2478 lines
388 KiB
Plaintext
2478 lines
388 KiB
Plaintext
|
{
|
|||
|
"cells": [
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"# Лабораторная работа 1\n",
|
|||
|
"\n",
|
|||
|
"Датасет - Оценки студентов на экзаменах\n",
|
|||
|
"\n",
|
|||
|
"Поля \n",
|
|||
|
"1. пол\n",
|
|||
|
"2. раса/этническая принадлежность \n",
|
|||
|
"3. уровень образования родителей \n",
|
|||
|
"4. обед\n",
|
|||
|
"5. курс подготовки к тесту\n",
|
|||
|
"6. оценка по математике\n",
|
|||
|
"7. оценка по чтению\n",
|
|||
|
"8. оценка по письму"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"Загрузка и сохранение данных"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 1,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"import pandas as pd\n",
|
|||
|
"\n",
|
|||
|
"df = pd.read_csv(\"data/StudentsPerformance.csv\")\n",
|
|||
|
"df.to_csv(\"data/StudentsPerformance_updated.csv\", index=False)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"Получение сведений о датафрейме с данными"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"1. Общая информация о датафрейме"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 2,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"<class 'pandas.core.frame.DataFrame'>\n",
|
|||
|
"RangeIndex: 1000 entries, 0 to 999\n",
|
|||
|
"Data columns (total 8 columns):\n",
|
|||
|
" # Column Non-Null Count Dtype \n",
|
|||
|
"--- ------ -------------- ----- \n",
|
|||
|
" 0 gender 1000 non-null object\n",
|
|||
|
" 1 race/ethnicity 1000 non-null object\n",
|
|||
|
" 2 parental level of education 1000 non-null object\n",
|
|||
|
" 3 lunch 1000 non-null object\n",
|
|||
|
" 4 test preparation course 1000 non-null object\n",
|
|||
|
" 5 math score 1000 non-null int64 \n",
|
|||
|
" 6 reading score 1000 non-null int64 \n",
|
|||
|
" 7 writing score 1000 non-null int64 \n",
|
|||
|
"dtypes: int64(3), object(5)\n",
|
|||
|
"memory usage: 62.6+ KB\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"df.info()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"2. Статистическая информация"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 3,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>math score</th>\n",
|
|||
|
" <th>reading score</th>\n",
|
|||
|
" <th>writing score</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>count</th>\n",
|
|||
|
" <td>1000.00000</td>\n",
|
|||
|
" <td>1000.000000</td>\n",
|
|||
|
" <td>1000.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>mean</th>\n",
|
|||
|
" <td>66.08900</td>\n",
|
|||
|
" <td>69.169000</td>\n",
|
|||
|
" <td>68.054000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>std</th>\n",
|
|||
|
" <td>15.16308</td>\n",
|
|||
|
" <td>14.600192</td>\n",
|
|||
|
" <td>15.195657</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>min</th>\n",
|
|||
|
" <td>0.00000</td>\n",
|
|||
|
" <td>17.000000</td>\n",
|
|||
|
" <td>10.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>25%</th>\n",
|
|||
|
" <td>57.00000</td>\n",
|
|||
|
" <td>59.000000</td>\n",
|
|||
|
" <td>57.750000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>50%</th>\n",
|
|||
|
" <td>66.00000</td>\n",
|
|||
|
" <td>70.000000</td>\n",
|
|||
|
" <td>69.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>75%</th>\n",
|
|||
|
" <td>77.00000</td>\n",
|
|||
|
" <td>79.000000</td>\n",
|
|||
|
" <td>79.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>max</th>\n",
|
|||
|
" <td>100.00000</td>\n",
|
|||
|
" <td>100.000000</td>\n",
|
|||
|
" <td>100.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" math score reading score writing score\n",
|
|||
|
"count 1000.00000 1000.000000 1000.000000\n",
|
|||
|
"mean 66.08900 69.169000 68.054000\n",
|
|||
|
"std 15.16308 14.600192 15.195657\n",
|
|||
|
"min 0.00000 17.000000 10.000000\n",
|
|||
|
"25% 57.00000 59.000000 57.750000\n",
|
|||
|
"50% 66.00000 70.000000 69.000000\n",
|
|||
|
"75% 77.00000 79.000000 79.000000\n",
|
|||
|
"max 100.00000 100.000000 100.000000"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 3,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"df.describe()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"Получение сведений о колонках датафрейма"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"1. Названия колонок"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 4,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"Index(['gender', 'race/ethnicity', 'parental level of education', 'lunch',\n",
|
|||
|
" 'test preparation course', 'math score', 'reading score',\n",
|
|||
|
" 'writing score'],\n",
|
|||
|
" dtype='object')"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 4,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"df.columns"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"Вывод отдельных строк и столбцов"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"1. Столбец \"gender\""
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 5,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>gender</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>0</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>2</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>3</th>\n",
|
|||
|
" <td>male</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>4</th>\n",
|
|||
|
" <td>male</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>...</th>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>995</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>996</th>\n",
|
|||
|
" <td>male</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>997</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>998</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>999</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"<p>1000 rows × 1 columns</p>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" gender\n",
|
|||
|
"0 female\n",
|
|||
|
"1 female\n",
|
|||
|
"2 female\n",
|
|||
|
"3 male\n",
|
|||
|
"4 male\n",
|
|||
|
".. ...\n",
|
|||
|
"995 female\n",
|
|||
|
"996 male\n",
|
|||
|
"997 female\n",
|
|||
|
"998 female\n",
|
|||
|
"999 female\n",
|
|||
|
"\n",
|
|||
|
"[1000 rows x 1 columns]"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 5,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"df[[\"gender\"]]"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"2. Несколько столбцокв"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 6,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>race/ethnicity</th>\n",
|
|||
|
" <th>writing score</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>0</th>\n",
|
|||
|
" <td>group B</td>\n",
|
|||
|
" <td>74</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1</th>\n",
|
|||
|
" <td>group C</td>\n",
|
|||
|
" <td>88</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>2</th>\n",
|
|||
|
" <td>group B</td>\n",
|
|||
|
" <td>93</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>3</th>\n",
|
|||
|
" <td>group A</td>\n",
|
|||
|
" <td>44</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>4</th>\n",
|
|||
|
" <td>group C</td>\n",
|
|||
|
" <td>75</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>...</th>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>995</th>\n",
|
|||
|
" <td>group E</td>\n",
|
|||
|
" <td>95</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>996</th>\n",
|
|||
|
" <td>group C</td>\n",
|
|||
|
" <td>55</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>997</th>\n",
|
|||
|
" <td>group C</td>\n",
|
|||
|
" <td>65</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>998</th>\n",
|
|||
|
" <td>group D</td>\n",
|
|||
|
" <td>77</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>999</th>\n",
|
|||
|
" <td>group D</td>\n",
|
|||
|
" <td>86</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"<p>1000 rows × 2 columns</p>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" race/ethnicity writing score\n",
|
|||
|
"0 group B 74\n",
|
|||
|
"1 group C 88\n",
|
|||
|
"2 group B 93\n",
|
|||
|
"3 group A 44\n",
|
|||
|
"4 group C 75\n",
|
|||
|
".. ... ...\n",
|
|||
|
"995 group E 95\n",
|
|||
|
"996 group C 55\n",
|
|||
|
"997 group C 65\n",
|
|||
|
"998 group D 77\n",
|
|||
|
"999 group D 86\n",
|
|||
|
"\n",
|
|||
|
"[1000 rows x 2 columns]"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 6,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"df[[\"race/ethnicity\", \"writing score\"]]"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"3. Первая строка"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 7,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>gender</th>\n",
|
|||
|
" <th>race/ethnicity</th>\n",
|
|||
|
" <th>parental level of education</th>\n",
|
|||
|
" <th>lunch</th>\n",
|
|||
|
" <th>test preparation course</th>\n",
|
|||
|
" <th>math score</th>\n",
|
|||
|
" <th>reading score</th>\n",
|
|||
|
" <th>writing score</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>0</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group B</td>\n",
|
|||
|
" <td>bachelor's degree</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>72</td>\n",
|
|||
|
" <td>72</td>\n",
|
|||
|
" <td>74</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" gender race/ethnicity parental level of education lunch \\\n",
|
|||
|
"0 female group B bachelor's degree standard \n",
|
|||
|
"\n",
|
|||
|
" test preparation course math score reading score writing score \n",
|
|||
|
"0 none 72 72 74 "
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 7,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"df.iloc[[0]]"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"4. Вывод по условию"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 8,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>gender</th>\n",
|
|||
|
" <th>race/ethnicity</th>\n",
|
|||
|
" <th>parental level of education</th>\n",
|
|||
|
" <th>lunch</th>\n",
|
|||
|
" <th>test preparation course</th>\n",
|
|||
|
" <th>math score</th>\n",
|
|||
|
" <th>reading score</th>\n",
|
|||
|
