GcyUIAtbPG4zyKr0sVh2PrDWLbLdQL/z4+FAczSjEjrM5+P2ssS/czMExrRegnXCCwtqt0gZqUKL83aBRKcSJ3A5dzDdLUL49koHyKgM6B3uib6Rx/giVQkBOcQXu/ugAEtMLoDcQFAKw65lbEOnnJvZB4QSFWeOpcVwNSlFZFXaduwYAmNwnvMFto/3dahKUMqsJypaTWUjOLkZMgLG/in89Q4xNmjOS53x2MfYm52L6gEirndkd4WBaHgBjU46q1kg7OSQmJlG1alCGxvlDpVRgQIxx/pV/jnfOIcXWcILC2q0bNSiWHwMvrRrfzR+CA6l5ePnnMzh88cZcCBuPXcHyzcZZJGcMioIgCNCqlege7o2kjEIcqtnWRaVAZbUBe5JzcV9CFDJralBCuImHWeHIJp4tp66iUm9AlxBPdA7xbHDbaD83HE0vtNoPJa+kAk+uO4rKagMGxBibNQM9G0lQTHOhSJisrbSiGm9vT8Yne9OgNxCUCgGzao2kcSTTGlwt1ZRji0i/G/eQIR1tX/NH7py7gYqxZjBVUXu5Ws/Te4R74+4BkVAIQEb+dWQVlePrQ+lYsP4Y9AbCXX3DcV+tWpW/j+mE0V2DsGhCF+x+5hY8NrIjAGDvBeMv16wi67N4MgY4dpjxxmPG5p2mDG+P8jfWjKTnW47kWXswHZU1tYqHLxr7WzW2aq9pwcDcWh1N60NE2HIyC2Pe3IWPd6eKI1PS6xlOa29EJP7AGNRBvglKmI8rAjw0EARggIwTqeZySIJSXFyMBQsWIDo6Gq6urhgyZAgOHz4svk5EWLJkCUJDQ+Hq6orRo0cjOTm5gSMyZn+mOQQiG1gV1FOrRtdQLwDAM/9LwqLvT4AIuH9QFN6Y1tusCnh4p0D8d9YAzBvREVH+buKN+48Leaio1iOnZohnCDfxMCscVYOSoyvH/lRjs8WkJiQoMTUdZevOVFpRrcfn+y+ZPadUCBjbPaTB45lGBqXmNjzzaXpeGR787DAe/TIRmUXliPB1xW09jcfOamQ+IntJzS1FfmkltGoFeob7tEiZtlArFfjlb8NwYNGtLdb01RockqA8/PDD2LZtG7744gucOHECY8eOxejRo3HlinEhpddeew3vvPMOPvzwQxw8eBDu7u4YN24cystb5k3IGHDjV1mUX/0JCgBM6GG8Se5JzgUAzBvRAcsm94CikblMekf4wFOjQtH1Kjz7nTGxUSsFBDTSZs/aJ08HDTPedPwqiIB+UT4Woz+sMTVtHE0vEOdNAYAfj2Uit6QCIV5acZjykI7+jXaSNTUp1Tf5W0W1Hu9uT8aYlbvw+7lrUCsFPH5LHLY9NQITexoTqmwHrSxe18madXa6hXrJfgRMkKfWbDr8tsjuV+D69ev47rvv8Nprr2H48OGIi4vDiy++iLi4OHzwwQcgIrz11lt4/vnnMXnyZPTq1Quff/45MjMzsWHDBqvHrKiogE6nM/tjrDmIqMkJyvyRcfj3nT3RI9wL/7qtK54d36VJy5yrlArc2c/YIfGHo8bkPNhL22hiw9qnG2vx2LcG5cdjxvdeY51jTSJ83dA7whsGAn49bVx7hojwSc3w1VlDYsR1pO4Z0Phq3HFBHhAEILek0qKZ548LuZjw1h7837bzqKg2YHAHf2z+23D8Y1xnuLooEeJtTOZbqgbl9FXjd0u3MK8WKY81zO51Q9XV1dDr9dBqzTM7V1dX7N27F2lpacjKysLo0aPF17y9vZGQkID9+/fjnnvusTjm8uXLsXTpUnuHytqxnOIKVFQboBCAcN+GO60qFQLuS4jCfQmN34zrWnx7N/SL8sW3iRk4nanDnX2b9iXB2h9HTNSWlluKpMtFUCpuTGPfFBN6hiLpchF+OXEVMxKisS8lD2eziuGqVuK+gVFw0yhxX0I0YmtG8jTEzUWFKD83XMorw/nsYgR4aJCjK8fLP58Rhz4HeGiw+PaumNQ7zCz5N9UQ5OgqQERN+mHQHKczjQlKQ8OrWcuxe4Li6emJwYMHY9myZejatSuCg4Px9ddfY//+/YiLi0NWljEjDw42H4sfHBwsvlbXokWL8PTTT4uPdTodIiMj7R06a0dMtSdhPq4OXbRPrVRgSt9wTOHEhDXC1Fm7vMqAKr3BLu/LTTUJwJCO/o2Otqntth6heHXzWexPyUNabin+u8e4yOW0myLEdWGakpyYdA72xKW8Mpy5WozzWcX4v1/Po7iiGgoBeGBQNJ4e2xnerpaz2wZ5GhOUSr0B+aWV8HfgUF8iEhOUbqFcgyIHDuld88UXX+DBBx9EeHg4lEol+vXrh3vvvReJiYk2HU+j0UCj4XZ7Zj/pNUMoTR34GGtttTs7FpdXN9q3oylMCUpTm3dMovzdMKpLEHaczcH8LxNxNqsYggDMGRprUxydQzzx6+lsvLr5DKpqJjXsFeGNV6b0RM+I+msrXFQKBHi4ILekElm6cocmKDnFFcgrrYRSITQ6FJu1DIf8dOzYsSN27dqFkpISZGRk4NChQ6iqqkKHDh0QEmLscJidnW22T3Z2tvgaY452qYn9TxhrKSqlAm4160LZo5lHbyCkXDOOnGlsKLA1j4+KA2CcWRUAbu0SLKnWpLZOwcYv/Co9wVOrwrIpPfDDY0MbTE5MTM08ja0sbqurRdeRkV+GU5nGDrIdA92deoG9tsSh45Pc3d3h7u6OgoICbN26Fa+99hpiY2MREhKC7du3o0+fPgCMTTYHDx7E/PnzHRkOYyJxiDEnKExGPLUqlFXq7TLUOL+0EgYyLubnb0NtTL8oX9zROwy/nLiK7mFe+Me4TjbHMjw+EP2ifBAX5IFnxnWR1NwU4qXFqUwdsooan0elKYgIiZcKsL1mWvizWcVQKwUMjw8EAPSK8LFLOaz5HJKgbN26FUSEzp0748KFC3jmmWfQpUsXzJkzB4IgYMGCBXj55ZcRHx+P2NhYLF68GGFhYZgyZYojwmHMTLXegCOXjJMxxfrb9ouQMUfw1KqRrauwy2RtphEzfm4uZvP1SPHuvX3x1t19GlwMsCm83dT4/rGhNu0bbFpZ3E41KJ/+cRHLfjpt9lyVnrD9bA4A43xGTB4ckqAUFRVh0aJFuHz5Mvz8/DB16lS88sorUKuNnaAWLlyI0tJSzJ07F4WFhRg2bBi2bNliMfKHMUf4+cRVZORfh6+bmm9GTFZMHUXzSpq/sJ4pQWnuGjLNTU6ay7SyuL3mQkm8dGMq+/sGRkFXXoUlG08BMNY23RzXdqeOdzYOSVCmT5+O6dOn1/u6IAh46aWX8NJLLzmieMbqRUR47/cLAICHhsVaXYeHsdbSKdgTiZcKcDKzqEnT0jdETFA8m9/ZtjWF+RinAcgosM9095cLjEtOPDQsFuO6h6Ckohov/3wGldUG9I7wEdcOYq1P3lPlMWZnJ64U4Xx2CVzVSjzQBpYjZ21Ln0hjp9HjGUXNPlZusbEWRk6r8NoiLsgDgOXU+7a6UpOgRNTMf+ShUWFU5yAAwC01/2XywD8fWbvy0/GrAIBRXYOszrvAWGsyddBMTC/AO9uTMbijPwbE2LYY3DU7NfG0tviaBCW3pAIFpZXNquEoq6xGXs0ioRG11uB6aXJ39I/2xf2DopsXLLMrrkFh7QYR4eeaBOWOXk2fVZOxlhIf5AGtWoHKagPe3HYej36RiLJK20b05Ba3jQTFXaMSazvOZ1tfz6epMguNtSeeGpXZD5QgLy0eGd4Bri48vFhOOEFh7caf6YW4Ungd7i5KjOSqXCZDKqXC7Iszr7TSYgXhprpRg+L8fSpM86icz2leM09GTfNOY8tbMHngBIW1G6bak9HdgnkiJiZbdZdF+GhXCkoqml6LkpFfhlmfHhJX3w6QMOeIXMUHG5t5kptZg3JZ7H/C8x85A05QWLtgMBB+OWFMUG7v1bzREYw50mMj4rD49m448vxodAhwR0FZFdbsu2ix3U/HMzHgld/w8Joj2HjsCkprkph3dyRj1/lr4naBTt7EAwCdgmpqUJqZoNTtIMvkjTvJsnbhyKUCZOnK4alRYXgnnueAyZe3mxoPDTOuefO30fH427pj+Hh3Kh4YHC2ueAwA3/95BdeKK/DbmWz8diYbWrUCIzsFYcsp80VXnb0PClCriaeRkTxZReUI9NTUO3fL5ZqhypygOAeuQWHtwk/HjYumjekeDI2Km3eYc7i9VxjigjxQdL0Kq/deNHsttWadnTt6hyHG3w3lVQaL5AQA/NtAH5S4IA8IgnH6ftP8LnV9/+dlDFq+HXe9/4d4buoyLXER7sMJijPgBIW1eXoD4ZcTxhv3Hdy8w5yIUiFgweh4AMB/96aiqMw4BX5FtR7pNV+2z0/sit//MRLfzBss1pZE+t34AlbbOM29nLi6KBFZ02+kvmYeUzNY0uUizF59GJXVBrPXdeVVOJmpAwD0CG98kULW+pz/nctYIw6m5SG3pALermoM5WmsmZO5rUcoOgd7ori8GuuPpAMA0vPKYCDA3UWJIE8NBEHAwFg//PzkMLwxrTd+XTACMwdHY8XUnq0cvf10EjvKWtaOXMorRdJl4+R2ggCk55fh28QMs232JudCbyB0DHTnRUKdBCcorM0zdY4d3z0ELip+yzPnolAIuLOfcWTPiSvGGoCUa6UAgI5BHhCEG/0tgr20+Ev/CLi6KPHS5B64e0BUywfsIDf6oVjWoGxKMjbh3hwfgBdu7wYAeHf7BZRX6cVtfq9ZDJBni3UefLdmbd75LOMvriFx/q0cCWO2MdUenM8yfjmn5hrf0x0C2s9q3A0lKLtrhlTf1jMU9yZEIcxbiyxdOdYeNNY4GQyEnTUjm27pwgmKs+AEhbV5+WXGqa3bwnBL1j6ZvpxTc0twIDUPn/1xEQDQIdCjFaNqWaa5UM5nl4CIzF5LralR6h7mBY1KiSdvNfbb+WDnBZRWVOP0VR2uFVfA3UWJm2J8WzZwZjNOUFibV1Cz9gavUsqcVbiPK9xdlKjSE+75+AByaqax79iOEpSOgR5QCEDR9Sqk5ZaKz+vKq8SRPbE1NUpT+0cg2t8NuSWVWLP/oti8MzQugEfxORFOUFibZjAQCq8bRz74unGCwpyTIAiIr6lFMfHUqDCgHdUGaNVKDO5obKZ99vsT0BuMtShpNbUngZ4aeNbME6NWKsTRTx/tSsXGmj4q3LzjXDhBYW1acXm1eCPzcePVi5nzMvVDAYBX7+qJw8+PRpCXthUjann/vrMn3F2UOJSWj1V7UgFArE2p2x9nUu9wxNfMIXOhZg2fkZ0DWzZg1iycoLA2zdT/xN1FyevvMKdWexbZ23uHtcv3c7S/O5bcYRyl83+/nsPJK0XipGwdAs0TFKVCwLIpPaBVG7/meoR7IdSbJ2hzJjzVPWvTCmoSFB9u3mFObsagaKw/nIH7B0fDQ9N+b93Tb4rE9jM5+PV0Np5afwzR/sbEpEOAZX+cQR38cfC50fj1VBYGxPi1dKismdrvu5y1C6YOsn7cQZY5udgAdxx/cWxrh9HqBEHA8rt64s/0QiTnlCC5pvkmtp4h196uaky7KbIlQ2R2wk08rE3L5xE8rA0RBMFsYrb2yt9Dg9en9ULtUxEX1H5GNLUXXIPC2rTCmrVL/LiDLGNtyi2dg/D9/CH4+fhVBHlpENOOJq1rLzhBYW1aPvdBYazN6hvli75R7WeodXvDTTysTeM+KIwx5pw4QWFtGvdBYYwx58QJCmvTTH1QfLkPCmOMORVOUFibZuqD4sd9UBhjzKlwgsLaNF4okDHGnBMnKKzN4oUCGWPMeXGCwtosXiiQMcacFycorM3ihQIZY8x5cYLC2izTQoHc/4QxxpwPJyiszRI7yHL/E8YYczqcoLA2iydpY4wx58UJCmuzeKFAxhhzXpygsDaLFwpkjDHnxQkKa7N4oUDGGHNenKCwNotH8TDGmPPiBIW1WQWlvFAgY4w5K05QWJvFCwUyxpjz4gSFtVm8UCBjjDkvTlBYm1R7oUDuJMsYY86HExTWJvFCgYwx5tw4QWFtUu2FAjUqXiiQMcacDScorE3KLLwOAAj01LRyJIwxxmzBCQprk05n6gAAXUO9WjkSxhhjtuAEhbVJp68aE5RunKAwxphT4gSFtUlnTAlKGCcojDHmjOyeoOj1eixevBixsbFwdXVFx44dsWzZMhCRuM3s2bMhCILZ3/jx4+0dCmunyqv0uJBTAoATFMYYc1Yqex9wxYoV+OCDD7BmzRp0794dR44cwZw5c+Dt7Y0nn3xS3G78+PFYvXq1+Fij4c6MzD4u5JSg2kDwcVMjxEvb2uEwxhizgd0TlH379mHy5MmYOHEiACAmJgZff/01Dh06ZLadRqNBSEhIk45ZUVGBiooK8bFOp7NfwKzNOXmlCICx/4kgCK0cDWOMMVvYvYlnyJAh2L59O86fPw8ASEpKwt69ezFhwgSz7Xbu3ImgoCB07twZ8+fPR15eXr3HXL58Oby9vcW/yMhIe4fN2pD9qcb3Ut8on9YNhDHGmM0Eqt05xA4MBgOee+45vPbaa1AqldDr9XjllVewaNEicZt169bBzc0NsbGxSElJwXPPPQcPDw/s378fSqXlpFrWalAiIyNRVFQELy/uY8BuMBgIN73yG/JLK7F+7iAkdPBv7ZAYY4zV0Ol08Pb2btL3t92beL755husXbsWX331Fbp3745jx45hwYIFCAsLw6xZswAA99xzj7h9z5490atXL3Ts2BE7d+7ErbfeanFMjUbDfVRYk5y+qkN+aSXcXZToF+3b2uEwxhizkd0TlGeeeQbPPvusmIT07NkTly5dwvLly8UEpa4OHTogICAAFy5csJqgMNZUu85fAwAM7hgAtZJH0TPGmLOy+x28rKwMCoX5YZVKJQwGQ737XL58GXl5eQgNDbV3OKwdqajWY93hdADAyM6BrRwNY4yx5rB7Dcodd9yBV155BVFRUejevTuOHj2KN998Ew8++CAAoKSkBEuXLsXUqVMREhKClJQULFy4EHFxcRg3bpy9w2HtyNoD6cjIv44gTw3u6hfe2uEwxhhrBrsnKO+++y4WL16Mxx57DDk5OQgLC8O8efOwZMkSAMbalOPHj2PNmjUoLCxEWFgYxo4di2XLlnE/E2YzXXkV3t2RDAB4akwnuLnY/a3NGGOsBdl9FE9LkNILmDmfjPwyvLsjGU+Mikekn1uT9nlty1m8vzMFHQPdsXXBcKi4/wljjMlOq47iYay5/vFtEg6m5WNPci72LzLvNE1EeH9nCval5MLPXYP/m9YbeaUV+GRvGgDg2QldOTlhjLE2gBMUJjt/phcAAK4WlUNvICgVN2aDPZiWj9e3nhMfT+sfgU1JmaioNmBgjB9Gdw1q8XgZY4zZH//UZLLj7eoi/v+xjAKz1z7746LZ419OXMV3f14GADx7Wxee2p4xxtoITlCYrJRUVCO35MaswTvO5oj/n3qtBL+ezgIATOhhXMfpmyMZMBAwqksQ+kXxxGyMMdZWcILCZCXtWqnZ499OGxOUbF05Zq8+DAMBN8cH4LaexjlzDDVdvEd04nlPGGOsLeEEhclKyrUSAECXEE+olQLOZRfjYGoe7v/vQaTnlyHKzw1vTOuNTsGeZvtx7QljjLUt3EmWyYopQekb5YtwH1dsP5uDBz49hMpqA0K8tFj7cAKCvbTwcVNDqRCgNxBc1Up0CfVs5MiMMcacCdegMFlJrWni6Rjojtt7G5txKqsN8Hd3wZcPJ4jzomhUSsT4G/+/d6Q3r7vDGGNtDN/VmWyUV+mxLyUXANAlxAtjuoXA390FXloVPn9oIOKCPMy27xxirDXpz6sWM8ZYm8NNPEw2fjyWiYKyKoT7uGJwR38oFQJ+fWo4FIIAX3cXi+2fvDUe3q5qPDSsQytEyxhjzJE4QWGyQET4bN9FAMADg6PFydn8Pepfn6lLiBeW39WrJcJjjDHWwriJh8nCkUsFOH1VB41KgbtvimztcBhjjLUyTlCYLJhqT6b0CbfanMMYY6x94QSFtbqsonJsOWmcIXbWkJjWDYYxxpgscILCWt3ag5egNxAGxvihW1jDy28zxhhrHzhBYa2qolqPrw+lA+DaE8YYYzdwgsJa1c/HryK3pBKh3lqM7R7c2uEwxhiTCU5QWKtaU9M59v5B0TwbLGOMMRF/I7BWczS9AEmXi+CiUuCeATy0mDHG2A2coLBWs/agse/JHb3CGpyQjTHGWPvDCQprNYfS8gEAU/qGtXIkjDHG5IYTFDsoq6xGWm5pa4fhVIquVyE9vwwA0DPcu5WjYYwxJjecoNjBou9P4Nb/24md53JaOxSncTpTBwAI93GFjxvPHMsYY8wcJyh2cC6rGAYCVm47DyJq7XCcwqnMIgBAj3CemI0xxpglTlDsQHe9CgCQdLkIe5JzAQC/nLiKhf9LQrauvDVDk61TNTUoPcK4eYcxxpglTlDsQFdeLf7/uzuSQUR48cdT+ObIZdz82u/cP8WKk1eMNSjduQaFMcaYFZygNJPeQCipMCYoCgE4fLEA6w9nIKe4AgBQWW3AJ3tTWzNE2Smv0iPlWgkAoDvXoDDGGLOCE5RmKqlVe3J3zWRjL246ZbbN/pS8Fo1J7lKvlcJAgLerGkGePP8JY4wxS5ygNJOu3Nj/xFWtxOOj4qFSCCivMgAAHhgUDUEAUq6VIof7ooiSc4oBAJ2CPSAIQitHwxhjTI44QWmmopoOsp5aFcJ9XDG1X4T42phuwegWauxjsT+Va1FMzmcbE5T4YM9WjoQxxphccYLSTKYaFC9XNQDgsVs6Qq0U4O6iRP9oXwzu4A8A+ONCrrhPZbUBhy/mI+VaCb48cAn/9+s5nLhcVG8ZpzN1yCupcOC/omWdzzb2P4kP8mjlSBhjjMmVqrUDcHbFNX1QvLTGUxnt747v5g+BQhDgrlHhli5B+O/eNGw4molx3UNwIDUP3/95BXmllWbHeXfHBSyd1B2zhsSIz1VU6/Hij6fx9aF0eGhUeGlyd9xVq4bGWSVnm5p4uAaFMcaYdVyD0kymOVBMNSgA0CvCBz1qpm8f0tEfIzsHolJvwENrjmDVnjTklVbCx00NtVJAuI8rbu0SBAB46afT+PVUlnicVbtT8fUh44J6JRXV+Od3x1FYZp7YOJvyKj0u1UxxHx/MNSiMMcas4xqUZjLNgeKpVVt9XRAELJvcA7e9swdllXrc0jkIdw+IxC2dAwEASoWxk+jT3yThh6NXMPeLRNx9UySeu60rvj6UAQBYNqUH3tp2HnmllbhSeN2pp4b/M70ARICPmxqBvIIxY4yxenCC0kxiDYq2/lMZ6eeGnf8YCUEQ4OduPbl4dWpPeLuq8dm+i1h/JAObT16FrrwanloVpvWPwLpD6cgrrUSOrgLdnXDx3y0nr2LtwXTsqxlyPaFHCI/gYYwxVi9u4mkmsQ+Kq/UaFBN/D029yQkAaFRKvDipO76ZNxgx/m5izcyUPuHQqpUI9tICgFNOnX8hpxh/W3cMe5JzoTcY1yr66y1xrRwVY4wxOeMEpZnEUTz1NPFINTDWD5v/NhzzhnfAwBg/zB3eAQAQ7GVsDsnWOddonspqA/627hgqqg0IrJmU7bGRHRHh69bKkTHGGJMzbuJpJl2teVDsxdVFiUW3dTV7LtCzpgal2LlqUFb+dh6nMnXwcVPjpyeGQaNSwLuR2ibGGGOME5RmqjsPiqOYalDkPiPtq5vP4rcz2UiI9cPgjv74cFeK8fm7eorNVIwxxlhjOEFpJt1183lQHCXYVIMi4yaea8UV+Hh3CgwEXMgpwdqDxiHS0/pHYHyP0FaOjjHGmDPhPijNVFzRUjUoxgQlx4FNPFcKr6OssrrxDevxy4mrqOkDi46B7gCAKD83vDCpuz3CY4wx1o5wDUoztVgNSk0Tz7XiCugNJM6fYi8Z+WUY+cZODIjxxbq5g206xo9JmQCAxbd3w1/6ReC7Py9jTLdgeGj4bcYYY0wa/uZoBoOBUFxu6iTr2BoUfw8NFAJgICCvpAJBdu7PceJKEfQGwp/phTAYCAqJCdC14gokXiqAIAATe4bC202NB4fF2jVGxhhj7Qc38TRD0fUqsUnDx82xCYpSIYjDdB3RD+VSnnH6+cpqAzKLrkve/8xVHQAgNsAdId7cGZYxxljzcILSDLk1Kwx7u6qhUSkdXp6pH8qhi/l2P3Z6fqn4/xdzyyTvf960AGAQLwDIGGOs+ThBaYZrNQlKgEfLrI0zuU84AGDFlrM4cbnIrsdOz7+RlKTllkjePznbuE8nXgCQMcaYHXCC0gzXik0JSsssejdnSAxGdw1GZbUBj36ZaNeVjU1NPACQZksNSo6xBiU+mGtQGGOMNZ/dExS9Xo/FixcjNjYWrq6u6NixI5YtWwYiErchIixZsgShoaFwdXXF6NGjkZycbO9QHC63xJggBHi2TIKiUAj4v+m9Ee3vhiuF17Fg/TEYDNT4jo2orDYgs/BGvxNrNSjF5VW4kGO9ZoWIcEGsQeEEhTHGWPPZPUFZsWIFPvjgA/znP//BmTNnsGLFCrz22mt49913xW1ee+01vPPOO/jwww9x8OBBuLu7Y9y4cSgvl/csqXWZ+qAEtlANCmDs7/LBjP7QqhXYee4a3tnR/MTuSuF11M5zLuaZ16AQER5ecwRjVu7CznM5FvtfLSpHcUU1VAoBsQHuzY6HMcYYs3uCsm/fPkyePBkTJ05ETEwM/vKXv2Ds2LE4dOgQAOOX3VtvvYXnn38ekydPRq9evfD5558jMzMTGzZssHc4DpVb08QT2EI1KCbdwrzwypSeAIC3tydbTRqkuJRn7CBrGomUkV+Gimq9+PrBtHwcTMsHEfDvX84gI78MJRXVSMstxZp9F/H3b5IAGEfwuKi41ZAxxljz2X0elCFDhuDjjz/G+fPn0alTJyQlJWHv3r148803AQBpaWnIysrC6NGjxX28vb2RkJCA/fv345577rE4ZkVFBSoqbgyt1el09g7bJrkt3Em2tqn9I5CYXoCvDqZjwfpj+O3pETb3hcmo6SB7U7QvjmUUIrekEgv/dxwJsf7ILanA5pNZ4rbns0tw82u/Wz3OqK5BNpXPGGOM1WX3BOXZZ5+FTqdDly5doFQqodfr8corr2DGjBkAgKws45ddcHCw2X7BwcHia3UtX74cS5cutXeozSb2QWnBJp7aXrijGw6k5iH1Win2peRhUu8wm45zucDY/yTSzw0zEqLx0JrD2HgsExuPZYrbKBUCZg6Oxuo/LkKlEFBtIKiVAm6K9sPwToEY3ikA3UK97PLvYowxxuyeoHzzzTdYu3YtvvrqK3Tv3h3Hjh3DggULEBYWhlmzZtl0zEWLFuHpp58WH+t0OkRGRtorZJu19CieujQqJQZE+yH1Wmm9HVib4nJNB9lwH1fc0iUIr97VC98cyYCPmxoBHhoEeGiQ0MEPN8cH4slR8fByVaOkvBpqlQA3F56MmDHGmP3Z/dvlmWeewbPPPis21fTs2ROXLl3C8uXLMWvWLISEhAAAsrOzERp6Y4Xb7Oxs9OnTx+oxNRoNNJrWSQLqQ0TIK22dPii1xQUZ5x1JuWZ7gnKlpgYlwtcVADB9QCSmD7CeAPq6G5uzvB08cy5jjLH2ze49GsvKyqBQmB9WqVTCYDAAAGJjYxESEoLt27eLr+t0Ohw8eBCDB9u2SF1rKLpehSq9ceiLfyv0QTHpGGQcNZPSjBqUK2INiptdYmKMMcaay+41KHfccQdeeeUVREVFoXv37jh69CjefPNNPPjggwAAQRCwYMECvPzyy4iPj0dsbCwWL16MsLAwTJkyxd7hOIypg6yXVtUi09zXJy7QOO9Iam6pTascl1fpxaaq8JoaFMYYY6y12T1Beffdd7F48WI89thjyMnJQVhYGObNm4clS5aI2yxcuBClpaWYO3cuCgsLMWzYMGzZsgVarfMsMrf1VDYAtPrCeOG+rnBRKVBZbcDlgjJE+0ubh+RqkXHuGVe1Er7cbMMYY0wm7J6geHp64q233sJbb71V7zaCIOCll17CSy+9ZO/iW0RSRiH+79dzAICHhsW2aixKhYAOAe44m1WMlGslkhMUU/+TcF9XCIK02hfGGGPMUXhWLRtsO50NAwGjuwZj+k2tP5qoY01HWVtG8lwpNM6BEu7DzTuMMcbkgxMUG+TXLNLXI9xLFrUOcYE1I3lySiXvW7sGhTHGGJMLTlBsYFpF2Net9Ubv1NaxGUONa8+BwhhjjMkFJyg2KCitAnBjTpDWZqpBuXCtxGzV6Ka4VLMwYKQfDzFmjDEmH5yg2KBArEGRx6iX2AB3CAJQWFaF/NLKJu9HRDifXQwA6BTs4ajwGGOMMck4QbFBgcyaeFxdlGITjZSOstm6ChSXV0OpEBAbIG30D2OMMeZInKBIREQoKJNXEw9Qe8r7pneUNdWexPi7tepkc4wxxlhdnKBIVFapR2W1cdp+uTTxAEDHQOlDjW8073g6JCbGGGPMVpygSGRq3nFRKeCqlk+tgy2LBpoSlHhOUBhjjMkMJygSFdY07/i5uchiDhSTYC/jispSOsmezzYmM9xBljHGmNxwgiKRKQHwkVHzDgB4ao3xFJdXNWl7IhKbg7iJhzHGmNxwgiKRqYnHT0YdZAHAS0xQqpu0fWZROUoqqqFSCIiRuH4PY4wx5micoEhUUCqvIcYmnlrjuo/F5dVNmqzN1P8kNsAdLip+GzDGGJMX/maSyDTEWH5NPMYEpVJvQEXNKKOGJPMIHsYYYzLGCYpEhTJt4nF3UcHUZ1fXhH4oNzrIcoLCGGNMfjhBkShfrEGRV4KiUAjw0Nxo5mlMMk9xzxhjTMY4QZHAYCCcvaoDAAR4yCtBAZreUdZgILEGhedAYYwxJkecoEiw5VQWknNK4KlRYUSnwNYOx8KNjrINN/FcKbyO61V6uCgViPHnVYwZY4zJDycoTaQ3EFZuOw8AeHBYrOyaeIAbNSi66w3XoJhG8HQIdIdKyW8Bxhhj8sPfTk300/FMJOeUwEurwkM3x7Z2OFY1tQaFm3cYY4zJHScoTVCtN+Dt35IBAHOHdxBrKuSm9lwoDRE7yAZxB1nGGGPyxAlKE/yYlInU3FL4uKkxe6g8a0+Apk93fz6HFwlkjDEmb5ygNKJKb8Db2421J/OGdxSH8sqRqQZF10ANisFQew0erkFhjDEmT5ygNGLD0Su4lFcGf3cXzBwc3drhNMjLtaaTbAM1KBkFZSivMsBFpUA0r8HDGGNMpjhBaQAR4b970gAAD9/cAe4yrj0BmtYHxdRBtmOgB5QKoUXiYowxxqTiBKUBe5JzcS67GO4uStyXENXa4TSqKX1QLuWVAjAOMWaMMcbkihOUehgMhJW/Gec9mT4gEt6u8hy5U1tTalDya1ZjDvTQtEhMjDHGmC04QanH+iMZOJpeCHcXJeYN79ja4TSJl9hJtv4aFFOCIrfFDhljjLHaOEGxIq+kAq9uPgsAeHpsZ4R4a1s5oqbxrDWTbJXeYHUbU4LiywkKY4wxGZN3r89WsnzzWRRdr0K3UC/MkvnIndp8apqhiq5XodeLv6J/tC8GxPhhYKwf+kb5QKtWigmKPycojDHGZIwTlDoOpeXjf4mXIQjAy3f2cKq1agI9NZg5OBobj2Wi6HoV9l7Ixd4LuQAAtVLA8PhAZBeXAwB8ZbiWEGOMMWbCCUotVXoDnt9wAgBwz4Ao9IvybeWIpBEEAS9N7oEX7+iO8znFOJyWj4Np+TiUlo+c4gpsP5sjbuvvwQkKY4wx+eIEpZZP9qbhfHYJ/N1d8M/xnVs7HJspFAK6hHihS4gXHhgcAyLCvasO4EBqvrgNd5JljDEmZ87TftECBsT4oUuIJxbd1hU+bagJRBAExNSZNdbHCYZNM8YYa7+4BqWW/tG++OmJYW1yhtVIPzfx/33c1E7Vt4Yxxlj7wwlKHW31i7t2gsLNO4wxxuSubX4bMwtRtROUNtR8xRhjrG3iBKWdqJ2gyH3RQ8YYY4wTlHbC1+1Gp9jrlfpWjIQxxhhrHCco7YQg3Oj4W1JR/2KCjDHGmBxwgtIOdQvzau0QGGOMsQZxZ4R25KcnhuHbIxl48tb41g6FMcYYaxAnKO1Ij3Bv9Aj3bu0wGGOMsUZxEw9jjDHGZIcTFMYYY4zJDicojDHGGJMdTlAYY4wxJjt2T1BiYmIgCILF31//+lcAwMiRIy1ee/TRR+0dBmOMMcacmN1H8Rw+fBh6/Y2ZSk+ePIkxY8Zg2rRp4nOPPPIIXnrpJfGxm5sbGGOMMcZM7J6gBAYGmj1+9dVX0bFjR4wYMUJ8zs3NDSEhIfYumjHGGGNthEP7oFRWVuLLL7/Egw8+aDbV+tq1axEQEIAePXpg0aJFKCsra/A4FRUV0Ol0Zn+MMcYYa7scOlHbhg0bUFhYiNmzZ4vP3XfffYiOjkZYWBiOHz+Of/7znzh37hy+//77eo+zfPlyLF261JGhMsYYY0xGBCIiRx183LhxcHFxwaZNm+rdZseOHbj11ltx4cIFdOzY0eo2FRUVqKioEB/rdDpERkaiqKgIXl68rgxjjDHmDHQ6Hby9vZv0/e2wGpRLly7ht99+a7BmBAASEhIAoMEERaPRQKPR2D1GxhhjjMmTwxKU1atXIygoCBMnTmxwu2PHjgEAQkNDm3xsU6UP90VhjDHGnIfpe7spjTcOSVAMBgNWr16NWbNmQaW6UURKSgq++uor3HbbbfD398fx48fx1FNPYfjw4ejVq1eTj19cXAwAiIyMtHvsjDHGGHOs4uJieHs3vHitQ/qg/Prrrxg3bhzOnTuHTp06ic9nZGTg/vvvx8mTJ1FaWorIyEjceeedeP755yX1JTEYDMjMzISnpycEQRD7pGRkZDTpOFK3t2UfOZYhx5haogyOST5lyDGmlihDjjG1RBkck3zKkEtMRITi4mKEhYVBoWh4ILFDalDGjh1rtfomMjISu3btavbxFQoFIiIiLJ738vKSlOhI3b6tlCHHmFqiDI5JPmXIMaaWKEOOMbVEGRyTfMqQQ0yN1ZyY8Fo8jDHGGJMdTlAYY4wxJjttIkHRaDR44YUXmjwUWer2baUMOcbUEmVwTPIpQ44xtUQZcoypJcrgmORThhxjaoxDJ2pjjDHGGLNFm6hBYYwxxljbwgkKY4wxxmSHExTGGGOMyQ4nKIwxxhiTHU5QGGOMMSY7nKAwxhhjTHY4QWGMMTshIuj1eqcvoyWkpaWhurpaVsd3dEy2lNESM4FILaMlzhPQhhKUM2fOYPXq1Th79iwA4OzZs5g/fz4efPBB7Nixw277ODouOcb03//+F7NmzcLq1asBAOvXr0fXrl3RoUMHvPDCC00ut6Ebq9Qytm3bhhdeeEGMd/fu3ZgwYQJGjRolHqO5WqIMOcYkx+stt5iqq6vx/PPPY8SIEeJrr7/+Ojw8PODm5oZZs2ahsrKySTFlZ2cjPT3d4nlbypDbeWpI586dkZyc3OTtAWDnzp24fv26w47v6JhsKUOj0eDMmTOSYpKaQEgtw5bzZBOSsV9//ZWWLFlC27dvJyKiXbt20fjx4+mWW26hTz/9VNxu8+bN5OLiQn5+fqTVamnz5s0UGBhIo0ePplGjRpFSqRSP0Zx9pMRkSxlyjGnlypXk7u5Od911F4WGhtLLL79M/v7+9PLLL9PSpUvJy8uLPvroI7Myqqqq6F//+hcNHz6clixZQkREr732Grm5uZGLiwvNnDmTKioqbC7jiy++IJVKRf369SMPDw9avXo1+fj40MMPP0wPPvggubi40LfffmtxnlatWkUzZ84Uz8m6deuoS5cuFBsbK8bZ3DKkXAs5xiTH6y3HmJ5//nkKDg6mp59+mrp160aPPvooRUZG0pdffklr1qyh8PBwWrFihVlMOp2OZsyYQVFRUWL5jz32GAmCQAqFgoYPH05FRUU2lyHH80REdOedd1r9UygUNHr0aPFxU6jVajp9+nSzj+/omGwp46mnnrL6p1AoaObMmeLj5sQktQx7nidbyDZBkXIzHjx4MP3rX/8iIqKvv/6afH196bnnnhOP9eyzz9KYMWPMjm/LPlK/IKSWIceYunTpQmvXriUioj///JNUKhX997//FV//73//S/379zeLSeqNVWoZffr0obfffpuIiH777TdydXWlN998U3z9jTfeoKFDh5rFJPXGaksZUq+FHGOS4/WWY0wdOnSgTZs2ERFRcnIyKRQKWrdunfj6+vXrqUePHmYxPf7449SlSxd65513aOTIkTR58mTq0aMH7d27l3bt2kXdunUz+yxKLUOO54mISBAEGjFiBM2ePdvsT6FQ0JQpU8THtfXt29fqnyAI1LVrV/Gxrcd3dEy2lCEIAvXp04dGjhxp9icIAg0YMIBGjhxJt9xyi1lMUhMIqWXYcp7sSbYJipSbsZeXFyUnJxMRkV6vJ5VKRX/++ae47YkTJyg4ONjs+LbsI/ULQmoZcozJ1dWVLl26JD7WaDR08uRJ8XFycjL5+PiYxST1xiq1DHd3d0pNTRUfq9VqSkpKEh+fOXOG/P39zWKSemO1pQyp10KOMcnxessxJq1WS+np6WaPz5w5Iz5OTU0lT09Ps5giIyNpx44dRER05coVEgRBjJGI6KeffqLOnTvbXIYczxOR8YdQRESERW2dSqWiU6dOkTUqlYrGjx9PL774ovj3wgsvkEKhoMcee0x8ztbjOzomW8pYvnw5xcbGWtSSNxST1ARCahm2nCd7km2CIuVm7OXlRRcuXBBf8/DwoJSUFPHxxYsXSavVmh3fln2kfkFILUOOMfn7+5tVFUZERNDFixfFx8nJyeTh4WEWk9Qbq9QyfHx86OzZs/X+G1JTU8nNzc0sJqk3VlvKkHot5BiTHK+3HGMKDg6m48ePi4+HDBlCly9fFh+fOXOGvLy8zGLSaDRmMbm5udG5c+fExxcvXjS7flLLkON5MklLS6OhQ4fSXXfdRfn5+UTU8Jfc3r17qWPHjrRkyRLS6/Xi8/XtI/X4LRGTLWUcOnSIOnXqRH//+9+psrKy0e1tSSCklmHLubUX2XaSVavVZh3ANBoNPDw8zB6bOibFxMSYddjZv38/oqKixMfp6ekIDQ01O74t+0iJyZYy5BhTly5dcPz4cfFxRkYGoqOjxcdnz55FTEyMWUze3t4oLCwUH/fr1w+enp7i44qKCgiCYHMZcXFxYgdfALhy5QpiY2PFxykpKYiIiDCLyc3NDaWlpeLjwMBAs/MEwKxTmS1lSL0WcoxJjtdbjjF169YNf/75p/j4jz/+QHh4uPj4xIkTiI+PN4vJ398f165dEx9PnjwZPj4+4uOSkhKzVWClliHH82QSExOD3bt3o0ePHujduze2bt1qdty6hg4disTERJw/fx5DhgxBSkpKvdvacvyWiMmWMgYMGIDExERcu3YNN910E06ePNng9vfccw/27NmDTz75BFOnTkVBQUGjMUktw5Zzay+qFinFBqabcefOnQEYb8a1Pzi1b8bz588363Heo0cPs2Nt3rwZo0aNMnvOln2kxGRLGXKMacWKFXB3d0d90tPTMW/ePLPnTDfWnj17AjDeWGure2OVWsZzzz0HX19f8bGXl5fZ9keOHMH06dPNnjPdWLt27QrAeGOtre6N1ZYypF4LOcYkx+stx5g+/PBDqNXqerevqqrCwoULzZ7r1asXDh8+jH79+gEAvvrqK7PXDx8+LL4XbClDjuepNoVCgaVLl2LMmDGYOXNmo0Olvb298fXXX2P16tUYNmwYli5d2uAXo9Tjt0RMtpTh4eGBNWvWYN26dRg9enSj25sSiKVLl6J3795YtWpVozFJLcOWc2sXDq+jsdH3339Pu3btqvf15cuX0/PPP9+CEXFMTXXu3DmzZoW61q5dS+vXr2/BiIzVs0ePHq339ffee4/efffdZpUh9VrIMSZbyPF6yzGmvLw8KigoqPf1X375hX7//fcWi4eo9c5TcXExHTt2zGyEUEPOnz9PAwYMIEEQmtS0IPX4LRGTLWVkZGTQhg0bqKSkpEnb79mzh2JjY0mhUDQ5Jqll2HJubSUQtcAsMIwxxlgzGAwGFBcXw8vLq8WaGBojx5hKSkqQkpKCrl27wsXFpbXDaRbZ9kGRKikpCS+//DLef/995Obmmr2m0+nw4IMP2mUfR8clx5jef/99jB49GtOnT8f27dvNXsvNzUWHDh2aHZPUMn755Rc8/PDDWLhwoVm/DAAoKCiwaAqzRUuUIceY5Hi95RaTqXklLi4OAwcOxKeffmq2fXZ2NpRKpdVyDAaD1eeJyGzCNlvKkNt5Mqn9vq07IVhT37cKhQLe3t5WEwFbju/omGwpwx73fw8PD/Tu3bve5ERqGfY4TzZzeB1NM/z888/00EMP0TPPPGPWs5yIKD8/XxyvvXXrVnJxcaHu3btTVFQU+fv7i8P5iIiysrJIoVCY7W/LPlJisqUMOcb09ttvk5ubG/31r3+l+++/n1xcXOjf//53gzFVVlbSM888Qx07dqQBAwbQJ598YvZ6c8tYu3YtKZVKmjhxIg0bNoy0Wi19+eWXjZ6n9957j2699VaaNm0a/fbbb2avXbt2jWJjY5tdhpRrIceY5Hi95RjTCy+8QMHBwfT666/Tv/71L/L29qa5c+eabS8IglmZRUVFNG3aNNJqtRQUFESLFy+m6upqu5Uhx/NE5PjPqy3Hl+M9xB73/7qTszX3/m/rebIX2SYoUk7M4MGDxQmODAYDrVixgjw8PGjz5s0W25rYso/UiyW1DDnG1K1bN3GuDiKiP/74gwIDA2nx4sX1xiT1xiq1jNpzexAZ52pwd3cX5xCxFpPUG6stZUi9FnKMSY7XW44xxcXFmc1hkpycTHFxcTR79mwyGAxWY3ryySepU6dO9O2339KqVasoOjqaJk6cKLbl141JahlyPE9Ejv+82nJ8Od5D5Hj/t+U82ZNsExQpJ6bu3B5Exgvn7u5OmzZtsnoSbdlH6sWSWoYcY3J1daW0tDSz7U2TuT377LNWY5J6Y5VaRt25PYiIduzYQR4eHvTBBx9YjUnqjdWWMqReCznGJMfr7SwxXb58mTp16kQzZsygK1euWMQUFRVl1gn22rVrNHDgQBo7diyVl5c3uww5nicix39ebTm+HO8hcrz/23Ke7Em2CYqUExMYGEhHjhyxOMbXX39Nbm5u9MEHH1icRFv2kXqxpJYhx5giIyNp9+7dFtufOnWKgoODaebMmRYxSb2xSi0jNDSU9u/fb7H9zp07ycPDg/71r381KaaGbqy2lCH1WsgxJjlebznGFBsba1HFT2ScIbZTp040ZswYqzHVvRY6nY4GDx5Mo0aNotTU1GaVIcfzROT4z6stx5fjPUSO939bzpM9yTZBkXJixowZQ6+//rrV43z11VekVqstTqIt+0i9WFLLkGNM9957Ly1YsMDq9idPnqTAwECLmKTeWKWWMXnyZIuF9Ex+//13cnd3t4hJ6o3VljKkXgs5xiTH6y3HmB566CF68MEHrW5/+fJliouLs4ipc+fO9PPPP1tsX1xcTIMHD6bevXs3qww5nicix39ebTm+HO8hcrz/23Ke7Em2CYqUE/P999/X+6EhMlZhjRw50uw5W/aRerGkliHHmJKSkqyuwmty4sQJs/UniKTfWKWWsXPnTrO237p27NhhsYCV1BurLWVIvRZyjEmO11uOMV28eJG2bNlS7/ZXrlyhzz77zOy5J554gv7yl79Y3V6n01FCQoJZTFLLkON5InL859WW48vxHiLH+78t58meZJugtPaJsYZjahpbbt6OZsuNVSqp10KOMdlCjtdbjjHl5+ebrbVUl06no507d7ZgRPI8T0Qt89mQSo4xyfH+b09taqK26upqnDp1CllZWQCAkJAQdOvWrcHpom3Zx9FxyTGmQ4cOYf/+/WbbDx48GAMHDrRbTFLLyMrKwsGDB822T0hIQEhIiN1iaoky5BiTHK+33GKqrKzEhg0bLLYfMmQIJk+ebJdJsmwpQ27nycTR71tbji/He4gc7/+tdR+UfYLSlBNjMBiwZMkSvPfeeygqKjLb39vbG48//jiWLl0KhULRrH2kxGRLGXKMKScnB3fddRf27duHqKgoBAcHAzBOEpWeno6hQ4fiu+++Q1BQkNmxpNxYpZZRWlqKefPmYd26dRAEAX5+fgCA/Px8EBHuvfdefPTRR3Bzc7M4T029sTanDKkfZjnFJMfrLceYLly4gHHjxiEzMxMJCQlm2x88eBARERHYvHkz4uLizGLKzc3Fp59+ajWm2bNnIzAwUNxWahlyPE+A4z+vthxfjvcQOd7/m3Oe7KJ1Km4aV1JSQjNmzCClUkkqlYqCgoIoKCiIVCoVKZVKuv/++6m0tJSIiJ555hkKDAykDz/8kNLS0qisrIzKysooLS2NPvroIwoKCqKFCxeaHd+WfaTEZEsZcoxp6tSpNHjwYDp79qzFNTp79iwNGTLEol09OTmZOnToQFqtlkaMGEHTp0+n6dOn04gRI0ir1VJcXBwlJyfbXMZDDz1E8fHxtGXLFrOJrqqrq2nr1q3UqVMnevjhh82Ok52dTUOHDiVBECg6OpoGDhxIAwcOpOjoaBIEgYYNG0bZ2dnNKkPqtZBjTHK83nKMafTo0TR58mQqKiqy2L6oqIgmT55MY8eONXv+0KFD5OvrS+Hh4TRr1ixauHAhLVy4kGbNmkURERHk5+dHhw8ftrkMOZ4nIsd/Xm05vhzvIXK8/9tynuxJtgmKlBMTHBzcYDvqli1bKCgoyOw5W/aRerGkliHHmDw8POjPP/+sd/sjR46Qh4eH2XNSb6xSy/Dx8aE//vij3u337t1LPj4+Zs9JvbHaUobUayHHmOR4veUYk6urK504caLe7Y8fP06urq5mzyUkJNDcuXPJYDBYbG8wGGju3Lk0aNAgm8uQ43kicvzn1Zbjy/EeIsf7vy3nyZ5km6BIOTFubm50/PjxerdNSkoid3d3s+ds2UfqxZJahhxj8vf3b7Dj3u+//07+/v5mz0m9sUotw8vLy+yXZl2HDh0iLy8vs+ek3lhtKUPqtZBjTHK83nKMKTQ01GyCs7p+/PFHCg0NNXtOq9VaLDVQ25kzZ0ir1dpchhzPE5HjP6+2HF+O9xA53v9tOU/2JNvFAg0GQ4OdzFxcXMRFt0aOHIl//OMfFgsfAcY233/+858YOXKk2fO27CMlJlvKkGNMd999N2bNmoUffvgBOp1OfF6n0+GHH37AnDlzcO+995odx8fHBxcvXqw3posXL8LHx8fmMm6//XbMnTsXR48etTj20aNHMX/+fNxxxx1mz2s0GrNj11VcXAyNRtOsMqReCznGJMfrLceYHn74YcycORMrV67E8ePHkZ2djezsbBw/fhwrV67E7NmzMXfuXLMyQ0JCcOjQoXpjOnTokNinw5Yy5HieAMd/Xm05vhzvIXK8/9tynuzKYalPM913333Ut29fqxnrn3/+Sf3796cZM2YQEVF6ejr16NGDVCoV9e3bl8aPH0/jx4+nvn37kkqlol69elF6errZMWzZR0pMtpQhx5jKy8vp0UcfJRcXF1IoFKTVakmr1ZJCoSAXFxeaP38+lZeXm5W7ePFi8vX1pTfffJOSkpIoKyuLsrKyKCkpid58803y8/OjF154weYy8vPzafz48SQIAvn5+VGXLl2oS5cu5OfnRwqFgiZMmEAFBQVmMT322GMUHR1N33//vVl1dlFREX3//fcUExNDjz/+eLPKkHot5BiTHK+3HGMiInr11VcpNDSUBEEghUJBCoWCBEGg0NBQWrFihcX5/s9//kMajYaefPJJ2rhxIx04cIAOHDhAGzdupCeffJJcXV3pvffes7kMuZ4nR39ebTm+HO8hcrz/23Ke7Em2o3gKCgpw3333YevWrfD19TXr0V9YWIhx48bhq6++ErN7g8GArVu34sCBAxa9q8eOHWu157PUfaTGZEsZcowJMP5CSkxMNNu+f//+8PLysnb5sGLFCrz99tvIysoSlyInIoSEhGDBggVYuHBhs8s4c+aM1X9Dly5dLLatqKjAggUL8Omnn6K6ulr81VFZWQmVSoWHHnoIK1euNPsFJLUMqddCjjHZei1a4nrLMSYASEtLM9s+Nja23m3Xr1+PlStXIjExEXq9HgCgVCrRv39/PP3005g+fXqzy5DreXL051XK8VsqJqllyPX+b8u5tQfZJigmrXViOCb7kHJjbQm23Filknot5BiTreR2vQF5xlRVVSVWswcEBNh1jgtbyfE8tcRnoy3EJNf7f7M5rG6mFej1+nqfv3Tpkt32cXRccouprKyM9uzZQ6dOnbLY/vr167RmzZpmx2NLGRkZGVRcXGzxfGVlJe3atavZMbVUGVI5OiY5Xm85xpSZmUlffPEF/fzzz1RRUWH2WklJCS1durTZMUktQ47nycTR71tbji/He4jc7v9ErXcflH2C0pQTU1RURNOmTSOtVktBQUG0ePFisyFX1paEtmUfKTHZUoYcYzp37pw4zl+hUNDw4cPpypUrjcYk5cYqtYzMzEwaMGAAKRQKUiqV9MADD5j92+uLScqN1dYyiKR9mOUWkxyvtxxjOnToEPn4+JCXlxe5urpSXFyc2TT29cV07NgxWrZsGb333nt07do1s9eKiopozpw5Npchx/NkOr4jP6+2HF+O9xA53v+bc8+xB9kmKFJOzJNPPkmdOnWib7/9llatWkXR0dE0ceJE8cOWlZVFgiCYHd+WfaReLKllyDGmKVOm0MSJE+natWuUnJxMEydOpNjYWDHLtvYGlXpjlVrGzJkzKSEhgQ4fPkzbtm2j/v3700033UT5+fn1niepN1ZbypB6LeQYkxyvtxxjGj16NM2ZM4f0ej3pdDqaP38++fv7i50VrcW0detWcnFxoe7du1NUVBT5+/vTjh076o1JahlyPE9Ejv+82nJ8Od5D5Hj/t+U82ZNsExQpJyYqKop+//13cd9r167RwIEDaezYsVReXm71Q2PLPlIvltQy5BhTUFCQ2bh5g8FAjz76KEVFRVFKSorVmKTeWKWWERYWRgcPHhQfl5eX0x133EF9+vShvLw8qzFJvbHaUobUayHHmOR4veUYk6+vL507d86szOXLl5Ovry8dOnTIakyDBw+m5557Tjz+ihUryMPDgzZv3mw1JqllyPE8ETn+82rL8eV4D5Hj/d+W82RPsk1QpJwYV1dXSk1NNdtfp9PR4MGDadSoUZSammpxEm3ZR+rFklqGHGPy9PSk06dPU11//etfKSIignbv3m0Rk9Qbq9Qy3N3d6fz582bbVlVV0ZQpU6hXr150/Phxi5ik3lhtKUPqtZBjTHK83nKMydfXl5KSkiy2f/3118nHx4e+//57i5i8vLzowoULZs+tXbuW3N3dadOmTVYTFCllyPE8ETn+82rL8eV4D5Hj/d+W82RPsk1QpJyYzp07088//2xxjOLiYho8eDD17t3b4iTaso/UiyW1DDnGNGDAAPr8888tticy3pR8fHys3vSk3FilltGzZ0/63//+Z7Gt6d8dFRVlEZPUG6stZUi9FnKMSY7XW44x3XzzzfTBBx9Y3X7FihWk0WgsYgoMDKQjR45YbP/111+Tm5sbffDBB80qQ47nicjxn1dbji/He4gc7/+2nCd7km2CIuXEPPHEExYLVJnodDpKSEiwOIm27CP1YkktQ44x/fvf/6YJEyZY3Z6IaP78+RZtkFJvrFLLWLhwocVCbCZVVVU0adIki/Mk9cZqSxlSr4UcY5Lj9ZZjTKtWraL777+/3u1fffVViomJMXtuzJgx9Prrr1vd/quvviK1Wm0Wk9Qy5HieiBz/ebXl+HK8h8jx/m/LebIn2SYoUk5Mfn6+WceuunQ6ncX6EbbsI/ViSS1DjjHZwpabtxRVVVVWFzer/frFixfNnpN6Y7WlDKnXQo4x2cLR19sWcozp+++/pwULFtT7+tq1a2nkyJEtGFHLnCdHf15tOb4c7yFyvP/bcp7sSbYTtVVXV6OsrKzeyW+qq6tx5coVREdHc0wyi6m9kuO1kGNMjDH7aOufb9kuFqhSqRqcmU+lUjX5pB85cgS7d++WVL61fewZky1xyTGm999/Hy+99FKTt7eF1DI2btyIzz//3IERWS/D3tdCjjHJ8XrLMabnnnsODz74oAMjkl6GHM8T4PjPqy3Hb617SEPkeP93+HlyWN2Mg23YsKHJsyJ26dJFcjW2LftIicmWMuQY06hRoyg2NlZSTIsWLTKbkMreZXTu3FnyeXrvvfckzfxpSxlSr4UcY5Lj9ZZjTDNnzqRbbrlFUkxS95G6vRzPE5HjP6+2HF+O9xA53v9tOU9SyLaJpzFdunRBcnKyuOBWQzIzM1FVVSUpk7RlHykx2VKGHGOyxaxZs5CRkYEdO3Y4rAypbr31VqSlpSE1NdVhZUi9FnKMyRZyvN5yjOm5557D1atXsXr16tYORSTH8wS0zGdDKkfH1Fbu/1I4bYLCGGOMsbZL1doB2JNer4dSqRQfHzx4EBUVFRg8eHCTVwudM2cOXnnlFYSFhTkqTEllVFVV4eLFiwgKCoK3t7dD4mmojIqKCigUCvH8paSk4NNPP0V6ejqio6Px0EMPNXvVU6llfPfdd5gwYQLc3NyaVW5DWqIMW+Tk5ODkyZPo378/vL29kZ2djTVr1sBgMGDixIno2bOnXcrZsWMH9u7di6tXr0KhUKBDhw6YNGkS4uPj7XJ8qWVUVlZiw4YN2L9/v9mKrUOGDMHkyZPh4uLS7HjsWUZ2djY++ugjLFmypNlxSS3j8uXL8PHxgYeHh9nzVVVV2L9/P4YPH97ssu1ZRmlpKRITE+0Sl9TjGwwGKBSWXTENBgMuX76MqKioZpcvtQx7fI81prlljBo1CqtXr3Z8TYvDGo/swGAwUGpqKlVVVRERUUVFBa1bt47WrFljttBWZmYmDR06lJRKJQ0fPpzy8/Np4sSJJAgCCYJAnTp1oszMTLNjJyUlWf1Tq9X0ww8/iI+b4pZbbrE61EpqGStWrKCysjIiIqqurqa///3v5OLiQgqFglQqFc2ZM4cqKysbjSc1NZV+/fVXOnHihMVrUssYMWIEffvtt0REtHfvXtJoNNSrVy+6++67qW/fvuTm5kb79u0zKyMjI8Ps+uzevZvuu+8+GjZsGM2YMcNie6llCIJAXl5e9Mgjj9CBAwcaPR9ERG+88Yak4XC2lPG///2PSktLm1wGkXHxuE8++YRSUlKIiOjkyZM0f/58mjdvHm3ZssVs299//53c3d1JEAQKCQmhY8eOUUREBMXHx1Pnzp1Jo9HQ1q1bLcrIzs6m7du3U2FhIREZp79esWIFLV++3GxmTNO2AwcOFN8PCoWC+vfvTyEhIaRUKumZZ56x+u8oKyujTz75hObMmUPjx4+n2267jR5//HH67bffrMYjpYzk5GTq0KEDabVaGjFiBE2fPp2mT59OI0aMIK1WS3FxcZScnGxRzrVr12jFihU0ZcoUGjRoEA0aNIimTJlCr732GuXk5NiljPocO3ZMctt8enq6pP4edcuQ4wJ4tvw7miI/P7/JfSusHV+uC/NJ/R4javr3pC1lbNy40eqfUqmk//znP+JjR5FtgnL27FmKjo4mhUJBcXFxlJqaSv379yd3d3dyc3OjgIAAcQa9Bx54gIYMGUI//vgj3X333TRkyBC6+eab6fLly3Tp0iUaOnQo/fWvfzU7vmnBJ9OFqf1ner7uG1TqxZJahkKhoOzsbCIyzuTo6+tLn376KZ06dYq+/PJLCgoKohUrVpjFNH/+fPHDUlZWRlOnTjU79i233GL2YZJahpeXl3ieR4wYQU899ZRZ+c8//zwNHTrU7LmBAwfSpk2biMjYSUuhUNCkSZPon//8J915552kVqvF120pQxAEeumll6hv374kCAJ1796dVq5cSbm5uVQfQRBIqVTS6NGjad26dRartlrb3pYypCQ13333HSmVSvL39ycPDw/atm0b+fj40OjRo2ncuHGkVCpp7dq14vbDhg2jv/71r1RcXEyvv/46hYeHm72v//GPf9CQIUPMypCa1Nx99900ZcoUKioqovLycnr88cdp5syZRES0fft28vf3p7feesusjOTkZIqOjqagoCCKjIwkQRBo4sSJlJCQQEqlkqZNmybePG0pY/To0TR58mSr8zEUFRXR5MmTLeaCOHToEPn6+lJ4eDjNmjWLFi5cSAsXLqRZs2ZRREQE+fn50eHDh20uo74fH6a/9evXN/uLWmoZ9loAr/YXlD0WrJT677b3Pta2lePCfLZ8j0n5nrSljIa+w2p/lzmKbBOUyZMn06RJk+j48eO0YMEC6tq1K02ePJkqKyvF9QZMEwyFhobS/v37iYgoLy+PBEEw++W2fft26tChg9nxe/fuTRMnTqQzZ87QxYsX6eLFi5SWlkYqlYq2bdsmPleb1IsltQxBEMTkoW/fvvTRRx+Zlf/ll19S9+7dzZ6rnXAsWrSIIiIiaMeOHVRaWkp79+6ljh070rPPPmtzGe7u7nTmzBkiIgoODqZjx46ZbX/hwgXy8PAwe87d3V1c7yEhIYFeffVVs9ffffdd6tu3r81l1P43HDlyhObPn08+Pj6k0Who2rRp9Ouvv1JdgiDQ6tWrafLkyaRWq8nf35/+9re/Wa1lak4ZUpKafv360csvv0xExunOfXx86KWXXhJff+ONN6hPnz7i49pruVRVVZFKpaKjR4+Kr58/f568vb3NypCa1Hh5eZlN5FRSUkJqtVr84v7iiy+oc+fOZmVMmDCB5s2bRwaDgYiMk3uZJrQ6f/48xcTE0AsvvGBzGa6urvVeJyKi48ePk6urq9lzCQkJNHfuXDGm2gwGA82dO5cGDRpkcxn2/IFj+lu5cqXZPlLLkOMCeETG6fQb+vPy8rJaw9HQ3549e8R9bDm+HBfms+V7TMr3pC1ljB8/niZOnCjeC01UKpXVGjd7k22CEhgYKN58S0pKSBAE2rNnj/j6H3/8QVFRUUREpNVqKT09XXzN3d3drDr20qVLFjewiooK+tvf/kbdunUTV+4kavjES71YUssQBEGsevb397e4YaamppKbm5vFPqZ4evToQV999ZXZ6xs3bqROnTrZXMaoUaPotddeIyKiIUOGWFSr/u9//xOvg4m3t7fYdBUUFGTRVHbhwoVmlVH732xy/fp1+vzzz2nkyJGkUCgsZr+svU92djatWLFCHFI3YMAA+vjjj0mn09mtjKYkNe7u7pSWlkZExi9NtVpt1uSSkpJilpgFBASIX+ylpaWkUCjEmw2R8Rd3QECAWRlSk5rAwECz92ZZWRkpFArKy8sTY9JoNGZluLm5mf1Kq6ioILVaLSZmGzZsMDtXUssIDQ01q3Gr68cff6TQ0FCz57RarZj0WnPmzBnSarU2l+Hv70+ffPKJ+COj7t/PP/9s8QUn9QeO1DLkuAAekfH98fe//50+++wzq39Lly6t91zV91f7XNlyfDkuzGfL95iU70lby3jzzTcpMjLS7PPR7hMUV1dXMYsnIvLw8DBbCTQ9PV28iUVFRZm9cf75z3+KNzsiYxVf3Ru3yS+//EIRERH073//m/R6faMn3paL1dQyBEGgV155hd5++20KDQ01a88kMn4B+fr6WuxjSjhqf4GZXLx40eKXn5Qy9u3bR97e3vTCCy/Qu+++SwEBAfT888/T2rVracmSJeTj42PR7DRp0iSx1mbcuHH09ttvm72+atUqio+Pt7mM2rVG1iQnJ4vL2tf+d1vbZ/fu3TRr1ixyd3cnd3d3u5fRUFITEhIiLh6Xn59PgiCY/eI6dOgQhYSEiI8nT55Mt99+O+3du5fmzp1LN910E02cOJFKSkqotLSU/vKXv9D48ePNypea1Nx55500depUKikpocrKSlqwYAHFxcWJrx84cMAsJiLjjTsxMVF8XFBQQIIgiAlfamqqWcIhtYzFixeTr68vvfnmm5SUlERZWVmUlZVFSUlJ9Oabb5Kfn59ZDQ0RUUxMTIN9FNasWUPR0dE2lzF27FhatmxZvcc/duyYRRNBWFgYbdiwod59jh49avaFJbUMOS6AR2T80VG3WbDuv6PuPl5eXrRixQrauXOn1b9Vq1aJ+9hyfDkuzGfL95iU70lbyyAyvje7detGc+fOpdLSUk5QOnbsaJYJvv/++2a/cBMTE8Wb2KRJkxp8g/7nP/+hUaNG1ft6VlYWTZgwgW6++eYmnXhbLlZTyoiOjqaYmBjxb+XKlWavv/XWW2bV0kTGL8V58+bRU089RUFBQRa/0hMTE83ecLaUsW/fPho0aJDFr73w8HCr5/306dPk7+9PM2fOpGXLlpGHhwfdf//99Morr9DMmTNJo9HQ6tWrbS6jvmSjIY0lHEVFRfTxxx87tIy6Sc39999PCQkJ9OWXX9Idd9xB48aNo0GDBtGZM2fo7NmzNGLECLOFvc6fP0/x8fEkCAJ17dqVLl++TJMmTSKVSkUqlYoCAwPNEgUi6UlNSkoKdezYkVQqFanVavLx8aFt27aJr69evdqsyZCIaNasWTRixAg6c+YMpaamip2bTXbu3EmRkZHNKuPVV1+l0NBQs1/WgiBQaGioRYJMZPzMazQaevLJJ2njxo104MABOnDgAG3cuJGefPJJcnV1pffee8/mMr7