237 lines
5.9 KiB
Python
237 lines
5.9 KiB
Python
# HookJeeves.py
|
||
|
||
import numpy as np
|
||
import AbsoluteMeasurementErrors as abserror
|
||
from itertools import product
|
||
|
||
result_log = ""
|
||
|
||
|
||
def log(*values, sep=" ", end="\n"):
|
||
global result_log
|
||
result_log += sep.join(list(map(str, values))) + end
|
||
# print(*values, sep=sep, end=end)
|
||
|
||
|
||
def get_errors_vector(x):
|
||
return np.array(list(map(abserror.get_error, x)))
|
||
|
||
|
||
def sum_errors_vector(a, b):
|
||
return np.array([abserror.sum_error(a[i], b[i]) for i in range(len(a))])
|
||
|
||
|
||
def frac_errors_vector(a, b):
|
||
return np.array([abserror.frac_error(a[i], b) for i in range(len(a))])
|
||
|
||
|
||
def point_info(x, f, x_err):
|
||
return f"x = {x}, x_err = {x_err}, f(x) = {f(x)}"
|
||
|
||
|
||
def hooke_jeeves(
|
||
f,
|
||
x0,
|
||
delta0,
|
||
epsilon,
|
||
alpha,
|
||
r=lambda x: True,
|
||
fit=lambda a, b: a < b,
|
||
x_err=None,
|
||
delta_err=None,
|
||
):
|
||
x = np.array(x0)
|
||
delta = np.array(delta0)
|
||
|
||
if x_err is None:
|
||
x_err = get_errors_vector(x)
|
||
|
||
if delta_err is None:
|
||
delta_err = get_errors_vector(delta)
|
||
|
||
iteration = 0
|
||
|
||
while np.linalg.norm(delta) > epsilon:
|
||
iteration += 1
|
||
|
||
log()
|
||
log("=" * 40)
|
||
log("Итерация", iteration)
|
||
|
||
log("Текущая базовая точка", point_info(x, f, x_err))
|
||
|
||
sample_x, sample_x_err = exploratory_search(
|
||
f, x, delta, r=r, fit=fit, x_err=x_err, delta_err=delta_err
|
||
)
|
||
|
||
if fit(f(sample_x), f(x)):
|
||
log("Исследующий поиск УДАЧНЫЙ")
|
||
|
||
x_p, x_p_err = sample_search(
|
||
f, x, sample_x, r=r, fit=fit, x1_err=x_err, x2_err=sample_x_err
|
||
)
|
||
|
||
if fit(f(x_p), f(x)):
|
||
log("Поиск по образцу УДАЧНЫЙ")
|
||
x, x_err = x_p, x_p_err
|
||
else:
|
||
log("Поиск по образцу ПРОВАЛЕН")
|
||
x, x_err = sample_x, sample_x_err
|
||
|
||
log()
|
||
log("Новая базовая точка", point_info(x, f, x_err))
|
||
|
||
else:
|
||
log("Исследующий поиск ПРОВАЛЕН")
|
||
|
||
log("Уменьшаем шаг", delta, "->", delta / alpha)
|
||
delta = delta / alpha
|
||
delta_err = frac_errors_vector(delta, alpha)
|
||
log("ε =", np.linalg.norm(delta))
|
||
|
||
return x, f(x), x_err
|
||
|
||
|
||
def exploratory_search(
|
||
f, x, delta, r=lambda x: True, fit=lambda a, b: a < b, x_err=None, delta_err=None
|
||
):
|
||
log()
|
||
log("Выполняем исследующий поиск")
|
||
|
||
if x_err is None:
|
||
x_err = get_errors_vector(x)
|
||
|
||
if delta_err is None:
|
||
delta_err = get_errors_vector(delta)
|
||
|
||
dxs = product(*[[d, -d] for d in delta])
|
||
|
||
x = np.array(x)
|
||
t_x_err = None
|
||
t_f = f(x)
|
||
t_x = None
|
||
|
||
for dx in dxs:
|
||