" <th>writing score</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>106</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group D</td>\n",
|
|||
|
" <td>master's degree</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>87</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>114</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group E</td>\n",
|
|||
|
" <td>bachelor's degree</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>completed</td>\n",
|
|||
|
" <td>99</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>165</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group C</td>\n",
|
|||
|
" <td>bachelor's degree</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>completed</td>\n",
|
|||
|
" <td>96</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>179</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group D</td>\n",
|
|||
|
" <td>some high school</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>completed</td>\n",
|
|||
|
" <td>97</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>377</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group D</td>\n",
|
|||
|
" <td>master's degree</td>\n",
|
|||
|
" <td>free/reduced</td>\n",
|
|||
|
" <td>completed</td>\n",
|
|||
|
" <td>85</td>\n",
|
|||
|
" <td>95</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>403</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group D</td>\n",
|
|||
|
" <td>high school</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>completed</td>\n",
|
|||
|
" <td>88</td>\n",
|
|||
|
" <td>99</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>458</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group E</td>\n",
|
|||
|
" <td>bachelor's degree</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>566</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group E</td>\n",
|
|||
|
" <td>bachelor's degree</td>\n",
|
|||
|
" <td>free/reduced</td>\n",
|
|||
|
" <td>completed</td>\n",
|
|||
|
" <td>92</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>594</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group C</td>\n",
|
|||
|
" <td>bachelor's degree</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>completed</td>\n",
|
|||
|
" <td>92</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>99</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>625</th>\n",
|
|||
|
" <td>male</td>\n",
|
|||
|
" <td>group D</td>\n",
|
|||
|
" <td>some college</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>completed</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>97</td>\n",
|
|||
|
" <td>99</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>685</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group E</td>\n",
|
|||
|
" <td>master's degree</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>completed</td>\n",
|
|||
|
" <td>94</td>\n",
|
|||
|
" <td>99</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>712</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group D</td>\n",
|
|||
|
" <td>some college</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>98</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>99</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>717</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group C</td>\n",
|
|||
|
" <td>associate's degree</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>completed</td>\n",
|
|||
|
" <td>96</td>\n",
|
|||
|
" <td>96</td>\n",
|
|||
|
" <td>99</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>903</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group D</td>\n",
|
|||
|
" <td>bachelor's degree</td>\n",
|
|||
|
" <td>free/reduced</td>\n",
|
|||
|
" <td>completed</td>\n",
|
|||
|
" <td>93</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>916</th>\n",
|
|||
|
" <td>male</td>\n",
|
|||
|
" <td>group E</td>\n",
|
|||
|
" <td>bachelor's degree</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>completed</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>957</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group D</td>\n",
|
|||
|
" <td>master's degree</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>92</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>962</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group E</td>\n",
|
|||
|
" <td>associate's degree</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>970</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group D</td>\n",
|
|||
|
" <td>bachelor's degree</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>89</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" gender race/ethnicity parental level of education lunch \\\n",
|
|||
|
"106 female group D master's degree standard \n",
|
|||
|
"114 female group E bachelor's degree standard \n",
|
|||
|
"165 female group C bachelor's degree standard \n",
|
|||
|
"179 female group D some high school standard \n",
|
|||
|
"377 female group D master's degree free/reduced \n",
|
|||
|
"403 female group D high school standard \n",
|
|||
|
"458 female group E bachelor's degree standard \n",
|
|||
|
"566 female group E bachelor's degree free/reduced \n",
|
|||
|
"594 female group C bachelor's degree standard \n",
|
|||
|
"625 male group D some college standard \n",
|
|||
|
"685 female group E master's degree standard \n",
|
|||
|
"712 female group D some college standard \n",
|
|||
|
"717 female group C associate's degree standard \n",
|
|||
|
"903 female group D bachelor's degree free/reduced \n",
|
|||
|
"916 male group E bachelor's degree standard \n",
|
|||
|
"957 female group D master's degree standard \n",
|
|||
|
"962 female group E associate's degree standard \n",
|
|||
|
"970 female group D bachelor's degree standard \n",
|
|||
|
"\n",
|
|||
|
" test preparation course math score reading score writing score \n",
|
|||
|
"106 none 87 100 100 \n",
|
|||
|
"114 completed 99 100 100 \n",
|
|||
|
"165 completed 96 100 100 \n",
|
|||
|
"179 completed 97 100 100 \n",
|
|||
|
"377 completed 85 95 100 \n",
|
|||
|
"403 completed 88 99 100 \n",
|
|||
|
"458 none 100 100 100 \n",
|
|||
|
"566 completed 92 100 100 \n",
|
|||
|
"594 completed 92 100 99 \n",
|
|||
|
"625 completed 100 97 99 \n",
|
|||
|
"685 completed 94 99 100 \n",
|
|||
|
"712 none 98 100 99 \n",
|
|||
|
"717 completed 96 96 99 \n",
|
|||
|
"903 completed 93 100 100 \n",
|
|||
|
"916 completed 100 100 100 \n",
|
|||
|
"957 none 92 100 100 \n",
|
|||
|
"962 none 100 100 100 \n",
|
|||
|
"970 none 89 100 100 "
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 8,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"df[df[\"writing score\"] > 98]"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"Группировка и агрегация данных"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"1. Средняя скорость письма по полу"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 9,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>writing score</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>gender</th>\n",
|
|||
|
" <th></th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>female</th>\n",
|
|||
|
" <td>72.467181</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>male</th>\n",
|
|||
|
" <td>63.311203</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" writing score\n",
|
|||
|
"gender \n",
|
|||
|
"female 72.467181\n",
|
|||
|
"male 63.311203"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 9,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"df.groupby([\"gender\"])[[\"writing score\"]].mean()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"2. Группировка по уровню образования родителей - сумма баллов по математике, среднее по оценкам чтения и письма"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 10,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>math score</th>\n",
|
|||
|
" <th>reading score</th>\n",
|
|||
|
" <th>writing score</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>parental level of education</th>\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th></th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>associate's degree</th>\n",
|
|||
|
" <td>15070</td>\n",
|
|||
|
" <td>70.927928</td>\n",
|
|||
|
" <td>69.896396</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>bachelor's degree</th>\n",
|
|||
|
" <td>8188</td>\n",
|
|||
|
" <td>73.000000</td>\n",
|
|||
|
" <td>73.381356</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>high school</th>\n",
|
|||
|
" <td>12179</td>\n",
|
|||
|
" <td>64.704082</td>\n",
|
|||
|
" <td>62.448980</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>master's degree</th>\n",
|
|||
|
" <td>4115</td>\n",
|
|||
|
" <td>75.372881</td>\n",
|
|||
|
" <td>75.677966</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>some college</th>\n",
|
|||
|
" <td>15171</td>\n",
|
|||
|
" <td>69.460177</td>\n",
|
|||
|
" <td>68.840708</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>some high school</th>\n",
|
|||
|
" <td>11366</td>\n",
|
|||
|
" <td>66.938547</td>\n",
|
|||
|
" <td>64.888268</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" math score reading score writing score\n",
|
|||
|
"parental level of education \n",
|
|||
|
"associate's degree 15070 70.927928 69.896396\n",
|
|||
|
"bachelor's degree 8188 73.000000 73.381356\n",
|
|||
|
"high school 12179 64.704082 62.448980\n",
|
|||
|
"master's degree 4115 75.372881 75.677966\n",
|
|||
|
"some college 15171 69.460177 68.840708\n",
|
|||
|
"some high school 11366 66.938547 64.888268"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 10,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"df.groupby(\"parental level of education\").agg({\"math score\": \"sum\", \"reading score\": \"mean\", \"writing score\": \"mean\"})"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"Сортировка данных"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"1. Сортировка по результатам по математике по убыванию"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 11,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>gender</th>\n",