//nv64osvLMo1yc/Pp88++8zsuTvuuIMWL15c7z51Ew6pZchxATwioldeeYVefPHFev8d6enpNHv2bLPnRo4cafW6mtQ+V7YcX44L89nyPSble9LWMkzKyspo3rx5FB8fT0qlsn0nKPPmzaNVq1bV+/ry5cvptttua9KxDh482GD7ssnbb79NU6ZMoYyMjEa3tfViSSmjrv3795s1FREZO5WOHDlS/Kt7zpYtW0YjRoxoVhkmOTk5dODAAdq3b5/YNFGfCxcu0D333EOenp5isqFWq2nIkCH0ww8/1LtfU8q4ePGi1b4FDZGacLREGVlZWTRmzBjy8PCgcePGUWFhIT3++OPiF2R8fLzZryGTun1afvvtN9q0aZPVvi62JDWlpaW0detW2rRpk8UoAGuys7PF5FKhUFB0dLTZe+jbb7+ld955p1llmKSmptK+ffto3759FtXnda1bt44SEhJIpVKJ70GVSkUJCQm0fv16u5Qhxe7du2nz5s31vl5SUtKshTrluACerT7++GOLmtfasrKyGkxKGiPHhfkaY+17zJ7fk/WVUdfGjRtpwYIFkn/A2cJpJ2pLS0uDVqtFaGhoq8bx448/4vfff8eiRYsQFBTUqrFYk5qaChcXF0RERLRK+USEnJwcGAwGBAQE2G0cvxxdunQJUVFREAShWcdJTU1FWVkZunTpApXKPlMV5eXlwd/fX3y8fft2XL9+HYMHDzZ7vjmSk5NRUVFh17jtoaqqCrm5uQDQ5t+DzHGccWE+uXxP2sppE5S6bJlkSY6TP8kxptzcXHz66acW2w8ePBhz5sxBYGBgs2OSWkZ92w8ZMgSzZ892aEz2LEOqlnh/ONu5zcjIwAsvvIBPP/202XHZqwyOybwMR79vbTm+HN/nznT/b4n7oKwTlKaemAsXLmDcuHHIzMxEQkICgoODARhnWjx48CAiIiKwefNmxMXFice2ZR8pMdlShhxjOnz4MMaNGwc3NzeMHj3abPvt27ejrKwMW7duxU033WQW0+nTp/Gf//zHasLx+OOPo1u3buK2UsuQY0y2XAtHXzsTKTckOZ/b+iQlJaFfv36S1hNKSUnBI4880uQ1ZqSWwTHdKMPR9zVbji/H93lbuv/bi2wTFCknZsyYMXB3d8fnn39uUf2m0+kwc+ZMXL9+HVu3bhWft2UfqRdLahlyjGnQoEHo3bs3PvzwQ4umCyLCo48+iuPHj2P//v3i85s3b8aUKVPQr18/jBs3ziymbdu2ITExERs3bsS4ceNsKkOOMdlyLRx97QDpNyQ5ntsff/wRDUlNTcXf//53SV+8db9IpZbBMTW9DEff12w5vhzf523l/m9XDu/lYiMpEy3ZMpGTHCd/kmNMUueTICLq1atXg6MVXnjhBerZs6fNZcgxJiLp18LR145I+gypcjy3tsxm+fbbbzf4t3DhwiZPimatDI6p6WU4+r5my/Hl+D5vK/d/e5JtgiLlxNgykZMcJ3+SY0xS55MwxXT27Nl69zl79qxZTFLLkGNMpjIcmWjZ8v6QekOS47mVOn8IkfGLNCwszGxIfe2/sLAwixlSpZTBMTW9DEff12w5vhzf523l/m9P8ulqX0dISAgOHTqELl26WH390KFDYnXWww8/jJkzZ2Lx4sW49dZbLaq5Xn75ZTzxxBNm+9uyj5SYbClDjjH94x//wNy5c5GYmGh1+1WrVuGNN94wKzMmJgY///wzOnfubDWmn3/+2aynu9Qy5BgTIP1aOPraAYCPjw8uXryIHj16WC3j4sWL8PHxada/29Hntn///khMTMTkyZOtHl8QBFCdluro6GisWLEC06dPt7rPsWPH0L9/f5vL4JiaXoaj72u2HF+O7/O2cv+3K4elPs0kdaIlqRM52bKPoyd/kmtMUueT+Oabb0ilUtEdd9xBb7/9Nq1bt47WrVtHb7/9Nk2aNIlcXFwsJjySWoYcY5J6LVri2tkyC6vczq0t84dMnTqVFi5cWO8+dSdFk1oGx9T0Mogcf1+z5f4vt/d5S5wnW8qwdT4he5BtgkJk24mxZZIlOU7+JMeYKisrKTMzkzIzM6mysrLBbf/44w+6++67KSoqilxcXMjFxYWioqLo7rvvpn379tmlDDnG5OhEy0TKtbPl5i31391S17upTp06ZbZasbVy7TGhmBQck+Pva7bc/+X4Pnf2+7+9yHYUT21ynGiJY2INkXotWuLapaWlmQ1DjI2NtXsZjNkb39eapi2eJ6dIUJpr48aNKCoqwsyZMx26j6PjkmNM77//PnJzc7FkyRKHxSS1DDnG1BJa4v0hx3PLMTlvTIDj37e2HF+O56pd3v9bpJ7GAd577z1aunRpk7bt3LmzRc9yR+wjJSZbypBjTKNGjaLY2FhJMS1atIjmzJnjsDLkGBOR9Gvh6GtHRLRhw4YGe+nXJcdzyzE5b0xEjr+v2XJ8OZ6rtnL/l8Jpa1BuvfVWpKWlITU1tbVDEXFMTTNr1ixkZGQ0eXbKltASMUm9Fi1x7bp06YLk5GRJk3dJ1V6vt1QcU9Pxfa1p5HiepHDaBIUxxhhjbZds50GRiohw8eJFREZGQqVSobKyEj/88AMqKipw2223ISAgwOp+BoMBCoXC6vOXL19GVFRUs2OTWoYcY6pPQUEBNm3a5NB2UallyDEmezp06JDVtUAGDhxotzJ27NiBvXv34urVq1AoFOjQoQMmTZqE+Pj4VitDbjElJSUhMTERI0eORIcOHXDq1Cm89957MBgMuPPOO8Upz5tDahlyjOm7777DhAkT4Obm1uyyrbHl+BUVFVAoFGJH0pSUFHz66adIT09HdHQ0HnrooWZ3IpdahqPPky1ltMR5apDDGo/sIDc3l3bs2EF5eXlERHTt2jV69dVXaenSpXT69Glxu7Nnz1J0dDQpFAqKi4uj1NRU6t+/P7m7u5ObmxsFBATQ+fPnzY5dVFRE06ZNI61WS0FBQbR48WKqrq4WX8/Kyqq3LS4jI4OKi4stnq+srKRdu3bZXIYcY2rMsWPHJLeLZmVlSWoXlVqGHGMiIsrPz7fo71FRUUHr16+nBQsW0D333EP33HMPLViwgL755huqqKgw2zY7O5uGDRtGgiBQdHQ0DRw4kAYOHEjR0dEkCAINGzaMsrOzrZZ98OBBeuutt+jZZ5+lZ599lt566y06ePCgxXbZ2dk0cOBAUigUpFKpSKFQUP/+/SkkJISUSiU988wzVo9fVlZGn3zyCc2ZM4fGjx9Pt912Gz3++OP022+/NbsMOcb03XffkVKpJH9/f/Lw8KBt27aRj48PjR49msaNG0dKpZLWrl1rUc6mTZto8eLFtHfvXiIi2r59O02YMIHGjRtHH330UbPKkGNMRMbZar28vOiRRx6hAwcOWL1Wdb3xxhtNHt5sy/FHjBhB3377LRER7d27lzQaDfXq1Yvuvvtu6tu3L7m5uVkMG87IyKBr166Jj3fv3k333XcfDRs2jGbMmGGxvdQyHH2ebCnDlvNkT7JNUA4ePEje3t4kCAL5+vrSkSNHKDY2luLj46ljx47k6upKiYmJREQ0efJkmjRpEh0/fpwWLFhAXbt2pcmTJ1NlZSWVl5fTHXfcQffff7/Z8Z988knq1KkTffvtt7Rq1SqKjo6miRMnil8KWVlZZhMUERFlZmbSgAEDSKFQkFKppAceeMAsKaj75S61DDnGVFRU1ODfnj17JH9R1/1yl1qGHGOypYzk5GTq0KEDabVaGjFiBE2fPp2mT59OI0aMIK1WS3FxcZScnCxuP3XqVBo8eLDV6bbPnj1LQ4YMob/85S9mz0tNau6++26aMmUKFRUVUXl5OT3++OM0c+ZMIjJ+cfn7+9Nbb71lVkZycjJFR0dTUFAQRUZGkiAINHHiREpISCClUknTpk2jqqoqm8uQY0z9+vWjl19+mYiIvv76a/Lx8aGXXnpJfP2NN96gPn36mMX04Ycfkkqlov79+5OXlxd98cUX5OnpSQ8//DDNmzePXF1dm1WGHGMiMn4pvvTSS9S3b18SBIG6d+9OK1eupNzcXKqPIAikVCpp9OjRtG7dOotkvbnH9/LyEn+0jhgxgp566imz159//nkaOnSo2XMDBw4Up4nfsGEDKRQKmjRpEv3zn/+kO++8k9Rqtdk08lLLcPR5sqUMW86TPck2QRk9ejQ9/PDDpNPp6PXXX6eIiAh6+OGHxdfnzJlDU6ZMISKiwMBAOnr0KBEZZzIUBIH27NkjbvvHH39QVFSU2fGjoqLo999/Fx9fu3aNBg4cSGPHjqXy8nKrNQkzZ86khIQEOnz4MG3bto369+9PN910E+Xn5xOR5Ze71DLkGFPtyb2s/VlbHCwpKanBv/Xr1zerDDnGRCQ9qZG6kJ+Hhwf9+eefFtuaHDlyhDw8PMyek5rUeHl50cmTJ8XHJSUlpFarxRi/+OIL6ty5s9lxJkyYQPPmzRMXLHv11VdpwoQJRER0/vx5iomJMZutVmoZcozJ3d2d0tLSiMi4KJtarabjx4+Lr6ekpFhci27dutHHH39MREQ7duwgrVZrNsvn6tWrqWvXrjaXIceYiIyfJVMSfOTIEZo/fz75+PiQRqOhadOm0a+//kp1CYJAq1evpsmTJ5NarSZ/f3/629/+ZnVdKVuO7+7uLq5hExwcTMeOHTN7/cKFCxb/Dnd3d3FCs4SEBHr11VfNXn/33Xepb9++Npfh6PNkSxm2nCd7km2C4uvrKzbjVFZWkkKhMKuSTkxMpPDwcCIyLoh26dIl8TUPDw+6cOGC+Dg9PZ00Go3Z8V1dXS1mz9PpdDR48GAaNWoUpaamWnwBhYWFmcVgqp3p06cP5eXlWXy5Sy1DjjF5eXnRihUraOfOnVb/Vq1aZXUBMtOXuLWVTut+uUstQ44x1S6jqUmN1IX8/P39rU4jbvL777+Tv7+/2XNSk5rAwEA6deqU+LisrIwUCoXYzJqSkmLxWXJzczNrQq2oqCC1Wi3+KtuwYQPFxMTYXIYcYwoJCaEjR44QkbHpThAEs8T/0KFDFBISYhZT3fuUWq02u/5paWnk5uZmcxlyjInI/EvR5Pr16/T555/TyJEjSaFQmF2LuvtkZ2fTihUrqEuXLqRQKGjAgAH08ccfk06ns/n4o0aNotdee42IiIYMGWLR9Pq///3P4kett7c3JSUlERFRUFCQ+P8mFy5cMDtXUstw9HmypQxbzpM9yTZBqZ2pExlvtCkpKeLjS5cuias0duzY0azG5P333ze7KImJiRYfms6dO9PPP/9sUW5xcTENHjyYevfubfEF5O7ubtGXpaqqiqZMmUK9evWi48ePm+0jtQw5xjRy5MgGp0Ovu1YHkfGL9JNPPqGLFy9a/fv555+bVYYcYyKSntRIXVn0scceo+joaPr+++/Nal2Kioro+++/p5iYGHr88cct/t1Skpo777yTpk6dSiUlJVRZWUkLFiyguLg48fUDBw5YfJbCwsLE5lYiooKCAhIEQfwMpqammn25Sy1DjjHdf//9lJCQQF9++SXdcccdNG7cOBo0aBCdOXOGzp49SyNGjLBobouIiKDdu3cTEdGVK1dIEASzz+LOnTspIiLC5jLkGBMRkUKhqLdvFJGxOe65554ze87aFymRsd/HrFmzyN3dndzd3W0+/r59+8jb25teeOEFevfddykgIICef/55Wrt2LS1ZsoR8fHwsPv+TJk2iZ599loiIxo0bR2+//bbZ66tWraL4+Hiby3D0ebKlDFvOkz3JNkHp0qULbd++XXz8008/UVlZmfj4wIED4gdn3rx5tGrVqnqPtXz5crrtttvMnnviiScsPkgmOp2OEhISLJKBnj17WiwGRXQjIYiKijLbR2oZcozp448/tmjfry0rK4tefPFFs+fGjh1Ly5Ytq3eful/uH3/8scWHvaEy5BgTkfSkRupCfuXl5fToo4+Si4sLKRQK0mq1pNVqSaFQkIuLC82fP5/Ky8vNypSa1KSkpFDHjh1JpVKRWq0mb29vs2rf1atXizdpk1mzZtGIESPozJkzlJqaKnagM9m5cydFRkbWW4aPjw9t27at3jLkGFNWVhaNGTOGPDw8aNy4cVRYWEiPP/64WCsXHx9vVotLRPTXv/6V4uPj6eWXX6aBAwfSrFmzqEuXLrR582basmUL9ezZkx588MEmlaFQKCzKkGNMRPV/iTaksS/SoqIisWnKluMTGb98Bw0aZFGjGh4ebvX+cvr0afL396eZM2fSsmXLyMPDg+6//3565ZVXaObMmaTRaGj16tU2l+Ho82RrGVLPkz3JNkF58cUX6euvv6739eeee47uuuuuJh0rNTWVMjMzzZ7Lz883a3OuS6fTWfzyXLhwoVmfgNqqqqpo0qRJZl9AUsuQY0y2+P777+mLL76o9/X8/Hz67LPPmlWGVC0Rky2Jky0L+RUVFdGOHTvoq6++oq+++op27NhhtR8LkW1JTWlpKf3666+0adOmBjvomWRnZ4s3MIVCQdHR0WbNSt9++y298847FmVs3bqVNm3aZDYyoj5yjMmalP9v795Cmn7jOI5/lvMETktZpqYmUZpIISZLMU8YRuBFF0FFlGmJZohSQhJCYqVgQVlQV2V2wA6ShiJIFyoVRpqIZVoaw1BJMq08Tt3zvwiH89A/5zZ/s8/rzs1t79/T0i9zv2ednaKlpUXvDbjThoaGxPHjx0VAQIBISkoS4+PjoqCgQNjY2AiZTCYiIyP/6pfHnx5Dik1qtVpMTU39Veu0xfwiVavVuvcaGaKvr0/U19eLV69e6b1qP5+Ojg6xf/9+oVAodL+ora2tRWhoqHj69OmSHsPU6zT9GIau1WLWyVgsdqO2kZERWFlZwdbW1uD7+PbtG27dujVnT4nQ0FDEx8dDqVTqff/k5CRGRkbg6Og47/1NTk6iu7sb3t7e/3STOUixaSlM/UF+P3/+RGNjo95jBAUFzfu8MXRtP336hPHxcfj5+UEuN+4WS5bWdPTo0QX3XpptbGwMExMTUCgUK7Lp/7os8WeIEAJ9fX3QarVG/WC+lbZOSzV3py4L0d/fj5SUFN3Xo6OjePHiBVpbW+d879jYGIqLi/Uue/PmDTZv3ozCwkI4OTkhPDwc4eHhcHJyQmFhIfz8/NDQ0KB3G7lcvuAgAAC9vb3IycnRu2wxXSul6f98+fIFCQkJK6pp2ocPH3D79m20tbUBANra2pCSkoKEhIQ/boHt4+ODkJAQhISE6IYTYzaVlpbCzc0NBw4cQGBgIB49eoT09PQ5TUtZ202bNiEgIGDOILCc/97L1eTr6/vXz0E7OzsoFIoV2fQ3Xcb4/2ruJplMBldXV7i5uemGk5X4c80UTYtiltdpTGDmnhLt7e26fR1WrVolwsPD9f6kM9/puSqVSiQlJc37cpdWqxVJSUlix44dBjcZ0sUmy20SQoiqqiphY2MjnJ2dhZ2dnaiqqhJKpVLExMSI6OhoYWVlpfe+KmM0dXd3G7VJimvLJsttMkeXFJsM6fpXmhZDsn/iefbs2R+v//z5M06dOoWpqSns3bsXExMTKCoqwuDgINLT09Ha2oqamhp4eXnh69evcHd31/tANHt7ezQ1NcHPz2/e+29ra0NgYCBGR0cNagKw6C42WW4TAISGhiI6Ohrnz59HSUkJTpw4gZSUFFy4cAEAkJWVhcbGRlRXV0u2SYpryybLbTJHlxSbDFmrldJkVCYbfZboT/tWzNy/Qojf56TP3CxIq9WK5ORk4eXlJTo7O+edoDds2PDHj5m/c+eO8Pb2NrjJkC42WW6TEL9PM57e+XVqakrI5XK9N2a2tLQIV1dXSTdJcW3ZZLlN5uiSYpMhXSulyZgkO6C4u7uLsrKyBa9vamrSLaRCodD7bJ5pqampuvP8Zz9Br1+/LmxtbUVaWpooLy8X9fX1or6+XpSXl4u0tDRhb2+vt6PiYpsM6WKT5TYJ8XsYmHmK5ey9e9RqtW7vHqk2SXFt2WS5TebokmKTIV0rpcmYJDugxMXFiezs7AWvn7mnRHBwsCguLp73+1JTU8Xq1avnPEGFEKKkpESoVCohl8t106ZcLhcqlUo8fPhwSU2GdrHJcpu2bt0qqqqqdF/PPu2yrq5O+Pj4SLpJCGmuLZsst8nUXVJsMrRrJTQZk2QHlLq6Or0frLMNDQ3p9uu4ePGi7nM25pOSkqL3jzSbRqMRPT09oqenR2g0GqM0LbWLTZbXdOPGDVFRUbHgbbKyskRiYqKkm2aS0tqyyfKbTNUlxaaldllykzFJ9k2yRERE9O+y2H1QiIiIaOXigEJERESSwwGFiIiIJIcDChEREUkOBxQiMqvIyEikp6cvdwYRSRwHFCKSrJqaGshkMgwODi53ChGZGQcUIiIikhwOKERkMsPDwzh8+DAcHBzg5uaGy5cv611/9+5dbN++HQqFAuvWrcPBgwfR19cHAFCr1YiKigIArFmzBjKZDPHx8QAArVaLvLw8+Pj4wN7eHtu2bcOTJ0/MemxEZFocUIjIZDIzM1FbW4vy8nJUV1ejpqYGb9++1V0/MTGB3NxcNDc3o6ysDGq1WjeEeHp6orS0FADQ3t6O3t5eXL16FQCQl5eH4uJi3Lx5E+/fv0dGRgYOHTqE2tpasx8jEZkGd5IlIpMYGhqCi4sL7t27h3379gEAvn//jvXr1yMpKQlXrlyZc5uGhgYEBwfj169fcHBwQE1NDaKiojAwMIDVq1cDAMbHx+Hs7Iznz58jJCREd9tjx45hZGQEDx48MMfhEZGJyZc7gIhWps7OTmg0GqhUKt1lzs7O8PX11X3d2NiIc+fOobm5GQMDA9BqtQCArq4u+Pv7z3u/HR0dGBkZwa5du/Qu12g0CAwMNMGRENFy4IBCRMtieHgYsbGxiI2Nxf3796FUKtHV1YXY2FhoNJoFbzc0NAQAqKyshIeHh951tra2Jm0mIvPhgEJEJrFx40ZYW1vj9evX8PLyAgAMDAzg48ePiIiIQFtbG/r7+5Gfnw9PT08Av//EM5ONjQ0AYGpqSneZv78/bG1t0dXVhYiICDMdDRGZGwcUIjIJBwcHJCYmIjMzEy4uLli7di3Onj2LVat+vzffy8sLNjY2uHbtGpKTk/Hu3Tvk5ubq3Ye3tzdkMhkqKiqwZ88e2NvbQ6FQ4PTp08jIyIBWq0VYWBh+/PiBly9fwtHREUeOHFmOwyUiI+NZPERkMgUFBdi5cyfi4uIQExODsLAwBAUFAQCUSiWKiorw+PFj+Pv7Iz8/H5cuXdK7vYeHB3JycnDmzBm4urri5MmTAIDc3FxkZ2cjLy8PW7Zswe7du1FZWQkfHx+zHyMRmQbP4iEiIiLJ4SsoREREJDkcUIiIiEhyOKAQERGR5HBAISIiIsnhgEJERESSwwGFiIiIJIcDChEREUkOBxQiIiKSHA4oREREJDkcUIiIiEhyOKAQERGR5PwHrY4Ma1v0NxgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from datetime import datetime\n", + "import matplotlib.dates as md\n", + "\n", + "ts = pd.read_csv(\"data/dollar.csv\")\n", + "ts[\"date\"] = ts.apply(lambda row: datetime.strptime(row[\"my_date\"], \"%d.%m.%Y\"), axis=1)\n", + "ts.info()\n", + "\n", + "print(ts)\n", + "\n", + "plot = ts.plot.line(x=\"date\", y=\"my_value\")\n", + "plot.xaxis.set_major_locator(md.DayLocator(interval=10))\n", + "plot.xaxis.set_major_formatter(md.DateFormatter(\"%d.%m.%Y\"))\n", + "plot.tick_params(axis=\"x\", labelrotation=90)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.7" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lec2.ipynb b/lec2.ipynb new file mode 100644 index 0000000..d323ebf --- /dev/null +++ b/lec2.ipynb @@ -0,0 +1,959 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Загрузка данных в DataFrame" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Index: 891 entries, 1 to 891\n", + "Data columns (total 11 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Survived 891 non-null int64 \n", + " 1 Pclass 891 non-null int64 \n", + " 2 Name 891 non-null object \n", + " 3 Sex 891 non-null object \n", + " 4 Age 714 non-null float64\n", + " 5 SibSp 891 non-null int64 \n", + " 6 Parch 891 non-null int64 \n", + " 7 Ticket 891 non-null object \n", + " 8 Fare 891 non-null float64\n", + " 9 Cabin 204 non-null object \n", + " 10 Embarked 889 non-null object \n", + "dtypes: float64(2), int64(4), object(5)\n", + "memory usage: 83.5+ KB\n", + "(891, 11)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
SurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
PassengerId
103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
503Allen, Mr. William Henrymale35.0003734508.0500NaNS
\n", + "
" + ], + "text/plain": [ + " Survived Pclass \\\n", + "PassengerId \n", + "1 0 3 \n", + "2 1 1 \n", + "3 1 3 \n", + "4 1 1 \n", + "5 0 3 \n", + "\n", + " Name Sex Age \\\n", + "PassengerId \n", + "1 Braund, Mr. Owen Harris male 22.0 \n", + "2 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 \n", + "3 Heikkinen, Miss. Laina female 26.0 \n", + "4 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 \n", + "5 Allen, Mr. William Henry male 35.0 \n", + "\n", + " SibSp Parch Ticket Fare Cabin Embarked \n", + "PassengerId \n", + "1 1 0 A/5 21171 7.2500 NaN S \n", + "2 1 0 PC 17599 71.2833 C85 C \n", + "3 0 0 STON/O2. 3101282 7.9250 NaN S \n", + "4 1 0 113803 53.1000 C123 S \n", + "5 0 0 373450 8.0500 NaN S " + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "df = pd.read_csv(\"data/titanic.csv\", index_col=\"PassengerId\")\n", + "\n", + "df.info()\n", + "\n", + "print(df.shape)\n", + "\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Получение сведений о пропущенных данных" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Типы пропущенных данных:\n", + "- None - представление пустых данных в Python\n", + "- NaN - представление пустых данных в Pandas\n", + "- '' - пустая строка" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Survived 0\n", + "Pclass 0\n", + "Name 0\n", + "Sex 0\n", + "Age 177\n", + "SibSp 0\n", + "Parch 0\n", + "Ticket 0\n", + "Fare 0\n", + "Cabin 687\n", + "Embarked 2\n", + "dtype: int64\n", + "\n", + "Survived False\n", + "Pclass False\n", + "Name False\n", + "Sex False\n", + "Age True\n", + "SibSp False\n", + "Parch False\n", + "Ticket False\n", + "Fare False\n", + "Cabin True\n", + "Embarked True\n", + "dtype: bool\n", + "\n", + "Age процент пустых значений: %19.87\n", + "Cabin процент пустых значений: %77.10\n", + "Embarked процент пустых значений: %0.22\n" + ] + } + ], + "source": [ + "# Количество пустых значений признаков\n", + "print(df.isnull().sum())\n", + "\n", + "print()\n", + "\n", + "# Есть ли пустые значения признаков\n", + "print(df.isnull().any())\n", + "\n", + "print()\n", + "\n", + "# Процент пустых значений признаков\n", + "for i in df.columns:\n", + " null_rate = df[i].isnull().sum() / len(df) * 100\n", + " if null_rate > 0:\n", + " print(f\"{i} процент пустых значений: %{null_rate:.2f}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Заполнение пропущенных данных\n", + "\n", + "https://pythonmldaily.com/posts/pandas-dataframes-search-drop-empty-values\n", + "\n", + "https://scales.arabpsychology.com/stats/how-to-fill-nan-values-with-median-in-pandas/" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(891, 11)\n", + "Survived False\n", + "Pclass False\n", + "Name False\n", + "Sex False\n", + "Age False\n", + "SibSp False\n", + "Parch False\n", + "Ticket False\n", + "Fare False\n", + "Cabin False\n", + "Embarked False\n", + "dtype: bool\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
SurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarkedAgeFillNAAgeFillMedian
PassengerId
88702Montvila, Rev. Juozasmale27.00021153613.00NaNS27.027.0
88811Graham, Miss. Margaret Edithfemale19.00011205330.00B42S19.019.0
88903Johnston, Miss. Catherine Helen \"Carrie\"femaleNaN12W./C. 660723.45NaNS0.028.0
89011Behr, Mr. Karl Howellmale26.00011136930.00C148C26.026.0
89103Dooley, Mr. Patrickmale32.0003703767.75NaNQ32.032.0
\n", + "
" + ], + "text/plain": [ + " Survived Pclass Name \\\n", + "PassengerId \n", + "887 0 2 Montvila, Rev. Juozas \n", + "888 1 1 Graham, Miss. Margaret Edith \n", + "889 0 3 Johnston, Miss. Catherine Helen \"Carrie\" \n", + "890 1 1 Behr, Mr. Karl Howell \n", + "891 0 3 Dooley, Mr. Patrick \n", + "\n", + " Sex Age SibSp Parch Ticket Fare Cabin Embarked \\\n", + "PassengerId \n", + "887 male 27.0 0 0 211536 13.00 NaN S \n", + "888 female 19.0 0 0 112053 30.00 B42 S \n", + "889 female NaN 1 2 W./C. 6607 23.45 NaN S \n", + "890 male 26.0 0 0 111369 30.00 C148 C \n", + "891 male 32.0 0 0 370376 7.75 NaN Q \n", + "\n", + " AgeFillNA AgeFillMedian \n", + "PassengerId \n", + "887 27.0 27.0 \n", + "888 19.0 19.0 \n", + "889 0.0 28.0 \n", + "890 26.0 26.0 \n", + "891 32.0 32.0 " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fillna_df = df.fillna(0)\n", + "\n", + "print(fillna_df.shape)\n", + "\n", + "print(fillna_df.isnull().any())\n", + "\n", + "# Замена пустых данных на 0\n", + "df[\"AgeFillNA\"] = df[\"Age\"].fillna(0)\n", + "\n", + "# Замена пустых данных на медиану\n", + "df[\"AgeFillMedian\"] = df[\"Age\"].fillna(df[\"Age\"].median())\n", + "\n", + "df.tail()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
SurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarkedAgeFillNAAgeFillMedianAgeCopy
PassengerId
88702Montvila, Rev. Juozasmale27.00021153613.00NaNS27.027.027.0
88811Graham, Miss. Margaret Edithfemale19.00011205330.00B42S19.019.019.0
88903Johnston, Miss. Catherine Helen \"Carrie\"femaleNaN12W./C. 660723.45NaNS0.028.00.0
89011Behr, Mr. Karl Howellmale26.00011136930.00C148C26.026.026.0
89103Dooley, Mr. Patrickmale32.0003703767.75NaNQ32.032.032.0
\n", + "
" + ], + "text/plain": [ + " Survived Pclass Name \\\n", + "PassengerId \n", + "887 0 2 Montvila, Rev. Juozas \n", + "888 1 1 Graham, Miss. Margaret Edith \n", + "889 0 3 Johnston, Miss. Catherine Helen \"Carrie\" \n", + "890 1 1 Behr, Mr. Karl Howell \n", + "891 0 3 Dooley, Mr. Patrick \n", + "\n", + " Sex Age SibSp Parch Ticket Fare Cabin Embarked \\\n", + "PassengerId \n", + "887 male 27.0 0 0 211536 13.00 NaN S \n", + "888 female 19.0 0 0 112053 30.00 B42 S \n", + "889 female NaN 1 2 W./C. 6607 23.45 NaN S \n", + "890 male 26.0 0 0 111369 30.00 C148 C \n", + "891 male 32.0 0 0 370376 7.75 NaN Q \n", + "\n", + " AgeFillNA AgeFillMedian AgeCopy \n", + "PassengerId \n", + "887 27.0 27.0 27.0 \n", + "888 19.0 19.0 19.0 \n", + "889 0.0 28.0 0.0 \n", + "890 26.0 26.0 26.0 \n", + "891 32.0 32.0 32.0 " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df[\"AgeCopy\"] = df[\"Age\"]\n", + "\n", + "# Замена данных сразу в DataFrame без копирования\n", + "df.fillna({\"AgeCopy\": 0}, inplace=True)\n", + "\n", + "df.tail()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Удаление наблюдений с пропусками" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(183, 14)\n", + "Survived False\n", + "Pclass False\n", + "Name False\n", + "Sex False\n", + "Age False\n", + "SibSp False\n", + "Parch False\n", + "Ticket False\n", + "Fare False\n", + "Cabin False\n", + "Embarked False\n", + "dtype: bool\n" + ] + } + ], + "source": [ + "dropna_df = df.dropna()\n", + "\n", + "print(dropna_df.shape)\n", + "\n", + "print(fillna_df.isnull().any())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Создание выборок данных\n", + "\n", + "Библиотека scikit-learn\n", + "\n", + "https://scikit-learn.org/stable/index.html" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Функция для создания выборок\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "\n", + "def split_stratified_into_train_val_test(\n", + " df_input,\n", + " stratify_colname=\"y\",\n", + " frac_train=0.6,\n", + " frac_val=0.15,\n", + " frac_test=0.25,\n", + " random_state=None,\n", + "):\n", + " \"\"\"\n", + " Splits a Pandas dataframe into three subsets (train, val, and test)\n", + " following fractional ratios provided by the user, where each subset is\n", + " stratified by the values in a specific column (that is, each subset has\n", + " the same relative frequency of the values in the column). It performs this\n", + " splitting by running train_test_split() twice.\n", + "\n", + " Parameters\n", + " ----------\n", + " df_input : Pandas dataframe\n", + " Input dataframe to be split.\n", + " stratify_colname : str\n", + " The name of the column that will be used for stratification. Usually\n", + " this column would be for the label.\n", + " frac_train : float\n", + " frac_val : float\n", + " frac_test : float\n", + " The ratios with which the dataframe will be split into train, val, and\n", + " test data. The values should be expressed as float fractions and should\n", + " sum to 1.0.\n", + " random_state : int, None, or RandomStateInstance\n", + " Value to be passed to train_test_split().\n", + "\n", + " Returns\n", + " -------\n", + " df_train, df_val, df_test :\n", + " Dataframes containing the three splits.\n", + " \"\"\"\n", + "\n", + " if frac_train + frac_val + frac_test != 1.0:\n", + " raise ValueError(\n", + " \"fractions %f, %f, %f do not add up to 1.0\"\n", + " % (frac_train, frac_val, frac_test)\n", + " )\n", + "\n", + " if stratify_colname not in df_input.columns:\n", + " raise ValueError(\"%s is not a column in the dataframe\" % (stratify_colname))\n", + "\n", + " X = df_input # Contains all columns.\n", + " y = df_input[\n", + " [stratify_colname]\n", + " ] # Dataframe of just the column on which to stratify.\n", + "\n", + " # Split original dataframe into train and temp dataframes.\n", + " df_train, df_temp, y_train, y_temp = train_test_split(\n", + " X, y, stratify=y, test_size=(1.0 - frac_train), random_state=random_state\n", + " )\n", + "\n", + " # Split the temp dataframe into val and test dataframes.\n", + " relative_frac_test = frac_test / (frac_val + frac_test)\n", + " df_val, df_test, y_val, y_test = train_test_split(\n", + " df_temp,\n", + " y_temp,\n", + " stratify=y_temp,\n", + " test_size=relative_frac_test,\n", + " random_state=random_state,\n", + " )\n", + "\n", + " assert len(df_input) == len(df_train) + len(df_val) + len(df_test)\n", + "\n", + " return df_train, df_val, df_test" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pclass\n", + "3 491\n", + "1 216\n", + "2 184\n", + "Name: count, dtype: int64\n", + "Обучающая выборка: (534, 3)\n", + "Pclass\n", + "3 294\n", + "1 130\n", + "2 110\n", + "Name: count, dtype: int64\n", + "Контрольная выборка: (178, 3)\n", + "Pclass\n", + "3 98\n", + "1 43\n", + "2 37\n", + "Name: count, dtype: int64\n", + "Тестовая выборка: (179, 3)\n", + "Pclass\n", + "3 99\n", + "1 43\n", + "2 37\n", + "Name: count, dtype: int64\n" + ] + } + ], + "source": [ + "# Вывод распределения количества наблюдений по меткам (классам)\n", + "print(df.Pclass.value_counts())\n", + "\n", + "data = df[[\"Pclass\", \"Survived\", \"AgeFillMedian\"]].copy()\n", + "\n", + "df_train, df_val, df_test = split_stratified_into_train_val_test(\n", + " data, stratify_colname=\"Pclass\", frac_train=0.60, frac_val=0.20, frac_test=0.20\n", + ")\n", + "\n", + "print(\"Обучающая выборка: \", df_train.shape)\n", + "print(df_train.Pclass.value_counts())\n", + "\n", + "print(\"Контрольная выборка: \", df_val.shape)\n", + "print(df_val.Pclass.value_counts())\n", + "\n", + "print(\"Тестовая выборка: \", df_test.shape)\n", + "print(df_test.Pclass.value_counts())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Выборка с избытком (oversampling)\n", + "\n", + "https://www.blog.trainindata.com/oversampling-techniques-for-imbalanced-data/\n", + "\n", + "https://datacrayon.com/machine-learning/class-imbalance-and-oversampling/\n", + "\n", + "Выборка с недостатком (undersampling)\n", + "\n", + "https://machinelearningmastery.com/random-oversampling-and-undersampling-for-imbalanced-classification/\n", + "\n", + "Библиотека imbalanced-learn\n", + "\n", + "https://imbalanced-learn.org/stable/" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'df_train' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[2], line 5\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mimblearn\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mover_sampling\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m ADASYN\n\u001b[0;32m 3\u001b[0m ada \u001b[38;5;241m=\u001b[39m ADASYN()\n\u001b[1;32m----> 5\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mОбучающая выборка: \u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[43mdf_train\u001b[49m\u001b[38;5;241m.\u001b[39mshape)\n\u001b[0;32m 6\u001b[0m \u001b[38;5;28mprint\u001b[39m(df_train\u001b[38;5;241m.\u001b[39mPclass\u001b[38;5;241m.\u001b[39mvalue_counts())\n\u001b[0;32m 8\u001b[0m X_resampled, y_resampled \u001b[38;5;241m=\u001b[39m ada\u001b[38;5;241m.\u001b[39mfit_resample(df_train, df_train[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPclass\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n", + "\u001b[1;31mNameError\u001b[0m: name 'df_train' is not defined" + ] + } + ], + "source": [ + "from imblearn.over_sampling import ADASYN\n", + "\n", + "ada = ADASYN()\n", + "\n", + "print(\"Обучающая выборка: \", df_train.shape)\n", + "print(df_train.Pclass.value_counts())\n", + "\n", + "X_resampled, y_resampled = ada.fit_resample(df_train, df_train[\"Pclass\"])\n", + "df_train_adasyn = pd.DataFrame(X_resampled)\n", + "\n", + "print(\"Обучающая выборка после oversampling: \", df_train_adasyn.shape)\n", + "print(df_train_adasyn.Pclass.value_counts())\n", + "\n", + "df_train_adasyn" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.7" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lec3.ipynb b/lec3.ipynb new file mode 100644 index 0000000..11db3f8 --- /dev/null +++ b/lec3.ipynb @@ -0,0 +1,4278 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Унитарное кодирование\n", + "\n", + "Преобразование категориального признака в несколько бинарных признаков" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Загрузка набора данных Titanic" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
SurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
PassengerId
103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
503Allen, Mr. William Henrymale35.0003734508.0500NaNS
....................................
88702Montvila, Rev. Juozasmale27.00021153613.0000NaNS
88811Graham, Miss. Margaret Edithfemale19.00011205330.0000B42S
88903Johnston, Miss. Catherine Helen \"Carrie\"femaleNaN12W./C. 660723.4500NaNS
89011Behr, Mr. Karl Howellmale26.00011136930.0000C148C
89103Dooley, Mr. Patrickmale32.0003703767.7500NaNQ
\n", + "

891 rows × 11 columns

\n", + "
" + ], + "text/plain": [ + " Survived Pclass \\\n", + "PassengerId \n", + "1 0 3 \n", + "2 1 1 \n", + "3 1 3 \n", + "4 1 1 \n", + "5 0 3 \n", + "... ... ... \n", + "887 0 2 \n", + "888 1 1 \n", + "889 0 3 \n", + "890 1 1 \n", + "891 0 3 \n", + "\n", + " Name Sex Age \\\n", + "PassengerId \n", + "1 Braund, Mr. Owen Harris male 22.0 \n", + "2 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 \n", + "3 Heikkinen, Miss. Laina female 26.0 \n", + "4 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 \n", + "5 Allen, Mr. William Henry male 35.0 \n", + "... ... ... ... \n", + "887 Montvila, Rev. Juozas male 27.0 \n", + "888 Graham, Miss. Margaret Edith female 19.0 \n", + "889 Johnston, Miss. Catherine Helen \"Carrie\" female NaN \n", + "890 Behr, Mr. Karl Howell male 26.0 \n", + "891 Dooley, Mr. Patrick male 32.0 \n", + "\n", + " SibSp Parch Ticket Fare Cabin Embarked \n", + "PassengerId \n", + "1 1 0 A/5 21171 7.2500 NaN S \n", + "2 1 0 PC 17599 71.2833 C85 C \n", + "3 0 0 STON/O2. 3101282 7.9250 NaN S \n", + "4 1 0 113803 53.1000 C123 S \n", + "5 0 0 373450 8.0500 NaN S \n", + "... ... ... ... ... ... ... \n", + "887 0 0 211536 13.0000 NaN S \n", + "888 0 0 112053 30.0000 B42 S \n", + "889 1 2 W./C. 6607 23.4500 NaN S \n", + "890 0 0 111369 30.0000 C148 C \n", + "891 0 0 370376 7.7500 NaN Q \n", + "\n", + "[891 rows x 11 columns]" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "titanic = pd.read_csv(\"data/titanic.csv\", index_col=\"PassengerId\")\n", + "\n", + "titanic" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Унитарное кодирование признаков Пол (Sex) и Порт посадки (Embarked)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Кодирование" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Embarked_QEmbarked_SEmbarked_nanSex_male
00.01.00.01.0
10.00.00.00.0
20.01.00.00.0
30.01.00.00.0
40.01.00.01.0
...............
8860.01.00.01.0
8870.01.00.00.0
8880.01.00.00.0
8890.00.00.01.0
8901.00.00.01.0
\n", + "

891 rows × 4 columns

\n", + "
" + ], + "text/plain": [ + " Embarked_Q Embarked_S Embarked_nan Sex_male\n", + "0 0.0 1.0 0.0 1.0\n", + "1 0.0 0.0 0.0 0.0\n", + "2 0.0 1.0 0.0 0.0\n", + "3 0.0 1.0 0.0 0.0\n", + "4 0.0 1.0 0.0 1.0\n", + ".. ... ... ... ...\n", + "886 0.0 1.0 0.0 1.0\n", + "887 0.0 1.0 0.0 0.0\n", + "888 0.0 1.0 0.0 0.0\n", + "889 0.0 0.0 0.0 1.0\n", + "890 1.0 0.0 0.0 1.0\n", + "\n", + "[891 rows x 4 columns]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.preprocessing import OneHotEncoder\n", + "import numpy as np\n", + "\n", + "encoder = OneHotEncoder(sparse_output=False, drop=\"first\")\n", + "\n", + "encoded_values = encoder.fit_transform(titanic[[\"Embarked\", \"Sex\"]])\n", + "\n", + "encoded_columns = encoder.get_feature_names_out([\"Embarked\", \"Sex\"])\n", + "\n", + "encoded_values_df = pd.DataFrame(encoded_values, columns=encoded_columns)\n", + "\n", + "encoded_values_df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Добавление признаков в исходный Dataframe" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
SurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarkedEmbarked_QEmbarked_SEmbarked_nanSex_male
10.03.0Braund, Mr. Owen Harrismale22.01.00.0A/5 211717.2500NaNS0.00.00.00.0
21.01.0Cumings, Mrs. John Bradley (Florence Briggs Th...female38.01.00.0PC 1759971.2833C85C0.01.00.00.0
31.03.0Heikkinen, Miss. Lainafemale26.00.00.0STON/O2. 31012827.9250NaNS0.01.00.00.0
41.01.0Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01.00.011380353.1000C123S0.01.00.01.0
50.03.0Allen, Mr. William Henrymale35.00.00.03734508.0500NaNS1.00.00.01.0
................................................
