AIM-PIbd-31-Potapov-N-S/lab_2/lab2.ipynb

1785 lines
550 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Датасет 1. Зарплата специалистов по обработке данных в 2023 году\n",
"https://www.kaggle.com/datasets/henryshan/2023-data-scientists-salary\n",
"## Анализ сведений\n",
"### Краткое описание\n",
"Этот датасет посвящен анализу факторов, влияющих на уровень заработных плат специалистов в области Data Science. Включенные данные позволяют исследовать взаимосвязь между различными характеристиками сотрудников и их доходами.\n",
"### Проблемная область\n",
"Датасет касается анализа факторов, влияющих на заработную плату специалистов в области Data Science, что является важным аспектом для понимания экономических и профессиональных тенденций на рынке труда в этой сфере. Проблемная область включает:\n",
"- Анализ влияния опыта, типа занятости, географического положения и других факторов на размер заработной платы специалистов.\n",
"- Определение ключевых факторов, влияющих на рост зарплаты в профессии Data Scientist.\n",
"- Выявление тенденций, которые могут помочь работодателям и специалистам принимать решения о карьере, зарплате и условиях работы.\n",
"\n",
"### Актуальность\n",
"- **Рост профессии**: Data Science — это одна из самых востребованных и динамично развивающихся областей на рынке труда. Понимание факторов, влияющих на зарплату, важно для профессионалов и компаний.\n",
"- **Тенденции на рынке труда**: В условиях глобализации и удаленной работы важно понять, как тип занятости и местоположение компании влияют на оплату труда.\n",
"- **Оптимизация карьерных решений**: Анализ данных поможет специалистам принимать обоснованные решения при выборе карьерных путей, а работодателям — разрабатывать конкурентоспособные предложения по зарплате и условиям работы.\n",
"\n",
"### Объекты наблюдений\n",
"Объектами наблюдения являются **Data Scientists**, то есть специалисты, занимающиеся анализом данных. Каждый объект представляет собой запись, которая отражает характеристики работы конкретного специалиста в определенный год.\n",
"\n",
"### Атрибуты объектов\n",
"Каждый объект имеет следующие атрибуты:\n",
"- **work_year** — год, в котором была выплачена зарплата. Позволяет отслеживать изменения зарплат в разные годы.\n",
"- **experience_level** — уровень опыта сотрудника (Entry-level, Mid-level, Senior-level, Executive-level). Это важный атрибут, который влияет на зарплату.\n",
"- **employment_type** — тип занятости (Part-time, Full-time, Contract, Freelance). Определяет, является ли работа постоянной или временной.\n",
"- **job_title** — должность, занимаемая сотрудником. Важно для анализа различий между зарплатами для разных специализаций.\n",
"- **salary** — общая сумма заработной платы.\n",
"- **salary_currency** — валюта, в которой выплачена зарплата.\n",
"- **salaryinusd** — зарплата в долларах США. Этот атрибут используется для стандартизации данных.\n",
"- **employee_residence** — страна проживания сотрудника. Влияет на размер зарплаты и может быть важным для анализа глобальных различий.\n",
"- **remote_ratio** — доля работы, выполняемой удаленно. Важно для анализа влияния удаленной работы на уровень зарплаты.\n",
"- **company_location** — страна, где находится основная офисная локация компании. Это атрибут, который позволяет анализировать региональные различия в зарплатах.\n",
"- **company_size** — размер компании, выраженный через медиану числа сотрудников. Размер компании может влиять на оплату труда, так как крупные компании часто предлагают более высокие зарплаты.\n",
"\n",
"### Связь между объектами\n",
"Связь между объектами заключается в том, что все атрибуты в совокупности описывают профессиональную деятельность и условия работы каждого специалиста. Например:\n",
"- **experience_level** и **job_title** могут быть взаимосвязаны, так как более высокие должности (например, Senior или Executive) соответствуют большему опыту.\n",
"- **salary** напрямую зависит от **experience_level**, **employment_type**, **employee_residence**, **company_location**, и **company_size**, а также от уровня удаленности работы (**remote_ratio**).\n",
"- **salaryinusd** служит для нормализации и сопоставления зарплат между различными странами и валютами.\n",
"- **employee_residence** и **company_location** могут быть связаны с различиями в заработной плате, так как зарплаты могут варьироваться в зависимости от страны проживания и местоположения компании.\n",
"\n",
"## Качество набора данных\n",
"### Информативность\n",
"Датасет содержит разнообразные атрибуты, которые предоставляют полезную информацию для анализа факторов, влияющих на зарплату специалистов в области Data Science. Включенные переменные, такие как **уровень опыта**, **тип занятости**, **зарплата**, **географическое расположение** и **удаленная работа**, позволяют провести многогранный анализ и выявить значимые закономерности. Однако, отсутствие информации о дополнительной квалификации или навыках специалистов (например, знание конкретных технологий или инструментов) может ограничить глубину анализа.\n",
"\n",
"### Степень покрытия\n",
"Датасет охватывает достаточно широкий спектр факторов, влияющих на зарплату, включая географические данные (страна проживания, местоположение компании) и рабочие условия (удаленная работа, тип занятости). Однако степень покрытия может быть ограничена:\n",
"- Данные охватывают только одну профессиональную категорию (Data Science), что не позволяет делать выводы о других областях.\n",
"- Пропущенные данные по некоторым атрибутам могут снизить полноту информации (например, отсутствие данных по размеру компании или типу работы для некоторых записей).\n",
"\n",
"### Соответствие реальным данным\n",
"Датасет в целом отражает реальные условия рынка труда для специалистов в области Data Science. Он содержит важные атрибуты, такие как уровень опыта и зарплата, которые широко используются в исследованиях зарплат. Однако стоит учитывать, что в реальной жизни могут существовать дополнительные переменные, которые не учтены в наборе данных, такие как текущее состояние отрасли или специфические тренды (например, спрос на специалистов в определенных областях).\n",
"\n",
"### Согласованность меток\n",
"Метки в датасете, такие как **experience_level** (уровень опыта), **employment_type** (тип занятости), и **company_size** (размер компании), имеют четкие и логичные категории, что способствует легкости их интерпретации. Однако для некоторых меток могут возникнуть проблемы с точностью классификации, например:\n",
"- В разных странах или компаниях могут существовать различные способы определения уровней опыта, и это может не всегда совпадать с метками в датасете.\n",
"- Некоторые метки могут требовать дополнительного пояснения, например, категориальные значения для **remote_ratio** или **job_title** могут быть варьироваться в зависимости от контекста.\n",
"\n",
"## Бизнес-цели\n",
"### 1. **Определение конкурентоспособных уровней зарплат для специалистов в области Data Science**\n",
"\n",
"**Эффект на бизнес:**\n",
"Датасет поможет компаниям, работающим в сфере Data Science, определять конкурентоспособные уровни зарплат для специалистов в зависимости от уровня опыта, типа занятости и географического положения. Это способствует привлечению и удержанию талантливых специалистов, улучшая стратегию найма и оптимизируя расходы на оплату труда.\n",
"\n",
"**Примеры целей технического проекта:**\n",
"- **Цель проекта:** Создание модели для предсказания конкурентоспособных зарплат для специалистов по Data Science в зависимости от их уровня опыта и местоположения.\n",
" - **Что поступает на вход:** Данные о годе работы, уровне опыта, типе занятости, местоположении компании и специалиста.\n",
" - **Целевой признак:** Прогнозируемая зарплата (в долларах США или эквивалент в локальной валюте).\n",
"\n",
"### 2. **Определение факторов, влияющих на рост зарплат в сфере Data Science**\n",
"\n",
"**Эффект на бизнес:**\n",
"Анализ факторов, влияющих на рост зарплат, позволит компаниям лучше понимать, какие характеристики (например, удаленная работа, опыт работы в крупных компаниях) способствуют повышению заработной платы. Это может помочь в построении программ карьерного роста и мотивации для сотрудников.\n",
"\n",
"**Примеры целей технического проекта:**\n",
"- **Цель проекта:** Разработка модели для анализа факторов, которые влияют на рост зарплат в сфере Data Science.\n",
" - **Что поступает на вход:** Данные о годе работы, уровне опыта, типе занятости, удаленной работе, размере компании и других характеристиках.\n",
" - **Целевой признак:** Изменение зарплаты за год (прибавка к зарплате или её снижение).\n",
"\n",
"### 3. **Улучшение стратегии удаленной работы и гибких условий занятости**\n",
"\n",
"**Эффект на бизнес:**\n",
"Датасет поможет компаниям понять, как удаленная работа или гибкие условия занятости влияют на уровень зарплаты специалистов. Это даст возможность оптимизировать политику гибкости в работе и предложить лучшие условия для сотрудников, что повышает их удовлетворенность и снижает текучесть кадров.\n",
"\n",
"**Примеры целей технического проекта:**\n",
"- **Цель проекта:** Создание модели для анализа влияния удаленной работы и типа занятости на уровень зарплаты в сфере Data Science.\n",
" - **Что поступает на вход:** Данные о проценте удаленной работы, типе занятости (фриланс, контракт, полная или частичная занятость).\n",
" - **Целевой признак:** Зарплата в зависимости от удаленности работы и типа занятости (фиксированная сумма или разница в зарплатах для разных типов занятости)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Выполним все необходимые импорты"
]
},
{
"cell_type": "code",
"execution_count": 146,
"metadata": {},
"outputs": [],
"source": [
"from typing import Any\n",
"from math import ceil\n",
"\n",
"import pandas as pd\n",
"from pandas import DataFrame, Series\n",
"from sklearn.model_selection import train_test_split\n",
"from imblearn.over_sampling import ADASYN\n",
"from imblearn.under_sampling import RandomUnderSampler\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Считаем данные для первого датасета"
]
},
{
"cell_type": "code",
"execution_count": 147,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 3755 entries, 0 to 3754\n",
"Data columns (total 11 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 work_year 3755 non-null int64 \n",
" 1 experience_level 3755 non-null object\n",
" 2 employment_type 3755 non-null object\n",
" 3 job_title 3755 non-null object\n",
" 4 salary 3755 non-null int64 \n",
" 5 salary_currency 3755 non-null object\n",
" 6 salary_in_usd 3755 non-null int64 \n",
" 7 employee_residence 3755 non-null object\n",
" 8 remote_ratio 3755 non-null int64 \n",
" 9 company_location 3755 non-null object\n",
" 10 company_size 3755 non-null object\n",
"dtypes: int64(4), object(7)\n",
"memory usage: 322.8+ KB\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>count</th>\n",
" <th>mean</th>\n",
" <th>std</th>\n",
" <th>min</th>\n",
" <th>25%</th>\n",
" <th>50%</th>\n",
" <th>75%</th>\n",
" <th>max</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>work_year</th>\n",
" <td>3755.0</td>\n",
" <td>2022.373635</td>\n",
" <td>0.691448</td>\n",
" <td>2020.0</td>\n",
" <td>2022.0</td>\n",
" <td>2022.0</td>\n",
" <td>2023.0</td>\n",
" <td>2023.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>salary</th>\n",
" <td>3755.0</td>\n",
" <td>190695.571771</td>\n",
" <td>671676.500508</td>\n",
" <td>6000.0</td>\n",
" <td>100000.0</td>\n",
" <td>138000.0</td>\n",
" <td>180000.0</td>\n",
" <td>30400000.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>salary_in_usd</th>\n",
" <td>3755.0</td>\n",
" <td>137570.389880</td>\n",
" <td>63055.625278</td>\n",
" <td>5132.0</td>\n",
" <td>95000.0</td>\n",
" <td>135000.0</td>\n",
" <td>175000.0</td>\n",
" <td>450000.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>remote_ratio</th>\n",
" <td>3755.0</td>\n",
" <td>46.271638</td>\n",
" <td>48.589050</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>100.0</td>\n",
" <td>100.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" count mean std min 25% \\\n",
"work_year 3755.0 2022.373635 0.691448 2020.0 2022.0 \n",
"salary 3755.0 190695.571771 671676.500508 6000.0 100000.0 \n",
"salary_in_usd 3755.0 137570.389880 63055.625278 5132.0 95000.0 \n",
"remote_ratio 3755.0 46.271638 48.589050 0.0 0.0 \n",
"\n",
" 50% 75% max \n",
"work_year 2022.0 2023.0 2023.0 \n",
"salary 138000.0 180000.0 30400000.0 \n",
"salary_in_usd 135000.0 175000.0 450000.0 \n",
"remote_ratio 0.0 100.0 100.0 "
]
},
"execution_count": 147,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.read_csv('csv/8.ds_salaries.csv')\n",
"df.info()\n",
"df.describe().transpose()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Метод проверки пустых значений в датафрейме"
]
},
{
"cell_type": "code",
"execution_count": 148,
"metadata": {},