|
|||
|
" <th>race/ethnicity</th>\n",
|
|||
|
" <th>parental level of education</th>\n",
|
|||
|
" <th>lunch</th>\n",
|
|||
|
" <th>test preparation course</th>\n",
|
|||
|
" <th>math score</th>\n",
|
|||
|
" <th>reading score</th>\n",
|
|||
|
" <th>writing score</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>451</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group E</td>\n",
|
|||
|
" <td>some college</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>92</td>\n",
|
|||
|
" <td>97</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>458</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group E</td>\n",
|
|||
|
" <td>bachelor's degree</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>962</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group E</td>\n",
|
|||
|
" <td>associate's degree</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>149</th>\n",
|
|||
|
" <td>male</td>\n",
|
|||
|
" <td>group E</td>\n",
|
|||
|
" <td>associate's degree</td>\n",
|
|||
|
" <td>free/reduced</td>\n",
|
|||
|
" <td>completed</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>93</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>623</th>\n",
|
|||
|
" <td>male</td>\n",
|
|||
|
" <td>group A</td>\n",
|
|||
|
" <td>some college</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>completed</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>96</td>\n",
|
|||
|
" <td>86</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>...</th>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>145</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group C</td>\n",
|
|||
|
" <td>some college</td>\n",
|
|||
|
" <td>free/reduced</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>22</td>\n",
|
|||
|
" <td>39</td>\n",
|
|||
|
" <td>33</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>787</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group B</td>\n",
|
|||
|
" <td>some college</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>19</td>\n",
|
|||
|
" <td>38</td>\n",
|
|||
|
" <td>32</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>17</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group B</td>\n",
|
|||
|
" <td>some high school</td>\n",
|
|||
|
" <td>free/reduced</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>18</td>\n",
|
|||
|
" <td>32</td>\n",
|
|||
|
" <td>28</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>980</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group B</td>\n",
|
|||
|
" <td>high school</td>\n",
|
|||
|
" <td>free/reduced</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>8</td>\n",
|
|||
|
" <td>24</td>\n",
|
|||
|
" <td>23</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>59</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group C</td>\n",
|
|||
|
" <td>some high school</td>\n",
|
|||
|
" <td>free/reduced</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>17</td>\n",
|
|||
|
" <td>10</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"<p>1000 rows × 8 columns</p>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" gender race/ethnicity parental level of education lunch \\\n",
|
|||
|
"451 female group E some college standard \n",
|
|||
|
"458 female group E bachelor's degree standard \n",
|
|||
|
"962 female group E associate's degree standard \n",
|
|||
|
"149 male group E associate's degree free/reduced \n",
|
|||
|
"623 male group A some college standard \n",
|
|||
|
".. ... ... ... ... \n",
|
|||
|
"145 female group C some college free/reduced \n",
|
|||
|
"787 female group B some college standard \n",
|
|||
|
"17 female group B some high school free/reduced \n",
|
|||
|
"980 female group B high school free/reduced \n",
|
|||
|
"59 female group C some high school free/reduced \n",
|
|||
|
"\n",
|
|||
|
" test preparation course math score reading score writing score \n",
|
|||
|
"451 none 100 92 97 \n",
|
|||
|
"458 none 100 100 100 \n",
|
|||
|
"962 none 100 100 100 \n",
|
|||
|
"149 completed 100 100 93 \n",
|
|||
|
"623 completed 100 96 86 \n",
|
|||
|
".. ... ... ... ... \n",
|
|||
|
"145 none 22 39 33 \n",
|
|||
|
"787 none 19 38 32 \n",
|
|||
|
"17 none 18 32 28 \n",
|
|||
|
"980 none 8 24 23 \n",
|
|||
|
"59 none 0 17 10 \n",
|
|||
|
"\n",
|
|||
|
"[1000 rows x 8 columns]"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 11,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"df.sort_values(\"math score\", ascending=False)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"2. Сортировка по нескольким столбцам - по оценке по математике по возрастанию, по оценке по чтению по убыванию"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 12,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>gender</th>\n",
|
|||
|
" <th>race/ethnicity</th>\n",
|
|||
|
" <th>parental level of education</th>\n",
|
|||
|
" <th>lunch</th>\n",
|
|||
|
" <th>test preparation course</th>\n",
|
|||
|
" <th>math score</th>\n",
|
|||
|
" <th>reading score</th>\n",
|
|||
|
" <th>writing score</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>59</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group C</td>\n",
|
|||
|
" <td>some high school</td>\n",
|
|||
|
" <td>free/reduced</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>17</td>\n",
|
|||
|
" <td>10</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>980</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group B</td>\n",
|
|||
|
" <td>high school</td>\n",
|
|||
|
" <td>free/reduced</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>8</td>\n",
|
|||
|
" <td>24</td>\n",
|
|||
|
" <td>23</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>17</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group B</td>\n",
|
|||
|
" <td>some high school</td>\n",
|
|||
|
" <td>free/reduced</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>18</td>\n",
|
|||
|
" <td>32</td>\n",
|
|||
|
" <td>28</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>787</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group B</td>\n",
|
|||
|
" <td>some college</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>19</td>\n",
|
|||
|
" <td>38</td>\n",
|
|||
|
" <td>32</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>145</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group C</td>\n",
|
|||
|
" <td>some college</td>\n",
|
|||
|
" <td>free/reduced</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>22</td>\n",
|
|||
|
" <td>39</td>\n",
|
|||
|
" <td>33</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>...</th>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>916</th>\n",
|
|||
|
" <td>male</td>\n",
|
|||
|
" <td>group E</td>\n",
|
|||
|
" <td>bachelor's degree</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>completed</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>962</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group E</td>\n",
|
|||
|
" <td>associate's degree</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>625</th>\n",
|
|||
|
" <td>male</td>\n",
|
|||
|
" <td>group D</td>\n",
|
|||
|
" <td>some college</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>completed</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>97</td>\n",
|
|||
|
" <td>99</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>623</th>\n",
|
|||
|
" <td>male</td>\n",
|
|||
|
" <td>group A</td>\n",
|
|||
|
" <td>some college</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>completed</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>96</td>\n",
|
|||
|
" <td>86</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>451</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group E</td>\n",
|
|||
|
" <td>some college</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>100</td>\n",
|
|||
|
" <td>92</td>\n",
|
|||
|
" <td>97</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"<p>1000 rows × 8 columns</p>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" gender race/ethnicity parental level of education lunch \\\n",
|
|||
|
"59 female group C some high school free/reduced \n",
|
|||
|
"980 female group B high school free/reduced \n",
|
|||
|
"17 female group B some high school free/reduced \n",
|
|||
|
"787 female group B some college standard \n",
|
|||
|
"145 female group C some college free/reduced \n",
|
|||
|
".. ... ... ... ... \n",
|
|||
|
"916 male group E bachelor's degree standard \n",
|
|||
|
"962 female group E associate's degree standard \n",
|
|||
|
"625 male group D some college standard \n",
|
|||
|
"623 male group A some college standard \n",
|
|||
|
"451 female group E some college standard \n",
|
|||
|
"\n",
|
|||
|
" test preparation course math score reading score writing score \n",
|
|||
|
"59 none 0 17 10 \n",
|
|||
|
"980 none 8 24 23 \n",
|
|||
|
"17 none 18 32 28 \n",
|
|||
|
"787 none 19 38 32 \n",
|
|||
|
"145 none 22 39 33 \n",
|
|||
|
".. ... ... ... ... \n",
|
|||
|
"916 completed 100 100 100 \n",
|
|||
|
"962 none 100 100 100 \n",
|
|||
|
"625 completed 100 97 99 \n",
|
|||
|
"623 completed 100 96 86 \n",
|
|||
|
"451 none 100 92 97 \n",
|
|||
|
"\n",
|
|||
|
"[1000 rows x 8 columns]"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 12,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"df.sort_values([\"math score\", \"reading score\"], ascending=[True, False])"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"Удаление строк/столбцов"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"1. Удаление столбца"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 13,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>gender</th>\n",
|
|||
|
" <th>parental level of education</th>\n",
|
|||
|
" <th>lunch</th>\n",
|
|||
|
" <th>test preparation course</th>\n",
|
|||
|
" <th>math score</th>\n",
|
|||
|
" <th>reading score</th>\n",
|
|||
|
" <th>writing score</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>0</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>bachelor's degree</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>72</td>\n",