8881.01.0Graham, Miss. Margaret Edithfemale19.00.00.011205330.0000B42S0.01.00.00.0
8890.03.0Johnston, Miss. Catherine Helen \"Carrie\"femaleNaN1.02.0W./C. 660723.4500NaNS0.00.00.01.0
8901.01.0Behr, Mr. Karl Howellmale26.00.00.011136930.0000C148C1.00.00.01.0
8910.03.0Dooley, Mr. Patrickmale32.00.00.03703767.7500NaNQNaNNaNNaNNaN
0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.01.00.01.0
\n", + "

892 rows × 15 columns

\n", + "
" + ], + "text/plain": [ + " Survived Pclass Name \\\n", + "1 0.0 3.0 Braund, Mr. Owen Harris \n", + "2 1.0 1.0 Cumings, Mrs. John Bradley (Florence Briggs Th... \n", + "3 1.0 3.0 Heikkinen, Miss. Laina \n", + "4 1.0 1.0 Futrelle, Mrs. Jacques Heath (Lily May Peel) \n", + "5 0.0 3.0 Allen, Mr. William Henry \n", + ".. ... ... ... \n", + "888 1.0 1.0 Graham, Miss. Margaret Edith \n", + "889 0.0 3.0 Johnston, Miss. Catherine Helen \"Carrie\" \n", + "890 1.0 1.0 Behr, Mr. Karl Howell \n", + "891 0.0 3.0 Dooley, Mr. Patrick \n", + "0 NaN NaN NaN \n", + "\n", + " Sex Age SibSp Parch Ticket Fare Cabin Embarked \\\n", + "1 male 22.0 1.0 0.0 A/5 21171 7.2500 NaN S \n", + "2 female 38.0 1.0 0.0 PC 17599 71.2833 C85 C \n", + "3 female 26.0 0.0 0.0 STON/O2. 3101282 7.9250 NaN S \n", + "4 female 35.0 1.0 0.0 113803 53.1000 C123 S \n", + "5 male 35.0 0.0 0.0 373450 8.0500 NaN S \n", + ".. ... ... ... ... ... ... ... ... \n", + "888 female 19.0 0.0 0.0 112053 30.0000 B42 S \n", + "889 female NaN 1.0 2.0 W./C. 6607 23.4500 NaN S \n", + "890 male 26.0 0.0 0.0 111369 30.0000 C148 C \n", + "891 male 32.0 0.0 0.0 370376 7.7500 NaN Q \n", + "0 NaN NaN NaN NaN NaN NaN NaN NaN \n", + "\n", + " Embarked_Q Embarked_S Embarked_nan Sex_male \n", + "1 0.0 0.0 0.0 0.0 \n", + "2 0.0 1.0 0.0 0.0 \n", + "3 0.0 1.0 0.0 0.0 \n", + "4 0.0 1.0 0.0 1.0 \n", + "5 1.0 0.0 0.0 1.0 \n", + ".. ... ... ... ... \n", + "888 0.0 1.0 0.0 0.0 \n", + "889 0.0 0.0 0.0 1.0 \n", + "890 1.0 0.0 0.0 1.0 \n", + "891 NaN NaN NaN NaN \n", + "0 0.0 1.0 0.0 1.0 \n", + "\n", + "[892 rows x 15 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "titanic = pd.concat([titanic, encoded_values_df], axis=1)\n", + "\n", + "titanic" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Дискретизация признаков" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Равномерное разделение данных на 3 группы" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "labels = [\"young\", \"middle-aged\", \"old\"]\n", + "num_bins = 3" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([ 0.42 , 26.94666667, 53.47333333, 80. ]),\n", + " array([319, 523, 50]))" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "hist1, bins1 = np.histogram(titanic[\"Age\"].fillna(titanic[\"Age\"].median()), bins=num_bins)\n", + "bins1, hist1" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AgeAge
122.0(0.42, 26.947]
238.0(26.947, 53.473]
326.0(0.42, 26.947]
435.0(26.947, 53.473]
535.0(26.947, 53.473]
6NaNNaN
754.0(53.473, 80.0]
82.0(0.42, 26.947]
927.0(26.947, 53.473]
1014.0(0.42, 26.947]
114.0(0.42, 26.947]
1258.0(53.473, 80.0]
1320.0(0.42, 26.947]
1439.0(26.947, 53.473]
1514.0(0.42, 26.947]
1655.0(53.473, 80.0]
172.0(0.42, 26.947]
18NaNNaN
1931.0(26.947, 53.473]
20NaNNaN
\n", + "
" + ], + "text/plain": [ + " Age Age\n", + "1 22.0 (0.42, 26.947]\n", + "2 38.0 (26.947, 53.473]\n", + "3 26.0 (0.42, 26.947]\n", + "4 35.0 (26.947, 53.473]\n", + "5 35.0 (26.947, 53.473]\n", + "6 NaN NaN\n", + "7 54.0 (53.473, 80.0]\n", + "8 2.0 (0.42, 26.947]\n", + "9 27.0 (26.947, 53.473]\n", + "10 14.0 (0.42, 26.947]\n", + "11 4.0 (0.42, 26.947]\n", + "12 58.0 (53.473, 80.0]\n", + "13 20.0 (0.42, 26.947]\n", + "14 39.0 (26.947, 53.473]\n", + "15 14.0 (0.42, 26.947]\n", + "16 55.0 (53.473, 80.0]\n", + "17 2.0 (0.42, 26.947]\n", + "18 NaN NaN\n", + "19 31.0 (26.947, 53.473]\n", + "20 NaN NaN" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.concat([titanic[\"Age\"], pd.cut(titanic[\"Age\"], list(bins1))], axis=1).head(20)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AgeAge
122.0young
238.0middle-aged
326.0young
435.0middle-aged
535.0middle-aged
6NaNNaN
754.0old
82.0young
927.0middle-aged
1014.0young
114.0young
1258.0old
1320.0young
1439.0middle-aged
1514.0young
1655.0old
172.0young
18NaNNaN
1931.0middle-aged
20NaNNaN
\n", + "
" + ], + "text/plain": [ + " Age Age\n", + "1 22.0 young\n", + "2 38.0 middle-aged\n", + "3 26.0 young\n", + "4 35.0 middle-aged\n", + "5 35.0 middle-aged\n", + "6 NaN NaN\n", + "7 54.0 old\n", + "8 2.0 young\n", + "9 27.0 middle-aged\n", + "10 14.0 young\n", + "11 4.0 young\n", + "12 58.0 old\n", + "13 20.0 young\n", + "14 39.0 middle-aged\n", + "15 14.0 young\n", + "16 55.0 old\n", + "17 2.0 young\n", + "18 NaN NaN\n", + "19 31.0 middle-aged\n", + "20 NaN NaN" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.concat([titanic[\"Age\"], pd.cut(titanic[\"Age\"], list(bins1), labels=labels)], axis=1).head(20)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Равномерное разделение данных на 3 группы c установкой собственной границы диапазона значений (от 0 до 100)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([ 0. , 33.33333333, 66.66666667, 100. ]),\n", + " array([641, 244, 7]))" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bins2 = np.linspace(0, 100, 4)\n", + "tmp_bins2 = np.digitize(titanic[\"Age\"].fillna(titanic[\"Age\"].median()), bins2)\n", + "hist2 = np.bincount(tmp_bins2 - 1)\n", + "bins2, hist2" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AgeAge
122.0(0.0, 33.333]
238.0(33.333, 66.667]
326.0(0.0, 33.333]
435.0(33.333, 66.667]
535.0(33.333, 66.667]
6NaNNaN
754.0(33.333, 66.667]
82.0(0.0, 33.333]
927.0(0.0, 33.333]
1014.0(0.0, 33.333]
114.0(0.0, 33.333]
1258.0(33.333, 66.667]
1320.0(0.0, 33.333]
1439.0(33.333, 66.667]
1514.0(0.0, 33.333]
1655.0(33.333, 66.667]
172.0(0.0, 33.333]
18NaNNaN
1931.0(0.0, 33.333]
20NaNNaN
\n", + "
" + ], + "text/plain": [ + " Age Age\n", + "1 22.0 (0.0, 33.333]\n", + "2 38.0 (33.333, 66.667]\n", + "3 26.0 (0.0, 33.333]\n", + "4 35.0 (33.333, 66.667]\n", + "5 35.0 (33.333, 66.667]\n", + "6 NaN NaN\n", + "7 54.0 (33.333, 66.667]\n", + "8 2.0 (0.0, 33.333]\n", + "9 27.0 (0.0, 33.333]\n", + "10 14.0 (0.0, 33.333]\n", + "11 4.0 (0.0, 33.333]\n", + "12 58.0 (33.333, 66.667]\n", + "13 20.0 (0.0, 33.333]\n", + "14 39.0 (33.333, 66.667]\n", + "15 14.0 (0.0, 33.333]\n", + "16 55.0 (33.333, 66.667]\n", + "17 2.0 (0.0, 33.333]\n", + "18 NaN NaN\n", + "19 31.0 (0.0, 33.333]\n", + "20 NaN NaN" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.concat([titanic[\"Age\"], pd.cut(titanic[\"Age\"], list(bins2))], axis=1).head(20)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AgeAge
122.0young
238.0middle-aged
326.0young
435.0middle-aged
535.0middle-aged
6NaNNaN
754.0middle-aged
82.0young
927.0young
1014.0young
114.0young
1258.0middle-aged
1320.0young
1439.0middle-aged
1514.0young
1655.0middle-aged
172.0young
18NaNNaN
1931.0young
20NaNNaN
\n", + "
" + ], + "text/plain": [ + " Age Age\n", + "1 22.0 young\n", + "2 38.0 middle-aged\n", + "3 26.0 young\n", + "4 35.0 middle-aged\n", + "5 35.0 middle-aged\n", + "6 NaN NaN\n", + "7 54.0 middle-aged\n", + "8 2.0 young\n", + "9 27.0 young\n", + "10 14.0 young\n", + "11 4.0 young\n", + "12 58.0 middle-aged\n", + "13 20.0 young\n", + "14 39.0 middle-aged\n", + "15 14.0 young\n", + "16 55.0 middle-aged\n", + "17 2.0 young\n", + "18 NaN NaN\n", + "19 31.0 young\n", + "20 NaN NaN" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.concat([titanic[\"Age\"], pd.cut(titanic[\"Age\"], list(bins2), labels=labels)], axis=1).head(20)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Равномерное разделение данных на 3 группы c установкой собственных интервалов (0 - 39, 40 - 60, 61 - 100)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([ 0, 40, 60, 100]), array([729, 137, 26]))" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "hist3, bins3 = np.histogram(\n", + " titanic[\"Age\"].fillna(titanic[\"Age\"].median()), bins=[0, 40, 60, 100]\n", + ")\n", + "bins3, hist3" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AgeAge
122.0(0.0, 40.0]
238.0(0.0, 40.0]
326.0(0.0, 40.0]
435.0(0.0, 40.0]
535.0(0.0, 40.0]
6NaNNaN
754.0(40.0, 60.0]
82.0(0.0, 40.0]
927.0(0.0, 40.0]
1014.0(0.0, 40.0]
114.0(0.0, 40.0]
1258.0(40.0, 60.0]
1320.0(0.0, 40.0]
1439.0(0.0, 40.0]
1514.0(0.0, 40.0]
1655.0(40.0, 60.0]
172.0(0.0, 40.0]
18NaNNaN
1931.0(0.0, 40.0]
20NaNNaN
\n", + "
" + ], + "text/plain": [ + " Age Age\n", + "1 22.0 (0.0, 40.0]\n", + "2 38.0 (0.0, 40.0]\n", + "3 26.0 (0.0, 40.0]\n", + "4 35.0 (0.0, 40.0]\n", + "5 35.0 (0.0, 40.0]\n", + "6 NaN NaN\n", + "7 54.0 (40.0, 60.0]\n", + "8 2.0 (0.0, 40.0]\n", + "9 27.0 (0.0, 40.0]\n", + "10 14.0 (0.0, 40.0]\n", + "11 4.0 (0.0, 40.0]\n", + "12 58.0 (40.0, 60.0]\n", + "13 20.0 (0.0, 40.0]\n", + "14 39.0 (0.0, 40.0]\n", + "15 14.0 (0.0, 40.0]\n", + "16 55.0 (40.0, 60.0]\n", + "17 2.0 (0.0, 40.0]\n", + "18 NaN NaN\n", + "19 31.0 (0.0, 40.0]\n", + "20 NaN NaN" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.concat([titanic[\"Age\"], pd.cut(titanic[\"Age\"], list(bins3))], axis=1).head(20)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AgeAge
122.0young
238.0young
326.0young
435.0young
535.0young
6NaNNaN
754.0middle-aged
82.0young
927.0young
1014.0young
114.0young
1258.0middle-aged
1320.0young
1439.0young
1514.0young
1655.0middle-aged
172.0young
18NaNNaN
1931.0young
20NaNNaN
\n", + "
" + ], + "text/plain": [ + " Age Age\n", + "1 22.0 young\n", + "2 38.0 young\n", + "3 26.0 young\n", + "4 35.0 young\n", + "5 35.0 young\n", + "6 NaN NaN\n", + "7 54.0 middle-aged\n", + "8 2.0 young\n", + "9 27.0 young\n", + "10 14.0 young\n", + "11 4.0 young\n", + "12 58.0 middle-aged\n", + "13 20.0 young\n", + "14 39.0 young\n", + "15 14.0 young\n", + "16 55.0 middle-aged\n", + "17 2.0 young\n", + "18 NaN NaN\n", + "19 31.0 young\n", + "20 NaN NaN" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.concat([titanic[\"Age\"], pd.cut(titanic[\"Age\"], list(bins3), labels=labels)], axis=1).head(20)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Квантильное разделение данных на 3 группы" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AgeAge
122.00.0
238.02.0
326.01.0
435.02.0
535.02.0
6NaNNaN
754.02.0
82.00.0
927.01.0
1014.00.0
114.00.0
1258.02.0
1320.00.0
1439.02.0
1514.00.0
1655.02.0
172.00.0
18NaNNaN
1931.01.0
20NaNNaN
\n", + "
" + ], + "text/plain": [ + " Age Age\n", + "1 22.0 0.0\n", + "2 38.0 2.0\n", + "3 26.0 1.0\n", + "4 35.0 2.0\n", + "5 35.0 2.0\n", + "6 NaN NaN\n", + "7 54.0 2.0\n", + "8 2.0 0.0\n", + "9 27.0 1.0\n", + "10 14.0 0.0\n", + "11 4.0 0.0\n", + "12 58.0 2.0\n", + "13 20.0 0.0\n", + "14 39.0 2.0\n", + "15 14.0 0.0\n", + "16 55.0 2.0\n", + "17 2.0 0.0\n", + "18 NaN NaN\n", + "19 31.0 1.0\n", + "20 NaN NaN" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.concat([titanic[\"Age\"], pd.qcut(titanic[\"Age\"], q=3, labels=False)], axis=1).head(20)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AgeAge
122.0young
238.0old
326.0middle-aged
435.0old
535.0old
6NaNNaN
754.0old
82.0young
927.0middle-aged
1014.0young
114.0young
1258.0old
1320.0young
1439.0old
1514.0young
1655.0old
172.0young
18NaNNaN
1931.0middle-aged
20NaNNaN
\n", + "
" + ], + "text/plain": [ + " Age Age\n", + "1 22.0 young\n", + "2 38.0 old\n", + "3 26.0 middle-aged\n", + "4 35.0 old\n", + "5 35.0 old\n", + "6 NaN NaN\n", + "7 54.0 old\n", + "8 2.0 young\n", + "9 27.0 middle-aged\n", + "10 14.0 young\n", + "11 4.0 young\n", + "12 58.0 old\n", + "13 20.0 young\n", + "14 39.0 old\n", + "15 14.0 young\n", + "16 55.0 old\n", + "17 2.0 young\n", + "18 NaN NaN\n", + "19 31.0 middle-aged\n", + "20 NaN NaN" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.concat([titanic[\"Age\"], pd.qcut(titanic[\"Age\"], q=3, labels=labels)], axis=1).head(20)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Пример конструирования признаков на основе существующих\n", + "\n", + "Title - обращение к пассажиру (Mr, Mrs, Miss)\n", + "\n", + "Is_married - замужняя ли женщина\n", + "\n", + "Cabin_type - палуба (тип каюты)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
SurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarkedTitleIs_marriedCabin_type
21.01.0Cumings, Mrs. John Bradley (Florence Briggs Th...female38.01.00.0PC 1759971.2833C85CMrs1C
41.01.0Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01.00.011380353.1000C123SMrs1C
70.01.0McCarthy, Mr. Timothy Jmale54.00.00.01746351.8625E46SMr0E
111.03.0Sandstrom, Miss. Marguerite Rutfemale4.01.01.0PP 954916.7000G6SMiss0G
121.01.0Bonnell, Miss. Elizabethfemale58.00.00.011378326.5500C103SMiss0C
.............................................
8721.01.0Beckwith, Mrs. Richard Leonard (Sallie Monypeny)female47.01.01.01175152.5542D35SMrs1D
8730.01.0Carlsson, Mr. Frans Olofmale33.00.00.06955.0000B51 B53 B55SMr0B
8801.01.0Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)female56.00.01.01176783.1583C50CMrs1C
8881.01.0Graham, Miss. Margaret Edithfemale19.00.00.011205330.0000B42SMiss0B
8901.01.0Behr, Mr. Karl Howellmale26.00.00.011136930.0000C148CMr0C
\n", + "

183 rows × 14 columns

\n", + "
" + ], + "text/plain": [ + " Survived Pclass Name \\\n", + "2 1.0 1.0 Cumings, Mrs. John Bradley (Florence Briggs Th... \n", + "4 1.0 1.0 Futrelle, Mrs. Jacques Heath (Lily May Peel) \n", + "7 0.0 1.0 McCarthy, Mr. Timothy J \n", + "11 1.0 3.0 Sandstrom, Miss. Marguerite Rut \n", + "12 1.0 1.0 Bonnell, Miss. Elizabeth \n", + ".. ... ... ... \n", + "872 1.0 1.0 Beckwith, Mrs. Richard Leonard (Sallie Monypeny) \n", + "873 0.0 1.0 Carlsson, Mr. Frans Olof \n", + "880 1.0 1.0 Potter, Mrs. Thomas Jr (Lily Alexenia Wilson) \n", + "888 1.0 1.0 Graham, Miss. Margaret Edith \n", + "890 1.0 1.0 Behr, Mr. Karl Howell \n", + "\n", + " Sex Age SibSp Parch Ticket Fare Cabin Embarked \\\n", + "2 female 38.0 1.0 0.0 PC 17599 71.2833 C85 C \n", + "4 female 35.0 1.0 0.0 113803 53.1000 C123 S \n", + "7 male 54.0 0.0 0.0 17463 51.8625 E46 S \n", + "11 female 4.0 1.0 1.0 PP 9549 16.7000 G6 S \n", + "12 female 58.0 0.0 0.0 113783 26.5500 C103 S \n", + ".. ... ... ... ... ... ... ... ... \n", + "872 female 47.0 1.0 1.0 11751 52.5542 D35 S \n", + "873 male 33.0 0.0 0.0 695 5.0000 B51 B53 B55 S \n", + "880 female 56.0 0.0 1.0 11767 83.1583 C50 C \n", + "888 female 19.0 0.0 0.0 112053 30.0000 B42 S \n", + "890 male 26.0 0.0 0.0 111369 30.0000 C148 C \n", + "\n", + " Title Is_married Cabin_type \n", + "2 Mrs 1 C \n", + "4 Mrs 1 C \n", + "7 Mr 0 E \n", + "11 Miss 0 G \n", + "12 Miss 0 C \n", + ".. ... ... ... \n", + "872 Mrs 1 D \n", + "873 Mr 0 B \n", + "880 Mrs 1 C \n", + "888 Miss 0 B \n", + "890 Mr 0 C \n", + "\n", + "[183 rows x 14 columns]" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "titanic_cl = titanic.drop(\n", + " [\"Embarked_Q\", \"Embarked_S\", \"Embarked_nan\", \"Sex_male\"], axis=1, errors=\"ignore\"\n", + ")\n", + "titanic_cl = titanic_cl.dropna()\n", + "\n", + "titanic_cl[\"Title\"] = [\n", + " i.split(\",\")[1].split(\".\")[0].strip() for i in titanic_cl[\"Name\"]\n", + "]\n", + "\n", + "titanic_cl[\"Is_married\"] = [1 if i == \"Mrs\" else 0 for i in titanic_cl[\"Title\"]]\n", + "\n", + "titanic_cl[\"Cabin_type\"] = [i[0] for i in titanic_cl[\"Cabin\"]]\n", + "\n", + "titanic_cl" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Пример использования библиотеки Featuretools для автоматического конструирования (синтеза) признаков\n", + "\n", + "https://featuretools.alteryx.com/en/stable/getting_started/using_entitysets.html" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Загрузка данных\n", + "\n", + "За основу был взят набор данных \"Ecommerce Orders Data Set\" из Kaggle\n", + "\n", + "Используется только 100 первых заказов и связанные с ними объекты\n", + "\n", + "https://www.kaggle.com/datasets/sangamsharmait/ecommerce-orders-data-analysis" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "import featuretools as ft\n", + "from woodwork.logical_types import Categorical, Datetime\n", + "\n", + "customers = pd.read_csv(\"data/orders/customers.csv\")\n", + "sellers = pd.read_csv(\"data/orders/sellers.csv\")\n", + "products = pd.read_csv(\"data/orders/products.csv\")\n", + "orders = pd.read_csv(\"data/orders/orders.csv\")\n", + "orders.fillna({\"order_delivered_carrier_date\": pd.to_datetime(\n", + " \"1900-01-01 00:00:00\"\n", + ")}, inplace=True)\n", + "orders.fillna(\n", + " {\"order_delivered_customer_date\": pd.to_datetime(\"1900-01-01 00:00:00\")},\n", + " inplace=True,\n", + ")\n", + "order_items = pd.read_csv(\"data/orders/order_items.csv\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Создание сущностей в featuretools\n", + "\n", + "Добавление dataframe'ов с данными в EntitySet с указанием параметров: название сущности (таблицы), первичный ключ, категориальные атрибуты (в том числе даты)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\user\\Projects\\python\\mai\\.venv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", + " pd.to_datetime(\n", + "c:\\Users\\user\\Projects\\python\\mai\\.venv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", + " pd.to_datetime(\n", + "c:\\Users\\user\\Projects\\python\\mai\\.venv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", + " pd.to_datetime(\n", + "c:\\Users\\user\\Projects\\python\\mai\\.venv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", + " pd.to_datetime(\n", + "c:\\Users\\user\\Projects\\python\\mai\\.venv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", + " pd.to_datetime(\n", + "c:\\Users\\user\\Projects\\python\\mai\\.venv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", + " pd.to_datetime(\n", + "c:\\Users\\user\\Projects\\python\\mai\\.venv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", + " pd.to_datetime(\n", + "c:\\Users\\user\\Projects\\python\\mai\\.venv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", + " pd.to_datetime(\n", + "c:\\Users\\user\\Projects\\python\\mai\\.venv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", + " pd.to_datetime(\n", + "c:\\Users\\user\\Projects\\python\\mai\\.venv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", + " pd.to_datetime(\n", + "c:\\Users\\user\\Projects\\python\\mai\\.venv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", + " pd.to_datetime(\n", + "c:\\Users\\user\\Projects\\python\\mai\\.venv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", + " pd.to_datetime(\n", + "c:\\Users\\user\\Projects\\python\\mai\\.venv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", + " pd.to_datetime(\n", + "c:\\Users\\user\\Projects\\python\\mai\\.venv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", + " pd.to_datetime(\n", + "c:\\Users\\user\\Projects\\python\\mai\\.venv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", + " pd.to_datetime(\n", + "c:\\Users\\user\\Projects\\python\\mai\\.venv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", + " pd.to_datetime(\n" + ] + }, + { + "data": { + "text/plain": [ + "Entityset: orders\n", + " DataFrames:\n", + " customers [Rows: 100, Columns: 5]\n", + " sellers [Rows: 87, Columns: 4]\n", + " products [Rows: 100, Columns: 9]\n", + " orders [Rows: 100, Columns: 8]\n", + " order_items [Rows: 115, Columns: 8]\n", + " Relationships:\n", + " No relationships" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "es = ft.EntitySet(id=\"orders\")\n", + "\n", + "es = es.add_dataframe(\n", + " dataframe_name=\"customers\",\n", + " dataframe=customers,\n", + " index=\"customer_id\",\n", + " logical_types={\n", + " \"customer_unique_id\": Categorical,\n", + " \"customer_zip_code_prefix\": Categorical,\n", + " \"customer_city\": Categorical,\n", + " \"customer_state\": Categorical,\n", + " },\n", + ")\n", + "es = es.add_dataframe(\n", + " dataframe_name=\"sellers\",\n", + " dataframe=sellers,\n", + " index=\"seller_id\",\n", + " logical_types={\n", + " \"seller_zip_code_prefix\": Categorical,\n", + " \"seller_city\": Categorical,\n", + " \"seller_state\": Categorical,\n", + " },\n", + ")\n", + "es = es.add_dataframe(\n", + " dataframe_name=\"products\",\n", + " dataframe=products,\n", + " index=\"product_id\",\n", + " logical_types={\n", + " \"product_category_name\": Categorical,\n", + " \"product_name_lenght\": Categorical,\n", + " \"product_description_lenght\": Categorical,\n", + " \"product_photos_qty\": Categorical,\n", + " },\n", + ")\n", + "es = es.add_dataframe(\n", + " dataframe_name=\"orders\",\n", + " dataframe=orders,\n", + " index=\"order_id\",\n", + " logical_types={\n", + " \"order_status\": Categorical,\n", + " \"order_purchase_timestamp\": Datetime,\n", + " \"order_approved_at\": Datetime,\n", + " \"order_delivered_carrier_date\": Datetime,\n", + " \"order_delivered_customer_date\": Datetime,\n", + " \"order_estimated_delivery_date\": Datetime,\n", + " },\n", + ")\n", + "es = es.add_dataframe(\n", + " dataframe_name=\"order_items\",\n", + " dataframe=order_items,\n", + " index=\"orderitem_id\",\n", + " make_index=True,\n", + " logical_types={\"shipping_limit_date\": Datetime},\n", + ")\n", + "\n", + "es" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Настройка связей между сущностями featuretools\n", + "\n", + "Настройка связей между таблицами на уровне ключей\n", + "\n", + "Связь указывается от родителя к потомкам (таблица-родитель, первичный ключ, таблица-потомок, внешний ключ)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Entityset: orders\n", + " DataFrames:\n", + " customers [Rows: 100, Columns: 5]\n", + " sellers [Rows: 87, Columns: 4]\n", + " products [Rows: 100, Columns: 9]\n", + " orders [Rows: 100, Columns: 8]\n", + " order_items [Rows: 115, Columns: 8]\n", + " Relationships:\n", + " orders.customer_id -> customers.customer_id\n", + " order_items.order_id -> orders.order_id\n", + " order_items.product_id -> products.product_id\n", + " order_items.seller_id -> sellers.seller_id" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "es = es.add_relationship(\"customers\", \"customer_id\", \"orders\", \"customer_id\")\n", + "es = es.add_relationship(\"orders\", \"order_id\", \"order_items\", \"order_id\")\n", + "es = es.add_relationship(\"products\", \"product_id\", \"order_items\", \"product_id\")\n", + "es = es.add_relationship(\"sellers\", \"seller_id\", \"order_items\", \"seller_id\")\n", + "\n", + "es" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Автоматическое конструирование признаков с помощью featuretools\n", + "\n", + "Библиотека применят различные функции агрегации и трансформации к атрибутам таблицы order_items с учетом отношений\n", + "\n", + "Результат помещается в Dataframe feature_matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\user\\Projects\\python\\mai\\.venv\\Lib\\site-packages\\featuretools\\synthesis\\dfs.py:321: UnusedPrimitiveWarning: Some specified primitives were not used during DFS:\n", + " agg_primitives: ['any', 'mode']\n", + "This may be caused by a using a value of max_depth that is too small, not setting interesting values, or it may indicate no compatible columns for the primitive were found in the data. If the DFS call contained multiple instances of a primitive in the list above, none of them were used.\n", + " warnings.warn(warning_msg, UnusedPrimitiveWarning)\n", + "c:\\Users\\user\\Projects\\python\\mai\\.venv\\Lib\\site-packages\\featuretools\\computational_backends\\feature_set_calculator.py:785: FutureWarning: The provided callable is currently using SeriesGroupBy.mean. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string \"mean\" instead.\n", + " ).agg(to_agg)\n", + "c:\\Users\\user\\Projects\\python\\mai\\.venv\\Lib\\site-packages\\featuretools\\computational_backends\\feature_set_calculator.py:785: FutureWarning: The provided callable is currently using SeriesGroupBy.mean. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string \"mean\" instead.\n", + " ).agg(to_agg)\n", + "c:\\Users\\user\\Projects\\python\\mai\\.venv\\Lib\\site-packages\\featuretools\\computational_backends\\feature_set_calculator.py:785: FutureWarning: The provided callable is currently using SeriesGroupBy.mean. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string \"mean\" instead.\n", + " ).agg(to_agg)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
order_item_idpricefreight_valueHOUR(shipping_limit_date)WEEKDAY(shipping_limit_date)orders.order_statusproducts.product_category_nameproducts.product_name_lenghtproducts.product_description_lenghtproducts.product_photos_qty...orders.customers.customer_cityorders.customers.customer_stateproducts.COUNT(order_items)products.MEAN(order_items.freight_value)products.MEAN(order_items.order_item_id)products.MEAN(order_items.price)sellers.COUNT(order_items)sellers.MEAN(order_items.freight_value)sellers.MEAN(order_items.order_item_id)sellers.MEAN(order_items.price)
orderitem_id
0138.5024.84204deliveredcama_mesa_banho53.0223.01.0...santa luziaPB124.841.038.50221.3401.061.200000
1129.997.3980deliveredtelefonia59.0675.05.0...sao pauloSP17.391.029.9917.3901.029.990000
21110.9921.27211deliveredcama_mesa_banho52.0413.01.0...gravataiRS121.271.0110.99121.2701.0110.990000
3127.9915.10231deliveredtelefonia60.0818.06.0...imbitubaSC115.101.027.99213.9701.026.490000
4149.9016.05132invoicedNaNNaNNaNNaN...santa rosaRS116.051.049.90116.0501.049.900000
..................................................................
110117.9010.9681deliveredcama_mesa_banho55.0122.01.0...jundiaiSP110.961.017.90110.9601.017.900000
111179.998.9194deliveredbeleza_saude59.0492.03.0...sao pauloSP18.911.079.99513.2061.254.590000
1121190.0019.41133deliveredclimatizacao60.03270.04.0...pauliniaSP119.411.0190.00119.4101.0190.000000
1131109.9015.5322deliveredcool_stuff46.0595.02.0...rio de janeiroRJ115.531.0109.90115.5301.0109.900000
114127.9018.30142deliveredalimentos59.0982.01.0...joinvilleSC216.701.027.90316.1901.038.596667
\n", + "

115 rows × 43 columns

\n", + "
" + ], + "text/plain": [ + " order_item_id price freight_value HOUR(shipping_limit_date) \\\n", + "orderitem_id \n", + "0 1 38.50 24.84 20 \n", + "1 1 29.99 7.39 8 \n", + "2 1 110.99 21.27 21 \n", + "3 1 27.99 15.10 23 \n", + "4 1 49.90 16.05 13 \n", + "... ... ... ... ... \n", + "110 1 17.90 10.96 8 \n", + "111 1 79.99 8.91 9 \n", + "112 1 190.00 19.41 13 \n", + "113 1 109.90 15.53 2 \n", + "114 1 27.90 18.30 14 \n", + "\n", + " WEEKDAY(shipping_limit_date) orders.order_status \\\n", + "orderitem_id \n", + "0 4 delivered \n", + "1 0 delivered \n", + "2 1 delivered \n", + "3 1 delivered \n", + "4 2 invoiced \n", + "... ... ... \n", + "110 1 delivered \n", + "111 4 delivered \n", + "112 3 delivered \n", + "113 2 delivered \n", + "114 2 delivered \n", + "\n", + " products.product_category_name products.product_name_lenght \\\n", + "orderitem_id \n", + "0 cama_mesa_banho 53.0 \n", + "1 telefonia 59.0 \n", + "2 cama_mesa_banho 52.0 \n", + "3 telefonia 60.0 \n", + "4 NaN NaN \n", + "... ... ... \n", + "110 cama_mesa_banho 55.0 \n", + "111 beleza_saude 59.0 \n", + "112 climatizacao 60.0 \n", + "113 cool_stuff 46.0 \n", + "114 alimentos 59.0 \n", + "\n", + " products.product_description_lenght products.product_photos_qty \\\n", + "orderitem_id \n", + "0 223.0 1.0 \n", + "1 675.0 5.0 \n", + "2 413.0 1.0 \n", + "3 818.0 6.0 \n", + "4 NaN NaN \n", + "... ... ... \n", + "110 122.0 1.0 \n", + "111 492.0 3.0 \n", + "112 3270.0 4.0 \n", + "113 595.0 2.0 \n", + "114 982.0 1.0 \n", + "\n", + " ... orders.customers.customer_city \\\n", + "orderitem_id ... \n", + "0 ... santa luzia \n", + "1 ... sao paulo \n", + "2 ... gravatai \n", + "3 ... imbituba \n", + "4 ... santa rosa \n", + "... ... ... \n", + "110 ... jundiai \n", + "111 ... sao paulo \n", + "112 ... paulinia \n", + "113 ... rio de janeiro \n", + "114 ... joinville \n", + "\n", + " orders.customers.customer_state products.COUNT(order_items) \\\n", + "orderitem_id \n", + "0 PB 1 \n", + "1 SP 1 \n", + "2 RS 1 \n", + "3 SC 1 \n", + "4 RS 1 \n", + "... ... ... \n", + "110 SP 1 \n", + "111 SP 1 \n", + "112 SP 1 \n", + "113 RJ 1 \n", + "114 SC 2 \n", + "\n", + " products.MEAN(order_items.freight_value) \\\n", + "orderitem_id \n", + "0 24.84 \n", + "1 7.39 \n", + "2 21.27 \n", + "3 15.10 \n", + "4 16.05 \n", + "... ... \n", + "110 10.96 \n", + "111 8.91 \n", + "112 19.41 \n", + "113 15.53 \n", + "114 16.70 \n", + "\n", + " products.MEAN(order_items.order_item_id) \\\n", + "orderitem_id \n", + "0 1.0 \n", + "1 1.0 \n", + "2 1.0 \n", + "3 1.0 \n", + "4 1.0 \n", + "... ... \n", + "110 1.0 \n", + "111 1.0 \n", + "112 1.0 \n", + "113 1.0 \n", + "114 1.0 \n", + "\n", + " products.MEAN(order_items.price) sellers.COUNT(order_items) \\\n", + "orderitem_id \n", + "0 38.50 2 \n", + "1 29.99 1 \n", + "2 110.99 1 \n", + "3 27.99 2 \n", + "4 49.90 1 \n", + "... ... ... \n", + "110 17.90 1 \n", + "111 79.99 5 \n", + "112 190.00 1 \n", + "113 109.90 1 \n", + "114 27.90 3 \n", + "\n", + " sellers.MEAN(order_items.freight_value) \\\n", + "orderitem_id \n", + "0 21.340 \n", + "1 7.390 \n", + "2 21.270 \n", + "3 13.970 \n", + "4 16.050 \n", + "... ... \n", + "110 10.960 \n", + "111 13.206 \n", + "112 19.410 \n", + "113 15.530 \n", + "114 16.190 \n", + "\n", + " sellers.MEAN(order_items.order_item_id) \\\n", + "orderitem_id \n", + "0 1.0 \n", + "1 1.0 \n", + "2 1.0 \n", + "3 1.0 \n", + "4 1.0 \n", + "... ... \n", + "110 1.0 \n", + "111 1.2 \n", + "112 1.0 \n", + "113 1.0 \n", + "114 1.0 \n", + "\n", + " sellers.MEAN(order_items.price) \n", + "orderitem_id \n", + "0 61.200000 \n", + "1 29.990000 \n", + "2 110.990000 \n", + "3 26.490000 \n", + "4 49.900000 \n", + "... ... \n", + "110 17.900000 \n", + "111 54.590000 \n", + "112 190.000000 \n", + "113 109.900000 \n", + "114 38.596667 \n", + "\n", + "[115 rows x 43 columns]" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "feature_matrix, feature_defs = ft.dfs(\n", + " entityset=es,\n", + " target_dataframe_name=\"order_items\",\n", + " agg_primitives=[\"mean\", \"count\", \"mode\", \"any\"],\n", + " trans_primitives=[\"hour\", \"weekday\"],\n", + " max_depth=2,\n", + ")\n", + "\n", + "feature_matrix" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Полученные признаки\n", + "\n", + "Список колонок полученного dataframe'а" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ]" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "feature_defs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Отсечение значений признаков" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Определение выбросов с помощью boxplot" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAqrElEQVR4nO3dfXRU9YH/8U9IJpMnEkqUSVISyI8ooRqkIiWpAkLzsEg5ZglF+dnf0hbXnpaHhqCUuIrGBaNYHo7IQ92ThdUWVNjIFuQhWdQQaoIQC4VqI9gIKCQ+JgMJmUwm8/vDZbYRVCaZfCcP79c5OcP93u/c+cA5N/Ph3jtzA9xut1sAAACG9PN3AAAA0LdQPgAAgFGUDwAAYBTlAwAAGEX5AAAARlE+AACAUZQPAABgFOUDAAAYFeTvAF/W1tams2fPqn///goICPB3HAAAcBXcbrfOnz+vuLg49ev39cc2ul35OHv2rOLj4/0dAwAAdMCZM2c0ePDgr53T7cpH//79JX0RPjIy0s9pAPiS0+lUSUmJMjMzZbFY/B0HgA/Z7XbFx8d73se/TrcrH5dOtURGRlI+gF7G6XQqLCxMkZGRlA+gl7qaSya44BQAABhF+QAAAEZRPgAAgFGUDwAAYBTlAwAAGEX5AAAARlE+AACAUZQPAABgFOUDgBEul0tlZWXav3+/ysrK5HK5/B0JgJ94VT5cLpcefvhhJSYmKjQ0VMOGDdO//uu/yu12e+a43W4tWbJEsbGxCg0NVXp6uk6cOOHz4AB6juLiYiUlJSkjI0MrV65URkaGkpKSVFxc7O9oAPzAq/Lx5JNPav369XrmmWf0zjvv6Mknn9Ty5cu1Zs0az5zly5fr6aef1oYNG3Tw4EGFh4crKytLzc3NPg8PoPsrLi7W9OnTlZKSovLycm3ZskXl5eVKSUnR9OnTKSBAHxTg/vvDFt/ghz/8oWw2m4qKijxjOTk5Cg0N1e9+9zu53W7FxcVp4cKFuv/++yVJDQ0Nstls2rRpk+6+++5vfA273a6oqCg1NDRwbxegh3O5XEpKSlJKSoq2b98ul8ulXbt26Y477lBgYKCys7N1/PhxnThxQoGBgf6OC6ATvHn/9urGct///vf17LPP6t1339X111+vo0eP6sCBA1q5cqUkqaamRrW1tUpPT/c8JyoqSmPHjlVFRcUVy4fD4ZDD4WgXXvriBlROp9ObeAC6mbKyMr3//vt6/vnn5XK5PPv0pccHHnhA48eP12uvvaYJEyb4MyqATvLmPdur8rF48WLZ7XYlJycrMDBQLpdLy5Yt0z333CNJqq2tlSTZbLZ2z7PZbJ51X1ZYWKiCgoLLxktKShQWFuZNPADdzP79+yVJH3zwgT799FPPeGlpqSTp4sWLkqTdu3ersbHRfEAAPtPU1HTVc70qHy+99JJ+//vfa/Pmzbrhhht05MgR5ebmKi4uTrNmzfI6qCTl5+crLy/Ps2y32xUfH6/MzExOuwA9XHh4uFauXKnBgwdr7NixcjqdKi0tVUZGhiwWiyorKyVJkydP5sgH0MNdOnNxNbwqHw888IAWL17sOX2SkpKiU6dOqbCwULNmzVJMTIwkqa6uTrGxsZ7n1dXVadSoUVfcptVqldVqvWzcYrHIYrF4Ew9ANzNx4kQNHTpUy5cv1/bt2z3jFotFgYGBeuqpp5SYmKiJEydyzQfQw3nznu3Vp12amprUr1/7pwQGBqqtrU2SlJiYqJiYGO3bt8+z3m636+DBg0pLS/PmpQD0AoGBgVqxYoV27typ7OxsVVZW6uLFi6qsrFR2drZ27typ3/zmNxQPoI/x6sjH1KlTtWzZMiUkJOiGG27Qn/70J61cuVI/+9nPJEkBAQHKzc3V0qVLdd111ykxMVEPP/yw4uLilJ2d3RX5AXRz06ZN07Zt27Rw4UKNHz/eM56YmKht27Zp2rRpfkwHwB+8+qjt+fPn9fDDD+vll1/WRx99pLi4OM2cOVNLlixRcHCwpC++ZOyRRx7Rs88+q/r6et12221at26drr/++qt6DT5qC/ROLpdLr732mnbv3q3JkydzqgXoZbx5//aqfJhA+QB6L6fT6fmeD67pAnoXb96/ubcLAAAwivIBAACMonwAAACjKB8AAMAoygcAADCK8gEAAIyifAAAAKMoHwAAwCjKBwAAMIryAQAAjKJ8AAAAoygfAADAKMoHAAAwivIBAACMonwAMMLlcqmsrEz79+9XWVmZXC6XvyMB8BPKB4AuV1xcrKSkJGVkZGjlypXKyMhQUlKSiouL/R0NgB9QPgB0qeLiYk2fPl0pKSkqLy/Xli1bVF5erpSUFE2fPp0CAvRBAW632+3vEH/PbrcrKipKDQ0NioyM9HccAJ3gcrmUlJSklJQUbd++XS6XS7t27dIdd9yhwMBAZWdn6/jx4zpx4oQCAwP9HRdAJ3jz/s2RDwBdpry8XO+//74efPBB9evX/tdNv379lJ+fr5qaGpWXl/spIQB/oHwA6DLnzp2TJN14441XXH9p/NI8AH0D5QNAl4mNjZUkHT9+/IrrL41fmgegb6B8AOgy48aN09ChQ/X444+rra2t3bq2tjYVFhYqMTFR48aN81NCAP5A+QDQZQIDA7VixQrt3LlT2dnZqqys1MWLF1VZWans7Gzt3LlTv/nNb7jYFOhjgvwdAEDvNm3aNG3btk0LFy7U+PHjPeOJiYnatm2bpk2b5sd0APyBj9oCMMLlcum1117T7t27NXnyZE2cOJEjHkAv4s37N0c+ABgRGBioCRMmqLGxURMmTKB4AH0Y5QOAES0tLVqzZo1effVVnTx5UvPmzVNwcLC/YwHwAy44BdDlFi1apPDwcN1///3atWuX7r//foWHh2vRokX+jgbADzjyAaBLLVq0SE899ZRsNpsKCgpktVrlcDj0yCOP6KmnnpIkLV++3M8pAZjEkQ8AXaalpUWrVq2SzWbTqVOnNGzYMB07dkzDhg3TqVOnZLPZtGrVKrW0tPg7KgCDKB8Ausy6devU2tqqadOmKTk5WRkZGVq5cqUyMjKUnJysf/zHf1Rra6vWrVvn76gADOK0C4Au895770mS1q9frylTpmjq1Kmqrq7W8OHD9be//U0bNmxoNw9A3+DVkY+hQ4cqICDgsp85c+ZIkpqbmzVnzhxFR0crIiJCOTk5qqur65LgALq/oUOHSpKuvfZa7d27V2vWrFFJSYnWrFmjvXv36tprr203D0Df4FX5OHTokM6dO+f5KS0tlST96Ec/kiQtWLBAO3bs0NatW1VWVqazZ8/y7YVAH5aSkiJJ+vjjjxUdHa0NGzZo48aN2rBhg6Kjo/Xxxx+3mwegb/DqtMul/6Vc8sQTT2jYsGGaMGGCGhoaVFRUpM2bN2vSpEmSpI0bN2rEiBGqrKxUamqq71ID6BH+/shnW1ub2tra5Ha7PX++0jwAvV+Hr/loaWnR7373O+Xl5SkgIEBVVVVyOp1KT0/3zElOTlZCQoIqKiq+snw4HA45HA7Pst1ulyQ5nU45nc6OxgPQDbzxxhuSpDFjxuhPf/qTfvnLX3rWBQUF6ZZbbtHhw4f1xhtv6O677/ZXTAA+4M17dofLx/bt21VfX6+f/OQnkqTa2loFBwdrwIAB7ebZbDbV1tZ+5XYKCwtVUFBw2XhJSYnCwsI6Gg9AN/D+++9L+t//rJSUlKi2tlYxMTHKzMxUYWGhZ96uXbv8mBRAZzU1NV313A6Xj6KiIk2ePFlxcXEd3YQkKT8/X3l5eZ5lu92u+Ph4ZWZmcmM5oIc7efKk9uzZo6NHj+r555/XwoULVVdXJ5vNphUrVujo0aOSpPT0dN1xxx1+TgugMy6dubgaHSofp06d0n//93+ruLjYMxYTE6OWlhbV19e3O/pRV1enmJiYr9yW1WqV1Wq9bNxischisXQkHoBuYt68eVq8eLHCw8N17Ngxz/VgkjRkyBBFRUWpsbFR8+bNY38Hejhv9uEOfcnYxo0bNWjQIE2ZMsUzNnr0aFksFu3bt88zVl1drdOnTystLa0jLwOghwsODtaCBQvU0NAgh8Oh3Nxc3XfffcrNzVVzc7MaGhq0YMECbjAH9DFeH/loa2vTxo0bNWvWLAUF/e/To6KiNHv2bOXl5WngwIGKjIzUvHnzlJaWxiddgD7s0n1bVq1apdWrV3vGg4KC9MADD3BfF6APCnC73W5vnlBSUqKsrCxVV1fr+uuvb7euublZCxcu1JYtW+RwOJSVlaV169Z97WmXL7Pb7YqKilJDQwPXfAC9SEtLi9asWaNXX31VkyZN0rx58zjiAfQi3rx/e10+uhrlA+i9nE6ndu3apTvuuINrPIBexpv3b24sBwAAjKJ8AAAAoygfAADAKMoHAAAwivIBAACMonwAMMLlcqmsrEz79+9XWVmZXC6XvyMB8BPKB4AuV1xcrKSkJGVkZGjlypXKyMhQUlJSu1s0AOg7KB8AulRxcbGmT5+ulJQUlZeXa8uWLSovL1dKSoqmT59OAQH6IL5kDECXcblcSkpKUkpKirZv3y6Xy+X5krHAwEBlZ2fr+PHjOnHihAIDA/0dF0An8CVjALqF8vJyvf/++3rwwQflcDg0f/58Pfroo5o/f74cDofy8/NVU1Oj8vJyf0cFYJDXN5YDgKt17tw5SdLSpUv1yiuveMaPHDmiDRs2eO6MfWkegL6B8gGgy8TGxkqSXnnlFQUHBys3N1eJiYmqqanR6tWrPYXk0jwAfQPXfADoMhcuXFD//v0VEBCgpqYmBQYGeq75cLlcCgsLk9vt1vnz5xUREeHvuAA6gWs+AHQLixcvliS53W7NmDFDlZWVunjxoiorKzVjxgxd+r/PpXkA+gbKB4Auc+LECUnSM888o2PHjmn8+PGaOXOmxo8fr+PHj2vNmjXt5gHoGygfALrMddddJ0n64IMPdPLkSZWWliovL0+lpaU6ceKEzpw5024egL6Baz4AdJmLFy8qLCxMwcHBOn/+vAICAjzXfLjdbvXv318tLS1qampSaGiov+MC6ARv3r/5tAuAb9TU1KS//vWvHXruhAkTVFZWpoiICE2fMUNh1wzWi1u3attLL8npdGrChAl65513OpwtOTlZYWFhHX4+APM48gHgG7311lsaPXq0v2NcUVVVlW6++WZ/xwD6PI58APCp5ORkVVVVdWobFy9e1KOPL1fZn6o14bvD9eiDi3xyqiU5ObnT2wBgFkc+ABhz5NSnyl5fqe2/SNWoIdH+jgPAh/ieDwAA0G1RPgAAgFGUDwAAYBTlAwAAGEX5AAAARlE+AACAUZQPAABgFOUDAAAYRfkAAABGUT4AAIBRXpePDz/8UD/+8Y8VHR2t0NBQpaSk6PDhw571brdbS5YsUWxsrEJDQ5Wenq4TJ074NDQAAOi5vCofn3/+uW699VZZLBbt3r1bb7/9tlasWKFvfetbnjnLly/X008/rQ0bNujgwYMKDw9XVlaWmpubfR4eAAD0PF7d1fbJJ59UfHy8Nm7c6BlLTEz0/Nntdmv16tV66KGHdOedd0qSnnvuOdlsNm3fvl133323j2IDAICeyqvy8Yc//EFZWVn60Y9+pLKyMn3729/WL3/5S/3zP/+zJKmmpka1tbVKT0/3PCcqKkpjx45VRUXFFcuHw+GQw+HwLNvtdkmS0+mU0+ns0F8KQPfU2trqeWT/BnoXb/Zpr8rH3/72N61fv155eXl68MEHdejQIc2fP1/BwcGaNWuWamtrJUk2m63d82w2m2fdlxUWFqqgoOCy8ZKSEoWFhXkTD0A3d+aCJAWpsrJSHx73dxoAvtTU1HTVc70qH21tbbrlllv0+OOPS5K++93v6vjx49qwYYNmzZrlXcr/kZ+fr7y8PM+y3W5XfHy8MjMzFRkZ2aFtAuiejp7+TDp2WKmpqbopYaC/4wDwoUtnLq6GV+UjNjZW3/nOd9qNjRgxQv/5n/8pSYqJiZEk1dXVKTY21jOnrq5Oo0aNuuI2rVarrFbrZeMWi0UWi8WbeAC6uaCgIM8j+zfQu3izT3v1aZdbb71V1dXV7cbeffddDRkyRNIXF5/GxMRo3759nvV2u10HDx5UWlqaNy8FAAB6Ka+OfCxYsEDf//739fjjj2vGjBl688039eyzz+rZZ5+VJAUEBCg3N1dLly7Vddddp8TERD388MOKi4tTdnZ2V+QHAAA9jFflY8yYMXr55ZeVn5+vxx57TImJiVq9erXuuecez5xFixapsbFR9913n+rr63Xbbbdpz549CgkJ8Xl4AADQ8wS43W63v0P8PbvdrqioKDU0NHDBKdDLHDn1qbLXV2r7L1I1aki0v+MA8CFv3r+5twsAADCK8gEAAIyifAAAAKMoHwAAwCjKBwAAMIryAQAAjKJ8AAAAoygfAADAKMoHAAAwivIBAACMonwAAACjKB8AAMAoygcAADCK8gEAAIyifAAAAKMoHwAAwCjKBwAAMIryAQAAjKJ8AAAAoygfAADAKMoHAAAwivIBAACMonwAAACjKB8AAMAoygcAADCK8gEAAIyifAAAAKMoHwAAwCjKBwAAMIryAQAAjKJ8AAAAo7wqH48++qgCAgLa/SQnJ3vWNzc3a86cOYqOjlZERIRycnJUV1fn89AAAKDn8vrIxw033KBz5855fg4cOOBZt2DBAu3YsUNbt25VWVmZzp49q2nTpvk0MAAA6NmCvH5CUJBiYmIuG29oaFBRUZE2b96sSZMmSZI2btyoESNGqLKyUqmpqZ1PCwAAejyvy8eJEycUFxenkJAQpaWlqbCwUAkJCaqqqpLT6VR6erpnbnJyshISElRRUfGV5cPhcMjhcHiW7Xa7JMnpdMrpdHobD0A31tra6nlk/wZ6F2/2aa/Kx9ixY7Vp0yYNHz5c586dU0FBgcaNG6fjx4+rtrZWwcHBGjBgQLvn2Gw21dbWfuU2CwsLVVBQcNl4SUmJwsLCvIkHoJs7c0GSglRZWakPj/s7DQBfampquuq5XpWPyZMne/48cuRIjR07VkOGDNFLL72k0NBQbzblkZ+fr7y8PM+y3W5XfHy8MjMzFRkZ2aFtAuiejp7+TDp2WKmpqbopYaC/4wDwoUtnLq6G16dd/t6AAQN0/fXX6+TJk8rIyFBLS4vq6+vbHf2oq6u74jUil1itVlmt1svGLRaLLBZLZ+IB6GaCgoI8j+zfQO/izT7dqe/5uHDhgt577z3FxsZq9OjRslgs2rdvn2d9dXW1Tp8+rbS0tM68DAAA6EW8OvJx//33a+rUqRoyZIjOnj2rRx55RIGBgZo5c6aioqI0e/Zs5eXlaeDAgYqMjNS8efOUlpbGJ10AAICHV+Xjgw8+0MyZM/Xpp5/q2muv1W233abKykpde+21kqRVq1apX79+ysnJkcPhUFZWltatW9clwQEAQM/kVfl44YUXvnZ9SEiI1q5dq7Vr13YqFAAA6L24twsAADCK8gEAAIyifAAAAKMoHwAAwCjKBwAAMIryAQAAjKJ8AAAAoygfAADAKMoHAAAwivIBAACMonwAAACjKB8AAMAoygcAADCK8gEAAIyifAAAAKMoHwAAwCjKBwAAMIryAQAAjKJ8AAAAoygfAADAKMoHAAAwivIBAACMonwAAACjKB8AAMAoygcAADCK8gEAAIyifAAAAKMoHwAAwCjKBwAAMIryAQAAjKJ8AAAAozpVPp544gkFBAQoNzfXM9bc3Kw5c+YoOjpaERERysnJUV1dXWdzAgCAXqLD5ePQoUP67W9/q5EjR7YbX7BggXbs2KGtW7eqrKxMZ8+e1bRp0zodFAAA9A4dKh8XLlzQPffco3/7t3/Tt771Lc94Q0ODioqKtHLlSk2aNEmjR4/Wxo0b9cYbb6iystJnoQEAQM8V1JEnzZkzR1OmTFF6erqWLl3qGa+qqpLT6VR6erpnLDk5WQkJCaqoqFBqaupl23I4HHI4HJ5lu90uSXI6nXI6nR2JB6Cbam1t9TyyfwO9izf7tNfl44UXXtBbb72lQ4cOXbautrZWwcHBGjBgQLtxm82m2traK26vsLBQBQUFl42XlJQoLCzM23gAurEzFyQpSJWVlfrwuL/TAPClpqamq57rVfk4c+aMfvWrX6m0tFQhISFeB7uS/Px85eXleZbtdrvi4+OVmZmpyMhIn7wGgO7h6OnPpGOHlZqaqpsSBvo7DgAfunTm4mp4VT6qqqr00Ucf6eabb/aMuVwu7d+/X88884z27t2rlpYW1dfXtzv6UVdXp5iYmCtu02q1ymq1XjZusVhksVi8iQegmwsKCvI8sn8DvYs3+7RX5eMHP/iBjh071m7spz/9qZKTk/XrX/9a8fHxslgs2rdvn3JyciRJ1dXVOn36tNLS0rx5KQAA0Et5VT769++vG2+8sd1YeHi4oqOjPeOzZ89WXl6eBg4cqMjISM2bN09paWlXvNgUAAD0PR36tMvXWbVqlfr166ecnBw5HA5lZWVp3bp1vn4ZAADQQ3W6fLz++uvtlkNCQrR27VqtXbu2s5sGAAC9EPd2AQAARvn8tAuA7qPmk0Y1Olr9HcPjvY8bPY+XPvnSXYRbg5R4Tbi/YwB9Qvfa+wH4TM0njZr4m9f9HeOKFm479s2T/OC1+2+ngAAGUD6AXurSEY/Vd41S0qAIP6f5QuNFh3a+XqEf3p6m8NDLv9/HX05+dEG5Lx7pVkeJgN6M8gH0ckmDInTjt6P8HUPSF/d+qL1WunnIt/iSMaAP44JTAABgFOUDAAAYRfkAAABGUT4AAIBRlA8AAGAU5QMAABhF+QAAAEZRPgAAgFGUDwAAYBTlAwAAGEX5AAAARlE+AACAUZQPAABgFOUDAAAYRfkAAABGUT4AAIBRlA8AAGAU5QMAABhF+QAAAEZRPgAAgFGUDwAAYBTlAwAAGEX5AAAARlE+AACAUZQPAABgFOUDAAAY5VX5WL9+vUaOHKnIyEhFRkYqLS1Nu3fv9qxvbm7WnDlzFB0drYiICOXk5Kiurs7noQEAQM/lVfkYPHiwnnjiCVVVVenw4cOaNGmS7rzzTv3lL3+RJC1YsEA7duzQ1q1bVVZWprNnz2ratGldEhwAAPRMQd5Mnjp1arvlZcuWaf369aqsrNTgwYNVVFSkzZs3a9KkSZKkjRs3asSIEaqsrFRqaqrvUgMAgB6rw9d8uFwuvfDCC2psbFRaWpqqqqrkdDqVnp7umZOcnKyEhARVVFT4JCwAAOj5vDryIUnHjh1TWlqampubFRERoZdfflnf+c53dOTIEQUHB2vAgAHt5ttsNtXW1n7l9hwOhxwOh2fZbrdLkpxOp5xOp7fxAPyP1tZWz2N32Zcu5egueS7pjv9WQE/jzb7jdfkYPny4jhw5ooaGBm3btk2zZs1SWVmZt5vxKCwsVEFBwWXjJSUlCgsL6/B2gb7uzAVJCtKBAwd0KsLfadorLS31d4R2uvO/FdBTNDU1XfXcALfb7e7Mi6Wnp2vYsGG666679IMf/ECff/55u6MfQ4YMUW5urhYsWHDF51/pyEd8fLw++eQTRUZGdiYa0Kf95axd2esrtf0XqbohrnvsS06nU6WlpcrIyJDFYvF3HI/u+G8F9DR2u13XXHONGhoavvH92+sjH1/W1tYmh8Oh0aNHy2KxaN++fcrJyZEkVVdX6/Tp00pLS/vK51utVlmt1svGLRZLt/rlBPQ0QUFBnsfuti91t/27O/9bAT2FN/uOV+UjPz9fkydPVkJCgs6fP6/Nmzfr9ddf1969exUVFaXZs2crLy9PAwcOVGRkpObNm6e0tDQ+6QIAADy8Kh8fffSR/umf/knnzp1TVFSURo4cqb179yojI0OStGrVKvXr1085OTlyOBzKysrSunXruiQ4AADombwqH0VFRV+7PiQkRGvXrtXatWs7FQoAAPRe3NsFAAAY1ekLTgF0XwFBdtXYq9UvpHt8frS1tVVnW8/qnc/e8Vzk2R3U2C8oIMju7xhAn9F99n4APmcZcFAPvvm4v2NcZt2e7nctmGXADyTd4e8YQJ9A+QB6MWf9WK2Y8n81bFD3OfLxxwN/1K233dqtjny899EFzf/9e/6OAfQZ3WfvB+Bz7tZIJUYO13eio/wdRdIXXzJWE1SjEQNHdKvv02hrbpC79WN/xwD6DC44BQAARlE+AACAUZQPAABgFOUDAAAYRfkAAABGUT4AAIBRlA8AAGAU5QMAABhF+QAAAEZRPgAAgFGUDwAAYBTlAwAAGEX5AAAARlE+AACAUZQPAABgFOUDAAAYRfkAAABGUT4AAIBRlA8AAGAU5QMAABhF+QAAAEZRPgAAgFGUDwAAYBTlAwAAGEX5AAAARlE+AACAUZQPAABglFflo7CwUGPGjFH//v01aNAgZWdnq7q6ut2c5uZmzZkzR9HR0YqIiFBOTo7q6up8GhoAAPRcXpWPsrIyzZkzR5WVlSotLZXT6VRmZqYaGxs9cxYsWKAdO3Zo69atKisr09mzZzVt2jSfBwcAAD1TkDeT9+zZ025506ZNGjRokKqqqjR+/Hg1NDSoqKhImzdv1qRJkyRJGzdu1IgRI1RZWanU1FTfJQfwtS46XZKk4x82+DnJ/2q86NDhj6WYU58rPNTq7zgeJz+64O8IQJ/iVfn4soaGL36pDRw4UJJUVVUlp9Op9PR0z5zk5GQlJCSooqLiiuXD4XDI4XB4lu12uyTJ6XTK6XR2Jh7Qp7177ov9c3HxMT8n+bIgPX/ykL9DXJE10M3vHaCDvNl3Olw+2tralJubq1tvvVU33nijJKm2tlbBwcEaMGBAu7k2m021tbVX3E5hYaEKCgouGy8pKVFYWFhH4wFwSnf/nwANCnUruJtcWl53UXr+ZJD+X1KrbKH+TtOeNVB6+2CZ3vZ3EKCHampquuq5HS4fc+bM0fHjx3XgwIGObkKSlJ+fr7y8PM+y3W5XfHy8MjMzFRkZ2altA33dDH8H+JKjpz/T8ycP686JqbopYaC/4wDwoUtnLq5Gh8rH3LlztXPnTu3fv1+DBw/2jMfExKilpUX19fXtjn7U1dUpJibmituyWq2yWi8/92uxWGSxWDoSD0A3FRQU5Hlk/wZ6F2/2aa8Oxrrdbs2dO1cvv/yyXn31VSUmJrZbP3r0aFksFu3bt88zVl1drdOnTystLc2blwIAAL2UV0c+5syZo82bN+u//uu/1L9/f891HFFRUQoNDVVUVJRmz56tvLw8DRw4UJGRkZo3b57S0tL4pAsAAJDkZflYv369JOn2229vN75x40b95Cc/kSStWrVK/fr1U05OjhwOh7KysrRu3TqfhAUAAD2fV+XD7XZ/45yQkBCtXbtWa9eu7XAoAADQe3WTD+ABAIC+gvIBAACMonwAAACjKB8AAMAoygcAADCK8gEAAIyifAAAAKMoHwAAwCjKBwAAMIryAQAAjKJ8AAAAoygfAADAKMoHAAAwivIBAACMonwAAACjKB8AAMAoygcAADCK8gEAAIyifAAAAKMoHwAAwCjKBwAAMIryAQAAjKJ8AAAAoygfAADAKMoHAAAwivIBAACMonwAAACjKB8AAMAoygcAADCK8gEAAIyifAAAAKO8Lh/79+/X1KlTFRcXp4CAAG3fvr3derfbrSVLlig2NlahoaFKT0/XiRMnfJUXAAD0cF6Xj8bGRt10001au3btFdcvX75cTz/9tDZs2KCDBw8qPDxcWVlZam5u7nRYAADQ8wV5+4TJkydr8uTJV1zndru1evVqPfTQQ7rzzjslSc8995xsNpu2b9+uu+++u3NpAQBAj+d1+fg6NTU1qq2tVXp6umcsKipKY8eOVUVFxRXLh8PhkMPh8Czb7XZJktPplNPp9GU8AH7W2trqeWT/BnoXb/Zpn5aP2tpaSZLNZms3brPZPOu+rLCwUAUFBZeNl5SUKCwszJfxAPjZmQuSFKTKykp9eNzfaQD4UlNT01XP9Wn56Ij8/Hzl5eV5lu12u+Lj45WZmanIyEg/JgPga0dPfyYdO6zU1FTdlDDQ33EA+NClMxdXw6flIyYmRpJUV1en2NhYz3hdXZ1GjRp1xedYrVZZrdbLxi0WiywWiy/jAfCzoKAgzyP7N9C7eLNP+/R7PhITExUTE6N9+/Z5xux2uw4ePKi0tDRfvhQAAOihvD7yceHCBZ08edKzXFNToyNHjmjgwIFKSEhQbm6uli5dquuuu06JiYl6+OGHFRcXp+zsbF/mBgAAPZTX5ePw4cOaOHGiZ/nS9RqzZs3Spk2btGjRIjU2Nuq+++5TfX29brvtNu3Zs0chISG+Sw0AAHosr8vH7bffLrfb/ZXrAwIC9Nhjj+mxxx7rVDAAANA7cW8XAABgFOUDAAAYRfkAAABGUT4AAIBRlA8AAGAU5QMAABhF+QAAAEZRPgAAgFGUDwAAYBTlAwAAGEX5AAAARlE+AACAUZQPAABgFOUDAAAYRfkAAABGUT4AAIBRlA8AAGAU5QMAABhF+QAAAEZRPgAAgFGUDwAAYBTlAwAAGEX5AAAARlE+AACAUZQPAABgFOUDAAAYRfkAAABGUT4AAIBRlA8AAGAU5QMAABhF+QAAAEZ1WflYu3athg4dqpCQEI0dO1ZvvvlmV70UAADoQYK6YqMvvvii8vLytGHDBo0dO1arV69WVlaWqqurNWjQoK54SQBdqKmpSX/96187vZ3qc/Vy1J7UO8dD1fbpgM4Hk5ScnKywsDCfbAuAGQFut9vt642OHTtWY8aM0TPPPCNJamtrU3x8vObNm6fFixd/7XPtdruioqLU0NCgyMhIX0cD0AFvvfWWRo8e7e8YV1RVVaWbb77Z3zGAPs+b92+fH/loaWlRVVWV8vPzPWP9+vVTenq6KioqLpvvcDjkcDg8y3a7XZLkdDrldDp9HQ9ABwwbNkwHDx7s9HYuXHRob/khZY0bo4hQqw+SfZGN3xWA/3mzH/q8fHzyySdyuVyy2Wztxm022xUP2xYWFqqgoOCy8ZKSEg6lAr3Q91OG6Xz9Zzpf75vtnTt3zjcbAtApTU1NVz23S6758EZ+fr7y8vI8y3a7XfHx8crMzOS0C9DLOJ1OlZaWKiMjQxaLxd9xAPjQpTMXV8Pn5eOaa65RYGCg6urq2o3X1dUpJibmsvlWq1VW6+WHXy0WC7+cgF6K/RvofbzZp33+Udvg4GCNHj1a+/bt84y1tbVp3759SktL8/XLAQCAHqZLTrvk5eVp1qxZuuWWW/S9731Pq1evVmNjo3760592xcsBAIAepEvKx1133aWPP/5YS5YsUW1trUaNGqU9e/ZcdhEqAADoe7rsgtO5c+dq7ty5XbV5AADQQ3FvFwAAYBTlAwAAGEX5AAAARlE+AACAUZQPAABgFOUDAAAYRfkAAABG+f3Gcl/mdrsleXeDGgA9g9PpVFNTk+x2O/d2AXqZS+/bl97Hv063Kx/nz5+XJMXHx/s5CQAA8Nb58+cVFRX1tXMC3FdTUQxqa2vT2bNn1b9/fwUEBPg7DgAfstvtio+P15kzZxQZGenvOAB8yO126/z584qLi1O/fl9/VUe3Kx8Aei+73a6oqCg1NDRQPoA+jAtOAQCAUZQPAABgFOUDgDFWq1WPPPKIrFarv6MA8COu+QAAAEZx5AMAABhF+QAAAEZRPgAAgFGUDwAAYBTlA4BPVFRUKDAwUFOmTPF3FADdHJ92AeAT9957ryIiIlRUVKTq6mrFxcX5OxKAboojHwA67cKFC3rxxRf1i1/8QlOmTNGmTZvarf/DH/6g6667TiEhIZo4caL+4z/+QwEBAaqvr/fMOXDggMaNG6fQ0FDFx8dr/vz5amxsNPsXAWAE5QNAp7300ktKTk7W8OHD9eMf/1j//u//7rmtdk1NjaZPn67s7GwdPXpUP//5z/Uv//Iv7Z7/3nvv6R/+4R+Uk5OjP//5z3rxxRd14MABzZ071x9/HQBdjNMuADrt1ltv1YwZM/SrX/1Kra2tio2N1datW3X77bdr8eLFeuWVV3Ts2DHP/IceekjLli3T559/rgEDBujee+9VYGCgfvvb33rmHDhwQBMmTFBjY6NCQkL88dcC0EU48gGgU6qrq/Xmm29q5syZkqSgoCDdddddKioq8qwfM2ZMu+d873vfa7d89OhRbdq0SREREZ6frKwstbW1qaamxsxfBIAxQf4OAKBnKyoqUmtra7sLTN1ut6xWq5555pmr2saFCxf085//XPPnz79sXUJCgs+yAugeKB8AOqy1tVXPPfecVqxYoczMzHbrsrOztWXLFg0fPly7du1qt+7QoUPtlm+++Wa9/fbbSkpK6vLMAPyPaz4AdNj27dt111136aOPPlJUVFS7db/+9a/16quv6qWXXtLw4cO1YMECzZ49W0eOHNHChQv1wQcfqL6+XlFRUfrzn/+s1NRU/exnP9O9996r8PBwvf322yotLb3qoycAeg6u+QDQYUVFRUpPT7+seEhSTk6ODh8+rPPnz2vbtm0qLi7WyJEjtX79es+nXaxWqyRp5MiRKisr07vvvqtx48bpu9/9rpYsWcJ3hQC9FEc+ABi3bNkybdiwQWfOnPF3FAB+wDUfALrcunXrNGbMGEVHR+uPf/yjnnrqKb7DA+jDKB8AutyJEye0dOlSffbZZ0pISNDChQuVn5/v71gA/ITTLgAAwCguOAUAAEZRPgAAgFGUDwAAYBTlAwAAGEX5AAAARlE+AACAUZQPAABgFOUDAAAYRfkAAABG/X9Yms5FnRz1tgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "titanic.boxplot(column=\"Age\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Отсечение данных для признака Возраст, значение которых больше 65 лет" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NameAgeAgeClip
34Wheadon, Mr. Edward H66.065.0
97Goldschmidt, Mr. George B71.065.0
117Connors, Mr. Patrick70.565.0
494Artagaveytia, Mr. Ramon71.065.0
631Barkworth, Mr. Algernon Henry Wilson80.065.0
673Mitchell, Mr. Henry Michael70.065.0
746Crosby, Capt. Edward Gifford70.065.0
852Svensson, Mr. Johan74.065.0
\n", + "
" + ], + "text/plain": [ + " Name Age AgeClip\n", + "34 Wheadon, Mr. Edward H 66.0 65.0\n", + "97 Goldschmidt, Mr. George B 71.0 65.0\n", + "117 Connors, Mr. Patrick 70.5 65.0\n", + "494 Artagaveytia, Mr. Ramon 71.0 65.0\n", + "631 Barkworth, Mr. Algernon Henry Wilson 80.0 65.0\n", + "673 Mitchell, Mr. Henry Michael 70.0 65.0\n", + "746 Crosby, Capt. Edward Gifford 70.0 65.0\n", + "852 Svensson, Mr. Johan 74.0 65.0" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "titanic_norm = titanic.copy()\n", + "\n", + "titanic_norm[\"AgeClip\"] = titanic[\"Age\"].clip(0, 65);\n", + "\n", + "titanic_norm[titanic_norm[\"Age\"] > 65][[\"Name\", \"Age\", \"AgeClip\"]]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Винсоризация признака Возраст" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "56.0\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NameAgeAgeWinsorize
