{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Сбор и подготовка данных\n",
"\n",
"## Датасет №1. Продажи домов\n",
"\n",
"[**Ссылка**](https://www.kaggle.com/datasets/harlfoxem/housesalesprediction)\n",
"\n",
"**Проблемная область**: Данный набор данных о продажах домов касается недвижимости.\n",
"\n",
"**Объекты наблюдения**: Объектом наблюдения в данном случае является каждый отдельный дом (единица недвижимости), который был продан. Каждая строка в таблице представляет собой один дом.\n",
"\n",
"**Атрибуты объектов:**\n",
"- `id` — уникальный идентификатор дома.\n",
"- `date` — дата продажи.\n",
"- `price` — цена продажи дома (целевая переменная).\n",
"- `bedrooms` — количество спален.\n",
"- `bathrooms` — количество ванных комнат.\n",
"- `sqft_living` — общая жилая площадь (в квадратных футах).\n",
"- `sqft_lot` — площадь участка.\n",
"- `floors` — количество этажей.\n",
"- `waterfront` — есть ли выход на воду.\n",
"- `view` — наличие вида из окон.\n",
"- `condition` — состояние дома (оценка).\n",
"- `grade` — оценка качества дома.\n",
"- `sqft_above` — площадь дома над землей.\n",
"- `sqft_basement` — площадь подвала.\n",
"- `yr_built` — год постройки.\n",
"- `yr_renovated` — год последнего ремонта.\n",
"- `zipcode` — почтовый индекс.\n",
"- `lat` и `long` — географические координаты дома.\n",
"- `sqft_living15` и `sqft_lot15` — средняя площадь жилой площади и участка для 15 ближайших домов.\n",
"\n",
"**Бизнес-цель**: Улучшенное прогнозирование цен поможет продавцам устанавливать конкурентные цены, а покупателям — принимать более взвешенные решения о покупке. Это также даст риелторам возможность лучше ориентироваться на рынке и оптимизировать стратегию продажи.\n",
"\n",
"**Техническая цель**: Прогнозирование цен на жилье\n",
"\n",
"**Входные данные**: Исторические данные о продажах домов, включая все признаки (количество комнат, площадь, состояние, местоположение и др.).\n",
"\n",
"**Целевая переменная**: Цена (`price`)."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from imblearn.over_sampling import RandomOverSampler\n",
"from imblearn.under_sampling import RandomUnderSampler\n",
"\n",
"def oversample(df, target_column):\n",
" X = df.drop(target_column, axis=1)\n",
" y = df[target_column]\n",
" \n",
" oversampler = RandomOverSampler(random_state=42)\n",
" x_resampled, y_resampled = oversampler.fit_resample(X, y)\n",
" \n",
" resampled_df = pd.concat([x_resampled, y_resampled], axis=1) \n",
" return resampled_df\n",
"\n",
"def undersample(df, target_column):\n",
" X = df.drop(target_column, axis=1)\n",
" y = df[target_column]\n",
" \n",
" undersampler = RandomUnderSampler(random_state=42)\n",
" x_resampled, y_resampled = undersampler.fit_resample(X, y)\n",
" \n",
" resampled_df = pd.concat([x_resampled, y_resampled], axis=1)\n",
" return resampled_df\n",
"\n",
"train_df_oversampled = oversample(train_data, 'price')\n",
"val_df_oversampled = oversample(val_data, 'price')\n",
"test_df_oversampled = oversample(test_data, 'price')\n",
"\n",
"train_df_undersampled = undersample(train_data, 'price')\n",
"val_df_undersampled = undersample(val_data, 'price')\n",
"test_df_undersampled = undersample(test_data, 'price')\n",
"\n",
"# Построение гистограмм для каждой выборки\n",
"plt.figure(figsize=(12, 6))\n",
"\n",
"sns.histplot(train_df_undersampled['price'], color='blue', label='Train', kde=True)\n",
"sns.histplot(val_df_undersampled['price'], color='green', label='Validation', kde=True)\n",
"sns.histplot(test_df_undersampled['price'], color='red', label='Test', kde=True)\n",
"\n",
"plt.legend()\n",
"plt.xlabel('Price')\n",
"plt.ylabel('Frequency')\n",
"plt.title('Распределение цены в обучающей, контрольной и тестовой выборках (андерсемплинг)')\n",
"plt.show()\n",
"\n",
"# Построение гистограмм для каждой выборки\n",
"plt.figure(figsize=(12, 6))\n",
"\n",
"sns.histplot(train_df_oversampled['price'], color='blue', label='Train', kde=True)\n",
"sns.histplot(val_df_oversampled['price'], color='green', label='Validation', kde=True)\n",
"sns.histplot(test_df_oversampled['price'], color='red', label='Test', kde=True)\n",
"\n",
"plt.legend()\n",
"plt.xlabel('Price')\n",
"plt.ylabel('Frequency')\n",
"plt.title('Распределение цены в обучающей, контрольной и тестовой выборках (оверсемплинг)')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Датасет №2. Ближайшие к Земле объекты\n",
"\n",
"[**Ссылка**](https://www.kaggle.com/datasets/sameepvani/nasa-nearest-earth-objects)\n",
"\n",
"**Проблемная область**: Данный набор данных связан с наблюдением за объектами, которые проходят рядом с Землей.\n",
"\n",
"**Объекты наблюдения**: Объектами наблюдения являются \"Ближайшие к Земле объекты\", которые представляют собой астероиды или кометы, проходящие относительно близко к орбите Земли.\n",
"\n",
"**Атрибуты объектов:**\n",
"- `id` — уникальный идентификатор объекта.\n",
"- `name` — название или идентификатор объекта (например, имя или дата открытия).\n",
"- `est_diameter_min` — минимальный оценочный диаметр объекта (в километрах или других единицах).\n",
"- `est_diameter_max` — максимальный оценочный диаметр объекта.\n",
"- `relative_velocity` — относительная скорость объекта (по отношению к Земле) в км/ч.\n",
"- `miss_distance` — расстояние между объектом и Землей в момент его ближайшего прохождения (в километрах).\n",
"- `orbiting_body` — небесное тело, вокруг которого объект совершает орбитальное движение (в данном случае это Земля).\n",
"- `sentry_object` — булевый показатель (True/False), указывающий, отслеживается ли объект системой Sentry для оценки возможных столкновений в будущем.\n",
"- `absolute_magnitude` — абсолютная звездная величина объекта, которая помогает определить его яркость и, соответственно, размер.\n",
"- `hazardous` — булевый показатель (True/False), который указывает, представляет ли объект потенциальную опасность для Земли (включает анализ его размера, скорости и расстояния).\n",
"\n",
"**Бизнес-цель**: Разработка стратегии защиты планеты, создание технологий защиты, что может привести к увеличению инвестиций в аэрокосмическую индустрию и соответствующие разработки.\n",
"\n",
"**Техническая цель**: Оптимизация стратегии отклонения или разрушения опасных объектов.\n",
"\n",
"**Входные данные**: Данные о космических объектах, включая все признаки (диаметр объекта, расстояние между объектом и Землей и др.).\n",
"\n",
"**Целевая переменная**: Опасность (`hazardous`)."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from sklearn.model_selection import train_test_split\n",
"\n",
"train_data, temp_data = train_test_split(df, test_size=0.3, random_state=42)\n",
"val_data, test_data = train_test_split(temp_data, test_size=0.5, random_state=42)\n",
"\n",
"print(\"Обучающая выборка: \", train_data.shape)\n",
"print(train_data.hazardous.value_counts())\n",
"hazardous_counts = train_data['hazardous'].value_counts()\n",
"plt.figure(figsize=(2, 2))\n",
"plt.pie(hazardous_counts, labels=hazardous_counts.index, autopct='%1.1f%%', startangle=90)\n",
"plt.title('Распределение классов hazardous в обучающей выборке')\n",
"plt.show()\n",
"\n",
"print(\"Контрольная выборка: \", val_data.shape)\n",
"print(val_data.hazardous.value_counts())\n",
"hazardous_counts = val_data['hazardous'].value_counts()\n",
"plt.figure(figsize=(2, 2))\n",
"plt.pie(hazardous_counts, labels=hazardous_counts.index, autopct='%1.1f%%', startangle=90)\n",
"plt.title('Распределение классов hazardous в контрольной выборке')\n",
"plt.show()\n",
"\n",
"print(\"Тестовая выборка: \", test_data.shape)\n",
"print(test_data.hazardous.value_counts())\n",
"hazardous_counts = test_data['hazardous'].value_counts()\n",
"plt.figure(figsize=(2, 2))\n",
"plt.pie(hazardous_counts, labels=hazardous_counts.index, autopct='%1.1f%%', startangle=90)\n",
"plt.title('Распределение классов hazardous в тестовой выборке')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Как видно из круговых диаграмм, распределение классов сильно смещено, что может привести к проблемам в обучении модели, так как модель будет обучаться в основном на одном классе. В таком случае имеет смысл рассмотреть методы аугментации данных."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Аугментация данных методом оверсемплинга\n",
"\n",
"Этот метод увеличивает количество примеров меньшинства."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Обучающая выборка после оверсемплинга: (115166, 7)\n",
"hazardous\n",
"True 57767\n",
"False 57399\n",
"Name: count, dtype: int64\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAs0AAADECAYAAABk3xxgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDRUlEQVR4nO3dd3hT1f8H8HeStulu6S6rlELZswrKKrtliCyRPcsQEFEQBEWGQEFQpoAoAgI/REBBQFYFhKIyZO+yoUBpC90zyfn90W9i06RNWgq34/16njyQ2zs+99ybcz8599wTmRBCgIiIiIiIciWXOgAiIiIioqKOSTMRERERkQlMmomIiIiITGDSTERERERkApNmIiIiIiITmDQTEREREZnApJmIiIiIyAQmzUREREREJlhIHQARUWmQkZGBZ8+eQaPRoGzZslKHQ4UoLS0Nz549g4WFBTw8PKQOh4heErY0ExUBgwcPhr29vdRhFJoZM2ZAJpNJHYbkTp8+jb59+8LNzQ1KpRLe3t7o0aOH1GEVG8uXL0dcXJzu/eLFi5GcnCxdQNmEhYWhS5cucHZ2ho2NDcqVK4cPPvhA6rCI6CXKV0vzunXrMGTIEN17pVKJihUron379pg2bRo8PT0LPUAiouJo586dePfdd1G9enXMmTMHfn5+AMCWyHzYtWsXbt68iQkTJuDo0aOYNm0axo0bJ3VYWLFiBd5//300a9YMS5YsQbly5QAAPj4+EkdGRC9TgbpnzJo1C76+vkhLS0N4eDhWrlyJ33//HZcuXYKtrW1hx0hEVKw8e/YMISEhCAoKwtatW2FlZSV1SMXS1KlT0aVLFyxZsgRyuRxfffUV5HJpb5BGRETgo48+wogRI7BixQreUSEqRQqUNHfo0AGvvfYaACAkJASurq74+uuvsXPnTvTp06dQAySiokelUkGj0TAZzMXatWuRlpaGdevWsYxeQGBgIO7du4erV6+iQoUKKF++vNQhYenSpfDy8sLSpUuZMBOVMoXylb1169YAgDt37gDIamWZOHEi6tSpA3t7ezg6OqJDhw44f/68wbJpaWmYMWMG/P39YW1tDW9vb3Tv3h23bt0CANy9excymSzXV8uWLXXrOnLkCGQyGbZs2YKpU6fCy8sLdnZ26NKlCx48eGCw7RMnTiA4OBhOTk6wtbVFYGAgjh8/bnQfW7ZsaXT7M2bMMJh348aNCAgIgI2NDVxcXNC7d2+j289r37LTaDRYvHgxatWqBWtra3h6emLkyJF4/vy53nyVKlVC586dDbYzduxYg3Uai33BggUGZQoA6enpmD59OqpUqQKlUokKFSpg0qRJSE9PN1pW2bVs2dJgfXPmzIFcLsf//d//Fag8Fi5ciCZNmsDV1RU2NjYICAjAtm3bjG5/48aNaNSoEWxtbVGmTBm0aNECBw4c0Jtn7969CAwMhIODAxwdHfH6668bxLZ161bdMXVzc0P//v0RGRmpN8/gwYP1Yi5TpgxatmyJY8eOmSwnrcjISHTt2hX29vZwd3fHxIkToVar873/OWMxds5mZGTg888/R0BAAJycnGBnZ4fmzZvj8OHDeuvSHpeFCxdi8eLF8PPzg1KpxJUrVwAA4eHheP3112FtbQ0/Pz98++23RvdNpVLhiy++0C1fqVIlTJ061eA8yu1zValSJQwePFj3PjMzEzNnzkTVqlVhbW0NV1dXNGvWDAcPHsyzjNetW6dXHra2tqhTpw6+//77PJfTun37Nt555x24uLjA1tYWb7zxBvbs2aM3zz///IP69etj7ty5qFChApRKJapWrYp58+ZBo9Ho5gsMDES9evWMbqdatWoICgrSi/nu3bt68+T8fJl7TAHDcn7y5AkGDhwId3d3KJVK1K5dG999953eMtnPhexq165t8DlfuHCh0ZgjIyMxdOhQeHp6QqlUolatWvjhhx/05tHW5UeOHIGzszPefPNNlC9fHp06dcr1/DC2vPalVCrh7++P0NBQCCF082n73sfExOS6rpzn3T///IOAgACMHj1atw/GygoAkpOTMWHCBN05UK1aNSxcuFAvBiDrWIwdOxabNm1CtWrVYG1tjYCAABw9elRvPmPPChw+fBhKpRKjRo3Sm25OOecmr2tupUqVCrSPgHn1cc5jl9t2X+S6BBR+nb537140b94cdnZ2cHBwQKdOnXD58mWD9dnb2+P27dsICgqCnZ0dypYti1mzZhmUl0ajwZIlS1CnTh1YW1vD3d0dwcHBOH36tEGZmso3tPlL165dDeIeOXIkZDIZateurZuWn7wrt7IyliMNHjzY4Dg+ePAANjY2BnVFfvMZY6/Zs2cDyF+9aEqhjJ6hTXBdXV0BZF1UduzYgXfeeQe+vr6IiorCt99+i8DAQFy5ckX35LharUbnzp3xxx9/oHfv3vjggw+QmJiIgwcP4tKlS7o+gADQp08fdOzYUW+7U6ZMMRrPnDlzIJPJMHnyZDx9+hSLFy9G27Ztce7cOdjY2AAADh06hA4dOiAgIADTp0+HXC7H2rVr0bp1axw7dgyNGjUyWG/58uURGhoKAEhKSsJ7771ndNvTpk1Dr169EBISgujoaCxbtgwtWrTA2bNn4ezsbLDMiBEj0Lx5cwDAL7/8gl9//VXv7yNHjtT1Jx83bhzu3LmD5cuX4+zZszh+/DgsLS2NlkN+xMXF6fYtO41Ggy5duiA8PBwjRoxAjRo1cPHiRSxatAg3btzAjh078rWdtWvX4rPPPsNXX32Fvn37Gp3HVHksWbIEXbp0Qb9+/ZCRkYGffvoJ77zzDnbv3o1OnTrp5ps5cyZmzJiBJk2aYNasWbCyssKJEydw6NAhtG/fHkBWMjJ06FDUqlULU6ZMgbOzM86ePYt9+/bp4tOW/euvv47Q0FBERUVhyZIlOH78uMExdXNzw6JFiwAADx8+xJIlS9CxY0c8ePDA6LHPTq1WIygoCI0bN8bChQsRFhaGr776Cn5+fnrnmjn7P3LkSLRt21Zv/fv27cOmTZt0fWoTEhLw/fffo0+fPhg+fDgSExOxZs0aBAUF4eTJk6hfv77BsUtLS8OIESOgVCrh4uKCixcvon379nB3d8eMGTOgUqkwffp0o883hISEYP369ejZsycmTJiAEydOIDQ0FFevXjU4xuaYMWMGQkNDERISgkaNGiEhIQGnT5/GmTNn0K5dO5PLL1q0CG5ubkhISMAPP/yA4cOHo1KlSgblll1UVBSaNGmClJQUjBs3Dq6urli/fj26dOmCbdu2oVu3bgCA2NhYhIeHIzw8HEOHDkVAQAD++OMPTJkyBXfv3sWqVasAAAMGDMDw4cNx6dIlvYvWqVOncOPGDXz22Wf5KpP8HlOtjIwMtG3bFteuXcN7772HatWqYceOHRgxYgRiY2PxySef5CuO3ERFReGNN97QJYnu7u7Yu3cvhg0bhoSEBIwfPz7XZY8ePYrff/89X9ubOnUqatSogdTUVF1jioeHB4YNG1bgfYiNjcXp06dhYWGBMWPGwM/Pz2hZCSHQpUsXHD58GMOGDUP9+vWxf/9+fPzxx4iMjNTVE1p//vkntmzZgnHjxkGpVGLFihUIDg7GyZMn9c6N7M6fP4+uXbuiY8eO+Oabb3TTX6Sctdq1a4eBAwfqTfvqq6/0Gmvys4/m1MfZaY8dAKxevRr379/X/e1Fr0uFXadv2LABgwYNQlBQEObPn4+UlBSsXLkSzZo1w9mzZ/USRbVajeDgYLzxxhv48ssvsW/fPkyfPh0qlQqzZs3SzTds2DCsW7cOHTp0QEhICFQqFY4dO4Z//vlHd6c/P/mGtbU19uzZg6dPn+quAdrPhbW1tdFyyk/elbOsgKz6zZTPP/8caWlpJuczxdj5qq3vClovGiXyYe3atQKACAsLE9HR0eLBgwfip59+Eq6ursLGxkY8fPhQCCFEWlqaUKvVesveuXNHKJVKMWvWLN20H374QQAQX3/9tcG2NBqNbjkAYsGCBQbz1KpVSwQGBureHz58WAAQ5cqVEwkJCbrpP//8swAglixZolt31apVRVBQkG47QgiRkpIifH19Rbt27Qy21aRJE1G7dm3d++joaAFATJ8+XTft7t27QqFQiDlz5ugte/HiRWFhYWEwPSIiQgAQ69ev102bPn26yH5Yjh07JgCITZs26S27b98+g+k+Pj6iU6dOBrGPGTNG5DzUOWOfNGmS8PDwEAEBAXplumHDBiGXy8WxY8f0ll+1apUAII4fP26wvewCAwN169uzZ4+wsLAQEyZMMDqvOeUhRNZxyi4jI0PUrl1btG7dWm9dcrlcdOvWzeBc1B7zuLg44eDgIBo3bixSU1ONzpORkSE8PDxE7dq19ebZvXu3ACA+//xz3bRBgwYJHx8fvfWsXr1aABAnT540us/ZlwWg9/kQQogGDRqIgICAfO9/ThEREcLJyUm0a9dOqFQqIYQQKpVKpKen6833/Plz4enpKYYOHaqbpv0MOjo6iqdPn+rN37VrV2FtbS3u3bunm3blyhWhUCj0jtu5c+cEABESEqK3/MSJEwUAcejQId20nOemlo+Pjxg0aJDufb169Yye76Zo67E7d+7opt24cUMAEF9++WWey44fP14A0Ps8JCYmCl9fX1GpUiXduRYYGCgAiBkzZugtP3jwYAFAXLx4UQiRdQ5aW1uLyZMn6803btw4YWdnJ5KSkoQQQqxfv14AELdv39abL/vnSwjzj6kQ+uW8bNkyAUCsWrVKb11t2rQRSqVSxMTECCFyr49z1sVCCLFgwQKDch42bJjw9vbWrU+rd+/ewsnJSXdua+vyw4cP6+Zp3Lix6NChQ67nR3bGlk9LSxNyuVyMHj1aN01bv0RHR+e6rpznnY+PjwAg1q1bp5tmrKx27NghAIjZs2frra9nz55CJpOJmzdv6qYBEADE6dOnddPu3bsnrK2tRbdu3QziFSLreuPt7S2aNWtmUH+ZW865ASDGjBljML1Tp056dZy5+2hOfax18OBBAUD8+eefumk569YXuS4Vdp2emJgonJ2dxfDhw/Xme/LkiXByctKbrq3n33//fb3979Spk7CystKdh4cOHRIAxLhx4wzi15ZXfvKNwMBAUatWLVG3bl2xcOFC3fQNGzaI8uXLi+bNm4tatWrppucn79Lq16+f8PX11ZuW87OaszwvXbok5HK57nOdva7Ibz5j7HzVyk+9aEqBume0bdsW7u7uqFChAnr37g17e3v8+uuvuieIlUql7mENtVqN2NhY2Nvbo1q1ajhz5oxuPdu3b4ebmxvef/99g228SF+xgQMHwsHBQfe+Z8+e8Pb21rVSnDt3DhEREejbty9iY2MRExODmJgYJCcno02bNjh69KjeLVQgqxtJbt/GtH755RdoNBr06tVLt86YmBh4eXmhatWqBrcCMjIyAGSVV262bt0KJycntGvXTm+dAQEBsLe3N1hnZmam3nwxMTEmv8VFRkZi2bJlmDZtmsGwZ1u3bkWNGjVQvXp1vXVqu+SYe3vj5MmT6NWrF3r06IEFCxYYncec8gCgu1sAAM+fP0d8fDyaN2+ud27t2LEDGo0Gn3/+ucGDQ9pz6+DBg0hMTMQnn3xicGy185w+fRpPnz7F6NGj9ebp1KkTqlevbnBbXqPR6Mro3Llz+PHHH+Ht7a1rMTEl5y3W5s2b4/bt2/ne/+ySk5PRrVs3lClTBps3b4ZCoQAAKBQKXX9bjUaDZ8+eQaVS4bXXXjO6rh49esDd3V33Xq1WY//+/ejatSsqVqyom16jRg1dtwIt7Wfvo48+0ps+YcIEADAoR3M4Ozvj8uXLiIiIyPeyQFbZxcTE4Pbt21i0aBEUCgUCAwPzXOb3339Ho0aN0KxZM900e3t7jBgxAnfv3tV1WQGyyvfDDz/UWz7n/jo5OeHtt9/G5s2bdbdn1Wo1tmzZgq5du8LOzg7AfyNuPHz4MM/48ntMU1JSEBMTg127dsHJyQlDhw7VW9f48eORnp6OsLCwPLdrDiEEtm/fjrfeegtCCL36JCgoCPHx8bmew7/88gtOnTqFefPm5Wub8fHxiImJwf379/Hll19Co9Ho6q7snj17prsGmMPT01OvFc1YWf3+++9QKBQGo31MmDABQgjs3btXb/qbb76JgIAA3fuKFSvi7bffxv79+w26aMXGxiIoKAgODg747bff9OqmFynn/DJ3H82pj7XMvS4W9LpU2HX6wYMHERcXhz59+ujFolAo0LhxY6OxjB07Vm//x44di4yMDN25s337dshkMkyfPt1gWW155TffAIAhQ4Zg7dq1uvdr167FoEGDCuXh2oyMDJPX7pymTJmChg0b4p133jH694LkM8bkt17MS4G6Z3zzzTfw9/eHhYUFPD09Ua1aNb1C1/bFWbFiBe7cuaP3gdd24QCyunVUq1YNFhaF+xsrVatW1Xsvk8lQpUoVXX8Z7UV20KBBua4jPj4eZcqU0b2PiYkxWG9OEREREELkOl/ObhTa8UfzGp83IiIC8fHxuQ5T9fTpU733Bw4c0EtszDF9+nSULVsWI0eONOgbGxERgatXr+a6zpzbNyYyMhKdOnVCcnIyYmNjc/1CZE55AMDu3bsxe/ZsnDt3Tq//Wvb13rp1C3K5HDVr1sx1PdpuRbnd+gSAe/fuAcjqX5pT9erVER4erjftwYMHemXl7e2N7du3mzUGs7bfWnZlypQx6Ltuzv5nN3z4cNy6dQt//fWX3ucPANavX4+vvvoK165dQ2Zmpm66r6+vwXpyTouOjkZqaqrR871atWp6t9Lv3bsHuVyOKlWq6M3n5eUFZ2dnXTnnx6xZs/D222/D398ftWvXRnBwMAYMGIC6deuatXzDhg11/1cqlVi+fLnRblnZ3bt3D40bNzaYrr2A3rt3D7Vr14ZMJkPZsmXh6OioN5+2rszed2/gwIHYsmULjh07hhYtWiAsLAxRUVF6SVmDBg1gbW2NmTNnYuXKlbq6KTMz06Beyc8xXbBgge5LbIMGDQzWpd2vnP2SCyI6OhpxcXFYvXo1Vq9ebXQeY/WJWq3G1KlT0a9fP7OPrVb2PpxyuRyfffaZ0XGys3++PTw8MHz4cMycOVP3BTM7mUwGf39/g0QjZ1ndu3cPZcuW1WvAyT5fznPe2OfI398fKSkpiI6OhpeXl256586dcf36dXh4eBj0hS1oOReEuftoTn2sZe51saDXpcKu07X5hLEvYwAM6gC5XI7KlSvrTfP39wfw37lz69YtlC1bFi4uLrnuR37zDQDo168fJk2ahJMnT8LDwwNHjhzBt99+a7DPBREXF5ev3xoIDw/Hrl278Mcff+h1vcmuIPlMbvJTL+alQNlqo0aNdH1qjJk7dy6mTZuGoUOH4osvvoCLiwvkcjnGjx9v0IIrBW0MCxYsyLUvS/aDn5GRgcePH5vsJ6nRaCCTybB3716jlW3OE+rJkycAoFcZGlunh4cHNm3aZPTvOU+oxo0b6zq/ay1fvhw7d+40uvzVq1exbt06bNy40eiHTKPRoE6dOvj666+NLl+hQoVcY9e6efMmGjZsiEWLFmHAgAFYv3690S8s5pTHsWPH0KVLF7Ro0QIrVqyAt7c3LC0tsXbtWoOH96Tg6emJjRs3Asj64vXDDz8gODgY4eHhqFOnTp7LGjtncsrv/i9ZsgSbN2/Gxo0bDc71jRs3YvDgwejatSs+/vhjeHh4QKFQIDQ0VPeFIrvsLdwF9SJ3kHK2trVo0QK3bt3Czp07ceDAAXz//fdYtGgRVq1ahZCQEJPr27hxIzw9PZGWloZDhw5hzJgxsLa21nvoq6DyU1ZBQUG686ZFixbYuHEjvLy89PpWe3p6YtmyZRgzZozuAquVvXU8v8d0wIABGDhwoNHnMwqbtt7t379/rg0WxpLiNWvW4O7du9i/f3++t7lw4ULUq1cPmZmZOHXqFGbPng0LCwuDFrzt27fD0dERKSkp+PXXXzFnzhw4Ojpi0qRJBussjM/Bi7p27Rr27t2LXr16YcKECXqthwUt56LC3Ovii16XzGWqTteW94YNG4zGXNiNglr5zTeArHzhrbfewtq1a+Hp6YmmTZsaNGQU1JMnT/I1TvnkyZMRFBSE1q1bY926dUbnyW8+k5v81ot5eSlHc9u2bWjVqhXWrFmjNz0uLg5ubm66935+fjhx4oTR1pIXkfN2rRACN2/e1FUU2gcMHR0d83zoR+v8+fPIzMzM84uCdr1CCPj6+hpc2Iy5cuUKZDKZ0W+82dcZFhaGpk2bmlVZu7m5GexTXg9FTJkyBfXr18e7776b6/bPnz+PNm3aFDjh0XaN8fT0xM6dOzFhwgR07NjRIOE3pzy2b98Oa2tr7N+/X+9WUPaLhjZujUaDK1eu5PrFSHseXLp0KdeKQ1sJXL9+3aAl4fr16waVhLW1tV75d+nSBS4uLli+fHmuo0rkh7n7D2Ql2BMnTsT48ePRr18/g79v27YNlStXxi+//KJ3bI3dEjTG3d0dNjY2RrtHXL9+Xe+9j48PNBoNIiIi9LqqREVFIS4uTq8cy5Qpo/crcMB/X1xzcnFxwZAhQzBkyBAkJSWhRYsWmDFjhllJc9OmTXUP6HTu3BmXL19GaGhonkmzj4+Pwb4BWUmM9u9AVuvFgQMHkJiYqNcKd+PGDWg0Gr0HgxQKBfr27Yt169Zh/vz52LFjB4YPH25wIQwJCUH37t1x6dIl3S1sbXcPrfwe08qVK6Nt27bw9/fH8ePHDepi7X7lfOK9INzd3eHg4AC1Wm1WvQtkdR+ZOXMmRo8eXaAfDgkICNA96d+hQwdERkZi/vz5mDZtml5LcYsWLXTXpi5duuD48ePYt2+f0aTZ19cXZ86cgUaj0VtHzrLy8fFBWFiYwTmQ81zRMvY5unHjBmxtbQ3qyt9++w3NmzdHaGgoxo4di/79+6NNmzYAClbOBWXuPppTH2tduXIF7u7uBnfFsnuR61Jh1+nZf7TInPLWaDS4ffu2Xo5w48YNAP+dO35+fti/fz+ePXuWa2tzfvMNraFDh6Jfv35wcnIyOQqNuTIzM3Hz5k0EBwebNf+OHTvw999/m+wakd98Jjcveq3L7qWMEq9QKAxuGW3dutVgOJcePXogJiYGy5cvN1hHzuXz48cff0RiYqLu/bZt2/D48WN06NABQFZF6ufnh4ULFyIpKclg+ejoaIPYFQqF0eFPsuvevTsUCgVmzpxpEL8QArGxsbr3KpUK27dvR6NGjfK8pdGrVy+o1Wp88cUXBn9TqVQGyUV+/P3339i5cyfmzZuXa8XTq1cvREZGGh1OKTU11aw+gP7+/rrRFJYtWwaNRmPwc7PmlodCoYBMJtNrdbx7967BB6lr166Qy+WYNWuWwd0N7bFp3749HBwcEBoaatBPSjvPa6+9Bg8PD6xatUqvK8TevXtx9epVvdE6jMnIyIBKpTJ7GCRTzN3/x48fo1evXmjWrFmufci1SVn2c/XEiRP4+++/zY4lKCgIO3bs0Lu9dvXqVYNWQe0T2IsXL9abrm0pyl6Ofn5+BkNtrV692mi/zuzs7e1RpUqVApd1amqqyWU7duyIkydP6pVRcnIyVq9ejUqVKuluP3fs2BFqtdqgbjO2v0BWi+/z588xcuRIJCUloX///ka37+LighYtWqBt27Zo27atXhcyoODHNDg4GPHx8XotPtpudkqlslCSL4VCgR49emD79u24dOmSwd9z1rtA1p2S5ORkfPrppy+8fSDrGKtUKqhUqlznEUJACJHrnZ+OHTviyZMn2LJli26asbLK7RxYtGgRZDKZ7nqklTOJePDgAXbu3In27dsbxKIdXWj06NFo0qQJRo4cidTUVAAFK+eCMncfzamPASAxMRG///57rl0dtF7kulTYdXpQUBAcHR0xd+5cvdv+WsbKO3t5CSGwfPlyWFpa6r749OjRA0IIzJw502BZbXnlJ9/ILjg4GHZ2dnj27Bl69eqV576aa+fOnUhNTTV53ID/ulv17ds3f6NWvIAXvdZl91Jamjt37oxZs2ZhyJAhaNKkCS5evIhNmzYZ9OMZOHAgfvzxR3z00Uc4efIkmjdvjuTkZISFhWH06NF4++23C7R9FxcXNGvWDEOGDEFUVBQWL16MKlWqYPjw4QCy+hR9//336NChA2rVqoUhQ4agXLlyiIyMxOHDh+Ho6Ihdu3YhOTkZ33zzDZYuXQp/f38cOXJEtw1tsn3hwgX8/fffePPNN+Hn54fZs2frhpXq2rUrHBwccOfOHfz6668YMWIEJk6ciLCwMEybNg0XLlzArl278tyXwMBAjBw5EqGhoTh37hzat28PS0tLREREYOvWrViyZAl69uxZoHI6cOAA2rVrl+cFccCAAfj5558xatQoHD58GE2bNoVarca1a9fw888/Y//+/SZb4LPz8vLCggULEBISgv79+6Njx475Ko9OnTrh66+/RnBwMPr27YunT5/im2++QZUqVXDhwgXdfFWqVMGnn36KL774As2bN0f37t2hVCpx6tQplC1bFqGhoXB0dMSiRYsQEhKC119/HX379kWZMmVw/vx5pKSkYP369bC0tMT8+fMxZMgQBAYGok+fPrrhiSpVqmTwoFdycrLerbwNGzYgLS1NNxTZizJ3/8eNG4fo6GhMmjQJP/30k9466tati7p166Jz58745Zdf0K1bN3Tq1Al37tzBqlWrULNmTaNfJo2ZOXMm9u3bh+bNm2P06NFQqVRYtmwZatWqpRdPvXr1MGjQIKxevRpxcXEIDAzEyZMnsX79enTt2hWtWrXSzRsSEoJRo0ahR48eaNeuHc6fP4/9+/fr3aUCgJo1a6Jly5YICAiAi4sLTp8+jW3btuk9ZJOXHTt2wM3NTdc949ixYyaH4vrkk0+wefNmdOjQAePGjYOLiwvWr1+PO3fuYPv27bqWx44dO6Jt27b49NNPcefOHdSvXx+HDh3C9u3bMWrUKIN+9A0aNEDt2rV1Dzhl72+dHwU9piEhIVi1ahVGjx6Nixcvolq1ati5cycOHjyI0NBQg1a/69evY9++fbr3SUlJkMvletO0LfJ//vknHB0d4eLignnz5uHw4cNo3Lgxhg8fjpo1a+LZs2c4c+YMwsLC8OzZM73tHDhwAHPmzMmz1TEvBw8exMOHD3XdMzZt2oQuXboY/ODMoUOH9Lpn3Lx5M9dzYdiwYVi5ciUGDx6M06dPw9fXFzt27MAff/yBefPm6WJ966230KpVK3z66ae4e/cu6tWrhwMHDmDnzp0YP3683pCqQNazFUFBQXpDzgEwmjhpyWQyfP/996hfvz6mT5+OL7/8EgDyXc4FZe4+mlMf//zzz5g5cyaeP39ucojDF7kuFXad7ujoiJUrV2LAgAFo2LAhevfuDXd3d9y/fx979uxB06ZN9ZJka2tr7Nu3D4MGDULjxo2xd+9e7NmzB1OnTtXdUWjVqhUGDBiApUuXIiIiAsHBwdBoNDh27BhatWqFsWPHmp1v5KRQKHD16lUIIXQPGhdUSkoKpk+fjhUrVqBJkyZGhw7M6eHDh7Cyssr38JEvojCudTr5GWpDO1TTqVOn8pwvLS1NTJgwQXh7ewsbGxvRtGlT8ffffxsMjyRE1vBZn376qfD19RWWlpbCy8tL9OzZU9y6dUsIUbAh5zZv3iymTJkiPDw8hI2NjejUqZPekFhaZ8+eFd27dxeurq5CqVQKHx8f0atXL/HHH3/obdvUK/twREIIsX37dtGsWTNhZ2cn7OzsRPXq1cWYMWPE9evXhRBCvP/++6JFixZi3759BjEZG2JNiKxhbgICAoSNjY1wcHAQderUEZMmTRKPHj3SzZPfIVpkMpn4999/9aYbO0YZGRli/vz5olatWkKpVIoyZcqIgIAAMXPmTBEfH2+wPVPrE0KI1q1bi4oVK4rExMR8l8eaNWtE1apVhVKpFNWrVxdr167Ntdx++OEH0aBBA13cgYGB4uDBg3rz/Pbbb6JJkybCxsZGODo6ikaNGonNmzfrzbNlyxbdelxcXES/fv10QyxqaYcT0r7s7e1Fw4YNxYYNG/IsI+2ydnZ2hbb/2iHPjL20QwBpNBoxd+5c4ePjI5RKpWjQoIHYvXu3wbBAeX0GhRDizz//FAEBAcLKykpUrlxZrFq1ymjcmZmZYubMmbrPeoUKFcSUKVNEWlqa3nxqtVpMnjxZuLm5CVtbWxEUFCRu3rxpMPTX7NmzRaNGjYSzs7OwsbER1atXF3PmzBEZGRl5lrW2HtO+rKysRJUqVcTnn39uEIsxt27dEj179hTOzs7C2tpaNGrUSOzevdtgvqSkJPHhhx+KsmXLCktLS1GlShUxb948gyG3tL788ksBQMydO9dkDFo5P1/mHlMhDIeDioqKEkOGDBFubm7CyspK1KpVS6xevVpvGXPrxJyv7EO/RUVFiTFjxogKFSro6vw2bdrobUtbl3t7e4vk5OQ84zZGu7z2ZWFhIXx8fMS4cePE8+fPdfNpz1Pty8bGRtSsWVMsWrRIN0/O804IIZ4+fSqGDh2qK6vatWuL7777ziCOxMREvXOgatWqYsGCBQbDrOF/Q2Zt3LhR99lu0KCBXrlljzenmTNnCgsLC3HmzBndNHPKOTfaeHLKOeRcfvZRiLzr427duokOHTqIEydOGCxn7Px9keuSEIVfpx8+fFgEBQUJJycnYW1tLfz8/MTgwYP1hhHU1vO3bt0S7du3F7a2tsLT01NMnz7doF5QqVRiwYIFonr16sLKykq4u7uLDh06GFyzTeUbQvw35Fxucv7d3Lzr4cOHokKFCmL8+PFGyzznZ1Vbnh988IHefMaGAS3MIefyUy+aIvvfBkuEI0eOoFWrVti6dWuBW1+zu3v3Lnx9fXHnzp1c+/TNmDEDd+/ezbUjOxGROZYsWYIPP/wQd+/e1RvCr7irVKkS1q1bZ/RXxCiLTCbDmDFjjHZVpJJj8ODB2LZtW/5bN6nIeCl9momIyHxCCKxZswaBgYElKmEmIipJXs5YKCWEvb09+vXrl+eDaXXr1tX9LDgRUX4kJyfjt99+w+HDh3Hx4sV8D6VUHAQGBuY53iwRUXHBpDkPbm5uugcActO9e/dXFA0RlTTR0dHo27cvnJ2dMXXqVHTp0kXqkArd+vXrpQ6BiKhQlKg+zURERERELwP7NBMRERERmcCkmYiIiIjIBCbNREREREQmMGkmIiIiIjKBSTMRERERkQlMmomIiIiITGDSTERERERkApNmIiIiIiITmDQTEREREZnApJmIiIiIyAQmzUREREREJjBpJiIiIiIygUkzEREREZEJTJqJiIiIiExg0kxEREREZAKTZiIiIiIiE5g0ExERERGZwKSZiIiIiMgEC6kDICIqbVIz1IhKSMPTxHTdv9GJ6UjLVEOtEWhs+widM/YCcgtAYQXYlAEcvAEHT8DeK+v/ti6ATCb1rhARlRpMmomIXqL7sSm4GBmPi5HxuBQZj8uP4vE8JTPPZbx8IoCoH/JesUIJuFcDytYHvOtn/etZG7BQFlboRESUDZNmIqJC9Dg+FWFXn+LQ1SicfRCHOBMJcoGp04EnF7Je+DFrmtwS8KwJ+LUBqnUEyr/G1mgiokLCpJmI6AVdiozHwStRCLsahcuPEqQLRJMJPD6f9Qr/GrDzAPzbZyXQlVsBVrbSxUZEVMwxaSYiKoCYpHRs+/chtpx6gDsxyVKHY1zyU+DsxqyXlQNQ713gtWFZrdFERJQvTJqJiPLh3IM4/BB+B3svPUamWkgdjvkyEoFT32e9KjYBXh8G1HwbUFhKHRkRUbHApJmIyAzHb8bgqwPXceZ+nNShvLj7f2W99k0BmrwPNBoBWFpLHRURUZHGpJmIKA+XIuMxf981HIuIkTqUwpf8FDg4DTixCmj5CVC/HyBXSB0VEVGRxKSZiMiIe7HJWLD/OvZcfAxRjHphFEhCJPDb+8Bfy4DWn2V12yAiIj1MmomIsslQabA47Aa+O3a7ePVZLgwxN4CfBwI+zYC3lwMuvlJHRERUZPBntImI/ufCwzh0XnYMK47cKn0Jc3b3woGVTYB/VqHkN7MTEZmHSTMRlXoZKg0W7r+O7iv+wo2oJKnDKRoyU4B9k4F1nYDYW1JHQ0QkOSbNRFSqRUQlosvycCw/fBMqDVtVDdw7DqxqBvy7TupIiIgkxaSZiEqtsCtR6LbiL1x7kih1KEVbZgqw6wNg90eA+iX9LDgRURHHpJmISqUVR25ixIbTSEpXSR1K8XF6DfBjVyA5VupIiIheOSbNRFSqpGWqMf6ns/hy33WwN0YB3AsHVrcEnlyUOhIioleKSTMRlRpxKRnovfof7Dj3SOpQirf4+8CaIODWIakjISJ6ZZg0E1GpEJuUjt6r/8G5B3FSh1IyZCYD/9cbuL5P6kiIiF4JJs1EVOLF/C9h5gN/hUydDmzpD1zdJXUkREQvHZNmIirRnidnoP/3JxDxlOMvvxSaTGDbUODGfqkjISJ6qZg0E1GJlZiWiYE/nGQL88umzgC2DADuHJU6EiKil4ZJMxGVSBqNwPifzuFiZLzUoZQO6nTg54H89UAiKrGYNBNRibTwwHX8ce2p1GGULqnPgc19gLQEqSMhIip0TJqJqMT57fwjrDjCFk9JxFwHtg8DNBqpIyEiKlRMmomoRLkUGY9J285LHUbpFnEACJsudRRERIWKSTMRlRjxqZkYueFfpGWylVNyfy3lUHREVKIwaSaiEmPWriuIjEuVOgzS2v0hkBwrdRRERIWCSTMRlQiHrz3F9jMPpQ6DskuOBn6fIHUURESFgkkzERV7CWmZmPLLRanDIGMu/wpc3iF1FEREL4xJMxEVe1/suoInCWlSh0G52TMBSI6ROgoiohfCpJmIirXjN2Ow9V92yyjSUmKAA59JHQUR0Qth0kxExZYQAqF7r0odBpnjwhYg6rLUURARFRiTZiIqtnZfeIxLkfz1uWJBaICwGVJHQURUYEyaiahYUqk1+PrgDanDoPyIOADcPS51FEREBcKkmYiKpZ9PP8SdmGSpw6D84i8FElExxaSZiIqdtEw1lv4RIXUYVBAPTwHX90odBRFRvjFpJqJi59ezkRxirjj7Z6XUERAR5RuTZiIqdtb/dVfqEOhF3PkTiGZ/dCIqXpg0E1Gx8vetWFx7kih1GPSiTn0vdQRERPnCpJmIipXNJ+9LHQIVhvObgfQkqaMgIjIbk2YiKjbiUjKw7/ITqcOgwpCeAFz4SeooiIjMxqSZiIqNXecfIUOlkToMKiznt0gdARGR2Zg0E1GxceBKlNQhUGGKPA0kPZU6CiIiszBpJqJiISldhRO3n0kdBhUmoeGYzURUbDBpJqJi4diNaGSo2TWjxGHSTETFBJNmIioWwq7yNn6JdPsIkJEidRRERCYxaSaiIk+jEThynUlziaRKBW4fljoKIiKTmDQTUZF35XECYpMzpA6DXpb7f0sdARGRSUyaiajIuxgZL3UI9DI9Oid1BEREJjFpJqIi7/IjJs0l2qNzgBBSR0FElCcmzURU5F2KTJA6BHqZMhKBmAipoyAiyhOTZiIq0tQagWtPmDSXeI/OSh0BEVGemDQTUZF2KzoJaZkcn7nEe3xO6giIiPLEpJmIirSIqCSpQ6BXIe6+1BEQEeWJSTMRFWlPE9OkDoFehcTHUkdARJQnJs1EVKRFJ6ZLHQK9CgkvL2let24dnJ2dX9r6iah0YNJMREUak+YXNy88HbKZCRi/779W+1vPNOi2JQXuCxLhGJqAXltTEJWUd99xtUZg2qE0+C5JhM2cBPgtTcQXf6ZDZBsubuFf6fBYkAiPBYn46i/9Y3fioQoBq5Og0hgZXi4pCtCo89z+4MGDIZPJDF43b940oxSIiF6MhdQBEFHRIpPJ8vz79OnTMWPGjFcTDIDoJP3EKy58E+KPb9abZuFSHuWGrwIACFUGnh1ag5SrRyHUmbDxbQiX9u9BYVfG6PqFWoW4YxuQeus0VPFPIFfawdqnHpwDB8PCwfV/68xE7L6lSIn4Bwq7MnBpPxo2lerr1hF/YjvUCdFwaTeqEPe8cJyKVOPbfzNQ1/O/NpLkDIH2G5NRz1OBQwNtAQDTDqfjrc0p+CfEDvJczoH5xzOw8nQm1ne1Ri0PBU4/UmPIzlQ4WQPjGitxIUqNzw+nY3dfWwgBdN6cgvZ+FqjjqYBKIzBqTxpWd7aBhdzI+oUaSHoKOHrnuT/BwcFYu3at3jR3d/d8lgoRUf6xpZmI9Dx+/Fj3Wrx4MRwdHfWmTZw4UTevEAIqleqlxmOspdnSrSLKj9mge3n1m6/727M/vkPqzZNw6/oJPPvOgyopFtG/zs11/UKVjownt+DUpDe8By2Be9epyHwWiehfvtDNk3h+HzKe3IRX/4WwrxeMmF0LdK2rmXFPkHR+P5xbDCzEvS4cSRkC/X5JxXdv2aCM9X+J6vEHatyNE1jX1QZ1PBWo46nA+q42OP1Ig0N3cm/t/euBGm9Xs0Anf0tUcpajZ01LtPezwMnIrBbqazEa1PVUoLWvBdpUtkBdTzmuxWT9bcHxDLSoaIHXyynyCPiJyX1SKpXw8vLSey1ZsgR16tSBnZ0dKlSogNGjRyMpKfcHSM+fP49WrVrBwcEBjo6OCAgIwOnTp3V/Dw8PR/PmzWFjY4MKFSpg3LhxSE5ONhkbEZVsTJqJSE/2ZMTJyQkymUz3/tq1a3BwcMDevXsREBAApVKJ8PBwDB48GF27dtVbz/jx49GyZUvde41Gg9DQUPj6+sLGxgb16tXDtm3bTMYTl5JpOFGugMK+zH8vW6esbaQnI+nCQZRpPQw2PvWg9KoCt47jkR55FemR14yuX660g2fv2bCr0RyWruWhLFcdLu1GIePJTagSngIAMmMfwKZKY1i5+8ChYSdoUuKhSc0aO/rZgRUo03Iw5EpbM0r31Rrzexo6VbVA28r6NxXTVQIyAMps+au1BSCXAeH3c/8S1KSCAn/cUeFGbFZiff6JGuH31ehQJWv9dTzkuBGrxv14De7FaXAjVoPaHnLceqbB2nOZmN1amXfAmakF2k+5XI6lS5fi8uXLWL9+PQ4dOoRJkyblOn+/fv1Qvnx5nDp1Cv/++y8++eQTWFpaAgBu3bqF4OBg9OjRAxcuXMCWLVsQHh6OsWPHFig2Iio52D2DiPLtk08+wcKFC1G5cmWUKWO820NOoaGh2LhxI1atWoWqVavi6NGj6N+/P9zd3REYGJjrcmoj/V9Vzx/h4TcDIVNYwqpcdZQJHAQLRw+kP7kJaFR6XScsXStA4eiO9EfXoCxX3axYNekpAGSQK+0BAFYevki+dBiazHSk3TkDhb0L5DaOSLp8GDILK9j6NzFrva/ST5cyceaxGqeG2xn87Y3yCthZAZPD0jG3jRJCAJ+EpUEtgMeJuf+c9SfNrJCQLlB9eTIUckCtAea0VqJf3ayEs4a7AnPbWKPdhhQAQGgba9RwV6Dtj8n4sp0S+2+pMONIOiwVwJJga7TwyXEJUhv5gpTD7t27YW9vr3vfoUMHbN26Vfe+UqVKmD17NkaNGoUVK1YYXcf9+/fx8ccfo3r1rPOhatWqur+FhoaiX79+GD9+vO5vS5cuRWBgIFauXAlra2uTMRJRycSkmYjybdasWWjXrp3Z86enp2Pu3LkICwvDm2++CQCoXLkywsPD8e233+adNAv9JE7pXQ2uHT+EpUs5qJOeIf74ZjzZNBllh34DTfJzQGEBubW93jIKO2eok5+bFatQZSDuyFrY1myhaz22r9MOGU/v4tGa0VDYOMLt7cnQpCUhPnwTPPuE4vnRDUi5ehQWzl5w7fgBLBzczC6bl+FBvAYf7EvDwQG2sLYw7D/sbifH1nds8d6eVCw9kQG5DOhTxxINveUw1t1Y6+fLKmy6mIn/62GDWu5ynHuixvj96SjrIMOg+lYAgFGvWWHUa1a6Zdafy4CDUoY3yytQbXkSTg23w8MEgd7bUnHnA3sos8enMZ00t2rVCitXrtS9t7OzQ1hYGEJDQ3Ht2jUkJCRApVIhLS0NKSkpsLU1vAPw0UcfISQkBBs2bEDbtm3xzjvvwM/PD0BW140LFy5g06ZNuvmFENBoNLhz5w5q1KhhMkYiKpmYNBNRvr322mv5mv/mzZtISUkxSLQzMjLQoEGDfK3Lxi/btj18oSxbDQ9XDkXytXDILa1yX9AMQq1C9M55AADX9mN002UKC7i2f09v3pg9i+EQ8BYyom4jNeJveA9ZhoQT2/E8bDXcu019sThE3g9jmvLvYzWeJgs0/Pa/frhqARy9p8bykxlI/8wB7f0scGucA2JSNLCQy+BsLYPXwkRUrpV7r72PD6bhk6ZK9K6d1bJcx1OBe/ECoeEZuqQ5u5gUDWb+mY6jQ+xwIlINf1c5qroqUNUVyNQAN2I1qOOZvY+z6f22s7NDlSpVdO/v3r2Lzp0747333sOcOXPg4uKC8PBwDBs2DBkZGUaT5hkzZqBv377Ys2cP9u7di+nTp+Onn35Ct27dkJSUhJEjR2LcuHEGy1WsWNFkfERUcjFpJqJ8s7PTv+Uvl8v1hh0DgMzM/1oNtQ9l7dmzB+XKldObT6nMu5+r0ZEWsm/b2h6WLuWginsE60oNALUKmrQkvdZmdXJcrqNnaGkTZlX8U3j2mZtnH+W0exeQGXsPrh3ex/PDP8Cm8muQW1nDtnozRP3f7jy3Yw71Cz5u0sbXAhff0z9GQ3amorqbApObWkGRrUzdbLO2deiOCk+TBbpUy/2ykJIJg5ZohQwwNoIcAHy4Px0fvqFEeUc5TkWqkf3X0FUaAXXO5eR5PCSYi3///RcajQZfffUV5PKsffn5559NLufv7w9/f398+OGH6NOnD9auXYtu3bqhYcOGuHLlil5iTkQEMGkmokLg7u6OS5cu6U07d+6c7uGqmjVrQqlU4v79+3l2xTDGQpF30qzJSIUq7jEUdq2g9KoCyC2Qeu887Ko1BQBkxj6EOiEayrK592fWJczPH8GzTygUNo65z6vKwLODK+H21kTI5ApAaCC0yaBGDSHyHuvYHHmPVmyag1KG2h76CaidpQyuNv9NX3s2AzXc5XC3lePvhyp8sC8dH75hhWpu/y3X5sdkdKtuibGNslqR3/K3wJxj6ajoJEMtDwXOPlbj638yMLS+pUEMB29lPTC4vmtWH+DXyylwLUaDvRGZeJAgoJDJUM01x5cDef4vSVWqVEFmZiaWLVuGt956C8ePH8eqVatynT81NRUff/wxevbsCV9fXzx8+BCnTp1Cjx49AACTJ0/GG2+8gbFjxyIkJAR2dna4cuUKDh48iOXLl+c7PiIqOZg0E9ELa926NRYsWIAff/wRb775JjZu3IhLly7pul44ODhg4sSJ+PDDD6HRaNCsWTPEx8fj+PHjcHR0xKBBg3Jdt62lfjX1/NAa2FRpBAsnD6gSnyE+fBMgk8OuZiDkSjvY122H54e+h8LaATKlLZ4fXAVl2ep6DwFGfjcKZQIHwta/SVbCvCMUGVG34NHzc0CjgTopq/+z3MYeMoV+Qhj310+wqfwarDyz+sAqy9XE8yM/wL5OWySe2Q3rci/e51UtXv7ARtdjNZjyRzqepQpUcpbj0+ZW+PAN/S4Wt55pEJPy35eAZR2sMe1wOkb/noanyQJlHWQYGWCJzwP17xakZgqM3ZuGLT1tdGM+l3eUY1kHawzZmQalBbC+qzVsLHN8IbIx76HS7OrVq4evv/4a8+fPx5QpU9CiRQuEhoZi4EDjQwAqFArExsZi4MCBiIqKgpubG7p3746ZM2cCAOrWrYs///wTn376KZo3bw4hBPz8/PDuu+/mOzYiKllkIuc9VSKi/1m3bh3Gjx+PuLg4AMCRI0fQqlUrPH/+3OBniadPn45vv/0WaWlpGDp0KDIzM3Hx4kUcOXIEQNbDVEuXLsXKlStx+/ZtODs7o2HDhpg6dSpatGiRawwD1pzAsYgY3fvonfOR/vAy1KkJUNg4QVm+JpxbDIRlmawfxfjvx03+hFBnwtq3IVzbjYbC/r+E7N78znDtOB72ddpCFR+FyFXDjG7bs89cWFesq3ufEX0X0b/OgffgZZBbWf9vvzR4dnAVki8fgaVrObi99TEsy5Q1u4yNGVX+Hj6JmfJC6yiWPr4F2En7ECURUW6YNBNRkTbh5/PYfuah1GG8UiHlH+CzmMlSh/FqyS2AaTGAiV+kJCKSCn/chIiKNC8nEz+IUQKpX7xbdPFj586EmYiKNCbNRFSkeTmWvh+TUCP/o0gUe/YeUkdARJQnJs1EVKR5lMKkWfWC4zQXS/ZeUkdARJQnJs1EVKSVL2MjdQivXKlMmt2rSR0BEVGemDQTUZHm7+kAK4vSVVWpS2PS7F1P6giIiPJUuq5ERFTsWCrkqOGd+4+NlEQqM35OusRh0kxERRyTZiIq8uqWc5I6hFdKrSllVbOVA+DKn60moqKtlNXMRFQc1S1fypJmqQN41bxqc7g5IirymDQTUZFXt7yz1CG8UqpX8DPaRYp3fakjICIyqZTVzERUHFXxsIeTjaXUYbwymZpS1urq11rqCIiITGLSTERFnkIuQ+vqpefHL9Sl6UFAS1vAt4XUURARmcSkmYiKhXY1PaUO4ZUpVeM0+wYClqXvB2yIqPhh0kxExUKgv3upGa9ZVZq6Z/gHSR0BEZFZSscViIiKPTulBZr4uUodxiuhLk1Vs3+w1BEQEZmlFNXMRFTcta/pJXUIr0SmRuoIXpFyAYCjt9RREBGZhUkzERUbwbW9YKUo+dVWqRlyLmCw1BEQEZmtlNTMRFQSuNhZIah2yW9tVgupI3gFlE5A7Z5SR0FEZDYmzURUrPRrXFHqEF66UtHSXO9dwMpW6iiIiMxWCmpmIipJ3qjsiupeDlKH8VJllIbRM14bKnUERET5wqSZiIqdoU19pQ7hpVKX9HGaK74JeNSQOgoionxh0kxExc7bDcrCzV4pdRgvTYn/cZNmH0kdARFRvjFpJqJiR2mhwLg2VaQO46XJLMkPAlZ8E/BvL3UURET5xqSZiIqlPo0qopJryXyQLLMkPwjY5nOpIyAiKpASXDMTUUlmqZDj46DqUofxUqhL6o+bVGkL+DSROgoiogJh0kxExVanut6oV8FZ6jAKXWaJ7NMsYyszERVrTJqJqFib0qHktTarS2L3jHq9Ae96UkdBRFRgJbBmJqLS5I3Kruhav6zUYRQ6IStB1bO9JxA0V+ooiIheSAmqlYmotJrZpTY8HUvYEHQyhdQRFJ5OXwG2LlJHQUT0Qpg0E1Gx52RriXk96kodRuEqKS3NNbsCNd6SOgoiohdWQmplIirtWlXzwLuvVZA6jMIjLwEtzbauQMeFUkdBRFQomDQTUYkx7a2aKOdsI3UYhUNWAkbQ6LwYsHeXOgoiokLBpJmISgx7pQW+6dcQSosSULUV9z7NzScCNbtIHQURUaEpAVcWIqL/1K/gjC97Fv/+zaI4J83+wUDrz6SOgoioUDFpJqIS5+365TC2VRWpw3gxxfVBQNeqQPfvSkb3EiKibIpprUxElLcJ7f0RXMtL6jAKrjgmzUonoM9mwNpR6kiIiApdMayViYhMk8lk+PrdeqhdrngmcMXux00sbIDemwC3qlJHQkT0UhSzWpmIyHy2Vhb4cWhjVPdykDqU/CtOfZoVVsC7GwDf5lJHQkT00jBpJqISzcXOCptCGqOqh73UoeSLKC59guWWQM+1QNV2UkdCRPRSMWkmohLP1V6Jn0a8gRrexairRnFoada2MNfoLHUkREQvHZNmIioVXO2V+Gn4G6hfwVnqUMxS5Ps0Kx2BPj8B1TpIHQkR0StRxGtlIqLC42Rric3D30Dnut5Sh2JSkU6ay1QChh0EqrSROhIiolemCNfKRESFz8ZKgeV9G2JycHXIi3K34aLaPcOnGTD8MOBRXepIiIheKSbNRFQqvdfSD2sGvw5HawupQzFKFMXqueFAYOAOwNZF6kiIiF65IlgrExG9Gq2qeWDn2Gbw9yx6I2sUqe4ZVvZA58VAl2WAwlLqaIiIJFGEamUiolfP180Ou95vhvda+kFRhPprFJmk2acZ8N5x4LUhUkdCRCSpIlIrExFJR2mhwOTg6tgxummR+SEUyZNmCxsgKBQYvDvrwT8iolKOSTMR0f/UKe+EXe83w/i2VWGpkLbVWdI+zT5NgVHHgDdHA8XlR1aIiF4ymRBCSB0EEVFRc/NpEr4+eB17Lz2BFLXkpQoLYB999tVu1L060HYGx14mIjKCSTMRUR4uPozHggPXcfRG9KvdbsWv4fD09KvZmIM30HIK0KA/IC+iQ90REUmMSTMRkRlO3I7FwgPXceru81eyvQsVF8Hx6amXuxHHckCj4UCjkYCV7cvdFhFRMcekmYgoH87cf471f93F3otPkKHWvLTtnPdZCqeof17Oyn2aAo1GANU7A4qiOU41EVFRw6SZiKgAohPT8cuZh/j59APcik4u9PWfq7QMzk/+LrwVWjkAtbtnJctetQtvvUREpQSTZiKiF3TuQRz+uBqFQ9ee4vKjhEJZ59lK36DMk+MvthI7d6Bax6wW5cqBgIWyUGIjIiqNmDQTERWiqIQ0HL72FIeuPcVft2KRlK4q0HrOVFoJlyfH8reQQgl41QF83sxKlMs3AuQcWZSIqDAwaSYiekmEELgbm4IrjxJw+VE8rjxOwJVHCXiamG5y2X99v4Xr4z9zn8HSDijjA5RtAJRrCJQLADxr82euiYheEibNRESvWEJaJmIS0xGTlIGYpPSsV2I64lMzoRGARgi87/gnvDIeAhZWWQmyozfgWBZwKJv1r42z1LtBRFSqMGkmIiIiIjKBnd2IiIiIiExg0kxEREREZAKTZiIiIiIiE5g0ExERERGZwKSZiIiIiMgEJs1ERERERCYwaSYiIiIiMoFJMxERERGRCUyaiYiIiIhMYNJMRERERGQCk2YiIiIiIhOYNBMRERERmcCkmYiIiIjIBCbNREREREQmMGkmIiIiIjKBSTMRERERkQlMmomIiIiITGDSTERERERkApNmIiIiIiITmDQTEREREZnApJmIiIiIyAQmzUREREREJjBpJiIiIiIygUkzEREREZEJ/w9/GdiTJUDbHgAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from imblearn.over_sampling import ADASYN\n",
"\n",
"# Создание экземпляра ADASYN\n",
"ada = ADASYN()\n",
"\n",
"# Применение ADASYN\n",
"X_resampled, y_resampled = ada.fit_resample(train_data.drop(columns=['hazardous']), train_data['hazardous'])\n",
"\n",
"# Создание нового DataFrame\n",
"df_train_adasyn = pd.DataFrame(X_resampled)\n",
"df_train_adasyn['hazardous'] = y_resampled # Добавление целевой переменной\n",
"\n",
"# Вывод информации о новой выборке\n",
"print(\"Обучающая выборка после оверсемплинга: \", df_train_adasyn.shape)\n",
"print(df_train_adasyn['hazardous'].value_counts())\n",
"hazardous_counts = df_train_adasyn['hazardous'].value_counts()\n",
"plt.figure(figsize=(2, 2))\n",
"plt.pie(hazardous_counts, labels=hazardous_counts.index, autopct='%1.1f%%', startangle=90)\n",
"plt.title('Распределение классов hazardous в обучающей выборке после оверсемплинга')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Аугментация данных методом андерсемплинга\n",
"\n",
"Проведём также приращение данных методом выборки с недостатком (андерсемплинг). Этот метод помогает сбалансировать выборку, уменьшая количество экземпляров класса большинства, чтобы привести его в соответствие с классом меньшинства."
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Обучающая выборка после андерсемплинга: (12372, 7)\n",
"hazardous\n",
"False 6186\n",
"True 6186\n",
"Name: count, dtype: int64\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtoAAADECAYAAAChrYbxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABC5ElEQVR4nO3deXwM5x8H8M/uRjZ3InK6I0HqJkWpiNYRV1NHaZ11BC2qlKqjjrhCaVGK6kGKn2pQV+sK6j6r7itIHEEkInc2ye4+vz/S3Wazm2RzWYnP+/XaFzuZ4zvPzDzz3ZlnnpEIIQSIiIiIiKhYSU0dABERERFRWcREm4iIiIioBDDRJiIiIiIqAUy0iYiIiIhKABNtIiIiIqISwESbiIiIiKgEMNEmIiIiIioBTLSJiIiIiEqAmakDICJ6FWRkZCAuLg5qtRoVK1Y0dThUjBQKBeLi4mBmZgYXFxdTh0NELxFe0SZ6CQwaNAg2NjamDqPYzJw5ExKJxNRhmNy5c+fQt29fODk5QS6Xw93dHT179jR1WKXG8uXLER8fr/2+ZMkSpKSkmC6gbMLCwhAQEAAHBwdYWlqiUqVK+PTTT00dFhG9ZAp0RXvt2rUYPHiw9rtcLkfVqlXRoUMHTJs2Da6ursUeIBFRabR9+3a8//778Pb2xty5c+Hp6QkAvOJZADt37sTt27cxfvx4HDlyBNOmTcOYMWNMHRZWrFiBTz75BK1atcLSpUtRqVIlAEC1atVMHBkRvWwK1XRk1qxZ8PDwgEKhwLFjx7By5Ur8+eefuHLlCqysrIo7RiKiUiUuLg6BgYHw9/dHaGgozM3NTR1SqTRlyhQEBARg6dKlkEql+PrrryGVmvZGbHh4OD777DMMHz4cK1as4J0bIspToRLtTp064fXXXwcABAYGokKFCvjmm2+wfft29OnTp1gDJKKXj1KphFqtZgKZizVr1kChUGDt2rUsoyLw8/PDvXv3cP36dVSpUgWVK1c2dUj49ttv4ebmhm+//ZZJNhHlq1guDbz99tsAgIiICABZV3MmTJiA+vXrw8bGBnZ2dujUqRMuXryoN61CocDMmTNRq1YtWFhYwN3dHT169MCdO3cAAJGRkZBIJLl+2rRpo53XX3/9BYlEgk2bNmHKlClwc3ODtbU1AgIC8ODBA71lnz59Gh07doS9vT2srKzg5+eH48ePG1zHNm3aGFz+zJkz9cZdv349fHx8YGlpCUdHR3zwwQcGl5/XumWnVquxZMkS1K1bFxYWFnB1dcWIESPw/PlznfGqV6+Orl276i1n9OjRevM0FPvChQv1yhQA0tPTMWPGDHh5eUEul6NKlSqYOHEi0tPTDZZVdm3atNGb39y5cyGVSvG///2vUOWxaNEitGzZEhUqVIClpSV8fHywefNmg8tfv349mjVrBisrK5QvXx6tW7fGvn37dMbZvXs3/Pz8YGtrCzs7OzRt2lQvttDQUO02dXJyQv/+/REVFaUzzqBBg3RiLl++PNq0aYOjR4/mW04aUVFR6NatG2xsbODs7IwJEyZApVIVeP1zxmJon83IyMD06dPh4+MDe3t7WFtbw9fXF4cOHdKZl2a7LFq0CEuWLIGnpyfkcjmuXbsGADh27BiaNm0KCwsLeHp64vvvvze4bkqlErNnz9ZOX716dUyZMkVvP8rtuKpevToGDRqk/Z6ZmYmgoCDUrFkTFhYWqFChAlq1aoX9+/fnWcZr167VKQ8rKyvUr18fP/74Y57Tady9exe9evWCo6MjrKys8MYbb+CPP/7QGefUqVNo1KgR5s2bhypVqkAul6NmzZqYP38+1Gq1djw/Pz80bNjQ4HJq164Nf39/nZgjIyN1xsl5fBm7TQH9cn7y5AkGDhwIZ2dnyOVy1KtXDz/88IPONNn3hezq1aund5wvWrTIYMxRUVEYMmQIXF1dIZfLUbduXfz8888642jq8r/++gsODg5o0aIFKleujC5duuS6fxiaXvORy+WoVasWgoODIYTQjqd5liA2NjbXeeXc706dOgUfHx+MHDlSuw6GygoAUlJSMH78eO0+ULt2bSxatEgnBiBrW4wePRobNmxA7dq1YWFhAR8fHxw5ckRnPEPPPhw6dAhyuRwfffSRznBjyjk3eZ1zq1evXqh1BIyrj3Nuu9yWW5Tz0tGjR9GrVy9UrVpVO+24ceOQlpamM15uz85s3rxZu38aW3Y5xzU2fmP3DSBrmw8dOhQVK1aEXC6Hh4cHPv74Y2RkZGjHiY+Px9ixY7Xby8vLCwsWLNCpl7Kfi7dt26azDIVCgfLly+vVA5p9M7fP2rVrjS6r7HWGsbmKZr8xlAvY2NjoHMM5zwHZPw8fPgQAXLp0CYMGDUKNGjVgYWEBNzc3DBkyBM+ePdObf36KpdcRTVJcoUIFAFknom3btqFXr17w8PBAdHQ0vv/+e/j5+eHatWvaJ+5VKhW6du2KAwcO4IMPPsCnn36KpKQk7N+/H1euXNG2aQSAPn36oHPnzjrLnTx5ssF45s6dC4lEgi+++AJPnz7FkiVL0K5dO1y4cAGWlpYAgIMHD6JTp07w8fHBjBkzIJVKsWbNGrz99ts4evQomjVrpjffypUrIzg4GACQnJyMjz/+2OCyp02bht69eyMwMBAxMTFYtmwZWrdujX/++QcODg560wwfPhy+vr4AgK1bt+L333/X+fuIESO07ePHjBmDiIgILF++HP/88w+OHz+OcuXKGSyHgoiPj9euW3ZqtRoBAQE4duwYhg8fjtdeew2XL1/G4sWLcevWLb2DMD9r1qzBl19+ia+//hp9+/Y1OE5+5bF06VIEBASgX79+yMjIwK+//opevXph165d6NKli3a8oKAgzJw5Ey1btsSsWbNgbm6O06dP4+DBg+jQoQOArANuyJAhqFu3LiZPngwHBwf8888/2LNnjzY+Tdk3bdoUwcHBiI6OxtKlS3H8+HG9berk5ITFixcDAB4+fIilS5eic+fOePDggcFtn51KpYK/vz+aN2+ORYsWISwsDF9//TU8PT119jVj1n/EiBFo166dzvz37NmDDRs2aNsIJyYm4scff0SfPn0wbNgwJCUl4aeffoK/vz/OnDmDRo0a6W07hUKB4cOHQy6Xw9HREZcvX0aHDh3g7OyMmTNnQqlUYsaMGQaf1wgMDERISAjee+89jB8/HqdPn0ZwcDCuX7+ut42NMXPmTAQHByMwMBDNmjVDYmIizp07h/Pnz6N9+/b5Tr948WI4OTkhMTERP//8M4YNG4bq1avrlVt20dHRaNmyJVJTUzFmzBhUqFABISEhCAgIwObNm9G9e3cAwLNnz3Ds2DEcO3YMQ4YMgY+PDw4cOIDJkycjMjISq1atAgAMGDAAw4YNw5UrV1CvXj3tcs6ePYtbt27hyy+/LFCZFHSbamRkZKBdu3a4ceMGPv74Y9SuXRvbtm3D8OHD8ezZM0yaNKlAceQmOjoab7zxhjZ5cHZ2xu7duzF06FAkJiZi7NixuU575MgR/PnnnwVa3pQpU/Daa68hLS1NewHGxcUFQ4cOLfQ6PHv2DOfOnYOZmRlGjRoFT09Pg2UlhEBAQAAOHTqEoUOHolGjRti7dy8+//xzREVFaesJjcOHD2PTpk0YM2YM5HI5VqxYgY4dO+LMmTM6+0Z2Fy9eRLdu3dC5c2d899132uFFKWeN9u3bY+DAgTrDvv76a50LPAVZR2Pq4+w02w4AVq9ejfv372v/VtTzUmhoKFJTU/Hxxx+jQoUKOHPmDJYtW4aHDx8iNDQ037LJT/ayO3v2LL799ludvxc0fmP2jUePHqFZs2aIj4/H8OHD4e3tjaioKGzevBmpqakwNzdHamoq/Pz8EBUVhREjRqBq1ao4ceIEJk+ejMePH2PJkiU6y7WwsMCaNWvQrVs37bCtW7dCoVDkuu4rV67U+XESERGB6dOn5zp+9+7d0aNHDwBZP4BWr16d67hA7rlKYWiaQWfn6OgIANi/fz/u3r2LwYMHw83NDVevXsXq1atx9epVnDp1qmB3s0QBrFmzRgAQYWFhIiYmRjx48ED8+uuvokKFCsLS0lI8fPhQCCGEQqEQKpVKZ9qIiAghl8vFrFmztMN+/vlnAUB88803estSq9Xa6QCIhQsX6o1Tt25d4efnp/1+6NAhAUBUqlRJJCYmaof/9ttvAoBYunSpdt41a9YU/v7+2uUIIURqaqrw8PAQ7du311tWy5YtRb169bTfY2JiBAAxY8YM7bDIyEghk8nE3Llzdaa9fPmyMDMz0xseHh4uAIiQkBDtsBkzZojsm+Xo0aMCgNiwYYPOtHv27NEbXq1aNdGlSxe92EeNGiVybuqcsU+cOFG4uLgIHx8fnTJdt26dkEql4ujRozrTr1q1SgAQx48f11tedn5+ftr5/fHHH8LMzEyMHz/e4LjGlIcQWdspu4yMDFGvXj3x9ttv68xLKpWK7t276+2Lmm0eHx8vbG1tRfPmzUVaWprBcTIyMoSLi4uoV6+ezji7du0SAMT06dO1wz788ENRrVo1nfmsXr1aABBnzpwxuM7ZpwWgc3wIIUTjxo2Fj49Pgdc/p/DwcGFvby/at28vlEqlEEIIpVIp0tPTdcZ7/vy5cHV1FUOGDNEO0xyDdnZ24unTpzrjd+vWTVhYWIh79+5ph127dk3IZDKd7XbhwgUBQAQGBupMP2HCBAFAHDx4UDss576pUa1aNfHhhx9qvzds2NDg/p4fTT0WERGhHXbr1i0BQHz11Vd5Tjt27FgBQOd4SEpKEh4eHqJ69erafc3Pz08AEDNnztSZftCgQQKAuHz5shAiax+0sLAQX3zxhc54Y8aMEdbW1iI5OVkIIURISIgAIO7evaszXvbjSwjjt6kQuuW8bNkyAUCsWrVKZ15t27YVcrlcxMbGCiFyr49z1sVCCLFw4UK9ch46dKhwd3fXzk/jgw8+EPb29tp9W1OXHzp0SDtO8+bNRadOnXLdP7IzNL1CoRBSqVSMHDlSO0xTv8TExOQ6r5z7XbVq1QQAsXbtWu0wQ2W1bds2AUDMmTNHZ37vvfeekEgk4vbt29phAAQAce7cOe2we/fuCQsLC9G9e3e9eIXIOt+4u7uLVq1a6dVfxpZzbgCIUaNG6Q3v0qWLTh1n7DoaUx9r7N+/XwAQhw8f1g7LWbcW9bxkaP2Dg4OFRCLRqcs+/PBDYW1trTduaGio3v4lRFZdDECMHj06z3ELEr+x+8bAgQOFVCoVZ8+e1YtXU8azZ88W1tbW4tatWzp/nzRpkpDJZOL+/ftCiP+O8z59+ggzMzPx5MkT7bht27YVffv21asHcjuWzp49KwCINWvW6AzPzMwUAERQUJB2mKG62dhcRXPMh4aG6q2/tbW1zjGsWY6hstIwtI9s3LhRABBHjhzJdTpDCtV0pF27dnB2dkaVKlXwwQcfwMbGBr///rv2yWu5XK59YEWlUuHZs2ewsbFB7dq1cf78ee18tmzZAicnJ3zyySd6yyhK27eBAwfC1tZW+/29996Du7u79mrIhQsXEB4ejr59++LZs2eIjY1FbGwsUlJS0LZtWxw5ckTnNgqQdbvEwsIiz+Vu3boVarUavXv31s4zNjYWbm5uqFmzpt7tW83tHLlcnus8Q0NDYW9vj/bt2+vM08fHBzY2NnrzzMzM1BkvNjY2z1+fQNbtpmXLlmHatGl6t8lCQ0Px2muvwdvbW2eemuZChm5JG3LmzBn07t0bPXv2xMKFCw2OY0x5ANDelQCA58+fIyEhAb6+vjr71rZt26BWqzF9+nS9h6c0+9b+/fuRlJSESZMm6W1bzTjnzp3D06dPMXLkSJ1xunTpAm9vb70mA2q1WltGFy5cwC+//AJ3d3ftlZn85Lz96+vri7t37xZ4/bNLSUlB9+7dUb58eWzcuBEymQwAIJPJtO2H1Wo14uLioFQq8frrrxucV8+ePeHs7Kz9rlKpsHfvXnTr1g1Vq1bVDn/ttde0TR40NMfeZ599pjN8/PjxAKBXjsZwcHDA1atXER4eXuBpgayyi42Nxd27d7F48WLIZDL4+fnlOc2ff/6JZs2aoVWrVtphNjY2GD58OCIjI7XNaYCs8h03bpzO9DnX197eHu+++y42btyovdWuUqmwadMmdOvWDdbW1gD+66lEc1szNwXdpqmpqYiNjcXOnTthb2+PIUOG6Mxr7NixSE9PR1hYWJ7LNYYQAlu2bME777wDIYROfeLv74+EhIRc9+GtW7fi7NmzmD9/foGWmZCQgNjYWNy/fx9fffUV1Gq1tu7KLi4uTnsOMIarqysGDBig/W6orP7880/IZDK9XlLGjx8PIQR2796tM7xFixbw8fHRfq9atSreffdd7N27V6/52LNnz+Dv7w9bW1vs2LFDp24qSjkXlLHraEx9rGHsebEo56XsdWhKSgpiY2PRsmVLCCHwzz//6I2f85yalJRkcL6ac21+uUJB489v31Cr1di2bRveeecd7fNz2WnKODQ0FL6+vihfvrzOctu1aweVSqXXHKVJkyaoW7cu1q1bBwC4d+8eDh06pNMMo7CMPd9nl1euopGUlKS3vQoj+z6iUCgQGxuLN954AwAKfPwUqunId999h1q1asHMzAyurq6oXbu2zsGjVquxdOlSrFixAhERETqVhKZ5CZDV5KR27dowMyve9+bUrFlT57tEIoGXl5e23Y/mxPzhhx/mOo+EhASUL19e+z02NlZvvjmFh4dDCJHreDmbeGj6h82r/+Tw8HAkJCTk2iXY06dPdb7v27dPJxkyxowZM1CxYkWMGDFCr31TeHg4rl+/nus8cy7fkKioKHTp0gUpKSl49uxZrj+ijCkPANi1axfmzJmDCxcu6LRnyz7fO3fuQCqVok6dOrnOR9PkKbfbskBWxQJktZfNydvbG8eOHdMZ9uDBA52ycnd3x5YtW4zqI9vCwkKvnMuXL6/XFt+Y9c9u2LBhuHPnDk6cOKFz/AFASEgIvv76a9y4cQOZmZna4TlvpxkaFhMTg7S0NIP7e+3atXVu89+7dw9SqRReXl4647m5ucHBwUFbzgUxa9YsvPvuu6hVqxbq1auHjh07YsCAAWjQoIFR0zdp0kT7f7lcjuXLlxtsMpbdvXv30Lx5c73hmh9S9+7dQ7169SCRSFCxYkXY2dnpjKepK7O3QRw4cCA2bdqEo0ePonXr1ggLC0N0dLROIte4cWNYWFggKCgIK1eu1NZNmZmZevVKQbbpwoULtT98GzdurDcvzXrlbGddGDExMYiPj8fq1atzvT1sqD5RqVSYMmUK+vXrZ/S21ch+y1sqleLLL7802I959uPbxcUFw4YNQ1BQkPZHaXYSiQS1atXSSxhzltW9e/dQsWJFnYs+2cfLuc8bOo5q1aqF1NRUxMTEwM3NTTu8a9euuHnzJlxcXPTaQhe2nAvD2HU0pj7WMPa8WJTz0v379zF9+nTs2LFDr35NSEjQ+Z6SkmL0OVWT1Nnb2+c5XkHjz2/fkEgkSExMzPNcplnupUuXClRugwcPxurVqzFhwgSsXbsWLVu2zDcXMoax5/vs8spVNLJfLCiKuLg4BAUF4ddff9Url5z7SH4KleE2a9bM4K8mjXnz5mHatGkYMmQIZs+eDUdHR0ilUowdO1bvSrEpaGJYuHBhrm0Ws2/8jIwMPH78ON92n2q1GhKJBLt37zZYQefcoZ48eQIAOhWooXm6uLhgw4YNBv+e84Bp3rw55syZozNs+fLl2L59u8Hpr1+/jrVr12L9+vUG23qr1WrUr18f33zzjcHpq1SpkmvsGrdv30aTJk2wePFiDBgwACEhIQZ/5BhTHkePHkVAQABat26NFStWwN3dHeXKlcOaNWv0HmA0BVdXV6xfvx5A1sH4888/o2PHjjh27Bjq16+f57SG9pmcCrr+S5cuxcaNG7F+/Xq9fX39+vUYNGgQunXrhs8//xwuLi6QyWQIDg7W/gjJLvsv/MIqyp2qnFf1WrdujTt37mD79u3Yt28ffvzxRyxevBirVq1CYGBgvvNbv349XF1doVAocPDgQYwaNQoWFhbFcrWmIGXl7++v3W9at26N9evXw83NTaetuKurK5YtW4ZRo0ahVq1aOtNnvwpf0G06YMAADBw40ODzJsVNU+/2798/14schhLpn376CZGRkdi7d2+Bl7lo0SI0bNgQmZmZOHv2LObMmQMzMzPMmDFDZ7wtW7bAzs4Oqamp+P333zF37lzY2dlh4sSJevMsjuOgqG7cuIHdu3ejd+/eGD9+PNasWaP9W2HL+WVh7HmxsOcllUqF9u3bIy4uDl988QW8vb1hbW2NqKgoDBo0SC9HsbCwwM6dO3WGHT16FLNmzdKbt+ZHVs4HN4sz/qJQq9Vo3769wf0agF7dAmTtRxMnTsSpU6cQEhJS4OdGcmPMds4uv1xFY/r06dpnvDTeeeedAsfXu3dvnDhxAp9//jkaNWoEGxsbqNVqdOzYscB5bIm8gn3z5s1466238NNPP+kMj4+Ph5OTk/a7p6cnTp8+bfCqTFHkvJUshMDt27e1lYvmIUs7O7s8H3zSuHjxIjIzM/P8caGZrxACHh4eBnfYnK5duwaJRGLwamn2eYaFheHNN980qoJ3cnLSW6e8HgyZPHkyGjVqhPfffz/X5V+8eBFt27YtdJKkabbj6uqK7du3Y/z48ejcubPejwRjymPLli2wsLDA3r17dW45ZT/RaOJWq9W4du1arj+mNPvBlStX9K60amheQHHz5k29W843b97Ue0GFhYWFTvkHBATA0dERy5cvz7U3joIwdv2BrJPBhAkTMHbsWPTr10/v75s3b0aNGjWwdetWnW2bMwnJjbOzMywtLQ023bh586bO92rVqkGtViM8PFynGU10dDTi4+N1yrF8+fI6bwME/vuxm5OjoyMGDx6MwYMHIzk5Ga1bt8bMmTONSrTffPNN7Qmxa9euuHr1KoKDg/NMtKtVq6a3bkBW4qP5O5B19Xjfvn1ISkrSudp369YtqNVqnROxTCZD3759sXbtWixYsADbtm3DsGHD9H54BQYGokePHrhy5Yr2tqumKYpGQbdpjRo10K5dO9SqVQvHjx/Xq4s165Vf4mAMZ2dn2NraQqVSGVXvAllNW4KCgjBy5MhCvQzGx8dH2zNBp06dEBUVhQULFmDatGk6V6Rbt26tPTcFBATg+PHj2LNnj8GExMPDA+fPn4dardaZR86yqlatGsLCwvT2gZz7ioah4+jWrVuwsrLSqyt37NgBX19fBAcHY/To0ejfvz/atm0LoHDlXFjGrqMx9bHGtWvX4OzsrHf3LbuinJcuX76MW7duISQkROdhz9x6K5LJZHrlmLN+0jh37hwAGJUrFCT+/PYNiUQCOzs7XLlyJd/lJicnF2i/qFChAgICAjBixAg8ffpU2zS2qDTN7IxtVplfrqJRv359vfUz5iJWds+fP8eBAwcQFBSk8yBnYZsplkjP/zKZTO92VmhoqF53aD179kRsbCyWL1+uN4+c0xfEL7/8otOGavPmzXj8+DE6deoEIKvy9fT0xKJFi5CcnKw3fUxMjF7sMpnMYNd52fXo0QMymQxBQUF68QshdLqFUSqV2LJlC5o1a5bnrZPevXtDpVJh9uzZen9TKpW5HvDGOHnyJLZv34758+fnerD37t0bUVFRBruuSktLM6pNY61atbS9UCxbtgxqtVrvVcXGlodMJoNEItG5uhkZGan3Y6Jbt26QSqWYNWuW3q9Pzbbp0KEDbG1tERwcrNeOXTPO66+/DhcXF6xatUqnmcbu3btx/fp1nV5ODMnIyIBSqTSqyyljGLv+jx8/Ru/evdGqVatc28RrKp/s++rp06dx8uRJo2Px9/fHtm3bdHoEuH79ut7VR02PQTmfatdc0clejp6ennptBVevXm2wnWp2NjY28PLyKnRZp6Wl5Ttt586dcebMGZ0ySklJwerVq1G9enXtrfHOnTtDpVLp1W2G1hfIurL8/PlzjBgxAsnJyejfv7/B5Ts6OqJ169Zo164d2rVrp9O8DSj8Nu3YsSMSEhJ0uuDSNAGUy+XFkrDJZDL07NkTW7ZsMZgQ5Kx3gaw7MikpKZg6dWqRlw9kbWOlUgmlUpnrOEIICCFyPTl37twZT548waZNm7TDDJVVbvvA4sWLIZFItOcjjZMnT+q0/Xzw4AG2b9+ODh066MWiuWI3cuRItGzZEiNGjNB2TVeYci4sY9fRmPoYyGpf++effxpsR59dUc5Lho4RIQSWLl2a5zKNsXnzZtSuXRve3t55jlfQ+PPbN6RSKbp164adO3dqk/3sNOvau3dvnDx50uDdofj4+FyPiyFDhuDSpUvo1atXgZp65GXTpk1GP79kTK5SnAztI4D++ctYJXJFu2vXrpg1axYGDx6Mli1b4vLly9iwYQNq1KihM97AgQPxyy+/4LPPPsOZM2fg6+uLlJQUhIWFYeTIkXj33XcLtXxHR0e0atUKgwcPRnR0NJYsWQIvLy8MGzYMQFZbvR9//BGdOnVC3bp1MXjwYFSqVAlRUVE4dOgQ7OzssHPnTqSkpOC7777Dt99+i1q1aun0g6lJ0C9duoSTJ0+iRYsW8PT0xJw5c7RdeHXr1g22traIiIjA77//juHDh2PChAkICwvDtGnTcOnSJb1bUjn5+flhxIgRCA4OxoULF9ChQweUK1cO4eHhCA0NxdKlS/Hee+8Vqpz27duH9u3b53kSHTBgAH777Td89NFHOHToEN58802oVCrcuHEDv/32G/bu3Zvvr/fs3NzcsHDhQgQGBqJ///7o3LlzgcqjS5cu+Oabb9CxY0f07dsXT58+xXfffQcvLy9cunRJO56XlxemTp2K2bNnw9fXFz169IBcLsfZs2dRsWJFBAcHw87ODosXL0ZgYCCaNm2Kvn37onz58rh48SJSU1MREhKCcuXKYcGCBRg8eDD8/PzQp08fbfd+1atX13vYLSUlRafpyLp166BQKLTdvhWVses/ZswYxMTEYOLEifj111915tGgQQM0aNAAXbt2xdatW9G9e3d06dIFERERWLVqFerUqWPwB6ghQUFB2LNnD3x9fTFy5EgolUosW7YMdevW1YmnYcOG+PDDD7F69WrEx8fDz88PZ86cQUhICLp164a33npLO25gYCA++ugj9OzZE+3bt8fFixexd+9enbthAFCnTh20adMGPj4+cHR0xLlz57B582aMHj3aqNi3bdsGJycnbdORo0eP5tvt2aRJk7Bx40Z06tQJY8aMgaOjI0JCQhAREYEtW7Zor3B27twZ7dq1w9SpUxEREYFGjRrh4MGD2LJlCz766CO9tpSNGzdGvXr1tA9JZW8/XhCF3aaBgYFYtWoVRo4cicuXL6N27drYvn079u/fj+DgYL2rizdv3sSePXu035OTkyGVSnWGaa78Hz58GHZ2dnB0dMT8+fNx6NAhNG/eHMOGDUOdOnUQFxeH8+fPIywsDHFxcTrL2bdvH+bOnZvn1c287N+/Hw8fPtQ2HdmwYQMCAgL0XiJ08OBBnaYjt2/fznVfGDp0KFauXIlBgwbh3Llz8PDwwLZt23DgwAHMnz9fG+s777yDt956C1OnTkVkZCQaNmyIffv2Yfv27Rg7dqxO97VA1rMi/v7+Ol24AVnHWG4kEgl+/PFHNGrUCDNmzMBXX30FAAUu58Iydh2NqY9/++03BAUF4fnz5/l2J1mU85K3tzc8PT0xYcIEREVFwc7ODlu2bNFrq10Qd+/exVdffYUzZ86gR48e2nMAkNW9H5C1L1atWhU1atQocPzG7Bvz5s3Dvn374Ofnp+0y8PHjxwgNDcWxY8fg4OCAzz//HDt27EDXrl0xaNAg+Pj4ICUlBZcvX8bmzZsRGRmpV88CWT/EY2JiiiXJPnfuHKZNm4Y9e/Zg1apVRiXOxuQqxcnOzg6tW7fGV199hczMTFSqVAn79u3TviumwArSRYkxXaIIkdWN0vjx44W7u7uwtLQUb775pjh58qReV1RCZHWhMnXqVOHh4SHKlSsn3NzcxHvvvSfu3LkjhChc934bN24UkydPFi4uLsLS0lJ06dJFp8sejX/++Uf06NFDVKhQQcjlclGtWjXRu3dvceDAAZ1l5/fJ3m2MEEJs2bJFtGrVSlhbWwtra2vh7e0tRo0aJW7evCmEEOKTTz4RrVu3Fnv27NGLyVB3dkJkdRPn4+MjLC0tha2trahfv76YOHGiePTokXacgnbvJ5FIxN9//60z3NA2ysjIEAsWLBB169YVcrlclC9fXvj4+IigoCCRkJCgt7z85ieEEG+//baoWrWqSEpKKnB5/PTTT6JmzZpCLpcLb29vsWbNmlzL7eeffxaNGzfWxu3n5yf279+vM86OHTtEy5YthaWlpbCzsxPNmjUTGzdu1Bln06ZN2vk4OjqKfv36abuz1NB00af52NjYiCZNmoh169blWUaaaQ11I1XY9dd0L2foo+kqSa1Wi3nz5olq1aoJuVwuGjduLHbt2qXXlVZex6AQQhw+fFj4+PgIc3NzUaNGDbFq1SqDcWdmZoqgoCDtsV6lShUxefJkoVAodMZTqVTiiy++EE5OTsLKykr4+/uL27dv63WzNmfOHNGsWTPh4OAgLC0thbe3t5g7d67IyMjIs6w19ZjmY25uLry8vMT06dP1YjHkzp074r333hMODg7CwsJCNGvWTOzatUtvvOTkZDFu3DhRsWJFUa5cOeHl5SXmz5+v172ZxldffSUAiHnz5uUbg0bO48vYbSqEfrdZ0dHRYvDgwcLJyUmYm5uLunXritWrV+tMY2ydmPOTvWuz6OhoMWrUKFGlShVtnd+2bVudZWnqcnd3d5GSkpJn3IZoptd8zMzMRLVq1cSYMWPE8+fPteNp9lPNx9LSUtSpU0csXrxYO07O/U4IIZ4+fSqGDBmiLat69eqJH374QS+OpKQknX2gZs2aYuHChXpd2uHf7vTWr1+vPbYbN26s131cbvVcUFCQMDMzE+fPn9cOM6acc6OJJ6ec3fsVZB2FyLs+7t69u+jUqZM4ffq03nSG9t+inJeuXbsm2rVrJ2xsbISTk5MYNmyYuHjxol43dMZ275ezTsntk33exsZv7L4hRFa3fwMHDhTOzs5CLpeLGjVqiFGjRul0+ZmUlCQmT54svLy8hLm5uXBychItW7YUixYt0tad+dX5hv5ubPd+CxYsEE2bNtXrsjh7Oebs3s+YXKW4u/d7+PCh6N69u3BwcBD29vaiV69e4tGjR0bVPzlJ/l2RMuGvv/7CW2+9hdDQ0EJf5c0uMjISHh4eiIiIyLWN4syZMxEZGWnwrUdERMZaunQpxo0bh8jISJ3uEku76tWrY+3atXpvjqT/SCQSjBo1ymAzSnr5rV27VpsL5KZNmzYYNGhQgR+25r5R+pVIG20iIjKeEAI//fQT/Pz8ylSSTUT0qiuRNtplhY2NDfr165dnu6QGDRpoXylPRFQQKSkp2LFjBw4dOoTLly/n2g1naebn56d9rTFRWeTp6Znvczjt27fXa5dPrwYm2nlwcnLSeajBkB49erygaIiorImJiUHfvn3h4OCAKVOmICAgwNQhFbuQkBBTh0BUonx9ffX6bs6puHrOodKnTLXRJiIiIiJ6WbCNNhERERFRCWCiTURERERUAphoExERERGVACbaREREREQlgIk2EREREVEJYKJNRERERFQCmGgTEREREZUAJtpERERERCWAiTYRERERUQlgok1EREREVAKYaBMRERERlQAm2kREREREJYCJNhERERFRCWCiTURERERUAphoExERERGVACbaREREREQlgIk2EREREVEJYKJNRERERFQCzEwdABERZVGq1IhJTkd0YjqeJioQnZSOmEQFktKVUKkFlGqBeWY/AVKzrI/cFrB1BWzdARs3wNYNsHEFZKzaiYheBhIhhDB1EEREr5r41AxcjkrA5agEXPn336jnaVDnUyNHWvTNewSJFLCvAlRsBLg3+u9fK8fiCZyIiIzGRJuI6AVIzVDiyK1YHLgejZN3n+Hh87RCzSffRDs3DlWB6q2B2h0Bz7cBc+vCzYeIiIzGRJuIqIREJyqw/1o0wq5H4+SdZ0hXqos8z0In2tmZWQAerYFaHYHanQE796LPk4iI9DDRJiIqRmq1wIEbT7Hu1D0cDY9BcdewxZJo65BkXeFuGpiVeEv5jDwRUXFhok1EVAxik9Ox6ewD/O/0fUTFF65ZiDGKP9HOxr4q8PogoMmHgLVTyS2HiOgVwUSbiKgIHj5PxdKwcGy/8AgZqqI3DclPiSbaGjJzoH5voM0kwKFKyS+PiKiMYqJNRFQIcSkZWH7wNtafvoeMYmh7bawXkmhryORA06GA7wTAusKLWy4RURnBRJuIqABS0pX48WgEfjh6F8npyhe+/BeaaGvI7YAWo4EWowC5zYtfPhFRKcVEm4jISPuuPsGX267gaVK6yWIwSaKtYeMGdP0G8O5iuhiIiEoRJtpERPmIT83AjB1Xsf3CI1OHYtpEW6N+b6DTAr4Eh4goH0y0iYjysO/qE0zddgUxJryKnd1LkWgDWa9677oE8O5s6kiIiF5aTLSJiAxIy1Bh6u+XsfWfKFOHouOlSbQ1GnwAdF0MmFuZOhIiopcO30xARJRDVHwa3lt14qVLsl9Kl34FfvYHEh6aOhIiopcOE20iomzORcbh3eXHcPVRoqlDKT2eXAJWtwHunzJ1JERELxUm2kRE//r1zH30/eE0YpMzTB1K6ZMSA4S8A5z/xdSREBG9NMxMHQAR0csg+M/r+P7IXVOHUbqpMoAdnwCx4UCH2aaOhojI5JhoE9ErTQiB6duvYt2pe6YOpew48S2QmQZ0XghIJKaOhojIZNh0hIheWUIITPn9MpPsknD2B2DnpwA7tiKiVxgTbSJ6ZU3ffhUbzzwwdRhl1/kQ4M/PTR0FEZHJMNEmoldS8J/XeSX7RTj7A7B/uqmjICIyCSbaRPTK+fXMfT74+CIdX8reSIjolcREm4heKeci4zB9+1VTh/Hq+WM8+9kmolcOE20iemU8ik/DR+v/RoZKbepQXj2qDGDTAL5BkoheKUy0ieiVkJahwrBfzvFlNKaU8hTY2AfISDV1JERELwQTbSJ6JUz9/TJfq/4yeHIJ+OMzU0dBRPRCMNEmojJv39Un2PpPlKnDII2LG4Ebf5o6CiKiEsdEm4jKtPjUDEzddsXUYVBOu8YCqXGmjoKIqEQx0SaiMm3GjquISUo3dRiUU3I0sPsLU0dBRFSimGgTUZm17+oTbL/wyNRhUG4u/8YmJERUpjHRJqIyKSVdySYjpcGucUB6sqmjICIqEUy0iahM+vFoBJuMlAbJT4BTK0wdBRFRiWCiTURlTlxKBn44yleslxonlgEpz0wdBRFRsWOiTURlzvKDt5GcrjR1GGSs9ETg6NemjoKIqNgx0SaiMuXh81SsP33P1GFQQZ39EYh/YOooiIiKFRNtIipTloaFI0OpNnUYVFCqdOCv+aaOgoioWDHRJqIyIzY5nd35lWaXfwNSYk0dBRFRsWGiTURlxqazD5Ch4tXsUkuVAZwPMXUURETFhok2EZUJarXA/07fN3UYVFTn1gJq/lgiorKBiTYRlQkHbjxFVHyaqcOgokq4D4TvNXUURETFgok2EZUJ606xp5Ey4+yPpo6AiKhYMNEmolIvOlGBo+Expg6DisvtA0DiY1NHQURUZEy0iajU238tGkKYOgoqPgK4tdvUQRARFRkTbSIq9cKuR5s6BCpuN5loE1Hpx0SbiEq11AwlTtx5ZuowqLhFHAEyUk0dBRFRkTDRJqJS7citWL4JsixSKoA7B00dBRFRkTDRJqJS7QCbjZRdbD5CRKUcE20iKtVO3mWzkTIr8qipIyAiKhIm2kRUasWnZuDhc76kpsyKvwekxpk6CiKiQmOiTUSl1uWoBFOHQCXt8UVTR0BEVGhMtImo1GKi/Qp4fMHUERARFRoTbSIqta4w0S77Hl0wdQRERIXGRJuISi1e0X4F8Io2EZViTLSJqFRSqtR8EPJVEH8fUKtMHQURUaEw0SaiUikmOR1CmDoKKnFCDSSzr3QiKp2YaBNRqfQ0Md3UIdCLkvTE1BEQERUKE20iKnZr166Fg4NDiS4jOlFRovOnlwgTbSIqpcxMHQARvbwGDRqEkJAQveHh4eHw8vIyQUT/eZqke0U7/tgGJBzfqDPMzLEyKg1bBQAQygzEHfwJqdePQKgyYenRBI4dPobMunyuyxBCIOHYBiRf3At1egrklV6DY4eRKOdY6d95ZuLZnm+RGn4KMuvycOwwEpbVG2mnTzi9BarEGDi2/6iY1rroZv6lQNDhDJ1htStIcWO0DQBAoRQYv1eBX68qka4U8Pcyw4rOFnC1yf26jBACM/5Kxw/nMxGvEHizigwru1igZgUZACBdKRC4U4HtNzLhZiPFii4WaFfjv9PPwuPpuJ+gxrLOloYXkJx7oi2RSPJc3xkzZmDmzJl5jkNEVFKYaBNRnjp27Ig1a9boDHN2djZRNP/JmWgDQDmnqnB9f+5/A6T/JYdxB35A2p1zcOo2CVK5NeL2r0TM7/Pg1n9hrstIPL0FiX/vhFOXcTCzd0X80fV4+tt0VAxcCYmZOZIu7kHGk9tw678IaXf/RuzOhag8ej0kEgky458g+eJeuH+4pDhXu1jUdZYibKCV9rtZthx63B4F/ghXIrSXJezlEozerUCP39JwfIh1rvP76ngGvj2dgZBulvAoL8W0Q+nwX5+Ka6NsYGEmweq/M/H3IxVODrXG7ttK9N2ShugJNpBIJIh4rsYP5zNxbnju88/rivbjx4+1/9+0aROmT5+OmzdvaofZ2Nho/y+EgEqlgpkZT31E9GKw6QgR5Ukul8PNzU3ns3TpUtSvXx/W1taoUqUKRo4cieTk5FzncfHiRbz11luwtbWFnZ0dfHx8cO7cOe3fjx07Bl9fX1haWqJKlSoYM2YMUlJS8owrSZGpP1Aqg8ym/H8fK3sAgDo9BcmX9qP820NhWa0h5G5ecOo8FulR15EedcPg/IUQSDq3HfYt3odVzTdg7uIBp66fQZkch9RbJwEAmc8ewNKrOcydq8G2SReoUxOgTksEAMTtW4HybQZBKrcyOH9TMpMCbjZS7cfJKutUkKAQ+OmfTHzjb4G3PczgU1GGNe9a4MQDFU49VBqclxACS05n4MvWcrzrXQ4NXGX4pZslHiUJbLuRNc31WBUCapuhrosMo5qaIyZVIDY160nWj/9Iw4J2ctjJ87gynZ6U65+y75f29vaQSCTa7zdu3ICtrS12794NHx8fyOVyHDt2DIMGDUK3bt105jN27Fi0adNG+12tViM4OBgeHh6wtLREw4YNsXnzZiNKl4joP0y0iajApFIpvv32W1y9ehUhISE4ePAgJk6cmOv4/fr1Q+XKlXH27Fn8/fffmDRpEsqVKwcAuHPnDjp27IiePXvi0qVL2LRpE44dO4bRo0fnGYNKrd/liPL5Izz8biCiVg1FzM6FUCY+BQCkP7kNqJU6zTrKVagCmZ0z0h8ZTrSVCdFQpTzXmUYqt4a8Ym3tNOYuHkh/eA3qzHQoIs5DZuMIqaUdkq8egsTMHFa1Wua5DqYSHqdGxa+TUGNpEvptTcX9BDUA4O/HKmSqodOsw9tJhqr2Epx8YLiLvYh4gSfJQmcaewsJmleWaadp6CrDsfsqpGUK7L2jhLuNBE5WEmy4lAkLMwm6v1Yu74DVhpN8Y02aNAnz58/H9evX0aBBA6OmCQ4Oxi+//IJVq1bh6tWrGDduHPr374/Dhw8XKRYierXw/hkR5WnXrl06t987deqE0NBQ7ffq1atjzpw5+Oijj7BixQqD87h//z4+//xzeHt7AwBq1qyp/VtwcDD69euHsWPHav/27bffws/PDytXroSFhYXBeSpzJNpy99qo0HkcyjlWgio5DgnHN+LJhi9Qcch3UKc8B2RmkFrY6Ewjs3aAKuW5wfmrkrOGS60ddKexcoAqJR4AYFO/PTKeRuLRTyMhs7SD07tfQK1IRsKxDXDtE4znR9Yh9foRmDm4oULnT2Fm62RwWS9S80oyrH3XErWdpHicJBB0OB2+a1Jw5WMbPEkWMJcBDha6V5ddrSV4kmy4L8UnyWrtOHrTpGT9bUjjcrgUrUKdFclwspLgt16WeK4Apv+lwF8fWuPLgwr8eiUTno5S/BxgiUp2Oa4BFTHRnjVrFtq3b2/0+Onp6Zg3bx7CwsLQokULAECNGjVw7NgxfP/99/Dz8ytSPET06mCiTUR5euutt7By5Urtd2tra4SFhSE4OBg3btxAYmIilEolFAoFUlNTYWWl31Tis88+Q2BgINatW4d27dqhV69e8PT0BJDVrOTSpUvYsGGDdnwhBNRqNSIiIvDaa68ZFael5+v/fXHxgLxibTxcOQQpN45BWs68kGufN4nMDBU6fKwzLPaPJbD1eQcZ0XeRFn4S7oOXIfH0FjwPWw3n7lNKJI6C6FTzv6vHDVyB5pVlqLYkCb9dzYRlubwfLCyscjIJvuui+6Dj4O1pGNPMHP88UWHbDSUufmSDr46nY8weBbb0Lt7mNq+//nr+I2Vz+/ZtpKam6iXnGRkZaNy4cXGGRkRlHJuOEFGerK2t4eXlpf2kp6eja9euaNCgAbZs2YK///4b3333HYCsRMSQmTNn4urVq+jSpQsOHjyIOnXq4PfffwcAJCcnY8SIEbhw4YL2c/HiRYSHh2uTcUPMpHknhVILG5RzrARl/CNIrcsDKiXUCt125KqU+Fx7HZHZZA1X/3v1WjtNajxkOa5yayjuXULms3uwbdIVivuXYFnjdUjNLWDl3QqK+5fzjNdUHCwkqFVBittxarjZSJChAuIVulevo1ME3GwMl7fbv72RRKcYmMba8CnmUIQSV5+qMLqZOf6KVKFzTTNYm0vQu245/BVpoImKtGjXhKytdR+0lEqlEDnedpSZ+V+bf83zBn/88YfOfnnt2jW20yaiAmGiTUQF8vfff0OtVuPrr7/GG2+8gVq1auHRo0f5TlerVi2MGzcO+/btQ48ePbQ9mTRp0gTXrl3TSeY1H3Pz3K9Ey/JJtNUZaVDGP4bM2hFyNy9Aaoa0exe1f8989hCqxBjIK3obnN7M3hUy6/JQ3Lvw3zzTU5H+6KbBaYQyA3H7V6KC/2hIpDJAqCE0rw5XqyCEOs94TSU5Q+BOnBruthL4uMtQTgocuPtfU42bsSrcTxBoUUVmcHoPBwncbCQ60ySmC5x+qDI4jUIpMOpPBb7vagmZVAKVGsj8t5gy1Ybb3hc10c7J2dlZp7cSALhw4YL2/3Xq1IFcLsf9+/f19skqVaoUayxEVLYx0SaiAvHy8kJmZiaWLVuGu3fvYt26dVi1alWu46elpWH06NH466+/cO/ePRw/fhxnz57VNgn54osvcOLECYwePRoXLlxAeHg4tm/fnu/DkLYWug/QPT/4ExT3L0OZEA3Fw+uI2ToXkEhhXccPUrk1bBq0x/ODP0Jx7xLSn9zGsz+XQF7RG/JK/yXNUT98hNRbJwBk9c9s+/q7SDixCanhp5ERE4nYP76BmY0jrGq10Isn/sSvsKzxOsxds67CyyvVQeqtE8h4GoGk87tgUcm4JjAlbcI+BQ5HKhEZr8aJB0p035QKmVSCPvXKwd5CgqGNy+GzfQocilDi70cqDN6uQIvKMrxROdsDksuT8fv1rCvAEokEY5ubY87RdOy4mYnL0SoM/D0NFW0l6OatnyDPPpyOzjXN0Ng9Kwl/s6oMW29k4lK0CsvPZODNqgaSarltsZbB22+/jXPnzuGXX35BeHg4ZsyYgStXrmj/bmtriwkTJmDcuHEICQnBnTt3cP78eSxbtsxgv/JERLlhG20iKpCGDRvim2++wYIFCzB58mS0bt0awcHBGDhwoMHxZTIZnj17hoEDByI6OhpOTk7o0aMHgoKCAAANGjTA4cOHMXXqVPj6+kIIAU9PT7z//vt5xuFiK9f5rkyKRezOhVClJUJmaQ955TpwG/C1tos/x7bDECeRImbbPAhVJiw8mqBC+5G684h7CHV6qva7XfOeEJkKPNu7DGpFCiwq14FL71mQmOleac+IiUTqjaNwH7RMO8zK+00oHlzGkw1foFyFSnB65/N8SvbFeJioRp8taXiWJuBsJUGrqjKcGmoN53+beSzuaAHpXgV6/paKdBXg72mGFV10H0i9+UyNhPT/rjxPfNMcKZkCw3cqEK8QaFVVhj39rWBhpnvX4cpTFX67psSFEf815Xivjhn+ijSD75oU1K4gxf96GmifbeNajCUA+Pv7Y9q0aZg4cSIUCgWGDBmCgQMH4vLl/5r3zJ49G87OzggODsbdu3fh4OCAJk2aYMoU07ezJ6LSQyJyNlQjIioF9l19guHr/jZ1GC9cpEVfU4fw4n2wEfDubOooiIgKjE1HiKhUcrUz3O0flUG2xXtFm4joRWGiTUSlkoudPP+RqGywdTd1BEREhcJEm4hKJWcbOfLpeITKAokUsHYxdRRERIXCRJuISiUzmRSVylvmPyKVbvZVABmf2yei0omJNhGVWvUr2Zs6BCppFRuZOgIiokJjok1EpVY9JtplX0W+8pyISi8m2kRUavGK9ivAvZGpIyAiKjQm2kRUajHRfgW4NzR1BEREhcZEm4hKLQcrc1TmA5Fll0M1wMrR1FEQERUaE20iKtVa1Khg6hCopFT3NXUERERFwkSbiEq1tq/xrYFlVu1Opo6AiKhImGgTUanWupYTzM1YlZU5ZhaA59umjoKIqEh4diKiUs3K3AwtPdl8pMzxaA2YW5k6CiKiImGiTUSlXjs2Hyl72GyEiMoAJtpEVOq1r+MKicTUUVDxkQC1mGgTUenHRJuISj1XOwv41nQ2dRhUXLzaAnbupo6CiKjImGgTUZkw4I1qpg6BikvTQFNHQERULJhoE1GZ0NbbBZUc+PKaUs++KlDT39RREBEVCybaRFQmSKUS9G1e1dRhUFG9PgiQ8tRERGUDazMiKjPeb1oF5jJWa6WWzBxo8qGpoyAiKjY8IxFRmeFkI8e7jSqaOgwqrPq9AWsnU0dBRFRsmGgTUZnyabuafFNkaSSTA20mmToKIqJixbMREZUplctboX9z9kBS6jQNBByqmDoKIqJixUSbiMqc0W97wUZuZuowyFhyO8B3vKmjICIqdky0iajMcbQ2xzDfGqYOg4zV8hPAuoKpoyAiKnZMtImoTAr09YCLrdzUYVB+bNyAFqNMHQURUYlgok1EZZK13AxzutUzdRiUn66LAXNrU0dBRFQimGgTUZnVoa4bu/t7mdXvDXh3NnUUREQlhok2EZVpQQF14cwmJC8fG1eg0wJTR0FEVKKYaBNRmeZgZY65bELy8um6BLByNHUUREQliok2EZV5Heq6oUfjSqYOgzQa9mGTESJ6JTDRJqJXwtzu9VG3op2pwyD3hkCXb0wdBRHRC8FEm4heCZbmMvww8HU42ZibOpRXl7UL8MH/AHMrU0dCRPRCMNEmoldGRQdLrOrvA3MZq74XTmYOvL8esK9s6kiIiF4Ynm2I6JXyenVHzO5W19RhvHq6fANUbW7qKIiIXigm2kT0ynm/aVWMaM1XtL8wb34KNBlg6iiIiF44JtpE9Eqa3Pk1DGxRzdRhlH3NhgPtZ5k6CiIik2CiTUSvrKCAuujTrIqpwyi7mnwIdPrK1FEQEZkME20iemVJJBLM614fA97gle1i13QY8M5SQCIxdSRERCbDRJuIXmkSiQSzu9Vjm+3i9OanQJdFTLKJ6JXHRJuICFltthf0rM+u/4pCZg4ELGebbCKif/GMQkT0r/ebVsX/hjXnS20Kw9oF+HAXexchIsqGiTYRUTavV3fEjtGt+Lr2gnBvCAw/xH6yiYhyYKJNRJRDRQdLbP6oJXo0qWTqUF5+DfsAg/fwjY9ERAZIhBDC1EEQEb2s9l19gqnbriAmKd3UoQAAIi36mjqELDauQNclgHdnU0dCRPTSYqJNRJSP+NQMzNxxFdsuPDJ1KC9Hot3gfaDTAsCyvKkjISJ6qTHRJiIy0r6rT/Dltit4asKr2yZNtG3cgK6LeRWbiMhITLSJiAogJV2Jn45F4Icjd5GUrnzhyzdJoi23A1p+ArQYBZhbv/jlExGVUky0iYgKIS4lA98duo11p+4hQ6l+Yct9oYm2TA40DQR8xwPWFV7ccomIyggm2kRERfDweSqWhoVj+4VHyFCVfML9QhJtmTlQvzfQZhLgUKXkl0dEVEYx0SYiKgbPktPx69kH+N/p+4iKTyux5ZRoou1QFfAZDDQZCFg7ldxyiIheEUy0iYiKkVotcPDGU6w7dQ9HwmNQ3DVs8SfaEsCrbVYTkZr+gJSvVyAiKi5MtImISkh0ogJh16MRdi0aJ+48Q3oxtOUulkTbzALw8ANqdwRqdQLs3Is+TyIi0sNEm4joBUjNUOJoeCzCrkXjVMQzPIgrXPOSQifaDtWA6r5A7U6A59uAuVXh5kNEREZjok1EZALxqRm4EpWIy1EJuBKVgMtRCXj4PBXqfGrkfBNtiTSrrbV7I6Bio6x/3RsCVo7FFDkRERmLiTYR0UtCqVIjNjkD0YkKPE1K1/6brFBCpVZDqRaYW+5nQGqW9ZHbArZuWS+Ssf33Y+0CyMxMvSpERAQm2kREREREJYKPlxMRERERlQAm2kREREREJYCJNhERERFRCWCiTURERERUAphoExERERGVACbaREREREQlgIk2EREREVEJYKJNRERERFQCmGgTEREREZUAJtpERERERCWAiTYRERERUQlgok1EREREVAKYaBMRERERlQAm2kREREREJYCJNhERERFRCWCiTURERERUAphoExERERGVACbaREREREQlgIk2EREREVEJYKJNRERERFQCmGgTEREREZUAJtpERERERCWAiTYRERERUQlgok1EREREVAL+D7noP3WqOLYtAAAAAElFTkSuQmCC",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from imblearn.under_sampling import RandomUnderSampler\n",
"\n",
"rus = RandomUnderSampler()\n",
"\n",
"# Применение RandomUnderSampler\n",
"X_resampled, y_resampled = rus.fit_resample(train_data.drop(columns=['hazardous']), train_data['hazardous'])\n",
"\n",
"# Создание нового DataFrame\n",
"df_train_undersampled = pd.DataFrame(X_resampled)\n",
"df_train_undersampled['hazardous'] = y_resampled # Добавление целевой переменной\n",
"\n",
"# Вывод информации о новой выборке\n",
"print(\"Обучающая выборка после андерсемплинга: \", df_train_undersampled.shape)\n",
"print(df_train_undersampled['hazardous'].value_counts())\n",
"\n",
"# Визуализация распределения классов\n",
"hazardous_counts = df_train_undersampled['hazardous'].value_counts()\n",
"plt.figure(figsize=(2, 2))\n",
"plt.pie(hazardous_counts, labels=hazardous_counts.index, autopct='%1.1f%%', startangle=90)\n",
"plt.title('Распределение классов hazardous в обучающей выборке после андерсемплинга')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Датасет №3. Данные о диабете индейцев Пима\n",
"\n",
"[**Ссылка**](https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database)\n",
"\n",
"**Проблемная область**: Данный набор данных связан с наблюдением о наличии диабета у женщин из группы коренного народа Пима, основываясь на медицинских показателях. Диабет является хроническим заболеванием, которое требует длительного лечения и оказывает значительное влияние на качество жизни пациентов.\n",
"\n",
"**Объекты наблюдения**: Каждая строка (запись) в наборе данных соответствует одному пациенту из группы индейцев Пима.\n",
"\n",
"**Атрибуты объектов:**\n",
"- `Pregnancies` - количество беременностей у пациента.\n",
"- `Glucose` - уровень глюкозы в крови.\n",
"- `BloodPressure` - диастолическое артериальное давление (мм рт. ст.).\n",
"- `SkinThickness` - толщина кожной складки на трицепсе (мм).\n",
"- `Insulin` - уровень инсулина в сыворотке крови (мЕд/мл).\n",
"- `BMI` - индекс массы тела (вес в кг/кв. м роста).\n",
"- `DiabetesPedigreeFunction` - коэффициент наследственной предрасположенности к диабету.\n",
"- `Age` - возраст пациента.\n",
"- `Outcome` - целевой признак, показывающий наличие (1) или отсутствие (0) диабета.\n",
"\n",
"**Бизнес-цель**: Оптимизация страховых предложений. Страховые компании могут предложить индивидуализированные тарифы, исходя из вероятности возникновения у пациента диабета, что позволит снизить риски и сделать страхование доступнее.\n",
"\n",
"**Техническая цель**: Разработка предсказательной модели для классификации пациентов по риску. На основании этого риска можно сформировать динамические предложения для клиентов.\n",
"\n",
"**Входные данные**: Данные о пациентах.\n",
"\n",
"**Целевая переменная**: Диагноз диабета (`Outcome`)."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Pregnancies
\n",
"
Glucose
\n",
"
BloodPressure
\n",
"
SkinThickness
\n",
"
Insulin
\n",
"
BMI
\n",
"
DiabetesPedigreeFunction
\n",
"
Age
\n",
"
Outcome
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
6
\n",
"
148
\n",
"
72
\n",
"
35
\n",
"
0
\n",
"
33.6
\n",
"
0.627
\n",
"
50
\n",
"
1
\n",
"
\n",
"
\n",
"
1
\n",
"
1
\n",
"
85
\n",
"
66
\n",
"
29
\n",
"
0
\n",
"
26.6
\n",
"
0.351
\n",
"
31
\n",
"
0
\n",
"
\n",
"
\n",
"
2
\n",
"
8
\n",
"
183
\n",
"
64
\n",
"
0
\n",
"
0
\n",
"
23.3
\n",
"
0.672
\n",
"
32
\n",
"
1
\n",
"
\n",
"
\n",
"
3
\n",
"
1
\n",
"
89
\n",
"
66
\n",
"
23
\n",
"
94
\n",
"
28.1
\n",
"
0.167
\n",
"
21
\n",
"
0
\n",
"
\n",
"
\n",
"
4
\n",
"
0
\n",
"
137
\n",
"
40
\n",
"
35
\n",
"
168
\n",
"
43.1
\n",
"
2.288
\n",
"
33
\n",
"
1
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \\\n",
"0 6 148 72 35 0 33.6 \n",
"1 1 85 66 29 0 26.6 \n",
"2 8 183 64 0 0 23.3 \n",
"3 1 89 66 23 94 28.1 \n",
"4 0 137 40 35 168 43.1 \n",
"\n",
" DiabetesPedigreeFunction Age Outcome \n",
"0 0.627 50 1 \n",
"1 0.351 31 0 \n",
"2 0.672 32 1 \n",
"3 0.167 21 0 \n",
"4 2.288 33 1 "
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"df = pd.read_csv(\".//static//csv//diabetes.csv\")\n",
"df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Получение сведений о пропущенных данных"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pregnancies 0\n",
"Glucose 0\n",
"BloodPressure 0\n",
"SkinThickness 0\n",
"Insulin 0\n",
"BMI 0\n",
"DiabetesPedigreeFunction 0\n",
"Age 0\n",
"Outcome 0\n",
"dtype: int64\n",
"\n",
"Pregnancies False\n",
"Glucose False\n",
"BloodPressure False\n",
"SkinThickness False\n",
"Insulin False\n",
"BMI False\n",
"DiabetesPedigreeFunction False\n",
"Age False\n",
"Outcome False\n",
"dtype: bool\n",
"\n"
]
}
],
"source": [
"# Количество пустых значений признаков\n",
"print(df.isnull().sum())\n",
"\n",
"print()\n",
"\n",
"# Есть ли пустые значения признаков\n",
"print(df.isnull().any())\n",
"\n",
"print()\n",
"\n",
"# Процент пустых значений признаков\n",
"for i in df.columns:\n",
" null_rate = df[i].isnull().sum() / len(df) * 100\n",
" if null_rate > 0:\n",
" print(f\"{i} процент пустых значений: %{null_rate:.2f}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Пропущенных данных в датасете **не обнаружено**"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Проверка набора данных на выбросы"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Количество выбросов в столбце 'Pregnancies': 4\n",
"Количество выбросов в столбце 'Glucose': 5\n",
"Количество выбросов в столбце 'BloodPressure': 45\n",
"Количество выбросов в столбце 'SkinThickness': 1\n",
"Количество выбросов в столбце 'Insulin': 34\n",
"Количество выбросов в столбце 'BMI': 19\n",
"Количество выбросов в столбце 'DiabetesPedigreeFunction': 29\n",
"Количество выбросов в столбце 'Age': 9\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABdAAAAPeCAYAAAAMETjbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wUdfoH8M9sTd1Nb5CEBJAqvQoCSgcVFE9RFPCH4inoIZ56eIKKnBxWTo6D4wpFRTwbp5zSEUQQAQWlE1oCIb1s2iZb5vfHZgcWNqTt7mz5vF+vfWlmZmee3YTv7D7zzPMVRFEUQUREREREREREREREDhRyB0BERERERERERERE5I2YQCciIiIiIiIiIiIicoIJdCIiIiIiIiIiIiIiJ5hAJyIiIiIiIiIiIiJyggl0IiIiIiIiIiIiIiInmEAnIiIiIiIiIiIiInKCCXQiIiIiIiIiIiIiIieYQCciIiIiIiIiIiIicoIJdCIiIiIiIiIiIiIiJ5hA93OtWrXC1KlT5Q7D77355ptIT0+HUqlEt27d5A7Hr3z77bcQBAHffvut3KEQ+TyeEzzDneeEIUOGYMiQIS7dJxG5DsdZz3DHOCvnZ85XXnkFgiB4/LhEdGMc0z3D1WO6fTz/9NNPb7jdqlWrIAgCzp8/3+xj1uX8+fMQBAFvvfVWvds29VzQqlUr3HHHHU0JjxqBCXQfYv/HfeDAAafrhwwZgs6dOzf7OF9//TVeeeWVZu8nUGzevBnPP/88BgwYgJUrV+L111+vc9upU6dCEATpodPp0LVrV7z99tuorq72YNRE5Ot4TvBOjTkn2H333Xe477770KJFC2g0Guj1evTt2xfz589Hbm6uB6ImImc4znqn5nz2VqlUSE5OxsSJE3Hs2DEPRt14rVq1cog9Li4Ot956K7744gu5QyPySRzTvVNjPzt/9dVXGDx4MOLi4hASEoL09HTcd9992Lhxo4civn58ruuxatUqj8VE7qeSOwByr5MnT0KhaNx1kq+//hpLly7loN9A27dvh0KhwL/+9S9oNJp6t9dqtfjnP/8JACgpKcFnn32G3//+99i/fz/WrVvn7nB9zqBBg1BVVdWg95aIboznBPdr7Dlh3rx5eO2115Ceno6pU6ciPT0dRqMRBw8exNtvv43Vq1fjzJkzHoiciFyB46z7Neezt9lsxpkzZ7B8+XJs3LgRx44dQ1JSkrtDbrJu3brh2WefBQBkZ2fj73//O+655x4sW7YMv/3tb2WOjsj/cUx3v8aM6W+99Raee+45DB48GHPmzEFISAgyMjKwdetWrFu3DqNGjWrUsR9++GFMnDgRWq22Uc9bvHgxysvLpZ+//vprfPTRR3j33XcRExMjLb/lllsatd+XXnoJf/jDHxr1HPIcJtD9XGMHAm9QUVGB0NBQucNosLy8PAQHBzc4watSqfDQQw9JPz/55JPo27cvPv74Y7zzzjtOP8SLogij0Yjg4GCXxe0rFAoFgoKC5A6DyC/wnOB+jTknfPzxx3jttddw33334f3337/uOe+++y7effddd4VKRG7Acdb9mvvZGwD69euHO+64A//73//w2GOPuSNMl2jRooVD7JMnT0abNm3w7rvv1plAN5vNsFqtPlV84mt/gxQ4OKa7X0PHdLPZjNdeew3Dhw/H5s2bne6nsZRKJZRKZaOfN378eIefc3Jy8NFHH2H8+PFo1aqVw7rGtIdRqVRQqZim9VZs4eLnru3ZZTKZ8Oqrr6Jt27YICgpCdHQ0Bg4ciC1btgCw3ea4dOlSAHC49cSuoqICzz77LJKTk6HVatGuXTu89dZbEEXR4bhVVVV4+umnERMTg/DwcNx11124dOkSBEFwuBJr7/F07NgxPPjgg4iMjMTAgQMBAL/88otUjRcUFISEhAT83//9HwoLCx2OZd/HqVOn8NBDD0Gv1yM2NhZz586FKIrIysrCuHHjoNPpkJCQgLfffrtB7519gG7dujW0Wi1atWqFF1980aHViiAIWLlyJSoqKpp8m45CoZD62doHV3sPq02bNqFXr14IDg7G3//+dwC2qvVZs2ZJv4M2bdpg0aJFsFqtDvstLCzEww8/DJ1Oh4iICEyZMgWHDx++LsapU6ciLCwMly5dwvjx4xEWFobY2Fj8/ve/h8VicdjnW2+9hVtuuQXR0dEIDg5Gz549nfYVEwQBM2fOxPr169G5c2dotVp06tTJ6W1Vly5dwrRp05CUlAStVou0tDQ88cQTqKmpAVB3P8p9+/Zh1KhR0Ov1CAkJweDBg/H99987bFNWVoZZs2ahVatW0Gq1iIuLw/Dhw/HTTz/V+3sh8kc8J3jXOWHevHmIiYmps+JGr9fXW71UV+/GG42dY8aMQWRkJEJDQ9GlSxf85S9/cdhm+/btuPXWWxEaGoqIiAiMGzcOx48fd9imoeNrQ8ZqIn/Ccda7xtm6JCQkAECDEhWffPIJevbsieDgYMTExOChhx7CpUuXrtuuIWMnAOzevRu9e/dGUFAQWrduLX3Gb2jcHTp0wLlz5wA49tZdvHix9N7Z29OcOHEC9957L6KiohAUFIRevXrhyy+/dNhnfX+jgC059Mgjj6Bly5bQarVITEzEuHHjHM491/6t2V37b8J+3tq5cyeefPJJxMXFoWXLltL6b775Rnofw8PDMXbsWBw9erTB7xGRK3FM954xvaCgAAaDAQMGDHC6Pi4u7obxVFdX44477oBer8eePXsAOP8cbc/F7N69G3369EFQUBDS09OxZs2aBr3uG1mxYoX0fvTu3Rv79+93WF9XD/QPPvgAffr0QUhICCIjIzFo0CCnFxGutnr1aqhUKjz33HMAHM8X9cUBePb84St4acMHlZaWoqCg4LrlJpOp3ue+8sorWLhwIR599FH06dMHBoMBBw4cwE8//YThw4fj8ccfR3Z2NrZs2YL333/f4bmiKOKuu+7Cjh07MG3aNHTr1g2bNm3Cc889h0uXLjlUyU2dOhX/+c9/8PDDD6Nfv37YuXMnxo4dW2dcv/nNb9C2bVu8/vrr0sljy5YtOHv2LB555BEkJCTg6NGjWLFiBY4ePYoffvjhuoHl/vvvR4cOHfDnP/8Z//vf/7BgwQJERUXh73//O26//XYsWrQIH374IX7/+9+jd+/eGDRo0A3fq0cffRSrV6/Gvffei2effRb79u3DwoULcfz4can34Pvvv48VK1bgxx9/lG4NbextOgCk2/Ojo6OlZSdPnsQDDzyAxx9/HI899hjatWuHyspKDB48GJcuXcLjjz+OlJQU7NmzB3PmzMHly5exePFiAIDVasWdd96JH3/8EU888QTat2+P//73v5gyZYrT41ssFowcORJ9+/bFW2+9ha1bt+Ltt99G69at8cQTT0jb/eUvf8Fdd92FSZMmoaamBuvWrcNvfvMbbNiw4brf7+7du/H555/jySefRHh4ON577z1MmDABmZmZ0uvMzs5Gnz59UFJSgunTp6N9+/a4dOkSPv30U1RWVtZ5FXr79u0YPXo0evbsiZdffhkKhQIrV67E7bffju+++w59+vQBAPz2t7/Fp59+ipkzZ6Jjx44oLCzE7t27cfz4cfTo0aPRvycib8Rzgm+eE06dOoVTp07h0UcfRVhY2A2P7SpbtmzBHXfcgcTERPzud79DQkICjh8/jg0bNuB3v/sdAGDr1q0YPXo00tPT8corr6CqqgpLlizBgAED8NNPP0lVNQ0ZXxs6VhN5O46zvjnOXs3++7NYLDh79ixeeOEFREdH1zvp2qpVq/DII4+gd+/eWLhwIXJzc/GXv/wF33//PX7++WdEREQAaPjY+euvv2LEiBGIjY3FK6+8ArPZjJdffhnx8fH1vgbA9jeXlZXl8J0BAFauXAmj0Yjp06dDq9UiKioKR48exYABA9CiRQv84Q9/QGhoKP7zn/9g/Pjx+Oyzz3D33XcDqP9vFAAmTJiAo0eP4qmnnkKrVq2Ql5eHLVu2IDMz87pqy4Z68sknERsbi3nz5qGiogKA7fc7ZcoUjBw5EosWLUJlZSWWLVuGgQMH4ueff27ysYiuxjHdN8f0uLg4BAcH46uvvsJTTz2FqKioGx7/alVVVRg3bhwOHDiArVu3onfv3jfcPiMjA/feey+mTZuGKVOm4N///jemTp2Knj17olOnTg0+7tXWrl2LsrIyPP744xAEAW+88QbuuecenD17Fmq1us7nvfrqq3jllVdwyy23YP78+dBoNNi3bx+2b9+OESNGOH3OihUr8Nvf/hYvvvgiFixY0Og4vP38IRuRfMbKlStFADd8dOrUyeE5qamp4pQpU6Sfu3btKo4dO/aGx5kxY4bo7E9j/fr1IgBxwYIFDsvvvfdeURAEMSMjQxRFUTx48KAIQJw1a5bDdlOnThUBiC+//LK07OWXXxYBiA888MB1x6usrLxu2UcffSQCEHft2nXdPqZPny4tM5vNYsuWLUVBEMQ///nP0vLi4mIxODjY4T1x5tChQyIA8dFHH3VY/vvf/14EIG7fvl1aNmXKFDE0NPSG+7t22/z8fDE/P1/MyMgQX3/9dVEQBLFLly7SdqmpqSIAcePGjQ7Pf+2118TQ0FDx1KlTDsv/8Ic/iEqlUszMzBRFURQ/++wzEYC4ePFiaRuLxSLefvvtIgBx5cqVDjEBEOfPn++wz+7du4s9e/Z0WHbt76Smpkbs3LmzePvttzssByBqNBrpb0IURfHw4cMiAHHJkiXSssmTJ4sKhULcv3//de+V1WoVRVEUd+zYIQIQd+zYIS1v27atOHLkSGkbe2xpaWni8OHDpWV6vV6cMWPGdfsm8gc8J/j2OeG///3vdeO0KNrGOPs5wv4wmUzS+sGDB4uDBw+Wfrb/HZw7d85hP9eOnWazWUxLSxNTU1PF4uLi645p161bNzEuLk4sLCyUlh0+fFhUKBTi5MmTpWX1ja+NGauJvBXHWd8eZ+3bOvu9tWjRQjx48KDDtteOmzU1NWJcXJzYuXNnsaqqStpuw4YNIgBx3rx50rKGjp3jx48Xg4KCxAsXLkjLjh07JiqVyuv+BlJTU8URI0ZI54LDhw+LEydOFAGITz31lCiKonju3DkRgKjT6cS8vDyH5w8dOlS8+eabRaPRKC2zWq3iLbfcIrZt21ZaVt/faHFxsQhAfPPNN+vcRhTF6/7Wrn4dV//+7f+uBg4cKJrNZml5WVmZGBERIT722GMOz8/JyRH1ev11y4kai2O674/p8+bNEwGIoaGh4ujRo8U//elP143lonhlPP/kk0/EsrIycfDgwWJMTIz4888/O2zn7HO0PRdz9XuUl5cnarVa8dlnn3Ua15tvvun087goXhmno6OjxaKiImm5/bvAV199JS2z/y7sTp8+LSoUCvHuu+8WLRaLw36v/nydmpoq/V3+5S9/EQVBEF977bUmx+Hp84evYAsXH7R06VJs2bLlukeXLl3qfW5ERASOHj2K06dPN/q4X3/9NZRKJZ5++mmH5c8++yxEUcQ333wDAFKbjieffNJhu6eeeqrOfTvr4Xd1v2+j0YiCggL069cPAJy24Hj00Uel/1cqlejVqxdEUcS0adOk5REREWjXrh3Onj1bZyyA7bUCwOzZsx2W2yfx+d///nfD599IRUUFYmNjERsbizZt2uDFF19E//79pauwdmlpaRg5cqTDsk8++QS33norIiMjUVBQID2GDRsGi8WCXbt2AbD9DtRqtUNPR4VCgRkzZtQZ17W/g1tvvfW69+nq30lxcTFKS0tx6623Ov19DBs2DK1bt5Z+7tKlC3Q6nbRPq9WK9evX484770SvXr2ue76zW5cA4NChQzh9+jQefPBBFBYWSu9BRUUFhg4dil27dkntbCIiIrBv3z5kZ2fX+bqJfB3PCb55TjAYDABwXfV5aWmpdI6wPw4dOtTo/V/r559/xrlz5zBr1iypYtLOPt5evnwZhw4dwtSpUx2qerp06YLhw4dL7wNQ//jamLGayNtxnPXNcdYuKChI+p1t2rQJf//73xEWFoYxY8bg1KlTdT7vwIEDyMvLw5NPPukwH8/YsWPRvn17KaaGjp0WiwWbNm3C+PHjkZKSIm3XoUOH6z7z223evFk6F3Tt2hWffPIJHn74YSxatMhhuwkTJiA2Nlb6uaioCNu3b8d9992HsrIyaQwuLCzEyJEjcfr0aakNTX1/o/bexN9++y2Ki4vrfL8a67HHHnPoPbxlyxaUlJTggQcecPieo1Qq0bdvX+zYscNlx6bAxjHdd8f0V199FWvXrkX37t2xadMm/PGPf0TPnj3Ro0cPpy2zSktLMWLECJw4cQLffvstunXr1qDjdOzYEbfeeqv0c2xsbINe943cf//9iIyMlH627/9G+1y/fj2sVivmzZt33WS2zvIlb7zxBn73u99h0aJFeOmll5oUhy+cP+TCFi4+qE+fPk4Tjvak6o3Mnz8f48aNw0033YTOnTtj1KhRePjhhxt0srhw4QKSkpIQHh7usLxDhw7Sevt/FQoF0tLSHLZr06ZNnfu+dlvA9g/31Vdfxbp1666bEKK0tPS67a/+IArYescGBQU5zIJsX35t369r2V/DtTEnJCQgIiJCeq1NERQUhK+++goApJ7fV/f9s3P2npw+fRq//PKLwwfkq9nfpwsXLiAxMREhISEO6+v6HQQFBV23z8jIyOsGuQ0bNmDBggU4dOjQdb3LrnXt7+Pafebn58NgMKBz585OY6qLfXCuqx0NYPv7iIyMxBtvvIEpU6YgOTkZPXv2xJgxYzB58mSkp6c36phE3oznBN88J9jft/LycoflYWFhUt/AzZs3480332z0vp2xtwq70Zhrfx3t2rW7bl2HDh2wadMmaWKq+sbXxozVRN6O46xvjrN2SqUSw4YNc1g2ZswYtG3bFnPmzMFnn31WZ0yA8zGxffv22L17d73bXT12lpWVoaqqCm3btr1uu3bt2jlcpLTr27cvFixYAEEQEBISgg4dOlx3ERS4/veZkZEBURQxd+5czJ071+nry8vLQ4sWLer9G9VqtVi0aBGeffZZxMfHSxOwTp48Weol3xTXxmw/b9x+++1Ot9fpdE0+FtHVOKb79pj+wAMP4IEHHoDBYMC+ffuwatUqrF27FnfeeSeOHDnicMFz1qxZMBqN+PnnnxvVeqW+XEZTXLtP+2fgG+3zzJkzUCgU6NixY73737lzJ/73v//hhRdekPqeNyUOXzh/yIUJ9AAzaNAgnDlzBv/973+xefNm/POf/8S7776L5cuXO1xx9LSrr47a3XfffdizZw+ee+45dOvWDWFhYbBarRg1apTTqjVnsyfXNaOyeM0kHXWpqwq6OZx9iHfG2XtitVoxfPhwPP/8806fc9NNNzU5pvp89913uOuuuzBo0CD87W9/Q2JiItRqNVauXIm1a9c2eJ8Nfe/rYv/dv/nmm3VeQbZXdN5333249dZb8cUXX0iJqEWLFuHzzz/H6NGjmxUHkT/gOcFGjnNC+/btAQBHjhxxWK5SqaRzxMWLF5sc07WTQLtafeNrY8ZqIn/GcdZGzs/ezrRs2RLt2rWT7t70VjExMU363mD/ff3+97+vs7rdnthqyN/orFmzcOedd2L9+vXYtGkT5s6di4ULF2L79u3o3r37DWOr63xUV8zvv/++08RKQyZ8JXI3juk23jCm63Q6DB8+HMOHD4darcbq1auxb98+DB48WNpm3LhxWLduHf785z9jzZo111Vx18UduQx35UfsOnXqhJKSErz//vt4/PHHnV5UaUgc3nT+8DY8CwWgqKgoPPLII3jkkUdQXl6OQYMG4ZVXXpH+wOsa5FJTU7F161aUlZU5XDU9ceKEtN7+X6vVinPnzjlUWGRkZDQ4xuLiYmzbtg2vvvoq5s2bJy1vyq1STWF/DadPn5auCANAbm4uSkpKpNfqaa1bt0Z5eXm9H6RTU1OxY8cOVFZWOlShN+Z3cK3PPvsMQUFB2LRpE7RarbR85cqVTdpfbGwsdDrddcmj+tjbwuh0ugZ9oUhMTMSTTz6JJ598Enl5eejRowf+9Kc/MYFOVIvnhPq545zQrl07tG3bFuvXr8fixYsRGhrapNjsVSMlJSUOy6+t7LGPnUeOHKlz7LS/jpMnT1637sSJE4iJiXGI80bja2PHaiJ/xnG2fnJ89jabzdfdBXRtTIBtTLy2KvrkyZMO77992bWuHjuDgoIQHBzs9D119tzmsN8NpFarGzQG1/c3CtjOI88++yyeffZZnD59Gt26dcPbb7+NDz74AIDtfHTtuaimpgaXL19uUMz280ZcXBzPG+TVOKbXz9Njeq9evbB69errxpvx48djxIgRmDp1KsLDw7Fs2TKXHtfdWrduDavVimPHjtXbfiYmJgaffvopBg4ciKFDh2L37t1ISkpq9DHlOH/4CvZADzDX3moTFhaGNm3aOLTjsH85vvYD0JgxY2CxWPDXv/7VYfm7774LQRCkhKT9KtXf/vY3h+2WLFnS4DjtV8WuvRq3ePHiBu+jOcaMGeP0eO+88w4A3HAGbHe67777sHfvXmzatOm6dSUlJTCbzQBsvwOTyYR//OMf0nqr1YqlS5c2+dhKpRKCIDhUkZw/fx7r169v0v4UCgXGjx+Pr776CgcOHLhufV1XYnv27InWrVvjrbfecvqlJz8/H4Ct2uXaW9Pi4uKQlJTk8PdOFMh4TmgYd50TXnnlFRQUFOCxxx6DyWS6bn1DKlLsCYerqygtFgtWrFjhsF2PHj2QlpaGxYsXX/e7tB8nMTER3bp1w+rVqx22OXLkCDZv3iy9Dw0ZXxs6VhP5O46zDePpz96nTp3CyZMn0bVr1zq36dWrF+Li4rB8+XKH39c333yD48ePSzE1dOxUKpUYOXIk1q9fj8zMTGm748ePO/1s3xxxcXEYMmQI/v73vztNYF89Btf3N1pZWQmj0eiwTevWrREeHu7wvrRu3fq6iv4VK1Y0+I6okSNHQqfT4fXXX3d6TuR5g7wBx/SGcceYXllZib179zpdZ+8f76yV1uTJk/Hee+9h+fLleOGFFxp9XDmNHz8eCoUC8+fPv+6uAWffE1q2bImtW7eiqqoKw4cPr7fVjjNynD98BSvQA0zHjh0xZMgQ9OzZE1FRUThw4AA+/fRTzJw5U9qmZ8+eAICnn34aI0eOhFKpxMSJE3HnnXfitttuwx//+EecP38eXbt2xebNm/Hf//4Xs2bNkr7E9+zZExMmTMDixYtRWFiIfv36YefOndIkPQ25jUen02HQoEF44403YDKZ0KJFC2zevBnnzp1zw7tyva5du2LKlClYsWIFSkpKMHjwYPz4449YvXo1xo8fj9tuu80jcVzrueeew5dffok77rgDU6dORc+ePVFRUYFff/0Vn376Kc6fP4+YmBiMHz8effr0wbPPPouMjAy0b98eX375JYqKigA07VaqsWPH4p133sGoUaPw4IMPIi8vD0uXLkWbNm3wyy+/NOn1vP7669i8eTMGDx6M6dOno0OHDrh8+TI++eQT7N6922mPR4VCgX/+858YPXo0OnXqhEceeQQtWrTApUuXsGPHDuh0Onz11VcoKytDy5Ytce+996Jr164ICwvD1q1bsX//frz99ttNipfI3/Cc0DDuOic8+OCDOHLkCBYuXIgff/wREydORFpaGioqKnDkyBF89NFHCA8Pv2Gf8E6dOqFfv36YM2cOioqKEBUVhXXr1kkXVO0UCgWWLVuGO++8E926dcMjjzyCxMREnDhxAkePHpWSN2+++SZGjx6N/v37Y9q0aaiqqsKSJUug1+vxyiuvAECDxteGjtVE/o7jbMO487O32WyWqtysVivOnz+P5cuXw2q14uWXX67zeWq1GosWLcIjjzyCwYMH44EHHkBubi7+8pe/oFWrVnjmmWekbRsydgK2CfA2btyIW2+9FU8++STMZjOWLFmCTp06NfnzdF2WLl2KgQMH4uabb8Zjjz2G9PR05ObmYu/evbh48SIOHz4MoP6/0VOnTmHo0KG477770LFjR6hUKnzxxRfIzc3FxIkTpeM9+uij+O1vf4sJEyZg+PDhOHz4MDZt2nRd/+S66HQ6LFu2DA8//DB69OiBiRMnIjY2FpmZmfjf//6HAQMGXJd4JPI0jukN444xvbKyErfccgv69euHUaNGITk5GSUlJVi/fj2+++47jB8/vs6WIDNnzoTBYMAf//hH6PV6vPjii819iR7Rpk0b/PGPf8Rrr72GW2+9Fffccw+0Wi3279+PpKQkLFy40OlzNm/ejCFDhmDkyJHYvn17o+eQ8PT5w2eI5DNWrlwpAhD379/vdP3gwYPFTp06OSxLTU0Vp0yZIv28YMECsU+fPmJERIQYHBwstm/fXvzTn/4k1tTUSNuYzWbxqaeeEmNjY0VBEMSr/0zKysrEZ555RkxKShLVarXYtm1b8c033xStVqvDcSsqKsQZM2aIUVFRYlhYmDh+/Hjx5MmTIgDxz3/+s7Tdyy+/LAIQ8/Pzr3s9Fy9eFO+++24xIiJC1Ov14m9+8xsxOztbBCC+/PLL9e5jypQpYmhoaIPeJ2dMJpP46quvimlpaaJarRaTk5PFOXPmiEajsUHHcaah26ampopjx451uq6srEycM2eO2KZNG1Gj0YgxMTHiLbfcIr711lsOv8f8/HzxwQcfFMPDw0W9Xi9OnTpV/P7770UA4rp16+qNyf6+Xu1f//qX2LZtW1Gr1Yrt27cXV65c6XQ7AOKMGTOcvq6r/x5FURQvXLggTp48WYyNjRW1Wq2Ynp4uzpgxQ6yurhZFURR37NghAhB37Njh8Lyff/5ZvOeee8To6GhRq9WKqamp4n333Sdu27ZNFEVRrK6uFp977jmxa9euYnh4uBgaGip27dpV/Nvf/ub0fSXyNTwn+P45we7bb78V7733XjExMVFUq9WiTqcTe/XqJb788svi5cuXr4t38ODBDsvOnDkjDhs2TNRqtWJ8fLz44osvilu2bHE6du7evVscPny4NC526dJFXLJkicM2W7duFQcMGCAGBweLOp1OvPPOO8Vjx45J6xszvtY3VhN5M46zvj/OTpkyRQTg8NDpdOLQoUPFrVu3Omxb12fOjz/+WOzevbuo1WrFqKgocdKkSeLFixevO1Z9Y6fdzp07xZ49e4oajUZMT08Xly9f7vTz9I2+D9idO3dOBCC++eabTtefOXNGnDx5spiQkCCq1WqxRYsW4h133CF++umn0jb1/Y0WFBSIM2bMENu3by+GhoaKer1e7Nu3r/if//zH4VgWi0V84YUXxJiYGDEkJEQcOXKkmJGRcd2/ifr+Xe3YsUMcOXKkqNfrxaCgILF169bi1KlTxQMHDtzwvSCqD8d03x7TTSaT+I9//EMcP368mJqaKmq1WjEkJETs3r27+Oabb0r5A1G8Mp5/8sknDvt4/vnnRQDiX//6V1EUr/xNnDt3TtqmrrHX2WdwuzfffPO6/djdaJyu63dxrX//+9/SeSgyMlIcPHiwuGXLlhvGvG/fPjE8PFwcNGiQWFlZ2ag4RNGz5w9fIYiiizrWE9Xj0KFD6N69Oz744ANMmjRJ7nAC0vr163H33Xdj9+7dGDBggNzhEFEA4zmBiMi9OM4SEfkPjulE8mIPdHKLqqqq65YtXrwYCoUCgwYNkiGiwHPt78BisWDJkiXQ6XTo0aOHTFERUSDiOYGIyL04zhIR+Q+O6UTehz3QyS3eeOMNHDx4ELfddhtUKhW++eYbfPPNN5g+fTqSk5PlDi8gPPXUU6iqqkL//v1RXV2Nzz//HHv27MHrr7+O4OBgucMjogDCcwIRkXtxnCUi8h8c04m8D1u4kFts2bIFr776Ko4dO4by8nKkpKTg4Ycfxh//+EeoVLxu4wlr167F22+/jYyMDBiNRrRp0wZPPPGEwwQnRESewHMCEZF7cZwlIvIfHNOJvA8T6ERERERERERERERETrAHOhERERERERERERGRE0ygExERERERERERERE5weZJAKxWK7KzsxEeHg5BEOQOh4gIoiiirKwMSUlJUCh4rbOhOJ4TkbfheN40HM+JyNtwPG8ajudE5G2aMp4zgQ4gOzubMxkTkVfKyspCy5Yt5Q7DZ3A8JyJvxfG8cTieE5G34njeOBzPichbNWY8ZwIdQHh4OADbG6fT6WSOhogIMBgMSE5OlsYnahiO50TkbTieNw3HcyLyNhzPm4bjORF5m6aM50ygA9JtRDqdjgM6EXkV3ubYOBzPichbcTxvHI7nROStOJ43DsdzIvJWjRnP2biLiIiIiIiIiIiIiMgJJtCJiIiIiIiIiIiIiJxgAp2IiIiIiIiIiIiIyAkm0ImIiIiIiIiIiIiInGACnYiIiIiIiIiIiIjICSbQiYiIiIiIiIiIiIickDWBvnDhQvTu3Rvh4eGIi4vD+PHjcfLkSYdthgwZAkEQHB6//e1vHbbJzMzE2LFjERISgri4ODz33HMwm82efClERERERERERERE5GdUch58586dmDFjBnr37g2z2YwXX3wRI0aMwLFjxxAaGipt99hjj2H+/PnSzyEhIdL/WywWjB07FgkJCdizZw8uX76MyZMnQ61W4/XXX/fo6yEiIiIiIiIiIiIi/yFrAn3jxo0OP69atQpxcXE4ePAgBg0aJC0PCQlBQkKC031s3rwZx44dw9atWxEfH49u3brhtddewwsvvIBXXnkFGo3Gra+BiIiIiIiIiIiIiPyTV/VALy0tBQBERUU5LP/www8RExODzp07Y86cOaisrJTW7d27FzfffDPi4+OlZSNHjoTBYMDRo0c9EzgRERERERERERER+R1ZK9CvZrVaMWvWLAwYMACdO3eWlj/44INITU1FUlISfvnlF7zwwgs4efIkPv/8cwBATk6OQ/IcgPRzTk6O02NVV1ejurpa+tlgMLj65RARERERERERERGRj/OaBPqMGTNw5MgR7N6922H59OnTpf+/+eabkZiYiKFDh+LMmTNo3bp1k461cOFCvPrqq82Kl4iIiIiIiIiIiIj8m1e0cJk5cyY2bNiAHTt2oGXLljfctm/fvgCAjIwMAEBCQgJyc3MdtrH/XFff9Dlz5qC0tFR6ZGVlNfclEBEREREREREREZGfkTWBLooiZs6ciS+++ALbt29HWlpavc85dOgQACAxMREA0L9/f/z666/Iy8uTttmyZQt0Oh06duzodB9arRY6nc7hQURERERERERERER0NVlbuMyYMQNr167Ff//7X4SHh0s9y/V6PYKDg3HmzBmsXbsWY8aMQXR0NH755Rc888wzGDRoELp06QIAGDFiBDp27IiHH34Yb7zxBnJycvDSSy9hxowZ0Gq1cr48IiIiIiIiIiIiIvJhslagL1u2DKWlpRgyZAgSExOlx8cffwwA0Gg02Lp1K0aMGIH27dvj2WefxYQJE/DVV19J+1AqldiwYQOUSiX69++Phx56CJMnT8b8+fPlellERERERERERERE5AdkrUAXRfGG65OTk7Fz585695Oamoqvv/7aVWE1WGZmJgoKCpq1j5iYGKSkpLgoIiIiIiKiptu1axfefPNNHDx4EJcvX8YXX3yB8ePHS+tFUcTLL7+Mf/zjHygpKcGAAQOwbNkytG3bVtqmqKgITz31FL766isoFApMmDABf/nLXxAWFibDKyIiIl/kinwLwJwLEbmGrAl0X5aZmYn2HTqgqrKyWfsJDgnBiePHOaATERH5iOSUVFzMymzQti2TU5CVecHNERG5TkVFBbp27Yr/+7//wz333HPd+jfeeAPvvfceVq9ejbS0NMydOxcjR47EsWPHEBQUBACYNGkSLl++jC1btsBkMuGRRx7B9OnTsXbtWk+/HCKXueue3yCvoKjO9XExUfjy8088GBGR/3JVvgVgzoWIXIMJ9CYqKChAVWUlJr3wJuJTWjdpH7mZZ/DhoudQUFDAwZyIiMhHXMzKxDubTzZo29kj2rk5GiLXGj16NEaPHu10nSiKWLx4MV566SWMGzcOALBmzRrEx8dj/fr1mDhxIo4fP46NGzdi//796NWrFwBgyZIlGDNmDN566y0kJSV57LUQuVJeQRHun7uszvUfv/aEB6Mh8m+uyLcAzLkQkeswgd5M8Smt0bJtJ7nDICIiIiJyq3PnziEnJwfDhg2Tlun1evTt2xd79+7FxIkTsXfvXkREREjJcwAYNmwYFAoF9u3bh7vvvluO0ImIyAcx30JE3kLWSUSJiMg/7Nq1C3feeSeSkpIgCALWr1/vsF4URcybNw+JiYkIDg7GsGHDcPr0aYdtioqKMGnSJOh0OkRERGDatGkoLy/34KsgIqIbycnJAQDEx8c7LI+Pj5fW5eTkIC4uzmG9SqVCVFSUtI0z1dXVMBgMDg8iIiIiIm/ABDoRETWbvWfu0qVLna6398xdvnw59u3bh9DQUIwcORJGo1HaZtKkSTh69Ci2bNmCDRs2YNeuXZg+fbqnXgIREclo4cKF0Ov10iM5OVnukIiIiIiIADCBTkRELjB69GgsWLDA6a351/bM7dKlC9asWYPs7GypUt3eM/ef//wn+vbti4EDB2LJkiVYt24dsrOzPfxqiIjImYSEBABAbm6uw/Lc3FxpXUJCAvLy8hzWm81mFBUVSds4M2fOHJSWlkqPrKwsF0dPRERERNQ0TKATEZFb1dczF0C9PXOJiEh+aWlpSEhIwLZt26RlBoMB+/btQ//+/QEA/fv3R0lJCQ4ePChts337dlitVvTt27fOfWu1Wuh0OocHEREREZE34CSiRETkVu7umVtdXS39zJ65RETNU15ejoyMDOnnc+fO4dChQ4iKikJKSgpmzZqFBQsWoG3btkhLS8PcuXORlJSE8ePHAwA6dOiAUaNG4bHHHsPy5cthMpkwc+ZMTJw4EUlJSTK9KiIiIiKipmMCnYiIfNbChQvx6quvyh0GEZHfOHDgAG677Tbp59mzZwMApkyZglWrVuH5559HRUUFpk+fjpKSEgwcOBAbN25EUFCQ9JwPP/wQM2fOxNChQ6FQKDBhwgS89957Hn8tRJ506tRJ9Bs0tM71cTFR+PLzTzwYEREREbkKE+hERORWV/fMTUxMlJbn5uaiW7du0jZN7ZlrT+4Atgp0TjxHRNR0Q4YMgSiKda4XBAHz58/H/Pnz69wmKioKa9eudUd4RF7LbBVx/9xlda7/+LUnPBgNERERuRJ7oBMRkVuxZy4RERERERER+SpWoBMRUbOxZy4RERERERER+SMm0ImIqNnYM5eIiIiIiIiI/BET6ERE1GzsmUtERERERERE/og90ImIiIiIiIiIiIiInGACnYiIiIiIiIiIiIjICSbQiYiIiIiIiIiIiIicYAKdiIiIiIiIiIiIiMgJJtCJiIiIiIiIiIiIiJxgAp2IiIiIiIiIiIiIyAkm0ImIiIiIiIiIiIiInGACnYiIiIiIiIiIiIjICSbQiYiIiIiIiIiIiIicYAKdiIiIiIiIiIiIiMgJJtCJiIiIiIiIiIiIiJxgAp2IiIiIiIiIiIiIyAkm0ImIiIiIiIiIiIiInGACnYiIiIiIiIiIiIjICSbQiYiIiIiIiIiIiIicYAKdiIiIiIiIiIiIiMgJJtCJiIiIiIiIiIiIiJxgAp2IiIiIiIiIiIiIyAkm0ImIiIiIiIiIiIiInGACnYiIiIiIiIiIiIjICSbQiYiIiIiIiIiIiIicYAKdiIiIiIiIiIiIiMgJJtCJiIiIiIiIiIiIiJxgAp2IiIiIiIiIiIiIyAkm0ImIiIiIiIiIiIiInGACnYiIiIiIiIiIiIjICSbQiYiIiIiIiIiIiIicYAKdiIiIiIiIiIiIiMgJJtCJiIiIiIiIiPzIwoUL0bt3b4SHhyMuLg7jx4/HyZMnHbYxGo2YMWMGoqOjERYWhgkTJiA3N9dhm8zMTIwdOxYhISGIi4vDc889B7PZ7MmXQkQkOybQiYiIiIiIiIj8yM6dOzFjxgz88MMP2LJlC0wmE0aMGIGKigppm2eeeQZfffUVPvnkE+zcuRPZ2dm45557pPUWiwVjx45FTU0N9uzZg9WrV2PVqlWYN2+eHC+JiEg2KrkDICIiIiIiIiIi19m4caPDz6tWrUJcXBwOHjyIQYMGobS0FP/617+wdu1a3H777QCAlStXokOHDvjhhx/Qr18/bN68GceOHcPWrVsRHx+Pbt264bXXXsMLL7yAV155BRqNRo6XRkTkcaxAJyIiIiIiIiLyY6WlpQCAqKgoAMDBgwdhMpkwbNgwaZv27dsjJSUFe/fuBQDs3bsXN998M+Lj46VtRo4cCYPBgKNHj3oweiIiebECnYiIiKgRFME67D5dgJO5ZTCaLIgK1aBTkg6dW+ihEAS5wyMiIiJyYLVaMWvWLAwYMACdO3cGAOTk5ECj0SAiIsJh2/j4eOTk5EjbXJ08t6+3r3Omuroa1dXV0s8Gg8FVL4OISDasQCciIiJqoLP55Uh85D0czCxGebUZZquIvLJq7DiZj89/uoSKak6qRURERN5lxowZOHLkCNatW+f2Yy1cuBB6vV56JCcnu/2YRETuxgQ6ERERUQPklBpx/4ofoAqPQUSIGnd2ScTk/qm4tW0M1EoBl0qq8PnPl1BlssgdKhEREREAYObMmdiwYQN27NiBli1bSssTEhJQU1ODkpISh+1zc3ORkJAgbZObm3vdevs6Z+bMmYPS0lLpkZWV5cJXQ0QkDybQiYiIiOohiiJe+OwX5JdVoyb/PH7TsyXSY8MQGaJBj5RIPNA7BWFaFYoqavDloWxYrKLcIRMREVEAE0URM2fOxBdffIHt27cjLS3NYX3Pnj2hVquxbds2adnJkyeRmZmJ/v37AwD69++PX3/9FXl5edI2W7ZsgU6nQ8eOHZ0eV6vVQqfTOTyIiHwdE+hERERE9fjk4EXsPJUPjUqB/P/+GSEax2lkIkM1uLt7C2hVCuQYjNhzpkCmSImIiIhsbVs++OADrF27FuHh4cjJyUFOTg6qqqoAAHq9HtOmTcPs2bOxY8cOHDx4EI888gj69++Pfv36AQBGjBiBjh074uGHH8bhw4exadMmvPTSS5gxYwa0Wq2cL4+IyKOYQCciIiK6gWqzBYu3nAIAzB5+E8yFF51uFxWqwfCOtom1fsosQWZRpcdiJCIiIrrasmXLUFpaiiFDhiAxMVF6fPzxx9I27777Lu644w5MmDABgwYNQkJCAj7//HNpvVKpxIYNG6BUKtG/f3889NBDmDx5MubPny/HSyIiko2q/k2IiIiIAtd/DlxEdqkR8Totpt7SCk/cYNvWsWG4uYUev14qxfYTeRBUGo/FSUREnpVfVo2zBeVQKRRQ6OLkDofIgSjW304uKCgIS5cuxdKlS+vcJjU1FV9//bUrQyMi8jlMoBMRERHVwWIVsfzbMwCAJ4e0QZBaWe9zBrSJxtmCcpRWmaDre6+7QyQiIg8TRRE7T+Xj8MVSaZl+/Mv4ObMY3VMiZYyMiIiI3IEtXIiIiIjqsPNUHi6VVCEiRI37eyc36DlalRKD28YCAHR97kZ+WbU7QyQiIg/7/kyhlDxPjwlFi4hgCCo1dp0uwInLBpmjIyIiIldjAp2IiIioDmv3ZQEAJvRo2aDqc7s2cWGI12mh0ATjr9tPuys8IiLysDP55Th4oRgAMLJjPO7smoQJPVqg6rCtxcW2E3koqqiRM0QiIiJyMSbQiYiIiJzIKTVi+4lcAMADfVIa9VxBEDCgdQwAYO2Pmcgs5ISiRES+zmyxYtepfABAz5RItE/UAbCN+VU//RfJkcEwW0V8n1EgZ5hERETkYkygExERETmx4ZdsWEWgV2ok2sSFNfr5yVEhqDp7ECaLiLe3nHRDhERE5EmHskpgMJoRplWhb3qU40pRxJB2cRAAnC2oQI7BKEuMRERE5HpMoBMRERE58fWvlwEAd3RJbPI+ineuBgD891A2TuSwLy4Rka8SBSV+yiwBAPRvHQ218vqv0lGhGrRPCAcA7Dtb6MnwiIiIyI2YQCciIiK6RnZJFX7KLIEgAKNvbnoC3ZR3FmNrn//3nWddFR4REXlYVUw7VJksCNOq0D4+vM7teqfZKtPPF1aizGjyVHhERETkRkygExEREV1j45EcALb2LfG6oGbt67eDWwMAvjycjYvF7IVORORrRFFEZWIPAEDXlnooFEKd20aGaNAyIhgAcCybdx4RERH5AybQiYiIiK6x9bht8tBRnZtefW53c0s9BrSJhsUq4l+7zzV7f0RE5FlHLhlgDouDUiGgcwt9vdt3amGbXPToZQOsouju8IiIiMjNVHIHQERERORNKqrN2H++CABwW7tYl+zzt4Nb4/uMQqz7MQtP394WkaEal+yXiIjcb/2hSwCA9JhQBKmV9W7fJjYMO1T5KDOacbnUiBYRwTh16iT6DRp6w+fFxUThy88/cUnMRERE5DpMoBMRERFdZc+ZQpgsIlKiQpAWE+qSfQ5sE4OOiTocu2zABz9cwFND27pkv0RE5F4Wq4ivDmcDgDRBaH1USgXSY0JxIqcMZ/LK0SIiGGariPvnLrvh8z5+7Ylmx0tERESuxxYuRERERFfZeSoPADD4plgIQt19bhtDEAQ8PjgdALBqz3lUmy0u2S8REbnXD2cLkVdWDcFkRGp0wy+qto4NAwCcyS+HyDYuREREPo0JdCIiIgpoySmpEARBeqzc+CMA4O3f/5/DcvujqcbenIhEfRAKK2qkSUrri+VGj+SU1CbHQkREDbPpqG28Dio6DeUNJg+9Vmp0CFQKAQajGQXlNe4Kj4iIiDyALVyIiIgooF3MysQ7m08CAAxVJqzccx4KAXh5yRpoVNfXGswe0a5Jx1EpFXiwTwre3nIK7++9gHHdWtwwlvo0NQ4iImoYURSx7bjtriRt0ZlGPVetVCA1OgRn8itwJr/cHeERERGRh7ACnYiIiKjWxeIqAEC8Lshp8ry57u+TDJVCwIELxTiWbXD5/omIyHWOXy7DpZIqBKkV0JZmNvr5rWpbvmQWVbo6NCIiIvIgJtCJiIiIal0ssSU5WkQEu2X/ceFBGNk5AQDwwb4LbjkGERG5xrbjuQCAgW1iIVjNjX5+clQIACDHYATUQS6NjYiIiDxH1gT6woUL0bt3b4SHhyMuLg7jx4/HyZOOty0bjUbMmDED0dHRCAsLw4QJE5Cbm+uwTWZmJsaOHYuQkBDExcXhueeeg9nc+A84REREFNjsFegtI92TQAeAh/vZepev//kSyowmtx2HiIiaZ8dJW/uWoR3imvR8fbAa+mA1RBFQJ9zkytCIiIjIg2RNoO/cuRMzZszADz/8gC1btsBkMmHEiBGoqKiQtnnmmWfw1Vdf4ZNPPsHOnTuRnZ2Ne+65R1pvsVgwduxY1NTUYM+ePVi9ejVWrVqFefPmyfGSiIiIyEcZqkwoM5qhEIBEvfsS6H3TotA2LgyVNRZ8/tMltx2HiIiazmA04fDFUgDAoJtim7yflNoqdHVSB5fERURERJ4nawJ948aNmDp1Kjp16oSuXbti1apVyMzMxMGDBwEApaWl+Ne//oV33nkHt99+O3r27ImVK1diz549+OGHHwAAmzdvxrFjx/DBBx+gW7duGD16NF577TUsXboUNTWc7ZyIiIga5lKJrfo8Ltw9/c/tBEHAQ7VV6B/vz3LbcYiIqOn2nS2CxSoiLSa0WW297Al0FRPoREREPsureqCXltqu8EdFRQEADh48CJPJhGHDhknbtG/fHikpKdi7dy8AYO/evbj55psRHx8vbTNy5EgYDAYcPXrU6XGqq6thMBgcHkRERBTYLpcaAQCJEe7vUzuuWxI0SgWOXTbg+GV+DiEi8jbfZxQAAAa0iW7WfpJqzymqyCRUmSzNjouIiIg8z2sS6FarFbNmzcKAAQPQuXNnAEBOTg40Gg0iIiIcto2Pj0dOTo60zdXJc/t6+zpnFi5cCL1eLz2Sk5Nd/GqIiIjI1+TYE+g69yfQI0I0Uk/dzw5edPvxiIiocXbXJtAHtolp1n5CNCpEhqgBAJdr73QiIiIi3+I1CfQZM2bgyJEjWLdunduPNWfOHJSWlkqPrCzePk1ERBTIasxWFJRXAwASm3GrfmPc06MlAGD9oWyYLVaPHJOIiK531z2/Qb9BQ6VH76F3ISOvHBBFzHv6UfQbNBSnMzKavP+k2vNKdonRVSETERGRB6nkDgAAZs6ciQ0bNmDXrl1o2bKltDwhIQE1NTUoKSlxqELPzc1FQkKCtM2PP/7osL/c3FxpnTNarRZardbFr4KIiIh8Va7BCBFAeJAKYVrPfDwa0i4W0aEaFJRXY9fpfNzePr7+JxERkcvlFRTh/rnLpJ9P55bh6yM5iA0PwgNz3gUAvDzptibvv0VEMI5mG5Bdygp0IiIiXyRrBbooipg5cya++OILbN++HWlpaQ7re/bsCbVajW3btknLTp48iczMTPTv3x8A0L9/f/z666/Iy8uTttmyZQt0Oh06duzomRdCREREPu2yB9u32KmVCtzVLQkA8NlPlzx2XCIiujH7pNJJLpoTw16Bnmsw8o4jIiIiHyRrAn3GjBn44IMPsHbtWoSHhyMnJwc5OTmoqrJ9YNHr9Zg2bRpmz56NHTt24ODBg3jkkUfQv39/9OvXDwAwYsQIdOzYEQ8//DAOHz6MTZs24aWXXsKMGTNYZU5EREQNkmuwJdAT9J5LoAPAhNo2LluO5aK00uTRYxM1hcViwdy5c5GWlobg4GC0bt0ar732GkRRlLYRRRHz5s1DYmIigoODMWzYMJw+fVrGqIkax95qJclFLb10QSpYK0thFYFcQ7VL9klERESeI2sCfdmyZSgtLcWQIUOQmJgoPT7++GNpm3fffRd33HEHJkyYgEGDBiEhIQGff/65tF6pVGLDhg1QKpXo378/HnroIUyePBnz58+X4yURERGRD8orsyU04jxYgQ4AnZJ0aBcfjhqzFd8cuezRYxM1xaJFi7Bs2TL89a9/xfHjx7Fo0SK88cYbWLJkibTNG2+8gffeew/Lly/Hvn37EBoaipEjR8JoZP9n8n7VZgvya+fEcFUCXRAEmPPPAQByy/jvgIiIyNfI2gP96kqVugQFBWHp0qVYunRpndukpqbi66+/dmVoREREFCAUIREorzYDAGLDPHv3miAIuKtbEt7cdBJfH8nx6LGJmmLPnj0YN24cxo4dCwBo1aoVPvroI2lOIlEUsXjxYrz00ksYN24cAGDNmjWIj4/H+vXrMXHiRNliJ2oIe0svfbDapXNimPPPQpPaDbmlTKATERH5Glkr0ImIKDDwln/yZpr4dABAZIgaGpXnPxqN7myb9HxPRgEU2lCPH5+oMW655RZs27YNp06dAgAcPnwYu3fvxujRowEA586dQ05ODoYNGyY9R6/Xo2/fvti7d68sMRM1hjQnhotbepnzzwMAcgxMoBMREfkaWSvQiYgoMNhv+V+9ejU6deqEAwcO4JFHHoFer8fTTz8N4Mot/6tXr0ZaWhrmzp2LkSNH4tixYwgK8mxbDQosmvjWAIC4cHn+ztJjw9A+IRwncsoQ3LavLDEQNdQf/vAHGAwGtG/fHkqlEhaLBX/6058wadIkAEBOju1Oivj4eIfnxcfHS+ucqa6uRnX1ld7QBoPBDdET1U+aE8PFLb0sBRcAAAajGZU1ZoRo+FWciIjIV7ACnYiI3O7qW/5btWqFe++9FyNGjKjzlv8uXbpgzZo1yM7Oxvr16+UNnvyeJqENACAuXL7Jx0d3TgQAhLQbKFsMRA3xn//8Bx9++CHWrl2Ln376CatXr8Zbb72F1atXN2u/CxcuhF6vlx7Jyckuipio4URRRF7tJJ/xLk6gi6YqRIaoAXAiUSIiIl/DBDoREbkdb/knb6atrUCPlTGBPuZmWxuX4FbdUW22yBYHUX2ee+45/OEPf8DEiRNx88034+GHH8YzzzyDhQsXAgASEmx/y7m5uQ7Py83NldY5M2fOHJSWlkqPrKws970IojqUGc2oMlmgEICYMI3L92+vas9lGxciIiKfwvvGiIjI7XjLP3mrksoaqCJsST05K9DbxoejTVwYMvLKca6gAu0TdLLFQnQjlZWVUCgca3CUSiWsVisAIC0tDQkJCdi2bRu6desGwDY279u3D0888USd+9VqtdBq5fs3SARcSWzHhGmhUrq+1iw2XIvjOWXIL2MFOhERkS9hBToREbkdb/knb3U023bRRR+shlatlDWWMbWTiWbklcsaB9GN3HnnnfjTn/6E//3vfzh//jy++OILvPPOO7j77rsBAIIgYNasWViwYAG+/PJL/Prrr5g8eTKSkpIwfvx4eYMnqoe9tUqczj0Xc+x3OuWXM4FORETkS1iBTkREbnf1Lf8AcPPNN+PChQtYuHAhpkyZ4nDLf2JiovS83NxcqYLRmTlz5mD27NnSzwaDgUl0apRfL5UCkLf63G70zYl4b3sGzhdWwmSxQu2G6kei5lqyZAnmzp2LJ598Enl5eUhKSsLjjz+OefPmSds8//zzqKiowPTp01FSUoKBAwdi48aNnBCavF5uma0C3dX9z+1iw2znmjKjGUaTBUEyX7glIiKihuE3MyIicrvG3PJvZ7/lv3///nXuV6vVQqfTOTyIGuNIbQJdzv7ndu0TwmEuyYHFKiKruFLucIicCg8Px+LFi3HhwgVUVVXhzJkzWLBgATSaK/2iBUHA/PnzkZOTA6PRiK1bt+Kmm26SMWqi+jlMIBrungS6Vq2ELshWw1bAKnQiIiKfwQQ6ERG5HW/5J29lb+HiDRXogiCg6uwBAMD5AibQiYg8qbjShBqLFSqFgOhQ108gaie1cWEfdCIiIp/BFi5EROR2vOWfvJHBaMK5ggoAQJybqg0bq+rMAYT3uAPnCysgiiIEQZA7JCIin3fXPb9BXkFRnetPZ2SgS+0EorHhWigU7ht7Y8K0OJNfwT7oREREPoQJdCIicjv7Lf+LFy+ucxv7Lf/z58/3XGAU0I7VVp+bS/MQrGkrczQ2xsxfoVQIKDOaUVRRg+gw+SvjiYh8XV5BEe6fu6zO9S9Pug25Bvf2P7ezV6AXlNW49ThERETkOmzhQkRERAHpZE4ZAKAm75zMkVwhmqvRMjIYAHC+kG1ciIg8Jdfe/1zn3guX9olECyuqYbGKbj0WERERuQYT6ERERORXklNSIQhCvY/Zr74FADDln3dfMIKiQbHYHwDQKjoUAHC+sMJ9cRER0RWCUmqp4u4K9PAgFbQqBawiUFTBKnQiIiJfwBYuRERE5FcuZmXinc0n693uPweycLnUiJqCTPcFI1obFIvd7BHt0Co6BDsBZJdUodpsgValdF98REQEZUQCLFYRGqUCEcFqtx5LEATEhmlxsaQK+eXVUksXIiIi8l6sQCciIqKAI4oiCmsr/0wFF2SOxlFEiAYRIWpYRSCrqErucIiI/J4ysgUAIDpM45HJm2Nqk+b5ZZxIlIiIyBcwgU5EREQBp6LaghqzFYIAmIouyh3OddjGhYjIc5RRtgR6jIcmbrb3QS9gAp2IiMgnMIFOREREAaewwpa0iAzWABazzNFcLzU6BACQWVQJUeQkc0RE7qSMbAkAiAnTeOR49rYt+eXVHOOJiIh8ABPoREREFHAKy23tW6I9lCxprCR9MBQCUGY0w2D0vgQ/EZE/sbdw8VQFelSoBgoBqDZbUcYxnoiIyOsxgU5EREQBp6C2Aj061DsT6BqVAvG6IABAVnGlzNEQEfkvo8kCZVgUAM9dVFUqBETWnn/s83EQERGR92ICnYiIiAJOUW3CIspLK9ABIDnS1sblIicSJSJym4Jy2wXV8CAVtCqlx44bLSXQ2QediIjI2zGBTkRERAFFFEWphUtMqGdu12+KlpHBAICLxeyDTkTkLtL5wEPtW+yiahPoRaxAJyIi8npMoBMREVFAMRjNMFtFKBUC9MFqucOpU6I+CEqFgIoaC4orTXKHQ0Tkl+wV6J6aQNQuuvYCrj2BT0RERN6LCXQiIiIKKIW1yZKoEA0UCkHmaOqmUiqQqLf1Qb/IPuhERG5RIFMFevRVFei8y4iIiMi7MYFOREREAaWg9nZ5T00W1xz2PuhZxeyDTkTkaqIoSj3IPZ1A1weroRQEmK0iDEazR49NREREjcMEOhEREQWUotpqQ3v/WW9m74N+qbiKFYpERC5WWmWCySJCNJsQ4eGWXgqFgIhQ2zHZB52IiMi7MYFOREREAcVebegLFejxuiColQKqTBapzQAREblGYW3i2lJyWZaWXvY2LvbzEhEREXknJtCJiIgoYFitIoorbBNy2idw82ZKhYAkva0KnX3QiYhcq6DMlri2FF+U5fj281ARL5ASERF5NSbQiYiIKGAYjCZYRBEqhQBdkErucBokqbaNy+VSo8yREBH5F/udPZbiS7IcP0qqQGcCnYiIyJsxgU5EREQBo6jSlqSICFFDEDx/u35TtKitQM8uYR90IiJXsrdOMRfJk0C3t3Apqqjh+E5EROTFmEAnIiKigGFv3xIV4v39z+3idVooBKCixgKD0Sx3OEREfsFiFVFaZTsnWEsvyxKDPlgNpSDAbBU5vhMREXkxJtCJiIgoYBTXVqBHhvpOAl2lVCAuPAiArQqdiIiar7TKBKsIqJUCrBXFssSgUAiIDFUD4ESiRERE3owJdCIiIgoYxbV9ZiN9qAIdAJIiahPopUygExG5QpGXnA+irmrjQkRERN6JCXQiIiIKGMWVttv17RV/viIponYi0RJOJEpE5Ar2OTGiZL4jKTpUCwAoKmcCnYiIyFsxgU5EREQBocpkQZXJAkD+isPGStTbKtALK2pgrH0NRETUdN5yR5I9gV/ICnQiIiKvxQQ6ERERBQR7siRMq4Ja6VsfgUI0KkSE2KrmL5eyCp2IqLnsLVPkr0C3Hb+4sgairJEQERFRXXzr2yMRERFRExV7ye36TZWkt7Vx4USiRETNI4rilUmlQ+Rt6aULVkMhACaLCKsmTNZYiIiIyDkm0ImIiCggSP3PZU6WNBUnEiUico3yajNMFhGCAETI3MJFqRCgD7adl8zBkbLGQkRERM4xgU5EREQBwVv63TaVfSLRXEM1zFarzNEQEfku+wVVfbAaSoUgczRXzkvm4CiZIyEiIiJnmEAnIiKigCDdru+jLVwigtUIVithsYooKONkc0RETSX1P/eSC6r285KFCXQiIiKvxAQ6ERER+T2LVURplW+3cBEEAQl6WxuXy2zjQkTUZNIdSV5yQdV+XmILFyIiIu/EBDoRERH5vdIqE6wioFYKCNOq5A6nyRJ0tgR6jsEocyRERL6ryMsmlWYLFyIiIu/GBDoRERH5Pal9S4gGgiB/v9umsleg55QygU5E1FTFXtrCxarVobLGLHM0REREdC0m0ImIiMjv+foEonbxOi0AwGA0QxGilzkaIiLfU222oKLGAgCIDPWOll7BaiWC1UoAwLmCCpmjISIiomsxgU5ERER+r0iqQPeOZElTaVVKqeWANrGdzNEQEfme4grbfBihGiW0KqXM0VwRUXt+OpPPBDoREZG3YQKdiIiI/F5JZe0Eol7S77Y57H3QtUlMoBMRNVaRl00game/OHo2v1zmSIiIiOhaTKATERGR37Mn0COCfbsCHbjSB13DBDoRUaNdPSeGN7HHwwp0IiIi78MEOhEREfm1arMFVSZbv1u9j7dwAa6qQE+8CRarKHM0RES+RbojycvOB/Z4WIFORETkfZhAJyIiIr9mT5YEq72r321TRYdpoFYKUGhDcIaJFiKiRimpslWgR3hbBbrUwqUCVl4cJSIi8ipMoBMREZFfk9q3eFm1YVMpBAHx4bYq9J8zi2WOhojId4ii6LUtvXRBasBqu2Mqx2CUOxwiIiK6ChPoRERE5NdKq/wrgQ4A8Xp7Ar1E3kCIiHxIRY0FZqsIAYDOyxLoSoUApbEEAHh3EbnErl27cOeddyIpKQmCIGD9+vUO66dOnQpBEBweo0aNctimqKgIkyZNgk6nQ0REBKZNm4bycv59ElHgYQKdiIiI/FpJ7YRxEcHedbt+cyTWJtAPZZXIGwgRkQ+xnw90wWooFYLM0VxPVWW7q+gsJxIlF6ioqEDXrl2xdOnSOrcZNWoULl++LD0++ugjh/WTJk3C0aNHsWXLFmzYsAG7du3C9OnT3R06EZHXUckdABEREZE7lfhhBbp9ItGTuWUorzYjTMuPdERE9fHW9i12qqoiVIMV6OQao0ePxujRo2+4jVarRUJCgtN1x48fx8aNG7F//3706tULALBkyRKMGTMGb731FpKSklweMxGRt2IFOhEREfk1f+uBDgChWhXMpXkQReCXiyVyh0NE5BO8/YKqsqoIACvQyXO+/fZbxMXFoV27dnjiiSdQWFgordu7dy8iIiKk5DkADBs2DAqFAvv27atzn9XV1TAYDA4PIiJfxwQ6ERER+a1qk21CNsC/WrgAQHX2CQDsg05E1FBSS68Q7zwf2Fu4sAKdPGHUqFFYs2YNtm3bhkWLFmHnzp0YPXo0LBbb56acnBzExcU5PEelUiEqKgo5OTl17nfhwoXQ6/XSIzk52a2vg4jIE3i/LxEREfkte7VhiEYJjcq/6gaqL59CaIdB7INORNRAUgW6t7ZwMdoS6JdLjaioNiOU7bnIjSZOnCj9/80334wuXbqgdevW+PbbbzF06NAm73fOnDmYPXu29LPBYGASnYh8nn99kyQiIiK6irf3u22Omqsq0EVRlDkaIiLvJooiSmvPCXovbeGiMBsRHWqrjj9XwDYu5Fnp6emIiYlBRkYGACAhIQF5eXkO25jNZhQVFdXZNx2w9VXX6XQODyIiX8cEOhEREfmtkirvvl2/OWpyz0KlEFBQXo2LxVVyh0NE5NXKq80wW0UIAqAL8s4EOgC0jg0DwDYu5HkXL15EYWEhEhMTAQD9+/dHSUkJDh48KG2zfft2WK1W9O3bV64wiYhkwQQ6ERER+S1/nEDUTjTXoGOSraqLbVyIiG7Mfj7QBamhVAgyR1O39NhQAMAZTiRKzVReXo5Dhw7h0KFDAIBz587h0KFDyMzMRHl5OZ577jn88MMPOH/+PLZt24Zx48ahTZs2GDlyJACgQ4cOGDVqFB577DH8+OOP+P777zFz5kxMnDgRSUlJMr4yIiLPYwKdiIiI/JY/t3ABgG7JEQA4kSgRUX2k/udefkHVXoF+lhXo1EwHDhxA9+7d0b17dwDA7Nmz0b17d8ybNw9KpRK//PIL7rrrLtx0002YNm0aevbsie+++w5arVbax4cffoj27dtj6NChGDNmDAYOHIgVK1bI9ZKIiGTDWUmIiIjIb/lzCxcA6J4SgTV7L+BQVrHcoRAReTV7//PIYO8+H7ACnVxlyJAhN5wjZdOmTfXuIyoqCmvXrnVlWEREPokV6EREROSXjCYLjCYrAEDvtxXokQCAI9kG1JitMkdDROS9rlxQ9e7zQXptBfq5gnJYrZwgmoiIyBswgU5ERER+yX67fqhGCY3KPz/ytIoOQUSIGjVmK45fNsgdDhGR1/KVOTGSI4OhUggwmqzIMRjlDoeIiIjABDoRERH5qZJKW7Wh3suTJc0hCMJVfdDZxoWIyBkRVy6qevsdSSqlAinRIQCAs2zjQkRE5BWYQCciIiK/ZKgyAwAivLzfbXN1r23jciirRN5AiIi8lFUTDotVhEIAdEHenUAHgPSYK21ciIiISH5MoBMREZFfKq2tNtQF+/ec6d1SIgAAPzOBTkTklDlID8CWPFcoBJmjqR8nEqVAV2WyQpPUXu4wiIgkTKATERGRXzL4yO36zdWtZQQA4EJhJYoqauQNhojIC1lqE+i+cj5Ij7El0M8VMIFOgcdsseLtH0qQ8MBCZFUwZUVE3oGjEREREfmlUmNtBboP3K7fHPoQtVSteCiLfdCJiK5l0dZWoPtIAj2tNoF+li1cKACZrSK0SgGCSo0fC1U4wUnSicgLMIFOREREfsdiFVFutPVA95WKw+aQ+qBnlsgbCBGRF7IERQDwnfNBeqytB/rF4ipUmy0yR0PkWUFqJZ7tH4GynzYAAH7iZxsi8gJMoBMREZHfKTOaIAJQKQSEaJRyh+N27INORFQ3X2vhEhOmQbhWBVEEMgsr5Q6HyOMUgoCS3WsBiMgvr5ba8hERyUXWBPquXbtw5513IikpCYIgYP369Q7rp06dCkEQHB6jRo1y2KaoqAiTJk2CTqdDREQEpk2bhvJy3upGREQUyK5MIKqGIHj/hHHN1T05AgBwKKsEVqsobzBERF7G1xLogiAgjROJUoCzVhkQo7V9pjnL+QCISGayJtArKirQtWtXLF26tM5tRo0ahcuXL0uPjz76yGH9pEmTcPToUWzZsgUbNmzArl27MH36dHeHTkRERF7MUBU47VsAoH1COILUCpQZzeyZS0R0lYpqM6zqEACALlglczQNx4lEiYDEYCsAzgdARPKT9RPE6NGjMXr06Btuo9VqkZCQ4HTd8ePHsXHjRuzfvx+9evUCACxZsgRjxozBW2+9haSkJJfHTERERN7vygSivpMsaQ6VUoEuLSLw4/ki/JxZgjZx4XKHRETkFbKKbS1QgtQKaFW+09IrLcbWB/1sPhOHFLgSg634tQS4VFwFs9UKlYJdiIlIHl4/+nz77beIi4tDu3bt8MQTT6CwsFBat3fvXkREREjJcwAYNmwYFAoF9u3bV+c+q6urYTAYHB5ERETkP+y9MgOlAh1gH3QiImfsPcR1Qb51PkiPZQU6UZgKCFIpYBWBoooaucMhogDm1Qn0UaNGYc2aNdi2bRsWLVqEnTt3YvTo0bBYbDOR5+TkIC4uzuE5KpUKUVFRyMnJqXO/CxcuhF6vlx7JyclufR1ERETkWVf3QA8UUh/0zBJZ4yAi8iaZRbYEuq9dUE2rbeHC3s8UyAQBiAnXAgAKyphAJyL5ePV9zRMnTpT+/+abb0aXLl3QunVrfPvttxg6dGiT9ztnzhzMnj1b+tlgMDCJTkRE5EcCuQL9RI4BlTVmhGi8+mMeEZFHZPl4Ar2oogYllTWICNHIHBGRPGLCtLhYXIX88mq5Q/EqmZmZKCgoaNY+YmJikJKS4qKIiPybT32zSk9PR0xMDDIyMjB06FAkJCQgLy/PYRuz2YyioqI6+6YDtr7qWq3W3eESERGRDARNCIxm26RTvnbLfnMk6oORoAtCjsGIXy+Wom96tNwhkZ+6dOkSXnjhBXzzzTeorKxEmzZtsHLlSqmtoiiKePnll/GPf/wDJSUlGDBgAJYtW4a2bdvKHDkFIl+tQA/VqqQx/WxBBXqkMIFOgSkmzPa3X8AEuiQzMxPtO3RAVWVls/YTHBKCE8ePM4lO1AA+lUC/ePEiCgsLkZiYCADo378/SkpKcPDgQfTs2RMAsH37dlitVvTt21fOUImIiEgmqoh4AECwWgmNyqu71blct+QIbDyag5+zSphAJ7coLi7GgAEDcNttt+Gbb75BbGwsTp8+jcjISGmbN954A++99x5Wr16NtLQ0zJ07FyNHjsSxY8cQFBQkY/QUiOwJdF9s6ZUeG4ocgxHn8ivQIyWy/icQ+aHYsNoWLuXVEEURgiDIHJH8CgoKUFVZiUkvvIn4lNZN2kdu5hl8uOg5FBQUMIFO1ACyJtDLy8uRkZEh/Xzu3DkcOnQIUVFRiIqKwquvvooJEyYgISEBZ86cwfPPP482bdpg5MiRAIAOHTpg1KhReOyxx7B8+XKYTCbMnDkTEydORFJSklwvi4iInGDFInmKSm+7C83Xqg1doXtKbQI9s1juUMhPLVq0CMnJyVi5cqW0LC0tTfp/URSxePFivPTSSxg3bhwAYM2aNYiPj8f69esdWjQSuZvVKiKruAqAb54T0mJCsedMIScSpYAWFaqBIABGkxUV1RaEBflUHahbxae0Rsu2neQOgyggyFqWdeDAAXTv3h3du3cHAMyePRvdu3fHvHnzoFQq8csvv+Cuu+7CTTfdhGnTpqFnz5747rvvHNqvfPjhh2jfvj2GDh2KMWPGYODAgVixYoVcL4mIiJywVyyq1Wp88803OHbsGN5++22nFYvLly/Hvn37EBoaipEjR8JoNMoYOfkiVYQtga4LDrwvWN1qJxL9ObMEoijKGwz5pS+//BK9evXCb37zG8TFxaF79+74xz/+Ia0/d+4ccnJyMGzYMGmZXq9H3759sXfv3jr3W11dDYPB4PAgaq68smrUmK2AaEW41vfOCVcmEi2XORIi+aiUCkTVzgHAPuhEJBdZP0UMGTLkhl/uNm3aVO8+oqKisHbtWleGRURELsaKRfIkdW0LF1+sNmyum1vqoVQIyCurxuVSI5IiguUOifzM2bNnsWzZMsyePRsvvvgi9u/fj6effhoajQZTpkxBTk4OACA+Pt7hefHx8dI6ZxYuXIhXX33VrbFT4LG3b1FWG6BQ+F7bh9axYQCAs/msQKfAFhmqQWHthLpAqNzhEFEACqzGoEREJAtWLJIn2Vu4BNIEonYhGhXaxYcDAA5llcgbDPklq9WKHj164PXXX0f37t0xffp0qZ1ic8yZMwelpaXSIysry0URUyDLsifQjaUyR9I09gr084UVsFp5VxEFLntRRGmVSeZIiChQMYFORERuZ69YbNu2LTZt2oQnnngCTz/9NFavXg0AzapY1Ov10iM5Odl9L4J8hiqAK9ABWx90APjpAvugk+slJiaiY8eODss6dOiAzMxMAEBCgu0CVm5ursM2ubm50jpntFotdDqdw4OouTJ9PIHeMjIYaqUAo8mKywa2tKPAxQQ6EcmNCXQiInI7ViySp1itIlR6WwJdF6AJ9J6ptrkFDjCBTm4wYMAAnDx50mHZqVOnkJqaCsDWnishIQHbtm2T1hsMBuzbtw/9+/f3aKxEUgV6tW8m0FVKBVKiQgAAZ/PZB50CFxPoRCQ3JtCJiMjtWLFInpJXVg1BpYEgwCcnjHOF3q2iAABHs0tRVWORORryN8888wx++OEHvP7668jIyMDatWuxYsUKzJgxAwAgCAJmzZqFBQsW4Msvv8Svv/6KyZMnIykpCePHj5c3eAo4vl6BDgDptX3QzxWwDzoFLnsC3WA0c5J0IpIFE+hEROR2rFgkT8kqtiVLwrUqn5wwzhVaRgYjLlwLk0XE4YslcodDfqZ379744osv8NFHH6Fz58547bXXsHjxYkyaNEna5vnnn8dTTz2F6dOno3fv3igvL8fGjRsRFBQkY+QUiOwJdJUvJ9Br+6BzIlEKZOFaFRQCYLGKKK82yx0OEQWgwCzNIiIij3rmmWdwyy234PXXX8d9992HH3/8EStWrMCKFSsAOFYstm3bFmlpaZg7dy4rFqnRMgttyZJA7X8O2P499WoVia9/zcHBC8Xolx4td0jkZ+644w7ccccdda4XBAHz58/H/PnzPRgVkaOqGgvyyqoB+G4LFwBIj61NoLMCnQKYQiEgPEiN0ioTSqtMCA/AieKJSF6sQCciIrdjxSJ5ir0CPZAT6ADQK9XWxuXA+SKZIyEiksdF+x1JQSoIZt+dgDMtxt7ChT3QKbCxDzoRyYkV6ERE5BGsWCRPsN+uH6gTiNr1amWbSPTghWJYrWLAtrMhosBw1z2/QV6B4wVDY2Qa0OFuVBVkIzsjQ6bImi+ttoXLxeIqGE0WBKmVMkdEJA8m0IlITk2qQE9PT0dhYeF1y0tKSpCent7soIiIyDM4npO/ySpiBToAdEjUIVithMFoxuk8Vi0GAo7nFMjyCopw/9xlDo+u46YDAFLT0mAy+27P5JgwDcKDVBDFKxeJyb9xPHeOCXQiklOTEujnz5+HxWK5bnl1dTUuXbrU7KCIiMgzOJ6Tv8kqqgIA6AK8N6ZaqUC35AgAwIELbOMSCDieEzmyJ9l8/YKqIAhXTSTKC6KBgOO5c+FBtgYKZUbfvSBGRL6rUS1cvvzyS+n/N23aBL1eL/1ssViwbds2tGrVymXBERGRe3A8J39kNFmQY7D1ufX1hIkr9G4Vib1nC3HwfDEm9U2VOxxyE47nRM4Z/CSBDgDpsWE4fLGUE4n6OY7nN2ZPoJdXM4FORJ7XqAT6+PHjAdiugk+ZMsVhnVqtRqtWrfD222+7LDgiInIPjufkjy6V2KrPrdWVCFJznvSerWonEr1QLHMk5E4cz4mc85cKdOBKH/Sz+Uyg+zOO5zcWprWlryqqzRBFEYLA+V2IyHMalUC3Wq0AgLS0NOzfvx8xMTFuCYqIiNyL4zn5I3tvWHNpLr9UAeieEgFBsL0veQYj4nRBcodEbsDxnOh6oihKCXR/mFQ6PdaWQD/HCnS/xvH8xkI1KggArCJQWWNBqLZR6SwiomZpUnnWuXPnOJgTEfkBjufkTy7aE+glOTJH4h10QWq0T9ABAPadK0JySioEQWjwIzmFbV98CcdzoisqaywwW0UA/jEnRhp7oAcUjufOKRSClDQvYxsXIvKwJl+y27ZtG7Zt24a8vDzpSqndv//972YHRkREnsHxnPzF1RXoZNM3LQrHLxuw71whLmZl4p3NJxv83Nkj2rkxMnIHjudENgajrfo8TKuCUuH7dyTZE+jFlSYUV9QgMlQjc0TkbhzPnQvTqlBebUa50Qzo5I7G+1worMCvl0pxudSIYLUSKdEh6NMqCkFqpdyhEfm8JiXQX331VcyfPx+9evVCYmIib5MmIvJRHM/Jn2SyAv06/dKjsGrPeew7WyR3KORmHM+JrjBU2apT/aH/OQCEaFRI1AfhcqkR5wormED3cxzP6xYWpAIMnEj0WlariJ2n8vHLpVJpWWWNBYUVNTh+2YBxXVsgQc9WfkTN0aQE+vLly7Fq1So8/PDDro6HiIg8iOM5+ZOsItskokygX9EnLRoAcDqvHIpglmr5M47nRFeUGu39z/2nR3JaTCgulxpxNr8CPVIi5Q6H3Ijjed3sE4mWG5lAtxNFEVuO5+JEThkAoEtLPdrFh6Oi2ox954pQWFGDLw5dwoQeLRAXziQ6UVM1qQd6TU0NbrnlFlfHQkREHsbxnPyFKIrIqq1AN5UygW4XFapBu/hwAEBQcmeZoyF34nhOdIXBPoGoH/Q/t7sykSj7oPs7jud1Cw+y90A3yRyJ9/jhbBFO5JRBIQB3dEnEbe3ikBQRjLbx4bivVzKS9EGoMVvx9a85qDFb698hETnVpAT6o48+irVr17o6FiIi8jCO5+QvSqtM0oRSltI8maPxLn3TowAAWibQ/RrHc6IrDFIFuv8k0NNiwgAAZ/MrZI6E3I3jed1Yge4o3yjgx/O2Nn3DOsSjdWyYw3qNSoG7uiYhTKtCaZUJ32XkyxEmkV9o0j1tRqMRK1aswNatW9GlSxeo1Y4fTN555x2XBEdERO7F8Zz8hb3/eVy4FhfMNTJH4136pkVjzd4LCEq5We5QyI04nhNdIfVA98sKdCbQ/R3H87pJCXT2QIeg0uBAoe396JioQ4dE5636tGolRnSMx+c/X8KRSwbc3ELPVi5ETdCkBPovv/yCbt26AQCOHDnisI4TXBAR+Q6O5+Qv7P3Pk6NCsF/mWLxNnzRbBbomLg1VJguC1UqZIyJ34HhOZGMVRZTVVqCH+1EP9PSYKwl0q1WEQsF/1/6K43nd7C1cyqvNEEUxoN8PXb97UWkREKZVYfBNsTfcNjkqBDfFh+FUbjm+zyjE3d1beChKIv/RpE8UO3bscHUcREQkA47n5C/sFegpUSEyR+J9YsO1aB0bijP5Fcguqbru9l7yDxzPiWwqqs2wioBCuFKt6g9aRoZArRRQbbYiu7QKLSN5vvNXHM/rFqKx/Zu2ioDRZEWwJjCLAvIqzND3vRcAMOimGGhU9XdnvqV1DDLyypFZVImLxZXuDpHI7zSpBzoRERGRN8mq/SKQzAS6U33TowEAF4urZI6EiMi97O1bwoPUUPhRdapSISA12laFzj7oFKiUCkG6k66iJnDbuHx2vByCSoNYrRVtGlgYoQ9Wo1OSHgBw8EKxO8Mj8ktNuiR/22233fBWme3btzc5ICIi8hyO5+Qvsmor0JMjg2WOxDv1TYvC2n2ZuMQEut/ieE5kI00gGuQ/1ed2aTGhyMgrx7mCCgyqp2UD+S6O5zcWolGiymRBZY1F7lBkkVVUie3nbJ/nOkZYGtXGpntKBH69VIrzhZVoq3FXhET+qUmfKuz9uOxMJhMOHTqEI0eOYMqUKa6Ii4iIPIDjOfkLtnC5sf6tbRXo+eXVqKqxBOwtz/6M4zmRTWlVbQI92H8mELXjRKKBgeP5jYVolSisACoDdCLRv32bAYsIVJ37CTEpnRv13MgQjdTWL6OMnwWJGqNJCfR3333X6fJXXnkF5eXlzQqIiIg8h+M5+QOLVZQqq9nCxbm48CDU5J+HJrYVLhZXom18uNwhkYtxPCeyuVKB7ocJ9NqJRM/k89+0P+N4fmOhtX3QKwKwAj2rqBKfHLgIACj9/iNg8J8avY9uyRE4k1+BrAoFBHWQq0Mk8lsu7YH+0EMP4d///rcrd0lERDLgeE6+5HJpFcxWERqlAvE6fhGoi/H8IQBXqvUpMHA8p0Bj74GuC/a/Fi7ptb2OWYEemDie24TU3kVXGYA90P/2bQbMVhFd4zWovnS8SftoERGMiGA1zKKA0A63ujhCIv/l0gT63r17ERTEL65ERL6O4zn5kqwiW/V5i8hgKBX+M2Gcq9kT6Fnsgx5QOJ5ToLFXoOv9sIVLWm0F+qWSKhhNgVd9G+g4ntsEagV6XpkRnx60VZ/f16npdxIKgoBOLXQAgLCuI10SG1EgaNJl+XvuucfhZ1EUcfnyZRw4cABz5851SWBEROR+HM/JH0gTiAZa+xZB0aiJowRNMBSCrT9waZXJL5NLgYzjOZGtpVe5sbYC3Q9buESHaqALUsFgNONCYSXaJbAdlz/ieH5jIdraCvQA64H+wd4LMFlE9EyNRIeY5s0A2iFBhz0ZBdAmtcflssB6H4maqkkJdL1e7/CzQqFAu3btMH/+fIwYMcIlgRERkftxPCd/kFVsn0A0WOZIPEy04p3NJxu8+ewR7ZCgC0J2qRFZRZXQt9DX/yTyGRzPiYDyajNEAEqFILV58CeCICAtNgyHs0pwNr+cCXQ/xfH8xkJqK9ArA6gC3Wiy4IN9mQCAaQPTANPlZu0vVKtCbJCIPKOA77OqMNYVQRL5uSYl0FeuXOnqOIiISAYcz8kf2Ht6J0cGWAV6EyRHhSC71IjMokp0ZgLdr3A8J7LdYQMAuiBVo+7Q8SWtY0JtCXT2QfdbHM9vLLT24lhFAPVA/++hSyiqqEGLiGCM6BiPXw43L4EOAC1DrMgzKvB9ltEFERL5v2bNrHLw4EEcP26buKBTp07o3r27S4IiIiLP4nhOvszewiUl0Fq4NEFKVAj2nStCVlElRFH02wRTION4ToHM3v9c58ctqux90M/mM4Hu7zieOxeitaWxjCYrLFbR7+e/EUUR/959HgAw5ZZUqJSumcqwRbAVBy1mXCgFMvLK0CaOd7QQ3UiTEuh5eXmYOHEivv32W0RERAAASkpKcNttt2HdunWIjY11ZYxEROQmHM/JH2TWTiIacD3QmyBeFwSNUgGj2Yr8smrE6TgZmb/geE4EGKQKdD9OoMfaEujnCspljoTcheP5jQWpFFAIgFUEKmvMCPfjf+8AsOdMIU7mliFEo8T9vVNctl+NEqg69xNC2vTBV4cv45nhTKAT3UiTLl099dRTKCsrw9GjR1FUVISioiIcOXIEBoMBTz/9tKtjJCIiN+F4Tr6ussaMgvJqAEygN4RSIaBFpK1XfGZt73jyDxzPiQBDVe0EosHNutHaq6XHhAEAzrGFi9/ieH5jgiAEVB/0ld+fBwDc27OlyyeArzzxHQBgwy/ZEEXRpfsm8jdN+mSxceNGbN26FR06dJCWdezYEUuXLuWkFkREPoTjOfm6i8W26nNdkMrlXyr8VUpUCM4VVCCrqAq9UuWOhlyF4znRlRYuej+uSG0VY7tYXFxpQnFFDSJDNTJHRK7G8bx+IRolyqvNft8H/VJJFbafyAUATO7fyuX7rzz9A9QK4Ex+BU7klKFDos7lxyDyF02qQLdarVCrr/9QolarYbVamx0UERF5Bsdz8nWZhbX9z6NZfd5QybUV6JdKqmC28N+5v+B4TnSlhUu4H19QDdGokKS3td/iRKL+ieN5/UJr+6BXVvt3BfrHP2bCKgL90qPQJi7M5fsXa6rQPVELwFaFTkR1a1IC/fbbb8fvfvc7ZGdf+Qd26dIlPPPMMxg6dKjLgiMiIvfieE6+LquYE4g2VlSoBqEaJSxWEZdLjXKHQy7C8ZwCndliRUVtOwd/rkAHrvRBP5vPPuj+iON5/UI0SgD+3cLFZLFi3f4sAMBD/dx3y+AtLW2FFZuP5rrtGET+oEkJ9L/+9a8wGAxo1aoVWrdujdatWyMtLQ0GgwFLlixxdYx+RxRFnMotww/5KiROfQ8Ldxdh3Y+ZMLEKjIg8jOM5+brMIlsCPTmSCfSGEgRB6hdvf//I93E8p0BXZrS1clArBQSpm/Q112ewD7p/43hev9DaHuj+3MJly7Fc5JVVIyZMixEdE9x2nB6JWqgUAk7nleM8xxSiOjWpB3pycjJ++uknbN26FSdOnAAAdOjQAcOGDXNpcP6oymTB179eru3ZqoAmPh37s6ux//NfsWLXWSx7qCfaJXD2YyLyDI7n5Ouyimw90DmBaOOkRIXgRE4ZMosqMUDuYMglOJ5ToCut7X+uC1JDEASZo3GPu+75DfIKilCR2B1Iuw3/+mwjPn99hrQ+LiYKX37+iYwRkitwPK+fVIHuxy1cPvjhAgBgYu9kaFTuuygYplGgT1oU9pwpxNbjuXj01nS3HYvIlzXqX+H27dvRsWNHGAwGCIKA4cOH46mnnsJTTz2F3r17o1OnTvjuu+/cFavPqzZZsP7nS7hYXAWVQkA7nQV5n83HpJvDEROmwdmCCkxYtgd7zxTKHSoR+TmO5+QvsuwV6EygN4q95U1eWTUq/bh6KxBwPCeysfc/1/lx//O8giLcP3cZbh8/CQAQltIJ989dJj3yCopkjpCag+N5w4VobQl0f61AP5Nfjj1nCiEIwMQ+yW4/3tAO8QCAbcfz3H4sIl/VqAT64sWL8dhjj0Gnu35mXr1ej8cffxzvvPOOy4LzJ6IoYlPtLTjBaiUm9k5G5wgLqjJ+xIQOYdg6ezD6pkWhvNqM6WsO4ESOQe6QiciPcTwnfyCKotSChD3QGydUq0JMmAbAlYlYyTdxPCeyMdS2cPH3/ucAEBlqG79LqkywiqLM0ZCrcDxvOHsLF3/tgb52XyYA4PZ2cWjpgTaFwzrEAQB+PF+E0kqT249H5IsalUA/fPgwRo0aVef6ESNG4ODBg80Oyh8du2zAuYIKKARgfLckRIdpHdZHhGiw+v/6oE9aFMqqzZi26gBKqzhwEZF7cDwnf1BYUYMqkwWCACRFBMkdjs9pFW2bhO48E+g+jeM5kY29Aj08uEldSn1KeJAKSkGAxSqi3OifFbiBiON5w12ZRNT//v6NJgs+PXgRgHsnD71aanQobooPg8Uq4ttTrEIncqZRCfTc3Fyo1XVf0VepVMjPz292UP6m2mTBd6cLAAD90qMRp3P+JT9IrcSKh3siJSoEl0qqMHf9EYisKCAiN+B4Tv7AXn2eqAuCVqWUORrfY0+gXyiqYAWjD+N4TmRjqO2BrvfjFi52CkGAPsT2Oosra2SOhlyF43nDhdRWoJssImrMVpmjca0Nv1xGaZUJLSKCMeimWI8d197GZSvbuBA51agEeosWLXDkyJE61//yyy9ITExsdlD+5mBmMarNVkSHatAzNfKG20aEaLB4YjcoFQK+PJyNjUdyPBQlEQUSjufkD+z9z1uyfUuTJOiDoFEqYDRZkWeoljscaiKO50Q2hipbJaouAFq4AECklEDnXcv+guN5w2lUCqiVtsmC/a0K3T556IN9U6BUeG5C5GG1CfRvT+b53UUJIldoVAJ9zJgxmDt3LoxG43Xrqqqq8PLLL+OOO+5wWXD+oLLGjENZJQCA/q2joWjAjPA9UiLxxODWAIBXvzqG8mr/OiEQkfw4npM/yGL/82ZRKgTpvTtfWCFzNNRUHM+JAKtCjSqTrReyLgBauAC2wisAKGEFut/geN449ir0Cj/qg37kUikOZZVArRRwf2/3Tx56tW7JEYgJ06DMaMb+85yQmOhajfp08dJLL+Hzzz/HTTfdhJkzZ6Jdu3YAgBMnTmDp0qWwWCz44x//6JZAfdWvl0phsoiIC9ciPSa0wc+beXsbfHk4G5lFlfjr9gz8YXR7N0ZJRIGG4zn5g6yiKgBMoDdHakwIMvLLcb6wAv3So+UOh5qA4zkRYAmyTbqoVSkCpqUXK9D9D8fzxgnVKFFaZUKlHxUcfrjPVn0+qnMiYq6ZN8/dlAoBQ9rF4dODF/HtyTwMaBPj0eMTebtGJdDj4+OxZ88ePPHEE5gzZ47Un1sQBIwcORJLly5FfHy8WwL1RRariCOXDACA7ikREBpQfW4XpFZi3h0d8eiaA1i15xweGdAK8XX0TiciaiyO5+QP7D3Qk6OCZY7Ed9n7oOcaqlFZY5aquch3cDwnAixaPQBAFwD9z+0iayvQ2QPdf3A8b5wQre0zS6WfVKAbjCb891A2AGBS3xRZYhjSLrY2gZ6PP46VJQQir9Xob0mpqan4+uuvUVxcjIyMDIiiiLZt2yIy8sa9vQPR2fxylFebEaJRom1ceKOfP7RDHHqmRuLghWL8dXsGXhvf2Q1RElGg4nhOvi6rmC1cmitMq0JMmAYF5TXILKpE+wSd3CFRE3A8p0Bn0drGLl1Q4FwEjKitQC8zmmG2WKFSNqo7K3kpjucNF6qx3W1S4Sc90Nf/fAmVNRa0jQtD37QoWWIY2CYGCgE4nVeOSyVVaBHBIhUiuyafZSMjI9G7d2/06dOHg3kdjmbbqs87J+mbNPmDIAh4bqTttq11+zOlXq9ERK7E8Zx8QXJKKgRBuPJQqpBVWA4A6NupjcM6ahx7Ffr5Qn7O8HUczylQWYJsFej6AKpAD1YroVXZvs6XVLGNi7/heF4/+11z/lCBLoqiNHnopL4psn2ejQjRoHuK7e9t58l8WWIg8laBc4newyqqzdKt5R0SG199btcvPRq3to3Bd6cLsHjrabx9X1dXhUhEROQzLmZl4p3NJ6WfSyprsHrvBSgVAt74fK/DF43ZI9rJEaLPahUdigMXipFZWAlRFHkRgoh8jtTCJShwEuiCICAyRIMcgxHFlTUe75dMJLcQewW6H/RAP3ChGKdyyxGsVuLuHi1ljWXITbE4eKEY357Mw4MytZIh8kZMoLvJ6bxyiADidVpphvSm+v2IdvjudAG++PkinhjSGm3iwlwTJBERkY8yGG1flvRBaiZ8mylBHwSNUoEqkwW5hmok6DnnChH5FqmFSwBVoAO2Ni62BLqtAv3UqZPoN2joDZ8TFxOFLz//xBPhEbmVPYHuaxXomZmZKCgocFj2130lAIBbWmpw5viv9e7j+PHj7ggNADCkXRze3nIK32cUoMZshUbF9lBEABPobnMypwwAXNJLtGtyBIZ1iMfW47n4x66zWHRvl2bvk4iIyJeV1t6urgvmR5nmUioEpESFICO/HOcLK5hAJyKfYwkKvB7owJWJREtqJxI1W0XcP3fZDZ/z8WtPuD0uIk/wxRYumZmZaN+hA6oqr7TNE7ShaDljDRRqLT6Y/yT+nX3yBntwVF5e7vIYOyXppPlxDlwowi2tY1x+DCJfFFifMDykzGhCjsEIAGjromrx3w5Ox9bjufji50t4dsRNiNPxyy0REQUuQ20CPZD63bpTasyVBHq/9Gi5wyEiarDSShNEle27UaBVoEfWTiRaXMEe6BR47BXoVSaLz7SgKygoQFVlJSa98CbiU1oDAM6UKXCoWAWd2op7XlyIhryM4z/uxDer/wKj0ejyGBUKAYPaxuLzny9h56l8JtCJajGB7gbnCioAAIn6IIRqXfMW92oVhR4pEfgpswSr9pzH86Pau2S/REREvuhKBXpgJUvcxT6RaK6hGpU1Zqmqi4jI22UV2yo5g9VKqJWB1Wog4poKdKJAYk+gW6wiaixWaFVKmSNquPiU1mjZthNEUcTOHzMB1KB7WjySkyMa9PzczDNujW9wu9oE+sl8zBndwa3HIvIVgfUJw0PO1ibQ02JCXbrf6YNsVyg/+OECyv1gogwiIqKmMhhZge5KYVoV4sJtE9CdL6isZ2siIu9xsTaBHogtvSJqK9CNZiuqfKiNBZErqJQKaGovmvlSG5er5ZZVo6C8BkqFgPYJ4XKHIxnUNhaCAJzIKcPl0iq5wyHyCkygu1iN2YqLRbYBJt3FCfThHeORFhMKg9GMj/dnuXTfREREvkSqQA9iAt1V7Bf+zxa4vp8mEZG7XCy2fffSB+D5QK1UILy273sxq9DpGrt27cKdd96JpKQkCIKA9evXO6wXRRHz5s1DYmIigoODMWzYMJw+fdphm6KiIkyaNAk6nQ4RERGYNm2aW/puN1Wwj04kanf0UikAoE1cGILU3lNBHxmqQdeWEQCAXafy5Q2GyEswge5iWcWVsIgi9MFqRIVqXLpvpULAo7emAQD+vfsczBarS/dPRETkC6rNFhhNtnMgK9Bdx55AzyyqhNnKzxhE5BuyiuwV6IF5PrBXoTOBTteqqKhA165dsXTpUqfr33jjDbz33ntYvnw59u3bh9DQUIwcOdKhr/akSZNw9OhRbNmyBRs2bMCuXbswffp0T72EeoVICXTfu0O/xmzFydwyAEDnJJ3M0VxvSLtYAMC3J5lAJwKYQHe5zELbB7jU6BC3TGIxoUdLRIaocamkCttO5Ll8/0RERN7OUGX7khSsVkKj4kcZV4kL1yJUo4TJIuJSMW/XJSLfkFU7XgXqHUmRwfY+6JxIlByNHj0aCxYswN13333dOlEUsXjxYrz00ksYN24cunTpgjVr1iA7O1uqVD9+/Dg2btyIf/7zn+jbty8GDhyIJUuWYN26dcjOzvbwq3FOmkjUByvQT+WWwWQRERGiRouIYLnDuc6QdnEAgN2nC2Bi8SYRE+iulllbAZESFeKW/Qeplbi/dwoA4P29F9xyDCIiIm92ZQLRwOt3606CIEhV6PYJ0YmIvF0g90AHbK0WAFagU+OcO3cOOTk5GDZsmLRMr9ejb9++2Lt3LwBg7969iIiIQK9evaRthg0bBoVCgX379tW57+rqahgMBoeHu/hyC5ej2bb3pXOS3i3Fl83VpYUeUaEalFWb8dOFYrnDIZIdE+guZKgyoaTKBEEAWka67wripL4pUAjA7owCZOSVue04RERE3kiaQDRAqw3d6UofdCbQicj7iaKIrNr5pwK9hQsr0KkxcnJyAADx8fEOy+Pj46V1OTk5iIuLc1ivUqkQFRUlbePMwoULodfrpUdycrKLo78iRGO7cOZrCfTSGgE5BiMUAtAh0XsmD72aQiHg1rYxAICd7INOxAS6K2XWVj8k6IKgVblvAojkqBAM7WA70bEKnYiIAs2VCvTATJa4U3JUCJQKAWVGM9QxqXKHQ0R0Q4UVNagyWQBRlCbTDDSRIbUtXKpMgBdWsVLgmTNnDkpLS6VHVlaW244VovbNHujnK2ypuLSYUOkigDdiH3SiK5hAdyH7BDbJke5p33K1yf1tX2o/++kSyqt962RBRETUHIbaBDonEHU9tVKB5Nq76ILb9JE5GiKiG7tY2/9cUVMOlSIwv9qGB6mgVAiwWEUoQqPkDod8REJCAgAgNzfXYXlubq60LiEhAXl5jvOumc1mFBUVSds4o9VqodPpHB7uEuKLLVwEBbJqE+gdE71v8tCrDWobC0EAjl02IM9grP8JRH7Mey91+RhRFJFdYhtQ3Nm+xW5A6xikx4bibH4FvvjpIh7u38rtxyQiIvIGrEB3r/SYMJwvrGQCnYi8nr2ASVntvh7L3k4hCIgIVqOwogZKfXz9TyACkJaWhoSEBGzbtg3dunUDABgMBuzbtw9PPPEEAKB///4oKSnBwYMH0bNnTwDA9u3bYbVa0bdvX7lCd+CLLVyC03qg2iogWK1EanSo3OHg+PHjN1zfOlKNjCIT1mw5gNvTnBeLxsTEICUlxR3hEXkNJtBdxGA0o7zaDIUAJOiD3H48hULA5H6peOWrY1i99wIe6pfqlRNPEBERuZIoijAYbXdesQLdPVrFhAAnAW1SOxSWVyM6TCt3SERETtkr0JXGUpkjkVdEiC2BrtDXXRVMgae8vBwZGRnSz+fOncOhQ4cQFRWFlJQUzJo1CwsWLEDbtm2RlpaGuXPnIikpCePHjwcAdOjQAaNGjcJjjz2G5cuXw2QyYebMmZg4cSKSkpJkelWO7BXoVT6UQA+9eSgAoF1COJQK+XI4hiJbW5aHHnrohtvpBz6IiAEPYtGar/Dcl2843SY4JAQnjh9nEp38GhPoLnKpxPbhLV4XBLXSM7cPTujZEm9uOomMvHLsPVOIW9rEeOS4REREcqmoscBiFSEIQLiWH2PcITxIjdhwLfLLqrHjZD7u7dlS7pCIiJzKKmYFOgBEhGgAVECpYwU6XXHgwAHcdttt0s+zZ88GAEyZMgWrVq3C888/j4qKCkyfPh0lJSUYOHAgNm7ciKCgKwWBH374IWbOnImhQ4dCoVBgwoQJeO+99zz+WupiT6DXWKwwW6xQeSgX01TlNVaEtOkHQP72LVXltnFz7ON/RLsuPevcrrBawLe5QESnW/HwiH7XTbWQm3kGHy56DgUFBUygk1/jN08XuVRb/ZAU4f72LXbhQWrc3aMFPvghE2v2XmACnYiI/J69fUu4VgWFjFU7/i4tJhT5ZdXYdjyXCXQi8lpXWrgEdgV6ZIjtjiy2cKGrDRkyBKIo1rleEATMnz8f8+fPr3ObqKgorF271h3huYRGpYBSEGARRVSaLNB5eQL9+8wqCCo19GorYsO94w6/6KRUtGzbqc71SVYRewrPosZshTq+tUc6LhB5I+8eXXxIdm0FegsPJtABYHJt7/PNx3KkGIiIiPyVgf3PPSItxtaTc9epfFSbfee2aCIKLJekFi6BXYEeGaIBACiYQKcAIwgCgn1oItFvL9jGrJRQq8yRNJxCIUgTzF8oqpA5GiL5sALdBSprzCip/UKf2ISrcfVN2nAjMTEx6JcehR/OFmHtvkz8fmS7Ju+LiIjI29kr0Nn/3L3iw7UwlxWiIjwaezIKcVv7OLlDIiJyYLGKV3qgB3wFui2BrgyL9ok2FkSuFKJRorzajMoas9yh3FBmYSVOFpogWi0+lUAHgNToUJzJr0BmYSX6pkXLHQ6RLGQ9s+7atQt33nknkpKSIAgC1q9f77BeFEXMmzcPiYmJCA4OxrBhw3D69GmHbYqKijBp0iTodDpERERg2rRpKC8v9+CrAHJKjQCAqFANgtTKBj/v6kkbevbs2aRH+w4dMKZtGABg3f5MVokREZFfMxiZQPcEQRBQdXovAGDT0RyZoyEiul6uwYgaixUqhQBldZnc4cgqSK2AVmX7al9caZI5GiLPCvaRiUS/+iUbAGDM/AVBDU8beYXUqBAAwGWDkTknCliyVqBXVFSga9eu+L//+z/cc889161/44038N5772H16tXSrNAjR47EsWPHpIktJk2ahMuXL2PLli0wmUx45JFHMH36dI/26cox2BLoCbrGVZ83dNKGutgna2gfXoN4nRa5hmpsPJKDcd1aNHpfREREvsBega4LYgLd3SpP7UV4jzuw5Vgu/nS3CCV7zhORF8ms7X/eMjIYRtTd5zkQCIKAyBANcgxGlFTWeE1vZSJPCPGRFi4bfrkMAKg8/h0wqO6e495IF6xGRIgaJZUmXCyuQuvYMLlDIvI4WRPoo0ePxujRo52uE0URixcvxksvvYRx48YBANasWYP4+HisX78eEydOxPHjx7Fx40bs378fvXr1AgAsWbIEY8aMwVtvvYWkpCSPvI7LtRXoTWnfAtQ/aUN9VAoBD/ZJxbtbT+H9vReYQCciIr9lqLLdnssKdPczZh2BPliNwooaHLxQjD5pUXKHREQkySy0JdCTo0Jwup5tA0FkiBo5BiMr0CnghGhsaS1vTqCfyS/H8csGKAWg8tQeAL+VO6RGS40KQUllKS4UVjKBTgHJa5ujnTt3Djk5ORg2bJi0TK/Xo2/fvti713ZL8d69exERESElzwFg2LBhUCgU2Ldvn0fiFEXb7YMAZJ2N+IE+yVApBBy4UIxj2YE9iQ4REfkns9WK8mpbAl0XzGlc3M5qwdDa3uds40JE3sZegZ4aHSJzJN4hItTWB72kskbmSIg860oFuvf2QN9w2FZ93jVBC6vRsy2HXSWlto2LfewlCjRem0DPybF9UYuPd5xJPD4+XlqXk5ODuDjHSa1UKhWioqKkbZyprq6GwWBweDSVwSTAZBGhUSoQVfuhRQ5xuiCM7JwAAHj/h/OyxUFEROQuZUbbFyO1UkBwI+YcoaYb0cn22WLT0RyIYmC3SCDn/vznP0MQBMyaNUtaZjQaMWPGDERHRyMsLAwTJkxAbm6ufEGSX7pQm8SxJ3UCXWTtnVmsQKdA4+0tXERRlPqfD0iWr+iyuVpGhkAh2Nop8kIdBSKvTaC708KFC6HX66VHcnJyk/dVVGPrBxqn00IhyNsbdHK/VADA+p+zpR6xRERE/kLqfx6shiDzOTdQDL4pFkFqBS4WV+HYZd7hRo7279+Pv//97+jSpYvD8meeeQZfffUVPvnkE+zcuRPZ2dlO5zsiao5MKYEeKnMk3iEixFbMVVxZwwueFFDsRRXeOonoydwyZOSVQ6NUoE+S7ybQNSoFEvXBAK5cwCQKJF6bQE9IsFU8XVutkpubK61LSEhAXl6ew3qz2YyioiJpG2fmzJmD0tJS6ZGVldXkOEtqE+jx4fIPhH3SotAuPhxVJgs+O3hR7nCIiOrEikVqCnsCXc8JRD0mWKPEoLaxAIBNR/nvka4oLy/HpEmT8I9//AORkZHS8tLSUvzrX//CO++8g9tvvx09e/bEypUrsWfPHvzwww8yRkz+JrOwAgAr0O0iQ2znxmqzFVUm70wkErmDt/dAt7dvGdwuFqEar03BNUhKbcss+xwURIHEa//1pqWlISEhAdu2bZOWGQwG7Nu3D/379wcA9O/fHyUlJTh48KC0zfbt22G1WtG3b986963VaqHT6RweTWVPoHvDTOeCIODh/rYq9A9+uACrlZUHROR9WLFITWWwJ9A5gahHjaxt47KZfdDpKjNmzMDYsWMd5isCgIMHD8JkMjksb9++PVJSUqR5jIiay2A0Sa1KUtgDHQCgUipgKS8EAJSwjQsFEHsLlyqTBVYvvPvimyO2BPodXRJljqT5UmsvWF4sroKF+SYKMLIm0MvLy3Ho0CEcOnQIgG3i0EOHDiEzM1OqTFywYAG+/PJL/Prrr5g8eTKSkpIwfvx4AECHDh0watQoPPbYY/jxxx/x/fffY+bMmZg4cSKSkpLc/wIEBUpMV1q4eIO7u7dAmFaFswUV+P5MgdzhEBE5YMUiNUcpE+iyGNohDkqFgBM5ZbhQW/FJgW3dunX46aefsHDhwuvW5eTkQKPRICIiwmH51fMYOePKOYrI/2XVtg+IDtUgTMtJpe2spbY7hYrZn5gCyNXz4nhbG5ez+eU4k18BtVLAbe3j6n+Cl4sL1yJYrUSNxYqcUqPc4RB5lKwJ9AMHDqB79+7o3r07AGD27Nno3r075s2bBwB4/vnn8dRTT2H69Ono3bs3ysvLsXHjRgQFXWmX8uGHH6J9+/YYOnQoxowZg4EDB2LFihUeiV8dnQyrKECjVCDCS77Mh2pVmNCjBQBgzd4LMkdDROTI1RWLTLgEFibQ5RERokHftCgAtslEKbBlZWXhd7/7HT788EOHz+TN5co5isj/2dsHJLN9iwOLlEBnBToFDoXiyuTy3tbGZcsx27/JfunR0PlBC0JBEJAcZeuDnsk+6BRgZE2gDxkyBKIoXvdYtWoVANs/zvnz5yMnJwdGoxFbt27FTTfd5LCPqKgorF27FmVlZSgtLcW///1vhIWFeSR+TUJrALb2Ld40mZm9jcu247m4WMxBjYi8gzsqFplwCSxSAj3E97+A+Bp7Gxf2QaeDBw8iLy8PPXr0gEqlgkqlws6dO/Hee+9BpVIhPj4eNTU1KCkpcXje1fMYOePKOYrI/9kTN6ls3+LAUmr7zFTCCnQKMFe3cfEm9gT68I7xMkfiOqm1EzdfKOJdiRRYvLYHui/QxLcB4B39z6/WJi4cA9pEwyoC77MKnYi8gLsqFplwCRyKkAiYLLZei+FBvF3f00Z0+n/27js8inL9G/h3tqf33gMh1NBLAAGliaggCIrgAetRsWLF8/OAFbu8KsKxgR1FsYNSBKSX0CEE0nvvbeu8f2x2NRIgCUlmy/dzuZdkd3b23snmmdl77rkf8xe/w9kVKKrmJbvObPz48Thx4oS1DePRo0cxZMgQzJ071/pvpVLZbB6jlJQUZGdnW+cxaklHzlFEji+rKYHOCUSbM1WzAp2ck4vKUoFukDiSv5TWapGUXQEAmNDLcRLolnG3qFprcycsiDoTE+iXQRVkrkAPsrEEOgDcPioGAPDl/mzUNPIAioik1VkVi0y4OA+Ft/lz4KFRQCHj4UtXC/FywaBIb4gisPFEgdThkIQ8PDzQt2/fZjc3Nzf4+fmhb9++8PLywh133IFFixZh27ZtSEpKwm233YbExESMGDFC6vDJQeQwgd4iSwuXqnq9TU6mSNRZXFW218Llj+RiiCLQN8wTod4uUofTYdw1Cvi5qQD8NRYTOQN+A20nkyhCFRQLwPYq0AHgyvhAxAa4oUZrwNcHWZFJRNLqrIpFch7KpgQ6+59LZ2qCeYL2X5lAp0t46623cO2112LmzJkYM2YMgoODsX79eqnDIgeSzQR6i0x15ZDLBBhFETWNtlOJS9TZXFXmqxNtKYG+ydK+pdeFi4HsVWRT+6ysMibQyXnwGuh2yq8xQqZygVwQ4dN09s2WyGQC7hwdi6e/P4HVuzOxYGQ0FHKeLyEiaVgqFv/u7xWLAKwVi76+vvD09MQDDzzAikWyUviEAGACXUpT+4Xg+V9O42BmBQqrGhHs1XHtmMi+bd++vdnPGo0GK1aswIoVK6QJiByawWhCXkUDgL+SONREFOHtokRZnQ4V9TruM8lpuNpYC5cGnRG7UksAOFb/c4soX1ccya5Ednk9egZKHQ1R12BGtZ3SK5omMlOKkNnQBKJ/N2NQGPzcVMirbMDGkxeehI+IyBawYpEuRuHFCnSpBXtpMDTaBwCr0IlIOgVVjTCYRKgUMgR58ETeP3k3TbRdUceJRMl5WHqgN9hIBfqu1FI06k0I83ZBrxAPqcPpcGHeLpDLBNRqDaixjXMWRJ2OCfR2siTQfVS221tOo5Rj3ogoAMCHO9Mhsg8eEdmQ7du3Y/ny5dafLRWL5eXlqKurw/r16y/a/5yci8KHCXRbMLWf+UqAX4/nSxwJETkrS8uACB8XyGS2WcgkJR9X89XRlZxIlJyIrfVA35ZSDACY0CsQgo0WXF4OhVyGsKa+7kUNTCuSc+AnvZ3SK80HJN42nEAHgFsTo6BSyHAstwoHMyukDoeIiKhdFN5s4WILpvQLgSAAh7MrkVfZIHU4ROSELP3Po/zcJI7ENlkS6BUNrEAn52FLPdBFUcSfZ83tW8bFO25/k6imOSiKGplWJOfAT3o7iKJorUC39QS6v7saMweFAwA+2JkucTRERERt16AzQuHuC4AJdKkFeWowNNr8u9jINi5EJIGs8joAnED0Qv5q4cIKdHIersq/WrhIfeV9emkdcisaoJLLMDzWV9JYOpNlDopSrQDIeXxOjo8J9HYorG6EzihCNOjgqbTtBDoA3DE6BgCwJbkI6SW1EkdDRETUNpZqQ7VCBk3TFySSzrUJ5qsBfjrGNi5E1PWySs37BCbQW+bjZq5Ar9UaoDeaJI6GqGtYWrgYRRE6g7Sfe0v1+dAYH2tlvCPyc1PBTSWHURSgCe8tdThEnY4J9HYI8XLBFzcEI3/1A7CHtnvdA90xvmcgRBFYtSNN6nCIiIjaJKvMXG3I6nPbcE2/EMhlAo7nViGNJ+aJqItlNu0TYvzZwqUlLko5NArz13z2QSdnoZDLoJKbP/f1emnbuOxoSqCP7REgaRydTRAE64lMTfRAiaMh6nxMoLeTUi7AUJ4ndRittvCq7gCA9YfzkNNUyUdERGQPLBXoTKDbBn93NcbE+QMAfjxiP8dCRGT/TCbRmkCPZgL9gixV6JX17INOzsPFMpGoVroEeqPeiH3pZQCAMQ6eQAeACEsCPTJB4kiIOh8T6E5iUKQProjzh8Ek4r3trEInIiL7wQS67Zk+MAwA8P3RPMl7jRKR8yiqaUSj3gS5TEC4j4vU4dgsax90VqCTE7G0canXGSSL4WBmORr1JgR5qhEf5CFZHF3FMg6rgruhTseWUeTYmEB3Ig+NjwMAfJuUg7zKBomjISIiap2sMibQbc2k3sFwU8mRU96Aw9kVUodDRE4io9RcfR7h4wKlnF9lL8Tb1VyBXsEKdHIi1gS6hC1cLP3Px8QFQBDsoN/vZfLQKOGuECHI5DhVwvGGHBuPOpzIkGhfjOzmB71RxCpWoRMRkZ1gBbrtcVHJMblvMADge7ZxIaIuktk0gSjbt1ycj7UCnQktch6WCTvrddIl0K39z+Mdv32LRaDGXHl+olgrcSREnYsJdCfzYFMV+tcHc5BbwV7oRERk24wm0bq/8nJlAt2W3NDUxuWX4wXQGXjZLhF1Pmv/cz8m0C/Gx9XSA13PNlvkNKRu4VJY1YizRbWQCcDo7v6SxCCFgKYE+vEinrAjx8YEupMZEeuHxFg/6IwmvLX5nNThEBERXVRBVQP0RhGiUQ93tULqcOhvRnbzR4CHGpX1emxLKZY6HCJyApYWLjGsQL8o76YrtrQGExokbGdB1JUsk4g2SFSBvje9FADQN8zL2kbJGQSozSfpcqoNKKlhFTo5LibQndBTU3oCANYfycWZwmqJoyEiIrqw7Kb+54bKIsicoJekPZHLBGsV+rpDORJHQ0TOILMpgc4WLhenkMvgoTGfdOZEouQs/qpAlyiBnlYGAEjs5ifJ60tFLQd0ReYWwXvTyySOhqjzsJTLCfWP8MbUfiH49UQBXvstBR8tGCp1SERERC2y9D83VBZKHAm1ZPaQcLz/Zzq2pZSguLoRgZ4aqUMiJ3f9jFkoLi2/6DKB/r74af26LoqIOorJJCKraZ8QwxYul+TjqkJNowGV9TqEebtIHQ5Rp3Nr6oFep+2cFi7Z2dkoLS294OPbk81X4wWYKnD48OEWl0lOTu6U2KTWmHUcqqBu2JNaiuv7h0odDlGnYALdST02OR6/nSrE1jPF2J9ehuGxznWWlIiI7IMlWaJnAt0mdQ/0wOAoHyRlVeDbw7m4b1x3qUMiJ1dcWo6bnll50WW+fv7eLoqGOlJ+VQN0BhOUcgGh3jxZdyk+rkpkl7MCnZyHW1OrvzqdEaIoQujAKxezs7PRs1cvNNS3PI+cwisIYfd8BNFowN03jIeob7zo+mprazssNlvQkHUMnsNuwJ40VqCT42IC3UnF+LthzrAIfL4vGy9tSMb3942CTMZL44mIyLb81cKlQOJI6EJuGhKBpKwKrDuUi3vHduvQL6xERBaZpeb9QYSvKxRydiK9FG/rRKKc2I+cg1tTCxejSYTOYIJaKe+wdZeWlqKhvh5zn3wNQZHdzns8s1aGpHLA30WGG5d/ecH1JB/YgY2f/D80Nl48wW5vtLmnIBPMV47mlNcjwtdV6pCIOhwT6E7sofE98MORfBzLrcK6pBzcNDRS6pCIiIia+auFCxPotmpqQgie/fkUMkrrcCCjnFe1EVGnyChrmkCU7VtaxcfVPJFoRR0r0Mk5KOQyqBQy6Awm1OmMHZpAtwiK7IbwuD7n3X/qVCGAGsSG+iG8m/8Fn1+UndbhMdkCUdeAOF8lUsr02JtWxgQ6OSSeundiAR5qPDwhDgDwym8pqOLlfUREZGOymhImhsoiiSOhC3FTK3BdU7/LrzmZKBF1Ek4g2jY+lgr0Bh1MoihxNERdw1KF3ll90FsiiiJyKpqukPFx3sRxv0A1AGBP2oX7xBPZMybQndz8kdGIC3RHeZ0Ob25OkTocIiIiq8p6HaobzV+AOImobZs9NAIAsOFEAU/IE1GnYAK9bTw0CshlAkwiUN3AcZmcg3UiUV3XJdArG/So0xohFwSEeDnv/Az9gswn7XanlUHkSTtyQEygOzmlXIZnrzdfgvTZviycyq+SOCIiIiIzS/uWQA81RINW4mjoYgZGeKNnsAca9SasS2IVOhF1PLZwaRtBEODtYm7jUskTm+QkXNXmCvR6rbHLXjOn6Xg1xEvj1PMzxPupoFbIUFKjRVqJY02SSgQwgU4ARnb3x9SEEJhE4KnvTsBgNEkdEhEREbKaJhCNZB9FmycIAv6VGA3AfELeZGLlERF1HIPRZE1SxQQwgd5aljYuFZxIlJyEm7rrK9BzKxoAAOE+Ll32mrZIJRcwJNoHALA7tUziaIg6HhPoBABYcm1veGoUOJFXhQ92ZkgdDhERkbUCPdKPCXR7MH1gKDw0CmSV1WPHuRKpwyEiB5Jf2Qi9UYRaIUOIp/O2SGgrb8tEoqxAJyfxVwuXrqlAF0UReZWWBDqPVxObJpLfn8EEOjkeJtAJABDoqcF/rzO3cnlry1leckNERJLLsPS75eX6dsFVpcDsIeZe6J/tzZI4GiJyJJb2LVF+rpDJBImjsR8+bk0TibICnZxEV08iWtmgR73O3P88yFPdJa9py4bFmBPoBzLK2QedHA4T6GQ1c1AYxvYIgM5gwhPfHoeRl18TEZGELBPGxXDCOLtx64goAMC2lGJkNSW8iIguV2qxubgn1t9d4kjsiw8r0MnJuDa1cOmqHuj5TdXnQZ5qp+5/btE/wgtqhQyltTqklfA4kBwL/8LJShAEvDSjH9zVCiRlVWDVjjSpQyIiIieWWcYEur2J9nfD2B4BEEVWoRNRx7FcHds9kAn0tvBu6oFeqzVAz3muyAlYK9C7qAe6pX1LqLdz9z+3UCvkGBjpDYBtXMjxMIFOzYR5u2Dp9eZWLm9uPosj2RUSR0RERM6oulGP0lrzJefRTKDblQUjowEAXx/MQXUjqx6J6PJZKtCZQG8bF6UcGqX5K38lq9DJCVgmEdUaTDB0wUmj/MpGAOY8CpkNb2rjsj+9XOJIiDoWE+h0npmDwnBd/1AYTSIeWnsUNfzyS0REXczSvsXfXQ33pi9DZB/G9ghAXKA7arQGfLU/W+pwiMgBpDUl0LsFMIHeVj5NVegV7INOTkCtkEHeNE9CZ08kWqs1oKrBnCsJ8ebkxhbDY30BmCvQ2QedHAkT6HQeQRDwwvS+CPN2QXZ5PZ754SQHPiIi6lKWCURjWX1ud2QyAXeNiQUAfLw7AzoD2wYQUftV1OlQVmdO/nYL5D6hrbytfdCZQCfHJwiCtfCitrFz27hY+p8HuKuhVsg79bXsycAIHyjlAoqqtcgqq5c6HKIOwwQ6tcjLRYnlNw+AXCbgh6P5+Hwf+5gSEVHXySw1H3BH+7tKHAm1x7QBoQjyVKOoWosfj+ZJHQ4R2TFL//Mwbxe4qnhFUltZKtDZwoWchTWBru3cBLql/znbtzTnopKjf7g3AOBABtu4kOPgEYgDSE5Ovqzn+/v7IzIy8rz7h0b74qmre+LFDcl47pfT6B3qhcFRPpf1WkRERK2RUWpOmLD/uX1SK+S4bVQMXt54Bu//mY6Zg8Iha7qkmoioLSz9z2MDuD9oD7ZwIWfjpm6aSFRrQGeOGvnWCUTZvuWfhsf64lBWBfZllGH20AipwyHqEEyg27Hq8hIAwLx58y5rPS6urjiTnNxiEv3OK2JwJKcCG04U4r4vkvDLA1cgwEN9Wa9HRER0KRlNl3zG+DFhIhlBBkFoXdJbrlDCaGhe3SioXBF+3xqcKwbce4xAQ9oB62PhEZHIyebVbUR0aZxA9PL81cJFz7ac5BQsFeg1WgMCO+ncvVZvtE52H8oK9PMMj/HDim1pnEiUHAoT6HasobYaADD13/9BfMLgdq2jKDsNX7zyOEpLS1tMoAuCgFdv7I+zRbVILa7F3Z8dwld3jYBGyR5fRETUeSyTiMaw4lA6oglvbkpp1aKLJsW3uOyu1FIkZVWg720v4uahEdaE/KJJ8R0aKhE5LksLFybQ28fbRQkBgM5gQn0nT6pIZAssCfQ6rQHopOLw/KpGAOa/LzdOdn+eQVE+kMsE5FU2ILeiHuE+bMlI9o9/6Q7ALzQK4XF9Om397moF3r91MG54bw+OZFfisXXH8PbNA3kpNhERdYqKOh2qGszVzFG+TKDbs0GR3jieW4niGi0ySusQG8AEGBG1Taolgc7xo10Uchk8XZSoatCjvI5tXMjxNeuB3kkJ9Dxr+xZWn1v8s7VwrLcC58r1+HrbYVwZ3boE+oXaCxPZAibQqVViA9yxat5g3PrRfvxyvAAx/m54lNVjRETUCdKbqs9DvDRwUfGKJ3vmqlIgIdwbSVkV2J9Rjhh/t1a3hSEiatQbkVthTlR1c4IK9LNnUzBizPgLPn4uNbVd6/V1UzGBTk7DXdP5k4jmcwJRqwu1FvYedxu8hs/Esg/X4bGNb7dqXRdrL0wkNSbQqdUSu/nhpRn98MS3x/HOH6mI9nPDzMHhUodFREQOxtK+JZr9zx3C4EgfaxV6emkdurGKlIhaKa2kFqJo7uPt56aSOpxOZzCJuOmZlRd8fMncK9u1Xl83FTJK61DOiUTJCbj9rYVLZ7T9NxhNKKo2t3DhBKIXbi1c0CBgTwkQNGgi5l877pLruVR7YSKpMYFObTJ7SAQyS+vw3vY0PLX+OEK9XZDYzU/qsIiIyIFklrH/uSNxUcnRP9wbh7IqsD+9HLH+/L0SUeuklZj3B90D3Hn1ymWwnHxgBTo5AzeVOc1lEgGtqePXX1jdCJMIuKnk8HJRdvwL2Kl/thYOMBixZ0c66gwCvCPjra11iOyVTOoAyP48NikeU/uFQG8Ucdenh3Ayr0rqkIiIyIFkWCYQZQW6wxgU5QOVXIaSWi3OFtVKHQ4R2YnUYvN4wStXLo8PE+jkROQyAa5NLQAbjB1/4i2/0lJ97sITexehVsgR4KEGAOQ1teIismdMoFObyWQC3pjdH8NjfFGrNWD+xweQXsIvw0RE1DEsCfRoVio7DBelHIOjfAAAu9NKATkrtojo0tKaEujdnaD/eWfydTUn0Ot1RpgUbDlBjs9S7dzQCW3Q89j/vNUs2yi3sl7iSIguHxPo1C4apRwfzh+CvmGeKKvT4daPDqCwqlHqsIiIyM6JomjtgR7DBLpDGRjpDXe1AjWNBngOvl7qcIjIDqSVMIHeEVQKGTyaJlY0uPhKHA1R57Mm0Du4At0kAgVV5gR6KBPol2RJoFuq9onsGRPo1G4eGiXW3DYMMf5uyKtswK0f7UcFLwskIqLLUFKrRZ3OCJkARPq6Sh0OdSClXIaRTfOmeI2czVYCRHRRBqMJ6U0nVNnC5fL5NrVxMbhw/ipyfJYTRh2dQK/SC9AbRagUMvi5O/7ExpfLMslqeZ0ODTqjxNEQXR528ScAQHJycruf++RwVzyzXYtzxbX418cH8Pkdw+HlykuziYio7dKbJowL83GBSsHz/I6mZ7AHjmRXogTA8i1n8dy0vlKHREQ2KrOsDjqDCa4qOcJ9WOl5uXxdVcgqq4fBlRXo5Pg8NeZ8RF0Ht3ApbTQn5EO9NJCx//kluaoU8HVTobxOh/yqBp4MJbvGBLqTqy4vAQDMmzfvstbjHhaH2Dvfxom8Kvzr4/347M7h1p0WERFRa1kmjOvOA2yHJAgCrojzx/ojefh8XxZmD4lA3zAvqcMiIht0prAGANAjyAMyGRNVl4sV6ORMLBXo9YaOHTvKtObiDrZvab0wbxeU1+mQV8EEOtk3JtCdXENtNQBg6r//g/iEwe1aR1F2Gr545XEsHeOD53ZV4VhuFeZ/fACf3j4MHkyiExFRG7DfreOL8HVF3ekdcOs9Fk9/fwLf3zcKcibHiOgfUpoS6D2DPSSOxDFYE+isQCcn4OFizkPUd3ALl1JtUwU6E+itFubtghN5VdbJV4nsFRPoBADwC41CeFyfy1pHlLcSX9w5Ard8uA9HsiuxYPVBfHL7MOsEHkRERJdiqUBnhYpjK//jAwQPGo/juVX4bG8mFoyKkTokIrIxyQXmBHo8E+gdwpJAN6k9UdOoZ6ETOTTPpgr0RqMAyDsmH6HwCYXWJEAuExDkqe6QdToDSx/0khottAYj1Aq5xBERtQ+bi1KH6h3qic/vGA5PjQJJWRW4bfUB1Gk7uPEYERE5LEsPdFagOzZTXSWeuLonAOD1TWdRWNUocUREZGtSisxXyjKB3jE0SjlcVebEVVrTvpbIUbko5VA0Xd2m8AjokHWqw80Fh0GeaihkTKW1lodGCU+NAiKAAh7vkR3jXz11uL5hXvj8zuHw0ChwMLMCt60+iJpGvdRhERGRjavTGqyXd7IC3cEJMvwrMQba/DOo1RrQ/85XIAjCBW8RkVFSR0xEXahWa0BOuXl/0DPYU+JoHIelCv1cUY3EkRB1LkEQrH3QFV6BHbJOTURvAOaWJNQ2YU0TQedVsI0L2S/21qBOkRDujc/uGI5bP9yPA5nlmPfhfqy5bRh8mg7aiIiI/imj1FwR5+em4v7C0YkmvLkpBWW1Wnx1MAcu3YZg/sf70T/cu8XFF02K79r4iEhSZ5sSvIEeamvSly6fn5sKuRUN1nZpRI7MU6NERb0ecs+OSaBbKtDZ/7ztwrxdkFxQg3z2QSc7xgp06jQDIrzx1d0j4OOqxLHcKtz8/j4UV/OSHSIiapm1/znbtzgNP3c1RnXzAwDsOleK8jqdxBERkS04w/7nncJycpoJdHIGHVmBXt5ghNInFICIEC/NZa/P2Viq9ouqtTAYTRJHQ9Q+TKBTp+ob5oVv/p2IIE81UopqMPt/e5FbUS91WEREZIM4gahzGhDhjUhfVxhMIn4/VQiDiV+siJxdSqG5/3lPJtA7lJ+lhQsT6OQEPF3ME+UqOqACPbnUfILfSylyEsx28HJRwlUlh1EUUciiSrJTTKBTp4sL8sC6f49EhK8LMsvqMWvVXqSV8KCNiIias+wbOIGocxEEARN7B0GjkKG4RosdKSVSh0REEjtTaKlAZ//zjmRph5NTUY8GnVHiaIg6V0dWoCeXmBPo/mrxstfljARBsFah57GNC9kpJtCpS0T6uWLdv0eie6A7CqoacdP/9uJEbpXUYRERkQ35qwLdTeJIqKu5qxWY3DcYAHAyv5rHCEROTBRFawKdFegdy0Uph6BvgCiCBU3k8LwsFeg+oZe9LksFur+GV8m1FxPoZO+YQKcuE+ylwdd3j0CfUE+U1upw0/t7sS2lWOqwiIjIBhiMJmSWmScRZQW6c4r2c8PIpn7o288Wc6IpIidVVK1FVYMecpnA/UEHEwQBioYyAEygk+PzcTVfcaHw8EOjof2J7+pGPTIrDQAAP1agt1uYjzmBXljVCKOJ25Hsj0LqAMi5+LmrsfbuEbj388PYlVqKOz85hJdu6IubhkZKHRoREUkou7weeqMIF6UcoV4uUodDEhkS5YOSGi3OFdfil+MFmDU43DrpHRE5hzNN/c+j/VyhUcpx/YxZKC4tv+hzzqWmdkVoDkFRXw69ZzjOFTGBTo5No5RDJROhMwkorG1/y6KkrAqIAPQV+XCJ9O+4AJ2Mn5sKaoUMWoMJJTVaBHMyVrIzTKBTl/PQKPHxgqF4av1xrD+chye/O4G8igY8MrEHBEGQOjwiIpKApX1LbIAbZDLuC5yVpR96VYMexTVafH80D7MGh0sdFhF1oRRr+xZz//Pi0nLc9MzKiz5nydwrOz0uR2GpQD9XXCNxJESdz10holwnoKDW0O51HMwwn8DT5p4C+o/tqNCcjqUPenppHfIqG5hAJ7vDFi4kCZVChjdm9ccDV3UHALz9RyoeXHsUjXpOZkNE5IzSSti+hcyUchmmDQiFj6sSNY0G/HAkHzIN+yATOYu/JhDl331nUNRbEuisQCfH564wtwopqGl/nuFgpjmB3phzukNicmah7INOdowJdJKMIAh4dFI8Xp7RDwqZgJ+P5WPWqr0orGqUOjQiIupif00gygQ6Aa4qBaYPDIO7WoHyeh2C5ryE0lqt1GERURc4mWeeRLhPqKfEkTgmRYM5GZhVVg+tgcVL5NjclU0J9HZWoNfrDDiaUwkA0Oac7KiwnJZlItH8ygaIIvugk31hAp0kd/OwSHx+53D4uCpxIq8K1727C0eyK6QOi4iIupBlMjNWoJOFp0aJGwaGwVUlhyowBjf9by+KqnmSncjRXD9jFkaMGY8RY8Zj2LjJOFdk7oH+1P13YcSY8exv3sFkulp4aBQwmkSkN139ReSo3JuaFre3Av1ARjn0RhEBrnIYKgs6MDLnFOChhlIuQGswoaxOJ3U4RG3CHujUYZKTk9v9XBWAlTNisWRzPlKKanDT+/vw7PV9cPPQCPZFJyJycKIoWivQmUCnv/N1U+HGweH4+PeDSEMgZv9vL764czjCfVylDo2IOsjfe5znVzZgXVIuXFVy3PLU6wDY37yjCQB6BnvgYGYFUgpr0CuElf7kuCwtXPLbWYG+J83c8ighSIVDHRaV85LLBIR4uSC7vB55FQ3wd1dLHRJRqzGBTpeturwEADBv3rzLWo+LqysOHzuJN/aUYfPpIixefwIHM8rxwg194ariR5WIyFHlVjSgVmuAUi4gxt9N6nDIxvi4qlD4xVMY+Z+1yCqrx+xVe/HlXSMQzc8KkcMpqTG3agr0YFKlM/UM9sTBzAokF1ZjOsKkDocktHTpUjz77LPN7ouPj8eZM2cAAI2NjXj00Uexdu1aaLVaTJ48Ge+99x6CgoKkCLfNLC1cKhtNqNUa4K5uW15h17lSAEBCEMekjhLm3ZRAr2xA/whvqcMhajVmJemyNdSaL7Oc+u//ID5hcLvWUZSdhi9eeRz11RX437zBWPVnGl7/PQXrj+ThZH4V3ps7CN0DOZEQEZEjSmmaMK5bgDuUcnaXo/MZq4vxzb8TccuH+5BeUocbV+3F53cOQ89gVk4SOZKiGnObpkAPjcSROLaeIebvVWcKaiSOhGxBnz59sGXLFuvPCsVfaaJHHnkEv/76K9atWwcvLy/cf//9mDFjBnbv3i1FqG2mlAGG2nIo3H2RWlyLAW1I2JbX6XC6wJzr6Beo6qQInU+ot3l8z2vqg86OA2QvmECnDuMXGoXwuD6XvR6ZTMB947pjUKQPHvjqCM4W1eL6d3dj2Yx+mDaAFRJERI4mpcj8Bb5nME+U0oUFe2nw9d2J+NfHB5BcUI2b/rcPq28bikGRPlKHRkQdpNhSge7Jas/OZDn5eKawWuJIyBYoFAoEBwefd39VVRU++ugjfPnll7jqqqsAAKtXr0avXr2wb98+jBgxoqtDbRd9SSYU7r5ILqhuUwJ9T5q5+rxnsAe8NfJOis75BHtqIBcE1OuMqGzQw8eVJyfIPrDMi2zWiFg/bHjwCozs5od6nREPrT2KxeuPo17Xvv5lRERkm5KbqnviWU1MFyLIIAgCAj012PTkFDTmJaOqQY/py7fCJXoABEGw3iIio6SOlojawWA0obxpUjm2cOlc8U0nrIuqtdZtTs7r3LlzCA0NRWxsLObOnYvs7GwAQFJSEvR6PSZMmGBdtmfPnoiMjMTevXulCrfNdMUZAIAzBW07YbQ71ZxAH9Xdv8NjcmYKuQxBTSdJ8yobJI6GqPVYgU42LcBDjc/uGI7lW87i3W2p+OpADvall2P5TQPYL4uIyEFYWriwAp0uSDThzU0p1h/1RhN+OV6A7HIgdM5LuKZfMGIDzBPQLpoUL1WURHQZSmt1EEXARSlvc59iaht3tQIRvi7IKW/AmcJqjOzGBKGzGj58ONasWYP4+HgUFBTg2WefxRVXXIGTJ0+isLAQKpUK3t7ezZ4TFBSEwsLCC65Tq9VCq9Vaf66ulvZKB31JJgAgubBtLYt2p5onEB3V3Q+oz+vosJxamI8L8qsakV/ZgL6hXlKHQ9QqrEAnmyeXCXh0Ujy+uGM4gj01yCitw4yVe/DO1nMwGE1Sh0dERJdBazAivbQOwF8VcUSXopTLcF3/EHQLcINRFLHhRCEyy+qkDouILkOxpf+5p5o9cbuApY1LShuTiuRYpkyZglmzZiEhIQGTJ0/Ghg0bUFlZiW+++abd61y2bBm8vLyst4iIiA6MuO10xZkAzBXooii26jk55fXILq+HQiZgWIxfJ0bnnMK8XQAAeRWsQCf7wQQ62Y2R3f3x28NXYGpCCIwmEW9sPoub39+HnPJ6qUMjIqJ2Siuug9EkwkOjQIgXJ42j1lPIZLimbwi6B7rDKIpNFek8JiCyV9b+52zf0iV6BXMiUTqft7c3evTogdTUVAQHB0On06GysrLZMkVFRS32TLdYvHgxqqqqrLecnJxOjvri9OU5kAtAdaMBBVWNrXqOpX3LgAhvXhHTCUK8XCDA/DupadRLHQ5Rq9h0An3p0qXNeloKgoCePXtaH29sbMTChQvh5+cHd3d3zJw5E0VFRRJGTJ3N21WFd+cMxJuz+8NdrcChrApcvfxPfHMwp9Vnk4mIyHakFJkv6+0Z7MGKQ2ozmUzA1X2CEevvBqNJxM/H8qEK6SF1WETUDsXVlgQ6T6Z2hZ4hnEiUzldbW4u0tDSEhIRg8ODBUCqV2Lp1q/XxlJQUZGdnIzEx8YLrUKvV8PT0bHaTlNGAME9zEry1n/c/zhQDAEbHsb1RZ1ApZAjwYB90si82nUAHgD59+qCgoMB627Vrl/WxRx55BD///DPWrVuHHTt2ID8/HzNmzJAwWuoKgiBgxqBwbHzoCgyN9kGdzognvjuOuz5NQkmN9tIrICIim3Gm6dJxtm+h9pLLBEzpF4woP1cYTCICZz7Dq9OI7IzBZEJZHSvQu5Jl3pGUohoYTSxEclaPPfYYduzYgczMTOzZswc33HAD5HI55syZAy8vL9xxxx1YtGgRtm3bhqSkJNx2221ITEzEiBEjpA69TaK9zAn0E7mXTqA36o3Yec5cgT6hV1CnxuXMrG1cmEAnO2HzCXSFQoHg4GDrzd/ffAawqqoKH330Ed58801cddVVGDx4MFavXo09e/Zg3759EkdNXSHC1xVr707Ek1f3hFIuYEtyEa5e/id+P3XhCU2IiMi2pFgT6BJXJ5Fds7RzCXBXQ+7mg9vXHEQ1LwnuNMuWLcPQoUPh4eGBwMBATJ8+HSkpKc2W4ZWi1BZltTqYRECjlMFDw3YJXSHKzw0apQyNehOyOIeE08rNzcWcOXMQHx+P2bNnw8/PD/v27UNAQAAA4K233sK1116LmTNnYsyYMQgODsb69esljrrt4v1UAIBDWeWXXHZPWika9EaEeGnQJ5THp50lzMecQM+vbF1bHSKp2XwC/dy5cwgNDUVsbCzmzp2L7OxsAEBSUhL0ej0mTJhgXbZnz56IjIzE3r17L7pOrVaL6urqZjeyDcnJyTh8+HCrb8eOHsFwzyq8Mt4Psb4alNXp8O/PkvDoN8f4xZnIxjDhQi2xJNB7sgKdLpNKYZ5Y1FBThnPFtVj4xWFWVXaSHTt2YOHChdi3bx82b94MvV6PSZMmoa7uryQcrxSltiiqbppA1EPDdl5dRC4T0COoqQ86JxJ1WmvXrkV+fj60Wi1yc3Oxdu1adOvWzfq4RqPBihUrUF5ejrq6Oqxfv/6i/c9tVa8AcwL9cFYFDEbTRZfdfNr83WNCryCOR50o1MucQC+v06FeZ5A4GqJLs+nT+8OHD8eaNWsQHx+PgoICPPvss7jiiitw8uRJFBYWQqVSwdvbu9lzgoKCUFh48QrkZcuW4dlnn+3EyKmtqstLAADz5s1r9zpc3D3x8Ieb8dXREnx3OBf70svw+qz+SOzGWbOJbIEl4TJ06FAYDAY8/fTTmDRpEk6fPg03NzcA5oTLr7/+inXr1sHLywv3338/ZsyYgd27d0scPXWGqnq9dTIny5d4osvhoVGi5LvnEHvXu9h5rhQrtqXiwfFxUoflcH777bdmP69ZswaBgYFISkrCmDFjrFeKfvnll7jqqqsAAKtXr0avXr2wb98+u7v0nzpfYdO+INiT/c+7Us9gDxzPrcKZwhpc0y9E6nCIOk2klwKeGgWqGw04XVCNhHDvFpczGE1/JdB7s31LZ3JRyeHnpkJZnQ75lY3g6E+2zqYT6FOmTLH+OyEhAcOHD0dUVBS++eYbuLi4tHu9ixcvxqJFi6w/V1dXIyIi4rJipcvTUGu+CmDqv/+D+ITBbX5+UXYavnjlcdwYp8ANwxOx6JujyClvwJwP9uGO0TF4fHI8NEp5R4dNRG3AhAv9U0qRueIt1EsDLxelxNGQo9AVpeGF6X3x6LpjWL7lLIbF+GJELE+md6aqqioAgK+vL4BLXynK8Zz+yXIyNcSLKZSu1LOpfVpyAa/IJscmEwQMjfbF1jPFOJBRfsEE+q7UUpTW6uDrpsJIFuJ1ulBvF5TV6ZBX2YBuLPYnG2fTCfR/8vb2Ro8ePZCamoqJEydCp9OhsrKyWRV6UVHRJS8pUqvVUKs5OY0t8guNQnhcn8tax9BoX2x8aAxe/PU0vjqQg492ZeDPsyV466YB6Bvm1UGREtHl6oiEi1arhVb71+TBbMllX1IKzb8vTiBKHW3m4HDsTS/Dt0m5ePCrI9j40BXwc+exX2cwmUx4+OGHMWrUKPTt2xcA2nWlKMdz52VSaFDZYG69GMwEepfqFWJOoJ/O598bOb6hMX8l0O+8IrbFZX44kgcAuC4hBEq5zXc8tnvhPi44kVeFnIp6dPOVOhqii7OrEaG2thZpaWkICQnB4MGDoVQqsXXrVuvjKSkpyM7ORmJiooRRki1wVyuwbEYCPl4wBP7uapwrrsX0FbvxztZzl+x5RkSdr6MSLsuWLYOXl5f1xquJ7MvpAk4gSp3nuWl90D3QHcU1Wjz53QmIIvuhd4aFCxfi5MmTWLt27WWth+O589J5mFuH+LgqecVoF+sTZt7/5lU2oLxOJ3E0RJ3LUlG+K7W0xZ7bdVoDfj9lbt8yfWBYl8bmrMKbJhItq9Wh0ShxMESXYNMJ9Mceeww7duxAZmYm9uzZgxtuuAFyuRxz5syBl5cX7rjjDixatAjbtm1DUlISbrvtNiQmJvKyULK6qmcQNj0yBlP6BsNgEvHG5rOY9b+9yCjlTPNEUuqohMvixYtRVVVlveXk5HRQhNQVTuaZr0LoG8YEOnU8V5UC794yEEq5gC3JRfjleIHUITmc+++/H7/88gu2bduG8PBw6/3BwcHWK0X/7mJXinI8d156d3MCndXnXc9To0SMv3kemhNN+2QiR9UvzAuRvq6o1xmxJbn4vMe/TcpFg96IWH83DIjw7voAnZCrSgF/d/MEr6WNNp2eJLLtBHpubi7mzJmD+Ph4zJ49G35+fti3bx8CAgIAAG+99RauvfZazJw5E2PGjEFwcDDWr18vcdRka3zdVHhv7iC8dVN/eGgUOJJdiWv+3058tjeT1WhEEujIhItarYanp2ezG9kHncGElEJzBXo/tteiTtIz2BP3jesOAFj60ylUsMKyQ4iiiPvvvx/ff/89/vjjD8TExDR7vD1XinI8d156j1AAQIhX++e4ovaz7INP5FZKGwhRJxMEAdf1N5+w++lofrPHDEYTPtiZDgC4bXQMBIENubtKuI8rAKBYy21Ots2mE+hr165Ffn4+tFotcnNzsXbtWnTr1s36uEajwYoVK1BeXo66ujqsX7/+kv3PyTkJgoAbBobj94fHYGQ3PzTojXjmx1OYv/ogCpsmLSKiztUZCReyX2eLaqAzmuCpUSDS11XqcMiB3XdlN/QIckdZnQ7P/3Ja6nAcwsKFC/H555/jyy+/hIeHBwoLC1FYWIiGhgYA4JWi1GpGkwi9h/n7W7AnK9ClYE2gswKdnMC0AebWLDvOFqO4+q88wE/H8pFb0QA/NxVmDQ6/0NOpE0Q0tXEpZgU62Ti7mkSU6FKSk5MvucyiQUr08vDEZyeq8efZEkx44w88MMwbQ0M18Pf3R2RkZBdESuR8Fi5ciC+//BI//vijNeECmBMtLi4uzRIuvr6+8PT0xAMPPMCEi4OyfFHvF+7FKh/qWILsvM+UKjQewfNew/ojeVj51G1ozDxqfSw8IhI52VldHKR9W7lyJQBg3Lhxze5fvXo1FixYAMB8pahMJsPMmTOh1WoxefJkvPfee10cKdm6s0U1EOUqqOQy+DVdxk9dq29TAv1kHicSJcfXI8gDgyK9cTi7Ei/8moy35wxEcXWj9QT77aNjOBdDFwvzcYEgAHUGAXKPAKnDIbogJtDJIVSXlwAA5s2b1+rnKPzC4T/1USAkDst2VaBq37fQHvoWZ06fYhKdqBMw4UJ/d8La/5ztW6iDiSa8uSnlvLu3pxTjWG4Vet/+Km4ZFgmZzJxkXzQpvqsjtHutaYFnuVJ0xYoVXRAR2avD2RUAgCBPNWQ8mSqJv08kWlarhZ+7WuKIiDrXc9P64vp3d+GnY/kI8dJgd1opKur16BPqiTuviLn0CqhDqRVyBHloUFjdCE1UP6nDIbogJtDJITTUmismpv77P4hPGNzq55lE4HiFEWm1cniNuBGNYT2Rkl3EBDpRJ2DChf7OMoEo+59TVxkR64eUwhqU1elwMr8KCeHeUodE5PQOZ1UC4ASiUvLUKBHr74b00jqcyKvCuPhAqUMi6lR9w7xw5xWxeP/PdPzvT3Pfc3e1Av/v5gFQK1h9LoVwH5emBPoAqUMhuiAm0Mmh+IVGITyuT5ueEwngXFENNp0qgCaiLx7dXIr3gkoxOs6/c4IkInJyOoMJZwo4gSh1LY1SjhGxfth+tgT70ssRH+QBNS/TJpLUkRxzBTonEJVW3zAvpJfW4SQT6OQknrq6JxLCvfDpnix0C3TDA1fFIdSb45BUInxdcSirApqohFYVXRFJgV36iQDEBXngqmA9dMUZqNaacOvH+7FiWyoHbyKiTmCZQNTYWItof3cIgnDJG1FH6BvmBR9XJRr0RhzILJc6HCKnVl6nQ3pJHQBOICo1TiRKzkYmE3BtQii+uScRy2YkMHkusVAvDWQQofDwR36NUepwiFrECnSiJh5KoPCzR3HbuxuxNaMBr/2eglP5VXjtxv5wU/NPhYioo1jat0SFBGBRC72qW8I+1dQR5DIBY+IC8OOxfBzNqUR/tnEhksyBjDIAgKK+FC6qOImjcW6cSJSIpKSQy+CnFlGiFXC0SIvrpA6IqAWsQCf6G9Ggw8Kh3njphn5QygVsOFGImSv3IKe8XurQiIgchqXCLYgVhySBaH83hPu4wCQCB1mFTiSZfenmvz9VVa7EkVDff0wkSkTU1YJcTACAo4Ucg8g2MYFO1IJbhkfiy7tGwN9djTOFNbj+3V3Yk1oqdVhERA7BUoEe6KGWOBJyViNi/QAApwuqIfdkv18iKexLN1egK6uZQJeaR9NEogDbuBCRNII05va5J4t10BrYxoVsDxPoRBcwNNoXPz8wCgnhXqio1+PWjw9g9e4M9kUnIroMOoMJyYXmCUSZQCephHm7INLXFSYR8Bp1c6v68AuCgIjIKKlDJ3IIlfU6pBSZ9wUqJtBtQr9wcxuXYzlMoBNR1/NSijDUlkNrFHEos0LqcIjOw8bORBcR4uWCb/6diKfXn8D6I3l49ufTSCmswXPT+kKl4PknIqK2OltUA53BPIGol4tS6nDIiY2I9UV2eT3c+47H/f++C96uqks+h734iTrGgYxyiCLQLcANdXq2SrQFgyJ98OPRfCRlM3FFRF1PEIDGjMNw7zcBf54twaju/lKHRNQMM4BEl6BRyvHG7P74zzW9IBOAtQdzMO+j/ewPSETUDkeavpjrCs5CEASJoyFnFuLlgihfVwgyOQ6y0omoS+3PMPc/H97UTomkNzjKBwBwOKsCRhOvuCWirteQcRgAsONsicSREJ2PCXSiVhAEAXeNicVH84fCQ63AgYxyTFuxG2cKOVM9EVFbWBKV2tzTEkdCBAyP9QUAnCmsRm2jQeJoiJyHpf/58BhfiSMhi57BHnBTyVGrNSClqdUaEVFXasw8CgHAmcIaFFU3Sh0OUTNs4UL0D8nJyRd8zAvAC+O8sWx3BXIrGjD93V14eLg3hoVprMv4+/sjMjKyCyIlIrI/SVlNCfS8C4+1RF0lxMsFjTknoYnoi6O5lRjNy4WJOl1Vgx6nC8xFKCNYgW4zFHIZBkX5YOe5UiRllaN3qKfUIRGRkzE1VKObrxKp5Xr8ebYEs4ZESB0SkRUT6ERNqsvNlwnNmzfvksvKNB4ImP4UENUfy3aVoXLHJ6je/x0AwMXVFWeSk5lEJyL6h4KqBuRVNkAuE6DNT5E6HCIAQPX+9dBE9MWJ3CoMjfaBWiGXOiQih3Yo09z/PMbfDUGemks/gbrM4KYE+sHMCtyaGC11OETkhAYEqZFarscOJtDJxjCBTtSkodZcCTP13/9BfMLgSy5vEoFjFUak18rhM+429L/mXwivP4evXnkMpaWlTKATEf3Doab2Lb1CPJCu52WZZBsa0g7Cx1WJino9TuVVY1BTH2Ai6hxs32K7hkSZfyeWq8WIiLrawBA1vk2uxc5zpTAYTVDI2XmabAMT6ET/4BcahfC4Pq1aNhLAsdxK7Dhbgux6OWpVPSB34xdvIqKWHMo0Txo3JMoXv0ocC9FfRAyK9MHWM8U4klOJ/hHekMs4wS1RZ9mTZk6gs32LNM6eTcGIMeNbfMwkUwLDFyKvsgH5lQ0I9Xbp4uiIOsfF2rR2xfOp9Xr4KuHtqkRlvR5JWRWcbJpsBhPoRJepf7g3fFxV2HCiAOU6IPhfbyKtQo9BUgdGRGRjDjVVtA2J5olGsi09gz2wN70MtVoDzhXXoGcwe/8SdYaSGi1O5Zuv+hzFOQckYTCJuOmZlRd8fMWPu2BwD8KhrApczwQ62bm2tGltjdra2g5ZD12YXCbgqvhArD+Shy3JRUygk81gAp2oA0T6uuKmoRH4/mAmajwD8J8/SuEaUICpCSFSh0ZEZBNqtQYkN00aZ7lEnMhWKOQy9A/3xt70MhzLqWICnaiT7E4tBQD0DvFEgIda4mioJaqafBjcg5CUWY7r+4dKHQ7RZWlrm9YLST6wAxs/+X9obGQLwq4woXcQ1h/Jw+bTRXj6ml4QBF4ZSNJjAp2og/i4qnBlsB5f/3kciB2ChV8exrniODx4VRxkvBSciJzc0exKmEQgzNsFwV6cNI5sT59QT+zPKENhdSOKqhs5uSFRJ/jzrLkadEyPAIkjoQtRVucBIQOtV40ROYK2tGltSVF2WgdGQ5cypkcAVHIZMsvqkVZSh+6B7lKHRAR24yfqQEoZUPztc7iuhxsAYPmWc3jgqyNo0BkljoyISFqHspr6n7N9C9koN7UCcUEeAMzzmxBRxzKZRPx5zlyBPqYH27fYKlVNPgAguaAaNY16iaMhImfkrlZgRDdz65YtyUUSR0NkxgQ6UUcTTbhtgCdenZkApVzArycKcOOqPcivbJA6MiIiyRzKbOp/HsUEOtmu/uFeAICzRbU8+U3UwZILq1Faq4WrSo7B3BfYLLmuFhG+LjCJf+27iYi62sRegQCALaeZQCfbwAQ6USeZPTQCX941An5uKpzKr8b17+7G4WwehBKR89EbTTjSNP4NZv9zsmHBnhoEeqhhNIk4lV8ldThEDuXPs+bq8xGxflAr5BJHQxczummC111NPeuJiLra+F5BAICk7AqU1WoljoaICXSiTjU02hc/LByFnsEeKK3V4ub392H94VypwyIi6lLHcipRpzPC102FnsEeUodDdEGCIKB/uDcA4HheFUyiKG1ARA7E2v88ju1bbN2opgT6bibQiUgiod4u6BPqCVEE/jhTLHU4REygE3W2CF9XfHfvSEzsHQSdwYRF3xzDyxvPwGTil3Iicg67U8sAAImxfpxUmWxejyB3aBQy1DQakFVWL3U4RA6hXmewzoXBCURtX2KsuffwmcIalNSw8pOIpDGhqQr991OFEkdCxAQ6UZdwUyvwv3mDsfDKbgCAVTvScPdnh1CrNUgcGRFR59udZq5gG9ndT+JIiC5NIZehZ4gnALCNC1EH2ZdeBr1RRLiPC2L83aQOhy7Bz12N3k3j4J40VqETkTSu6RcCwNwCrKqBkxqTtJhAJ+oiMpmAxyf3xP+7eQBUChm2JBdj5nt7kFPO6jYiclz1OoO1//mobrxsn+xD31Bz4ii9tA51PNlNdNm2JJsvvx/bIwCCwCuR7MEVTa12dqSUSBwJETmr+GAPxAW6Q2c0YTMnEyWJMYFO1MWmDQjDN/9ORKCHGilFNbj+3V3Yn14mdVhERJ3iQEY59EYRYd4uiPJzlTocolbxc1cjxEsDUQROF1RLHQ6RXTOZRGviY1KfYImjodYaFx8IANh+toStJ4lIMtcmhAIAfj2eL3Ek5OyYQCeSwIAIb/x0/2j0C/NCRb0ecz/cj7UHsqUOi4iow21vqlwb08OfVYdkV/qGegEATuVXQ+RkokTtdiy3EiU1WrirFRgR6yt1ONRKQ6J94KFRoLxOh2O5lVKHQ0ROamqCuY3LznOlqKzXSRwNOTOF1AEQOaLk5ORWLff0cBe8e1CL3TmNeGr9Cew8kYZHx8ciNjqqkyMkIuoaO86aE+hjewRKHAlR28QFuWPH2RJUNeiRW9GACF9eQUHUHpuaqs/HxQdArZBLHA21llIuw5i4APx6ogDbzhRjYKSP1CERkRPqHuiOnsEeOFNYg02nijB7aITUIZGTYgKdqANVl5sTRfPmzWvT87wSb4L3mFvx67l6fL/1C2xeOgd9esR0RohERF0ms7QOGaV1UMgEjOIEomRnlHIZ4oM9cCKvCifzq5hAJ2qnTacKAbB9iz26smcgfj1RgC3JxVg0KV7qcIjISV3XPxRnClPw8/F8JtBJMkygE3Wghlpzn9Sp//4P4hMGt+m5efV6HCiVQxXZH3d+k4LP7g5A90D3zgiTiKhLbE8xTxpnvgxcKXE0RG3XN9QTJ/KqkFZchwadUepwiOxOWkkt0krqoJQLGBcfIHU41EZX9QyEXCbgdEE1ssvqEcm5TIhIAlP7heC131OwJ60M5XU6+LqppA6JnBAT6ESdwC80CuFxfdr0nHAAbqdO4/eUEhQgCDe8txvvzBloncCHiMjebD1jTqBzHCN7FeipQaCHGsU1WiQXcjJRW3cyrwpGlQdEUeScCzbCMnnoiFg/ePJEqt3xdVNheIwv9qSV4bdTBbh7TDepQyIiJxTt74a+YZ44mVeNn4/lY/7IaKlDIifESUSJbIi3SkTBp4vQy1+JmkYDbl9zEB/uTOfkZURkd6oa9NibVgYAmNQ7SOJoiNqvT6gnAOBUHhPotu6p9cdRMuQufLQ7A4ezK2Ay8fhJamzfYv+m9DNP4LfhRKHEkRCRM5s5KBwAsC4pR+JIyFkxgU5kY0z1VVg61g83DYmASQRe+DUZj397HFoDLx0nIvuxPaUYBpOIuEB3xAawHRXZr/hgDyhkAsrrdVCH9ZI6HLoAk0mEQiYDTEbUaY3Yea4U3x3Jhc5gkjo0p1VU3YgjOZUAgIm9eCLVXk3uEwRBAI7mVCK3ol7qcIjISU0fEAaVXIaTedU4nc+iBup6bOFCZINSz57B7J494WbwxJpj1fg2KRcnMovw5CgfeGvkl3y+v78/IiMjuyBSIqKW/W6tOmTShOybWiFHjyAPnC6ohnv/yVKHQxcgkwn4YeEoDB83GX0XvICd50qRX9mIn47lY/qAUCjkrBvqaj8fy4coAoOjfBDspZE6HGqnQA8Nhsf4Yl96OX48mo+FV3aXOiQickI+bipM6B2IDScKsS4pB0tC29Yyl+hyMYFOZEOqy0sAAPPmzbPep4keiIBpTyKlzB3/+vQ4ir97DvrS7Iuux8XVFWeSk5lEJyJJNOiM2J5iHs8m87J9cgB9wzxxuqAarj1Ho6pBDy8X9nK2VYLJgL5hXvD3UOP7w3nIq2zAztRSXMm5GLrcD0fzAADTB4RKHAldrhmDwrEvvRzrD+fivnHdOMcAEUli1pAIbDhRiB+O5GHxlF5QKXhynLoOE+hENqSh1nwp0tR//wfxCYOt91frgT0lIuq8gxF55woM9zcg2KXlvp5F2Wn44pXHUVpaygQ6EUnijzPFqNcZEe7jgn5hXlKHQ3TZgj018HNToawO+OlYPm4dESV1SHQJwZ4aTOkXjB+P5uN4bhWifF3ZTqoLpRbX4mReNRQyAVMTmEC3d1P6BuO/P55EWkkdjudWoX+Et9QhEZETGhMXgCBPNYqqtdiaXGSdo4GoK/B0DZEN8guNQnhcH+utd+8+mJvYDaHeGhhEAXtKlShzCWu2jOUWFNlN6vCJyMn9fCwfAHBd/1BWqZFDEAQBfUI9YdLWo05rkDocaqVoPzcMjPQGAGxLKYHeyH7oXeXHpurzMT0C4OumkjgaulweGqX1irK1BzmBHxFJQy4TrJOJfnOIYxF1LSbQieyEi0qOGwaGoVeIB0QR2J5Sgu0pxTCZWq5EJyKSQnWjHn+kFAMAru/PqkNyHH3DvJC74lbcM5Ynqu1JYqwfPDQK1GoNOJBRLnU4TkEURfx41HwidRrbtziMm4ear2z98Wgeqhv1EkdDRM5q1pAIAMCOsyXIKefExtR1mEAnsiMKmQwTewVhZDc/AMCx3Cr8dDwfWoNR4siIiMx+O1EIncGE7oHu6BnsIXU4RB1GKZdB1GulDoPaSCmXYWyPAADAkexK1DDx1+kOZ1ciu7werio5JvbmRNKOYkSsL+IC3VGvM2J9Uq7U4RCRk4rxd8MVcf4wicAnezKlDoecCBPoRHZGEAQMjfbFNf2CoZAJyCqrx7pDuahu4BdCIpLeuiTz5ZQzBoWxfQsR2YRYfzeEemtgFEUcyqyQOhyHZ2nfMrlPMFxVnHLLUQiCgFsTzfM/fLo3C0ZeBUtEErl9VAwA4OtDOahlaz3qIkygE9mpuEAP3Dg4HG4qOcrqdFh7MAcFVQ1Sh0VETiy9pBYHMysgE2DtT0hEJDVBEDAixnz13qn8ahhVnEy0szTojNb2LdMHhkkcDXW0GYPC4eWiRHppHX4/VSh1OETkpMb2CECsvxtqGg34jlfEUBdhAp3IjgV5anDT0AgEuKvRoDfiu8N5yKnjnzURSeObQ+YD2HHxgQjy1EgcDRHRXyJ8XRHm7QKjKKI2fLjU4Tisn4/no6pBjwhfF4zu7i91ONTB3NUKzB8ZDQBYsS0VosgqdCLqejKZgAWjogEAa/Zkcl446hK8po7IznlolLhxcDh+P1WI9NI6HChTwGvUHB7QElGXatQb8c0hc/uW2U2T+xAR2ZIRsb747nAeGgL7IreiHuE+rlKH5HA+35cFAJg7PApyGdt4OaLbRkbjw53pOJVfjU2nizC5T7DUIRGRA0lOTm7Vct1kJrgqBWSU1uHDDXsxJPSv4h1/f39ERkZ2VojkpJhAJ3IAKoUMUxNCsDu1FIezK+E9ei6W76/EBwlGaJRyqcMjIifw6/EClNfpEOqlwYRegVKHQ0R0nnAfV4T7uCC3ogErt6fhxRv6SR2SQzmWU4njuVVQyWWYNZhtvByVj5sKt42KxoptaXhl4xlc1TMQSjmvgCWiy1NdXgIAmDdvXquf4z3uNngNn4n/frUTRV8+Zb3fxdUVZ5KTmUSnDsUEOpGDkAkCrogLAGpLkVQC7MxuxJwP9uG9uYMQ4uUidXhE5MBEUcQnezMBAHNHREHBL9JEZKNGxPjh24pcrEvKxUMT4hDowXZTHcVSfT41IQR+7mqJo6HOdM/Yblh7IAfppXX4cn+2ta0LEVF7NdRWAwCm/vs/iE8Y3Krn1BuA3/NFaCL6Yt4b3yNQI6IoOw1fvPI4SktLmUCnDsUEOpGDiXE3YeOKpYj91zIcya7ElP+3E6/d2B8TewdJHRoROah96eU4nlsFk16LB6cOxv0N1VKHRETUolBvDZTVedB5huHjXZl4akpPqUNyCJX1Ovx0zDx56LwRUdb7r58xC8Wl5Rd97rnU1E6Njdrm7NkUjBgz/oKPB/r74qf16/DwxB545oeTeO33FEzuE4xgL56MIqLL5xcahfC4Pq1ePl9WjGO5VUjVemBgX179RJ2HCXQiB9SYfRyvTPDHquNanMyrxl2fHsKCkdF4akpPtnQhog63ckcaAGBAdCAe+fFgq56zaFJ8Z4ZERNQiQRDglncQlZ5h+GJfFu67shs8NUqpw7J7Xx/MgdZgQq8QTwyK9LbeX1xajpueWXnR5y6Ze2UnR0dtYTCJF/2dff38vQCAW4ZF4rukXBzNqcT//XACH/xrCASBfe+JqGsNifbFyfxqFFQ1Iru8Hsx2UGfhNdZEDirUQ4Hv7h2JO0fHADDPTn3De3twOp+VoUTUcU7kVuHPsyUQTUYMivKROhwioktSV6SjR5A7arQGa9sRaj+twYiPdmUAME8wySSqc5DLBLw8sx+UcgFbkovx6V7+LRFR13NXK9AvzAuA+apYUZQ4IHJYTKATOTC1Qo7/u7Y3Vi8YCj83FZILqnHdu7vw8sYzaNQbpQ6PiBzAG5tTAAB1p3fAy4VVnERk+wQA947rBgD4eFcGj4ku0/rDeSiu0SLES4PpA8OkDoe6UM9gTyye0gsA8OKvyUjKuni7HiKizjAkygdymYDC6kYUNvIkLnUOJtCJnMCVPQOx8eErcE2/YBhNIlbtSMOEN3fgp2P5EHmKloja6UBGObanlEAhE1C1+yupwyEiarVrE0IR5u2C0lod1iXlSh2O3dIbTVi53dzG684rYqFS8Ouls7ltVDSu7hMMndGEOz85hIzSOqlDIiIn46ZWYECENwDgWIUCkLOohzoej3CInESghwbvzR2MD/41BCFeGuRWNODBr45g+ord2HmuhIl0ImoTk0nEso3JAIDZQyNgqCyQOCIiotZTymW4e0wsAOD9P9NgMJokjsg+rTuUi+zyevi7qzFnWITU4ZAEBEHAmzf1R0K4Fyrq9Zjz/j4m0Ymoyw2L9oWbSo46gwDPYTdIHQ45ICbQiZzMxN5B2ProWCya2ANuKjmO5Vbh1o8O4Pp3d+OX4/nQ8wskEbXC90fycCS7Eq4qOR4aHyd1OEREbTZ7SAT83FTIKW/Aryd4ErCtGvVGvPPHOQDAwiu7wVWlkDgikoqrSoGP5g9FXKA7CqsbMWvVHhzOrpA6LCJyIiqFDKPj/AEAXomzUVLH9mzUsZhAJ3JCrioFHhwfh+2PX4nbRkXDRSnHibwq3P/lEYx8+Q+8vPEMUotrpQ6TiGxUVYMeL/92BgBw/1XdEeSpkTgiIqK2c1HJcduoaADAyu1pvBqvjT7alYGCqkaEemkwZ1ik1OGQxAI81Pjq7hHoHeKJ0lodbn5/Hz7cmQ6TiX9XRNQ14oM84K82QabUYPXRaqnDIQfDMgEiJxbgocaS6/rggavisGZPJr7cn4WSGi1W7UjDqh1p6B7ojkm9gzCpTzASwrwgk3FCDnJMEZFRyM3JbvXy4RGRyMnO6sSIbNuyDckoqdEixt8Nd4yOkTocIqJ2u3VENFZuT8OZwhpsTynBlT0DpQ7JLhRVN2LFtlQAwJNTekKjlEscEdkCf3c11t2TiMRHP0C1eyRe+DUZr365CV6pv0GurbEul5WZjqjo2AuuJ9DfFz+tX9cVIRORAxEEAQN8jNicL2JfXiN+PJqHaQM4uTV1DCbQiRxUcnJym5Yf5weMvtoXh/K12JJRj2NFWqQW1yK1uBbvbU+Dv7saw2N9MSLWDyNifNE90B2CwIQ6OYbcnGy8uSml1csvmhTfidHYtj/PlmDtwRwAwCszE6BWMGlCRPbLy1WJuSOi8P6f6VixLRXj4gN4fNMKL/yajHqdEQMjvXF9/1CpwyEb4qZWwOX4txh82zLsPFcKnVcEKobejUGRPhgc5QOVQoYlc6/ETc+svOA6vn7+3i6MmIgciZdKRNWer+E9+hb83/cnMSjSBxG+rlKHRQ6ACXQiB1NdXgIAmDdv3mWtx9XbH+98uxVJRQZsP1OM0lotfj1egF+Pm3uE+rmp/kqox/ohroWEenZ2NkpLS9sdg7+/PyIjeUkwka0ordVi0TfHAAD/SozCsBhfiSMiIrp8d4yOwZo9mTiUVYHtZ0twZTyr0C9ma3IRfj6WD7lMwPPT+vKEA51HAJAQ7o1IX1dsTi5CfmUjDmSW42R+FYbH+AIynnwnos5TtWcthk+bj5QyPR75+ijW3j0CCjk7WNPlYQKdyME01Jp7fU39938QnzC4Xesoyk7DF688jgE+Btw+fhC0BiOOZldif0Y59qWX4XB2BcrqdNhwohAbThQCOD+hrm4sR6/evdFQX9/u9+Li6oozyclMohPZAIPRhEe+PorSWi16BLnj6Wt6SR0SEVGHCPLUYMHIaLz/Zzpe3nAGY+ICIGfbuhZV1Onw9PcnAJhPPPQN85I4IrJl3q4q3DgoHKkltdidWoaqBj22pZTAa+ZzOF1QjZ5BHmwRSUQdTzTh4eHeeGJrBQ5lVWD5lnN4bLLzXkFMHYMJdCIH5RcahfC4Ppe1jr+3gVECGO0DjB6sgn5AIFIr9DhVrMWpEh3OlOrPS6i7KUxwHXsnxib0Qo/wICjaeMLXksQvLS1lAp3IBrzy2xnsPFcKF6Uc78wZxH63RORQFo7rjq8P5iClqAbfHc7F7CERUodkc0RRxJPfHUdRtRaxAW54ZEIPXD9jFopLyy/4nHOpqV0YIXWFs2dTMGLM+Isu8/ffuyAIiAv0QIy/G07mVeNgZjnqPQKw+XQRDmWWX/BKViKiyxHkrsALN/TFQ2uP4t1tqYjyc8Us7tvpMjCBTkTnaXMbGJkC6pDuUEf0gyayH9RhvVEHDdwTJiEZwLl8AVF+rogPMh888/IpIvuyZncGPtiZAQB4fVZ/xAd7SBwREVHH8nJVYuGV3fDShjN4c9NZXN8/lCcK/+GDnenYdLoISrmAt28eCBeVHMWl5RftZb1k7pVdGCF1BYNJvOjvHGj5966QyTAgwht9Qj3x+muvwjdxFirq9dh4shAH3VVIjPVDjL8bE+lE1GGmDQjDmcIarNyehsXrTyDIU4MxPQKkDovsFBPoRHSey20DYxKBpGNJOJmeh4Ch10BrUiCtpA5pJXVQK2SIC3RHzxBPhHppeJBMZOO+OZSDZ385DQBYNLEHpiaESBwREVHn+FdiND7Zk4W8ygZ8tCsDC6/sLnVINuOPM0V4eeMZAMAz1/Zm6xZqN6VchsYTv2PBY4/jaHYlDmdXorRWh5+PFyDIU43EWD+IUgdJRA7j8UnxyK9swI9H83HfF4fx+Z3DMSDCW+qwyA4xgU5EF3Q5bWBKctKw84P3ce0VQxDebwTOFtXgTGENarUGnMyvxsn8avi5qdAvzAs9QzygVrDKi8jWfLwrA881Jc//lRiFB65iMomIHJdGKcdjk3vgka+P4Z0/zuG6hFBE+rlKHZbkDmaW474vDsMkAjcPjcCtI6KkDokcgFohx/BYP/SP8EZSVgWO5lSiqFqLH47mQ9lnNvanl2F4rJ/UYRKRnZPJBLx6YwKKq7XYm16GWz7Yh1XzBrMSndqMfRSIqFMJAhDgocao7v64fVQ0ZgwMQ+8QTyjlAsrqdNh+tgQf7crA1uQilNRopQ6XiGDuc/vW5rPW5Hn1ge/x/PR+kMlkEAShxRsRkSOYPiAMibF+aNSb8PT3J2AyOXct7J7UUiz4+AAa9SZc1TMQz0/vyzGfOpRGKceo7v5YMDIaAyK8IZcJ0HuF46b392HB6gNILqiWOkQisnNqhRwfzh+CK+L8Ua8z4vY1B/HDkTypwyI7wwp0IuoygiAgwtcVEb6uGNPDH2cKanA8twrl9TprVXqIlwb9wrzg6tzfV4kkU1mvw2PrjmFLcjEAYESsL4Zd9TiExU9c9HmLJnFmeyKyf4Ig4KUZ/XD18j+xK7UUq/dk4o7RMVKHJYlvk3Lx9PoT0BlNGNXdDytuGQQl57GhTuKmVmBsjwAMivTGV9/9CH3oAGxPKcGOsyW4YWAYHp0UjzBvF6nDJCI75aZW4KP5Q/HYumP46Vg+Hv76KA5lleM/1/SGi4pXw9Ol8QiIiCShVsjRP8Ib80ZEYuagMMQFukMmAAVVjdh0uggb8pTwvvJ25NcYpA6VHNyj3xyD39RF+PNsCQ5mliOtpBb1Ouf83B3MLMfUt3dhS3IxVAoZyn57B8Nj/FhtSEROJcbfDf83tRcA4JWNZ3A8t1LagLpYTaMeT357HI+tOwad0YSr+wTjo/lDmWCgLuGhUcIrfSs2LxqLqf1CIIrA+sN5uPL17Xjx19OoqNNJHSIR2SmVQoblNw3APWO7AQA+35eNa9/ZiWM5ldIGRnaBFehEJClBEBDu44pwH1fUaQ04lV+Nk/lVqGk0wGvYDNy/sQRfnduHW4ZFYULvQPZKpw634UQB3PtehSP/OHDydlEiNsANcUEeCPJQO3QSubRWi1c2nsG6pFwAQJSfK1bcMgj9XrxG4siIiKQxb0QUdp4rxabTRbjr00P4ceFoBHtppA6rmetnzEJxafkFHw/098VP69e1en1Gk4ifj+Xj5Y1nUFjdCEEAHrgqDg+Pj4NM5rj7QLJNMf5uWDF3EO7KqcTLG5OxL70cH+zMwNqDObhnbDfcmhgFT41S6jCJyM7IZAKemtITo7v7Y9E3R5FWUodpK3bj+v6heHxyPCJ8OfcJtYwJdCKyGW5qBYbF+GJItA+STiRjy94jcOs+DLtTy7A7tQyeGgWmJoRg+oAwDI325Zc5umyiKOK5aX1w58KHMWH+o6jXGVBco0VZnQ6VDXoczq7E4exKeLko0SfUE71DPOGmdpxdZ1W9Hp/szcSHO9NR3Wiuup89JBz/d21vfiklIqcmCALemN0fM1fuwdmiWtz60X58edcIBHiopQ7Nqri0HDc9s/KCj3/9/L2tW09NI34+VoAv9mchvaQOABDh64LXbuyPEZzEkSQ2IMIbX901AtvPluCVjWdwprAGr/2eglXb0zAvMQoLRkYjyNO2Tm4Rke0bHeeP3x8eg+d/OY31R/Lw07F8bDxZgOsSQnFrYhQGRHg7dAEVtZ3jZAGIyGHIBAEhLiJKvnsOn/65HyfrvfBtUi4Kqxvx1YEcfHUgB6FeGkzoHYTxvYIwPMYXGiUr06ntBEHArCERmH1gPUa/sMx6f6PeiJyKepwrqkVGaR2qGvTYk1aGvelliPFzg0u3oTAYTVDYaS/Y9JJafH0wB1/sz0at1pw47xPqieem9cXgKB+JoyMisg0eGiU+mj8Us1btxbniWsz5YB9WLxhq99VpVQ16nMqrQlJWBfZnlGNPWiksc6V6ahS4e0ws7rwilsdWZDMEQcCV8YEYExeAn47lYcW2NKQW12Ll9jS8/2c6JvQKxM3DInFFd3+7PTYjoo6VnJzcquXmxQEj/f3x6bFqHC/WYf2RPKw/kocYbwUmxPvhplE90T3QvZOjJXvABDoR2bRANwUeuyIej0zsgf0ZZfjhSB42nihEflUjPt2bhU/3ZsFVJceo7v4YEeuHodE+6B3iyYNnuiwapRxxgR6IC/SA3mjCueJanMyrQkFVI9JL6xB44xKMeuUPzBocgZuGRthFMqWgqgFbThfhx6P5OJRVYb0/PsgD913ZDdcmhELOqzqIiJqJ8HXFV3ePwJz39yG1uBbTVuzGazcmYHyvIKlDAwCYRBFagwmNemPTzQSt3ohGgwm14SOw9KdTqG7Qo7JBj7JaLbLK61FZrz9vPQMivHHDwDDMGBQGD16BRDZKLhNww8BwTOsfhi3JRXj/z3QcyqrA76eK8PupIni7KjGxVxAm9g7C8Fg/eLnws0zkbKrLSwAA8+bNa/NzVSE94DFwKtx6XYGMSuCD/UX4YH8Rwn1cMCzaF0NjfDE02hfdAtxYne6EHCaBvmLFCrz22msoLCxE//798c4772DYsGFSh0VEl+nvZ441AG6OBW6I9MexIi2SCrRIKmhEeYMRm08XYfPpIvNyCgE9fJWI9laib7gPRvaJRvdAd1ZS2QlbG8+Vchl6h5jbt5TX6XAqvwoHz2ShCF54d1sq3t2WitHd/XHT0AiM7xUIV5Vt7FrLarU4lFWBQ5nl2JNWhlP51dbHRJMRDelJqD36G7LSDmITRAkjJSJHZWvjeXvF+Lvhh4WjcNenh3Airwp3fHIIUxNC8NikeMT4u3XKa14/YxaKSsthUrrApPaE0XrzglHtAaPaC/rB/8Y7f6ReeCWRI7FmT2aLD4V5u6A2+xRMpZlQV2aicE8lVn4N/LMhTFZmOqKiYy/4EudSL/L6RO109mwKRowZf9FlLD3+zxbV4KsD2fjxaD7K63RYl5RrntNFNEFRVwxlbSGUdaVQ1JtvMqPuvHXQpTnKeE6Or6HW/J1n6r//g/iEwe1ah9YInMkrwIm0PLh3H4zcigbkVpgr0wHAVSkgykuBKC8lorzN/4/0UsBVeX4Rn7+/PyIjI9v/hshm2Ma3/Mv09ddfY9GiRVi1ahWGDx+O5cuXY/LkyUhJSUFgYKDU4RFRO7TlzLEqqBs0MYOgDu8NTVgvNGrccbxYh+PFOvx0tg74IxcyAQjxckG4jwsifF0R4eOKAA81fN1U8HdXwddNBT93NTzUCvZWl5Ctj+e+bipcEReA7x8ch18OZ2PtwWzsSi213lQKGUbE+mFMnD+GRPuid4gnVIrOvRrCYDQht6IBZ4tqcLaoBmcKa3C6oNrax9ZCEICGnFOYMG4s4oM94D6xJ4C5F133oknxnRg5ETkyWx/P2yrYS4N19yTizc1n8cHOdPx6vAAbThRgbI8ATOwdhCu6ByDSr21XI+kMJhRVN6KouhF5lQ3Iq2xAbkUD8ioacCr8Ogg9/WEwXfgE59+PVlRyGTRKGdRKOTRKGTQKOXKP78ZtN8+Al4sS3q5KeLuqEOnrikhfV7ipFRgx5sWL9lAHgCVzr7zoMkvmXtmm90zUGgaTeMnPpqXHf48gDyy5rg/+c00vHMyswG8nC7DzXCnSS+tgcA+GwT0YDX97nptKDk8XJTxdlMj68+tOfBeOw9HGc3IOfqFRCI/r0+7na6u2Y+u3S1GicoE6tCfUEX2gCe8DdWg86qFCcqkeyaXNr+gy1lZAX5EPQ2U+9OX5MFTkQ95Qjn1bfkWv7tGsWm9BdnY2SktLL3s9XXGiwiES6G+++Sbuuusu3HbbbQCAVatW4ddff8XHH3+Mp556SuLoiKg92nvmWBSBar0e5ToBBeXVyMjOg09MHzQYZdYvp/szyi+6DrVcgFohQKMQoJYLUMlEyOUyyAVzf3aZgGb/lgnm5KQAAU3/mW9N/9Zo1FgwpidGx/m3f4M4CbsZz40GTE0IwdSEEOSU12PdoRysP5KH3IoG/Hm2BH+eNZ8AUslliAtyR2yAO2L8XBHoqYGfm/mEja+bChqlHCqFDEq5DAq5AKNRhM5ogs5ggtZggt5oQp3WgPI6HSrqdSiv06OyXoeSWi3yKsyJlsLqRhgvkGDpEeSOIdG+GBrtgyviAhDgcS0Gz0/pyi1FRE7KbsbzNtAo5Xj6ml6YPiAMr29KwR9nirE9pQTbU8xjfqCHGpG+rgj3cYGnixJqhQwKuQwNOiMadEbU642obdSjqFqLoupGlNXpLvxirn6wNCZ3U8vhqVHCQ6OAp0ZpvrkosOa/d+Hxtz6FWiFvsQXX1z9sxRNXP90p24LI1ijkMiR280NiN/PEt0PHX4/BC5agpFaL0lotymp1qNUaUKczok5nREFVI1w9QiSO2j444nhOdCmWfMQ1ty1qlo8wiUCNXo8qvYAqnWD+v15Ao1GA3N0HcncfIKJ54v6aj07DTZWCYC8NQrxcEOylQZCnGj6uKni5KOHjqmo60a2Ei0oBtUIGjVIOTdNxhCMQRREGkwi90QS9wfydNzUzG5OvnQadSQaZygWC2tX8f5X5/zK1KwSVi/k+hRqCUgVBoYIgVzX9Ww1Bbm7Vpcs4hEOrHuvUJLrdJ9B1Oh2SkpKwePFi630ymQwTJkzA3r17W3yOVquFVqu1/lxVVQUAqK6ubnH5ltTW1gIAcs+dgrahvj2hoyg7DQBQmHkWaW5t7597uc93pHXYQgwdsQ5biMFW1mF5vl6nbfPfmAZAqBzQlR7Dvq/eQBEAwdULSq9AKDyDoPAMhNwrADIXL8hdPCFz9TT/X22Os6Hp1pF6eIlICOrf6uUt45EoOk9rDanGc4vGuto2LW95DS8FcOeIENwxPBjppbX482wJDmSU40RuFSrrDTiRUYsTGW0Op02UChli/d3QI9Ad3YPcERfogX5hXvBxU/21kMm8ndr6PtuyfGeum7F0/boZS8vaOr5wPDfrqvHcYDBc8vdpMBjatZ+wCHcHls+IR0ZpGH47UYS96aU4nluFwtJ6FJZW4EAb1qWUyxDgoUKIlwtCvTQI83ZBiLcGb73yIq6Z/yDc1AooZC19eRZhLM+DTN8IvR44v6v5pd9na7aVaDJddJnLfdxW1sHXsL/XuNTnW2yoQpSHgCgPDczfDoBGgxFVDXrUNOpR02DAmaOn2zQWcDw3s5d8C9Ax32sddT22FIstr6elfIQGgEYGBP01vEBvAuoMAuoMAmoNQJ1eQGWDFlUNeshdvFCjBWpqanAut21xyARAKRegkpuL9yzFepZ/W4v5rD+3XOX+91GrpTGs+eMXf35L3T//fpdJBIyi+Woig+mv/7fEe8azLT/QRkZRQGZmJry9vVu1fLvGc9HO5eXliQDEPXv2NLv/8ccfF4cNG9bic5YsWSLC/PvljTfeeLPpW05OTlcMpTaB4zlvvPHmyDeO5xzPeeONN8e4cTzneM4bb7w5xq0t47ndV6C3x+LFi7Fo0SLrzyaTCeXl5fDz82t1T6Lq6mpEREQgJycHnp6enRWqQ+K2ax9ut/azx20niiJqamoQGhoqdSg2jeN5x+K2+Au3RXPcHn9p67bgeN46zjieM97OZU/x2lOsgPPGy/G8dZxxPG8tvi/7wvdlX9ryvtozntt9At3f3x9yuRxFRUXN7i8qKkJwcHCLz1Gr1VCr1c3ua22Z/z95eno61AeuK3HbtQ+3W/vZ27bz8vKSOoQuxfHcdnBb/IXbojluj7+0ZVtwPDfjeN4yxtu57Clee4oVcM54OZ6bcTy/PHxf9oXvy7609n21dTy3+270KpUKgwcPxtatW633mUwmbN26FYmJiRJGRkREbcHxnIjIMXA8JyJyDBzPiYjM7L4CHQAWLVqE+fPnY8iQIRg2bBiWL1+Ouro66yzRRERkHzieExE5Bo7nRESOgeM5EZGDJNBvuukmlJSU4L///S8KCwsxYMAA/PbbbwgKCuq011Sr1ViyZMl5lybRpXHbtQ+3W/tx29kPjufS4rb4C7dFc9wef+G2aB2O55fGeDuXPcVrT7ECjNfZcDzvOHxf9oXvy7509vsSRFEUO2XNRERERERERERERER2zO57oBMRERERERERERERdQYm0ImIiIiIiIiIiIiIWsAEOhERERERERERERFRC5hAJyIiIiIiIiIiIiJqARPo7bRixQpER0dDo9Fg+PDhOHDggNQh2bSlS5dCEIRmt549e0odlk36888/cd111yE0NBSCIOCHH35o9rgoivjvf/+LkJAQuLi4YMKECTh37pw0wdqYS227BQsWnPc5vPrqq6UJlmyGM47nlxqTGxsbsXDhQvj5+cHd3R0zZ85EUVGRhBF3nI4YY8vLyzF37lx4enrC29sbd9xxB2pra7vwXXSMjhgzHWVbLFu2DEOHDoWHhwcCAwMxffp0pKSkNFumNX8X2dnZmDp1KlxdXREYGIjHH38cBoOhK9+KU7PF8byjPltSefnllyEIAh5++GHrfbYWb15eHubNmwc/Pz+4uLigX79+OHTokPVxWzp2NhqNeOaZZxATEwMXFxd069YNzz//PERRtIl47W0febF49Xo9nnzySfTr1w9ubm4IDQ3Fv/71L+Tn50sWL7WeLY7nbWHvY39r2MP+obXsaT/SWra+v2kLW9k3MYHeDl9//TUWLVqEJUuW4PDhw+jfvz8mT56M4uJiqUOzaX369EFBQYH1tmvXLqlDskl1dXXo378/VqxY0eLjr776Kt5++22sWrUK+/fvh5ubGyZPnozGxsYujtT2XGrbAcDVV1/d7HP41VdfdWGEZGuceTy/2Jj8yCOP4Oeff8a6deuwY8cO5OfnY8aMGRJG23E6YoydO3cuTp06hc2bN+OXX37Bn3/+ibvvvrur3kKH6Ygx01G2xY4dO7Bw4ULs27cPmzdvhl6vx6RJk1BXV2dd5lJ/F0ajEVOnToVOp8OePXvwySefYM2aNfjvf/8rxVtyOrY6nnfEZ0sqBw8exP/+9z8kJCQ0u9+W4q2oqMCoUaOgVCqxceNGnD59Gm+88QZ8fHysy9jSsfMrr7yClStX4t1330VycjJeeeUVvPrqq3jnnXdsIl5720deLN76+nocPnwYzzzzDA4fPoz169cjJSUF119/fbPlHGU/5khsdTxvC3se+1vDHvYPrWVv+5HWsvX9TVvYzL5JpDYbNmyYuHDhQuvPRqNRDA0NFZctWyZhVLZtyZIlYv/+/aUOw+4AEL///nvrzyaTSQwODhZfe+01632VlZWiWq0Wv/rqKwkitF3/3HaiKIrz588Xp02bJkk8ZJucdTy/2JhcWVkpKpVKcd26ddb7kpOTRQDi3r17uyjCrtGeMfb06dMiAPHgwYPWZTZu3CgKgiDm5eV1WewdrT1jpqNuC1EUxeLiYhGAuGPHDlEUW/d3sWHDBlEmk4mFhYXWZVauXCl6enqKWq22a9+AE7KX8bw9ny0p1NTUiHFxceLmzZvFsWPHig899JAoirYX75NPPimOHj36go/b2rHz1KlTxdtvv73ZfTNmzBDnzp0riqJtxWtv+8iW9mP/dODAARGAmJWVJYqiY+/H7Jm9jOdtYS9jf2vYy/6htextP9Ja9rS/aQsp902sQG8jnU6HpKQkTJgwwXqfTCbDhAkTsHfvXgkjs33nzp1DaGgoYmNjMXfuXGRnZ0sdkt3JyMhAYWFhs8+fl5cXhg8fzs9fK23fvh2BgYGIj4/Hvffei7KyMqlDIok4+3h+oTE5KSkJer2+2Xbp2bMnIiMjHX67tGaM3bt3L7y9vTFkyBDrMhMmTIBMJsP+/fu7PObOdrEx05G3RVVVFQDA19cXQOv+Lvbu3Yt+/fohKCjIuszkyZNRXV2NU6dOdWH0zseexvP2fLaksHDhQkydOrVZXIDtxfvTTz9hyJAhmDVrFgIDAzFw4EB88MEH1sdt7dh55MiR2Lp1K86ePQsAOHbsGHbt2oUpU6bYZLx/5wj7yKqqKgiCAG9vbwC2H68zsqfxvC3sZexvDXvZP7SWve1HWsue9zdt0ZX7JkXHhe0cSktLYTQam305AoCgoCCcOXNGoqhs3/Dhw7FmzRrEx8ejoKAAzz77LK644gqcPHkSHh4eUodnNwoLCwGgxc+f5TG6sKuvvhozZsxATEwM0tLS8PTTT2PKlCnYu3cv5HK51OFRF3Pm8fxiY3JhYSFUKpX1y6WFM4wzrRljCwsLERgY2OxxhUIBX19fh9s+lxozHXVbmEwmPPzwwxg1ahT69u0LAK36uygsLGzxs2N5jDqPvYzn7f1sdbW1a9fi8OHDOHjw4HmP2Vq86enpWLlyJRYtWoSnn34aBw8exIMPPgiVSoX58+fb3LHzU089herqavTs2RNyuRxGoxEvvvgi5s6dC8C2j/XtfR/Z2NiIJ598EnPmzIGnpycA247XWdnLeN4W9jL2t4Y97R9ay972I61lz/ubtujKfRMT6NQlLGe5ACAhIQHDhw9HVFQUvvnmG9xxxx0SRkbO5Oabb7b+u1+/fkhISEC3bt2wfft2jB8/XsLIiLrWxcZkFxcXCSMjW+KsY+bChQtx8uRJztVCHc4ePls5OTl46KGHsHnzZmg0GqnDuSSTyYQhQ4bgpZdeAgAMHDgQJ0+exKpVqzB//nyJozvfN998gy+++AJffvkl+vTpg6NHj+Lhhx9GaGioTcbrKPR6PWbPng1RFLFy5UqpwyEnYw9jf2vY2/6htextP9Ja3N90PLZwaSN/f3/I5fLzZhIuKipCcHCwRFHZH29vb/To0QOpqalSh2JXLJ8xfv46RmxsLPz9/fk5dFIcz//y9zE5ODgYOp0OlZWVzZZxhu3SmjE2ODj4vEmsDAYDysvLHX77/HPMdMRtcf/99+OXX37Btm3bEB4ebr2/NX8XwcHBLX52LI9R57GH8fxyPltdKSkpCcXFxRg0aBAUCgUUCgV27NiBt99+GwqFAkFBQTYVb0hICHr37t3svl69elnbktnasfPjjz+Op556CjfffDP69euHW2+9FY888giWLVtmk/H+nb3uIy3J86ysLGzevNlafQ7YZrzOzh7G87awl7G/Next/9Ba9rYfaS173t+0RVfum5hAbyOVSoXBgwdj69at1vtMJhO2bt2KxMRECSOzL7W1tUhLS0NISIjUodiVmJgYBAcHN/v8VVdXY//+/fz8tUNubi7Kysr4OXRSHM//8vcxefDgwVAqlc22S0pKCrKzsx1+u7RmjE1MTERlZSWSkpKsy/zxxx8wmUwYPnx4l8fclf45ZjrSthBFEffffz++//57/PHHH4iJiWn2eGv+LhITE3HixIlmB+iWZM0/v5hRx7Ll8bwjPltdafz48Thx4gSOHj1qvQ0ZMgRz5861/tuW4h01ahRSUlKa3Xf27FlERUUBsL1j5/r6eshkzb+Cy+VymEwmALYX79/Z4z7Skjw/d+4ctmzZAj8/v2aP21q8ZNvjeVvY29jfGva2f2gte9uPtJY972/aokv3TZc3/6lzWrt2rahWq8U1a9aIp0+fFu+++27R29tbLCwslDo0m/Xoo4+K27dvFzMyMsTdu3eLEyZMEP39/cXi4mKpQ7M5NTU14pEjR8QjR46IAMQ333xTPHLkiHW2+Jdffln09vYWf/zxR/H48ePitGnTxJiYGLGhoUHiyKV3sW1XU1MjPvbYY+LevXvFjIwMccuWLeKgQYPEuLg4sbGxUerQSSLOOp5faky+5557xMjISPGPP/4QDx06JCYmJoqJiYkSR90xOmKMvfrqq8WBAweK+/fvF3ft2iXGxcWJc+bMkeottVtHjJmOsi3uvfde0cvLS9y+fbtYUFBgvdXX11uXudTfhcFgEPv27StOmjRJPHr0qPjbb7+JAQEB4uLFi6V4S07HVsfzjvhsSW3s2LHiQw89ZP3ZluI9cOCAqFAoxBdffFE8d+6c+MUXX4iurq7i559/bl3Glo6d58+fL4aFhYm//PKLmJGRIa5fv1709/cXn3jiCZuI1972kReLV6fTiddff70YHh4uHj16tNnfn1arlSReah1bHc/bwhHG/taw5f1Da9nbfqS1bH1/0xa2sm9iAr2d3nnnHTEyMlJUqVTisGHDxH379kkdkk276aabxJCQEFGlUolhYWHiTTfdJKampkodlk3atm2bCOC82/z580VRFEWTySQ+88wzYlBQkKhWq8Xx48eLKSkp0gZtIy627err68VJkyaJAQEBolKpFKOiosS77rrLrg7EqHM443h+qTG5oaFBvO+++0QfHx/R1dVVvOGGG8SCggIJI+44HTHGlpWViXPmzBHd3d1FT09P8bbbbhNramokeDeXpyPGTEfZFi1tBwDi6tWrrcu05u8iMzNTnDJliuji4iL6+/uLjz76qKjX67v43TgvWxzPO+qzJaV/JkhsLd6ff/5Z7Nu3r6hWq8WePXuK77//frPHbenYubq6WnzooYfEyMhIUaPRiLGxseJ//vOfZgldKeO1t33kxeLNyMi44N/ftm3bJImXWs8Wx/O2cISxvzVsff/QWva0H2ktW9/ftIWt7JsEURTF1terExERERERERERERE5B/ZAJyIiIiIiIiIiIiJqARPoREREREREREREREQtYAKdiIiIiIiIiIiIiKgFTKATEREREREREREREbWACXQiIiIiIiIiIiIiohYwgU5ERERERERERERE1AIm0ImIiIiIiIiIiIiIWsAEOhERETkkQRDwww8/SB0GEZHDy8zMhCAIOHr0aKe+zvbt2yEIAiorKzv1dYiInNmljqGjo6OxfPnyDn3NcePG4eGHH76suP5u6dKlGDBgwGXHRWTBBDqRHWEyiIjIrLCwEA899BC6d+8OjUaDoKAgjBo1CitXrkR9fb3U4REROZQFCxZAEATrzc/PD1dffTWOHz8uaVyWhLrlFhQUhJkzZyI9PV3SuIiIbFlJSQnuvfdeREZGQq1WIzg4GJMnT8bu3btb9fyDBw/i7rvvbtWyS5cubTZOt3RrrYKCAkyZMqXVyxN1JCbQya78/eBdpVKhe/fueO6552AwGKQOrUtwh0FEBKSnp2PgwIHYtGkTXnrpJRw5cgR79+7FE088gV9++QVbtmyROkQiIodz9dVXo6CgAAUFBdi6dSsUCgWuvfZaqcMCAKSkpCA/Px/r1q3DqVOncN1118FoNJ63nCiKNve9wRZjIiLHNnPmTBw5cgSffPIJzp49i59++gnjxo1DWVlZq54fEBAAV1fXVi372GOPWfcdBQUFCA8Px3PPPdfsvtYKDg6GWq1u9fJEHYkJdLI7loP3c+fO4dFHH8XSpUvx2muvnbecTqeTILrOxR0GERFw3333QaFQ4NChQ5g9ezZ69eqF2NhYTJs2Db/++iuuu+66857T0mX/R48ehSAIyMzMtN63e/dujBs3Dq6urvDx8cHkyZNRUVEBANBqtXjwwQcRGBgIjUaD0aNH4+DBg9bnVlRUYO7cuQgICICLiwvi4uKwevVq6+M5OTmYPXs2vL294evri2nTpjV7bSIiW2apUgwODsaAAQPw1FNPIScnByUlJS0uv2PHDgwbNgxqtRohISF46qmnmiWKLzWmAsCGDRvQo0cPuLi44Morr7zgmBkYGIiQkBCMGTMG//3vf3H69GmkpqZax/6NGzdi8ODBUKvV2LVrF0wmE5YtW4aYmBi4uLigf//++Pbbb63ru9h4rtPpcP/99yMkJAQajQZRUVFYtmwZgJZb2VRWVkIQBGzfvh0A2h0TEVFHqKysxM6dO/HKK6/gyiuvRFRUFIYNG4bFixfj+uuvb/E5S5YsQUhIiPWqo3+2cBEEAR9++CFuuOEGuLq6Ii4uDj/99BMAwN3d3brvCA4Ohlwuh4eHR7P7LEwmE5544gn4+voiODgYS5cubRbHP6/Iz83NxZw5c+Dr6ws3NzcMGTIE+/fvb/E9pKWlITY2Fvfffz9EUcSaNWvg7e2N33//Hb169YK7u7s11/R3H374IXr16gWNRoOePXvivffesz52sf2BKIpYunSptco/NDQUDz744MV/OWTTmEAnu2M5eI+KisK9996LCRMm4KeffsKCBQswffp0vPjiiwgNDUV8fDyASycsDAYDHnzwQXh7e8PPzw9PPvkk5s+fj+nTp1uXGTduHB588MGLDuZvvvkm+vXrBzc3N0REROC+++5DbW2t9fHWDtAff/wx+vTpY/2ycf/991sf++cO41Lvbfv27Rg2bBjc3Nzg7e2NUaNGISsrq/0bn4hIYmVlZdi0aRMWLlwINze3Fpdpy6Wgf3f06FGMHz8evXv3xt69e7Fr165mVYxPPPEEvvvuO3zyySc4fPgwunfvjsmTJ6O8vBwA8Mwzz+D06dPYuHEjkpOTsXLlSvj7+wMA9Ho9Jk+eDA8PD+zcuRO7d++27gcc8YQvETm22tpafP755+jevTv8/PzOezwvLw/XXHMNhg4dimPHjmHlypX46KOP8MILL1iXudSYmpOTgxkzZuC6667D0aNHceedd+Kpp566ZGwuLi4AmhfTPPXUU3j55ZeRnJyMhIQELFu2DJ9++ilWrVqFU6dO4ZFHHsG8efOwY8cOABcfz99++2389NNP+Oabb5CSkoIvvvgC0dHRbd6GbY2JiKgjuLu7w93dHT/88AO0Wu1FlxVFEQ888AA+/fRT7Ny5EwkJCRdc9tlnn8Xs2bNx/PhxXHPNNZg7d651PG+tTz75BG5ubti/fz9effVVPPfcc9i8eXOLy9bW1mLs2LHIy8vDTz/9hGPHjuGJJ56AyWQ6b9njx49j9OjRuOWWW/Duu+9avyvU19fj9ddfx2effYY///wT2dnZeOyxx6zP++KLL/Df//4XL774IpKTk/HSSy/hmWeewSeffALg4vuD7777Dm+99Rb+97//4dy5c/jhhx/Qr1+/Nm0PsjEikR2ZP3++OG3atGb3XX/99eKgQYPE+fPni+7u7uKtt94qnjx5Ujx58qSo0+nEXr16ibfffrt4/Phx8fTp0+Itt9wixsfHi1qtVhRFUXzhhRdEX19fcf369WJycrJ4zz33iJ6ens1eZ+zYsaKnp6e4dOlS8ezZs+Inn3wiCoIgbtq0ybrMW2+9Jf7xxx9iRkaGuHXrVjE+Pl689957rY+vXr1aVCqV4oQJE8SDBw+KSUlJYq9evcRbbrnFusx7770najQacfny5WJKSop44MAB8a233rI+DkD8/vvvRVEUL/ne9Hq96OXlJT722GNiamqqePr0aXHNmjViVlZWx/1CiIi62L59+0QA4vr165vd7+fnJ7q5uYlubm7iE088IYpi8zFz27ZtIgCxoqLC+pwjR46IAMSMjAxRFEVxzpw54qhRo1p83draWlGpVIpffPGF9T6dTieGhoaKr776qiiKonjdddeJt912W4vP/+yzz8T4+HjRZDJZ79NqtaKLi4v4+++/t2kbEBF1tfnz54tyudw6zgIQQ0JCxKSkJFEURTEjI0MEIB45ckQURVF8+umnzxvzVqxYIbq7u4tGo7FVY+rixYvF3r17N4vjySefbDaW/3Nsz8/PF0eOHCmGhYWJWq3W+vgPP/xgXUdjY6Po6uoq7tmzp9m677jjDnHOnDmiKF58PH/ggQfEq666qtl7s/jndhBFUayoqBABiNu2bWsWc1tjIiLqKN9++63o4+MjajQaceTIkeLixYvFY8eOWR8HIK5bt0685ZZbxF69eom5ubnNnh8VFXVenuL//u//rD/X1taKAMSNGzee99r/fK7F2LFjxdGjRze7b+jQoeKTTz7Z7HUsx/b/+9//RA8PD7GsrKzF97hkyRKxf//+4u7du0UfHx/x9ddfb/b46tWrRQBiTU/n9wABAABJREFUamqq9b4VK1aIQUFB1p+7desmfvnll82e9/zzz4uJiYmiKF58f/DGG2+IPXr0EHU6XYvxkf1RdHXCnqijiKKIrVu34vfff8cDDzyAkpISuLm54cMPP4RKpQIAfP755zCZTPjwww+tZxlXr14Nb29vbN++HZMmTcI777yDxYsX44YbbgAAvPvuu9iwYcN5r5eQkIAlS5YAAOLi4vDuu+9i69atmDhxIgA0mzE6OjoaL7zwAu65555ml/jo9XqsWrUK3bp1AwDcf//9eO6556yPv/DCC3j00Ufx0EMPWe8bOnRoi+//66+/vuh7GzJkCKqqqnDttddaX69Xr15t2MJERPbjwIEDMJlMmDt37iWraS7k6NGjmDVrVouPpaWlQa/XY9SoUdb7lEolhg0bhuTkZADAvffei5kzZ+Lw4cOYNGkSpk+fjpEjRwIAjh07htTUVHh4eDRbb2NjI9LS0toVLxFRV7ryyiuxcuVKAOYWJ++99x6mTJmCAwcOnLdscnIyEhMTm10RNGrUKNTW1iI3NxeVlZWXHFOTk5MxfPjwZutNTExsMbbw8HCIooj6+nr0798f3333nfX7AAAMGTLE+u/U1FTU19dbj+EtdDodBg4cCODi4/mCBQswceJExMfH4+qrr8a1116LSZMmXXoD/kNbYyIi6igzZ87E1KlTsXPnTuzbtw8bN27Eq6++ig8//BALFiwAADzyyCNQq9XYt2+f9Qqci/l7dbqbmxs8PT1RXFzcprj+WeEeEhJywXUcPXoUAwcOhK+v7wXXl52djYkTJ+LFF19slq+xcHV1teZK/vl6dXV1SEtLwx133IG77rrLuozBYICXlxeAi+8PZs2aheXLlyM2NhZXX301rrnmGlx33XVQKJiGtVf8zZHd+eWXX+Du7g69Xg+TyYRbbrkFS5cuxcKFC9GvX79mB8uXSlhUVVWhqKgIw4YNsz4ml8sxePDg8y79udRgvmXLFixbtgxnzpxBdXU1DAYDGhsbUV9fb51g42IDdHFxMfLz8zF+/PhWbYdLvbdJkyZhwYIFmDx5MiZOnIgJEyZg9uzZCAkJadX6iYhsUffu3SEIAlJSUprdHxsbC+CvS/f/SSYzd60TRdF6n16vb7bMhZ7bWlOmTEFWVhY2bNiAzZs3Y/z48Vi4cCFef/111NbWYvDgwfjiiy/Oe15AQMBlvS4RUVdwc3ND9+7drT9/+OGH8PLywgcffIA777xTwsiAnTt3wtPTE4GBgecdGwNo1vLL0mLx119/RVhYWLPlLHMNXWw8HzRoEDIyMrBx40Zs2bIFs2fPxoQJE/Dtt9+2al/T3piIiDqSRqPBxIkTMXHiRDzzzDO48847sWTJEmsCfeLEifjqq6/w+++/Y+7cuZdcn1KpbPazIAgttlPpqHW05rg9ICAAoaGh+Oqrr3D77bfD09Pzkq9nGb8t4/IHH3xw3slcuVwOABfdH0RERCAlJQVbtmzB5s2bcd999+G1117Djh07zntdsg/sgU5258orr8TRo0dx7tw5NDQ0WPtkATivH64lYXH06NFmt7Nnz+KWW25p0+tebDDPzMzEtddei4SEBHz33XdISkrCihUrADTvv3ixAbqtiZvWvLfVq1dj7969GDlyJL7++mv06NED+/bta9PrEBHZEj8/P0ycOBHvvvsu6urqWv08S5L67/NO/H2SN8B8onTr1q0tPr9bt25QqVTYvXu39T69Xo+DBw+id+/ezV5n/vz5+Pzzz7F8+XK8//77AMwH2OfOnUNgYCC6d+/e7GapYiEisieCIEAmk6GhoeG8x3r16oW9e/c2SyTv3r0bHh4eCA8Pb9WY2qtXr/Oq2y90HBsTE4Nu3bq1mDz/p969e0OtViM7O/u88TgiIsK63IXGcwDw9PTETTfdhA8++ABff/01vvvuO5SXl7dqX3M5MRERdZbevXs3O7a+/vrr8eWXX+LOO+/E2rVrJYysZQkJCTh69OhF+6y7uLjgl19+gUajweTJk1FTU9Pq9QcFBSE0NBTp6ennjcsxMTHW5S60P7C8/nXXXYe3334b27dvx969e3HixIn2v2mSFCvQye78s/rlYgYNGoSvv/4agYGB551ttAgKCsLBgwcxZswYAIDRaMThw4cxYMCAVseUlJQEk8mEN954w1p58s0337T6+QDg4eGB6OhobN26FVdeeeUll2/NewOAgQMHYuDAgVi8eDESExPx5ZdfYsSIEW2KjYjIlrz33nsYNWoUhgwZgqVLlyIhIQEymQwHDx7EmTNnMHjw4POeY0lCLF26FC+++CLOnj2LN954o9kyixcvRr9+/XDffffhnnvugUqlwrZt2zBr1iz4+/vj3nvvxeOPPw5fX19ERkbi1VdfRX19Pe644w4AwH//+18MHjwYffr0gVarxS+//GJtnTV37ly89tprmDZtGp577jmEh4cjKysL69evxxNPPIHw8PDO33BERJdBq9WisLAQgLmFy7vvvova2lpcd9115y173333Yfny5XjggQdw//33IyUlBUuWLMGiRYsgk8ng5uZ2yTH1nnvuwRtvvIHHH38cd955J5KSkrBmzZrLfh8eHh547LHH8Mgjj8BkMmH06NGoqqrC7t274enpifnz5190PH/zzTcREhKCgQMHQiaTYd26dQgODoa3tzdkMhlGjBiBl19+GTExMSguLsb//d//dUhMREQdoaysDLNmzcLtt9+OhIQEeHh44NChQ3j11Vcxbdq0ZsvecMMN+Oyzz3DrrbdCoVDgxhtvlCjq882ZMwcvvfQSpk+fjmXLliEkJARHjhxBaGhos3Zfbm5u+PXXXzFlyhRMmTIFv/32G9zd3Vv1Gs8++ywefPBBeHl54eqrr4ZWq8WhQ4dQUVGBRYsWXXR/sGbNGhiNRgwfPhyurq74/PPP4eLigqioqM7aJNTJWIFODm3u3Lnw9/fHtGnTsHPnTmRkZGD79u148MEHkZubCwB44IEHsGzZMvz4449ISUnBQw89hIqKimY9Gy+le/fu0Ov1eOedd5Ceno7PPvsMq1atanO8S5cuxRtvvIG3334b586dw+HDh/HOO++0671lZGRg8eLF2Lt3L7KysrBp0yacO3eOfdCJyO5169YNR44cwYQJE7B48WL0798fQ4YMwTvvvIPHHnsMzz///HnPUSqV+Oqrr3DmzBkkJCTglVdewQsvvNBsmR49emDTpk04duwYhg0bhsTERPz444/WXoUvv/wyZs6ciVtvvRWDBg1Camoqfv/9d/j4+AAAVCoVFi9ejISEBIwZMwZyudxasePq6oo///wTkZGRmDFjBnr16oU77rgDjY2NFz0JSkRkK3777TeEhIQgJCQEw4cPx8GDB7Fu3TqMGzfuvGXDwsKwYcMGHDhwAP3798c999yDO+64o1ky+VJjamRkJL777jv88MMP6N+/P1atWoWXXnqpQ97L888/j2eeeQbLli1Dr169cPXVV+PXX3+1VhVebDz38PDAq6++iiFDhmDo0KHIzMzEhg0brEU0H3/8MQwGAwYPHoyHH374vH1Ne2MiIuoI7u7uGD58ON566y2MGTMGffv2xTPPPIO77roL77777nnL33jjjfjkk09w6623Yv369RJE3DKVSoVNmzYhMDAQ11xzDfr164eXX37Z2l7l79zd3bFx40aIooipU6e2+irWO++8Ex9++CFWr16Nfv36YezYsVizZo11XL7Y/sDb2xsffPABRo0ahYSEBGzZsgU///wz/Pz8OnQ7UNcRxL9fV0dk4xYsWIDKykr88MMPrX6ssLAQTz75JDZs2ICamhqEhYVh/PjxeP311+Hp6QmDwYBHHnkEn376KeRyOe6++26kp6dDLpfjq6++AgCMGzcOAwYMwPLly63rnT59uvXMIgC89dZbeO2111BZWYkxY8Zg7ty5+Ne//oWKigrrcg8//DAqKyut6/jhhx9www03NLu89X//+x/eeustpKenw9/fHzfeeCPefvttAOZLZb///ntMnz79ku+toaEB99xzD/bv34+ysjKEhIRg/vz5WLJkifUAn4iIiIiIiIiIiC6MCXSifzCZTOjVqxdmz57dYhUjEREREREREREROQf2QCenZ2lvMnbsWGi1Wrz77rvIyMho8ySjRERERERERERE5FjYx4Gcnkwmw5o1azB06FCMGjUKJ06cwJYtW9grnIiIiIiIiIiIyMmxhQsRERERERERERERUQtYgU5ERERERERERERE1AIm0ImIiIiIiIiIiIiIWsAEOhERERERERERERFRC5hAJyIiIiIiIiIiIiJqARPoREREREREREREREQtYAKdiIiIiIiIiIiIiKgFTKATEREREREREREREbWACXQiIiIiIiIiIiIiohYwgU5ERERERERERERE1AIm0ImIiIiIiIiIiIiIWsAEOhERERERERERERFRC5hAJyIiIiIiIiIiIiJqARPoREREREREREREREQtYAKd2i06OhoLFiyQOgyH99prryE2NhZyuRwDBgyQOpxWEQQBS5cutf68Zs0aCIKAzMxMyWIioo7D8b9r2OP4T3Q5OLZ0jc4cW8aNG4dx48a1+XmZmZkQBAGvv/56h8bjKCzbZ82aNdb7li5dCkEQpAvKgbW0vYlsHfehXYPH586LCXQC8FeC89ChQy0+Pm7cOPTt2/eyX2fDhg3NEqt0cZs2bcITTzyBUaNGYfXq1XjppZcuuOyCBQvg7u7ehdERkSPg+G+b2jr+C4JgvSkUCkRERODmm2/G6dOnmy27fft263Kff/55i+sbNWoUBEE47/ceHR2Na6+99vLfHDkFji226XLGFnd3d8TGxuLGG2/Ed999B5PJ1IWRt93p06exdOnSTi/gGDduXLPt5Ovri6FDh+Ljjz+2+W3UFSxjQUu3p556StLYvvzySyxfvlzSGIhawn2obWrLPvTvZs+eDUEQ8OSTT3ZyhNSZFFIHQPYrJSUFMlnbzsFs2LABK1as4CDdSn/88QdkMhk++ugjqFQqqcNpt1tvvRU333wz1Gq11KEQUQfg+N/52jr+q9VqfPjhhwAAg8GAtLQ0rFq1Cr/99htOnz6N0NDQZstrNBp8+eWXmDdvXrP7MzMzsWfPHmg0mo57M0StxLGl813O2NLQ0ICsrCz8/PPPuPHGGzFu3Dj8+OOP8PT0tC6/adOmTou9rU6fPo1nn30W4/4/e3ce3lSZtgH8zta0TZt0oxuUUhbZZBMQKsgilbKIoKiDMiyKMDKAwzIunQEXRCsMKh/IwLgM4gg648YgKsjOKGWVfQcLLdC9TdM1bZLz/ZHmQOhCW5KcJL1/15VLc86bc56k4U3y5MnzDhqEVq1aOfVcLVq0QHJyMgAgJycHn376KaZMmYLz58/j7bffdso558+fL3kCuiEWLlyIuLg4u22OSADeifXr1+PkyZOYPXu23fbY2FiUlZVBpVJJExhRI/A11Pkak58xGAz47rvv0KpVK3z++ed4++23+eshD8UEOjWaJyZDS0pKoNFopA6j3rKzs+Hn5+fRyXMAUCgUUCgUUodBRA7C+d/5Gjr/K5XKasnwvn374qGHHsL333+PqVOn2u0bMWIENm7ciNzcXISFhYnb169fj4iICLRr1w4FBQV3fkeIGoBzi/M5Ym5ZtGgR3n77bSQlJWHq1Kn497//Le7z9PesjaXT6ewepz/84Q9o37493n//fbzxxhtOScQqlUoolY77OO/s5/Lw4cPRq1cvpx3fkWQyGb9IJo/D11Dna0x+5uuvv4bZbMY///lPPPDAA9izZw8GDhzoxCjJWdjChRrt1h5blZWVeP3119GuXTv4+voiNDQU/fv3x9atWwFYfwa6cuVKALD76Z5NSUkJ5s2bh5iYGKjVarRv3x5Lly6FIAh25y0rK8Pzzz+PsLAwBAYG4uGHH8a1a9eq9d229QU8ffo0nnrqKQQHB6N///4AgOPHj2Py5Mlo3bo1fH19ERkZiWeeeQZ5eXl257Id4/z58/j9738PnU6HZs2aYcGCBRAEAenp6Rg9ejS0Wi0iIyPxzjvv1OuxM5lMeOONN9CmTRuo1Wq0atUKf/nLX2A0GsUxMpkMa9asQUlJifhYNbQPn+3n9j///DPuvfde+Pr6onXr1vj000/txt3ubwfU3tNy8uTJt63qqakHen1jIyL3w/nf/ed/AIiMjASAGhMso0ePhlqtxpdffmm3ff369XjiiSf4pSdJgnOLZ8wtAPDyyy9j6NCh+PLLL3H+/Hlx+63vFysqKvDKK6+gZ8+e0Ol00Gg0uP/++7Fz585aj/3ee+8hNjYWfn5+GDhwIE6ePFltzNmzZ/HYY48hJCQEvr6+6NWrFzZu3Cju/+STT/D4448DAAYPHize3127doljfvzxR9x///3QaDQIDAzEyJEjcerUKbvzZGZm4umnn0aLFi2gVqsRFRWF0aNH37YtjL+/P/r27YuSkhLk5OQAAPR6PWbPni0+H9u2bYvFixdXa/Oi1+sxefJk6HQ6BAUFYdKkSdDr9dXOUVMPdEc8lwHgs88+Q8+ePeHn54eQkBCMGzcO6enp1WLYv38/hg0bBp1OB39/fwwcOBC//PJLnY9NTW6Nz+bWOcH2meKXX37B3Llz0axZM2g0GjzyyCPi43yzH3/8EQMHDkRgYCC0Wi169+6N9evXA7A+V7///ntcuXJFfH7YPtPU1gN9x44d4nMmKCgIo0ePxpkzZ+zG2B7bixcvYvLkyQgKCoJOp8PTTz+N0tLSBj82RPXF11D3fA1dt24dHnzwQQwePBgdO3bEunXrahx3/PhxDBw4EH5+fmjRogUWLVqENWvW1LiWXH1ev8jxWIFOdgoLC5Gbm1tte2Vl5W1v+9prryE5ORnPPvss7r33XhgMBhw6dAi//vorHnzwQfzhD3/A9evXsXXrVvzrX/+yu60gCHj44Yexc+dOTJkyBd27d8eWLVvwwgsv4Nq1a3jvvffEsZMnT8Z//vMfTJgwAX379sXu3bsxcuTIWuN6/PHH0a5dO7z11lviZL9161b89ttvePrppxEZGYlTp07hgw8+wKlTp7Bv375qb0Z/97vfoWPHjnj77bfx/fffY9GiRQgJCcE//vEPPPDAA1i8eDHWrVuHP//5z+jduzcGDBhQ52P17LPPYu3atXjssccwb9487N+/H8nJyThz5gy+/fZbAMC//vUvfPDBBzhw4ID409n77rvvtn+HW128eBGPPfYYpkyZgkmTJuGf//wnJk+ejJ49e6Jz584Abv+3c5b6xEZErsH53/Pnf9vfz2w247fffsNLL72E0NDQGvuW+/v7Y/To0fj8888xffp0AMCxY8dw6tQpfPTRRzh+/Phtz0dUH5xbPH9uqc2ECRPw008/YevWrbjrrrtqHGMwGPDRRx/hySefxNSpU1FUVISPP/4YiYmJOHDgQLUF2D799FMUFRVhxowZKC8vx//93//hgQcewIkTJxAREQEAOHXqFPr164fmzZvj5ZdfhkajwX/+8x+MGTMGX3/9NR555BEMGDAAzz//PJYvX46//OUv6NixIwCI//3Xv/6FSZMmITExEYsXL0ZpaSlWrVqF/v3748iRI2IidezYsTh16hRmzZqFVq1aITs7G1u3bkVaWtptC0h+++03KBQKBAUFobS0FAMHDsS1a9fwhz/8AS1btsTevXuRlJSEjIwMsQ+3IAgYPXo0fv75Zzz33HPo2LEjvv32W0yaNKlefxNHPJfffPNNLFiwAE888QSeffZZ5OTkYMWKFRgwYACOHDmCoKAgANZk8vDhw9GzZ0+8+uqrkMvlWLNmDR544AH873//w7333mt3rprmgpt/AdUQs2bNQnBwMF599VVcvnwZy5Ytw8yZM+1+DfHJJ5/gmWeeQefOnZGUlISgoCAcOXIEmzdvxlNPPYW//vWvKCwsxNWrV8X5oK71pLZt24bhw4ejdevWeO2111BWVoYVK1agX79++PXXX6s9H5544gnExcUhOTkZv/76Kz766COEh4dj8eLFjbrP1DTxNdSzX0OvX7+OnTt3Yu3atQCAJ598Eu+99x7ef/99uyr2a9euiV/2JiUlQaPR4KOPPqrxVwX1ff0iJxCIBEFYs2aNAKDOS+fOne1uExsbK0yaNEm83q1bN2HkyJF1nmfGjBlCTU+7DRs2CACERYsW2W1/7LHHBJlMJly8eFEQBEE4fPiwAECYPXu23bjJkycLAIRXX31V3Pbqq68KAIQnn3yy2vlKS0urbfv8888FAMKePXuqHWPatGniNpPJJLRo0UKQyWTC22+/LW4vKCgQ/Pz87B6Tmhw9elQAIDz77LN22//85z8LAIQdO3aI2yZNmiRoNJo6j1fX2NjY2Gr3KTs7W1Cr1cK8efPEbfX52w0cOFAYOHBgjeeNjY2123br38L2/EpNTW1wbETkXJz/vWP+r+nv1rx5c+Hw4cN2Y3fu3CkAEL788kth06ZNgkwmE9LS0gRBEIQXXnhBaN26tSAI1jm/pr/77f7ORDacW7xjbqlr7JEjRwQAwpw5c8Rtt75fNJlMgtFotLtdQUGBEBERITzzzDPittTUVAGA4OfnJ1y9elXcvn///mrnGDJkiNClSxehvLxc3GaxWIT77rtPaNeunbjtyy+/FAAIO3futDt/UVGREBQUJEydOtVue2ZmpqDT6cTtBQUFAgDhb3/7W62Pge0+d+jQQcjJyRFycnKEM2fOCM8//7wAQBg1apQgCILwxhtvCBqNRjh//rzdbV9++WVBoVCI87DtebtkyRK7x/D+++8XAAhr1qwRt9ueSzaOeC5fvnxZUCgUwptvvmm3/cSJE4JSqRS3WywWoV27dkJiYqJgsVjEcaWlpUJcXJzw4IMPitvqmgtsbo3P5tY5wXashIQEu/POmTNHUCgUgl6vFwRBEPR6vRAYGCj06dNHKCsrszvmzbcbOXJktc8xgnDj+Xjz4929e3chPDxcyMvLE7cdO3ZMkMvlwsSJE8Vttsf25ue3IAjCI488IoSGhlY7F1FN+Brq+a+hgiAIS5cuFfz8/ASDwSAIgiCcP39eACB8++23duNmzZolyGQy4ciRI+K2vLw8ISQkxC6PUt/XL3IOtnAhOytXrsTWrVurXbp27Xrb2wYFBeHUqVO4cOFCg8/7ww8/QKFQ4Pnnn7fbPm/ePAiCgB9//BEAsHnzZgDAH//4R7txs2bNqvXYzz33XLVtfn5+4v+Xl5cjNzcXffv2BQD8+uuv1cY/++yz4v8rFAr06tULgiBgypQp4vagoCC0b98ev/32W62xANb7CgBz58612z5v3jwAwPfff1/n7RuqU6dOuP/++8XrzZo1qxbnnfztnB0bEbkG53/Pnv99fX3Fv9mWLVvwj3/8AwEBARgxYoRde4WbDR06FCEhIfjiiy8gCAK++OILPPnkk42OgagmnFs8e26pi61at6ioqNYxCoVCrLKzWCzIz8+HyWRCr169anxcxowZg+bNm4vX7733XvTp00e8j/n5+dixYweeeOIJFBUVITc3F7m5ucjLy0NiYiIuXLiAa9eu1Rn31q1bodfr8eSTT4q3z83NhUKhQJ8+fcT2MrY+t7t27brtmhBnz55Fs2bN0KxZM3Ts2BErVqzAyJEj8c9//hMA8OWXX+L+++9HcHCw3TkTEhJgNpuxZ88eANa/pVKpFH8ZZHsM63o+2jjiufzNN9/AYrHgiSeesIszMjIS7dq1Ex+bo0eP4sKFC3jqqaeQl5cnjispKcGQIUOwZ8+eaq1papoLGmvatGl2Fan3338/zGYzrly5AsD6Ny4qKsLLL79crZd5Yxbvy8jIwNGjRzF58mSEhISI27t27YoHH3xQfH7e7NbH9v7770deXh4MBkODz09NF19DPfs1dN26dRg5ciQCAwMBAO3atUPPnj2rtXHZvHkz4uPj7X6VFRISgvHjx9uNq+/rFzkHW7iQnXvvvbfGxV1sb/bqsnDhQowePRp33XUX7r77bgwbNgwTJkyo1+R+5coVREdHixOLje1nlrY3Q1euXIFcLq+2gnvbtm1rPfatYwHrm+/XX38dX3zxBbKzs+32FRYWVhvfsmVLu+s6nQ6+vr7Vfnao0+mq9em6le0+3BpzZGQkgoKCxPvqKLfGDlj/njd/ELiTv52zYyMi1+D879nzv0KhQEJCgt22ESNGoF27dkhKSsLXX39d7TYqlQqPP/441q9fj3vvvRfp6el46qmnGh0DUU04t3j23FKX4uJiAKj2GN9q7dq1eOedd3D27Fm7tgM1PY7t2rWrtu2uu+7Cf/7zHwDW9n+CIGDBggVYsGBBjefLzs62S8LfypZMeuCBB2rcr9VqAVgX5Fu8eDHmzZuHiIgIcWHmiRMnimtM2LRq1QoffvihuPhku3btEB4ebnfO48ePo1mzZrXGDFj/llFRUdVaibRv377W+2PjiOfyhQsXIAhCjX8HAOJiqLbHsK7WMoWFhQgODhav1zYXNMat/35s57F9hrh06RIA4O6773bI+Wz/hmr6O3Ts2BFbtmypthhiXTHanmNEt8PXUM99DT1z5gyOHDmCiRMn4uLFi+L2QYMGYeXKlTAYDOJccOXKFcTHx1c7xq0x1ff1i5yDCXRymAEDBuDSpUv473//i59++gkfffQR3nvvPaxevdruG0JXu/nbTJsnnngCe/fuxQsvvIDu3bsjICAAFosFw4YNq1YtAaDGxdRqW2BNuGVRjdo0pvqhMeoTZ33+djKZrMb7ZjabnRobEbk/zv9W7jb/t2jRAu3btxcrG2vy1FNPYfXq1XjttdfQrVs3dOrUySWxEdUH5xYrd5tbbGyLe9aVKPnss88wefJkjBkzBi+88ALCw8OhUCiQnJwsJjkbwvZY/vnPf0ZiYmKNY+qK5+Zj/Otf/6qWCAfsF16ePXs2Ro0ahQ0bNmDLli1YsGABkpOTsWPHDvTo0UMcp9Foqn2Jees5H3zwQbz44os17q+th7yz3fpctlgskMlk+PHHH2t8PtoS+7bH8G9/+1u1Pva3jr0TtX3O8ITPEJ4QI3k3voZaSfUa+tlnnwEA5syZgzlz5lTb//XXX+Ppp59u0DEb8vpFjsdHlxwqJCQETz/9NJ5++mkUFxdjwIABeO211+ySsDWJjY3Ftm3bUFRUZPct59mzZ8X9tv9aLBakpqbaVUbc/I3e7RQUFGD79u14/fXX8corr4jbXdW+xHYfLly4IH6DCwBZWVnQ6/XifXW12/3tgoODa/z5k7OqmojIs3D+vz0p5n+TySRWidakf//+aNmyJXbt2sWFzcgtcW65PaneW/7rX/+CTCarc8H5r776Cq1bt8Y333xj97d69dVXaxxf02N2/vx5cVG01q1bA7BWQteVsAZqf260adMGABAeHn7bY9jGz5s3D/PmzcOFCxfQvXt3vPPOO2JypD7atGmD4uLi254vNjYW27dvR3FxsV0C+ty5c7c9hyOey23atIEgCIiLi6szqW97DLVabb0ew9sJDg6GXq+321ZRUYGMjIxGHc8W38mTJ+v8QqW+CTPbv6Ga/g5nz55FWFiYXfU5kbvga+jtOeM1VBAErF+/HoMHD67W3gYA3njjDaxbt05MoMfGxtb4mN26raGvX+RY7IFODnPrT2MCAgLQtm1bGI1GcZvtjcWtb5BGjBgBs9mM999/3277e++9B5lMhuHDhwOAWGny97//3W7cihUr6h2n7ZvJW7+JXLZsWb2PcSdGjBhR4/neffddAKhzxWpnqc/frk2bNjh79ixycnLEbceOHcMvv/zisjiJyD1x/q8fV8//58+fx7lz59CtW7dax8hkMixfvhyvvvoqJkyY4NDzE90pzi31I8V7y7fffhs//fQTfve739Xa7gOo+bHZv38/UlJSahy/YcMGux7mBw4cwP79+8W/V3h4OAYNGoR//OMfNSZXb36fWttzIzExEVqtFm+99ZZdS5lbj1FaWory8nK7fW3atEFgYKDdc7A+nnjiCaSkpGDLli3V9un1ephMJgDWv6XJZMKqVavE/WazuV7PR0c8lx999FEoFAq8/vrr1Z7PgiCI/yZ79uyJNm3aYOnSpTV+SXvz36E+2rRpU+3XUh988EGjf+k6dOhQBAYGIjk5udrf8Ob7pdFoamwPcauoqCh0794da9eutXs+nTx5Ej/99JP4b5DInfA1tH6c8Rr6yy+/4PLly3j66afx2GOPVbv87ne/w86dO3H9+nUA1scxJSUFR48eFY+Rn59frVd6fV+/yDlYgU4O06lTJwwaNAg9e/ZESEgIDh06hK+++gozZ84Ux/Ts2RMA8PzzzyMxMREKhQLjxo3DqFGjMHjwYPz1r3/F5cuX0a1bN/z000/473//i9mzZ4vftPXs2RNjx47FsmXLkJeXh759+2L37t3iAmn1qSLQarUYMGAAlixZgsrKSjRv3hw//fQTUlNTnfCoVNetWzdMmjQJH3zwAfR6PQYOHIgDBw5g7dq1GDNmDAYPHuySOG5Wn7/dM888g3fffReJiYmYMmUKsrOzsXr1anTu3JmL4RA1cZz/68eZ87/JZBKrIS0WCy5fvozVq1fDYrHUWulpM3r0aIwePbrR5yZyFs4t9eOquaW8vBxXrlzBxo0bcfz4cQwePBgffPBBnbd/6KGH8M033+CRRx7ByJEjkZqaitWrV6NTp041Jl7btm2L/v37Y/r06TAajVi2bBlCQ0PtWp+sXLkS/fv3R5cuXTB16lS0bt0aWVlZSElJwdWrV3Hs2DEAQPfu3aFQKLB48WIUFhZCrVbjgQceQHh4OFatWoUJEybgnnvuwbhx49CsWTOkpaXh+++/R79+/fD+++/j/PnzGDJkCJ544gl06tQJSqUS3377LbKysjBu3LgGPY4vvPACNm7ciIceegiTJ09Gz549UVJSghMnTuCrr77C5cuXERYWhlGjRqFfv354+eWXcfnyZXTq1AnffPNNvZK8jngut2nTBosWLUJSUhIuX76MMWPGIDAwEKmpqfj2228xbdo0/PnPf4ZcLsdHH32E4cOHo3Pnznj66afRvHlzXLt2DTt37oRWq8V3331X78fn2WefxXPPPYexY8fiwQcfxLFjx7Bly5Zq/YzrS6vV4r333sOzzz6L3r1746mnnkJwcDCOHTuG0tJSrF27VnzM/v3vf2Pu3Lno3bs3AgICMGrUqBqP+be//Q3Dhw9HfHw8pkyZgrKyMqxYsQI6nQ6vvfZao+Ikcia+htaPM15D161bB4VCUWvy/eGHH8Zf//pXfPHFF5g7dy5efPFFfPbZZ3jwwQcxa9YsaDQafPTRR2jZsiXy8/PFx1Gr1dbr9YucRCASBGHNmjUCAOHgwYM17h84cKDQuXNnu22xsbHCpEmTxOuLFi0S7r33XiEoKEjw8/MTOnToILz55ptCRUWFOMZkMgmzZs0SmjVrJshkMuHmp2BRUZEwZ84cITo6WlCpVEK7du2Ev/3tb4LFYrE7b0lJiTBjxgwhJCRECAgIEMaMGSOcO3dOACC8/fbb4rhXX31VACDk5ORUuz9Xr14VHnnkESEoKEjQ6XTC448/Lly/fl0AILz66qu3PcakSZMEjUZTr8epJpWVlcLrr78uxMXFCSqVSoiJiRGSkpKE8vLyep2nJjWNjY2NFUaOHFljnAMHDhSv1+dvJwiC8NlnnwmtW7cWfHx8hO7duwtbtmwRJk2aJMTGxtqNu/VxtD2/UlNTGxwbETkX53/vmP8B2F20Wq0wZMgQYdu2bXZjd+7cKQAQvvzyyzqPWdvfvaZ5m6gmnFu8b27x9/cXWrVqJYwdO1b46quvBLPZXGO8N7+Ps1gswltvvSXExsYKarVa6NGjh7Bp06Zq7x9TU1MFAMLf/vY34Z133hFiYmIEtVot3H///cKxY8eqnefSpUvCxIkThcjISEGlUgnNmzcXHnroIeGrr76yG/fhhx8KrVu3FhQKhQBA2Llzp7hv586dQmJioqDT6QRfX1+hTZs2wuTJk4VDhw4JgiAIubm5wowZM4QOHToIGo1G0Ol0Qp8+fYT//Oc/1e5zff5GRUVFQlJSktC2bVvBx8dHCAsLE+677z5h6dKlds/pvLw8YcKECYJWqxV0Op0wYcIE4ciRIwIAYc2aNeI423PpZo54LguCIHz99ddC//79BY1GI2g0GqFDhw7CjBkzhHPnztmNO3LkiPDoo48KoaGhglqtFmJjY4UnnnhC2L59uzjmdnOBIAiC2WwWXnrpJSEsLEzw9/cXEhMThYsXL1abE2o7lu217ea/ryAIwsaNG4X77rtP8PPzE7RarXDvvfcKn3/+ubi/uLhYeOqpp4SgoCABgPictD0fb368BUEQtm3bJvTr10883qhRo4TTp0/bjantsa3p8xBRbfga6rmvoRUVFUJoaKhw//331zkuLi5O6NGjh3j9yJEjwv333y+o1WqhRYsWQnJysrB8+XIBgJCZmWl329u9fpFzyASBq1iQ5zt69Ch69OiBzz77DOPHj5c6HCIichHO/0TkDJxbyFvwuUxErsZ5xzFmz56Nf/zjHyguLq51kVRyHfZAJ49TVlZWbduyZcsgl8sxYMAACSIiIiJX4PxPRM7AuYW8BZ/LRORqnHcc49bHMS8vD//617/Qv39/Js/dBHugk8dZsmQJDh8+jMGDB0OpVOLHH3/Ejz/+iGnTpiEmJkbq8IiIyEk4/xORM3BuIW/B5zIRuRrnHceIj4/HoEGD0LFjR2RlZeHjjz+GwWDAggULpA6NqrCFC3mcrVu34vXXX8fp06dRXFyMli1bYsKECfjrX/8KpZLfCREReSvO/0TkDJxbyFvwuUxErsZ5xzH+8pe/4KuvvsLVq1chk8lwzz334NVXX0VCQoLUoVEVJtCJiIiIiIiIiIiIiGrAHuhERERERERERERERDVgAp2IiIiIiIiIiIiIqAZuk0B/++23IZPJMHv2bHFbeXk5ZsyYgdDQUAQEBGDs2LHIysqyu11aWhpGjhwJf39/hIeH44UXXoDJZHJx9ERERERERERERETkbdyio//Bgwfxj3/8A127drXbPmfOHHz//ff48ssvodPpMHPmTDz66KP45ZdfAABmsxkjR45EZGQk9u7di4yMDEycOBEqlQpvvfVWvc9vsVhw/fp1BAYGQiaTOfS+ERE1hiAIKCoqQnR0NORyt/mu0+1xPicid8P5vHE4nxORu+F83jicz4nI3TRqPhckVlRUJLRr107YunWrMHDgQOFPf/qTIAiCoNfrBZVKJXz55Zfi2DNnzggAhJSUFEEQBOGHH34Q5HK5kJmZKY5ZtWqVoNVqBaPRWO8Y0tPTBQC88MILL253SU9Pd8xk20RwPueFF17c9cL5vGE4n/PCCy/ueuF83jCcz3nhhRd3vTRkPpe8An3GjBkYOXIkEhISsGjRInH74cOHUVlZiYSEBHFbhw4d0LJlS6SkpKBv375ISUlBly5dEBERIY5JTEzE9OnTcerUKfTo0aPGcxqNRhiNRvG6IAgAgPT0dGi1WkffRSKiBjMYDIiJiUFgYKDUoXgU2+PF+ZyI3AXn88bhfE5E7obzeeNwPicid9OY+VzSBPoXX3yBX3/9FQcPHqy2LzMzEz4+PggKCrLbHhERgczMTHHMzclz237bvtokJyfj9ddfr7Zdq9VyQicit8KfOTaM7fHifE5E7obzecNwPicid8X5vGE4nxORu2rIfC5Z46709HT86U9/wrp16+Dr6+vScyclJaGwsFC8pKenu/T8REREREREREREROT+JEugHz58GNnZ2bjnnnugVCqhVCqxe/duLF++HEqlEhEREaioqIBer7e7XVZWFiIjIwEAkZGRyMrKqrbftq82arVa/PaT34ISERERERERERERUU0kS6APGTIEJ06cwNGjR8VLr169MH78ePH/VSoVtm/fLt7m3LlzSEtLQ3x8PAAgPj4eJ06cQHZ2tjhm69at0Gq16NSpk8vvExERERERERERERF5D8l6oAcGBuLuu++226bRaBAaGipunzJlCubOnYuQkBBotVrMmjUL8fHx6Nu3LwBg6NCh6NSpEyZMmIAlS5YgMzMT8+fPx4wZM6BWq11+n4iIiIiIiIiIiIjIe0i6iOjtvPfee5DL5Rg7diyMRiMSExPx97//XdyvUCiwadMmTJ8+HfHx8dBoNJg0aRIWLlwoYdRERERERERERERE5A3cKoG+a9cuu+u+vr5YuXIlVq5cWettYmNj8cMPPzg5MiIiIiIiIiIiIiJqaiTrgU5ERERERERERERE5M6YQCciIiIiIiIiIiIiqgET6ERERERERERERERENWACnYiIiIiIAAB79uzBqFGjEB0dDZlMhg0bNtQ69rnnnoNMJsOyZcvstufn52P8+PHQarUICgrClClTUFxc7NzAiYiIiIichAl0IiIiIiICAJSUlKBbt25YuXJlneO+/fZb7Nu3D9HR0dX2jR8/HqdOncLWrVuxadMm7NmzB9OmTXNWyERERERETqWUOgAiIiIiInIPw4cPx/Dhw+scc+3aNcyaNQtbtmzByJEj7fadOXMGmzdvxsGDB9GrVy8AwIoVKzBixAgsXbq0xoQ7EREREZE7YwU6ERERERHVi8ViwYQJE/DCCy+gc+fO1fanpKQgKChITJ4DQEJCAuRyOfbv3+/KUImIiIiIHIIV6EREREREVC+LFy+GUqnE888/X+P+zMxMhIeH221TKpUICQlBZmZmrcc1Go0wGo3idYPB4JiAiYiIiIjuECvQiYiIiIjotg4fPoz/+7//wyeffAKZTObQYycnJ0On04mXmJgYhx6fiIiIiKixWIFORERERES39b///Q/Z2dlo2bKluM1sNmPevHlYtmwZLl++jMjISGRnZ9vdzmQyIT8/H5GRkbUeOykpCXPnzhWvGwwGJtGJiJqwa9euIT8/v9G3DwkJQfPmzR0YERE1ZUyg34ERo8YgKzevzjERYaH44bsNrgmIiIiIHOZ34yciO09f6/7w0CD8e92nrguISGITJkxAQkKC3bbExERMmDABTz/9NAAgPj4eer0ehw8fRs+ePQEAO3bsgMViQZ8+fWo9tlqthlqtdl7wjTA4YSiycnLrHBPRLAw7t/3kooiIiJqGa9euoX37DigpKW70MTSaAJw7d5ZJdCJyCCbQ70BWbh5+v/DjOsd89soUF0VDREREjpSdp8fD85bWun/jO392YTRErlFcXIyLFy+K11NTU3H06FGEhISgZcuWCA0NtRuvUqkQGRmJ9u3bAwA6duyIYcOGYerUqVi9ejUqKysxc+ZMjBs3DtHR0S69L3cqKycXU5d+UeeYD/88zkXREBE1Hfn5+SgpKcakBcvRrEWrBt8+5+plrH3jeeTn5zOBTkQOwQQ6EREREREBAA4dOoTBgweL121tVSZNmoRPPvmkXsdYt24dZs6ciSFDhkAul2Ps2LFYvny5M8IlIiIv1qxFK0THtZc6DCIiJtCJiIiIiMhq0KBBEASh3uMvX75cbVtISAjWr1/vwKiIiIiIiKQjlzoAIiIiIiIiIiIiIiJ3xAQ6EREREREREREREVENmEAnIiIiIiIiIiIiIqoBE+hERERERERERERERDVgAp2IiIiIiIiIiIiIqAZMoBMRERERERERERER1YAJdCIiIiIiIiIiIiKiGjCBTkRERERERERERERUAybQiYiIiIiIiIiIiIhqoJQ6ACIiIiIp/G78RGTn6Wvdf+bsWTzsunCIiIiIiIjIDTGBTkRERE1Sdp4eD89bWuv+Y08Pc2E0RERERERE5I7YwoWIiIiIiIiIiIiIqAZMoBMRERERERERERER1YAJdCIiIiIiIiIiIiKiGjCBTkRERERERERERERUAybQiYiIiIiIiIiIiIhqwAQ6EREREREREREREVENmEAnIiIiIiIiIiIiIqoBE+hERERERERERERERDVgAp2IiIiIiIiIiIiIqAZMoBMRERERERERERER1YAJdCIiIiIiIiIiIiKiGjCBTkRERERERERERERUAybQiYiIiIiIiIiIiIhqwAQ6EREREREREREREVENmEAnIiIiIiIiIiIiIqqBpAn0VatWoWvXrtBqtdBqtYiPj8ePP/4o7h80aBBkMpnd5bnnnrM7RlpaGkaOHAl/f3+Eh4fjhRdegMlkcvVdISIiIiIiIiJyC8nJyejduzcCAwMRHh6OMWPG4Ny5c3ZjysvLMWPGDISGhiIgIABjx45FVlaW3RjmXIiIJE6gt2jRAm+//TYOHz6MQ4cO4YEHHsDo0aNx6tQpcczUqVORkZEhXpYsWSLuM5vNGDlyJCoqKrB3716sXbsWn3zyCV555RUp7g4RERERERERkeR2796NGTNmYN++fdi6dSsqKysxdOhQlJSUiGPmzJmD7777Dl9++SV2796N69ev49FHHxX3M+dCRGSllPLko0aNsrv+5ptvYtWqVdi3bx86d+4MAPD390dkZGSNt//pp59w+vRpbNu2DREREejevTveeOMNvPTSS3jttdfg4+Pj9PtARERERERERORONm/ebHf9k08+QXh4OA4fPowBAwagsLAQH3/8MdavX48HHngAALBmzRp07NgR+/btQ9++fZlzISKq4jY90M1mM7744guUlJQgPj5e3L5u3TqEhYXh7rvvRlJSEkpLS8V9KSkp6NKlCyIiIsRtiYmJMBgMdlXstzIajTAYDHYXIiIiIiIiIiJvVFhYCAAICQkBABw+fBiVlZVISEgQx3To0AEtW7ZESkoKgMblXJhvISJvJGkFOgCcOHEC8fHxKC8vR0BAAL799lt06tQJAPDUU08hNjYW0dHROH78OF566SWcO3cO33zzDQAgMzPTbiIHIF7PzMys9ZzJycl4/fXXnXSPiIiIiIiIiIjcg8ViwezZs9GvXz/cfffdAKw5Ex8fHwQFBdmNjYiIEPMpjcm5MN9CRN5I8gR6+/btcfToURQWFuKrr77CpEmTsHv3bnTq1AnTpk0Tx3Xp0gVRUVEYMmQILl26hDZt2jT6nElJSZg7d6543WAwICYm5o7uBxERERERERGRu5kxYwZOnjyJn3/+2ennYr6FiLyR5C1cfHx80LZtW/Ts2RPJycno1q0b/u///q/GsX369AEAXLx4EQAQGRlZbYVo2/Xa+qYDgFqthlartbsQEREREREREXmTmTNnYtOmTdi5cydatGghbo+MjERFRQX0er3d+KysLDGf0picC/MtROSNJE+g38piscBoNNa47+jRowCAqKgoAEB8fDxOnDiB7OxscczWrVuh1WrFNjBERERERERERE2JIAiYOXMmvv32W+zYsQNxcXF2+3v27AmVSoXt27eL286dO4e0tDRxXTrmXIiIrCRt4ZKUlIThw4ejZcuWKCoqwvr167Fr1y5s2bIFly5dwvr16zFixAiEhobi+PHjmDNnDgYMGICuXbsCAIYOHYpOnTphwoQJWLJkCTIzMzF//nzMmDEDarVayrtGRERERERERCSJGTNmYP369fjvf/+LwMBAsWe5TqeDn58fdDodpkyZgrlz5yIkJARarRazZs1CfHw8+vbtC4A5FyIiG0kT6NnZ2Zg4cSIyMjKg0+nQtWtXbNmyBQ8++CDS09Oxbds2LFu2DCUlJYiJicHYsWMxf/588fYKhQKbNm3C9OnTER8fD41Gg0mTJmHhwoUS3isiIiIiIiIiIumsWrUKADBo0CC77WvWrMHkyZMBAO+99x7kcjnGjh0Lo9GIxMRE/P3vfxfHMudCRGQlaQL9448/rnVfTEwMdu/efdtjxMbG4ocffnBkWERERNSEmCwWpOeXoaC0Am2aBUDnp5I6JCIiIqI7IgjCbcf4+vpi5cqVWLlyZa1jmHMhIpI4gU5EREQkpRKjCV//ehUFpZUAgF8u5iK+TSh6xYZIHBkRERERERG5A7dbRJSIiIjIFcwKH3zz6zUUlFbCT6VAlM4XFgH45WIe0vJLpQ6PiIiIiIiI3AAr0ImIiKhJKojqi6LSCgSolXisZwvo/FTYfiYLJ68bsPV0FqDwkTpEIiIiIiIikhgr0ImIiKjJ+TWtAEVhHQEAwzpHin3PB9zVDIG+ShQbTVDF9ZIyRCIiIiIiInIDTKATERFRk/P2D2cBAB2jAtE82E/crlLI0b1FEADAp/2Aei3ARURERERERN6LCXQiIiJqUg5dzseBy/mAxYz7WodV298pWgulXAZFcHNkFJZLECERERERERG5CybQiYiIqEn5+65LAIDA/PMI8K2+HIyvSoG7IgIBAOcyi1waGxEREREREbkXJtCJiIioyUjNLcGOs9mQyQBd9tFax7UJ11jH55WwjQsREREREVETxgQ6ERERNRlfHEwDAAy6qxlUFYZax8UE+0MwVaCo3IS8kgpXhUdERERERERuhgl0IiIiahIqTBZ8degqAODJe1vWOValkMOUdQEAcDm3xOmxEbmLPXv2YNSoUYiOjoZMJsOGDRvEfZWVlXjppZfQpUsXaDQaREdHY+LEibh+/brdMfLz8zF+/HhotVoEBQVhypQpKC4udvE9ISIiIiJyjOqNP4mIiIi80LYzWcgrqUCEVo0HOoQj+TbjTddOQdW8My7nlaJXqxCXxEgktZKSEnTr1g3PPPMMHn30Ubt9paWl+PXXX7FgwQJ069YNBQUF+NOf/oSHH34Yhw4dEseNHz8eGRkZ2Lp1KyorK/H0009j2rRpWL9+vavvTo0GJwxFVk7ubcelpaW7IBoiIiIicndMoBMREVGT8O2RawCAR+9pAaXi9j/CM2ecBQBkGsphsliglPOHe+T9hg8fjuHDh9e4T6fTYevWrXbb3n//fdx7771IS0tDy5YtcebMGWzevBkHDx5Er169AAArVqzAiBEjsHTpUkRHRzv9PtxOVk4upi794rbjksb2dUE0REREROTu+EmQiIiIvJ6+tAK7zmUDAB7p0bxet7EU5cBPpYDZIiDbYHRmeEQeq7CwEDKZDEFBQQCAlJQUBAUFiclzAEhISIBcLsf+/ftrPY7RaITBYLC7EBERERG5AybQiYjI6cxmMxYsWIC4uDj4+fmhTZs2eOONNyAIgjhGEAS88soriIqKgp+fHxISEnDhwgUJoyZv8v2JDFSaBXSM0uKuiMB63y46yBcAkFFY7qzQiDxWeXk5XnrpJTz55JPQarUAgMzMTISHh9uNUyqVCAkJQWZmZq3HSk5Ohk6nEy8xMTFOjZ2IiIiIqL6YQCciIqdbvHgxVq1ahffffx9nzpzB4sWLsWTJEqxYsUIcs2TJEixfvhyrV6/G/v37odFokJiYiPJyJi7pzm08al3kcEz3hrWPiNL5AQAyCsscHhORJ6usrMQTTzwBQRCwatWqOz5eUlISCgsLxUt6OvuPExEREZF7YA90IiJyur1792L06NEYOXIkAKBVq1b4/PPPceDAAQDW6vNly5Zh/vz5GD16NADg008/RUREBDZs2IBx48ZJFjt5vtxiIw5ezgcAjOgS1aDbRumsFejX9eUQBAEymczh8RF5Glvy/MqVK9ixY4dYfQ4AkZGRyM7OthtvMpmQn5+PyMjIWo+pVquhVqudFjMRERERUWOxAp2IiJzuvvvuw/bt23H+/HkAwLFjx/Dzzz+LC9WlpqYiMzMTCQkJ4m10Oh369OmDlJQUSWIm77HtdBYsAnB3cy1iQvwbdNtwrRoKuQxllWYUllU6KUIiz2FLnl+4cAHbtm1DaGio3f74+Hjo9XocPnxY3LZjxw5YLBb06dPH1eESEREREd0xVqATEZHTvfzyyzAYDOjQoQMUCgXMZjPefPNNjB8/HgDEvrgRERF2t4uIiKizZ67RaITReGNxRy46RzXZfMr6HBrWufbq19oo5XKEBfggy2BETpERQf4+jg6PyK0UFxfj4sWL4vXU1FQcPXoUISEhiIqKwmOPPYZff/0VmzZtgtlsFufokJAQ+Pj4oGPHjhg2bBimTp2K1atXo7KyEjNnzsS4ceMQHd2wFkpERERERO6AFehEROR0//nPf7Bu3TqsX78ev/76K9auXYulS5di7dq1d3RcLjpHt2Mor8QvF3MBAMPubngCHQCaBVjbSmQXGW8zksjzHTp0CD169ECPHj0AAHPnzkWPHj3wyiuv4Nq1a9i4cSOuXr2K7t27IyoqSrzs3btXPMa6devQoUMHDBkyBCNGjED//v3xwQcfSHWXiIiIiIjuCCvQiYjI6V544QW8/PLLYi/zLl264MqVK0hOTsakSZPEvrhZWVmIirrRozorKwvdu3ev9bhJSUmYO3eueN1gMDCJTnZ2ns1GpVlAm2YatA0PbNQxmgVaE+g5xUygk/cbNGgQBEGodX9d+2xCQkKwfv16R4ZFRERERCQZVqATEZHTlZaWQi63f8lRKBSwWCwAgLi4OERGRmL79u3ifoPBgP379yM+Pr7W46rVami1WrsL0c02n7S2lxh+d8MWD72ZmEBnBToREREREVGTwwp0IiJyulGjRuHNN99Ey5Yt0blzZxw5cgTvvvsunnnmGQCATCbD7NmzsWjRIrRr1w5xcXFYsGABoqOjMWbMGGmDJ49VVmHGrnM5ABrfvgUAwqpauJRWmFFiNEGj5tsnIiIiIiKipoKfAImIyOlWrFiBBQsW4I9//COys7MRHR2NP/zhD3jllVfEMS+++CJKSkowbdo06PV69O/fH5s3b4avr6+EkZMne/iP81EW1h/KiiLMnDIBslv2nzl7Fg/X4zgqhRzB/ioUlFYip9jIBDoREREREVETwk+ARETkdIGBgVi2bBmWLVtW6xiZTIaFCxdi4cKFrguMvFqGLBQAcHfrGAwcvrTa/mNPD6v3sZoFqq0J9CIjWoVqHBYjERERERERuTf2QCciIiKvIwgCyrQtAQCtwvzv+HihVW1c8koq7vhYRERERERE5DmYQCciIiKvc+q6AWaVBiqFDM2D/e74eKEaHwBAPhPoRERERERETQoT6EREROR1dp7NBgDEBPtDKb/ztzshNyXQLYJwx8cjIiIiIiIiz8AEOhEREXmdHeesCfS4MMf0K9f5qqCQyWC2CCgqNznkmEREREREROT+mEAnIiIir5JXbMTRdD0AOGzBT7lchiCNynr8EqNDjklERERERETujwl0IiIi8iq7z+dAEACfslwE+Coddlz2QSciIiIiImp6mEAnIiIir7LzXA4AwK8wzaHHDWECnYiIiIiIqMlhAp2IiIi8hslswe6q/uf+Buck0POKmUAnIiIiIiJqKphAJyIiIq9x7GohDOUm6PxUUJdmO/TYIf7WBLq+tBKCIDj02EREREREROSemEAnIiIir/G/C9b2Lf3bhkEGxya5dX7WRUQrzBaUVZodemwicj++7fvjq8NXcTRdD5PZInU4RERERCQRJtCJiIjIa/zvQi4A4P52YQ4/tlIhR4DauiipvrTS4ccnIvfxW24xdIOn4pq+DLvP5+DHk5lSh0REREREEmECnYiIiLxCYVkljqbrAQD9nZBAB4Agf5V4LiLyThUmC7acyoJMLkdsiD9kMuC33BJcKyiTOjQiIiIikgAT6EREROQVUi7lwWwR0LqZBi2C/Z1yjqCqNi6sQCfyXpdyilFhssCkz8CobtHoHKUFAOy9lMv1D4iIiIiaICbQiYiIyCvY+p8PaNfMaecIsi0kWlbhtHMQkbTOZRUBAMrO74VCLkOfuFAoZDJcLyxHfgn/7RMRERE1NUygExERkVdwZv9zG1sLF1agE3mn0goT0vJLAQDlF1IAAAG+SrQI8QNgbeVCRERERE0LE+hERETk8a7klSAtvxQqhQx9W4c67Tw6WwuXskqwkQOR9/kttwSCAIQHqmEuzBK3twkLAGBt70JERERETYukCfRVq1aha9eu0Gq10Gq1iI+Px48//ijuLy8vx4wZMxAaGoqAgACMHTsWWVlZdsdIS0vDyJEj4e/vj/DwcLzwwgswmUyuvitEREQkIVv1+T0tg6FRK512HlsP9AqTBRaFr9POQ0TSyNCXAwBiQ+3XUYhrpgEAZBmMKDbyswYRERFRUyJpAr1FixZ4++23cfjwYRw6dAgPPPAARo8ejVOnTgEA5syZg++++w5ffvkldu/ejevXr+PRRx8Vb282mzFy5EhUVFRg7969WLt2LT755BO88sorUt0lIiIikoDY//wu5/U/BwClQo6AqgR9pVrr1HMRketlFloT6JE6+y/IAtRKRGjVAIDLbONCRERE1KRImkAfNWoURowYgXbt2uGuu+7Cm2++iYCAAOzbtw+FhYX4+OOP8e677+KBBx5Az549sWbNGuzduxf79u0DAPz00084ffo0PvvsM3Tv3h3Dhw/HG2+8gZUrV6Kiggv8EBERNQUmswV7L+YBcG7/cxtbFXqlWuf0cxGR65RXmpFfav0MEamt/guTliHWqvTrhWUujYuIiIiIpOU2PdDNZjO++OILlJSUID4+HocPH0ZlZSUSEhLEMR06dEDLli2RkmJd0CclJQVdunRBRESEOCYxMREGg0GsYq+J0WiEwWCwuxAREZFnOnZVjyKjCcH+KnSOdn5S27aQqIkJdCKvkmWwVp/r/FTw96neCipKZ11INKOqSp2IiIiImgbJE+gnTpxAQEAA1Go1nnvuOXz77bfo1KkTMjMz4ePjg6CgILvxERERyMzMBABkZmbaJc9t+237apOcnAydTideYmJiHHuniIiIyGX2nLf2P7+vbRgUcpnTz6fzt1Wgs4ULkTexJcajdDWvb2Dbri+tRGkF+6ATERERNRWSJ9Dbt2+Po0ePYv/+/Zg+fTomTZqE06dPO/WcSUlJKCwsFC/p6elOPR8RERE5j9j/3AXtWwAgyM8HAFDpwwp0Im+SWVWBXlP7FgDwVSkQorH++89kFToRERFRk1H9t4ku5uPjg7Zt2wIAevbsiYMHD+L//u//8Lvf/Q4VFRXQ6/V2VehZWVmIjIwEAERGRuLAgQN2x8vKyhL31UatVkOtVjv4nhAREZGrFZZV4mi6HgDQv51zFxC1udHChRXoRN4kr9ja/7xZYO2fE6J0vsgvqcD1wnK0bhbgqtCIiIiISEKSV6DfymKxwGg0omfPnlCpVNi+fbu479y5c0hLS0N8fDwAID4+HidOnEB2drY4ZuvWrdBqtejUqZPLYyciIiLXOpCaD4sAtA7ToHmQn0vOqataRNSi9EVBCRctJ/IGFSYLio3Wtiy2KvOa2Nq4sAKdiIiIqOmQtAI9KSkJw4cPR8uWLVFUVIT169dj165d2LJlC3Q6HaZMmYK5c+ciJCQEWq0Ws2bNQnx8PPr27QsAGDp0KDp16oQJEyZgyZIlyMzMxPz58zFjxgxWmBMRETUBKZfyAADxbUJddk6VQo4AtRLFRhMu55UguI5kGxF5hoJS65dhfioFfFWKWseFB1oT6DlFRgiC4JLYiIiIiEhakibQs7OzMXHiRGRkZECn06Fr167YsmULHnzwQQDAe++9B7lcjrFjx8JoNCIxMRF///vfxdsrFAps2rQJ06dPR3x8PDQaDSZNmoSFCxdKdZeIiIjIhfZesi4g6soEOgAE+alQbDThSl4perQMdum5icjx8qt+TRJ6my/EQjQ+UMhkqDBbYCjnQqJERERETYGkCfSPP/64zv2+vr5YuXIlVq5cWeuY2NhY/PDDD44OjYiIiNxcfkkFzmYWAQD6tnZtAl3nr8JVfRlSc0tcel4icg5bAv12vyhRyGUICfBBTpEROUVGV4RGRERERBJzux7oRERERPWx7zdr+5b2EYEIC3Bt6zZbH/T0/FKXnpeInMOWQK+r/7lNs6r5JqeYCXQiIiKipoAJdCIiIvJIUrVvAW4k0K8WlLn83ETkePmlDUigB1oT6LmsQCciIiJqEphAJyIiIo9kW0D0PgkS6Frfqgr0AlagE3k6k8WCwrJKAKxAJyIiIqLqmEAnIiIij5NlKMelnBLIZECfOAkS6H7WZWQyDeUwmswuPz8ROU5RmQmCAKgUMmh8FLcdHxZoTbIXlZsgKH2dHR4RERERSYwJdCIiIvI4tv7nd0froPNXufz8fioFZOZKCAJwXV/u8vMTkeMUllurz7W+KshkstuOVysVCFBbv0SzBIQ7NTYiIiIikh4T6ERERORx9l60JtCl6H8OADKZDMqKIgDAVbZxIfJohqr2LVq/+n8ZFxpgrUIXApo5JSYiIiIich9MoBMREZHH2fubdAuI2tgS6On5XEiUyJMZyk0AAJ1v/RPotl7prEAnIiIi8n5MoBMREZFHSc8vRXp+GRRyGXq3CpEsDpUtgc4KdCKPdqMCXVnv29xIoLMCnYiIiMjbMYFOREREHiWlqv95txY6sQ+xFJQVBgDWhD4ReS5DeSNauGhsLVxYgU5ERETk7ZhAJyIiIo+y75K0/c9tlBXFAICrBWzhQuTJDGXWFi7ahrRw8a9KoPvpUFSVgCciIiIi78QEOhEREXkMQRCwtyqBfl+bMEljsVWgcxFRIs9VYbKgrNIMoGEtXNQqBTRqBQDgYnaxU2IjIiIiIvfABDoRERF5jCt5pcg0lMNHIUfP2GBJY7EtIppbXIHSCpOksRBR49jat/gq5VArFQ26ra0P+oUsJtCJiIiIvBkT6EREROQxDlzOBwB0i9HBV9WwZJejKcwVCPS1VqxeYxsXIo90YwHR+rdvsbG1cfktt8ShMRERERGRe5Fu5S0iIiKiBjpUlUDv1SoEvxs/Edl5+lrHnjl7Fg87OZ6YYH+czjAgvaAU7SICnXw2InI0Q3nD+5/bBFUl0FNzWYFORERE5M1YgU5EREQe4+DlAgDAva1CkJ2nx8PzltZ6qTA5v61KTIgfACA9nxXo5B327NmDUaNGITo6GjKZDBs2bLDbLwgCXnnlFURFRcHPzw8JCQm4cOGC3Zj8/HyMHz8eWq0WQUFBmDJlCoqL3TPJXGy0zhMBvg2vKwrytybdU1mBTkREROTVmEAnIiIij5BTZERqbglkMuAeifuf27QI9gcApOdzIVHyDiUlJejWrRtWrlxZ4/4lS5Zg+fLlWL16Nfbv3w+NRoPExESUl5eLY8aPH49Tp05h69at2LRpE/bs2YNp06a56i40SHFVBXqAuuEJ9OCqCvTLeaWwWASHxkVERERE7oMtXIiIiMgj2Nq3tI8IhK4R/YqdISbYWoF+lT3QyUsMHz4cw4cPr3GfIAhYtmwZ5s+fj9GjRwMAPv30U0RERGDDhg0YN24czpw5g82bN+PgwYPo1asXAGDFihUYMWIEli5diujoaJfdl/oQK9AbkUAPVCsBiwkVJiWuF5aJX6gRERERkXdhBToRERF5BFv7lt6tQiSO5IaYkKoK9AJWoJP3S01NRWZmJhISEsRtOp0Offr0QUpKCgAgJSUFQUFBYvIcABISEiCXy7F//36Xx3w7d5JAl8tlkJVa5yW2cSEiIiLyXkygExERkUc4WFWB3jvODRPobOFCTUBmZiYAICIiwm57RESEuC8zMxPh4eF2+5VKJUJCQsQxNTEajTAYDHYXZxME4Y56oAOAvCQXAHCZCXQiIiIir8UEOhEREbm9YqMJp64XAgB6t3KP/ucA0DzI2sLFUG5CYVmlxNEQea7k5GTodDrxEhMT4/RzlpssMFf1LteoFY06hqwkDwDwGxPoRERERF6LCXQiIiJye0fSCmARgBbBfojS+UkdjkijViJUY11IkFXo5O0iIyMBAFlZWXbbs7KyxH2RkZHIzs62228ymZCfny+OqUlSUhIKCwvFS3p6uoOjr862gKifSgGlvHEfi+Sl1gQ6K9CJiIiIvBcXESUiIiJJ/G78RGTn6WvdHx4ahH+v+xSAe/Y/t2kR4o+8kgpc05fh7uY6qcMhcpq4uDhERkZi+/bt6N69OwDAYDBg//79mD59OgAgPj4eer0ehw8fRs+ePQEAO3bsgMViQZ8+fWo9tlqthlqtdvp9uNmdtm8BAFlVCxf2QCciIiLyXkygExERkSSy8/R4eN7SWvdvfOfP4v8fsvU/d8cEepAfjqXrcbWgTOpQiO5YcXExLl68KF5PTU3F0aNHERISgpYtW2L27NlYtGgR2rVrh7i4OCxYsADR0dEYM2YMAKBjx44YNmwYpk6ditWrV6OyshIzZ87EuHHjEB0dLdG9qtmdLCBqY2vhkl5QhkqzBSoFf+BLRERE5G2YQCciIiK3ZrYIOJauBwDcExskaSw1aRFsbSlztYAtXMjzHTp0CIMHDxavz507FwAwadIkfPLJJ3jxxRdRUlKCadOmQa/Xo3///ti8eTN8fX3F26xbtw4zZ87EkCFDIJfLMXbsWCxfvtzl9+V2bC1c7iiBbiyCn0qBskoz0vNL0bpZgKPCIyIiIiI3wQQ6ERERubXfcopRUmGGv48C7cIDpQ6nmhsJdFagk+cbNGgQBEGodb9MJsPChQuxcOHCWseEhIRg/fr1zgjPoRxSgQ6gVZgGpzMMSM0tYQKdiIiIyAvxN4ZERETk1o5WVZ93aa6DQi6TNpgatAj2BwBcYwKdyKM4IoEOAHFhGgDsg05ERETkrZhAJyIiIrd27KoeANAtJkjSOGrDFi5EnqmkwppA16gVd3QcJtCJiIiIvBsT6EREROTWjqUXAgC6tQiSNpBaNK9KoBvKTSgsq5Q4GiKqr1KjGQDg73NnFeitmEAnIiIi8mpMoBMREZHbKq8040yGAQDQLUYncTQ18/dRIlTjA4BtXIg8hdkioKzSmkBnBToReaM9e/Zg1KhRiI6Ohkwmw4YNG+z2T548GTKZzO4ybNgwuzH5+fkYP348tFotgoKCMGXKFBQXF7vwXhARuQcuIkpERERu6fTpkxj8uz/AdNcjkFeW4vdPjsPNHdDPnD2LhyWLzl7zYD/klVTgakEpOkVrpQ6HiG6jrMKaPJfJAD/VnSXQW1cl0DMKy1FWYYafz50dj4jIEUpKStCtWzc888wzePTRR2scM2zYMKxZs0a8rlar7faPHz8eGRkZ2Lp1KyorK/H0009j2rRpHrFQNBGRIzGBTkRERG6p0gLc9dA0ZJzPQWxUMzw8bKnd/mNPD6vllq7XItgPx68W4ior0Ik8gq3/ub+PAjLZnS1OHKzxgc5PhcKySlzOK0HHKH6JRkTSGz58OIYPH17nGLVajcjIyBr3nTlzBps3b8bBgwfRq1cvAMCKFSswYsQILF26FNHR0Q6PmYjIXbGFCxEREbmtTEM5ACAiUH2bkdJqEewPAEygE3mI0qoKdM0d9j+3sfVBv5LHNi5E5Dl27dqF8PBwtG/fHtOnT0deXp64LyUlBUFBQWLyHAASEhIgl8uxf//+Wo9pNBphMBjsLkREno4JdCIiInJbWYVVCXSdr8SR1K1F1UKi1/SlEkdCRPVxcwW6I7QKtX6JlprLOYCIPMOwYcPw6aefYvv27Vi8eDF2796N4cOHw2y2fsGYmZmJ8PBwu9solUqEhIQgMzOz1uMmJydDp9OJl5iYGKfeDyIiV2ALFyIiInJPPn7Ql1UCACK0npFAZwU6kWcoNVoTRP6OqkAPZQU6EXmWcePGif/fpUsXdO3aFW3atMGuXbswZMiQRh83KSkJc+fOFa8bDAYm0YnI47ECnYiIiNySIqQlAEDnp7rjRf6cjS1ciDxLaVUFukbtoAr0MFsFOhPoROSZWrdujbCwMFy8eBEAEBkZiezsbLsxJpMJ+fn5tfZNB6x91bVard2FiMjTsQKdiIiI3JIiNBYAEKF17/7nANA8yFqBXlhWCUN5JbS+KokjIqK6lDi6B7pYgc4WLkTkma5evYq8vDxERUUBAOLj46HX63H48GH07NkTALBjxw5YLBb06dNHylDr7fz5842+bUhICJo3b+7AaIjIkzGBTkRERG5JEWz90BIe6N7tWwBAo1Yi2F+FgtJKXCsogzaKCXQid1ZidHQPdGsCPdNQjrIKM/wcdFwiosYqLi4Wq8kBIDU1FUePHkVISAhCQkLw+uuvY+zYsYiMjMSlS5fw4osvom3btkhMTAQAdOzYEcOGDcPUqVOxevVqVFZWYubMmRg3bhyio6Olulv1UlSQB0CGxx57rNHH0GgCcO7cWSbRiQgAE+hERETkpuTB1g9noQE+EkdSPy2C/VFQWoirBWXoGMWfKxO5s9KqCnR/tWM+DgVrfKDzU6GwrBKX80o4BxCR5A4dOoTBgweL1219ySdNmoRVq1bh+PHjWLt2LfR6PaKjozF06FC88cYbUKtv/PJv3bp1mDlzJoYMGQK5XI6xY8di+fLlLr8vDVVeWgRAwJjnF6Jt5+4Nvn3O1ctY+8bzyM/PZwKdiAAwgU5ERERuyGS2QB4YDgAIC3D/Fi6AdSHRE9cKca2ALRyI3J3YA92BleKtwjQ4lq7HFSbQicgNDBo0CIIg1Lp/y5Yttz1GSEgI1q9f78iwXCokKgbRce2lDoOIvAAXESUiIiK3k1dSAZlcDl+V3KEJLmdqEWztg86FRIncm6DwQaXZmlTyd1APdABoFWpbSJRfohERERF5E0kT6MnJyejduzcCAwMRHh6OMWPG4Ny5c3ZjBg0aBJlMZnd57rnn7MakpaVh5MiR8Pf3R3h4OF544QWYTCZX3hUiIiJyoLziCgDW6nOZTCZxNPXTItiaPGMCnci9CWprv3KlXAYfpeM+Dt1YSLTEYcckIiIiIulJ2sJl9+7dmDFjBnr37g2TyYS//OUvGDp0KE6fPg2NRiOOmzp1KhYuXChe9/f3F//fbDZj5MiRiIyMxN69e5GRkYGJEydCpVLhrbfecun9ISIiIsfILTYC8Jz2LcBNFeh6Vp8SuTPBx/o5w1ELiNq0CrNVoDOBTkRERORNJE2gb9682e76J598gvDwcBw+fBgDBgwQt/v7+yMyMrLGY/z00084ffo0tm3bhoiICHTv3h1vvPEGXnrpJbz22mvw8fGMhceIiIjohhsJdM95HW/OFi5EHsGWQPdzdAJdrEDnl2hERERE3sSteqAXFhYCsC5UcbN169YhLCwMd999N5KSklBaeuNNaUpKCrp06YKIiAhxW2JiIgwGA06dOuWawImIiMhhBEFA7k0tXDxF8yBrAl1fWomi8kqJoyGiWtkS6CrnJNAzDeUoqzA79NhEREREJB1JK9BvZrFYMHv2bPTr1w933323uP2pp55CbGwsoqOjcfz4cbz00ks4d+4cvvnmGwBAZmamXfIcgHg9MzOzxnMZjUYYjUbxusFgcPTdISIiokYqrTCjrNIMwWJBiMZzKtADfVUI8ldBX1qJa/oydIhUSR0SEdXAWRXowRof6PxUKCyrxOW8EnSM0jr0+EREREQkDbdJoM+YMQMnT57Ezz//bLd92rRp4v936dIFUVFRGDJkCC5duoQ2bdo06lzJycl4/fXX7yheIiIicg5b+xZLUQ5UivYSR9MwLYL9rAn0gjJ0iGTyjMgdCU6qQAeAVqH+OHa1EFeYQCciIiLyGm7RwmXmzJnYtGkTdu7ciRYtWtQ5tk+fPgCAixcvAgAiIyORlZVlN8Z2vba+6UlJSSgsLBQv6enpd3oXiIjoNq5du4bf//73CA0NhZ+fH7p06YJDhw6J+wVBwCuvvIKoqCj4+fkhISEBFy5ckDBikkpeVfsWi/66xJE0XIsg6yKC7INO5L6cVYEOAK3CrMdOzWUfdCIiIiJvIWkCXRAEzJw5E99++y127NiBuLi4297m6NGjAICoqCgAQHx8PE6cOIHs7GxxzNatW6HVatGpU6caj6FWq6HVau0uRETkPAUFBejXrx9UKhV+/PFHnD59Gu+88w6Cg4PFMUuWLMHy5cuxevVq7N+/HxqNBomJiSgvL5cwcpKCrQLdrL8mcSQN10JcSJTJMyJ3JfhYv+hyTgW6bSHREocfm4iIiIikIWkLlxkzZmD9+vX473//i8DAQLFnuU6ng5+fHy5duoT169djxIgRCA0NxfHjxzFnzhwMGDAAXbt2BQAMHToUnTp1woQJE7BkyRJkZmZi/vz5mDFjBtRqz1l4jIjImy1evBgxMTFYs2aNuO3mL00FQcCyZcswf/58jB49GgDw6aefIiIiAhs2bMC4ceNcHjNJx7aAqKXA8yrQm4sJdFagE7ktp1agW5PzqblMoBMRERF5C0kr0FetWoXCwkIMGjQIUVFR4uXf//43AMDHxwfbtm3D0KFD0aFDB8ybNw9jx47Fd999Jx5DoVBg06ZNUCgUiI+Px+9//3tMnDgRCxculOpuERHRLTZu3IhevXrh8ccfR3h4OHr06IEPP/xQ3J+amorMzEwkJCSI23Q6Hfr06YOUlJRaj2s0GmEwGOwu5NnMFgH5JdYEutkDE+gtgtnChcjd2Vq4+KscX0t0owKdv0IhIiIi8haSVqALglDn/piYGOzevfu2x4mNjcUPP/zgqLCIiMjBfvvtN6xatQpz587FX/7yFxw8eBDPP/88fHx8MGnSJPEXSBEREXa3i4iIEPfVhItCex99aQXMggCVQgahJF/qcBqMLVyI3J/YwsUZFehVCfRMQznKKsxOOQcRERERuZZbLCJKRETezWKx4J577sFbb72FHj16YNq0aZg6dSpWr159R8flotDeJ7/UWn0eovEBUPcX7e7I1sKloLQSJUaTxNEQ0a1KK0yAwgeAc3qgB2t8oPNTAQAusw86ERERkVdgAp2IiJwuKiqq2sLOHTt2RFpaGgAgMjISAJCVlWU3JisrS9xXEy4K7X0KSioBACH+PhJH0jhaX5WYPLumZxsXIneTV7XGgkIug0ohc8o5WoVaK9y5kCgRERGRd2ACnYiInK5fv344d+6c3bbz588jNjYWgHVB0cjISGzfvl3cbzAYsH//fsTHx7s0VpJWQVUFerDGMxPoANu4ELkz2xoLfioFZDInJdDDrG1cUnM5BxARERF5AybQiYjI6ebMmYN9+/bhrbfewsWLF7F+/Xp88MEHmDFjBgBAJpNh9uzZWLRoETZu3IgTJ05g4sSJiI6OxpgxY6QNnlzKltwK8eAEevMgWwKdFehE7kZMoDuxN3msuJAoK9CJiFwpv6QCpzMMyDX7AzKmu4jIcSRdRJSIiJqG3r1749tvv0VSUhIWLlyIuLg4LFu2DOPHjxfHvPjiiygpKcG0adOg1+vRv39/bN68Gb6+vhJGTq4kCMKNCnQPbeECAC2Cre0bVv3ra6x5vebF0MNDg/DvdZ+6MiwiApB3UwW6s8SFWeeA1Fwm0ImIXEEQBOxPzcf+VNsC9JGInrISxWYu5ExEjsEEOhERucRDDz2Ehx56qNb9MpkMCxcuxMKFC10YFbmTYqMJlWYBchnEPuKeyNbCpdCiwhPzltY4ZuM7f3ZlSERUJb/ECMC5FeitxAp0tnAhInKFfan5OFCVPI/W+SK7sAQIjcHRYjM6l1ci0Ndz31cSkXvgb1qIiIjILRSUWhcQ1fmpoJA7pzexK9gS6CafQIkjIaJbuaIC3ZZAzzSUo6zC7LTzEBERkFdsxKHL1uT5oLua4fFeMejjk46K3CswCgr8cCITgiBIHCUReTom0ImIiMgtFHhB/3PgRgsXk4oJdCJ3k1/s/B7owRof8Vc0l9kHnYjIaQRBwK7zObAIQOswDbrFBAEAVDILsr98DQpYkGkox+kMg7SBEpHHYwKdiIiI3IKt/3mQB/c/B4DmVRXoFpUfKs0WiaMhopvZFhH1d2IFOgC0CrV+kcaFRImInCfLYMTVgjIoZDIMvKuZ3T6zIQdxvtZWWr9czEOFie/JiKjxmEAnIiIit6Avs7ZwCfLg/ueAtQWN1te6zIyh6j4RkXsQW7g4sQIdAFqFWdu4pOayDzoRkbMcv6YHALSLCIC2hvePMeoyBPmpUFZpxsnrhS6Ojoi8CRPoRERE5BYKy270QPd0zavauBjKTRJHQkQ3y3dBD3QAiBUXEmUFOhGRM5RXmnE+qxgA0LWFrsYxchnQMzYYAHAkTQ+zhb3QiahxmEAnIiIiyVkEQazW1vl7fgLdtpCooZwV6ETuJN9FFehxYdYv0VJzmUAnInKG81lFMFsEhAX4IFLrW+u4DpGB8PdRoNhowoXsIhdGSETeRCl1AERERETF5SZYBEAhlyFQ7RlvT06fPonBwx6ucV9e8/uAZl1QVMYKdCJ3YTSZUWy0/pt0XQU6W7gQETnDbznWLyjbRwRCJpPVOk6pkKNrcx32pebj1HUDOkRqXRUiEXkRz/iESkRERF7N1v9c66us80OQO6m0AA/PW1rjviNpBdhzIZcV6ERuxFZ9DosZaqVjfoibduUKOnW7p9p2QeUHJPwFmYZyDBw6Art/+sEh5yMiIusXoukF1i8oWzcLuO34jtFa7EvNx9WCMhSWVXpFu0Aici0m0ImIiEhyhaVVC4j6+0gciWPYFrJiAp3IfeQVVyXQK0od9kWdySJg6tIvaty3evclGE0WZJWy5y4RkSNdySuFRQCC/FUI0dz+vaPWV4WWIf5Iyy/F6QwD4luHuiBKIvIm7IFOREREktOXWRNb3lIRpPWtSqCzhQuR27BVoMsqXNOXPKhqPQeLPxM1RESO9FvV+hJtwm5ffW7TKcrauuVshgGCwC82iahhmEAnIiIiyRVWtXAJ8pIEeqCv9Ud+ZZVmVJotEkdDRIAECXQ/a1WkoGECnYjIUQRBwNV8a/uW2FD/et+udTMNlHIZDOUmZBcZnRUeEXkpJtCJiIhIcrYe6N5Sga5WyiFUlAEAispZhU7kDvLEBLprFvYUK9A1YS45HxFRU6Avq0RJhRkKuQxROt96306lkCMuzLrA84XsYmeFR0Reigl0IiIikpQgCGIPdJ2/dyTQZTIZLCX5AABDGfugE7mD/BJrxaGrKtBtfXmFgGYuOR8RUVNwrcBaoBCp9YVS0bCUVrtwa8uXC1lFbONCRA3CBDoRERFJqrTCDJNFgAw3eod7A0txHgAuJErexWw2Y8GCBYiLi4Ofnx/atGmDN954wy4RIQgCXnnlFURFRcHPzw8JCQm4cOGChFFbiS1cKl2bQLdomjFRQ0TkIFerEujNg/0afNtWYTfauOQUs40LEdUfE+hEREQkKVv7lkBfJRRymcTROI5Ygc4WLuRFFi9ejFWrVuH999/HmTNnsHjxYixZsgQrVqwQxyxZsgTLly/H6tWrsX//fmg0GiQmJqK8vFzCyIG8YmsCHS5cRFQGACpf9tslInIAQRBwTW9NoLcIangCXaWQo2WItW/65VzXtPMiIu/ABDoRERFJytvat9gIxdYEehFbuJAX2bt3L0aPHo2RI0eiVatWeOyxxzB06FAcOHAAgDW5sWzZMsyfPx+jR49G165d8emnn+L69evYsGGDpLHnu7gHulIuh7ZqXYeL7LdLRHTHispNKDaaIJcBkQ3of36zVqHWPuiX81zzZSoReQcm0ImIiEhShV62gKiNpcTWwoUV6OQ97rvvPmzfvh3nz58HABw7dgw///wzhg8fDgBITU1FZmYmEhISxNvodDr06dMHKSkpksRsk19qS6C7Lmlia+PCBDoR0Z3LMlh/yRQWoIaqgf3PbVqFWSvQMwvLUVZpdlhsROTdlFIHQERERE2bvsya1Ary85E4Ese60cKFFejkPV5++WUYDAZ06NABCoUCZrMZb775JsaPHw8AyMzMBABERETY3S4iIkLcVxOj0Qij8UabE4PB4PDY9VW/dpFVlDn82LUJ0fggNbeECXQiIgfIMlhfJ8K16kYfI9BXhdAAH+QVVyAtrxTtIwMdFR4ReTFWoBMREZGkvLYCvaqFS2mFGSazReJoiBzjP//5D9atW4f169fj119/xdq1a7F06VKsXbv2jo6bnJwMnU4nXmJiYhwUsZXFIkBfVYGOStf1vQ3xZwU6EZGj2CrQI7SNa99iY2vjkso2LkRUT41KoLdu3Rp5eXnVtuv1erRu3fqOgyIiIvfBOZ+czdYDPcjLeqCjohQ+VT8vZhsXcjZXzdUvvPACXn75ZYwbNw5dunTBhAkTMGfOHCQnJwMAIiMjAQBZWVl2t8vKyhL31SQpKQmFhYXiJT093WExA0CR0QSLYP1/WaVrK9AB4GIOE+hEVD98710zQRDEBZkj7zCBHleVQL+SVwKLINxxbETk/RqVQL98+TLM5uq9ooxGI65du3bHQRERkfvgnE/OVF5pRrnJWp3tbRXoABDoZ+2WxzYu5GyumqtLS0shl9t/hFAoFLBYrP+O4+LiEBkZie3bt4v7DQYD9u/fj/j4+FqPq1arodVq7S6OZKs+91MpILO47gutYI11XsspMoq/tiEiqgvfe9esoLQSFWYLlHKZ+OuexorS+cJHKUd5pUWsaiciqkuDeqBv3LhR/P8tW7ZAp9OJ181mM7Zv345WrVo5LDgiIpIO53xyBVtCyd9H0ejFoNyZ1leFvOIKFJWxAp2cw9Vz9ahRo/Dmm2+iZcuW6Ny5M44cOYJ3330XzzzzDABAJpNh9uzZWLRoEdq1a4e4uDgsWLAA0dHRGDNmjMPiaKiCql+6BPuroHfhedVKBWTlhRB8dbiYXYyescEuPDsReRK+966bLdEdHqiGXC67o2PJ5TLEhvjjQnYxLueWIkrn54gQiciLNSiBbnvTK5PJMGnSJLt9KpUKrVq1wjvvvOOw4IiISDqc88kVDFUJdK2v91WfA4DWlxXo5FyunqtXrFiBBQsW4I9//COys7MRHR2NP/zhD3jllVfEMS+++CJKSkowbdo06PV69O/fH5s3b4av75395P5O2CrQg/x9XJpABwBZcQ4EXx0uMYFORHXge++65RRXLSAa6JjXklZhGmsCPa8E8W1CHXJMIvJeDUqg3/zTzIMHDyIsLMwpQRERkfQ455MrFBmtldm2RLO3sX0xwAQ6OYur5+rAwEAsW7YMy5Ytq3WMTCbDwoULsXDhQqfG0hB6CddakBfnwBLWln3QiahOfO9dt9yqBHpo4J21b7GJDfEHAGQXGVFeaYavSuGQ4xKRd2rUp9XU1FRHx0FERG6Kcz45k621SaAX9j8HbuqBzhYu5GScq+tWUFWBHnyHfXMbQ1aSAwC4mM0EOhHdHufzmuUWWefxsAC1Q46nUSsR4u+D/NIKXNOXoU2zAIccl4i8U6PLvbZv347t27cjOztb/KbU5p///OcdB0ZERO6Dcz45i60yO5AV6ER3jHN17QokrkAHmEAnovrjfG6vxGhCWaV1YdVQjeO+CG0R4of80gqk55cygU5EdWrUp9XXX38dCxcuRK9evRAVFQWZ7M4WcCAiIvfFOZ+cqajc1sLFOyvQtVWV9aUVZpjMFii9cKFUcg+cq+uml7AC3ZZATy8oZZsAIrotzufV2dq3BPmrHLrofEywP45fLcTVgjKHHZOIvFOjEuirV6/GJ598ggkTJjg6HiIicjOc88mZvL0C3Vcph0ohQ6VZQJHRJEnyjpoGztV1k7IHOipKoPNTobCsEpdyitE5Wuf6GIjIY3A+ry6v2LHtW2yaB/tZj19SgRKjCRq1d74fJaI716iv7ioqKnDfffc5OhYiInJDnPPJWSxyFYwm68+SvbUCXSaT3WjjUsY2LuQ8nKvrZuuBHiRFD3QA7SMDAQBnMopcfn4i8iycz6uzVaCHBTh2DvdTKdCsKinPKnQiqkujEujPPvss1q9f7+hYiIjIDXHOJ2cx+Vh7TaqVcvgovbe1ia2Ni6GcC4mS83CurputAj1Yigp0AJ2itACAMxkGSc5PRJ6D83l1uSXOqUAHrH3QAeBqQanDj01E3qNRv08pLy/HBx98gG3btqFr165QqezfiL777rsOCY6IiKTHOZ+cxeRjrcj01upzG1t7GlagkzNxrq6blBXoANAxylaBzgQ6EdWN87k9QRBQUJVAD3HCHB4T7I8jaXqkswKdiOrQqAT68ePH0b17dwDAyZMn7fZxgQsiIu/COZ+cxaSyVqB7a/9zG7GFSzkT6OQ8nKvrJn0FurXv+ZkMAwRB4N+EiGrF+dxeUbkJJosAuQzQ+Tl+Do8O8oVMBhSWVcJQVin+cpCI6GaN+sS6c+dOR8dBRERuinM+OYutAt37E+jW+1fEFi7kRJyra1dptqDYaP33J9VCvu0iAqCQy1BQWoksgxGROl9J4iAi98f53F5+yY1fEMnljv8CQa1UICLQF5mGcqQXlKKzHxd6JqLqvLfhKBEREbk1Ww90b2/hIvZAZwsXIknYqs9lMkhWWeirUqB1mAYA27gQETVEfqnz2rfYtAi29kG/pmcbFyKqWaNKvgYPHlznT4d27NhRr+MkJyfjm2++wdmzZ+Hn54f77rsPixcvRvv27cUx5eXlmDdvHr744gsYjUYkJibi73//OyIiIsQxaWlpmD59Onbu3ImAgABMmjQJycnJUCq9u6KNiMgVHDXnE93KlkD3/gp0a8KupMIMk8UCpZz1C+R4nKtrp69Kvmh9VVA4oXqxvjpGaXEhuxinMwwY3CFcsjiIyL1xPrdnq0AP0Tgvgd482A+HrhTgur7caecgIs/WqE+stn5cNpWVlTh69ChOnjyJSZMm1fs4u3fvxowZM9C7d2+YTCb85S9/wdChQ3H69GloNNYKjTlz5uD777/Hl19+CZ1Oh5kzZ+LRRx/FL7/8AgAwm80YOXIkIiMjsXfvXmRkZGDixIlQqVR46623GnP3iIjoJo6a84luZVJVtXDx8l6Tvio5VAoZKs0CispNkrWQIO/Gubp2BRL3P7fpGKXFxmPXWYFORHXifG7PlkAP1jhvDo/S+UIGax/0YrbcI6IaNCqB/t5779W4/bXXXkNxcXG9j7N582a765988gnCw8Nx+PBhDBgwAIWFhfj444+xfv16PPDAAwCANWvWoGPHjti3bx/69u2Ln376CadPn8a2bdsQERGB7t2744033sBLL72E1157DT4+/JBKRHQnHDXnE92swmSBWeUP4EaPcG8lk8kQ6KtCfkkFDGWVTKCTU3Curl1B6Y3+uVLqGGX90pAJdCKqC+fzGwQBKHBBBbpaqUCzQDWyi4y4pi9DoNPORESeyqG/If7973+Pf/7zn42+fWFhIQAgJCQEAHD48GFUVlYiISFBHNOhQwe0bNkSKSkpAICUlBR06dLFrqVLYmIiDAYDTp061ehYiIiobnc651PTllFYBshkUMpl8FMppA7H6biQKEmFczVQ6CYV6J2itQCA1NwSlFWYJY2FiDxPU5zPKyxAuckCwPmLQEcHsQ86EdXOoQn0lJQU+Po2bkV5i8WC2bNno1+/frj77rsBAJmZmfDx8UFQUJDd2IiICGRmZopjbk6e2/bb9tXEaDTCYDDYXYiIqGHuZM4nulZg/XAS6Kuss8+nt7D1QTeUcyFRci3O1e5TgR4e6IuwAB9YBOBcVpGksRCR52mK83lx1dumALUSKoVz15BpXpVAv84EOhHVoFG/mX700UftrguCgIyMDBw6dAgLFixoVCAzZszAyZMn8fPPPzfq9g2RnJyM119/3ennISLyBs6Y84mu6m0JdO/uf26jrerzbihjBTo5B+fq2tl6oAdJXIEOWPug/+9CLs5kGNA9JkjqcIjIDXE+v8GWQHfF/B0dZP1yIq+kAkb+SIiIbtGoBLpOp7O7LpfL0b59eyxcuBBDhw5t8PFmzpyJTZs2Yc+ePWjRooW4PTIyEhUVFdDr9XZV6FlZWYiMjBTHHDhwwO54WVlZ4r6aJCUlYe7cueJ1g8GAmJiYBsdNRNQUOHrOJwJuVKB7e/9zG9v9ZAU6OQvn6trpqyrQ3WH9gZsT6ERENeF8fkNxpfVXijoXLDjv76NEiL8P8ksrkFvu9NMRkYdp1KfWNWvWOOTkgiBg1qxZ+Pbbb7Fr1y7ExcXZ7e/ZsydUKhW2b9+OsWPHAgDOnTuHtLQ0xMfHAwDi4+Px5ptvIjs7G+Hh4QCArVu3QqvVolOnTjWeV61WQ61WO+Q+EBF5O0fN+UQ3u9bEKtADqz74sQc6OQvn6toViAl06ecbLiRKRLfD+fyG4qq3TUEuSKADQHSwb1UC3fvbCxJRw9xR2dfhw4dx5swZAEDnzp3Ro0ePBt1+xowZWL9+Pf773/8iMDBQ7Fmu0+ng5+cHnU6HKVOmYO7cuQgJCYFWq8WsWbMQHx+Pvn37AgCGDh2KTp06YcKECViyZAkyMzMxf/58zJgxg0lyIiIHutM5n+hmN/dAbwpsFejFRhNMFovE0ZA341xdnV5s4SJ9BXrnaGtl6enrBpgtAhRyJmmIqGacz2+0cNG56AvQ5kF+OHnNgBxWoBPRLRr1qTU7Oxvjxo3Drl27xNYqer0egwcPxhdffIFmzZrV6zirVq0CAAwaNMhu+5o1azB58mQAwHvvvQe5XI6xY8fCaDQiMTERf//738WxCoUCmzZtwvTp0xEfHw+NRoNJkyZh4cKFjblrRER0C0fN+UQ3u15oa+EifUWoK/ipFFDKZTBZBBSzCp2cgHN17fRu1AO9TbMA+PsoUFJhxqWcYtwVESh1SETkZjif3yD2QPdzzRegtoVE9UZApmpaC7YSUd0atYzxrFmzUFRUhFOnTiE/Px/5+fk4efIkDAYDnn/++XofRxCEGi+25DkA+Pr6YuXKlcjPz0dJSQm++eabar3NY2Nj8cMPP6C0tBQ5OTlYunQplMqmUdFGRORsjprziWwEQUCG3lraE9BEKtBlMpn4ZYGBCXRyAs7VtStwox7oCrkMdze3VqEfS9dLGwwRuSXO51YytQYVFtf1QAesrQUDfZUQIIO6eQeXnJOIPEOjPrVu3rwZ27ZtQ8eOHcVtnTp1wsqVK5vcohZERN6Ocz45Wn5JBSrM1jYmAeqmkUAHgEA/JfJLK2Ao40Ki5Hicq2smCIJbVaADQPeYIBxIzcexq3o83itG6nCIyM1wPrdSBVkLJ/19FPBRNqr2s1GaB/nhbGYR1DF3u+ycROT+GjULWSwWqFTV34CqVCpY2NeTiMircM4nR8sotFafKypLm1T/3xsV6Eygk+Nxrq5ZaYVZ/MLOHSrQAaBrC2sF+vGrhRJHQkTuiPO5lTI4GoDrqs9tbG1cfFt0dul5ici9NSqB/sADD+BPf/oTrl+/Lm67du0a5syZgyFDhjgsOCIikh7nfHK0TDGBXixxJK6l9bNW2xexhQs5AefqmumrfvHho5DD30chcTRW3VoEAQDOZBhgNJmlDYaI3A7ncytlcBQA1/96yJZAV0e3R6VZcOm5ich9NSqB/v7778NgMKBVq1Zo06YN2rRpg7i4OBgMBqxYscLRMRIRkYQ455OjZRisCXRlRYnEkbiWWIHOFi7kBJyra1ZQYu1/rvNXQSZzj1+8tAj2Q6jGB5VmAaeuG6QOh4jcDOdzK5Utge6iBURtgvxVUCsEyJQ+OJ9ndOm5ich9NarxaExMDH799Vds27YNZ8+eBQB07NgRCQkJDg2OiIikxzmfHC1DXwYAUFY20QR6uQnNJI6FvA/n6prZ+p8Hu0n/c8C6qHCPlkHYdiYbv14pwD0tg6UOiYjcCOdzK2WQNYHu6hYuMpkMYb7AtRLgVDYT6ERk1aAK9B07dqBTp04wGAyQyWR48MEHMWvWLMyaNQu9e/dG586d8b///c9ZsRIRkQtxzidnaaotXAJ9rXULxUYTBJnrFsMi78a5um4FpdYK9CA36X9uc0+sNWl++EqBxJEQkbvgfG7PlkCXYgHoZr7W1i1MoBORTYM+vS1btgxTp06FVquttk+n0+EPf/gD3n33XYcFR0RE0uGcT85iW0S0qVWg+/sooFJYW0iYfAIljoa8BefquumrEujuVIEOAL1iQwAAh64UQBDYY5eIOJ/frNxkgTIwFIDrK9ABIMzX+t+zuUaYLZyjiaiBCfRjx45h2LBhte4fOnQoDh8+fMdBERGR9Djnk7NkVvVAVzSxHugymQzaqg+BlT7VPxwTNQbn6rrdaOHiXhXoXVvooFLIkFNkxNWCMqnDISI3wPn8howi64LrPnIBvirXLwAd5ANYjCUorRRwJoNrVRBRAxPoWVlZUKlq//ZPqVQiJyfnjoMiIiLpcc4nZxAEARmFTbMHOgAEVSXQTWom0MkxOFfXraAqga5zswp0X5UCnaN1AIBDV/IljoaI3AHn8xtsCfQAiaZumQwwXjsDADiQyjmaiBqYQG/evDlOnjxZ6/7jx48jKirqjoMiIiLpcc4nZygsq0R5pQUAoGiCCXRWoJOjca6u240WLu5VgQ4Avar6oB9IZR90IuJ8frPMYmkT6ABQnn4KAHDwMhPoRNTABPqIESOwYMEClJeXV9tXVlaGV199FQ899JDDgiMiIulwzidnsPU/D9H4QC6YJY7G9XSsQCcH41xtb3DCUHTqdo942bBlBwDg3SXJ4ra0tHSJo7Tq09ra33d/ap7EkRCRO+B8fsN1WwW6UroYjDcl0LlWBRE1aDqaP38+vvnmG9x1112YOXMm2rdvDwA4e/YsVq5cCbPZjL/+9a9OCZSIiFyLcz45Q2ZVAj1K54tSiWORgk6sQOciouQYnKvtZeXkYurSL8Tr/z6YjkxDOYaO/yPaNAsAACSN7StVeHbubRUCmQz4LacE2YZyhGt9pQ6JiCTE+fyGjCJr+y2NSrrEtTHzPFRyILe4Ar/lloivIUTUNDUogR4REYG9e/di+vTpSEpKEr+Fk8lkSExMxMqVKxEREeGUQImIyLU455MzZNyUQL8kcSxSECvQfbQQBAEymUziiMjTca6uW3ml9ZcuvkrXL0J3Ozp/FTpFaXHqugH7UvPxcLdoqUMiIglxPr/BRyGDxViKAJWEXyyaTbgrVI1TOUYcTM1nAp2oiWvwD2JiY2Pxww8/oKCgABcvXoQgCGjXrh2Cg4OdER8REUmIcz45mm0B0cgmmkDX+qogAyAoVMgpNiI8kBWndOc4V9dOTKCrGtS50mXiW4fi1HUDUi7lMYFORJzPq7w6OBxd/5SA0NUbJY2jc7g1gX7gcj7G3dtS0liISFqN7igVHByM3r17OzIWIiJyU5zzyVFuVKD7SRyJNBRyGQJ8lSgqNyEtr5QJdHIoztX2LIKAcpN10WJflftVoANA39ah+OjnVOz7jX3QiegGzudWUv9Qr3O4GjjFhUSJqIGLiBIRERHdCVsP9Mgm3OvX1sYlLb8pdoEnch1jVfIccN8Eep/WIVDIZUjNLUE65wQicqA9e/Zg1KhRiI6Ohkwmw4YNG+z2C4KAV155BVFRUfDz80NCQgIuXLhgNyY/Px/jx4+HVqtFUFAQpkyZguLiYhfeC2l1aKaGXAak55eJv6IkoqaJCXQiIiJyGduHjygdE+hX8pgsI3ImW/sWH4UcCrl7rjcQ6KvCPS2DAAD/u5ArbTBE5FVKSkrQrVs3rFy5ssb9S5YswfLly7F69Wrs378fGo0GiYmJKC8vF8eMHz8ep06dwtatW7Fp0ybs2bMH06ZNc9VdkJy/So7O0ToAwIFUVqETNWVMoBMREZFLCIIgtnCJZAKd1aZETubu/c9t7m/XDACw53yOxJEQkTcZPnw4Fi1ahEceeaTaPkEQsGzZMsyfPx+jR49G165d8emnn+L69etipfqZM2ewefNmfPTRR+jTpw/69++PFStW4IsvvsD169ddfG+k07tVCAC2cSFq6hrdA52IiIioIYqMJpRWWBNaTKADV5hAJ3Kq8kr36H+eduUKOnW7p9b9Zl1z4L7n8MulXJjMFigV7p3wJyLPl5qaiszMTCQkJIjbdDod+vTpg5SUFIwbNw4pKSkICgpCr169xDEJCQmQy+XYv39/jYl5b3RvXDD++UsqK9CJmjgm0ImIiMglbP3PdX4q+Ps03bcg7IFO5Bo3KtClTaCbLAKmLv2i1v0WQcCKzcdRBH8cSdeL1Y5ERM6SmZkJAIiIiLDbHhERIe7LzMxEeHi43X6lUomQkBBxTE2MRiOMRqN43WAwOCpsSfSqmpPPZxWjoKQCwRofiSMiIimwvIGIiIhcwta+pSn3PwduJNBzioworTBJHA2R9yrzkBYucpkMilzrwn3bzmRJHA0R0Z1JTk6GTqcTLzExMVKHdEfCAtRo00wDADh0pUDiaIhIKu79bpKIiIi8RiYXEAVgrYaVm6xfJrAKnch5jG7SwqU+FFlnAQDbTjOBTkTOFxkZCQDIyrKfc7KyssR9kZGRyM7OtttvMpmQn58vjqlJUlISCgsLxUt6erqDo3e9e+PYB52oqWMCnYiIiFzixgKifhJHIj1lRREAIC2PCXQiZxEr0JUekEDPvQClXIZLOSVIzS2ROhwi8nJxcXGIjIzE9u3bxW0GgwH79+9HfHw8ACA+Ph56vR6HDx8Wx+zYsQMWiwV9+vSp9dhqtRpardbu4ulsrbX2sw86UZPFBDoRERG5RIaeLVxsVEZrP1BWoBM5T7mHtHABAJnJiD6trQkaVqETkSMUFxfj6NGjOHr0KADrwqFHjx5FWloaZDIZZs+ejUWLFmHjxo04ceIEJk6ciOjoaIwZMwYA0LFjRwwbNgxTp07FgQMH8Msvv2DmzJkYN24coqOjpbtjErAl0E9dK2T7PaImqumu4EVEREQulWGwVaAzga6sYAKdyNlsCXQ/D2jhknblCio3rgU6PYTkdVvw3qwPq42JaBaGndt+kiA6IvJEhw4dwuDBg8Xrc+fOBQBMmjQJn3zyCV588UWUlJRg2rRp0Ov16N+/PzZv3gxf3xvv09atW4eZM2diyJAhkMvlGDt2LJYvX+7y+yK1FsF+iNb54nphOY6k6dGvbZjUIRGRizGBTkRERC7BHug3qIyFAMBWDeSRrl27hpdeegk//vgjSktL0bZtW6xZswa9evUCAAiCgFdffRUffvgh9Ho9+vXrh1WrVqFdu3YujbPcg3qgmywCJk2bhY9/ToUluCWeeONf4oLDNh/+eZxE0RGRJxo0aBAEQah1v0wmw8KFC7Fw4cJax4SEhGD9+vXOCM+jyGQy9I4LwX+PXsf+1Hwm0ImaIPf/PSMRERF5BVsPdCbQbyTQL+cxgU6epaCgAP369YNKpcKPP/6I06dP45133kFwcLA4ZsmSJVi+fDlWr16N/fv3Q6PRIDExEeXl5S6Ntdxka+Hi/gl0ANColWgRbF0j4nxWkcTREBHRzWxtXA6yDzpRk8QEOhERudzbb78t9l60KS8vx4wZMxAaGoqAgACMHTsWWVnsA+stio0mFJVbe0ZyEVFAWZVAv1ZQBmNVko/IEyxevBgxMTFYs2YN7r33XsTFxWHo0KFo06YNAGv1+bJlyzB//nyMHj0aXbt2xaefforr169jw4YNLo3Vk3qg29wVGQgAOMcEOhGRW+kTZ02gH0kvQIXJInE0RORqnvNukoiIvMLBgwfxj3/8A127drXbPmfOHHz33Xf48ssvsXv3bly/fh2PPvqoRFGSo/xu/EQMHvYwEp94BgAgMxsxavSjGDzsYZw5e1bi6KSjMJUhQK2ERQDS2QedPMjGjRvRq1cvPP744wgPD0ePHj3w4Yc3+nWnpqYiMzMTCQkJ4jadToc+ffogJSWl1uMajUYYDAa7y50wWSyoNFtbF3hKBToAtG0WALkMyCuuQF6xUepwiIioStvwAAT7q1BeacHJ64VSh0NELsYEOhERuUxxcTHGjx+PDz/80O7n/oWFhfj444/x7rvv4oEHHkDPnj2xZs0a7N27F/v27ZMwYrpT2Xl6PDxvKe59yrpwVYg2EA/PW4qH5y1FhckkcXTSkQGIC9MAAH7LYRsX8hy//fab2M98y5YtmD59Op5//nmsXbsWAJCZmQkAiIiIsLtdRESEuK8mycnJ0Ol04iUmJuaO4rT1P5cBUCs95yOPr0qBVqHWuYFV6ERE7kMmk6FXVRuXA2zjQtTkeM67SSIi8ngzZszAyJEj7SoTAeDw4cOorKy0296hQwe0bNmyzopF8hzFVe1bAtRcv9zGlkDnQqLkSSwWC+655x689dZb6NGjB6ZNm4apU6di9erVd3TcpKQkFBYWipf09PQ7Ot6N9i0KyGSyOzqWq90VYW3jcj6ruM4FAImIyLXuZR90oiaLn2KJiMglvvjiC/z66684ePBgtX2ZmZnw8fFBUFCQ3fbbVSwajUYYjTd+4n6nP/kn5yk2ViXQffnWw4YJdPJEUVFR6NSpk922jh074uuvvwYAREZGAgCysrIQFRUljsnKykL37t1rPa5arYZarXZYnJ7Y/9ymdTMNlHIZCssqkWkoRxTXjSAicgv3VvVBP3g5HxaLALncs76gJaLG87x3lERE5HHS09Pxpz/9CevWrYOvr6/Djuvon/yT8xQZKwGwAv1mrZtVtXBhAp08SL9+/XDu3Dm7befPn0dsbCwAIC4uDpGRkdi+fbu432AwYP/+/YiPj3dZnLYWLp7U/9xGpZCjbXgAAODkNX4xTETkLjpHa+Hvo4Ch3MQ2W0RNDBPoRETkdIcPH0Z2djbuueceKJVKKJVK7N69G8uXL4dSqURERAQqKiqg1+vtbpeVlSVWM9bE0T/5J+dhC5fqWIFOnmjOnDnYt28f3nrrLVy8eBHr16/HBx98gBkzZgCw9oidPXs2Fi1ahI0bN+LEiROYOHEioqOjMWbMGJfFeXMLF0/UpbkOAHA+qwjGqvtCRETSUirk6BlrXcdp3295EkdDRK7EBDoRETndkCFDcOLECRw9elS89OrVC+PHjxf/X6VS2VUsnjt3DmlpaXVWLKrVami1WrsLuSe2cKmuVVUCPafIiKLySomjIaqf3r1749tvv8Xnn3+Ou+++G2+88QaWLVuG8ePHi2NefPFFzJo1C9OmTUPv3r1RXFyMzZs3O/QXSLdT5sEtXAAgSueLUI0PTBYBZzJZ5UhE5C7uaxMGANh7iQl0oqaEn2KJiMjpAgMDcffdd9tt02g0CA0NFbdPmTIFc+fORUhICLRaLWbNmoX4+Hj07dtXipDJwViBXp3WV4WwAB/kFlfgcm4purTQSR0SUb089NBDeOihh2rdL5PJsHDhQixcuNCFUdnz9Ap0mUyGLs112HU+ByeuFaIb5wciIrdwX5tQANYKdLNFgIJ90ImaBM8sySAiIq/z3nvv4aGHHsLYsWMxYMAAREZG4ptvvpE6LHKASrMF5SZrP+JAJtDt2Nq4/JZbLHEkRN7Fk3ug23SICoRSLkN+SQWu68ulDoeIiGDtgx7oq0RRuQknrxVKHQ4RuQg/xRIRkSR27dpld93X1xcrV67EypUrpQmInMbWvkWlkMFHye/ubxYXpsHBywW4nFsqdShEXkWsQPfgOUetVKB9ZCBOXTfgxHUmaYiI3IFSIUefuFBsO5OFvZfy0C0mSOqQiMgFPPcdJREREXmEm9u3yGT8mevN4sICAACprEAncihbAt3PgyvQgRuLiV7IKoKgDpA4GiIiAoB+ba1tXPZeypU4EiJyFSbQiYiIyKnEBUTZvqUaWwuX1NwSiSMh8i7e0MIFACK0vojS+cIiAJWxtS+qTURErmNbSPTg5XxUVLUpJCLvxgQ6EREROZWYQPdlAv1WrZvZeqCXQBAEiaMh8h5lHr6I6M16xgYDAEwte4vzKRERSeeuiACEanxQXmnB0XS91OEQkQtImkDfs2cPRo0ahejoaMhkMmzYsMFu/+TJkyGTyewuw4YNsxuTn5+P8ePHQ6vVIigoCFOmTEFxMX8GTURE5C5ubuFC9lqG+EMmA4rKTcgrqZA6HCKvIAgCjCZbAt3z64Vah2kQ5K8CVH7498F0qcMhImryZDIZ4tuwjQtRUyLpO8qSkhJ069atzgXjhg0bhoyMDPHy+eef2+0fP348Tp06ha1bt2LTpk3Ys2cPpk2b5uzQiYiIqJ7YwqV2vioFonV+ANjGhchRKswWWKp+0OENFegymQz3tLRWof/z51SYzGwXQEQkNVsbl72X8iSOhIhcQdJPssOHD8fw4cPrHKNWqxEZGVnjvjNnzmDz5s04ePAgevXqBQBYsWIFRowYgaVLlyI6OtrhMRMREVHDsIVL3Vo30+CavgyXsovRu1WI1OEQeTxb/3OFXAaVwvMr0AGgY2Qgdhz7Ddf0wPcnMjC6e3OpQyIiatLuq6pAP5JWgNIKE/x9+D6XyJu5/TvKXbt2ITw8HO3bt8f06dORl3fj272UlBQEBQWJyXMASEhIgFwux/79+2s9ptFohMFgsLsQERGRcxRVtXAJVKskjsQ9tQsPBACcz2ILOiJHKK/qf+7nBdXnNkqFHKor1s83q3f/xjUTiIgkFhvqj2idLyrNAg5dLpA6HCJyMrdOoA8bNgyffvoptm/fjsWLF2P37t0YPnw4zGbrm+LMzEyEh4fb3UapVCIkJASZmZm1Hjc5ORk6nU68xMTEOPV+EBERNVWCTC4u5scK9Jq1jwwAAFzILpI4EiLvUF7pPf3Pb6ZM2w9/HwXOZBiw63yO1OEQETVpMpkM97VlGxeipsKt31WOGzcODz/8MLp06YIxY8Zg06ZNOHjwIHbt2nVHx01KSkJhYaF4SU/nYjxERETOYFJpAFhbKfgq3fpth2TaRVgr0M9lMoFO5AhlYgLdeyrQAUBWWYbxfVoCAP6+86LE0RARka2NSwoXEiXyeh71SbZ169YICwvDxYvWN4yRkZHIzs62G2MymZCfn19r33TA2lddq9XaXYiIiMjxzFUJ9AC1EjKZTOJo3FO7cGsFenaREfrSComjIfJ8ZRXe18LF5tn7W8NHIcfBywU4eDlf6nCIiJq0+KoE+olrhSgsq5Q4GiJyJo9KoF+9ehV5eXmIiooCAMTHx0Ov1+Pw4cPimB07dsBisaBPnz5ShUlERERVbBXogWq2b6lNoK8KzYP8ALAPOpEj2BYR9cYEeoTWF2N7WhcQZRU6EZG0onR+aB2mgUUA9v3GNi5E3kzSBHpxcTGOHj2Ko0ePAgBSU1Nx9OhRpKWlobi4GC+88AL27duHy5cvY/v27Rg9ejTatm2LxMREAEDHjh0xbNgwTJ06FQcOHMAvv/yCmTNnYty4cYiOjpbwnhEREREAmFTW6mr2P69buwjr43Q+i21ciO6Ut7ZwsfnDgDaQy4Cd53Jw6nqh1OEQETVp97ez9kHfzbUpiLyapAn0Q4cOoUePHujRowcAYO7cuejRowdeeeUVKBQKHD9+HA8//DDuuusuTJkyBT179sT//vc/qNVq8Rjr1q1Dhw4dMGTIEIwYMQL9+/fHBx984JL4TQEROH5VD5PZ4pLzEREReRqzz40WLlS79lV90C8wgU50x2yLiPr5eGcCvVWYBiO7WouFVu26JHE0RERN26D24QCA3edyIAiCxNEQkbNI+ml20KBBdU4wW7Zsue0xQkJCsH79ekeGdVvX9WV4/btTKOz5NHaey0F6fhlGdIlkb1ciIqJbmFRMoNeHuJAoE+hEd+xGBbpHdatskOkD2+C7Y9fxw4kMXM4tQaswjdQhERE1SX1ah8BHKcc1fRku5ZSgbdXaNkTkXbz3XaUT+akU+OViHiAIkMuAiznFOJxWIHVYREREbkdcRJQtXOp0V1ULlwvsgU50x8QKdC9t4QIAnaK1GNy+GSwC8I89rEInIpKKv48SfeJCAAC7zmVLHA0ROQsT6I0QrPHBkse6QnfoIwy6y/pznV+v6GGx8Oc6RERENxN7oLMCvU5twwMgkwF5JRXILTZKHQ6RR7MtIuqtPdBt/ji4LQDg68PXkGUolzgaIqKma+BdzQCwDzqRN2MCvZFGdImCsjQPnaK18FMpUFZpRlpBqdRhERERuY1KswVmlT8AJtBvx99HiZhg62PFhUSJGk/AjRYu3lyBDgC9W4Xg3lYhqDBb8NH/fpM6HCKiJmtQe2sCfX9qPsoqzBJHQ0TOwE+zd0ghl+GuiAAcu1qIs5lFaBXK/oNEREQAkFNkBGQyyGWAv5cu5udId0UEIi2/FBeyinFfmzCpwyHyTAoVzFW/CvX2CnQAmD64DQ6syce6/Wn446C2CNb4YHDCUGTl5NZ5u4hmYdi57ScXRUlE5N3aNAtA8yA/XNOXYd9veRjcIVzqkIjIwZhAd4AOkVocu1qIS9nFqOxggUrBwn4iIqKMQmtLgQC1kgtt18NdEQHYdiaLC4kS3QGh6lcvCpkMKoX3zzuD7mqGTlFanM4wYG3KZcxOuAtZObmYuvSLOm/34Z/HuShCIiLvJ5PJMLB9M6zfn4bd53OYQCfyQsz0OkCEVo0AtRImi4DMQvYfJCIiAiC+JrJ9S/20jwwEAFxgAp2o8XysCXRflbxJfHEnk8kwfVAbAMAney+jxGiSOCIioqbJ1gedC4kSeScm0B1AJpOheZAfAOCavkziaIiIiNxDRqH1NTHAlwn0+mgXbk2gn8ssgiBwYXKixrBVoPs2obZRI7pEoVWoP/Sllfj8QJrU4RARNUn92obBRyHH5bxSXMwuljocInIwJtAdhAl0IiIie6xAb5g24Roo5DIYyk1i+xsiahihqgLdT9l0EugKuQzPDbRWoX/0v1QI8qZz34mI3EWAWon4NqEAgJ9OZ0ocDRE5GhPoDtI82JpAzywsFxcuIiIiasoyDEygN4RaqUC78AAAwKnrBomjIfJMTbECHQAeuac5IrRqZBrKYY7uLnU4RERN0tDOEQCAn05lSRwJETkaE+gOEuyvgp9KAZNFQHYRq8aIiIjECnS2cKm3TtFaAMCp64USR0LkmYSbeqA3JWqlAlPvbw0AqIy7j22giIgkkNDRmkA/mq5HtoF5ISJv0rTeWTqRTCZD9P+3d9/xTZX7H8A/Jztt06R7l5bVIntbEAREAQVEQVFRUXH+4ILiRK8Dx8XrHtd1FcEBolwRZSp7D9mj0EXp3jsdadM8vz9KI5WyStuTNJ/363VekDPSz0mbc06+ec7zmHQAgMxiHiiJiIjqC+gGrVrmJM6ja7ARAHAsgy3QiZqkvgsXtWu1QAeA2/uHwU2jhPDwR3oRu5UkImptAZ469AozAQDWnWArdKK2hAX0ZuTvWVdAZwt0IiJydbU2gRx24XLZup1pgR7LFuhETVLfhYsrFtA9dWrc0jsEAHAknccQIiI5sBsXoraJBfRm5G/QAgDyyiwyJyEiIpJXgdkCq00AwgY3resVspqqvguXzJIqFJVXy5yGyPn81YWLax537o2JAAAk5ZtRVlUjbxgiIhd0w1V1BfSdSfk8DhO1IWwS1oz8POoK6EUVNai22qBR8fsJIiJyTVlnum9R1lRAIUkyp3EeBp0a7XzckFJQgeOZpbimk6/ckYiciiu3QAeAqEADFAXJsPlE4lhGKWI6+MgdiYjIacXHx1/2NkIIhJm0SCu2YEt8Hsb2CG6BZETU2lhAb0buWhXctUqUW2qRb7Yg2KSXOxIREZEs6gvoqppymZM4n27BRqQUVOBwejEL6ESXqw23QE9NScFVPftcdL1iVSA8r5+OY5klGBDpDaWCX2ISEV2OsqICABImTZrUpO39Rj4Mt77jseZYNgvoRG0EC+jNzN+gQ7KlHHllLKATEZHryi6pG8BOWWOWOYnz6R1uwqqjWTiYWix3FCKnY2+Brml7BXSrTeChd5ZcdL05tw1G0Ni6Rj2JuWZEBRpaIR0RUdtRVVEGQGDCzFfRsWuvy9o2L/00fvjyY7j1HY8NJ3JQbrHCneMBETk9voubmZ+HFsn55chlP+hEROTCss4MIKqqZgv0y9U73AQAOJRWBCEEJHaBQ3RJqmpqAZUGAKBTu3BXirZadA0yYu/pQsRmlbKATkTURN5BYQiOjLrs7aqzExBkUCGrzIp1sTmYcGaAZyJyXi58Zdky/OoHEjWzgE5ERK4rm124NFnXYCPUSgn55mqkF1XKHYfIaRRV1A28q5AAjdK1P+bUD0icWljBQeyIiGRwbUTdHVG/HsqQOQkRNQfXvrJsAT4eda1eCsurYRNC5jRERETyyCquH0SUBfTLpVMrcVVQXfHrQGqRzGmInEdheV0BXadWuvydG0a9GiFnupM8kVUmcxoiItcztJ07AGBbQr79/EREzosF9GZm1KuhVEiotQmUVrK1BxERuaas0rqW0yr2gd4kvcO9AID9oBNdhuKKumtvfRscQLQp6luhx2aVQrBhDxFRqwozqtEtxBNWm8Dqo1lyxyGiK8QCejNTSBK83NQAwG8ZiYjIJdlsAjkldV2ZsQV609T3g34wrVjWHETO5OwW6AR08veAWimhpLIGmWfuCiIiotYzvmcwAOC3Q5kyJyGiK8UCegvwca/rB72ABXQiInJB+eUWVNfaoJAAVXWF3HGcUp8zLdBjM0vqBkYkoosqrqgvoPMjDgColQp08q8bQDQ2q1TmNERErmdcz2BIErD3dCEyijmuDZEzU8kdoC3ydv+rH3QiIiJXk3Fm4MsATx0k2GRO45hiY49h+Ojx511+KjEeyptfQw3cMHzyo9BV5DRY7u9jwo+Lvm3pmEROpbCcXbj83VVBnojNKkVCbhmGRflB7eKDqxIRtaYgox4DIryxJ7kQP+9Px8zrOskdiYiaiAX0FsACOhERubL6rgJCTHoUyJzFUdXYgPFPvnPe5a/dPxq9gvxwKr8cHW960N4ivd5v7z7V0hGJnE5RBbtw+btgkw5GvRollTU4lVeOqECD3JGIiFzKnQPCsSe5ED/sTcX/DesAFb/IJHJKfOe2AB+PvwroHK6HiIhcTeaZW1SDTXqZkzi3QKMOAJBdwr6LiS5FfQFdr2EBvZ4kSegc4AEAiM8pkzkNEZHrGd0tEF5uamSVVGFzXJ7ccYioiVhAbwFGnRpKSYLVJmDTGeWOQ0RE1KoyWEBvFoGeZwropSygE10KDiLauM4Bda3OTxeUc0wFIqJWplMrcVu/MADA93tSZE5DRE3FAnoLUCgkeLmrAQC1br4ypyEiImpd9QX0EJNO5iTOra4PeaCsyoqyqhq54xA5vOIK9oHeGF8PLXzcNbAJICnPLHccIiKXc9eAcADAlvg8pBVWyJyGiJqCBfQWUt8Peq07C+hERORa6rtwCfFiC/QroVEp4GfQAgDSzwzMSkTn91cLdH7E+bvOZ/o+j2M3LkRErS7C1x1DOvlCCOCHvalyxyGiJuDVZQvxca/7wMsW6ERE5GrYB3rzCfNyA8ACOtGleP7GLlDHroJJr5E7isPp7F/XD3p6YSXKLVaZ0xARuZ4pA+taof+0L43daRE5IZXcAdqq+hboVrZAJyIiF1JRbUXRmW4UWEC/cqFeeuxPLUJ6EW/3Jcf05ptvYs6cOZg1axY++OADAEBVVRWefPJJLFmyBBaLBaNGjcKnn36KgICAFs1yU48gPJ2yG3rN4y36c5yRyU2DAE8tckotSMhlNy5ERK3tui4BCDLqkFVSheUHM3DHmW5dWkJGRgYKCwubvL23tzdCQkKaMRGR82MBvYX41Hfh4uYDm01AoZBkTkRERNTy6lufG3QqeOrUMqdxfsEmPSQJKK2yorSyBp56vqbkOP7880988cUX6NGjR4P5TzzxBFatWoWlS5fCaDRixowZuPXWW7Fjxw6ZkhIARAUYkFNqQTy7cSEianVqpQLTronE66tO4L9bT+G2fmFQtkCdKCMjA1FR0Sgvb/qXpe7uHoiLO8kiOtFZWEBvIUa9GgoJsCk1yCiuRJi3m9yRiIiIWlxGcRUAIIStz5uFRqVAgEGH7NIqpBVVoKveKHckIgCA2WzGlClT8OWXX+L111+3zy8pKcH8+fOxePFijBgxAgCwYMECdOnSBbt378bVV18tV2SX19HfA1sT8pFVUgW91kPuOERELueOAeH4aEMCTuWX4/fj2bixe1Cz/4zCwkKUl5sx9cWP4Bcacdnb56WfxjevzURhYSEL6ERnYQG9hSgUErzcNCgor0ZCbhkL6ERE5BLY/3nzC/XSI7u0CulFlegazAI6OYbp06fjpptuwsiRIxsU0Pfv34+amhqMHDnSPi86Ohrh4eHYtWsXC+gyMujUCPSs+0LOGnCV3HGIiFyOh1aF+wZH4qMNCfhgfTxGdQ1skVboAOAXGoHgyKgWeW4iV8RBRFtQfTcu8TnsZ5CIiFxDRlF9AV0nc5K2I9Sr7suI9KJKCCFkTkMELFmyBAcOHMC8efPOWZadnQ2NRgOTydRgfkBAALKzs8/7nBaLBaWlpQ0man4dzwwmWssCOhGRLKZdEwlPnQrxOWasPJIpdxwiukQsoLeg+oFEEzlQDxERuYj6FughJt551VyCTXooJMBssaKkskbuOOTi0tLSMGvWLCxatAg6XfN9UTZv3jwYjUb7FBYW1mzPTX/p4OcOALB5R6CovFrmNERErseoV+OhIe0BAO/8EYeqmlqZExHRpWABvQXVF9A50j0REbmKjGK2QG9uaqUCgZ51r2f6mRb+RHLZv38/cnNz0adPH6hUKqhUKmzZsgUfffQRVCoVAgICUF1djeLi4gbb5eTkIDAw8LzPO2fOHJSUlNintLS0Ft4T12Ry08DXQwMolFgXmyN3HCIil/TANZHwN2iRVliJhTtPyx2HiC4BC+gtyN4CPaeMt1wTEZFLyCypb4HOPtCbU6hXXYv+tKIKmZOQq7vuuutw9OhRHDp0yD7169cPU6ZMsf9frVZjw4YN9m3i4uKQmpqKmJiY8z6vVquFp6dng4laRn03LmuPn79LHSIiajnuWhWeHR0NAPjPxkRkl1TJnIiILoYF9BZkctMAtlqUV9ciiwdEIiJq42ptAlnFdee7EC8W0JtTmHfd65lWyH7QSV4GgwHdunVrMLm7u8PHxwfdunWD0WjEtGnTMHv2bGzatAn79+/H/fffj5iYGA4g6iA6+tUV0Lcn5KOsit1CERHJ4ZbeIegdboLZYsU/lx/j9R2Rg2MBvQUpFRKUlUUA2I0LERG1fXllFlhtAkqFBH8Du3BpToFGHdRKCZU1tcg3s99icmzvv/8+xo4di4kTJ2Lo0KEIDAzEsmXL5I5FZ3i7ayCZ81Bda8PGk7lyxyEickkKhYR/T+wBtVLC+hM5+PUQBxQlcmQsoLcwZUU+ACAhp0zmJERERC2rvv/zQE8dlApJ5jRti0qhsHeLk1rIblzIsWzevBkffPCB/bFOp8Mnn3yCwsJClJeXY9myZRfs/5xalyRJUGbHAgDWHmM3LkREcukcYMCM4Z0AAP9cfgwpBeUyJyKi85G1gL5161aMGzcOwcHBkCQJy5cvb7BcCIGXXnoJQUFB0Ov1GDlyJBISEhqsU1hYiClTpsDT0xMmkwnTpk2D2ew4rb2VFQUAgKQ8x8lERETUEuoL6Oz/vGWEe9f1g84COhFdKVXOcQDA5rg8VFbXypyGiMh1TR/eAf0jvGC2WPHY9wdQUW2VOxIRNULWAnp5eTl69uyJTz75pNHlb731Fj766CN8/vnn2LNnD9zd3TFq1ChUVf3Vn/iUKVNw/PhxrFu3DitXrsTWrVvx8MMPt9YuXJSyvL4FOgvoRETUtmXWF9DZ/3mLqC+gZxRXwiYpZU5DRM5MKs1CqJcelTW12BLPblyIiOSiUirwwR294eOuQWxWKR5fcgi1NvaHTuRoZC2gjxkzBq+//jpuueWWc5YJIfDBBx/gn//8J26++Wb06NED3377LTIzM+0t1U+cOIG1a9fiq6++wsCBA3HNNdfg448/xpIlS5CZ6Rj9R9W3QE/INXNQCCIiatPqC+jBJvZ/3hK83TVw1ypRaxOwuLM7DCJqOgnA6K51xxF240JEJK8Qkx5f3NMXGqUCf8Tm4Omlh1lEJ3IwDtsHenJyMrKzszFy5Ej7PKPRiIEDB2LXrl0AgF27dsFkMqFfv372dUaOHAmFQoE9e/ac97ktFgtKS0sbTC1FWVkIhQSUVNYgz2xpsZ9DREQkt/Si+i5c3GRO0jZJkmRvhV5pCJU5DRE5uzHd6wroG07kwmJlNy5ERHLqF+GNj+7sDaVCwrKDGZi+6AC72CJyICq5A5xPdnZdS4iAgIAG8wMCAuzLsrOz4e/v32C5SqWCt7e3fZ3GzJs3D3Pnzm3mxI2TbFaEe7vhdEEFEnPM8DewVR4REbVN9X1z1xd5qfmFe7vhRFYZC+hEdMV6h3nB36BFbpkFOxMLMDza/+IbERHRJYmPj7/sbUIAPD3YB+/uKMDa49lI/WwnPr6rNzr4eTR/QCK6LA5bQG9Jc+bMwezZs+2PS0tLERYW1mI/r6O/AacLKpCQa8agjr4t9nOIiIjkIoRA2pkCepg3+0BvKfVfTlS7+SLfbIGvh1bmRETkrBQKCaO6BuK73SlYeyybBXQiomZQVlQAQMKkSZOa/BzGjv3QbspriM0qxY0fbsP/DeuIh4ZGwk3jkiU8IofgsO++wMC6WwpzcnIQFBRkn5+Tk4NevXrZ18nNbTjojdVqRWFhoX37xmi1Wmi1rfeBs1OAB9afyEFiLgcSJSKitimvzAKL1QaFBASbWEBvKW4aFXw9NMg3V2NHYj5u7hUidyQicmJjutUV0P+IzcYbtd2gUjpsD59ERE6hqqIMgMCEma+iY9del719XvppfPPaTHw4JgDzj1VjW0I+3l8fj292ncadA8Jwc68QdA4wNHtuIrowhy2gR0ZGIjAwEBs2bLAXzEtLS7Fnzx489thjAICYmBgUFxdj//796Nu3LwBg48aNsNlsGDhwoFzRz9HJv+52m4TcMpmTEBERtYz67luCTXqoWYBpUe283ZFvrvtAxQI6EV2JAZHe8HJTo6iiBnuTC3m3LBFRM/EOCkNwZFSTt/dxU+HbB3phxZEsvPN7HFILK/DJpiR8sikJUQEGxHTwQe9wE3qHeSHUSw+FQmrG9ET0d7IW0M1mMxITE+2Pk5OTcejQIXh7eyM8PByPP/44Xn/9dXTq1AmRkZF48cUXERwcjAkTJgAAunTpgtGjR+Ohhx7C559/jpqaGsyYMQN33HEHgoODZdqrc3Xyr/t2kC3QiYiorUorOtN9ixf7P29pYd567E8twvaEfAghIEn8wERETaNSKjCqayCW/JmGVUezWEAnInIgkiRhfM9g3NgtEGuPZ2P5wUxsic9FXE4Z4nLKsHBn3XruGiU6BRgQHWiAwWaGNrw7LBx/lKhZyVpA37dvH4YPH25/XN8v+dSpU7Fw4UI888wzKC8vx8MPP4zi4mJcc801WLt2LXS6vwbiXLRoEWbMmIHrrrsOCoUCEydOxEcffdTq+3IhHfzdAQD55moUllfD210jcyIiIqLmlVpQCYADiLaGEJMeks2K7NIqJOaa0Ym38RLRFRjTPQhL/kzD78ez8erN3aBkK0YiIoeiUiowtkcwxvYIRklFDTbH5+JgajEOpBbhZFYZyqtrcSitGIfSigEAgXfOw28pgFvWKfgbtIj0dUd7Xw946By2Ewoihyfru2fYsGEQQpx3uSRJePXVV/Hqq6+edx1vb28sXry4JeI1GzeNCmHeeqQVViIuuwwxHXzkjkRERNSsUjmAaKtRKRXQmrNQ5RmGbQn5LKAT0RUZ1MEHRr0a+eZq7E0u5GcVIiIHZnRT4+ZeIfZu/GpqbTidX17XKj27DHvjM7D96CmovYJQUV2L0wUVOF1QgU1xeQgx6dEn3IRIX3fewUh0mdhJaSuJDvQEAJzMLpU5CRERUfOzd+HCFuitQl+WAQDYnpgvcxIicnZqpQI3XBUAAFh9NEvmNEREdDnUSgU6BRgwtkcwnrwhCv+81g+Z/30It0TYMLlfGAZ39EGQsa4Xh4ziSqw4koXvdqcgIafsgg1aiaghFtBbSZfAutZhJ7M4kCgREbU9aWdaoLMLl9ahN6cDAHafKkC11SZzGiJydjf2CAIArDmWjVobCypERM5OpQACjTr0a+eN2/uF4YHBEejbzgsalQJFFTVYfSwbvx3ORGlljdxRiZwCC+itJDqILdCJiKhtslhrkV1aBYAt0FuLprIAvh4aVFTX4kBqkdxxiMjJDe7gC0+dCvlmC/adLpQ7DhG1kldeeQWSJDWYoqOj7curqqowffp0+Pj4wMPDAxMnTkROTo6MiampDDo1runoi2mDIzEgwhsKCThdUIHvdqcgLpsNPYkuhiMItJLoMy3Q43LKUGsTHJyHiIjajIyiSggBuGmU8OFA2a1CAjC4oy9+PZSJ7Qn5uLo9+ywmoqbTqBS4/qpA/HwgHauPZmEgjylELqNr165Yv369/bFK9VeZ6IknnsCqVauwdOlSGI1GzJgxA7feeit27NghR1SXEh8f3yLbaVQKxHTwQVSgARtP5iKjuBJrj2cjr8yCQR157Cc6HxbQW0k7H3fo1UpU1tTidEE5Ovh5yB2JiIioWdgHEPVy44BEreiaMwX0bQl5eGpUlNxxiMjJ3dSjroC+5lg2Xh7XFQo2+CFyCSqVCoGBgefMLykpwfz587F48WKMGDECALBgwQJ06dIFu3fvxtVXX93aUV1CWVEBAAmTJk26ouepKC+/4HJvdw1u7ROCXUkF2JdShP2pRcgvt6Avx6YnahQL6K1EqZDQOdCAw2nFOJlVxgI6ERG1GfX9n7P7ltY1pJMfAOBIRgmKK6phcmPrfyJqusEdfWHQqpBbZsH+1CL0j/CWOxIRtYKEhAQEBwdDp9MhJiYG8+bNQ3h4OPbv34+amhqMHDnSvm50dDTCw8Oxa9eu8xbQLRYLLBaL/XFpKbuxvRxVFWUABCbMfBUdu/a67O3j9+/Eb/99E1WWqouuq5AkDO7oCz+DFutic5BSUIHKCgmSSnv5wYnaOBbQW1GXMwX045kluOnMQD1ERETOLq2oEgAHEG1tgUYdOvl7ICHXjJ1JBbixO68tiKjptColrr8qAMsOZmDVkSwW0IlcwMCBA7Fw4UJERUUhKysLc+fOxZAhQ3Ds2DFkZ2dDo9HAZDI12CYgIADZ2dnnfc558+Zh7ty5LZy87fMOCkNw5OXfYZiXcfqyt+kcYIC7VoVfD2UgtxLwm/giqjhIPVEDHES0FXULMQIAjmaUyJyEiIio+aQW1LdA18ucxPVc08kXALAtIU/mJETUFow580Xc2mPZsNmEzGmIqKWNGTMGt912G3r06IFRo0Zh9erVKC4uxk8//dTk55wzZw5KSkrsU1paWjMmppYSYtJjQq8QqCQBfUQv/HtbPqy1LKIT1WMBvRX1CP2rgC4EL0iJyLXMmzcP/fv3h8FggL+/PyZMmIC4uLgG61RVVWH69Onw8fGBh4cHJk6ciJycHJkS06Wq7wOdLdBb39Az3bhsS8jntQURXbLUlBRc1bPPOdPMKeMAaxWyS6sw+Nb75Y5JRK3MZDKhc+fOSExMRGBgIKqrq1FcXNxgnZycnEb7TK+n1Wrh6enZYCLnEGzSY0iQgK2mCvsyq/Dayli5IxE5DBbQW1FUoAFqpYTiihqkn7ndnYjIVWzZsgXTp0/H7t27sW7dOtTU1OCGG25A+VkD3DzxxBNYsWIFli5dii1btiAzMxO33nqrjKnpYoQQ7ANdRgPbe0OtlJBeVImUM3cCEBFdjNUm8NA7S86ZHn7re3QJq/tiLs+tncwpiai1mc1mJCUlISgoCH379oVarcaGDRvsy+Pi4pCamoqYmBgZU1JL8tUB+SvfhQTgm10pWLgjWe5IRA6BfaC3Iq1KiehATxzNKMGR9BIWGojIpaxdu7bB44ULF8Lf3x/79+/H0KFDUVJSgvnz52Px4sUYMWIEAGDBggXo0qULdu/efd6BikheJZU1KLNYAQBhXjyvtTY3jQp9wr2wJ7kQ2xLyEOHrLnckInJy0YGeOJFVBmtgN1RbbdCo2OaKqK166qmnMG7cOLRr1w6ZmZl4+eWXoVQqceedd8JoNGLatGmYPXs2vL294enpiX/84x+IiYnhdXkbVxm/C/f1NmHBwWK8ujIW7f08MLSzn9yxiGTFq6FW1v1MNy5HMorlDUJEJLOSkrrxILy96wYp279/P2pqajBy5Ej7OtHR0QgPD8euXbsafQ6LxYLS0tIGE7Wu+u5b/Axa6DVKmdO4pvoPNNsS8mVOQkRtQaiXHu4aJaBxw+a4XLnjEFELSk9Px5133omoqCjcfvvt8PHxwe7du+HnV3dt8f7772Ps2LGYOHEihg4disDAQCxbtkzm1NQabuliwOR+YbAJ4PEfDyGrhL0okGtjAb2V9TgzkOiRNA4kSkSuy2az4fHHH8fgwYPRrVs3AEB2djY0Gg1MJlODdQMCApCdnd3o88ybNw9Go9E+hYWFtXR0+pv6AnqYFwcQlcs1HesGEt2VVMDBnojoiikkCVGBBgDA8kMZMqchopa0ZMkSZGZmwmKxID09HUuWLEGHDh3sy3U6HT755BMUFhaivLwcy5Ytu2D/59R2SJKEuTd3RddgTxSWV2PmDwdRw+tMcmEsoLeynmEmAMCR9GJ+yCUilzV9+nQcO3YMS5YsuaLnmTNnDkpKSuxTWlpaMyWkS5WcV9eHfaSvh8xJXFe3ECOMejXKLFYcTi+WOw4RtQHRgXWD/q0/kYuSyhqZ0xARkRx0aiU+ndIHBq0Kf54uwjt/xMkdiUg2LKC3ss4BBhh0KpRX1+JkdpnccYiIWt2MGTOwcuVKbNq0CaGhofb5gYGBqK6uRnFxcYP1c3JyztvSRavVwtPTs8FErSs5v66A3t6PfW/LRamQ7K3Q2Y0LETUHXw8NpLIcVFttWHssS+44REQkk3Y+7nhrUg8AwBdbTmFnIq81yTWxgN7KlAoJ/dp5AQD2JhfKnIaIqPUIITBjxgz88ssv2LhxIyIjIxss79u3L9RqNTZs2GCfFxcXh9TUVMTExLR2XLpEp/LrW6CzgC6nazrVFdC3s4BORM1AkiSoMg8DAJYdYDcuRESubEz3IEwZGA4AePp/R1BaxTuTyPWwgC6DfhF1A+btS2EBnYhcx/Tp0/H9999j8eLFMBgMyM7ORnZ2Nior6wakMRqNmDZtGmbPno1NmzZh//79uP/++xETE4Orr75a5vTUGCEETuWZAbCALrf6FugH04r5oYaImoUy8zAkCdiTXIjTZ74sJSIi1/T8jV0Q7u2GjOJKvLYiVu44RK2OBXQZ9D9TQP/zdBGEEDKnISJqHZ999hlKSkowbNgwBAUF2acff/zRvs7777+PsWPHYuLEiRg6dCgCAwOxbNkyGVPThRSWV6O0ygoAiPBhAV1OYd5uiPR1R61NYHdSgdxxiKgNUFSVYmgnPwDAT/s4xggRkStz16rw7u09IUnA0v3pWBebI3ckolbFAroMeoQaoVEqkFdmsfcdS0TU1gkhGp3uu+8++zo6nQ6ffPIJCgsLUV5ejmXLlp23/3OSX/05LMSkh16jlDkN1bdC386+KYmomdzRPwxAXbHEWmuTOQ0REcmpf4Q3Hh7SHgAwZ9kRFJgtMiciaj0soMtAp1ai75l+0DnYFxEROSv2f+5Y6vtB57UFETWX67oEwNdDg7wyCzbF5ckdh4iIZPbE9Z3ROcAD+eZq/HP5MfaqQC6DBXSZXBtVdzvk5rhcmZMQERE1TTIL6A4lpoMPlAoJyfnlSC+qkDsOETm51JQU9OrbD8VH6gb3fuSd73FVzz4NpuEjb5A5JRERtSadWon3bu8FlULCmmPZWHkkS+5IRK2CBXSZDDtTQN91qgBVNbUypyEiIrp8yXksoDsST50avcJMAIDtbIVORFfIahN46J0luOuuuwEAwj8ad77+PR56Z4l9ysnjsYaIyNV0CzFixoiOAICXfj2GfHblQi6ABXSZRAUYEOipQ1WNDXuTC+WOQ0REdNlO5ZsBAO39WEB3FPX9oG9jP+hE1Ey83DUINukgABzPKpE7DhEROYD/G9YRXYI8UVRRg5d+PSZ3HKIWxwK6TCRJsrdC5+jFRETkbGptAqcL6roJae/rIXMaqje0c10BfUdiPmpt7JOSiJpH92AjAOBoRgmPLUREBI1Kgbcn9YBKIWH10WysYlcu1MaxgC6jMd2DAACrj2ahhqPaExGRE8ksrkS11Qa1UkKIl17uOHRGz1ATDFoViitqcDyTLUWJqHl0DPCAXq1EuaUWSXlmueMQEZED6BZixP8N6wCgriuXAnblQm2YSu4ArmxwBx/4uGtQUF6NHYn5GBblL3ckIiKiS1I/gGg7H3coFZLMaVxPbOwxDB89vtFltZE3AMZIbEvIR49QU+sGI6I2SaVQoHuIEXtPF+JwWjE6BxjkjkRERA5gxohO+CM2Byezy/DKilh8fGdvuSMRtQgW0GWkUiowtkcQvtmVgl8PZbKATkRETuPUmRaI7TmAqCxqbMD4J99pdNnh9GJsjsvDtoQ8TB/esZWTEVFb1T3UiH0phcgsqUJemQV+Bq3ckYiISGZ1Xbn0xIRPd2DF4Uzc1D0Qo7sFyR2LqNmxCxeZ3dw7BEBdNy683YWIiJxFfQv0SA4g6nDCvd0AAPtTilBRbZU5DRG1FR5aFTr61415cSitWN4wRETkMLqHGvHote0BAP9cfgxF5dUyJyJqfiygy6x3mAndQ4ywWG34fneq3HGIiIguyakzBXS2QHc8Jr0aquoy1NQK7EkulDsOEbUhPc90CxWXU4bK6lp5wxARkcOYeV0ndPL3QL65GnNXHJc7DlGzYwFdZpIk4aGhdd/UfbvrNKpqeCFKRESOz94C3ddD5iT0d5IkQV+aDgDYFp8vcxoiakuCjDr4G7SotQkcSS+WOw4RETkIrUqJd27rCYUELD+UiXWxOXJHImpW7APdAdzYLRD/NumRUVyJL7eewj+u6yR3JCIiovOqqqlFRnElACCSLdAdkr4sHWW+XbA9MU/uKETUhkiShL7tvLDmWDYOp5cACrXckYiIqAXEx8df9jYKAHf19sf3B3Lx/C9H0T/CCyY3TfOHI5IBC+gOQKVU4JnRUZi15BA+2ZyIW/uGIsSklzsWERFRoxJzzRAC8HJTw9eDF8WOSGfOgCQB8Tlm5JRWIcBTJ3ckImojOvp5wFOnQmmVFerQ3nLHISKiZlRWVABAwqRJk5q0vbunF/o+/xNSiix4dWUs3ru9V7PmI5ILC+gOYnzPYCzak4q9yYWY/eMhLHpwIFRK9rBDRESOJy67DAAQFWiAJEkyp6HGKGst6B5ixJH0EuxIzMetfULljkREbYRCIaFPuBc2x+fBGjkY1lobP7cQEbURVRVlAAQmzHwVHbv2uqxt89JP45vXZmLGABOe/SMHyw5kYGyPIIyIDmiRrEStiQV0ByFJEubd2h03/2cH9iQX4tWVsZg7visLE0RE5HDics4U0AMMmDzlXuQWFJ933RMnT2J8K+Wiv8TGHkNg0GYgoDde+nwpPk7d1GC5v48JPy76Vp5wROT0rgr2xO7kAlS5eWPNsWyM6xksdyQiImpG3kFhCI6MatK20b5aPDikPf679RTmLDuKP57whlHPLr/IubGA7kA6+Hngndt64tHv9+PbXSmw2gTmju+Kmyfcipz8ggtuG+Drg9UrlrdOUCIicmn1LdA7BxqwtaAY459857zrHr5/dGvForPU2IDrRo/FsoMZEIFdMG7SjQ2+lP/t3adkTEdEzk6tVKBnqAl7kgvxxdYkjO0RxIY/RERkN/v6zlgfm4NT+eX45/Jj+OiOXjxPkFNjAd3BjO4WiH/d0h0vLD+KxXtScTyzFBmVCtz36vwLbvf9S9NaKSEREbm6+LNaoJPjCjLqoFJIKK+uRWF5NXw8tHJHojZi3rx5WLZsGU6ePAm9Xo9Bgwbh3//+N6Ki/mqpVlVVhSeffBJLliyBxWLBqFGj8OmnnyIggLdxtxU9w0zYk5CNYxml2JlUgMEdfeWOREREDkKnVuLd23vits93YcXhTAzu4IM7BoTLHYuoydhZncxuHDcBfWOGNJjefXwK3I8ug1RThcNpxSjpNw1rjmahsLxa7rhEROTiSiprkFVSBaCuBTo5LpVSgeAzg5KnFlbInIbaki1btmD69OnYvXs31q1bh5qaGtxwww0oLy+3r/PEE09gxYoVWLp0KbZs2YLMzEzceuutMqam5qZXK6FK3w8A+HxLksxpiIjI0fQO98JTo+q+XH/5t+P2u1iJnBFboMssJ78Ad5+ndXlZVQ22JeQjIdeM+FwzEnLN6OjvgX7tvODvqWvlpERERH+1Pg826uCpY1+Gji7c2w2phRVILaxA73AvueNQG7F27doGjxcuXAh/f3/s378fQ4cORUlJCebPn4/FixdjxIgRAIAFCxagS5cu2L17N66++mo5YlMLUJ3eCdF+ELYl5ONYRgm6hRjljkRERA7k4SHtsTOpAFvj8zBj8QEsnz4Y7lqWIsn5sAW6AzPo1LixexCKfn4Z7X3dIQAk5Jrxw59p+OVgBtKL2JqMiIha19n9n5PjC/d2AwBkFFei1iZkTkNtVUlJCQDA29sbALB//37U1NRg5MiR9nWio6MRHh6OXbt2NfocFosFpaWlDSZyfIrKYozrEQQA+M/GRJnTEBGRo1EoJLx3e0/4G7RIyDXjqaWHYeM1KTkhfu3jBGoL0zGuZzDyyizYn1qE+Jwye2uySF93DO3ki6TERPSNGXLe5+Ago0RE1BzY/7lz8fXQQK9WorKmFtklVQjx0ssdidoYm82Gxx9/HIMHD0a3bt0AANnZ2dBoNDCZTA3WDQgIQHZ2dqPPM2/ePMydO7el41IzS01JwdqPngOGzMDa49mIHjwGCnPOOesF+Pli0/o/ZEhIRERy8/XQ4rO7++DO/+7BmmPZ+HhjImaN7CR3LKLL4tAF9FdeeeWcC+moqCicPHkSgOsNTuRn0GJ010DEtPfB/pQiHM8sQXJ+OVILKqDpfTPufPIJKBWNj2rMQUaJiKg51LdAj2ILdKcgSRLCvPWIzzEjtbCCBXRqdtOnT8exY8ewffv2K3qeOXPmYPbs2fbHpaWlCAsLu9J41MKsNoFH5n6MNUezEJ9rRtjE53Bj96Bz1vvyqTtkSEdERI6ibztvvD6hG575+QjeXx+PqEAPjO527vmCyFE5fBcuXbt2RVZWln06++LcVQcnMurVGBHtjykD26GdtxtqhYBbn3H4aV8aijjQKBERtRAhBOLOtEDvzBboTqO+GxcOJErNbcaMGVi5ciU2bdqE0NBQ+/zAwEBUV1ejuLi4wfo5OTkIDAxs9Lm0Wi08PT0bTOQ8+kfWdd+TkGtGgdkicxoiInJEt/cPw32DIgAAs5Ycwp+nC+UNRHQZHL6ArlKpEBgYaJ98fX0BwD440XvvvYcRI0agb9++WLBgAXbu3Indu3fLnLp1eLtrcHOvYNzYLRC2KjNyyyxYvDcVJ7LYZyQRETW/vDILiitqoJCAjv4ecsehSxR2poCeU1oFi7VW5jTUFgghMGPGDPzyyy/YuHEjIiMjGyzv27cv1Go1NmzYYJ8XFxeH1NRUxMTEtHZcagW+Hlp09Ks7L/x5ukjmNERE5Kj+eVMXjIj2h8VqwwML/0RsJutX5BwcugsXAEhISEBwcDB0Oh1iYmIwb948hIeHX3RwoquvvlrG1K1HkiR0CjCg+OeX0XPGp0grqsQfsTnIM1twTQdfKM7TpQsREdHlqm99HuHjDp1aKXMaulSeOjVMbmoUV9QgvagSHfz45QddmenTp2Px4sX49ddfYTAY7P2aG41G6PV6GI1GTJs2DbNnz4a3tzc8PT3xj3/8AzExMS5zje6KBkR6IzHPjPicMgyM9IaXu0buSEREJIP4+PgLLn+spwbZBVrE5llw13934N/XByDYUw2gbkDykJCQ1ohJdFkcuoA+cOBALFy4EFFRUcjKysLcuXMxZMgQHDt2rEmDE9WzWCywWP66tbC01Pm/8bJVFOOW3iHYnVyIvcmFOJhajAJzNW7sHgitikUOIiK6cuz/3HmFe7uhuKIEqQUVLKDTFfvss88AAMOGDWswf8GCBbjvvvsAAO+//z4UCgUmTpzYYKwiarv8DFq093XHqfxy/Hm6EDd0bby7HiIiapvKigoASJg0adJF15W07gi8600U+0di2g/Hkfvji6jJT4G7uwfi4k6yiE4Ox6EL6GPGjLH/v0ePHhg4cCDatWuHn376CXp90wfBmjdv3jmDk7YFkiQhpr0PfN01+CM2B6mFFfjf/nTc3IsHHiIiunL1BXT2f+58wr3dcCS9BCnsB52agRDiouvodDp88skn+OSTT1ohETmKAZHeOJVfjpM5Zegf6Q0vN7ZCJyJyFVUVZQAEJsx8FR279rr4+lZga7ZAiYc3Ih76D7opMvHLG4+gsLCQBXRyOA5dQP87k8mEzp07IzExEddff719cKKzW6FfaHCienPmzMHs2bPtj0tLSxEWFtZSsVtdpwADjG5q/HooE/nmavy0Lw1KvbfcsYiIyAlNnnIvcguKAQAZnW8F3Pzww1ef4Ld3kwEAJ06exHgZ89GlCfXSQyEBJZU1KKrggONE1DICPHWI8HHD6YIK7EkuxGi2QicicjneQWEIjoy6pHWDI2rx66FMZJdW4YgIhr59vxZOR9Q0Dj+I6NnMZjOSkpIQFBR0RYMTabVaeHp6NpjaGn+DDrf3C4NJr0ZZlRUlve/GgVQO6ENERJcnt6AY4598Bzc98Tas7n4AgBunPIzxT76D8U++g2qrVeaEdCm0KiVCTHV37yXnl8uchojaspgOPgDq7lrKN1susjYREbkynVqJW3qHINRLD6uQ4DfpJSw9XnJJd7sRtSaHLqA/9dRT2LJlC06fPo2dO3filltugVKpxJ133tlgcKJNmzZh//79uP/++zk40VmMejVu6xeKAE8thNoNd325G5vicuWORURETqig3AKbALQqBTx1TnUDG50R6esOADjNAjoRtSB/gw6d/OvGWth9qkDmNERE5Og0KgUm9ApBe4OAJCnw7aESzFh8ECWVNXJHI7Jz6AJ6eno67rzzTkRFReH222+Hj48Pdu/eDT+/uhZw77//PsaOHYuJEydi6NChCAwMxLJly2RO7VjcNCpM7BMKdUEiqmpsePjbfVh9NEvuWERE5GRyy+paEfoZtJAkSeY01BT1BfSM4krYFGqZ0xBRW3Z1ex9IAJLyypFdUiV3HCIicnBKhYS+fgIFv38CpQSsOpqFGz/chj38IpYchEM3IVuyZMkFl3NwokujVipgOL4Mg2a8j5VHsjBj8QG8NaknJvUNlTsaEZFDOLuf78b4+5jw46JvWy+QA8o7U0D3N2hlTkJNZXLTwMtNjaKKGlQaeA1ARC3H212D6CADTmSVYeepfLnjEBGRkzAfWoMF772Kj/eVIaWgAnd8uRvTBkfiies7w13r0CVMauP41+ciJGHDh3f0hrtGhR/3peGppYdRbrFi6qAIuaMREcmuvp/v8/nt3adaMY1j+quArpM5CV2JCF93FKUWo8LYTu4oRNTGXR3pg7jsMqQVVkLr21HuOERE5CSifLVYNbMX5v52HEv3p+Or7clYdTQLr4zvilEcnJpkwgK6C1EqJLw5sTvctSp8vSMZL/92HGaLFdOH84KWiIjOzyYEW6C3EZE+7jiYWowKQzhsNgGFgt3xEFHL8NSr0SvMhAOpxaiOHgNrrQ0qpUP3IEpERA4gPj4eAHBvtAJXGfzw+b5CZJVU4ZHv9mNgqB4P9vVCoEfj5Uxvb2+EhIS0ZlxyESyguxhJkvDi2C7w0Knw0YYEvP17HMwWK54ZFcU+bYmIqFGF5dWw2gQ0SgWMbuw725kFm/TQKBWohh6H04vRO9xL7khE1IYNiPBGbFYpqgz++OHPNNxzNe9+ISKixpUVFQCQMGnSpAbzJZUWxpjb4TnwVuxJB3afLkXpgRUo3fkjbJbyBuu6u3sgLu4ki+jU7FhAd0GSJGH29Z3hoVXiX6tP4rPNSTBXWbFv/j+Rm3/+ARoCfH2wesXy1gtKREQOoX4AOH9PLRT8stWpKRUS2vm4ISHXjPUnclhAJ6IWpVUrcXWkDzbH5+H9dfEY3zMYRj2/iCUionNVVZQBEJgw81V07NrrnOWl1cDBAoHcSjWMA26F79W34CqTQAcjoJSAvPTT+Oa1mSgsLGQBnZodC+gu7OGhHeChVeOF5Ufx3e4UaH2uxsMzbjnv7dzfvzStlRMSEZEjyC6tK6AHerL/87agvZ87EnLNWH00G0/dwDvQiKhldQ8xYsuB4yiEPz7akIAXx14ldyQiInJg3kFhCI6MOmd+MIAoIZBSWIHtCfkoKK/G4UIJyRUqDOrgC1/WzKkFsYDewpISE9E3Zsj5l5861YppznXXwHC4aZR4culhWAK7Y/WxLIzuFgiVgv0TEhFRnZz6ArqRBfS2oL2vByRbBpLzy3E8sxTdQoxyRyKiNkyhkKA5sQaW/lOxYEcyxvcMRs8wk9yxiIjICUmShAgfd4R7uyE2qxS7kwpQWmXF2uPZMGok6DsMgBBC7pjUBrGA3sKsNoG7X51/3uUv3jG0FdM0bkLvELhplHj4mz1IyivHyiNZGNsjiEV0IiKCTaFCgbkaAFugtxUalQL60hRUmDpgxZFMFtCJqMUp8xNxc69g/HooE8/+fAQr/nEN1BxQlIiImkghSegWbERUgAEHUotwIKUYJdU2+E96CU//noMX9fkY3NGHd1pSs+FVCwEAbugaCMPRpVApJKQUVGDVkSxYbTa5YxERkcwsej8IAB5aFdy1/N69rfAoSgIArDqSxVY6RNQqXhp7Fbzc1DiZXYYvtiTJHYeIiNoAtVKBgZE+uG9wBKKMAraaKsQVVOPu+Xtw55e7se90odwRqY1gAd1F1Hclc6Ep7cAmjO8ZDKVCwumCCqw+mo1aGz9UExG5Mot7AAC2Pm9r9KVpcNMokV5UiUNpxXLHISIX4OOhxcvjugIAPtqQiPicMpkTERFRW6FXK9HDRyDjiwcxLsoDGqUCu08VYtLnu3DP/D3YfaqAjUboirApmYu4WFcyQF13MmHebhjXIwgrjmQhOb8ca45lYUy3ICjPM7AoERG1bVXugQCAYBML6G2JQlgxsksAfjuciRWHs9A73EvuSETkAm7uFYzfDmdi48lczFh8AL9OvwZ6jVLuWERE1EbYyovxcD9vzLllAD7emICf9qVjW0I+tiXko287L0wf3gHDo/zZtQtdNrZAp3O083HHuB51RfOkvHKsPZ4NG7+pIyJyOTabgMVeQNfLnIaa29geQQCA1UezYOMdZ0TUCiRJwr8n9oCfQYv4HDNe+OUoWwQSEVGzCzbpMe/WHtj81DDcfXU4NCoF9qcU4YGF+zDmw2349VAGqq3stpguHVugU6Pa+bhjbPcgrDyShcRcMzadzAUvbYmIXEtCrhk2lRZqpQQ/D63ccaiZXRvlB4NOhezSKuxJLkRMBx+5IxGRC/AzaPHhHb1wz/y9WHYwAx38PTB9eEe5YxERURsRHx/f4PHkDsD1wUH49UQp1iSYcTK7DLOWHMIruiMY1ckDozt6wMetrjzq7e2NkJAQOWKTg2MBnc4rwtcdo7oGYPWxbBzLLIU+YqjckYiIqBXtPTPoTqCnDgp25dXmaFVKjO0RhB/2puGnfWksoBNRqxnUwRevjLsKL/56HG//HgcvNw3uGhgudywiInJiZUUFACRMmjTpvOsodB4w9BkLj943ogjeWHK0FD8cLkJF/C6UHVgFVWEy4uJOsohO52ABnS6oU4ABI6w2bDyZi8p2g/DVtlN4cEh7uWMREVErqB+1nt23tF2T+4fjh71pWH00C6+M6wqjm1ruSETkIu6JiUB6USW+2HoKLyw/imprLe4bHCl3LCIiclJVFWUABCbMfBUdu/a64Lo2AWSU25BYKiG/Sgn36GvgHn0Naooy8cmWZDw22gth3m6tkpucAwvodFHdQ4yoqqnFzqQCvL7qBLzcNJjYN1TuWERE1IKEENiVVAAACGEBvc3qGWpEdKABJ7PL8MvBdBaviKhVPTcmGharDQt3nsYrK2KRlFeOF27qAp2aA4sSEVHTeAeFITgy6qLrhQIYCCCvzIIjGcU4kVkCeAVj8ZESLD6yCQMivTGpTyjGdA+EQcdGJq6Og4jSJenXzgu6tL0AgGd+PoJNJ3NlTkRERC0pKc+M3DILJJsVQUad3HGohUiShDsH1HWb8O2uFA4mSkStSpIkvDzuKjwzuq7Q8d3uFIz/z3bsPlUgczIiInIVfgYtrosOwPh2Avkr30WvQB0kCdibXIhnfj6Cvq+vx6Pf7cfqo1moqqmVOy7JhAV0uiSSJMHt1Ebc2jsEtTaBxxbtx4HUIrljERFRC9mRWFe80JZnQ6Xk5UJbNrFvKAxaFU7ll2NLfJ7ccYjIxUiShP8b1hEL7+8PXw8N4nPMuOO/u3HP/D1YF5sDi5XFCiIiankqBVB+fBNeu84fO54dgWdGR6GjvweqrTasPZ6N/1t0AP1eX4/ZPx7CppO5qKm1yR2ZWhG7cKFLJgH496QeKKyoxua4PDyw8E/879EYdPQ3yB2NiIia2Y7EfACAvixD5iTU0jy0KkzuH4avtidj/vZkDI/2lzsSEbmgYVH+WPfEtXh3XRx+2JuGbQn52JaQD4NOhRuuCsTwaD+89fSjyM9Ov+DzBPj5YtP6P1opNRERtTXx8fHoDGCID3DNSC8kF3lga0oFtqWUI7fcimUHM7DsYAYMWgUGh7lhaIQbuvprUVNdDa1W2+Sf6+3tzcFLHRgL6HRZ1EoFPp3SB3d9uQeH0opx7/y9+N9jgzjAHBFRG1JrE/bb5/VmFtBdwdRBEViw8zS2J+bjUFoxeoWZ5I5ERC7Iy12D1yd0xyNDO2DhztNYeSQTOaUW/HwgHT8fSAd6PQR/Tz3Cvd0Q7u2GIJMOKkXDu6S+fOoOmdITEZEzKysqACBh0qRJ51lDgjYkCm5droV79DUogxfWJpqxNtEMa1k+Kk5uQ3nsFlRnJzbp57u7eyAu7iSL6A6KBXS6bG4aFRbc1x+TPt+JpLxyTP16L5Y+GgOTm0buaERE1AwOpRWhtMoKT50Kmop8ueNQKwjzdsPNvYKx7EAGPt6QgPn39Zc7EhG5sDBvN7w49iq8cGMX/Hm6EL8fz8H2xDzE59SNz5FbZsG+lCKoFBJCTHqE+7ihs78BHjp+vCUioqapqigDIDBh5qvo2LXXBde1CSCv0oZUs4SMCgAGX3j2vwWe/W+Bh0ogzAMI9xDwvMQyWV76aXzz2kwUFhaygO6geIVBlywpMRF9Y4bYH9dqPaHofTcScoF+Ty6A55ElCPQ2YvWK5fKFJCKiK7bhRN1A0ddG+ePYbg4q6Sr+MaITlh/MwIaTuWyFTkQOQaGQMLC9Dwa29wEAdBkwFENmvIfUwgqkFlagoroWKYUVSCmswPbEfLT3dUetT3sIISBJkszpiYjIGXkHhSE4Muqi64UC6A3AarNh87Yd2Hs0HoYuQ2C2SjhRDJwoluDroUFUgAGdAwzw1KtbOjq1IBbQ6ZJZbQJ3vzq/wbwCswVL96fDYgyF8ZaXkb3sZZnSERFRc9l4sq6APiLaD8dkzkKtJ9LXHbf0DsXPB9LxxqpY/PRIDAtQRORQJIsZXYI80SXIE0IIFJRXI7WwAkm5ZmSWVCEprxwYcD8mfLoTj1/XCcOi/HgcIyKiFqVSKOCnrED+b2/hxqu7QBfaDfE5ZqQUlCPfXI18cwF2JBUgyKhD5wADOvl7wF3Lcqyz4W+MroiPhxbjewZj2cEMJOeXQxN1E6y1NqiUiotvTEREDiezuBIns8ugkIBrO/vjI7kDUat6alRnrDqaiT9PF2HNsWzc2D1I7khE1AakpqTgqp59LrhOVmYmgoKDL/w8qWn2/0uSBF8PLXw9tOgT7oUCswVHMkpwODkXh9OKcf/CP6EoSoX6xBooSxoOPMqBRomIqCWoJCA60BPRgZ6oqqlFYq4ZcTllSC+qRFZJFbJKqrA1Pg+h3npEBRjQ0c8DWrVS7th0CVhApysWbNLjxu6BWHUkC9UBXTHrx0P4YHIvqFlEJyJyOhtO5AAAeod7wdudY1u4miCjHg8P7YCPNiRg7orjuKaTLzx1vN2UiK6M1Sbw0DtLLrjOnIlXX9I65+PjocXwKH+sf+1ujH55EY6kl8DqFQ7LoEcQFWjA4A4+MJw5nnGgUSIiamk6tRLdQozoFmKE2WJFQk4Z4nPMyC6tQlphJdIKK7HpZB7a+bjBXwFIaq3ckekCWECnZtHe1wM3dQ/CikPpWHUkCzabwId39IZGxSI6EZEzWXU0CwBww1UBMiehlhQbewzDR49vdJlNUkJ71WTklALzVp/AvFt7tHI6IqKms1WWYkgnP/QO98LOpHycyCpDXHYZknLN6NvOC33beckdkYiIXIyHVoXe4V7oHe6FksoaxOWUIT67DAXl1TiVX45TUCB0xvd4e3s+7lXmYEhnX2hVbJnuSFhAp2bT3s8DhuPLYOk1GWuOZaPo6z34/O6+MLmxBSMRkTPILavCnuRCAMBNPdh1R1tWYwPGP/nOeZf/+Pm7yO40Hj/sTcOQTn7syoWInI6HVoUbrgpEz1ATtsbnIbOk7hx3PLMU1pBesNkEFAr2j05ERK3LqFdjQIQ3BkR4I99sQXxOGWLTC1EOPbamVGDrt/vgqVNhVNdAjOsZjEEdfNhNsgPgb4CalaYwCV9N7QcPrQq7TxXi1s92IqWgXO5YRETnNWfZEeSHXIOj6SWoqqmVO46s1h7LhhBArzATQr3c5I5DMtKXZ+HRazsAAJ793xEk5pplTkRE1DQBnjpM6huKG7sFwqBTwWyxorrHRIz9eDt2JubLHY+IiFyYr4cWgzr4YkyYQNa3szE+ygB/gxalVVYs3Z+Oe7/eiwH/2oDnfzmKXUkFqLUJuSO7LBbQqdkN7eyH/z0Wg2CjDqfyyjHu4+1YcThT7lhEROeotQksO5CBMr+u2BiXiwU7TmNfSiGEcM0Lk98O1R2rx7L1OQF46obOGBDhjTKLFfct2Ivcsiq5IxERNYkkSegUYMC9V7fD4I4+QE0VYrNKcddXe/DAwj+RmFsmd0QiInJhkgRUZ8XjoX5e2DXnOix5+GrcfXU4fNw1KCyvxuI9qbjzy924et4GzF1xHCezS+WO7HJYQKcWER3oieXTB6NXmAmlVVb844eDmP3jIZRU1sgdjYjIrtYmMO/W7jDmHISPhwbVtTbsSCzAiiNZqKm1yR2vVSXmmrEvpQgKCRjXM1juOOQAVEoFPru7DyJ83JBeVIkpX+5BbmldEX3ylHsxfPT4RqfJU+6VOTkRUeNUSgX6tfOGfsv7uG9QBFQKCRtP5mLUB9vw1NLDSM7nnbNERCQvpULC1e198PqE7tjz/HX4btoATO4XBk+dCnllFizYcRqjP9iGmz/ZgR/2psJsscod2SWwD3RqMf6eOix9NAYfb0jAfzYlYtnBDGyOz8Os6zrhroHhULMPJyKSmUalwK19QvFx1l6Mu/M2HM8sxeb4PCTnl+O3w5kY3zPYZY5VP+1LAwCMiPZHgKdO5jTkKHw8tFh4/wDc8d/dSMg1Y9Lnu/D1ff2QW1B83j7Uf3v3qVZOSUR0eaSaCrwyvivujWmHN9ecxB+xOfjf/nQsO5COcT2DMWN4R3QKMMgdk4iIXEx8fPw580wA7o6SMLljEA5mVWHDKTP2pFficFoxDqcVY+5vxzCknRvu7BeCEb07tXpmV8ECOjWrpMRE9I0Zcs58D88QlHceg0L44uXfjmPhztOYdk0kbu0TAjcN/wyJSH6SJKFbiBHe7hosP5SB9KJKrD2W7RLdmVRbbVh2IB0AMLl/uMxpyNFE+Lpj6aMxuOur3UgtrMCET3ZC59UZQghIEgfgIyLn1d7PA/+9tx8OpRXj4w0J2HAyF78eysRvhzMxplsgZgzvhKuCPeWOSUREbVxZUQEACZMmTbqk9RVuRnh0GwGPHjcAPmFYl1SOdUnx6LUtA4+OiMb1VwVAyYGymxUrl9SsrDaBu1+d3+gym03gWGYJNh89jeR84J/Lj+Hfa0/i1t4hGNM9CP0jvPkGJyLZBZv0uLlXCH45kIFT+eXYmVQgd6QW99vhTOSbq+Fv0GJ4lJ/cccgBhXm7Yfn/DcZjiw5gb3IhzO2G49fDmbgu2h8GnVrueEREV6RXmAnz7+uPYxkl+HhjAn4/noPVR7Ox+mg2FHkJUCdvh6LgFBr7pBLg54tN6/9o9cxERNR2VFWUARCYMPNVdOza65K3EwIosNhwPLsCOTU6HMosx6Pf74e/uxLjogy4voMH3DUXv6Pa29sbISEhTd8BF8ACOrUahUJCj1ATDs3/AjPe/Arf7jqNlIIKfLMrBd/sSoGvhwZDOvlh98rFqEyLhdJSct7nCvD1weoVy1svPBG5lBCTHiO7+OP32BzsSymCn1fbvRVOCIH/bk0CANw/OBIqF+myhi4sNvYYho8ef858AQle/j1RGNAXKQUV+HZXCnqFmdC3nRd0aqUMSYmImk+3ECO+uKcfTmaX4j8bE7HycAZsfp1g8esEP4MWfcO90MnfA4qzGv18+dQdMiYmIqK2xDsoDMGRUZe1TQgAbeVOfPX6dBh63wiP3mOQC0/MP1CML3dlwnz4d5Tu+w21ZXnnfQ53dw/ExZ1kEf0CWECnVqeorca0ayJx/6AIbE3Iw8ojWVgXm4N8czV+OZgBhFwLhFwLT50KISY9gk16hJj0MLmp7beKf//SNJn3gojauuggTxSUV2NfShHywq7FwdQi9A73kjtWs9t4MhfxOWZ4aFW4ayC7b6E6NTact49zAHhj1lR0uud1ZJVUYV9KEY5mlKBXmAk9Qo2tmJKIqGlSU1JwVc8+F12vsKgKw5/5L45nliKvzIK1x7OxM0mF3uFe6Brs6TLjpBARkWOrqihDrbkAw3p3QkQXD6SabYgvkVAGN3gOuAXGARMQ6g5EmQS8tA23zUs/jW9em4nCwkIW0C+ABXSSjUIhYViUP4ZF+aOm1oa9yYXYmZSPL5Zvgc0UitIqK0qzy3AiuwwAoFcrEWzSIdikh9UjENZaG1tKElGLGtTBB4Xl1TiVX45HvtuPFf+4pk0NsFlrE3hrbRwAYMrAcBj17IqDLo2tNAe39Q1F8plujgrKq7EnuRD7UorgFnoNkvPLEenrLndMIqJGWW0CD72z5KLrzZl4NYZF+WNgpA+OpBfjcHoJSqus2BKfh92nCtAz1ASh4bGOiIgcg3dQGMI7RCEcwGAhcLqgAgdSi5BeVIm0ciCtXEKolx59wr0Q4ePG8YwuA6uP5BDUSgUGd/TF06OiYTz0PR4Z2gE39wpG/wgvhJj0UCokVNbUIimvHNsS8lHS9z70mPsH7v5qDz5cn4CdSfmoqqmVezeIqI2RJAmjugZCXVmI3DILHv1+PyzWtnOs+Xl/OuJyyuCpU+GxYR3kjkNORpIktPfzwF0DwzGmWyD8DVrU2gTKfLtixLub8ch3+7DvdCGEEHJHJSK6InqNEgPb++D+wREYHuUHo14Ni9WGvacLUTnsSTz/y1Ek55fLHZOIiMhOkiRE+rpjYp9Q3Nk/DFEBBkgSkF5Uid8OZ+L73ak4llmCWpvcSZ0DW6BTq0tKTETfmCHnX37qFDQqBSJ83BHhU9eiw2qzIbfUgsziSmQUVyIluxAV0GF7Yj62J+YDADQqBfq188Lgjr4Y1MEH3UOMbKFORFdMo1IgIPl3lPa5BwdTi/H8smN457YeTv9tfYHZgn+vPQkA+MeITjC5aWRORM5KIUnoHGBAJ38PZBRXYvWmnag0tsPvx3Pw+/EcRAcacE9MO0zoFQJ3LS89ich5qZUK9Ag1oVuIEUl5ZuxPKUJOKbB4Typ+2JuKG64KwCPXdkCfFuzybfjIG5CTl3/BdTiwKRERnc3fU4fR3QIxqMoHh9OKcSyjFIUV1dhwIhdapQRjzGSUWtpOQ7GWwE8x1OqsNoG7X51/3uUv3jH0nHkqhQLBZ/pD7wdg7l1T0K7n1bAaQ1HjGYoaUziqYcDOpALsTCoAUNfX+ohuoRjUwReDO/qic4CH0xe8iEge6upS/OeuPrhvwV78fCAdwSYdnrzh8gZ3cSRCCPxz+TEUlFcjOtCAewe1kzsStQGSJCHUyw2ByWvx328W4attyVh+KAMns8vwwi/HMG/1SdzcKxjjewajf4R3g0H4iIiciUKS0MnfgI5+HvjiX89h8H3PY+PJXPsXh/0jvPDI0A4YEe3f7Me6nLz8i3Y/w4FNiYioMZ46NYZ08sOASG8czyjFwbRimC1WmIbeg/t/ycSkNCUm9wtDj1Aj62d/wwI6OSWrzYb7nn3T/lgIgaKKGqQVVSCtsALpRZWwQIP1J3Kx/kQuAMDXQ4OYDr4Y3MEHgzv6IszbTa74ROSEhnb2wxu3dMecZUfx8cZE6NRKTB/eUe5YTTJ/ezLWHMuGSiHhndt6QqtSyh2J2phOAQb8e1IPzLkxGv/bn47Fe1JxKr8ci/akYtGeVAR66nBdF38M6eSLmA6+7H+fiJySJElQFqXg6/v6Iz6nDP/degq/HsrAn6eL8OfpfWjn44Yx3YIwulsgeoQY+cUhERE5BK1KiT7tvNAzzIQ/j8dj65FTQGBHLN6TisV7UhEdaMBt/cIwoVcwfDy0F39CF8ACOrUJkiTB210Db3cNeoaaYBMC3779Av7vn//GjqQC/JlciHxzNVYczsSKw5kAgFAvPfpHeOOqIE9cFeyJq4I84eUuTxcGN46bgJz8gvMuD/D1weoVy1svEBE16s4B4Sgsr8bbv8fh7d/jUFpVg2dHRTvVB+IVhzPxxuoTAIA5N3ZBtxCjzImoLTO5afDgkPaYdk0kdiYV4JeDGfj9WDayS6vsxXRJAiJ93NElyBNdggzoEuSJjv4eCDHp2RUbETm81JQUXNWzj/2xUmuAiIiBNaw/UgqAz7ck4fMtSfDUqdAr3Au9Qo0I93FHsEkHXw8tNEoFVEoJ1VYbzBYrzFVWlFmsKKmsQXFFNYoqzvxbXoPyaiuq+t+Hn/enQwCQJECnVkKnVkCvVsJNo4KnXgWbux+qamqhU7e9L8jZhQ0RUfNRKiSEewDZ3zyORev2Ym++CmuOZeNkdhleWxmLf60+gYGR3hjTLRCjugbC31Mnd2TZtJkC+ieffIK3334b2dnZ6NmzJz7++GMMGDBA7lgkE4UkQWXOwSPXdsAj13ZAtdWGg6lFZ7p4ycfB1GKkF1UivSgDvxzMsG/n66FBuLfbX5OPO0K99PA3aOFn0MJDq2qW21istTYUllcjz2xBXpkFKcog9HrgOVRU16KyphY2IWATdS3rhQASj+/FC78chYdWBQ+tCiZ3DXzOfGFQP5n0ahYaqE1w9OP59OEdoZAk/HvtSXyx5RQScsx4a1IP+Dr4N/NCCHy7KwWvrDgOIYC7BobjgcERcsciFyFJEgZ3rOtS7fUJ3bA9IR/bEvKwPTEfSXnlOJVfN606mmXfRq2U0M7HHe193RHp544Ovh6I9Kt77O2u4W2lTsDRj+dEzcFqE412qVJtteF0QTkSc81IyCxAaRWwNT4PW+PzruwH+nZAenHlhdcZOhNdXlqLYKMekb7u6ODnjvZ+Hmjv544Ofh4I9NQ51Zf/Z2MXNvLg8Zyo7eseoMNdI7tjbkUNfjucgZ/2peNoRom9q+SXfjuOnqEmDO7og0EdfNG3nVeb/KL2fNpEAf3HH3/E7Nmz8fnnn2PgwIH44IMPMGrUKMTFxcHf31/ueCSTCw1W6qlQwyP8Ktz+0CwczyxFbFYpUgoqkG+uRr65GgdSixvdTqdWwNdDC18PLTz1anholfDQquB+prCtUSpgE4BNCAghUFlTi5LKGpRU1qC00oqiimrklVlQWFENIc564uix2JF0/hboCOiKRXtSL7i/kgQY9eq6grpbXVHdx0MDL7eGhXYfdy283NXwcddCr3Gdgx05B2c5nj82rAOCjDo88/MRbDyZixve34onRnbC5P7h0Kgc74us0/nleH1VrL1LqykDw/Hqzd1YgKQWERt7DMNHjz/vcn8fE35c9C1GXhUAAMg3W3AiqxSxmaU4kVWK3/fGokrlgRqokJhrRmKu+ZznUFiroK4qgqaqEJrKAmgqC6GpKoTCVmN//qaaPOVe5BYUXzA7XZyzHM+JWopGpUDnAAM6Bxjw32+fxNJVG3AwtQhHM0qQWVyFzJJKFJZXw1orUF1rg1algEGrgoeu7rOFUa+Gl5sGJjc1THoNvNzVMOhUeHbOC7ju7pmQANQKAUuNDZU1taiqqUV5dd1nj7yiEgiVDhnFlcgorsT2xIYttvVqZV1h3d8D7X3d0d7PHRE+7ggy6eDrrpWtuG6x1qKsynpmqrH/W1ppRemZx9XRY7AuNgcWay2qrTZYzkzVVhuqa20AgNrrX0DvV/+AWqmAh04FLzfNmUkNX4MWQUYdAjx16OTvgfZ+HrLsqzPh8ZzItRjd1LgnJgL3xEQgtaACa45lYc2xbBxKK7ZPn2xKgkalQM9QI7oGG9E12BPdQozo6O8BdRtt2NkmCujvvfceHnroIdx///0AgM8//xyrVq3C119/jeeee07mdCSXiw1WOveua1F++rD9sZdSA5veC7U6E2x6E2p1JlRIOqiNARAadwiVFlU1tjMt1y/S6uMSKCTA210LXw8NkmIPo8NVPeGuUUGvUUKpkCChriU9JGDVwo/hHRgModRCqLSwqfUQaj1sajcItRuEWg8hgOKKGhRX1OAUyi8pg06tgI+7tq4Fu5va3sLdoFPDQ6eyX8QbdPXzVfDQqu3z3DUqKJ209Qo5Jmc6nk/oHYKoQAOe+PEQTmaX4cVfj+PDDYmY2DcE13cJQLcQo6zfyJdW1WBnYgF+O5yBP47nwGoT0CgVeGZ0FKZdE8niObWYGhsw/sl3zrv8t3efavDY10OLIZ38MKSTHwBg+MKXMW722yirqvviubiiBkVnujEoqqhGaWU1bCodLB5BsHgENXguT50KOTkJeO+POLT38zgzALkOXm4auGmUDf7uhRD2YlPJmefON1uQoAhD5M2PoqLaWndnWHUtamptqLUJpJaVYP72ZEy7JrIZX7G2yZmO50QtLe10Mm6/cfh5l6sA+F5ityMvZB1F5wDDBdd58bYYhHW6CjY3HwgPX9jcfSHcz/zr5o3KGiA2q64R0TlsVkhVpZCqSqAXFtw2bjRMbn8V8416Ndw0KmhUCqiVEjRKBQTqWtzX1NpQUytQU2tDVU0tzBYrSqvquqX5fMG3KLfYINQ6QFX3mabuX539/1BewngYkYMaz302lQ5FFTUAgNwyC3Cez0aGvKM4Op/Ho4vh8ZzINcTHxzc6f5A3MGioJ/Ir3HAoqwqHs6twJMeCwsraM2N+FNnXVUhAsElv79UhyKiHt8dfjTw99SpoVUpoVQpo1Qr7/zMzM1FQWHimJwZAoO5a3Wb//9/mCcCGv3ptCPTzRs/OES36+jh9Ab26uhr79+/HnDlz7PMUCgVGjhyJXbt2yZiMHN3FCuwA8OIdQ/Hakq0AgJpaGyqqa1FRbUW5pRbVtTbs+PU7TJ/xD5RbrDBbrKipFVBIdYVvSQK0KgWM+roLTc8zrUj8DHUt2L3dNfbic9+YFzDqtlHnzfHT0T/w3Atbz7vcZhN4Zdo4zPr4Z1TW1H3Yb/DvmSkz9TT8gtuhsLwa1bU2VNXY7C1Tmspdo6xrKWO/kFb8dUGtUkKjVECScKbFvWhw4Pv7gfDvzp5Vt3bD+X/fRKEAJNS99gpJOut38df/FYq6rgQk1PX3pZQkKBQSVIq6f5WSBKVCgkKSoFQASoWi7l9JQq0QqLXV3WFQaztrEgK2v/3fahNnrQfcfXU4hkWxhcaFOOPxvEuQJ1b84xos2ZuKjzcmIrfMgi+2nMIXW05BqZDqbpn29YCvQQNfDy3cNMqz3iMKaFWKui/KGnHuO+KsZWdanFmstag66998swWZJVVIL6xAckF5g/fIsCg/zBnTBVGBF/7QTeQIJEmC55lzZzufhstee3AcHn3/fygsryt4103V9kINjJH4aGPiOc+pkAA3Td2lrxACFqsNVlsj77SQQShMKTp3PgCo3VFaWXOlu9fmOePxnKglna+bl7M1Z7cjVpvAw/9q/HNOrU2gtKoGH/5zFsbN+lfdF5Tl1SitsqLcYoVQqCDcvCHcvFEOYOHO080TKujSu/tw1yjhqa9rcW/QNfz3px8WYcD1E6BR1V1HaVQKaJVK+2NIwFuPTcQTHy9FrRCotta30K/7t+LM5zazxYrC2Avf4Us8nhO5grKiAgASJk2adFnbqbxDoA2KgiagPfTBnWGK7Iby6r8ane68UC8Lzawq/n/Y//F0hISEtNjPcPoCen5+PmpraxEQENBgfkBAAE6ePNnoNhaLBRaLxf64pKQEAFBaepFvsv+m1mpFVfm5txWfTQjbBde52PLmWsdRnsPZf44WgFYFeKkAQIGfNi/Bl6l7L/gc6elpCA0Nu+A6yadPX3FWW0Ux3KUauGsAaCTUvb0bvsV/XPol/tjwu73VXVF5NQrLLSiqqEFZVQ1ee/tDdB95W90tkFYbamx/3RJZU1v3b1lpKVR6d9TU1hUdyixAWdkFoxGAAaE69Am69AE36o9HjX2x0FbJeTy3Wmsu+B6zWmsu+Jw3d/XGjdH9sOlkLv44no29yYUorKjBydRynEzNvawszamdjxuGdPLDLb2DERXoCUA0+2sjbBc51l5g+ZVs6+zLHTnblS6/2LYXez9d9G+uxgKDogYGg4R2Bh2AumNrlbUWBWYLtq1ZhhFjJyGtsBJZpZXILrGgptYGG4DSqnOfT62U4KlTweRW183ZsUP70KFrb7hplNBrFHBTq6BWKqBUSNj50yeYMPODy3of8Xj+l1a5Pq+tvYTrO3HRdS51PUdbh5mcN3dtbe0l/b03x9+4HkDV6QPo6qsGoAbgXvfcNoHyGivKq+oKzFuWL8LUaQ+jpKoGJRXVKKm0oriyBpaausZE1jOfDxSSBJVSAbVKqmsooKxrKGDQqeCuVcJdo8bqFcvR85pRZzW0ObPemX81KgV+fvMf2LN53QXvcP35xTXoftftf39V6qa6HlxgLcmBu1QDSADsn42UZyaNfauFi3fweH4Rch3Pzea6v9+MpBOwVFZcbmzkpiYDAHJOJ8Bdr2/V7eX82XJv78zZr3R7Z86eevIIAIHBt9yHkIiOl/2zi/Oy8cf3z2DeN9/CNzQSOWYrcstrkWu2orCqFmWWWpRabCiz1KKiRqDGBlTXCtTUigs2Gmuobk3pzP/rzxISBITNhuqyQqSmpsJguLTGYk06ngsnl5GRIQCInTt3Npj/9NNPiwEDBjS6zcsvvyzOvPqcOHHi5NBTWlpaaxxKHQKP55w4cWrLE4/nPJ5z4sSpbUw8nvN4zokTp7YxXc7x3OlboPv6+kKpVCInJ6fB/JycHAQGBja6zZw5czB79mz7Y5vNhsLCQvj4+Fxyn7ClpaUICwtDWloaPD09m74DToj77pr7Drj2/rf2vgshUFZWhuDg4Bb/WY6Cx3PnxNev6fjaXRlnef14PP/LlRzPneX3fSW4j22HK+ynK+4jj+d/ae7rc2f7e3K2vIDzZXa2vAAzt4bmytuU47nTF9A1Gg369u2LDRs2YMKECQDqDtAbNmzAjBkzGt1Gq9VCq9U2mGcymZr08z09PZ3ij6wlcN9dc98B197/1tx3o9HYKj/HUfB47tz4+jUdX7sr4wyvH4/nzXc8d4bf95XiPrYdrrCfrraPPJ637PW5s/09OVtewPkyO1tegJlbQ3PkvdzjudMX0AFg9uzZmDp1Kvr164cBAwbggw8+QHl5uX2UaCIicg48nhMRtQ08nhMRtQ08nhMRtZEC+uTJk5GXl4eXXnoJ2dnZ6NWrF9auXXvOQBdEROTYeDwnImobeDwnImobeDwnImojBXQAmDFjxnlvIWoJWq0WL7/88jm3JrkC7rtr7jvg2vvvyvve2ng8dy58/ZqOr92V4evn+JrzeO4Kv2/uY9vhCvvJfXQtLX197myvtbPlBZwvs7PlBZi5NciZVxJCiFb/qUREREREREREREREDk4hdwAiIiIiIiIiIiIiIkfEAjoRERERERERERERUSNYQCciIiIiIiIiIiIiagQL6E30ySefICIiAjqdDgMHDsTevXvljnRF5s2bh/79+8NgMMDf3x8TJkxAXFxcg3Wqqqowffp0+Pj4wMPDAxMnTkROTk6DdVJTU3HTTTfBzc0N/v7+ePrpp2G1WltzV67Ym2++CUmS8Pjjj9vnteV9z8jIwN133w0fHx/o9Xp0794d+/btsy8XQuCll15CUFAQ9Ho9Ro4ciYSEhAbPUVhYiClTpsDT0xMmkwnTpk2D2Wxu7V25bLW1tXjxxRcRGRkJvV6PDh064LXXXsPZQ0O05f2nOm3teN4SmuscQU0/x7iy5jhPkXO43OPx0qVLER0dDZ1Oh+7du2P16tWtlLTpLmcfFy5cCEmSGkw6na4V016+rVu3Yty4cQgODoYkSVi+fPlFt9m8eTP69OkDrVaLjh07YuHChS2e80pc7j5u3rz5nN+jJEnIzs5uncBNcCnn/cY403uyKfvojO9JR+KM15OfffYZevToAU9PT3h6eiImJgZr1qxx2Lx/5wzXna+88so576vo6GiHzQs437VpREREo+eh6dOnA3C817i56jTNTtBlW7JkidBoNOLrr78Wx48fFw899JAwmUwiJydH7mhNNmrUKLFgwQJx7NgxcejQIXHjjTeK8PBwYTab7es8+uijIiwsTGzYsEHs27dPXH311WLQoEH25VarVXTr1k2MHDlSHDx4UKxevVr4+vqKOXPmyLFLTbJ3714REREhevToIWbNmmWf31b3vbCwULRr107cd999Ys+ePeLUqVPi999/F4mJifZ13nzzTWE0GsXy5cvF4cOHxfjx40VkZKSorKy0rzN69GjRs2dPsXv3brFt2zbRsWNHceedd8qxS5fljTfeED4+PmLlypUiOTlZLF26VHh4eIgPP/zQvk5b3n9qm8fzltAc5whq+jnGlTXXeYoc3+Uej3fs2CGUSqV46623RGxsrPjnP/8p1Gq1OHr0aCsnv3SXu48LFiwQnp6eIisryz5lZ2e3curLs3r1avHCCy+IZcuWCQDil19+ueD6p06dEm5ubmL27NkiNjZWfPzxx0KpVIq1a9e2TuAmuNx93LRpkwAg4uLiGvwua2trWydwE1zKef/vnO092ZR9dMb3pCNxxuvJ3377TaxatUrEx8eLuLg48fzzzwu1Wi2OHTvmkHnP5izXnS+//LLo2rVrg/dVXl6ew+Z1xmvT3NzcBq/vunXrBACxadMmIYTjvcbNVadpbiygN8GAAQPE9OnT7Y9ra2tFcHCwmDdvnoypmldubq4AILZs2SKEEKK4uFio1WqxdOlS+zonTpwQAMSuXbuEEHUXkwqFosFFxGeffSY8PT2FxWJp3R1ogrKyMtGpUyexbt06ce2119pPMm1535999llxzTXXnHe5zWYTgYGB4u2337bPKy4uFlqtVvzwww9CCCFiY2MFAPHnn3/a11mzZo2QJElkZGS0XPhmcNNNN4kHHnigwbxbb71VTJkyRQjR9vefXON43hKaco5wdVdyjnFlzXGeIudwucfj22+/Xdx0000N5g0cOFA88sgjLZrzSlzuPi5YsEAYjcZWStf8LqW4/Mwzz4iuXbs2mDd58mQxatSoFkzWfC6ngF5UVNQqmVrC38/7jXHG9+TZLmUfnf096Wic9XrSy8tLfPXVVw6d15muO19++WXRs2fPRpc5Yt62cG06a9Ys0aFDB2Gz2RzyNW6OOk1LYBcul6m6uhr79+/HyJEj7fMUCgVGjhyJXbt2yZiseZWUlAAAvL29AQD79+9HTU1Ng/2Ojo5GeHi4fb937dqF7t27IyAgwL7OqFGjUFpaiuPHj7di+qaZPn06brrppgb7CLTtff/tt9/Qr18/3HbbbfD390fv3r3x5Zdf2pcnJycjOzu7wb4bjUYMHDiwwb6bTCb069fPvs7IkSOhUCiwZ8+e1tuZJhg0aBA2bNiA+Ph4AMDhw4exfft2jBkzBkDb339X5yrH85bQlHOEq7uSc4wra47zFDm+phyPd+3adc77adSoUQ77e2/qOcdsNqNdu3YICwvDzTff7NDXlU3hbL/HK9GrVy8EBQXh+uuvx44dO+SOc1n+ft5vjLP/Li9lH4G2/55sTc52PVlbW4slS5agvLwcMTExDp3X2a47ExISEBwcjPbt22PKlClITU0F4Jh5nf3atLq6Gt9//z0eeOABSJLkkK9xc9RpWoKqxZ65jcrPz0dtbW2DQikABAQE4OTJkzKlal42mw2PP/44Bg8ejG7dugEAsrOzodFoYDKZGqwbEBBg778vOzu70delfpkjW7JkCQ4cOIA///zznGVted9PnTqFzz77DLNnz8bzzz+PP//8EzNnzoRGo8HUqVPt2Rvbt7P33d/fv8FylUoFb29vh953AHjuuedQWlqK6OhoKJVK1NbW4o033sCUKVMAoM3vv6tzheN5S2jqOcKVXek5xpU1x3mKHF9Tjsfnu/Zy1N97U/YxKioKX3/9NXr06IGSkhK88847GDRoEI4fP47Q0NDWiN3izvd7LC0tRWVlJfR6vUzJmk9QUBA+//xz9OvXDxaLBV999RWGDRuGPXv2oE+fPnLHu6jGzvuNcbb35NkudR9d4T3ZWpzpevLo0aOIiYlBVVUVPDw88Msvv+Cqq67CoUOHHDKvs113Dhw4EAsXLkRUVBSysrIwd+5cDBkyBMeOHXPIvM5+bbp8+XIUFxfjvvvuA+CYfxPNUadpCSyg0zmmT5+OY8eOYfv27XJHaRVpaWmYNWsW1q1b53KDwNhsNvTr1w//+te/AAC9e/fGsWPH8Pnnn2Pq1Kkyp2t5P/30ExYtWoTFixeja9euOHToEB5//HEEBwe7xP4TNYWrnSOulCufY5qDq5+nyLXFxMQgJibG/njQoEHo0qULvvjiC7z22msyJqPLERUVhaioKPvjQYMGISkpCe+//z6+++47GZNdGlc471/qPvI92Xyc6e8qKioKhw4dQklJCf73v/9h6tSp2LJli9yxGuWM1531rYoBoEePHhg4cCDatWuHn376ySG/RHX2a9P58+djzJgxCA4OljvKeTlqnYZduFwmX19fKJXKc0akzcnJQWBgoEypms+MGTOwcuVKbNq0qcG36IGBgaiurkZxcXGD9c/e78DAwEZfl/pljmr//v3Izc1Fnz59oFKpoFKpsGXLFnz00UdQqVQICAhos/seFBSEq666qsG8Ll262G+Zqs9+ob/3wMBA5ObmNlhutVpRWFjo0PsOAE8//TSee+453HHHHejevTvuuecePPHEE5g3bx6Atr//rq6tH89bwpWcI1xVc5xjXFlznKfI8TXleHy+ay9H/b03xzlHrVajd+/eSExMbImIsjjf79HT09MhCyfNZcCAAU7xezzfeb8xzvaerHc5+/h3bfE92Rqc7XpSo9GgY8eO6Nu3L+bNm4eePXviww8/dMi8beG602QyoXPnzkhMTHTI19iZr01TUlKwfv16PPjgg/Z5jvgaN0edpiWwgH6ZNBoN+vbtiw0bNtjn2Ww2bNiwocG30c5GCIEZM2bgl19+wcaNGxEZGdlged++faFWqxvsd1xcHFJTU+37HRMTg6NHjzYoJq5btw6enp7nHGAcyXXXXYejR4/i0KFD9qlfv36YMmWK/f9tdd8HDx6MuLi4BvPi4+PRrl07AEBkZCQCAwMb7HtpaSn27NnTYN+Li4uxf/9++zobN26EzWbDwIEDW2Evmq6iogIKRcPDoFKphM1mA9D299/VtdXjeUtojnOEq2qOc4wra47zFDm+phyPY2JiGqwP1F17OervvTnOObW1tTh69CiCgoJaKmarc7bfY3M5dOiQQ/8eL3beb4yz/S6bso9/1xbfky2prVxP2mw2WCwWh8zbFq47zWYzkpKSEBQU5JCvsTNfmy5YsAD+/v646aab7PMc8TVujjpNi2ix4UnbsCVLlgitVisWLlwoYmNjxcMPPyxMJpPIzs6WO1qTPfbYY8JoNIrNmzeLrKws+1RRUWFf59FHHxXh4eFi48aNYt++fSImJkbExMTYl1utVtGtWzdxww03iEOHDom1a9cKPz8/MWfOHDl26YqcPVK1EG133/fu3StUKpV44403REJCgli0aJFwc3MT33//vX2dN998U5hMJvHrr7+KI0eOiJtvvllERkaKyspK+zqjR48WvXv3Fnv27BHbt28XnTp1Enfeeaccu3RZpk6dKkJCQsTKlStFcnKyWLZsmfD19RXPPPOMfZ22vP/UNo/nLaE5zhH0l8s9x7iy5jpPkeO72PH4nnvuEc8995x9/R07dgiVSiXeeecdceLECfHyyy8LtVotjh49KtcuXNTl7uPcuXPF77//LpKSksT+/fvFHXfcIXQ6nTh+/Lhcu3BRZWVl4uDBg+LgwYMCgHjvvffEwYMHRUpKihBCiOeee07cc8899vVPnTol3NzcxNNPPy1OnDghPvnkE6FUKsXatWvl2oWLutx9fP/998Xy5ctFQkKCOHr0qJg1a5ZQKBRi/fr1cu3CRV3Ked/Z35NN2UdnfE86Eme8nnzuuefEli1bRHJysjhy5Ih47rnnhCRJ4o8//nDIvI1x9OvOJ598UmzevFkkJyeLHTt2iJEjRwpfX1+Rm5vrkHmd9dq0trZWhIeHi2efffacZY72GjdXnaa5sYDeRB9//LEIDw8XGo1GDBgwQOzevVvuSFcEQKPTggUL7OtUVlaK//u//xNeXl7Czc1N3HLLLSIrK6vB85w+fVqMGTNG6PV64evrK5588klRU1PTyntz5f5+kmnL+75ixQrRrVs3odVqRXR0tPjvf//bYLnNZhMvvviiCAgIEFqtVlx33XUiLi6uwToFBQXizjvvFB4eHsLT01Pcf//9oqysrDV3o0lKS0vFrFmzRHh4uNDpdKJ9+/bihRdeEBaLxb5OW95/qtPWjuctobnOEVSnKecYV9Yc5ylyDhc6Hl977bVi6tSpDdb/6aefROfOnYVGoxFdu3YVq1atauXEl+9y9vHxxx+3rxsQECBuvPFGceDAARlSX7pNmzY1er6o36+pU6eKa6+99pxtevXqJTQajWjfvn2Dc4sjutx9/Pe//y06dOggdDqd8Pb2FsOGDRMbN26UJ/wlupTzvrO/J5uyj874nnQkzng9+cADD4h27doJjUYj/Pz8xHXXXWcvnjti3sY4+nXn5MmTRVBQkNBoNCIkJERMnjxZJCYmOmxeIZzz2vT3338XABrN4WivcXPVaZqbJIQQLdS4nYiIiIiIiIiIiIjIabEPdCIiIiIiIiIiIiKiRrCATkRERERERERERETUCBbQiYiIiIiIiIiIiIgawQI6EREREREREREREVEjWEAnIiIiIiIiIiIiImoEC+hERERERERERERERI1gAZ2IiIiIiIiIiIiIqBEsoBMRERERERERERERNYIFdKJWcvr0aUiShEOHDgEANm/eDEmSUFxcLGsuIiIiInJ8kiRh+fLll7z+K6+8gl69erVYHkdz397JFGcAABMNSURBVH33YcKECfbHw4YNw+OPPy5bHmfw99eMiIiIGscCOrk0OS8aBw0ahKysLBiNRll+PhGRq7nvvvsgSZJ98vHxwejRo3HkyBH7OvXLdu/e3WBbi8UCHx8fSJKEzZs3N1j/cgpaRER/d/axSa1WIyAgANdffz2+/vpr2Gw2+3pZWVkYM2ZMq2b7ewOQ5hIREWHfZ3d3d/Tp0wdLly5t1p+xbNkyvPbaa836nE21cOHCBuef+umrr75qlZ9/vt/jhx9+iIULF7ZKBiKiC9m1axeUSiVuuukmuaMQNYoFdCKZaDQaBAYGQpIkuaMQEbmM0aNHIysrC1lZWdiwYQNUKhXGjh3bYJ2wsDAsWLCgwbxffvkFHh4erRmViFxI/bHp9OnTWLNmDYYPH45Zs2Zh7NixsFqtAIDAwEBotVqZkzafV199FVlZWTh48CD69++PyZMnY+fOnc32/N7e3jAYDFf0HDU1Nc2UBvD09LSff+qnKVOmNNvzN4XRaITJZJI1AxERAMyfPx//+Mc/sHXrVmRmZsodh+gcLKATnTFs2DDMnDkTzzzzDLy9vREYGIhXXnnFvlwIgVdeeQXh4eHQarUIDg7GzJkz7csba4VoMpnO26rj7124LFy4ECaTCb///ju6dOkCDw8P+4cpIiJqHlqtFoGBgQgMDESvXr3w3HPPIS0tDXl5efZ1pk6diiVLlqCystI+7+uvv8bUqVPliExELqD+2BQSEoI+ffrg+eefx6+//oo1a9bYryX/fq357LPPonPnznBzc0P79u3x4osvNlrw/eKLLxAWFgY3NzfcfvvtKCkpabD8q6++QpcuXaDT6RAdHY1PP/3UviwyMhIA0Lt3b0iShGHDhl3SdtXV1ZgxYwaCgoKg0+nQrl07zJs3r8HPNRgMCAwMROfOnfHJJ59Ar9djxYoVAIC0tDTcfvvtMJlM8Pb2xs0334zTp0/bt62trcXs2bNhMpng4+ODZ555BkKIBs//9y5csrKycNNNN0Gv1yMyMhKLFy9GREQEPvjgA/s6kiThs88+w/jx4+Hu7o433ngDAPDrr7+iT58+0Ol0aN++PebOnWv/YgMAiouL8eCDD8LPzw+enp4YMWIEDh8+3CCPJEn280/9pNfr7Z8BzrZ8+fIGjWzqu+P57rvvEBERAaPRiDvuuANlZWX2dWw2G9566y107NgRWq0W4eHh9vzn+z3+/W5ci8WCmTNnwt/fHzqdDtdccw3+/PNP+/L6zy8bNmxAv3794ObmhkGDBiEuLg5ERE1lNpvx448/4rHHHsNNN910Tg3lt99+Q6dOnaDT6TB8+HB8880353SHu337dgwZMgR6vR5hYWGYOXMmysvLW3dHqE1jAZ3oLN988w3c3d2xZ88evPXWW3j11Vexbt06AMDPP/+M999/H1988QUSEhKwfPlydO/evVl/fkVFBd555x1899132Lp1K1JTU/HUU081688gIqI6ZrMZ33//PTp27AgfHx/7/L59+yIiIgI///wzACA1NRVbt27FPffcI1dUInJBI0aMQM+ePbFs2bJGlxsMBixcuBCxsbH48MMP8eWXX+L9999vsE5iYiJ++uknrFixAmvXrsXBgwfxf//3f/blixYtwksvvYQ33ngDJ06cwL/+9S+8+OKL+OabbwAAe/fuBQCsX78eWVlZ9iwX2+6jjz7Cb7/9hp9++glxcXFYtGgRIiIizruvKpUKarUa1dXVqKmpwahRo2AwGLBt2zbs2LHD3rCkuroaAPDuu+9i4cKF+Prrr7F9+3YUFhbil19+ueDree+99yIzMxObN2/Gzz//jP/+97/Izc09Z71XXnkFt9xyC44ePYoHHngA27Ztw7333otZs2YhNjYWX3zxBRYuXGgvTgPAbbfdhtzcXKxZswb79+9Hnz59cN1116GwsPCCmS5HUlISli9fjpUrV2LlypXYsmUL3nzzTfvyOXPm4M0338SLL76I2NhYLF68GAEBAQDO/3v8u2eeeQY///wzvvnmGxw4cAAdO3bEqFGjztmPF154Ae+++y727dsHlUqFBx54oNn2k4hcz08//YTo6GhERUXh7rvvxtdff23/UjQ5ORmTJk3ChAkTcPjwYTzyyCN44YUXGmyflJSE0aNHY+LEiThy5Ah+/PFHbN++HTNmzJBjd6itEkQubOrUqeLmm28WQghx7bXXimuuuabB8v79+4tnn31WCCHEu+++Kzp37iyqq6sbfS4A4pdffmkwz2g0igULFgghhEhOThYAxMGDB4UQQmzatEkAEEVFRUIIIRYsWCAAiMTERPv2n3zyiQgICLiynSQiIiFE3TFfqVQKd3d34e7uLgCIoKAgsX//fvs69cfyDz74QAwfPlwIIcTcuXPFLbfcIoqKigQAsWnTpnPWJyJqqrOvR/9u8uTJokuXLkKIix9v3n77bdG3b1/745dfflkolUqRnp5un7dmzRqhUChEVlaWEEKIDh06iMWLFzd4ntdee03ExMQIIc69fq13se3+8Y9/iBEjRgibzdZo1nbt2on3339fCCGExWIR//rXvwQAsXLlSvHdd9+JqKioBttaLBah1+vF77//LoQQIigoSLz11lv25TU1NSI0NLTB63jttdeKWbNmCSGEOHHihAAg/vzzT/vyhIQEAcCeQ4i61/jxxx9vkPW6664T//rXvxrM++6770RQUJAQQoht27YJT09PUVVVdc5r9MUXXwgh/rrOrz//uLu726/xFyxYIIxGY4Ntf/nlF3H2R/WXX35ZuLm5idLSUvu8p59+WgwcOFAIIURpaanQarXiyy+/FI053+/x7L89s9ks1Gq1WLRokX15dXW1CA4Otr/W9Z9f1q9fb19n1apVAoCorKxs9GcTEV3MoEGDxAcffCCEqDue+/r62q+3n332WdGtW7cG67/wwgsNainTpk0TDz/8cIN1tm3bJhQKBY9N1GxUrVuuJ3JsPXr0aPA4KCjI3jLltttuwwcffID27dtj9OjRuPHGGzFu3DioVM33NnJzc0OHDh0a/flERHTlhg8fjs8++wwAUFRUhE8//RRjxozB3r170a5dO/t6d999N5577jmcOnUKCxcuxEcffSRXZCJyYUKI846X8+OPP+Kjjz5CUlISzGYzrFYrPD09G6wTHh6OkJAQ++OYmBjYbDbExcXBYDAgKSkJ06ZNw0MPPWRfx2q1XnCQ+/Ly8otud9999+H6669HVFQURo8ejbFjx+KGG25o8DzPPvss/vnPf6KqqgoeHh548803cdNNN+Hpp59GYmLiOf2XV1VVISkpCSUlJcjKysLAgQPty1QqFfr163dONy714uLioFKp0KdPH/u8jh07wsvL65x1+/Xr1+Dx4cOHsWPHjgYtzmtra1FVVYWKigocPnwYZrO5wZ1MAFBZWYmkpCT7Y4PBgAMHDtgfKxSXdzN4REREg9fk7M8JJ06cgMViwXXXXXdZz3m2pKQk1NTUYPDgwfZ5arUaAwYMwIkTJxqse/ZnpqCgIABAbm4uwsPDm/zzicg1xcXFYe/evfa7iFQqFSZPnoz58+dj2LBhiIuLQ//+/RtsM2DAgAaPDx8+jCNHjmDRokX2eUII2Gw2JCcno0uXLi2/I9TmsYBOdBa1Wt3gsSRJsNlsAOoGlYuLi8P69euxbt06/N///R/efvttbNmyBWq1GpIknXPRfrkDDzX288/3QYCIiC6fu7s7OnbsaH/81VdfwWg04ssvv8Trr79un+/j44OxY8di2rRpqKqqwpgxYxr0NUtE1BpOnDhh77/6bLt27cKUKVMwd+5cjBo1CkajEUuWLMG77757yc9tNpsBAF9++WWDYjQAKJXKK9quT58+SE5Oxpo1a7B+/XrcfvvtGDlyJP73v//Z13366adx3333wcPDAwEBAfYvCsxmM/r27dugEFLPz8/vkvevqdzd3Rs8NpvNmDt3Lm699dZz1tXpdDCbzQgKCsLmzZvPWX523+YKhaLB+efs+ZfyGeJCn1P0ev1596clnJ2l/vdWn4WI6HLMnz8fVqsVwcHB9nlCCGi1WvznP/+5pOcwm8145JFHGoxRV49f7FFzYQGd6DLo9XqMGzcO48aNw/Tp0xEdHY2jR4+iT58+8PPzazDgZ0JCAioqKmRMS0REFyNJEhQKRYMBQ+s98MADuPHGG/Hss89esJhERNQSNm7ciKNHj+KJJ544Z9nOnTvRrl27Bv3ApqSknLNeamoqMjMz7YWJ3bt3Q6FQICoqCgEBAQgODsapU6cwZcqURjNoNBoAdS2u613KdgDg6emJyZMnY/LkyZg0aRJGjx6NwsJCeHt7AwB8fX0bLSj36dMHP/74I/z9/c9pUV8vKCgIe/bswdChQwHUtX6v73u8MVFRUbBarTh48CD69u0LoK5/+KKiovPmPztPXFxco1nrl2dnZ0OlUl2wn/fz8fPzQ1lZGcrLy+3F+0OHDl3Wc3Tq1Al6vR4bNmzAgw8+eM7yxn6Pf9ehQwdoNBrs2LHDfkdWTU0N/vzzzwaDsRIRNRer1Ypvv/0W77777jl3KU2YMAE//PADoqKisHr16gbLzh7cGKg7DsfGxp73OE3UHFhAJ7pECxcuRG1tLQYOHAg3Nzd8//330Ov19gvMESNG4D//+Q9iYmJQW1uLZ5999pyWIkREJC+LxYLs7GwAdV24/Oc//4HZbMa4cePOWXf06NHIy8s7bwGHiKi51B+bamtrkZOTg7Vr12LevHkYO3Ys7r333nPW79SpE1JTU7FkyRL0798fq1atanQQTZ1Oh6lTp+Kdd95BaWkpZs6cidtvvx2BgYEAgLlz52LmzJkwGo0YPXo0LBYL9u3bh6KiIsyePRv+/v7Q6/VYu3YtQkNDodPpYDQaL7rde++9h6CgIPTu3RsKhQJLly5FYGBggxbZ5zNlyhS8/fbbuPnmm/Hqq68iNDQUKSkpWLZsGZ555hmEhoZi1qxZePPNN9GpUydER0fjvffeQ3Fx8XmfMzo6GiNHjsTDDz+Mzz77DGq1Gk8++ST0ev15u8ip99JLL2Hs2LEIDw/HpEmToFAocPjwYRw7dgyvv/46Ro4ciZiYGEyYMAFvvfUWOnfujMzMTKxatQq33HLLOV3C/F39Z4vnn38eM2fOxJ49e7Bw4cKLvk5n0+l0ePbZZ/HMM89Ao9Fg8ODByMvLw/HjxzFt2rTz/h7P5u7ujsceewxPP/00vL29ER4ejrfeegsVFRWYNm3aZeUhIroUK1euRFFREaZNm3bOMWnixImYP38+fvrpJ7z33nt49tlnMW3aNBw6dMh+jKw/fj/77LO4+uqrMWPGDDz44INwd3dHbGws1q1bd8mt2Iku5vI6XiNyYSaTCV9++SUGDx6MHj16YP369VixYoW9v8N3330XYWFhGDJkCO666y489dRTcHNzkzk1ERGdbe3atQgKCkJQUBAGDhyIP//8E0uXLsWwYcPOWVeSJPj6+tpb7hERtZT6Y1NERARGjx6NTZs24aOPPsKvv/7a6B0w48ePxxNPPIEZM2agV69e2LlzJ1588cVz1uvYsSNuvfVW3HjjjbjhhhvQo0cPfPrpp/blDz74IL766issWLAA3bt3x7XXXouFCxfau41RqVT46KOP8MUXXyA4OBg333zzJW1nMBjw1ltvoV+/fujfvz9Onz6N1atXX1K/325ubti6dSvCw8Nx6623okuXLvbutOq/0HzyySdxzz33YOrUqYiJiYHBYMAtt9xywef99ttvERAQgKFDh+KWW27BQw89BIPBAJ1Od8HtRo0ahZUrV+KPP/5A//79cfXVV+P999+3N6KRJAmrV6/G0KFDcf/996Nz58644447kJKSgoCAgIvur7e3N77//nusXr0a3bt3xw8//IBXXnnlotv93Ysvvognn3wSL730Erp06YLJkyfb+0g/3+/x7958801MnDgR99xzD/r06YPExET8/vvvjfYVT0R0pebPn4+RI0c2Ou7GxIkTsW/fPpSVleF///sfli1bhh49euCzzz6z332l1WoB1I3LsGXLFsTHx2PIkCHo3bs3XnrppQbdwhBdKUmwg2UiIiIiIiJyIenp6QgLC8P69euvaPBNIiJqXW+88QY+//xzpKWlyR2FXAi7cCEiIiIiIqI2bePGjTCbzejevTuysrLwzDPPICIiwt6POhEROaZPP/0U/fv3h4+PD3bs2IG3334bM2bMkDsWuRgW0ImIiIiIiKhNq6mpwfPPP49Tp07BYDBg0KBBWLRoEccsIiJycAkJCXj99ddRWFiI8PBwPPnkk5gzZ47cscjFsAsXIiIiIiIiIiIiIqJGcBBRIiIiIiIiIiIiIqJGsIBORERERERERERERNQIFtCJiIiIiIiIiIiIiBrBAjoRERERERERERERUSNYQCciIiIiIiIiIiIiagQL6EREREREREREREREjWABnYiIiIiIiIiIiIioESygExERERERERERERE1ggV0IiIiIiIiIiIiIqJG/D9LI9ukLg2J3AAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"\n",
"# Выбираем столбцы для анализа\n",
"columns_to_check = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age']\n",
"\n",
"# Функция для подсчета выбросов\n",
"def count_outliers(df, columns):\n",
" outliers_count = {}\n",
" for col in columns:\n",
" Q1 = df[col].quantile(0.25)\n",
" Q3 = df[col].quantile(0.75)\n",
" IQR = Q3 - Q1\n",
" lower_bound = Q1 - 1.5 * IQR\n",
" upper_bound = Q3 + 1.5 * IQR\n",
" \n",
" # Считаем количество выбросов\n",
" outliers = df[(df[col] < lower_bound) | (df[col] > upper_bound)]\n",
" outliers_count[col] = len(outliers)\n",
" \n",
" return outliers_count\n",
"\n",
"# Подсчитываем выбросы\n",
"outliers_count = count_outliers(df, columns_to_check)\n",
"\n",
"# Выводим количество выбросов для каждого столбца\n",
"for col, count in outliers_count.items():\n",
" print(f\"Количество выбросов в столбце '{col}': {count}\")\n",
" \n",
"# Создаем гистограммы\n",
"plt.figure(figsize=(15, 10))\n",
"for i, col in enumerate(columns_to_check, 1):\n",
" plt.subplot(2, 4, i)\n",
" sns.histplot(df[col], kde=True)\n",
" plt.title(f'Histogram of {col}')\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Объемы выбросов по различным признакам оказались в приемлемых границах. Усреднение выбросов не требуется."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Разбиение датасета на выборки"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Обучающая выборка: (537, 9)\n",
"Outcome\n",
"0 349\n",
"1 188\n",
"Name: count, dtype: int64\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf8AAADECAYAAACROyhkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA3nUlEQVR4nO3dd1xT1/sH8E8SAmSwtwqCggu0Ko46ALci1tVK3Yq22trWWvutrd/Wbeu31bqtq9WiUvf6aR0odYtbUKooKCAiskEII5Cc3x80KSFhCl4gz/v1yku5OffcJ+fenOfOEx5jjIEQQggheoPPdQCEEEIIebMo+RNCCCF6hpI/IYQQomco+RNCCCF6hpI/IYQQomco+RNCCCF6hpI/IYQQomco+RNCCCF6hpI/IYS8BplMhvj4eGRkZHAdCqlh2dnZiI2NhUwm4zqUGkfJnxBCqmj//v3o27cvTExMIJVK4eTkhJ9++onrsOqFnJwcrF69Wv13ZmYmNmzYwF1AJTDGsGXLFrz99tsQi8UwNTWFi4sLdu3axXVoNa5Kyf/3338Hj8dTv4yNjdGiRQt8+umnSEpKqq0YCdEbV65cwYgRI2BnZwcjIyM4Oztj+vTpePbsWbXrzM3NxcKFC3H+/PmaC1SPffPNN/D394eJiQm2bt2KM2fO4OzZs5gxYwbXodULIpEI3333HYKCghAfH4+FCxfi2LFjXIcFABg7diw++ugjtG7dGjt37lSv25EjR3IdWs1jVbB9+3YGgC1evJjt3LmTbd26lU2aNInx+Xzm4uLCZDJZVaojhJSwdu1axuPxWPPmzdmSJUvYr7/+yr788ktmZmbGzMzM2JUrV6pVb0pKCgPAFixYULMB66Hz588zAGzZsmVch1KvrVixgvH5fAaAmZqaskuXLnEdEgsMDGQ8Ho8FBQVxHcobUa3kf/PmTY3ps2fPZgDYH3/8UaPBEaIvLl++zPh8PvPy8tLaiY6OjmZ2dnbMwcGBpaenV7luSv41Z8iQIax79+5ch9EgxMfHs6tXr7KMjAyuQ2GMMebh4cHGjh3LdRhvTI1c8+/Tpw8AICYmBgCQnp6O//znP2jbti2kUilMTU3h6+uL8PBwrXnz8/OxcOFCtGjRAsbGxnBwcMDIkSPx5MkTAEBsbKzGpYbSr169eqnrOn/+PHg8Hvbu3Yv//ve/sLe3h0QiwdChQxEfH6+17OvXr2PQoEEwMzODWCyGj48Prly5ovMz9urVS+fyFy5cqFV2165d8PT0hEgkgqWlJUaPHq1z+eV9tpKUSiVWr14Nd3d3GBsbw87ODtOnT9e6wcjZ2RlDhgzRWs6nn36qVaeu2JcvX67VpgBQUFCABQsWwNXVFUZGRnB0dMScOXNQUFCgs61K6tWrl1Z933//Pfh8Pv74449qtceKFSvQvXt3WFlZQSQSwdPTEwcOHNC5/F27dqFLly4Qi8WwsLCAt7c3goODNcqcPHkSPj4+MDExgampKTp37qwV2/79+9Xr1NraGuPHj0dCQoJGmcmTJ2vEbGFhgV69euHSpUsVttOSJUvA4/EQGBgIsVis8V7z5s3x008/ITExEZs3b1ZP19W2qjicnZ0BFLepjY0NAGDRokU6t9vIyEj4+/vDxsYGIpEILVu2xLfffqtR5927d+Hr6wtTU1NIpVL07dsX165d0yijuix4+fJlzJw5EzY2NjA3N8f06dMhl8uRmZmJiRMnwsLCAhYWFpgzZw5YqR8Vrey2rsvrtD8A/PXXX/Dy8oJEIoG5uTmGDRuGhw8fapS5du0aPDw8MHr0aFhaWkIkEqFz5844cuSIukxOTg4kEgk+//xzrWU8f/4cAoEAy5YtU8esWlcllV5HcXFxmDFjBlq2bAmRSAQrKyuMGjUKsbGxGvOp+sCSl3hu3ryJ/v37w8TEBBKJRGebqNbdrVu31NNSU1N19hNDhgzRGXNl+tOFCxeqv89NmjRBt27dYGBgAHt7e624dVHNr3qZmJigS5cuGu0PFH83PDw8yqxH1df8/vvvAIpv2oyIiICjoyP8/PxgampaZlsBwNOnTzFq1ChYWlpCLBbj7bffxp9//qlRpir5qCr9ZFXyVnkMqjyHDqpEbWVlBaC4YY4cOYJRo0bBxcUFSUlJ2Lx5M3x8fPDgwQM0atQIAKBQKDBkyBCEhIRg9OjR+Pzzz5GdnY0zZ84gIiICzZs3Vy9jzJgxGDx4sMZy586dqzOe77//HjweD19//TWSk5OxevVq9OvXD2FhYRCJRACKv+i+vr7w9PTEggULwOfzsX37dvTp0weXLl1Cly5dtOpt0qSJ+kubk5ODjz/+WOey582bB39/f3zwwQdISUnBunXr4O3tjbt378Lc3FxrnmnTpsHLywsAcOjQIRw+fFjj/enTp+P3339HQEAAZs6ciZiYGKxfvx53797FlStXIBQKdbZDVWRmZqo/W0lKpRJDhw7F5cuXMW3aNLRu3Rr379/HqlWr8PjxY60vXUW2b9+O7777Dj///DPGjh2rs0xF7bFmzRoMHToU48aNg1wux549ezBq1CgcP34cfn5+6nKLFi3CwoUL0b17dyxevBiGhoa4fv06/vrrLwwYMABAcac3ZcoUuLu7Y+7cuTA3N8fdu3dx6tQpdXyqtu/cuTOWLVuGpKQkrFmzBleuXNFap9bW1li1ahWA4o5+zZo1GDx4MOLj43Wue6D4mnxISAi8vLzg4uKis8z777+PadOm4fjx4/jmm28qbuh/2NjYYOPGjfj4448xYsQI9bXLdu3aAQDu3bsHLy8vCIVCTJs2Dc7Oznjy5AmOHTuG77//HgDw999/w8vLC6amppgzZw6EQiE2b96MXr164cKFC+jatavGMj/77DPY29tj0aJFuHbtGrZs2QJzc3NcvXoVTk5O+OGHH3DixAksX74cHh4emDhxonre193Wq9P+AHD27Fn4+vqiWbNmWLhwIfLy8rBu3Tr06NEDd+7cUSe7tLQ0bNmyBVKpVL2Ds2vXLowcORJBQUEYM2YMpFIpRowYgb1792LlypUQCATq5ezevRuMMYwbN65yK/AfN2/exNWrVzF69Gg0adIEsbGx2LhxI3r16oUHDx5o7TCqREdHo1evXhCLxfjqq68gFouxdetW9OvXD2fOnIG3t3eV4ihLdfpTlZ9//rnK94zt3LkTQPEOyi+//IJRo0YhIiICLVu2rFb8aWlpAIAff/wR9vb2+Oqrr2BsbKyzrZKSktC9e3fk5uZi5syZsLKyQmBgIIYOHYoDBw5gxIgRGnVXJh+VVlY/+TrtrKUqpwlUp/3Pnj3LUlJSWHx8PNuzZw+zsrJiIpGIPX/+nDHGWH5+PlMoFBrzxsTEMCMjI7Z48WL1tG3btjEAbOXKlVrLUiqV6vkAsOXLl2uVcXd3Zz4+Puq/z507xwCwxo0bs1evXqmn79u3jwFga9asUdft5ubGBg4cqF4OY4zl5uYyFxcX1r9/f61lde/enXl4eKj/1nUqNTY2lgkEAvb9999rzHv//n1mYGCgNT0qKooBYIGBgeppCxYsYCVXy6VLlxgAretQp06d0pretGlT5ufnpxX7J598wkqv6tKxz5kzh9na2jJPT0+NNt25cyfj8/la1+Q2bdrEAFR4HdrHx0dd359//skMDAzYl19+qbNsZdqDseL1VJJcLmceHh6sT58+GnXx+Xw2YsQIrW1Rtc4zMzOZiYkJ69q1K8vLy9NZRi6XM1tbW+bh4aFR5vjx4wwAmz9/vnrapEmTWNOmTTXq2bJlCwPAbty4ofMzM8ZYWFgYA8A+//zzMsswxli7du2YpaWl+u+SbVtS6TjKO+3v7e3NTExMWFxcnMb0kt+L4cOHM0NDQ/bkyRP1tBcvXjATExPm7e2tnqbqH0p/r7p168Z4PB776KOP1NOKiopYkyZNNOKvyrauS3XbnzHG2rdvz2xtbVlaWpp6Wnh4OOPz+WzixInqaQAYAHb+/Hn1tNzcXNa6dWtmb2/P5HI5Y4yx06dPMwDs5MmTGstp166dxmcOCAhgTk5OWvGUXl+lt3nGGAsNDWUA2I4dO9TTVH3guXPnGGOMvfvuu0wgELCIiAh1mdTUVGZlZcU8PT3V03Rd0i1ru/Hz89No56r0p6W/z8nJyczExIT5+vpqxF0WXf1BcHAwA8D27dunnubj48Pc3d3LrEeVV7Zv367xt6GhIXv8+LFGG5Ruq1mzZjEAGn1idnY2c3FxYc7Ozur+prL5SBVvRf1kdfJWeap12r9fv36wsbGBo6MjRo8eDalUisOHD6Nx48YAACMjI/D5xVUrFAqkpaVBKpWiZcuWuHPnjrqegwcPwtraGp999pnWMkqf6q2KiRMnwsTERP33e++9BwcHB5w4cQIAEBYWhqioKIwdOxZpaWlITU1FamoqZDIZ+vbti4sXL0KpVGrUmZ+fD2Nj43KXe+jQISiVSvj7+6vrTE1Nhb29Pdzc3HDu3DmN8nK5HEBxe5Vl//79MDMzQ//+/TXq9PT0hFQq1aqzsLBQo1xqairy8/PLjTshIQHr1q3DvHnzIJVKtZbfunVrtGrVSqNO1aWe0ssvy40bN+Dv7493330Xy5cv11mmMu0BQGNvOSMjA1lZWfDy8tLYto4cOQKlUon58+ert0UV1bZ15swZZGdn45tvvtFat6oyt27dQnJyMmbMmKFRxs/PD61atdI61adUKtVtFBYWhh07dsDBwQGtW7cu8/NkZ2cDgMY2q4uJiQlevXpVbpmqSElJwcWLFzFlyhQ4OTlpvKf6/AqFAsHBwRg+fDiaNWumft/BwQFjx47F5cuXtWKaOnWqxve3a9euYIxh6tSp6mkCgQCdOnXC06dP1dOquq3rUp32T0xMRFhYGCZPngxLS0v19Hbt2qF///7qfkOlc+fO8PHxUf8tEokwY8YMvHz5Ur0N9uvXD40aNUJQUJC6XEREBO7du4fx48erp9na2iI5OVm97Zel5DZfWFiItLQ0uLq6wtzcXGO7V8nKykJycjLOnDmDgQMHwt3dXf2elZUVJk+ejNu3b9fIU1rV6U9VlixZAjMzM8ycObNKy1Qt4+HDh9i0aRMkEgnefvttjTIKhUJdrqL2VRk2bBjc3NzUf1tbW2u11YkTJ9ClSxf07NlTXU4qlWLatGmIjY3FgwcPNOqsKB+VVF4/+TrtrEu1Tvtv2LABLVq0gIGBAezs7NCyZUuNDlapVGLNmjX45ZdfEBMTA4VCoX5PdWkAKL5c0LJlSxgY1MjVB7WSKw8o7shcXV3V18eioqIAAJMmTSqzjqysLFhYWKj/Tk1N1aq3tKioKDDGyixX+pRlZmYmAGgl3NJ1ZmVlwdbWVuf7ycnJGn8HBwerr/FW1oIFC9CoUSNMnz5d69p5VFQUHj58WGadpZevS0JCAvz8/CCTyZCWllbmjl1l2gMAjh8/jqVLlyIsLEzjvoOS9T558gR8Ph9t2rQpsx7V5aryrg3GxcUBgM7Tia1atcLly5c1psXHx2u0lYODAw4ePFjuZ1J1DKqdgLJkZ2dXuINQFarEW97nT0lJQW5urs7P37p1ayiVSsTHx2skl9I7EmZmZgAAR0dHreklr+VXdVvXpTrtX946bt26NU6fPg2ZTAaJRAKgeL3rKgcUX0vu2rUr+Hw+xo0bh40bNyI3NxdisRhBQUEwNjbGqFGj1PN1794dP/74I7777jvMnDmzzAOMvLw8LFu2DNu3b0dCQoLGvRJZWVla5YcPH67+f1mfSxWvnZ2dzmVWVnX6U6D4HrHNmzdj48aNFR5YlVZyHZuamiIoKEhr+4qMjFSX4/P5cHV1xYIFC3ReblT1HRWtWzs7O8TFxWld6ipZLi4uTuM7VVE+Uqmon6xuO5elWlm3S5cu6NSpU5nv//DDD5g3bx6mTJmCJUuWwNLSEnw+H7NmzarSnkltUcWwfPlytG/fXmeZkp2FXC5HYmIi+vfvX2G9PB4PJ0+e1LjOp6tOAHj58iUAwN7evtw6bW1tNY4gSiqdlLt27YqlS5dqTFu/fj2OHj2qc/6HDx/i999/x65du3ReT1UqlWjbti1Wrlypc/7SXzhdoqOj0bFjR6xatQoTJkxAYGCgzg24Mu1x6dIlDB06FN7e3vjll1/g4OAAoVCI7du3a90YwwU7Ozv1gCBZWVnYtm0bBg0ahMuXL6Nt27Y653F1dYWBgQHu3btXZr0FBQV49OiRxveOx+Np3TAHQGNnmwu6tv2yppeMv6rbui7Vaf+qKOsarS4TJ07E8uXLceTIEYwZMwZ//PEHhgwZot4ZAoChQ4diypQpWL58eZlnxIDi+yi2b9+OWbNmoVu3bjAzMwOPx8Po0aN19qkrVqyAm5sbhg0bVrUPWA1V7U9Vvv32W7i5uWHSpEmVvilT5cyZMwCKb9Q7ePAg/P39cfz4cY0+2tnZGVu3bgVQfE1/7dq1mDBhApo1a6bVx1RlvdaWivrJ6rZzWWr2kPsfBw4cQO/evfHbb79pTM/MzIS1tbX67+bNm+P69esoLCyskZvWVFR7SCqMMURHR6tvclLdSGhqaop+/fpVWF94eDgKCwvL3eFR1csYg4uLC1q0aFFhvQ8ePACPxyv3JpXmzZvj7Nmz6NGjR6U2UGtra63PVN5NeXPnzkX79u3x/vvvl7n88PBw9O3bt9qXYlSnuOzs7HD06FF8+eWXGDx4sFZnXpn2OHjwIIyNjXH69GmNywPbt2/XilupVOLBgwdlflFU20FERARcXV11lmnatCkA4NGjR+pLHSqPHj1Sv69ibGys0f5Dhw6FpaUl1q9fr3GnfkkSiQS9e/fGX3/9hbi4OK06AWDfvn0oKCjQeJrDwsJC47S5iupIVqWs9aY6jR8REaHzfaA44YrFYjx69EjrvcjISPD5/ErtAFZGVbd1XarT/iXXcWmRkZGwtrZWH/W7uLiUWQ6Axl3wHh4e6NChA4KCgtCkSRM8e/YM69at05r3t99+w/z58/HkyRN1B1/6QOPAgQOYNGkSfv75Z/W0/Px89dmy0jw9PeHj4wOpVFrpeKurqv0pUPz0yJ49e3DkyJEydxbLU3I5w4YNw/Xr17FixQqNdpNIJBrlvLy80LhxYwQHB2vcZAoU95uVbaumTZuWW67097eifKRSUT9ZnXYuT60M7ysQCLSOSPbv36/1aNS7776L1NRUrF+/XqsOXUc0lbVjxw6NU6gHDhxAYmIifH19ARR/MZo3b44VK1YgJydHa/6UlBSt2AUCgc7H6EoaOXIkBAIBFi1apBU/Y0x9RykAFBUV4eDBg+jSpUu5e2v+/v5QKBRYsmSJ1ntFRUVlfvkrIzQ0FEePHsX//ve/MhOEv78/EhIS1HvQJeXl5VVqzOsWLVqoTy2uW7cOSqVS6zGoyraHQCAAj8fTOLqNjY3V2sEZPnw4+Hw+Fi9erHVkpFo3AwYMgImJCZYtW6Z1X4SqTKdOnWBra4tNmzZpXGI4efIkHj58qPF0gS5yuRxFRUUVPhb53XffgTGGyZMnIy8vT+O9mJgYzJkzBw4ODpg+fbp6evPmzREZGamxvYaHh2s99qO6E7z0tmJjYwNvb29s27ZNawRB1ecXCAQYMGAAjh49qnGaMikpCX/88Qd69uwJU1PTcj9bZdXGtl6Z9ndwcED79u0RGBiosYyIiAgEBwdrPGU0ePBg3LhxA1evXlVPy8/Px8aNG2Fvbw9PT0+NuidMmIDg4GCsXr0aVlZW6j6otKZNm6JPnz7o16+fzo5dV5+6bt26cs/y8Hg8DBgwAKdPn9Z4ZDE9PR2BgYHo1KnTa5/yB6renwLFoyT26NEDQ4cOfe3lKxQKyOXyCr9jqn5A184Gn8/HoEGDcPToUfUj64DutlJtA6GhoepyMpkMW7ZsgbOzs9alxorykUpF/WR12rk8tXLkP2TIECxevBgBAQHo3r077t+/j6CgII0bhoDi02I7duzA7NmzcePGDXh5eUEmk6mHyqzuKStLS0v07NkTAQEBSEpKwurVq+Hq6ooPP/wQQPGK/vXXX+Hr6wt3d3cEBASgcePGSEhIwLlz52Bqaopjx45BJpNhw4YNWLt2LVq0aKHxDKqq8e/du4fQ0FB069YNzZs3x9KlSzF37lzExsZi+PDhMDExQUxMDA4fPoxp06bhP//5D86ePYt58+bh3r17FQ5r6ePjg+nTp2PZsmUICwvDgAEDIBQKERUVhf3792PNmjV47733qtVOwcHB6N+/f7l7kRMmTMC+ffvw0Ucf4dy5c+jRowcUCgUiIyOxb98+nD59usIzIiXZ29tj+fLl+OCDDzB+/HgMHjy4Su3h5+eHlStXYtCgQRg7diySk5OxYcMGuLq6apw2d3V1xbfffoslS5bAy8sLI0eOhJGREW7evIlGjRph2bJlMDU1xapVq/DBBx+gc+fOGDt2LCwsLBAeHo7c3FwEBgZCKBTixx9/REBAAHx8fDBmzBj1o37Ozs744osvNOKTyWQap5137tyJ/Px8rcd/SvP29saKFSswe/ZstGvXDpMnT4aDgwMiIyOxdetWKJVKnDhxQuN63pQpU7By5UoMHDgQU6dORXJyMjZt2gR3d3eNm/BEIhHatGmDvXv3okWLFrC0tISHhwc8PDywdu1a9OzZEx07dsS0adPg4uKC2NhY/PnnnwgLCwMALF26FGfOnEHPnj0xY8YMGBgYYPPmzSgoKKjR8exrYluvbvsvX74cvr6+6NatG6ZOnap+1M/MzEzjOfc5c+YgKCgIvr6+mDlzJqytrbFr1y48ePAAQUFBWvcvjR07FnPmzMHhw4fx8ccfV/sM55AhQ7Bz506YmZmhTZs2CA0NxdmzZzXuodJlyZIlOH36NHx8fPDZZ5+pH/XLzMzUOTZGaGgoUlNTAUC9DUVHR+PUqVPqMikpKcjLy8OpU6cwaNCgSvenJQUHB1fr2XQV1TqWyWQ4cuQIYmNjMWvWLI0yOTk56rjT09Oxdu1aCIXCMnfYFy9ejFOnTqm3cyMjI2zduhVZWVkaZ1y++eYb7N69W70NWFpaIjAwEDExMTh48KDWDcYV5SNddPWT1WnnclXl0YCyRvgrLT8/n3355ZfMwcGBiUQi1qNHDxYaGqrz0aTc3Fz27bffMhcXFyYUCpm9vT1777331I8VVedRv927d7O5c+cyW1tbJhKJmJ+fn9ajTIwxdvfuXTZy5EhmZWXFjIyMWNOmTZm/vz8LCQnRWHZFr0mTJmnUe/DgQdazZ08mkUiYRCJhrVq1Yp988gl79OgRY4yxzz77jHl7e7NTp05pxaTrURbGih9Z8vT0ZCKRiJmYmLC2bduyOXPmsBcvXqjLVPVRPx6Px27fvq0xXdc6ksvl7Mcff2Tu7u7MyMiIWVhYME9PT7Zo0SKWlZWltbyK6mOMsT59+jAnJyeWnZ1d5fb47bffmJubGzMyMmKtWrVi27dvL7Pdtm3bxjp06KCO28fHh505c0ajzP/93/+x7t27M5FIxExNTVmXLl3Y7t27Ncrs3btXXY+lpSUbN26c+tFWlUmTJmlsF1KplHXs2JHt3Lmz3DYq6eLFi2zYsGHM2tqaCYVC5uTkxD788EMWGxurs/yuXbtYs2bNmKGhIWvfvj07ffq0zkferl69yjw9PZmhoaHW41sRERFsxIgRzNzcnBkbG7OWLVuyefPmacx/584dNnDgQCaVSplYLGa9e/dmV69e1ShTVv+gWjcpKSla7SWRSLQ+U2W2dV1et/3Pnj3LevTood4O3nnnHfbgwQOtck+ePGHvvfceMzMzY8bGxqxz587syJEjZdY7ePBgBkCrvcpTeh1lZGSwgIAAZm1tzaRSKRs4cCCLjIxkTZs21eh/Sj/qxxhjt2/fZgMGDFCvO29vb3bhwgWN5anWXVVfJVXUnzL277YwbNgwjXl1xa2Lan7VSyQSsTZt2rBVq1ZpPP7m4+OjUc7c3Jz16NFD/ehl6Uf9VFTbuUQiYWKxmPXq1Uvn0MOqbUD1nenSpQs7fvy4zs9UmXxUmX5SpTLtXBk8xl7j/Hodc/78efTu3Rv79++v9tFwSbGxsXBxcUFMTEyZ18YWLlyI2NhY9UhRhBBS0ogRI3D//n1ER0dzHUqNUfWNDSh91Liazkc1jX7SlxBCakliYiL+/PNPTJgwgetQCNFQK9f8GwqpVIpx48aVewNau3bt1MMVE0IIUHyT5pUrV/Drr79CKBRq3KjZEIhEIgwcOJDrMMhroORfDtXNPOVpkL/zTAh5LRcuXEBAQACcnJwQGBhY7tgV9ZGdnZ3GTYCk/mlQ1/wJIYQQUjG65k8IIYToGUr+hBBCiJ6h5E8IIYToGUr+hBBCiJ6h5E8IIYToGUr+hBBCiJ6h5E8IIYToGUr+hBBCiJ6h5E8IIYToGUr+hBBCiJ6h5E8IIYToGUr+hBBCiJ6h5E8IIYToGUr+hBBCiJ6h5E8IIYToGUr+hBBCiJ6h5E8IIYToGUr+hBBCiJ4x4DoAQkjtUCgZXmTmIT4jF88z8vAiMw95cgUKFQyFCiXeNYlA+/xbgMAQEAgBA2PAxB6wbAZYugCmTQA+HR8Q0hBR8ieknmOM4UHiK4Q+SUNUUg7iM3IRn5GLxMx8FClZmfMNdrsFxG8tu2KBEWDuVLwjYNkMsHABHN4CmnQGBNR1EFKf0TeYkHooJlWGq09ScTU6DaFP05Auk9f8QhQFQFpU8askIzOgmTfg2h9w7QeYNa75ZRNCahUlf0LqAcYYrkSn4WhYAq4+SUNCZh53wRRkAQ+PFb8AwKY14NoXcOsPOHUHDAy5i40QUimU/Ampw9JyCnDg9nPsvvEMsWm5XIejW8rD4lfoekBiA3gGAJ0/AEzsuI6MEFIGSv6E1EGhT9Lwx41nOB3xEnKFkutwKk+WAlz8CbiyGnAfCXSbUXyfACGkTqHkT0gdoVAy7L8Vjy2XnuJpiozrcF6PQg7c21P8cuoOvP0x0GoIPT1ASB1ByZ+QOuDE/USsCH5U/5O+Ls+uFr/MmwI+XwPtxwI8HtdREaLXKPkTwqE7zzKw6NgDhMdnch1K7cuMA47OAG79Bvj+BDTpxHVEhOgtSv6EcCA5Ox//OxmJw3cTwMp+FL9hSrgN/NoPeGs0MOB7QGLFdUSE6B26AEfIG7b/Vjz6rriAQ3f0MPGrMSB8N7ChM3BvP9fBEKJ3KPkT8obkyoswe18YvjpwD9kFRVyHUzfkpgGHPgCCRgGvXnAdDSF6g5I/IW/Aw8RXGLLuMg7dSeA6lLopKhjY7APE3+A6EkL0AiV/QmrZrmtxGL7hSsO8k78myZKB3/2Au7u4joSQBo9u+COklmTnF+KbQ/fx571ErkOpPxRy4OgnQNLfwIClAF/AdUSENEh05E9ILUjLKYD/5muU+Kvr2i/F9wHkZXIdCSENEiV/QmpY8qt8vL/lGh4mvuI6lPrtSQjwa18gNarisoSQKqHkT0gNSsjMg//mUEQn53AdSsOQFl28A/DyPteRENKgUPInpIbEpcngvym07v76Xn2VnwXsehdIf8p1JIQ0GJT8CakB0cnZ8N8cioTMPK5DaZhykoAdw4Hsl1xHQkiDQMmfkNf0LC0Xo7dcQ9KrAq5Dadgy44CdI4C8DK4jIaTeo+RPyGvIlRfhwx23kJoj5zoU/ZD8AAjyB+R0aYWQ10HJn5DX8OW+cDxKyuY6DP3y/AawdzygKOQ6EkLqLUr+hFTT+r+icDKCrkFz4kkIcGwW11EQUm9R8iekGv6KTMLKM4+5DkO/he0C/j7CdRSE1EuU/AmpoicpOfh8TxiUevtzvHXI8S/oCQBCqoGSPyFVkF+owPSdt5GdTz/JWyfkpQNHZlRplosXL+Kdd95Bo0aNwOPxcOTIkdqJjZA6jJI/IVWw6uxjGr2vrnkSAtzYWuniMpkMb731FjZs2FCLQRFSt9Gv+hFSSREJWfj1UgzXYRBdgucBzXoB1m4VFvX19YWvr2/tx0RIHUZH/oRUgkLJ8PXBe1DQhf66qSgPOPQhoKDLMYRUBiV/QiphZ2gs/n5Bv9JXp724C1xdy3UUhNQLlPwJqUC6TI5VZ+lnZeuFy6uB3HSuoyCkzqPkT0gFfg5+hKw8Gk2uXijIAi6u4DoKQuo8Sv6ElCMmVYbdN55xHQapipu/Apm0zggpDyV/Qsrx2+WnNJhPfaMoAC4uL/PtnJwchIWFISwsDAAQExODsLAwPHtGOwxEf1DyJ6QMGTI5Dtx+znUYpDrC9wBZCTrfunXrFjp06IAOHToAAGbPno0OHTpg/vz5bzJCQjhFz/kTUoZd1+KQX6jkOgxSHQp58Z3/vj9qvdWrVy8wRqdziH6jI39CdCgoUiAwNI7rMMjruB0I5KRwHQUhdRIlf0J0OHr3BVJzCrgOg7yOojzg3h6uoyCkTqLkT4gOv15+ynUIpCZEHOQ6AkLqJLrmT0gpoU/S8DiJfrxHl4035dh4S47YzOJ7IdxtBZjvbQhfNyEAoNfvMlyIU2jMM91TiE1DRGXWyRjDgvMF2HqnEJn5DD0cBdjoZww3KwEAoKCI4YNj+TgaWQh7KR+/+BmjX7N/u67lVwrwLEuJdYN1LOPFXSDtCWDV/HU/OiENCiV/Qko5/Tf9PnxZmpjy8L9+RnCz5IMBCAwrxLA9ebg7nQ932+Jk/WFHIRb3NlLPIxbyyq3zpytyrL0uR+BwEVws+Jh3rgADd+XiwSdSGBvwsOV2IW6/UCB0qgQno4sw9mAekv4jBY/HQ0yGElvvFOLWNEnZC4g4BPh8VRMfn5AGg077E1JKSGQS1yHUWe+0FGKwmxBuVgK0sBLg+77GkBoC157/e7QvFvJgL+WrX6ZGZSd/xhhWX5fjO28jDGslRDs7AXYMF+FFNsORyOIf6XmYqsDQlgZwtxXgk86GSMllSM0tvlv/4z/z8GM/o3KXgYgDNfPhCWlAKPkTUkLky1eIT8/jOox6QaFk2BNRCFkh0M1RoJ4edL8Q1j9lw+OXHMw9m4/cwrIfq4vJZHiZwzRO45sZ89C1iQCh8cU7FG/ZCXD5mQJ5hQynnxTBQcqDtZiHoHuFMDbgYURrYfmBpkQCSX+/3oclpIGh0/6ElBDyMJnrEOq8+0kKdPtNhvwiQGoIHH5fhDY2xcl/bFshmprx0ciEh3tJSnx9Nh+P0pQ49L5YZ10vc4rvHbCTaB6520l4eCkrfm9KByHuJSnQ5pccWIt52DdKhIx8YP75fJyfJMF3f+VjT0QhmlvysW2oCI1NdRzT3D8A2LnXYCsQUr9R8iekhDMP6JR/RVpa8xH2kRRZ+QwHHhRi0pF8XJjMRxsbAaZ5GqrLtbUTwMGEh747cvEkXYnmltU70SgU8LDBT/NmvoCjeZjZxRB3XypwJLII4R9J8dOVAsw8lY+D/jp2NCIOAv0WVGv5hDREdNqfkH+kZBcg/Hkm12HUeYYCHlwt+fBsJMCyfsZ4y46PNdfkOst2bVx8RiA6XfdIifbS4i4oSaZ5aSBJxmAv0d09nYspwt/JCnzaxRDnYxUY7GYAiSEP/u5CnI9V6JwHmXH0Yz+ElEDJn5B//BWZBBr1teqUDCgoI+eGvSx+w8FE9w15LuY82Et5CHlapJ72qoDh+nOFxn0EKvlFDJ+cyMfmISII+DwolEDhP8suVBbfh1CmF2GV+jyE6ANK/oT8405cJtch1Hlzz+bjYlwRYjOVuJ+kwNyz+Tgfq8C4tkI8SVdiyYUC3H6hQGymEv/3qBATj+TBu6kA7ez+TeSt1ufg8MNCAACPx8OsroZYeqkA//eoEPeTFJh4OA+NTHgY3kr7quSSCwUY7GaADg7F9fVwEuBQZCHuJSmw/oYcPZzKuZKZGFajbUFIfUbX/An5x+PkbK5DqPOSZQwTD+chMYfBzIiHdnZ8nB4vRv/mBojPUuJsTBFWX5dDJmdwNOPj3dZCfOdtpFHHozQlsgr+PUKf08MQskKGacfykZnP0NNJgFPjxTA20DxbEJGswL4HRQib/u8z/e+1McD5WAN4bZehpRUff7yr+8ZCAHTkT0gJPEY/b0UIAKDtgtPILiiquGADsdvtHLrFb+U6jDdHbAXMoWGbCQHotD8hAICEzDy9Svx6KTcNyIznOgpC6gRK/oQAeJxEp/z1QmI41xEQUidQ8icEQBQlf/1AN/0RAoCSPyEAQL/ipy9So7iOgJA6gZI/IQCikyn564WCV1xHQEidQMmfEABpsgKuQyBvQj4lf0IASv6EAACy8+lOf71AR/6EAKDkTwgASv56g478CQFAyZ8Q5MqLyh8TnjQcdORPCABK/oRAXqT7F+dIA1SYCyjoLA8hlPyJ3iuio379Qkf/hFDyJ6RIoZ/Jf8GLt5Fu35PrMN68AhrQiRBK/kTvMehn8n8sE8Ez7mOEOH4KxhdyHc6bY2DMdQSEcI6SP9F75iJDrkPgDGM8TI3qji9NlqPQzIXrcN4MY1OuIyCEc5T8id4TGQogMRRwHQanDiXZokfmQjxr8g7XodQuvhAQiriOghDOUfInBIC1iRHXIXAuuUAI7+gxCGr0XzBDCdfh1A4jE64jIKROoORPCABrKSV/lW+femC8YAVyrdtyHUrNk1hzHQEhdQIlf0IAWEn097q/LlcyzOCZOAfhjhPAwOM6nJpj4sB1BITUCZT8CQGd9tclTyHAsChfrLD5HkqxDdfh1AxK/oQAoORPCAA67V+eDfHOGFTwv4YxJoCJPdcREFInUPInBEBjc3r2uzwNZkwAazeuIyCkTqDkTwiAtxzNuQ6hzlONCfAfk59QaObMdTjV06Qz1xEQUifwGGP6ObwZISUolQztFgUjp6DsH30pyk5F5vnfkff0NlhRAQzMHWA1eBaMHIqPJlP/XAVZRIjGPMYuHWHnv7jcZWffOY6s64egkGXA0NYFlv2mw6hRS/X76SFbIYsIAU9oDHOfSZC691a/J4u8DFlECGzfW1Cdj11ttkaFOOi4H47Pj7/R5b4WYzPg6ziA14BuYCSkmgy4DoCQuoDP56FdEzNcfZKm831Ffg5e7poDY6d2sB21EHyxGYoyXoBvLNUoZ+ziCevBs/6dYFD+KXLZw4tI/+tXWA34BIaNWiL71lEk75uPRh9uhkBijtzo65A9vABb/yUoyniBtJNrIHLpCIHYDMoCGTIv7oDd6KWv+/GrLLlACK/osfjBpS3GpK0FTy574zFUWeNOlPgJ+Qed9ifkHx2czMt879W1AzAwtYa13ywYNWoJobk9RC4dIbTQvHucZyCEQGrx76vUzoFWvTePwOStgZC26w9DaydYDvwEPKERcu6fAQAUpsXD2LEtjBzcIGnjA56hGEVZSQCAjHPbYdJhMAxMbV/vg7+G/8a0xQSDejImAJ3yJ0SNkj8h/+jgaFHme3nR12Fo74aUI8sQv24cXmyfieywU1rl8p/dR/y6cUjYOh1ppzdAkVf2z8cyRSHkL6Nh3LS9ehqPx4exc3sUJEQCAAxtXCB/GQ1Ffg4KXkYXX26waIT8539DnvQEJp7cD8d7Od0MnRO/xj3H8XV7TABHSv6EqNBpf0L+Ud6Rf2HmSxTePQHTzsNh180fBYlRyAjZAp5ACGnbvgAAkUtHiFt0h4G5HYoyEpF5cQeS9y+A/fgV4PG1fztAkfsKYEoIJJrLFYjNUZj2vLjOZp6QuPfCy8AvwDMwhLXfF+ALjZB++hdY+X2B7LsnkH3nOAQiU1gO/BSGNk1rrD2qQqbgY2jUYHzq2AazZSvBz03lJI6y8YpP+xNCAFDyJ0TNSmoEZysxYtNytd9kDEb2rrDwmQQAMLRrjsLUOGSHnVAnf0kbH3VxQxtnCG1d8GLzB8h/dh8i5/bVjsu85ziY9xyn/jvz8h8wdm4PHl+ArNC9aDRlA/KibyDtz5VwmLym2supCevjnREs+RF77LfD8uVlTmPRYO0GiMy5joKQOoNO+xNSQq+Wuq+fC6QWEFo7aUwTWjlC8SqlzLqE5vbgi0xRlJmou06xKcDjQyHL1JiuyM2EQKL7EkRhWjxkD87B3Gs88p/dh3ETDwjEZhC38oI86QmUBTp2XN6wOjkmgLMX1xEQUqdQ8iekhGHtG+mcbtS4DQrTn2tMK0xPKPdmu6JXqVDmZUMgsdT5Pk8ghKG9K/LjwtXTGFMiPzYcRo1baZVnjCHt9AZY9PkAfEMRwJRgyn8eTVT9y5Tlfbw3ps6NCdDufa4jIKROoeRPSAkdnCzgbCXWmm7aeRgKXjxCVug+FGa8gOzBeeSEn4K0ox8AQCnPQ8a5bShIiERRVhLyYsOQcmgJDCwcIHLpqK4nac9/8er2sRL1Dkd2+Gnk3A9BYWo80k//AlaYD2nbflox5ISfhkBkCrFrVwCAUePWyI+7h4KESLy6eRRCKyetRw+5djDJDj0yFyG+iR93QVg2B5y6crd8QuoguuZPSCnD2jfGmpAojWlGDi1gM+JbZF4IROaV3TAws4NFnw//HXCHx4c8OQY5ESFQ5ssgkFpC5NIB5l7jwSvxrH9hxksYlXgCQNLaG4rcLGRe3vXPID/NYOu/WOu0v0KWgazQfbAfv/zfmBq1hGmXEUg+sAh8sRms/b6ohdZ4fcVjAozDD83aYUwqB2MCvDX6zS6PkHqARvgjpJSYVBl6rzjPdRgNUk/LLGwVb4AoNeINLZEHzLoHmDtVXJQQPUKn/QkpxcVaQmP915LL6WbolPjNmxsToGkPSvyE6EDJnxAdhpdx4x95faoxAVbaLoVSbF27C2s/pnbrJ6SeouRPiA5D32oEIwP6etSmdc9cMFj+P2TY96idBQjFQJthtVM3IfUc9W5E72zYsAHOzs4wNjZG165dcePGDa0yVlIjvN/ZkYPo9Etkjhgd42bgL8dPan5MgHb+gJFJzdZJSANByZ/olb1792L27NlYsGAB7ty5g7feegsDBw5EcnKyVtmPfJpDKKjDY9U3EIzxMCWqR82OCWAgAny+rpm6CGmAKPkTvbJy5Up8+OGHCAgIQJs2bbBp0yaIxWJs27ZNq2wjcxFGdmjCQZT6qUbHBOg6DTCl+zYIKQslf6I35HI5bt++jX79/h1Ah8/no1+/fggNDdU5z6d9XGEooK/Jm6IaE+CPRnPBDCXVq8TYDOhZN8c8IKSuoF6N6I3U1FQoFArY2dlpTLezs8PLly91zuNoKca4t+lRsTftv0/bYpLBcuRZe1R95p5fAKKyf56ZEELJn5AKfdrbFVIjGgzzTbuYbo5Oid/gvuO4yo8JYNII6PpR7QZGSANAyZ/oDWtrawgEAiQlJWlMT0pKgr29fZnzWUmN8Elv19oOj+ggU/DxTpRf5ccE8JkDCEW1Hxgh9Rwlf6I3DA0N4enpiZCQEPU0pVKJkJAQdOvWrdx5p3k3Q3sa9Y8zlRoTwLoF0GHCmwuKkHqMkj/RK7Nnz8bWrVsRGBiIhw8f4uOPP4ZMJkNAQEC58wn4PPzs/xaMhfSV4YpqTIBzjjO0xwTgCYBhvwACujxDSGVQT0b0yvvvv48VK1Zg/vz5aN++PcLCwnDq1CmtmwB1aW4jxZyBrd5AlKQsjPEQENUTX5n+hELTpv++0fMLwLEzd4ERUs/Qr/oRUgWMMYzdeh2hT9O4DkXv2RvJsd9xPxwVz4EPQgBBDY8QSEgDRsmfkCp6npGLQasvIaegiOtQ9J7EUIDzn3nCxsaG61AIqVfotD8hVdTEQox5Q1pzHQYB8MPItpT4CakGSv6EVMP7nZ0w4e2mFRcktWZcVycMa9+Y6zAIqZco+RNSTYuGumNAm4pvFCQ1r1NTC8x/pw3XYRBSb1HyJ6Sa+Hwe1o7pAM+mNJTsm+TR2BTbAjrDyEDAdSiE1FuU/Al5DcZCAX6b1AnNbKr5IzSkSlxtpdgxpStMjenOfkJeByV/Ql6TudgQgQFdYGNixHUoDZqjpQi7pnaFpcSQ61AIqfco+RNSAxwtxdg+uTNM6AeAaoWdqRGCpr4NezNjrkMhpEGg5E9IDfFobIb9H3eDAyWoGmUpMcSuqV3hZCXmOhRCGgwa5IeQGvYyKx8Bv9/Ew8RXXIdS7zW1EuPXiZ3gZmfCdSiENCiU/AmpBTkFRZgRdAcXH6dwHUq91cPVChvGdoS5mK7xE1LTKPkTUkuKFEp8ezgCe2/Fcx1KvTO5uzO+82sNAwFdmSSkNlDyJ6SWrQuJwsqzj0HftIoZCvhYPMwdo7s4cR0KIQ0aJX9C3oALj1Pw1f5wJGcXcB1KnWUtNcTG8Z7o7GzJdSiENHiU/Al5QzJkcvz38H2cjHjJdSh1jl87Byx4pw1sTehJCULeBEr+hLxhR+4mYPHxB0iXybkOhXNNLERYMtwDvVvach0KIXqFkj8hHEiXybH0+AMcupvAdSicMODzMLWnC2b1awGRIY3RT8ibRsmfEA5diU7FiuBHuPssk+tQ3pj2juZYNrItWjuYch0KIXqLkj8hdcCFxylYffZxg94JaGYtwYzerhjZoTH4fB7X4RCi1yj5E1KHXHycgjUhUbgdl8F1KDWmhZ0Un/R2xTvtGlHSJ6SOoORPSB10KSoF60KicSM2netQqoXHA7zdbBDQwxk+LWzA41HSJ6QuoeRPSB0WlybDsfAXOBaeiEdJ2VyHU6HG5iIMdLfH2K5OcLWVch0OIaQMlPwJqScevczG/4Un4Fh4Ip6l53IdjlorexMMaGOHAe728GhsxnU4hJBKoORPSD1091kGLjxOQXh8Ju49z0LaGxwzwNCAj/ZNzNG/jR0GuNuhqZXkjS2bEFIzKPkT0gDEp+ci/HkmwuMzEf48CxEJWciVK1673sbmIrSyN0ErBxO0tDdFa3sTuFhL6Ad3CKnnKPkT0gAxxpCaI0dydj6SXxUgOTsfWXmFyM4vQnZ+EXIKimBkwIfUyAASIwOIDQXq/0uMBDATGcLNTgpTYyHXH4UQUgso+RNCCCF6hs7dEUIIIXqGkj8hhBCiZyj5E0IIIXqGkj8hhBCiZyj5E0IIIXqGkj8hhBCiZyj5E0IIIXqGkj8hhBCiZyj5E0IIIXqGkj8hhBCiZyj5E0IIIXqGkj8hhBCiZyj5E0IIIXqGkj8hhBCiZyj5E0IIIXqGkj8hhBCiZyj5E0IIIXqGkj8hhBCiZyj5E0IIIXqGkj8hhBCiZyj5E0IIIXqGkj8hhBCiZyj5E0IIIXqGkj8hhBCiZ/4f34cDjy2FfdUAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Контрольная выборка: (115, 9)\n",