|
|||
|
" <td>72</td>\n",
|
|||
|
" <td>74</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>some college</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>completed</td>\n",
|
|||
|
" <td>69</td>\n",
|
|||
|
" <td>90</td>\n",
|
|||
|
" <td>88</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>2</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>master's degree</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>90</td>\n",
|
|||
|
" <td>95</td>\n",
|
|||
|
" <td>93</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>3</th>\n",
|
|||
|
" <td>male</td>\n",
|
|||
|
" <td>associate's degree</td>\n",
|
|||
|
" <td>free/reduced</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>47</td>\n",
|
|||
|
" <td>57</td>\n",
|
|||
|
" <td>44</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>4</th>\n",
|
|||
|
" <td>male</td>\n",
|
|||
|
" <td>some college</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>76</td>\n",
|
|||
|
" <td>78</td>\n",
|
|||
|
" <td>75</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>...</th>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>995</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>master's degree</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>completed</td>\n",
|
|||
|
" <td>88</td>\n",
|
|||
|
" <td>99</td>\n",
|
|||
|
" <td>95</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>996</th>\n",
|
|||
|
" <td>male</td>\n",
|
|||
|
" <td>high school</td>\n",
|
|||
|
" <td>free/reduced</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>62</td>\n",
|
|||
|
" <td>55</td>\n",
|
|||
|
" <td>55</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>997</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>high school</td>\n",
|
|||
|
" <td>free/reduced</td>\n",
|
|||
|
" <td>completed</td>\n",
|
|||
|
" <td>59</td>\n",
|
|||
|
" <td>71</td>\n",
|
|||
|
" <td>65</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>998</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>some college</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>completed</td>\n",
|
|||
|
" <td>68</td>\n",
|
|||
|
" <td>78</td>\n",
|
|||
|
" <td>77</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>999</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>some college</td>\n",
|
|||
|
" <td>free/reduced</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>77</td>\n",
|
|||
|
" <td>86</td>\n",
|
|||
|
" <td>86</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"<p>1000 rows × 7 columns</p>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" gender parental level of education lunch test preparation course \\\n",
|
|||
|
"0 female bachelor's degree standard none \n",
|
|||
|
"1 female some college standard completed \n",
|
|||
|
"2 female master's degree standard none \n",
|
|||
|
"3 male associate's degree free/reduced none \n",
|
|||
|
"4 male some college standard none \n",
|
|||
|
".. ... ... ... ... \n",
|
|||
|
"995 female master's degree standard completed \n",
|
|||
|
"996 male high school free/reduced none \n",
|
|||
|
"997 female high school free/reduced completed \n",
|
|||
|
"998 female some college standard completed \n",
|
|||
|
"999 female some college free/reduced none \n",
|
|||
|
"\n",
|
|||
|
" math score reading score writing score \n",
|
|||
|
"0 72 72 74 \n",
|
|||
|
"1 69 90 88 \n",
|
|||
|
"2 90 95 93 \n",
|
|||
|
"3 47 57 44 \n",
|
|||
|
"4 76 78 75 \n",
|
|||
|
".. ... ... ... \n",
|
|||
|
"995 88 99 95 \n",
|
|||
|
"996 62 55 55 \n",
|
|||
|
"997 59 71 65 \n",
|
|||
|
"998 68 78 77 \n",
|
|||
|
"999 77 86 86 \n",
|
|||
|
"\n",
|
|||
|
"[1000 rows x 7 columns]"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 13,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"df.drop(\"race/ethnicity\", axis=1)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"Удаление строки"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 14,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>gender</th>\n",
|
|||
|
" <th>race/ethnicity</th>\n",
|
|||
|
" <th>parental level of education</th>\n",
|
|||
|
" <th>lunch</th>\n",
|
|||
|
" <th>test preparation course</th>\n",
|
|||
|
" <th>math score</th>\n",
|
|||
|
" <th>reading score</th>\n",
|
|||
|
" <th>writing score</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group C</td>\n",
|
|||
|
" <td>some college</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>completed</td>\n",
|
|||
|
" <td>69</td>\n",
|
|||
|
" <td>90</td>\n",
|
|||
|
" <td>88</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>2</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group B</td>\n",
|
|||
|
" <td>master's degree</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>90</td>\n",
|
|||
|
" <td>95</td>\n",
|
|||
|
" <td>93</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>3</th>\n",
|
|||
|
" <td>male</td>\n",
|
|||
|
" <td>group A</td>\n",
|
|||
|
" <td>associate's degree</td>\n",
|
|||
|
" <td>free/reduced</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>47</td>\n",
|
|||
|
" <td>57</td>\n",
|
|||
|
" <td>44</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>4</th>\n",
|
|||
|
" <td>male</td>\n",
|
|||
|
" <td>group C</td>\n",
|
|||
|
" <td>some college</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>76</td>\n",
|
|||
|
" <td>78</td>\n",
|
|||
|
" <td>75</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>5</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group B</td>\n",
|
|||
|
" <td>associate's degree</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>71</td>\n",
|
|||
|
" <td>83</td>\n",
|
|||
|
" <td>78</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>...</th>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>995</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group E</td>\n",
|
|||
|
" <td>master's degree</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>completed</td>\n",
|
|||
|
" <td>88</td>\n",
|
|||
|
" <td>99</td>\n",
|
|||
|
" <td>95</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>996</th>\n",
|
|||
|
" <td>male</td>\n",
|
|||
|
" <td>group C</td>\n",
|
|||
|
" <td>high school</td>\n",
|
|||
|
" <td>free/reduced</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>62</td>\n",
|
|||
|
" <td>55</td>\n",
|
|||
|
" <td>55</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>997</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group C</td>\n",
|
|||
|
" <td>high school</td>\n",
|
|||
|
" <td>free/reduced</td>\n",
|
|||
|
" <td>completed</td>\n",
|
|||
|
" <td>59</td>\n",
|
|||
|
" <td>71</td>\n",
|
|||
|
" <td>65</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>998</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group D</td>\n",
|
|||
|
" <td>some college</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>completed</td>\n",
|
|||
|
" <td>68</td>\n",
|
|||
|
" <td>78</td>\n",
|
|||
|
" <td>77</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>999</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group D</td>\n",
|
|||
|
" <td>some college</td>\n",
|
|||
|
" <td>free/reduced</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>77</td>\n",
|
|||
|
" <td>86</td>\n",
|
|||
|
" <td>86</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"<p>999 rows × 8 columns</p>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" gender race/ethnicity parental level of education lunch \\\n",
|
|||
|
"1 female group C some college standard \n",
|
|||
|
"2 female group B master's degree standard \n",
|
|||
|
"3 male group A associate's degree free/reduced \n",
|
|||
|
"4 male group C some college standard \n",
|
|||
|
"5 female group B associate's degree standard \n",
|
|||
|
".. ... ... ... ... \n",
|
|||
|
"995 female group E master's degree standard \n",
|
|||
|
"996 male group C high school free/reduced \n",
|
|||
|
"997 female group C high school free/reduced \n",
|
|||
|
"998 female group D some college standard \n",
|
|||
|
"999 female group D some college free/reduced \n",
|
|||
|
"\n",
|
|||
|
" test preparation course math score reading score writing score \n",
|
|||
|
"1 completed 69 90 88 \n",
|
|||
|
"2 none 90 95 93 \n",
|
|||
|
"3 none 47 57 44 \n",
|
|||
|
"4 none 76 78 75 \n",
|
|||
|
"5 none 71 83 78 \n",
|
|||
|
".. ... ... ... ... \n",
|
|||
|
"995 completed 88 99 95 \n",
|
|||
|
"996 none 62 55 55 \n",
|
|||
|
"997 completed 59 71 65 \n",
|
|||
|
"998 completed 68 78 77 \n",
|
|||
|
"999 none 77 86 86 \n",
|
|||
|
"\n",
|
|||
|
"[999 rows x 8 columns]"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 14,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"df.drop(0, axis=0)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"Создание новых столбцов"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"1. Создание нового столбца со средним баллом каждого студента по всем предметам "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 15,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
" average rating\n",
|
|||
|
"0 72.666667\n",
|
|||
|
"1 82.333333\n",
|
|||
|
"2 92.666667\n",
|
|||
|
"3 49.333333\n",
|
|||
|
"4 76.333333\n",
|
|||
|
".. ...\n",
|
|||
|
"995 94.000000\n",
|
|||
|
"996 57.333333\n",
|
|||
|
"997 65.000000\n",
|
|||
|
"998 74.333333\n",
|
|||
|
"999 83.000000\n",
|
|||
|
"\n",
|
|||
|
"[1000 rows x 1 columns]\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"df[\"average rating\"] = (df[\"math score\"] + df[\"reading score\"] + df[\"writing score\"]) / 3\n",
|
|||
|
"print(df[[\"average rating\"]])"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"Удаление строк с пустыми значениями"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"1. Удаление строк с NaN"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 16,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>gender</th>\n",
|
|||
|
" <th>race/ethnicity</th>\n",
|
|||
|
" <th>parental level of education</th>\n",
|
|||
|
" <th>lunch</th>\n",
|