34Wheadon, Mr. Edward H66.054.0
97Goldschmidt, Mr. George B71.054.0
117Connors, Mr. Patrick70.554.0
494Artagaveytia, Mr. Ramon71.054.0
631Barkworth, Mr. Algernon Henry Wilson80.054.0
673Mitchell, Mr. Henry Michael70.054.0
746Crosby, Capt. Edward Gifford70.054.0
852Svensson, Mr. Johan74.054.0
\n", + "
" + ], + "text/plain": [ + " Name Age AgeWinsorize\n", + "34 Wheadon, Mr. Edward H 66.0 54.0\n", + "97 Goldschmidt, Mr. George B 71.0 54.0\n", + "117 Connors, Mr. Patrick 70.5 54.0\n", + "494 Artagaveytia, Mr. Ramon 71.0 54.0\n", + "631 Barkworth, Mr. Algernon Henry Wilson 80.0 54.0\n", + "673 Mitchell, Mr. Henry Michael 70.0 54.0\n", + "746 Crosby, Capt. Edward Gifford 70.0 54.0\n", + "852 Svensson, Mr. Johan 74.0 54.0" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from scipy.stats.mstats import winsorize\n", + "\n", + "print(titanic_norm[\"Age\"].quantile(q=0.95))\n", + "\n", + "titanic_norm[\"AgeWinsorize\"] = winsorize(\n", + " titanic_norm[\"Age\"].fillna(titanic_norm[\"Age\"].mean()), (0, 0.05), inplace=False\n", + ")\n", + "\n", + "titanic_norm[titanic_norm[\"Age\"] > 65][[\"Name\", \"Age\", \"AgeWinsorize\"]]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Нормализация значений" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NameAgeAgeNormAgeClipNormAgeWinsorizeNormAgeWinsorizeNorm2
1Braund, Mr. Owen Harris22.00.2711740.3341590.402762-0.194476
2Cumings, Mrs. John Bradley (Florence Briggs Th...38.00.4722290.5819140.7013810.402762
3Heikkinen, Miss. Laina26.00.3214380.3960980.477417-0.045166
4Futrelle, Mrs. Jacques Heath (Lily May Peel)35.00.4345310.5354600.6453900.290780
5Allen, Mr. William Henry35.00.4345310.5354600.6453900.290780
6Moran, Mr. JamesNaNNaNNaN0.5464560.092912
7McCarthy, Mr. Timothy J54.00.6732850.8296691.0000001.000000
8Palsson, Master. Gosta Leonard2.00.0198540.0244660.029489-0.941023
9Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)27.00.3340040.4115830.496081-0.007839
10Nasser, Mrs. Nicholas (Adele Achem)14.00.1706460.2102820.253453-0.493094
11Sandstrom, Miss. Marguerite Rut4.00.0449860.0554350.066816-0.866368
12Bonnell, Miss. Elizabeth58.00.7235490.8916071.0000001.000000
13Saundercock, Mr. William Henry20.00.2460420.3031900.365435-0.269130
14Andersson, Mr. Anders Johan39.00.4847950.5973990.7200450.440090
15Vestrom, Miss. Hulda Amanda Adolfina14.00.1706460.2102820.253453-0.493094
16Hewlett, Mrs. (Mary D Kingcome)55.00.6858510.8451531.0000001.000000
17Rice, Master. Eugene2.00.0198540.0244660.029489-0.941023
18Williams, Mr. Charles EugeneNaNNaNNaN0.5464560.092912
19Vander Planke, Mrs. Julius (Emelia Maria Vande...31.00.3842670.4735210.5707350.141471
20Masselmani, Mrs. FatimaNaNNaNNaN0.5464560.092912
\n", + "
" + ], + "text/plain": [ + " Name Age AgeNorm \\\n", + "1 Braund, Mr. Owen Harris 22.0 0.271174 \n", + "2 Cumings, Mrs. John Bradley (Florence Briggs Th... 38.0 0.472229 \n", + "3 Heikkinen, Miss. Laina 26.0 0.321438 \n", + "4 Futrelle, Mrs. Jacques Heath (Lily May Peel) 35.0 0.434531 \n", + "5 Allen, Mr. William Henry 35.0 0.434531 \n", + "6 Moran, Mr. James NaN NaN \n", + "7 McCarthy, Mr. Timothy J 54.0 0.673285 \n", + "8 Palsson, Master. Gosta Leonard 2.0 0.019854 \n", + "9 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) 27.0 0.334004 \n", + "10 Nasser, Mrs. Nicholas (Adele Achem) 14.0 0.170646 \n", + "11 Sandstrom, Miss. Marguerite Rut 4.0 0.044986 \n", + "12 Bonnell, Miss. Elizabeth 58.0 0.723549 \n", + "13 Saundercock, Mr. William Henry 20.0 0.246042 \n", + "14 Andersson, Mr. Anders Johan 39.0 0.484795 \n", + "15 Vestrom, Miss. Hulda Amanda Adolfina 14.0 0.170646 \n", + "16 Hewlett, Mrs. (Mary D Kingcome) 55.0 0.685851 \n", + "17 Rice, Master. Eugene 2.0 0.019854 \n", + "18 Williams, Mr. Charles Eugene NaN NaN \n", + "19 Vander Planke, Mrs. Julius (Emelia Maria Vande... 31.0 0.384267 \n", + "20 Masselmani, Mrs. Fatima NaN NaN \n", + "\n", + " AgeClipNorm AgeWinsorizeNorm AgeWinsorizeNorm2 \n", + "1 0.334159 0.402762 -0.194476 \n", + "2 0.581914 0.701381 0.402762 \n", + "3 0.396098 0.477417 -0.045166 \n", + "4 0.535460 0.645390 0.290780 \n", + "5 0.535460 0.645390 0.290780 \n", + "6 NaN 0.546456 0.092912 \n", + "7 0.829669 1.000000 1.000000 \n", + "8 0.024466 0.029489 -0.941023 \n", + "9 0.411583 0.496081 -0.007839 \n", + "10 0.210282 0.253453 -0.493094 \n", + "11 0.055435 0.066816 -0.866368 \n", + "12 0.891607 1.000000 1.000000 \n", + "13 0.303190 0.365435 -0.269130 \n", + "14 0.597399 0.720045 0.440090 \n", + "15 0.210282 0.253453 -0.493094 \n", + "16 0.845153 1.000000 1.000000 \n", + "17 0.024466 0.029489 -0.941023 \n", + "18 NaN 0.546456 0.092912 \n", + "19 0.473521 0.570735 0.141471 \n", + "20 NaN 0.546456 0.092912 " + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn import preprocessing\n", + "\n", + "min_max_scaler = preprocessing.MinMaxScaler()\n", + "\n", + "min_max_scaler_2 = preprocessing.MinMaxScaler(feature_range=(-1, 1))\n", + "\n", + "titanic_norm[\"AgeNorm\"] = min_max_scaler.fit_transform(\n", + " titanic_norm[\"Age\"].to_numpy().reshape(-1, 1)\n", + ").reshape(titanic_norm[\"Age\"].shape)\n", + "\n", + "titanic_norm[\"AgeClipNorm\"] = min_max_scaler.fit_transform(\n", + " titanic_norm[\"AgeClip\"].to_numpy().reshape(-1, 1)\n", + ").reshape(titanic_norm[\"Age\"].shape)\n", + "\n", + "titanic_norm[\"AgeWinsorizeNorm\"] = min_max_scaler.fit_transform(\n", + " titanic_norm[\"AgeWinsorize\"].to_numpy().reshape(-1, 1)\n", + ").reshape(titanic_norm[\"Age\"].shape)\n", + "\n", + "titanic_norm[\"AgeWinsorizeNorm2\"] = min_max_scaler_2.fit_transform(\n", + " titanic_norm[\"AgeWinsorize\"].to_numpy().reshape(-1, 1)\n", + ").reshape(titanic_norm[\"Age\"].shape)\n", + "\n", + "titanic_norm[\n", + " [\"Name\", \"Age\", \"AgeNorm\", \"AgeClipNorm\", \"AgeWinsorizeNorm\", \"AgeWinsorizeNorm2\"]\n", + "].head(20)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Стандартизация значений" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NameAgeAgeStandAgeClipStandAgeWinsorizeStand
1Braund, Mr. Owen Harris22.0-0.530377-0.532745-0.606602
2Cumings, Mrs. John Bradley (Florence Briggs Th...38.00.5718310.5850600.718863
3Heikkinen, Miss. Laina26.0-0.254825-0.253294-0.275236
4Futrelle, Mrs. Jacques Heath (Lily May Peel)35.00.3651670.3754720.470339
5Allen, Mr. William Henry35.00.3651670.3754720.470339
6Moran, Mr. JamesNaNNaNNaN0.031205
7McCarthy, Mr. Timothy J54.01.6740391.7028662.044329
8Palsson, Master. Gosta Leonard2.0-1.908136-1.930003-2.263435
9Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)27.0-0.185937-0.183431-0.192394
10Nasser, Mrs. Nicholas (Adele Achem)14.0-1.081480-1.091648-1.269335
11Sandstrom, Miss. Marguerite Rut4.0-1.770360-1.790277-2.097751
12Bonnell, Miss. Elizabeth58.01.9495911.9823172.044329
13Saundercock, Mr. William Henry20.0-0.668153-0.672471-0.772286
14Andersson, Mr. Anders Johan39.00.6407190.6549230.801705
15Vestrom, Miss. Hulda Amanda Adolfina14.0-1.081480-1.091648-1.269335
16Hewlett, Mrs. (Mary D Kingcome)55.01.7429271.7727292.044329
17Rice, Master. Eugene2.0-1.908136-1.930003-2.263435
18Williams, Mr. Charles EugeneNaNNaNNaN0.031205
19Vander Planke, Mrs. Julius (Emelia Maria Vande...31.00.0896150.0960200.138972
20Masselmani, Mrs. FatimaNaNNaNNaN0.031205
\n", + "
" + ], + "text/plain": [ + " Name Age AgeStand \\\n", + "1 Braund, Mr. Owen Harris 22.0 -0.530377 \n", + "2 Cumings, Mrs. John Bradley (Florence Briggs Th... 38.0 0.571831 \n", + "3 Heikkinen, Miss. Laina 26.0 -0.254825 \n", + "4 Futrelle, Mrs. Jacques Heath (Lily May Peel) 35.0 0.365167 \n", + "5 Allen, Mr. William Henry 35.0 0.365167 \n", + "6 Moran, Mr. James NaN NaN \n", + "7 McCarthy, Mr. Timothy J 54.0 1.674039 \n", + "8 Palsson, Master. Gosta Leonard 2.0 -1.908136 \n", + "9 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) 27.0 -0.185937 \n", + "10 Nasser, Mrs. Nicholas (Adele Achem) 14.0 -1.081480 \n", + "11 Sandstrom, Miss. Marguerite Rut 4.0 -1.770360 \n", + "12 Bonnell, Miss. Elizabeth 58.0 1.949591 \n", + "13 Saundercock, Mr. William Henry 20.0 -0.668153 \n", + "14 Andersson, Mr. Anders Johan 39.0 0.640719 \n", + "15 Vestrom, Miss. Hulda Amanda Adolfina 14.0 -1.081480 \n", + "16 Hewlett, Mrs. (Mary D Kingcome) 55.0 1.742927 \n", + "17 Rice, Master. Eugene 2.0 -1.908136 \n", + "18 Williams, Mr. Charles Eugene NaN NaN \n", + "19 Vander Planke, Mrs. Julius (Emelia Maria Vande... 31.0 0.089615 \n", + "20 Masselmani, Mrs. Fatima NaN NaN \n", + "\n", + " AgeClipStand AgeWinsorizeStand \n", + "1 -0.532745 -0.606602 \n", + "2 0.585060 0.718863 \n", + "3 -0.253294 -0.275236 \n", + "4 0.375472 0.470339 \n", + "5 0.375472 0.470339 \n", + "6 NaN 0.031205 \n", + "7 1.702866 2.044329 \n", + "8 -1.930003 -2.263435 \n", + "9 -0.183431 -0.192394 \n", + "10 -1.091648 -1.269335 \n", + "11 -1.790277 -2.097751 \n", + "12 1.982317 2.044329 \n", + "13 -0.672471 -0.772286 \n", + "14 0.654923 0.801705 \n", + "15 -1.091648 -1.269335 \n", + "16 1.772729 2.044329 \n", + "17 -1.930003 -2.263435 \n", + "18 NaN 0.031205 \n", + "19 0.096020 0.138972 \n", + "20 NaN 0.031205 " + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn import preprocessing\n", + "\n", + "stndart_scaler = preprocessing.StandardScaler()\n", + "\n", + "titanic_norm[\"AgeStand\"] = stndart_scaler.fit_transform(\n", + " titanic_norm[\"Age\"].to_numpy().reshape(-1, 1)\n", + ").reshape(titanic_norm[\"Age\"].shape)\n", + "\n", + "titanic_norm[\"AgeClipStand\"] = stndart_scaler.fit_transform(\n", + " titanic_norm[\"AgeClip\"].to_numpy().reshape(-1, 1)\n", + ").reshape(titanic_norm[\"Age\"].shape)\n", + "\n", + "titanic_norm[\"AgeWinsorizeStand\"] = stndart_scaler.fit_transform(\n", + " titanic_norm[\"AgeWinsorize\"].to_numpy().reshape(-1, 1)\n", + ").reshape(titanic_norm[\"Age\"].shape)\n", + "\n", + "titanic_norm[[\"Name\", \"Age\", \"AgeStand\", \"AgeClipStand\", \"AgeWinsorizeStand\"]].head(20)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.7" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/poetry.lock b/poetry.lock new file mode 100644 index 0000000..741fb67 --- /dev/null +++ b/poetry.lock @@ -0,0 +1,3267 @@ +# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. + +[[package]] +name = "anyio" +version = "4.4.0" +description = "High level compatibility layer for multiple asynchronous event loop implementations" +optional = false +python-versions = ">=3.8" +files = [ + {file = "anyio-4.4.0-py3-none-any.whl", hash = "sha256:c1b2d8f46a8a812513012e1107cb0e68c17159a7a594208005a57dc776e1bdc7"}, + {file = "anyio-4.4.0.tar.gz", hash = "sha256:5aadc6a1bbb7cdb0bede386cac5e2940f5e2ff3aa20277e991cf028e0585ce94"}, +] + +[package.dependencies] +idna = ">=2.8" +sniffio = ">=1.1" + +[package.extras] +doc = ["Sphinx (>=7)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] +test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.17)"] +trio = ["trio (>=0.23)"] + +[[package]] +name = "apiflask" +version = "2.2.0" +description = "A lightweight web API framework based on Flask and marshmallow-code projects." +optional = false +python-versions = "*" +files = [ + {file = "APIFlask-2.2.0-py3-none-any.whl", hash = "sha256:dd0dc111538c7f284c09a01d90aaf04f1e716ba116886d5a3aa5b1ffa4cce2f4"}, + {file = "apiflask-2.2.0.tar.gz", hash = "sha256:17fc4d4e852a483c51e4c98f158113f00b41258de22ae323397766bd99335206"}, +] + +[package.dependencies] +apispec = ">=6" +flask = ">=2" +flask-httpauth = ">=4" +flask-marshmallow = ">=1.0.0" +marshmallow = ">=3.20" +webargs = ">=8.3" + +[package.extras] +async = ["asgiref (>=3.2)"] +dotenv = ["python-dotenv"] +yaml = ["pyyaml"] + +[[package]] +name = "apispec" +version = "6.6.1" +description = "A pluggable API specification generator. Currently supports the OpenAPI Specification (f.k.a. the Swagger specification)." +optional = false +python-versions = ">=3.8" +files = [ + {file = "apispec-6.6.1-py3-none-any.whl", hash = "sha256:6460315cb38ac6a2ff42d9e2b8dc0435c37d4428d3abeda96ff97b5dc8eb6b94"}, + {file = "apispec-6.6.1.tar.gz", hash = "sha256:f5caa47cee75fe03b9c50b5594048b4c052eeca2c212e0dac12dbb6175d9a659"}, +] + +[package.dependencies] +packaging = ">=21.3" + +[package.extras] +dev = ["apispec[tests]", "pre-commit (>=3.5,<4.0)", "tox"] +docs = ["apispec[marshmallow]", "pyyaml (==6.0.1)", "sphinx (==7.3.7)", "sphinx-issues (==4.1.0)", "sphinx-rtd-theme (==2.0.0)"] +marshmallow = ["marshmallow (>=3.18.0)"] +tests = ["apispec[marshmallow,yaml]", "openapi-spec-validator (==0.7.1)", "pytest"] +yaml = ["PyYAML (>=3.10)"] + +[[package]] +name = "appnope" +version = "0.1.4" +description = "Disable App Nap on macOS >= 10.9" +optional = false +python-versions = ">=3.6" +files = [ + {file = "appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c"}, + {file = "appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee"}, +] + +[[package]] +name = "argon2-cffi" +version = "23.1.0" +description = "Argon2 for Python" +optional = false +python-versions = ">=3.7" +files = [ + {file = "argon2_cffi-23.1.0-py3-none-any.whl", hash = "sha256:c670642b78ba29641818ab2e68bd4e6a78ba53b7eff7b4c3815ae16abf91c7ea"}, + {file = "argon2_cffi-23.1.0.tar.gz", hash = "sha256:879c3e79a2729ce768ebb7d36d4609e3a78a4ca2ec3a9f12286ca057e3d0db08"}, +] + +[package.dependencies] +argon2-cffi-bindings = "*" + +[package.extras] +dev = ["argon2-cffi[tests,typing]", "tox (>4)"] +docs = ["furo", "myst-parser", "sphinx", "sphinx-copybutton", "sphinx-notfound-page"] +tests = ["hypothesis", "pytest"] +typing = ["mypy"] + +[[package]] +name = "argon2-cffi-bindings" +version = "21.2.0" +description = "Low-level CFFI bindings for Argon2" +optional = false +python-versions = ">=3.6" +files = [ + {file = "argon2-cffi-bindings-21.2.0.tar.gz", hash = "sha256:bb89ceffa6c791807d1305ceb77dbfacc5aa499891d2c55661c6459651fc39e3"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:ccb949252cb2ab3a08c02024acb77cfb179492d5701c7cbdbfd776124d4d2367"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9524464572e12979364b7d600abf96181d3541da11e23ddf565a32e70bd4dc0d"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b746dba803a79238e925d9046a63aa26bf86ab2a2fe74ce6b009a1c3f5c8f2ae"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:58ed19212051f49a523abb1dbe954337dc82d947fb6e5a0da60f7c8471a8476c"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:bd46088725ef7f58b5a1ef7ca06647ebaf0eb4baff7d1d0d177c6cc8744abd86"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_i686.whl", hash = "sha256:8cd69c07dd875537a824deec19f978e0f2078fdda07fd5c42ac29668dda5f40f"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:f1152ac548bd5b8bcecfb0b0371f082037e47128653df2e8ba6e914d384f3c3e"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win32.whl", hash = "sha256:603ca0aba86b1349b147cab91ae970c63118a0f30444d4bc80355937c950c082"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win_amd64.whl", hash = "sha256:b2ef1c30440dbbcba7a5dc3e319408b59676e2e039e2ae11a8775ecf482b192f"}, + {file = "argon2_cffi_bindings-21.2.0-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:e415e3f62c8d124ee16018e491a009937f8cf7ebf5eb430ffc5de21b900dad93"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3e385d1c39c520c08b53d63300c3ecc28622f076f4c2b0e6d7e796e9f6502194"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c3e3cc67fdb7d82c4718f19b4e7a87123caf8a93fde7e23cf66ac0337d3cb3f"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6a22ad9800121b71099d0fb0a65323810a15f2e292f2ba450810a7316e128ee5"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f9f8b450ed0547e3d473fdc8612083fd08dd2120d6ac8f73828df9b7d45bb351"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:93f9bf70084f97245ba10ee36575f0c3f1e7d7724d67d8e5b08e61787c320ed7"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3b9ef65804859d335dc6b31582cad2c5166f0c3e7975f324d9ffaa34ee7e6583"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4966ef5848d820776f5f562a7d45fdd70c2f330c961d0d745b784034bd9f48d"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:20ef543a89dee4db46a1a6e206cd015360e5a75822f76df533845c3cbaf72670"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ed2937d286e2ad0cc79a7087d3c272832865f779430e0cc2b4f3718d3159b0cb"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5e00316dabdaea0b2dd82d141cc66889ced0cdcbfa599e8b471cf22c620c329a"}, +] + +[package.dependencies] +cffi = ">=1.0.1" + +[package.extras] +dev = ["cogapp", "pre-commit", "pytest", "wheel"] +tests = ["pytest"] + +[[package]] +name = "arrow" +version = "1.3.0" +description = "Better dates & times for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "arrow-1.3.0-py3-none-any.whl", hash = "sha256:c728b120ebc00eb84e01882a6f5e7927a53960aa990ce7dd2b10f39005a67f80"}, + {file = "arrow-1.3.0.tar.gz", hash = "sha256:d4540617648cb5f895730f1ad8c82a65f2dad0166f57b75f3ca54759c4d67a85"}, +] + +[package.dependencies] +python-dateutil = ">=2.7.0" +types-python-dateutil = ">=2.8.10" + +[package.extras] +doc = ["doc8", "sphinx (>=7.0.0)", "sphinx-autobuild", "sphinx-autodoc-typehints", "sphinx_rtd_theme (>=1.3.0)"] +test = ["dateparser (==1.*)", "pre-commit", "pytest", "pytest-cov", "pytest-mock", "pytz (==2021.1)", "simplejson (==3.*)"] + +[[package]] +name = "asttokens" +version = "2.4.1" +description = "Annotate AST trees with source code positions" +optional = false +python-versions = "*" +files = [ + {file = "asttokens-2.4.1-py2.py3-none-any.whl", hash = "sha256:051ed49c3dcae8913ea7cd08e46a606dba30b79993209636c4875bc1d637bc24"}, + {file = "asttokens-2.4.1.tar.gz", hash = "sha256:b03869718ba9a6eb027e134bfdf69f38a236d681c83c160d510768af11254ba0"}, +] + +[package.dependencies] +six = ">=1.12.0" + +[package.extras] +astroid = ["astroid (>=1,<2)", "astroid (>=2,<4)"] +test = ["astroid (>=1,<2)", "astroid (>=2,<4)", "pytest"] + +[[package]] +name = "async-lru" +version = "2.0.4" +description = "Simple LRU cache for asyncio" +optional = false +python-versions = ">=3.8" +files = [ + {file = "async-lru-2.0.4.tar.gz", hash = "sha256:b8a59a5df60805ff63220b2a0c5b5393da5521b113cd5465a44eb037d81a5627"}, + {file = "async_lru-2.0.4-py3-none-any.whl", hash = "sha256:ff02944ce3c288c5be660c42dbcca0742b32c3b279d6dceda655190240b99224"}, +] + +[[package]] +name = "attrs" +version = "24.2.0" +description = "Classes Without Boilerplate" +optional = false +python-versions = ">=3.7" +files = [ + {file = "attrs-24.2.0-py3-none-any.whl", hash = "sha256:81921eb96de3191c8258c199618104dd27ac608d9366f5e35d011eae1867ede2"}, + {file = "attrs-24.2.0.tar.gz", hash = "sha256:5cfb1b9148b5b086569baec03f20d7b6bf3bcacc9a42bebf87ffaaca362f6346"}, +] + +[package.extras] +benchmark = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-codspeed", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +cov = ["cloudpickle", "coverage[toml] (>=5.3)", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +dev = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pre-commit", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +docs = ["cogapp", "furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +tests = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +tests-mypy = ["mypy (>=1.11.1)", "pytest-mypy-plugins"] + +[[package]] +name = "babel" +version = "2.16.0" +description = "Internationalization utilities" +optional = false +python-versions = ">=3.8" +files = [ + {file = "babel-2.16.0-py3-none-any.whl", hash = "sha256:368b5b98b37c06b7daf6696391c3240c938b37767d4584413e8438c5c435fa8b"}, + {file = "babel-2.16.0.tar.gz", hash = "sha256:d1f3554ca26605fe173f3de0c65f750f5a42f924499bf134de6423582298e316"}, +] + +[package.extras] +dev = ["freezegun (>=1.0,<2.0)", "pytest (>=6.0)", "pytest-cov"] + +[[package]] +name = "beautifulsoup4" +version = "4.12.3" +description = "Screen-scraping library" +optional = false +python-versions = ">=3.6.0" +files = [ + {file = "beautifulsoup4-4.12.3-py3-none-any.whl", hash = "sha256:b80878c9f40111313e55da8ba20bdba06d8fa3969fc68304167741bbf9e082ed"}, + {file = "beautifulsoup4-4.12.3.tar.gz", hash = "sha256:74e3d1928edc070d21748185c46e3fb33490f22f52a3addee9aee0f4f7781051"}, +] + +[package.dependencies] +soupsieve = ">1.2" + +[package.extras] +cchardet = ["cchardet"] +chardet = ["chardet"] +charset-normalizer = ["charset-normalizer"] +html5lib = ["html5lib"] +lxml = ["lxml"] + +[[package]] +name = "bleach" +version = "6.1.0" +description = "An easy safelist-based HTML-sanitizing tool." +optional = false +python-versions = ">=3.8" +files = [ + {file = "bleach-6.1.0-py3-none-any.whl", hash = "sha256:3225f354cfc436b9789c66c4ee030194bee0568fbf9cbdad3bc8b5c26c5f12b6"}, + {file = "bleach-6.1.0.tar.gz", hash = "sha256:0a31f1837963c41d46bbf1331b8778e1308ea0791db03cc4e7357b97cf42a8fe"}, +] + +[package.dependencies] +six = ">=1.9.0" +webencodings = "*" + +[package.extras] +css = ["tinycss2 (>=1.1.0,<1.3)"] + +[[package]] +name = "blinker" +version = "1.8.2" +description = "Fast, simple object-to-object and broadcast signaling" +optional = false +python-versions = ">=3.8" +files = [ + {file = "blinker-1.8.2-py3-none-any.whl", hash = "sha256:1779309f71bf239144b9399d06ae925637cf6634cf6bd131104184531bf67c01"}, + {file = "blinker-1.8.2.tar.gz", hash = "sha256:8f77b09d3bf7c795e969e9486f39c2c5e9c39d4ee07424be2bc594ece9642d83"}, +] + +[[package]] +name = "certifi" +version = "2024.8.30" +description = "Python package for providing Mozilla's CA Bundle." +optional = false +python-versions = ">=3.6" +files = [ + {file = "certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8"}, + {file = "certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9"}, +] + +[[package]] +name = "cffi" +version = "1.17.0" +description = "Foreign Function Interface for Python calling C code." +optional = false +python-versions = ">=3.8" +files = [ + {file = "cffi-1.17.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f9338cc05451f1942d0d8203ec2c346c830f8e86469903d5126c1f0a13a2bcbb"}, + {file = "cffi-1.17.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a0ce71725cacc9ebf839630772b07eeec220cbb5f03be1399e0457a1464f8e1a"}, + {file = "cffi-1.17.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c815270206f983309915a6844fe994b2fa47e5d05c4c4cef267c3b30e34dbe42"}, + {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d6bdcd415ba87846fd317bee0774e412e8792832e7805938987e4ede1d13046d"}, + {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8a98748ed1a1df4ee1d6f927e151ed6c1a09d5ec21684de879c7ea6aa96f58f2"}, + {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0a048d4f6630113e54bb4b77e315e1ba32a5a31512c31a273807d0027a7e69ab"}, + {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:24aa705a5f5bd3a8bcfa4d123f03413de5d86e497435693b638cbffb7d5d8a1b"}, + {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:856bf0924d24e7f93b8aee12a3a1095c34085600aa805693fb7f5d1962393206"}, + {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:4304d4416ff032ed50ad6bb87416d802e67139e31c0bde4628f36a47a3164bfa"}, + {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:331ad15c39c9fe9186ceaf87203a9ecf5ae0ba2538c9e898e3a6967e8ad3db6f"}, + {file = "cffi-1.17.0-cp310-cp310-win32.whl", hash = "sha256:669b29a9eca6146465cc574659058ed949748f0809a2582d1f1a324eb91054dc"}, + {file = "cffi-1.17.0-cp310-cp310-win_amd64.whl", hash = "sha256:48b389b1fd5144603d61d752afd7167dfd205973a43151ae5045b35793232aa2"}, + {file = "cffi-1.17.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c5d97162c196ce54af6700949ddf9409e9833ef1003b4741c2b39ef46f1d9720"}, + {file = "cffi-1.17.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5ba5c243f4004c750836f81606a9fcb7841f8874ad8f3bf204ff5e56332b72b9"}, + {file = "cffi-1.17.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bb9333f58fc3a2296fb1d54576138d4cf5d496a2cc118422bd77835e6ae0b9cb"}, + {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:435a22d00ec7d7ea533db494da8581b05977f9c37338c80bc86314bec2619424"}, + {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d1df34588123fcc88c872f5acb6f74ae59e9d182a2707097f9e28275ec26a12d"}, + {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:df8bb0010fdd0a743b7542589223a2816bdde4d94bb5ad67884348fa2c1c67e8"}, + {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8b5b9712783415695663bd463990e2f00c6750562e6ad1d28e072a611c5f2a6"}, + {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ffef8fd58a36fb5f1196919638f73dd3ae0db1a878982b27a9a5a176ede4ba91"}, + {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:4e67d26532bfd8b7f7c05d5a766d6f437b362c1bf203a3a5ce3593a645e870b8"}, + {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:45f7cd36186db767d803b1473b3c659d57a23b5fa491ad83c6d40f2af58e4dbb"}, + {file = "cffi-1.17.0-cp311-cp311-win32.whl", hash = "sha256:a9015f5b8af1bb6837a3fcb0cdf3b874fe3385ff6274e8b7925d81ccaec3c5c9"}, + {file = "cffi-1.17.0-cp311-cp311-win_amd64.whl", hash = "sha256:b50aaac7d05c2c26dfd50c3321199f019ba76bb650e346a6ef3616306eed67b0"}, + {file = "cffi-1.17.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:aec510255ce690d240f7cb23d7114f6b351c733a74c279a84def763660a2c3bc"}, + {file = "cffi-1.17.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2770bb0d5e3cc0e31e7318db06efcbcdb7b31bcb1a70086d3177692a02256f59"}, + {file = "cffi-1.17.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:db9a30ec064129d605d0f1aedc93e00894b9334ec74ba9c6bdd08147434b33eb"}, + {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a47eef975d2b8b721775a0fa286f50eab535b9d56c70a6e62842134cf7841195"}, + {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f3e0992f23bbb0be00a921eae5363329253c3b86287db27092461c887b791e5e"}, + {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6107e445faf057c118d5050560695e46d272e5301feffda3c41849641222a828"}, + {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eb862356ee9391dc5a0b3cbc00f416b48c1b9a52d252d898e5b7696a5f9fe150"}, + {file = "cffi-1.17.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:c1c13185b90bbd3f8b5963cd8ce7ad4ff441924c31e23c975cb150e27c2bf67a"}, + {file = "cffi-1.17.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:17c6d6d3260c7f2d94f657e6872591fe8733872a86ed1345bda872cfc8c74885"}, + {file = "cffi-1.17.0-cp312-cp312-win32.whl", hash = "sha256:c3b8bd3133cd50f6b637bb4322822c94c5ce4bf0d724ed5ae70afce62187c492"}, + {file = "cffi-1.17.0-cp312-cp312-win_amd64.whl", hash = "sha256:dca802c8db0720ce1c49cce1149ff7b06e91ba15fa84b1d59144fef1a1bc7ac2"}, + {file = "cffi-1.17.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:6ce01337d23884b21c03869d2f68c5523d43174d4fc405490eb0091057943118"}, + {file = "cffi-1.17.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:cab2eba3830bf4f6d91e2d6718e0e1c14a2f5ad1af68a89d24ace0c6b17cced7"}, + {file = "cffi-1.17.0-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:14b9cbc8f7ac98a739558eb86fabc283d4d564dafed50216e7f7ee62d0d25377"}, + {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b00e7bcd71caa0282cbe3c90966f738e2db91e64092a877c3ff7f19a1628fdcb"}, + {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:41f4915e09218744d8bae14759f983e466ab69b178de38066f7579892ff2a555"}, + {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e4760a68cab57bfaa628938e9c2971137e05ce48e762a9cb53b76c9b569f1204"}, + {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:011aff3524d578a9412c8b3cfaa50f2c0bd78e03eb7af7aa5e0df59b158efb2f"}, + {file = "cffi-1.17.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:a003ac9edc22d99ae1286b0875c460351f4e101f8c9d9d2576e78d7e048f64e0"}, + {file = "cffi-1.17.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ef9528915df81b8f4c7612b19b8628214c65c9b7f74db2e34a646a0a2a0da2d4"}, + {file = "cffi-1.17.0-cp313-cp313-win32.whl", hash = "sha256:70d2aa9fb00cf52034feac4b913181a6e10356019b18ef89bc7c12a283bf5f5a"}, + {file = "cffi-1.17.0-cp313-cp313-win_amd64.whl", hash = "sha256:b7b6ea9e36d32582cda3465f54c4b454f62f23cb083ebc7a94e2ca6ef011c3a7"}, + {file = "cffi-1.17.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:964823b2fc77b55355999ade496c54dde161c621cb1f6eac61dc30ed1b63cd4c"}, + {file = "cffi-1.17.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:516a405f174fd3b88829eabfe4bb296ac602d6a0f68e0d64d5ac9456194a5b7e"}, + {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dec6b307ce928e8e112a6bb9921a1cb00a0e14979bf28b98e084a4b8a742bd9b"}, + {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e4094c7b464cf0a858e75cd14b03509e84789abf7b79f8537e6a72152109c76e"}, + {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2404f3de742f47cb62d023f0ba7c5a916c9c653d5b368cc966382ae4e57da401"}, + {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3aa9d43b02a0c681f0bfbc12d476d47b2b2b6a3f9287f11ee42989a268a1833c"}, + {file = "cffi-1.17.0-cp38-cp38-win32.whl", hash = "sha256:0bb15e7acf8ab35ca8b24b90af52c8b391690ef5c4aec3d31f38f0d37d2cc499"}, + {file = "cffi-1.17.0-cp38-cp38-win_amd64.whl", hash = "sha256:93a7350f6706b31f457c1457d3a3259ff9071a66f312ae64dc024f049055f72c"}, + {file = "cffi-1.17.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1a2ddbac59dc3716bc79f27906c010406155031a1c801410f1bafff17ea304d2"}, + {file = "cffi-1.17.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6327b572f5770293fc062a7ec04160e89741e8552bf1c358d1a23eba68166759"}, + {file = "cffi-1.17.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dbc183e7bef690c9abe5ea67b7b60fdbca81aa8da43468287dae7b5c046107d4"}, + {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5bdc0f1f610d067c70aa3737ed06e2726fd9d6f7bfee4a351f4c40b6831f4e82"}, + {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6d872186c1617d143969defeadac5a904e6e374183e07977eedef9c07c8953bf"}, + {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0d46ee4764b88b91f16661a8befc6bfb24806d885e27436fdc292ed7e6f6d058"}, + {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f76a90c345796c01d85e6332e81cab6d70de83b829cf1d9762d0a3da59c7932"}, + {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0e60821d312f99d3e1569202518dddf10ae547e799d75aef3bca3a2d9e8ee693"}, + {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:eb09b82377233b902d4c3fbeeb7ad731cdab579c6c6fda1f763cd779139e47c3"}, + {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:24658baf6224d8f280e827f0a50c46ad819ec8ba380a42448e24459daf809cf4"}, + {file = "cffi-1.17.0-cp39-cp39-win32.whl", hash = "sha256:0fdacad9e0d9fc23e519efd5ea24a70348305e8d7d85ecbb1a5fa66dc834e7fb"}, + {file = "cffi-1.17.0-cp39-cp39-win_amd64.whl", hash = "sha256:7cbc78dc018596315d4e7841c8c3a7ae31cc4d638c9b627f87d52e8abaaf2d29"}, + {file = "cffi-1.17.0.tar.gz", hash = "sha256:f3157624b7558b914cb039fd1af735e5e8049a87c817cc215109ad1c8779df76"}, +] + +[package.dependencies] +pycparser = "*" + +[[package]] +name = "charset-normalizer" +version = "3.3.2" +description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "charset-normalizer-3.3.2.tar.gz", hash = "sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:25baf083bf6f6b341f4121c2f3c548875ee6f5339300e08be3f2b2ba1721cdd3"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:06435b539f889b1f6f4ac1758871aae42dc3a8c0e24ac9e60c2384973ad73027"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9063e24fdb1e498ab71cb7419e24622516c4a04476b17a2dab57e8baa30d6e03"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6897af51655e3691ff853668779c7bad41579facacf5fd7253b0133308cf000d"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1d3193f4a680c64b4b6a9115943538edb896edc190f0b222e73761716519268e"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd70574b12bb8a4d2aaa0094515df2463cb429d8536cfb6c7ce983246983e5a6"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8465322196c8b4d7ab6d1e049e4c5cb460d0394da4a27d23cc242fbf0034b6b5"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9a8e9031d613fd2009c182b69c7b2c1ef8239a0efb1df3f7c8da66d5dd3d537"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:beb58fe5cdb101e3a055192ac291b7a21e3b7ef4f67fa1d74e331a7f2124341c"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e06ed3eb3218bc64786f7db41917d4e686cc4856944f53d5bdf83a6884432e12"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:2e81c7b9c8979ce92ed306c249d46894776a909505d8f5a4ba55b14206e3222f"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:572c3763a264ba47b3cf708a44ce965d98555f618ca42c926a9c1616d8f34269"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fd1abc0d89e30cc4e02e4064dc67fcc51bd941eb395c502aac3ec19fab46b519"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-win32.whl", hash = "sha256:3d47fa203a7bd9c5b6cee4736ee84ca03b8ef23193c0d1ca99b5089f72645c73"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:10955842570876604d404661fbccbc9c7e684caf432c09c715ec38fbae45ae09"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:802fe99cca7457642125a8a88a084cef28ff0cf9407060f7b93dca5aa25480db"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:573f6eac48f4769d667c4442081b1794f52919e7edada77495aaed9236d13a96"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:549a3a73da901d5bc3ce8d24e0600d1fa85524c10287f6004fbab87672bf3e1e"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f27273b60488abe721a075bcca6d7f3964f9f6f067c8c4c605743023d7d3944f"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ceae2f17a9c33cb48e3263960dc5fc8005351ee19db217e9b1bb15d28c02574"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65f6f63034100ead094b8744b3b97965785388f308a64cf8d7c34f2f2e5be0c4"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:753f10e867343b4511128c6ed8c82f7bec3bd026875576dfd88483c5c73b2fd8"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a78b2b446bd7c934f5dcedc588903fb2f5eec172f3d29e52a9096a43722adfc"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e537484df0d8f426ce2afb2d0f8e1c3d0b114b83f8850e5f2fbea0e797bd82ae"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:eb6904c354526e758fda7167b33005998fb68c46fbc10e013ca97f21ca5c8887"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:deb6be0ac38ece9ba87dea880e438f25ca3eddfac8b002a2ec3d9183a454e8ae"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4ab2fe47fae9e0f9dee8c04187ce5d09f48eabe611be8259444906793ab7cbce"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:80402cd6ee291dcb72644d6eac93785fe2c8b9cb30893c1af5b8fdd753b9d40f"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-win32.whl", hash = "sha256:7cd13a2e3ddeed6913a65e66e94b51d80a041145a026c27e6bb76c31a853c6ab"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:663946639d296df6a2bb2aa51b60a2454ca1cb29835324c640dafb5ff2131a77"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0b2b64d2bb6d3fb9112bafa732def486049e63de9618b5843bcdd081d8144cd8"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ddbb2551d7e0102e7252db79ba445cdab71b26640817ab1e3e3648dad515003b"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:55086ee1064215781fff39a1af09518bc9255b50d6333f2e4c74ca09fac6a8f6"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f4a014bc36d3c57402e2977dada34f9c12300af536839dc38c0beab8878f38a"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a10af20b82360ab00827f916a6058451b723b4e65030c5a18577c8b2de5b3389"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d756e44e94489e49571086ef83b2bb8ce311e730092d2c34ca8f7d925cb20aa"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d558489962fd4918143277a773316e56c72da56ec7aa3dc3dbbe20fdfed15b"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ac7ffc7ad6d040517be39eb591cac5ff87416c2537df6ba3cba3bae290c0fed"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7ed9e526742851e8d5cc9e6cf41427dfc6068d4f5a3bb03659444b4cabf6bc26"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8bdb58ff7ba23002a4c5808d608e4e6c687175724f54a5dade5fa8c67b604e4d"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:6b3251890fff30ee142c44144871185dbe13b11bab478a88887a639655be1068"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b4a23f61ce87adf89be746c8a8974fe1c823c891d8f86eb218bb957c924bb143"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:efcb3f6676480691518c177e3b465bcddf57cea040302f9f4e6e191af91174d4"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-win32.whl", hash = "sha256:d965bba47ddeec8cd560687584e88cf699fd28f192ceb452d1d7ee807c5597b7"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:96b02a3dc4381e5494fad39be677abcb5e6634bf7b4fa83a6dd3112607547001"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:95f2a5796329323b8f0512e09dbb7a1860c46a39da62ecb2324f116fa8fdc85c"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c002b4ffc0be611f0d9da932eb0f704fe2602a9a949d1f738e4c34c75b0863d5"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a981a536974bbc7a512cf44ed14938cf01030a99e9b3a06dd59578882f06f985"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3287761bc4ee9e33561a7e058c72ac0938c4f57fe49a09eae428fd88aafe7bb6"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42cb296636fcc8b0644486d15c12376cb9fa75443e00fb25de0b8602e64c1714"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a55554a2fa0d408816b3b5cedf0045f4b8e1a6065aec45849de2d6f3f8e9786"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:c083af607d2515612056a31f0a8d9e0fcb5876b7bfc0abad3ecd275bc4ebc2d5"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:87d1351268731db79e0f8e745d92493ee2841c974128ef629dc518b937d9194c"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:bd8f7df7d12c2db9fab40bdd87a7c09b1530128315d047a086fa3ae3435cb3a8"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:c180f51afb394e165eafe4ac2936a14bee3eb10debc9d9e4db8958fe36afe711"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8c622a5fe39a48f78944a87d4fb8a53ee07344641b0562c540d840748571b811"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-win32.whl", hash = "sha256:db364eca23f876da6f9e16c9da0df51aa4f104a972735574842618b8c6d999d4"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:86216b5cee4b06df986d214f664305142d9c76df9b6512be2738aa72a2048f99"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6463effa3186ea09411d50efc7d85360b38d5f09b870c48e4600f63af490e56a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6c4caeef8fa63d06bd437cd4bdcf3ffefe6738fb1b25951440d80dc7df8c03ac"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:37e55c8e51c236f95b033f6fb391d7d7970ba5fe7ff453dad675e88cf303377a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb69256e180cb6c8a894fee62b3afebae785babc1ee98b81cdf68bbca1987f33"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae5f4161f18c61806f411a13b0310bea87f987c7d2ecdbdaad0e94eb2e404238"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b2b0a0c0517616b6869869f8c581d4eb2dd83a4d79e0ebcb7d373ef9956aeb0a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45485e01ff4d3630ec0d9617310448a8702f70e9c01906b0d0118bdf9d124cf2"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb00ed941194665c332bf8e078baf037d6c35d7c4f3102ea2d4f16ca94a26dc8"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:2127566c664442652f024c837091890cb1942c30937add288223dc895793f898"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a50aebfa173e157099939b17f18600f72f84eed3049e743b68ad15bd69b6bf99"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4d0d1650369165a14e14e1e47b372cfcb31d6ab44e6e33cb2d4e57265290044d"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:923c0c831b7cfcb071580d3f46c4baf50f174be571576556269530f4bbd79d04"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:06a81e93cd441c56a9b65d8e1d043daeb97a3d0856d177d5c90ba85acb3db087"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-win32.whl", hash = "sha256:6ef1d82a3af9d3eecdba2321dc1b3c238245d890843e040e41e470ffa64c3e25"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb8821e09e916165e160797a6c17edda0679379a4be5c716c260e836e122f54b"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c235ebd9baae02f1b77bcea61bce332cb4331dc3617d254df3323aa01ab47bd4"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5b4c145409bef602a690e7cfad0a15a55c13320ff7a3ad7ca59c13bb8ba4d45d"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:68d1f8a9e9e37c1223b656399be5d6b448dea850bed7d0f87a8311f1ff3dabb0"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22afcb9f253dac0696b5a4be4a1c0f8762f8239e21b99680099abd9b2b1b2269"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e27ad930a842b4c5eb8ac0016b0a54f5aebbe679340c26101df33424142c143c"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1f79682fbe303db92bc2b1136016a38a42e835d932bab5b3b1bfcfbf0640e519"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b261ccdec7821281dade748d088bb6e9b69e6d15b30652b74cbbac25e280b796"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:122c7fa62b130ed55f8f285bfd56d5f4b4a5b503609d181f9ad85e55c89f4185"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d0eccceffcb53201b5bfebb52600a5fb483a20b61da9dbc885f8b103cbe7598c"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f96df6923e21816da7e0ad3fd47dd8f94b2a5ce594e00677c0013018b813458"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:7f04c839ed0b6b98b1a7501a002144b76c18fb1c1850c8b98d458ac269e26ed2"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:34d1c8da1e78d2e001f363791c98a272bb734000fcef47a491c1e3b0505657a8"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ff8fa367d09b717b2a17a052544193ad76cd49979c805768879cb63d9ca50561"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-win32.whl", hash = "sha256:aed38f6e4fb3f5d6bf81bfa990a07806be9d83cf7bacef998ab1a9bd660a581f"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:b01b88d45a6fcb69667cd6d2f7a9aeb4bf53760d7fc536bf679ec94fe9f3ff3d"}, + {file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"}, +] + +[[package]] +name = "click" +version = "8.1.7" +description = "Composable command line interface toolkit" +optional = false +python-versions = ">=3.7" +files = [ + {file = "click-8.1.7-py3-none-any.whl", hash = "sha256:ae74fb96c20a0277a1d615f1e4d73c8414f5a98db8b799a7931d1582f3390c28"}, + {file = "click-8.1.7.tar.gz", hash = "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "platform_system == \"Windows\""} + +[[package]] +name = "cloudpickle" +version = "3.0.0" +description = "Pickler class to extend the standard pickle.Pickler functionality" +optional = false +python-versions = ">=3.8" +files = [ + {file = "cloudpickle-3.0.0-py3-none-any.whl", hash = "sha256:246ee7d0c295602a036e86369c77fecda4ab17b506496730f2f576d9016fd9c7"}, + {file = "cloudpickle-3.0.0.tar.gz", hash = "sha256:996d9a482c6fb4f33c1a35335cf8afd065d2a56e973270364840712d9131a882"}, +] + +[[package]] +name = "colorama" +version = "0.4.6" +description = "Cross-platform colored terminal text." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" +files = [ + {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, + {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, +] + +[[package]] +name = "comm" +version = "0.2.2" +description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." +optional = false +python-versions = ">=3.8" +files = [ + {file = "comm-0.2.2-py3-none-any.whl", hash = "sha256:e6fb86cb70ff661ee8c9c14e7d36d6de3b4066f1441be4063df9c5009f0a64d3"}, + {file = "comm-0.2.2.tar.gz", hash = "sha256:3fd7a84065306e07bea1773df6eb8282de51ba82f77c72f9c85716ab11fe980e"}, +] + +[package.dependencies] +traitlets = ">=4" + +[package.extras] +test = ["pytest"] + +[[package]] +name = "contourpy" +version = "1.3.0" +description = "Python library for calculating contours of 2D quadrilateral grids" +optional = false +python-versions = ">=3.9" +files = [ + {file = "contourpy-1.3.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:880ea32e5c774634f9fcd46504bf9f080a41ad855f4fef54f5380f5133d343c7"}, + {file = "contourpy-1.3.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:76c905ef940a4474a6289c71d53122a4f77766eef23c03cd57016ce19d0f7b42"}, + {file = "contourpy-1.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:92f8557cbb07415a4d6fa191f20fd9d2d9eb9c0b61d1b2f52a8926e43c6e9af7"}, + {file = "contourpy-1.3.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:36f965570cff02b874773c49bfe85562b47030805d7d8360748f3eca570f4cab"}, + {file = "contourpy-1.3.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cacd81e2d4b6f89c9f8a5b69b86490152ff39afc58a95af002a398273e5ce589"}, + {file = "contourpy-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:69375194457ad0fad3a839b9e29aa0b0ed53bb54db1bfb6c3ae43d111c31ce41"}, + {file = "contourpy-1.3.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:7a52040312b1a858b5e31ef28c2e865376a386c60c0e248370bbea2d3f3b760d"}, + {file = "contourpy-1.3.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3faeb2998e4fcb256542e8a926d08da08977f7f5e62cf733f3c211c2a5586223"}, + {file = "contourpy-1.3.0-cp310-cp310-win32.whl", hash = "sha256:36e0cff201bcb17a0a8ecc7f454fe078437fa6bda730e695a92f2d9932bd507f"}, + {file = "contourpy-1.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:87ddffef1dbe5e669b5c2440b643d3fdd8622a348fe1983fad7a0f0ccb1cd67b"}, + {file = "contourpy-1.3.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0fa4c02abe6c446ba70d96ece336e621efa4aecae43eaa9b030ae5fb92b309ad"}, + {file = "contourpy-1.3.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:834e0cfe17ba12f79963861e0f908556b2cedd52e1f75e6578801febcc6a9f49"}, + {file = "contourpy-1.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dbc4c3217eee163fa3984fd1567632b48d6dfd29216da3ded3d7b844a8014a66"}, + {file = "contourpy-1.3.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4865cd1d419e0c7a7bf6de1777b185eebdc51470800a9f42b9e9decf17762081"}, + {file = "contourpy-1.3.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:303c252947ab4b14c08afeb52375b26781ccd6a5ccd81abcdfc1fafd14cf93c1"}, + {file = "contourpy-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:637f674226be46f6ba372fd29d9523dd977a291f66ab2a74fbeb5530bb3f445d"}, + {file = "contourpy-1.3.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:76a896b2f195b57db25d6b44e7e03f221d32fe318d03ede41f8b4d9ba1bff53c"}, + {file = "contourpy-1.3.