"outputs": [],
"source": [
"# Проверка пропущенных данных\n",
"def check_null_columns(dataframe: DataFrame) -> None:\n",
" print('Присутствуют ли пустые значения признаков в колонке:')\n",
" print(dataframe.isnull().any(), '\\n')\n",
"\n",
" if any(dataframe.isnull().any()):\n",
" print('Количество пустых значений признаков в колонке:')\n",
" print(dataframe.isnull().sum(), '\\n')\n",
"\n",
" print('Процент пустых значений признаков в колонке:')\n",
" for column in dataframe.columns:\n",
" null_rate: float = dataframe[column].isnull().sum() / len(dataframe) * 100\n",
" if null_rate > 0:\n",
" print(f\"{column} процент пустых значений: {null_rate:.2f}%\") "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Проверим на пустые значения в колонках"
]
},
{
"cell_type": "code",
"execution_count": 149,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Присутствуют ли пустые значения признаков в колонке:\n",
"work_year False\n",
"experience_level False\n",
"employment_type False\n",
"job_title False\n",
"salary False\n",
"salary_currency False\n",
"salary_in_usd False\n",
"employee_residence False\n",
"remote_ratio False\n",
"company_location False\n",
"company_size False\n",
"dtype: bool \n",
"\n"
]
}
],
"source": [
"check_null_columns(df)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Проверка на наличие выборосов и зашумленности данных\n",
"\n",
"Зашумленность это наличие случайных ошибок или вариаций в данных, которые могут затруднить выявление истинных закономерностей.\n",
"\n",
"Выбросы это значения, которые значительно отличаются от остальных наблюдений в наборе данных."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Функция возвращает список числовых колонок датафрейма"
]
},
{
"cell_type": "code",
"execution_count": 150,
"metadata": {},
"outputs": [],
"source": [
"def get_numeric_columns(dataframe: DataFrame) -> list[str]:\n",
" w = []\n",
" for column in dataframe.columns:\n",
" if not pd.api.types.is_numeric_dtype(dataframe[column]):\n",
" continue\n",
" w.append(column)\n",
" return w"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Метод для проверки датафрейма на наличие выбросов"
]
},
{
"cell_type": "code",
"execution_count": 151,
"metadata": {},
"outputs": [],
"source": [
"def check_outliers(dataframe: DataFrame) -> list[str]:\n",
" w = []\n",
" for column in get_numeric_columns(dataframe):\n",
" Q1: float = dataframe[column].quantile(0.25)\n",
" Q3: float = dataframe[column].quantile(0.75)\n",
" IQR: float = Q3 - Q1\n",
"\n",
" lower_bound: float = Q1 - 1.5 * IQR\n",
" upper_bound: float = Q3 + 1.5 * IQR\n",
"\n",
" outliers: DataFrame = dataframe[(dataframe[column] < lower_bound) | (dataframe[column] > upper_bound)]\n",
" outlier_count: int = outliers.shape[0]\n",
"\n",
" if outlier_count > 0:\n",
" w.append(column)\n",
"\n",
" print(f\"Колонка {column}:\")\n",
" print(f\"\\tЕсть выбросы: {'Да' if outlier_count > 0 else 'Нет'}\")\n",
" print(f\"\\tКоличество выбросов: {outlier_count}\")\n",
" print(f\"\\tМинимальное значение: {dataframe[column].min()}\")\n",
" print(f\"\\tМаксимальное значение: {dataframe[column].max()}\")\n",
" print(f\"\\t1-й квартиль (Q1): {Q1}\")\n",
" print(f\"\\t3-й квартиль (Q3): {Q3}\\n\")\n",
" return w"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Метод для визуализации выбросов"
]
},
{
"cell_type": "code",
"execution_count": 152,
"metadata": {},
"outputs": [],
"source": [
"def visualize_outliers(dataframe: DataFrame) -> None:\n",
" columns = get_numeric_columns(dataframe)\n",
" plt.figure(figsize=(15, 10))\n",
" rows: int = ceil(len(columns) / 3)\n",
" for index, column in enumerate(columns, 1):\n",
" plt.subplot(rows, 3, index)\n",
" plt.boxplot(dataframe[column], vert=True, patch_artist=True)\n",
" plt.title(f\"Диаграмма размахов для \\\"{column}\\\"\")\n",
" plt.xlabel(column)\n",
" \n",
" plt.tight_layout()\n",
" plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Проверим на наличие выбросов"
]
},
{
"cell_type": "code",
"execution_count": 153,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Колонка work_year:\n",
"\tЕсть выбросы: Да\n",
"\tКоличество выбросов: 76\n",
"\tМинимальное значение: 2020\n",
"\tМаксимальное значение: 2023\n",
"\t1-й квартиль (Q1): 2022.0\n",
"\t3-й квартиль (Q3): 2023.0\n",
"\n",
"Колонка salary:\n",
"\tЕсть выбросы: Да\n",
"\tКоличество выбросов: 113\n",
"\tМинимальное значение: 6000\n",
"\tМаксимальное значение: 30400000\n",
"\t1-й квартиль (Q1): 100000.0\n",
"\t3-й квартиль (Q3): 180000.0\n",
"\n",
"Колонка salary_in_usd:\n",
"\tЕсть выбросы: Да\n",
"\tКоличество выбросов: 63\n",
"\tМинимальное значение: 5132\n",
"\tМаксимальное значение: 450000\n",
"\t1-й квартиль (Q1): 95000.0\n",
"\t3-й квартиль (Q3): 175000.0\n",
"\n",
"Колонка remote_ratio:\n",
"\tЕсть выбросы: Нет\n",
"\tКоличество выбросов: 0\n",
"\tМинимальное значение: 0\n",
"\tМаксимальное значение: 100\n",
"\t1-й квартиль (Q1): 0.0\n",
"\t3-й квартиль (Q3): 100.0\n",
"\n"
]
}
],
"source": [
"columns_with_outliers = check_outliers(df)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Визуализируем выбросы"
]
},
{
"cell_type": "code",
"execution_count": 154,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABdIAAAPOCAYAAAALMup9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADbMklEQVR4nOzdeVhV5f7//xeDDIrgyGCi4FDOE5mAoqImebQktM7RSpzSEjspZYWZUyXlkHlyykqxo6hpqKmdlFSUEk8nzAo1v6WYlYBaCWoKCOv3hz/Wxy2IoOhGeD6ua1+67/u91nqvzd7ci/de6142hmEYAgAAAAAAAAAARbK1dgIAAAAAAAAAAJRnFNIBAAAAAAAAACgGhXQAAAAAAAAAAIpBIR0AAAAAAAAAgGJQSAcAAAAAAAAAoBgU0gEAAAAAAAAAKAaFdAAAAAAAAAAAikEhHQAAAAAAAACAYlBIBwAAAAAAAACgGBTSAaASmTp1qmxsbHT69GlrpwIAAG7SsWPHZGNjo5iYGGunAgDAHaW8j6EJCQmysbFRQkKCtVO5YUOHDpWPj4+10yhTFNIrmHXr1snGxqbIR6tWraydHlBpdO/eXUOHDpV0efDo3r27VfOpDAoOhAoONMrzQRFwq3AcAJQPleU44Mp9mzp1aoX7YxmVC2MoUD5UljG0srry73QfHx9NnTrVqvmUlr21E8CtMXHiRDVv3tx8/vrrr1sxGwAAcDtxHAAAwI1hDAVQHnTt2lUXLlyQg4ODtVPBFSikV1D333+/xbd277//PlM5AJXY+fPnVa1aNWuncUtcunRJ+fn51k4DKFc4DgBwIyry8QJQUoyhAG5EWY+htra2cnJyKrP1oWwwtUsFk5OTI+nyB+56YmJiZGNjo2PHjplt+fn5atOmTaEpEb777jsNHTpUjRo1kpOTkzw9PTV8+HD9/vvvFussmH/56oe9/f99Z9O9e3e1atVKycnJCgwMlLOzs3x9fbV48eJC+zJ58mT5+fnJzc1N1apVU1BQkHbu3GkRVzCdg42NjTZs2GDRd/HiRdWsWVM2NjaaPXt2oTzd3d2Vm5trscyqVavM9V15wLRx40b17dtX9erVk6Ojoxo3bqxXX31VeXl5132tC7b3ww8/6NFHH5Wrq6tq166tZ599VhcvXrSIXbZsmXr06CF3d3c5OjqqRYsWWrRoUaF19u/fXz4+PnJycpK7u7seeughff/99xYxBfvx9ttvF1q+WbNmsrGx0dixY822P/74Q88//7xat24tFxcXubq6qk+fPvr2228tlg0PD5eTk5MOHTpk0R4SEqKaNWvqxIkTZtvRo0f1yCOPqFatWqpatar8/f21ZcsWi+UK5v4qeDg6Ouruu+9WdHS0DMMo/sX9/13rvVfUZWBXvmeuflzp5MmTGjFihBo0aCA7OzszxsXFpUQ5XUuHDh0UFhZm0da6dWvZ2Njou+++M9vWrFkjGxsbi9f5m2++UZ8+feTq6ioXFxf17NlTe/futVhXwWd7165dGjNmjNzd3VW/fv1r5vPzzz+rSZMmatWqlTIyMq6b/9GjR2VjY6O5c+cW6tuzZ49sbGy0atUqs+23337T8OHD5eHhIUdHR7Vs2VJLly61WK60n/fZs2fr7bffVuPGjeXo6KiDBw9eN2+gMuA4YINFH8cBHAeUx+MASVq9erX8/PxUvXp1ubq6qnXr1po3b57ZX9KfRVFK+3k9ePCgBg8erJo1a6pLly5atmyZbGxs9M033xRa94wZM2RnZ6fffvvtpl8DoLxhDN1g0ccYyhjKGGrdMbSoOdILfgccPHhQwcHBqlq1qu666y7NnDmzROu8ko2NTZHTqvj4+JhT60hSbm6upk2bpqZNm8rJyUm1a9dWly5dFB8fb7Hchg0b1KpVKzk5OalVq1Zav359qXO6E3BGegVTMPg7Ojre0PL//ve/Cw0gkhQfH6+jR49q2LBh8vT01IEDB7RkyRIdOHBAe/fuLfRLc9GiRRa/IK8+GPnzzz/1t7/9TY8++qgGDRqkjz76SE8//bQcHBw0fPhwSVJWVpbef/99DRo0SE8++aTOnj2rDz74QCEhIfrqq6/Url07i3U6OTlp2bJlCg0NNdvi4uIKDa5XOnv2rDZv3qyHH37YbFu2bJmcnJwKLRcTEyMXFxdFRkbKxcVFO3bs0OTJk5WVlaVZs2ZdcxtXevTRR+Xj46Po6Gjt3btX//rXv/Tnn3/qww8/tHjtWrZsqYceekj29vbatGmTxowZo/z8fEVERFisb9SoUfL09NSJEyc0f/589erVS6mpqapatWqh12XcuHFm2549e/Tzzz8Xyu/o0aPasGGDHnnkEfn6+iojI0PvvvuuunXrpoMHD6pevXqSpHnz5mnHjh0KDw9XUlKS7Ozs9O6772rbtm3697//bcZlZGQoMDBQf/31l/75z3+qdu3aWr58uR566CGtW7fO4nWX/u8yygsXLmjNmjWaOHGi3N3dNWLEiBK9vgWvX8F7LyoqqtjYUaNGKSgoSNLl98rVv+jDw8P1+eef65lnnlHbtm1lZ2enJUuWaN++fSXOpyhBQUEWheY//vhDBw4ckK2trRITE9WmTRtJUmJiourWrWteWnrgwAEFBQXJ1dVVL7zwgqpUqaJ3331X3bt3165du9SpUyeL7YwZM0Z169bV5MmTdf78+SJzOXLkiHr06KFatWopPj5ederUuW7+jRo1UufOnbVy5UqNHz/eom/lypWqXr26+vfvL+nye8Df39880Kxbt67+85//aMSIEcrKyjLfl6X9vC9btkwXL17UqFGj5OjoqFq1anFWOiCOAzgO4DjgTjgOiI+P16BBg9SzZ0+9+eabkqRDhw7pyy+/1LPPPiup5D+La62/NJ/XRx55RE2bNtWMGTNkGIYGDhyoiIgIrVy5Uu3bt7eIXblypbp376677rrrpl4DoDxiDGUMZQxlDL0TxtA///xTDzzwgMLCwvToo49q3bp1evHFF9W6dWv16dPnptZdlKlTpyo6OlojR47Ufffdp6ysLH399dfat2+f7r//fknStm3bNGDAALVo0ULR0dH6/fffNWzYsGJP6LtjGahQ3n77bUOS8e2331q0d+vWzWjZsqVF27JlywxJRmpqqmEYhnHx4kWjQYMGRp8+fQxJxrJly8zYv/76q9C2Vq1aZUgydu/ebbZNmTLFkGScOnXqmjl269bNkGTMmTPHbMvOzjbatWtnuLu7Gzk5OYZhGMalS5eM7Oxsi2X//PNPw8PDwxg+fLjZlpqaakgyBg0aZNjb2xvp6elmX8+ePY3BgwcbkoxZs2YVynPQoEFGv379zPaff/7ZsLW1NQYNGlRoP4p6DUaPHm1UrVrVuHjx4jX398rtPfTQQxbtY8aMKfTzKmo7ISEhRqNGjYrdxkcffWRIMr7++muzTZIxcOBAw97e3qJ9xIgR5usSERFhtl+8eNHIy8uzWG9qaqrh6OhoTJ8+3aJ969athiTjtddeM44ePWq4uLgYoaGhFjHjxo0zJBmJiYlm29mzZw1fX1/Dx8fH3NbOnTsNScbOnTstcrG1tTXGjBlT7H4XmDhxoiHJOH36tNnWsmVLo1u3boVif/zxR0OSsXz5crOt4GdU4MKFC4atra0xevRoi2XDw8ONatWqlSina1m7dq0hyTh48KBhGIbxySefGI6OjsZDDz1k/P3vfzfj2rRpYzz88MPm89DQUMPBwcE4cuSI2XbixAmjevXqRteuXc22gs92ly5djEuXLlls+8rP6KFDh4x69eoZHTt2NP74449S7cO7775rSDIOHTpktuXk5Bh16tQxwsPDzbYRI0YYXl5eFj8XwzCMf/zjH4abm5v5fi/t593V1dU4efJkqXIGKgOOAzgO4Dig/B8HPPvss4arq2uhMfpKJf1ZFLz/b+bzOmjQoELxgwYNMurVq2eRw759+wptC6hIGEMZQxlDGUPL0xha1M+24HfAhx9+aLZlZ2cbnp6exoABA0q8bsO4/B6fMmVKofaGDRta/E3ftm1bo2/fvsWuq127doaXl5dx5swZs23btm2GJKNhw4alyqu8Y2qXCqbgcpO6deuWetkFCxbo999/15QpUwr1OTs7m/+/ePGiTp8+LX9/f0m6oW8U7e3tNXr0aPO5g4ODRo8erZMnTyo5OVmSZGdnZ95UIT8/X3/88YcuXbqke++9t8htdujQQS1bttS///1vSZenq9i5c6fFJSlXGz58uD777DOlp6dLkpYvX66AgADdfffdhWKvfA3Onj2r06dPKygoSH/99Zd++OGHEu331d+CP/PMM5KkTz/9tMjtZGZm6vTp0+rWrZuOHj2qzMxMi+X/+usvnT59Wvv379d7770nDw+PQrl7eHiob9++WrZsmbnMRx99pGHDhhXKz9HR0TzjIS8vT7///rtcXFx0zz33FHrNe/furdGjR2v69OkKCwuTk5OT3n33XYuYTz/9VPfdd5+6dOlitrm4uGjUqFE6duxYoek4Cvb3+PHjmjlzpvLz89WjR48iXsnCCs56KMkcYiU52+T8+fPKz89X7dq1S7T90ij45n737t2SLp953rFjR91///1KTEyUJJ05c0YpKSlmbF5enrZt26bQ0FA1atTIXJeXl5cGDx6sL774QllZWRbbefLJJ2VnZ1dkDikpKerWrZt8fHz0+eefq2bNmqXah0cffVROTk5auXKl2bZ161adPn1ajz/+uCTJMAx9/PHHevDBB2UYhk6fPm0+QkJClJmZab6vSvt5HzBgwA39ngMqOo4DOA7gOKD8HwfUqFFD58+fL3RJ9JVK87O4Wmk/r0899VShtiFDhujEiRMW00CsXLlSzs7OGjBgQPE7CNyhGEMZQxlDGUPvhDHUxcXF/Jtbuvw74L777tPRo0dvet1FqVGjhg4cOKAff/yxyP60tDTt379f4eHhcnNzM9vvv/9+tWjR4pbkZE0U0iuYn3/+Wfb29qUe/DMzMzVjxgxFRkbKw8OjUP8ff/yhZ599Vh4eHnJ2dlbdunXl6+trLlta9erVK3QThoJB68p55pYvX642bdqY8zDVrVtXW7ZsueY2hw0bZg5yMTExCgwMVNOmTa+ZR7t27dSqVSt9+OGHMgxDMTExRQ6K0uVpNR5++GG5ubnJ1dVVdevWNX95lfQ1uDqXxo0by9bW1mKfv/zyS/Xq1UvVqlVTjRo1VLduXU2cOLHI7UyfPl1169ZV+/btdezYMSUkJKh69eqFtjts2DDFxsYqOztba9euVc2aNYscVPPz8zV37lw1bdpUjo6OqlOnjurWravvvvuuyH2cPXu2atWqpf379+tf//qX3N3dLfp//vln3XPPPYWWK5iq5OpL4kJDQ1W3bl01bNhQU6dO1aRJk0o80Jw+fVpVqlSxuBTvWs6cOSNJxc7PVrt2bTVt2lTvv/++tm3bppMnT+r06dPKzs4uUT7F8fDwUNOmTc2ieWJiooKCgtS1a1edOHFCR48e1Zdffqn8/HyzkH7q1Cn99ddf13w98/Pz9csvv1i0F3xGi/Lggw+qevXq2rp1q1xdXUu9DzVq1NCDDz6o2NhYs23lypW66667zPfWqVOndObMGS1ZskR169a1eBR8zk6ePGkuX5rPe3H7hspt9+7devDBB1WvXr0i5/u8nmvNEXmn3HyP4wCOAzgOKP/HAWPGjNHdd9+tPn36qH79+mYx6kql/VlcqbSf16LG1Pvvv19eXl7mF+b5+flatWqV+vfvX+R7DKgIGEMZQxlDGUPvhDG0fv36haaYqVmzpv7888+bXndRpk+frjNnzujuu+9W69atNWHCBIt7uxW8F4v6fVHUe/hORyG9gjl8+LAaNWpkcUOSknjzzTdla2urCRMmFNn/6KOP6r333tNTTz2luLg4bdu2zfxldavmJV6xYoWGDh2qxo0b64MPPtBnn32m+Ph49ejR45rbfPzxx/XTTz9p7969Wr58+TUH8isNHz5cy5Yt065du5Senq5HH320UMyZM2fUrVs3ffvtt5o+fbo2bdqk+Ph4c06uG30Nrv7ld+TIEfXs2VOnT5/WW2+9pS1btig+Pt6ch/rq7YwcOVLbtm3T0qVL5eTkpAEDBhT5y71v375ycHDQhg0btGzZMoWHhxd5E52CA8CuXbtqxYoV2rp1q+Lj49WyZcsi9/Gbb74xC6FFzQdYWrNnz1Z8fLw+/fRTTZkyRW+++aamTZtWomWPHTumBg0aFHpNi1Jw1oSnp2excWvWrFHt2rUVEhIiDw8P1a1bV6tXry5RPtfTpUsXJSYm6sKFC0pOTlZQUJBatWqlGjVqKDExUYmJiXJxcSk0r1ppXPlt+tUGDBigI0eOWJxRXlpDhgzR0aNHtWfPHp09e1affPKJBg0aZL63Ct4zjz/+uOLj44t8dO7cWVLpP+/F7Rsqt/Pnz6tt27ZasGDBDS3//PPPKy0tzeLRokULPfLII2Wc6a3BcQDHARwHlP/jAHd3d+3fv1+ffPKJHnroIe3cuVN9+vRReHi4GVPan8WVSvt5LWpMtbOz0+DBg/Xxxx/r4sWL2rlzp06cOGFxBhxQ0TCGMoYyhjKG3glj6LWuOjdKeHPZ67n6JsBdu3bVkSNHtHTpUrVq1Urvv/++OnTooPfff79Mtnen4WajFUh2drb2799vcYOQkjhx4oTmzZun6OhoVa9evdDdiP/8809t375d06ZN0+TJk832a13WUdJtnj9/3uKb9P/3//6fpMt3CJakdevWqVGjRoqLi7P4hV7U5XIFateurYceesi8tO3RRx+1uFt4UR577DFNmDBBzz77rAYOHFjkN4QJCQn6/fffFRcXp65du5rtqampJdrfAj/++KPFN5Y//fST8vPzzX3etGmTsrOz9cknn6hBgwZm3NV3Vy/QpEkTNWnSRJLUq1cvNWjQQLGxsXr66act4uzt7fXEE0/o9ddf14EDB7R06dIi17du3ToFBwfrgw8+sGg/c+ZMoZtQnj9/XsOGDVOLFi0UGBiomTNn6uGHH1bHjh3NmIYNG+rw4cOFtlNw+V7Dhg0t2v38/Mw7g/fp00e//fab3nzzTb3yyitFHqwUuHTpkr799ls98MAD14y50sGDB2VjY3Pdb0fbt2+v9957T0FBQZo+fbr8/f01a9YsffnllyXaTnGCgoK0bNkyrV69Wnl5eQoMDJStra1ZYD906JACAwPNQbJu3bqqWrXqNV9PW1tbeXt7l3j7s2bNkr29vcaMGaPq1atr8ODBpd6HBx54QHXr1tXKlSvVqVMn/fXXX3riiSfM/rp166p69erKy8tTr169il3XjXzegaL06dOn2JvsZGdn6+WXX9aqVat05swZtWrVSm+++ab5u8fFxcXiDJtvv/1WBw8e1OLFi2916jeN4wCOAzgOuHOOAxwcHPTggw/qwQcfVH5+vsaMGaN3331Xr7zyipo0aVKqn8WVyvLzOmTIEM2ZM0ebNm3Sf/7zH9WtW1chISGlXg9wJ2AMZQxlDGUMrWxjaM2aNc0rDArk5OQoLS2tUGytWrU0bNgwDRs2TOfOnVPXrl01depUjRw50nwvFvU6FfUevtNxRnoFUnC5Uc+ePUu13LRp0+Th4VHk3E7S/33bdfW3W2+//fYN5Sld/mV95RxgOTk5evfdd1W3bl35+fldc7v//e9/lZSUVOy6hw8fru+++06PPPJIsZcbFahVq5b69++v7777zrzL+dWKyiUnJ0cLFy687vqvdPUZku+8844kmUWforaTmZlpXmJXnIKDnGtdLjV8+HB9//336tq1q8Uc21eys7Mr9HNeu3atfvvtt0KxL774oo4fP67ly5frrbfeko+Pj8LDwy22/7e//U1fffWVxc/s/PnzWrJkiXx8fK47X9aFCxd06dIlXbp0qdi4bdu2KTMzU/379y82Trr83vv444913333Xff9kZWVpSeeeEIPPfSQJk2apF69esnLy+u62yiJgilb3nzzTbVp08acSywoKEjbt2/X119/bcZIl382vXv31saNGy0uX8zIyFBsbKy6dOlSqilabGxstGTJEg0cOFDh4eH65JNPSr0P9vb2GjRokD766CPFxMSodevWatOmjUXOAwYM0Mcff6yUlJRCy586dcoiVir95x0orbFjxyopKUmrV682x4oHHnjgmgfI77//vu6++26Lz2N5xXHAZRwHcBxQnPJwHHB1oc3W1tYcPwtev9L8LK5Ulp/XNm3aqE2bNnr//ff18ccf6x//+Eepz9QF7hSMoZcxhjKGFocxtOTuhDG0cePG5n3bCixZsqTQGelXv+YuLi5q0qSJ+Xp7eXmpXbt2Wr58ucVVHfHx8YXm8q8IytdPETfk/PnzeueddzR9+nTzF8aKFSssYjIyMnTu3DmtWLFC999/v8Xcbdu2bdPKlSvNm5FczdXVVV27dtXMmTOVm5uru+66S9u2bSv1N8hXqlevnt58800dO3ZMd999t9asWaP9+/dryZIlqlKliiSpX79+iouL08MPP6y+ffsqNTVVixcvVosWLXTu3LlrrvuBBx7QqVOnSjTwF4iJidGCBQuu+e1kYGCgatasqfDwcP3zn/+UjY2N/v3vf5f60pnU1FQ99NBDeuCBB5SUlKQVK1Zo8ODBatu2raTLNx0p+HZ19OjROnfunN577z25u7tbfCv46aef6v3331dgYKBq1aqlo0eP6r333lO1atX08MMPF7nt5s2b6/Tp08VOidGvXz9Nnz5dw4YNU2BgoL7//nutXLmy0MHCjh07tHDhQk2ZMkUdOnSQJC1btkzdu3fXK6+8opkzZ0qSXnrpJa1atUp9+vTRP//5T9WqVUvLly9XamqqPv7440LfjMfHx+vXX39Vbm6u/ve//2nlypV66KGHrvnelC5fMvb888/L0dFRFy5csHjvZ2ZmKi8vTxs2bFBoaKg+//xzvfLKK/ruu++0adOma66zQEREhC5cuHBLLllq0qSJPD09dfjwYfNGOdLly6ZefPFFSSpUuHvttdcUHx+vLl26aMyYMbK3t9e7776r7Oxs8zUvDVtbW61YsUKhoaF69NFH9emnn5b4hjQFhgwZon/961/auXOneXnmld544w3t3LlTnTp10pNPPqkWLVrojz/+0L59+/T555/rjz/+kHTjn3egNI4fP65ly5bp+PHjqlevnqTLU7l89tlnWrZsmWbMmGERf/HiRa1cuVIvvfSSNdItMY4DLHEcwHFAgfJ6HDBy5Ej98ccf6tGjh+rXr6+ff/5Z77zzjtq1a2fOfVvSn8XVyvrzOmTIED3//POSxLQuqJAYQy0xhjKGFmAMrfhj6MiRI/XUU09pwIABuv/++/Xtt99q69athT7LLVq0UPfu3eXn56datWrp66+/1rp16zR27FgzJjo6Wn379lWXLl00fPhw/fHHH3rnnXfUsmXLivf3vIE7XmpqqiGpxI+dO3cahmEYy5YtMyQZ7dq1M/Lz8wutb9myZWbbr7/+ajz88MNGjRo1DDc3N+ORRx4xTpw4YUgypkyZYsZNmTLFkGScOnXqmvl269bNaNmypfH1118bAQEBhpOTk9GwYUNj/vz5FnH5+fnGjBkzjIYNGxqOjo5G+/btjc2bNxvh4eFGw4YNC+U7a9asYl+fK/uvl2dR/V9++aXh7+9vODs7G/Xq1TNeeOEFY+vWrRav6bUUrO/gwYPGwIEDjerVqxs1a9Y0xo4da1y4cMEi9pNPPjHatGljODk5GT4+Psabb75pLF261JBkpKamGoZhGCkpKUbv3r2N2rVrGw4ODoa3t7fxj3/8w/juu+8s1iXJiIiIuGZeV/dfvHjReO655wwvLy/D2dnZ6Ny5s5GUlGR069bN6Natm2EYhpGVlWU0bNjQ6NChg5Gbm2uxvvHjxxu2trZGUlKS2XbkyBFj4MCBRo0aNQwnJyfjvvvuMzZv3myx3M6dOy3eo/b29kbDhg2Nf/7zn8aff/5Z7GvbsGHD677nC94vzzzzjNG1a1fjs88+K7Segp9RgVWrVhk2NjaFYsPDw41q1aoVm1NJPfLII4YkY82aNWZbTk6OUbVqVcPBwaHQe8MwDGPfvn1GSEiI4eLiYlStWtUIDg429uzZYxFT8Nn+3//+V2j5ot7bf/31l9GtWzfDxcXF2Lt3b6n3o2XLloatra3x66+/FtmfkZFhREREGN7e3kaVKlUMT09Po2fPnsaSJUvMmLL6vANXkmSsX7/efL5582ZDklGtWjWLh729vfHoo48WWj42Ntawt7c30tPTb2PWpcdxAMcBHAfcWccB69atM3r37m24u7sbDg4ORoMGDYzRo0cbaWlpZkxJfhaGces/r2lpaYadnZ1x991339Q+A+UVYyhjKGMoY2h5HUMLfrZXfkYKfgdc7erPdknk5eUZL774olGnTh2jatWqRkhIiPHTTz8ZDRs2NMLDw8241157zbjvvvuMGjVqGM7OzkazZs2M119/3cjJybFY38cff2w0b97ccHR0NFq0aGHExcXdUF7lHYX0CqDgw3+9AaikcbfatT74FVlJfsnixjRs2NBi4Lvazp07K9wv7vKmXbt2Ro8ePaydBlDI1YX01atXG3Z2dsYPP/xg/PjjjxaPKw++C/To0cMIDQ29jRnfGI4Dyj+OA24djgNurVOnThn29vbG9OnTrZ0KcEswhpZ/jKG3DmPorcUYWjExtQsA4IZ9/fXX2r9/v2JiYqydCnBd7du3V15enk6ePHndOc9TU1O1c+fOG7p/AABUFDExMcrLy7O4mTgAALg+xtCKiUJ6BeDi4qLHHnvMYq62m4kD7iQPP/ywGjdufM1+Dw+Pa851h8IuXLhgcYOQotSqVUv/7//9PyUnJ2vOnDny8vLS3//+99uUIVC8c+fO6aeffjKfp6amav/+/apVq5buvvtuPfbYYxoyZIjmzJmj9u3b69SpU9q+fbvatGmjvn37msstXbpUXl5e5g2syjOOA1CZcRxwa+zYsUMHDx7U66+/rtDQUPn4+Fg7JeCWYAxFZcYYemtcbwwt6d/cxc1vX5xTp04VumHolRwcHFSrVq0bWjckG8Mo5R0egJvUvXt3nT59WikpKdZO5baZOnWqpk2bplOnTl3zJixAeRATE6Nhw4YVG7Nz504lJCRo+vTpuueee7R48WJ169btNmUIFC8hIUHBwcGF2sPDwxUTE6Pc3Fy99tpr+vDDD/Xbb7+pTp068vf317Rp09S6dWtJUn5+vho2bKghQ4bo9ddfv927UOFxHMBxAMq/7t27a8+ePercubNWrFihu+66y9opARBjKGMo7gTXG0NL+jd39+7db2j7Pj4++vnnn6/Z361bNyUkJNzQukEhHQBwhbS0NB04cKDYGD8/P9WsWfM2ZQQAAAAAQMVwq//m/vLLL3XhwoVr9tesWVN+fn43tG5QSAcAAAAAAAAAoFjMkX4FwzB09uxZa6cBAICqV68uGxsba6dxR8jPz9eJEyd4zQAAVlXw92S9evVka2tr7XTuCIzhAABrK834TSH9CllZWapRo4a10wAAQGfOnJGbm5u107gjnDhxQt7e3tZOAwAASdIvv/yi+vXrWzuNOwJjOACgvCjJ+E0hvQi//PKLXF1drZ0GAKASysrK4g/KUqpevbokxm8AgHUVjOEF4xKujzEcAGBtpRm/KaRfoeBSMldXVwZxAIBVcXlzyTF+AwDKE8bwkmMMBwCUFyUZv5m4DQAAAAAAAACAYlBIBwAAAAAAAACgGBTSAQAAAAAAAAAoBoV0AAAAAAAAAACKQSEdAAAAAAAAAIBiUEgHAAAAAAAAAKAYFNIBAAAAAAAAACgGhXQAAAAAAAAAAIpBIR0AAAAAAAAAgGJQSAcAAAAAAAAAoBgU0gEAAAAAAAAAKIa9tRMAAAAAYD15eXlKTExUWlqavLy8FBQUJDs7O2unBQAAisH4Ddx+pTojPTo6Wh07dlT16tXl7u6u0NBQHT582CLm4sWLioiIUO3ateXi4qIBAwYoIyPD7P/22281aNAgeXt7y9nZWc2bN9e8efMs1vHFF1+oc+fOql27tpydndWsWTPNnTv3uvl99913CgoKkpOTk7y9vTVz5szS7B4AAABQqcTFxalJkyYKDg7W4MGDFRwcrCZNmiguLs7aqQEAgGtg/Aaso1SF9F27dikiIkJ79+5VfHy8cnNz1bt3b50/f96MGT9+vDZt2qS1a9dq165dOnHihMLCwsz+5ORkubu7a8WKFTpw4IBefvllRUVFaf78+WZMtWrVNHbsWO3evVuHDh3SpEmTNGnSJC1ZsuSauWVlZal3795q2LChkpOTNWvWLE2dOrXYZQAAAIDKKi4uTgMHDlTr1q2VlJSks2fPKikpSa1bt9bAgQP5YxwAgHKI8RuwHhvDMIwbXfjUqVNyd3fXrl271LVrV2VmZqpu3bqKjY3VwIEDJUk//PCDmjdvrqSkJPn7+xe5noiICB06dEg7duy45rbCwsJUrVo1/fvf/y6yf9GiRXr55ZeVnp4uBwcHSdJLL72kDRs26IcffijR/mRlZcnNzU2ZmZlydXUt0TIAAJQlxqLS4zUDSi8vL09NmjRR69attWHDBtna/t/5Nfn5+QoNDVVKSop+/PFHLhMHSojxqPR4zYDSYfwGyl5pxqKbmiM9MzNTklSrVi1Jl882z83NVa9evcyYZs2aqUGDBsUW0jMzM811FOWbb77Rnj179Nprr10zJikpSV27djWL6JIUEhKiN998U3/++adq1qxZaJns7GxlZ2ebz7Oysq65fuBOcvz4cZ0+ffqGlr1w4YKOHTtWtgmVko+Pj5ydnW9o2Tp16qhBgwZlnBEAABVLYmKijh07plWrVln8ES5Jtra2ioqKUmBgoBITE9W9e3frJAkAACwwfgPWdcOF9Pz8fI0bN06dO3dWq1atJMk8G7xGjRoWsR4eHkpPTy9yPXv27NGaNWu0ZcuWQn3169fXqVOndOnSJU2dOlUjR468Zj7p6eny9fUttN2CvqIK6dHR0Zo2bVqx+wncaY4fP657mjXXxQt/WTsVq3ByrqrDPxyimA4AQDHS0tIkyTyOv1pBe0EcAACwPsZvwLpuuJAeERGhlJQUffHFFze88ZSUFPXv319TpkxR7969C/UnJibq3Llz2rt3r1566SU1adJEgwYNuuHtXS0qKkqRkZHm86ysLHl7e5fZ+gFrOH36tC5e+Eu1+z2nKrVL/342LuXoUmbG9QNvIXs3D9nYO1w/8Cq5v/+i3zfP0enTpymkA1ayaNEiLVq0yLyypWXLlpo8ebL69OlzzWXWrl2rV155RceOHVPTpk315ptv6m9/+9ttyhionLy8vCRdPh4v6qrRlJQUizgAAGB9jN+Add1QIX3s2LHavHmzdu/erfr165vtnp6eysnJ0ZkzZyzOSs/IyJCnp6fFOg4ePKiePXtq1KhRmjRpUpHbKTjDvHXr1srIyNDUqVOvWUj39PRURoZl8a/g+dXbLuDo6ChHR8fidxa4Q1Wp7S1HzyY3tnD9FmWbDIBKo379+nrjjTfUtGlTGYah5cuXq3///vrmm2/UsmXLQvF79uzRoEGDFB0drX79+ik2NlahoaHat2/fNc+0AXDzgoKC5OPjoxkzZhQ5x2p0dLR8fX0VFBRkxSwBAMCVGL8B67K9fsj/MQxDY8eO1fr167Vjx45CU6n4+fmpSpUq2r59u9l2+PBhHT9+XAEBAWbbgQMHFBwcrPDwcL3++usl2nZ+fr7FfOZXCwgI0O7du5Wbm2u2xcfH65577ilyWhcAAFD2HnzwQf3tb39T06ZNdffdd+v111+Xi4uL9u7dW2T8vHnz9MADD2jChAlq3ry5Xn31VXXo0EHz58+/zZkDlYudnZ3mzJmjzZs3KzQ0VElJSTp79qySkpIUGhqqzZs3a/bs2dyoDACAcoTxG7CuUhXSIyIitGLFCsXGxqp69epKT09Xenq6Lly4IElyc3PTiBEjFBkZqZ07dyo5OVnDhg1TQECAeclJSkqKgoOD1bt3b0VGRprrOHXqlLmdBQsWaNOmTfrxxx/1448/6oMPPtDs2bP1+OOPmzHz589Xz549zeeDBw+Wg4ODRowYoQMHDmjNmjWaN2+exdQtAADg9snLy9Pq1at1/vx5iy/Ur5SUlGRxk3Lp8s3Ck5KSrrne7OxsZWVlWTwAlF5YWJjWrVun77//XoGBgXJ1dVVgYKBSUlK0bt06hYWFWTtFAABwFcZvwHpKNbXLokWLJKnQnX+XLVumoUOHSpLmzp0rW1tbDRgwQNnZ2QoJCdHChQvN2HXr1unUqVNasWKFVqxYYbY3bNjQnE81Pz9fUVFRSk1Nlb29vRo3bqw333xTo0ePNuNPnz6tI0eOmM/d3Ny0bds2RUREyM/PT3Xq1NHkyZM1atSo0uwiAAC4Sd9//70CAgJ08eJFubi4aP369WrRougpo9LT082bgxco7iblEjcLB8pSWFiY+vfvr8TERKWlpcnLy0tBQUGcyQYAQDnG+A1Yh41hGIa1kygvsrKy5ObmpszMTLm6ulo7HeCG7Nu3T35+fvIMf/vG50i/Q2Wn/6T05eOUnJysDh06WDsd4IZUhLEoJydHx48fV2ZmptatW6f3339fu3btKrKY7uDgoOXLl1vcA2XhwoWaNm1aoXufFMjOzraY7q3gZuF38msGALjzVYQx/HbjNQMAWFtpxqIbutkoAADAtTg4OKhJk8tf5Pn5+el///uf5s2bp3fffbdQ7LVuFn6tG4VL3CwcAAAAAHD7lWqOdAAAgNIq7obhAQEBFjcply7fLPxac6oDAAAAAGANnJEOAADKTFRUlPr06aMGDRro7Nmzio2NVUJCgrZu3SpJGjJkiO666y5FR0dLkp599ll169ZNc+bMUd++fbV69Wp9/fXXWrJkiTV3AwAAAAAACxTSAQBAmTl58qSGDBmitLQ0ubm5qU2bNtq6davuv/9+SdLx48dla/t/F8QFBgYqNjZWkyZN0sSJE9W0aVNt2LBBrVq1stYuAAAAAABQCIV0AABQZj744INi+xMSEgq1PfLII3rkkUduUUYAAABAxZOXl6fExESlpaXJy8tLQUFBsrOzs3ZaQIXGHOkAAAAAAADAHSIuLk5NmjRRcHCwBg8erODgYDVp0kRxcXHWTg2o0CikAwAAAAAAAHeAuLg4DRw4UK1bt1ZSUpLOnj2rpKQktW7dWgMHDqSYDtxCFNIBAAAAAACAci4vL0/PPfec+vXrpw0bNsjf318uLi7y9/fXhg0b1K9fPz3//PPKy8uzdqpAhUQhHQAAAAAAACjnEhMTdezYMU2cOFG2tpYlPVtbW0VFRSk1NVWJiYlWyhCo2LjZKAAAAAAAAFDOpaWlSZJatWpV5M1GW7VqZREHoGxRSAcAAAAAAADKOS8vL0nS/PnztXjxYv38889mX8OGDTV69GiLOABli0I6AAAAAAAAUM4FBQXJ3d1dUVFRcnZ2tug7efKkJk6cKHd3dwUFBVkpQ6BiY450AAAAAAAA4A5w8eJFSZKrq6uWLFmiEydOaMmSJXJ1dbXoB1D2OCMdAAAAAAAAKOcSEhKUlZWl5s2b66+//tKoUaPMPh8fHzVr1kw//PCDEhIS1LNnTytmClRMnJEOAAAAAAAAlHMJCQmSLs+RfuTIEe3cuVOxsbHauXOnfvrpJ73zzjsWcQDKFmekAwAAAAAAAHcQOzs7de/e3dppAJUKZ6QDAAAAAAAA5VxB4XzKlCnKzc1VQkKCVq1apYSEBOXm5mrq1KkWcQDKFmekAwAAAAAAAOVc9+7d5e7uri+++EKurq4WNxZ1cnLSxYsX5e7uTiEduEU4Ix0AAAAAAAAo5+zs7BQeHi5JysnJsejLzc2VJIWHh8vOzu625wZUBhTSAQAAAAAAgHIuLy9Pa9eu1b333itvb2+LPm9vb917771at26d8vLyrJQhULFRSAcAAAAAAADKucTERB07dkwDBgyQjY1Nof6wsDClpqYqMTHRCtkBFR+FdAAAAAAAAKCcS0tLkyRNnDhRrVu3VlJSks6ePaukpCS1bt1aL7/8skUcgLLFzUYBAAAAAACAcs7d3V2S1LlzZ23YsEG2tpfPj/X399eGDRvUrVs3ffHFF2YcgLLFGekAAAAAAADAHc4wDGunAFRoFNIBAAAAAACAcu7kyZOSpC+++EKhoaEWU7uEhobqyy+/tIgDULYopAMAAAAAAADlnJeXlyQpOjpa33//vQIDA+Xq6qrAwEClpKRoxowZFnEAyhaFdAAAAAAAAKCcCwoKko+Pjz7++GPl5+db9OXl5SkuLk6+vr4KCgqyUoZAxUYhHQAAAAAAACjn7Ozs9Mgjj+jrr79Wdna2lixZohMnTmjJkiXKzs7W119/rYEDB8rOzs7aqQIVEoV0AAAAAAAAoJzLy8vT2rVrde+998rZ2VmjRo1SvXr1NGrUKFWtWlX33nuv1q1bp7y8PGunClRI9tZOAAAAAAAAAEDxEhMTdezYMa1atUodO3ZUYmKi0tLS5OXlpaCgIH311VcKDAxUYmKiunfvbu10gQqHQjoAAAAAAABQzqWlpUmSWrVqJTs7u0LF8latWlnEAShbTO0CAAAAAEA588Ybb8jGxkbjxo0z2y5evKiIiAjVrl1bLi4uGjBggDIyMiyWO378uPr27auqVavK3d1dEyZM0KVLlyxiEhIS1KFDBzk6OqpJkyaKiYkptP0FCxbIx8dHTk5O6tSpk7766iuL/pLkAqBseXl5SZJSUlKK7C9oL4gDULYopAMAAAAAUI7873//07vvvqs2bdpYtI8fP16bNm3S2rVrtWvXLp04cUJhYWFmf15envr27aucnBzt2bNHy5cvV0xMjCZPnmzGpKamqm/fvgoODtb+/fs1btw4jRw5Ulu3bjVj1qxZo8jISE2ZMkX79u1T27ZtFRISopMnT5Y4FwBlLygoSD4+PpoxY4by8/Mt+vLz8xUdHS1fX18FBQVZKUOgYqOQDgAAAABAOXHu3Dk99thjeu+991SzZk2zPTMzUx988IHeeust9ejRQ35+flq2bJn27NmjvXv3SpK2bdumgwcPasWKFWrXrp369OmjV199VQsWLFBOTo4kafHixfL19dWcOXPUvHlzjR07VgMHDtTcuXPNbb311lt68sknNWzYMLVo0UKLFy9W1apVtXTp0hLnUpTs7GxlZWVZPACUnJ2dnebMmaPNmzcrNDRUSUlJOnv2rJKSkhQaGqrNmzdr9uzZsrOzs3aqQIVEIR0AAAAAgHIiIiJCffv2Va9evSzak5OTlZuba9HerFkzNWjQQElJSZKkpKQktW7dWh4eHmZMSEiIsrKydODAATPm6nWHhISY68jJyVFycrJFjK2trXr16mXGlCSXokRHR8vNzc18eHt7l+q1ASCFhYVp3bp1+v777xUYGChXV1cFBgYqJSVF69at48oQ4BbiZqMAAAAAAJQDq1ev1r59+/S///2vUF96erocHBxUo0YNi3YPDw+lp6ebMVcW0Qv6C/qKi8nKytKFCxf0559/Ki8vr8iYH374ocS5FCUqKkqRkZHm86ysLIrpwA0ICwtT//79lZiYqLS0NHl5eSkoKIgz0YFbjEI6AAAAAABW9ssvv+jZZ59VfHy8nJycrJ3OLeHo6ChHR0drpwFUCHZ2durevbu10wAqFaZ2AQAAAADAypKTk3Xy5El16NBB9vb2sre3165du/Svf/1L9vb28vDwUE5Ojs6cOWOxXEZGhjw9PSVJnp6eysjIKNRf0FdcjKurq5ydnVWnTh3Z2dkVGXPlOq6XCwAAFQ2FdAAAAAAArKxnz576/vvvtX//fvNx77336rHHHjP/X6VKFW3fvt1c5vDhwzp+/LgCAgIkSQEBAfr+++918uRJMyY+Pl6urq5q0aKFGXPlOgpiCtbh4OAgPz8/i5j8/Hxt377djPHz87tuLgAAVDRM7QIAAAAAgJVVr15drVq1smirVq2aateubbaPGDFCkZGRqlWrllxdXfXMM88oICBA/v7+kqTevXurRYsWeuKJJzRz5kylp6dr0qRJioiIMKdUeeqppzR//ny98MILGj58uHbs2KGPPvpIW7ZsMbcbGRmp8PBw3Xvvvbrvvvv09ttv6/z58xo2bJgkyc3N7bq5AABQ0VBIBwAAAADgDjB37lzZ2tpqwIABys7OVkhIiBYuXGj229nZafPmzXr66acVEBCgatWqKTw8XNOnTzdjfH19tWXLFo0fP17z5s1T/fr19f777yskJMSM+fvf/65Tp05p8uTJSk9PV7t27fTZZ59Z3ID0erkAAFDR2BiGYVg7ifIiKytLbm5uyszMlKurq7XTAW7Ivn375OfnJ8/wt+Xo2cTa6dxW2ek/KX35OCUnJ6tDhw7WTge4IYxFpcdrBgAoDxiPSo/XDABgbaUZizgjHQAAAAAAALiD5OXlKTExUWlpafLy8lJQUJDs7OysnRZQoXGzUQAAAAAAAOAOERcXpyZNmig4OFiDBw9WcHCwmjRpori4OGunBlRoFNIBAAAAAACAO0BcXJwGDhyo1q1bKykpSWfPnlVSUpJat26tgQMHUkwHbiEK6QAAAAAAAEA5l5eXp+eee079+vXThg0b5O/vLxcXF/n7+2vDhg3q16+fnn/+eeXl5Vk7VaBCopAOAAAAAAAAlHOJiYk6duyYJk6cKMMwlJCQoFWrVikhIUGGYSgqKkqpqalKTEy0dqpAhcTNRgEAAAAAAIByLi0tTZJ05MgRDRo0SMeOHTP7fHx89Nprr1nEAShbnJEOAAAAAAAAlHNeXl6SpCeeeKLIOdKfeOIJizgAZYtCOgAAAAAAAFDOBQYGyt7eXu7u7lq7dq0uXryoTZs26eLFi1q7dq3c3d1lb2+vwMBAa6cKVEilKqRHR0erY8eOql69utzd3RUaGqrDhw9bxFy8eFERERGqXbu2XFxcNGDAAGVkZJj93377rQYNGiRvb285OzurefPmmjdvnsU64uLidP/996tu3bpydXVVQECAtm7dWmxux44dk42NTaHH3r17S7OLAAAAAAAAQLmzZ88eXbp0SRkZGapRo4aCg4M1ePBgBQcHq0aNGsrIyNClS5e0Z88ea6cKVEilKqTv2rVLERER2rt3r+Lj45Wbm6vevXvr/PnzZsz48eO1adMmrV27Vrt27dKJEycUFhZm9icnJ8vd3V0rVqzQgQMH9PLLLysqKkrz5883Y3bv3q37779fn376qZKTkxUcHKwHH3xQ33zzzXVz/Pzzz5WWlmY+/Pz8SrOLAAAAAAAAQLlz5dznFy9etOi78jlzpAO3RqluNvrZZ59ZPI+JiZG7u7uSk5PVtWtXZWZm6oMPPlBsbKx69OghSVq2bJmaN2+uvXv3yt/fX8OHD7dYR6NGjZSUlKS4uDiNHTtWkvT2229bxMyYMUMbN27Upk2b1L59+2JzrF27tjw9PUuzWwAAAAAAAEC55u7ubvH/IUOGqFGjRjp69Kg+/PBDnTx5slAcgLJTqkL61TIzMyVJtWrVknT5bPPc3Fz16tXLjGnWrJkaNGigpKQk+fv7X3M9BesoSn5+vs6ePVtsTIGHHnpIFy9e1N13360XXnhBDz300DVjs7OzlZ2dbT7Pysq67voBAAAAAACA2y0nJ0eSVKVKFf3yyy9ycHAw+15//XW5uLgoNzfXjANQtm74ZqP5+fkaN26cOnfurFatWkmS0tPT5eDgoBo1aljEenh4KD09vcj17NmzR2vWrNGoUaOuua3Zs2fr3LlzevTRR68Z4+Liojlz5mjt2rXasmWLunTpotDQUH3yySfXXCY6Olpubm7mw9vbu5g9BgAA11OS+6lcLSYmptA9TpycnG5TxgAAAMCdITY2VpJ06dIlhYWFady4cRo9erTGjRunsLAwXbp0ySIOQNm64TPSIyIilJKSoi+++OKGN56SkqL+/ftrypQp6t27d5ExsbGxmjZtmjZu3FjspSl16tRRZGSk+bxjx446ceKEZs2adc2z0qOioiyWycrKopgOAMBNKLifSseOHXXp0iVNnDhRvXv31sGDB1WtWrVrLufq6mpRcLexsbkd6QIAAAB3jHPnzkm6XPPasmVLof777rtPX331lRkHoGzdUCF97Nix2rx5s3bv3q369eub7Z6ensrJydGZM2cszkrPyMgoNG/5wYMH1bNnT40aNUqTJk0qcjurV6/WyJEjtXbtWovpYkqqU6dOio+Pv2a/o6OjHB0dS71eAABQtOvdT+VabGxsuMcJAAAAUIwuXbpow4YN+uqrr4qcI/2rr74y4wCUvVJN7WIYhsaOHav169drx44d8vX1tej38/NTlSpVtH37drPt8OHDOn78uAICAsy2AwcOKDg4WOHh4Xr99deL3NaqVas0bNgwrVq1Sn379i1Nmqb9+/fLy8vrhpYFAAA37+r7qVzLuXPn1LBhQ3l7e6t///46cODANWOzs7OVlZVl8QAAAAAqutGjR5v/9/PzU1hYmB5//HGFhYXJz8+vyDgAZadUZ6RHREQoNjZWGzduVPXq1c15z93c3OTs7Cw3NzeNGDFCkZGRqlWrllxdXfXMM88oICDAvNFoSkqKevTooZCQEEVGRprrsLOzU926dSVdns4lPDxc8+bNU6dOncyYgm1I0vz587V+/XqzaL98+XI5ODioffv2kqS4uDgtXbpU77///s2+RgAA4AYUdT+Votxzzz1aunSp2rRpo8zMTM2ePVuBgYE6cOCAxZVvBaKjozVt2rRbmToAAABQ7lxZ49q6dav+85//mM/t7Ows4saNG3c7UwMqhVKdkb5o0SJlZmaqe/fu8vLyMh9r1qwxY+bOnat+/fppwIAB6tq1qzw9PRUXF2f2r1u3TqdOndKKFSss1tGxY0czZsmSJbp06ZIiIiIsYp599lkz5vTp0zpy5IhFfq+++qr8/PzUqVMnbdy4UWvWrNGwYcNK/aIAAICbV3A/ldWrVxcbFxAQoCFDhqhdu3bq1q2b4uLiVLduXb377rtFxkdFRSkzM9N8/PLLL7cifQAAAKBcKaiDPf3007K1tSzp2djY6Omnn7aIA1C2SnVGumEY141xcnLSggULtGDBgiL7p06dqqlTpxa7joSEhOtu5+r1hIeHKzw8/LrLAQCAW+9a91MpiSpVqqh9+/b66aefiuznHicAAACojBo3bixJ6tChg86fP6+FCxfqyJEjaty4scaMGaOYmBiLOABlq1RnpAMAABTnevdTKYm8vDx9//333OcEAAAAuMKYMWNkb2+vSZMmydbWVuPGjdM777yjcePGydbWVpMnT5a9vb3GjBlj7VSBColCOgAAKDMRERFasWKFYmNjzfuppKen68KFC2bMkCFDFBUVZT6fPn26tm3bpqNHj2rfvn16/PHH9fPPP2vkyJHW2AUAAACgXHJwcND48eOVkZGh+vXra8mSJTpx4oSWLFmi+vXrKyMjQ+PHj5eDg4O1UwUqpFJN7QIAAFCcRYsWSZK6d+9u0b5s2TINHTpUknT8+HGLOR3//PNPPfnkk0pPT1fNmjXl5+enPXv2qEWLFrcrbQAAAOCOMHPmTEmX71E4evRos93e3l4TJkww+wGUPQrpAACgzJTkfipX3wtl7ty5mjt37i3KCAAAAKhYZs6cqddee63QHOmciQ7cWhTSAQAAAAAAgDuIg4ODxo0bZ+00gEqFOdIBAAAAAAAAACgGhXQAAAAAAAAAAIrB1C4AAAAAAADAHSQvL0+JiYlKS0uTl5eXgoKCZGdnZ+20gAqNM9IBAAAAAACAO0RcXJyaNGmi4OBgDR48WMHBwWrSpIni4uKsnRpQoXFGOgAAAAAAAHAHiIuL08CBA/W3v/1N/fv314ULF+Ts7KyffvpJAwcO1Lp16xQWFmbtNIEKiUI6AAAAAAAAUM7l5eXpueeeU6NGjbR161Zt2bLF7LO3t1ejRo30/PPPq3///kzzAtwCTO0CAAAAAAAAlHOJiYk6duyYjhw5otq1a+u9995TWlqa3nvvPdWuXVtHjhxRamqqEhMTrZ0qUCFxRjoAAAAAAABQzv3yyy+SJHd3d/3666+yt79c1hs5cqSGDh2qu+66SydPnjTjAJQtzkgHAAAAAAAAyrn//ve/kqThw4fLxsZGCQkJWrVqlRISEmRjY6OhQ4daxAEoW5yRDgAAAAAAAJRzhmFIkj799FOtXr1ax44dM/t8fHzk6upqEQegbFFIBwAAAAAAAMq5pk2bSpK+++47eXh4mDcePXr0qFasWGEW1gviAJQtCukAAAAAAABAOTd69GiNHz9ednZ2ysjI0Jw5c8w+Gxsb2dnZKS8vT6NHj7ZilkDFxRzpAAAAAAAAQDlXMPd5Xl5eoT7DMMx25kgHbg0K6QAAAAAAAEA599tvv5n/t7Gxsei78vmVcQDKDoV0AAAAAAAAoJxLT0+XJDVs2FDe3t4Wfd7e3mrYsKFFHICyRSEdAAAAAAAAKOf++OMPSdLPP/+sNm3aKCkpSWfPnlVSUpLatGmjn3/+2SIOQNmikA4AAAAAAADcYQzDMB8Abj17aycAAAAAAAAAoHi1atWSdHlql5SUFAUGBpp9vr6+atCggY4fP27GAShbFNIBAAAAAACAcs7T01PS5ald+vbtq+eff17Ozs66cOGC/vOf/2jLli0WcQDKFoV0AAAAAAAAoJy76667zP/v2LHDLJxLUtWqVYuMA1B2KKQDAAAAAAAA5VxQUJB8fHxUp04dnTp1yry5qCS5u7urTp06+v333xUUFGTFLIGKi0I6AAAAAAAAUM7Z2dlpzpw5GjhwoP72t78pNDRUFy5ckLOzs3766Sd9+umnWrdunezs7KydKlAhUUgHAAAAAAAA7gBhYWF6/vnnNXfuXIupXezt7fX8888rLCzMitkBFRuFdAAAAAAAAOAOEBcXp9mzZ6tv377q06ePxc1GZ8+eLX9/f4rpwC1CIR0AAAAAAAAo5/Ly8vTcc8+pX79+2rBhg2xtbc2+p556SqGhoXr++efVv39/pncBbgHb64cAAAAAAAAAsKbExEQdO3ZMEydOlGEYSkhI0KpVq5SQkCDDMBQVFaXU1FQlJiZaO1WgQuKMdAAAAAAAAKCcS0tLkyQdOXJEgwYN0rFjx8w+Hx8fvfbaaxZxAMoWhXQAAAAAAACgnPPy8pIkPfHEE3JycrLoy8jI0BNPPGERB6BsMbULAAAAAAAAUM4FBgbK1tZWhmHIMAyLvoI2W1tbBQYGWilDoGKjkA4AAAAAAACUc4mJicrPz5ckubq6asmSJTpx4oSWLFkiV1dXSVJ+fj5zpAO3CFO7AAAAAAAAAOXcjh07JEl33323srOzNWrUKLPPx8dHTZs21Y8//qgdO3aoZ8+e1koTqLA4Ix0AAAAAAAAo544fPy5JeuaZZ3To0CFFRESod+/eioiI0MGDBzV27FiLOABlizPSAQAAAAAAgHKuQYMGkqTo6Gg9++yz5jQv27Zt06JFi+Tp6WkRB6BscUY6AAAAAAAAUM716NFDknTixAmziF4gPz9fJ06csIgDULYopAMAAAAAAADlXGBgYJnGASgdCukAAAAAAABAObdw4cIyjQNQOhTSAQAAAAAAgHIuMTHR/L+jo6NFn5OTU5FxAMoOhXQAAAAAAACgnDt37pwkqVGjRjp69Kg8PDzk6OgoDw8PHTlyRI0aNbKIA1C27K2dAAAAAAAAAIDiubu7S5KOHj2qu+66y2zPyMiweF4QB6BscUY6AAAAAAAAUM75+vqWaRyA0qGQDgAAAAAAAJRzbdu2LdM4AKVDIR0AAAAAAAAo5yZMmGD+/8qbi0qSs7NzkXEAyg6FdAAAAAAAAKCcS09PN/9vY2NTojgAZYdCOgAAAAAAAFDOOTg4SJJq1qypnJwci76cnBzVqFHDIg5A2bK3dgIAAAAAAAAAijdhwgRNmTJFf/75p+6//36FhobK2dlZFy5c0IYNGxQfH2/GASh7nJEOAAAAAAAAlHNXFsjj4+M1f/581ahRQ/PnzzeL6FfHASg7pSqkR0dHq2PHjqpevbrc3d0VGhqqw4cPW8RcvHhRERERql27tlxcXDRgwABlZGSY/d9++60GDRokb29vOTs7q3nz5po3b57FOuLi4nT//ferbt26cnV1VUBAgLZu3Xrd/L777jsFBQXJyclJ3t7emjlzZml2DwAAAAAAACiX/vvf/1o8P3TokMLCwnTo0KFi4wCUjVIV0nft2qWIiAjt3btX8fHxys3NVe/evXX+/HkzZvz48dq0aZPWrl2rXbt26cSJEwoLCzP7k5OT5e7urhUrVujAgQN6+eWXFRUVpfnz55sxu3fv1v33369PP/1UycnJCg4O1oMPPqhvvvnmmrllZWWpd+/eatiwoZKTkzVr1ixNnTpVS5YsKc0uAgAAAABgFYsWLVKbNm3k6upqnlT2n//8x+y/3olrknT8+HH17dtXVatWlbu7uyZMmKBLly5ZxCQkJKhDhw5ydHRUkyZNFBMTUyiXBQsWyMfHR05OTurUqZO++uori/6S5AKgbKWlpZVpHIDSKdUc6Z999pnF85iYGLm7uys5OVldu3ZVZmamPvjgA8XGxqpHjx6SpGXLlql58+bau3ev/P39NXz4cIt1NGrUSElJSYqLi9PYsWMlSW+//bZFzIwZM7Rx40Zt2rRJ7du3LzK3lStXKicnR0uXLpWDg4Natmyp/fv366233tKoUaOKXCY7O1vZ2dnm86ysrNK8HEC55elio+Z/fSP7P07c9m0bebnKO/uH7KrXko1dldu67Ut/ZUgu175zOQAAAFCe1a9fX2+88YaaNm0qwzC0fPly9e/fX998841atmyp8ePHa8uWLVq7dq3c3Nw0duxYhYWF6csvv5Qk5eXlqW/fvvL09NSePXuUlpamIUOGqEqVKpoxY4YkKTU1VX379tVTTz2llStXavv27Ro5cqS8vLwUEhIiSVqzZo0iIyO1ePFiderUSW+//bZCQkJ0+PBhubu7S9J1cwFQ9ry8vMo0DkDp3NTNRjMzMyVJtWrVknT5bPPc3Fz16tXLjGnWrJkaNGigpKQk+fv7X3M9BesoSn5+vs6ePVtsTFJSkrp27WpxZ+KQkBC9+eab+vPPP1WzZs1Cy0RHR2vatGnF7yRwh6lTp44i/KtpUov11k7l9qsnvfZnNdWpU8famQCVVnR0tOLi4vTDDz/I2dlZgYGBevPNN3XPPfcUu9zatWv1yiuv6NixY2ratKnefPNN/e1vf7tNWQMAUD48+OCDFs9ff/11LVq0SHv37lX9+vWve+Latm3bdPDgQX3++efy8PBQu3bt9Oqrr+rFF1/U1KlT5eDgoMWLF8vX11dz5syRJDVv3lxffPGF5s6daxbS33rrLT355JMaNmyYJGnx4sXasmWLli5dqpdeeqlEJ9EBKHuOjo5lGgegdG64kJ6fn69x48apc+fOatWqlSQpPT1dDg4OqlGjhkWsh4eH0tPTi1zPnj17tGbNGm3ZsuWa25o9e7bOnTunRx999Jox6enp8vX1LbTdgr6iCulRUVGKjIw0n2dlZcnb2/ua2wDuBA0aNNDQdxJ06MSPVtl+amqqJk2apNdee63QZ/J2GPqPpqrfoMFt3y6AywqmgevYsaMuXbqkiRMnqnfv3jp48KCqVatW5DJ79uzRoEGDFB0drX79+ik2NlahoaHat2+feYwBAEBlk5eXp7Vr1+r8+fMKCAgo0YlrSUlJat26tfm3sHT5BLOnn35aBw4cUPv27ZWUlGSxjoKYcePGSZJycnKUnJysqKgos9/W1la9evVSUlKSpBs/iY6rwoGbExgYaPHc399fr732miZNmqS9e/daxBmGcbvTAyq8Gy6kR0REKCUlRV988cUNbzwlJUX9+/fXlClT1Lt37yJjYmNjNW3aNG3cuNG8hKysODo68i0dKqT6zfykZn5W2faFffv0TfpEebYPUfMOHaySAwDrud40cEWZN2+eHnjgAU2YMEGS9Oqrryo+Pl7z58/X4sWLb3nOAACUJ99//70CAgJ08eJFubi4aP369WrRooX2799/3RPX0tPTLYroBf0FfcXFZGVl6cKFC/rzzz+Vl5dXZMwPP/xgrqO0J9FJXBUOlKW77rpLe/fuNb/Qql+/vn799VcrZwVUbKW62WiBsWPHavPmzdq5c6fq169vtnt6eionJ0dnzpyxiM/IyJCnp6dF28GDB9WzZ0+NGjVKkyZNKnI7q1ev1siRI/XRRx8V+sb8ap6enoVubFLw/OptAwCA2+PqaeCKcq0z4wrOertadna2srKyLB4AAFQU99xzj/bv36///ve/evrppxUeHq6DBw9aO60yERUVpczMTPPxyy+/WDsl4I71888/a+fOnYqNjdXOnTt17Ngxa6cEVHilKqQbhqGxY8dq/fr12rFjR6FpG/z8/FSlShVt377dbDt8+LCOHz+ugIAAs+3AgQMKDg5WeHi4Xn/99SK3tWrVKg0bNkyrVq1S3759r5tbQECAdu/erdzcXLMtPj5e99xzT5HTugAAgFurqGnginKtM+OudUZbdHS03NzczAfTsgEAKhIHBwc1adJEfn5+io6OVtu2bTVv3rwSnbhWkhPMrhXj6uoqZ2dn1alTR3Z2dkXGXLmOkp5EdyVHR0e5urpaPACU3JUnp6Smpqp79+4aNGiQunfvrtTU1CLjAJSdUhXSIyIitGLFCsXGxqp69epKT09Xenq6Lly4IElyc3PTiBEjFBkZqZ07dyo5OVnDhg1TQECAOUdaSkqKgoOD1bt3b0VGRprrOHXqlLmd2NhYDRkyRHPmzFGnTp3MmIKz2iRp/vz56tmzp/l88ODBcnBw0IgRI3TgwAGtWbNG8+bNs5gDHQAA3D4F08CtXr26TNfL2WwAgMokPz9f2dnZJTpxLSAgQN9//71OnjxpxsTHx8vV1VUtWrQwY65cR0FMwTocHBzk5+dnEZOfn6/t27ebMSU9iQ5A2WrevLn5/6ZNm8rGxkZDhgyRjY2NmjZtWmQcgLJTqjnSFy1aJEnq3r27RfuyZcs0dOhQSdLcuXNla2urAQMGKDs7WyEhIVq4cKEZu27dOp06dUorVqzQihUrzPaGDRual6EsWbJEly5dUkREhCIiIsyY8PBwxcTESJJOnz6tI0eOmH1ubm7atm2bIiIi5Ofnpzp16mjy5MkaNWpUaXYRAACUgYJp4Hbv3m0xDVxRrnVm3LXOaOMeJwCAiioqKkp9+vRRgwYNdPbsWcXGxiohIUFbt261OHGtVq1acnV11TPPPGNx4lrv3r3VokULPfHEE5o5c6bS09M1adIkRUREmGPnU089pfnz5+uFF17Q8OHDtWPHDn300UfasmWLmUdkZKTCw8N177336r777tPbb7+t8+fPa9iwYZJUolwAlL0tW7YUujfBv//97yLjAJQ9G4Pb+JqysrLk5uamzMxMLjEDbtC+ffvk5+en5ORkdeBmo0Cp3eljkWEYeuaZZ7R+/XolJCRYnBlzLX//+9/1119/adOmTWZbYGCg2rRpU6Kbjd7prxkAoGIoi/FoxIgR2r59u9LS0uTm5qY2bdroxRdf1P333y9Junjxop577jmtWrXK4sS1K798/vnnn/X0008rISFB1apVU3h4uN544w3Z2//feXQJCQkaP368Dh48qPr16+uVV14xT44rMH/+fM2aNUvp6elq166d/vWvf6lTp05mf0lyuR2vGXCn++uvv8wb+ZZE//79i72paP369bVx48ZS5dCsWTNVrVq1VMsAFUVpxiIK6VdgEAduHoV04Obc6WPRmDFjFBsbq40bN+qee+4x293c3OTs7CxJGjJkiO666y5FR0dLkvbs2aNu3brpjTfeUN++fbV69WrNmDFD+/btK3Zu9QJ3+msGAKgYGI9Kj9cM+L+/oa2Jv99RmZVmLCrV1C4AAADFKck0cMePH5et7f/dpiUwMFCxsbGaNGmSJk6cqKZNm2rDhg0lKqIDAAAAd7JmzZopOTm51MtlZmZq9OjR+vHHH9W0aVO9++67cnNzu+EcAFwfhXQAAFBmSnKhW0JCQqG2Rx55RI888sgtyAgAAAAov6pWrXrDZ4OvXr1afn5+Wr16NWeUA7eB7fVDAAAAAAAAAACovCikAwAAAAAAAABQDArpAAAAAAAAAAAUg0I6AAAAAAAAAADFoJAOAAAAAAAAAEAxKKQDAAAAAAAAAFAMCukAAAAAAAAAABSDQjoAAAAAAAAAAMWgkA4AAAAAAAAAQDEopAMAAAAAAAAAUAwK6QAAAAAAAAAAFINCOgAAAAAAAAAAxaCQDgAAAAAAAABAMSikAwAAAAAAAABQDArpAAAAAAAAAAAUg0I6AAAAAAAAAADFoJAOAAAAAAAAAEAxKKQDAAAAAAAAAFAMCukAAAAAAAAAABSDQjoAAAAAAAAAAMWgkA4AAAAAAAAAQDEopAMAAAAAAAAAUAwK6QAAAAAAAAAAFINCOgAAAAAAAAAAxaCQDgAAAAAAAABAMSikAwAAAAAAAABQDArpAAAAAAAAAAAUg0I6AAAAAAAAAADFoJAOAAAAAAAAAEAxKKQDAAAAAAAAAFAMCukAAAAAAAAAABSDQjoAAAAAAAAAAMWgkA4AAAAAAAAAQDEopAMAAAAAAAAAUAwK6QAAAAAAAAAAFINCOgAAAAAAAAAAxaCQDgAAAAAAAABAMSikAwAAAAAAAABQDArpAAAAAAAAAAAUg0I6AAAAAAAAAADFoJAOAAAAAAAAAEAxKKQDAAAAAAAAAFAMCukAAAAAAAAAABSDQjoAAAAAAAAAAMWgkA4AAAAAAAAAQDEopAMAAAAAAAAAUAwK6QAAAAAAAAAAFKNUhfTo6Gh17NhR1atXl7u7u0JDQ3X48GGLmIsXLyoiIkK1a9eWi4uLBgwYoIyMDLP/22+/1aBBg+Tt7S1nZ2c1b95c8+bNs1hHWlqaBg8erLvvvlu2trYaN25cifKzsbEp9Fi9enVpdhEAAAAAAAAAAAulKqTv2rVLERER2rt3r+Lj45Wbm6vevXvr/PnzZsz48eO1adMmrV27Vrt27dKJEycUFhZm9icnJ8vd3V0rVqzQgQMH9PLLLysqKkrz5883Y7Kzs1W3bl1NmjRJbdu2LdUOLVu2TGlpaeYjNDS0VMsDAAAAAAAAAHAl+9IEf/bZZxbPY2Ji5O7uruTkZHXt2lWZmZn64IMPFBsbqx49eki6XNhu3ry59u7dK39/fw0fPtxiHY0aNVJSUpLi4uI0duxYSZKPj495lvrSpUtLtUM1atSQp6dnqZYBAABlY/fu3Zo1a5aSk5OVlpam9evXF/uldkJCgoKDgwu1p6WlMZ4DAAAAAMqNm5ojPTMzU5JUq1YtSZfPNs/NzVWvXr3MmGbNmqlBgwZKSkoqdj0F67hZERERqlOnju677z4tXbpUhmFcMzY7O1tZWVkWDwAAcOPOnz+vtm3basGCBaVa7vDhwxZXlLm7u9+iDAEAAAAAKL1SnZF+pfz8fI0bN06dO3dWq1atJEnp6elycHBQjRo1LGI9PDyUnp5e5Hr27NmjNWvWaMuWLTeaimn69Onq0aOHqlatqm3btmnMmDE6d+6c/vnPfxYZHx0drWnTpt30dgEAwGV9+vRRnz59Sr2cu7t7oeMHAAAAAADKixsupEdERCglJUVffPHFDW88JSVF/fv315QpU9S7d+8bXk+BV155xfx/+/btdf78ec2aNeuahfSoqChFRkaaz7OysuTt7X3TeQAAgNJp166dsrOz1apVK02dOlWdO3e+Zmx2drays7PN51xRBgAAAAC41W5oapexY8dq8+bN2rlzp+rXr2+2e3p6KicnR2fOnLGIz8jIKDTP6cGDB9WzZ0+NGjVKkyZNupE0rqtTp0769ddfLf7YvpKjo6NcXV0tHgAA4Pbx8vLS4sWL9fHHH+vjjz+Wt7e3unfvrn379l1zmejoaLm5uZkPvgQHAAAAANxqpSqkG4ahsWPHav369dqxY4d8fX0t+v38/FSlShVt377dbDt8+LCOHz+ugIAAs+3AgQMKDg5WeHi4Xn/99ZvchWvbv3+/atasKUdHx1u2DQAAcOPuuecejR49Wn5+fgoMDNTSpUsVGBiouXPnXnOZqKgoZWZmmo9ffvnlNmYMAAAAAKiMSjW1S0REhGJjY7Vx40ZVr17dnPfczc1Nzs7OcnNz04gRIxQZGalatWrJ1dVVzzzzjAICAuTv7y/p8nQuPXr0UEhIiCIjI8112NnZqW7duua29u/fL0k6d+6cTp06pf3798vBwUEtWrSQJK1fv15RUVH64YcfJEmbNm1SRkaG/P395eTkpPj4eM2YMUPPP//8zb1CAADgtrrvvvuKnTrO0dGRL8kBAAAAALdVqQrpixYtkiR1797don3ZsmUaOnSoJGnu3LmytbXVgAEDlJ2drZCQEC1cuNCMXbdunU6dOqUVK1ZoxYoVZnvDhg117Ngx83n79u3N/ycnJys2NtYiJjMzU4cPHzZjqlSpogULFmj8+PEyDENNmjTRW2+9pSeffLI0uwgAAKxs//798vLysnYaAAAAAACYSlVINwzjujFOTk5asGCBFixYUGT/1KlTNXXq1Jve1tChQ83ivSQ98MADeuCBB667XgAAcOucO3dOP/30k/k8NTVV+/fvV61atdSgQQNFRUXpt99+04cffihJevvtt+Xr66uWLVvq4sWLev/997Vjxw5t27bNWrsAAAAAAEAhpSqkAwAAFOfrr79WcHCw+TwyMlKSFB4erpiYGKWlpen48eNmf05Ojp577jn99ttvqlq1qtq0aaPPP//cYh0AAAAAAFgbhXQAAFBmunfvXuxVZTExMRbPX3jhBb3wwgu3OCsAAAAAAG6OrbUTAAAAAAAAAACgPKOQDgAAAAAAAABAMSikAwAAAAAAAABQDArpAAAAAAAAAAAUg0I6AAAAAAAAAADFoJAOAAAAAAAAAEAxKKQDAAAAAAAAAFAMCukAAAAAAAAAABSDQjoAAAAAAAAAAMWgkA4AAAAAAAAAQDEopAMAAAAAUA5ER0erY8eOql69utzd3RUaGqrDhw9bxFy8eFERERGqXbu2XFxcNGDAAGVkZFjEHD9+XH379lXVqlXl7u6uCRMm6NKlSxYxCQkJ6tChgxwdHdWkSRPFxMQUymfBggXy8fGRk5OTOnXqpK+++qrUuQAAUFFQSAcAAAAAoBzYtWuXIiIitHfvXsXHxys3N1e9e/fW+fPnzZjx48dr06ZNWrt2rXbt2qUTJ04oLCzM7M/Ly1Pfvn2Vk5OjPXv2aPny5YqJidHkyZPNmNTUVPXt21fBwcHav3+/xo0bp5EjR2rr1q1mzJo1axQZGakpU6Zo3759atu2rUJCQnTy5MkS5wIAQEViYxiGYe0kyousrCy5ubkpMzNTrq6u1k4HuCPt27dPfn5+Sk5OVocOHaydDnDHYSwqPV4zAEB5cCvGo1OnTsnd3V27du1S165dlZmZqbp16yo2NlYDBw6UJP3www9q3ry5kpKS5O/vr//85z/q16+fTpw4IQ8PD0nS4sWL9eKLL+rUqVNycHDQiy++qC1btiglJcXc1j/+8Q+dOXNGn332mSSpU6dO6tixo+bPny9Jys/Pl7e3t5555hm99NJLJcrlatnZ2crOzrZ4zby9vRnDgRvE39/AzSvN+M0Z6QAAAAAAlEOZmZmSpFq1akmSkpOTlZubq169epkxzZo1U4MGDZSUlCRJSkpKUuvWrc0iuiSFhIQoKytLBw4cMGOuXEdBTME6cnJylJycbBFja2urXr16mTElyeVq0dHRcnNzMx/e3t439sIAAGAFFNIBAAAAAChn8vPzNW7cOHXu3FmtWrWSJKWnp8vBwUE1atSwiPXw8FB6eroZc2URvaC/oK+4mKysLF24cEGnT59WXl5ekTFXruN6uVwtKipKmZmZ5uOXX34p4asBAID12Vs7AQAAAAAAYCkiIkIpKSn64osvrJ1KmXF0dJSjo6O10wAA4IZwRjoAAAAAAOXI2LFjtXnzZu3cuVP169c32z09PZWTk6MzZ85YxGdkZMjT09OMycjIKNRf0FdcjKurq5ydnVWnTh3Z2dkVGXPlOq6XCwAAFQmFdAAAAAAAygHDMDR27FitX79eO3bskK+vr0W/n5+fqlSpou3bt5tthw8f1vHjxxUQECBJCggI0Pfff6+TJ0+aMfHx8XJ1dVWLFi3MmCvXURBTsA4HBwf5+flZxOTn52v79u1mTElyAQCgImFqFwAAAAAAyoGIiAjFxsZq48aNql69ujnXuJubm5ydneXm5qYRI0YoMjJStWrVkqurq5555hkFBATI399fktS7d2+1aNFCTzzxhGbOnKn09HRNmjRJERER5rQqTz31lObPn68XXnhBw4cP144dO/TRRx9py5YtZi6RkZEKDw/Xvffeq/vuu09vv/22zp8/r2HDhpk5XS8XAAAqEgrpAAAAAACUA4sWLZIkde/e3aJ92bJlGjp0qCRp7ty5srW11YABA5Sdna2QkBAtXLjQjLWzs9PmzZv19NNPKyAgQNWqVVN4eLimT59uxvj6+mrLli0aP3685s2bp/r16+v9999XSEiIGfP3v/9dp06d0uTJk5Wenq527drps88+s7gB6fVyAQCgIrExDMOwdhLlRVZWltzc3JSZmSlXV1drpwPckfbt2yc/Pz8lJyerQ4cO1k4HuOMwFpUerxkAoDxgPCo9XjPg5vD3N3DzSjMWMUc6AAAAAAAAAADFoJAOAAAAAAAAAEAxKKQDAAAAAAAAAFAMCukAAAAAAAAAABSDQjoAAAAAAAAAAMWgkA4AAAAAAAAAQDEopAMAAAAAAAAAUAwK6QAAAAAAAAAAFINCOgAAAAAAAAAAxaCQDgAAAAAAAABAMSikAwAAAAAAAABQDArpAAAAAAAAAAAUw97aCQAAAAAAAAB3quPHj+v06dO3fbuHDh2y+Nca6tSpowYNGlht+8DtRCEdAAAAAAAAuAHHjx/XPc2a6+KFv6yWw+OPP261bTs5V9XhHw5RTEelQCEdAAAAAAAAuAGnT5/WxQt/qXa/51Sltvdt3bZxKUeXMjNk7+YhG3uH27ptScr9/Rf9vnmOTp8+TSEdlQKFdAAAAKASy8nJ0cKFC3XkyBE1btxYY8aMkYPD7f9jHACAO1mV2t5y9Gxy+zdcv8Xt3yZQSVFIBwAAACqpF154QXPnztWlS5fMtgkTJmj8+PGaOXOmFTMDAAAAyhdbaycAAAAA4PZ74YUXNGvWLNWuXVvvvfee0tLS9N5776l27dqaNWuWXnjhBWunCAAAAJQbFNIBAACASiYnJ0dz586Vh4eHfv31V40cOVKenp4aOXKkfv31V3l4eGju3LnKycmxdqoAAABAuUAhHQAAAKhkFi5cqEuXLum1116Tvb3lbI/29vaaPn26Ll26pIULF1opQwAAAKB8oZAOAAAAVDJHjhyRJPXr16/I/oL2gjgAAACgsqOQDgAAAFQyjRs3liRt3ry5yP6C9oI4AAAAoLKjkA4AAABUMmPGjJG9vb0mTZqkS5cuWfRdunRJkydPlr29vcaMGWOlDAEAAIDyhUI6AAAAUMk4ODho/PjxysjIUP369bVkyRKdOHFCS5YsUf369ZWRkaHx48fLwcHB2qkCAAAA5YL99UMAAAAAVDQzZ86UJM2dO1ejR4822+3t7TVhwgSzHwAAAACFdAAAAKDSmjlzpl577TUtXLhQR44cUePGjTVmzBjORAcAAACuQiEdAAAAqMQcHBw0btw4a6cBAAAAlGulmiM9OjpaHTt2VPXq1eXu7q7Q0FAdPnzYIubixYuKiIhQ7dq15eLiogEDBigjI8Ps//bbbzVo0CB5e3vL2dlZzZs317x58yzWkZaWpsGDB+vuu++Wra1tiQ/sjx8/rr59+6pq1apyd3fXhAkTCt08CQAAAAAAAACA0ihVIX3Xrl2KiIjQ3r17FR8fr9zcXPXu3Vvnz583Y8aPH69NmzZp7dq12rVrl06cOKGwsDCzPzk5We7u7lqxYoUOHDigl19+WVFRUZo/f74Zk52drbp162rSpElq27ZtiXLLy8tT3759lZOToz179mj58uWKiYnR5MmTS7OLAAAAAAAAAABYKFUh/bPPPtPQoUPVsmVLtW3bVjExMTp+/LiSk5MlSZmZmfrggw/01ltvqUePHvLz89OyZcu0Z88e7d27V5I0fPhwzZs3T926dVOjRo30+OOPa9iwYYqLizO34+Pjo3nz5mnIkCFyc3MrUW7btm3TwYMHtWLFCrVr1059+vTRq6++qgULFignJ6c0uwkAAG7Q7t279eCDD6pevXqysbHRhg0brrtMQkKCOnToIEdHRzVp0kQxMTG3PE8AAAAAAErjpuZIz8zMlCTVqlVL0uWzzXNzc9WrVy8zplmzZmrQoIGSkpLk7+9/zfUUrONGJSUlqXXr1vLw8DDbQkJC9PTTT+vAgQNq3759oWWys7OVnZ1tPs/KyrqpHICK4K+//tIPP/xww8sfOnTI4t8b0axZM1WtWvWGlwdgPefPn1fbtm01fPhwiyvSriU1NVV9+/bVU089pZUrV2r79u0aOXKkvLy8FBISchsyBgAAAADg+m64kJ6fn69x48apc+fOatWqlSQpPT1dDg4OqlGjhkWsh4eH0tPTi1zPnj17tGbNGm3ZsuVGUzG3fWURvWC7BX1FiY6O1rRp025qu0BF88MPP8jPz++m1/P444/f8LLJycnq0KHDTecA4Pbr06eP+vTpU+L4xYsXy9fXV3PmzJEkNW/eXF988YXmzp17zUI6X4QDAAAAAG63Gy6kR0REKCUlRV988cUNbzwlJUX9+/fXlClT1Lt37xtez42KiopSZGSk+TwrK0ve3t63PQ+gPGnWrJk5XdONuHDhgo4dOyYfHx85OzvfcA4AKoekpCSLK9mky1eUFXejcb4IBwAAAADcbjdUSB87dqw2b96s3bt3q379+ma7p6encnJydObMGYuz0jMyMuTp6WmxjoMHD6pnz54aNWqUJk2adGPZX8HT01NfffWVRVtGRobZVxRHR0c5Ojre9LaBiqRq1ao3fTZ4586dyygbABXdta4oy8rK0oULF4r8Qo4vwgEAAAAAt1upbjZqGIbGjh2r9evXa8eOHfL19bXo9/PzU5UqVbR9+3az7fDhwzp+/LgCAgLMtgMHDig4OFjh4eF6/fXXb3IXLgsICND333+vkydPmm3x8fFydXVVixYtymQbAADA+hwdHeXq6mrxAAAAAADgVirVGekRERGKjY3Vxo0bVb16dXPucTc3Nzk7O8vNzU0jRoxQZGSkatWqJVdXVz3zzDMKCAgwbzSakpKiHj16KCQkRJGRkeY67OzsVLduXXNb+/fvlySdO3dOp06d0v79++Xg4GAWxdevX6+oqCjzpoi9e/dWixYt9MQTT2jmzJlKT0/XpEmTFBERwVnnAACUU56enuYVZAUyMjLk6up6w9NDAQAAAABQ1kpVSF+0aJEkqXv37hbty5Yt09ChQyVJc+fOla2trQYMGKDs7GyFhIRo4cKFZuy6det06tQprVixQitWrDDbGzZsqGPHjpnP27dvb/4/OTlZsbGxFjGZmZk6fPiwGWNnZ6fNmzfr6aefVkBAgKpVq6bw8HBNnz69NLsIAABuo4CAAH366acWbfHx8RZXsgEAAAAAYG2lKqQbhnHdGCcnJy1YsEALFiwosn/q1KmaOnXqTW9r6NChZvG+QMOGDQv9MQ4AAG6fc+fO6aeffjKfp6amav/+/apVq5YaNGigqKgo/fbbb/rwww8lSU899ZTmz5+vF154QcOHD9eOHTv00UcfacuWLdbaBQAAAAAACinVHOkAAADF+frrr9W+fXvzyrLIyEi1b99ekydPliSlpaXp+PHjZryvr6+2bNmi+Ph4tW3bVnPmzNH777+vkJAQq+QPAAAAAEBRSnVGOgAAQHG6d+9e7FVlMTExRS7zzTff3MKsAAAAAAC4OZyRDgAAAAAAAABAMSikAwAAAAAAAABQDArpAAAAAAAAAAAUg0I6AAAAAAAAAADFoJAOAAAAAAAAAEAx7K2dAAAAAAAAAHCn8nSxUWuHE6piY2ftVG6rXIcTkouNtdMAbhsK6QAAAEAllpeXp8TERKWlpcnLy0tBQUGys6tchQAAAG7GaD8HTa232Npp3H71pKl+DtbOArhtKKQDAAAAlVRcXJyee+45HTt2zGzz8fHRnDlzFBYWZr3EAAC4g7ybnKM9dz+rKrW9rZ3KbZX7+y/6PnmWHrJ2IsBtQiEdAAAAqITi4uI0cOBA9evXT6tWrVKrVq2UkpKiGTNmaODAgVq3bh3FdAAASiD9nCHl1JOj4WvtVG6r7Jy8y/sOVBLcbBQAAACoZPLy8vTcc8+pX79+2rBhg/z9/eXi4iJ/f39t2LBB/fr10/PPP6+8vDxrpwoAAACUCxTSAQAAgEomMTFRx44d08SJE2Vra/knga2traKiopSamqrExEQrZQgAAACULxTSAQAAgEomLS1NktSqVasi+wvaC+IAAACAyo5COgAAAFDJeHl5SZJSUlKK7C9oL4gDAAAAKjsK6QAAAEAlExQUJB8fH82YMUP5+fkWffn5+YqOjpavr6+CgoKslCEAAABQvlBIBwAAACoZOzs7zZkzR5s3b1ZoaKiSkpJ09uxZJSUlKTQ0VJs3b9bs2bNlZ2dn7VQBAACAcsHe2gkAAAAAuP3CwsK0bt06PffccwoMDDTbfX19tW7dOoWFhVkxOwAAAKB8oZAOAAAAVFJhYWHq37+/EhMTlZaWJi8vLwUFBXEmOgAAAHAVCukAAABAJWZnZ6fu3btbOw0AAACgXKOQDgAAAFRieXl5nJEOAAAAXAc3GwUAAAAqqbi4ODVp0kTBwcEaPHiwgoOD1aRJE8XFxVk7NQAAAKBcoZAOAAAAVEJxcXEaOHCgWrduraSkJJ09e1ZJSUlq3bq1Bg4cSDEdAAAAuAKFdAAAAKCSycvL03PPPad+/fppw4YN8vf3l4uLi/z9/bVhwwb169dPzz//vPLy8qydKgAAAFAuUEgHAAAAKpnExEQdO3ZMEydOlK2t5Z8Etra2ioqKUmpqqhITE62UIQAAAFC+UEgHAAAAKpm0tDRJUqtWrYrsL2gviAMAAAAqO3trJwAAAADg9vLy8pIkpaSkqEOHDlq4cKGOHDmixo0ba8yYMUpJSbGIAwAAACo7CukAAABAJRMUFCQfHx89/vjj+vnnn3Xp0iWzb8KECWrYsKF8fX0VFBRkxSwBAACA8oOpXQAAAIBKxs7OTm3bttWRI0dka2url156ST/++KNeeukl2dra6siRI2rTpo3s7OysnSoAAABQLnBGOgAAAFDJ5OTkaMuWLXJzc5Obm5veeOMNvfHGG5Kkhg0b6syZM9qyZYtycnLk4OBg5WwBAAAA6+OMdAAAAKCSWbhwoS5duqTZs2fr6NGj2rlzp2JjY7Vz504dOXJEM2fO1KVLl7Rw4UJrpwoAAACUCxTSAQAAgErmyJEjkqR+/foV2V/QXhAHAAAAVHZM7QIAAABUMo0bN5YkTZ8+Xf/5z3907Ngxs8/Hx0cPPPCARRwAAABQ2XFGOgAAAFDJjBkzRra2tlq0aJFatmyppKQknT17VklJSWrZsqUWL14sW1tbjRkzxtqpApXK7t279eCDD6pevXqysbHRhg0bLPoNw9DkyZPl5eUlZ2dn9erVSz/++KNFzB9//KHHHntMrq6uqlGjhkaMGKFz585ZxHz33XcKCgqSk5OTvL29NXPmzEK5rF27Vs2aNZOTk5Nat26tTz/9tNS5AABQkVBIBwAAACoZOzs7ubi4SJK+/vprfffdd8rKytJ3332nr7/+WpLk4uIiOzs7a6YJVDrnz59X27ZttWDBgiL7Z86cqX/9619avHix/vvf/6patWoKCQnRxYsXzZjHHntMBw4cUHx8vDZv3qzdu3dr1KhRZn9WVpZ69+6thg0bKjk5WbNmzdLUqVO1ZMkSM2bPnj0aNGiQRowYoW+++UahoaEKDQ1VSkpKqXIBAKAioZAOAAAAVDKJiYnKysrSY489pt9//12jR4/WXXfdpdGjR+v333/X4MGDlZWVpcTERGunClQqffr00WuvvaaHH364UJ9hGHr77bc1adIk9e/fX23atNGHH36oEydOmGeuHzp0SJ999pnef/99derUSV26dNE777yj1atX68SJE5KklStXKicnR0uXLlXLli31j3/8Q//85z/11ltvmduaN2+eHnjgAU2YMEHNmzfXq6++qg4dOmj+/PklzgUAgIqGQjoAAABQyaSlpUmSFi9erPPnz2vu3LkaO3as5s6dq/Pnz2vx4sUWcQCsLzU1Venp6erVq5fZ5ubmpk6dOikpKUmSlJSUpBo1aujee+81Y3r16iVbW1v997//NWO6du0qBwcHMyYkJESHDx/Wn3/+acZcuZ2CmILtlCSXomRnZysrK8viAQDAnYKbjQIAAACVjJeXlyQpJSVF/v7+GjdunEV/cnKyRRwA60tPT5ckeXh4WLR7eHiYfenp6XJ3d7fot7e3V61atSxifH19C62joK9mzZpKT0+/7naul0tRoqOjNW3atOvvLAAA5RBnpAMAAACVTFBQkHx8fDRjxgzl5uYqISFBq1atUkJCgnJzcxUdHS1fX18FBQVZO1UAFUhUVJQyMzPNxy+//GLtlAAAKDHOSAcAAAAqGTs7O82ZM0cDBgyQm5ubLly4YPY5OzvrwoUL+vjjj7nZKFCOeHp6SpIyMjIsrhbJyMhQu3btzJiTJ09aLHfp0iX98ccf5vKenp7KyMiwiCl4fr2YK/uvl0tRHB0d5ejoWKL9BQCgvKGQDgAAAFRSNjY2RbYV1Q7Aunx9feXp6ant27ebxeqsrCz997//1dNPPy1JCggI0JkzZ5ScnCw/Pz9J0o4dO5Sfn69OnTqZMS+//LJyc3NVpUoVSVJ8fLzuuece1axZ04zZvn27xbRP8fHxCggIKHEuQGWT+/vtv8LCuJSjS5kZsnfzkI29w/UXKGPW2GfAmiikAwAAAJVMXl6ennvuOfXr108ff/yxvvzyS6WlpcnLy0udO3fWgAED9Pzzz6t///6clQ7cRufOndNPP/1kPk9NTdX+/ftVq1YtNWjQQOPGjdNrr72mpk2bytfXV6+88orq1aun0NBQSVLz5s31wAMP6Mknn9TixYuVm5ursWPH6h//+Ifq1asnSRo8eLCmTZumESNG6MUXX1RKSormzZunuXPnmtt99tln1a1bN82ZM0d9+/bV6tWr9fXXX2vJkiWSLn/hdr1cgMqiTp06cnKuqt83z7F2Klbh5FxVderUsXYawG1BIR0AAACoZBITE3Xs2DGtWrVKVapUUffu3S36o6KiFBgYqMTExEJ9AG6dr7/+WsHBwebzyMhISVJ4eLhiYmL0wgsv6Pz58xo1apTOnDmjLl266LPPPpOTk5O5zMqVKzV27Fj17NlTtra2GjBggP71r3+Z/W5ubtq2bZsiIiLk5+enOnXqaPLkyRo1apQZExgYqNjYWE2aNEkTJ05U06ZNtWHDBrVq1cqMKUkuQGXQoEEDHf7hkE6fPn3bt33o0CE9/vjjWrFihZo3b37bty9d/iKhQYMGVtk2cLvZGIZhWDuJ8iIrK0tubm7KzMyUq6urtdMBAFRCjEWlx2sGlN6qVas0ePBgnT17Vi4uLoX6z549K1dXV8XGxmrQoEFWyBC48zAelR6vGXBz9u3bJz8/PyUnJ6tDhw7WTge4I5VmLLK9TTkBAAAAKCcKbg6YkpJSZH9B+5U3EQQAAAAqMwrpAAAAQCUTFBQkHx8fzZgxQ/n5+RZ9+fn5io6Olq+vr4KCgqyUIQAAAFC+UEgHAAAAKhk7OzvNmTNHmzdvVmhoqJKSknT27FklJSUpNDRUmzdv1uzZs7nRKAAAAPD/42ajAAAAQCUUFhamdevW6bnnnlNgYKDZ7uvrq3Xr1iksLMyK2QEAAADlC4V0AAAAoJIKCwtT//79lZiYqLS0NHl5eSkoKIgz0QEAAICrUEgHAAAAKjE7Ozt1797d2mkAAAAA5Vqp5kiPjo5Wx44dVb16dbm7uys0NFSHDx+2iLl48aIiIiJUu3Ztubi4aMCAAcrIyDD7v/32Ww0aNEje3t5ydnZW8+bNNW/evELbSkhIUIcOHeTo6KgmTZooJiam2NyOHTsmGxubQo+9e/eWZhcBAACASiUvL08JCQlatWqVEhISlJeXZ+2UAAAAgHKnVIX0Xbt2KSIiQnv37lV8fLxyc3PVu3dvnT9/3owZP368Nm3apLVr12rXrl06ceKExfyKycnJcnd314oVK3TgwAG9/PLLioqK0vz5882Y1NRU9e3bV8HBwdq/f7/GjRunkSNHauvWrdfN8fPPP1daWpr58PPzK80uAgCAMrBgwQL5+PjIyclJnTp10ldffXXN2JiYmEJfhDs5Od3GbIHKKy4uTo0bN1ZwcLAGDx6s4OBgNW7cWHFxcdZODQAAAChXSjW1y2effWbxPCYmRu7u7kpOTlbXrl2VmZmpDz74QLGxserRo4ckadmyZWrevLn27t0rf39/DR8+3GIdjRo1UlJSkuLi4jR27FhJ0uLFi+Xr66s5c+ZIkpo3b64vvvhCc+fOVUhISLE51q5dW56enqXZLQAAUIbWrFmjyMhILV68WJ06ddLbb7+tkJAQHT58WO7u7kUu4+rqanGVm42Nze1KF6i04uLiNGDAADk7O1u0nzx5UgMGDNDHH3/MDUcBAACA/1+pzki/WmZmpiSpVq1aki6fbZ6bm6tevXqZMc2aNVODBg2UlJRU7HoK1iFJSUlJFuuQpJCQkGLXUeChhx6Su7u7unTpok8++aTY2OzsbGVlZVk8AADAzXnrrbf05JNPatiwYWrRooUWL16sqlWraunSpddcxsbGRp6enubDw8PjNmYMVD55eXl66qmnJEk9e/ZUUlKSzp49q6SkJPXs2VOS9PTTTzPNCwAAAPD/u+FCen5+vsaNG6fOnTurVatWkqT09HQ5ODioRo0aFrEeHh5KT08vcj179uzRmjVrNGrUKLMtPT290B/QHh4eysrK0oULF4pcj4uLi+bMmaO1a9dqy5Yt6tKli0JDQ4stpkdHR8vNzc18eHt7l2TXAQDANeTk5Cg5OdniC3FbW1v16tWr2C/Ez507p4YNG8rb21v9+/fXgQMHrhnLF+HAzUtISNCpU6fUpUsXbdy4Uf7+/nJxcZG/v782btyoLl266OTJk0pISLB2qgAAAEC5cMOF9IiICKWkpGj16tU3vPGUlBT1799fU6ZMUe/evW94PZJUp04dRUZGqlOnTurYsaPeeOMNPf7445o1a9Y1l4mKilJmZqb5+OWXX24qBwAAKrvTp08rLy+vyC/Er/Wl+j333KOlS5dq48aNWrFihfLz8xUYGKhff/21yHi+CAduXkGBfNq0abK1tfyTwNbWVlOmTLGIAwAAACq7Gyqkjx07Vps3b9bOnTtVv359s93T01M5OTk6c+aMRXxGRkahecsPHjyonj17atSoUZo0aZJFn6enpzIyMgqtw9XVtdAcjsXp1KmTfvrpp2v2Ozo6ytXV1eIBAABur4CAAA0ZMkTt2rVTt27dFBcXp7p16+rdd98tMp4vwoGylZeXp4SEBK1atUoJCQlM5wIAAID/r707j9OqrP/H/xq2AQUGQdZk00hFzQU3sJSUJHfcNStE3BI0JDUt9zRSc19TCzS13FLL3VC0FDfMJbePC4hLoKQwiIDK3L8//HF/HYEjIDoO83w+HvdD7utc5zrvc+YeLnnNmeuwEEv0sNFSqZRDDz00N910U8aNG5eePXvW2t6nT580bdo0Y8eOza677pokefHFFzN58uT07du33O/ZZ5/NlltumcGDB+fUU09d4Dh9+/bN7bffXqvtnnvuqTXG4njyySfTuXPnJdoHAFh6K6+8cho3brzQH4gv7sPAmzZtmvXXX3+RPwyvrKxMZWXlF64VGrL+/fvnlFNOybBhwzJ79uy89tpr5W3du3cv37zSv3//OqoQAAC+XpYoSB82bFiuueaa3HLLLWnVqlX5V7SrqqrSokWLVFVVZejQoRk5cmTatm2b1q1b59BDD03fvn2z6aabJvlkOZctt9wyAwcOzMiRI8tjNG7cOO3bt0+SHHzwwbngggty1FFHZb/99su9996b6667Lrfddlu5lgsuuCA33XRTxo4dmyS54oor0qxZs6y//vpJkr/+9a/54x//mMsvv/wLXiIAYHE1a9Ysffr0ydixYzNo0KAknzxXZezYsRk+fPhijTFv3rw888wz2Xbbbb/ESqFh69+/f6qqqvLCCy8ssLTL66+/npqamlRVVQnSAQDg/7dEQfrFF1+cZME7U0aPHp199903SXL22WenUaNG2XXXXTN37twMHDgwF110UbnvDTfckHfeeSdXXXVVrrrqqnJ79+7dM2nSpCRJz549c9ttt+Xwww/Pueeem1VWWSWXX355Bg4cWO4/bdq0vPLKK7Xq+PWvf53XXnstTZo0yRprrJFrr702u+2225KcIgDwBY0cOTKDBw/OhhtumI033jjnnHNOZs2alSFDhiRJfvKTn+Qb3/hGRo0alSQ5+eSTs+mmm+ab3/xmpk+fnjPOOCOvvfZa9t9//7o8DVjulUqlL7QdAAAakoqS/0Muq66uTlVVVWbMmGG9dADqxPIyF11wwQU544wzMmXKlKy33no577zzsskmmyT55AfyPXr0yJgxY5Ikhx9+eP76179mypQpWWmlldKnT5+ccsop5d8y+zzLyzWDr9LYsWMzYMCArLnmmpk1a1YmT55c3jZ/aZcXXngh//jHP7LVVlvVYaVQf5iPlpxrBl/ME088kT59+mTChAnZYIMN6rocqJeWZC5aqoeNAgAUGT58eF577bXMnTs3jzzySDlET5Jx48aVQ/Tkk99mm993ypQpue222xY7RAeWzrhx45Ike+65ZyoqKhbYvueee9bqBwAADd0SLe0CAAAsP0488cRst912GTRoUGbPnp0WLVrk5ZdfzkknnVTXpQEAwNeKIB0AABqYzTffPElSWVmZO++8M/PmzStva9y4cSorKzN37txyPwAAaOgs7QIAAA1Mo0af/DNg7ty5adSoUY4++ui89NJLOfroo9OoUaPMnTu3Vj8AAGjo3JEOAAANzFtvvVX+c5MmTfLb3/42v/3tb5MkLVq0yEcffbRAPwAAaMjcYgIAAA3MI488kiTZeeed07Fjx1rbOnXqlEGDBtXqBwAADZ070gEAoIEplUpJkvfffz//93//lwcffDD//e9/07lz52y22WbZbrvtavUDAICGzh3pAADQwPTq1StJcs8992TXXXdNZWVltt9++1RWVmbXXXfNPffcU6sfAAA0dIJ0AABoYA455JA0adIkVVVVefrpp9OvX7+0bt06/fr1yzPPPJOqqqo0adIkhxxySF2XCgAAXwuCdAAAaGCaNWuWww8/PDNmzMicOXMycuTIXHDBBRk5cmRmz56dGTNm5PDDD0+zZs3qulQAAPhasEY6AAA0QKeffnqS5Oyzz85ZZ51Vbm/SpEmOPPLI8nYAAECQDgAADdbpp5+eU045JRdddFFeeeWVrLbaajnkkEPciQ4AAJ8hSAcAgAasWbNmGTFiRF2XAQAAX2vWSAcAgAZs9uzZGT58eAYOHJjhw4dn9uzZdV0SAAB87QjSAQCggRo0aFBWWGGFXHjhhbn77rtz4YUXZoUVVsigQYPqujQAAPhaEaQDAEADNGjQoNxyyy1p1qxZjj766Lz88ss5+uij06xZs9xyyy3CdAAA+BRBOgAANDCzZ88uh+jTp0/PwIED8+ijj2bgwIGZPn16OUy3zAsAAHzCw0YBAKCBOfLII5Mk2223XXr37p1JkyaVt/Xo0SPbbrttbr755hx55JG54IIL6qhKAAD4+nBHOgAANDAvvfRSkuSmm27KOuusk/Hjx2fmzJkZP3581llnndx88821+gEAQEMnSAcAgAZm1VVXTZKsttpque666/Lwww/nmGOOycMPP5zrrruuvH3+fwEAoKGztAsAADQwO+64Yy655JJMnDgxLVu2zLx588rbjjjiiJRKpXI/AABAkA4AAA3O9OnTkyQ1NTULbPt0qD6/HwAANHSWdgEAgAamXbt2y7QfAAAs7wTpAADQwPz73/9OkjRq1Chdu3atta1r165p1KhRrX4AANDQCdIBAKCB+fvf/57kk6Vd3njjjVrb3njjjfKSL/P7AQBAQydIBwAAAACAAh42CgAADcyaa66ZBx98MEmyzTbbZLvttkuLFi0ye/bs3Hbbbbn99tvL/QAAAHekAwBAg/Pph4g+/vjjadKkSQYOHJgmTZrk8ccfX2g/AABoyNyRDgAADcybb75Z/vPbb7+dgw466HP7AQBAQ+aOdAAAaGC6deuWJFlxxRUXun1++/x+AADQ0AnSAQCggdlyyy2TJLNmzVro9vnt8/sBAEBDJ0gHAIAGpl+/fsu0HwAALO8E6QAA0MCcf/75y7QfAAAs7wTpAADQwPzpT39apv0AAGB5J0gHAIAG5r333lum/QAAYHknSAcAgAamadOmy7QfAAAs7wTpAADQwPz3v/9dpv0AAGB5J0gHAIAG5sMPP1ym/QAAYHknSAcAgAamoqJimfYDAIDlnSAdAAAamJYtWy7TfgAAsLwTpAMAQAOzwgorLNN+AACwvBOkAwBAA/PBBx8s034AALC8E6QDAEAD8/HHHy/TfgAAsLwTpAMAQAPTpk2bZdoPAACWd4J0AABoYDbddNNl2g8AAJZ3gnQAAGhgpk+fvkz7AQDA8k6QDgAADczs2bOXaT8AAFjeCdIBAKCBee+995ZpPwAAWN4J0gEAoIF54YUXlmk/AABY3gnSgWVm0KBBqaioKL8GDRpU1yUBAJ+joqKi8D0AAJA0qesCgOXDwv7Rfcstt6SioiKlUqkOKgKAhuODDz5Y6rvHPztPf/b9E088sdhjrbHGGllhhRWWqg4AAPg6W6IgfdSoUfnrX/+aF154IS1atEi/fv1y2mmnZfXVVy/3mTNnTn7+85/nL3/5S+bOnZuBAwfmoosuSseOHZMkTz31VH7729/mX//6V6ZNm5YePXrk4IMPzs9+9rNaxxo3blxGjhyZZ599Nl27ds2xxx6bfffdt7C+p59+OsOGDctjjz2W9u3b59BDD81RRx21JKcILIXPu3NNmA4Nz4UXXpgzzjgjU6ZMybrrrpvzzz8/G2+88SL7X3/99TnuuOMyadKk9OrVK6eddlq23Xbbr7Bi+HqYPHlypk2btsT7Pf/88/nRj370JVSU9OnTZ7H7XnXVVVlzzTWX+Bgrr7xyunXrtsT7AQDAV2WJgvT7778/w4YNy0YbbZSPP/44v/zlL7P11lvnueeey4orrpgkOfzww3Pbbbfl+uuvT1VVVYYPH55ddtklDz74YJJkwoQJ6dChQ6666qp07do1Dz30UA488MA0btw4w4cPT5JMnDgx2223XQ4++OBcffXVGTt2bPbff/907tw5AwcOXGht1dXV2XrrrTNgwIBccskleeaZZ7LffvulTZs2OfDAA7/INQIKfHr5lp///Of53e9+V35/xBFH5Mwzzyz3u/nmm7/i6oC6cO2112bkyJG55JJLsskmm+Scc87JwIED8+KLL6ZDhw4L9H/ooYey9957Z9SoUdl+++1zzTXXZNCgQXniiSey9tpr18EZQN2YPHlytuizZlZqMmep9l+/U92v2njmET9Zqv3e+7h57p/wvDAdAICvrYrSF7hN9J133kmHDh1y//33Z/PNN8+MGTPSvn37XHPNNdltt92SfPKAojXXXDPjx4/PpptuutBxhg0blueffz733ntvkuQXv/hFbrvttvznP/8p99lrr70yffr03HnnnQsd4+KLL86vfvWrTJkyJc2aNUuSHH300bn55psX+Wuuc+fOzdy5c8vvq6ur07Vr18yYMSOtW7de8gsCDdCn70Zf2F8nn7cdqK26ujpVVVX1ei7aZJNNstFGG+WCCy5IktTU1KRr16459NBDc/TRRy/Qf88998ysWbNy6623lts23XTTrLfeernkkksW6G/+Znk1efLkXDl0rRy7Wd0H4l+1Ux6syU/+8KwgnXpteZjDv2quGXyx5dnm/0ba0v5G2HyWZqMhW5K56AutkT5jxowkSdu2bZN8crf5Rx99lAEDBpT7rLHGGunWrVthkD5jxozyGEkyfvz4WmMkycCBAzNixIhF1jJ+/Phsvvnm5RB9/j6nnXZa3nvvvay00koL7DNq1KicdNJJn3+iAMBi+fDDDzNhwoQcc8wx5bZGjRplwIABGT9+/EL3GT9+fEaOHFmrbeDAgYv8LRbzN8urbt26Zd/zx+X5t15a4n0nTpyYY489dtkXtYROOeWU9OzZc4n323evXllFiA5AA/TCCy8s0TJqC/NFl3ebMGFCNthggy80BjQESx2k19TUZMSIEdlss83Kv3Y9/27wNm3a1OrbsWPHTJkyZaHjPPTQQ7n22mtz2223ldumTJlSXlP902NUV1dn9uzZadGixQLjTJkyZYH/aZ8/xpQpUxYapB9zzDG1/uE+/442AGDpTJs2LfPmzVvoPL6oO20WNe8v6v8dzN8sz1ZZo0+yxpL/Y7r7Bx/k8vUXvgRikaJ/uE+YMGGJx3NHGzQ8S/pcFKC2NdZYY6nm3CSZPXt2Jk2alB49eiw0K1uSGoDPt9RB+rBhw/Kf//wn//rXv5b64P/5z3+y00475YQTTsjWW2+91OMsrcrKylRWVn7lx4XlyU477ZRbbrklySdron92jfRP9wNYFszfsKAVVlhhqe4kK5VKmTBhQjbccMNy2+OPP/6F74wDGoYlfS4KsKClncPn22yzzZZhNUCRpVqAcfjw4bn11ltz3333ZZVVVim3d+rUKR9++GGmT59eq//UqVPTqVOnWm3PPfdcttpqqxx44IEL/Bpqp06dMnXq1AXGaN269SJ/wraofeZvA74cn1564cwzz0xFRUX5Nf9Bo5/tByy/Vl555TRu3Hihc/Ki5uNFzeHmb/hq9OnTJ6VSqfwSogOL66yzzsoBBxyQIUOGpHfv3rnkkkuywgor5I9//GNdlwYAy9wSBemlUinDhw/PTTfdlHvvvXeBpVT69OmTpk2bZuzYseW2F198MZMnT07fvn3Lbc8++2y+973vZfDgwTn11FMXOE7fvn1rjZEk99xzT60xFrbPAw88kI8++qjWPquvvvpCl3UBlp3Pe4ioh4xCw9GsWbP06dOn1jxeU1OTsWPHLnIeX5p5HwCoW/Ofi/Lp55t93nNR5s6dm+rq6lovAKgvlihIHzZsWK666qpcc801adWqVaZMmZIpU6Zk9uzZSZKqqqoMHTo0I0eOzH333ZcJEyZkyJAh6du3b/lBo//5z3/yve99L1tvvXVGjhxZHuOdd94pH+fggw/Oq6++mqOOOiovvPBCLrroolx33XU5/PDDy30uuOCCbLXVVuX3P/zhD9OsWbMMHTo0zz77bK699tqce+65Czy8DPhylEqlBZZv2WmnnYTo0ACNHDkyl112Wa644oo8//zz+elPf5pZs2ZlyJAhSZKf/OQntR5G+rOf/Sx33nlnzjzzzLzwwgs58cQT8/jjj2f48OF1dQoAwOcoei7Kop5zMmrUqFRVVZVfnnECQH2yRGukX3zxxUmS/v3712ofPXp09t133yTJ2WefnUaNGmXXXXfN3LlzM3DgwFx00UXlvjfccEPeeeedXHXVVbnqqqvK7d27d8+kSZOSJD179sxtt92Www8/POeee25WWWWVXH755Rk48P89QGnatGl55ZVXyu+rqqpy9913Z9iwYenTp09WXnnlHH/88TnwwAOX5BSBL8DyLUCS7LnnnnnnnXdy/PHHZ8qUKVlvvfVy5513lv+hPXny5DRq9P9+lt+vX79cc801OfbYY/PLX/4yvXr1ys0331x+mDkAsHzwwHAA6rOKkttFy6qrq1NVVZUZM2akdevWdV0OAA2QuWjJuWYAfB00tPnoww8/zAorrJAbbrghgwYNKrcPHjw406dPzy233PK5YzS0awbA18+SzEVL9bBRAAAAoOFamueiAEB9tkRLuwAAAAAknzwXZfDgwdlwww2z8cYb55xzzqn1XBQAWJ4I0gEAAIAl9nnPRQGA5YkgHQAAAFgqw4cPz/Dhw+u6DAD40lkjHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoECTui7g66RUKiVJqqur67gSABqq+XPQ/DmJz2f+BuDrwBy+5MzhANS1JZm/BemfMnPmzCRJ165d67gSABq6mTNnpqqqqq7LqBfM3wB8nZjDF585HICvi8WZvytKflxeVlNTk7feeiutWrVKRUVFXZcD9VJ1dXW6du2a119/Pa1bt67rcqDeKZVKmTlzZrp06ZJGjazAtjjM3/DFmb/hizOHLzlzOHwx5m/44pZk/hakA8tUdXV1qqqqMmPGDBM5ANQT5m8AqH/M3/DV8mNyAAAAAAAoIEgHAAAAAIACgnRgmaqsrMwJJ5yQysrKui4FAFhM5m8AqH/M3/DVskY6AAAAAAAUcEc6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOrBMPPDAA9lhhx3SpUuXVFRU5Oabb67rkgCAz2H+BoD6yRwOXz1BOrBMzJo1K+uuu24uvPDCui4FAFhM5m8AqJ/M4fDVa1LXBQDLh2222SbbbLNNXZcBACwB8zcA1E/mcPjquSMdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACjSp6wKA5cP777+fl19+ufx+4sSJefLJJ9O2bdt069atDisDABbF/A0A9ZM5HL56FaVSqVTXRQD137hx4/K9731vgfbBgwdnzJgxX31BAMDnMn8DQP1kDoevniAdAAAAAAAKWCMdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB1YLJMmTUpFRUWefPLJui4FAFgGKioqcvPNN9d1GQCwXPg6zKsnnnhi1ltvvTqt4fN8Ha4TLC1BOgAAAADUc0cccUTGjh1b12XAckuQDnyuDz/8sK5LWCr1tW4AqA/MswCw7CyLebVly5Zp167dMqgGWBhBOiwHbr311rRp0ybz5s1Lkjz55JOpqKjI0UcfXe6z//7750c/+lGS5MYbb8xaa62VysrK9OjRI2eeeWat8Xr06JFf//rX+clPfpLWrVvnwAMPXOCY8+bNy3777Zc11lgjkydPLqxvv/32y/bbb1+r7aOPPkqHDh3yhz/8IUlSU1OTUaNGpWfPnmnRokXWXXfd3HDDDbWON3To0PL21VdfPeeee26tMffdd98MGjQop556arp06ZLVV1/98y4dANRrN9xwQ9ZZZ520aNEi7dq1y4ABAzJr1qw89thj+f73v5+VV145VVVV2WKLLfLEE08UjvWLX/wi3/rWt7LCCitk1VVXzXHHHZePPvqovH3+r4tffvnl6dmzZ5o3b54rr7wy7dq1y9y5c2uNNWjQoPz4xz/+Us4ZAL4s9X1e/ezSLvP/jfy73/0unTt3Trt27TJs2LBadRRZ2DIsbdq0yZgxY5J8Ev4PHz48nTt3TvPmzdO9e/eMGjWq3Pell17K5ptvnubNm6d379655557Fuu48HXVpK4LAL647373u5k5c2b+/e9/Z8MNN8z999+flVdeOePGjSv3uf/++/OLX/wiEyZMyB577JETTzwxe+65Zx566KEccsghadeuXfbdd99y/9/97nc5/vjjc8IJJyxwvLlz52bvvffOpEmT8s9//jPt27cvrG///ffP5ptvnv/+97/p3Llzkk/C/w8++CB77rlnkmTUqFG56qqrcskll6RXr1554IEH8qMf/Sjt27fPFltskZqamqyyyiq5/vrr065duzz00EM58MAD07lz5+yxxx7lY40dOzatW7c2QQOw3Pvvf/+bvffeO6effnp23nnnzJw5M//85z9TKpUyc+bMDB48OOeff35KpVLOPPPMbLvttnnppZfSqlWrhY7XqlWrjBkzJl26dMkzzzyTAw44IK1atcpRRx1V7vPyyy/nxhtvzF//+tc0btw4vXr1ymGHHZa//e1v2X333ZMkb7/9dm677bbcfffdX8l1AIBlYXmdV++777507tw59913X15++eXsueeeWW+99XLAAQcs1Xifdt555+Vvf/tbrrvuunTr1i2vv/56Xn/99SSf3Cy3yy67pGPHjnnkkUcyY8aMjBgx4gsfE+pUCVgubLDBBqUzzjijVCqVSoMGDSqdeuqppWbNmpVmzpxZeuONN0pJSv/3f/9X+uEPf1j6/ve/X2vfI488stS7d+/y++7du5cGDRpUq8/EiRNLSUr//Oc/S1tttVXpO9/5Tmn69OmLXV/v3r1Lp512Wvn9DjvsUNp3331LpVKpNGfOnNIKK6xQeuihh2rtM3To0NLee++9yDGHDRtW2nXXXcvvBw8eXOrYsWNp7ty5i10XANRXEyZMKCUpTZo06XP7zps3r9SqVavS3//+93JbktJNN920yH3OOOOMUp8+fcrvTzjhhFLTpk1Lb7/9dq1+P/3pT0vbbLNN+f2ZZ55ZWnXVVUs1NTVLcDYAULeWh3n1hBNOKK277rrl94MHDy5179699PHHH5fbdt9999Kee+75uWOVSgs/p6qqqtLo0aNLpVKpdOihh5a23HLLhdZ21113lZo0aVJ68803y2133HHH514n+DqztAssJ7bYYouMGzcupVIp//znP7PLLrtkzTXXzL/+9a/cf//96dKlS3r16pXnn38+m222Wa19N9tss7z00kvlpWGSZMMNN1zocfbee+/MmjUrd999d6qqqha7vv333z+jR49OkkydOjV33HFH9ttvvySf/BT+gw8+yPe///20bNmy/LryyivzyiuvlMe48MIL06dPn7Rv3z4tW7bMpZdeusCyMuuss06aNWu22HUBQH217rrrZquttso666yT3XffPZdddlnee++9JJ/MtQcccEB69eqVqqqqtG7dOu+//37hcmzXXnttNttss3Tq1CktW7bMscceu0D/7t27L/CbaAcccEDuvvvuvPnmm0mSMWPGZN99901FRcUyPmMA+PIsr/PqWmutlcaNG5ffd+7cOW+//fZSjfVZ++67b5588smsvvrqOeyww2rdNf/888+na9eu6dKlS7mtb9++y+S4UFcE6bCc6N+/f/71r3/lqaeeStOmTbPGGmukf//+GTduXO6///5sscUWSzTeiiuuuND2bbfdNk8//XTGjx+/ROP95Cc/yauvvprx48fnqquuSs+ePfPd7343SfL+++8nSW677bY8+eST5ddzzz1XXif9L3/5S4444ogMHTo0d999d5588skMGTJkgQeyLKpuAFjeNG7cOPfcc0/uuOOO9O7dO+eff35WX331TJw4MYMHD86TTz6Zc889Nw899FCefPLJtGvXbpEPMhs/fnz22WefbLvttrn11lvz73//O7/61a8Wa55df/31s+666+bKK6/MhAkT8uyzz9ZaLg4A6oPldV5t2rRprfcVFRWpqalZrH0rKipSKpVqtX16ffUNNtggEydOzK9//evMnj07e+yxR3bbbbelrhW+7qyRDsuJ+eukn3322eXQvH///vntb3+b9957Lz//+c+TJGuuuWYefPDBWvs++OCD+da3vlXrp9SL8tOf/jRrr712dtxxx9x2222LHdC3a9cugwYNyujRozN+/PgMGTKkvK13796prKzM5MmTFznegw8+mH79+uWQQw4pt336bnUAaIgqKiqy2WabZbPNNsvxxx+f7t2756abbsqDDz6Yiy66KNtuu22S5PXXX8+0adMWOc5DDz2U7t2751e/+lW57bXXXlvsOvbff/+cc845efPNNzNgwIB07dp16U8KAOqIebW29u3b57///W/5/UsvvZQPPvigVp/WrVtnzz33zJ577pnddtstP/jBD/Luu+9mzTXXzOuvv17rWWkPP/zwV1o/LGuCdFhOrLTSSvn2t7+dq6++OhdccEGSZPPNN88ee+yRjz76qBxQ//znP89GG22UX//619lzzz0zfvz4XHDBBbnooosW+1iHHnpo5s2bl+233z533HFHvvOd7yzWfvvvv3+23377zJs3L4MHDy63t2rVKkcccUQOP/zw1NTU5Dvf+U5mzJiRBx98MK1bt87gwYPTq1evXHnllbnrrrvSs2fP/OlPf8pjjz2Wnj17LsFVAoDlxyOPPJKxY8dm6623TocOHfLII4/knXfeyZprrplevXrlT3/6UzbccMNUV1fnyCOPTIsWLRY5Vq9evTJ58uT85S9/yUYbbZTbbrstN91002LX8sMf/jBHHHFELrvsslx55ZXL4vQA4CtlXl3QlltumQsuuCB9+/bNvHnz8otf/KLWHe5nnXVWOnfunPXXXz+NGjXK9ddfn06dOqVNmzYZMGBAvvWtb2Xw4ME544wzUl1dXesHC1AfWdoFliNbbLFF5s2bl/79+ydJ2rZtm969e6dTp05ZffXVk3zyq1fXXXdd/vKXv2TttdfO8ccfn5NPPnmJf1VsxIgROemkk7LtttvmoYceWqx9BgwYkM6dO2fgwIG11klLkl//+tc57rjjMmrUqKy55pr5wQ9+kNtuu60clB900EHZZZddsueee2aTTTbJ//73v1p3pwNAQ9O6des88MAD2XbbbfOtb30rxx57bM4888xss802+cMf/pD33nsvG2ywQX784x/nsMMOS4cOHRY51o477pjDDz88w4cPz3rrrZeHHnooxx133GLXUlVVlV133TUtW7bMoEGDlsHZAcBXy7y6oDPPPDNdu3bNd7/73XK4v8IKK5S3t2rVKqeffno23HDDbLTRRpk0aVJuv/32NGrUKI0aNcpNN92U2bNnZ+ONN87++++fU089tc7OBZaFitJnFzsC+JK8//77+cY3vpHRo0dnl112qetyAIBlaKuttspaa62V8847r65LAYB6z7wKXz+WdgG+dDU1NZk2bVrOPPPMtGnTJjvuuGNdlwQALCPvvfdexo0bl3Hjxi3RUnEAwILMq/D1JUgHvrCrr746Bx100EK3de/evbxEyyqrrJIxY8akSRN/9QDA8mL99dfPe++9l9NOO628lBwAsHSK5tW11lprkQ8t/f3vf5999tlnsY/zz3/+M9tss80it7///vuLPRY0FJZ2Ab6wmTNnZurUqQvd1rRp03Tv3v0rrggAAACWL6+99lo++uijhW7r2LFjWrVqtdhjzZ49O2+++eYit3/zm99c4vpgeSdIBwAAAACAAo3qugAAAAAAAPg6E6QDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDUO+MGzcuFRUVGTduXF2XAgAAADQAgvR64IYbbkhFRcVCX2uvvXZdlwcNRv/+/bPvvvsmSfbdd9/079+/Tuv5In7zm9/k5ptvrusyPtdFF12UMWPGLNMxTzzxxPTo0SNJMmbMmFRUVCzT8QEAAIDlT5O6LoDF98tf/jJrrrlm+f2pp55ah9UA9dlvfvOb7Lbbbhk0aFBdl1Looosuysorr1z+AcZ8m2++eWbPnp1mzZrVTWEAAABAgyJIr0e+//3v17oD9vLLL8+0adPqriCg0Mcff5yamhph7/+vVCplzpw5adGixRceq1GjRmnevPkyqAoAAADg81napR748MMPk3wSHH2e+csUTJo0qdxWU1OTb3/726moqKi1RMLTTz+dfffdN6uuumqaN2+eTp06Zb/99sv//ve/WmOeeOKJC11WpkmT//dzmP79+2fttdfOhAkT0q9fv7Ro0SI9e/bMJZdcssC5HH/88enTp0+qqqqy4oor5rvf/W7uu+++Wv0mTZpUPs5nl5+YM2dOVlpppVRUVOR3v/vdAnV26NAhH330Ua19/vznP5fH+/QPH2655ZZst9126dKlSyorK7Paaqvl17/+debNm/e513r+8V544YXssccead26ddq1a5ef/exnmTNnTq2+o0ePzpZbbpkOHTqksrIyvXv3zsUXX7zAmDvttFN69OiR5s2bp0OHDtlxxx3zzDPP1Ooz/zzOOeecBfZfY401UlFRkeHDh5fb3n333RxxxBFZZ5110rJly7Ru3TrbbLNNnnrqqVr7Dh48OM2bN8/zzz9fq33gwIFZaaWV8tZbb5XbXn311ey+++5p27ZtVlhhhWy66aa57bbbau03fw3r+a/Kysp861vfyqhRo1IqlYov7v9vUZ+9hS2p8unPzGdfn/b2229n6NCh6datWxo3blzu07Jly8WqaVHmH/93v/tdzjnnnKy22mqprKzMc889lyR54YUXsttuu6Vt27Zp3rx5Ntxww/ztb3+rNcb8799//etfOeyww9K+ffu0adMmBx10UD788MNMnz49P/nJT7LSSitlpZVWylFHHbXAtZw1a1Z+/vOfp2vXrqmsrMzqq6+e3/3ud7X6VVRUZNasWbniiivK5//pO77ffPPN7LfffunYsWMqKyuz1lpr5Y9//OMSX5MePXpk++23z1133ZUNN9wwLVq0yO9///ski/c90aNHjzz77LO5//77F/jaL2qN9Ouvvz59+vRJixYtsvLKK+dHP/pR3nzzzSWuHQAAAODT3JFeD8wP0isrK5dq/z/96U8LhLFJcs899+TVV1/NkCFD0qlTpzz77LO59NJL8+yzz+bhhx9eIIC8+OKLa4WNnw3233vvvWy77bbZY489svfee+e6667LT3/60zRr1iz77bdfkqS6ujqXX3559t577xxwwAGZOXNm/vCHP2TgwIF59NFHs95669Uas3nz5hk9enSt5Sf++te/LhBUf9rMmTNz6623Zueddy63jR49Os2bN19gvzFjxqRly5YZOXJkWrZsmXvvvTfHH398qqurc8YZZyzyGJ+2xx57pEePHhk1alQefvjhnHfeeXnvvfdy5ZVX1rp2a621Vnbcccc0adIkf//733PIIYekpqYmw4YNqzXegQcemE6dOuWtt97KBRdckAEDBmTixIlZYYUVFrguI0aMKLc99NBDee211xao79VXX83NN9+c3XffPT179szUqVPz+9//PltssUWee+65dOnSJUly7rnn5t57783gwYMzfvz4NG7cOL///e9z9913509/+lO539SpU9OvX7988MEHOeyww9KuXbtcccUV2XHHHXPDDTfUuu7J/1uSaPbs2bn22mvzy1/+Mh06dMjQoUMX6/rOv37zP3vHHHNMYd8DDzww3/3ud5N88lm56aabam0fPHhw/vGPf+TQQw/Nuuuum8aNG+fSSy/NE088sdj1FBk9enTmzJmTAw88MJWVlWnbtm2effbZbLbZZvnGN76Ro48+OiuuuGKuu+66DBo0KDfeeOMC1+zQQw9Np06dctJJJ+Xhhx/OpZdemjZt2uShhx5Kt27d8pvf/Ca33357zjjjjKy99tr5yU9+kuSTO7533HHH3HfffRk6dGjWW2+93HXXXTnyyCPz5ptv5uyzz07yyd8J+++/fzbeeOMceOCBSZLVVlstySdf30033bT8A5n27dvnjjvuyNChQ1NdXV3rM7c4Xnzxxey999456KCDcsABB2T11VdPsnjfE+ecc04OPfTQtGzZMr/61a+SJB07dlzkscaMGZMhQ4Zko402yqhRozJ16tSce+65efDBB/Pvf/87bdq0WaLaAQAAAMpKfO2dc845pSSlp556qlb7FltsUVprrbVqtY0ePbqUpDRx4sRSqVQqzZkzp9StW7fSNttsU0pSGj16dLnvBx98sMCx/vznP5eSlB544IFy2wknnFBKUnrnnXcWWeMWW2xRSlI688wzy21z584trbfeeqUOHTqUPvzww1KpVCp9/PHHpblz59ba97333it17NixtN9++5XbJk6cWEpS2nvvvUtNmjQpTZkypbxtq622Kv3whz8sJSmdccYZC9S59957l7bffvty+2uvvVZq1KhRae+9917gPBZ2DQ466KDSCiusUJozZ84iz/fTx9txxx1rtR9yyCELfL0WdpyBAweWVl111cJjXHfddaUkpccff7zclqS02267lZo0aVKrfejQoeXrMmzYsHL7nDlzSvPmzas17sSJE0uVlZWlk08+uVb7XXfdVUpSOuWUU0qvvvpqqWXLlqVBgwbV6jNixIhSktI///nPctvMmTNLPXv2LPXo0aN8rPvuu6+UpHTffffVqqVRo0alQw45pPC85/vlL39ZSlKaNm1auW2ttdYqbbHFFgv0femll0pJSldccUW5bf7XaL7Zs2eXGjVqVDrooINq7Tt48ODSiiuuuFg1Lcr8z2zr1q1Lb7/9dq1tW221VWmdddap9Zmqqakp9evXr9SrV69y2/zv34EDB5ZqamrK7X379i1VVFSUDj744HLbxx9/XFpllVVqXYubb765/PX7tN12261UUVFRevnll8ttK664Ymnw4MELnMfQoUNLnTt3rnXNS6VSaa+99ipVVVUt9LO8KN27dy8lKd15550LbFvc74lFfb0/+/n68MMPSx06dCitvfbapdmzZ5f73XrrraUkpeOPP36x6wYAAAD4LEu71APzl1pp3779Eu974YUX5n//+19OOOGEBbZ9ep3iOXPmZNq0adl0002TZKnuzm3SpEkOOuig8vtmzZrloIMOyttvv50JEyYkSRo3blxeL7qmpibvvvtuPv7442y44YYLPeYGG2yQtdZaK3/605+SJK+99lruu+++BR48+Gn77bdf7rzzzkyZMiVJcsUVV6Rv37751re+tUDfT1+DmTNnZtq0afnud7+bDz74IC+88MJinfdn7yg/9NBDkyS33377Qo8zY8aMTJs2LVtssUVeffXVzJgxo9b+H3zwQaZNm5Ynn3wyl112WTp27LhA7R07dsx2222X0aNHl/e57rrrMmTIkAXqq6ysLP/2wLx58/K///0vLVu2zOqrr77ANd96661z0EEH5eSTT84uu+yS5s2bl5fimO/222/PxhtvnO985zvltpYtW+bAAw/MpEmTykuZfPZ8J0+enNNPPz01NTXZcsstF3IlFzT/NwgWZy3sxfnNjVmzZqWmpibt2rVbrOMvjV133bXW9+q7776be++9N3vssUf5MzZt2rT873//y8CBA/PSSy8tsPTI0KFDa/1GyCabbJJSqVTrLv7GjRtnww03zKuvvlpuu/3229O4ceMcdthhtcb7+c9/nlKplDvuuKOw9lKplBtvvDE77LBDSqVSudZp06Zl4MCBmTFjxhL/3dCzZ88MHDhwgfYl+Z5YHI8//njefvvtHHLIIbU+L9ttt13WWGONBZYeAgAAAFgSgvR64LXXXkuTJk2WOEifMWNGfvOb32TkyJELXQ7h3Xffzc9+9rN07NgxLVq0SPv27dOzZ8/yvkuqS5cuWXHFFWu1zQ+AP71m+xVXXJFvf/vbad68edq1a5f27dvntttuW+QxhwwZUg6Mx4wZk379+qVXr16LrGO99dbL2muvnSuvvDKlUqm83MPCPPvss9l5551TVVWV1q1bp3379vnRj36UZPGvwWdrWW211dKoUaNa5/zggw9mwIABWXHFFdOmTZu0b98+v/zlLxd6nJNPPjnt27fP+uuvn0mTJmXcuHFp1arVAscdMmRIrrnmmsydOzfXX399VlpppYUG1DU1NTn77LPTq1evVFZWZuWVV0779u3z9NNPL/Qcf/e736Vt27Z58sknc95556VDhw61tr/22mvl5Tk+bc011yxv/7RBgwalffv26d69e0488cQce+yx2XXXXRfYf2GmTZuWpk2b1lrWZlGmT5+eJIVrnbdr1y69evXK5Zdfnrvvvjtvv/12pk2blrlz5y5WPYtj/vfQfC+//HJKpVKOO+64tG/fvtZr/g+43n777Vr7dOvWrdb7qqqqJEnXrl0XaH/vvffK71977bV06dJlgc/Lor42n/XOO+9k+vTpufTSSxeodf730Gdr/TyfvR7zLcn3xOKYf24L+2yuscYan3vuAAAAAEWskV4PvPjii1l11VVrPdxzcZx22mlp1KhRjjzyyAUeIJp8srb3Qw89lCOPPDLrrbdeWrZsmZqamvzgBz9ITU3Nsiq/lquuuir77rtvBg0alCOPPDIdOnRI48aNM2rUqLzyyisL3edHP/pRjjrqqDz88MO54oorcuyxx37ucfbbb79cdNFF2XjjjTNlypTsscceOfPMM2v1mT59erbYYou0bt06J598clZbbbU0b948TzzxRH7xi18s9TX47Nryr7zySrbaaqusscYaOeuss9K1a9c0a9Yst99+e84+++wFjrP//vtnq622yhtvvJGzzz47u+66ax566KFymDrfdtttl2bNmuXmm2/O6NGjM3jw4IU+kPY3v/lNjjvuuOy333759a9/nbZt26ZRo0YZMWLEQs/x3//+dzksfeaZZ7L33nsv1XWY73e/+13WXXfdfPTRR3nsscdyyimnpEmTJgv9LYnPmjRpUrp167bANV2Y+b+B0KlTp8J+1157bfbZZ58F7pL+7A+Bltan77ROUr7GRxxxxELvzE6Sb37zm7XeN27ceKH9FtZeWswHty6O+bX+6Ec/yuDBgxfa59vf/vYSjfnZ65Es+fcEAAAAQF0TpH/NzZ07N08++WSth20ujrfeeivnnntuRo0alVatWi0QpL/33nsZO3ZsTjrppBx//PHl9pdeemmpa33rrbcya9asWoHk//3f/yVJevTokSS54YYbsuqqq+avf/1rrXC0KFRt165ddtxxx/IyMXvssUemTZtWWMs+++yTI488Mj/72c+y2267LfSO7nHjxuV///tf/vrXv