"Outcome\n",
"0 78\n",
"1 37\n",
"Name: count, dtype: int64\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAADECAYAAAARfmKGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA4d0lEQVR4nO3dZ3xTZd8H8F+StummLZ1AoaXssisgewqUKrJRkI0UEBBBeQTFMkRUvBEERETZKHvcIpaN7E0ZUqCUllXopKV0psn1vOid2JA0HbScjt/388mLnFznOv9zcs7JP9dIZEIIASIiIqJcyKUOgIiIiEo2JgtERERkEpMFIiIiMonJAhEREZnEZIGIiIhMYrJAREREJjFZICIiIpOYLBAREZFJTBaIiIiKgEajQVxcHO7evSt1KEWOyQIREZVoJ06cwNGjR3XPjx49ipMnT0oXUA5PnjzB5MmTUa1aNVhYWMDFxQX16tXDs2fPpA6tSBUoWVizZg1kMpnuYWlpiVq1amHChAmIjo4urhiJyo2TJ0+id+/ecHNzg1KphJeXFwIDA3H//v1C15mamopZs2bp3WyJSpMHDx5g/PjxuHbtGq5du4bx48fjwYMHUoeFO3fuoFmzZti0aRMCAwOxZ88eHDhwAIcOHYKNjY3U4RUps8KsNGfOHHh7eyM9PR0nTpzA8uXLsXfvXly/fh3W1tZFHSNRubBkyRJ8+OGHqF69OiZOnAgPDw+Ehobil19+webNm7F37160atWqwPWmpqZi9uzZAIAOHToUcdRExa9Pnz5YtGgRGjZsCABo2bIl+vTpI3FUQGBgICwsLHDmzBlUrlxZ6nCKVaGSBX9/f7z22msAgNGjR6NixYpYuHAhdu/ejXfffbdIAyQqD06ePInJkyejTZs2CA4O1ku6x40bh9atW6Nfv374559/4OjoKGGkRK+eUqnEqVOncP36dQBA/fr1oVAoJI3p4sWLOHz4MPbv31/mEwWgiMYsdOrUCQAQEREBAEhISMDHH3+MBg0awNbWFvb29vD398eVK1cM1k1PT8esWbNQq1YtWFpawsPDA3369EF4eDgAIDIyUq/r48VHzm9KR48ehUwmw+bNmzFjxgy4u7vDxsYGPXv2NNpkdfbsWXTv3h0VKlSAtbU12rdvn2s/WIcOHYxuf9asWQZlN2zYAD8/P1hZWcHJyQnvvPOO0e2b2recNBoNFi1aBF9fX1haWsLNzQ2BgYF4+vSpXjkvLy+8+eabBtuZMGGCQZ3GYl+wYIHBMQWAjIwMBAUFoUaNGlAqlfD09MS0adOQkZFh9Fjl1KFDB4P65s2bB7lcjt9++61Qx+O7775Dq1atULFiRVhZWcHPzw/btm0zuv0NGzagefPmsLa2hqOjI9q1a4f9+/frlfnrr7/Qvn172NnZwd7eHs2aNTOIbevWrbr31NnZGe+99x4ePXqkV2b48OF6MTs6OqJDhw44fvx4nsdp7ty5kMlkWLt2rUHrnI+PD7799ls8fvwYK1as0C03dmy1cXh5eQHIPqYuLi4AgNmzZxs9b2/evIkBAwbAxcUFVlZWqF27Nj777DO9Oi9fvgx/f3/Y29vD1tYWnTt3xpkzZ/TKaLspT5w4gUmTJsHFxQUODg4IDAxEZmYmEhMTMXToUDg6OsLR0RHTpk3Di396m99z3ZiXOf45j5nWhg0bIJfL8fXXX+stP3z4MNq2bQsbGxs4ODjg7bffRmhoqF6ZWbNmQSaTIS4uTm/5hQsXIJPJsGbNGqMxG3tERkYC+Pf63r9/Pxo3bgxLS0vUq1cPO3bsMNifu3fvon///nBycoK1tTVef/11/Pnnn/k6bsbOkeHDh8PW1jbP41iQe1BWVhbmzp0LHx8fXZfbjBkzDO4rXl5eGD58OBQKBRo1aoRGjRphx44dkMlkBu9ZbjFp90kul8Pd3R0DBw7U69rT3nu+++67XOvRvqdaZ86cgaWlJcLDw+Hr6wulUgl3d3cEBgYiISHBYP383kNsbW1x9+5ddOvWDTY2NqhUqRLmzJmjd61o49WeRwCQnJwMPz8/eHt74/Hjx7rlL3NN5VSoloUXaT/YK1asCCD7RN21axf69+8Pb29vREdHY8WKFWjfvj1u3LiBSpUqAQDUajXefPNNHDp0CO+88w4+/PBDJCcn48CBA7h+/Tp8fHx023j33XfRo0cPve1Onz7daDzz5s2DTCbD//3f/yEmJgaLFi1Cly5dEBISAisrKwDZF7y/vz/8/PwQFBQEuVyO1atXo1OnTjh+/DiaN29uUG+VKlUwf/58AMDz588xbtw4o9ueOXMmBgwYgNGjRyM2NhZLlixBu3btcPnyZTg4OBisM2bMGLRt2xYAsGPHDuzcuVPv9cDAQKxZswYjRozApEmTEBERgaVLl+Ly5cs4efIkzM3NjR6HgkhMTNTtW04ajQY9e/bEiRMnMGbMGNStWxfXrl3D999/j9u3b2PXrl0F2s7q1avx+eef4z//+Q8GDRpktExex2Px4sXo2bMnBg8ejMzMTGzatAn9+/fHnj17EBAQoCs3e/ZszJo1C61atcKcOXNgYWGBs2fP4vDhw+jatSuA7A+4kSNHwtfXF9OnT4eDgwMuX76M4OBgXXzaY9+sWTPMnz8f0dHRWLx4MU6ePGnwnjo7O+P7778HADx8+BCLFy9Gjx498ODBA6PvPZDdTXDo0CG0bdsW3t7eRssMHDgQY8aMwZ49e/Dpp5/mfaD/x8XFBcuXL8e4cePQu3dvXdOttjn36tWraNu2LczNzTFmzBh4eXkhPDwcf/zxB+bNmwcA+Oeff9C2bVvY29tj2rRpMDc3x4oVK9ChQwf8/fffaNGihd42J06cCHd3d8yePRtnzpzBzz//DAcHB5w6dQpVq1bFV199hb1792LBggWoX78+hg4dqlv3Zc/1whx/Y/bv34+RI0diwoQJesf74MGD8Pf3R/Xq1TFr1iykpaVhyZIlaN26NS5dupSvD6+cAgMD0aVLF93zIUOG6L1PAHTJHgCEhYVh4MCBGDt2LIYNG4bVq1ejf//+CA4OxhtvvAEAiI6ORqtWrZCamopJkyahYsWKWLt2LXr27Ilt27ahd+/eBnHkPG7aOIrb6NGjsXbtWvTr1w9Tp07F2bNnMX/+fISGhhpc8zllZWUZJLN5adu2LcaMGQONRoPr169j0aJFiIqKylcimZv4+Hikp6dj3Lhx6NSpE8aOHYvw8HAsW7YMZ8+exdmzZ6FUKgEU7B6iVqvRvXt3vP766/j2228RHByMoKAgZGVlYc6cOUZjUalU6Nu3L+7fv4+TJ0/Cw8ND91qRfX6IAli9erUAIA4ePChiY2PFgwcPxKZNm0TFihWFlZWVePjwoRBCiPT0dKFWq/XWjYiIEEqlUsyZM0e3bNWqVQKAWLhwocG2NBqNbj0AYsGCBQZlfH19Rfv27XXPjxw5IgCIypUri2fPnumWb9myRQAQixcv1tVds2ZN0a1bN912hBAiNTVVeHt7izfeeMNgW61atRL169fXPY+NjRUARFBQkG5ZZGSkUCgUYt68eXrrXrt2TZiZmRksDwsLEwDE2rVrdcuCgoJEzrfl+PHjAoDYuHGj3rrBwcEGy6tVqyYCAgIMYv/ggw/Ei2/1i7FPmzZNuLq6Cj8/P71jun79eiGXy8Xx48f11v/pp58EAHHy5EmD7eXUvn17XX1//vmnMDMzE1OnTjVaNj/HQ4js9ymnzMxMUb9+fdGpUye9uuRyuejdu7fBuah9zxMTE4WdnZ1o0aKFSEtLM1omMzNTuLq6ivr16+uV2bNnjwAgvvjiC92yYcOGiWrVqunV8/PPPwsA4ty5c0b3WQghQkJCBADx4Ycf5lpGCCEaNmwonJycdM9zHtucXozD2Lmq1a5dO2FnZyfu3buntzznddGrVy9hYWEhwsPDdcuioqKEnZ2daNeunW6Z9v7w4nXVsmVLIZPJxNixY3XLsrKyRJUqVfTiL8i5bkxhj/+L6164cEHY2tqK/v37G5w7jRs3Fq6uriI+Pl637MqVK0Iul4uhQ4fqlmnP29jYWL31z58/LwCI1atXG40jt/dJiOzrG4DYvn27bllSUpLw8PAQTZo00S2bPHmyAKB3zSYnJwtvb2/h5eVlsE+DBw8W3t7eJuMYNmyYsLGxMRrXizHm5x6kPedHjx6tV+7jjz8WAMThw4f16hw2bJju+Y8//iiUSqXo2LGjwfudW0w51xdCiEGDBglra2vdc1OfM1ov3ou0zzt37iyysrJ0y7XXwZIlS4QQBb+HABATJ07ULdNoNCIgIEBYWFjozidtvKtXrxYajUYMHjxYWFtbi7Nnz+rF/LLXVE6F6obo0qULXFxc4OnpiXfeeQe2trbYuXOnrt9GqVRCLs+uWq1WIz4+Hra2tqhduzYuXbqkq2f79u1wdnbGxIkTDbbxYpNVQQwdOhR2dna65/369YOHhwf27t0LAAgJCUFYWBgGDRqE+Ph4xMXFIS4uDikpKejcuTOOHTsGjUajV2d6ejosLS1NbnfHjh3QaDQYMGCArs64uDi4u7ujZs2aOHLkiF75zMxMANBln8Zs3boVFSpUwBtvvKFXp5+fH2xtbQ3qVKlUeuXi4uKQnp5uMu5Hjx5hyZIlmDlzpkFT49atW1G3bl3UqVNHr05t19OL28/NuXPnMGDAAPTt2xcLFiwwWiY/xwOArnUIAJ4+fYqkpCS0bdtW79zatWsXNBoNvvjiC925qKU9tw4cOIDk5GR8+umnBu+ttsyFCxcQExOD8ePH65UJCAhAnTp1DJp2tfOs4+LiEBISgnXr1sHDwwN169bNdX+Sk5MBQO+cNcbOzq5Ip2PFxsbi2LFjGDlyJKpWrar3mnb/1Wo19u/fj169eqF69eq61z08PDBo0CCcOHHCIKZRo0bpXb8tWrSAEAKjRo3SLVMoFHjttdf05qMX9Fw3pjDHP6e7d+8iICAAjRs3xvr16/XOncePHyMkJATDhw+Hk5OTbnnDhg3xxhtv6O4vOSUkJOjtS1JSUr7iyE2lSpX0Wgbs7e0xdOhQXL58GU+ePAEA7N27F82bN0ebNm105WxtbTFmzBhERkbixo0benVmZmbmec1p5eeekp97kPZYTZkyRW/51KlTASDXLpPU1FTMmTMHEyZMMDhnTcnIyEBcXBxiYmJw4MABHD58GJ07dzZaf1xcHJ4+fWrQRZabKVOm6I2fGDJkCNzc3HT7UNB7CJDdbaMlk8kwYcIEZGZm4uDBgwZlP/nkE2zcuBFbtmwxaBEvimtKq1DdEMuWLUOtWrVgZmYGNzc31K5dW++i0mg0WLx4MX788UdERERArVbrXtN2VQDZ3Re1a9eGmVmR9Ibo1KxZU++5TCZDjRo1dH1/YWFhAIBhw4blWkdSUpLeQLK4uDiDel8UFhYGIUSu5V5s7klMTAQAk32BYWFhSEpKgqurq9HXY2Ji9J7v379fr9kyP4KCglCpUiUEBgYa9P2HhYUhNDQ01zpf3L4xjx49QkBAAFJSUhAfH59rIpif4wEAe/bswZdffomQkBC9/s2c9YaHh0Mul6NevXq51qPtPqtfv36uZe7duwcAqF27tsFrderUwYkTJ/SWPXjwQO9YeXh4YPv27Sb3SZskaJOG3CQnJ+eZUBSE9oPa1P7HxsYiNTXV6P7XrVsXGo0GDx48gK+vr275izfxChUqAAA8PT0NlufsNy3ouW5MYY6/VkpKCrp164bo6GhUrFjR4Dw1dS7UrVsX+/btQ0pKit6UOWNlX0aNGjUM4qpVqxaA7H5sd3d33Lt3z6BrSBsjkL0fOd/zxMTEfB+fnMfW09MTU6dOxYcffqhXLj/3oHv37kEul6NGjRp6y93d3eHg4KA71i9auHAh0tPTMWPGDINEw5RNmzZh06ZNuufNmjXDL7/8YlAuKCgIQUFBAABLS0t06tQJixYtMnpP174PderU0VuuUChQs2ZN3edNQe8hcrlcLzEH9N/jnFasWKEbO2RsDEJRXFNahfqUbt68uW42hDFfffUVZs6ciZEjR2Lu3LlwcnKCXC7H5MmTDb6xS0Ebw4IFC9C4cWOjZXJePJmZmXj8+LGuT9BUvTKZDH/99ZfRkbovXpDabwLu7u4m63R1dcXGjRuNvv7iRdmiRQt8+eWXesuWLl2K3bt3G10/NDQUa9aswYYNG4z2XWk0GjRo0AALFy40uv6LHwDG3LlzB02bNsX333+PIUOGYO3atUYTtfwcj+PHj6Nnz55o164dfvzxR3h4eMDc3ByrV682GJQoBTc3N2zYsAFAdsK5atUqdO/eHSdOnECDBg2MrlOjRg2YmZnh6tWrudabkZGBW7du6V13MpnM6LefnMm5FHIbpW5sec74C3quG1OY468VFxcHGxsb/PHHH+jVqxfmz5+v++AorO3bt8Pe3l73/Pbt2/jggw9eqs6i9uTJE1SrVi3PcpaWlvjjjz8AZCeuq1atwuTJk+Hh4YEBAwboyhXkHlSQFuS4uDgsWLAA06dP12vZyY+uXbvik08+AZA9luWbb75Bx44dceHCBb2WyjFjxqB///5Qq9UIDQ3FrFmz0KtXL/zzzz8GdeZcTypnzpzBvHnzcP78eXz00Ufo3r07nJ2dda8XxTWlVbRf6f9n27Zt6NixI3799Ve95YmJiXo74uPjg7Nnz0KlUhXJID0tbcuBlhACd+7c0Q3q0g6ctLe31xtclJsrV65ApVKZTJC09Qoh4O3trcsETblx4wZkMpnJbx8+Pj44ePAgWrduna+T09nZ2WCfTA1CnD59Oho3boyBAwfmuv0rV66gc+fOhe4a0nYBubm5Yffu3Zg6dSp69OhhcKLm53hs374dlpaW2Ldvn17T6erVqw3i1mg0uHHjRq4JofY8uH79usE3HC3tTfTWrVu6rhetW7duGdxkLS0t9Y5/z5494eTkhKVLl+rNZMjJxsYGHTt2xOHDh3Hv3j2jN+4tW7YgIyNDb6S5o6Oj0Z+VffFbWW7vm/bbi3Y6mjEuLi6wtrbGrVu3DF67efMm5HJ5vhLG/CjouW5MYY6/lrW1NYKDg1GnTh189NFH+OqrrzBgwADdN/Kc58KLbt68CWdnZ4Mf4mnXrp3ePa8ggyyNuXPnDoQQeu/p7du3AUA3uLJatWq5xphzP4DsLoM7d+6ge/fueW5boVDoHduAgAA4OTkhODhYL1nIzz2oWrVq0Gg0CAsL0+siio6ORmJiotFr4Msvv4SdnZ1BS0Z+eHh46MVUu3ZttGrVCrt27dKb7l+zZk1duW7duiE1NRWfffaZ0R9F0w5GvnXrll5LgHa/mjRpottXbbn83EM0Gg3u3r2r9xny4nusNXLkSMyYMQNRUVGoV68ePvroI6xfv173elFcU1rF8nPPCoXC4BvP1q1bDaaJ9O3bF3FxcVi6dKlBHfntLzJm3bp1ek2627Ztw+PHj+Hv7w8A8PPzg4+PD7777js8f/7cYP3Y2FiD2BUKhdEpQTn16dMHCoUCs2fPNohfCIH4+Hjd86ysLGzfvh3Nmzc32QQ4YMAAqNVqzJ071+C1rKwsXdN9YZw+fRq7d+/G119/nesHyoABA/Do0SOsXLnS4LW0tDSkpKTkuZ1atWrBzc0NQPYPD2k0GoMLPr/HQ6FQQCaT6X17joyMNLgZ9erVC3K5HHPmzDFozdK+N127doWdnR3mz59v0KeqLfPaa6/B1dUVP/30k16Xx19//YXQ0FC92RfGZGZmIisrK89ppp9//jmEEBg+fDjS0tL0XouIiMC0adPg4eGBwMBA3XIfHx/cvHlT73y9cuWKwfRf7VTMF88VFxcXtGvXDqtWrTK4GWr3X6FQoGvXrti9e7deE2h0dDR+++03tGnTRu+b88sojnM9v8cfyD4e2iblOXPmoEqVKnj//fd1x8LDwwONGzfG2rVr9WK5fv069u/fbzBbqzhERUXpzRR49uwZ1q1bh8aNG+ta5Hr06IFz587h9OnTunIpKSn4+eef4eXlpdc1t3v3bqSlpRl8iOVHznOkoLTHatGiRXrLtS2YL15XkZGRWL58OWbNmlUk3+i111he54X23mFsHzt37gylUokffvhB7x6zceNGREdH6z4vCnMPyfmZKITA0qVLYW5ubjDOQjtrrFKlSvjmm2+wYcMGvanhRXlNFUvLwptvvok5c+ZgxIgRaNWqFa5du4aNGzca9MMMHToU69atw5QpU3Du3Dm0bdsWKSkpOHjwIMaPH4+33367UNt3cnJCmzZtMGLECERHR2PRokWoUaMG3n//fQDZfUK//PIL/P394evrixEjRqBy5cp49OgRjhw5Ant7e/zxxx9ISUnBsmXL8MMPP6BWrVp6P5erTTKuXr2K06dPo2XLlvDx8cGXX36J6dOnIzIyEr169YKdnR0iIiKwc+dOjBkzBh9//DEOHjyImTNn4urVq7pmvdy0b98egYGBmD9/PkJCQtC1a1eYm5sjLCwMW7duxeLFi9GvX79CHaf9+/fjjTfeMNm6MmTIEGzZsgVjx47FkSNH0Lp1a6jVaty8eRNbtmzBvn378mxxycnd3R0LFizA6NGj8d5776FHjx4FOh4BAQFYuHAhunfvjkGDBiEmJgbLli1DjRo19Jrxa9Sogc8++wxz585F27Zt0adPHyiVSpw/fx6VKlXC/PnzYW9vj++//x6jR49Gs2bNMGjQIDg6OuLKlStITU3F2rVrYW5ujm+++QYjRoxA+/bt8e677+qmPXl5eeGjjz7Siy8lJUWvGXz9+vVIT083Ol0tp3bt2uG7777DlClT0LBhQwwfPhweHh64efMmVq5cCY1Gg7179+qNoxk5ciQWLlyIbt26YdSoUYiJicFPP/0EX19fvUGHVlZWqFevHjZv3oxatWrByckJ9evXR/369fHDDz+gTZs2aNq0KcaMGQNvb29ERkbizz//REhICIDsb3QHDhxAmzZtMH78eJiZmWHFihXIyMjAt99+m6/3PT+K4lwv7PF/kZWVFX7++Wd06dIFy5cvx/jx4wFkd136+/ujZcuWGDVqlG7qZIUKFYz+5kpRq1WrFkaNGoXz58/Dzc0Nq1atQnR0tF7L2qefforff/8d/v7+mDRpEpycnLB27VpERERg+/btkMvlSE1NRVBQEH788Ue0atVKN5XYFLVajeDgYADZ3RCrV69GSkoKevXqVeD9aNSoEYYNG4aff/4ZiYmJaN++Pc6dO4e1a9eiV69e6Nixo175v//+G3Xr1sWIESMKvC0ge3yO9rx49OgRli5dCnt7e4MP31u3biE4OFjXKrlgwQI0a9bM6I8uOTk54fPPP8fMmTPRrVs3vP3227h79y6WLl2KRo0aYfTo0QBQ4HuIpaUlgoODMWzYMLRo0QJ//fUX/vzzT8yYMcNkt8GYMWPw22+/YezYsbpfUy7Sz498z5sQ/04JOX/+vMly6enpYurUqcLDw0NYWVmJ1q1bi9OnTxud6pWamio+++wz4e3tLczNzYW7u7vo16+fbppWYaZO/v7772L69OnC1dVVWFlZiYCAAIOpYUIIcfnyZdGnTx9RsWJFoVQqRbVq1cSAAQPEoUOH9Lad1+PFaTnbt28Xbdq0ETY2NsLGxkbUqVNHfPDBB+LWrVtCCCEmTpwo2rVrJ4KDgw1iMjZVUIjsKWB+fn7CyspK2NnZiQYNGohp06aJqKgoXZmCTp2UyWTi4sWLesuNvUeZmZnim2++Eb6+vkKpVApHR0fh5+cnZs+eLZKSkgy2l1d9QgjRqVMnUbVqVZGcnFzg4/Hrr7+KmjVrCqVSKerUqSNWr16d63FbtWqVaNKkiS7u9u3biwMHDuiV+e9//ytatWolrKyshL29vWjevLn4/fff9cps3rxZV4+Tk5MYPHiwbqqwlnbak/Zha2srmjZtKtavX2/yGOV07Ngx8fbbbwtnZ2dhbm4uqlatKt5//30RGRlptPyGDRtE9erVhYWFhWjcuLHYt2+f0SmEp06dEn5+fsLCwsJgWtz169dF7969hYODg7C0tBS1a9cWM2fO1Fv/0qVLolu3bsLW1lZYW1uLjh07ilOnTumVye3+kNs0wtym4+XnXDfmZY6/sWMmhBAjRowQ9vb2eu/1wYMHRevWrXXny1tvvSVu3LiRr31+2amTAQEBYt++faJhw4a683/r1q0GZcPDw0W/fv1072nz5s3Fnj17dK8/fPhQeHp6ismTJxu9hl+MI7/HtiD3IJVKJWbPnq2793t6eorp06eL9PR0gzoBiJ07d+otz+09e5F2fe3D2dlZdO3aVZw+fVpX5sV7vVwuF1WqVBHDhg3Tvfe53WOWLVsm6tSpI8zNzYWbm5sIDAzUm1qrld97iI2NjQgPDxddu3YV1tbWws3NTQQFBelNec05dTKnW7duCUtLS/HRRx/pLS/sNZWTTIiXaO8vYY4ePYqOHTti69athf62nVNkZCS8vb0RERGR64+tzJo1C5GRkXq/pEVEVNS8vLxQv3597NmzR+pQqJgMHz4c27ZtM9o9LjX+RTURERGZVCxjFsoKW1tbDB482OSAu4YNG+p+vpqIiKgsYrJggrOzs25QTG5Kwt+kEhERFacyNWaBiIiIih7HLBAREZFJTBaIiIjIJCYLREREZBKTBSIiIjKJyQIRERGZxGSBiIiITGKyQERERCYxWSAiIiKTmCwQERGRSUwWiIiIyCQmC0RERGQSkwUiIiIyickCERERmcRkgYiIiExiskBEREQmMVkgIiIik5gsEBERkUlMFoiIiMgkM6kDIKJXL/55Bu4npOJ+QioePk3D84wsqLI0UKk18LJIxAj1DkBh/r+HErBzBxyqAQ5Vsx8W1lLvAhG9QkwWiMqwBwmpOBUeh/DYFNyLT8H9hDQ8SEjF84ysXNcJcInDiORfTVds4/Jv8uBcE6jWCvB8HTC3LOI9IKKSgMkCURmSnK7CqfB4nAiLw/GwWETGpxbPhlJisx+PLvy7TKEEPJsD3u0B73ZAZT9AwVsMUVnAK5molLsR9QwHbkTjeFgsQh4kIksjpAlEnQFEHs9+HAFgYZvd4lCvF1C/D2BuJU1cRPTSZEIIie4sRFRYKrUGe689xtpTkbh0P7FI6w5wicOy5ElFWieUFYCG/QG/EYB7/aKtm4iKHVsWiEqRmGfp2HD2Pn4/dx+xyRlSh5N/GUnA+V+yH5X9AL/hQP2+gIWN1JERUT4wWSAqBc5HJmDNqUjs/+cJVOpS3hj46GL2Y99ngN8woM0UwNpJ6qiIyAQmC0QlWOjjZ5j3ZyhO3ImTOpSil/EMOLUEuLgWaPlB9kNpJ3VURGQEkwWiEijmWTq+238L2y4+hFTjFV+ZjGfA0fnAuZVA55lAk6GAnL8XR1SS8IokKkE0GoHVJyPQ6T9/Y8uFcpAo5JQaB/zxIbCyA3DvtNTREFEObFkgKiGuPUzCjJ3XcO1RktShSOvxFWB1d6DZ+0C3eYCZUuqIiMo9JgtEEhNCYNmRO/j+YBjU5aopIQ/nVwL3zwD9VgEutaSOhqhcYzcEkYSepavw/rqL+G7/bSYKxkRfA37uAFzeIHUkROUakwUiidyOTsbbS0/iYGi01KGUbKoUYPcHwLZRQPozqaMhKpeYLBBJYM/VKPRadhIRcSlSh1J6XN8GrGgLPL4qdSRE5Q6TBaJXKEutwZd7bmDCb5eRmqmWOpzS52kksOZNzpYgesWYLBC9IplZGry/7gJ+OREhdSilW0YSsKEPEH5Y6kiIyg0mC0SvgEqtwfiNl3DkVqzUoZQNqlTgt3eA0D1SR0JULjBZICpmao3Ah5sucyBjUVNnAFuHAVc2Sx0JUZnHZIGoGGk0Ah9tDsHea0+kDqVs0mQBOwOB879KHQlRmcZkgaiYCCHwybar+O+VKKlDKeME8OcU4PoOqQMhKrOYLBAVAyEEZuy8hu2XHkodSvmx+wMgKqTAqx07dgxvvfUWKlWqBJlMhl27dhV5aESlHZMFomKw/O9w/H7ugdRhlC+qVGDTYOB5TIFWS0lJQaNGjbBs2bJiCoyo9ON/QxAVsQuRCVi4/7bUYZRPzx4Cm98Dhu0BzCzytYq/vz/8/f2LOTCi0o0tC0RFKDE1E5N+v4ws/s+DdB6cBf78SOooiMoUJgtERejjrVcQlZQudRh0eQNwZrnUURCVGUwWiIrIL8fv4mBowfrLqRjt/xx4fEXqKIjKBCYLREXgyoNEfBN8U+owKCdNFrDrA0CtkjoSolKPyQLRS0rJyMLE3y9DpeY4hRIn+hpw4nupoyAq9TgbguglLT1yB/cTUqUOg3JzbAFQrxfgUsvoy8+fP8edO3d0zyMiIhASEgInJydUrVr1FQVJVLKxZYHoJdyLT8Gv/BfJkk2dCfz1Sa4vX7hwAU2aNEGTJk0AAFOmTEGTJk3wxRdfvKoIiUo8tiwQvYS5e0KRmaWROgzKy92jwD+7AN9eBi916NABQrALicgUtiwQFdKp8Dj+k2Rpsu8zQMVprUSFwWSBqJAW7LsldQhUEM8eAiEbpY6CqFRiskBUCAduROPy/USpw6CCOr0U0LDbiKigmCwQFZAQAv/Zz1aFUinhLhC6W+ooiEodJgtEBXTyTjxuPkmWOgwqrJOLpY6AqNThbAiiAtp0/r7UIZQYy89nYvmFTEQmZjft+7oq8EU7C/jXNEdCmkDQkXTsv6vG/SQNXKxl6FXHHHM7KlHBUma0PpVa4PPDGdh7Jwt3n2pQQSlDl+pm+LqLEpXssr/bZGQJjP4jHbtvquBuK8ePAZboUv3fW9mCkxm4n6TBkh5WxoOOugzc/Ruo3r5oDwZRGcZkgagAnqZkYv8NzoDQqmIvw9ddlKjpJIcAsDZEhbc3peFyYPbzqOcC372hRD0XBe4laTB2TzqikjXYNsDaaH2pKuDSEzVmtlOikZscT9MFPgxOR8/fU3FhjC0A4OeLKlyMUuP0KBv8dScLg7anIfpjW8hkMkQ81WDlJRUujLExHfjJxUwWiAqAyQJRAey8/Ii/q5DDW7XN9Z7P66zA8guZOPNQjVFNLbA9R1Lg4yTHvE5KvLczDVkaATO5YetCBUsZDgzR/6Bf6m+F5r+k4H6SBlUryBEap0bP2mbwdVWguqMcnxzIQFyqgIuNDOP+TMM3XZSwVxpvudAJPwQ8uQ641y/8zhOVIxyzQFQAWy48kDqEEkutEdh0XYUUFdDSU2G0TFKGgL1SZjRRyE1ShoAMgMP/ui4auSlw4r4aaSqBfeFZ8LCVwdlaho1XVbA0k6F3XXPTFWpd35bvGIjKO7YsEOXT5ftPObDRiGvRarT8NQXpWYCtBbBzoBXquRgmC3GpGsw9loExTfP5YQ4gPUvg/w6m490GZrrWgpFNzHE1Wo16Pz6Hs7UMW/pb4Wk68MXRdBwdZoPPD6dj03UVfJzkWNXTCpXtc/lOFLoH6DKrMLtMVO4wWSDKp83n2apgTG1nOULG2iIpXWDbDRWG7UrH38PlegnDswyBgN9SUc9FjlkdlPmqV6UWGLA1DUIAywP+HaxorpBhWYD+4MURu9MwqbkFLj9RY9fNLFwZa4tvT2ZgUnC6XleInvgwIPYW4FK74DtNVM6wG4IoHzKzNNhz9bHUYZRIFgoZajjJ4VdJgfldLNHITY7FZzJ1rydnCHTfkAo7Cxl2DrSGuSLvLgiVWmDAtjTcS9LgwBBrk2MQjkRk4Z8YNSY0t8DRSDV61DSDjYUMA3zNcTRSbXpDof/N934SlWdMFojy4crDRDzPyJI6jFJBI4CM/31GP8sQ6LohFRYK4L/vWsPSLP+JQli8BgeHWKOide63qfQsgQ/2pmPFm1ZQyGVQawDV/7at0mSPozApdE9+d4uoXGOyQJQP5yISpA6hRJp+MB3H7mUhMlGDa9FqTD+YjqORagxuYJ6dKKxPRUqmwK89rfAsQ+DJcw2ePNfofYjXWfocO0NVALIThX5b03AhSo2NfaygFtCtk6k2/OCf+3cGetQ0QxOP7C6P1lUV2HFThavRaiw9l4nWVfPoaX0cAiSye4koLxyzQJQPZ+7GSx1CiRSTIjB0ZxoePxeooJShoZsc+96zxhs+ZjgamYWzj7K/5tdY8lxvvYgPbeHlkN3KcCteg6SM7ETgUbLAf29lt+A0XpGit86RYdbo4PXvLet6jBpbbmQhJPDfqZb96pnhaKQZ2q5OQe2KcvzWN5fxCjnd/BN4fWzBd56oHJEJ/pE7kUlZag0azd6PlMw8+r/LiACXOCxLniR1GK9O7R7Au79LHQVRicZuCKI8XI96Vm4ShXLpyXWpIyAq8ZgsEOXhXAS7IMq0pPtAWqLUURCVaEwWiPLAwY3lQPQ/UkdAVKIxWSDKw+X7iVKHQMUtml0RRKYwWSAyIV2lRnxKZt4FqXR7ck3qCIhKNCYLRCY8SUqXOgR6FdiyQGQSkwUiE548Y7JQLsSEAhr+9ThRbpgsEJkQzWShfMhKB9KeSh0FUYnFZIHIhMfshig/UjlFlig3TBaITOCYhXIkjVNkiXLDZIHIBHZDlCOpTBaIcsNkgciE2OQMqUOgV0WVKnUERCUWkwUiE7I0/J+1ciOLrUhEuWGyQGSCTCZ1BPTKqNKkjoCoxGKyQGRCecwVguOcsNL9C6RXrCd1KK+WWiV1BEQlFpMFIhMU8vKXLqiFHPMi66DOo8/xg+tcpLg0ljqkV8PSXuoIiEosJgtEJliaK6QOQVIL7/vA98E0fO08H8/cmksdTvGycpQ6AqISi8kCkQk2FmZSh1Ai/PSwGhrem4yZTguQ4N5W6nCKh5WT1BEQlVhMFohMsFEyWchpfVRlNI0chykVFiG6UmeIsjSqgy0LRLliskBkgp0lkwVjdkS7osXdURhn9wMeVfaHkJWBW4k1WxaIclMGrnCi4lPF0UrqEEq04NiKaB0+BMOsliKyytsQ8lKcXLFlgShXTBaITPBxtZU6hFLhWIIDOtwZiP7my3Dbsz+EQil1SAVjYQcozKWOgqjEYrJAZEJNJgsFciHJDl3DeuNN+VJc8xwMYW4tdUj5Y+cudQREJRqTBSITKjtYwdqifE+fLIx/km3wVlgAuqiX4KLncAiLEp50eTSSOgKiEo3JApEJMpkMPi4l/IOuBAtPtULfsK5om7kEpzzHQGNZQscFVGoidQREJRqTBaI8sCvi5T1MV2JQWAe8nrYIhz0/gMbaReqQ9FVqLHUERCUakwWiPHCQY9GJyTDHyLDWaJL8H/xVZTLUtpWkDgmAjN0QRHlgskCUB7YsFL0klRnG3WmOhk+/xY7KnyDLvqp0wVSsASjtpNs+USlQiidFE70azbycoJDLoNaIXMtkJcch8egapN29CJGVATMHD1TsMRlKj5oAgHvfvGl0PYcOI1ChRV+jrwmNGkknfsPzG0ehSXkKha0TbOp3RoVW70D2v//OTjq7A8/ObQcAVGjRF/bN++jWz4i6hYT9P8J96ELI5CVzkGaKWo4p4U0wXd4IQdX+Qb+0rbBIvPNqg2AXBFGemCwQ5cHRxgJNqzrgfORTo6+r05/jyYZpsKzaEK79Z0FuXQFZT6Mgt/y3RaLKB+v11km7ewHxf/0A69qtc93us7PbkRzyFyoGfAQL56rIeByG+L8WQ660gf1rPZEZE4GkExvh0u8LQAjEbp8DS++msHDxgtCoEb9vGSp2n1BiE4WcMjRyzIhogJkyX8yodhuDVdtgGX/j1WycgxuJ8sRkgSgfutR1yzVZeHZmG8zsneEcMFm3zNxBf96+wlZ/FkDqnbOwrNbAoFxOGY9CYVWjBax9mgEAzCq4ITX0GDIf3wYAqOIfwtzFC1bVsvvbzV28oIp/CAsXLzw7ux2Wnr5QetQq8L5KSS3kmBtZB3PxOaZUDccosR02sSHFu1GfzsVbP1EZwDELRPnQua5brq+l3TkLC/eaiN01Hw+WDEbU6klIDgnOtbw65SnSws/DtmFXk9tUVq6L9HtXoEp4BADIjLmL9Ic3YFndDwBg4eKFrKePkPUsBllJMchKeAQL52pQPX2M59cOwqHtkELsacnxSv4e26Uu4FqneOomKkPYskCUDzVcbeHtbIOIuBSD11SJT6C6vBf2zXrBreUAZDwOw9NDP0OmMIdtA8Nvrc+vH4LcwgrWtVqZ3Kb96/2gyUhF1MqxgFwOaDRwaDcEtr4dAQDmzp5waDcU0ZtnAgAc2g+DubMnojd9BscOI5AWcQlJJ38D5GZw6jIGlp71i+BIvHo/PayGnzAZQytFYbLFLjg9OVF0lfv2Lrq6iMowJgtE+dS5jit+ORFh+IIQULrXgGP7YQAACzcfqOLuITlkr/Fk4epB2NTrAJmZhcntpYYeR8qNo3B+62OYu1RDZvRdPD20Egrbirp67Zr0gF2THv/Wfe0QZBZWUFaug0crx8Jj6EKok+MR999vUTnwV8jMSu//H6yLqoR1GI++bn3xfzZ/wCXqCGTIfdBpvjBZIMoXdkMQ5VNuXREKW0eYO+tP/TOv6An1s1iDsukPriMr4SFsG5nuggCAp0dXo8Lr/WBTrz0sXLxgW78T7Jq9jaQzW42WV6cmIenkb3DqMhYZUbdh7lQJ5k6VYVmtIYQ6C6qnj/KxlyXf9mg3NL87+uX/HtvVF3ApXWM6iKTCZIEon5p5OcLR2vCbubJyPagSHuotUyU8gpm9q0HZ51cPwMK9Bixcq+e5PaHKAF74IJTJ5IDQGC3/9PAvsGvWC2b2zoBQQ6jV/76oUQMa4+uVVtq/xx5uvaRwf4/NVgWifGOyQJRPZgo53mlu+ONB9s3eRkbULSSd3gLV0yik3DiK51eCYds0QK+cJiMVqbdO5DqwMXrTDDy7+IfuuVWN5kg6tRmp4eeRlRSN1Nun8Oz8LljXammwblrEZagSHsHuf9u0cK+FrISHSAu/kD3YUq6AmVPll9n9EuvveMcX/h7bdPeODpMFonyTCSFestOPqPyIeZaONt8cQaZa/1t66p1zSPx7LVRPo2BWwQ32zXrBrnF3vTLJIcF4emglqkxYB7nSxqDuh8tHwrZBZzi0GQwgO7lIPL4BqWGnoUlNgsLWCdZ128Oh9TuQKf5t4dCoMvB4zSS49Pw/WLj922KRfGUfEo+vh0xhDqeu43VTMMu6BnYpmO9+BL6Pd0KWlWa8UJVmwOiDrzYwolKMyQJRAX2y9Qq2XnyYd0GSVE2bNHxT6RiaRG+HLPO5/osD1gH13pYmMKJSiMkCUQGFRSej66Jj4JVTOlSxzMACz1NoEbsV8vREwKk6MOFi9nRUIsoXJgtEhTBi9TkcuWU424FKLlelCt9UPYuWjRvA0m+Q1OEQlSpMrYkK4f12ec9moJIlJsMcM2K6QNZooNShEJU6TBaICqGVjzMaVK4gdRhUQB90rAGlWcn/Yy2ikobJAlEhTe5SU+oQqACqOFphYDNPqcMgKpWYLBAVUue6buhUx/CHl6hkmvJGLZgreMsjKgxeOUS5WLZsGby8vGBpaYkWLVrg3LlzBmWC3qoHCzNeRiVd+1ou6NO0itRhEJVavMsRGbF582ZMmTIFQUFBuHTpEho1aoRu3bohJiZGr1y1ijYYy8GOJZqd0gzz+zSQOgyiUo1TJ4mMaNGiBZo1a4alS5cCADQaDTw9PTFx4kR8+umnemUzstQI+OEE7sQ8N1YVSeyr3g0wqIXhz3QTUf6xZYHoBZmZmbh48SK6dOmiWyaXy9GlSxecPn3aoLzSTIFv+zWEXPYqo6T8aFPDmYkCURFgskD0gri4OKjVari56f8ltZubG548eWJ0naZVHTGqjferCI/yycZCga/7svuBqCgwWSAqIlO71kbDKvzthZLi0x51UcXRWuowiMoEJgtEL3B2doZCoUB0dLTe8ujoaLi7u+e6nqW5AiuHvgY3e2Vxh0h56FzHFe+x+4GoyDBZIHqBhYUF/Pz8cOjQId0yjUaDQ4cOoWXLlibXdbO3xMqhr8HSnJeWVBpUroAlg5pAJuMgEqKiwjsakRFTpkzBypUrsXbtWoSGhmLcuHFISUnBiBEj8ly3YRUHLOjX6BVESS+q7GCFX4e/BmsLM6lDISpTeEURGTFw4EDExsbiiy++wJMnT9C4cWMEBwcbDHrMzVuNKiEsOhk/HL5TzJGSlr2lGdaMaAZXO0upQyEqc/g7C0TFRAiBD367hL3XjM+goKJjoZBjzchmaOXjLHUoRGUSuyGIiolMJsN/+jfGa9UcpQ6lzPu6bwMmCkTFiMkCUTGyslBg/agW6FDbRepQyqzp/nX4vw9ExYzdEESvgEqtwcdbr2B3SJTUoZQZ5goZ5vdpiH5+TBSIihuTBaJXRAiB2X/cwJpTkVKHUurZKc3w43tN0bYmW2yIXgUmC0Sv2KKDt7HoYJjUYZRa7vaWWDW8GepVspc6FKJyg8kCkQTWnY5E0H//Aa++gqntZoc1I5vBo4KV1KEQlStMFogkciIsDh9vvYInz9KlDqVUaOVTET8N8YO9pbnUoRCVO0wWiCSUlKrCjF3X8OfVx1KHUmKZyWWY2KkmJnSqAQX/B5xIEkwWiEqAHZceImj3P0jOyJI6lBKlurMNvh/YGI08HaQOhahcY7JAVEI8fJqKKVuu4FxEgtShSE4hl2FYSy980q02rCwUUodDVO4xWSAqQTQagRXH7mLxodtIV2mkDkcS9Tzs8XXfBmhYxUHqUIjof5gsEJVAT5LSsfDALWy7+BCacnKFVrSxwLgOPhjeygtmCv64LFFJwmSBqAS79SQZ3wbfxKGbMVKHUmxc7ZQY0646Breoxi4HohKKyQJRKXDtYRJ+OByGg6HRZea3GSo7WGFs++oY0MwTSjMmCUQlGZMFolIk9PEz/HoiAsHXn+B5KZ05UdXJGuM7+KCvXxWYs7uBqFRgskBUCqWr1Nh/Ixq7Lz/CsbBYqNQl+zJ2tDZHN1939GjggVY+FTkmgaiUYbJAVMolpGRiz9Uo7Lz8CJfvJ0odjo6TjQW6+bqhRwMPtKzOBIGoNGOyQFSG3ItPwfGwOIQ8SETIg0SExz5/ZWMczBUy1HC1Q9OqDvCv74HXqzsxQSAqI5gsEJVhz9JVuPogCSEPnuoSiLjnmS9dr42FAnU97OFbyR6+lSqgXiV71HKzg4UZkwOisojJAlE5k5qZhYSUTDxNUSEhNRMJKRlISFHhaUomElIzkaHSwNJcDqWZAkpzOWwsFHC0sYCjdfbDo4IlqlW0hkzG/2kgKi+YLBAREZFJbDMkIiIik5gsEBERkUlMFoiIiMgkJgtERERkEpMFIiIiMonJAhEREZnEZIGIiIhMYrJAREREJjFZICIiIpOYLBAREZFJTBaIiIjIJCYLREREZBKTBSIiIjKJyQIRERGZxGSBiIiITGKyQERERCYxWSAiIiKTmCwQERGRSUwWiIiIyCQmC0RERGQSkwUiIiIyickCERERmcRkgYiIiExiskBEREQm/T8Z+0aI8dPkZQAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Тестовая выборка: (116, 9)\n",
"Outcome\n",
"0 73\n",
"1 43\n",
"Name: count, dtype: int64\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAekAAADECAYAAAC7i9nLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA0/klEQVR4nO3dd1xT1/sH8E8SEvbeKgqCgIo4cPwUGVoVcVWtpe6taNXaar+0trXu2tZW69a2rmqHq2KtuEfdk+FCRAUHsgVkJyTn9wdNyiUBAYGE5Hm/Xr5abk7OeXJyc5+cc8+94THGGAghhBCicfjqDoAQQgghqlGSJoQQQjQUJWlCCCFEQ1GSJoQQQjQUJWlCCCFEQ1GSJoQQQjQUJWlCCCFEQ1GSJoQQQjQUJWlCCCENGmMML1++RHx8vLpDqXWUpAkhhKh0584dhIeHK/6Ojo7G4cOH1RdQGbm5ufjiiy/g4eEBkUgEa2truLu7Iy4uTt2h1apqJent27eDx+Mp/hkYGMDd3R0zZ85EampqXcVIiM64ePEihgwZAnt7e+jr68PZ2RmhoaF4+vRpjessKCjAwoULcfbs2doLlOiE3NxchIaG4sqVK4iPj8fs2bNx+/ZtdYeFzMxMdO3aFWvWrMGwYcNw8OBBnDhxAmfPnoWzs7O6w6tVejV50uLFi+Hi4oKioiJcuHABGzduREREBO7cuQMjI6PajpEQnbB27VrMnj0bzZs3x6xZs+Do6IjY2Fj8/PPP2L17NyIiItCtW7dq11tQUIBFixYBAAIDA2s5aqLNunbtqvgHAO7u7pgyZYqaowL+97//ITk5GZcvX0br1q3VHU6dqlGSDg4ORseOHQEAkydPhrW1NVauXImDBw9ixIgRtRogIbrg4sWL+PDDD9G9e3ccPXqU82V3+vTp8PX1xbBhw3D37l1YWlqqMVKia8LDw3Hv3j0UFhaiTZs2EIlEao0nLS0NO3bswKZNm7Q+QQO1dE66Z8+eAICEhAQAwMuXL/Hxxx+jTZs2MDExgZmZGYKDgxETE6P03KKiIixcuBDu7u4wMDCAo6Mjhg4dikePHgEAEhMTOVPs5f+VHRmcPXsWPB4Pu3fvxmeffQYHBwcYGxtj0KBBePbsmVLbV69eRd++fWFubg4jIyMEBATg4sWLKl9jYGCgyvYXLlyoVHbXrl3w8fGBoaEhrKysMHz4cJXtV/baypLJZPjhhx/QunVrGBgYwN7eHqGhocjKyuKUc3Z2xoABA5TamTlzplKdqmJfsWKFUp8CQHFxMRYsWAA3Nzfo6+vDyckJYWFhKC4uVtlXZQUGBirVt2zZMvD5fPz222816o/vvvsO3bp1g7W1NQwNDeHj44N9+/apbH/Xrl3o3LkzjIyMYGlpCX9/fxw/fpxT5siRIwgICICpqSnMzMzQqVMnpdj27t2reE9tbGwwevRoJCUlccqMHz+eE7OlpSUCAwNx/vz51/bTkiVLwOPxsGPHDqXZKFdXV3z77bdITk7G5s2bFdtV9a08DvmUX2JiImxtbQEAixYtUrnf3r9/HyEhIbC1tYWhoSE8PDzw+eefc+qMiopCcHAwzMzMYGJigrfeegtXrlzhlJGfDrtw4QI++OAD2NrawsLCAqGhoRCLxcjOzsbYsWNhaWkJS0tLhIWFofyP8FV1X1elpv1f/nmq/iUmJirKHzlyBH5+fjA2NoapqSn69++Pu3fvKtVbWb8uXLjwtW2WPT1R2/vfhg0b0Lp1a+jr66NRo0aYMWMGsrOzOWXK7l+tWrWCj48PYmJiVH4mVSl/zLSxsUH//v1x584dTjkej4eZM2dWWI98v5K/B9evX4dMJoNYLEbHjh1hYGAAa2trjBgxQuVpodOnTyveLwsLC7z99tuIjY3llJG/H/L3zMzMDNbW1pg9ezaKioqU4i37+SkpKUG/fv1gZWWFe/fuccpWNRdUpkYj6fLkCdXa2hoA8PjxY4SHh+Pdd9+Fi4sLUlNTsXnzZgQEBODevXto1KgRAEAqlWLAgAE4deoUhg8fjtmzZyM3NxcnTpzAnTt34OrqqmhjxIgR6NevH6fdefPmqYxn2bJl4PF4+OSTT5CWloYffvgBvXr1QnR0NAwNDQGUvnHBwcHw8fHBggULwOfzsW3bNvTs2RPnz59H586dlept0qQJli9fDgDIy8vD9OnTVbY9f/58hISEYPLkyUhPT8fatWvh7++PqKgoWFhYKD1n6tSp8PPzAwD8+eefOHDgAOfx0NBQbN++HRMmTMAHH3yAhIQErFu3DlFRUbh48SKEQqHKfqiO7OxsxWsrSyaTYdCgQbhw4QKmTp2Kli1b4vbt21i1ahUePHjAWVRSFdu2bcMXX3yB77//HiNHjlRZ5nX9sXr1agwaNAijRo2CWCzGH3/8gXfffRd///03+vfvryi3aNEiLFy4EN26dcPixYshEolw9epVnD59Gn369AFQegCYOHEiWrdujXnz5sHCwgJRUVE4evSoIj5533fq1AnLly9HamoqVq9ejYsXLyq9pzY2Nli1ahUA4Pnz51i9ejX69euHZ8+eqXzvgdLp6FOnTsHPzw8uLi4qy7z33nuYOnUq/v77b3z66aev7+h/2draYuPGjZg+fTqGDBmCoUOHAgC8vb0BALdu3YKfnx+EQiGmTp0KZ2dnPHr0CIcOHcKyZcsAAHfv3oWfnx/MzMwQFhYGoVCIzZs3IzAwEP/88w+6dOnCaXPWrFlwcHDAokWLcOXKFfz444+wsLDApUuX0LRpU3z11VeIiIjAihUr4OXlhbFjxyqe+6b7ek36PzQ0FL169VL8PWbMGE5fyfsRAHbu3Ilx48YhKCgI33zzDQoKCrBx40Z0794dUVFRii9Hr+vXoUOHws3NTVH/Rx99hJYtW2Lq1KmKbS1btgRQ+/vfwoULsWjRIvTq1QvTp09HXFwcNm7ciOvXr7+2jz/55JNK+788T09PfP7552CM4dGjR1i5ciX69ev3RmssMjMzAZQOPnx8fPD1118jPT0da9aswYULFxAVFQUbGxsAwMmTJxEcHIzmzZtj4cKFKCwsxNq1a+Hr64vIyEil89chISFwdnbG8uXLceXKFaxZswZZWVn45ZdfKoxn8uTJOHv2LE6cOIFWrVopttckF6jEqmHbtm0MADt58iRLT09nz549Y3/88QeztrZmhoaG7Pnz54wxxoqKiphUKuU8NyEhgenr67PFixcrtm3dupUBYCtXrlRqSyaTKZ4HgK1YsUKpTOvWrVlAQIDi7zNnzjAArHHjxuzVq1eK7Xv27GEA2OrVqxV1t2jRggUFBSnaYYyxgoIC5uLiwnr37q3UVrdu3ZiXl5fi7/T0dAaALViwQLEtMTGRCQQCtmzZMs5zb9++zfT09JS2x8fHMwBsx44dim0LFixgZd+W8+fPMwDs119/5Tz36NGjStubNWvG+vfvrxT7jBkzWPm3unzsYWFhzM7Ojvn4+HD6dOfOnYzP57Pz589znr9p0yYGgF28eFGpvbICAgIU9R0+fJjp6emxuXPnqixblf5grPR9KkssFjMvLy/Ws2dPTl18Pp8NGTJEaV+Uv+fZ2dnM1NSUdenShRUWFqosIxaLmZ2dHfPy8uKU+fvvvxkA9uWXXyq2jRs3jjVr1oxTz48//sgAsGvXrql8zYwxFh0dzQCw2bNnV1iGMca8vb2ZlZWV4u+yfVtW+ThU7aty/v7+zNTUlD158oSzveznYvDgwUwkErFHjx4ptr148YKZmpoyf39/xTb58aH856pr166Mx+OxadOmKbaVlJSwJk2acOKvzr6uSk37v7yK+io3N5dZWFiwKVOmcLanpKQwc3Nzzvaq9GtZzZo1Y+PGjVPaXtv7X1paGhOJRKxPnz6cz8W6desYALZ161bFtvL7V0REBAPA+vbtq/SZVEXV/vnZZ58xACwtLU2xDQCbMWNGhfXI96uEhATO361ateIcC+TH/7LHl3bt2jE7OzuWmZmp2BYTE8P4fD4bO3asYpv8ODNo0CBO2++//z4DwGJiYjjxyvePefPmMYFAwMLDwznPq24uqEyNprt79eoFW1tbODk5Yfjw4TAxMcGBAwfQuHFjAIC+vj74/NKqpVIpMjMzYWJiAg8PD0RGRirq2b9/P2xsbDBr1iylNqoynVKRsWPHwtTUVPH3sGHD4OjoiIiICACllxHEx8dj5MiRyMzMREZGBjIyMpCfn4+33noL586dg0wm49RZVFQEAwODStv9888/IZPJEBISoqgzIyMDDg4OaNGiBc6cOcMpLxaLAZT2V0X27t0Lc3Nz9O7dm1Onj48PTExMlOqUSCScchkZGUrTNeUlJSVh7dq1mD9/PkxMTJTab9myJTw9PTl1yk9xlG+/IteuXUNISAjeeecdrFixQmWZqvQHAMVsCABkZWUhJycHfn5+nH0rPDwcMpkMX375pWJflJPvWydOnEBubi4+/fRTpfdWXubGjRtIS0vD+++/zynTv39/eHp6Kl2OIpPJFH0UHR2NX375BY6OjopRkSq5ubkAwNlnVTE1NcWrV68qLVMd6enpOHfuHCZOnIimTZtyHpO/fqlUiuPHj2Pw4MFo3ry54nFHR0eMHDkSFy5cUIpp0qRJnM9vly5dwBjDpEmTFNsEAgE6duyIx48fK7ZVd19XpSb9X1UnTpxAdnY2RowYwYlPIBCgS5cuiviq0q9VVdv738mTJyEWi/Hhhx9yPhdTpkyBmZlZhZdXMcYwb948vPPOO0ozJ5WRH4/S09Nx+fJlHDhwAN7e3oqRrlxRUREyMjKQmZmpdOytyIwZMzjHgsDAQPj4+CheQ3JyMqKjozF+/HhYWVkpynl7e6N3796KfFC+zrLkuUlV2XXr1mH58uVYs2YN3n77bc5j1c0FlanRdPf69evh7u4OPT092Nvbw8PDg/OGy2QyrF69Ghs2bEBCQgKkUqniMfmUOFA6Te7h4QE9vVqZdVdo0aIF528ejwc3NzfFOQ35Be/jxo2rsI6cnBzOAp2MjAylesuLj48HY6zCcuWnkeTngMonxvJ15uTkwM7OTuXjaWlpnL+PHz+umJqrqgULFqBRo0YIDQ1VOrcbHx+P2NjYCuss374qSUlJ6N+/P/Lz85GZmVnhgaoq/QEAf//9N5YuXYro6GjOefGy9T569Ah8Pp8z/VSe/DSNl5dXhWWePHkCAPDw8FB6zNPTExcuXOBse/bsGaevHB0dsX///kpfkzw5y5N1RXJzc1+byKtDniAre/3p6ekoKChQ+fpbtmwJmUyGZ8+ecRbwlE9M5ubmAAAnJyel7WXPNVd3X1elJv1fVfLjhvwLanlmZmYAqtavVVXb+19F9YlEIjRv3lzxeHm//vor7t69iz179iit16jMpUuXOPG0aNEC4eHhSseALVu2YMuWLYpYunTpgpUrVyoWKJclf66np6fSYy1btlQcwyrru5YtW+LYsWPIz8+HsbExJ76yXF1dwefzOWsSgNJ1CTdu3ABQugarvOrmgsrUKDt27txZZefJffXVV5g/fz4mTpyIJUuWwMrKCnw+Hx9++GGVvyXVJXkMK1asQLt27VSWKfuhFovFSE5ORu/evV9bL4/Hw5EjRyAQCCqtEwBSUlIAAA4ODpXWaWdnh19//VXl4+WTZ5cuXbB06VLOtnXr1uHgwYMqnx8bG4vt27dj165dKnccmUyGNm3aYOXKlSqfX/7Aq8rDhw/RoUMHrFq1CmPGjMGOHTtUfkGqSn+cP38egwYNgr+/PzZs2ABHR0cIhUJs27atWgePumJvb49du3YBKP2it3XrVvTt2xcXLlxAmzZtVD7Hzc0Nenp6uHXrVoX1FhcXIy4ujvO54/F4SguvAHC+FKuDqn2/ou1l46/uvq5KTfq/quTHjZ07d6rcR2t7sFETdfH6xWIx5s+fj0mTJsHd3b1az/X29sb3338PAIrzxoGBgYiMjOT04dtvv42ZM2eCMYaEhAQsXrwYAwYMUHkHsbKj57pW0YDi2rVrmDJlCoyNjbF06VK8++67nC8D1c0FlamTvWrfvn3o0aOH4puRXHZ2Nmeaw9XVFVevXoVEIqmVxU9y5d9YxhgePnyoWCwjX5BmZmbGWTBSkZiYGEgkkkq/mMjrZYzBxcWlSjvzvXv3wOPxVH7TK1vnyZMn4evrW6Wd08bGRuk1Vba4a968eWjXrh3ee++9CtuPiYnBW2+9VeNTEPJTDfb29jh48CDmzp2Lfv36KR10q9If+/fvh4GBAY4dO8aZFt+2bZtS3DKZDPfu3avwi5h8P7hz5w5nEU9ZzZo1AwDExcUpjaDi4uIUj8sZGBhw+n/QoEGwsrLCunXrOCuzyzI2NkaPHj1w+vRpPHnyRKlOANizZw+Ki4s5q/ctLS0508Vy5UdDFb1v8unr8qtty7K1tYWRkZHKuzjdv38ffD6/Sl/UqqK6+7oqNen/6sQHAHZ2dpUeN6rSr1VV2/tf2frKnr4Qi8VISEhQ+bo2bNiAtLQ0lVeyvI6lpSWnzsDAQDRq1Ajbtm3jLPxt0qQJp5yJiQlGjRqFqKgopTrliytV9cn9+/cVi8HKvtby7t+/DxsbG84oGijNHWUXbz58+BAymUxpgVnv3r2xceNGFBUVITw8HFOnTlVcXQRUPxdUpk5uCyoQCJS+4e/du1fpkoF33nkHGRkZWLdunVIdqkYIVfXLL79wpg737duH5ORkBAcHAwB8fHzg6uqK7777Dnl5eUrPT09PV4pdIBCovLyprKFDh0IgEGDRokVK8TPGFKsSgdJl+/v370fnzp0r/VYVEhICqVSKJUuWKD1WUlKidNlEdVy+fBkHDx7E119/XeGBPCQkBElJSfjpp5+UHissLER+fv5r23F3d4e9vT2A0ht2yGQyzJ49m1Omqv0hEAjA4/E4o8XExESlLyKDBw8Gn8/H4sWLlWZv5O9Nnz59YGpqiuXLlyudt5eX6dixI+zs7LBp0ybO1PqRI0cQGxvLWU2uilgsRklJyWsvV/viiy/AGMP48eNRWFjIeSwhIQFhYWFwdHREaGioYrurqyvu37/P2V9jYmKULiOUX9JVfl+xtbWFv78/tm7dqrTaVv76BQIB+vTpg4MHD3Km/FJTU/Hbb7+he/fuimneN1UX+3pV+78qgoKCYGZmhq+++goSiUTpcfn7UJV+rara3v969eoFkUiENWvWcGLZsmULcnJylOrLzc3FsmXL8NFHH1U6w1VV8n37de+H/DOrahTavn17ODg4KPXJ+fPncePGDcVx2tHREe3atcOOHTs4+86dO3dw/PhxpauFgNJTuWWtXbsWABS5Q65bt24QCAQwNjbGpk2bcO7cOc4xsjq54HXqZCQ9YMAALF68GBMmTEC3bt1w+/Zt/Prrr5xvbkDpAq9ffvkFc+bMwbVr1+Dn54f8/HycPHkS77//vtLJ+KqysrJC9+7dMWHCBKSmpuKHH36Am5ub4k45fD4fP//8M4KDg9G6dWtMmDABjRs3RlJSEs6cOQMzMzMcOnQI+fn5WL9+PdasWQN3d3fOdYvy5H7r1i1cvnwZXbt2haurK5YuXYp58+YhMTERgwcPhqmpKRISEnDgwAFMnToVH3/8MU6ePIn58+fj1q1bOHToUKWvJSAgAKGhoVi+fDmio6PRp08fCIVCxMfHY+/evVi9ejWGDRtWo346fvw4evfuXemoYMyYMdizZw+mTZuGM2fOwNfXF1KpFPfv38eePXtw7Nix184wlOXg4IAVK1Zg8uTJGD16NPr161et/ujfvz9WrlyJvn37YuTIkUhLS8P69evh5ubGmS52c3PD559/jiVLlsDPzw9Dhw6Fvr4+rl+/jkaNGmH58uUwMzPDqlWrMHnyZHTq1AkjR46EpaUlYmJiUFBQgB07dkAoFOKbb77BhAkTEBAQgBEjRigugXF2dsZHH33EiS8/P58z3bhz504UFRVhyJAhlb4uf39/fPfdd5gzZw68vb0xfvx4ODo64v79+/jpp58gk8kQERHBWScxceJErFy5EkFBQZg0aRLS0tIUN3gou5jL0NAQrVq1wu7du+Hu7g4rKyt4eXnBy8sLa9asQffu3dGhQwdMnToVLi4uSExMxOHDhxEdHQ0AWLp0KU6cOIHu3bvj/fffh56eHjZv3ozi4mJ8++23VXrfq6I29vWa9n9VmJmZYePGjRgzZgw6dOiA4cOHw9bWFk+fPsXhw4fh6+urGHBUpV+rorb3P1tbW8ybNw+LFi1C3759MWjQIMTFxWHDhg3o1KkTRo8ezakvMjISNjY2CAsLq1GfpaamKuLJyMjA5s2boaenpzTgefr0KY4ePaqY7l62bBmaNWuG9u3bK82M6unp4dtvv8XYsWPh5+eHUaNGKabSmzRpwrlMbMWKFQgODkbXrl0xadIkxSVY5ubmKmcGEhISMGjQIPTt2xeXL1/Grl27MHLkSLRt27bC1xgUFITRo0cjLCwMAwcOhKOjY5VzQZVUeR04+2/p+/Xr1ystV1RUxObOncscHR2ZoaEh8/X1ZZcvX1a5JL+goIB9/vnnzMXFhQmFQubg4MCGDRumuNyjJpdg/f7772zevHnMzs6OGRoasv79+ytdCsEYY1FRUWzo0KHM2tqa6evrs2bNmrGQkBB26tQpTtuv+1f+0on9+/ez7t27M2NjY2ZsbMw8PT3ZjBkzWFxcHGOMsVmzZjF/f3929OhRpZhUXXLEWOmlFD4+PszQ0JCZmpqyNm3asLCwMPbixQtFmepegsXj8djNmzc521W9R2KxmH3zzTesdevWTF9fn1laWjIfHx+2aNEilpOTo9Te6+pjjLGePXuypk2bstzc3Gr3x5YtW1iLFi2Yvr4+8/T0ZNu2bauw37Zu3crat2+viDsgIICdOHGCU+avv/5i3bp1Y4aGhszMzIx17tyZ/f7775wyu3fvVtRjZWXFRo0apbjkUG7cuHGc/cLExIR16NCB7dy5s9I+KuvcuXPs7bffZjY2NkwoFLKmTZuyKVOmsMTERJXld+3axZo3b85EIhFr164dO3bsmMpLcS5dusR8fHyYSCRSusTozp07bMiQIczCwoIZGBgwDw8PNn/+fM7zIyMjWVBQEDMxMWFGRkasR48e7NKlS5wyFR0f5O9Nenq6Un8ZGxsrvaaq7Ouq1Eb/M1bxJVhyZ86cYUFBQczc3JwZGBgwV1dXNn78eHbjxg1Ouar0q1xFl2DJ1fb+t27dOubp6cmEQiGzt7dn06dPZ1lZWZwyAQEBDABbtWoVZ3tFn7Xy5M+X/7OwsGC+vr4sIiKCU65sGR6PxxwcHNjQoUNZbGwsY0z5Eiy5PXv2cPpkxIgRKo/zJ0+eZL6+vorP98CBA9m9e/dUvqZ79+6xYcOGMVNTU2ZpaclmzpypdHmmqv0jIyOD2drasiFDhnC2vy4XVAXv30a1wtmzZ9GjRw/s3bu3xqPLshITE+Hi4oKEhIQKb9q+cOFCJCYmYvv27W/cHiGEkPonv8FLenq60uVh6kY/VUkIIYRoKPVfM6DB5CsMK1vI5O3trbjNKSGEEFKbKElXwsbGRrHooSJl7+9LCCGE1CatOidNCCGEaBM6J00IIYRoKErShBBCiIaiJE0IIYRoKErShBBCiIaiJE0IIYRoKErShBBCiIaiJE0IIYRoKErShBBCiIaiJE0IIYRoKErShBBCiIaiJE0IIYRoKErShBBCiIaiJE0IIYRoKErShBBCiIaiJE0IIYRoKErShBBCiIaiJE0IIYRoKErShBBCiIbSU3cAhJDqeZkvxvOsAjzPKsTzrAJkFUggKZFBIpXBRpCPWdgNCESAnqj0vyITwMoFsHIFrF0BoaG6XwIhpIp4jDGm7iAIIcpe5otx5XEmrie+RGJGPp5nFSIpuxAFYmmFz/Exy8V+cWgltfIAs8aAdXPA2u3fxO0GOLQBzBvX/osghLwRGkkToiGyC0qT8pXHL3H5USYepOWi9r9CM+DV89J/Cee4D9m3ATz6Au7BQOMOAI9X240TQqqJRtKEqFHaqyLsvfkch28lIzbl1Rsn5dePpKvIxB5o0bs0Ybv2AETGb14nIaTaKEkTUs9KpDKcvp+G3def4eyDdEhltfcRrLUkXZaeAeDiD3ScBLgH0QibkHpE092E1JOEjHzsvv4M+yOfIz23WN3hVF1JERB/vPSfXSvAdzbgNQwQ0OGDkLpGI2lC6lhs8iusOvEAx++l1nlbdTKSVsXcCeg6A+gwDhAZ1X17hOgoStKE1JFH6XlYeeIBIm4n18ECMNXqLUnLGVoBnacCXUIBI6v6a5cQHUFJmpBalpUvxqqTD/Db1acoqcXzzVVR70laTmgE+M0tnQoXCOu/fUK0FJ1UIqSWyGQM2y4lYvXJB3hVVKLucOqXpAA4vQS4vQ8YsApo1lXdERGiFShJE1ILXmQX4qPd0bia8FLdoahXeiywLRjoMBbosxQwMFN3RIQ0aHTvbkLe0N+3XqDvD+coQSswIHIHsMkXSLyo7mAIadAoSRNSQ3nFJZi7JwYzf4vSventqsh+CuwYAByfD5SI1R0NIQ0SJWlCaiDyaRb6rzmP/ZHP1R2KZmMy4NIaYGsQkJ+h7mgIaXAoSRNSTftvPkfIpst4klmg7lAajheRwM+9gJeP1R0JIQ0KJWlCquGnc4/x8b6Yer+0SitkJQBb+gBJN9UdCSENBiVpQqpo+ZFYLIuIrbcbk2il/HRg+0Ag/oS6IyGkQaAkTchrSGUMYftisPkfmqqtFZJ84PfhQNQudUdCiMajJE1IJYokUkzbdRN7btACsVolKwEOzgD+WaHuSAjRaHQzE0IqUCKVYerOmzj3IF3doWivM0tL/xvwP/XGQYiGopE0IRVY8NddStD14cwy4G64uqMgRCNRkiZEhZ/PP8avV5+qOwwdwYDw6cCLKHUHQojGoSRNSDkn7qXiq4hYdYehWyQFwO8jgFfJ6o6EEI1CSZqQMu4k5WD2H1Ggy6DVIDe5dNW3mG4SQ4gcJWlC/pWSU4TJO26gQCxVdyi6KzkaCJ8GuhidkFKUpAlB6W9Bf/B7FFJeFak7FHLvYOliMkIIJWlCAOCn849xLZF+alJjnPsOeHpF3VEQonaUpInOi0vJxfcnHqg7DMLBgL/nAFL6CVCi2yhJE50mlTF8vDcG4hKZukMh5aXdBa6sV3cUhKgVJWmi07ZdTMDtpBx1h0EqcvYbIPuZuqMgRG0oSROdlZRdiJU0za3ZJPnAkU+q9ZRz585h4MCBaNSoEXg8HsLDw+smNkLqASVporOWHb5Hl1s1BHGHgfsRVS6en5+Ptm3bYv16mionDR/9wAbRSfdTXuHInRR1h0Gq6kgY0DwAEBm/tmhwcDCCg4PrIShC6h6NpIlOWnMqnu6X0ZDkPCu9LIsQHUNJmuicB6m5NIpuiK79BBTRIj+iWyhJE51Do+gGSpwL3Niq7igIqVeUpIlOeZiWh4jb9EtLDdaVTUCJWN1REFJvKEkTnbLudDz9wlVDlpcC3Nqt7igIqTeUpInOSHtVhEO3aBTd4N3YUunDeXl5iI6ORnR0NAAgISEB0dHRePr0aT0ER0jtoiRNdMahW8mQ0jC64XsRBbyIrvDhGzduoH379mjfvj0AYM6cOWjfvj2+/PLLegqQkNpD10kTnfFXzAt1h0Bqy81tQKPVKh8KDAwEo5WBREvQSJrohCeZ+Yh5lq3uMEhtub0PKM5TdxSE1DkaSROdcIhG0ZXaeF2MjTfESMwu/TWw1nYCfOkvQnALIRKzZXBZrToh7hlmiHdbC1U+9mesBJtuiHEzWYaXhQxRocZo5yDglJlzrAjbo8UwFvHw9VsGGOX9X11770rwyy0JDo0wUq5cnAc8Pgu0HFCzF0xIA0FJmugEmuquXBMzHr7upY8WVnwwADuiJXj7j0JEhfLhacNH8lwTTvkfb0qw4lIxgltUfAjJFzN0b6qHkNY8TDlUpPT4oTgJfrstwfExxojPlGHiX4UIchPAxoiPnCKGz08X4+RYFQlajpI00QGUpInWu5/yCg9SaWq0MgM9uKPhZW8JsPGGGFeeS9HaTgAHEx7n8QP3JQhpJYSJiLu9rDFtRQCgGJ2XF5shQ6CzAB0blf778FgRErIYbIyAsBNFmN5RiKbmlZyRe3y2ai+OkAaMzkkTrXeUbgFaLVIZwx93JMiXAF2dBEqP33whRXSKDJM6qJ7mrqq29gLceCFFViHDzRdSFEoY3Kz4uPC0BJEpUnzQRVR5BZnxQM7zN4qBEE1HI2mi9SKfZqs7hAbhdqoUXbfko6gEMBEBB94zRCtb5SS9JUqMljZ8dHN6s8NHkJseRnsL0emnPBgKedgx2BDGImD64SJsf9sQG29IsPaaGDZGPPw4wACt7ZRjweOzQPvRbxQHIZqMRtJEqzHGaFV3FXnY8BE9zQRXJxtjekcRxoUX4V469/e2CyUMv92WYFL7NxtFyy0MNMDDD0xxe7oJhrQUYvl5MXq56EEoAJaeK8aFCUaY3F6IseGFqiugKW+i5ShJE62WkJGPnEKJusNoEEQCHtys+PBpJMDyXgZoa8/H6ivc+2TvuydBgQQY27Z2knRZ9zOk2HVbgiU99XE2sQT+zQSwNeYjpLUQkcky5BaruPb58T+1HgchmoSSNNFq0TSKrjEZA4q5A2lsiZJgkIcebI1r99DBGEPo30VY2UcfJiIepDJA8u96M/l/paruT5KfBqTerdVYCNEklKSJVqMkXTXzThbh3JMSJGbLcDtVinkni3A2UYpRbf4bMT98KcO5J1JM7qB6QZfnujwciP1v1uJlIUN0ilQxZR6XIUN0ihQpecqrvX+OlMDWiKdYZe7bVA+nE0pw5XkJVl0uRitbPiwMKlhJnnixpi+bEI1HC8eIVqMkXTVp+QxjDxQiOY/BXJ8Hb3s+jo02Qm/X/w4RW6PEaGLGQx9XFQu4AMRlypBTZkr6rzgJJhz87/ro4ftLzysvCBBhYaCBYntqngzLzhfj0iRjxbbOjQWY21Uf/X8rhJ1x6aKyCmUlVPv1EtJQ8Bjd5JZoqeISKbwWHINE5TypdvIxy8V+cai6w6hfLQcC7+1SdxSE1Ama7iZa63lWoU4laJ2Vk6TuCAipM5SkidZKyVG+FSXRQnRDE6LFKEkTrZVMSVo35KcDJeLXlyOkAaIkTbRW6itK0rqBAa9oNE20EyVporWy8ml0pTNoyptoKUrSRGvRncZ0CC0eI1qKkjTRWpSkdUh+mrojIKROUJImWqtALH19IaId+LV/L3FCNAElaaK1RHq0e+sMPX11R0BInaCjGNFaBkLd270jc00Q5xSi7jDqn57B68sQ0gDp3lGM6AwDPdX3mNZmjPEQFD8Y0U5j1R1K/aKRNNFSlKSJ1tIX6l6Slhsc3xcXnHToHt6UpImWoiRNtJYuTneXNTo+AEebzAZDBT/xqE1ouptoKd0+ihGtZqDDI2m5aQ+7YG/jMDCeln/UaSRNtJSWf3KJLtPFc9KqhD1qi60OX4Bp82VKAkrSRDtRkiZay96MDtxySxI8scZmAZi2TgsbmKk7AkLqBCVporXc7EzUHYJGWfW0OZaaLwITGas7lNrF4wOWLuqOgpA6QUmaaC1K0sq2JDkhzGgJZAYW6g6l9pg7AUItnSEgOk9P3QEQUlcsjESwMREhI0/1r2GV5GYg++x2FD6+CVZSDD0LR1j3+xD6ji3ApCXIPr8ThY9uoCQnBXx9Yxg0awuLgPHQM7WusE1ZcQGyz+9CQfxlyApyILJrDsteU6Hv6K4ok3P1T7y6th8AYN7lHZh1Hqp4rPhFHF4e3wCHsSvB49fNOfW9KQ7It12MdfzF4Bdk1Ekb9cqmhbojIKTO0EiaaDVXW9WjaWlRHlJ2hQF8Pdi9uxCOkzbAsuck8A1Ky7OSYohTHsG823A4jlsN28GfQfIyCel/Lqm0vcyja1GUGA2bAXPhOHEdDFzaI/WPL1CSW5oMxWkJyLnwK2wGhcFm4P+QfX4XxOmJpW3KpMg8th5WQTPqLEHLRaTbYAJvEaQmjeq0nXphTUmaaC9K0kSrVTTl/erKPuiZ2cCm/4fQb+QBoYUDDF06QGjpCADg6xvDfvhSGLf0g9C6CfQbe8Kq9zSIUx6i5JXqX1ySSYpREHcRFj0mwMDJC0LLRrDoPgpCS0fkRh0BAEgyn0No6wzDZm1h6NwOQltnSDJLfwv51dX9MHBqzRl116V/Mi3xrmQBJObO9dJenXFoo+4ICKkzlKSJVqsoSRc+vAqRQwukhy/Hs7Wj8GLbB8iNPlppXbLiAgA88PUrONctkwJMBp6Ae6kTT08fxc/vAgBEts4oyUpCyas0lOSkoeRlEkQ2zSDJSkbe7ZOw8BtT7df4JiJzTDEo/wsUW3rUa7u1qlF7dUdASJ2hc9JEq3k6qL40R5KdAklUBMw6DYZ91xAUJ8cj69SP4AmEMGnzllJ5ViJG9tltMGrlD76+kco6+fpG0G/kiZxLf0Bo7QSBsQXyY8+h+MV96P07QhfaOMHCfyxSd88HAFgEjIPQxgmpf3wOy8AJKEyIRM7F3wC+Hqx6TYWBk1ct9UTFYvOMECT9BBE2q2CUcbvO26tVQmPAtgF/wSDkNShJE63m08wSRiKB8m9LMwZ9BzdYBowDAIjsXSHJeILc6AilJM2kJUg/+DUAwLrPjErbsx4wF5lHViNpwziAx4fIwRXGLf1RnPJQUca0fT+Ytu+n+Dvv9inwRIbQb+yJpJ+mwXHsSkhzM5Hx17doHLoFPL26vwlJYqEBeqbPxQn7dTBNu1Hn7dUahzZAHZ+/J0SdaLqbaDWRHh++bjZK2wUmlhDaNOVsE1o7QfoqnbNNnqBLctJg996SCkfRijosHeEw8ms4fbQPjd/fDsexq8BkUggtHFSWlxbkIOfib7DqNQ3FLx5AaNUIQqvGMGjmDSYtgSQrqZqvuOZSikXwT/4ALx396q3NN9asm7ojIKROUZImWq+Hh53SNv3GrSB5+ZyzTfIyCXpm/5VVJOisF7AfvgwCw6rf1YovMoCeiRWkRXkoTIiEYYv/U1ku6/TPMO00GHpmNgCTgknLjPhlUkAmq3KbtSFLoge/p6FIady7XtutsdaD1R0BIXWKkjTRej08bZW2mXV6G8Uv4pBzeQ8kWS+Qf+8s8mKOwqRDfwD/Jujw5RCnPITNwI8BmQzSvCxI87LApBJFPal/fIZXNw8p/i58fBOFj29Ckp2CwoQopP4+D0KrJjBp00sphsKEKEheJsH03zZFDu4oefkchY9ulC5i4wugZ9W4trvjtfKlfPgljMeTJoPqve1qsWoOOLZVdxSE1Ck6J020nqO5ITwdTHE/JVexTd/RHbZDPkf2PzuQffF36Jnbw7LnFJi07gEAkOZlovDhVQBA8rYPOPXZj/gKBk29AQCSrBToF75SPCYrLkD2uR0oyc2AwMAURh7dYOE/FjwB96MmkxTj5clNsB30CXj//kKVnpkNLHuFIuPID+AJhLDu/xH4QvXcf1wi4yHw0Xs46mYAj2d71BLDa7UarO4ICKlzPMYYU3cQhNS1b47ex8azj9QdRoN0wP0Y2j/doe4wlIWeBxy91R0FIXWKpruJTujpqXxemlTNkAdBOO80Td1hcFm5UoImOoGSNGnw1q9fD2dnZxgYGKBLly64du2aUpmOzSzRzLryldmkYmPi/XG0yWww8NQdSilaMEZ0BCVp0qDt3r0bc+bMwYIFCxAZGYm2bdsiKCgIaWncW3fyeDyM6Ny0glpIVUx72AV7G4eB8TTgsEHno4mOoHPSpEHr0qULOnXqhHXr1gEAZDIZnJycMGvWLHz66aecsi/zxfi/r05BLK3fy5q0zXyX+5iYuhw8meT1heuCtRsw66Z62iaknmnAV2JCakYsFuPmzZvo1eu/y5v4fD569eqFy5cvK5W3Mhahv7djfYaolZYkeGK1zQIwPTX9hrPvh+pplxA1oCRNGqyMjAxIpVLY29tzttvb2yMlJUXlc6b4Na+P0LTeD0+bY6n5IjCRcf02bOkCtB1Rv20SokaUpIlOadXIDN1V3CaUVN+WJCeEGS2BzMCi/hr1/x8goNs7EN1BSZo0WDY2NhAIBEhNTeVsT01NhYOD6ntlA8BUfxpN15a9KQ6YKVwMmVE9fPGxag60HV737RCiQShJkwZLJBLBx8cHp06dUmyTyWQ4deoUunbtWuHz/N1taTRdiyLSbTAei1FiWse3MPUPo1+8IjqHkjRp0ObMmYOffvoJO3bsQGxsLKZPn478/HxMmDCh0uctGNgKenwNueZXC5x7aYEQ8ZeQmDvXTQPWboB3SN3UTYgGoyRNGrT33nsP3333Hb788ku0a9cO0dHROHr0qNJisvJa2JtiTNdm9RSlbojMMcWg/C9QbOlR+5XTKJroKLpOmuisV0US9FhxFpn5YnWHolWcDYsQYf0DjDJu1U6Ftp7A9EuUpIlOopE00VlmBkL8L6gORn06LrHQAD3T5+CVXac3r4yvBwzeQAma6CxK0kSnhXR0gncTc3WHoXVSikUISJ6Fl45+b1ZRwCdAY5/aCYqQBoiSNNFpfD4PSwd7QSigRWS1LUuiB7+noUhp3LtmFTh1Afzm1m5QhDQwlKSJzvNuYoHP+rVUdxhaKV/Kh1/CeDxpMqh6TxSZAkM20zQ30XmUpAkBMMHXhe7rXUckMh4CH72HOKdqXELVdzlg5VJ3QRHSQFCSJuRf37zjjea29Xwvah3BGA9B8YMR1XTc6wu3HAh0GFP3QRHSAFCSJuRfJvp62DjKB4ZCmmKtK0MeBOG807SKC5g4AAPX1F9AhGg4StKElOHhYIplQ7zUHYZWGxPvjyNNPgRDucV6QiPgvV2AkZV6AiNEA1GSJqScoR2aYKIvnQ+tS9MfdsaeRp+A8f49BPH1gHd3AE61cG01IVqEkjQhKswf0BIjuzRVdxha7ZPH3tjq8AWYQFQ6xe3eR90hEaJx6LaghFSAMYZP99/G7hvP1B2KVts+2A6B/0cjaEJUoV9PJ6QCPB4Py4e2gZQx7Lv5XN3haKWwvh4I/D83dYdBiMai6W5CKsHn8/DtO94Y0r6OfytZB33cxx3vB1KCJqQyNN1NSBVIZQwf7Y7GXzEv1B1Kg6fH52HBwFYY09VZ3aEQovEoSRNSRTIZw4rjcdh49pG6Q2mwLIyE2DCyA7q52ag7FEIaBErShFRTeFQSPtl/C8UlMnWH0qC0sDPBlnGd0NTaSN2hENJgUJImpAZinmXj/V8jkZRdqO5QGoS3PO2wekR7mOjTWlVCqoOSNCE1lF0gxpw9MTh9P03doWi0aQGuCAvyAJ9PPwdKSHVRkibkDTDG8NP5x/j++AOa/i7H2doIXw1tg26udP6ZkJqiJE1ILXiaWYCFh+7SqBqAUMDDFL/m+OCtFjCgHysh5I1QkiakFh27m4LFh+7p7Lnqdk4W+PqdNvB0MFN3KIRoBUrShNSyQrEUq0/FY8uFx5BIdePjZSwS4H9BHhjb1ZnOPRNSiyhJE1JHHqbl4pujcTgZmwpt/ZSZGehhbFdnTPB1hrWJvrrDIUTrUJImpI49Ts/DlgsJ2B/5HEUS7VhcZmuqj0ndXTD6/5rRZVWE1CFK0oTUk5f5Yuy8/AQ7ryQiI0+s7nBqpKmVEab6N8cwnya0KIyQekBJmpB6ViSRIjwqCX9cf4aY59kaPxUu0uOjp4cdBrdvhN6tHCCgc86E1BtK0oSoUdqrIpyITcWJe6m49CgTYg251lpfjw9fNxv09XJAXy8HmBkI1R0SITqJkjQhGiK/uAT/PEjH8bsp+OdBOrIKJPXWtoDPQws7E7RtYoEennbwd7eBkYjONROibpSkCdFQz14W4HZSDm4n5SA2+RUepechKasQsjf8xAoFPLjbm8KrkTm8GpvBq7E5Wjqa0TlmQjQQJWlCGpAiiRSJmflIzy1GfnEJcotKkF9cgnyxVPH/RRIpTA2EsDAq/WduKISFkQiWRkJYGIrgYG4AkR5f3S+FEFIFlKQJIYQQDUVfpwkhhBANRUmaEEII0VCUpAkhhBANRUmaEEII0VCUpAkhhBANRUmaEEII0VCUpAkhhBANRUmaEEII0VCUpAkhhBANRUmaEEII0VCUpAkhhBANRUmaEEII0VCUpAkhhBANRUmaEEII0VCUpAkhhBANRUmaEEII0VCUpAkhhBANRUmaEEII0VCUpAkhhBANRUmaEEII0VCUpAkhhBANRUmaEEII0VCUpAkhhBANRUmaEEII0VD/DzjlpPZIPE11AAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from sklearn.model_selection import train_test_split\n",
"\n",
"train_data, temp_data = train_test_split(df, test_size=0.3, random_state=42)\n",
"val_data, test_data = train_test_split(temp_data, test_size=0.5, random_state=42)\n",
"\n",
"print(\"Обучающая выборка: \", train_data.shape)\n",
"print(train_data.Outcome.value_counts())\n",
"outcome_counts = train_data['Outcome'].value_counts()\n",
"plt.figure(figsize=(2, 2))\n",
"plt.pie(outcome_counts, labels=outcome_counts.index, autopct='%1.1f%%', startangle=90)\n",
"plt.title('Распределение классов Outcome в обучающей выборке')\n",
"plt.show()\n",
"\n",
"print(\"Контрольная выборка: \", val_data.shape)\n",
"print(val_data.Outcome.value_counts())\n",
"outcome_counts = val_data['Outcome'].value_counts()\n",
"plt.figure(figsize=(2, 2))\n",
"plt.pie(outcome_counts, labels=outcome_counts.index, autopct='%1.1f%%', startangle=90)\n",
"plt.title('Распределение классов Outcome в контрольной выборке')\n",
"plt.show()\n",
"\n",
"print(\"Тестовая выборка: \", test_data.shape)\n",
"print(test_data.Outcome.value_counts())\n",
"outcome_counts = test_data['Outcome'].value_counts()\n",
"plt.figure(figsize=(2, 2))\n",
"plt.pie(outcome_counts, labels=outcome_counts.index, autopct='%1.1f%%', startangle=90)\n",
"plt.title('Распределение классов Outcome в тестовой выборке')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Как видно из круговых диаграмм, распределение классов достаточно смещено, что может привести к проблемам в обучении модели, так как модель будет обучаться в большей степени на одном классе. В таком случае имеет смысл рассмотреть методы аугментации данных."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Аугментация данных методом оверсемплинга\n",
"\n",
"Этот метод увеличивает количество примеров меньшинства."