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e1fd23e9d01591bab45546c089ae89d926917a66dceb3abcf01f6105d927e2cb"}, + {file = "contourpy-1.3.0-cp311-cp311-win32.whl", hash = "sha256:d402880b84df3bec6eab53cd0cf802cae6a2ef9537e70cf75e91618a3801c20c"}, + {file = "contourpy-1.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:6cb6cc968059db9c62cb35fbf70248f40994dfcd7aa10444bbf8b3faeb7c2d67"}, + {file = "contourpy-1.3.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:570ef7cf892f0afbe5b2ee410c507ce12e15a5fa91017a0009f79f7d93a1268f"}, + {file = "contourpy-1.3.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:da84c537cb8b97d153e9fb208c221c45605f73147bd4cadd23bdae915042aad6"}, + {file = "contourpy-1.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0be4d8425bfa755e0fd76ee1e019636ccc7c29f77a7c86b4328a9eb6a26d0639"}, + {file = "contourpy-1.3.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9c0da700bf58f6e0b65312d0a5e695179a71d0163957fa381bb3c1f72972537c"}, + {file = "contourpy-1.3.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:eb8b141bb00fa977d9122636b16aa67d37fd40a3d8b52dd837e536d64b9a4d06"}, + {file = "contourpy-1.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3634b5385c6716c258d0419c46d05c8aa7dc8cb70326c9a4fb66b69ad2b52e09"}, + {file = "contourpy-1.3.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:0dce35502151b6bd35027ac39ba6e5a44be13a68f55735c3612c568cac3805fd"}, + {file = "contourpy-1.3.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:aea348f053c645100612b333adc5983d87be69acdc6d77d3169c090d3b01dc35"}, + {file = "contourpy-1.3.0-cp312-cp312-win32.whl", hash = "sha256:90f73a5116ad1ba7174341ef3ea5c3150ddf20b024b98fb0c3b29034752c8aeb"}, + {file = "contourpy-1.3.0-cp312-cp312-win_amd64.whl", hash = "sha256:b11b39aea6be6764f84360fce6c82211a9db32a7c7de8fa6dd5397cf1d079c3b"}, + {file = "contourpy-1.3.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:3e1c7fa44aaae40a2247e2e8e0627f4bea3dd257014764aa644f319a5f8600e3"}, + {file = "contourpy-1.3.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:364174c2a76057feef647c802652f00953b575723062560498dc7930fc9b1cb7"}, + {file = "contourpy-1.3.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:32b238b3b3b649e09ce9aaf51f0c261d38644bdfa35cbaf7b263457850957a84"}, + {file = "contourpy-1.3.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d51fca85f9f7ad0b65b4b9fe800406d0d77017d7270d31ec3fb1cc07358fdea0"}, + {file = "contourpy-1.3.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:732896af21716b29ab3e988d4ce14bc5133733b85956316fb0c56355f398099b"}, + {file = "contourpy-1.3.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d73f659398a0904e125280836ae6f88ba9b178b2fed6884f3b1f95b989d2c8da"}, + {file = "contourpy-1.3.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c6c7c2408b7048082932cf4e641fa3b8ca848259212f51c8c59c45aa7ac18f14"}, + {file = "contourpy-1.3.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:f317576606de89da6b7e0861cf6061f6146ead3528acabff9236458a6ba467f8"}, + {file = "contourpy-1.3.0-cp313-cp313-win32.whl", hash = "sha256:31cd3a85dbdf1fc002280c65caa7e2b5f65e4a973fcdf70dd2fdcb9868069294"}, + {file = "contourpy-1.3.0-cp313-cp313-win_amd64.whl", hash = "sha256:4553c421929ec95fb07b3aaca0fae668b2eb5a5203d1217ca7c34c063c53d087"}, + {file = "contourpy-1.3.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:345af746d7766821d05d72cb8f3845dfd08dd137101a2cb9b24de277d716def8"}, + {file = "contourpy-1.3.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:3bb3808858a9dc68f6f03d319acd5f1b8a337e6cdda197f02f4b8ff67ad2057b"}, + {file = "contourpy-1.3.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:420d39daa61aab1221567b42eecb01112908b2cab7f1b4106a52caaec8d36973"}, + {file = "contourpy-1.3.0-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4d63ee447261e963af02642ffcb864e5a2ee4cbfd78080657a9880b8b1868e18"}, + {file = "contourpy-1.3.0-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:167d6c890815e1dac9536dca00828b445d5d0df4d6a8c6adb4a7ec3166812fa8"}, + {file = "contourpy-1.3.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:710a26b3dc80c0e4febf04555de66f5fd17e9cf7170a7b08000601a10570bda6"}, + {file = "contourpy-1.3.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:75ee7cb1a14c617f34a51d11fa7524173e56551646828353c4af859c56b766e2"}, + {file = "contourpy-1.3.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:33c92cdae89ec5135d036e7218e69b0bb2851206077251f04a6c4e0e21f03927"}, + {file = "contourpy-1.3.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a11077e395f67ffc2c44ec2418cfebed032cd6da3022a94fc227b6faf8e2acb8"}, + {file = "contourpy-1.3.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e8134301d7e204c88ed7ab50028ba06c683000040ede1d617298611f9dc6240c"}, + {file = "contourpy-1.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e12968fdfd5bb45ffdf6192a590bd8ddd3ba9e58360b29683c6bb71a7b41edca"}, + {file = "contourpy-1.3.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fd2a0fc506eccaaa7595b7e1418951f213cf8255be2600f1ea1b61e46a60c55f"}, + {file = "contourpy-1.3.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4cfb5c62ce023dfc410d6059c936dcf96442ba40814aefbfa575425a3a7f19dc"}, + {file = "contourpy-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:68a32389b06b82c2fdd68276148d7b9275b5f5cf13e5417e4252f6d1a34f72a2"}, + {file = "contourpy-1.3.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:94e848a6b83da10898cbf1311a815f770acc9b6a3f2d646f330d57eb4e87592e"}, + {file = "contourpy-1.3.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:d78ab28a03c854a873787a0a42254a0ccb3cb133c672f645c9f9c8f3ae9d0800"}, + {file = "contourpy-1.3.0-cp39-cp39-win32.whl", hash = "sha256:81cb5ed4952aae6014bc9d0421dec7c5835c9c8c31cdf51910b708f548cf58e5"}, + {file = "contourpy-1.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:14e262f67bd7e6eb6880bc564dcda30b15e351a594657e55b7eec94b6ef72843"}, + {file = "contourpy-1.3.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:fe41b41505a5a33aeaed2a613dccaeaa74e0e3ead6dd6fd3a118fb471644fd6c"}, + {file = "contourpy-1.3.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eca7e17a65f72a5133bdbec9ecf22401c62bcf4821361ef7811faee695799779"}, + {file = "contourpy-1.3.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:1ec4dc6bf570f5b22ed0d7efba0dfa9c5b9e0431aeea7581aa217542d9e809a4"}, + {file = "contourpy-1.3.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:00ccd0dbaad6d804ab259820fa7cb0b8036bda0686ef844d24125d8287178ce0"}, + {file = "contourpy-1.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ca947601224119117f7c19c9cdf6b3ab54c5726ef1d906aa4a69dfb6dd58102"}, + {file = "contourpy-1.3.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:c6ec93afeb848a0845a18989da3beca3eec2c0f852322efe21af1931147d12cb"}, + {file = "contourpy-1.3.0.tar.gz", hash = "sha256:7ffa0db17717a8ffb127efd0c95a4362d996b892c2904db72428d5b52e1938a4"}, +] + +[package.dependencies] +numpy = ">=1.23" + +[package.extras] +bokeh = ["bokeh", "selenium"] +docs = ["furo", "sphinx (>=7.2)", "sphinx-copybutton"] +mypy = ["contourpy[bokeh,docs]", "docutils-stubs", "mypy (==1.11.1)", "types-Pillow"] +test = ["Pillow", "contourpy[test-no-images]", "matplotlib"] +test-no-images = ["pytest", "pytest-cov", "pytest-rerunfailures", "pytest-xdist", "wurlitzer"] + +[[package]] +name = "cycler" +version = "0.12.1" +description = "Composable style cycles" +optional = false +python-versions = ">=3.8" +files = [ + {file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"}, + {file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"}, +] + +[package.extras] +docs = ["ipython", "matplotlib", "numpydoc", "sphinx"] +tests = ["pytest", "pytest-cov", "pytest-xdist"] + +[[package]] +name = "debugpy" +version = "1.8.5" +description = "An implementation of the Debug Adapter Protocol for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "debugpy-1.8.5-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:7e4d594367d6407a120b76bdaa03886e9eb652c05ba7f87e37418426ad2079f7"}, + {file = "debugpy-1.8.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4413b7a3ede757dc33a273a17d685ea2b0c09dbd312cc03f5534a0fd4d40750a"}, + {file = "debugpy-1.8.5-cp310-cp310-win32.whl", hash = "sha256:dd3811bd63632bb25eda6bd73bea8e0521794cda02be41fa3160eb26fc29e7ed"}, + {file = "debugpy-1.8.5-cp310-cp310-win_amd64.whl", hash = "sha256:b78c1250441ce893cb5035dd6f5fc12db968cc07f91cc06996b2087f7cefdd8e"}, + {file = "debugpy-1.8.5-cp311-cp311-macosx_12_0_universal2.whl", hash = "sha256:606bccba19f7188b6ea9579c8a4f5a5364ecd0bf5a0659c8a5d0e10dcee3032a"}, + {file = "debugpy-1.8.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db9fb642938a7a609a6c865c32ecd0d795d56c1aaa7a7a5722d77855d5e77f2b"}, + {file = "debugpy-1.8.5-cp311-cp311-win32.whl", hash = "sha256:4fbb3b39ae1aa3e5ad578f37a48a7a303dad9a3d018d369bc9ec629c1cfa7408"}, + {file = "debugpy-1.8.5-cp311-cp311-win_amd64.whl", hash = "sha256:345d6a0206e81eb68b1493ce2fbffd57c3088e2ce4b46592077a943d2b968ca3"}, + {file = "debugpy-1.8.5-cp312-cp312-macosx_12_0_universal2.whl", hash = "sha256:5b5c770977c8ec6c40c60d6f58cacc7f7fe5a45960363d6974ddb9b62dbee156"}, + {file = "debugpy-1.8.5-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0a65b00b7cdd2ee0c2cf4c7335fef31e15f1b7056c7fdbce9e90193e1a8c8cb"}, + {file = "debugpy-1.8.5-cp312-cp312-win32.whl", hash = "sha256:c9f7c15ea1da18d2fcc2709e9f3d6de98b69a5b0fff1807fb80bc55f906691f7"}, + {file = "debugpy-1.8.5-cp312-cp312-win_amd64.whl", hash = "sha256:28ced650c974aaf179231668a293ecd5c63c0a671ae6d56b8795ecc5d2f48d3c"}, + {file = "debugpy-1.8.5-cp38-cp38-macosx_12_0_x86_64.whl", hash = "sha256:3df6692351172a42af7558daa5019651f898fc67450bf091335aa8a18fbf6f3a"}, + {file = "debugpy-1.8.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1cd04a73eb2769eb0bfe43f5bfde1215c5923d6924b9b90f94d15f207a402226"}, + {file = "debugpy-1.8.5-cp38-cp38-win32.whl", hash = "sha256:8f913ee8e9fcf9d38a751f56e6de12a297ae7832749d35de26d960f14280750a"}, + {file = "debugpy-1.8.5-cp38-cp38-win_amd64.whl", hash = "sha256:a697beca97dad3780b89a7fb525d5e79f33821a8bc0c06faf1f1289e549743cf"}, + {file = "debugpy-1.8.5-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:0a1029a2869d01cb777216af8c53cda0476875ef02a2b6ff8b2f2c9a4b04176c"}, + {file = "debugpy-1.8.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e84c276489e141ed0b93b0af648eef891546143d6a48f610945416453a8ad406"}, + {file = "debugpy-1.8.5-cp39-cp39-win32.whl", hash = "sha256:ad84b7cde7fd96cf6eea34ff6c4a1b7887e0fe2ea46e099e53234856f9d99a34"}, + {file = "debugpy-1.8.5-cp39-cp39-win_amd64.whl", hash = "sha256:7b0fe36ed9d26cb6836b0a51453653f8f2e347ba7348f2bbfe76bfeb670bfb1c"}, + {file = "debugpy-1.8.5-py2.py3-none-any.whl", hash = "sha256:55919dce65b471eff25901acf82d328bbd5b833526b6c1364bd5133754777a44"}, + {file = "debugpy-1.8.5.zip", hash = "sha256:b2112cfeb34b4507399d298fe7023a16656fc553ed5246536060ca7bd0e668d0"}, +] + +[[package]] +name = "decorator" +version = "5.1.1" +description = "Decorators for Humans" +optional = false +python-versions = ">=3.5" +files = [ + {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"}, + {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, +] + +[[package]] +name = "defusedxml" +version = "0.7.1" +description = "XML bomb protection for Python stdlib modules" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" +files = [ + {file = "defusedxml-0.7.1-py2.py3-none-any.whl", hash = "sha256:a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61"}, + {file = "defusedxml-0.7.1.tar.gz", hash = "sha256:1bb3032db185915b62d7c6209c5a8792be6a32ab2fedacc84e01b52c51aa3e69"}, +] + +[[package]] +name = "executing" +version = "2.1.0" +description = "Get the currently executing AST node of a frame, and other information" +optional = false +python-versions = ">=3.8" +files = [ + {file = "executing-2.1.0-py2.py3-none-any.whl", hash = "sha256:8d63781349375b5ebccc3142f4b30350c0cd9c79f921cde38be2be4637e98eaf"}, + {file = "executing-2.1.0.tar.gz", hash = "sha256:8ea27ddd260da8150fa5a708269c4a10e76161e2496ec3e587da9e3c0fe4b9ab"}, +] + +[package.extras] +tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] + +[[package]] +name = "fastjsonschema" +version = "2.20.0" +description = "Fastest Python implementation of JSON schema" +optional = false +python-versions = "*" +files = [ + {file = "fastjsonschema-2.20.0-py3-none-any.whl", hash = "sha256:5875f0b0fa7a0043a91e93a9b8f793bcbbba9691e7fd83dca95c28ba26d21f0a"}, + {file = "fastjsonschema-2.20.0.tar.gz", hash = "sha256:3d48fc5300ee96f5d116f10fe6f28d938e6008f59a6a025c2649475b87f76a23"}, +] + +[package.extras] +devel = ["colorama", "json-spec", "jsonschema", "pylint", "pytest", "pytest-benchmark", "pytest-cache", "validictory"] + +[[package]] +name = "featuretools" +version = "1.31.0" +description = "a framework for automated feature engineering" +optional = false +python-versions = "<4,>=3.9" +files = [ + {file = "featuretools-1.31.0-py3-none-any.whl", hash = "sha256:87c94e9ae959c89acd83da96bd2583f3ef0f6daaa9639cbb6e46dbde2c742a18"}, + {file = "featuretools-1.31.0.tar.gz", hash = "sha256:01bfb17fcc1715b4c3623c7bc94a8982122c4a0fa03350ed478601bb81f90155"}, +] + +[package.dependencies] +cloudpickle = ">=1.5.0" +holidays = ">=0.17" +numpy = ">=1.25.0" +packaging = ">=20.0" +pandas = ">=2.0.0" +psutil = ">=5.7.0" +scipy = ">=1.10.0" +tqdm = ">=4.66.3" +woodwork = ">=0.28.0" + +[package.extras] +autonormalize = ["autonormalize (>=2.0.1)"] +complete = ["featuretools[dask,nlp,premium]"] +dask = ["dask[dataframe] (>=2023.2.0)", "distributed (>=2023.2.0)"] +dev = ["black[jupyter] (>=23.1.0)", "featuretools[dask,docs,test]", "pre-commit (>=2.20.0)", "ruff (>=0.1.6)"] +docs = ["Sphinx (==5.1.1)", "autonormalize (>=2.0.1)", "click (>=7.0.0)", "featuretools[dask,test]", "ipython (==8.4.0)", "jupyter (==1.0.0)", "jupyter-client (>=8.0.2)", "matplotlib (==3.7.2)", "myst-parser (==0.18.0)", "nbconvert (==6.5.0)", "nbsphinx (==0.8.9)", "pydata-sphinx-theme (==0.9.0)", "sphinx-copybutton (==0.5.0)", "sphinx-inline-tabs (==2022.1.2b11)"] +nlp = ["nlp-primitives (>=2.12.0)"] +premium = ["premium-primitives (>=0.0.3)"] +sklearn = ["featuretools-sklearn-transformer (>=1.0.0)"] +sql = ["featuretools-sql (>=0.0.1)", "psycopg2-binary (>=2.9.3)"] +test = ["boto3 (>=1.34.32)", "composeml (>=0.8.0)", "graphviz (>=0.8.4)", "moto[all] (>=5.0.0)", "pip (>=23.3.0)", "pyarrow (>=14.0.1)", "pympler (>=0.8)", "pytest (>=7.1.2)", "pytest-cov (>=3.0.0)", "pytest-timeout (>=2.1.0)", "pytest-xdist (>=2.5.0)", "smart-open (>=5.0.0)", "urllib3 (>=1.26.18)"] +tsfresh = ["featuretools-tsfresh-primitives (>=1.0.0)"] + +[[package]] +name = "flask" +version = "3.0.3" +description = "A simple framework for building complex web applications." +optional = false +python-versions = ">=3.8" +files = [ + {file = "flask-3.0.3-py3-none-any.whl", hash = "sha256:34e815dfaa43340d1d15a5c3a02b8476004037eb4840b34910c6e21679d288f3"}, + {file = "flask-3.0.3.tar.gz", hash = "sha256:ceb27b0af3823ea2737928a4d99d125a06175b8512c445cbd9a9ce200ef76842"}, +] + +[package.dependencies] +blinker = ">=1.6.2" +click = ">=8.1.3" +itsdangerous = ">=2.1.2" +Jinja2 = ">=3.1.2" +Werkzeug = ">=3.0.0" + +[package.extras] +async = ["asgiref (>=3.2)"] +dotenv = ["python-dotenv"] + +[[package]] +name = "flask-cors" +version = "5.0.0" +description = "A Flask extension adding a decorator for CORS support" +optional = false +python-versions = "*" +files = [ + {file = "Flask_Cors-5.0.0-py2.py3-none-any.whl", hash = "sha256:b9e307d082a9261c100d8fb0ba909eec6a228ed1b60a8315fd85f783d61910bc"}, + {file = "flask_cors-5.0.0.tar.gz", hash = "sha256:5aadb4b950c4e93745034594d9f3ea6591f734bb3662e16e255ffbf5e89c88ef"}, +] + +[package.dependencies] +Flask = ">=0.9" + +[[package]] +name = "flask-httpauth" +version = "4.8.0" +description = "HTTP authentication for Flask routes" +optional = false +python-versions = "*" +files = [ + {file = "Flask-HTTPAuth-4.8.0.tar.gz", hash = "sha256:66568a05bc73942c65f1e2201ae746295816dc009edd84b482c44c758d75097a"}, + {file = "Flask_HTTPAuth-4.8.0-py3-none-any.whl", hash = "sha256:a58fedd09989b9975448eef04806b096a3964a7feeebc0a78831ff55685b62b0"}, +] + +[package.dependencies] +flask = "*" + +[[package]] +name = "flask-marshmallow" +version = "1.2.1" +description = "Flask + marshmallow for beautiful APIs" +optional = false +python-versions = ">=3.8" +files = [ + {file = "flask_marshmallow-1.2.1-py3-none-any.whl", hash = "sha256:10b5048ecfaa26f7c8d0aed7d81083164450e6be8e81c04b3d4a586b3f7b6678"}, + {file = "flask_marshmallow-1.2.1.tar.gz", hash = "sha256:00ee96399ed664963afff3b5d6ee518640b0f91dbc2aace2b5abcf32f40ef23a"}, +] + +[package.dependencies] +Flask = ">=2.2" +marshmallow = ">=3.0.0" + +[package.extras] +dev = ["flask-marshmallow[tests]", "pre-commit (>=3.5,<4.0)", "tox"] +docs = ["Sphinx (==7.2.6)", "marshmallow-sqlalchemy (>=0.19.0)", "sphinx-issues (==4.0.0)"] +sqlalchemy = ["flask-sqlalchemy (>=3.0.0)", "marshmallow-sqlalchemy (>=0.29.0)"] +tests = ["flask-marshmallow[sqlalchemy]", "pytest"] + +[[package]] +name = "fonttools" +version = "4.53.1" +description = "Tools to manipulate font files" +optional = false +python-versions = ">=3.8" +files = [ + {file = "fonttools-4.53.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:0679a30b59d74b6242909945429dbddb08496935b82f91ea9bf6ad240ec23397"}, + {file = "fonttools-4.53.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e8bf06b94694251861ba7fdeea15c8ec0967f84c3d4143ae9daf42bbc7717fe3"}, + {file = "fonttools-4.53.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b96cd370a61f4d083c9c0053bf634279b094308d52fdc2dd9a22d8372fdd590d"}, + {file = "fonttools-4.53.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a1c7c5aa18dd3b17995898b4a9b5929d69ef6ae2af5b96d585ff4005033d82f0"}, + {file = "fonttools-4.53.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e013aae589c1c12505da64a7d8d023e584987e51e62006e1bb30d72f26522c41"}, + {file = "fonttools-4.53.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:9efd176f874cb6402e607e4cc9b4a9cd584d82fc34a4b0c811970b32ba62501f"}, + {file = "fonttools-4.53.1-cp310-cp310-win32.whl", hash = "sha256:c8696544c964500aa9439efb6761947393b70b17ef4e82d73277413f291260a4"}, + {file = "fonttools-4.53.1-cp310-cp310-win_amd64.whl", hash = "sha256:8959a59de5af6d2bec27489e98ef25a397cfa1774b375d5787509c06659b3671"}, + {file = "fonttools-4.53.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:da33440b1413bad53a8674393c5d29ce64d8c1a15ef8a77c642ffd900d07bfe1"}, + {file = "fonttools-4.53.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5ff7e5e9bad94e3a70c5cd2fa27f20b9bb9385e10cddab567b85ce5d306ea923"}, + {file = "fonttools-4.53.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c6e7170d675d12eac12ad1a981d90f118c06cf680b42a2d74c6c931e54b50719"}, + {file = "fonttools-4.53.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bee32ea8765e859670c4447b0817514ca79054463b6b79784b08a8df3a4d78e3"}, + {file = "fonttools-4.53.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:6e08f572625a1ee682115223eabebc4c6a2035a6917eac6f60350aba297ccadb"}, + {file = "fonttools-4.53.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b21952c092ffd827504de7e66b62aba26fdb5f9d1e435c52477e6486e9d128b2"}, + {file = "fonttools-4.53.1-cp311-cp311-win32.whl", hash = "sha256:9dfdae43b7996af46ff9da520998a32b105c7f098aeea06b2226b30e74fbba88"}, + {file = "fonttools-4.53.1-cp311-cp311-win_amd64.whl", hash = "sha256:d4d0096cb1ac7a77b3b41cd78c9b6bc4a400550e21dc7a92f2b5ab53ed74eb02"}, + {file = "fonttools-4.53.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:d92d3c2a1b39631a6131c2fa25b5406855f97969b068e7e08413325bc0afba58"}, + {file = "fonttools-4.53.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:3b3c8ebafbee8d9002bd8f1195d09ed2bd9ff134ddec37ee8f6a6375e6a4f0e8"}, + {file = "fonttools-4.53.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:32f029c095ad66c425b0ee85553d0dc326d45d7059dbc227330fc29b43e8ba60"}, + {file = "fonttools-4.53.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10f5e6c3510b79ea27bb1ebfcc67048cde9ec67afa87c7dd7efa5c700491ac7f"}, + {file = "fonttools-4.53.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f677ce218976496a587ab17140da141557beb91d2a5c1a14212c994093f2eae2"}, + {file = "fonttools-4.53.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:9e6ceba2a01b448e36754983d376064730690401da1dd104ddb543519470a15f"}, + {file = "fonttools-4.53.1-cp312-cp312-win32.whl", hash = "sha256:791b31ebbc05197d7aa096bbc7bd76d591f05905d2fd908bf103af4488e60670"}, + {file = "fonttools-4.53.1-cp312-cp312-win_amd64.whl", hash = "sha256:6ed170b5e17da0264b9f6fae86073be3db15fa1bd74061c8331022bca6d09bab"}, + {file = "fonttools-4.53.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:c818c058404eb2bba05e728d38049438afd649e3c409796723dfc17cd3f08749"}, + {file = "fonttools-4.53.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:651390c3b26b0c7d1f4407cad281ee7a5a85a31a110cbac5269de72a51551ba2"}, + {file = "fonttools-4.53.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e54f1bba2f655924c1138bbc7fa91abd61f45c68bd65ab5ed985942712864bbb"}, + {file = "fonttools-4.53.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c9cd19cf4fe0595ebdd1d4915882b9440c3a6d30b008f3cc7587c1da7b95be5f"}, + {file = "fonttools-4.53.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:2af40ae9cdcb204fc1d8f26b190aa16534fcd4f0df756268df674a270eab575d"}, + {file = "fonttools-4.53.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:35250099b0cfb32d799fb5d6c651220a642fe2e3c7d2560490e6f1d3f9ae9169"}, + {file = "fonttools-4.53.1-cp38-cp38-win32.whl", hash = "sha256:f08df60fbd8d289152079a65da4e66a447efc1d5d5a4d3f299cdd39e3b2e4a7d"}, + {file = "fonttools-4.53.1-cp38-cp38-win_amd64.whl", hash = "sha256:7b6b35e52ddc8fb0db562133894e6ef5b4e54e1283dff606fda3eed938c36fc8"}, + {file = "fonttools-4.53.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:75a157d8d26c06e64ace9df037ee93a4938a4606a38cb7ffaf6635e60e253b7a"}, + {file = "fonttools-4.53.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4824c198f714ab5559c5be10fd1adf876712aa7989882a4ec887bf1ef3e00e31"}, + {file = "fonttools-4.53.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:becc5d7cb89c7b7afa8321b6bb3dbee0eec2b57855c90b3e9bf5fb816671fa7c"}, + {file = "fonttools-4.53.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:84ec3fb43befb54be490147b4a922b5314e16372a643004f182babee9f9c3407"}, + {file = "fonttools-4.53.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:73379d3ffdeecb376640cd8ed03e9d2d0e568c9d1a4e9b16504a834ebadc2dfb"}, + {file = "fonttools-4.53.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:02569e9a810f9d11f4ae82c391ebc6fb5730d95a0657d24d754ed7763fb2d122"}, + {file = "fonttools-4.53.1-cp39-cp39-win32.whl", hash = "sha256:aae7bd54187e8bf7fd69f8ab87b2885253d3575163ad4d669a262fe97f0136cb"}, + {file = "fonttools-4.53.1-cp39-cp39-win_amd64.whl", hash = "sha256:e5b708073ea3d684235648786f5f6153a48dc8762cdfe5563c57e80787c29fbb"}, + {file = "fonttools-4.53.1-py3-none-any.whl", hash = "sha256:f1f8758a2ad110bd6432203a344269f445a2907dc24ef6bccfd0ac4e14e0d71d"}, + {file = "fonttools-4.53.1.tar.gz", hash = "sha256:e128778a8e9bc11159ce5447f76766cefbd876f44bd79aff030287254e4752c4"}, +] + +[package.extras] +all = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "fs (>=2.2.0,<3)", "lxml (>=4.0)", "lz4 (>=1.7.4.2)", "matplotlib", "munkres", "pycairo", "scipy", "skia-pathops (>=0.5.0)", "sympy", "uharfbuzz (>=0.23.0)", "unicodedata2 (>=15.1.0)", "xattr", "zopfli (>=0.1.4)"] +graphite = ["lz4 (>=1.7.4.2)"] +interpolatable = ["munkres", "pycairo", "scipy"] +lxml = ["lxml (>=4.0)"] +pathops = ["skia-pathops (>=0.5.0)"] +plot = ["matplotlib"] +repacker = ["uharfbuzz (>=0.23.0)"] +symfont = ["sympy"] +type1 = ["xattr"] +ufo = ["fs (>=2.2.0,<3)"] +unicode = ["unicodedata2 (>=15.1.0)"] +woff = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "zopfli (>=0.1.4)"] + +[[package]] +name = "fqdn" +version = "1.5.1" +description = "Validates fully-qualified domain names against RFC 1123, so that they are acceptable to modern bowsers" +optional = false +python-versions = ">=2.7, !=3.0, !=3.1, !=3.2, !=3.3, !=3.4, <4" +files = [ + {file = "fqdn-1.5.1-py3-none-any.whl", hash = "sha256:3a179af3761e4df6eb2e026ff9e1a3033d3587bf980a0b1b2e1e5d08d7358014"}, + {file = "fqdn-1.5.1.tar.gz", hash = "sha256:105ed3677e767fb5ca086a0c1f4bb66ebc3c100be518f0e0d755d9eae164d89f"}, +] + +[[package]] +name = "h11" +version = "0.14.0" +description = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1" +optional = false +python-versions = ">=3.7" +files = [ + {file = "h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"}, + {file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"}, +] + +[[package]] +name = "holidays" +version = "0.57" +description = "Generate and work with holidays in Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "holidays-0.57-py3-none-any.whl", hash = "sha256:bdfb2a6d58e4b7d819e049b469228e890a5ad42b8ea2bd2c150d8c10726ea82d"}, + {file = "holidays-0.57.tar.gz", hash = "sha256:3f655f7ec290631a984beb0205120848b3e67c4ed0f3854321e3e437eca69d70"}, +] + +[package.dependencies] +python-dateutil = "*" + +[[package]] +name = "httpcore" +version = "1.0.5" +description = "A minimal low-level HTTP client." +optional = false +python-versions = ">=3.8" +files = [ + {file = "httpcore-1.0.5-py3-none-any.whl", hash = "sha256:421f18bac248b25d310f3cacd198d55b8e6125c107797b609ff9b7a6ba7991b5"}, + {file = "httpcore-1.0.5.tar.gz", hash = "sha256:34a38e2f9291467ee3b44e89dd52615370e152954ba21721378a87b2960f7a61"}, +] + +[package.dependencies] +certifi = "*" +h11 = ">=0.13,<0.15" + +[package.extras] +asyncio = ["anyio (>=4.0,<5.0)"] +http2 = ["h2 (>=3,<5)"] +socks = ["socksio (==1.*)"] +trio = ["trio (>=0.22.0,<0.26.0)"] + +[[package]] +name = "httpx" +version = "0.27.2" +description = "The next generation HTTP client." +optional = false +python-versions = ">=3.8" +files = [ + {file = "httpx-0.27.2-py3-none-any.whl", hash = "sha256:7bb2708e112d8fdd7829cd4243970f0c223274051cb35ee80c03301ee29a3df0"}, + {file = "httpx-0.27.2.tar.gz", hash = "sha256:f7c2be1d2f3c3c3160d441802406b206c2b76f5947b11115e6df10c6c65e66c2"}, +] + +[package.dependencies] +anyio = "*" +certifi = "*" +httpcore = "==1.*" +idna = "*" +sniffio = "*" + +[package.extras] +brotli = ["brotli", "brotlicffi"] +cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"] +http2 = ["h2 (>=3,<5)"] +socks = ["socksio (==1.*)"] +zstd = ["zstandard (>=0.18.0)"] + +[[package]] +name = "idna" +version = "3.8" +description = "Internationalized Domain Names in Applications (IDNA)" +optional = false +python-versions = ">=3.6" +files = [ + {file = "idna-3.8-py3-none-any.whl", hash = "sha256:050b4e5baadcd44d760cedbd2b8e639f2ff89bbc7a5730fcc662954303377aac"}, + {file = "idna-3.8.tar.gz", hash = "sha256:d838c2c0ed6fced7693d5e8ab8e734d5f8fda53a039c0164afb0b82e771e3603"}, +] + +[[package]] +name = "imbalanced-learn" +version = "0.12.3" +description = "Toolbox for imbalanced dataset in machine learning." +optional = false +python-versions = "*" +files = [ + {file = "imbalanced-learn-0.12.3.tar.gz", hash = "sha256:5b00796a01419e9102bd425e27c319d58d1f6cf2dfa751e02ed7f4edf67c3c1b"}, + {file = "imbalanced_learn-0.12.3-py3-none-any.whl", hash = "sha256:0e83e8226cb27dd567dff6aef0136bde0f54922ea1bd9d5f38f62701dc51a152"}, +] + +[package.dependencies] +joblib = ">=1.1.1" +numpy = ">=1.17.3" +scikit-learn = ">=1.0.2" +scipy = ">=1.5.0" +threadpoolctl = ">=2.0.0" + +[package.extras] +docs = ["keras (>=2.4.3)", "matplotlib (>=3.1.2)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.5.0)", "pandas (>=1.0.5)", "pydata-sphinx-theme (>=0.13.3)", "seaborn (>=0.9.0)", "sphinx (>=6.0.0)", "sphinx-copybutton (>=0.5.2)", "sphinx-design (>=0.5.0)", "sphinx-gallery (>=0.13.0)", "sphinxcontrib-bibtex (>=2.4.1)", "tensorflow (>=2.4.3)"] +examples = ["keras (>=2.4.3)", "matplotlib (>=3.1.2)", "pandas (>=1.0.5)", "seaborn (>=0.9.0)", "tensorflow (>=2.4.3)"] +optional = ["keras (>=2.4.3)", "pandas (>=1.0.5)", "tensorflow (>=2.4.3)"] +tests = ["black (>=23.3.0)", "flake8 (>=3.8.2)", "keras (>=2.4.3)", "mypy (>=1.3.0)", "pandas (>=1.0.5)", "pytest (>=5.0.1)", "pytest-cov (>=2.9.0)", "tensorflow (>=2.4.3)"] + +[[package]] +name = "importlib-resources" +version = "6.4.5" +description = "Read resources from Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "importlib_resources-6.4.5-py3-none-any.whl", hash = "sha256:ac29d5f956f01d5e4bb63102a5a19957f1b9175e45649977264a1416783bb717"}, + {file = "importlib_resources-6.4.5.tar.gz", hash = "sha256:980862a1d16c9e147a59603677fa2aa5fd82b87f223b6cb870695bcfce830065"}, +] + +[package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] +cover = ["pytest-cov"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["jaraco.test (>=5.4)", "pytest (>=6,!=8.1.*)", "zipp (>=3.17)"] +type = ["pytest-mypy"] + +[[package]] +name = "ipykernel" +version = "6.29.5" +description = "IPython Kernel for Jupyter" +optional = false +python-versions = ">=3.8" +files = [ + {file = "ipykernel-6.29.5-py3-none-any.whl", hash = "sha256:afdb66ba5aa354b09b91379bac28ae4afebbb30e8b39510c9690afb7a10421b5"}, + {file = "ipykernel-6.29.5.tar.gz", hash = "sha256:f093a22c4a40f8828f8e330a9c297cb93dcab13bd9678ded6de8e5cf81c56215"}, +] + +[package.dependencies] +appnope = {version = "*", markers = "platform_system == \"Darwin\""} +comm = ">=0.1.1" +debugpy = ">=1.6.5" +ipython = ">=7.23.1" +jupyter-client = ">=6.1.12" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +matplotlib-inline = ">=0.1" +nest-asyncio = "*" +packaging = "*" +psutil = "*" +pyzmq = ">=24" +tornado = ">=6.1" +traitlets = ">=5.4.0" + +[package.extras] +cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] +pyqt5 = ["pyqt5"] +pyside6 = ["pyside6"] +test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.23.5)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "ipython" +version = "8.27.0" +description = "IPython: Productive Interactive Computing" +optional = false +python-versions = ">=3.10" +files = [ + {file = "ipython-8.27.0-py3-none-any.whl", hash = "sha256:f68b3cb8bde357a5d7adc9598d57e22a45dfbea19eb6b98286fa3b288c9cd55c"}, + {file = "ipython-8.27.0.tar.gz", hash = "sha256:0b99a2dc9f15fd68692e898e5568725c6d49c527d36a9fb5960ffbdeaa82ff7e"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "sys_platform == \"win32\""} +decorator = "*" +jedi = ">=0.16" +matplotlib-inline = "*" +pexpect = {version = ">4.3", markers = "sys_platform != \"win32\" and sys_platform != \"emscripten\""} +prompt-toolkit = ">=3.0.41,<3.1.0" +pygments = ">=2.4.0" +stack-data = "*" +traitlets = ">=5.13.0" + +[package.extras] +all = ["ipython[black,doc,kernel,matplotlib,nbconvert,nbformat,notebook,parallel,qtconsole]", "ipython[test,test-extra]"] +black = ["black"] +doc = ["docrepr", "exceptiongroup", "intersphinx-registry", "ipykernel", "ipython[test]", "matplotlib", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "sphinxcontrib-jquery", "tomli", "typing-extensions"] +kernel = ["ipykernel"] +matplotlib = ["matplotlib"] +nbconvert = ["nbconvert"] +nbformat = ["nbformat"] +notebook = ["ipywidgets", "notebook"] +parallel = ["ipyparallel"] +qtconsole = ["qtconsole"] +test = ["packaging", "pickleshare", "pytest", "pytest-asyncio (<0.22)", "testpath"] +test-extra = ["curio", "ipython[test]", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.23)", "pandas", "trio"] + +[[package]] +name = "ipywidgets" +version = "8.1.5" +description = "Jupyter interactive widgets" +optional = false +python-versions = ">=3.7" +files = [ + {file = "ipywidgets-8.1.5-py3-none-any.whl", hash = "sha256:3290f526f87ae6e77655555baba4f36681c555b8bdbbff430b70e52c34c86245"}, + {file = "ipywidgets-8.1.5.tar.gz", hash = "sha256:870e43b1a35656a80c18c9503bbf2d16802db1cb487eec6fab27d683381dde17"}, +] + +[package.dependencies] +comm = ">=0.1.3" +ipython = ">=6.1.0" +jupyterlab-widgets = ">=3.0.12,<3.1.0" +traitlets = ">=4.3.1" +widgetsnbextension = ">=4.0.12,<4.1.0" + +[package.extras] +test = ["ipykernel", "jsonschema", "pytest (>=3.6.0)", "pytest-cov", "pytz"] + +[[package]] +name = "isoduration" +version = "20.11.0" +description = "Operations with ISO 8601 durations" +optional = false +python-versions = ">=3.7" +files = [ + {file = "isoduration-20.11.0-py3-none-any.whl", hash = "sha256:b2904c2a4228c3d44f409c8ae8e2370eb21a26f7ac2ec5446df141dde3452042"}, + {file = "isoduration-20.11.0.tar.gz", hash = "sha256:ac2f9015137935279eac671f94f89eb00584f940f5dc49462a0c4ee692ba1bd9"}, +] + +[package.dependencies] +arrow = ">=0.15.0" + +[[package]] +name = "itsdangerous" +version = "2.2.0" +description = "Safely pass data to untrusted environments and back." +optional = false +python-versions = ">=3.8" +files = [ + {file = "itsdangerous-2.2.0-py3-none-any.whl", hash = "sha256:c6242fc49e35958c8b15141343aa660db5fc54d4f13a1db01a3f5891b98700ef"}, + {file = "itsdangerous-2.2.0.tar.gz", hash = "sha256:e0050c0b7da1eea53ffaf149c0cfbb5c6e2e2b69c4bef22c81fa6eb73e5f6173"}, +] + +[[package]] +name = "jedi" +version = "0.19.1" +description = "An autocompletion tool for Python that can be used for text editors." +optional = false +python-versions = ">=3.6" +files = [ + {file = "jedi-0.19.1-py2.py3-none-any.whl", hash = "sha256:e983c654fe5c02867aef4cdfce5a2fbb4a50adc0af145f70504238f18ef5e7e0"}, + {file = "jedi-0.19.1.tar.gz", hash = "sha256:cf0496f3651bc65d7174ac1b7d043eff454892c708a87d1b683e57b569927ffd"}, +] + +[package.dependencies] +parso = ">=0.8.3,<0.9.0" + +[package.extras] +docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] + +[[package]] +name = "jinja2" +version = "3.1.4" +description = "A very fast and expressive template engine." +optional = false +python-versions = ">=3.7" +files = [ + {file = "jinja2-3.1.4-py3-none-any.whl", hash = "sha256:bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d"}, + {file = "jinja2-3.1.4.tar.gz", hash = "sha256:4a3aee7acbbe7303aede8e9648d13b8bf88a429282aa6122a993f0ac800cb369"}, +] + +[package.dependencies] +MarkupSafe = ">=2.0" + +[package.extras] +i18n = ["Babel (>=2.7)"] + +[[package]] +name = "joblib" +version = "1.4.2" +description = "Lightweight pipelining with Python functions" +optional = false +python-versions = ">=3.8" +files = [ + {file = "joblib-1.4.2-py3-none-any.whl", hash = "sha256:06d478d5674cbc267e7496a410ee875abd68e4340feff4490bcb7afb88060ae6"}, + {file = "joblib-1.4.2.tar.gz", hash = "sha256:2382c5816b2636fbd20a09e0f4e9dad4736765fdfb7dca582943b9c1366b3f0e"}, +] + +[[package]] +name = "json5" +version = "0.9.25" +description = "A Python implementation of the JSON5 data format." +optional = false +python-versions = ">=3.8" +files = [ + {file = "json5-0.9.25-py3-none-any.whl", hash = "sha256:34ed7d834b1341a86987ed52f3f76cd8ee184394906b6e22a1e0deb9ab294e8f"}, + {file = "json5-0.9.25.tar.gz", hash = "sha256:548e41b9be043f9426776f05df8635a00fe06104ea51ed24b67f908856e151ae"}, +] + +[[package]] +name = "jsonpointer" +version = "3.0.0" +description = "Identify specific nodes in a JSON document (RFC 6901)" +optional = false +python-versions = ">=3.7" +files = [ + {file = "jsonpointer-3.0.0-py2.py3-none-any.whl", hash = "sha256:13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942"}, + {file = "jsonpointer-3.0.0.tar.gz", hash = "sha256:2b2d729f2091522d61c3b31f82e11870f60b68f43fbc705cb76bf4b832af59ef"}, +] + +[[package]] +name = "jsonschema" +version = "4.23.0" +description = "An implementation of JSON Schema validation for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jsonschema-4.23.0-py3-none-any.whl", hash = "sha256:fbadb6f8b144a8f8cf9f0b89ba94501d143e50411a1278633f56a7acf7fd5566"}, + {file = "jsonschema-4.23.0.tar.gz", hash = "sha256:d71497fef26351a33265337fa77ffeb82423f3ea21283cd9467bb03999266bc4"}, +] + +[package.dependencies] +attrs = ">=22.2.0" +fqdn = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} +idna = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} +isoduration = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} +jsonpointer = {version = ">1.13", optional = true, markers = "extra == \"format-nongpl\""} +jsonschema-specifications = ">=2023.03.6" +referencing = ">=0.28.4" +rfc3339-validator = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} +rfc3986-validator = {version = ">0.1.0", optional = true, markers = "extra == \"format-nongpl\""} +rpds-py = ">=0.7.1" +uri-template = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} +webcolors = {version = ">=24.6.0", optional = true, markers = "extra == \"format-nongpl\""} + +[package.extras] +format = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3987", "uri-template", "webcolors (>=1.11)"] +format-nongpl = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3986-validator (>0.1.0)", "uri-template", "webcolors (>=24.6.0)"] + +[[package]] +name = "jsonschema-specifications" +version = "2023.12.1" +description = "The JSON Schema meta-schemas and vocabularies, exposed as a Registry" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jsonschema_specifications-2023.12.1-py3-none-any.whl", hash = "sha256:87e4fdf3a94858b8a2ba2778d9ba57d8a9cafca7c7489c46ba0d30a8bc6a9c3c"}, + {file = "jsonschema_specifications-2023.12.1.tar.gz", hash = "sha256:48a76787b3e70f5ed53f1160d2b81f586e4ca6d1548c5de7085d1682674764cc"}, +] + +[package.dependencies] +referencing = ">=0.31.0" + +[[package]] +name = "jupyter" +version = "1.1.1" +description = "Jupyter metapackage. Install all the Jupyter components in one go." +optional = false +python-versions = "*" +files = [ + {file = "jupyter-1.1.1-py2.py3-none-any.whl", hash = "sha256:7a59533c22af65439b24bbe60373a4e95af8f16ac65a6c00820ad378e3f7cc83"}, + {file = "jupyter-1.1.1.tar.gz", hash = "sha256:d55467bceabdea49d7e3624af7e33d59c37fff53ed3a350e1ac957bed731de7a"}, +] + +[package.dependencies] +ipykernel = "*" +ipywidgets = "*" +jupyter-console = "*" +jupyterlab = "*" +nbconvert = "*" +notebook = "*" + +[[package]] +name = "jupyter-client" +version = "8.6.2" +description = "Jupyter protocol implementation and client libraries" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_client-8.6.2-py3-none-any.whl", hash = "sha256:50cbc5c66fd1b8f65ecb66bc490ab73217993632809b6e505687de18e9dea39f"}, + {file = "jupyter_client-8.6.2.tar.gz", hash = "sha256:2bda14d55ee5ba58552a8c53ae43d215ad9868853489213f37da060ced54d8df"}, +] + +[package.dependencies] +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +python-dateutil = ">=2.8.2" +pyzmq = ">=23.0" +tornado = ">=6.2" +traitlets = ">=5.3" + +[package.extras] +docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest (<8.2.0)", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] + +[[package]] +name = "jupyter-console" +version = "6.6.3" +description = "Jupyter terminal console" +optional = false +python-versions = ">=3.7" +files = [ + {file = "jupyter_console-6.6.3-py3-none-any.whl", hash = "sha256:309d33409fcc92ffdad25f0bcdf9a4a9daa61b6f341177570fdac03de5352485"}, + {file = "jupyter_console-6.6.3.tar.gz", hash = "sha256:566a4bf31c87adbfadf22cdf846e3069b59a71ed5da71d6ba4d8aaad14a53539"}, +] + +[package.dependencies] +ipykernel = ">=6.14" +ipython = "*" +jupyter-client = ">=7.0.0" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +prompt-toolkit = ">=3.0.30" +pygments = "*" +pyzmq = ">=17" +traitlets = ">=5.4" + +[package.extras] +test = ["flaky", "pexpect", "pytest"] + +[[package]] +name = "jupyter-core" +version = "5.7.2" +description = "Jupyter core package. A base package on which Jupyter projects rely." +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_core-5.7.2-py3-none-any.whl", hash = "sha256:4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409"}, + {file = "jupyter_core-5.7.2.tar.gz", hash = "sha256:aa5f8d32bbf6b431ac830496da7392035d6f61b4f54872f15c4bd2a9c3f536d9"}, +] + +[package.dependencies] +platformdirs = ">=2.5" +pywin32 = {version = ">=300", markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""} +traitlets = ">=5.3" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] +test = ["ipykernel", "pre-commit", "pytest (<8)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "jupyter-events" +version = "0.10.0" +description = "Jupyter Event System library" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_events-0.10.0-py3-none-any.whl", hash = "sha256:4b72130875e59d57716d327ea70d3ebc3af1944d3717e5a498b8a06c6c159960"}, + {file = "jupyter_events-0.10.0.tar.gz", hash = "sha256:670b8229d3cc882ec782144ed22e0d29e1c2d639263f92ca8383e66682845e22"}, +] + +[package.dependencies] +jsonschema = {version = ">=4.18.0", extras = ["format-nongpl"]} +python-json-logger = ">=2.0.4" +pyyaml = ">=5.3" +referencing = "*" +rfc3339-validator = "*" +rfc3986-validator = ">=0.1.1" +traitlets = ">=5.3" + +[package.extras] +cli = ["click", "rich"] +docs = ["jupyterlite-sphinx", "myst-parser", "pydata-sphinx-theme", "sphinxcontrib-spelling"] +test = ["click", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.19.0)", "pytest-console-scripts", "rich"] + +[[package]] +name = "jupyter-lsp" +version = "2.2.5" +description = "Multi-Language Server WebSocket proxy for Jupyter Notebook/Lab server" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter-lsp-2.2.5.tar.gz", hash = "sha256:793147a05ad446f809fd53ef1cd19a9f5256fd0a2d6b7ce943a982cb4f545001"}, + {file = "jupyter_lsp-2.2.5-py3-none-any.whl", hash = "sha256:45fbddbd505f3fbfb0b6cb2f1bc5e15e83ab7c79cd6e89416b248cb3c00c11da"}, +] + +[package.dependencies] +jupyter-server = ">=1.1.2" + +[[package]] +name = "jupyter-server" +version = "2.14.2" +description = "The backend—i.e. core services, APIs, and REST endpoints—to Jupyter web applications." +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_server-2.14.2-py3-none-any.whl", hash = "sha256:47ff506127c2f7851a17bf4713434208fc490955d0e8632e95014a9a9afbeefd"}, + {file = "jupyter_server-2.14.2.tar.gz", hash = "sha256:66095021aa9638ced276c248b1d81862e4c50f292d575920bbe960de1c56b12b"}, +] + +[package.dependencies] +anyio = ">=3.1.0" +argon2-cffi = ">=21.1" +jinja2 = ">=3.0.3" +jupyter-client = ">=7.4.4" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +jupyter-events = ">=0.9.0" +jupyter-server-terminals = ">=0.4.4" +nbconvert = ">=6.4.4" +nbformat = ">=5.3.0" +overrides = ">=5.0" +packaging = ">=22.0" +prometheus-client = ">=0.9" +pywinpty = {version = ">=2.0.1", markers = "os_name == \"nt\""} +pyzmq = ">=24" +send2trash = ">=1.8.2" +terminado = ">=0.8.3" +tornado = ">=6.2.0" +traitlets = ">=5.6.0" +websocket-client = ">=1.7" + +[package.extras] +docs = ["ipykernel", "jinja2", "jupyter-client", "myst-parser", "nbformat", "prometheus-client", "pydata-sphinx-theme", "send2trash", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-openapi (>=0.8.0)", "sphinxcontrib-spelling", "sphinxemoji", "tornado", "typing-extensions"] +test = ["flaky", "ipykernel", "pre-commit", "pytest (>=7.0,<9)", "pytest-console-scripts", "pytest-jupyter[server] (>=0.7)", "pytest-timeout", "requests"] + +[[package]] +name = "jupyter-server-terminals" +version = "0.5.3" +description = "A Jupyter Server Extension Providing Terminals." +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_server_terminals-0.5.3-py3-none-any.whl", hash = "sha256:41ee0d7dc0ebf2809c668e0fc726dfaf258fcd3e769568996ca731b6194ae9aa"}, + {file = "jupyter_server_terminals-0.5.3.tar.gz", hash = "sha256:5ae0295167220e9ace0edcfdb212afd2b01ee8d179fe6f23c899590e9b8a5269"}, +] + +[package.dependencies] +pywinpty = {version = ">=2.0.3", markers = "os_name == \"nt\""} +terminado = ">=0.8.3" + +[package.extras] +docs = ["jinja2", "jupyter-server", "mistune (<4.0)", "myst-parser", "nbformat", "packaging", "pydata-sphinx-theme", "sphinxcontrib-github-alt", "sphinxcontrib-openapi", "sphinxcontrib-spelling", "sphinxemoji", "tornado"] +test = ["jupyter-server (>=2.0.0)", "pytest (>=7.0)", "pytest-jupyter[server] (>=0.5.3)", "pytest-timeout"] + +[[package]] +name = "jupyterlab" +version = "4.2.5" +description = "JupyterLab computational environment" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyterlab-4.2.5-py3-none-any.whl", hash = "sha256:73b6e0775d41a9fee7ee756c80f58a6bed4040869ccc21411dc559818874d321"}, + {file = "jupyterlab-4.2.5.tar.gz", hash = "sha256:ae7f3a1b8cb88b4f55009ce79fa7c06f99d70cd63601ee4aa91815d054f46f75"}, +] + +[package.dependencies] +async-lru = ">=1.0.0" +httpx = ">=0.25.0" +ipykernel = ">=6.5.0" +jinja2 = ">=3.0.3" +jupyter-core = "*" +jupyter-lsp = ">=2.0.0" +jupyter-server = ">=2.4.0,<3" +jupyterlab-server = ">=2.27.1,<3" +notebook-shim = ">=0.2" +packaging = "*" +setuptools = ">=40.1.0" +tornado = ">=6.2.0" +traitlets = "*" + +[package.extras] +dev = ["build", "bump2version", "coverage", "hatch", "pre-commit", "pytest-cov", "ruff (==0.3.5)"] +docs = ["jsx-lexer", "myst-parser", "pydata-sphinx-theme (>=0.13.0)", "pytest", "pytest-check-links", "pytest-jupyter", "sphinx (>=1.8,<7.3.0)", "sphinx-copybutton"] +docs-screenshots = ["altair (==5.3.0)", "ipython (==8.16.1)", "ipywidgets (==8.1.2)", "jupyterlab-geojson (==3.4.0)", "jupyterlab-language-pack-zh-cn (==4.1.post2)", "matplotlib (==3.8.3)", "nbconvert (>=7.0.0)", "pandas (==2.2.1)", "scipy (==1.12.0)", "vega-datasets (==0.9.0)"] +test = ["coverage", "pytest (>=7.0)", "pytest-check-links (>=0.7)", "pytest-console-scripts", "pytest-cov", "pytest-jupyter (>=0.5.3)", "pytest-timeout", "pytest-tornasync", "requests", "requests-cache", "virtualenv"] +upgrade-extension = ["copier (>=9,<10)", "jinja2-time (<0.3)", "pydantic (<3.0)", "pyyaml-include (<3.0)", "tomli-w (<2.0)"] + +[[package]] +name = "jupyterlab-pygments" +version = "0.3.0" +description = "Pygments theme using JupyterLab CSS variables" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyterlab_pygments-0.3.0-py3-none-any.whl", hash = "sha256:841a89020971da1d8693f1a99997aefc5dc424bb1b251fd6322462a1b8842780"}, + {file = "jupyterlab_pygments-0.3.0.tar.gz", hash = "sha256:721aca4d9029252b11cfa9d185e5b5af4d54772bb8072f9b7036f4170054d35d"}, +] + +[[package]] +name = "jupyterlab-server" +version = "2.27.3" +description = "A set of server components for JupyterLab and JupyterLab like applications." +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyterlab_server-2.27.3-py3-none-any.whl", hash = "sha256:e697488f66c3db49df675158a77b3b017520d772c6e1548c7d9bcc5df7944ee4"}, + {file = "jupyterlab_server-2.27.3.tar.gz", hash = "sha256:eb36caca59e74471988f0ae25c77945610b887f777255aa21f8065def9e51ed4"}, +] + +[package.dependencies] +babel = ">=2.10" +jinja2 = ">=3.0.3" +json5 = ">=0.9.0" +jsonschema = ">=4.18.0" +jupyter-server = ">=1.21,<3" +packaging = ">=21.3" +requests = ">=2.31" + +[package.extras] +docs = ["autodoc-traits", "jinja2 (<3.2.0)", "mistune (<4)", "myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-copybutton", "sphinxcontrib-openapi (>0.8)"] +openapi = ["openapi-core (>=0.18.0,<0.19.0)", "ruamel-yaml"] +test = ["hatch", "ipykernel", "openapi-core (>=0.18.0,<0.19.0)", "openapi-spec-validator (>=0.6.0,<0.8.0)", "pytest (>=7.0,<8)", "pytest-console-scripts", "pytest-cov", "pytest-jupyter[server] (>=0.6.2)", "pytest-timeout", "requests-mock", "ruamel-yaml", "sphinxcontrib-spelling", "strict-rfc3339", "werkzeug"] + +[[package]] +name = "jupyterlab-widgets" +version = "3.0.13" +description = "Jupyter interactive widgets for JupyterLab" +optional = false +python-versions = ">=3.7" +files = [ + {file = "jupyterlab_widgets-3.0.13-py3-none-any.whl", hash = "sha256:e3cda2c233ce144192f1e29914ad522b2f4c40e77214b0cc97377ca3d323db54"}, + {file = "jupyterlab_widgets-3.0.13.tar.gz", hash = "sha256:a2966d385328c1942b683a8cd96b89b8dd82c8b8f81dda902bb2bc06d46f5bed"}, +] + +[[package]] +name = "kiwisolver" +version = "1.4.7" +description = "A fast implementation of the Cassowary constraint solver" +optional = false +python-versions = ">=3.8" +files = [ + {file = "kiwisolver-1.4.7-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8a9c83f75223d5e48b0bc9cb1bf2776cf01563e00ade8775ffe13b0b6e1af3a6"}, + {file = "kiwisolver-1.4.7-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:58370b1ffbd35407444d57057b57da5d6549d2d854fa30249771775c63b5fe17"}, + {file = "kiwisolver-1.4.