|||
|
" <th>test preparation course</th>\n",
|
|||
|
" <th>math score</th>\n",
|
|||
|
" <th>reading score</th>\n",
|
|||
|
" <th>writing score</th>\n",
|
|||
|
" <th>average rating</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>0</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group B</td>\n",
|
|||
|
" <td>bachelor's degree</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>72</td>\n",
|
|||
|
" <td>72</td>\n",
|
|||
|
" <td>74</td>\n",
|
|||
|
" <td>72.666667</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group C</td>\n",
|
|||
|
" <td>some college</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>completed</td>\n",
|
|||
|
" <td>69</td>\n",
|
|||
|
" <td>90</td>\n",
|
|||
|
" <td>88</td>\n",
|
|||
|
" <td>82.333333</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>2</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group B</td>\n",
|
|||
|
" <td>master's degree</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>90</td>\n",
|
|||
|
" <td>95</td>\n",
|
|||
|
" <td>93</td>\n",
|
|||
|
" <td>92.666667</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>3</th>\n",
|
|||
|
" <td>male</td>\n",
|
|||
|
" <td>group A</td>\n",
|
|||
|
" <td>associate's degree</td>\n",
|
|||
|
" <td>free/reduced</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>47</td>\n",
|
|||
|
" <td>57</td>\n",
|
|||
|
" <td>44</td>\n",
|
|||
|
" <td>49.333333</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>4</th>\n",
|
|||
|
" <td>male</td>\n",
|
|||
|
" <td>group C</td>\n",
|
|||
|
" <td>some college</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>76</td>\n",
|
|||
|
" <td>78</td>\n",
|
|||
|
" <td>75</td>\n",
|
|||
|
" <td>76.333333</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>...</th>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>995</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group E</td>\n",
|
|||
|
" <td>master's degree</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>completed</td>\n",
|
|||
|
" <td>88</td>\n",
|
|||
|
" <td>99</td>\n",
|
|||
|
" <td>95</td>\n",
|
|||
|
" <td>94.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>996</th>\n",
|
|||
|
" <td>male</td>\n",
|
|||
|
" <td>group C</td>\n",
|
|||
|
" <td>high school</td>\n",
|
|||
|
" <td>free/reduced</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>62</td>\n",
|
|||
|
" <td>55</td>\n",
|
|||
|
" <td>55</td>\n",
|
|||
|
" <td>57.333333</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>997</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group C</td>\n",
|
|||
|
" <td>high school</td>\n",
|
|||
|
" <td>free/reduced</td>\n",
|
|||
|
" <td>completed</td>\n",
|
|||
|
" <td>59</td>\n",
|
|||
|
" <td>71</td>\n",
|
|||
|
" <td>65</td>\n",
|
|||
|
" <td>65.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>998</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group D</td>\n",
|
|||
|
" <td>some college</td>\n",
|
|||
|
" <td>standard</td>\n",
|
|||
|
" <td>completed</td>\n",
|
|||
|
" <td>68</td>\n",
|
|||
|
" <td>78</td>\n",
|
|||
|
" <td>77</td>\n",
|
|||
|
" <td>74.333333</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>999</th>\n",
|
|||
|
" <td>female</td>\n",
|
|||
|
" <td>group D</td>\n",
|
|||
|
" <td>some college</td>\n",
|
|||
|
" <td>free/reduced</td>\n",
|
|||
|
" <td>none</td>\n",
|
|||
|
" <td>77</td>\n",
|
|||
|
" <td>86</td>\n",
|
|||
|
" <td>86</td>\n",
|
|||
|
" <td>83.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"<p>1000 rows × 9 columns</p>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" gender race/ethnicity parental level of education lunch \\\n",
|
|||
|
"0 female group B bachelor's degree standard \n",
|
|||
|
"1 female group C some college standard \n",
|
|||
|
"2 female group B master's degree standard \n",
|
|||
|
"3 male group A associate's degree free/reduced \n",
|
|||
|
"4 male group C some college standard \n",
|
|||
|
".. ... ... ... ... \n",
|
|||
|
"995 female group E master's degree standard \n",
|
|||
|
"996 male group C high school free/reduced \n",
|
|||
|
"997 female group C high school free/reduced \n",
|
|||
|
"998 female group D some college standard \n",
|
|||
|
"999 female group D some college free/reduced \n",
|
|||
|
"\n",
|
|||
|
" test preparation course math score reading score writing score \\\n",
|
|||
|
"0 none 72 72 74 \n",
|
|||
|
"1 completed 69 90 88 \n",
|
|||
|
"2 none 90 95 93 \n",
|
|||
|
"3 none 47 57 44 \n",
|
|||
|
"4 none 76 78 75 \n",
|
|||
|
".. ... ... ... ... \n",
|
|||
|
"995 completed 88 99 95 \n",
|
|||
|
"996 none 62 55 55 \n",
|
|||
|
"997 completed 59 71 65 \n",
|
|||
|
"998 completed 68 78 77 \n",
|
|||
|
"999 none 77 86 86 \n",
|
|||
|
"\n",
|
|||
|
" average rating \n",
|
|||
|
"0 72.666667 \n",
|
|||
|
"1 82.333333 \n",
|
|||
|
"2 92.666667 \n",
|
|||
|
"3 49.333333 \n",
|
|||
|
"4 76.333333 \n",
|
|||
|
".. ... \n",
|
|||
|
"995 94.000000 \n",
|
|||
|
"996 57.333333 \n",
|
|||
|
"997 65.000000 \n",
|
|||
|
"998 74.333333 \n",
|
|||
|
"999 83.000000 \n",
|
|||
|
"\n",
|
|||
|
"[1000 rows x 9 columns]"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 16,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"df.dropna()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"2. Заполнить пустые значения для определённого столбца"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 17,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"df.fillna({\"writing score\": df[\"writing score\"].mean()}, inplace=True)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"Заполнение пустых значений"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"1. Заполнение средним значением (только для числовых значений)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 18,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"df.fillna(df.select_dtypes(include='number').mean(), inplace=True)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"Визуализация данных с Pandas и Matplotlib"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"1. Линейная диаграмма (plot). Распределение оценок по математике в зависимости от пола"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 19,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAAHHCAYAAAB5gsZZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADIdElEQVR4nOydd3wVxRbHf3tvKiEJNQmd0Hsv0hFQREQRFQsqgoJPAQUsT1REEEXBp4iiiCJYURF7AQEpikgvIkV6DxAgCS317vsj3Jsts7szW+7dm8z3fXjmbpk9Ozs7c/acM2cEURRFcDgcDofD4XBM4wm1ABwOh8PhcDjhDleoOBwOh8PhcCzCFSoOh8PhcDgci3CFisPhcDgcDsciXKHicDgcDofDsQhXqDgcDofD4XAswhUqDofD4XA4HItwhYrD4XA4HA7HIlyh4nA4HA6Hw7EIV6g4HA6Hw+FwLBI2CtW8efMgCELgX0xMDOrVq4eRI0fi5MmToRaPw+FwOBxOCSYi1AKwMmnSJKSmpiI7Oxt//PEH3nnnHfz888/Yvn07SpUqFWrxOBwOh8PhlEDCTqHq06cP2rRpAwB44IEHUL58ebz22mv47rvvcOedd4ZYOg6Hw+FwOCWRsHH5adGjRw8AwIEDBwAAZ8+exeOPP46mTZuidOnSSEhIQJ8+fbB161bVudnZ2Xj++edRr149xMTEoFKlShgwYAD27dsHADh48KDMzaj8171790BZK1asgCAI+OKLL/D0008jJSUFcXFxuPHGG3HkyBHVtdeuXYvrrrsOiYmJKFWqFLp164bVq1cT77F79+7E6z///POqYz/55BO0bt0asbGxKFeuHO644w7i9fXuTYrP58P06dPRuHFjxMTEIDk5GQ8++CDOnTsnO65mzZq44YYbVNcZOXKkqkyS7NOmTVPVKQDk5ORgwoQJqFOnDqKjo1GtWjU8+eSTyMnJIdaVkgULFgTqo0KFCrj77rtx7Ngx2TH33XcfSpcurTr3q6++giAIWLFihSmZBEHAyJEjVeXecMMNqFmzpmzbxYsX8dhjj6FatWqIjo5G/fr18eqrr0IURVWZ0rrLz8/H9ddfj3LlymHHjh26daHVjvz/Dh48KDv+7bffRuPGjREdHY3KlStjxIgRyMjI0L0GADz//PMQBAFJSUnIy8uT7Zs/f37geunp6YHt3333Hfr27YvKlSsjOjoatWvXxgsvvICCggJq+ZXtjOZd8JfZv39/1X08+OCDEAQBTZo0kW1/9dVX0bFjR5QvXx6xsbFo3bo1vvrqK9kxRnL627m/31C2sb59+6qetb9epSxfvhzR0dH4z3/+I9t+7NgxDB06FMnJyYiOjkbjxo3xwQcfqO6RhFROr9eLKlWqYPjw4YbP/syZM+jTpw+qVq2K6OhoVKpUCYMGDcKhQ4dkx9HUH60cLPXnr5f7778/0M5SU1Px0EMPITc3F0BRaIn0XfD5fGjWrBkEQcC8efMC2++77z4IgoAWLVqoZJ8yZQoEQVD1K/n5+XjhhRdQu3ZtREdHo2bNmnj66aeJ/dkvv/yCbt26IT4+HgkJCWjbti0+++wzAGzvAkt/S4JG5po1a+rKouzvlBidb7YO/e1DT57c3Fw899xzaN26NRITExEXF4cuXbpg+fLlhnWjJOwsVEr8yk/58uUBAPv378e3336L2267DampqTh58iTeffdddOvWDTt27EDlypUBAAUFBbjhhhuwbNky3HHHHXj00Udx/vx5LFmyBNu3b0ft2rUD17jzzjtx/fXXy647btw4ojwvvvgiBEHAf//7X5w6dQrTp09Hr169sGXLFsTGxgIAfvvtN/Tp0wetW7fGhAkT4PF4MHfuXPTo0QO///472rVrpyq3atWqmDJlCgDgwoULeOihh4jXHj9+PAYOHIgHHngAp0+fxptvvomuXbti8+bNKFOmjOqc4cOHo0uXLgCAr7/+Gt98841s/4MPPoh58+ZhyJAheOSRR3DgwAG89dZb2Lx5M1avXo3IyEhiPbCQkZERuDcpPp8PN954I/744w8MHz4cDRs2xN9//43XX38d//77L7799lvdcv1yt23bFlOmTMHJkyfxxhtvYPXq1Zr1YYRVmUiIoogbb7wRy5cvx/33348WLVpg8eLFeOKJJ3Ds2DG8/vrrmuc+8MADWLFiBZYsWYJGjRoZXkvajvz8/PPPmD9/vmzb888/j4kTJ6JXr1546KGHsHv3brzzzjtYv3499XM/f/48fvzxR9x8882BbXPnzkVMTAyys7Nlx86bNw+lS5fG2LFjUbp0afz222947rnnkJWVhWnTpgEAnnnmGTzwwAMAgPT0dIwZM0bWfqWwvAsxMTH46aefcOrUKSQlJQEALl++jC+++AIxMTGqst944w3ceOONGDRoEHJzc/H555/jtttuw48//oi+ffsCAD7++OPA8b///jtmz56N119/HRUqVAAAJCcna9bbqlWr8PPPP+vWLQBs3boV/fv3x/XXX4+ZM2cGtp88eRJXXXVVQKGvWLEifvnlF9x///3IysrC6NGjDcu++eabMWDAAOTn52PNmjWYPXs2Ll++LLsvJbm5uYiPj8ejjz6K8uXLY9++fXjzzTexbds2/P3334HjaOrPihxa9Xf8+HG0a9cOGRkZGD58OBo0aIBjx47hq6++wqVLlxAVFUUs7+OPP5bJLyUiIgL//PMPNm/ejJYtWwa2z5s3j9h2HnjgAXz44Ye49dZb8dhjj2Ht2rWYMmUKdu7cKet7582bh6FDh6Jx48YYN24cypQpg82bN2PRokW46667mN4FJVr9rRY0Mk+fPh0XLlwAAOzcuRMvvfQSnn76aTRs2BAAiB+sSlq0aIHHHntMtu2jjz7CkiVLmOVRIpVl9uzZOHz4cGBfVlYW3n//fdx5550YNmwYzp8/jzlz5qB3795Yt24dUWHWRAwT5s6dKwIQly5dKp4+fVo8cuSI+Pnnn4vly5cXY2NjxaNHj4qiKIrZ2dliQUGB7NwDBw6I0dHR4qRJkwLbPvjgAxGA+Nprr6mu5fP5AucBEKdNm6Y6pnHjxmK3bt0Cv5cvXy4CEKtUqSJmZWUFtn/55ZciAPGNN94IlF23bl2xd+/egeuIoiheunRJTE1NFa+55hrVtTp27Cg2adIk8Pv06dMiAHHChAmBbQcPHhS9Xq/44osvys79+++/xYiICNX2PXv2iADEDz/8MLBtwoQJorRJ/P777yIA8dNPP5Wdu2jRItX2GjVqiH379lXJPmLECFHZzJSyP/nkk2JSUpLYunVrWZ1+/PHHosfjEX///XfZ+bNmzRIBiKtXr1Zdz09ubq6YlJQkNmnSRLx8+XJg+48//igCEJ977rnAtsGDB4txcXGqMhYsWCACEJcvX25KJgDiiBEjVOX27dtXrFGjRuD3t99+KwIQJ0+eLDvu1ltvFQVBEPfu3Ssr019348aNE71er/jtt99q1oOUbt26iY0bN1ZtnzZtmghAPHDggCiKonjq1CkxKipKvPbaa2Xv0ltvvSUCED/44APd6/jb0Z133inecMMNge2HDh0SPR6PeOedd4oAxNOnTwf2Xbp0SVXOgw8+KJYqVUrMzs5W7fO/m3PnzlXtY3kX/HXSrFkz8dVXXw1s//jjj8WqVauKXbp0UdWZUtbc3FyxSZMmYo8ePYj14e+7/PUrxd9vSNtY+/btxT59+qjeE+n7efDgQbFSpUpi586dZe1bFEXx/vvvFytVqiSmp6fLtt9xxx1iYmIisa6lKK8rioV9UKNGjXTPIzF16lQRgEwW2vqjkYOl/u69917R4/GI69evV8np74uVzyo7O1usXr16oDxpe/P3G/369RNHjhwZ2P7777+LsbGxYv/+/WX9ypYtW0QA4gMPPCC79uOPPy4CEH/77TdRFEUxIyNDjI+PF9u3b696ttIxw4/euyCK9P0tCVqZpZCeiRG04werPEuWLBEBiCtXrgxsGzx4sKz/zc/PF3NycmTnnTt3TkxOThaHDh1KfQ+iKIph5/Lr1asXKlasiGrVquGOO+5A6dKl8c0336BKlSo