2bzzTcvt0+cOHGxzne+l156qdZdty+//HJqamrK5/z3v/89c+fOzd/+9rdadxrfd999Cx3vm9/8ZjlYHTBgQLp165ZrrrkmP/3pT2v1a9KkSX784x/n1FNPzbPPPps//vGPCx3vhhtuyPe+97384Q9/qNU+ffr0rLzyyrXaZs2alSFDhqR3797p169fTj/99Oy8887ZaKONyn26d++eF198cYHjzF8Kp3v37rXa+/Tpk/79+ydJttlmm7z55ps57bTTctxxxy00+J/v448/zlNPPZUf/OAHi+zzac8991wqKioWekfyp62//vq57LLL8t3vfjcnn3xyNt1005xxxhl58MEHF+s4S2rVVVdNkjRt2jQDBgz4Uo4xX/fu3fOPf/wjM2fOrPWZX9jXZmE/nGjfvn1atWqVefPmfam1Lsn3xOL8ECX5f+f24osvLvCbGS+++OICn0sAAACAJWFpl6+5+Ut3bLXVVku030knnZSOHTvm4IMPXuj2+Xe2fvZu1nPOOWep6kw+CT4/vZ72hx9+mN///vdp3759+vTps8jjPvLIIxk/fnzh2Pvtt1+efvrp7L777oVLd8zXtm3b7LTTTnn66aez3377LbTPwmr58MMPc9FFF33u+J924YUX1np//vnnJ/kkNF7UcWbMmFFerqbI/B8YLGrpkf322y/PPPNMNt9883Jg+1mNGzde4Ot8/fXXL7Aud5L84he/yOTJk3PFFVfkrLPOSo8ePTJ48OBax992223z6KOP1vqazZo1K5deeml69OiR3r17F57T7Nmz8/HHH+fjjz8u7Hf33XdnxowZ2WmnnQr7JZ989m688cZsvPHGn/v5qK6uzo9//OPsuOOOOfbYYzNgwIB07tz5c4+xtDp06JD+/fvn97//ff773/8usP2dd95ZZsfadtttM2/evFxwwQW12s8+++xUVFSUP5PJJ3fgz18OZ77GjRtn1113zY033pj//Oc/X1qtS/I9sbA6F2bDDTdMhw4dcskll9T6vN5xxx15/vnns912233xwgEAAIAGyx3pX1OzZs3K+eefn5NPPrkchF511VW1+kydOjXvv/9+rrrqqnz/+9+vtQ763Xffnauvvrr8YM/Pat26dTbffPOcfvrp+eijj/KNb3wjd9999xLfjf1pXbp0yWmnnZZJkyblW9/6Vq699to8+eSTufTSS9O0adMkyfbbb5+//vWv2XnnnbPddttl4sSJueSSS9K7d++8//77ixz7Bz/4Qd55553FCtHnGzNmTC688MIF7rqer1+/fllppZUyePDgHHbYYamoqMif/vSnJV4qY+LEidlxxx3zgx/8IOPHj89VV12VH/7wh1l33XWTfPIAz2bNmmWHHXbIQQcdlPfffz+XXXZZOnToUCtYvf3223P55ZenX79+adu2bV599dVcdtllWXHFFbPzzjsv9Nhrrrlmpk2bttDlM+bbfvvtc/LJJ2fIkCHp169fnnnmmVx99dULBO/33ntvLrroopxwwgnZYIMNkiSjR49O//79c9xxx+X0009Pkhx99NH585//nG222SaHHXZY2rZtmyuuuCITJ07MjTfeuMBd5vfcc0/eeOON8tIuV199dXbcccdFfjaTT5ZfOeKII1JZWZnZs2fX+uzPmDEj8+bNy80335xBgwblH//4R4477rg8/fTT+fvf/77IMecbNmxYZs+encsvv/xz+y4rF154Yb7zne9knXXWyQEHHJBVV101U6dOzfjx4/PGG2/kqaeeWibH2WGHHfK9730vv/rVrzJp0qSsu+66ufvuu3PLLbdkxIgRWW211cp9+/Tpk3/84x8566yz0qVLl/Ts2TObbLJJfvvb3+a+++7LJptskgMOOCC9e/fOu+++myeeeCL/+Mc/8u67737hOhf3e2J+nRdffHFOOeWUfPOb30yHDh0W+iyApk2b5rTTTsuQIUOyxRZbZO+9987UqVNz7rnnpkePHjn88MO/cN0AAABAA1bia2nixImlJIv9uu+++0qlUqk0evToUpLSeuutV6qpqVlgvNGjR5fb3njjjdLOO+9catOmTamqqqq0++67l956661SktIJJ5xQ7nfCCSeUkpTeeeedRda7xRZblNZaa63S448/Xurbt2+pefPmpe7du5cuuOCCWv1qampKv/nNb0rdu3cvVVZWltZff/3SrbfeWho8eHCpe/fuC9R7xhlnFF6fT2//vDoXtv3BBx8sbbrppqUWLVqUunTpUjrqqKNKd911V61ruijzx3vuuedKu+22W6lVq1allVZaqTR8+PDS7Nmza/X929/+Vvr2t79dat68ealHjx6l0047rfTHP/6xlKQ0ceLEUqlUKv3nP/8pbb311qV27dqVmjVrVuratWtpr732Kj399NO1xkpSGjZs2CLr+uz2OXPmlH7+85+XOnfuXGrRokVps802K40fP760xRZblLbYYotSqVQqVVdXl7p3717aYIMNSh999FGt8Q4//PBSo0aNSuPHjy+3vfLKK6Xddtut1KZNm1Lz5s1LG2+8cenWW2+ttd99991X6zPapEmTUvfu3UuHHXZY6b333iu8tt27d//cz/z8z8uhhx5a2nzzzUt33nnnAuPM/xrN9+c//7lUUVGxQN/BgweXVlxxxcKaPs/nfWZfeeWV0k9+8pNSp06dSk2bNi194xvfKG2//falG264odxn/vfvY489ttDz+Oxne2F1z5w5s3T44YeXunTpUmratGmpV69epTPOOKPW3welUqn0wgsvlDbffPNSixYtSklKgwcPLm+bOnVqadiwYaWuXbuWmjZtWurUqVNpq622Kl166aVLdE26d+9e2m677Ra6bXG+J0qlUmnKlCml7bbbrtSqVatSkvJndv7n67Pfp9dee21p/fXXL1VWVpbatm1b2meffUpvvPHGEtUNAAAA8FkVpdIyfFIdy8ykSZPSs2fP3HfffeX1pb9Ivy9b//79M23atIUuB7G8OvHEE3PSSSflnXfeWeRd7yydHj165MQTT8y+++670O3jxo3Lvvvum0mTJn2ldQEAAADQMFkjHQAAAAAAClgj/WuqZcuW2WeffWqte/5F+kF9svPOO9daz/uzOnbsuMh14/nyvfPOO5k3b94itzdr1ixt27b9CisCAAAA+HJZ2oVlwtIulnah4ejRo0dee+21RW7fYostMm7cuK+uIAAAAIAvmSAdgCXy4IMPZvbs2YvcvtJKK6VPnz5fYUUAAAAAXy5BOgAAAAAAFLBG+qfU1NTkrbfeSqtWrVJRUVHX5QDQAJVKpcycOTNdunRJo0aeCQ4AAABfB4L0T3nrrbfStWvXui4DAPL6669nlVVWqesyAAAAgAjSa2nVqlWST8KL1q1b13E1ADRE1dXV6dq1a3lOAgAAAOqeIP1T5i/n0rp1a0E6AHXKEmMAAADw9WHxVQAAAAAAKCBIBwAAAACAAoJ0AAAAAAAoIEgHAAAAAIACgnQAAAAAACggSAcAAAAAgAKCdAAAAAAAKCBIBwAAAACAAoJ0AAAAAAAoIEgHAAAAAIACgnQAAAAAACggSAcAAAAAgAJfiyD9gQceyA477JAuXbqkoqIiN998c63tpVIpxx9/fDp37pwWLVpkwIABeemll2r1effdd7PPPvukdevWadOmTYYOHZr333//KzwLAAAAAACWR1+LIH3WrFlZd911c+GFFy50++mnn57zzjsvl1xySR555JGsuOKKGThwYObMmVPus88+++TZZ5/NPffck1tvvTUPPPBADjzwwK/qFAAAAAAAWE5VlEqlUl0X8WkVFRW56aabMmjQoCSf3I3epUuX/PznP88RRxyRJJkxY0Y6duyYMWPGZK+99srzzz+f3r1757HHHsuGG26YJLnzzjuz7bbb5o033kiXLl0W69jV1dWpqqrKjBkz0rp16y/l/ACgiLkIAAAAvn6a1HUBn2fixImZMmVKBgwYUG6rqqrKJptskvHjx2evvfbK+PHj06ZNm3KIniQDBgxIo0aN8sgjj2TnnXde6Nhz587N3Llzy++rq6u/vBOBr9DkyZMzbdq0pdp39uzZmTRp0rItaAn16NEjLVq0WKp9V1555XTr1m0ZVwQAAABAQ/a1D9KnTJmSJOnYsWOt9o4dO5a3TZkyJR06dKi1vUmTJmnbtm25z8KMGjUqJ5100jKuGOrW5MmTs/oaa2bO7A/qupQ60bzFCnnxheeF6QAAAAAsM1/7IP3LdMwxx2TkyJHl99XV1enatWsdVgRf3LRp0zJn9gdpt/3P07Tdkn+eSx9/mI9nTP0SKlt8Tao6pqJJsyXe76P/vZ7/3Xpmpk2bJkgHAAAAYJn52gfpnTp1SpJMnTo1nTt3LrdPnTo16623XrnP22+/XWu/jz/+OO+++255/4WprKxMZWXlsi8avgaatuuayk7fXLqdV+m9bIsBAAAAgHqsUV0X8Hl69uyZTp06ZezYseW26urqPPLII+nbt2+SpG/fvpk+fXomTJhQ7nPvvfempqYmm2yyyVdeMwAAAAAAy4+vxR3p77//fl5++eXy+4kTJ+bJJ59M27Zt061bt4wYMSKnnHJKevXqlZ49e+a4445Lly5dMmjQoCTJmmuumR/84Ac54IADcskll+Sjjz7K8OHDs9dee6VLly51dFYAAAAAACwPvhZB+uOPP57vfe975ffz1y0fPHhwxowZk6OOOiqzZs3KgQcemOnTp+c73/lO7rzzzjRv3ry8z9VXX53hw4dnq622SqNGjbLrrrvmvPPO+8rPBQAAAACA5cvXIkjv379/SqXSIrdXVFTk5JNPzsknn7zIPm3bts0111zzZZQHAAAAAEAD9rVfIx0AAAAAAOqSIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoEC9CdLnzZuX4447Lj179kyLFi2y2mqr5de//nVKpVK5T6lUyvHHH5/OnTunRYsWGTBgQF566aU6rBoAAAAAgPqu3gTpp512Wi6++OJccMEFef7553Paaafl9NNPz/nnn1/uc/rpp+e8887LJZdckkceeSQrrrhiBg4cmDlz5tRh5QAAAAAA1GdN6rqAxfXQQw9lp512ynbbbZck6dGjR/785z/n0UcfTfLJ3ejnnHNOjj322Oy0005JkiuvvDIdO3bMzTffnL322muBMefOnZu5c+eW31dXV38FZwIAAAAAQH1Sb+5I79evX8aOHZv/+7//S5I89dRT+de//pVtttkmSTJx4sRMmTIlAwYMKO9TVVWVTTbZJOPHj1/omKNGjUpVVVX51bVr1y//RAAAAAAAqFfqzR3pRx99dKqrq7PGGmukcePGmTdvXk499dTss88+SZIpU6YkSTp27Fhrv44dO5a3fdYxxxyTkSNHlt9XV1cL0wEAAAAAqKXeBOnXXXddrr766lxzzTVZa6218uSTT2bEiBHp0qVLBg8evFRjVlZWprKychlXCgAAAADA8qTeBOlHHnlkjj766PJa5+uss05ee+21jBo1KoMHD06nTp2SJFOnTk3nzp3L+02dOjXrrbdeXZQMAAAAAMByoN6skf7BBx+kUaPa5TZu3Dg1NTVJkp49e6ZTp04ZO3ZseXt1dXUeeeSR9O3b9yutFQAAAACA5Ue9uSN9hx12yKmnnppu3bplrbXWyr///e+cddZZ2W+//ZIkFRUVGTFiRE455ZT06tUrPXv2zHHHHZcuXbpk0KBBdVs8AAAAAAD1Vr0J0s8///wcd9xxOeSQQ/L222+nS5cuOeigg3L88ceX+xx11FGZNWtWDjzwwEyfPj3f+c53cuedd6Z58+Z1WDkAAAAAAPVZvQnSW7VqlXPOOSfnnHPOIvtUVFTk5JNPzsknn/zVFQYAAAAAwHKt3qyRDgAAAAAAdUGQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABepVkP7mm2/mRz/6Udq1a5cWLVpknXXWyeOPP17eXiqVcvzxx6dz585p0aJFBgwYkJdeeqkOKwYAAAAAoL6rN0H6e++9l8022yxNmzbNHXfckeeeey5nnnlmVlpppXKf008/Peedd14uueSSPPLII1lxxRUzcODAzJkzpw4rBwAAAACgPmtS1wUsrtNOOy1du3bN6NGjy209e/Ys/7lUKuWcc87Jsccem5122ilJcuWVV6Zjx465+eabs9dee33lNQMAAAAAUP/VmzvS//a3v2XDDTfM7rvvng4dOmT99dfPZZddVt4+ceLETJkyJQMGDCi3VVVVZZNNNsn48eMXOubcuXNTXV1d6wUAAAAAAJ9Wb4L0V199NRdffHF69eqVu+66Kz/96U9z2GGH5YorrkiSTJkyJUnSsWPHWvt17NixvO2zRo0alaqqqvKra9euX+5JAAAAAABQ79SbIL2mpiYbbLBBfvOb32T99dfPgQcemAMOOCCXXHLJUo95zDHHZMaMGeXX66+/vgwrBgAAAABgeVBvgvTOnTund+/etdrWXHPNTJ48OUnSqVOnJMnUqVNr9Zk6dWp522dVVlamdevWtV4AAAAAAPBp9SZI32yzzfLiiy/Wavu///u/dO/ePcknDx7t1KlTxo4dW95eXV2dRx55JH379v1KawUAAAAAYPnRpK4LWFyHH354+vXrl9/85jfZY4898uijj+bSSy/NpZdemiSpqKjIiBEjcsopp6RXr17p2bNnjjvuuHTp0iWDBg2q2+IBAAAAAKi36k2QvtFGG+Wmm27KMccck5NPPjk9e/bMOeeck3322afc56ijjsqsWbNy4IEHZvr06fnOd76TO++8M82bN6/DygEAAAAAqM/qTZCeJNtvv3223377RW6vqKjIySefnJNPPvkrrAoAAAAAgOVZvVkjHQAAAAAA6oIgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACgQL0M0n/729+moqIiI0aMKLfNmTMnw4YNS7t27dKyZcvsuuuumTp1at0VCQAAAADAcqHeBemPPfZYfv/73+fb3/52rfbDDz88f//733P99dfn/vvvz1tvvZVddtmljqoEAAAAAGB5Ua+C9Pfffz/77LNPLrvssqy00krl9hkzZuQPf/hDzjrrrGy55Zbp06dPRo8enYceeigPP/zwIsebO3duqqura70AAAAAAODT6lWQPmzYsGy33XYZMGBArfYJEybko48+qtW+xhprpFu3bhk/fvwixxs1alSqqqrKr65du35ptQMAAAAAUD/VmyD9L3/5S5544omMGjVqgW1TpkxJs2bN0qZNm1rtHTt2zJQpUxY55jHHHJMZM2aUX6+//vqyLhsAAAAAgHquSV0XsDhef/31/OxnP8s999yT5s2bL7NxKysrU1lZuczGAwAAAABg+VMv7kifMGFC3n777WywwQZp0qRJmjRpkvvvvz/nnXdemjRpko4dO+bDDz/M9OnTa+03derUdOrUqW6KBgAAAABguVAv7kjfaqut8swzz9RqGzJkSNZYY4384he/SNeuXdO0adOMHTs2u+66a5LkxRdfzOTJk9O3b9+6KBkAAAAAgOVEvQjSW7VqlbXXXrtW24orrph27dqV24cOHZqRI0embdu2ad26dQ499ND07ds3m266aV2UDAAAAADAcqJeBOmL4+yzz06jRo2y6667Zu7cuRk4cGAuuuiiui4LAAAAAIB6rt4G6ePGjav1vnnz5rnwwgtz4YUX1k1BAAAAAAAsl+rFw0YBAAAAAKCuCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKBAvQnSR40alY022iitWrVKhw4dMmjQoLz44ou1+syZMyfDhg1Lu3bt0rJly+y6666ZOnVqHVUMAAAAAMDyoN4E6ffff3+GDRuWhx9+OPfcc08++uijbL311pk1a1a5z+GHH56///3vuf7663P//ffnrbfeyi677FKHVQMAAAAAUN81qesCFtedd95Z6/2YMWPSoUOHTJgwIZtvvnlmzJiRP/zhD7nmmmuy5ZZbJklGjx6dNddcMw8//HA23XTTuigbAAAAAIB6rt7ckf5ZM2bMSJK0bds2STJhwoR89NFHGTBgQLnPGmuskW7dumX8+PELHWPu3Lmprq6u9QIAAAAAgE+rl0F6TU1NRowYkc022yxrr712kmTKlClp1qxZ2rRpU6tvx44dM2XKlIWOM2rUqFRVVZVfXbt2/bJLBwAAAACgnqmXQfqwYcPyn//8J3/5y1++0DjHHHNMZsyYUX69/vrry6hCAAAAAACWF/VmjfT5hg8fnltvvTUPPPBAVllllXJ7p06d8uGHH2b69Om17kqfOnVqOnXqtNCxKisrU1lZ+WWXDAAAAABAPVZv7kgvlUoZPnx4brrpptx7773p2bNnre19+vRJ06ZNM3bs2HLbiy++mMmTJ6dv375fdbkAAAAAACwn6s0d6cOGDcs111yTW265Ja1atSqve15VVZUWLVqkqqoqQ4cOzciRI9O2bdu0bt06hx56aPr27ZtNN920jqsHAAAAAKC+qjdB+sUXX5wk6d+/f6320aNHZ999902SnH322WnUqFF23XXXzJ07NwMHDsxFF130FVcKAAAAAMDypN4E6aVS6XP7NG/ePBdeeGEuvPDCr6AiAAAAAAAagnqzRjoAAAAAANQFQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQIHlLki/8MIL06NHjzRv3jybbLJJHn300bouCQAAAACAemy5CtKvvfbajBw5MieccEKeeOKJrLvuuhk4cGDefvvtui4NAAAAAIB6qkldF7AsnXXWWTnggAMyZMiQJMkll1yS2267LX/84x9z9NFHL9B/7ty5mTt3bvl9dXX1V1YrfJk6tazImh/8O03efWuJ9y3N+yjzZr77JVS1+Bq3apuKxk2XeL+PP5iatKz4EioCAAAAoCFbboL0Dz/8MBMmTMgxxxxTbmvUqFEGDBiQ8ePHL3SfUaNG5aSTTvqqSoSvxMorr5xhm66YY3vfVNelfPW6JKe8t2JWXnnluq4EAAAAgOXIchOkT5s2LfPmzUvHjh1rtXfs2DEvvPDCQvc55phjMnLkyPL76urqdO3a9UutE75s3bp1y77nj8vzb720VPvPnTs3b7215HeyL0tdunRJZWXlUu277169skq3bsu4IgAAAAAasuUmSF8alZWVSx3WwdfZKmv0Sdbos9T7r7fsSgEAAACAem+5edjoyiuvnMaNG2fq1Km12qdOnZpOnTrVUVUAAAAAANR3y02Q3qxZs/Tp0ydjx44tt9XU1GTs2LHp27dvHVYGAAAAAEB9tlwt7TJy5MgMHjw4G264YTbeeOOcc845mTVrVoYMGVLXpQEAAAAAUE8tV0H6nnvumXfeeSfHH398pkyZkvXWWy933nnnAg8gBQAAAACAxVVRKpVKdV3E10V1dXWqqqoyY8aMtG7duq7LAaABMhcBAADA189ys0Y6AAAAAAB8GQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFCgSV0X8HVSKpWSJNXV1XVcCQAN1fw5aP6cBAAAANQ9QfqnzJw5M0nStWvXOq4EgIZu5syZqaqqqusyAAAAgCQVJbe8ldXU1OStt95Kq1atUlFRUdflQL1UXV2drl275vXXX0/r1q3ruhyod0qlUmbOnJkuXbqkUSMrsAEAAMDXgSAdWKaqq6tTVVWVGTNmCNIBAAAAWC641Q0AAAAAAAoI0gEAAAAAoIAgHVimKisrc8IJJ6SysrKuSwEAAACAZcIa6QAAAAAAUMAd6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOnAMvHAAw9khx12SJcuXVJRUZGbb765rksCAAAAgGVCkA4sE7Nmzcq6666bCy+8sK5LAQAAAIBlqkldFwAsH7bZZptss802dV0GAAAAACxz7kgHAAAAAIACgnQAAAAAACggSAcAAAAAgAKCdAAAAAAAKCBIBwAAAACAAk3qugBg+fD+++/n5ZdfLr+fOHFinnzyybRt2zbdunWrw8oAAAAA4IupKJVKpbouAqj/xo0bl+9973sLtA8ePDhjxoz56gsCAAAAgGVEkA4AAAAAAAWskQ4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDix3evTokXPOOaeuywAAAABgOSFIB5ZI//79M2LEiLouI0kyZsyYtGnTZoH2xx57LAceeOBXXxAAAAAAyyVBOtRDH374YV2X8KX6oufXvn37rLDCCsuoGgAAAAAaOkE61AP9+/fP8OHDM2LEiKy88soZOHBg/vOf/2SbbbZJy5Yt07Fjx/z4xz/OtGnTau1z6KGHZsSIEVlppZXSsWPHXHbZZZk1a1aGDBmSVq1a5Zvf/GbuuOOOWse6//77s/HGG6eysjKdO3fO0UcfnY8//jhJsu++++b+++/Pueeem4qKilRUVGTSpElJ8rn1LOn5JclZZ52VddZZJyuuuGK6du2aQw45JO+//36SZNy4cRkyZEhmzJhRruXEE09MsuDSLpMnT85OO+2Uli1bpnXr1tljjz0yderUpflSAAAAANAACdKhnrjiiivSrFmzPPjgg/ntb3+bLbfcMuuvv34ef/zx3HnnnZk6dWr22GOPBfZZeeWV8+ijj+bQQw/NT3/60+y+++7p169fnnjiiWy99db58Y9/nA8++CBJ8uabb2bbbbfNRhttlKeeeioXX3xx/vCHP+SUU05Jkpx77rnp27dvDjjggPz3v//Nf//733Tt2jXTp09frHoW9/wuueSSJEmjRo1y3nnn5dlnn80VV1yRe++9N0cddVSSpF+/fjnnnHPSunXrci1HHHHEAuPW1NRkp512yrvvvpv7778/99xzT1599dXsueeeS/V1AAAAAKDhqSiVSqW6LgIo1r9//1RXV+eJJ55Ikpxyyin55z//mbvuuqvc54033kjXrl3z4osv5lvf+lb69++fefPm5Z///GeSZN68eamqqsouu+ySK6+8MkkyZcqUdO7cOePHj8+mm26aX/3qV7nxxhvz/PPPp6KiIkly0UUX5Re/+EVmzJiRRo0apX///llvvfVq3fG9OPUsyfktyg033JCDDz64fKf7mDFjMmLEiEyfPr1Wvx49emTEiBEZMWJE7rnnnmyzzTaZOHFiunbtmiR57rnnstZaa+XRRx/NRhttVHhMAAAAAHBHOtQTffr0Kf/5qaeeyn333ZeWLVuWX2ussUaS5JVXXin3+/a3v13+c+PGjdOuXbuss8465baOHTsmSd5+++0kyfPPP5++ffuWQ/Qk2WyzzfL+++/njTfeWGRti1vP4p7ffP/4xz+y1VZb5Rvf+EZatWqVH//4x/nf//5XvoN+cTz//PPp2rVrOURPkt69e6dNmzZ5/vnnF3scAAAAABquJnVdALB4VlxxxfKf33///eywww457bTTFujXuXPn8p+bNm1aa1tFRUWttvmBeU1NzReqbXHrKfLp80uSSZMmZfvtt89Pf/rTnHrqqWnbtm3+9a9/ZejQofnwww89TBQAAACAr4wgHeqhDTbYIDfeeGN69OiRJk2W3bfxmmuumRtvvDGlUqkcsj/44INp1apVVllllSRJs2bNMm/evC+9ngkTJqSmpiZnnnlmGjX65Jdnrrvuulp9FlbLws7p9ddfz+uvv15raZfp06end+/ey6RWAAAAAJZvlnaBemjYsGF59913s/fee+exxx7LK6+8krvuuitDhgz53GC5yCGHHJLXX389hx56aF544YXccsstOeGEEzJy5MhymN2jR4888sgjmTRpUqZNm5aampovpZ5vfvOb+eijj3L++efn1VdfzZ/+9KfyQ0jn69GjR95///2MHTs206ZNW+iSLwMGDMg666yTffbZJ0888UQeffTR/OQnP8kWW2yRDTfccKlqAwAAAKBhEaRDPdSlS5c8+OCDmTdvXrbeeuuss846GTFiRNq0aVMOvJfGN77xjdx+++159NFHs+666+bggw/O0KFDc+yxx5b7HHHEEWncuHF69+6d9u3bZ/LkyV9KPeuuu27OOuusnHbaaVl77bVz9dVXZ9SoUbX69OvXLwcffHD23HPPtG/fPqeffvoC41RUVOSWW27JSiutlM033zwDBgzIqquummuvvXap6gIAAACg4akolUqlui4CAAAAAAC+rtyRDgAAAAAABQTpwJdq8uTJadmy5SJfkydPrusSAQAAAKCQpV2AL9XHH3+cSZMmLXJ7jx490qRJk6+uIAAAAABYQoJ0AAAAAAAoYGkXAAAAAAAoIEgHAAAAAIACgnQAAAAAACggSAcAAAAAgAKCdAAAAAAAKCBIBwAAAACAAoJ0AAAAAAAo8P8B1haTvolcILYAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 1500x1000 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"visualize_outliers(df)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Метод устраняет выбросы в заданных колонках, задавая значениям выше максимального значение максимума, а ниже минимального - значение минимума."