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:aa0abdf853e09aff551db11fce173e2177d00786c688203f52c87ad7fcd91ef9"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8d53103597a252fb3ab8b5845af04c7a26d5e7ea8122303dd7a021176a87e8b9"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:88f17c5ffa8e9462fb79f62746428dd57b46eb931698e42e990ad63103f35e6c"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88a9ca9c710d598fd75ee5de59d5bda2684d9db36a9f50b6125eaea3969c2599"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f4d742cb7af1c28303a51b7a27aaee540e71bb8e24f68c736f6f2ffc82f2bf05"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e28c7fea2196bf4c2f8d46a0415c77a1c480cc0724722f23d7410ffe9842c407"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e968b84db54f9d42046cf154e02911e39c0435c9801681e3fc9ce8a3c4130278"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:0c18ec74c0472de033e1bebb2911c3c310eef5649133dd0bedf2a169a1b269e5"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:8f0ea6da6d393d8b2e187e6a5e3fb81f5862010a40c3945e2c6d12ae45cfb2ad"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:f106407dda69ae456dd1227966bf445b157ccc80ba0dff3802bb63f30b74e895"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:84ec80df401cfee1457063732d90022f93951944b5b58975d34ab56bb150dfb3"}, + {file = "kiwisolver-1.4.7-cp310-cp310-win32.whl", hash = "sha256:71bb308552200fb2c195e35ef05de12f0c878c07fc91c270eb3d6e41698c3bcc"}, + {file = "kiwisolver-1.4.7-cp310-cp310-win_amd64.whl", hash = "sha256:44756f9fd339de0fb6ee4f8c1696cfd19b2422e0d70b4cefc1cc7f1f64045a8c"}, + {file = "kiwisolver-1.4.7-cp310-cp310-win_arm64.whl", hash = "sha256:78a42513018c41c2ffd262eb676442315cbfe3c44eed82385c2ed043bc63210a"}, + {file = "kiwisolver-1.4.7-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d2b0e12a42fb4e72d509fc994713d099cbb15ebf1103545e8a45f14da2dfca54"}, + {file = "kiwisolver-1.4.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2a8781ac3edc42ea4b90bc23e7d37b665d89423818e26eb6df90698aa2287c95"}, + {file = "kiwisolver-1.4.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:46707a10836894b559e04b0fd143e343945c97fd170d69a2d26d640b4e297935"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ef97b8df011141c9b0f6caf23b29379f87dd13183c978a30a3c546d2c47314cb"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ab58c12a2cd0fc769089e6d38466c46d7f76aced0a1f54c77652446733d2d02"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:803b8e1459341c1bb56d1c5c010406d5edec8a0713a0945851290a7930679b51"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f9a9e8a507420fe35992ee9ecb302dab68550dedc0da9e2880dd88071c5fb052"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18077b53dc3bb490e330669a99920c5e6a496889ae8c63b58fbc57c3d7f33a18"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:6af936f79086a89b3680a280c47ea90b4df7047b5bdf3aa5c524bbedddb9e545"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:3abc5b19d24af4b77d1598a585b8a719beb8569a71568b66f4ebe1fb0449460b"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:933d4de052939d90afbe6e9d5273ae05fb836cc86c15b686edd4b3560cc0ee36"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:65e720d2ab2b53f1f72fb5da5fb477455905ce2c88aaa671ff0a447c2c80e8e3"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:3bf1ed55088f214ba6427484c59553123fdd9b218a42bbc8c6496d6754b1e523"}, + {file = "kiwisolver-1.4.7-cp311-cp311-win32.whl", hash = "sha256:4c00336b9dd5ad96d0a558fd18a8b6f711b7449acce4c157e7343ba92dd0cf3d"}, + {file = "kiwisolver-1.4.7-cp311-cp311-win_amd64.whl", hash = "sha256:929e294c1ac1e9f615c62a4e4313ca1823ba37326c164ec720a803287c4c499b"}, + {file = "kiwisolver-1.4.7-cp311-cp311-win_arm64.whl", hash = "sha256:e33e8fbd440c917106b237ef1a2f1449dfbb9b6f6e1ce17c94cd6a1e0d438376"}, + {file = "kiwisolver-1.4.7-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:5360cc32706dab3931f738d3079652d20982511f7c0ac5711483e6eab08efff2"}, + {file = "kiwisolver-1.4.7-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:942216596dc64ddb25adb215c3c783215b23626f8d84e8eff8d6d45c3f29f75a"}, + {file = "kiwisolver-1.4.7-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:48b571ecd8bae15702e4f22d3ff6a0f13e54d3d00cd25216d5e7f658242065ee"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ad42ba922c67c5f219097b28fae965e10045ddf145d2928bfac2eb2e17673640"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:612a10bdae23404a72941a0fc8fa2660c6ea1217c4ce0dbcab8a8f6543ea9e7f"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9e838bba3a3bac0fe06d849d29772eb1afb9745a59710762e4ba3f4cb8424483"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:22f499f6157236c19f4bbbd472fa55b063db77a16cd74d49afe28992dff8c258"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:693902d433cf585133699972b6d7c42a8b9f8f826ebcaf0132ff55200afc599e"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:4e77f2126c3e0b0d055f44513ed349038ac180371ed9b52fe96a32aa071a5107"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:657a05857bda581c3656bfc3b20e353c232e9193eb167766ad2dc58b56504948"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:4bfa75a048c056a411f9705856abfc872558e33c055d80af6a380e3658766038"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:34ea1de54beef1c104422d210c47c7d2a4999bdecf42c7b5718fbe59a4cac383"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:90da3b5f694b85231cf93586dad5e90e2d71b9428f9aad96952c99055582f520"}, + {file = "kiwisolver-1.4.7-cp312-cp312-win32.whl", hash = "sha256:18e0cca3e008e17fe9b164b55735a325140a5a35faad8de92dd80265cd5eb80b"}, + {file = "kiwisolver-1.4.7-cp312-cp312-win_amd64.whl", hash = "sha256:58cb20602b18f86f83a5c87d3ee1c766a79c0d452f8def86d925e6c60fbf7bfb"}, + {file = "kiwisolver-1.4.7-cp312-cp312-win_arm64.whl", hash = "sha256:f5a8b53bdc0b3961f8b6125e198617c40aeed638b387913bf1ce78afb1b0be2a"}, + {file = "kiwisolver-1.4.7-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:2e6039dcbe79a8e0f044f1c39db1986a1b8071051efba3ee4d74f5b365f5226e"}, + {file = "kiwisolver-1.4.7-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:a1ecf0ac1c518487d9d23b1cd7139a6a65bc460cd101ab01f1be82ecf09794b6"}, + {file = "kiwisolver-1.4.7-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:7ab9ccab2b5bd5702ab0803676a580fffa2aa178c2badc5557a84cc943fcf750"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f816dd2277f8d63d79f9c8473a79fe54047bc0467754962840782c575522224d"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf8bcc23ceb5a1b624572a1623b9f79d2c3b337c8c455405ef231933a10da379"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dea0bf229319828467d7fca8c7c189780aa9ff679c94539eed7532ebe33ed37c"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c06a4c7cf15ec739ce0e5971b26c93638730090add60e183530d70848ebdd34"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:913983ad2deb14e66d83c28b632fd35ba2b825031f2fa4ca29675e665dfecbe1"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:5337ec7809bcd0f424c6b705ecf97941c46279cf5ed92311782c7c9c2026f07f"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:4c26ed10c4f6fa6ddb329a5120ba3b6db349ca192ae211e882970bfc9d91420b"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c619b101e6de2222c1fcb0531e1b17bbffbe54294bfba43ea0d411d428618c27"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:073a36c8273647592ea332e816e75ef8da5c303236ec0167196793eb1e34657a"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:3ce6b2b0231bda412463e152fc18335ba32faf4e8c23a754ad50ffa70e4091ee"}, + {file = "kiwisolver-1.4.7-cp313-cp313-win32.whl", hash = "sha256:f4c9aee212bc89d4e13f58be11a56cc8036cabad119259d12ace14b34476fd07"}, + {file = "kiwisolver-1.4.7-cp313-cp313-win_amd64.whl", hash = "sha256:8a3ec5aa8e38fc4c8af308917ce12c536f1c88452ce554027e55b22cbbfbff76"}, + {file = "kiwisolver-1.4.7-cp313-cp313-win_arm64.whl", hash = "sha256:76c8094ac20ec259471ac53e774623eb62e6e1f56cd8690c67ce6ce4fcb05650"}, + {file = "kiwisolver-1.4.7-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:5d5abf8f8ec1f4e22882273c423e16cae834c36856cac348cfbfa68e01c40f3a"}, + {file = "kiwisolver-1.4.7-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:aeb3531b196ef6f11776c21674dba836aeea9d5bd1cf630f869e3d90b16cfade"}, + {file = "kiwisolver-1.4.7-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b7d755065e4e866a8086c9bdada157133ff466476a2ad7861828e17b6026e22c"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:08471d4d86cbaec61f86b217dd938a83d85e03785f51121e791a6e6689a3be95"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7bbfcb7165ce3d54a3dfbe731e470f65739c4c1f85bb1018ee912bae139e263b"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d34eb8494bea691a1a450141ebb5385e4b69d38bb8403b5146ad279f4b30fa3"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9242795d174daa40105c1d86aba618e8eab7bf96ba8c3ee614da8302a9f95503"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:a0f64a48bb81af7450e641e3fe0b0394d7381e342805479178b3d335d60ca7cf"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:8e045731a5416357638d1700927529e2b8ab304811671f665b225f8bf8d8f933"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:4322872d5772cae7369f8351da1edf255a604ea7087fe295411397d0cfd9655e"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:e1631290ee9271dffe3062d2634c3ecac02c83890ada077d225e081aca8aab89"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:edcfc407e4eb17e037bca59be0e85a2031a2ac87e4fed26d3e9df88b4165f92d"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:4d05d81ecb47d11e7f8932bd8b61b720bf0b41199358f3f5e36d38e28f0532c5"}, + {file = "kiwisolver-1.4.7-cp38-cp38-win32.whl", hash = "sha256:b38ac83d5f04b15e515fd86f312479d950d05ce2368d5413d46c088dda7de90a"}, + {file = "kiwisolver-1.4.7-cp38-cp38-win_amd64.whl", hash = "sha256:d83db7cde68459fc803052a55ace60bea2bae361fc3b7a6d5da07e11954e4b09"}, + {file = "kiwisolver-1.4.7-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:3f9362ecfca44c863569d3d3c033dbe8ba452ff8eed6f6b5806382741a1334bd"}, + {file = "kiwisolver-1.4.7-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e8df2eb9b2bac43ef8b082e06f750350fbbaf2887534a5be97f6cf07b19d9583"}, + {file = "kiwisolver-1.4.7-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f32d6edbc638cde7652bd690c3e728b25332acbadd7cad670cc4a02558d9c417"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:e2e6c39bd7b9372b0be21456caab138e8e69cc0fc1190a9dfa92bd45a1e6e904"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dda56c24d869b1193fcc763f1284b9126550eaf84b88bbc7256e15028f19188a"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79849239c39b5e1fd906556c474d9b0439ea6792b637511f3fe3a41158d89ca8"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5e3bc157fed2a4c02ec468de4ecd12a6e22818d4f09cde2c31ee3226ffbefab2"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3da53da805b71e41053dc670f9a820d1157aae77b6b944e08024d17bcd51ef88"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:8705f17dfeb43139a692298cb6637ee2e59c0194538153e83e9ee0c75c2eddde"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:82a5c2f4b87c26bb1a0ef3d16b5c4753434633b83d365cc0ddf2770c93829e3c"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce8be0466f4c0d585cdb6c1e2ed07232221df101a4c6f28821d2aa754ca2d9e2"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:409afdfe1e2e90e6ee7fc896f3df9a7fec8e793e58bfa0d052c8a82f99c37abb"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:5b9c3f4ee0b9a439d2415012bd1b1cc2df59e4d6a9939f4d669241d30b414327"}, + {file = "kiwisolver-1.4.7-cp39-cp39-win32.whl", hash = "sha256:a79ae34384df2b615eefca647a2873842ac3b596418032bef9a7283675962644"}, + {file = "kiwisolver-1.4.7-cp39-cp39-win_amd64.whl", hash = "sha256:cf0438b42121a66a3a667de17e779330fc0f20b0d97d59d2f2121e182b0505e4"}, + {file = "kiwisolver-1.4.7-cp39-cp39-win_arm64.whl", hash = "sha256:764202cc7e70f767dab49e8df52c7455e8de0df5d858fa801a11aa0d882ccf3f"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:94252291e3fe68001b1dd747b4c0b3be12582839b95ad4d1b641924d68fd4643"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:5b7dfa3b546da08a9f622bb6becdb14b3e24aaa30adba66749d38f3cc7ea9706"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bd3de6481f4ed8b734da5df134cd5a6a64fe32124fe83dde1e5b5f29fe30b1e6"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a91b5f9f1205845d488c928e8570dcb62b893372f63b8b6e98b863ebd2368ff2"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40fa14dbd66b8b8f470d5fc79c089a66185619d31645f9b0773b88b19f7223c4"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:eb542fe7933aa09d8d8f9d9097ef37532a7df6497819d16efe4359890a2f417a"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:bfa1acfa0c54932d5607e19a2c24646fb4c1ae2694437789129cf099789a3b00"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:eee3ea935c3d227d49b4eb85660ff631556841f6e567f0f7bda972df6c2c9935"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:f3160309af4396e0ed04db259c3ccbfdc3621b5559b5453075e5de555e1f3a1b"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:a17f6a29cf8935e587cc8a4dbfc8368c55edc645283db0ce9801016f83526c2d"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:10849fb2c1ecbfae45a693c070e0320a91b35dd4bcf58172c023b994283a124d"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:ac542bf38a8a4be2dc6b15248d36315ccc65f0743f7b1a76688ffb6b5129a5c2"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:8b01aac285f91ca889c800042c35ad3b239e704b150cfd3382adfc9dcc780e39"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:48be928f59a1f5c8207154f935334d374e79f2b5d212826307d072595ad76a2e"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f37cfe618a117e50d8c240555331160d73d0411422b59b5ee217843d7b693608"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:599b5c873c63a1f6ed7eead644a8a380cfbdf5db91dcb6f85707aaab213b1674"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:801fa7802e5cfabe3ab0c81a34c323a319b097dfb5004be950482d882f3d7225"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:0c6c43471bc764fad4bc99c5c2d6d16a676b1abf844ca7c8702bdae92df01ee0"}, + {file = "kiwisolver-1.4.7.tar.gz", hash = "sha256:9893ff81bd7107f7b685d3017cc6583daadb4fc26e4a888350df530e41980a60"}, +] + +[[package]] +name = "markupsafe" +version = "2.1.5" +description = "Safely add untrusted strings to HTML/XML markup." +optional = false +python-versions = ">=3.7" +files = [ + {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a17a92de5231666cfbe003f0e4b9b3a7ae3afb1ec2845aadc2bacc93ff85febc"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72b6be590cc35924b02c78ef34b467da4ba07e4e0f0454a2c5907f473fc50ce5"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e61659ba32cf2cf1481e575d0462554625196a1f2fc06a1c777d3f48e8865d46"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2174c595a0d73a3080ca3257b40096db99799265e1c27cc5a610743acd86d62f"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ae2ad8ae6ebee9d2d94b17fb62763125f3f374c25618198f40cbb8b525411900"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:075202fa5b72c86ad32dc7d0b56024ebdbcf2048c0ba09f1cde31bfdd57bcfff"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:598e3276b64aff0e7b3451b72e94fa3c238d452e7ddcd893c3ab324717456bad"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fce659a462a1be54d2ffcacea5e3ba2d74daa74f30f5f143fe0c58636e355fdd"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-win32.whl", hash = "sha256:d9fad5155d72433c921b782e58892377c44bd6252b5af2f67f16b194987338a4"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-win_amd64.whl", hash = "sha256:bf50cd79a75d181c9181df03572cdce0fbb75cc353bc350712073108cba98de5"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:629ddd2ca402ae6dbedfceeba9c46d5f7b2a61d9749597d4307f943ef198fc1f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5b7b716f97b52c5a14bffdf688f971b2d5ef4029127f1ad7a513973cfd818df2"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6ec585f69cec0aa07d945b20805be741395e28ac1627333b1c5b0105962ffced"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b91c037585eba9095565a3556f611e3cbfaa42ca1e865f7b8015fe5c7336d5a5"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7502934a33b54030eaf1194c21c692a534196063db72176b0c4028e140f8f32c"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0e397ac966fdf721b2c528cf028494e86172b4feba51d65f81ffd65c63798f3f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c061bb86a71b42465156a3ee7bd58c8c2ceacdbeb95d05a99893e08b8467359a"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3a57fdd7ce31c7ff06cdfbf31dafa96cc533c21e443d57f5b1ecc6cdc668ec7f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-win32.whl", hash = "sha256:397081c1a0bfb5124355710fe79478cdbeb39626492b15d399526ae53422b906"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-win_amd64.whl", hash = "sha256:2b7c57a4dfc4f16f7142221afe5ba4e093e09e728ca65c51f5620c9aaeb9a617"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:8dec4936e9c3100156f8a2dc89c4b88d5c435175ff03413b443469c7c8c5f4d1"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3c6b973f22eb18a789b1460b4b91bf04ae3f0c4234a0a6aa6b0a92f6f7b951d4"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac07bad82163452a6884fe8fa0963fb98c2346ba78d779ec06bd7a6262132aee"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5dfb42c4604dddc8e4305050aa6deb084540643ed5804d7455b5df8fe16f5e5"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ea3d8a3d18833cf4304cd2fc9cbb1efe188ca9b5efef2bdac7adc20594a0e46b"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d050b3361367a06d752db6ead6e7edeb0009be66bc3bae0ee9d97fb326badc2a"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:bec0a414d016ac1a18862a519e54b2fd0fc8bbfd6890376898a6c0891dd82e9f"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:58c98fee265677f63a4385256a6d7683ab1832f3ddd1e66fe948d5880c21a169"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-win32.whl", hash = "sha256:8590b4ae07a35970728874632fed7bd57b26b0102df2d2b233b6d9d82f6c62ad"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-win_amd64.whl", hash = "sha256:823b65d8706e32ad2df51ed89496147a42a2a6e01c13cfb6ffb8b1e92bc910bb"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c8b29db45f8fe46ad280a7294f5c3ec36dbac9491f2d1c17345be8e69cc5928f"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec6a563cff360b50eed26f13adc43e61bc0c04d94b8be985e6fb24b81f6dcfdf"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a549b9c31bec33820e885335b451286e2969a2d9e24879f83fe904a5ce59d70a"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4f11aa001c540f62c6166c7726f71f7573b52c68c31f014c25cc7901deea0b52"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7b2e5a267c855eea6b4283940daa6e88a285f5f2a67f2220203786dfa59b37e9"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:2d2d793e36e230fd32babe143b04cec8a8b3eb8a3122d2aceb4a371e6b09b8df"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ce409136744f6521e39fd8e2a24c53fa18ad67aa5bc7c2cf83645cce5b5c4e50"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-win32.whl", hash = "sha256:4096e9de5c6fdf43fb4f04c26fb114f61ef0bf2e5604b6ee3019d51b69e8c371"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-win_amd64.whl", hash = "sha256:4275d846e41ecefa46e2015117a9f491e57a71ddd59bbead77e904dc02b1bed2"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:656f7526c69fac7f600bd1f400991cc282b417d17539a1b228617081106feb4a"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:97cafb1f3cbcd3fd2b6fbfb99ae11cdb14deea0736fc2b0952ee177f2b813a46"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f3fbcb7ef1f16e48246f704ab79d79da8a46891e2da03f8783a5b6fa41a9532"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa9db3f79de01457b03d4f01b34cf91bc0048eb2c3846ff26f66687c2f6d16ab"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffee1f21e5ef0d712f9033568f8344d5da8cc2869dbd08d87c84656e6a2d2f68"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5dedb4db619ba5a2787a94d877bc8ffc0566f92a01c0ef214865e54ecc9ee5e0"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:30b600cf0a7ac9234b2638fbc0fb6158ba5bdcdf46aeb631ead21248b9affbc4"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8dd717634f5a044f860435c1d8c16a270ddf0ef8588d4887037c5028b859b0c3"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-win32.whl", hash = "sha256:daa4ee5a243f0f20d528d939d06670a298dd39b1ad5f8a72a4275124a7819eff"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-win_amd64.whl", hash = "sha256:619bc166c4f2de5caa5a633b8b7326fbe98e0ccbfacabd87268a2b15ff73a029"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7a68b554d356a91cce1236aa7682dc01df0edba8d043fd1ce607c49dd3c1edcf"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:db0b55e0f3cc0be60c1f19efdde9a637c32740486004f20d1cff53c3c0ece4d2"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e53af139f8579a6d5f7b76549125f0d94d7e630761a2111bc431fd820e163b8"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:17b950fccb810b3293638215058e432159d2b71005c74371d784862b7e4683f3"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4c31f53cdae6ecfa91a77820e8b151dba54ab528ba65dfd235c80b086d68a465"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:bff1b4290a66b490a2f4719358c0cdcd9bafb6b8f061e45c7a2460866bf50c2e"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc1667f8b83f48511b94671e0e441401371dfd0f0a795c7daa4a3cd1dde55bea"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5049256f536511ee3f7e1b3f87d1d1209d327e818e6ae1365e8653d7e3abb6a6"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-win32.whl", hash = "sha256:00e046b6dd71aa03a41079792f8473dc494d564611a8f89bbbd7cb93295ebdcf"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-win_amd64.whl", hash = "sha256:fa173ec60341d6bb97a89f5ea19c85c5643c1e7dedebc22f5181eb73573142c5"}, + {file = "MarkupSafe-2.1.5.tar.gz", hash = "sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b"}, +] + +[[package]] +name = "marshmallow" +version = "3.22.0" +description = "A lightweight library for converting complex datatypes to and from native Python datatypes." +optional = false +python-versions = ">=3.8" +files = [ + {file = "marshmallow-3.22.0-py3-none-any.whl", hash = "sha256:71a2dce49ef901c3f97ed296ae5051135fd3febd2bf43afe0ae9a82143a494d9"}, + {file = "marshmallow-3.22.0.tar.gz", hash = "sha256:4972f529104a220bb8637d595aa4c9762afbe7f7a77d82dc58c1615d70c5823e"}, +] + +[package.dependencies] +packaging = ">=17.0" + +[package.extras] +dev = ["marshmallow[tests]", "pre-commit (>=3.5,<4.0)", "tox"] +docs = ["alabaster (==1.0.0)", "autodocsumm (==0.2.13)", "sphinx (==8.0.2)", "sphinx-issues (==4.1.0)", "sphinx-version-warning (==1.1.2)"] +tests = ["pytest", "pytz", "simplejson"] + +[[package]] +name = "matplotlib" +version = "3.9.2" +description = "Python plotting package" +optional = false +python-versions = ">=3.9" +files = [ + {file = "matplotlib-3.9.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:9d78bbc0cbc891ad55b4f39a48c22182e9bdaea7fc0e5dbd364f49f729ca1bbb"}, + {file = "matplotlib-3.9.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c375cc72229614632c87355366bdf2570c2dac01ac66b8ad048d2dabadf2d0d4"}, + {file = "matplotlib-3.9.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d94ff717eb2bd0b58fe66380bd8b14ac35f48a98e7c6765117fe67fb7684e64"}, + {file = "matplotlib-3.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ab68d50c06938ef28681073327795c5db99bb4666214d2d5f880ed11aeaded66"}, + {file = "matplotlib-3.9.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:65aacf95b62272d568044531e41de26285d54aec8cb859031f511f84bd8b495a"}, + {file = "matplotlib-3.9.2-cp310-cp310-win_amd64.whl", hash = "sha256:3fd595f34aa8a55b7fc8bf9ebea8aa665a84c82d275190a61118d33fbc82ccae"}, + {file = "matplotlib-3.9.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d8dd059447824eec055e829258ab092b56bb0579fc3164fa09c64f3acd478772"}, + {file = "matplotlib-3.9.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c797dac8bb9c7a3fd3382b16fe8f215b4cf0f22adccea36f1545a6d7be310b41"}, + {file = "matplotlib-3.9.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d719465db13267bcef19ea8954a971db03b9f48b4647e3860e4bc8e6ed86610f"}, + {file = "matplotlib-3.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8912ef7c2362f7193b5819d17dae8629b34a95c58603d781329712ada83f9447"}, + {file = "matplotlib-3.9.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:7741f26a58a240f43bee74965c4882b6c93df3e7eb3de160126d8c8f53a6ae6e"}, + {file = "matplotlib-3.9.2-cp311-cp311-win_amd64.whl", hash = "sha256:ae82a14dab96fbfad7965403c643cafe6515e386de723e498cf3eeb1e0b70cc7"}, + {file = "matplotlib-3.9.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:ac43031375a65c3196bee99f6001e7fa5bdfb00ddf43379d3c0609bdca042df9"}, + {file = "matplotlib-3.9.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:be0fc24a5e4531ae4d8e858a1a548c1fe33b176bb13eff7f9d0d38ce5112a27d"}, + {file = "matplotlib-3.9.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bf81de2926c2db243c9b2cbc3917619a0fc85796c6ba4e58f541df814bbf83c7"}, + {file = "matplotlib-3.9.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6ee45bc4245533111ced13f1f2cace1e7f89d1c793390392a80c139d6cf0e6c"}, + {file = "matplotlib-3.9.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:306c8dfc73239f0e72ac50e5a9cf19cc4e8e331dd0c54f5e69ca8758550f1e1e"}, + {file = "matplotlib-3.9.2-cp312-cp312-win_amd64.whl", hash = "sha256:5413401594cfaff0052f9d8b1aafc6d305b4bd7c4331dccd18f561ff7e1d3bd3"}, + {file = "matplotlib-3.9.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:18128cc08f0d3cfff10b76baa2f296fc28c4607368a8402de61bb3f2eb33c7d9"}, + {file = "matplotlib-3.9.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:4876d7d40219e8ae8bb70f9263bcbe5714415acfdf781086601211335e24f8aa"}, + {file = "matplotlib-3.9.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6d9f07a80deab4bb0b82858a9e9ad53d1382fd122be8cde11080f4e7dfedb38b"}, + {file = "matplotlib-3.9.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f7c0410f181a531ec4e93bbc27692f2c71a15c2da16766f5ba9761e7ae518413"}, + {file = "matplotlib-3.9.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:909645cce2dc28b735674ce0931a4ac94e12f5b13f6bb0b5a5e65e7cea2c192b"}, + {file = "matplotlib-3.9.2-cp313-cp313-win_amd64.whl", hash = "sha256:f32c7410c7f246838a77d6d1eff0c0f87f3cb0e7c4247aebea71a6d5a68cab49"}, + {file = "matplotlib-3.9.2-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:37e51dd1c2db16ede9cfd7b5cabdfc818b2c6397c83f8b10e0e797501c963a03"}, + {file = "matplotlib-3.9.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:b82c5045cebcecd8496a4d694d43f9cc84aeeb49fe2133e036b207abe73f4d30"}, + {file = "matplotlib-3.9.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f053c40f94bc51bc03832a41b4f153d83f2062d88c72b5e79997072594e97e51"}, + {file = "matplotlib-3.9.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dbe196377a8248972f5cede786d4c5508ed5f5ca4a1e09b44bda889958b33f8c"}, + {file = "matplotlib-3.9.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:5816b1e1fe8c192cbc013f8f3e3368ac56fbecf02fb41b8f8559303f24c5015e"}, + {file = "matplotlib-3.9.2-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:cef2a73d06601437be399908cf13aee74e86932a5ccc6ccdf173408ebc5f6bb2"}, + {file = "matplotlib-3.9.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e0830e188029c14e891fadd99702fd90d317df294c3298aad682739c5533721a"}, + {file = "matplotlib-3.9.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:03ba9c1299c920964e8d3857ba27173b4dbb51ca4bab47ffc2c2ba0eb5e2cbc5"}, + {file = "matplotlib-3.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1cd93b91ab47a3616b4d3c42b52f8363b88ca021e340804c6ab2536344fad9ca"}, + {file = "matplotlib-3.9.2-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:6d1ce5ed2aefcdce11904fc5bbea7d9c21fff3d5f543841edf3dea84451a09ea"}, + {file = "matplotlib-3.9.2-cp39-cp39-win_amd64.whl", hash = "sha256:b2696efdc08648536efd4e1601b5fd491fd47f4db97a5fbfd175549a7365c1b2"}, + {file = "matplotlib-3.9.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:d52a3b618cb1cbb769ce2ee1dcdb333c3ab6e823944e9a2d36e37253815f9556"}, + {file = "matplotlib-3.9.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:039082812cacd6c6bec8e17a9c1e6baca230d4116d522e81e1f63a74d01d2e21"}, + {file = "matplotlib-3.9.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6758baae2ed64f2331d4fd19be38b7b4eae3ecec210049a26b6a4f3ae1c85dcc"}, + {file = "matplotlib-3.9.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:050598c2b29e0b9832cde72bcf97627bf00262adbc4a54e2b856426bb2ef0697"}, + {file = "matplotlib-3.9.2.tar.gz", hash = "sha256:96ab43906269ca64a6366934106fa01534454a69e471b7bf3d79083981aaab92"}, +] + +[package.dependencies] +contourpy = ">=1.0.1" +cycler = ">=0.10" +fonttools = ">=4.22.0" +kiwisolver = ">=1.3.1" +numpy = ">=1.23" +packaging = ">=20.0" +pillow = ">=8" +pyparsing = ">=2.3.1" +python-dateutil = ">=2.7" + +[package.extras] +dev = ["meson-python (>=0.13.1)", "numpy (>=1.25)", "pybind11 (>=2.6)", "setuptools (>=64)", "setuptools_scm (>=7)"] + +[[package]] +name = "matplotlib-inline" +version = "0.1.7" +description = "Inline Matplotlib backend for Jupyter" +optional = false +python-versions = ">=3.8" +files = [ + {file = "matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca"}, + {file = "matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90"}, +] + +[package.dependencies] +traitlets = "*" + +[[package]] +name = "mistune" +version = "3.0.2" +description = "A sane and fast Markdown parser with useful plugins and renderers" +optional = false +python-versions = ">=3.7" +files = [ + {file = "mistune-3.0.2-py3-none-any.whl", hash = "sha256:71481854c30fdbc938963d3605b72501f5c10a9320ecd412c121c163a1c7d205"}, + {file = "mistune-3.0.2.tar.gz", hash = "sha256:fc7f93ded930c92394ef2cb6f04a8aabab4117a91449e72dcc8dfa646a508be8"}, +] + +[[package]] +name = "nbclient" +version = "0.10.0" +description = "A client library for executing notebooks. Formerly nbconvert's ExecutePreprocessor." +optional = false +python-versions = ">=3.8.0" +files = [ + {file = "nbclient-0.10.0-py3-none-any.whl", hash = "sha256:f13e3529332a1f1f81d82a53210322476a168bb7090a0289c795fe9cc11c9d3f"}, + {file = "nbclient-0.10.0.tar.gz", hash = "sha256:4b3f1b7dba531e498449c4db4f53da339c91d449dc11e9af3a43b4eb5c5abb09"}, +] + +[package.dependencies] +jupyter-client = ">=6.1.12" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +nbformat = ">=5.1" +traitlets = ">=5.4" + +[package.extras] +dev = ["pre-commit"] +docs = ["autodoc-traits", "mock", "moto", "myst-parser", "nbclient[test]", "sphinx (>=1.7)", "sphinx-book-theme", "sphinxcontrib-spelling"] +test = ["flaky", "ipykernel (>=6.19.3)", "ipython", "ipywidgets", "nbconvert (>=7.0.0)", "pytest (>=7.0,<8)", "pytest-asyncio", "pytest-cov (>=4.0)", "testpath", "xmltodict"] + +[[package]] +name = "nbconvert" +version = "7.16.4" +description = "Converting Jupyter Notebooks (.ipynb files) to other formats. Output formats include asciidoc, html, latex, markdown, pdf, py, rst, script. nbconvert can be used both as a Python library (`import nbconvert`) or as a command line tool (invoked as `jupyter nbconvert ...`)." +optional = false +python-versions = ">=3.8" +files = [ + {file = "nbconvert-7.16.4-py3-none-any.whl", hash = "sha256:05873c620fe520b6322bf8a5ad562692343fe3452abda5765c7a34b7d1aa3eb3"}, + {file = "nbconvert-7.16.4.tar.gz", hash = "sha256:86ca91ba266b0a448dc96fa6c5b9d98affabde2867b363258703536807f9f7f4"}, +] + +[package.dependencies] +beautifulsoup4 = "*" +bleach = "!=5.0.0" +defusedxml = "*" +jinja2 = ">=3.0" +jupyter-core = ">=4.7" +jupyterlab-pygments = "*" +markupsafe = ">=2.0" +mistune = ">=2.0.3,<4" +nbclient = ">=0.5.0" +nbformat = ">=5.7" +packaging = "*" +pandocfilters = ">=1.4.1" +pygments = ">=2.4.1" +tinycss2 = "*" +traitlets = ">=5.1" + +[package.extras] +all = ["flaky", "ipykernel", "ipython", "ipywidgets (>=7.5)", "myst-parser", "nbsphinx (>=0.2.12)", "playwright", "pydata-sphinx-theme", "pyqtwebengine (>=5.15)", "pytest (>=7)", "sphinx (==5.0.2)", "sphinxcontrib-spelling", "tornado (>=6.1)"] +docs = ["ipykernel", "ipython", "myst-parser", "nbsphinx (>=0.2.12)", "pydata-sphinx-theme", "sphinx (==5.0.2)", "sphinxcontrib-spelling"] +qtpdf = ["pyqtwebengine (>=5.15)"] +qtpng = ["pyqtwebengine (>=5.15)"] +serve = ["tornado (>=6.1)"] +test = ["flaky", "ipykernel", "ipywidgets (>=7.5)", "pytest (>=7)"] +webpdf = ["playwright"] + +[[package]] +name = "nbformat" +version = "5.10.4" +description = "The Jupyter Notebook format" +optional = false +python-versions = ">=3.8" +files = [ + {file = "nbformat-5.10.4-py3-none-any.whl", hash = "sha256:3b48d6c8fbca4b299bf3982ea7db1af21580e4fec269ad087b9e81588891200b"}, + {file = "nbformat-5.10.4.tar.gz", hash = "sha256:322168b14f937a5d11362988ecac2a4952d3d8e3a2cbeb2319584631226d5b3a"}, +] + +[package.dependencies] +fastjsonschema = ">=2.15" +jsonschema = ">=2.6" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +traitlets = ">=5.1" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["pep440", "pre-commit", "pytest", "testpath"] + +[[package]] +name = "nest-asyncio" +version = "1.6.0" +description = "Patch asyncio to allow nested event loops" +optional = false +python-versions = ">=3.5" +files = [ + {file = "nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c"}, + {file = "nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe"}, +] + +[[package]] +name = "notebook" +version = "7.2.2" +description = "Jupyter Notebook - A web-based notebook environment for interactive computing" +optional = false +python-versions = ">=3.8" +files = [ + {file = "notebook-7.2.2-py3-none-any.whl", hash = "sha256:c89264081f671bc02eec0ed470a627ed791b9156cad9285226b31611d3e9fe1c"}, + {file = "notebook-7.2.2.tar.gz", hash = "sha256:2ef07d4220421623ad3fe88118d687bc0450055570cdd160814a59cf3a1c516e"}, +] + +[package.dependencies] +jupyter-server = ">=2.4.0,<3" +jupyterlab = ">=4.2.0,<4.3" +jupyterlab-server = ">=2.27.1,<3" +notebook-shim = ">=0.2,<0.3" +tornado = ">=6.2.0" + +[package.extras] +dev = ["hatch", "pre-commit"] +docs = ["myst-parser", "nbsphinx", "pydata-sphinx-theme", "sphinx (>=1.3.6)", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["importlib-resources (>=5.0)", "ipykernel", "jupyter-server[test] (>=2.4.0,<3)", "jupyterlab-server[test] (>=2.27.1,<3)", "nbval", "pytest (>=7.0)", "pytest-console-scripts", "pytest-timeout", "pytest-tornasync", "requests"] + +[[package]] +name = "notebook-shim" +version = "0.2.4" +description = "A shim layer for notebook traits and config" +optional = false +python-versions = ">=3.7" +files = [ + {file = "notebook_shim-0.2.4-py3-none-any.whl", hash = "sha256:411a5be4e9dc882a074ccbcae671eda64cceb068767e9a3419096986560e1cef"}, + {file = "notebook_shim-0.2.4.tar.gz", hash = "sha256:b4b2cfa1b65d98307ca24361f5b30fe785b53c3fd07b7a47e89acb5e6ac638cb"}, +] + +[package.dependencies] +jupyter-server = ">=1.8,<3" + +[package.extras] +test = ["pytest", "pytest-console-scripts", "pytest-jupyter", "pytest-tornasync"] + +[[package]] +name = "numpy" +version = "2.1.0" +description = "Fundamental package for array computing in Python" +optional = false +python-versions = ">=3.10" +files = [ + {file = "numpy-2.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6326ab99b52fafdcdeccf602d6286191a79fe2fda0ae90573c5814cd2b0bc1b8"}, + {file = "numpy-2.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0937e54c09f7a9a68da6889362ddd2ff584c02d015ec92672c099b61555f8911"}, + {file = "numpy-2.1.0-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:30014b234f07b5fec20f4146f69e13cfb1e33ee9a18a1879a0142fbb00d47673"}, + {file = "numpy-2.1.0-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:899da829b362ade41e1e7eccad2cf274035e1cb36ba73034946fccd4afd8606b"}, + {file = "numpy-2.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:08801848a40aea24ce16c2ecde3b756f9ad756586fb2d13210939eb69b023f5b"}, + {file = "numpy-2.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:398049e237d1aae53d82a416dade04defed1a47f87d18d5bd615b6e7d7e41d1f"}, + {file = "numpy-2.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0abb3916a35d9090088a748636b2c06dc9a6542f99cd476979fb156a18192b84"}, + {file = "numpy-2.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:10e2350aea18d04832319aac0f887d5fcec1b36abd485d14f173e3e900b83e33"}, + {file = "numpy-2.1.0-cp310-cp310-win32.whl", hash = "sha256:f6b26e6c3b98adb648243670fddc8cab6ae17473f9dc58c51574af3e64d61211"}, + {file = "numpy-2.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:f505264735ee074250a9c78247ee8618292091d9d1fcc023290e9ac67e8f1afa"}, + {file = "numpy-2.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:76368c788ccb4f4782cf9c842b316140142b4cbf22ff8db82724e82fe1205dce"}, + {file = "numpy-2.1.0-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:f8e93a01a35be08d31ae33021e5268f157a2d60ebd643cfc15de6ab8e4722eb1"}, + {file = "numpy-2.1.0-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:9523f8b46485db6939bd069b28b642fec86c30909cea90ef550373787f79530e"}, + {file = "numpy-2.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:54139e0eb219f52f60656d163cbe67c31ede51d13236c950145473504fa208cb"}, + {file = "numpy-2.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5ebbf9fbdabed208d4ecd2e1dfd2c0741af2f876e7ae522c2537d404ca895c3"}, + {file = "numpy-2.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:378cb4f24c7d93066ee4103204f73ed046eb88f9ad5bb2275bb9fa0f6a02bd36"}, + {file = "numpy-2.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:d8f699a709120b220dfe173f79c73cb2a2cab2c0b88dd59d7b49407d032b8ebd"}, + {file = "numpy-2.1.0-cp311-cp311-win32.whl", hash = "sha256:ffbd6faeb190aaf2b5e9024bac9622d2ee549b7ec89ef3a9373fa35313d44e0e"}, + {file = "numpy-2.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:0af3a5987f59d9c529c022c8c2a64805b339b7ef506509fba7d0556649b9714b"}, + {file = "numpy-2.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:fe76d75b345dc045acdbc006adcb197cc680754afd6c259de60d358d60c93736"}, + {file = "numpy-2.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f358ea9e47eb3c2d6eba121ab512dfff38a88db719c38d1e67349af210bc7529"}, + {file = "numpy-2.1.0-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:dd94ce596bda40a9618324547cfaaf6650b1a24f5390350142499aa4e34e53d1"}, + {file = "numpy-2.1.0-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:b47c551c6724960479cefd7353656498b86e7232429e3a41ab83be4da1b109e8"}, + {file = "numpy-2.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0756a179afa766ad7cb6f036de622e8a8f16ffdd55aa31f296c870b5679d745"}, + {file = "numpy-2.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:24003ba8ff22ea29a8c306e61d316ac74111cebf942afbf692df65509a05f111"}, + {file = "numpy-2.1.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:b34fa5e3b5d6dc7e0a4243fa0f81367027cb6f4a7215a17852979634b5544ee0"}, + {file = "numpy-2.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:c4f982715e65036c34897eb598d64aef15150c447be2cfc6643ec7a11af06574"}, + {file = "numpy-2.1.0-cp312-cp312-win32.whl", hash = "sha256:c4cd94dfefbefec3f8b544f61286584292d740e6e9d4677769bc76b8f41deb02"}, + {file = "numpy-2.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:a0cdef204199278f5c461a0bed6ed2e052998276e6d8ab2963d5b5c39a0500bc"}, + {file = "numpy-2.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:8ab81ccd753859ab89e67199b9da62c543850f819993761c1e94a75a814ed667"}, + {file = "numpy-2.1.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:442596f01913656d579309edcd179a2a2f9977d9a14ff41d042475280fc7f34e"}, + {file = "numpy-2.1.0-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:848c6b5cad9898e4b9ef251b6f934fa34630371f2e916261070a4eb9092ffd33"}, + {file = "numpy-2.1.0-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:54c6a63e9d81efe64bfb7bcb0ec64332a87d0b87575f6009c8ba67ea6374770b"}, + {file = "numpy-2.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:652e92fc409e278abdd61e9505649e3938f6d04ce7ef1953f2ec598a50e7c195"}, + {file = "numpy-2.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ab32eb9170bf8ffcbb14f11613f4a0b108d3ffee0832457c5d4808233ba8977"}, + {file = "numpy-2.1.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:8fb49a0ba4d8f41198ae2d52118b050fd34dace4b8f3fb0ee34e23eb4ae775b1"}, + {file = "numpy-2.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:44e44973262dc3ae79e9063a1284a73e09d01b894b534a769732ccd46c28cc62"}, + {file = "numpy-2.1.0-cp313-cp313-win32.whl", hash = "sha256:ab83adc099ec62e044b1fbb3a05499fa1e99f6d53a1dde102b2d85eff66ed324"}, + {file = "numpy-2.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:de844aaa4815b78f6023832590d77da0e3b6805c644c33ce94a1e449f16d6ab5"}, + {file = "numpy-2.1.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:343e3e152bf5a087511cd325e3b7ecfd5b92d369e80e74c12cd87826e263ec06"}, + {file = "numpy-2.1.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:f07fa2f15dabe91259828ce7d71b5ca9e2eb7c8c26baa822c825ce43552f4883"}, + {file = "numpy-2.1.0-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:5474dad8c86ee9ba9bb776f4b99ef2d41b3b8f4e0d199d4f7304728ed34d0300"}, + {file = "numpy-2.1.0-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:1f817c71683fd1bb5cff1529a1d085a57f02ccd2ebc5cd2c566f9a01118e3b7d"}, + {file = "numpy-2.1.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3a3336fbfa0d38d3deacd3fe7f3d07e13597f29c13abf4d15c3b6dc2291cbbdd"}, + {file = "numpy-2.1.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a894c51fd8c4e834f00ac742abad73fc485df1062f1b875661a3c1e1fb1c2f6"}, + {file = "numpy-2.1.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:9156ca1f79fc4acc226696e95bfcc2b486f165a6a59ebe22b2c1f82ab190384a"}, + {file = "numpy-2.1.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:624884b572dff8ca8f60fab591413f077471de64e376b17d291b19f56504b2bb"}, + {file = "numpy-2.1.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:15ef8b2177eeb7e37dd5ef4016f30b7659c57c2c0b57a779f1d537ff33a72c7b"}, + {file = "numpy-2.1.0-pp310-pypy310_pp73-macosx_14_0_x86_64.whl", hash = "sha256:e5f0642cdf4636198a4990de7a71b693d824c56a757862230454629cf62e323d"}, + {file = "numpy-2.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f15976718c004466406342789f31b6673776360f3b1e3c575f25302d7e789575"}, + {file = "numpy-2.1.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:6c1de77ded79fef664d5098a66810d4d27ca0224e9051906e634b3f7ead134c2"}, + {file = "numpy-2.1.0.tar.gz", hash = "sha256:7dc90da0081f7e1da49ec4e398ede6a8e9cc4f5ebe5f9e06b443ed889ee9aaa2"}, +] + +[[package]] +name = "overrides" +version = "7.7.0" +description = "A decorator to automatically detect mismatch when overriding a method." +optional = false +python-versions = ">=3.6" +files = [ + {file = "overrides-7.7.0-py3-none-any.whl", hash = "sha256:c7ed9d062f78b8e4c1a7b70bd8796b35ead4d9f510227ef9c5dc7626c60d7e49"}, + {file = "overrides-7.7.0.tar.gz", hash = "sha256:55158fa3d93b98cc75299b1e67078ad9003ca27945c76162c1c0766d6f91820a"}, +] + +[[package]] +name = "packaging" +version = "24.1" +description = "Core utilities for Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "packaging-24.1-py3-none-any.whl", hash = "sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124"}, + {file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"}, +] + +[[package]] +name = "pandas" +version = "2.2.2" +description = "Powerful data structures for data analysis, time series, and statistics" +optional = false +python-versions = ">=3.9" +files = [ + {file = "pandas-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:90c6fca2acf139569e74e8781709dccb6fe25940488755716d1d354d6bc58bce"}, + {file = "pandas-2.2.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c7adfc142dac335d8c1e0dcbd37eb8617eac386596eb9e1a1b77791cf2498238"}, + {file = "pandas-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4abfe0be0d7221be4f12552995e58723c7422c80a659da13ca382697de830c08"}, + {file = "pandas-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8635c16bf3d99040fdf3ca3db669a7250ddf49c55dc4aa8fe0ae0fa8d6dcc1f0"}, + {file = "pandas-2.2.