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 640x480 with 1 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"import matplotlib.pyplot as plt\n",
|
|||
|
"df.plot(x=\"gender\", y=\"math score\", kind=\"line\")\n",
|
|||
|
"\n",
|
|||
|
"plt.xlabel(\"Пол\") \n",
|
|||
|
"plt.ylabel(\"Балл по математике\")\n",
|
|||
|
"plt.title(\"Распределение оценок по математике в зависимости от пола\")\n",
|
|||
|
"\n",
|
|||
|
"plt.show()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"2. Столбчатая диаграмма (bar). Средний балл по математике по полу"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 20,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHpCAYAAACY3dYoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABN80lEQVR4nO3dd3RU5f7+/WsISUidGAhJkFANvQh4hIA0QREUka6ItAgWijTRHA9VFA8eAVHQL4qgAhYMoNhAQBAQEOkIREroJDRJaEkw2c8f/JiHMYXsFCY7eb/WmrWYe7dPMjPMlb3v+942wzAMAQAAWFAxVxcAAACQUwQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZwMX+/vtvnT59WkePHnV1KQBgOQQZIAfmzZunw4cPO57PnTtXJ06cyPb2+/fvV//+/RUaGioPDw8FBwcrIiJCTLQNAOYUd3UBsJ6DBw9q8uTJ+umnn3Ty5El5eHiodu3a6tatmwYMGCAvLy9Xl5jv1q5dq2+++UaTJ09WTEyMBg4cqAMHDmRr240bN6pt27YKDAzUyy+/rBo1ashms8lut8tms+Vz5QBQuNi41xLM+O6779S1a1d5enqqV69eqlWrllJSUrRu3TpFR0erT58+mjVrlqvLzHf79u1TixYtFB8fL0kaPny43nrrrVtul5KSorp168rf31/Lly+X3W7P71IBoFAjyCDbYmNjVadOHZUtW1arVq1SaGio0/IDBw7ou+++0wsvvOCiCm+vy5cva/fu3SpVqpQqV66crW2io6PVtWtX7du3T1WqVMnnCgGg8KOPDLJt8uTJunTpkmbPnp0uxEjSXXfd5RRibDabBg0apPnz56tq1aoqUaKEGjRooF9++SXdtidOnFC/fv0UHBwsT09P1axZUx999FGGdYwbN042my3do0WLFk7rtWjRQrVq1Uq3/f/+9z/ZbDanPi4VKlRQnz59nNZbuHChbDabKlSo4Gg7fPiwbDab5s6dKx8fHzVs2FCVK1fWwIEDZbPZ0u3jnzZu3KiKFSsqOjpalStXloeHh8qVK6dRo0bp6tWrTut+/fXXevjhh1WmTBl5enqqcuXKevXVV5WamppuvzfqyuiR3d/frWpfvXp1psfIaPtDhw6pa9euCgwMlLe3txo1aqTvvvsuy2PccGOf06ZNS7esWrVqjvfWDefPn9fIkSNVu3Zt+fr6yt/fX23bttWOHTuyXb/NZtO4ceMc62fnPXnzPrdv3+607MSJE3Jzc5PNZtNXX33laN+5c6f69OmjSpUqqUSJEgoJCVG/fv107tw5xzqZvUY3P1avXi3p+vv8n+/9zZs3Z/j6//Nn/Pvvv9WuXTsFBgZqz549TuvOmzdPDRo0kJeXlwIDA/X444/r2LFj6V6Pf7pV7XPnznVaf9WqVWratKl8fHwUEBCgDh06aO/evbc8Tn6+H/v06ZPl+2POnDmy2Wzatm1bum1ff/11ubm5meozh9yhjwyybenSpapUqZIaN26c7W3WrFmjL774QkOGDJGnp6dmzpyphx56SL/99psjZMTHx6tRo0aOL6egoCD98MMPioyMVGJiooYOHZrhvt977z35+vpKkqKionL9893s77//1iuvvJKtdQ8cOKAPPvggW+ueO3dOhw4d0r///W916tRJI0aM0O+//64333xTu3fv1nfffef48pk7d658fX01fPhw+fr6atWqVRozZowSExP15ptvZrj/AQMGqGnTppKkRYsWafHixZnW8umnnzr+PWzYsGzVL0lDhgzRv/71L6e2p59+2ul5fHy8GjdurCtXrmjIkCEqWbKkPv74Yz366KP66quv1LFjx1sep0SJEpozZ47T6//rr7/qyJEj6dY9dOiQlixZoq5du6pixYqKj4/X//3f/6l58+bas2ePypQpo+rVqzv9zLNmzdLevXs1depUR1udOnUc9Zt5T96o9e2333a0ffzxx/Lw8FBSUpLTuj/99JMOHTqkvn37KiQkRH/88YdmzZqlP/74Qxs3bpTNZlOnTp101113ObYZNmyYqlevrgEDBjjaqlevnunv7qWXXsp02c2efvpprV69Wj/99JNq1KjhaH/ttdc0evRodevWTU8//bTOnDmjd955R82aNdO2bdsUEBBwy33f/PmUrp/RHTNmjNM6K1asUNu2bVWpUiWNGzdOV69e1TvvvKMmTZpo69atTn9EZCa/3o+lSpVyem889dRTjn936dJFAwcO1Pz581WvXj2n7ebPn68WLVrozjvvvGXtyCMGkA0JCQmGJKNDhw7Z3kaSIcn4/fffHW1HjhwxSpQoYXTs2NHRFhkZaYSGhhpnz5512v7xxx837Ha7ceXKFaf2f//734Ykp/Vr1qxpNG/e3Gm95s2bGzVr1kxX15tvvmlIMmJjYx1t5cuXN3r37u14PnPmTMPT09No2bKlUb58eUd7bGysIcmYM2eOo61bt25GrVq1jLCwMKd9ZKR3796GJKNPnz5O7WPHjjUkGUuXLnW0/fPnNgzDeOaZZwxvb28jKSnJqX3//v2GJOPjjz9Ot89/euWVVwybzebU9s+fPyM///yzIclYuHBhumU+Pj5O2w8dOtSQZKxdu9bRdvHiRaNixYpGhQoVjNTU1CyPJcno0qWLUbx4caf3T2RkpNGjRw9DkjFw4EBHe1JSUrp9xsbGGp6ensaECRMyPEbv3r2dXtubZfc9eeN38sQTTxglS5Y0kpOTHeuGh4c7ar35d5bR6/rZZ58Zkoxffvklw3qyen2aN2/u9N7//vvvDUnGQw89lO71l2SMHTvWMAzDiIqKMtzc3IwlS5Y4rXP48GHDzc3NeO2115zad+3aZRQvXjxd+z/deN+dOXPGqX3z5s3pPjt33323Ubp0aePcuXOOth07dhjFihUzevXqleVx8vP9+OSTTxoVK1Z0arv5d2cYhvHEE08YZcqUcdp269at6X5G5D8uLSFbEhMTJUl+fn6mtouIiFCDBg0cz8uVK6cOHTpo2bJlSk1NlWEYio6OVvv27WUYhs6ePet4tGnTRgkJCdq6davTPm/8hVuiRIlbHj81NdVpn2fPntWVK1ey3ObKlSuaMGGCBg0apHLlymW57pYtW7Rw4UJNmjRJxYpl/+P04osvOj0fNmyY3NzcnE513zz66+LFizp79qyaNm2qK1euaN++fU7bp6SkSJI8PT1veeyUlJRsrZcb33//ve69917dd999jjZfX18NGDBAhw8fTncZIyPBwcF6+OGHNWfOHEnXX5cvv/xSffv2Tbeup6en4/efmpqqc+fOydfXV1WrVk33/rmVnLwn27dvL5vNpm+++UbS9VFtx48fV/fu3dPt/+bXNSkpSWfPnlWjRo0kyXStGdUeFRWlzp07q2HDhpmu9+6772rSpEmaPn26OnTo4LRs0aJFSktLU7du3Zx+9pCQEIWHh+vnn3/OVY03nDp1Stu3b1efPn0UGBjoaK9Tp44eeOABff/993lyHMn8+zE7n5FevXrp5MmTTr+P+fPny8vLS507d86z2nFrBBlki7+/v6TrX6hmhIeHp2urUqWKrly5ojNnzujMmTO6cOGCZs2apaCgIKfHjS+s06dPO21/9uxZubu7y9vb+5bH37dvX7r9jh07NsttpkyZoqSkJP373/++5f5ffvllNW3aVI888sgt15Wu91EoVqxYut+L3W5XaGioU7+dP/74Qx07dpTdbpe/v7+CgoLUs2dPSVJCQoLT9hcuXJAkp1P5mblw4UK21suNI0eOqGrVqunab1wOyejyUEb69u2rBQsWKDk5WQsXLtQdd9yh+++/P916aWlpmjp1qsLDw+Xp6alSpUopKChIO3fuTPe7upWcvCfd3d3Vs2dPRx+ajz76SJ07d3Z8bm52/vx5vfDCCwoODpaXl5eCgoJUsWJFSelfV7Pmz5+vP/74Q6+//nqm6/zwww+Ovmznz59Pt3z//v0yDEPh4eHpfv69e/em+9lz6sZ7ILP3ydmzZ3X58uU8O5aZ92N2PiMPPPCAQkNDNX/+fEn
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 640x480 with 1 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# Группируем по полу, находим средний балл по математике\n",
|
|||
|
"grouped_df = df.groupby('gender')['math score'].mean().reset_index()\n",
|
|||
|
"\n",
|
|||
|
"grouped_df.plot(x='gender', y='math score', kind='bar', color=['blue', 'orange'])\n",
|
|||
|
"\n",
|
|||
|
"plt.xlabel('Пол')\n",
|
|||
|
"plt.ylabel('Средний балл по математике')\n",
|
|||
|
"plt.title('Средний балл по математике по полу')\n",
|
|||
|
"\n",
|
|||
|
"plt.show()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"3. Гистограмма (hist). Распределение оценок по математике"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 21,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDc0lEQVR4nO3deVxV1f7/8fcBmRQBQZkccSjnBkecS8wBLdPyqxeL1NQUyylNM6fU8GY3tdTMbumtbLIcSktzniJnLYdMDdNrglOCQ4jC+v3Rg/PzeEABQXDf1/PxOI+He+111v7s5TnwZg/n2IwxRgAAABblUtAFAAAA5CfCDgAAsDTCDgAAsDTCDgAAsDTCDgAAsDTCDgAAsDTCDgAAsDTCDgAAsDTCDgAAsDTCDgAAsDTCDm7LvHnzZLPZ7A9PT0/dc889GjBggBITEwu6PAAAVKSgC4A1vPrqqwoLC1NKSoo2bdqkd955R99++6327t2rokWLFnR5AID/YYQd5Im2bduqbt26kqRnn31WAQEBevPNN7VkyRJ169atgKsDAPwv4zQW8sXDDz8sSYqPj5cknTt3Ti+++KJq1aolb29v+fj4qG3bttqzZ4/Tc1NSUjRu3Djdc8898vT0VEhIiDp16qQjR45Iko4ePepw6uzGR4sWLexjrVu3TjabTZ9//rlefvllBQcHq1ixYnr00Ud1/Phxp21v2bJFbdq0ka+vr4oWLarmzZtr8+bNme5jixYtMt3+uHHjnPp+/PHHqlOnjry8vOTv76+uXbtmuv2b7dv10tPTNW3aNNWoUUOenp4KCgpS37599eeffzr0q1Chgtq3b++0nQEDBjiNmVntU6ZMcZpTSbpy5YrGjh2rypUry8PDQ2XLltXw4cN15cqVTOfqRgsWLLDPR8mSJdW9e3edOHHCoc8zzzwjb29vp+d++eWXstlsWrduXa5qstlsGjBggNO47du3V4UKFRzaLl26pKFDh6ps2bLy8PDQvffeqzfeeEPGGKcxr5+7a9euqV27dvL399f+/ftvOhdZvY4yHkePHnXoP2vWLNWoUUMeHh4KDQ1VTEyMzp8/f9NtSNK4ceNks9kUGBioq1evOqz79NNP7ds7c+aMvX3JkiWKjIxUaGioPDw8VKlSJU2YMEFpaWnZrv/G11l23gsZY3bs2NFpP/r27SubzaaaNWs6tL/xxhtq1KiRAgIC5OXlpTp16ujLL7906HOrOjNe5xk/N258jUVGRjr9X2fM6/XWrl0rDw8PPffccw7tJ06cUM+ePRUUFCQPDw/VqFFDH3zwgdM+Iu9xZAf5IiOYBAQESJJ+++03LV68WE8++aTCwsKUmJiod999V82bN9f+/fsVGhoqSUpLS1P79u21evVqde3aVQMHDtSFCxe0cuVK7d27V5UqVbJvo1u3bmrXrp3DdkeOHJlpPZMmTZLNZtNLL72kU6dOadq0aYqIiNDu3bvl5eUlSVqzZo3atm2rOnXqaOzYsXJxcdHcuXP18MMPa+PGjapfv77TuGXKlFFsbKwk6eLFi+rXr1+m2x49erS6dOmiZ599VqdPn9bbb7+tZs2aadeuXfLz83N6Tp8+fdS0aVNJ0sKFC7Vo0SKH9X379tW8efPUo0cPvfDCC4qPj9eMGTO0a9cubd68WW5ubpnOQ06cP3/evm/XS09P16OPPqpNmzapT58+qlatmn7++WdNnTpVv/76qxYvXnzTcTPqrlevnmJjY5WYmKjp06dr8+bNWc7HrdxuTZkxxujRRx/V2rVr1atXL91///1asWKFhg0bphMnTmjq1KlZPvfZZ5/VunXrtHLlSlWvXv2W27r+dZTh22+/1aeffurQNm7cOI0fP14RERHq16+fDh48qHfeeUfbtm3L9v/7hQsXtHTpUj3++OP2trlz58rT01MpKSkOfefNmydvb28NGTJE3t7eWrNmjcaMGaPk5GRNmTJFkjRq1Cg9++yzkqQzZ85o8ODBDq/f6+XkveDp6ally5bp1KlTCgwMlCT99ddf+vzzz+Xp6ek09vTp0/Xoo48qKipKqamp+uyzz/Tkk09q6dKlioyMlCR99NFH9v4bN27UnDlzNHXqVJUsWVKSFBQUlOW8bdiwQd9+++1N51aS9uzZo44dO6pdu3aaOXOmvT0xMVENGza0h+1SpUrpu+++U69evZScnKxBgwbdcmzcBgPchrlz5xpJZtWqVeb06dPm+PHj5rPPPjMBAQHGy8vL/Pe//zXGGJOSkmLS0tIcnhsfH288PDzMq6++am/74IMPjCTz5ptvOm0rPT3d/jxJZsqUKU59atSoYZo3b25fXrt2rZFkSpcubZKTk+3tX3zxhZFkpk+fbh+7SpUqpnXr1vbtGGPM5cuXTVhYmGnVqpXTtho1amRq1qxpXz59+rSRZMaOHWtvO3r0qHF1dTWTJk1yeO7PP/9sihQp4tR+6NAhI8n85z//sbeNHTvWXP9W3bhxo5Fk5s+f7/Dc5cuXO7WXL1/eREZGOtUeExNjbnz731j78OHDTWBgoKlTp47DnH700UfGxcXFbNy40eH5s2fPNpLM5s2bnbaXITU11QQGBpqaNWuav/76y96+dOlSI8mMGTPG3hYdHW2KFSvmNMaCBQuMJLN27dpc1STJxMTEOI0bGRlpypcvb19evHixkWQmTpzo0O+JJ54wNpvNHD582GHMjLkbOXKkcXV1NYsXL85yHq7XvHlzU6NGDaf2KVOmGEkmPj7eGGPMqVOnjLu7u3nkkUcc3kszZswwkswHH3xw0+1kvI66detm2rdvb2///fffjYuLi+nWrZuRZE6fPm1fd/nyZadx+vbta4oWLWpSUlKc1mW8N+fOneu0LifvhYw5qV27tnnjjTfs7R999JEpU6aMadq0qdOc3VhramqqqVmzpnn44YcznY+Mn10Z83u9jJ8b17/GGjRoYNq2bev0Prn+/Xn06FETEhJimjRp4vD6NsaYXr16mZCQEHPmzBmH9q5duxpfX99M5xp5h9NYyBMREREqVaqUypYtq65du8rb21uLFi1S6dKlJUkeHh5ycfn75ZaWlqazZ8/K29tb9957r3bu3Gkf56uvvlLJkiX1/PPPO23jxkPFOfH000+rePHi9uUnnnhCISEh9r/Udu/erUOHDukf//iHzp49qzNnzujMmTO6dOmSWrZsqQ0bNig9Pd1hzJSUlEz/wrzewoULlZ6eri5dutjHPHPmjIKDg1WlShWtXbvWoX9qaqqkv+crKwsWLJCvr69atWrlMGadOnXk7e3tNObVq1cd+p05c8bpL/gbnThxQm+//bZGjx7tdCppwYIFqlatmqpWreowZsapyxu3f73t27fr1KlT6t+/v8PcRUZGqmrVqlq2bNlN68pKTmtKSUlxmpMbT+18++23cnV11QsvvODQPnToUBlj9N133znVMWPGDMXGxuqtt97SY489lqt9ycqqVauUmpqqQYMG2d9LktS7d2/5+Phke+569uyp5cuXKyEhQZL0n//8R+Hh4brnnnuc+mYc9ZT+PiJ05swZNW3aVJcvX9Yvv/ySo/pz+l6QpB49emju3Ln25blz5yo6Otph/zOr9c8//1RSUpKaNm3q8PMltxYuXKht27Zp8uTJWfY5e/asWrdureLFi+vrr792eH0bY/TVV1+pQ4cOMsY47H/r1q2VlJSUJ3Uia5zGQp6YOXOm7rnnHhUpUkRBQUG69957HX4gpaena/r06Zo1a5bi4+MdzvlnnOqS/j79de+996pIkbx9aVapUsVh2WazqXLlyvbrIQ4dOiRJio6OznKMpKQklShRwr585swZp3FvdOjQIRljsux342mHjGsvMrtW5foxk5KS7If2b3Tq1CmH5e+//16lSpW6aZ03Gjt2rEJDQ9W3b1+n6x4OHTqkAwcOZDnmjdu/3u+//y5Juvfee53WVa1aVZs2bcpRnbmt6f3339f777/v1K98+fIOtYaGhjqEZEmqVq2aff31vvvuO23fvl3S39eo5bWs5s7d3V0VK1Z0qicr999/v2rWrKkPP/xQw4YN07x58/Tyyy9neg3Zvn3
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 640x480 with 1 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"df[\"math score\"].plot(kind=\"hist\")\n",
|
|||
|
"\n",
|
|||
|
"plt.xlabel(\"Оценки по математике\") \n",
|
|||
|
"plt.ylabel(\"Частота\") \n",
|
|||
|
"plt.title(\"Распределение оценок по математике\")\n",
|
|||
|
"\n",
|
|||
|