if fit(f(x + dx), t_f) and r(x + dx):
|
||
t_f = f(x + dx)
|
||
t_x = x + dx
|
||
t_x_err = x_err + delta_err
|
||
|
||
if t_x is not None:
|
||
log("Найдена точка", t_x, t_f)
|
||
return t_x, t_x_err
|
||
|
||
return x, x_err
|
||
|
||
|
||
def sample_search(
|
||
f, x1, x2, r=lambda x: True, fit=lambda a, b: a < b, x1_err=None, x2_err=None
|
||
):
|
||
log()
|
||
log("Выполняем поиск по образцу")
|
||
|
||
if x1_err is None:
|
||
x1_err = get_errors_vector(x1)
|
||
|
||
if x2_err is None:
|
||
x2_err = get_errors_vector(x2)
|
||
|
||
x2_last = x2.copy()
|
||
x2_last_err = x2_err.copy()
|
||
|
||
error_growth_coeff = 0.05 # КОЭФФИЦИЕНТ РОСТА ОШИБКИ
|
||
|
||
while fit(f(x2), f(x1)):
|
||
x2_last = x2.copy()
|
||
x2_last_err = x2_err.copy()
|
||
|
||
step = x2 - x1
|
||
if not r(x2 + step):
|
||
log("Ограничение ОДЗ")
|
||
break
|
||
|
||
x2, x1 = x2 + step, x2
|
||
|
||
# Новая погрешность
|
||
step_error = error_growth_coeff * np.abs(step)
|
||
x2_err = x2_err + step_error
|
||
x1_err = x2_err.copy()
|
||
|
||
log("Найдена точка", x2_last, f(x2_last))
|
||
return x2_last, x2_last_err
|
||
|
||
|
||
class TARGET:
|
||
MIN = 0
|
||
MAX = 1
|
||
|
||
|
||
def example():
|
||
# начальная базовая точка
|
||
x0 = [100, 100]
|
||
|
||
# начальное значение приращения
|
||
delta0 = [10, 10]
|
||
|
||
# коэффициент приращения
|
||
alpha = 2
|
||
|
||
# условие окончания поиска
|
||
epsilon = 0.0001
|
||
|
||
# коэффициенты при неизвестных (внутри списков порядок обратный)
|
||
c = [[1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1]]
|
||
|
||
x1r = [-10000, 10000]
|
||
x2r = [-10000, 10000]
|
||
|
||
target = TARGET.MIN
|
||
|
||
def fit(a, b):
|
||
"""
|
||
Функция сравнения значений оптимизируемой функции
|
||
> - ищем максимум
|
||
< - ищем минимум
|
||
"""
|
||
if target == TARGET.MIN:
|
||
return a < b
|
||
elif target == TARGET.MAX:
|
||
return a > b
|
||
|
||
def r(x):
|
||
"""
|
||
Функция, описывающая область допустимых значений.
|
||
Должна возвращать истину, если точка находится в ОДЗ.
|
||
"""
|
||
return x1r[0] <= x[0] <= x1r[1] and x2r[0] <= x[1] <= x2r[1]
|
||
|
||
def f(x):
|
||
"""
|
||
Функция, которую мы должны оптимизировать
|
||
"""
|
||
return sum(
|
||
[
|
||
sum([c[i][j] * x[i] ** j for j in range(len(c[i]))])
|
||
for i in range(len(c))
|
||
]
|
||
)
|
||
|
||
x, val, x_err = hooke_jeeves(f, x0, delta0, epsilon, alpha, r=r, fit=fit)
|
||
|
||
log()
|
||
log("=" * 40)
|
||
log("Точка экстремумв:", x)
|
||
log("Абсолютная погрешность:", x_err)
|
||
log("Максимальное значение функции:", val)
|
||
|
||
with open("result.log", "w", encoding="utf-8") as file:
|
||
file.write(result_log)
|
||
|
||
|
||
def main():
|
||
example()
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main()
|