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Обучающая выборка после оверсемплинга: (677, 9)\n",
"Outcome\n",
"0 349\n",
"1 328\n",
"Name: count, dtype: int64\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAADECAYAAAB6FizTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+w0lEQVR4nO3dd3gUVdsG8Ht303sv1ITQCUUiICAJvUsHEYUQqgXRV5QPLFSVF0EEEWkKRHqJgALSEWnSW4QghARDCymkZ9P2fH/k3TWb3ZQNCbPJ3r/LXLizs2eeOTN75tmZM2dkQggBIiIiIiITJJc6ACIiIiIiqTAZJiIiIiKTxWSYiIiIiEwWk2EiIiIiMllMhomIiIjIZDEZJiIiIiKTxWSYiIiIiEwWk2EiIiIiMllMhomInkF6ejpiYmLw9OlTqUOhcpaamoro6Gikp6dLHQoRVSAmw0REBtq+fTu6dOkCe3t72NnZoVatWvjqq6+kDqtSSEtLw+LFizWvk5KSsGzZMukCKkAIgVWrVuGll16CjY0NHBwc4Ovriw0bNkgdGhFVIIOS4XXr1kEmk2n+rKysUL9+fUyaNAmxsbEVFSORyTh16hQGDhwIT09PWFpawsfHBxMnTsQ///xT5jIzMjIwa9Ys/P777+UXqAmbNm0ahg0bBnt7e6xevRqHDh3C4cOH8fbbb0sdWqVgbW2NTz/9FBs3bkRMTAxmzZqFX3/9VeqwAAAjRozAm2++iUaNGmH9+vWabTto0CCpQyOiCmRWlg/NmTMHvr6+UCqVOHnyJJYvX459+/YhPDwcNjY25R0jkUlYunQp3nvvPdSpUwfvvvsuvL29cfPmTfzwww/YunUr9u3bh3bt2hlcbkZGBmbPng0A6NixYzlHbVqOHz+O+fPnY968eZg2bZrU4VRKCoUCs2fPxqhRo6BSqeDg4IC9e/dKHRZ++uknbN26FRs2bMCIESOkDoeIniOZEEKUduZ169YhJCQE58+fx4svvqiZPmXKFCxatAibNm3Ca6+9ViGBElVlp06dQmBgINq3b4/9+/dr/aiMjIxE+/btIZfL8ddff8HZ2dmgsuPj4+Hu7o6ZM2di1qxZ5Ry5aXnllVeQmJiIU6dOSR1KpXf//n3ExMSgUaNGcHJykjocNG3aFM2aNcPGjRulDoWInrNy6TPcuXNnAEBUVBQAIDExER9++CGaNm0KOzs7ODg4oFevXrh69arOZ5VKJWbNmoX69evDysoK3t7eGDRoECIjIwEA0dHRWl0zCv8VPNP1+++/QyaTYevWrfj444/h5eUFW1tb9OvXDzExMTrLPnv2LHr27AlHR0fY2NggKCioyINcx44d9S5fX3KxYcMGBAQEwNraGi4uLhg+fLje5Re3bgWpVCosXrwYTZo0gZWVFTw9PTFx4kSdG3Z8fHzQt29fneVMmjRJp0x9sS9YsECnTgEgKysLM2fORN26dWFpaYmaNWti6tSpyMrK0ltXBXXs2FGnvC+++AJyuRybNm0qU30sXLgQ7dq1g6urK6ytrREQEIAdO3boXf6GDRvQunVr2NjYwNnZGYGBgTh48KDWPL/99huCgoJgb28PBwcHtGrVSie27du3a7apm5sb3njjDTx48EBrntGjR2vF7OzsjI4dO+LEiRMl1tPcuXMhk8kQGhqqc3XFz88PX331FR49eoSVK1dqpuurW3UcPj4+APLr1N3dHQAwe/ZsvfttREQEhg0bBnd3d1hbW6NBgwb45JNPtMq8fPkyevXqBQcHB9jZ2aFLly74888/teZRd6M6efIkJk+eDHd3dzg5OWHixInIzs5GUlISRo0aBWdnZzg7O2Pq1Kko/Fu8tPu6Ps9S/wBw9OhRdOjQAba2tnByckL//v1x8+ZNrXn+/PNP+Pv7Y/jw4XBxcYG1tTVatWqFXbt2aeZJS0uDra0t3nvvPZ1l3L9/HwqFAvPmzdPErN5WBRXeRvfu3cPbb7+NBg0awNraGq6urhg6dCiio6O1PqduAwt2iTl//jy6desGe3t72Nra6q0T9ba7cOGCZlp8fLzedqJv3756Yy5Nezpr1izN97lGjRpo27YtzMzM4OXlpRO3PurPq//s7e3RunVrrfoH8r8b/v7+RZajbmvWrVsHIP8myPDwcNSsWRN9+vSBg4NDkXUFAHfv3sXQoUPh4uICGxsbvPTSSzpntw05HhnSThpy3NIXT1F/o0ePNngdgZKP4WqFt11Ry33w4AHGjBmj6SrWpEkTrFmzpsT1A4Dc3FzMnTsXfn5+mm5mH3/8sc6xysfHR7N8uVwOLy8vvPrqqzrd0Qw99h48eBAtWrSAlZUVGjdujJ9//lknxqSkJPznP/+Bj48PLC0tUaNGDYwaNQrx8fGaeUp7zFWvQ8E++GoNGzaETCbDpEmTNNMKd3UtTT5TsK4K/hX8rvr4+Ohsx+3bt0Mmk2m1Ferv3cKFC3WW4+/vrzef0/d38uRJAKVvF0ujTN0kClPv9K6urgDyv0S7du3C0KFD4evri9jYWKxcuRJBQUG4ceMGqlWrBgDIy8tD3759ceTIEQwfPhzvvfceUlNTcejQIYSHh8PPz0+zjNdeew29e/fWWu706dP1xvPFF19AJpPh//7v//DkyRMsXrwYXbt2xZUrV2BtbQ0g/8DXq1cvBAQEYObMmZDL5Vi7di06d+6MEydOoHXr1jrl1qhRQ3MQS0tLw1tvvaV32Z999hmGDRuGcePGIS4uDkuXLkVgYCAuX76s9wzIhAkT0KFDBwDAzz//jJ07d2q9P3HiRM1Z+cmTJyMqKgrfffcdLl++jFOnTsHc3FxvPRgiKSlJs24FqVQq9OvXDydPnsSECRPQqFEjXL9+Hd988w3+/vtvnYNQSdauXYtPP/0UX3/9dZGXIkuqjyVLlqBfv354/fXXkZ2djS1btmDo0KHYs2cP+vTpo5lv9uzZmDVrFtq1a4c5c+bAwsICZ8+exdGjR9G9e3cA+Y3DmDFj0KRJE0yfPh1OTk64fPky9u/fr4lPXfetWrXCvHnzEBsbiyVLluDUqVM629TNzQ3ffPMNgPzEZ8mSJejduzdiYmKKPPuVkZGBI0eOoEOHDvD19dU7z6uvvooJEyZgz549Bl2ed3d3x/Lly/HWW29h4MCBmr6PzZo1AwBcu3YNHTp0gLm5OSZMmAAfHx9ERkbi119/xRdffAEA+Ouvv9ChQwc4ODhg6tSpMDc3x8qVK9GxY0ccP34cbdq00Vrmu+++Cy8vL8yePRt//vknVq1aBScnJ5w+fRq1atXCl19+iX379mHBggXw9/fHqFGjNJ991n29LPUPAIcPH0avXr1Qp04dzJo1C5mZmVi6dCnat2+PS5cuaRr0hIQErFq1CnZ2dpqEf8OGDRg0aBA2btyI1157DXZ2dhg4cCC2bt2KRYsWQaFQaJazefNmCCHw+uuvl24D/s/58+dx+vRpDB8+HDVq1EB0dDSWL1+Ojh074saNG0V2T7tz5w46duwIGxsbfPTRR7CxscHq1avRtWtXHDp0CIGBgQbFUZSytKdqX3/9tcH3nKxfvx5AfsL+/fffY+jQoQgPD0eDBg3KFH9CQgIAYP78+fDy8sJHH30EKysrvXUVGxuLdu3aISMjA5MnT4arqytCQ0PRr18/7NixAwMHDtQquzTHo8KKaiefpZ7VJk+ejFatWmlNGzdunNbr0q6jIcdwNfW2A4D//Oc/Ost96aWXNEmcu7s7fvvtN4wdOxYpKSl4//33i123cePGITQ0FEOGDMGUKVNw9uxZzJs3Dzdv3tQ5jnTo0AETJkyASqVCeHg4Fi9ejIcPH2r9+DGkPbp9+zZeffVVvPnmmwgODsbatWsxdOhQ7N+/H926dQOQnzd06NABN2/exJgxY9CyZUvEx8fjl19+wf379+Hm5mbwMdfKygpr167VqpvTp0/j3r17RdaTuqurWlH5TOG6AoCbN2/iyy+/LHojIP9HSeETKmWlb39Vf8/L2i7qJQywdu1aAUAcPnxYxMXFiZiYGLFlyxbh6uoqrK2txf3794UQQiiVSpGXl6f12aioKGFpaSnmzJmjmbZmzRoBQCxatEhnWSqVSvM5AGLBggU68zRp0kQEBQVpXh87dkwAENWrVxcpKSma6du2bRMAxJIlSzRl16tXT/To0UOzHCGEyMjIEL6+vqJbt246y2rXrp3w9/fXvI6LixMAxMyZMzXToqOjhUKhEF988YXWZ69fvy7MzMx0pt++fVsAEKGhoZppM2fOFAU3y4kTJwQAsXHjRq3P7t+/X2d67dq1RZ8+fXRif+edd0ThTV049qlTpwoPDw8REBCgVafr168XcrlcnDhxQuvzK1asEADEqVOndJZXUFBQkKa8vXv3CjMzMzFlyhS985amPoTI304FZWdnC39/f9G5c2etsuRyuRg4cKDOvqje5klJScLe3l60adNGZGZm6p0nOztbeHh4CH9/f6159uzZIwCIGTNmaKYFBweL2rVra5WzatUqAUCcO3dO7zoLIcSVK1cEAPHee+8VOY8QQjRr1ky4uLhoXhes24IKx6FvX1ULDAwU9vb24t69e1rTC34vBgwYICwsLERkZKRm2sOHD4W9vb0IDAzUTFO3D4W/V23bthUymUy8+eabmmm5ubmiRo0aWvEbsq/rU9b6F0KIFi1aCA8PD5GQkKCZdvXqVSGXy8WoUaM00wAIAOL333/XTMvIyBCNGjUSXl5eIjs7WwghxIEDBwQA8dtvv2ktp1mzZlrrHBISImrVqqUTT+HtVXifF0KIM2fOCADip59+0kxTt4HHjh0TQggxePBgoVAoRHh4uGae+Ph44erqKgICAjTT1Nvu/PnzmmlF7Td9+vTRqmdD2tPC3+cnT54Ie3t70atXL624i6KvPTh48KAAILZt26aZFhQUJJo0aVJkOerjytq1a7VeW1hYiL///lurDgrX1fvvvy8AaLWJqampwtfXV/j4+Gjam9Iej9TxltROluW4VZA6nu3bt+u8Z2trK4KDgw1ex9Icw9U++eQTIZPJtKbVrl1ba7ljx44V3t7eIj4+Xmu+4cOHC0dHR73fAzV1Ozpu3Dit6R9++KEAII4ePVrkcoUQYsSIEcLGxkbz2tBjLwARFhammZacnCy8vb3FCy+8oJk2Y8YMAUD8/PPPOvGr68uQYy4AMWTIEGFmZiYuXLigmT527FgxYsQIAUC88847mun6vudCFH+MqF69uggJCdG8LtzGqNe/YH1+//33wtLSUnTq1EmrrShLPqdvf1UrbbtYGmXqJtG1a1e4u7ujZs2aGD58OOzs7LBz505Ur14dAGBpaQm5PL/ovLw8JCQkwM7ODg0aNMClS5c05YSFhcHNzQ3vvvuuzjIKXxo3xKhRo2Bvb695PWTIEHh7e2Pfvn0AgCtXruD27dsYMWIEEhISEB8fj/j4eKSnp6NLly74448/oFKptMpUKpWwsrIqdrk///wzVCoVhg0bpikzPj4eXl5eqFevHo4dO6Y1f3Z2NoD8+irK9u3b4ejoiG7dummVGRAQADs7O50yc3JytOaLj4+HUqksNu4HDx5g6dKl+Oyzz2BnZ6ez/EaNGqFhw4ZaZaq7xhReflHOnTuHYcOGYfDgwViwYIHeeUpTHwC0zqY8ffoUycnJ6NChg9a+tWvXLqhUKsyYMUOzL6qp961Dhw4hNTUV06ZN09m26nkuXLiAJ0+e4O2339aap0+fPmjYsKHOZUOVSqWpoytXruCnn36Ct7c3GjVqVOT6pKamAoDWPquPvb09UlJSip3HEHFxcfjjjz8wZswY1KpVS+s99frn5eXh4MGDGDBgAOrUqaN539vbGyNGjMDJkyd1Yho7dqzW97dNmzYQQmDs2LGaaQqFAi+++CLu3r2rmWbovq5PWer/0aNHuHLlCkaPHg0XFxfN9GbNmqFbt26adkOtVatWCAoK0ry2trbG22+/jcePH2v2wa5du6JatWpa/U/Dw8Nx7do1vPHGG5ppHh4eePLkiWbfL0rBfT4nJwcJCQmoW7cunJyctPZ7teTkZDx58gSHDh1Cjx490KRJE817rq6uGD16NC5evFguowCVpT1Vmzt3LhwdHTF58mSDlqlexs2bN7FixQrY2tripZde0ponLy9PM19J9avWv39/1KtXT/Pazc1Np6727duH1q1b4+WXX9bMZ2dnhwkTJiA6Oho3btzQKrOk41FBxbWTz1LPhirtOhpyDM/Ozi62bRdCICwsDK+88gqEEFptQI8ePZCcnKx3Xy8YMwB88MEHWtOnTJkCADptdVZWFuLj4zXfk6NHj6JLly6a9w1tj6pVq6Z1VcDBwQGjRo3C5cuX8fjxY019NW/eXOfqQcH6MvSY6+npiT59+mDt2rUA8q80btu2DSEhIUXWlSFK2m6FZWRkYM6cOZg0aZLOcaXgPIXzlLy8PINjM7RdLE6ZukksW7YM9evXh5mZGTw9PdGgQQOthEOlUmHJkiX4/vvvERUVpbWS6q4UQH73igYNGsDMrFx6a2gUbMyA/J2sbt26mn4kt2/fBgAEBwcXWUZycrLWjUrx8fE65RZ2+/ZtCCGKnK/wJd6kpCQA0ElAC5eZnJwMDw8Pve8/efJE6/XBgwc1fURLa+bMmahWrRomTpyo0/f29u3buHnzZpFlFl6+Pg8ePECfPn2Qnp6OhISEIn/olKY+AGDPnj34/PPPceXKFa0+VAXLjYyMhFwuR+PGjYssR929p7i+hepLTfouvzZs2FDTd0ktJiZGq668vb0RFhZW7DqpD5TqpLgoqampJSbMhlAnosWtf1xcHDIyMvSuf6NGjaBSqRATE6OVbBVuAB0dHQEANWvW1JlesO+dofu6PmWp/+K2caNGjXDgwAGkp6fD1tYWQP521zcfkN8nrk2bNpDL5Xj99dexfPlyZGRkwMbGBhs3boSVlRWGDh2q+Vy7du0wf/58fPrpp5g8eXKRP7gzMzMxb948rF27Fg8ePNDqa52cnKwz/4ABAzT/X9R6qeP19PTUu8zSKkt7CuTfY7Jy5UosX768xBMNhRXcxg4ODti4caPO/hUREaGZTy6Xo27dupg5c6be7lnqtqOkbevp6Yl79+7pdA0qON+9e/e0vlMlHY/USmony1rPZVHadTTkGJ6UlFTs9zAuLg5JSUlYtWoVVq1apXee4tqAe/fuabZzQV5eXnByctLpNrBlyxZs2bJF87pVq1b44YcfNK8NbY/q1q2rs83q168PIH/f8fLyQmRkJAYPHlzkOqiXa+gxNyQkBCEhIfj666+xfft2ODs7a5LnZ5WcnFziMbmgRYsWQalU4uOPP9b5YaI2c+ZMzJw5U2e6oW2Roe1iccqUhbZu3VprNInCvvzyS3z22WcYM2YM5s6dCxcXF8jlcrz//vvl9sv1WahjWLBgAVq0aKF3noIbPzs7G48ePdL0+ymuXJlMht9++02rn6C+MgFofi16eXkVW6aHh0eRdzgX/sK0adMGn3/+uda07777Drt379b7+Zs3b2LdunXYsGGD3v6YKpUKTZs2xaJFi/R+vvABSJ87d+6gZcuW+OabbzBy5EiEhobqbdBLUx8nTpxAv379EBgYiO+//x7e3t4wNzfH2rVrdW40kYKnp6dmgP7k5GSsWbMGPXv2xMmTJ9G0aVO9n6lbty7MzMxw7dq1IsvNysrCrVu3tL53MplM5wY0AGX6hV2e9O37RU0vGL+h+7o+Zal/QxTVx1OfUaNGYcGCBdi1axdee+01bNq0CX379tX8OACAfv36YcyYMViwYEGRV0yA/H7Y6n6Bbdu2haOjI2QyGYYPH663TV24cCHq1auH/v37G7aCZWBoe6r2ySefoF69eggODi71TY5qhw4dApB/41tYWBiGDRuGPXv2aLXRPj4+WL16NYD8PsHffvstRo4ciTp16ui0MYZs14pSUjtZ1no2Fo8fPy7xWAcAb7zxRpEJv/peh+KU9qpy9+7d8dFHHwHIv79g/vz56NSpEy5cuABra+tyaY/KoizH3D59+sDCwgK7du3C2rVrERwcrHNFtCwSExORnZ1d7HYrKD4+HgsWLMD06dO1rrIVNmHCBK2TAgAwfvx4g+MztF0sTvmekv2fHTt2oFOnTvjxxx+1piclJcHNzU3z2s/PD2fPnkVOTk653ASmpv4FrSaEwJ07dzRfJHWnfgcHB3Tt2rXE8q5evYqcnJxifwCoyxVCwNfXV/OLsDg3btyATCYr9qYPPz8/HD58GO3bty9Vg+3m5qazTsXd5DZ9+nS0aNECr776apHLv3r1Krp06VLmrivqS4Kenp7YvXs3pkyZgt69e+s0JqWpj7CwMFhZWeHAgQNal27Ul4gKxq1SqXDjxo0iDxzq/SA8PFznbIJa7dq1AQC3bt3S+aV969YtzftqVlZWWvXfr18/uLi44LvvvtMaCaIgW1tbdOrUCUePHsW9e/d0ygSAbdu2ISsrS2u0EGdnZ61uBmqFz4AUtd3U3R7Cw8P1vg/kN/g2Nja4deuWznsRERGQy+Wl+kFUGobu6/qUpf4LbuPCIiIi4Obmpjkr7OvrW+R8ALTunPb398cLL7yAjRs3okaNGvjnn3+wdOlSnc/++OOPmDFjBiIjIzUNeOEf3jt27EBwcDC+/vprzTSlUqm5mlJYQEAAgoKCYGdnV+p4y8rQ9hTIH51ky5Yt2LVrV5E/nopTcDn9+/fH2bNnsXDhQq16s7W11ZqvQ4cOqF69Og4ePKh10yaQ326Wtq5q165d7HyFv78lHY/USmony1LPZVXadTTkGH7jxg20bNmyyPfd3d1hb2+PvLy8Mq1f7dq1oVKpcPv2ba1uUbGxsUhKStLZLt7e3lrLadCgAdq1a6f58Wpoe3Tnzh0IIbTa27///hvAv/uOn59fse2teh5Dj7lmZmYYOXIkvvjiC/z111+lHn2jJOruMMV1Myvo888/h729vd6RdAqqV6+ezjZWt7GGMLRdLE6FPI5ZoVDonLHavn27zlBUgwcPRnx8PL777judMvSd8Sqtn376SeuS844dO/Do0SP06tULQP6Bws/PDwsXLkRaWprO5+Pi4nRiVygUeoctK2jQoEGaAeULxy+E0NyxDOTfbRkWFobWrVsX+2t+2LBhyMvLw9y5c3Xey83NLdNGVztz5gx2796N//73v0V+6YYNG4YHDx5ozrAUlJmZifT09BKXU79+fc3lj6VLl0KlUul8WUpbHwqFAjKZTOvsZ3R0tE7CP2DAAMjlcsyZM0fnF6J623Tv3h329vaYN2+eTr9q9TwvvvgiPDw8sGLFCq0uGb/99htu3rypNXqFPtnZ2cjNzS1xGLpPP/0UQgiMHj0amZmZWu9FRUVh6tSp8Pb2xsSJEzXT/fz8EBERobW/Xr16VWeYJfUdtYX3FXd3dwQGBmLNmjU6Qwqp11+hUKB79+7YvXu31mXd2NhYbNq0CS+//DIcHByKXbfSqoh9vTT17+3tjRYtWiA0NFRrGeHh4Th48KDWKDa9e/fGuXPncPr0ac00pVKJ5cuXw8vLCwEBAVpljxw5EgcPHsTixYvh6uqqaYMKq127Njp37oyuXbvqTQT0talLly4t9iqATCZD9+7dceDAAa0h4hITExEaGooXX3zxmbtIAIa3p0D+U/zat2+Pfv36PfPy8/LykJ2dXeJ3TN0O6Eu+5XI5evbsid27d2uGCAX015V6Hzhz5oxmvvT0dKxatQo+Pj46XbNKOh6pldROlqWey6q061jaY/iFCxcQGRlZ7KV7hUKBwYMHIywsTG/CWNL6qb+nhYcZU59hLamtVre76v3I0Pbo4cOHWiNWpKSk4KeffkKLFi00Z1YHDx6Mq1ev6oxsAfxbX2U95o4ZMwbXr19HYGCg1v0dz2LLli2wsLDQ6jteFPVIDrNmzXpuV1rK0i4WpULODPft2xdz5sxBSEgI2rVrh+vXr2Pjxo06G2jUqFH46aef8MEHH+DcuXPo0KED0tPTNY82LeslPhcXF7z88ssICQlBbGwsFi9ejLp162pOw8vlcvzwww/o1asXmjRpgpCQEFSvXh0PHjzAsWPH4ODggF9//RXp6elYtmwZvv32W9SvX19rXD11Y3Tt2jWcOXMGbdu2hZ+fHz7//HNMnz4d0dHRGDBgAOzt7REVFYWdO3diwoQJ+PDDD3H48GF89tlnuHbtWomPIQ0KCsLEiRMxb948XLlyBd27d4e5uTlu376N7du3Y8mSJRgyZEiZ6ungwYPo1q1bsb/CR44ciW3btuHNN9/EsWPH0L59e+Tl5SEiIgLbtm3DgQMHSjxjXpCXlxcWLFiAcePG4Y033kDv3r0Nqo8+ffpg0aJF6NmzJ0aMGIEnT55g2bJlqFu3rlY3g7p16+KTTz7B3Llz0aFDBwwaNAiWlpY4f/48qlWrhnnz5sHBwQHffPMNxo0bh1atWmHEiBFwdnbG1atXkZGRgdDQUJibm2P+/PkICQlBUFAQXnvtNc3Qaj4+PjpDA6Wnp2tdpl+/fj2USqXeGyYKCgwMxMKFC/HBBx+gWbNmGD16NLy9vREREYHVq1dDpVJh3759Wv0Bx4wZg0WLFqFHjx4YO3Ysnjx5ghUrVqBJkyZaN7VZW1ujcePG2Lp1K+rXrw8XFxf4+/vD398f3377LV5++WW0bNkSEyZMgK+vL6Kjo7F3715cuXIFQP6v/UOHDuHll1/G22+/DTMzM6xcuRJZWVn46quvSrXdS6M89vWy1v+CBQvQq1cvtG3bFmPHjtUMrebo6Kg19ubUqVOxceNG9OrVC5MnT4abmxs2bNiAGzduYOPGjTp9J0eMGIGpU6di586deOutt8p8Baxv375Yv349HB0d0bhxY5w5cwaHDx/WugdDn7lz5+LAgQMICgrCu+++qxlaLSkpSe/Y3GfOnNGMd6reh+7cuYP9+/dr5omLi0NmZib279+Pnj17lro9LejgwYPP9OAS9TZOT0/Hrl27EB0drTPsVlpamibuxMREfPvttzA3Ny8yKZozZw7279+v2c8tLS2xevVqJCcna515mjZtGjZv3qzZB1xcXBAaGoqoqCiEhYXpXJ4u6Xikj752siz1XFalXcfSHMPnzJmDJUuWoE6dOjpn5Av773//i2PHjqFNmzYYP348GjdujMTERFy6dAmHDx9GYmJikZ9t3rw5goODsWrVKiQlJSEoKAjnzp1DaGgoBgwYgE6dOmnNf/fuXc1+9ODBA3z33XdwcHDQ3ERnaHtUv359jB07FufPn4enpyfWrFmD2NhYrauWH330EXbs2IGhQ4dizJgxCAgIQGJiIn755ResWLECzZs3L/Mxt1GjRoiPjy+XRPT27duYOXMmNm/ejGnTppXqhMfx48fRqFGjcrtxrzTK2i7qZcjQE0UNy1GYUqkUU6ZMEd7e3sLa2lq0b99enDlzRu9QUBkZGeKTTz4Rvr6+wtzcXHh5eYkhQ4ZohnEqy1AcmzdvFtOnTxceHh7C2tpa9OnTR2foKCGEuHz5shg0aJBwdXUVlpaWonbt2mLYsGHiyJEjWssu6a/wEC1hYWHi5ZdfFra2tsLW1lY0bNhQvPPOO+LWrVtCCCHeffddERgYKPbv368Tk76hg4TIHyIqICBAWFtbC3t7e9G0aVMxdepU8fDhQ808hg6tJpPJxMWLF7Wm69tG2dnZYv78+aJJkybC0tJSODs7i4CAADF79myRnJyss7ySyhNCiM6dO4tatWqJ1NRUg+vjxx9/FPXq1ROWlpaiYcOGYu3atUXW25o1a8QLL7ygiTsoKEgcOnRIa55ffvlFtGvXTlhbWwsHBwfRunVrsXnzZq15tm7dqinHxcVFvP7665qhBNWCg4O19gs7OzvRsmVLsX79+mLrqKA//vhD9O/fX7i5uQlzc3NRq1YtMX78eBEdHa13/g0bNog6deoICwsL0aJFC3HgwAG9Q4ydPn1aBAQECAsLC50hdMLDw8XAgQOFk5OTsLKyEg0aNBCfffaZ1ucvXbokevToIezs7ISNjY3o1KmTOH36tNY8RbUP6m0TFxenU1+2trY661SafV2fZ63/w4cPi/bt22v2g1deeUXcuHFDZ77IyEgxZMgQ4ejoKKysrESrVq3Erl27iiy3d+/eAoBOfRWn8DZ6+vSpCAkJEW5ubsLOzk706NFDRERE6AxppG/Yo4sXL4ru3btrtl1gYKA4fvy41vLU287Qv4JKak+F+Hdf6N+/v9Zn9cWtj/rz6j9ra2vRuHFj8c0332gN5RUUFKQ1n5OTk2jfvr1mqLvCQ6upqfdzW1tbYWNjIzp27KgzxJUQ/+4D6u9M69atxZ49e/SuU2mOR6VpJ9VKU8/6GDK0WmnXUYiSj+E1atQQY8aM0fv91TfEWWxsrHjnnXdEzZo1NeV16dJFrFq1qtj1E0KInJwcMXv2bE0sNWvWFNOnTxdKpVJnuQX3Dzc3N9G9e3dx5swZnTINOfYeOHBANGvWTHNs0lfXCQkJYtKkSaJ69erCwsJC1KhRQwQHB2sNJ1faYy4KDZ1WWOH3Szu02ubNm4W/v79YsmSJzhB5RQ2tBkDs3LlTa97Cx6LyHlqttO1iaRj0OGZj9/vvv6NTp07Yvn17mc+WFhQdHQ1fX19ERUUV2bdu1qxZiI6O1jzJiIiooIEDB+L69eu4c+eO1KGUG3XbWIUOH+WuvI9HZLx8fHzg7++PPXv2SB0KlVGF9BkmIqL8MYz37t2LkSNHSh0KEREVoUL6DFcVdnZ2eP3114u9oatZs2aax0sTEQH5Nz2eOnUKP/zwA8zNzbVufKwKrK2t0aNHD6nDICIqF0yGi6G+OaY4gwYNek7REFFlcfz4cYSEhKBWrVoIDQ0t9TidlYWnp6fWTXVERJVZleozTERERERkCPYZJiIiIiKTxWSYiIiIiEwWk2EiIiIiMllMhomIiIjIZDEZJiIiIiKTxWSYiIiIiEwWk2EiIiIiMllMhomIiIjIZDEZJiIiIiKTxWSYiIiIiEwWk2EiIiIiMllMhomIiIjIZDEZJiIiIiKTxWSYiIiIiEwWk2EiIiIiMllMhomIiIjIZDEZJiIiIiKTxWSYiIiIiEyWmdQBEBFVZRnZuXicrERsShaepCoRm6JEQlo2snJVyFMJ9La7hbbKU4DcDDCzAGzdATvP/D97r/x/bVykXg0ioiqLyTARUTkQQiAqPh3X7ifj6v0kXL+fjFuPU5GalVvs59rXvQrc/7H4ws1tAc8mgHdzwLtZ/r/ujfKTZyIieiZMhomIyuhuXBoO/BWLk3ficO1+MlKVxSe+ZZaTDtw/l/+nprAAqrUE6ncH6vUAvPwrZtlERFUck2EiolISQuBKTBIO3ojFwb8eIzIuXbpg8rKBmD/z/47MARxq5CfG9XsBfp0BBZt3IqLSYGtJRFSC+08zsPncPwi7+ACPU5RSh6Nfyn3gwpr8Pzsv4IXXgZbBgHNtqSMjIjJqTIaJiIpw6k481pyMwrFbT6ASUkdjgLTHwImvgZPfAHU6AQGjgQa9ebaYiEgPtoxERAWoVAK/XnuIFcfv4uajFKnDeTZCBUQeyf9z9gU6TgOaDgPkHFWTiEiNyTAR0f+cuhOPL/fdxF8PK3kSrM/TKGDnxPyzxR2nAY0HADKZ1FEREUmOyTARmbzbsan4ct9NHLsVJ3UoFS8uAtg+GvBsCnSbDdTtInVERESSYjJMRCYrKSMb8/ffwrYLMcirVJ2Cy0HsdWDDoPxuEz3/C9i6Sh0REZEk2HGMiEzS77eeoPs3f2DzuX9MLxEu6Po2YFkr4OpWqSMhIpIEk2EiMimZ2Xn4dNd1jF57Hk9Ss6QOxzhkJAA7JwAbBgPJ96WOhojouWIyTEQm40pMEvp8ewIb/vxH6lCM053DwMpAIPKY1JEQET03TIaJyCT8eDIKQ5afxt14CZ8aVxlkJOSfIT7xNSBMuPsIEZkMJsNEVKXlqQQ+2xWOuXtuINeU+wYbQuTlP+J56xuAsgoOM0dEVACTYSKqstKycjE29DzW/3lP6lAqp4g9wOrOwNNoqSMhIqowTIaJqEp6lJyJIctP43dTGDu4IiXcBn7sAcT+JXUkREQVgskwEVU5kXFpGLDsFCIep0odStWQ9hhY2xu4f0HqSIiIyh2TYSKqUqLi0zFi9Z+ITeGwaeVKmQSsHwjEnJM6EiKicsVkmIiqjJjEDLy2iolwhclKyU+IeYaYiKoQJsNEVCXEpWbhjR/P4nGKUupQqrbsNGDzcCAxSupIiIjKBZNhIqr0UpU5CF5zDvcSMqQOxTSkxwGbhgGZT6WOhIjomTEZJqJKTQiBD7ZdxY1HHA/3uYr/G9jyBpCbLXUkRETPhMkwEVVqK47fxaEbsVKHYZrunQR2vyN1FEREz4TJMBFVWqfvxGPhwVtSh2Harm8Dzq2WOgoiojJjMkxEldLjZCUmb7mMPD5iWXoHPwWeREgdBRFRmTAZJqJKJzdPhXc2XUJ8GvurGoVcJRA2FsjlkHZEVPkwGSaiSufHk1G4eI8jGRiV2HDg8CypoyAiMhiTYSKqVO4/zcDiw7elDoP0+XM5EHlU6iiIiAzCZJiIKpUZu/9CZk6e1GGQXgLY9xGQlyN1IEREpcZkmIgqjb3XHuFoxBOpw6DiJNwBzq6QOgoiolJjMkxElUKqMgezf/1L6jCoNI4vANLipI6CiKhUmAwTUaWw8vhdPEnlaAWVQlYycHSO1FEQEZUKk2EiMnrJGTkIPR0tdRhkiMsbgEfXpI6CiKhETIaJyOj9eCoKqVm5UodBhhAq4MRCqaMgIioRk2EiMmopyhysOxUldRhUFjd/BRLvSh0FEVGxmAwTkVFbdyoaKUqeFa6UhAo4s0zqKIiIisVkmIiMVkZ2LtbwrHDldnkjkJ4gdRREREViMkxERmvP1UdIyuADHCq13Ezg/GqpoyAiKhKTYSIyWlvO/yN1CFQeLq4DVCqpoyAi0ovJMBEZpTtPUnHpnySpw6DykPoIuHdK6iiIiPRiMkxERmnn5QdSh0DlKXyH1BEQEenFZJiIjNIvVx9KHQKVpxu7gTz2/yYi48NkmIiMztWYJMQkZkodBpWnzKdA5FGpoyAi0sFkmIiMzonbcVKHQBUh/GepIyAi0sFkmIiMzqk7HJe2Sor6Q+oIiIh0MBkmIqOizMnDpX+eSh0GVYTUh3w8MxEZHSbDRGRULt57iqxcjklbZUVziDUiMi5MhonIqJy6Ey91CFSR7p2WOgIiIi1MhonIqJyLSpQ6BKpI905KHQERkRYmw0RkVP6OTZU6BKpISf8AaRwthIiMB5NhIjIaT1KVSFHmSh0GVbSEO1JHQESkwWSYiIzG3bh0qUOg5yExUuoIiIg0mAwTkdGIjEuTOgR6HhJKTob/+OMPvPLKK6hWrRpkMhl27dpV8XERkUliMkxERiPyCc8Mm4RSnBlOT09H8+bNsWzZsucQEBGZMibDRGQ0ohOYDD+r/57Mgmx2Ct7fr9RMe5ymwsidmfBamArbL1PQcmUawm7kPFOZAPDBASVc5qeg5jep2HhNu7ztf+Xglc0Z+gssxZnhXr164fPPP8fAgQNLHScRUVmYSR0AEZFaYnq21CFUaucf5GHlxWw089Q+zzFqZyaSlAK/vGYDNxsZNl3PwbAdmbgwXo4XvBVlKvPXWznYdD0HB0fa4naCCmN+yUSPugq42ciRrBT45GgWDo+y0V9oyoNnWk8iovLEM8NEZDTSsziSRFmlZQu8/nMmVr9iDWcrmdZ7p2Py8G5rC7SurkAdZzk+DbSEk5UMFx/llbnMm/EqdPRR4MVqCrzW1BwOljJEPRUAgKmHlHjrRXPUciziEKNMAYQo+8oSEZUjnhkmIqORVigZTjq5EcmnNmtNM3OpgerjVwAAUq/sR/qN35EdGwmRnYma722B3MquxOXkpsYj6fd1yLx7ESI3C2ZO3nDt/T4svesBAJLP/oyUc2EAAMc2g+HQepDms1kPbyHx4PfwGrUIMnnxZ1Wfp3f2KdGnnhm61jHD539kab3XrqYCW//KRZ/65nCyArb9lQtlrkBHn+IPAcWV2dxTgVUXs/E0U+DuUxUycwTqushx8p9cXHqch+/7WBVdsMgDslIBK4cyry8RUXlhMkxERqNwMgwA5m614PnqF/9OkP97tlHkZMG6TgCs6wQg6XhoqZaRp0zD4w1TYVWrGTyGzoLcxhG5Tx9qkujsJ1FIPrkR7kNmAEIgLmwOrHxbwsLdB0KVh4QDy+Dac5JRJcJbwnNw6VEezo+31fv+tqE2eHVHBly/SoWZHLAxB3a+aoO6LkVfHCypzB51zfBGM3O0Wp0Ga3MZQgdYw9YCeGuvEuv6W2P5hRwsPZcNNxsZVvW1QhOPQvWVncZkmIiMApNhIqowy5Ytw4IFC/D48WM0b94cS5cuRevWrYucX283CbkCCjtnvfM7tOoPAFD+c63UMaX8uQNmDm5w6/O+Zpq5k5fm/3MS7sPc3QfWtZvnv+fug5yE+7Bw90HK2TBY1WwCS+/6pV5eRYtJVuG9/UocGmkDKzOZ3nk+O6pEklLg8Mj8PsO7InIxbHsGToTYoqmnblJfmjIBYFZHK8zq+O8Z4Nm/Z6GrrxnMFcDnf2Th+lu22PN3LkbtysTFCYXO2OcqQURkDJgME1GF2Lp1Kz744AOsWLECbdq0weLFi9GjRw/cunULHh4eOvNnZOdCpacbae7Th7i/bBRkCnNYVG8I56BgmDnofr60Mu+chZVvS8TtmgdlTDgUdq6wf6E37Fv0BABYuPsg9+kD5KY8AQSQm/gAFm61kfP0EdKuH4Z38OIyL7siXHyUhyfpAi1X/jsSR54A/riXh+/OZePWJDt8dz4H4W/Zas7ONvdS4MQ/uVh2Phsr+lobXGbWp/ZQyLWT5Ij4PGy4noPLE22x5nI2Amsr4G4rx7Am5hjzixKpWQL2lgU+k6vd7aKwtLQ03Lnz75PqoqKicOXKFbi4uKBWrVoG1RERUXGYDBNRhVi0aBHGjx+PkJAQAMCKFSuwd+9erFmzBtOmTStVGZbeDeDa+z8wd6mOvLREJJ/ajMcb/w/VxiyD3LKIkQpKkJP0GDmX98Gh1QB4th2GrEe38fTIKsgU5rBr2gXmbjXhFDgKsVs/AwA4BQXD3K0mYrd8AueOIciMuoTkU5sAuRlcuk6AVU3/MsWhlqYqpm9tKXTxNcP1t7S7MoTszkRDNwX+r70FMnLyf2EUyl2hkEPvj4/SlFk4ERZCYOIeJRZ1t4SdhQx5KiBHlf+e+t+8wsuSFX//9oULF9CpUyfN6w8++AAAEBwcjHXr1hX7WSIiQzAZJqJyl52djYsXL2L69OmaaXK5HF27dsWZM2f0fsbSTPdyvbXfi/++8PCFZbUGuL98DNIjTsK+efeyBScELL3qwjkoGABg4emHnPh7SL2yD3ZNuwBA/pniF3prPpJ2/QhkFtawrN4QD1a/Ce9Ri5CXmoD4X75C9Yk/QmZmXrZYAMTk2pf5swBgbymDf6H+uLbmMrha50/Pycu/sW3iHiUWdreCq7UMuyJycCgyD3tGWGg+0+WndAxsaI5JrS1KLLOwHy7lwN1Ghlca5NdD+1pmmHU8C3/ez8Vvt3PR2F0Op0KjUcBCf19ktY4dO0JwxAkieg6YDBNRuYuPj0deXh48PT21pnt6eiIiIkLvZxRyGczkMuQWdboSgNzKDuYu1ZGb9LDMsSnsnGHupn2Z3dy1JjJundI7f15GMpJPbYLniPnIevg3zF2qwdylOsxdqkPk5SLn6QNYuPuUOZ67ymdLhktirpBh3whrTDuShVc2ZyAtOz85Dh1ghd71/k3iIxNViM9QGVx+bJoKX5zIwumx/ya3rasrMKWtJfpsyoSHbf7NdTpKSIaJiJ4XJsNEZDRsLBRIURY91rAqOxO5SY+gsO1U5DwlsazeGDmJ97Wm5SQ+KLIf8tOjP8C+1QCYObgh+/HfEHkFxuZV5QEqwxPIgm5nlH9S+Pto7TLruSoQNqz4biXR7xeflBcuU83TTq73szOCLDEjyLLoAi1KHgKPiOh54EM3iKjcubm5QaFQIDY2Vmt6bGwsvLy8ivgU4Gij3d3g6dEfofznOnKTY6G8fxNxP38ByOSwbRwEAMhLe4rs2LvIefoIAJAdF43s2LvIy0z9d5lbPkbKxV81rx1a9UfWw1tIPrMNOU8fIv3G70i7uh92LfvoxJMZdRk5iQ9g/7/3LLzqIzfxPjIjLyD1yn5AroCZS3UDa0fb7XQrCJnxDNP2XCgsAEXZu5YQEZUnnhkmonJnYWGBgIAAHDlyBAMGDAAAqFQqHDlyBJMmTSryc47W5ohBpuZ1bmo84n9dgLzMFCisHWFZozG8Rn4NhY0jACD1yj6th3LEbsq/Mc+19/uwa9oVAJDz9DEsM1M081h614f7wE+QdDwUSac2w8zRE86dx8OuifbZZlVOFhIPr4B7v/+D7H83e5k5uMG560TE/7YYMoU5XPv8B3LzYs5+lkKekENl4wZFemzJM1cVPCtMREZEJniHAhFVgK1btyI4OBgrV65E69atsXjxYmzbtg0RERE6fYnVxq47jyMRT55zpNK7WeNLWMeHSx3G8+PZFHjrpNRREBEB4JlhIqogr776KuLi4jBjxgw8fvwYLVq0wP79+4tMhAHA1800b6pKt3CDnlvMqi7XOlJHQESkwWSYiCrMpEmTiu0WUVgdd9O8fJ6scIWb1EE8Ty5+UkdARKTBG+iIyGiY6pnheOh/3HSV5cpkmIiMB5NhIjIafu6mmQzHCkepQ3i+eGaYiIwIk2EiMhoeDlawszS93lv3cxykDuH5cq0rdQRERBpMhonIqDT0qtgnshmjqCwTWmdnH8DOXeooiIg0mAwTkVF5qY6r1CE8d5GZJnTjYO32UkdARKSFyTARGZW2fqaXDN9KK/5RyVVKrbZSR0BEpIXJMBEZlYDazrAwM62mKT1PDpW1i9RhPB+120kdARGRFtM64hCR0bMyV6BlLSepw3jucqxNoB+tvTeHVSMio8NkmIiMTts6JvUICgBAhoUJrHOdjlJHQESkg8kwERmdjg1M4CxpISlmJtBXuskgqSMgItLBZJiIjE7zmk6oY2IP4EiQVfE+w9YugF8nqaMgItLBZJiIjNLgljWkDuG5elLVn0LX6BVAYS51FEREOpgME5FRGvhCdchkUkfx/DzIq+LJsP9gqSMgItKLyTARGaVqTtZ4ydcE+tH+z72sKvxIZjsvwKeD1FEQEenFZJiIjNagltWlDuG5icyswn2kXxwDyHm4ISLjxNaJiIxWn2becLIxjX6mEelV9Cl05jZA6/FSR0FEVCQmw0RktGwszDCqrY/UYTwXCdnmEBZ2UodR/lqMAGyq+EgZRFSpMRkmIqM2up0PrM0VUofxXOTYeEgdQvmSyYG270gdBRFRsZgME5FRc7G1wOttakkdxnOhtKxiDxtp2AdwqSN1FERExWIyTERG782OfrCxqPpnh1PMq9DoGTI5EPR/UkdBRFQiJsNEZPTc7CxNou/wU5mz1CGUn5ajAK+mUkdBRFQiJsNEVClM6lwXXg5WUodRoeJQRZJhS0eg82dSR0FEVCpMhomoUrCzNMPMVxpLHUaFelhVnkIX9BFg6yZ1FEREpcJkmIgqjV5NvdG5YRUbcaGAf7LtpQ7h2bn4AW3elDoKIqJSYzJMRJXK7H5NquxQa5GZlX2cYRnQdxGgMI0HpRBR1cBkmIgqlZouNpjcpZ7UYVSIW+mV/JHMbd8B6nSUOgoiIoMwGSaiSmd8B1+08qkiN5sVcF9pCWFWSW8S9GwKdJkhdRRERAZjMkxElY6ZQo7vRrSEm52l1KGUuzybSvjgDTMrYPAPgFnV2x5EVPUxGSaiSsnTwQrfvtYCCrlM6lDKVaV8Cl23OYBHQ6mjICIqEybDRFRptfNzw5Tu9aUOo1ylWVSyp9D5DwHaTJQ6CiKiMmMyTESV2ltBfujaqOoMt5Ykd5E6hNKr/iLQf5nUURARPRMmw0RUqclkMiwe/gKa16gaD6yoNE+hc6oFDN8EmFfSG/6IiP6HyTARVXp2lmYIHdMaDTwr/0MrHqkqQVJv7QK88TNg7yl1JEREz4zJMBFVCU42Flg/rjV8XG2kDuWZxOQ4SB1C8SwdgBHbALeqOdYzEZkeJsNEVGV42Fthw7g28HasvJfuozKN+Oy2tTMwajdQs5XUkRARlRsmw0RUpdRwtsGGcW3g5VA5E+K/M4z0KXS2HsDovUD1llJHQkRUrpgME1GV4+duh7C326Geh53UoRgsMsMSQqaQOgxtDtWBkH2AZxOpIyEiKndMhomoSqruZI0db7ZDa59KNFQZgDwhh8qYnkLnVh8I+Y19hImoymIyTERVlqONOTaMa4OhATWkDsUgWdZGkgw3egUYfxRwri11JEREFYbJMBFVaRZmciwY2hyf9G4Ec0XleHRzuoXEybBMAXSZCby6AbA04hv6iIjKAZNhIjIJ4wPr4Oe32qOOu5HeoFZAkkLCrh3WLsAbYUCHD6SLgYjoOWIyTEQmo2kNR+x9twNGvmTcl/0TpHoKXb3uwJsnAL9O0iyfiEgCTIaJyKRYWygwd4A/1oa0gru9pdTh6PVYPOen0Nm4AoN+AF7fDjhWrv7VRETPiskwEZmkTg08cPD9QIx8qTbM5MbVlzgm+zkmw02HAe+cB5oNfX7LJCIyIkyGichkOdtaYO4Af+x/vwM6N/SQOhyN6KznMD6yV9P8vsGDVwO2rhW/PCIiIyUTQgipgyAiMgan7sTj8703cfNRiqRxNHNIwy/ZEyqmcLcGQKePgcb9AZlxnREnIpICk2EiogJUKoE91x9hzckoXIlJkiQGa0UebpiPggzl2Dw7+wAdp+d3i5DzoiARkRqTYSKiIlz+5ynWnorGb+GPkJP3fJvKu86TIc+Mf7ZCZHLArzPw4higfk9AbmSPeSYiMgJMhomIShCbosT6M/cQduk+HiUrn8syI6rNhVXizbJ92M4TeOENoGUwnx5HRFQCJsNERKUkhMDFe0+x59ojHLoRiwdJmRW2rEu+y+Hy6ETpP+BYE6jfI/8McJ2OgMK8wmIjIqpKmAwTEZXRzUcpOBrxBH/eTcC1+8lIzswpt7KP1d0G3/u7ip5BYQlUa5H/oIz6PQEv/3JbNhGRKWEyTERUTqLi03HtfhKuxCThakwSIuPSy5wgh9U7hICYtfkvzG0AT3/Au/m/fx6NePaXiKgcMBkmIqpAmdl5iE1R4nGKMv/fZCWeZuRAQOB//0EIASEAuVwGJxtzuNhYoJVTCvzscvOfCGfrJvVqEBFVWUyGiYiIiMhkcbBJIiIiIjJZTIaJiIiIyGQxGSYiIiIik8VkmIiIiIhMFpNhIiIiIjJZTIaJiIiIyGQxGSYiIiIik8VkmIiIiIhMFpNhIiIiIjJZTIaJiIiIyGQxGSYiIiIik8VkmIiIiIhMFpNhIiIiIjJZTIaJiIiIyGQxGSYiIiIik8VkmIiIiIhMFpNhIiIiIjJZTIaJiIiIyGQxGSYiIiIik8VkmIiIiIhMFpNhIiIiIjJZTIaJiIiIyGQxGSYiIiIik8VkmIiIiIhM1v8DARUl/Vm72XMAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from imblearn.over_sampling import ADASYN\n",
"\n",
"# Создание экземпляра ADASYN\n",
"ada = ADASYN()\n",
"\n",
"# Применение ADASYN\n",
"X_resampled, y_resampled = ada.fit_resample(train_data.drop(columns=['Outcome']), train_data['Outcome'])\n",
"\n",
"# Создание нового DataFrame\n",
"df_train_adasyn = pd.DataFrame(X_resampled)\n",
"df_train_adasyn['Outcome'] = y_resampled # Добавление целевой переменной\n",
"\n",
"# Вывод информации о новой выборке\n",
"print(\"Обучающая выборка после оверсемплинга: \", df_train_adasyn.shape)\n",
"print(df_train_adasyn['Outcome'].value_counts())\n",
"counts = df_train_adasyn['Outcome'].value_counts()\n",
"plt.figure(figsize=(2, 2))\n",
"plt.pie(counts, labels=counts.index, autopct='%1.1f%%', startangle=90)\n",
"plt.title('Распределение классов Outcome в обучающей выборке после оверсемплинга')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Аугментация данных методом андерсемплинга\n",
"\n",
"Проведём также приращение данных методом выборки с недостатком (андерсемплинг). Этот метод помогает сбалансировать выборку, уменьшая количество экземпляров класса большинства, чтобы привести его в соответствие с классом меньшинства."
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Обучающая выборка после андерсемплинга: (376, 9)\n",
"Outcome\n",
"0 188\n",
"1 188\n",
"Name: count, dtype: int64\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtoAAADECAYAAAChrYbxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/5UlEQVR4nO3dd3wT9f8H8FeS0qR70gFCKS20MmSUIQgUZRQK1gKKgjIKBRQQEXCgMopgZSggQ34oS+GLyJChskEZMkX2KtAyCpSW0tJBR5LP74+a2DRpm45wtLyej0cekOuN933u7nPv3H3uczIhhAAREREREZUrudQBEBERERFVRky0iYiIiIgsgIk2EREREZEFMNEmIiIiIrIAJtpERERERBbARJuIiIiIyAKYaBMRERERWQATbSIiIiIiC7CSOgAioqdBTk4OkpOTodVqUa1aNanDoXKUlZWF5ORkWFlZwcPDQ+pwiOgJwivaRE+AgQMHwt7eXuowys3kyZMhk8mkDkNyx48fR9++feHu7g6lUglvb2/06tVL6rAqjPnz5yMlJUX/fc6cOcjIyJAuoHx27dqFsLAwODs7w8bGBtWrV8d7770ndVhE9IQp0RXt5cuXIyIiQv9dqVSiZs2a6Ny5MyZMmABPT89yD5CIqCLatGkTXn/9dQQGBmLatGnw8/MDAF7xLIEtW7bgypUrGDt2LPbt24cJEyZg1KhRUoeFhQsX4t1330WbNm0wd+5cVK9eHQDg4+MjcWRE9KQpVdORKVOmwNfXF1lZWThw4AC+/fZb/P777zh79ixsbW3LO0YiogolOTkZkZGRCAkJwdq1a2FtbS11SBXSJ598grCwMMydOxdyuRxfffUV5HJpb8TGxMRgzJgxGDp0KBYuXMg7N0RUpFIl2l27dkWzZs0AAJGRkXBzc8PXX3+NTZs2oU+fPuUaIBE9edRqNbRaLRPIQixbtgxZWVlYvnw5y6gMgoODcf36dVy4cAE1atTAM888I3VI+Oabb+Dl5YVvvvmGSTYRFatcLg289NJLAIDY2FgAeVdzxo0bh4YNG8Le3h6Ojo7o2rUrTp06ZTRtVlYWJk+ejLp160KlUsHb2xs9e/bE1atXAQBxcXGQyWSFftq3b6+f1x9//AGZTIY1a9bgk08+gZeXF+zs7BAWFoabN28aLfvIkSPo0qULnJycYGtri+DgYBw8eNDkOrZv397k8idPnmw07sqVKxEUFAQbGxu4urrijTfeMLn8otYtP61Wizlz5qB+/fpQqVTw9PTEsGHD8ODBA4PxatWqhe7duxstZ+TIkUbzNBX7zJkzjcoUALKzszFp0iT4+/tDqVSiRo0a+PDDD5GdnW2yrPJr37690fymTZsGuVyO//3vf6Uqj1mzZqF169Zwc3ODjY0NgoKCsG7dOpPLX7lyJVq0aAFbW1u4uLigXbt22LFjh8E4W7duRXBwMBwcHODo6IjmzZsbxbZ27Vr9NnV3d8dbb72F+Ph4g3EGDhxoELOLiwvat2+P/fv3F1tOOvHx8QgPD4e9vT2qVq2KcePGQaPRlHj9C8Ziap/NycnBxIkTERQUBCcnJ9jZ2aFt27bYu3evwbx022XWrFmYM2cO/Pz8oFQqcf78eQDAgQMH0Lx5c6hUKvj5+eH//u//TK6bWq3G559/rp++Vq1a+OSTT4z2o8KOq1q1amHgwIH677m5uYiKikKdOnWgUqng5uaGNm3aYOfOnUWW8fLlyw3Kw9bWFg0bNsT3339f5HQ6165dw2uvvQZXV1fY2tri+eefx2+//WYwzuHDh9G4cWN88cUXqFGjBpRKJerUqYMvv/wSWq1WP15wcDAaNWpkcjkBAQEICQkxiDkuLs5gnILHl7nbFDAu57t376J///6oWrUqlEolGjRogO+++85gmvz7Qn4NGjQwOs5nzZplMub4+HgMGjQInp6eUCqVqF+/PpYuXWowjq4u/+OPP+Ds7IxWrVrhmWeeQbdu3QrdP0xNr/solUrUrVsX0dHREELox9M9S5CUlFTovArud4cPH0ZQUBCGDx+uXwdTZQUAGRkZGDt2rH4fCAgIwKxZswxiAPK2xciRI7Fq1SoEBARApVIhKCgI+/btMxjP1LMPe/fuhVKpxNtvv20w3JxyLkxR59xatWqVah0B8+rjgtuusOWW5by0f/9+vPbaa6hZs6Z+2vfffx+PHj0yGK+wZ2fWrVun3z/NLbuC45obv7n7BpC3zQcPHoxq1apBqVTC19cX77zzDnJycvTjpKSkYPTo0frt5e/vj+nTpxvUS/nPxRs3bjRYRlZWFlxcXIzqAd2+Wdhn+fLlZpdV/jrD3FxFt9+YygXs7e0NjuGC54D8n1u3bgEATp8+jYEDB6J27dpQqVTw8vLCoEGDcP/+faP5F6dceh3RJcVubm4A8k5EGzduxGuvvQZfX18kJCTg//7v/xAcHIzz58/rn7jXaDTo3r07du/ejTfeeAPvvfce0tLSsHPnTpw9e1bfphEA+vTpg9DQUIPljh8/3mQ806ZNg0wmw0cffYR79+5hzpw56NixI06ePAkbGxsAwJ49e9C1a1cEBQVh0qRJkMvlWLZsGV566SXs378fLVq0MJrvM888g+joaABAeno63nnnHZPLnjBhAnr37o3IyEgkJiZi3rx5aNeuHf755x84OzsbTTN06FC0bdsWALBhwwb88ssvBn8fNmyYvn38qFGjEBsbi/nz5+Off/7BwYMHUaVKFZPlUBIpKSn6dctPq9UiLCwMBw4cwNChQ/Hss8/izJkzmD17Ni5fvmx0EBZn2bJl+Oyzz/DVV1+hb9++Jscprjzmzp2LsLAwvPnmm8jJycFPP/2E1157Db/++iu6deumHy8qKgqTJ09G69atMWXKFFhbW+PIkSPYs2cPOnfuDCDvgBs0aBDq16+P8ePHw9nZGf/88w+2bdumj09X9s2bN0d0dDQSEhIwd+5cHDx40Giburu7Y/bs2QCAW7duYe7cuQgNDcXNmzdNbvv8NBoNQkJC0LJlS8yaNQu7du3CV199BT8/P4N9zZz1HzZsGDp27Ggw/23btmHVqlX6NsIPHz7E999/jz59+mDIkCFIS0vDkiVLEBISgqNHj6Jx48ZG2y4rKwtDhw6FUqmEq6srzpw5g86dO6Nq1aqYPHky1Go1Jk2aZPJ5jcjISKxYsQKvvvoqxo4diyNHjiA6OhoXLlww2sbmmDx5MqKjoxEZGYkWLVrg4cOHOH78OE6cOIFOnToVO/3s2bPh7u6Ohw8fYunSpRgyZAhq1aplVG75JSQkoHXr1sjMzMSoUaPg5uaGFStWICwsDOvWrUOPHj0AAPfv38eBAwdw4MABDBo0CEFBQdi9ezfGjx+PuLg4LFq0CADQr18/DBkyBGfPnkWDBg30yzl27BguX76Mzz77rERlUtJtqpOTk4OOHTvi4sWLeOeddxAQEICNGzdi6NChuH//Pj7++OMSxVGYhIQEPP/88/rkoWrVqti6dSsGDx6Mhw8fYvTo0YVOu2/fPvz+++8lWt4nn3yCZ599Fo8ePdJfgPHw8MDgwYNLvQ7379/H8ePHYWVlhREjRsDPz89kWQkhEBYWhr1792Lw4MFo3Lgxtm/fjg8++ADx8fH6ekLnzz//xJo1azBq1CgolUosXLgQXbp0wdGjRw32jfxOnTqF8PBwhIaGYsGCBfrhZSlnnU6dOqF///4Gw7766iuDCzwlWUdz6uP8dNsOABYvXowbN27o/1bW89LatWuRmZmJd955B25ubjh69CjmzZuHW7duYe3atcWWTXHyl92xY8fwzTffGPy9pPGbs2/cvn0bLVq0QEpKCoYOHYrAwEDEx8dj3bp1yMzMhLW1NTIzMxEcHIz4+HgMGzYMNWvWxF9//YXx48fjzp07mDNnjsFyVSoVli1bhvDwcP2wDRs2ICsrq9B1//bbbw1+nMTGxmLixImFjt+jRw/07NkTQN4PoMWLFxc6LlB4rlIaumbQ+bm6ugIAdu7ciWvXriEiIgJeXl44d+4cFi9ejHPnzuHw4cMlu5slSmDZsmUCgNi1a5dITEwUN2/eFD/99JNwc3MTNjY24tatW0IIIbKysoRGozGYNjY2ViiVSjFlyhT9sKVLlwoA4uuvvzZallar1U8HQMycOdNonPr164vg4GD997179woAonr16uLhw4f64T///LMAIObOnaufd506dURISIh+OUIIkZmZKXx9fUWnTp2MltW6dWvRoEED/ffExEQBQEyaNEk/LC4uTigUCjFt2jSDac+cOSOsrKyMhsfExAgAYsWKFfphkyZNEvk3y/79+wUAsWrVKoNpt23bZjTcx8dHdOvWzSj2ESNGiIKbumDsH374ofDw8BBBQUEGZfrjjz8KuVwu9u/fbzD9okWLBABx8OBBo+XlFxwcrJ/fb7/9JqysrMTYsWNNjmtOeQiRt53yy8nJEQ0aNBAvvfSSwbzkcrno0aOH0b6o2+YpKSnCwcFBtGzZUjx69MjkODk5OcLDw0M0aNDAYJxff/1VABATJ07UDxswYIDw8fExmM/ixYsFAHH06FGT65x/WgAGx4cQQjRp0kQEBQWVeP0LiomJEU5OTqJTp05CrVYLIYRQq9UiOzvbYLwHDx4IT09PMWjQIP0w3THo6Ogo7t27ZzB+eHi4UKlU4vr16/ph58+fFwqFwmC7nTx5UgAQkZGRBtOPGzdOABB79uzRDyu4b+r4+PiIAQMG6L83atTI5P5eHF09Fhsbqx92+fJlAUDMmDGjyGlHjx4tABgcD2lpacLX11fUqlVLv68FBwcLAGLy5MkG0w8cOFAAEGfOnBFC5O2DKpVKfPTRRwbjjRo1StjZ2Yn09HQhhBArVqwQAMS1a9cMxst/fAlh/jYVwrCc582bJwCIRYsWGcyrQ4cOQqlUiqSkJCFE4fVxwbpYCCFmzpxpVM6DBw8W3t7e+vnpvPHGG8LJyUm/b+vq8r179+rHadmypejatWuh+0d+pqbPysoScrlcDB8+XD9MV78kJiYWOq+C+52Pj48AIJYvX64fZqqsNm7cKACIqVOnGszv1VdfFTKZTFy5ckU/DIAAII4fP64fdv36daFSqUSPHj2M4hUi73zj7e0t2rRpY1R/mVvOhQEgRowYYTS8W7duBnWcuetoTn2ss3PnTgFA/Pnnn/phBevWsp6XTK1/dHS0kMlkBnXZgAEDhJ2dndG4a9euNdq/hMiriwGIkSNHFjluSeI3d9/o37+/kMvl4tixY0bx6sr4888/F3Z2duLy5csGf//444+FQqEQN27cEEL8d5z36dNHWFlZibt37+rH7dChg+jbt69RPVDYsXTs2DEBQCxbtsxgeG5urgAgoqKi9MNM1c3m5iq6Y37t2rVG629nZ2dwDOuWY6qsdEztI6tXrxYAxL59+wqdzpRSNR3p2LEjqlatiho1auCNN96Avb09fvnlF/2T10qlUv/Aikajwf3792Fvb4+AgACcOHFCP5/169fD3d0d7777rtEyytL2rX///nBwcNB/f/XVV+Ht7a2/GnLy5EnExMSgb9++uH//PpKSkpCUlISMjAx06NAB+/btM7iNAuTdLlGpVEUud8OGDdBqtejdu7d+nklJSfDy8kKdOnWMbt/qbucolcpC57l27Vo4OTmhU6dOBvMMCgqCvb290Txzc3MNxktKSiry1yeQd7tp3rx5mDBhgtFtsrVr1+LZZ59FYGCgwTx1zYVM3ZI25ejRo+jduzd69eqFmTNnmhzHnPIAoL8rAQAPHjxAamoq2rZta7Bvbdy4EVqtFhMnTjR6eEq3b+3cuRNpaWn4+OOPjbatbpzjx4/j3r17GD58uME43bp1Q2BgoFGTAa1Wqy+jkydP4ocffoC3t7f+ykxxCt7+bdu2La5du1bi9c8vIyMDPXr0gIuLC1avXg2FQgEAUCgU+vbDWq0WycnJUKvVaNasmcl59erVC1WrVtV/12g02L59O8LDw1GzZk398GeffVbf5EFHd+yNGTPGYPjYsWMBwKgczeHs7Ixz584hJiamxNMCeWWXlJSEa9euYfbs2VAoFAgODi5ymt9//x0tWrRAmzZt9MPs7e0xdOhQxMXF6ZvTAHnl+/777xtMX3B9nZyc8Morr2D16tX6W+0ajQZr1qxBeHg47OzsAPzXU4nutmZhSrpNMzMzkZSUhC1btsDJyQmDBg0ymNfo0aORnZ2NXbt2FblccwghsH79erz88ssQQhjUJyEhIUhNTS10H96wYQOOHTuGL7/8skTLTE1NRVJSEm7cuIEZM2ZAq9Xq6678kpOT9ecAc3h6eqJfv37676bK6vfff4dCoTDqJWXs2LEQQmDr1q0Gw1u1aoWgoCD995o1a+KVV17B9u3bjZqP3b9/HyEhIXBwcMDmzZsN6qaylHNJmbuO5tTHOuaeF8tyXspfh2ZkZCApKQmtW7eGEAL//POP0fgFz6lpaWkm56s71xaXK5Q0/uL2Da1Wi40bN+Lll1/WPz+Xn66M165di7Zt28LFxcVguR07doRGozFqjtK0aVPUr18fP/74IwDg+vXr2Lt3r0EzjNIy93yfX1G5ik5aWprR9iqN/PtIVlYWkpKS8PzzzwNAiY+fUjUdWbBgAerWrQsrKyt4enoiICDA4ODRarWYO3cuFi5ciNjYWINKQte8BMhrchIQEAArq/J9b06dOnUMvstkMvj7++vb/ehOzAMGDCh0HqmpqXBxcdF/T0pKMppvQTExMRBCFDpewSYeuv5hi+o/OSYmBqmpqYV2CXbv3j2D7zt27DBIhswxadIkVKtWDcOGDTNq3xQTE4MLFy4UOs+CyzclPj4e3bp1Q0ZGBu7fv1/ojyhzygMAfv31V0ydOhUnT540aM+Wf75Xr16FXC5HvXr1Cp2PrslTYbdlgbyKBchrL1tQYGAgDhw4YDDs5s2bBmXl7e2N9evXm9VHtkqlMipnFxcXo7b45qx/fkOGDMHVq1fx119/GRx/ALBixQp89dVXuHjxInJzc/XDC95OMzUsMTERjx49Mrm/BwQEGNzmv379OuRyOfz9/Q3G8/LygrOzs76cS2LKlCl45ZVXULduXTRo0ABdunRBv3798Nxzz5k1fdOmTfX/VyqVmD9/vskmY/ldv34dLVu2NBqu+yF1/fp1NGjQADKZDNWqVYOjo6PBeLq6Mn8bxP79+2PNmjXYv38/2rVrh127diEhIcEgkWvSpAlUKhWioqLw7bff6uum3Nxco3qlJNt05syZ+h++TZo0MZqXbr0KtrMujcTERKSkpGDx4sWF3h42VZ9oNBp88sknePPNN83etjr5b3nL5XJ89tlnJvsxz398e3h4YMiQIYiKitL/KM1PJpOhbt26RgljwbK6fv06qlWrZnDRJ/94Bfd5U8dR3bp1kZmZicTERHh5eemHd+/eHZcuXYKHh4dRW+jSlnNpmLuO5tTHOuaeF8tyXrpx4wYmTpyIzZs3G9WvqampBt8zMjLMPqfqkjonJ6cixytp/MXtGzKZDA8fPizyXKZb7unTp0tUbhEREVi8eDHGjRuH5cuXo3Xr1sXmQuYw93yfX1G5ik7+iwVlkZycjKioKPz0009G5VJwHylOqTLcFi1amPzVpPPFF19gwoQJGDRoED7//HO4urpCLpdj9OjRRleKpaCLYebMmYW2Wcy/8XNycnDnzp1i231qtVrIZDJs3brVZAVdcIe6e/cuABhUoKbm6eHhgVWrVpn8e8EDpmXLlpg6darBsPnz52PTpk0mp79w4QKWL1+OlStXmmzrrdVq0bBhQ3z99dcmp69Ro0ahsetcuXIFTZs2xezZs9GvXz+sWLHC5I8cc8pj//79CAsLQ7t27bBw4UJ4e3ujSpUqWLZsmdEDjFLw9PTEypUrAeQdjEuXLkWXLl1w4MABNGzYsMhpTe0zBZV0/efOnYvVq1dj5cqVRvv6ypUrMXDgQISHh+ODDz6Ah4cHFAoFoqOj9T9C8sv/C7+0ynKnquBVvXbt2uHq1avYtGkTduzYge+//x6zZ8/GokWLEBkZWez8Vq5cCU9PT2RlZWHPnj0YMWIEVCpVuVytKUlZhYSE6Pebdu3aYeXKlfDy8jJoK+7p6Yl58+ZhxIgRqFu3rsH0+a/Cl3Sb9uvXD/379zf5vEl509W7b731VqEXOUwl0kuWLEFcXBy2b99e4mXOmjULjRo1Qm5uLo4dO4apU6fCysoKkyZNMhhv/fr1cHR0RGZmJn755RdMmzYNjo6O+PDDD43mWR7HQVldvHgRW7duRe/evTF27FgsW7ZM/7fSlvOTwtzzYmnPSxqNBp06dUJycjI++ugjBAYGws7ODvHx8Rg4cKBRjqJSqbBlyxaDYfv378eUKVOM5q37kVXwwc3yjL8stFotOnXqZHK/BmBUtwB5+9GHH36Iw4cPY8WKFSV+bqQw5mzn/IrLVXQmTpyof8ZL5+WXXy5xfL1798Zff/2FDz74AI0bN4a9vT20Wi26dOlS4jzWIq9gX7duHV588UUsWbLEYHhKSgrc3d313/38/HDkyBGTV2XKouCtZCEErly5oq9cdA9ZOjo6Fvngk86pU6eQm5tb5I8L3XyFEPD19TW5wxZ0/vx5yGQyk1dL889z165deOGFF8yq4N3d3Y3WqagHQ8aPH4/GjRvj9ddfL3T5p06dQocOHUqdJOma7Xh6emLTpk0YO3YsQkNDjX4kmFMe69evh0qlwvbt2w1uOeU/0eji1mq1OH/+fKE/pnT7wdmzZ42utOroXkBx6dIlo1vOly5dMnpBhUqlMij/sLAwuLq6Yv78+YX2xlES5q4/kHcyGDduHEaPHo0333zT6O/r1q1D7dq1sWHDBoNtWzAJKUzVqlVhY2NjsunGpUuXDL77+PhAq9UiJibGoBlNQkICUlJSDMrRxcXF4G2AwH8/dgtydXVFREQEIiIikJ6ejnbt2mHy5MlmJdovvPCC/oTYvXt3nDt3DtHR0UUm2j4+PkbrBuQlPrq/A3lXj3fs2IG0tDSDq32XL1+GVqs1OBErFAr07dsXy5cvx/Tp07Fx40YMGTLE6IdXZGQkevbsibNnz+pvu+qaouiUdJvWrl0bHTt2RN26dXHw4EGjuli3XsUlDuaoWrUqHBwcoNFozKp3gbymLVFRURg+fHipXgYTFBSk75mga9euiI+Px/Tp0zFhwgSDK9Lt2rXTn5vCwsJw8OBBbNu2zWRC4uvrixMnTkCr1RrMo2BZ+fj4YNeuXUb7QMF9RcfUcXT58mXY2toa1ZWbN29G27ZtER0djZEjR+Ktt95Chw4dAJSunEvL3HU0pz7WOX/+PKpWrWp09y2/spyXzpw5g8uXL2PFihUGD3sW1luRQqEwKseC9ZPO8ePHAcCsXKEk8Re3b8hkMjg6OuLs2bPFLjc9Pb1E+4WbmxvCwsIwbNgw3Lt3T980tqx0zezMbVZZXK6i07BhQ6P1M+ciVn4PHjzA7t27ERUVZfAgZ2mbKVqk53+FQmF0O2vt2rVG3aH16tULSUlJmD9/vtE8Ck5fEj/88INBG6p169bhzp076Nq1K4C8ytfPzw+zZs1Cenq60fSJiYlGsSsUCpNd5+XXs2dPKBQKREVFGcUvhDDoFkatVmP9+vVo0aJFkbdOevfuDY1Gg88//9zob2q1utAD3hyHDh3Cpk2b8OWXXxZ6sPfu3Rvx8fEmu6569OiRWW0a69atq++FYt68edBqtUavKja3PBQKBWQymcHVzbi4OKMfE+Hh4ZDL5ZgyZYrRr0/dtuncuTMcHBwQHR1t1I5dN06zZs3g4eGBRYsWGTTT2Lp1Ky5cuGDQy4kpOTk5UKvVZnU5ZQ5z1//OnTvo3bs32rRpU2ibeF3lk39fPXLkCA4dOmR2LCEhIdi4caNBjwAXLlwwuvqo6zGo4FPtuis6+cvRz8/PqK3g4sWLTbZTzc/e3h7+/v6lLutHjx4VO21oaCiOHj1qUEYZGRlYvHgxatWqpb81HhoaCo1GY1S3mVpfIO/K8oMHDzBs2DCkp6fjrbfeMrl8V1dXtGvXDh07dkTHjh0NmrcBpd+mXbp0QWpqqkEXXLomgEqlslwSNoVCgV69emH9+vUmE4KC9S6Qd0cmIyMDn376aZmXD+RtY7VaDbVaXeg4QggIIQo9OYeGhuLu3btYs2aNfpipsipsH5g9ezZkMpn+fKRz6NAhg7afN2/exKZNm9C5c2ejWHRX7IYPH47WrVtj2LBh+q7pSlPOpWXuOppTHwN57Wt///13k+3o8yvLecnUMSKEwNy5c4tcpjnWrVuHgIAABAYGFjleSeMvbt+Qy+UIDw/Hli1b9Ml+frp17d27Nw4dOmTy7lBKSkqhx8WgQYNw+vRpvPbaayVq6lGUNWvWmP38kjm5SnkytY8Axucvc1nkinb37t0xZcoUREREoHXr1jhz5gxWrVqF2rVrG4zXv39//PDDDxgzZgyOHj2Ktm3bIiMjA7t27cLw4cPxyiuvlGr5rq6uaNOmDSIiIpCQkIA5c+bA398fQ4YMAZDXVu/7779H165dUb9+fURERKB69eqIj4/H3r174ejoiC1btiAjIwMLFizAN998g7p16xr0g6lL0E+fPo1Dhw6hVatW8PPzw9SpU/VdeIWHh8PBwQGxsbH45ZdfMHToUIwbNw67du3ChAkTcPr0aaNbUgUFBwdj2LBhiI6OxsmTJ9G5c2dUqVIFMTExWLt2LebOnYtXX321VOW0Y8cOdOrUqciTaL9+/fDzzz/j7bffxt69e/HCCy9Ao9Hg4sWL+Pnnn7F9+/Zif73n5+XlhZkzZyIyMhJvvfUWQkNDS1Qe3bp1w9dff40uXbqgb9++uHfvHhYsWAB/f3+cPn1aP56/vz8+/fRTfP7552jbti169uwJpVKJY8eOoVq1aoiOjoajoyNmz56NyMhING/eHH379oWLiwtOnTqFzMxMrFixAlWqVMH06dMRERGB4OBg9OnTR9+9X61atYwedsvIyDBoOvLjjz8iKytL3+1bWZm7/qNGjUJiYiI+/PBD/PTTTwbzeO655/Dcc8+he/fu2LBhA3r06IFu3bohNjYWixYtQr169Uz+ADUlKioK27ZtQ9u2bTF8+HCo1WrMmzcP9evXN4inUaNGGDBgABYvXoyUlBQEBwfj6NGjWLFiBcLDw/Hiiy/qx42MjMTbb7+NXr16oVOnTjh16hS2b99ucDcMAOrVq4f27dsjKCgIrq6uOH78ONatW4eRI0eaFfvGjRvh7u6ubzqyf//+Yrs9+/jjj7F69Wp07doVo0aNgqurK1asWIHY2FisX79ef4UzNDQUHTt2xKefforY2Fg0btwYe/bswfr16/H2228btaVs0qQJGjRooH9IKn/78ZIo7TaNjIzEokWLMHz4cJw5cwYBAQHYtGkTdu7ciejoaKOri5cuXcK2bdv039PT0yGXyw2G6a78//nnn3B0dISrqyu+/PJL7N27Fy1btsSQIUNQr149JCcn48SJE9i1axeSk5MNlrNjxw5MmzatyKubRdm5cydu3bqlbzqyatUqhIWFGb1EaM+ePQZNR65cuVLovjB48GB8++23GDhwII4fPw5fX19s3LgRu3fvxpdffqmP9eWXX8aLL76ITz/9FHFxcWjUqBF27NiBTZs2YfTo0Qbd1wJ5z4qEhIQYdOEG5B1jhZHJZPj+++/RuHFjTJo0CTNmzACAEpdzaZm7jubUxz///DOioqLw4MGDYruTLMt5KTAwEH5+fhg3bhzi4+Ph6OiI9evXG7XVLolr165hxowZOHr0KHr27Kk/BwB53fsBeftizZo1Ubt27RLHb86+8cUXX2DHjh0IDg7Wdxl4584drF27FgcOHICzszM++OADbN68Gd27d8fAgQMRFBSEjIwMnDlzBuvWrUNcXJxRPQvk/RBPTEwslyT7+PHjmDBhArZt24ZFixaZlTibk6uUJ0dHR7Rr1w4zZsxAbm4uqlevjh07dujfFVNiJemixJwuUYTI60Zp7NixwtvbW9jY2IgXXnhBHDp0yKgrKiHyulD59NNPha+vr6hSpYrw8vISr776qrh69aoQonTd+61evVqMHz9eeHh4CBsbG9GtWzeDLnt0/vnnH9GzZ0/h5uYmlEql8PHxEb179xa7d+82WHZxn/zdxgghxPr160WbNm2EnZ2dsLOzE4GBgWLEiBHi0qVLQggh3n33XdGuXTuxbds2o5hMdWcnRF43cUFBQcLGxkY4ODiIhg0big8//FDcvn1bP05Ju/eTyWTi77//Nhhuahvl5OSI6dOni/r16wulUilcXFxEUFCQiIqKEqmpqUbLK25+Qgjx0ksviZo1a4q0tLQSl8eSJUtEnTp1hFKpFIGBgWLZsmWFltvSpUtFkyZN9HEHBweLnTt3GoyzefNm0bp1a2FjYyMcHR1FixYtxOrVqw3GWbNmjX4+rq6u4s0339R3Z6mj66JP97G3txdNmzYVP/74Y5FlpJvWVDdSpV1/Xfdypj66rpK0Wq344osvhI+Pj1AqlaJJkybi119/NepKq6hjUAgh/vzzTxEUFCSsra1F7dq1xaJFi0zGnZubK6KiovTHeo0aNcT48eNFVlaWwXgajUZ89NFHwt3dXdja2oqQkBBx5coVo27Wpk6dKlq0aCGcnZ2FjY2NCAwMFNOmTRM5OTlFlrWuHtN9rK2thb+/v5g4caJRLKZcvXpVvPrqq8LZ2VmoVCrRokUL8euvvxqNl56eLt5//31RrVo1UaVKFeHv7y++/PJLo+7NdGbMmCEAiC+++KLYGHQKHl/mblMhjLvNSkhIEBEREcLd3V1YW1uL+vXri8WLFxtMY26dWPCTv2uzhIQEMWLECFGjRg19nd+hQweDZenqcm9vb5GRkVFk3Kboptd9rKyshI+Pjxg1apR48OCBfjzdfqr72NjYiHr16onZs2frxym43wkhxL1798SgQYP0ZdWgQQPx3XffGcWRlpZmsA/UqVNHzJw506hLO/zbnd7KlSv1x3aTJk2Muo8rrJ6LiooSVlZW4sSJE/ph5pRzYXTxFFSwe7+SrKMQRdfHPXr0EF27dhVHjhwxms7U/luW89L58+dFx44dhb29vXB3dxdDhgwRp06dMuqGztzu/QrWKYV98s/b3PjN3TeEyOv2r3///qJq1apCqVSK2rVrixEjRhh0+ZmWlibGjx8v/P39hbW1tXB3dxetW7cWs2bN0tedxdX5pv5ubvd+06dPF82bNzfqsjh/ORbs3s+cXKW8u/e7deuW6NGjh3B2dhZOTk7itddeE7dv3zar/ilI9u+KVAp//PEHXnzxRaxdu7bUV3nzi4uLg6+vL2JjYwttozh58mTExcWZfOsREZG55s6di/fffx9xcXEG3SVWdLVq1cLy5cuN3hxJ/5HJZBgxYoTJZpT05Fu+fLk+FyhM+/btMXDgwBI/bM19o+KzSBttIiIynxACS5YsQXBwcKVKsomInnYWaaNdWdjb2+PNN98ssl3Sc889p3+lPBFRSWRkZGDz5s3Yu3cvzpw5U2g3nBVZcHCw/rXGRJWRn59fsc/hdOrUyahdPj0dmGgXwd3d3eChBlN69uz5mKIhosomMTERffv2hbOzMz755BOEhYVJHVK5W7FihdQhEFlU27ZtjfpuLqi8es6hiqdStdEmIiIiInpSsI02EREREZEFMNEmIiIiIrIAJtpERERERBbARJuIiIiIyAKYaBMRERERWQATbSIiIiIiC2CiTURERERkAUy0iYiIiIgsgIk2EREREZEFMNEmIiIiIrIAJtpERERERBbARJuIiIiIyAKYaBMRERERWQATbSIiIiIiC2CiTURERERkAUy0iYiIiIgsgIk2EREREZEFMNEmIiIiIrIAK6kDICKiPGqNFonp2Uh4mI17D7OQkJaNxIdZSMtWQ6MVUGsFvrBaAsit8j5KB8DBE3DwBuy9AAcvwN4TULBqJyJ6EsiEEELqIIiInjYpmTk4E5+KM/GpOPvvv/EPHkFbTI0cp+pb9AgyOeBUA6jWGPBu/N+/tq7lEzgREZmNiTYR0WOQmaPGvstJ2H0hAYeu3cetB49KNZ9iE+3CONcEarUDAroAfi8B1nalmw8REZmNiTYRkYUkPMzCzvMJ2HUhAYeu3ke2WlvmeZY60c7PSgX4tgPqdgECQgFH77LPk4iIjDDRJiIqR1qtwO6L9/Dj4evYH5OI8q5hyyXRNiDLu8LdPDIv8ZbzGXkiovLCRJuIqBwkpWdjzbGb+N+RG4hPKV2zEHOUf6Kdj1NNoNlAoOkAwM7dcsshInpKMNEmIiqDWw8yMXdXDDadvI0cTdmbhhTHoom2jsIaaNgbaP8x4FzD8ssjIqqkmGgTEZVCckYO5u+5gpVHriOnHNpem+uxJNo6CiXQfDDQdhxg5/b4lktEVEkw0SYiKoGMbDW+3x+L7/ZfQ3q2+rEv/7Em2jpKR6DVSKDVCEBp//iXT0RUQTHRJiIy045zd/HZxrO4l5YtWQySJNo69l5A96+BwG7SxUBEVIEw0SYiKkZKZg4mbT6HTSdvSx2KtIm2TsPeQNfpfAkOEVExmGgTERVhx7m7+HTjWSRKeBU7vyci0QbyXvXefQ4QGCp1JERETywm2kREJjzK0eDTX85gwz/xUodi4IlJtHWeewPoPhuwtpU6EiKiJw7fTEBEVEB8yiO8uuivJy7JfiKd/glYGgKk3pI6EiKiJw4TbSKifI7HJeOV+Qdw7vZDqUOpOO6eBha3B24cljoSIqInChNtIqJ//XT0Bvp+dwRJ6TlSh1LxZCQCK14GTvwgdSRERE8MK6kDICJ6EkT/fgH/t++a1GFUbJocYPO7QFIM0PlzqaMhIpIcE20ieqoJITBx0zn8ePi61KFUHn99A+Q+AkJnAjKZ1NEQEUmGTUeI6KklhMAnv5xhkm0Jx74DtrwHsGMrInqKMdEmoqfWxE3nsProTanDqLxOrAB+/0DqKIiIJMNEm4ieStG/X+CV7Mfh2HfAzolSR0FEJAkm2kT01Pnp6A0++Pg4HZzL3kiI6KnERJuInirH45IxcdM5qcN4+vw2lv1sE9FTh4k2ET01bqc8wtsr/0aORit1KE8fTQ6wph/fIElETxUm2kT0VHiUo8GQH47zZTRSyrgHrO4D5GRKHQkR0WPBRJuIngqf/nKGr1V/Etw9Dfw2RuooiIgeCybaRFTp7Th3Fxv+iZc6DNI5tRq4+LvUURARWRwTbSKq1FIyc/DpxrNSh0EF/ToayEyWOgoiIotiok1EldqkzeeQmJYtdRhUUHoCsPUjqaMgIrIoJtpEVGntOHcXm07eljoMKsyZn9mEhIgqNSbaRFQpZWSr2WSkIvj1fSA7XeooiIgsgok2EVVK3++PZZORiiD9LnB4odRREBFZBBNtIqp0kjNy8N1+vmK9wvhrHpBxX+ooiIjKHRNtIqp05u+5gvRstdRhkLmyHwL7v5I6CiKicsdEm4gqlVsPMrHyyHWpw6CSOvY9kHJT6iiIiMoVE20iqlTm7opBjlordRhUUpps4I8vpY6CiKhcMdEmokojKT2b3flVZGd+BjKSpI6CiKjcMNEmokpjzbGbyNHwanaFpckBTqyQOgoionLDRJuIKgWtVuB/R25IHQaV1fHlgJY/loiocmCiTUSVwu6L9xCf8kjqMKisUm8AMduljoKIqFww0SaiSuHHw+xppNI49r3UERARlQsm2kRU4SU8zML+mESpw6DycmU38PCO1FEQEZUZE20iqvB2nk+AEFJHQeVHAJe3Sh0EEVGZMdEmogpv14UEqUOg8naJiTYRVXxMtImoQsvMUeOvq/elDoPKW+w+ICdT6iiIiMqEiTYRVWj7LifxTZCVkToLuLpH6iiIiMqEiTYRVWi72Wyk8mLzESKq4JhoE1GFdugam41UWnH7pY6AiKhMmGgTUYWVkpmDWw/4kppKK+U6kJksdRRERKXGRJuIKqwz8alSh0CWdueU1BEQEZUaE20iqrCYaD8F7pyUOgIiolJjok1EFdZZJtqV3+2TUkdARFRqTLSJqMLiFe2nAK9oE1EFxkSbiCoktUbLByGfBik3AK1G6iiIiEqFiTYRVUiJ6dkQQuooyOKEFkhnX+lEVDEx0SaiCunew2ypQ6DHJe2u1BEQEZUKE20iqpASHmZJHQI9Lky0iaiCspI6ACIiAFiwYAFmzpyJu3fvolGjRpg3bx5atGhR6Pj30gyvaKccWIXUg6sNhlm5PoPqQxYBAIQ6B8l7liDzwj4ITS5sfJvCtfM7UNi5FLoMIQRSD6xC+qnt0GZnQFn9Wbh2Ho4qrtX/nWcu7m/7Bpkxh6Gwc4Fr5+GwqdVYP33qkfXQPEyEa6e3S1ocFjP5jyxE/ZljMCzATY6LI+0BAFlqgbHbs/DTOTWy1QIh/lZYGKqCp33h12WEEJj0Rza+O5GLlCyBF2oo8G03Feq4KQAA2WqByC1Z2HQxF172cizspkLH2v+dfmYezMaNVC3mhdqYXkB60Yn2vn37MHPmTPz999+4c+cOfvnlF4SHh5tRGkRElsUr2kQkuTVr1mDMmDGYNGkSTpw4gUaNGiEkJAT37t0rdJqCiTYAVHGviWdG/Kj/eL05Xf+35N3f4dGVo3AP/xiefb+EOv0+En/5osi4Hh5Zj4d/b4FryAh49fsKsioq3Pt5IoQ6L1FNO7UNOXevwOutWbBv1AVJW2ZC/NtwPDflLtJPbYdzu/6lKRKLql9Vjjtj7fWfA4Ns9X97f1sWtlxWY+1rNvhzoB1upwn0/Lnoh05nHMzBN0dysKibCkci7WBnLUPIykxkqfPKYvHfufj7tgaHBtthaFAV9F3/SF9OsQ+0+O5ELqZ1UBW+gGKuaGdkZKBRo0ZYsGCBmSVARPR4MNEmIsl9/fXXGDJkCCIiIlCvXj0sWrQItra2WLp0aaHTpGXlGg+UK6Cwd/nvY+sEANBmZyD99E64vDQYNj6NoPTyh3voaGTHX0B2/EWT8xdCIO34Jji1eh22dZ6HtYcv3LuPgTo9GZmXDwEAcu/fhI1/S1hX9YFD027QZqZC++ghACB5x0K4tB8IudLW5PylZCUHvOzl+o+7bd6pIDVLYMk/ufg6RIWXfK0QVE2BZa+o8NdNDQ7fUpuclxACc47k4LN2SrwSWAXPeSrwQ7gNbqcJbLyYN82FJA3CAqxQ30OBEc2tkZgpkJSZl2i/89sjTO+ohKNSVnjA2WlFrk/Xrl0xdepU9OjRoxSlQURkOUy0iUhSOTk5+Pvvv9GxY0f9MLlcjo4dO+LQoUOFTqfRGnc5on5wG7cW9Ef8osFI3DIT6od5V8Sz714BtGqDZh1V3GpA4VgV2bdNJ9rq1ARoMh4YTCNX2kFZLUA/jbWHL7JvnYc2NxtZsSegsHeF3MYR6ef2QmZlDdu6rUtSFI9NTLIW1b5KQ+25aXhzQyZupGoBAH/f0SBXC4NmHYHuCtR0kuHQTdNd7MWmCNxNFwbTOKlkaPmMQj9NI08FDtzQ4FGuwParanjby+BuK8Oq07lQWcnQ49kqRQesNZ3kExE96dhGm4gklZSUBI1GA09PT4Phnp6euHjRdBIMAOoCibbSOwBuoe+jimt1aNKTkXpwNe6u+gjVBi2ANuMBoLCCXGVvMI3CzhmajAcm569Jzxsut3M2nMbWGZqMFACAfcNOyLkXh9tLhkNh4wj3Vz6CNisdqQdWwbNPNB7s+xGZF/bBytkLbqHvwcrB3ZwisaiW1RVY/ooNAtzluJMmEPVnNtouy8DZd+xxN13AWgE4qwyvLnvayXA33XRfinfTtfpxjKbJyPvboCZVcDpBg3oL0+FuK8PPr9ngQRYw8Y8s/DHADp/tycJPZ3Ph5yrH0jAbVHcscA2IiTYRVVBMtImoUrDxa/bfFw9fKKsF4Na3g5Bx8QDkVawtskyZwgpund8xGJb02xw4BL2MnIRreBRzCN4R8/DwyHo82LUYVXt8YpE4SqJrnf+uHj/nCbR8RgGfOWn4+VwubKoU0XyjDKooZFjQzfBBx4hNjzCqhTX+uavBxotqnHrbHjMOZmPUtiys7/3kNbchIioNNh0hIkm5u7tDoVAgIcHwpSQJCQnw8vIqdDoredFJoVxljyqu1aFOuQ25nQugUUOblW4wjiYjpdBeRxT2ecO1/1691k+TmQJFgavcOlnXTyP3/nU4NO2OrBunYVO7GeTWKtgGtkHWjTNFxisVZ5UMdd3kuJKshZe9DDkaICXL8Op1QoaAl73p8vb6tzeShAwT09iZPsXsjVXj3D0NRrawxh9xGoTWsYKdtQy961fBH3EmmqjIeU2IiComJtpEJClra2sEBQVh9+7d+mFarRa7d+9Gq1atCp1OUUyirc15BHXKHSjsXKH08gfkVnh0/ZT+77n3b0HzMBHKaoEmp7dy8oTCzgVZ10/+N8/sTGTfvmRyGqHOQfLOb+EWMhIyuQIQWgjdq8O1GgihLTJeqaTnCFxN1sLbQYYgbwWqyIHd1/5rqnEpSYMbqQKtaihMTu/rLIOXvcxgmofZAkduaUxOk6UWGPF7Fv6vuw0Uchk0WiD332LK1Zpue89Em4gqKtZeRCS5MWPGYMCAAWjWrBlatGiBOXPmICMjAxEREYVO46AyfIDuwZ4lsPFvASsnD6jTkpF6YBUgk8OuXjDkSjvYP9cJD/Z8D4XKATKlLR7sXARltUAoq/+XNMd/9zZcgvvDtm5ryGQyODR7Bal/rYGVS3VYOXsiZf9KWNm7wrau8Q+AlL9+gk3tZrD29AMAKKvXw4M/lsK+YUeknfgVqurPllNplc24HVl4ua4VfJzluJ2mxaQ/sqGQy9CnQRU4qWQY3KQKxuzIgquNDI5KGd7dmoVWzyjw/DP5HpCcn47oDkr0eLYKZDIZRre0xtT92ajjJoevsxwT9majmoMM4YHGp5jP/8xGaB0rNPHOS8JfqKnABzuzENGkCuYfzcELNU2clpQORa5Teno6rly5ov8eGxuLkydPwtXVFTVr1ixlSRERlR0TbSKS3Ouvv47ExERMnDgRd+/eRePGjbFt2zajByTz83BQGnxXpyUhactMaB49hMLGCcpn6sGr31f6Lv5cOwxBskyOxI1fQGhyofJtCrdOww3nkXwL2uxM/XfHlr0gcrNwf/s8aLMyoHqmHjx6T4HMyrDNd05iHDIv7of3wHn6YbaBLyDr5hncXfURqrhVh/vLH5S6fMrTrYda9Fn/CPcfCVS1laFNTQUOD7ZD1X+beczuooJ8exZ6/ZyJbA0Q4meFhd0M+7i+dF+L1Oz/rjx/+II1MnIFhm7JQkqWQJuaCmx7yxYqK8O7DmfvafDzeTVODrPTD3u1nhX+iLNC22UZCHCT43+9TLTPti98PwCA48eP48UXX9R/HzNmDABgwIABWL58uVnlQkRkCTKhe2sAEVEFsuPcXQz98W+pw3js4lR9pQ7h8XtjNRAYKnUUREQlxjbaRFQheToW8SZBqlwcir6iTUT0pGKiTUQVkoejsviRqHJw8JY6AiKiUmGiTUQVUlV7JYrpeIQqA5kcsPOQOgoiolJhok1EFZKVQo7qLjbFj0gVm1MNQMHn9omoYmKiTUQVVsPqTlKHQJZWrbHUERARlRoTbSKqsBow0a78qjWROgIiolJjok1EFRavaD8FvBtLHQERUakx0SaiCouJ9lPAu5HUERARlRoTbSKqsJxtrfEMH4isvJx9AFtXqaMgIio1JtpEVKG1qu0mdQhkKbXaSh0BEVGZMNEmogqtw7N8a2ClFdBV6giIiMqEiTYRVWjt6rrD2opVWaVjpQL8XpI6CiKiMuHZiYgqNFtrK7T2Y/ORSse3HWBtK3UURERlwkSbiCq8jmw+Uvmw2QgRVQJMtImowutUzxMymdRRUPmRAXWZaBNRxcdEm4gqPE9HFdrWqSp1GFRe/DsAjt5SR0FEVGZMtImoUuj3vI/UIVB5aR4pdQREROWCiTYRVQodAj1Q3Zkvr6nwnGoCdUKkjoKIqFww0SaiSkEul6Fvy5pSh0Fl1WwgIOepiYgqB9ZmRFRpvN68BqwVrNYqLIU10HSA1FEQEZUbnpGIqNJwt1filcbVpA6DSqthb8DOXeooiIjKDRNtIqpU3utYh2+KrIgUSqD9x1JHQURUrng2IqJK5RkXW7zVkj2QVDjNIwHnGlJHQURUrphoE1GlM/Ilf9grraQOg8yldATajpU6CiKicsdEm4gqHVc7awxpW1vqMMhcrd8F7NykjoKIqNwx0SaiSimyrS88HJRSh0HFsfcCWo2QOgoiIotgok1ElZKd0gpTwxtIHQYVp/tswNpO6iiIiCyCiTYRVVqd63uxu78nWcPeQGCo1FEQEVkME20iqtSiwuqjKpuQPHnsPYGu06WOgojIophoE1Gl5mxrjWlsQvLk6T4HsHWVOgoiIotiok1ElV7n+l7o2aS61GGQTqM+bDJCRE8FJtpE9FSY1qMh6ldzlDoM8m4EdPta6iiIiB4LJtpE9FSwsVbgu/7N4G5vLXUoTy87D+CN/wHWtlJHQkT0WDDRJqKnRjVnGyx6KwjWClZ9j53CGnh9JeD0jNSREBE9NjzbENFTpVktV3weXl/qMJ4+3b4GaraUOgoioseKiTYRPXVeb14Tw9rxFe2PzQvvAU37SR0FEdFjx0SbiJ5K40OfRf9WPlKHUfm1GAp0miJ1FEREkmCiTURPraiw+ujToobUYVReTQcAXWdIHQURkWSYaBPRU0smk+GLHg3R73le2S53zYcAL88FZDKpIyEikgwTbSJ6qslkMnwe3oBttsvTC+8B3WYxySaipx4TbSIi5LXZnt6rIbv+KwuFNRA2n22yiYj+xTMKEdG/Xm9eE/8b0pIvtSkNOw9gwK/sXYSIKB8m2kRE+TSr5YrNI9vwde0l4d0IGLqX/WQTERXARJuIqIBqzjZY93Zr9GxaXepQnnyN+gAR2/jGRyIiE2RCCCF1EERET6od5+7i041nkZiWLXUoAIA4VV+pQ8hj7wl0nwMEhkodCRHRE4uJNhFRMVIyczB58zlsPHlb6lCejET7udeBrtMBGxepIyEieqIx0SYiMtOOc3fx2cazuCfh1W1JE217L6D7bF7FJiIyExNtIqISyMhWY8mBWHy37xrSstWPffmSJNpKR6D1u0CrEYC13eNfPhFRBcVEm4ioFJIzcrBg7xX8ePg6ctTax7bcx5poK5RA80ig7VjAzu3xLZeIqJJgok1EVAa3HmRi7q4YbDp5GzkayyfcjyXRVlgDDXsD7T8GnGtYfnlERJUUE20ionJwPz0bPx27if8duYH4lEcWW45FE23nmkBQBNC0P2DnbrnlEBE9JZhoExGVI61WYM/Fe/jx8HXsi0lEedew5Z9oywD/DnlNROqEAHK+XoGIqLww0SYispCEh1nYdSEBu84n4K+r95FdDm25yyXRtlIBvsFAQBegblfA0bvs8yQiIiNMtImIHoPMHDX2xyRh1/kEHI69j5vJpWteUupE29kHqNUWCOgK+L0EWNuWbj5ERGQ2JtpERBJIyczB2fiHOBOfirPxqTgTn4pbDzKhLaZGLjbRlsnz2lp7NwaqNc7717sRYOtaTpETEZG5mGgTET0h1BotktJzkPAwC/fSsvX/pmepodFqodYKTKuyFJBb5X2UDoCDV96LZBz+/dh5AAorqVeFiIjARJuIiIiIyCL4eDkRERERkQUw0SYiIiIisgAm2kREREREFsBEm4iIiIjIAphoExERERFZABNtIiIiIiILYKJNRERERGQBTLSJiIiIiCyAiTYRERERkQUw0SYiIiIisgAm2kREREREFsBEm4iIiIjIAphoExERERFZABNtIiIiIiILYKJNRERERGQBTLSJiIiIiCyAiTYRERERkQUw0SYiIiIisgAm2kREREREFsBEm4iIiIjIAphoExERERFZABNtIiIiIiILYKJNRERERGQBTLSJiIiIiCzg/wEZ0/cNjQnpsAAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from imblearn.under_sampling import RandomUnderSampler\n",
"\n",
"rus = RandomUnderSampler()\n",
"\n",
"# Применение RandomUnderSampler\n",
"X_resampled, y_resampled = rus.fit_resample(train_data.drop(columns=['Outcome']), train_data['Outcome'])\n",
"\n",
"# Создание нового DataFrame\n",
"df_train_undersampled = pd.DataFrame(X_resampled)\n",
"df_train_undersampled['Outcome'] = y_resampled # Добавление целевой переменной\n",
"\n",
"# Вывод информации о новой выборке\n",
"print(\"Обучающая выборка после андерсемплинга: \", df_train_undersampled.shape)\n",
"print(df_train_undersampled['Outcome'].value_counts())\n",
"\n",
"# Визуализация распределения классов\n",
"hazardous_counts = df_train_undersampled['Outcome'].value_counts()\n",
"plt.figure(figsize=(2, 2))\n",
"plt.pie(hazardous_counts, labels=hazardous_counts.index, autopct='%1.1f%%', startangle=90)\n",
"plt.title('Распределение классов hazardous в обучающей выборке после андерсемплинга')\n",
"plt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "aimenv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}