"plt.show()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"4. Ящик с усами (box). Оценки по математике"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 22,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGzCAYAAADJ3dZzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDqElEQVR4nO3deVxUZf//8fewSiCICwiuJOZKaW6J4lKUlRu5ZdmdqWnllqb1zTVNk/K2XEozzUS7s02J0jJzF5Vyuy1JJRcsMwHNBDVZHM7vj37M7QSaDqODx9fz8ZhHzHVd58xnBpI317nOORbDMAwBAACYlJurCwAAALiWCDsAAMDUCDsAAMDUCDsAAMDUCDsAAMDUCDsAAMDUCDsAAMDUCDsAAMDUCDsAAMDUCDsAAMDUCDuACx05ckQWi0VxcXGuLgUATIuwA1OIi4uTxWKxewQFBalt27ZauXLlda9nw4YNdrV4enrq1ltv1eOPP67Dhw875TW2bt2qCRMm6PTp007ZHwCYlYerCwCc6eWXX1ZYWJgMw1B6erri4uL04IMPavny5erQocN1r2fo0KFq0qSJ8vLytGvXLs2bN09ffvml9uzZo9DQ0GLte+vWrZo4caKeeOIJlSlTxjkFA4AJEXZgKg888IAaN25se96vXz8FBwfrww8/dEnYiYqKUrdu3SRJffr00W233aahQ4dq0aJFGjVq1HWvBwBuRhzGgqmVKVNGPj4+8vCwz/Xnzp3TiBEjVKVKFXl7e6tWrVqaNm2aDMOQJJ0/f161a9dW7dq1df78edt2p06dUkhIiCIjI2W1Wq+6nrvvvluSlJqaetlx69atU1RUlHx9fVWmTBl17txZ+/bts/VPmDBBzz//vCQpLCzMdrjsyJEjl93vp59+qkaNGsnHx0fly5fXY489pmPHjtmNeeKJJ+Tn51do26VLl8pisWjDhg127Tk5OXrppZcUHh4ub29vValSRS+88IJycnLsxlksFg0ePLjQfjt06KDq1avbtf3T9+fifU6YMMH2/MKFC3rwwQdVtmxZ7d2797KfRZs2bQod+rz48ffPcs6cOapXr568vb0VGhqqQYMGXdEhxAkTJtgOq+bl5dn1ffjhh7bXO3nypK39888/V/v27RUaGipvb2/VqFFDkyZNsvuZ+6f6LRaL3Wv95z//sX3vy5Ytq549e+ro0aNFfiYxMTGF3sdTTz0li8Wi+vXr27VPmzZNkZGRKleunHx8fNSoUSMtXbrUbsw/1dmmTRtJ/zv8+/efsfbt2xf6Xhd8rhdbv369vL299fTTT9u1Hzt2TH379lVwcLC8vb1Vr149vffee4XeI8yLmR2YSmZmpk6ePCnDMJSRkaE333xTZ8+e1WOPPWYbYxiGOnXqpPXr16tfv35q0KCBVq1apeeff17Hjh3T9OnT5ePjo0WLFqlFixYaM2aM3njjDUnSoEGDlJmZqbi4OLm7u191fYcOHZIklStX7pJj1qxZowceeEC33nqrJkyYoPPnz+vNN99UixYttGvXLlWvXl1dunTRTz/9pA8//FDTp09X+fLlJUkVKlS45H7j4uLUp08fNWnSRLGxsUpPT9fMmTO1ZcsW/fe//3XoUFh+fr46deqkzZs3a8CAAapTp4727Nmj6dOn66efflJCQsJV7/NKvj+X8uSTT2rDhg1avXq16tat+4+vVblyZcXGxtq1ffXVV/rwww/t2iZMmKCJEycqOjpazzzzjFJSUvT2229r+/bt2rJlizw9Pf/xtc6cOaMVK1booYcesrUtXLhQpUqVUnZ2tt3YuLg4+fn56bnnnpOfn5/WrVun8ePHKysrS//+978lSWPGjNGTTz4pSTp58qSGDx+uAQMGKCoqqtBrv/LKKxo3bpx69OihJ598UidOnNCbb76pVq1aFfrelypVSl9++aUyMjIUFBQk6a/w//HHH6tUqVKF9j1z5kx16tRJvXr1Um5urj766CN1795dK1asUPv27SVJ77//vm18YmKi5s2bZ/dzGxwcfMnPbdOmTfrqq68u+9lK0vfff6+YmBg9+OCDmj17tq09PT1dd911ly1sV6hQQStXrlS/fv2UlZWlYcOG/eO+YQIGYAILFy40JBV6eHt7G3FxcXZjExISDEnG5MmT7dq7detmWCwW4+DBg7a2UaNGGW5ubsamTZuMTz/91JBkzJgx4x/rWb9+vSHJeO+994wTJ04Yv/32m/Hll18a1atXNywWi7F9+3bDMAwjNTXVkGQsXLjQtm2DBg2MoKAg4/fff7e1ff/994abm5vx+OOP29r+/e9/G5KM1NTUf6wnNzfXCAoKMurXr2+cP3/e1r5ixQpDkjF+/HhbW+/evQ1fX99C+yh4/+vXr7e1vf/++4abm5uRmJhoN3bu3LmGJGPLli22NknGoEGDCu23ffv2RrVq1WzPr+b7I8l46aWXDMP463vl7u5uJCQkXP7D+P9at25t1KtXr1D73z/XjIwMw8vLy7jvvvsMq9VqG/fWW2/ZvseX89JLLxmSjEceecTo0KGDrf3nn3823NzcjEceecSQZJw4ccLW9+effxbaz1NPPWXccsstRnZ2dqG+on6OChw5csRwd3c3XnnlFbv2PXv2GB4eHnbtBZ/J7bffbkybNs3W/v777xuVK1c2oqKiCn1mf681NzfXqF+/vnH33XcX+XkU/L9a1M9twf83F/+MNWvWzHjggQfsvteG8b/PteA9hoSEGC1btrT7+TYMw+jXr58REhJinDx50q69Z8+eRkBAQJGfNcyHw1gwldmzZ2v16tVavXq1/vOf/6ht27Z68sknFR8fbxvz1Vdfyd3dXUOHDrXbdsSIETIMw+7srQkTJqhevXrq3bu3Bg4cqNatWxfa7nL69u2rChUqKDQ0VO3bt9e5c+e0aNEiu3VFFzt+/Lh2796tJ554QmXLlrW133777br33nuv6C/couzYsUMZGRkaOHCg3V/n7du3V+3atfXll186tN9PP/1UderUUe3atXXy5Enbo+Bw3fr16+3GZ2dn2407efJkoUM7V/P9KfDWW28pNjZWs2bNUufOnR16L5eyZs0a5ebmatiwYXJz+98/mf3795e/v/8Vf3Z9+/bV119/rbS0NEnSokWL1Lx5c912222Fxvr4+Ni+PnPmjE6ePKmoqCj9+eef2r9//1XVHx8fr/z8fPXo0cPuc69YsaJq1qxZ6Hsk/bW+bOHChbbnCxcuVO/eve3ef1G1/vHHH8rMzFRUVJR27dp1VXVeqvbt27fr1VdfveSY33//Xe3atVPp0qX1xRdf2P18G4ahZcuWqWPHjjIMw+79t2vXTpmZmU6pEyUfh7FgKk2bNrULEo888ogaNmyowYMHq0OHDvLy8tLPP/+s0NBQlS5d2m7bOnXqSJJ+/vlnW5uXl5fee+89NWnSRKVKldLChQsLrRO4nPHjxysqKkru7u4qX7686tSpU2j90MUKXrtWrVqF+urUqaNVq1bp3Llz8vX1veIa/mm/tWvX1ubNm69qfwUOHDigffv2XfLwWUZGht3zBQsWaMGCBYXGVatWza7WK/3+SNLKlSu1Y8cOSX+tqXK2S312Xl5euvXWWwvVcykNGjRQ/fr1tXjxYj3//POKi4vT6NGjC62bkaQff/xRY8eO1bp165SVlWXXl5mZeVX1HzhwQIZhqGbNmkX2F3UIrlevXnrhhRe0bds2BQUFacOGDXrnnXeK/DlZsWKFJk+erN27d9ut07qa/0+KYrVaNXr0aPXq1Uu33377Jcd16NBBKSkpCgoKKrSm68SJEzp9+rTmzZunefPmFbn9339GYU6EHZiam5ub2rZtq5kzZ+rAgQOqV6/eVe9j1apVkv6alThw4IDCwsKueNuIiAhFR0df9WveKPLz8xUREWFb0/R3VapUsXveuXPnQouUx44da5vtcMS2bdvUv39/+fr6avLkyerevXuRoa4k6Nu3r+bMmaOmTZsqLS1NPXr00Ouvv2435vTp02rdurX8/f318ssvq0aNGipVqpR27dql//u//1N+fv5VvWZ+fr4sFotWrlxZ5DqzohajV6h
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 640x480 with 1 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"df[\"math score\"].plot(kind=\"box\")\n",
|
|||
|
"\n",
|
|||
|
"plt.ylabel(\"Оценки по математике\") \n",
|
|||
|
"plt.title(\"Box Plot оценок по математике\") \n",
|
|||
|
"\n",
|
|||
|
"plt.show()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"5. Диаграмма с областями (area). "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 23,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAIfCAYAAACW6x17AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADSQ0lEQVR4nOydd3wURRvHf5dCAoSEmoQSOkiTroh0CF1QQRBBqQKiIkVpr1KlSZEivUgTRBARUKT3HnqHAIGQQBrp7VJu3j/CLbt3u3e7d3u5y/F8Px80tzs7++zs7Oyzz/PMMxrGGANBEARBEIST4mJvAQiCIAiCIGwJKTsEQRAEQTg1pOwQBEEQBOHUkLJDEARBEIRTQ8oOQRAEQRBODSk7BEEQBEE4NaTsEARBEATh1JCyQxAEQRCEU0PKDkEQRB4jPj4eDx48QFZWlr1FIYg8ASk7BEEQDk5mZibmzJmDOnXqwMPDA0WKFEGVKlVw+PBhe4tGEDZl5syZ0Ol0AACdTodZs2ZZVA8pOwasX78eGo1G8t+aNWvsLSJB5AlmzZoFjUaDvXv3Gu2LjIxEvnz58P7779tBsryFVqtFYGAgJk6ciJYtW2L79u04ePAgjhw5gsaNG9tbPIKwKRs2bMC8efMQFhaG+fPnY8OGDRbV46ayXE7DtGnTUKFCBaPtNLgQhDwGDBiASZMmYc2aNejUqZNg36+//orMzEwMGTLETtLlHX766SecP38e+/fvR8uWLe0tDkHkKtOmTUPfvn0xbtw4eHh44LfffrOoHg0tBCpk/fr1GDBgAIKCgtCwYUN7i0MQeZoPP/wQ//zzD54+fQp/f38AAGMMlStXRmZmJh4/fgwXFzIwS5GVlQVfX18MGzYMM2bMsLc4BGEXoqKi8ODBA1SpUgUlSpSwqA4aZaxk3rx5ePfdd1GsWDHkz58fDRo0wJ9//ilaVspFJva11rJlS9Gy69evNynPlClTTLrhDI8/cuQImjVrhoIFC6Jw4cJ4//33cefOHbPXfezYMa7Oq1evCvaFh4fD1dUVGo1G0BbXr19H//79UbFiRXh6esLf3x8DBw7EixcvZMuv0Whw7Ngxrvz58+fRoUMH+Pj4oECBAmjRogVOnz4t2ia+vr7IzMwU7Pv999+5emNiYrjtu3btQufOnVGqVCl4eHigUqVK+PHHH5Gdnc2VkbpH/H96NBoNpkyZIjj33Llzje6/vl351/js2TOUL18eDRs2RHJyMrddq9Vi8uTJqFy5Mjw8PBAQEICxY8dCq9Ua3zADzMn++PFjQflly5ahZs2a8PDwQKlSpfDVV18hPj7e7HkGDx6MrKwsQb87dOgQHj16hIEDB3KKjv7ZOHHiBIYOHYpixYrB29sbffv2RVxcnFG9cuQxvMbixYujc+fOuHnzpqCcRqPB119/bXSO9957D+XLlzcqy7+PERER6Nu3L0qUKAEPDw/UqlULq1evNtsucq/j3r17iIuLQ6FChdCiRQsUKFAAPj4+eO+994yuQ9/P7969i549e8Lb2xvFihXDiBEjkJ6eLii7bt06tG7dGr6+vvDw8ECNGjWwfPlyI/nef/99lC9fHp6envD19UXXrl1x48YNQZmsrCz8+OOPqFSpEjw8PFC+fHn873//M+qH5cuX5+6Fi4sL/P398fHHHyM0NFRQTu6YKve+PX78WHTs++qrr6DRaNC/f3/B9itXrqBDhw4oUaKEoP+89957Rufioz/PvHnzsGDBApQrVw758+dHixYtjO4VoGzslXpeDccUOeMMf+yW+sevIzw8HAMHDoSfnx88PDxQs2ZN/Prrr6Jy9u/fX5acd+/exUcffYSiRYvC09MTDRs2xO7duwVl9GPC48eP4evry/WJ2rVry3oXGkJuLAkSEhIQExMDjUYDHx8fuLmJN9WiRYvQtWtX9OnTBxkZGdi6dSt69OiBf/75B507dxY9ZsGCBShevDgAmPxaq1atGr7//nsAQExMDEaNGiVb/uXLl8PLy4v7HRISgkmTJgnKHDp0CB07dkTFihUxZcoUpKWl4ZdffkGTJk1w+fJlo4FeDE9PT6xbtw6LFi3itm3YsAH58uUzGmAPHjyIR48eYcCAAfD398etW7ewatUq3Lp1C+fOnYNGo0G3bt1QuXJl7phRo0ahevXqAndH9erVAeQMFh07dkSDBg0wefJkuLi4cIP4yZMn8fbbbwvOn5SUhH/++Qcffvght23dunXw9PQ0knX9+vXw8vLC6NGj4eXlhSNHjmDSpElITEzE3LlzAQDff/89Pv/8cwCv7s+QIUPQrFkzs+0WHx8vK9AuISEBHTt2hLu7O/bu3cvdU51Oh65du+LUqVMYMmQIqlevjhs3bmDBggW4f/8+/v77b7N1lylTxkiGvXv34vfffxdsmzJlCqZOnYrAwEAMGzYM9+7dw/LlyxEUFITTp0/D3d1d8hwdOnRAQEAA1q5di3HjxkGj0WD16tVwcXHBoEGDjMp//fXXKFy4MKZMmcKd58mTJ9wArVQe/TPEGMPDhw/x888/o1OnTkYvWEvIyMhAYGAg7t69i2HDhuGNN97A33//jSFDhuDFixcYP368yePlXIf+Q2DChAmoUqUKpk6divT0dCxduhRNmjRBUFAQqlatKqi3Z8+eKF++PGbNmoVz585h8eLFiIuLw8aNG7kyy5cvR82aNdG1a1e4ublhz549+PLLL6HT6fDVV18J6hsyZAj8/f3x7NkzLFmyBIGBgQgJCUGBAgUAAJ9//jk2bNiAjz76CN9++y3Onz+PWbNm4c6dO9i5c6egrmbNmmHIkCHQ6XS4efMmFi5ciGfPnuHkyZNcGUvGVKU8ePBAVCnVP2+MMYwePRoBAQEAoGjs3bhxI5KSkvDVV18hPT0dixYtQuvWrXHjxg34+fkBsGzs5T+vycnJGDZsmFlZxMaZ6tWrY9OmTdzvVatW4c6dO1iwYAG3rXbt2gByYuveeecdTrEsUaIE/vvvPwwaNAiJiYkYOXKk0TmLFy8uqOuzzz4T7L916xaaNGmC0qVLY/z48ShYsCC2bduGDz74ADt27BCMz4Zs2rTJSNmWDSMErFu3jgEQ/HNzc2NVqlRhv/zyC8vMzBSUT01NFfzOyMhgtWrVYq1btzaqe/Xq1QwAe/LkCbetRYsWrEWLFkZlmzRpwlq1asX9DgkJYQDYunXrTMo/efJkBoBFR0cLtgcFBRkdX7duXebr68tevHjBbbt27RpzcXFhffv2NXmeo0ePMgDsk08+YcWKFWNarZbbV6VKFda7d28GgG3fvp3bbthWjDH2+++/MwDsxIkToucpV64c69evn9F2nU7HqlSpwtq3b890Op3gHBUqVGBt27bltunb5JNPPmHvvfcet/3JkyfMxcWFffLJJ0ZtJibr0KFDWYECBVh6errRPnP3BwCbPHky93vs2LHM19eXNWjQQHD/9e169OhRlp6ezlq2bMl8fX3ZgwcPBPVt2rSJubi4sJMnTwq2r1ixggFgp0+fFpVDT4sWLVjNmjWNts+dO5cBYCEhIYwxxqKioli+fPlYu3btWHZ2NlduyZIlDAD79ddfTZ6HsVftf+TIEa6+Tp06Ccron7sGDRqwjIwMbvucOXMYALZr1y7F8og9W//73/8YABYVFcVtA8C++uorI7k7d+7MypUrJ9jGv4+//PILA8BWrFjB7c/KymJt2rRhHh4eLCYmRrJN5F6Hvj8UL15cUN/9+/eZu7s76969O7dN385du3YVnOvLL79kANi1a9e4bWL9u3379qxixYqSMjPG2LZt2xgAdvHiRcYYY1evXmUA2Oeffy4o991333H3XI/Ys9y7d29WoEABwTa5Y6rc+yb2bPbs2ZPVqlWLBQQECGTav38/A8B+//13QZ3lypVjnTt3NjoXH/158ufPz8LCwrjt58+fZwDYqFGjuG1Kx953332X1apVi/sdHR1tNKYwJn+c4dOvXz+jfq5n0KBBrGTJkkZ9uVevXszHx8foXvXp04dVqFDBpExt2rRhb775pmAc1el07N1332VVqlThtunHBP1YlJ6ezsqWLcs6duw
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 640x480 with 1 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"df.plot(x=\"parental level of education\", y=\"math score\", kind=\"area\")\n",
|
|||
|
"\n",
|
|||
|
"plt.xlabel(\"Уровень образования родителей\") \n",
|
|||
|
"plt.ylabel(\"Балл по математике\")\n",
|
|||
|
"plt.title(\"Балл по математике по Уровню образования родителей\")\n",
|
|||
|
"\n",
|
|||
|
"plt.xticks(rotation=45) # Поворот меток оси X для лучшей читабельности\n",
|
|||
|