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:40ae1dffb3967a52203105a077415a86044a2bea011b5f321c6aa64b379a3f51"}, + {file = "pandas-2.2.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8e5a0b00e1e56a842f922e7fae8ae4077aee4af0acb5ae3622bd4b4c30aedf99"}, + {file = "pandas-2.2.2-cp310-cp310-win_amd64.whl", hash = "sha256:ddf818e4e6c7c6f4f7c8a12709696d193976b591cc7dc50588d3d1a6b5dc8772"}, + {file = "pandas-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:696039430f7a562b74fa45f540aca068ea85fa34c244d0deee539cb6d70aa288"}, + {file = "pandas-2.2.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8e90497254aacacbc4ea6ae5e7a8cd75629d6ad2b30025a4a8b09aa4faf55151"}, + {file = "pandas-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:58b84b91b0b9f4bafac2a0ac55002280c094dfc6402402332c0913a59654ab2b"}, + {file = "pandas-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d2123dc9ad6a814bcdea0f099885276b31b24f7edf40f6cdbc0912672e22eee"}, + {file = "pandas-2.2.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:2925720037f06e89af896c70bca73459d7e6a4be96f9de79e2d440bd499fe0db"}, + {file = "pandas-2.2.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:0cace394b6ea70c01ca1595f839cf193df35d1575986e484ad35c4aeae7266c1"}, + {file = "pandas-2.2.2-cp311-cp311-win_amd64.whl", hash = "sha256:873d13d177501a28b2756375d59816c365e42ed8417b41665f346289adc68d24"}, + {file = "pandas-2.2.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:9dfde2a0ddef507a631dc9dc4af6a9489d5e2e740e226ad426a05cabfbd7c8ef"}, + {file = "pandas-2.2.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:e9b79011ff7a0f4b1d6da6a61aa1aa604fb312d6647de5bad20013682d1429ce"}, + {file = "pandas-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1cb51fe389360f3b5a4d57dbd2848a5f033350336ca3b340d1c53a1fad33bcad"}, + {file = "pandas-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eee3a87076c0756de40b05c5e9a6069c035ba43e8dd71c379e68cab2c20f16ad"}, + {file = "pandas-2.2.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:3e374f59e440d4ab45ca2fffde54b81ac3834cf5ae2cdfa69c90bc03bde04d76"}, + {file = "pandas-2.2.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:43498c0bdb43d55cb162cdc8c06fac328ccb5d2eabe3cadeb3529ae6f0517c32"}, + {file = "pandas-2.2.2-cp312-cp312-win_amd64.whl", hash = "sha256:d187d355ecec3629624fccb01d104da7d7f391db0311145817525281e2804d23"}, + {file = "pandas-2.2.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:0ca6377b8fca51815f382bd0b697a0814c8bda55115678cbc94c30aacbb6eff2"}, + {file = "pandas-2.2.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9057e6aa78a584bc93a13f0a9bf7e753a5e9770a30b4d758b8d5f2a62a9433cd"}, + {file = "pandas-2.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:001910ad31abc7bf06f49dcc903755d2f7f3a9186c0c040b827e522e9cef0863"}, + {file = "pandas-2.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:66b479b0bd07204e37583c191535505410daa8df638fd8e75ae1b383851fe921"}, + {file = "pandas-2.2.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a77e9d1c386196879aa5eb712e77461aaee433e54c68cf253053a73b7e49c33a"}, + {file = "pandas-2.2.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:92fd6b027924a7e178ac202cfbe25e53368db90d56872d20ffae94b96c7acc57"}, + {file = "pandas-2.2.2-cp39-cp39-win_amd64.whl", hash = "sha256:640cef9aa381b60e296db324337a554aeeb883ead99dc8f6c18e81a93942f5f4"}, + {file = "pandas-2.2.2.tar.gz", hash = "sha256:9e79019aba43cb4fda9e4d983f8e88ca0373adbb697ae9c6c43093218de28b54"}, +] + +[package.dependencies] +numpy = {version = ">=1.26.0", markers = "python_version >= \"3.12\""} +python-dateutil = ">=2.8.2" +pytz = ">=2020.1" +tzdata = ">=2022.7" + +[package.extras] +all = ["PyQt5 (>=5.15.9)", "SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)", "beautifulsoup4 (>=4.11.2)", "bottleneck (>=1.3.6)", "dataframe-api-compat (>=0.1.7)", "fastparquet (>=2022.12.0)", "fsspec (>=2022.11.0)", "gcsfs (>=2022.11.0)", "html5lib (>=1.1)", "hypothesis (>=6.46.1)", "jinja2 (>=3.1.2)", "lxml (>=4.9.2)", "matplotlib (>=3.6.3)", "numba (>=0.56.4)", "numexpr (>=2.8.4)", "odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "pandas-gbq (>=0.19.0)", "psycopg2 (>=2.9.6)", "pyarrow (>=10.0.1)", "pymysql (>=1.0.2)", "pyreadstat (>=1.2.0)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "qtpy (>=2.3.0)", "s3fs (>=2022.11.0)", "scipy (>=1.10.0)", "tables (>=3.8.0)", "tabulate (>=0.9.0)", "xarray (>=2022.12.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)", "zstandard (>=0.19.0)"] +aws = ["s3fs (>=2022.11.0)"] +clipboard = ["PyQt5 (>=5.15.9)", "qtpy (>=2.3.0)"] +compression = ["zstandard (>=0.19.0)"] +computation = ["scipy (>=1.10.0)", "xarray (>=2022.12.0)"] +consortium-standard = ["dataframe-api-compat (>=0.1.7)"] +excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)"] +feather = ["pyarrow (>=10.0.1)"] +fss = ["fsspec (>=2022.11.0)"] +gcp = ["gcsfs (>=2022.11.0)", "pandas-gbq (>=0.19.0)"] +hdf5 = ["tables (>=3.8.0)"] +html = ["beautifulsoup4 (>=4.11.2)", "html5lib (>=1.1)", "lxml (>=4.9.2)"] +mysql = ["SQLAlchemy (>=2.0.0)", "pymysql (>=1.0.2)"] +output-formatting = ["jinja2 (>=3.1.2)", "tabulate (>=0.9.0)"] +parquet = ["pyarrow (>=10.0.1)"] +performance = ["bottleneck (>=1.3.6)", "numba (>=0.56.4)", "numexpr (>=2.8.4)"] +plot = ["matplotlib (>=3.6.3)"] +postgresql = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "psycopg2 (>=2.9.6)"] +pyarrow = ["pyarrow (>=10.0.1)"] +spss = ["pyreadstat (>=1.2.0)"] +sql-other = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)"] +test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"] +xml = ["lxml (>=4.9.2)"] + +[[package]] +name = "pandocfilters" +version = "1.5.1" +description = "Utilities for writing pandoc filters in python" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +files = [ + {file = "pandocfilters-1.5.1-py2.py3-none-any.whl", hash = "sha256:93be382804a9cdb0a7267585f157e5d1731bbe5545a85b268d6f5fe6232de2bc"}, + {file = "pandocfilters-1.5.1.tar.gz", hash = "sha256:002b4a555ee4ebc03f8b66307e287fa492e4a77b4ea14d3f934328297bb4939e"}, +] + +[[package]] +name = "parso" +version = "0.8.4" +description = "A Python Parser" +optional = false +python-versions = ">=3.6" +files = [ + {file = "parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18"}, + {file = "parso-0.8.4.tar.gz", hash = "sha256:eb3a7b58240fb99099a345571deecc0f9540ea5f4dd2fe14c2a99d6b281ab92d"}, +] + +[package.extras] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["docopt", "pytest"] + +[[package]] +name = "pexpect" +version = "4.9.0" +description = "Pexpect allows easy control of interactive console applications." +optional = false +python-versions = "*" +files = [ + {file = "pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523"}, + {file = "pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f"}, +] + +[package.dependencies] +ptyprocess = ">=0.5" + +[[package]] +name = "pillow" +version = "10.4.0" +description = "Python Imaging Library (Fork)" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pillow-10.4.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:4d9667937cfa347525b319ae34375c37b9ee6b525440f3ef48542fcf66f2731e"}, + {file = "pillow-10.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:543f3dc61c18dafb755773efc89aae60d06b6596a63914107f75459cf984164d"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7928ecbf1ece13956b95d9cbcfc77137652b02763ba384d9ab508099a2eca856"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4d49b85c4348ea0b31ea63bc75a9f3857869174e2bf17e7aba02945cd218e6f"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:6c762a5b0997f5659a5ef2266abc1d8851ad7749ad9a6a5506eb23d314e4f46b"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a985e028fc183bf12a77a8bbf36318db4238a3ded7fa9df1b9a133f1cb79f8fc"}, + {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:812f7342b0eee081eaec84d91423d1b4650bb9828eb53d8511bcef8ce5aecf1e"}, + {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ac1452d2fbe4978c2eec89fb5a23b8387aba707ac72810d9490118817d9c0b46"}, + {file = "pillow-10.4.0-cp310-cp310-win32.whl", hash = "sha256:bcd5e41a859bf2e84fdc42f4edb7d9aba0a13d29a2abadccafad99de3feff984"}, + {file = "pillow-10.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:ecd85a8d3e79cd7158dec1c9e5808e821feea088e2f69a974db5edf84dc53141"}, + {file = "pillow-10.4.0-cp310-cp310-win_arm64.whl", hash = "sha256:ff337c552345e95702c5fde3158acb0625111017d0e5f24bf3acdb9cc16b90d1"}, + {file = "pillow-10.4.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:0a9ec697746f268507404647e531e92889890a087e03681a3606d9b920fbee3c"}, + {file = "pillow-10.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:dfe91cb65544a1321e631e696759491ae04a2ea11d36715eca01ce07284738be"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dc6761a6efc781e6a1544206f22c80c3af4c8cf461206d46a1e6006e4429ff3"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e84b6cc6a4a3d76c153a6b19270b3526a5a8ed6b09501d3af891daa2a9de7d6"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:bbc527b519bd3aa9d7f429d152fea69f9ad37c95f0b02aebddff592688998abe"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:76a911dfe51a36041f2e756b00f96ed84677cdeb75d25c767f296c1c1eda1319"}, + {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:59291fb29317122398786c2d44427bbd1a6d7ff54017075b22be9d21aa59bd8d"}, + {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:416d3a5d0e8cfe4f27f574362435bc9bae57f679a7158e0096ad2beb427b8696"}, + {file = "pillow-10.4.0-cp311-cp311-win32.whl", hash = "sha256:7086cc1d5eebb91ad24ded9f58bec6c688e9f0ed7eb3dbbf1e4800280a896496"}, + {file = "pillow-10.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cbed61494057c0f83b83eb3a310f0bf774b09513307c434d4366ed64f4128a91"}, + {file = "pillow-10.4.0-cp311-cp311-win_arm64.whl", hash = "sha256:f5f0c3e969c8f12dd2bb7e0b15d5c468b51e5017e01e2e867335c81903046a22"}, + {file = "pillow-10.4.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:673655af3eadf4df6b5457033f086e90299fdd7a47983a13827acf7459c15d94"}, + {file = "pillow-10.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:866b6942a92f56300012f5fbac71f2d610312ee65e22f1aa2609e491284e5597"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29dbdc4207642ea6aad70fbde1a9338753d33fb23ed6956e706936706f52dd80"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf2342ac639c4cf38799a44950bbc2dfcb685f052b9e262f446482afaf4bffca"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:f5b92f4d70791b4a67157321c4e8225d60b119c5cc9aee8ecf153aace4aad4ef"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:86dcb5a1eb778d8b25659d5e4341269e8590ad6b4e8b44d9f4b07f8d136c414a"}, + {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:780c072c2e11c9b2c7ca37f9a2ee8ba66f44367ac3e5c7832afcfe5104fd6d1b"}, + {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:37fb69d905be665f68f28a8bba3c6d3223c8efe1edf14cc4cfa06c241f8c81d9"}, + {file = "pillow-10.4.0-cp312-cp312-win32.whl", hash = "sha256:7dfecdbad5c301d7b5bde160150b4db4c659cee2b69589705b6f8a0c509d9f42"}, + {file = "pillow-10.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:1d846aea995ad352d4bdcc847535bd56e0fd88d36829d2c90be880ef1ee4668a"}, + {file = "pillow-10.4.0-cp312-cp312-win_arm64.whl", hash = "sha256:e553cad5179a66ba15bb18b353a19020e73a7921296a7979c4a2b7f6a5cd57f9"}, + {file = "pillow-10.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:8bc1a764ed8c957a2e9cacf97c8b2b053b70307cf2996aafd70e91a082e70df3"}, + {file = "pillow-10.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6209bb41dc692ddfee4942517c19ee81b86c864b626dbfca272ec0f7cff5d9fb"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bee197b30783295d2eb680b311af15a20a8b24024a19c3a26431ff83eb8d1f70"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ef61f5dd14c300786318482456481463b9d6b91ebe5ef12f405afbba77ed0be"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:297e388da6e248c98bc4a02e018966af0c5f92dfacf5a5ca22fa01cb3179bca0"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:e4db64794ccdf6cb83a59d73405f63adbe2a1887012e308828596100a0b2f6cc"}, + {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:bd2880a07482090a3bcb01f4265f1936a903d70bc740bfcb1fd4e8a2ffe5cf5a"}, + {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4b35b21b819ac1dbd1233317adeecd63495f6babf21b7b2512d244ff6c6ce309"}, + {file = "pillow-10.4.0-cp313-cp313-win32.whl", hash = "sha256:551d3fd6e9dc15e4c1eb6fc4ba2b39c0c7933fa113b220057a34f4bb3268a060"}, + {file = "pillow-10.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:030abdbe43ee02e0de642aee345efa443740aa4d828bfe8e2eb11922ea6a21ea"}, + {file = "pillow-10.4.0-cp313-cp313-win_arm64.whl", hash = "sha256:5b001114dd152cfd6b23befeb28d7aee43553e2402c9f159807bf55f33af8a8d"}, + {file = "pillow-10.4.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:8d4d5063501b6dd4024b8ac2f04962d661222d120381272deea52e3fc52d3736"}, + {file = "pillow-10.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7c1ee6f42250df403c5f103cbd2768a28fe1a0ea1f0f03fe151c8741e1469c8b"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b15e02e9bb4c21e39876698abf233c8c579127986f8207200bc8a8f6bb27acf2"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a8d4bade9952ea9a77d0c3e49cbd8b2890a399422258a77f357b9cc9be8d680"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:43efea75eb06b95d1631cb784aa40156177bf9dd5b4b03ff38979e048258bc6b"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:950be4d8ba92aca4b2bb0741285a46bfae3ca699ef913ec8416c1b78eadd64cd"}, + {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:d7480af14364494365e89d6fddc510a13e5a2c3584cb19ef65415ca57252fb84"}, + {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:73664fe514b34c8f02452ffb73b7a92c6774e39a647087f83d67f010eb9a0cf0"}, + {file = "pillow-10.4.0-cp38-cp38-win32.whl", hash = "sha256:e88d5e6ad0d026fba7bdab8c3f225a69f063f116462c49892b0149e21b6c0a0e"}, + {file = "pillow-10.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:5161eef006d335e46895297f642341111945e2c1c899eb406882a6c61a4357ab"}, + {file = "pillow-10.4.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:0ae24a547e8b711ccaaf99c9ae3cd975470e1a30caa80a6aaee9a2f19c05701d"}, + {file = "pillow-10.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:298478fe4f77a4408895605f3482b6cc6222c018b2ce565c2b6b9c354ac3229b"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:134ace6dc392116566980ee7436477d844520a26a4b1bd4053f6f47d096997fd"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:930044bb7679ab003b14023138b50181899da3f25de50e9dbee23b61b4de2126"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:c76e5786951e72ed3686e122d14c5d7012f16c8303a674d18cdcd6d89557fc5b"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b2724fdb354a868ddf9a880cb84d102da914e99119211ef7ecbdc613b8c96b3c"}, + {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:dbc6ae66518ab3c5847659e9988c3b60dc94ffb48ef9168656e0019a93dbf8a1"}, + {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:06b2f7898047ae93fad74467ec3d28fe84f7831370e3c258afa533f81ef7f3df"}, + {file = "pillow-10.4.0-cp39-cp39-win32.whl", hash = "sha256:7970285ab628a3779aecc35823296a7869f889b8329c16ad5a71e4901a3dc4ef"}, + {file = "pillow-10.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:961a7293b2457b405967af9c77dcaa43cc1a8cd50d23c532e62d48ab6cdd56f5"}, + {file = "pillow-10.4.0-cp39-cp39-win_arm64.whl", hash = "sha256:32cda9e3d601a52baccb2856b8ea1fc213c90b340c542dcef77140dfa3278a9e"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:5b4815f2e65b30f5fbae9dfffa8636d992d49705723fe86a3661806e069352d4"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8f0aef4ef59694b12cadee839e2ba6afeab89c0f39a3adc02ed51d109117b8da"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f4727572e2918acaa9077c919cbbeb73bd2b3ebcfe033b72f858fc9fbef0026"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff25afb18123cea58a591ea0244b92eb1e61a1fd497bf6d6384f09bc3262ec3e"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:dc3e2db6ba09ffd7d02ae9141cfa0ae23393ee7687248d46a7507b75d610f4f5"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:02a2be69f9c9b8c1e97cf2713e789d4e398c751ecfd9967c18d0ce304efbf885"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:0755ffd4a0c6f267cccbae2e9903d95477ca2f77c4fcf3a3a09570001856c8a5"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:a02364621fe369e06200d4a16558e056fe2805d3468350df3aef21e00d26214b"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1b5dea9831a90e9d0721ec417a80d4cbd7022093ac38a568db2dd78363b00908"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9b885f89040bb8c4a1573566bbb2f44f5c505ef6e74cec7ab9068c900047f04b"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:87dd88ded2e6d74d31e1e0a99a726a6765cda32d00ba72dc37f0651f306daaa8"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:2db98790afc70118bd0255c2eeb465e9767ecf1f3c25f9a1abb8ffc8cfd1fe0a"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:f7baece4ce06bade126fb84b8af1c33439a76d8a6fd818970215e0560ca28c27"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:cfdd747216947628af7b259d274771d84db2268ca062dd5faf373639d00113a3"}, + {file = "pillow-10.4.0.tar.gz", hash = "sha256:166c1cd4d24309b30d61f79f4a9114b7b2313d7450912277855ff5dfd7cd4a06"}, +] + +[package.extras] +docs = ["furo", "olefile", "sphinx (>=7.3)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinxext-opengraph"] +fpx = ["olefile"] +mic = ["olefile"] +tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] +typing = ["typing-extensions"] +xmp = ["defusedxml"] + +[[package]] +name = "platformdirs" +version = "4.2.2" +description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." +optional = false +python-versions = ">=3.8" +files = [ + {file = "platformdirs-4.2.2-py3-none-any.whl", hash = "sha256:2d7a1657e36a80ea911db832a8a6ece5ee53d8de21edd5cc5879af6530b1bfee"}, + {file = "platformdirs-4.2.2.tar.gz", hash = "sha256:38b7b51f512eed9e84a22788b4bce1de17c0adb134d6becb09836e37d8654cd3"}, +] + +[package.extras] +docs = ["furo (>=2023.9.10)", "proselint (>=0.13)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)"] +type = ["mypy (>=1.8)"] + +[[package]] +name = "prometheus-client" +version = "0.20.0" +description = "Python client for the Prometheus monitoring system." +optional = false +python-versions = ">=3.8" +files = [ + {file = "prometheus_client-0.20.0-py3-none-any.whl", hash = "sha256:cde524a85bce83ca359cc837f28b8c0db5cac7aa653a588fd7e84ba061c329e7"}, + {file = "prometheus_client-0.20.0.tar.gz", hash = "sha256:287629d00b147a32dcb2be0b9df905da599b2d82f80377083ec8463309a4bb89"}, +] + +[package.extras] +twisted = ["twisted"] + +[[package]] +name = "prompt-toolkit" +version = "3.0.47" +description = "Library for building powerful interactive command lines in Python" +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "prompt_toolkit-3.0.47-py3-none-any.whl", hash = "sha256:0d7bfa67001d5e39d02c224b663abc33687405033a8c422d0d675a5a13361d10"}, + {file = "prompt_toolkit-3.0.47.tar.gz", hash = "sha256:1e1b29cb58080b1e69f207c893a1a7bf16d127a5c30c9d17a25a5d77792e5360"}, +] + +[package.dependencies] +wcwidth = "*" + +[[package]] +name = "psutil" +version = "6.0.0" +description = "Cross-platform lib for process and system monitoring in Python." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" +files = [ + {file = "psutil-6.0.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:a021da3e881cd935e64a3d0a20983bda0bb4cf80e4f74fa9bfcb1bc5785360c6"}, + {file = "psutil-6.0.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:1287c2b95f1c0a364d23bc6f2ea2365a8d4d9b726a3be7294296ff7ba97c17f0"}, + {file = "psutil-6.0.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:a9a3dbfb4de4f18174528d87cc352d1f788b7496991cca33c6996f40c9e3c92c"}, + {file = "psutil-6.0.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:6ec7588fb3ddaec7344a825afe298db83fe01bfaaab39155fa84cf1c0d6b13c3"}, + {file = "psutil-6.0.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:1e7c870afcb7d91fdea2b37c24aeb08f98b6d67257a5cb0a8bc3ac68d0f1a68c"}, + {file = "psutil-6.0.0-cp27-none-win32.whl", hash = "sha256:02b69001f44cc73c1c5279d02b30a817e339ceb258ad75997325e0e6169d8b35"}, + {file = "psutil-6.0.0-cp27-none-win_amd64.whl", hash = "sha256:21f1fb635deccd510f69f485b87433460a603919b45e2a324ad65b0cc74f8fb1"}, + {file = "psutil-6.0.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:c588a7e9b1173b6e866756dde596fd4cad94f9399daf99ad8c3258b3cb2b47a0"}, + {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ed2440ada7ef7d0d608f20ad89a04ec47d2d3ab7190896cd62ca5fc4fe08bf0"}, + {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5fd9a97c8e94059b0ef54a7d4baf13b405011176c3b6ff257c247cae0d560ecd"}, + {file = "psutil-6.0.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e8d0054fc88153ca0544f5c4d554d42e33df2e009c4ff42284ac9ebdef4132"}, + {file = "psutil-6.0.0-cp36-cp36m-win32.whl", hash = "sha256:fc8c9510cde0146432bbdb433322861ee8c3efbf8589865c8bf8d21cb30c4d14"}, + {file = "psutil-6.0.0-cp36-cp36m-win_amd64.whl", hash = "sha256:34859b8d8f423b86e4385ff3665d3f4d94be3cdf48221fbe476e883514fdb71c"}, + {file = "psutil-6.0.0-cp37-abi3-win32.whl", hash = "sha256:a495580d6bae27291324fe60cea0b5a7c23fa36a7cd35035a16d93bdcf076b9d"}, + {file = "psutil-6.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:33ea5e1c975250a720b3a6609c490db40dae5d83a4eb315170c4fe0d8b1f34b3"}, + {file = "psutil-6.0.0-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:ffe7fc9b6b36beadc8c322f84e1caff51e8703b88eee1da46d1e3a6ae11b4fd0"}, + {file = "psutil-6.0.0.tar.gz", hash = "sha256:8faae4f310b6d969fa26ca0545338b21f73c6b15db7c4a8d934a5482faa818f2"}, +] + +[package.extras] +test = ["enum34", "ipaddress", "mock", "pywin32", "wmi"] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +description = "Run a subprocess in a pseudo terminal" +optional = false +python-versions = "*" +files = [ + {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, + {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, +] + +[[package]] +name = "pure-eval" +version = "0.2.3" +description = "Safely evaluate AST nodes without side effects" +optional = false +python-versions = "*" +files = [ + {file = "pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0"}, + {file = "pure_eval-0.2.3.tar.gz", hash = "sha256:5f4e983f40564c576c7c8635ae88db5956bb2229d7e9237d03b3c0b0190eaf42"}, +] + +[package.extras] +tests = ["pytest"] + +[[package]] +name = "pycparser" +version = "2.22" +description = "C parser in Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc"}, + {file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"}, +] + +[[package]] +name = "pygments" +version = "2.18.0" +description = "Pygments is a syntax highlighting package written in Python." +optional = false +python-versions = ">=3.8" +files = [ + {file = "pygments-2.18.0-py3-none-any.whl", hash = "sha256:b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a"}, + {file = "pygments-2.18.0.tar.gz", hash = "sha256:786ff802f32e91311bff3889f6e9a86e81505fe99f2735bb6d60ae0c5004f199"}, +] + +[package.extras] +windows-terminal = ["colorama (>=0.4.6)"] + +[[package]] +name = "pyparsing" +version = "3.1.4" +description = "pyparsing module - Classes and methods to define and execute parsing grammars" +optional = false +python-versions = ">=3.6.8" +files = [ + {file = "pyparsing-3.1.4-py3-none-any.whl", hash = "sha256:a6a7ee4235a3f944aa1fa2249307708f893fe5717dc603503c6c7969c070fb7c"}, + {file = "pyparsing-3.1.4.tar.gz", hash = "sha256:f86ec8d1a83f11977c9a6ea7598e8c27fc5cddfa5b07ea2241edbbde1d7bc032"}, +] + +[package.extras] +diagrams = ["jinja2", "railroad-diagrams"] + +[[package]] +name = "python-dateutil" +version = "2.9.0.post0" +description = "Extensions to the standard Python datetime module" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" +files = [ + {file = "python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3"}, + {file = "python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427"}, +] + +[package.dependencies] +six = ">=1.5" + +[[package]] +name = "python-json-logger" +version = "2.0.7" +description = "A python library adding a json log formatter" +optional = false +python-versions = ">=3.6" +files = [ + {file = "python-json-logger-2.0.7.tar.gz", hash = "sha256:23e7ec02d34237c5aa1e29a070193a4ea87583bb4e7f8fd06d3de8264c4b2e1c"}, + {file = "python_json_logger-2.0.7-py3-none-any.whl", hash = "sha256:f380b826a991ebbe3de4d897aeec42760035ac760345e57b812938dc8b35e2bd"}, +] + +[[package]] +name = "pytz" +version = "2024.1" +description = "World timezone definitions, modern and historical" +optional = false +python-versions = "*" +files = [ + {file = "pytz-2024.1-py2.py3-none-any.whl", hash = "sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319"}, + {file = "pytz-2024.1.tar.gz", hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812"}, +] + +[[package]] +name = "pywin32" +version = "306" +description = "Python for Window Extensions" +optional = false +python-versions = "*" +files = [ + {file = "pywin32-306-cp310-cp310-win32.whl", hash = "sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d"}, + {file = "pywin32-306-cp310-cp310-win_amd64.whl", hash = "sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8"}, + {file = "pywin32-306-cp311-cp311-win32.whl", hash = "sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407"}, + {file = "pywin32-306-cp311-cp311-win_amd64.whl", hash = "sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e"}, + {file = "pywin32-306-cp311-cp311-win_arm64.whl", hash = "sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a"}, + {file = "pywin32-306-cp312-cp312-win32.whl", hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b"}, + {file = "pywin32-306-cp312-cp312-win_amd64.whl", hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e"}, + {file = "pywin32-306-cp312-cp312-win_arm64.whl", hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040"}, + {file = "pywin32-306-cp37-cp37m-win32.whl", hash = "sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65"}, + {file = "pywin32-306-cp37-cp37m-win_amd64.whl", hash = "sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36"}, + {file = "pywin32-306-cp38-cp38-win32.whl", hash = "sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a"}, + {file = "pywin32-306-cp38-cp38-win_amd64.whl", hash = "sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0"}, + {file = "pywin32-306-cp39-cp39-win32.whl", hash = "sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802"}, + {file = "pywin32-306-cp39-cp39-win_amd64.whl", hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4"}, +] + +[[package]] +name = "pywinpty" +version = "2.0.13" +description = "Pseudo terminal support for Windows from Python." +optional = false +python-versions = ">=3.8" +files = [ + {file = "pywinpty-2.0.13-cp310-none-win_amd64.whl", hash = "sha256:697bff211fb5a6508fee2dc6ff174ce03f34a9a233df9d8b5fe9c8ce4d5eaf56"}, + {file = "pywinpty-2.0.13-cp311-none-win_amd64.whl", hash = "sha256:b96fb14698db1284db84ca38c79f15b4cfdc3172065b5137383910567591fa99"}, + {file = "pywinpty-2.0.13-cp312-none-win_amd64.whl", hash = "sha256:2fd876b82ca750bb1333236ce98488c1be96b08f4f7647cfdf4129dfad83c2d4"}, + {file = "pywinpty-2.0.13-cp38-none-win_amd64.whl", hash = "sha256:61d420c2116c0212808d31625611b51caf621fe67f8a6377e2e8b617ea1c1f7d"}, + {file = "pywinpty-2.0.13-cp39-none-win_amd64.whl", hash = "sha256:71cb613a9ee24174730ac7ae439fd179ca34ccb8c5349e8d7b72ab5dea2c6f4b"}, + {file = "pywinpty-2.0.13.tar.gz", hash = "sha256:c34e32351a3313ddd0d7da23d27f835c860d32fe4ac814d372a3ea9594f41dde"}, +] + +[[package]] +name = "pyyaml" +version = "6.0.2" +description = "YAML parser and emitter for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "PyYAML-6.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0a9a2848a5b7feac301353437eb7d5957887edbf81d56e903999a75a3d743086"}, + {file = "PyYAML-6.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:29717114e51c84ddfba879543fb232a6ed60086602313ca38cce623c1d62cfbf"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8824b5a04a04a047e72eea5cec3bc266db09e35de6bdfe34c9436ac5ee27d237"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c36280e6fb8385e520936c3cb3b8042851904eba0e58d277dca80a5cfed590b"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec031d5d2feb36d1d1a24380e4db6d43695f3748343d99434e6f5f9156aaa2ed"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:936d68689298c36b53b29f23c6dbb74de12b4ac12ca6cfe0e047bedceea56180"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:23502f431948090f597378482b4812b0caae32c22213aecf3b55325e049a6c68"}, + {file = "PyYAML-6.0.2-cp310-cp310-win32.whl", hash = "sha256:2e99c6826ffa974fe6e27cdb5ed0021786b03fc98e5ee3c5bfe1fd5015f42b99"}, + {file = "PyYAML-6.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:a4d3091415f010369ae4ed1fc6b79def9416358877534caf6a0fdd2146c87a3e"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cc1c1159b3d456576af7a3e4d1ba7e6924cb39de8f67111c735f6fc832082774"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e2120ef853f59c7419231f3bf4e7021f1b936f6ebd222406c3b60212205d2ee"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d225db5a45f21e78dd9358e58a98702a0302f2659a3c6cd320564b75b86f47c"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ac9328ec4831237bec75defaf839f7d4564be1e6b25ac710bd1a96321cc8317"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ad2a3decf9aaba3d29c8f537ac4b243e36bef957511b4766cb0057d32b0be85"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ff3824dc5261f50c9b0dfb3be22b4567a6f938ccce4587b38952d85fd9e9afe4"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:797b4f722ffa07cc8d62053e4cff1486fa6dc094105d13fea7b1de7d8bf71c9e"}, + {file = "PyYAML-6.0.2-cp311-cp311-win32.whl", hash = "sha256:11d8f3dd2b9c1207dcaf2ee0bbbfd5991f571186ec9cc78427ba5bd32afae4b5"}, + {file = "PyYAML-6.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:e10ce637b18caea04431ce14fabcf5c64a1c61ec9c56b071a4b7ca131ca52d44"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b"}, + {file = "PyYAML-6.0.2-cp312-cp312-win32.whl", hash = "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4"}, + {file = "PyYAML-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efdca5630322a10774e8e98e1af481aad470dd62c3170801852d752aa7a783ba"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:50187695423ffe49e2deacb8cd10510bc361faac997de9efef88badc3bb9e2d1"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ffe8360bab4910ef1b9e87fb812d8bc0a308b0d0eef8c8f44e0254ab3b07133"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17e311b6c678207928d649faa7cb0d7b4c26a0ba73d41e99c4fff6b6c3276484"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b189594dbe54f75ab3a1acec5f1e3faa7e8cf2f1e08d9b561cb41b845f69d5"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:41e4e3953a79407c794916fa277a82531dd93aad34e29c2a514c2c0c5fe971cc"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:68ccc6023a3400877818152ad9a1033e3db8625d899c72eacb5a668902e4d652"}, + {file = "PyYAML-6.0.2-cp313-cp313-win32.whl", hash = "sha256:bc2fa7c6b47d6bc618dd7fb02ef6fdedb1090ec036abab80d4681424b84c1183"}, + {file = "PyYAML-6.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563"}, + {file = "PyYAML-6.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:24471b829b3bf607e04e88d79542a9d48bb037c2267d7927a874e6c205ca7e9a"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7fded462629cfa4b685c5416b949ebad6cec74af5e2d42905d41e257e0869f5"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d84a1718ee396f54f3a086ea0a66d8e552b2ab2017ef8b420e92edbc841c352d"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9056c1ecd25795207ad294bcf39f2db3d845767be0ea6e6a34d856f006006083"}, + {file = "PyYAML-6.0.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:82d09873e40955485746739bcb8b4586983670466c23382c19cffecbf1fd8706"}, + {file = "PyYAML-6.0.2-cp38-cp38-win32.whl", hash = "sha256:43fa96a3ca0d6b1812e01ced1044a003533c47f6ee8aca31724f78e93ccc089a"}, + {file = "PyYAML-6.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:01179a4a8559ab5de078078f37e5c1a30d76bb88519906844fd7bdea1b7729ff"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:688ba32a1cffef67fd2e9398a2efebaea461578b0923624778664cc1c914db5d"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8786accb172bd8afb8be14490a16625cbc387036876ab6ba70912730faf8e1f"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8e03406cac8513435335dbab54c0d385e4a49e4945d2909a581c83647ca0290"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f753120cb8181e736c57ef7636e83f31b9c0d1722c516f7e86cf15b7aa57ff12"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b1fdb9dc17f5a7677423d508ab4f243a726dea51fa5e70992e59a7411c89d19"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0b69e4ce7a131fe56b7e4d770c67429700908fc0752af059838b1cfb41960e4e"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a9f8c2e67970f13b16084e04f134610fd1d374bf477b17ec1599185cf611d725"}, + {file = "PyYAML-6.0.2-cp39-cp39-win32.whl", hash = "sha256:6395c297d42274772abc367baaa79683958044e5d3835486c16da75d2a694631"}, + {file = "PyYAML-6.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:39693e1f8320ae4f43943590b49779ffb98acb81f788220ea932a6b6c51004d8"}, + {file = "pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e"}, +] + +[[package]] +name = "pyzmq" +version = "26.2.0" +description = "Python bindings for 0MQ" +optional = false +python-versions = ">=3.7" +files = [ + {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:ddf33d97d2f52d89f6e6e7ae66ee35a4d9ca6f36eda89c24591b0c40205a3629"}, + {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dacd995031a01d16eec825bf30802fceb2c3791ef24bcce48fa98ce40918c27b"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89289a5ee32ef6c439086184529ae060c741334b8970a6855ec0b6ad3ff28764"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5506f06d7dc6ecf1efacb4a013b1f05071bb24b76350832c96449f4a2d95091c"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ea039387c10202ce304af74def5021e9adc6297067f3441d348d2b633e8166a"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a2224fa4a4c2ee872886ed00a571f5e967c85e078e8e8c2530a2fb01b3309b88"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:28ad5233e9c3b52d76196c696e362508959741e1a005fb8fa03b51aea156088f"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:1c17211bc037c7d88e85ed8b7d8f7e52db6dc8eca5590d162717c654550f7282"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b8f86dd868d41bea9a5f873ee13bf5551c94cf6bc51baebc6f85075971fe6eea"}, + {file = "pyzmq-26.2.0-cp310-cp310-win32.whl", hash = "sha256:46a446c212e58456b23af260f3d9fb785054f3e3653dbf7279d8f2b5546b21c2"}, + {file = "pyzmq-26.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:49d34ab71db5a9c292a7644ce74190b1dd5a3475612eefb1f8be1d6961441971"}, + {file = "pyzmq-26.2.0-cp310-cp310-win_arm64.whl", hash = "sha256:bfa832bfa540e5b5c27dcf5de5d82ebc431b82c453a43d141afb1e5d2de025fa"}, + {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:8f7e66c7113c684c2b3f1c83cdd3376103ee0ce4c49ff80a648643e57fb22218"}, + {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3a495b30fc91db2db25120df5847d9833af237546fd59170701acd816ccc01c4"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77eb0968da535cba0470a5165468b2cac7772cfb569977cff92e240f57e31bef"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ace4f71f1900a548f48407fc9be59c6ba9d9aaf658c2eea6cf2779e72f9f317"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:92a78853d7280bffb93df0a4a6a2498cba10ee793cc8076ef797ef2f74d107cf"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:689c5d781014956a4a6de61d74ba97b23547e431e9e7d64f27d4922ba96e9d6e"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0aca98bc423eb7d153214b2df397c6421ba6373d3397b26c057af3c904452e37"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:1f3496d76b89d9429a656293744ceca4d2ac2a10ae59b84c1da9b5165f429ad3"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5c2b3bfd4b9689919db068ac6c9911f3fcb231c39f7dd30e3138be94896d18e6"}, + {file = "pyzmq-26.2.0-cp311-cp311-win32.whl", hash = "sha256:eac5174677da084abf378739dbf4ad245661635f1600edd1221f150b165343f4"}, + {file = "pyzmq-26.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:5a509df7d0a83a4b178d0f937ef14286659225ef4e8812e05580776c70e155d5"}, + {file = "pyzmq-26.2.0-cp311-cp311-win_arm64.whl", hash = "sha256:c0e6091b157d48cbe37bd67233318dbb53e1e6327d6fc3bb284afd585d141003"}, + {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:ded0fc7d90fe93ae0b18059930086c51e640cdd3baebdc783a695c77f123dcd9"}, + {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:17bf5a931c7f6618023cdacc7081f3f266aecb68ca692adac015c383a134ca52"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55cf66647e49d4621a7e20c8d13511ef1fe1efbbccf670811864452487007e08"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4661c88db4a9e0f958c8abc2b97472e23061f0bc737f6f6179d7a27024e1faa5"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea7f69de383cb47522c9c208aec6dd17697db7875a4674c4af3f8cfdac0bdeae"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:7f98f6dfa8b8ccaf39163ce872bddacca38f6a67289116c8937a02e30bbe9711"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:e3e0210287329272539eea617830a6a28161fbbd8a3271bf4150ae3e58c5d0e6"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:6b274e0762c33c7471f1a7471d1a2085b1a35eba5cdc48d2ae319f28b6fc4de3"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:29c6a4635eef69d68a00321e12a7d2559fe2dfccfa8efae3ffb8e91cd0b36a8b"}, + {file = "pyzmq-26.2.0-cp312-cp312-win32.whl", hash = "sha256:989d842dc06dc59feea09e58c74ca3e1678c812a4a8a2a419046d711031f69c7"}, + {file = "pyzmq-26.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:2a50625acdc7801bc6f74698c5c583a491c61d73c6b7ea4dee3901bb99adb27a"}, + {file = "pyzmq-26.2.0-cp312-cp312-win_arm64.whl", hash = "sha256:4d29ab8592b6ad12ebbf92ac2ed2bedcfd1cec192d8e559e2e099f648570e19b"}, + {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:9dd8cd1aeb00775f527ec60022004d030ddc51d783d056e3e23e74e623e33726"}, + {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_15_universal2.whl", hash = "sha256:28c812d9757fe8acecc910c9ac9dafd2ce968c00f9e619db09e9f8f54c3a68a3"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d80b1dd99c1942f74ed608ddb38b181b87476c6a966a88a950c7dee118fdf50"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8c997098cc65e3208eca09303630e84d42718620e83b733d0fd69543a9cab9cb"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ad1bc8d1b7a18497dda9600b12dc193c577beb391beae5cd2349184db40f187"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:bea2acdd8ea4275e1278350ced63da0b166421928276c7c8e3f9729d7402a57b"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:23f4aad749d13698f3f7b64aad34f5fc02d6f20f05999eebc96b89b01262fb18"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:a4f96f0d88accc3dbe4a9025f785ba830f968e21e3e2c6321ccdfc9aef755115"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ced65e5a985398827cc9276b93ef6dfabe0273c23de8c7931339d7e141c2818e"}, + {file = "pyzmq-26.2.0-cp313-cp313-win32.whl", hash = "sha256:31507f7b47cc1ead1f6e86927f8ebb196a0bab043f6345ce070f412a59bf87b5"}, + {file = "pyzmq-26.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:70fc7fcf0410d16ebdda9b26cbd8bf8d803d220a7f3522e060a69a9c87bf7bad"}, + {file = "pyzmq-26.2.0-cp313-cp313-win_arm64.whl", hash = "sha256:c3789bd5768ab5618ebf09cef6ec2b35fed88709b104351748a63045f0ff9797"}, + {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:034da5fc55d9f8da09015d368f519478a52675e558c989bfcb5cf6d4e16a7d2a"}, + {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:c92d73464b886931308ccc45b2744e5968cbaade0b1d6aeb40d8ab537765f5bc"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:794a4562dcb374f7dbbfb3f51d28fb40123b5a2abadee7b4091f93054909add5"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aee22939bb6075e7afededabad1a56a905da0b3c4e3e0c45e75810ebe3a52672"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ae90ff9dad33a1cfe947d2c40cb9cb5e600d759ac4f0fd22616ce6540f72797"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:43a47408ac52647dfabbc66a25b05b6a61700b5165807e3fbd40063fcaf46386"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:25bf2374a2a8433633c65ccb9553350d5e17e60c8eb4de4d92cc6bd60f01d306"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_i686.whl", hash = "sha256:007137c9ac9ad5ea21e6ad97d3489af654381324d5d3ba614c323f60dab8fae6"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:470d4a4f6d48fb34e92d768b4e8a5cc3780db0d69107abf1cd7ff734b9766eb0"}, + {file = "pyzmq-26.2.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3b55a4229ce5da9497dd0452b914556ae58e96a4381bb6f59f1305dfd7e53fc8"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9cb3a6460cdea8fe8194a76de8895707e61ded10ad0be97188cc8463ffa7e3a8"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8ab5cad923cc95c87bffee098a27856c859bd5d0af31bd346035aa816b081fe1"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9ed69074a610fad1c2fda66180e7b2edd4d31c53f2d1872bc2d1211563904cd9"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:cccba051221b916a4f5e538997c45d7d136a5646442b1231b916d0164067ea27"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:0eaa83fc4c1e271c24eaf8fb083cbccef8fde77ec8cd45f3c35a9a123e6da097"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:9edda2df81daa129b25a39b86cb57dfdfe16f7ec15b42b19bfac503360d27a93"}, + {file = "pyzmq-26.2.0-cp37-cp37m-win32.whl", hash = "sha256:ea0eb6af8a17fa272f7b98d7bebfab7836a0d62738e16ba380f440fceca2d951"}, + {file = "pyzmq-26.2.0-cp37-cp37m-win_amd64.whl", hash = "sha256:4ff9dc6bc1664bb9eec25cd17506ef6672d506115095411e237d571e92a58231"}, + {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:2eb7735ee73ca1b0d71e0e67c3739c689067f055c764f73aac4cc8ecf958ee3f"}, + {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1a534f43bc738181aa7cbbaf48e3eca62c76453a40a746ab95d4b27b1111a7d2"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:aedd5dd8692635813368e558a05266b995d3d020b23e49581ddd5bbe197a8ab6"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8be4700cd8bb02cc454f630dcdf7cfa99de96788b80c51b60fe2fe1dac480289"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fcc03fa4997c447dce58264e93b5aa2d57714fbe0f06c07b7785ae131512732"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:402b190912935d3db15b03e8f7485812db350d271b284ded2b80d2e5704be780"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8685fa9c25ff00f550c1fec650430c4b71e4e48e8d852f7ddcf2e48308038640"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:76589c020680778f06b7e0b193f4b6dd66d470234a16e1df90329f5e14a171cd"}, + {file = "pyzmq-26.2.0-cp38-cp38-win32.whl", hash = "sha256:8423c1877d72c041f2c263b1ec6e34360448decfb323fa8b94e85883043ef988"}, + {file = "pyzmq-26.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:76589f2cd6b77b5bdea4fca5992dc1c23389d68b18ccc26a53680ba2dc80ff2f"}, + {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:b1d464cb8d72bfc1a3adc53305a63a8e0cac6bc8c5a07e8ca190ab8d3faa43c2"}, + {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4da04c48873a6abdd71811c5e163bd656ee1b957971db7f35140a2d573f6949c"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:d049df610ac811dcffdc147153b414147428567fbbc8be43bb8885f04db39d98"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:05590cdbc6b902101d0e65d6a4780af14dc22914cc6ab995d99b85af45362cc9"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c811cfcd6a9bf680236c40c6f617187515269ab2912f3d7e8c0174898e2519db"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:6835dd60355593de10350394242b5757fbbd88b25287314316f266e24c61d073"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc6bee759a6bddea5db78d7dcd609397449cb2d2d6587f48f3ca613b19410cfc"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c530e1eecd036ecc83c3407f77bb86feb79916d4a33d11394b8234f3bd35b940"}, + {file = "pyzmq-26.2.0-cp39-cp39-win32.whl", hash = "sha256:367b4f689786fca726ef7a6c5ba606958b145b9340a5e4808132cc65759abd44"}, + {file = "pyzmq-26.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:e6fa2e3e683f34aea77de8112f6483803c96a44fd726d7358b9888ae5bb394ec"}, + {file = "pyzmq-26.2.0-cp39-cp39-win_arm64.whl", hash = "sha256:7445be39143a8aa4faec43b076e06944b8f9d0701b669df4af200531b21e40bb"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:706e794564bec25819d21a41c31d4df2d48e1cc4b061e8d345d7fb4dd3e94072"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b435f2753621cd36e7c1762156815e21c985c72b19135dac43a7f4f31d28dd1"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:160c7e0a5eb178011e72892f99f918c04a131f36056d10d9c1afb223fc952c2d"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c4a71d5d6e7b28a47a394c0471b7e77a0661e2d651e7ae91e0cab0a587859ca"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:90412f2db8c02a3864cbfc67db0e3dcdbda336acf1c469526d3e869394fe001c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2ea4ad4e6a12e454de05f2949d4beddb52460f3de7c8b9d5c46fbb7d7222e02c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fc4f7a173a5609631bb0c42c23d12c49df3966f89f496a51d3eb0ec81f4519d6"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:878206a45202247781472a2d99df12a176fef806ca175799e1c6ad263510d57c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:17c412bad2eb9468e876f556eb4ee910e62d721d2c7a53c7fa31e643d35352e6"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:0d987a3ae5a71c6226b203cfd298720e0086c7fe7c74f35fa8edddfbd6597eed"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:39887ac397ff35b7b775db7201095fc6310a35fdbae85bac4523f7eb3b840e20"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fdb5b3e311d4d4b0eb8b3e8b4d1b0a512713ad7e6a68791d0923d1aec433d919"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:226af7dcb51fdb0109f0016449b357e182ea0ceb6b47dfb5999d569e5db161d5"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0bed0e799e6120b9c32756203fb9dfe8ca2fb8467fed830c34c877e25638c3fc"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:29c7947c594e105cb9e6c466bace8532dc1ca02d498684128b339799f5248277"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:cdeabcff45d1c219636ee2e54d852262e5c2e085d6cb476d938aee8d921356b3"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35cffef589bcdc587d06f9149f8d5e9e8859920a071df5a2671de2213bef592a"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18c8dc3b7468d8b4bdf60ce9d7141897da103c7a4690157b32b60acb45e333e6"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7133d0a1677aec369d67dd78520d3fa96dd7f3dcec99d66c1762870e5ea1a50a"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:6a96179a24b14fa6428cbfc08641c779a53f8fcec43644030328f44034c7f1f4"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:4f78c88905461a9203eac9faac157a2a0dbba84a0fd09fd29315db27be40af9f"}, + {file = "pyzmq-26.2.0.tar.gz", hash = "sha256:070672c258581c8e4f640b5159297580a9974b026043bd4ab0470be9ed324f1f"}, +] + +[package.dependencies] +cffi = {version = "*", markers = "implementation_name == \"pypy\""} + +[[package]] +name = "referencing" +version = "0.35.1" +description = "JSON Referencing + Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "referencing-0.35.1-py3-none-any.whl", hash = "sha256:eda6d3234d62814d1c64e305c1331c9a3a6132da475ab6382eaa997b21ee75de"}, + {file = "referencing-0.35.1.tar.gz", hash = "sha256:25b42124a6c8b632a425174f24087783efb348a6f1e0008e63cd4466fedf703c"}, +] + +[package.dependencies] +attrs = ">=22.2.0" +rpds-py = ">=0.7.0" + +[[package]] +name = "requests" +version = "2.32.3" +description = "Python HTTP for Humans." +optional = false +python-versions = ">=3.8" +files = [ + {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"}, + {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"}, +] + +[package.dependencies] +certifi = ">=2017.4.17" +charset-normalizer = ">=2,<4" +idna = ">=2.5,<4" +urllib3 = ">=1.21.1,<3" + +[package.extras] +socks = ["PySocks (>=1.5.6,!=1.5.7)"] +use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] + +[[package]] +name = "rfc3339-validator" +version = "0.1.4" +description = "A pure python RFC3339 validator" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" +files = [ + {file = "rfc3339_validator-0.1.4-py2.py3-none-any.whl", hash = "sha256:24f6ec1eda14ef823da9e36ec7113124b39c04d50a4d3d3a3c2859577e7791fa"}, + {file = "rfc3339_validator-0.1.4.tar.gz", hash = "sha256:138a2abdf93304ad60530167e51d2dfb9549521a836871b88d7f4695d0022f6b"}, +] + +[package.dependencies] +six = "*" + +[[package]] +name = "rfc3986-validator" +version = "0.1.1" +description = "Pure python rfc3986 validator" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" +files = [ + {file = "rfc3986_validator-0.1.1-py2.py3-none-any.whl", hash = "sha256:2f235c432ef459970b4306369336b9d5dbdda31b510ca1e327636e01f528bfa9"}, + {file = "rfc3986_validator-0.1.1.tar.gz", hash = "sha256:3d44bde7921b3b9ec3ae4e3adca370438eccebc676456449b145d533b240d055"}, +] + +[[package]] +name = "rpds-py" +version = "0.20.0" +description = "Python bindings to Rust's persistent data structures (rpds)" +optional = false +python-versions = ">=3.8" +files = [ + {file = "rpds_py-0.20.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3ad0fda1635f8439cde85c700f964b23ed5fc2d28016b32b9ee5fe30da5c84e2"}, + {file = "rpds_py-0.20.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9bb4a0d90fdb03437c109a17eade42dfbf6190408f29b2744114d11586611d6f"}, + {file = "rpds_py-0.20.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c6377e647bbfd0a0b159fe557f2c6c602c159fc752fa316572f012fc0bf67150"}, + {file = "rpds_py-0.20.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:eb851b7df9dda52dc1415ebee12362047ce771fc36914586b2e9fcbd7d293b3e"}, + {file = "rpds_py-0.20.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1e0f80b739e5a8f54837be5d5c924483996b603d5502bfff79bf33da06164ee2"}, + {file = "rpds_py-0.20.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a8c94dad2e45324fc74dce25e1645d4d14df9a4e54a30fa0ae8bad9a63928e3"}, + {file = "rpds_py-0.20.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8e604fe73ba048c06085beaf51147eaec7df856824bfe7b98657cf436623daf"}, + {file = "rpds_py-0.20.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:df3de6b7726b52966edf29663e57306b23ef775faf0ac01a3e9f4012a24a4140"}, + {file = "rpds_py-0.20.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:cf258ede5bc22a45c8e726b29835b9303c285ab46fc7c3a4cc770736b5304c9f"}, + {file = "rpds_py-0.20.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:55fea87029cded5df854ca7e192ec7bdb7ecd1d9a3f63d5c4eb09148acf4a7ce"}, + {file = "rpds_py-0.20.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ae94bd0b2f02c28e199e9bc51485d0c5601f58780636185660f86bf80c89af94"}, + {file = "rpds_py-0.20.0-cp310-none-win32.whl", hash = "sha256:28527c685f237c05445efec62426d285e47a58fb05ba0090a4340b73ecda6dee"}, + {file = "rpds_py-0.20.0-cp310-none-win_amd64.whl", hash = "sha256:238a2d5b1cad28cdc6ed15faf93a998336eb041c4e440dd7f902528b8891b399"}, + {file = "rpds_py-0.20.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:ac2f4f7a98934c2ed6505aead07b979e6f999389f16b714448fb39bbaa86a489"}, + {file = "rpds_py-0.20.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:220002c1b846db9afd83371d08d239fdc865e8f8c5795bbaec20916a76db3318"}, + {file = "rpds_py-0.20.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8d7919548df3f25374a1f5d01fbcd38dacab338ef5f33e044744b5c36729c8db"}, + {file = "rpds_py-0.20.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:758406267907b3781beee0f0edfe4a179fbd97c0be2e9b1154d7f0a1279cf8e5"}, + {file = "rpds_py-0.20.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3d61339e9f84a3f0767b1995adfb171a0d00a1185192718a17af6e124728e0f5"}, + {file = "rpds_py-0.20.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1259c7b3705ac0a0bd38197565a5d603218591d3f6cee6e614e380b6ba61c6f6"}, + {file = "rpds_py-0.20.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5c1dc0f53856b9cc9a0ccca0a7cc61d3d20a7088201c0937f3f4048c1718a209"}, + {file = "rpds_py-0.20.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7e60cb630f674a31f0368ed32b2a6b4331b8350d67de53c0359992444b116dd3"}, + {file = "rpds_py-0.20.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:dbe982f38565bb50cb7fb061ebf762c2f254ca3d8c20d4006878766e84266272"}, + {file = "rpds_py-0.20.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:514b3293b64187172bc77c8fb0cdae26981618021053b30d8371c3a902d4d5ad"}, + {file = "rpds_py-0.20.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:d0a26ffe9d4dd35e4dfdd1e71f46401cff0181c75ac174711ccff0459135fa58"}, + {file = "rpds_py-0.20.0-cp311-none-win32.whl", hash = "sha256:89c19a494bf3ad08c1da49445cc5d13d8fefc265f48ee7e7556839acdacf69d0"}, + {file = "rpds_py-0.20.0-cp311-none-win_amd64.whl", hash = "sha256:c638144ce971df84650d3ed0096e2ae7af8e62ecbbb7b201c8935c370df00a2c"}, + {file = "rpds_py-0.20.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:a84ab91cbe7aab97f7446652d0ed37d35b68a465aeef8fc41932a9d7eee2c1a6"}, + {file = "rpds_py-0.20.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:56e27147a5a4c2c21633ff8475d185734c0e4befd1c989b5b95a5d0db699b21b"}, + {file = "rpds_py-0.20.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2580b0c34583b85efec8c5c5ec9edf2dfe817330cc882ee972ae650e7b5ef739"}, + {file = "rpds_py-0.20.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b80d4a7900cf6b66bb9cee5c352b2d708e29e5a37fe9bf784fa97fc11504bf6c"}, + {file = "rpds_py-0.20.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:50eccbf054e62a7b2209b28dc7a22d6254860209d6753e6b78cfaeb0075d7bee"}, + {file = "rpds_py-0.20.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:49a8063ea4296b3a7e81a5dfb8f7b2d73f0b1c20c2af401fb0cdf22e14711a96"}, + {file = "rpds_py-0.20.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea438162a9fcbee3ecf36c23e6c68237479f89f962f82dae83dc15feeceb37e4"}, + {file = "rpds_py-0.20.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:18d7585c463087bddcfa74c2ba267339f14f2515158ac4db30b1f9cbdb62c8ef"}, + {file = "rpds_py-0.20.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d4c7d1a051eeb39f5c9547e82ea27cbcc28338482242e3e0b7768033cb083821"}, + {file = "rpds_py-0.20.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:e4df1e3b3bec320790f699890d41c59d250f6beda159ea3c44c3f5bac1976940"}, + {file = "rpds_py-0.20.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:2cf126d33a91ee6eedc7f3197b53e87a2acdac63602c0f03a02dd69e4b138174"}, + {file = "rpds_py-0.20.0-cp312-none-win32.whl", hash = "sha256:8bc7690f7caee50b04a79bf017a8d020c1f48c2a1077ffe172abec59870f1139"}, + {file = "rpds_py-0.20.0-cp312-none-win_amd64.whl", hash = "sha256:0e13e6952ef264c40587d510ad676a988df19adea20444c2b295e536457bc585"}, + {file = "rpds_py-0.20.0-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:aa9a0521aeca7d4941499a73ad7d4f8ffa3d1affc50b9ea11d992cd7eff18a29"}, + {file = "rpds_py-0.20.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:4a1f1d51eccb7e6c32ae89243cb352389228ea62f89cd80823ea7dd1b98e0b91"}, + {file = "rpds_py-0.20.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8a86a9b96070674fc88b6f9f71a97d2c1d3e5165574615d1f9168ecba4cecb24"}, + {file = "rpds_py-0.20.0-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:6c8ef2ebf76df43f5750b46851ed1cdf8f109d7787ca40035fe19fbdc1acc5a7"}, + {file = "rpds_py-0.20.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b74b25f024b421d5859d156750ea9a65651793d51b76a2e9238c05c9d5f203a9"}, + {file = "rpds_py-0.20.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:57eb94a8c16ab08fef6404301c38318e2c5a32216bf5de453e2714c964c125c8"}, + {file = "rpds_py-0.20.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1940dae14e715e2e02dfd5b0f64a52e8374a517a1e531ad9412319dc3ac7879"}, + {file = "rpds_py-0.20.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d20277fd62e1b992a50c43f13fbe13277a31f8c9f70d59759c88f644d66c619f"}, + {file = "rpds_py-0.20.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:06db23d43f26478303e954c34c75182356ca9aa7797d22c5345b16871ab9c45c"}, + {file = "rpds_py-0.20.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:b2a5db5397d82fa847e4c624b0c98fe59d2d9b7cf0ce6de09e4d2e80f8f5b3f2"}, + {file = "rpds_py-0.20.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:5a35df9f5548fd79cb2f52d27182108c3e6641a4feb0f39067911bf2adaa3e57"}, + {file = "rpds_py-0.20.0-cp313-none-win32.whl", hash = "sha256:fd2d84f40633bc475ef2d5490b9c19543fbf18596dcb1b291e3a12ea5d722f7a"}, + {file = "rpds_py-0.20.0-cp313-none-win_amd64.whl", hash = "sha256:9bc2d153989e3216b0559251b0c260cfd168ec78b1fac33dd485750a228db5a2"}, + {file = "rpds_py-0.20.0-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:f2fbf7db2012d4876fb0d66b5b9ba6591197b0f165db8d99371d976546472a24"}, + {file = "rpds_py-0.20.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:1e5f3cd7397c8f86c8cc72d5a791071431c108edd79872cdd96e00abd8497d29"}, + {file = "rpds_py-0.20.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce9845054c13696f7af7f2b353e6b4f676dab1b4b215d7fe5e05c6f8bb06f965"}, + {file = "rpds_py-0.20.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c3e130fd0ec56cb76eb49ef52faead8ff09d13f4527e9b0c400307ff72b408e1"}, + {file = "rpds_py-0.20.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4b16aa0107ecb512b568244ef461f27697164d9a68d8b35090e9b0c1c8b27752"}, + {file = "rpds_py-0.20.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:aa7f429242aae2947246587d2964fad750b79e8c233a2367f71b554e9447949c"}, + {file = "rpds_py-0.20.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:af0fc424a5842a11e28956e69395fbbeab2c97c42253169d87e90aac2886d751"}, + {file = "rpds_py-0.20.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b8c00a3b1e70c1d3891f0db1b05292747f0dbcfb49c43f9244d04c70fbc40eb8"}, + {file = "rpds_py-0.20.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:40ce74fc86ee4645d0a225498d091d8bc61f39b709ebef8204cb8b5a464d3c0e"}, + {file = "rpds_py-0.20.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:4fe84294c7019456e56d93e8ababdad5a329cd25975be749c3f5f558abb48253"}, + {file = "rpds_py-0.20.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:338ca4539aad4ce70a656e5187a3a31c5204f261aef9f6ab50e50bcdffaf050a"}, + {file = "rpds_py-0.20.0-cp38-none-win32.whl", hash = "sha256:54b43a2b07db18314669092bb2de584524d1ef414588780261e31e85846c26a5"}, + {file = "rpds_py-0.20.0-cp38-none-win_amd64.whl", hash = "sha256:a1862d2d7ce1674cffa6d186d53ca95c6e17ed2b06b3f4c476173565c862d232"}, + {file = "rpds_py-0.20.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:3fde368e9140312b6e8b6c09fb9f8c8c2f00999d1823403ae90cc00480221b22"}, + {file = "rpds_py-0.20.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9824fb430c9cf9af743cf7aaf6707bf14323fb51ee74425c380f4c846ea70789"}, + {file = "rpds_py-0.20.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:11ef6ce74616342888b69878d45e9f779b95d4bd48b382a229fe624a409b72c5"}, + {file = "rpds_py-0.20.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c52d3f2f82b763a24ef52f5d24358553e8403ce05f893b5347098014f2d9eff2"}, + {file = "rpds_py-0.20.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9d35cef91e59ebbeaa45214861874bc6f19eb35de96db73e467a8358d701a96c"}, + {file = "rpds_py-0.20.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d72278a30111e5b5525c1dd96120d9e958464316f55adb030433ea905866f4de"}, + {file = "rpds_py-0.20.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b4c29cbbba378759ac5786730d1c3cb4ec6f8ababf5c42a9ce303dc4b3d08cda"}, + {file = "rpds_py-0.20.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6632f2d04f15d1bd6fe0eedd3b86d9061b836ddca4c03d5cf5c7e9e6b7c14580"}, + {file = "rpds_py-0.20.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:d0b67d87bb45ed1cd020e8fbf2307d449b68abc45402fe1a4ac9e46c3c8b192b"}, + {file = "rpds_py-0.20.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:ec31a99ca63bf3cd7f1a5ac9fe95c5e2d060d3c768a09bc1d16e235840861420"}, + {file = "rpds_py-0.20.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:22e6c9976e38f4d8c4a63bd8a8edac5307dffd3ee7e6026d97f3cc3a2dc02a0b"}, + {file = "rpds_py-0.20.0-cp39-none-win32.whl", hash = "sha256:569b3ea770c2717b730b61998b6c54996adee3cef69fc28d444f3e7920313cf7"}, + {file = "rpds_py-0.20.0-cp39-none-win_amd64.whl", hash = "sha256:e6900ecdd50ce0facf703f7a00df12374b74bbc8ad9fe0f6559947fb20f82364"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:617c7357272c67696fd052811e352ac54ed1d9b49ab370261a80d3b6ce385045"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:9426133526f69fcaba6e42146b4e12d6bc6c839b8b555097020e2b78ce908dcc"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:deb62214c42a261cb3eb04d474f7155279c1a8a8c30ac89b7dcb1721d92c3c02"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fcaeb7b57f1a1e071ebd748984359fef83ecb026325b9d4ca847c95bc7311c92"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d454b8749b4bd70dd0a79f428731ee263fa6995f83ccb8bada706e8d1d3ff89d"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d807dc2051abe041b6649681dce568f8e10668e3c1c6543ebae58f2d7e617855"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c3c20f0ddeb6e29126d45f89206b8291352b8c5b44384e78a6499d68b52ae511"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b7f19250ceef892adf27f0399b9e5afad019288e9be756d6919cb58892129f51"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:4f1ed4749a08379555cebf4650453f14452eaa9c43d0a95c49db50c18b7da075"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:dcedf0b42bcb4cfff4101d7771a10532415a6106062f005ab97d1d0ab5681c60"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:39ed0d010457a78f54090fafb5d108501b5aa5604cc22408fc1c0c77eac14344"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:bb273176be34a746bdac0b0d7e4e2c467323d13640b736c4c477881a3220a989"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f918a1a130a6dfe1d7fe0f105064141342e7dd1611f2e6a21cd2f5c8cb1cfb3e"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f60012a73aa396be721558caa3a6fd49b3dd0033d1675c6d59c4502e870fcf0c"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3d2b1ad682a3dfda2a4e8ad8572f3100f95fad98cb99faf37ff0ddfe9cbf9d03"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:614fdafe9f5f19c63ea02817fa4861c606a59a604a77c8cdef5aa01d28b97921"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fa518bcd7600c584bf42e6617ee8132869e877db2f76bcdc281ec6a4113a53ab"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f0475242f447cc6cb8a9dd486d68b2ef7fbee84427124c232bff5f63b1fe11e5"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f90a4cd061914a60bd51c68bcb4357086991bd0bb93d8aa66a6da7701370708f"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:def7400461c3a3f26e49078302e1c1b38f6752342c77e3cf72ce91ca69fb1bc1"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:65794e4048ee837494aea3c21a28ad5fc080994dfba5b036cf84de37f7ad5074"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:faefcc78f53a88f3076b7f8be0a8f8d35133a3ecf7f3770895c25f8813460f08"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:5b4f105deeffa28bbcdff6c49b34e74903139afa690e35d2d9e3c2c2fba18cec"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:fdfc3a892927458d98f3d55428ae46b921d1f7543b89382fdb483f5640daaec8"}, + {file = "rpds_py-0.20.0.tar.gz", hash = "sha256:d72a210824facfdaf8768cf2d7ca25a042c30320b3020de2fa04640920d4e121"}, +] + +[[package]] +name = "scikit-learn" +version = "1.5.2" +description = "A set of python modules for machine learning and data mining" +optional = false +python-versions = ">=3.9" +files = [ + {file = "scikit_learn-1.5.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:299406827fb9a4f862626d0fe6c122f5f87f8910b86fe5daa4c32dcd742139b6"}, + {file = "scikit_learn-1.5.2-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:2d4cad1119c77930b235579ad0dc25e65c917e756fe80cab96aa3b9428bd3fb0"}, + {file = "scikit_learn-1.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8c412ccc2ad9bf3755915e3908e677b367ebc8d010acbb3f182814524f2e5540"}, + {file = "scikit_learn-1.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a686885a4b3818d9e62904d91b57fa757fc2bed3e465c8b177be652f4dd37c8"}, + {file = "scikit_learn-1.5.2-cp310-cp310-win_amd64.whl", hash = "sha256:c15b1ca23d7c5f33cc2cb0a0d6aaacf893792271cddff0edbd6a40e8319bc113"}, + {file = "scikit_learn-1.5.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:03b6158efa3faaf1feea3faa884c840ebd61b6484167c711548fce208ea09445"}, + {file = "scikit_learn-1.5.2-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:1ff45e26928d3b4eb767a8f14a9a6efbf1cbff7c05d1fb0f95f211a89fd4f5de"}, + {file = "scikit_learn-1.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f763897fe92d0e903aa4847b0aec0e68cadfff77e8a0687cabd946c89d17e675"}, + {file = "scikit_learn-1.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8b0ccd4a902836493e026c03256e8b206656f91fbcc4fde28c57a5b752561f1"}, + {file = "scikit_learn-1.5.2-cp311-cp311-win_amd64.whl", hash = "sha256:6c16d84a0d45e4894832b3c4d0bf73050939e21b99b01b6fd59cbb0cf39163b6"}, + {file = "scikit_learn-1.5.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f932a02c3f4956dfb981391ab24bda1dbd90fe3d628e4b42caef3e041c67707a"}, + {file = "scikit_learn-1.5.2-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:3b923d119d65b7bd555c73be5423bf06c0105678ce7e1f558cb4b40b0a5502b1"}, + {file = "scikit_learn-1.5.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f60021ec1574e56632be2a36b946f8143bf4e5e6af4a06d85281adc22938e0dd"}, + {file = "scikit_learn-1.5.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:394397841449853c2290a32050382edaec3da89e35b3e03d6cc966aebc6a8ae6"}, + {file = "scikit_learn-1.5.2-cp312-cp312-win_amd64.whl", hash = "sha256:57cc1786cfd6bd118220a92ede80270132aa353647684efa385a74244a41e3b1"}, + {file = "scikit_learn-1.5.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:e9a702e2de732bbb20d3bad29ebd77fc05a6b427dc49964300340e4c9328b3f5"}, + {file = "scikit_learn-1.5.2-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:b0768ad641981f5d3a198430a1d31c3e044ed2e8a6f22166b4d546a5116d7908"}, + {file = "scikit_learn-1.5.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:178ddd0a5cb0044464fc1bfc4cca5b1833bfc7bb022d70b05db8530da4bb3dd3"}, + {file = "scikit_learn-1.5.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f7284ade780084d94505632241bf78c44ab3b6f1e8ccab3d2af58e0e950f9c12"}, + {file = "scikit_learn-1.5.2-cp313-cp313-win_amd64.whl", hash = "sha256:b7b0f9a0b1040830d38c39b91b3a44e1b643f4b36e36567b80b7c6bd2202a27f"}, + {file = "scikit_learn-1.5.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:757c7d514ddb00ae249832fe87100d9c73c6ea91423802872d9e74970a0e40b9"}, + {file = "scikit_learn-1.5.2-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:52788f48b5d8bca5c0736c175fa6bdaab2ef00a8f536cda698db61bd89c551c1"}, + {file = "scikit_learn-1.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:643964678f4b5fbdc95cbf8aec638acc7aa70f5f79ee2cdad1eec3df4ba6ead8"}, + {file = "scikit_learn-1.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ca64b3089a6d9b9363cd3546f8978229dcbb737aceb2c12144ee3f70f95684b7"}, + {file = "scikit_learn-1.5.2-cp39-cp39-win_amd64.whl", hash = "sha256:3bed4909ba187aca80580fe2ef370d9180dcf18e621a27c4cf2ef10d279a7efe"}, + {file = "scikit_learn-1.5.2.tar.gz", hash = "sha256:b4237ed7b3fdd0a4882792e68ef2545d5baa50aca3bb45aa7df468138ad8f94d"}, +] + +[package.dependencies] +joblib = ">=1.2.0" +numpy = ">=1.19.5" +scipy = ">=1.6.0" +threadpoolctl = ">=3.1.0" + +[package.extras] +benchmark = ["matplotlib (>=3.3.4)", "memory_profiler (>=0.57.0)", "pandas (>=1.1.5)"] +build = ["cython (>=3.0.10)", "meson-python (>=0.16.0)", "numpy (>=1.19.5)", "scipy (>=1.6.0)"] +docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.3.4)", "memory_profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.1.5)", "plotly (>=5.14.0)", "polars (>=0.20.30)", "pooch (>=1.6.0)", "pydata-sphinx-theme (>=0.15.3)", "scikit-image (>=0.17.2)", "seaborn (>=0.9.0)", "sphinx (>=7.3.7)", "sphinx-copybutton (>=0.5.2)", "sphinx-design (>=0.5.0)", "sphinx-design (>=0.6.0)", "sphinx-gallery (>=0.16.0)", "sphinx-prompt (>=1.4.0)", "sphinx-remove-toctrees (>=1.0.0.post1)", "sphinxcontrib-sass (>=0.3.4)", "sphinxext-opengraph (>=0.9.1)"] +examples = ["matplotlib (>=3.3.4)", "pandas (>=1.1.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.17.2)", "seaborn (>=0.9.0)"] +install = ["joblib (>=1.2.0)", "numpy (>=1.19.5)", "scipy (>=1.6.0)", "threadpoolctl (>=3.1.0)"] +maintenance = ["conda-lock (==2.5.6)"] +tests = ["black (>=24.3.0)", "matplotlib (>=3.3.4)", "mypy (>=1.9)", "numpydoc (>=1.2.0)", "pandas (>=1.1.5)", "polars (>=0.20.30)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pyarrow (>=12.0.0)", "pytest (>=7.1.2)", "pytest-cov (>=2.9.0)", "ruff (>=0.2.1)", "scikit-image (>=0.17.2)"] + +[[package]] +name = "scipy" +version = "1.14.1" +description = "Fundamental algorithms for scientific computing in Python" +optional = false +python-versions = ">=3.10" +files = [ + {file = "scipy-1.14.1-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:b28d2ca4add7ac16ae8bb6632a3c86e4b9e4d52d3e34267f6e1b0c1f8d87e389"}, + {file = "scipy-1.14.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:d0d2821003174de06b69e58cef2316a6622b60ee613121199cb2852a873f8cf3"}, + {file = "scipy-1.14.1-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:8bddf15838ba768bb5f5083c1ea012d64c9a444e16192762bd858f1e126196d0"}, + {file = "scipy-1.14.1-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:97c5dddd5932bd2a1a31c927ba5e1463a53b87ca96b5c9bdf5dfd6096e27efc3"}, + {file = "scipy-1.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2ff0a7e01e422c15739ecd64432743cf7aae2b03f3084288f399affcefe5222d"}, + {file = "scipy-1.14.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8e32dced201274bf96899e6491d9ba3e9a5f6b336708656466ad0522d8528f69"}, + {file = "scipy-1.14.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:8426251ad1e4ad903a4514712d2fa8fdd5382c978010d1c6f5f37ef286a713ad"}, + {file = "scipy-1.14.1-cp310-cp310-win_amd64.whl", hash = "sha256:a49f6ed96f83966f576b33a44257d869756df6cf1ef4934f59dd58b25e0327e5"}, + {file = "scipy-1.14.1-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:2da0469a4ef0ecd3693761acbdc20f2fdeafb69e6819cc081308cc978153c675"}, + {file = "scipy-1.14.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:c0ee987efa6737242745f347835da2cc5bb9f1b42996a4d97d5c7ff7928cb6f2"}, + {file = "scipy-1.14.1-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:3a1b111fac6baec1c1d92f27e76511c9e7218f1695d61b59e05e0fe04dc59617"}, + {file = "scipy-1.14.1-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:8475230e55549ab3f207bff11ebfc91c805dc3463ef62eda3ccf593254524ce8"}, + {file = "scipy-1.14.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:278266012eb69f4a720827bdd2dc54b2271c97d84255b2faaa8f161a158c3b37"}, + {file = "scipy-1.14.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fef8c87f8abfb884dac04e97824b61299880c43f4ce675dd2cbeadd3c9b466d2"}, + {file = "scipy-1.14.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b05d43735bb2f07d689f56f7b474788a13ed8adc484a85aa65c0fd931cf9ccd2"}, + {file = "scipy-1.14.1-cp311-cp311-win_amd64.whl", hash = "sha256:716e389b694c4bb564b4fc0c51bc84d381735e0d39d3f26ec1af2556ec6aad94"}, + {file = "scipy-1.14.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:631f07b3734d34aced009aaf6fedfd0eb3498a97e581c3b1e5f14a04164a456d"}, + {file = "scipy-1.14.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:af29a935803cc707ab2ed7791c44288a682f9c8107bc00f0eccc4f92c08d6e07"}, + {file = "scipy-1.14.1-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:2843f2d527d9eebec9a43e6b406fb7266f3af25a751aa91d62ff416f54170bc5"}, + {file = "scipy-1.14.1-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:eb58ca0abd96911932f688528977858681a59d61a7ce908ffd355957f7025cfc"}, + {file = "scipy-1.14.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:30ac8812c1d2aab7131a79ba62933a2a76f582d5dbbc695192453dae67ad6310"}, + {file = "scipy-1.14.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f9ea80f2e65bdaa0b7627fb00cbeb2daf163caa015e59b7516395fe3bd1e066"}, + {file = "scipy-1.14.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:edaf02b82cd7639db00dbff629995ef185c8df4c3ffa71a5562a595765a06ce1"}, + {file = "scipy-1.14.1-cp312-cp312-win_amd64.whl", hash = "sha256:2ff38e22128e6c03ff73b6bb0f85f897d2362f8c052e3b8ad00532198fbdae3f"}, + {file = "scipy-1.14.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:1729560c906963fc8389f6aac023739ff3983e727b1a4d87696b7bf108316a79"}, + {file = "scipy-1.14.1-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:4079b90df244709e675cdc8b93bfd8a395d59af40b72e339c2287c91860deb8e"}, + {file = "scipy-1.14.1-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:e0cf28db0f24a38b2a0ca33a85a54852586e43cf6fd876365c86e0657cfe7d73"}, + {file = "scipy-1.14.1-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:0c2f95de3b04e26f5f3ad5bb05e74ba7f68b837133a4492414b3afd79dfe540e"}, + {file = "scipy-1.14.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b99722ea48b7ea25e8e015e8341ae74624f72e5f21fc2abd45f3a93266de4c5d"}, + {file = "scipy-1.14.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5149e3fd2d686e42144a093b206aef01932a0059c2a33ddfa67f5f035bdfe13e"}, + {file = "scipy-1.14.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e4f5a7c49323533f9103d4dacf4e4f07078f360743dec7f7596949149efeec06"}, + {file = "scipy-1.14.1-cp313-cp313-win_amd64.whl", hash = "sha256:baff393942b550823bfce952bb62270ee17504d02a1801d7fd0719534dfb9c84"}, + {file = "scipy-1.14.1.tar.gz", hash = "sha256:5a275584e726026a5699459aa72f828a610821006228e841b94275c4a7c08417"}, +] + +[package.dependencies] +numpy = ">=1.23.5,<2.3" + +[package.extras] +dev = ["cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy (==1.10.0)", "pycodestyle", "pydevtool", "rich-click", "ruff (>=0.0.292)", "types-psutil", "typing_extensions"] +doc = ["jupyterlite-pyodide-kernel", "jupyterlite-sphinx (>=0.13.1)", "jupytext", "matplotlib (>=3.5)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (>=0.15.2)", "sphinx (>=5.0.0,<=7.3.7)", "sphinx-design (>=0.4.0)"] +test = ["Cython", "array-api-strict (>=2.0)", "asv", "gmpy2", "hypothesis (>=6.30)", "meson", "mpmath", "ninja", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] + +[[package]] +name = "seaborn" +version = "0.13.2" +description = "Statistical data visualization" +optional = false +python-versions = ">=3.8" +files = [ + {file = "seaborn-0.13.2-py3-none-any.whl", hash = "sha256:636f8336facf092165e27924f223d3c62ca560b1f2bb5dff7ab7fad265361987"}, + {file = "seaborn-0.13.2.tar.gz", hash = "sha256:93e60a40988f4d65e9f4885df477e2fdaff6b73a9ded434c1ab356dd57eefff7"}, +] + +[package.dependencies] +matplotlib = ">=3.4,<3.6.1 || >3.6.1" +numpy = ">=1.20,<1.24.0 || >1.24.0" +pandas = ">=1.2" + +[package.extras] +dev = ["flake8", "flit", "mypy", "pandas-stubs", "pre-commit", "pytest", "pytest-cov", "pytest-xdist"] +docs = ["ipykernel", "nbconvert", "numpydoc", "pydata_sphinx_theme (==0.10.0rc2)", "pyyaml", "sphinx (<6.0.0)", "sphinx-copybutton", "sphinx-design", "sphinx-issues"] +stats = ["scipy (>=1.7)", "statsmodels (>=0.12)"] + +[[package]] +name = "send2trash" +version = "1.8.3" +description = "Send file to trash natively under Mac OS X, Windows and Linux" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" +files = [ + {file = "Send2Trash-1.8.3-py3-none-any.whl", hash = "sha256:0c31227e0bd08961c7665474a3d1ef7193929fedda4233843689baa056be46c9"}, + {file = "Send2Trash-1.8.3.tar.gz", hash = "sha256:b18e7a3966d99871aefeb00cfbcfdced55ce4871194810fc71f4aa484b953abf"}, +] + +[package.extras] +nativelib = ["pyobjc-framework-Cocoa", "pywin32"] +objc = ["pyobjc-framework-Cocoa"] +win32 = ["pywin32"] + +[[package]] +name = "setuptools" +version = "74.1.0" +description = "Easily download, build, install, upgrade, and uninstall Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "setuptools-74.1.0-py3-none-any.whl", hash = "sha256:cee604bd76cc092355a4e43ec17aee5369095974f41f088676724dc6bc2c9ef8"}, + {file = "setuptools-74.1.0.tar.gz", hash = "sha256:bea195a800f510ba3a2bc65645c88b7e016fe36709fefc58a880c4ae8a0138d7"}, +] + +[package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)", "ruff (>=0.5.2)"] +core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.text (>=3.7)", "more-itertools (>=8.8)", "packaging (>=24)", "platformdirs (>=2.6.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] +cover = ["pytest-cov"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-home (>=0.5)", "pytest-perf", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] +type = ["importlib-metadata (>=7.0.2)", "jaraco.develop (>=7.21)", "mypy (==1.11.*)", "pytest-mypy"] + +[[package]] +name = "six" +version = "1.16.0" +description = "Python 2 and 3 compatibility utilities" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" +files = [ + {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, + {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, +] + +[[package]] +name = "sniffio" +version = "1.3.1" +description = "Sniff out which async library your code is running under" +optional = false +python-versions = ">=3.7" +files = [ + {file = "sniffio-1.3.1-py3-none-any.whl", hash = "sha256:2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2"}, + {file = "sniffio-1.3.1.tar.gz", hash = "sha256:f4324edc670a0f49750a81b895f35c3adb843cca46f0530f79fc1babb23789dc"}, +] + +[[package]] +name = "soupsieve" +version = "2.6" +description = "A modern CSS selector implementation for Beautiful Soup." +optional = false +python-versions = ">=3.8" +files = [ + {file = "soupsieve-2.6-py3-none-any.whl", hash = "sha256:e72c4ff06e4fb6e4b5a9f0f55fe6e81514581fca1515028625d0f299c602ccc9"}, + {file = "soupsieve-2.6.tar.gz", hash = "sha256:e2e68417777af359ec65daac1057404a3c8a5455bb8abc36f1a9866ab1a51abb"}, +] + +[[package]] +name = "stack-data" +version = "0.6.3" +description = "Extract data from python stack frames and tracebacks for informative displays" +optional = false +python-versions = "*" +files = [ + {file = "stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695"}, + {file = "stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9"}, +] + +[package.dependencies] +asttokens = ">=2.1.0" +executing = ">=1.2.0" +pure-eval = "*" + +[package.extras] +tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] + +[[package]] +name = "terminado" +version = "0.18.1" +description = "Tornado websocket backend for the Xterm.js Javascript terminal emulator library." +optional = false +python-versions = ">=3.8" +files = [ + {file = "terminado-0.18.1-py3-none-any.whl", hash = "sha256:a4468e1b37bb318f8a86514f65814e1afc977cf29b3992a4500d9dd305dcceb0"}, + {file = "terminado-0.18.1.tar.gz", hash = "sha256:de09f2c4b85de4765f7714688fff57d3e75bad1f909b589fde880460c753fd2e"}, +] + +[package.dependencies] +ptyprocess = {version = "*", markers = "os_name != \"nt\""} +pywinpty = {version = ">=1.1.0", markers = "os_name == \"nt\""} +tornado = ">=6.1.0" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] +test = ["pre-commit", "pytest (>=7.0)", "pytest-timeout"] +typing = ["mypy (>=1.6,<2.0)", "traitlets (>=5.11.1)"] + +[[package]] +name = "threadpoolctl" +version = "3.5.0" +description = "threadpoolctl" +optional = false +python-versions = ">=3.8" +files = [ + {file = "threadpoolctl-3.5.0-py3-none-any.whl", hash = "sha256:56c1e26c150397e58c4926da8eeee87533b1e32bef131bd4bf6a2f45f3185467"}, + {file = "threadpoolctl-3.5.0.tar.gz", hash = "sha256:082433502dd922bf738de0d8bcc4fdcbf0979ff44c42bd40f5af8a282f6fa107"}, +] + +[[package]] +name = "tinycss2" +version = "1.3.0" +description = "A tiny CSS parser" +optional = false +python-versions = ">=3.8" +files = [ + {file = "tinycss2-1.3.0-py3-none-any.whl", hash = "sha256:54a8dbdffb334d536851be0226030e9505965bb2f30f21a4a82c55fb2a80fae7"}, + {file = "tinycss2-1.3.0.tar.gz", hash = "sha256:152f9acabd296a8375fbca5b84c961ff95971fcfc32e79550c8df8e29118c54d"}, +] + +[package.dependencies] +webencodings = ">=0.4" + +[package.extras] +doc = ["sphinx", "sphinx_rtd_theme"] +test = ["pytest", "ruff"] + +[[package]] +name = "tornado" +version = "6.4.1" +description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." +optional = false +python-versions = ">=3.8" +files = [ + {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:163b0aafc8e23d8cdc3c9dfb24c5368af84a81e3364745ccb4427669bf84aec8"}, + {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:6d5ce3437e18a2b66fbadb183c1d3364fb03f2be71299e7d10dbeeb69f4b2a14"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e20b9113cd7293f164dc46fffb13535266e713cdb87bd2d15ddb336e96cfc4"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8ae50a504a740365267b2a8d1a90c9fbc86b780a39170feca9bcc1787ff80842"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:613bf4ddf5c7a95509218b149b555621497a6cc0d46ac341b30bd9ec19eac7f3"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:25486eb223babe3eed4b8aecbac33b37e3dd6d776bc730ca14e1bf93888b979f"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:454db8a7ecfcf2ff6042dde58404164d969b6f5d58b926da15e6b23817950fc4"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:a02a08cc7a9314b006f653ce40483b9b3c12cda222d6a46d4ac63bb6c9057698"}, + {file = "tornado-6.4.1-cp38-abi3-win32.whl", hash = "sha256:d9a566c40b89757c9aa8e6f032bcdb8ca8795d7c1a9762910c722b1635c9de4d"}, + {file = "tornado-6.4.1-cp38-abi3-win_amd64.whl", hash = "sha256:b24b8982ed444378d7f21d563f4180a2de31ced9d8d84443907a0a64da2072e7"}, + {file = "tornado-6.4.1.tar.gz", hash = "sha256:92d3ab53183d8c50f8204a51e6f91d18a15d5ef261e84d452800d4ff6fc504e9"}, +] + +[[package]] +name = "tqdm" +version = "4.66.5" +description = "Fast, Extensible Progress Meter" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tqdm-4.66.5-py3-none-any.whl", hash = "sha256:90279a3770753eafc9194a0364852159802111925aa30eb3f9d85b0e805ac7cd"}, + {file = "tqdm-4.66.5.tar.gz", hash = "sha256:e1020aef2e5096702d8a025ac7d16b1577279c9d63f8375b63083e9a5f0fcbad"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "platform_system == \"Windows\""} + +[package.extras] +dev = ["pytest (>=6)", "pytest-cov", "pytest-timeout", "pytest-xdist"] +notebook = ["ipywidgets (>=6)"] +slack = ["slack-sdk"] +telegram = ["requests"] + +[[package]] +name = "traitlets" +version = "5.14.3" +description = "Traitlets Python configuration system" +optional = false +python-versions = ">=3.8" +files = [ + {file = "traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f"}, + {file = "traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7"}, +] + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] +test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<8.2)", "pytest-mock", "pytest-mypy-testing"] + +[[package]] +name = "types-python-dateutil" +version = "2.9.0.20240821" +description = "Typing stubs for python-dateutil" +optional = false +python-versions = ">=3.8" +files = [ + {file = "types-python-dateutil-2.9.0.20240821.tar.gz", hash = "sha256:9649d1dcb6fef1046fb18bebe9ea2aa0028b160918518c34589a46045f6ebd98"}, + {file = "types_python_dateutil-2.9.0.20240821-py3-none-any.whl", hash = "sha256:f5889fcb4e63ed4aaa379b44f93c32593d50b9a94c9a60a0c854d8cc3511cd57"}, +] + +[[package]] +name = "tzdata" +version = "2024.1" +description = "Provider of IANA time zone data" +optional = false +python-versions = ">=2" +files = [ + {file = "tzdata-2024.1-py2.py3-none-any.whl", hash = "sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252"}, + {file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"}, +] + +[[package]] +name = "uri-template" +version = "1.3.0" +description = "RFC 6570 URI Template Processor" +optional = false +python-versions = ">=3.7" +files = [ + {file = "uri-template-1.3.0.tar.gz", hash = "sha256:0e00f8eb65e18c7de20d595a14336e9f337ead580c70934141624b6d1ffdacc7"}, + {file = "uri_template-1.3.0-py3-none-any.whl", hash = "sha256:a44a133ea12d44a0c0f06d7d42a52d71282e77e2f937d8abd5655b8d56fc1363"}, +] + +[package.extras] +dev = ["flake8", "flake8-annotations", "flake8-bandit", "flake8-bugbear", "flake8-commas", "flake8-comprehensions", "flake8-continuation", "flake8-datetimez", "flake8-docstrings", "flake8-import-order", "flake8-literal", "flake8-modern-annotations", "flake8-noqa", "flake8-pyproject", "flake8-requirements", "flake8-typechecking-import", "flake8-use-fstring", "mypy", "pep8-naming", "types-PyYAML"] + +[[package]] +name = "urllib3" +version = "2.2.2" +description = "HTTP library with thread-safe connection pooling, file post, and more." +optional = false +python-versions = ">=3.8" +files = [ + {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, + {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, +] + +[package.extras] +brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)"] +h2 = ["h2 (>=4,<5)"] +socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"] +zstd = ["zstandard (>=0.18.0)"] + +[[package]] +name = "wcwidth" +version = "0.2.13" +description = "Measures the displayed width of unicode strings in a terminal" +optional = false +python-versions = "*" +files = [ + {file = "wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859"}, + {file = "wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5"}, +] + +[[package]] +name = "webargs" +version = "8.4.0" +description = "Declarative parsing and validation of HTTP request objects, with built-in support for popular web frameworks, including Flask, Django, Bottle, Tornado, Pyramid, Falcon, and aiohttp." +optional = false +python-versions = ">=3.8" +files = [ + {file = "webargs-8.4.0-py3-none-any.whl", hash = "sha256:22324305fbca6a2c4cce1235280e8b56372fb3211a8dac2ac8ed1948315a6f53"}, + {file = "webargs-8.4.0.tar.gz", hash = "sha256:ea99368214a4ce613924be99d71db58c269631e95eff4fa09b7354e52dc006a5"}, +] + +[package.dependencies] +marshmallow = ">=3.0.0" +packaging = "*" + +[package.extras] +dev = ["Django (>=2.2.0)", "Flask (>=0.12.5)", "aiohttp (>=3.0.8)", "bottle (>=0.12.13)", "falcon (>=2.0.0)", "flake8 (==7.0.0)", "flake8-bugbear (==23.12.2)", "mypy (==1.8.0)", "pre-commit (>=2.4,<4.0)", "pyramid (>=1.9.1)", "pytest", "pytest-aiohttp (>=0.3.0)", "pytest-asyncio", "tornado (>=4.5.2)", "tox", "webtest (==3.0.0)", "webtest-aiohttp (==2.0.0)"] +docs = ["Django (>=2.2.0)", "Flask (>=0.12.5)", "Sphinx (==7.2.6)", "aiohttp (>=3.0.8)", "bottle (>=0.12.13)", "falcon (>=2.0.0)", "furo (==2023.9.10)", "pyramid (>=1.9.1)", "sphinx-issues (==3.0.1)", "tornado (>=4.5.2)"] +frameworks = ["Django (>=2.2.0)", "Flask (>=0.12.5)", "aiohttp (>=3.0.8)", "bottle (>=0.12.13)", "falcon (>=2.0.0)", "pyramid (>=1.9.1)", "tornado (>=4.5.2)"] +lint = ["flake8 (==7.0.0)", "flake8-bugbear (==23.12.2)", "mypy (==1.8.0)", "pre-commit (>=2.4,<4.0)"] +tests = ["Django (>=2.2.0)", "Flask (>=0.12.5)", "aiohttp (>=3.0.8)", "bottle (>=0.12.13)", "falcon (>=2.0.0)", "pyramid (>=1.9.1)", "pytest", "pytest-aiohttp (>=0.3.0)", "pytest-asyncio", "tornado (>=4.5.2)", "webtest (==3.0.0)", "webtest-aiohttp (==2.0.0)"] + +[[package]] +name = "webcolors" +version = "24.8.0" +description = "A library for working with the color formats defined by HTML and CSS." +optional = false +python-versions = ">=3.8" +files = [ + {file = "webcolors-24.8.0-py3-none-any.whl", hash = "sha256:fc4c3b59358ada164552084a8ebee637c221e4059267d0f8325b3b560f6c7f0a"}, + {file = "webcolors-24.8.0.tar.gz", hash = "sha256:08b07af286a01bcd30d583a7acadf629583d1f79bfef27dd2c2c5c263817277d"}, +] + +[package.extras] +docs = ["furo", "sphinx", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-notfound-page", "sphinxext-opengraph"] +tests = ["coverage[toml]"] + +[[package]] +name = "webencodings" +version = "0.5.1" +description = "Character encoding aliases for legacy web content" +optional = false +python-versions = "*" +files = [ + {file = "webencodings-0.5.1-py2.py3-none-any.whl", hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78"}, + {file = "webencodings-0.5.1.tar.gz", hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923"}, +] + +[[package]] +name = "websocket-client" +version = "1.8.0" +description = "WebSocket client for Python with low level API options" +optional = false +python-versions = ">=3.8" +files = [ + {file = "websocket_client-1.8.0-py3-none-any.whl", hash = "sha256:17b44cc997f5c498e809b22cdf2d9c7a9e71c02c8cc2b6c56e7c2d1239bfa526"}, + {file = "websocket_client-1.8.0.tar.gz", hash = "sha256:3239df9f44da632f96012472805d40a23281a991027ce11d2f45a6f24ac4c3da"}, +] + +[package.extras] +docs = ["Sphinx (>=6.0)", "myst-parser (>=2.0.0)", "sphinx-rtd-theme (>=1.1.0)"] +optional = ["python-socks", "wsaccel"] +test = ["websockets"] + +[[package]] +name = "werkzeug" +version = "3.0.4" +description = "The comprehensive WSGI web application library." +optional = false +python-versions = ">=3.8" +files = [ + {file = "werkzeug-3.0.4-py3-none-any.whl", hash = "sha256:02c9eb92b7d6c06f31a782811505d2157837cea66aaede3e217c7c27c039476c"}, + {file = "werkzeug-3.0.4.tar.gz", hash = "sha256:34f2371506b250df4d4f84bfe7b0921e4762525762bbd936614909fe25cd7306"}, +] + +[package.dependencies] +MarkupSafe = ">=2.1.1" + +[package.extras] +watchdog = ["watchdog (>=2.3)"] + +[[package]] +name = "widgetsnbextension" +version = "4.0.13" +description = "Jupyter interactive widgets for Jupyter Notebook" +optional = false +python-versions = ">=3.7" +files = [ + {file = "widgetsnbextension-4.0.13-py3-none-any.whl", hash = "sha256:74b2692e8500525cc38c2b877236ba51d34541e6385eeed5aec15a70f88a6c71"}, + {file = "widgetsnbextension-4.0.13.tar.gz", hash = "sha256:ffcb67bc9febd10234a362795f643927f4e0c05d9342c727b65d2384f8feacb6"}, +] + +[[package]] +name = "woodwork" +version = "0.31.0" +description = "a data typing library for machine learning" +optional = false +python-versions = "<4,>=3.9" +files = [ + {file = "woodwork-0.31.0-py3-none-any.whl", hash = "sha256:5cb3370553b5f466f8c8599b1bf559584dc0b798cc1f2da26bbd7029d256c6f9"}, + {file = "woodwork-0.31.0.tar.gz", hash = "sha256:6ef82af1d5b6525b02efe6417c574c810cfdcc606cb266bd0d7fb17a1d066b67"}, +] + +[package.dependencies] +importlib-resources = ">=5.10.0" +numpy = ">=1.25.0" +pandas = ">=2.0.0" +python-dateutil = ">=2.8.2" +scikit-learn = ">=1.1.0" +scipy = ">=1.10.0" + +[package.extras] +complete = ["woodwork[updater]"] +dev = ["click (>=8.1.7)", "pre-commit (>=2.20.0)", "ruff (>=0.1.6)", "woodwork[docs,test]"] +docs = ["Sphinx (==5.1.1)", "ipython (==8.4.0)", "jupyter (==1.0.0)", "myst-parser (==0.18.0)", "nbconvert (==6.5.0)", "nbsphinx (==0.8.9)", "pyarrow (>=14.0.1)", "pydata-sphinx-theme (==0.9.0)", "sphinx-copybutton (==0.5.0)", "sphinx-inline-tabs (==2022.1.2b11)"] +test = ["boto3 (>=1.34.32)", "moto[all] (>=5.0.0)", "pyarrow (>=14.0.1)", "pytest (>=7.0.1)", "pytest-cov (>=2.10.1)", "pytest-xdist (>=2.1.0)", "smart-open (>=5.0.0)"] +updater = ["alteryx-open-src-update-checker (>=3.1.0)"] + +[metadata] +lock-version = "2.0" +python-versions = "^3.12" +content-hash = "ddd000b70cadbcdb2463cdb4e0be8181c6dab001dd368a95bd2caa73a3085aa5" diff --git a/poetry.toml b/poetry.toml new file mode 100644 index 0000000..ab1033b --- /dev/null +++ b/poetry.toml @@ -0,0 +1,2 @@ +[virtualenvs] +in-project = true diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 0000000..27b96d0 --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,29 @@ +[tool.poetry] +name = "mai" +version = "1.0.0" +description = "MAI Examples" +authors = ["Aleksey Filippov "] +readme = "readme.md" +package-mode = false + +[tool.poetry.dependencies] +python = "^3.12" +jupyter = "^1.1.1" +numpy = "^2.1.0" +pandas = "^2.2.2" +matplotlib = "^3.9.2" +flask = "^3.0.3" +apiflask = "^2.2.0" +flask-cors = "^5.0.0" +scikit-learn = "^1.5.2" +imbalanced-learn = "^0.12.3" +featuretools = "^1.31.0" +seaborn = "^0.13.2" + + +[tool.poetry.group.dev.dependencies] +ipykernel = "^6.29.5" + +[build-system] +requires = ["poetry-core"] +build-backend = "poetry.core.masonry.api" diff --git a/run.py b/run.py new file mode 100644 index 0000000..39333c8 --- /dev/null +++ b/run.py @@ -0,0 +1,16 @@ +from backend import create_app + +app = create_app() + + +def __main(): + app.run( + host="127.0.0.1", + port=8080, + debug=True, + use_reloader=False, + ) + + +if __name__ == "__main__": + __main()