"plt.show()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"6. Диаграмма рассеяния (scatter). Зависимость оценок по математике от оценко по чтению"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 24,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACK2klEQVR4nO3dd3gU5doG8HtDQgqQQkISElpCQhOQJhpCUWkqCoiKIioClnPEgxT1yFGwgAZFaSoiHA+IxwIIRLDCQaRGARNABUIggVBMJYUQavJ+f/DturuZnZ2ZnS3Z3L/rynWZ3dmZd2Y37svMPc9jEEIIEBEREXkpH3cPgIiIiMiZONkhIiIir8bJDhEREXk1TnaIiIjIq3GyQ0RERF6Nkx0iIiLyapzsEBERkVfjZIeIiIi8Gic7RERE5NU42SEiIiKvxskOEREReTVOdrzMH3/8gYceegixsbHw9/dHTEwMRo8ejT/++MPdQyMiG86fP4+ZM2eic+fOCAoKQkhICPr06YMVK1aA7QuJHGdgI1DvsXbtWowaNQqNGzfG+PHjERcXh+PHj+Ojjz5CcXExvvjiC9x9993uHiYRmcnPz0f//v1x6NAhPPDAA+jXrx8uXryINWvWYNu2bbj//vvx6aefol69eu4eKlGtxcmOlzh27Bg6d+6MFi1aYNu2bWjSpInpuaKiIvTp0wcnT57EgQMHEB8f78aREpG52267DZs2bcK6deswdOhQi+eee+45vP3225g9ezb++c9/ummERF5AkFd48sknBQCxbds2yee3bt0qAIgnn3zS9NjLL78sAIjCwkKLZffs2SMAiGXLllk8XlVVJebNmyc6dOgg/P39RWRkpHjiiSfE2bNnLZZr2bKlGDJkSI0xTJgwQVh/5ACIl19+2fT7lStXxO233y7CwsLEH3/8YXM5IYR46623BADRr18/yX223o6tn5YtW1osW1FRIaZMmSKaNWsm6tevL9q0aSPmzJkjqqur7W6nX79+AoAYNmxYjeeeeOIJAUBcd911Fo/PmTNHJCUlicaNG4uAgADRrVs3sXr1asXjtz4GFy9eFDNmzBCtW7cW9evXF82aNRPPPfecuHjxouQ6582bV2Osbdu2FQDEhAkTTI8VFxeLqVOnio4dO4oGDRqIRo0aidtuu03s27fPtMyWLVvsjtX4Pho/f+bOnTsnoqKiBACxZcsWi+Nq/T7PmjVLGAwG8emnn1o8/vPPP4vBgweL4OBgERgYKPr27St27NhRYx/N5eXliXr16olXXnmlxnOHDx8WAMS7774rhBDi8uXL4pVXXhEJCQnC399fNG7cWCQnJ4uNGzfKbkNKWlqaACDGjRsn+fyVK1dEYmKiCAsLE5WVlUIIIXJycgQAMWfOnBrLX3fddZJ/D0qOiZr/H4wZM6bG380nn3wiDAaDSElJkV0uNzdXBAQECAAiJydHcr/NXy/3WTL/jAghxKpVq0S3bt1EQECACA8PF6NHjxanTp2S3YatcQohJD+vSsfjimNu61ha/71cvnxZvPTSS6JVq1bCz89PNG/eXDz33HOmz1Rd4KvDfIk8wIYNG9CqVSv06dNH8vm+ffuiVatW+OabbzRv48knn8Ty5csxduxYTJw4ETk5OXjvvfeQkZGBnTt3ws/PT/O6jR577DH89NNP2LRpEzp06GBzudLSUqSkpKha98CBA/HII49YPPbOO++gpKTE9LsQAkOHDsWWLVswfvx4dOnSBT/88AOee+45nD59GvPmzbO7nYCAAHzzzTcoKChAZGQkAODChQtYuXIlAgICaiy/YMECDB06FKNHj8bly5fxxRdf4L777sPXX3+NIUOGAAA++eQT0/Lbt2/HkiVLMG/ePERERAAAoqKiAADV1dUYOnQoduzYgSeeeALt27fHb7/9hnnz5uHIkSNITU2tMdZly5Zh0qRJpsd27dqFEydO1BhndnY2UlNTcd999yEuLg75+fn48MMP0a9fPxw8eBAxMTFo3769xViXLFmCQ4cOWRy3zp072zx277zzDvLz820+b7Rs2TK89NJLeOedd/Dggw+aHv/xxx9x++23o3v37nj55Zfh4+ODZcuW4dZbb8X27dvRs2dPyfVFRUWhX79+WLVqFV5++WWL51auXIl69erhvvvuAwC88sorSElJwWOPPYaePXuivLwce/fuRXp6OgYOHGh37OY2bNgAADU+l0a+vr548MEH8eqrr2Lnzp0YMGCAqvUD2o+JGhs3bsS4cePw9NNP44UXXpBddsaMGbh48aLidfv7++Pf//63xWN79uzBwoULLR4z/r/phhtuQEpKCvLz87FgwQLs3LkTGRkZCA0NVbxNKSNGjEBCQoLp98mTJ6N9+/Z44oknTI+1b98egGuOOaD8WE6YMAFLly7F0KFD8eyzzyIjIwNz5szB77//jm+++QYGg0GX8Xg0d8+2yHGlpaU2zyaYGzp0qAAgysvLhRDq/lWxfft2AaDGv6K///77Go9rPbMzbdo0Ua9ePZGamlrjtebLCSHE888/LyIjI0X37t0Vn9kxP0thNGTIEIt/LaWmpgoAYtasWRbL3XvvvcJgMIijR4/Kbqdfv37iuuuuE507dxZvv/226fFPPvlENGvWTPTp06fGmR3rf11dvnxZdOzYUdx6662S21i2bJnNfxV/8sknwsfHR2zfvt3i8cWLFwsAYufOnabHAIh7771X+Pr6ir1795oeHz9+vHjwwQdrHLOLFy+Kqqoqi/Xm5OQIf39/8dprr0mO1da/mIWoeWanoKBANGrUSNx+++2yZ3a++eYb4evrK6ZOnWqxvurqapGYmCgGDx5scRausrJSxMXFiYEDB0qOw+jDDz8UAMRvv/1m8XiHDh0s3ovrr79e8vOtxfDhwwUAUVJSYnOZtWvXCgBi4cKFQgh1Z3bUHBOtZxn27t0rGjZsKO67774anw/r9//3338XPj4+pvdYyZmdBg0a1Hh89erVFp+Ry5cvi8jISNGxY0dx4cIF03Jff/21ACBmzJghu52xY8eKFi1a1Hjc+v875lq2bCnGjBlT43FXHHMh5I+l+d/LgQMHhMFgEA888IDFNl555RUBQGzYsEFy/7wN78byAufOnQMANGrUSHY54/Pl5eWqt7F69WqEhIRg4MCBKCoqMv10794dDRs2xJYtWyyWv3LlisVyRUVFsv8Cee+995CSkoKFCxdi2LBhsmM5ffo03n33XUyfPh0NGzZUvS9yvv32W9SrVw8TJ060eHzq1KkQQuC7775TtJ6xY8di2bJlpt+XLVuGMWPGwMen5p9cYGCg6b9LSkpQVlaGPn36ID09XfX4V69ejfbt26Ndu3YWx/7WW28FgBrvU1RUFIYMGWIaa2VlJVatWoWxY8fWWLe/v79p/FVVVSguLkbDhg3Rtm1bTWO1NnPmTISEhNQ49uZ2796NkSNH4p577sGcOXMsntu3bx+ysrLw4IMPori42LTv58+fR//+/bFt2zZUV1fbXPeIESPg6+uLlStXmh77/fffcfDgQdx///2mx0JDQ/HHH38gKyvLgb29RsnfriN/t1qOydmzZy0+O2VlZTbXn52djSFDhqBLly745JNPJD/f5qZNm4Zu3bqZzpLpZe/evSgoKMBTTz1lcfZ0yJAhaNeund0z2pGRkSgoKMDly5cdHouzj7mRvWNp/H/wunXrIITAlClTLJ6fNGkS6tWr59DZ/tqEl7G8gPF/hsb/cdqidFIkJSsrC2VlZabLMtYKCgosft+4caNFSFrOd999h7179wK49kdvz8svv4yYmBg8+eST+PLLLxVtQ6kTJ04gJiamxjEynp6WurwjZfTo0Xj++eexe/duREZG4qeffsKHH36IHTt21Fj266+/xqxZs7Bv3z5cunTJ9LiWU8tZWVk4dOiQzWNv/T4B1yZmY8eOxTvvvIPVq1cjLCzMNDkyV11djQULFmDRokXIyclBVVWV6bnw8HDVYzWXk5ODDz/8EB988IHkpT7g2iR3yJAhOH/+PIqLi2scH+PkY8yYMTa3U1ZWhrCwMMnnIiIi0L9/f6xatQozZ84EcO0
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 640x480 with 1 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"df.plot(kind=\"scatter\", x=\"math score\", y=\"reading score\")\n",
|
|||
|
"\n",
|
|||
|
"plt.xlabel(\"Оценки по математике\") \n",
|
|||
|
"plt.ylabel(\"Оценки по чтению\")\n",
|
|||
|
"plt.title(\"Оценки по математике vs. Оценки по чтению\") \n",
|
|||
|
"\n",
|
|||
|
"plt.show()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"7. Круговая диаграмма (pie). Количество товаров"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 25,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAqEAAAEqCAYAAAAlPYnYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACl3klEQVR4nOzddVgU2//A8ffSDQJKKCKoICKILRY2YifWtbu7A7s7r3EvqNfuVsTuDuzCRgWbjp3fH/zYryugoMCCntfz8OjOnDnzmdnZ2c+emTlHJkmShCAIgiAIgiBkIjVVByAIgiAIgiD8eUQSKgiCIAiCIGQ6kYQKgiAIgiAImU4koYIgCIIgCEKmE0moIAiCIAiCkOlEEioIgiAIgiBkOpGECoIgCIIgCJlOJKGCIAiCIAhCptNQdQCCIHxfTEwM79+/Ry6XY21trepwBEEQBCFdiJZQQciCLl26RKtWrTA3N0dbWxsrKyuaNGmi6rAEIUOdOnWKY8eOKV4fO3aM06dPp3p5uVxOkSJFmDx5cgZEJwhCclq0aIG3t/dPLZumJNTPzw+ZTKb409HRwcHBgd69e/PmzZufCkAQBGU7d+6kQoUK3L59m8mTJ3Po0CEOHTrEsmXLVB2aIGSo58+f07NnTwIDAwkMDKRnz548f/481cuvX7+e58+f07t37wyMUhCErw0bNoytW7dy/fr1NC8rS8vY8X5+fnTo0IEJEyZgZ2dHVFQUp06dYs2aNdja2nLz5k309PTSHIQgCAnev3+Po6Mj5cqVY/PmzWhpaak6JEHINNHR0VSqVIkLFy4A4O7uzrFjx1L9OXBzc6NMmTLiB5sgZLIyZcrg6OjI6tWr07TcT12O9/Ly4q+//qJz5874+fnRv39/goKC2Llz589UJwjC//P19SUqKgo/Pz+RgAp/HG1tbc6cOcO1a9e4du0aJ0+eTPXn4OrVq1y/fv2nLwsKgvDzvL292bZtG2FhYWlaLl3uCa1atSoAQUFBQEJrzuDBg3FxccHAwAAjIyO8vLySbaqNiopi3LhxODg4oKOjg5WVFY0bN+bRo0cAPHnyROkWgG//KleurKjr2LFjyGQyNm7cyMiRI7G0tERfX5/69esne0nn/Pnz1KpVC2NjY/T09PDw8Ejx/qPKlSsnu/5x48YlKfvff/9RokQJdHV1MTU1pUWLFsmu/3vb9jW5XM68efNwdnZGR0cHCwsLunXrxocPH5TK5cuXj7p16yZZT+/evZPUmVzsM2fOTLJPIaF1wsfHhwIFCqCtrY2NjQ1Dhw4lOjo62X2VyMfHB01NTUJCQpLM69q1KyYmJkRFRSnF7u/vj5ubGzo6OhQuXJht27YlWfbx48c0a9YMU1NT9PT0KFu2LHv37lUqk3gsJP5pa2vj4ODA1KlT+brxf9y4cchkMkJDQ5WWv3TpEjKZDD8/P6XpW7ZsoWTJkhgaGirVP2vWrO/ui9TGfe7cOdzc3JgyZQo2NjZoa2tTsGBBpk2bhlwuVyork8no3bs3a9euxdHRER0dHUqUKMGJEyeUyj19+pSePXvi6OiIrq4uZmZmNGvWjCdPniiV27ZtG6VLl8bU1BRdXV0KFSrE9OnT+fZiydWrV/Hy8sLIyAgDAwOqVavGuXPnlMp8e+uOnp4eLi4urFy5UqncjRs3aN++Pfb29ujo6GBpaUnHjh159+6dUrm0vE/t27cnX758SuWeP3+Orq4uMplMabvj4uKYNGkSDg4OaGtrK8V86dIlvqd9+/YYGBjw+PFjPD090dfXx9ramgkTJiTZZ+Hh4QwaNEjxnjo6OjJr1qwk5SDpsZvSeSFxn3wtLCwMS0tLZDKZ4t7KlM5dKdWryvNX+/btUVdXp2jRohQtWpRt27Yhk8mSvJ/J2bFjB1paWlSqVElpemqP/2+P2a//Xrx4AaTtPU/Ldie3zs6dOyvt52/PRb169UImk9G+ffsk23DixAm6deuGmZkZRkZGtG3bNsl6AZYsWYKzszPa2tpYW1vTq1cvPn78qFTm2+PH3NycOnXqcPPmTaVyvr6+VK1alVy5cqGtrU3hwoVZunRpknWm9XsquVsr6tatq3RMJO6j752Hk/u8QOqP95SkNjf43fdPjRo1CA8P59ChQymuIznp8nR8YsJoZmYGJHzZ7tixg2bNmmFnZ8ebN29YtmwZHh4e3L59W/GEb3x8PHXr1uXw4cO0aNGCfv368eXLFw4dOsTNmzfJnz+/Yh0tW7akdu3aSusdMWJEsvFMnjwZmUzGsGHDePv2LfPmzaN69epcu3YNXV1dAI4cOYKXlxclSpTAx8cHNTU1xUFy8uRJSpcunaTePHnyMHXqVCDhZN+jR49k1z1mzBi8vb3p3LkzISEhLFy4kEqVKnH16lVMTEySLNO1a1cqVqwIJCQC27dvV5rfrVs3xa0Qffv2JSgoiEWLFnH16lVOnz6NpqZmsvshLT5+/KjYtq/J5XLq16/PqVOn6Nq1K05OTgQGBjJ37lzu37/Pjh07UqyzTZs2TJgwgY0bNyp9UGJiYtiyZQtNmjRBR0dHMf3Bgwc0b96c7t27065dO3x9fWnWrBkHDhygRo0aALx584Zy5coRERFB3759MTMzY9WqVdSvX58tW7bQqFEjpRhGjhyJk5MTkZGRih8nuXLlolOnTmneR2fPnsXb25uiRYsybdo0jI2NCQ0NZcCAAT9cNrVxv3v3jlOnTnHq1Ck6duxIiRIlOHz4MCNGjODJkyf8/fffSvUeP36cjRs30rdvX7S1tVmyZAm1atXiwoULFClSBICLFy9y5swZWrRoQZ48eXjy5AlLly6lcuXK3L59W3ELzefPnylTpgzt2rVDU1OTAwcOMHz4cDQ0NBg0aBAAt27domLFihgZGTF06FA0NTVZtmwZlStX5vjx45QpU0Ypvrlz52Jubs7nz5/5999/6dKlC/ny5aN69eoAHDp0iMePH9OhQwcsLS25desWy5cv59atW5w7dy7Zk+LPGDt2rOIHz9dmz57NmDFjaNSoEcOGDUNbW5uTJ0+yfPnyVNUbHx9PrVq1KFu2LDNmzODAgQP4+PgQFxfHhAkTAJAkifr163P06FE6deqEm5sbBw8eZMiQIbx8+ZK5c+cmW3ffvn0pVaoUAKtXr07VyX327NlJ7s8fNWqUIqFJPF6/Pud8LSudv+Li4hg1atQPtznRmTNnKFKkSJL6Unv8J0q83exrpqamiv+n5j1P63a7ubkpPmOJChQokOK2Pnz4kBUrVqQ4v3fv3piYmDBu3Dju3bvH0qVLefr0qeIHDiQkHePHj6d69er06NFDUe7ixYtJ4itUqBCjRo1CkiQePXrEnDlzqF27Ns+ePVOUWbp0Kc7OztSvXx8NDQ12795Nz549kcvl9OrVK8VYVelnjvfkpCY3+N33T+HChdHV1eX06dNJvoe/S0oDX19fCZACAgKkkJAQ6fnz59KGDRskMzMzSVdXV3rx4oUkSZIUFRUlxcfHKy0bFBQkaWtrSxMmTFBM+/fffyVAmjNnTpJ1yeVyxXKANHPmzCRlnJ2dJQ8PD8Xro0ePSoCUO3du6fPnz4rpmzZtkgBp/vz5iroLFiwoeXp6KtYjSZIUEREh2dnZSTVq1EiyrnLlyklFihRRvA4JCZEAycfHRzHtyZMnkrq6ujR58mSlZQMDAyUNDY0k0x88eCAB0qpVqxTTfHx8pK/flpMnT0qAtHbtWqVlDxw4kGS6ra2tVKdOnSSx9+rVS/r2rf429qFDh0q5cuWSSpQoobRP16xZI6mpqUknT55UWv7vv/+WAOn06dNJ1vc1d3d3qUyZMkrTtm3bJgHS0aNHlWIHpK1btyqmffr0SbKyspKKFSummNa/f38JUIrny5cvkp2dnZQvXz7FcZd4LHy9jqioKElNTU3q2bOnYlri/g4JCVGK8eLFixIg+fr6KqaNGDFCAqTg4GDFtO8dn19LbdweHh4SII0bN05p+fbt20uAFBgYqJgGSIB06dIlxbSnT59KOjo6UqNGjRTTIiIiksRz9uxZCZBWr1793bgLFy4s1a1bV/G6YcOGkpaWlvTo0SP
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 640x480 with 1 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# Определение порога для объединения редких значений\n",
|
|||
|
"threshold = 0.02 # Порог 2%\n",
|
|||
|
"\n",
|
|||
|
"# Подсчёт количества уникальных значений и расчёт частот\n",
|
|||
|
"value_counts = df[\"parental level of education\"].value_counts()\n",
|
|||
|
"total_count = value_counts.sum()\n",
|
|||
|
"\n",
|
|||
|
"# Условие для агрегации значений ниже порога\n",
|
|||
|
"other_values = value_counts[value_counts / total_count < threshold].sum()\n",
|
|||
|
"main_values = value_counts[value_counts / total_count >= threshold]\n",
|
|||
|
"\n",
|
|||
|
"# Добавление категории \"Other\"\n",
|
|||
|
"main_values[\"Other\"] = other_values\n",
|
|||
|
"\n",
|
|||
|
"# Построение диаграммы\n",
|
|||
|
"main_values.plot(kind=\"pie\", \n",
|
|||
|
" autopct='%1.1f%%', # Проценты\n",
|
|||
|
" startangle=90, # Начальный угол\n",
|
|||
|
" counterclock=False, # По часовой стрелке\n",
|
|||
|
" cmap=\"Set3\", # Цветовая схема\n",
|
|||
|
" wedgeprops={'edgecolor': 'black'}) # Границы сегментов\n",
|
|||
|
"\n",
|
|||
|
"plt.title(\"Распределение уровня образования родителей (агрегированные данные)\")\n",
|
|||
|
"plt.subplots_adjust(left=0.3, right=0.7, top=0.9, bottom=0.1)\n",
|
|||
|
"plt.show()"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"kernelspec": {
|
|||
|
"display_name": "Python 3",
|
|||
|
"language": "python",
|
|||
|
"name": "python3"
|
|||
|
},
|
|||
|
"language_info": {
|
|||
|
"codemirror_mode": {
|
|||
|
"name": "ipython",
|
|||
|
"version": 3
|
|||
|
},
|
|||
|
"file_extension": ".py",
|
|||
|
"mimetype": "text/x-python",
|
|||
|
"name": "python",
|
|||
|
"nbconvert_exporter": "python",
|
|||
|
"pygments_lexer": "ipython3",
|
|||
|
"version": "3.11.5"
|
|||
|
}
|
|||
|
},
|
|||
|
"nbformat": 4,
|
|||
|
"nbformat_minor": 2
|
|||
|
}
|