]
},
{
"cell_type": "code",
"execution_count": 155,
"metadata": {},
"outputs": [],
"source": [
"def remove_outliers(dataframe: DataFrame, columns: list[str]) -> DataFrame:\n",
" print('Колонки с выбросами:', *columns, sep='\\n')\n",
" for column in columns:\n",
" Q1: float = dataframe[column].quantile(0.25)\n",
" Q3: float = dataframe[column].quantile(0.75)\n",
" IQR: float = Q3 - Q1\n",
"\n",
" lower_bound: float = Q1 - 1.5 * IQR\n",
" upper_bound: float = Q3 + 1.5 * IQR\n",
"\n",
" dataframe[column] = dataframe[column].apply(lambda x: lower_bound if x < lower_bound else upper_bound if x > upper_bound else x)\n",
" \n",
" return dataframe"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Устраняем выбросы, если они имеются"
]
},
{
"cell_type": "code",
"execution_count": 156,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Колонки с выбросами:\n",
"work_year\n",
"salary\n",
"salary_in_usd\n"
]
}
],
"source": [
"df = remove_outliers(df, columns_with_outliers)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Проверим наличие выбросов и визуализируем"
]
},
{
"cell_type": "code",
"execution_count": 157,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Колонка work_year:\n",
"\tЕсть выбросы: Нет\n",
"\tКоличество выбросов: 0\n",
"\tМинимальное значение: 2020.5\n",
"\tМаксимальное значение: 2023.0\n",
"\t1-й квартиль (Q1): 2022.0\n",
"\t3-й квартиль (Q3): 2023.0\n",
"\n",
"Колонка salary:\n",
"\tЕсть выбросы: Нет\n",
"\tКоличество выбросов: 0\n",
"\tМинимальное значение: 6000.0\n",
"\tМаксимальное значение: 300000.0\n",
"\t1-й квартиль (Q1): 100000.0\n",
"\t3-й квартиль (Q3): 180000.0\n",
"\n",
"Колонка salary_in_usd:\n",
"\tЕсть выбросы: Нет\n",
"\tКоличество выбросов: 0\n",
"\tМинимальное значение: 5132.0\n",
"\tМаксимальное значение: 295000.0\n",
"\t1-й квартиль (Q1): 95000.0\n",
"\t3-й квартиль (Q3): 175000.0\n",
"\n",
"Колонка remote_ratio:\n",
"\tЕсть выбросы: Нет\n",
"\tКоличество выбросов: 0\n",
"\tМинимальное значение: 0\n",
"\tМаксимальное значение: 100\n",
"\t1-й квартиль (Q1): 0.0\n",
"\t3-й квартиль (Q3): 100.0\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABdIAAAPeCAYAAAAI5OjmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADEHUlEQVR4nOzdeVxV5fr//zegDIqgKIMeETUrwTHJgcyZQI+lFk024ZRlG0v5nPRw8jhWfNLULFEzE+wgOaWZw1HJsRLqhKGJyufkkJ6DoJZCkgLK+v3hj/V1C2xBTRBez8djPWqv+9r3utaCzb289lr3sjMMwxAAAAAAAAAAACiRfUUnAAAAAAAAAABAZUYhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQCqkcmTJ8vOzk5nzpyp6FQAAMBNOnbsmOzs7BQXF1fRqQAAcEep7GPojh07ZGdnpx07dlR0KjdsyJAhatq0aUWncUtRSK9iVq1aJTs7uxKX1q1bV3R6QLXRs2dPDRkyRNKVwaNnz54Vmk91UHQiVHSiUZlPioA/CucBQOVQXc4Drt63yZMnV7l/LKN6YQwFKofqMoZWV1f/O71p06aaPHlyheZTXjUqOgH8Mf72t7/J39/ffP3WW29VYDYAAOB24jwAAIAbwxgKoDLo3r27Lly4IEdHx4pOBVehkF5FPfTQQ1bf2i1atIipHIBqLDc3V7Vr167oNP4Qly5dUmFhYUWnAVQqnAcAuBFV+XwBKCvGUAA34laPofb29nJ2dr5l/eHWYGqXKiY/P1/SlQ/c9cTFxcnOzk7Hjh0z1xUWFqpt27bFpkTYt2+fhgwZoubNm8vZ2Vk+Pj4aNmyYfvnlF6s+i+ZfvnapUeP/fWfTs2dPtW7dWikpKXrggQfk4uKiZs2aacGCBcX2ZeLEiQoMDJS7u7tq166tbt26afv27VZxRdM52NnZ6fPPP7dqu3jxourVqyc7Ozu9++67xfL08vJSQUGB1Xs+/fRTs7+rT5jWrl2r/v37q1GjRnJyctJdd92ladOm6fLly9c91kXbO3TokJ588km5ubmpfv36eu2113Tx4kWr2NjYWPXu3VteXl5ycnJSQECA5s+fX6zPgQMHqmnTpnJ2dpaXl5cGDBigH3/80SqmaD/ee++9Yu9v2bKl7OzsFBERYa779ddf9Ze//EVt2rSRq6ur3Nzc1K9fP+3du9fqveHh4XJ2dtbBgwet1oeGhqpevXrKyMgw1x05ckRPPPGEPDw8VKtWLXXp0kUbNmywel/R3F9Fi5OTk+655x5FR0fLMAzbB/f/V9rvXkm3gV39O3PtcrVTp05p+PDhatKkiRwcHMwYV1fXMuVUmg4dOuixxx6zWtemTRvZ2dlp37595rrly5fLzs7O6jj/8MMP6tevn9zc3OTq6qo+ffooOTnZqq+iz/bOnTv1yiuvyMvLS40bNy41n59//lktWrRQ69atlZWVdd38jxw5Ijs7O82ePbtY2+7du2VnZ6dPP/3UXPff//5Xw4YNk7e3t5ycnNSqVSstXrzY6n3l/by/++67eu+993TXXXfJyclJBw4cuG7eQHXAecDnVm2cB3AeUBnPAyRp2bJlCgwMVJ06deTm5qY2bdpozpw5ZntZfxYlKe/n9cCBA3rmmWdUr149Pfjgg4qNjZWdnZ1++OGHYn2//fbbcnBw0H//+9+bPgZAZcMY+rlVG2MoYyhjaMWOoSXNkV70N+DAgQPq1auXatWqpT/96U+aPn16mfq8mp2dXYnTqjRt2tScWkeSCgoKNGXKFN19991ydnZW/fr19eCDDyoxMdHqfZ9//rlat24tZ2dntW7dWmvWrCl3TncCrkivYooGfycnpxt6/z/+8Y9iA4gkJSYm6siRIxo6dKh8fHyUlpamhQsXKi0tTcnJycX+aM6fP9/qD+S1JyNnz57Vn//8Zz355JMaPHiwVqxYoVGjRsnR0VHDhg2TJOXk5GjRokUaPHiwXnzxRf3222/6+OOPFRoaqu+++07t27e36tPZ2VmxsbEaNGiQuW716tXFBter/fbbb1q/fr0effRRc11sbKycnZ2LvS8uLk6urq6KjIyUq6urtm3bpokTJyonJ0czZswodRtXe/LJJ9W0aVNFR0crOTlZ77//vs6ePatPPvnE6ti1atVKAwYMUI0aNbRu3Tq98sorKiwslMVisepv5MiR8vHxUUZGhubOnavg4GAdPXpUtWrVKnZcxowZY67bvXu3fv7552L5HTlyRJ9//rmeeOIJNWvWTFlZWfrwww/Vo0cPHThwQI0aNZIkzZkzR9u2bVN4eLiSkpLk4OCgDz/8UFu2bNE//vEPMy4rK0sPPPCAfv/9d7366quqX7++lixZogEDBmjVqlVWx136f7dRXrhwQcuXL9ff/vY3eXl5afjw4WU6vkXHr+h3LyoqymbsyJEj1a1bN0lXfleu/UMfHh6uL7/8UqNHj1a7du3k4OCghQsXas+ePWXOpyTdunWzKjT/+uuvSktLk729vb766iu1bdtWkvTVV1/J09PTvLU0LS1N3bp1k5ubm8aNG6eaNWvqww8/VM+ePbVz50517tzZajuvvPKKPD09NXHiROXm5paYy+HDh9W7d295eHgoMTFRDRo0uG7+zZs3V9euXbV06VKNHTvWqm3p0qWqU6eOBg4cKOnK70CXLl3ME01PT0/985//1PDhw5WTk2P+Xpb38x4bG6uLFy9q5MiRcnJykoeHB1elA+I8gPMAzgPuhPOAxMREDR48WH369NE777wjSTp48KC++eYbvfbaa5LK/rMorf/yfF6feOIJ3X333Xr77bdlGIYef/xxWSwWLV26VPfdd59V7NKlS9WzZ0/96U9/uqljAFRGjKGMoYyhjKF3whh69uxZ9e3bV4899piefPJJrVq1SuPHj1ebNm3Ur1+/m+q7JJMnT1Z0dLRGjBihTp06KScnR99//7327Nmjhx56SJK0ZcsWhYWFKSAgQNHR0frll180dOhQmxf03bEMVCnvvfeeIcnYu3ev1foePXoYrVq1sloXGxtrSDKOHj1qGIZhXLx40WjSpInRr18/Q5IRGxtrxv7+++/FtvXpp58akoxdu3aZ6yZNmmRIMk6fPl1qjj169DAkGTNnzjTX5eXlGe3btze8vLyM/Px8wzAM49KlS0ZeXp7Ve8+ePWt4e3sbw4YNM9cdPXrUkGQMHjzYqFGjhpGZmWm29enTx3jmmWcMScaMGTOK5Tl48GDj4YcfNtf//PPPhr29vTF48OBi+1HSMXjppZeMWrVqGRcvXix1f6/e3oABA6zWv/LKK8V+XiVtJzQ01GjevLnNbaxYscKQZHz//ffmOknG448/btSoUcNq/fDhw83jYrFYzPUXL140Ll++bNXv0aNHDScnJ2Pq1KlW6zdv3mxIMt58803jyJEjhqurqzFo0CCrmDFjxhiSjK+++spc99tvvxnNmjUzmjZtam5r+/bthiRj+/btVrnY29sbr7zyis39LvK3v/3NkGScOXPGXNeqVSujR48exWL//e9/G5KMJUuWmOuKfkZFLly4YNjb2xsvvfSS1XvDw8ON2rVrlymn0qxcudKQZBw4cMAwDMP44osvDCcnJ2PAgAHGU089Zca1bdvWePTRR83XgwYNMhwdHY3Dhw+b6zIyMow6deoY3bt3N9cVfbYffPBB49KlS1bbvvozevDgQaNRo0ZGx44djV9//bVc+/Dhhx8akoyDBw+a6/Lz840GDRoY4eHh5rrhw4cbDRs2tPq5GIZhPP3004a7u7v5+17ez7ubm5tx6tSpcuUMVAecB3AewHlA5T8PeO211ww3N7diY/TVyvqzKPr9v5nP6+DBg4vFDx482GjUqJFVDnv27Cm2LaAqYQxlDGUMZQytTGNoST/bor8Bn3zyibkuLy/P8PHxMcLCwsrct2Fc+R2fNGlSsfV+fn5W/6Zv166d0b9/f5t9tW/f3mjYsKFx7tw5c92WLVsMSYafn1+58qrsmNqliim63cTT07Pc742JidEvv/yiSZMmFWtzcXEx///ixYs6c+aMunTpIkk39I1ijRo19NJLL5mvHR0d9dJLL+nUqVNKSUmRJDk4OJgPVSgsLNSvv/6qS5cu6f777y9xmx06dFCrVq30j3/8Q9KV6Sq2b99udUvKtYYNG6ZNmzYpMzNTkrRkyRIFBQXpnnvuKRZ79TH47bffdObMGXXr1k2///67Dh06VKb9vvZb8NGjR0uSNm7cWOJ2srOzdebMGfXo0UNHjhxRdna21ft///13nTlzRqmpqfroo4/k7e1dLHdvb2/1799fsbGx5ntWrFihoUOHFsvPycnJvOLh8uXL+uWXX+Tq6qp777232DEPCQnRSy+9pKlTp+qxxx6Ts7OzPvzwQ6uYjRs3qlOnTnrwwQfNda6urho5cqSOHTtWbDqOov09fvy4pk+frsLCQvXu3buEI1lc0VUPZZlDrCxXm+Tm5qqwsFD169cv0/bLo+ib+127dkm6cuV5x44d9dBDD+mrr76SJJ07d0779+83Yy9fvqwtW7Zo0KBBat68udlXw4YN9cwzz+jrr79WTk6O1XZefPFFOTg4lJjD/v371aNHDzVt2lRffvml6tWrV659ePLJJ+Xs7KylS5ea6zZv3qwzZ87oueeekyQZhqHPPvtMjzzyiAzD0JkzZ8wlNDRU2dnZ5u9VeT/vYWFhN/R3DqjqOA/gPIDzgMp/HlC3bl3l5uYWuyX6auX5WVyrvJ/Xl19+udi6F154QRkZGVbTQCxdulQuLi4KCwuzvYPAHYoxlDGUMZQx9E4YQ11dXc1/c0tX/gZ06tRJR44cuem+S1K3bl2lpaXp3//+d4ntJ0+eVGpqqsLDw+Xu7m6uf+ihhxQQEPCH5FSRKKRXMT///LNq1KhR7sE/Oztbb7/9tiIjI+Xt7V2s/ddff9Vrr70mb29vubi4yNPTU82aNTPfW16NGjUq9hCGokHr6nnmlixZorZt25rzMHl6emrDhg2lbnPo0KHmIBcXF6cHHnhAd999d6l5tG/fXq1bt9Ynn3wiwzAUFxdX4qAoXZlW49FHH5W7u7vc3Nzk6elp/vEq6zG4Npe77rpL9vb2Vvv8zTffKDg4WLVr11bdunXl6empv/3tbyVuZ+rUqfL09NR9992nY8eOaceOHapTp06x7Q4dOlQJCQnKy8vTypUrVa9evRIH1cLCQs2ePVt33323nJyc1KBBA3l6emrfvn0l7uO7774rDw8Ppaam6v3335eXl5dV+88//6x777232PuKpiq59pa4QYMGydPTU35+fpo8ebImTJhQ5oHmzJkzqlmzptWteKU5d+6cJNmcn61+/fq6++67tWjRIm3ZskWnTp3SmTNnlJeXV6Z8bPH29tbdd99tFs2/+uordevWTd27d1dGRoaOHDmib775RoWFhWYh/fTp0/r9999LPZ6FhYU6ceKE1fqiz2hJHnnkEdWpU0ebN2+Wm5tbufehbt26euSRR5SQkGCuW7p0qf70pz+Zv1unT5/WuXPntHDhQnl6elotRZ+zU6dOme8vz+fd1r4B1RnnAZwHcB5Q+c8DXnnlFd1zzz3q16+fGjdubBajrlben8XVyvt5LWlMfeihh9SwYUPzC/PCwkJ9+umnGjhwYIm/Y0BVwBjKGMoYyhh6J4yhjRs3LjbFTL169XT27Nmb7rskU6dO1blz53TPPfeoTZs2ev31162e7Vb0u1jS34uSfofvdBTSq5j09HQ1b97c6oEkZfHOO+/I3t5er7/+eontTz75pD766CO9/PLLWr16tbZs2WL+sfqj5iWOj4/XkCFDdNddd+njjz/Wpk2blJiYqN69e5e6zeeee04//fSTkpOTtWTJklIH8qsNGzZMsbGx2rlzpzIzM/Xkk08Wizl37px69OihvXv3aurUqVq3bp0SExPNOblu9Bhc+8fv8OHD6tOnj86cOaNZs2Zpw4YNSkxMNOehvnY7I0aM0JYtW7R48WI5OzsrLCysxD/u/fv3l6Ojoz7//HPFxsYqPDy8xIfoFJ0Adu/eXfHx8dq8ebMSExPVqlWrEvfxhx9+MAuhJc0HWF7vvvuuEhMTtXHjRk2aNEnvvPOOpkyZUqb3Hjt2TE2aNCl2TEtSdNWEj4+Pzbjly5erfv36Cg0Nlbe3tzw9PbVs2bIy5XM9Dz74oL766itduHBBKSkp6tatm1q3bq26devqq6++0ldffSVXV9di86qVx9Xfpl8rLCxMhw8ftrqivLxeeOEFHTlyRLt379Zvv/2mL774QoMHDzZ/t4p+Z5577jklJiaWuHTt2lVS+T/vtvYNqM44D+A8gPOAyn8e4OXlpdTUVH3xxRcaMGCAtm/frn79+ik8PNyMKe/P4mrl/byWNKY6ODjomWee0WeffaaLFy9q+/btysjIsLoCDqhqGEMZQxlDGUPvhDG0tLvOjTI+XPZ6rn0IcPfu3XX48GEtXrxYrVu31qJFi9ShQwctWrTolmzvTsPDRquQvLw8paamWj0gpCwyMjI0Z84cRUdHq06dOsWeRnz27Flt3bpVU6ZM0cSJE831pd3WUdZt5ubmWn2T/n//93+SrjwhWJJWrVql5s2ba/Xq1VZ/0Eu6Xa5I/fr1NWDAAPPWtieffNLqaeElefbZZ/X666/rtdde0+OPP17iN4Q7duzQL7/8otWrV6t79+7m+qNHj5Zpf4v8+9//tvrG8qefflJhYaG5z+vWrVNeXp6++OILNWnSxIy79unqRVq0aKEWLVpIkoKDg9WkSRMlJCRo1KhRVnE1atTQ888/r7feektpaWlavHhxif2tWrVKvXr10scff2y1/ty5c8UeQpmbm6uhQ4cqICBADzzwgKZPn65HH31UHTt2NGP8/PyUnp5ebDtFt+/5+flZrQ8MDDSfDN6vXz/997//1TvvvKO///3vJZ6sFLl06ZL27t2rvn37lhpztQMHDsjOzu66347ed999+uijj9StWzdNnTpVXbp00YwZM/TNN9+UaTu2dOvWTbGxsVq2bJkuX76sBx54QPb29maB/eDBg3rggQfMQdLT01O1atUq9Xja29vL19e3zNufMWOGatSooVdeeUV16tTRM888U+596Nu3rzw9PbV06VJ17txZv//+u55//nmz3dPTU3Xq1NHly5cVHBxss68b+bwDsMZ5AOcBnAfcOecBjo6OeuSRR/TII4+osLBQr7zyij788EP9/e9/V4sWLcr1s7jarfy8vvDCC5o5c6bWrVunf/7zn/L09FRoaGi5+wHuBIyhjKGMoYyh1W0MrVevnnmHQZH8/HydPHmyWKyHh4eGDh2qoUOH6vz58+revbsmT56sESNGmL+LJR2nkn6H73RckV6FFN1u1KdPn3K9b8qUKfL29i5xbifp/33bde23W++9994N5Sld+WN99Rxg+fn5+vDDD+Xp6anAwMBSt/vtt98qKSnJZt/Dhg3Tvn379MQTT9i83aiIh4eHBg4cqH379plPOb9WSbnk5+dr3rx51+3/ajExMVavP/jgA0kyn6xc0nays7PNW+xsKTrJKe12qWHDhunHH39U9+7drebYvpqDg0Oxn/PKlSv13//+t1js+PHjdfz4cS1ZskSzZs1S06ZNFR4ebrX9P//5z/ruu++sfma5ublauHChmjZtet35si5cuKBLly7p0qVLNuO2bNmi7OxsDRw40GacdOV377PPPlOnTp2u+/uRk5Oj559/XgMGDNCECRMUHByshg0bXncbZVE0Zcs777yjtm3bmnOJdevWTVu3btX3339vxkhXfjYhISFau3at1e2LWVlZSkhI0IMPPliuKVrs7Oy0cOFCPf744woPD9cXX3xR7n2oUaOGBg8erBUrViguLk5t2rRR27ZtrXIOCwvTZ599pv379xd7/+nTp61ipfJ/3gH8P5wHXMF5AOcBtlSG84BrC2329vbm+Fl0/Mrzs7jarfy8tm3bVm3bttWiRYv02Wef6emnny73lbrAnYIx9ArGUMZQWxhDy+5OGEPvuusu87ltRRYuXFjsivRrj7mrq6tatGhhHu+GDRuqffv2WrJkidVdHYmJicXm8q8KKtdPETckNzdXH3zwgaZOnWr+wYiPj7eKycrK0vnz5xUfH6+HHnrIau62LVu2aOnSpebDSK7l5uam7t27a/r06SooKNCf/vQnbdmypdzfIF+tUaNGeuedd3Ts2DHdc889Wr58uVJTU7Vw4ULVrFlTkvTwww9r9erVevTRR9W/f38dPXpUCxYsUEBAgM6fP19q33379tXp06fLNPAXiYuLU0xMTKnfTj7wwAOqV6+ewsPD9eqrr8rOzk7/+Mc/yn3rzNGjRzVgwAD17dtXSUlJio+P1zPPPKN27dpJuvLQkaJvV1966SWdP39eH330kby8vKy+Fdy4caMWLVqkBx54QB4eHjpy5Ig++ugj1a5dW48++miJ2/b399eZM2dsTonx8MMPa+rUqRo6dKgeeOAB/fjjj1q6dGmxk4Vt27Zp3rx5mjRpkjp06CBJio2NVc+ePfX3v/9d06dPlyT99a9/1aeffqp+/frp1VdflYeHh5YsWaKjR4/qs88+K/bNeGJiov7zn/+ooKBA//rXv7R06VINGDCg1N9N6cotY3/5y1/k5OSkCxcuWP3uZ2dn6/Lly/r88881aNAgffnll/r73/+uffv2ad26daX2WcRisejChQt/yC1LLVq0kI+Pj9LT080H5UhXbpsaP368JFkV0iXpzTffVGJioh588EG98sorqlGjhj788EPl5eWZx7w87O3tFR8fr0GDBunJJ5/Uxo0by/xAmiIvvPCC3n//fW3fvt28PfNq//u//6vt27erc+fOevHFFxUQEKBff/1Ve/bs0Zdffqlff/1V0o1/3gFwHnAtzgM4DyhSWc8DRowYoV9//VW9e/dW48aN9fPPP+uDDz5Q+/btzblvy/qzuNat/ry+8MIL+stf/iJJTOuCKokx1BpjKGNoEcbQqj+GjhgxQi+//LLCwsL00EMPae/evdq8eXOxz3JAQIB69uypwMBAeXh46Pvvv9eqVasUERFhxkRHR6t///568MEHNWzYMP3666/64IMP1KpVq6r373kDd7yjR48aksq8bN++3TAMw4iNjTUkGe3btzcKCwuL9RcbG2uu+89//mM8+uijRt26dQ13d3fjiSeeMDIyMgxJxqRJk8y4SZMmGZKM06dPl5pvjx49jFatWhnff/+9ERQUZDg7Oxt+fn7G3LlzreIKCwuNt99+2/Dz8zOcnJyM++67z1i/fr0RHh5u+Pn5Fct3xowZNo/P1e3Xy7Ok9m+++cbo0qWL4eLiYjRq1MgYN26csXnzZqtjWpqi/g4cOGA8/vjjRp06dYx69eoZERERxoULF6xiv/jiC6Nt27aGs7Oz0bRpU+Odd94xFi9ebEgyjh49ahiGYezfv98ICQkx6tevbzg6Ohq+vr7G008/bezbt8+qL0mGxWIpNa9r2y9evGj8z//8j9GwYUPDxcXF6Nq1q5GUlGT06NHD6NGjh2EYhpGTk2P4+fkZHTp0MAoKCqz6Gzt2rGFvb28kJSWZ6w4fPmw8/vjjRt26dQ1nZ2ejU6dOxvr1663et337dqvf0Ro1ahh+fn7Gq6++apw9e9bmsfXz87vu73zR78vo0aON7t27G5s2bSrWT9HPqMinn35q2NnZFYsNDw83ateubTOnsnriiScMScby5cvNdfn5+UatWrUMR0fHYr8bhmEYe/bsMUJDQw1XV1ejVq1aRq9evYzdu3dbxRR9tv/1r38Ve39Jv9u///670aNHD8PV1dVITk4u9360atXKsLe3N/7zn/+U2J6VlWVYLBbD19fXqFmzpuHj42P06dPHWLhwoRlzqz7vQHXEeQDnAZwH3FnnAatWrTJCQkIMLy8vw9HR0WjSpInx0ksvGSdPnjRjyvKzMIw//vN68uRJw8HBwbjnnntuap+ByooxlDGUMZQxtLKOoUU/26s/I0V/A6517We7LC5fvmyMHz/eaNCggVGrVi0jNDTU+Omnnww/Pz8jPDzcjHvzzTeNTp06GXXr1jVcXFyMli1bGm+99ZaRn59v1d9nn31m+Pv7G05OTkZAQICxevXqG8qrsqOQXgUUffivNwCVNe6PVtoHvyoryx9Z3Bg/Pz+rge9a27dvr3J/uCub9u3bG717967oNIBqi/OAyo/zgD8O5wF/rNOnTxs1atQwpk6dWtGpAH8IxtDKjzH0j8MY+sdiDK2amCMdAHDDvv/+e6WmpuqFF16o6FQAAMAtFhcXp8uXL1s9TBwAAFwfY2jVxBzpVYCrq6ueffZZq7nabiYOuJM8+uijuuuuu0pt9/b2LnWuOxR34cIFqweElMTDw0P/93//p5SUFM2cOVMNGzbUU089dZsyBHAtzgNQnXEe8MfYtm2bDhw4oLfeekuDBg1S06ZNKzol4A/BGIrqjDH0j3G9MbSs/+a2Nb+9LadPny72wNCrOTo6ysPD44b6hmRnGOV8wgNwk3r27KkzZ85o//79FZ3KbTN58mRNmTJFp0+fLvUhLEBlEBcXp6FDh9qM2b59u3bs2KGpU6fq3nvv1YIFC9SjR4/blCGAOx3nAZwHoPLr2bOndu/era5duyo+Pl5/+tOfKjolAGIMZQzFneB6Y2hZ/83ds2fPG9p+06ZN9fPPP5fa3qNHD+3YseOG+gaFdADAVU6ePKm0tDSbMYGBgapXr95tyggAAAAAgKrhj/439zfffKMLFy6U2l6vXj0FBgbeUN+gkA4AAAAAAAAAgE08bBQAAAAAAAAAABt42OhVCgsLlZGRoTp16sjOzq6i0wEAVEOGYei3335To0aNZG/P991lwfgNAKgMGMPLjzEcAFDRyjN+U0i/SkZGhnx9fSs6DQAAdOLECTVu3Lii07gjMH4DACoTxvCyYwwHAFQWZRm/KaRfpU6dOpKuHDg3N7cKzgYAUB3l5OTI19fXHJNwfYzfAIDKgDG8/BjDAQAVrTzjN4X0qxTdSubm5sYgDgCoUNzeXHaM3wCAyoQxvOwYwwEAlUVZxm8mbgMAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAEAlMH/+fLVt21Zubm5yc3NTUFCQ/vnPf5rtFy9elMViUf369eXq6qqwsDBlZWVZ9XH8+HH1799ftWrVkpeXl15//XVdunTJKmbHjh3q0KGDnJyc1KJFC8XFxRXLJSYmRk2bNpWzs7M6d+6s7777zqq9LLkAAFCVUEgHAAAAAKASaNy4sf73f/9XKSkp+v7779W7d28NHDhQaWlpkqSxY8dq3bp1WrlypXbu3KmMjAw99thj5vsvX76s/v37Kz8/X7t379aSJUsUFxeniRMnmjFHjx5V//791atXL6WmpmrMmDEaMWKENm/ebMYsX75ckZGRmjRpkvbs2aN27dopNDRUp06dMmOulwsAAFWNnWEYRkUnUVnk5OTI3d1d2dnZcnNzq+h0AADVEGNR+XHMAACVwR81Hnl4eGjGjBl6/PHH5enpqYSEBD3++OOSpEOHDsnf319JSUnq0qWL/vnPf+rhhx9WRkaGvL29JUkLFizQ+PHjdfr0aTk6Omr8+PHasGGD9u/fb27j6aef1rlz57Rp0yZJUufOndWxY0fNnTtXklRYWChfX1+NHj1af/3rX5WdnX3dXCrymAEAUFblGYu4Ih0AAAAAgErm8uXLWrZsmXJzcxUUFKSUlBQVFBQoODjYjGnZsqWaNGmipKQkSVJSUpLatGljFtElKTQ0VDk5OeZV7UlJSVZ9FMUU9ZGfn6+UlBSrGHt7ewUHB5sxZckFAICqpkZFJwAAAAAAAK748ccfFRQUpIsXL8rV1VVr1qxRQECAUlNT5ejoqLp161rFe3t7KzMzU5KUmZlpVUQvai9qsxWTk5OjCxcu6OzZs7p8+XKJMYcOHTL7uF4uJcnLy1NeXp75Oicn5zpHAwCAyoMr0gEAAAAAqCTuvfdepaam6ttvv9WoUaMUHh6uAwcOVHRat0R0dLTc3d3NxdfXt6JTAgCgzCikAwAAAABQSTg6OqpFixYKDAxUdHS02rVrpzlz5sjHx0f5+fk6d+6cVXxWVpZ8fHwkST4+PsrKyirWXtRmK8bNzU0uLi5q0KCBHBwcSoy5uo/r5VKSqKgoZWdnm8uJEyfKdlAAAKgEylVIj46OVseOHVWnTh15eXlp0KBBSk9Pt4q5ePGiLBaL6tevL1dXV4WFhVkNwHv37tXgwYPl6+srFxcX+fv7a86cOVZ9fP311+ratavq168vFxcXtWzZUrNnz75ufvv27VO3bt3k7OwsX19fTZ8+vTy7BwBAlTB//ny1bdtWbm5ucnNzU1BQkP75z3+a7dcbqyXp+PHj6t+/v2rVqiUvLy+9/vrrunTpklXMjh071KFDBzk5OalFixaKi4srlktMTIyaNm0qZ2dnde7cWd99951Ve1lyAQCgOissLFReXp4CAwNVs2ZNbd261WxLT0/X8ePHFRQUJEkKCgrSjz/+qFOnTpkxiYmJcnNzU0BAgBlzdR9FMUV9ODo6KjAw0CqmsLBQW7duNWPKkktJnJyczPOTogUAgDtFuQrpO3fulMViUXJyshITE1VQUKCQkBDl5uaaMWPHjtW6deu0cuVK7dy5UxkZGXrsscfM9pSUFHl5eSk+Pl5paWl64403FBUVZT4NXJJq166tiIgI7dq1SwcPHtSECRM0YcIELVy4sNTccnJyFBISIj8/P6WkpGjGjBmaPHmyzfcAAFAVNW7cWP/7v/+rlJQUff/99+rdu7cGDhxoPmTsemP15cuX1b9/f+Xn52v37t1asmSJ4uLiNHHiRDPm6NGj6t+/v3r16qXU1FSNGTNGI0aM0ObNm82Y5cuXKzIyUpMmTdKePXvUrl07hYaGWv3j/nq5AABQnURFRWnXrl06duyYfvzxR0VFRWnHjh169tln5e7uruHDhysyMlLbt29XSkqKhg4dqqCgIHXp0kWSFBISooCAAD3//PPau3evNm/erAkTJshiscjJyUmS9PLLL+vIkSMaN26cDh06pHnz5mnFihUaO3asmUdkZKQ++ugjLVmyRAcPHtSoUaOUm5uroUOHSlKZcgEAoMoxbsKpU6cMScbOnTsNwzCMc+fOGTVr1jRWrlxpxhw8eNCQZCQlJZXazyuvvGL06tXL5rYeffRR47nnniu1fd68eUa9evWMvLw8c9348eONe++9t6y7Y2RnZxuSjOzs7DK/BwCAW+mPGovq1atnLFq0qExj9caNGw17e3sjMzPTjJk/f77h5uZmjrPjxo0zWrVqZbWNp556yggNDTVfd+rUybBYLObry5cvG40aNTKio6MNw7jx84ZrMX4DACqDWzEeDRs2zPDz8zMcHR0NT09Po0+fPsaWLVvM9gsXLhivvPKKUa9ePaNWrVrGo48+apw8edKqj2PHjhn9+vUzXFxcjAYNGhj/8z//YxQUFFjFbN++3Wjfvr3h6OhoNG/e3IiNjS2WywcffGA0adLEcHR0NDp16mQkJydbtZcll+thDAcAVLTyjEU1bqYIn52dLUny8PCQdOVq84KCAgUHB5sxLVu2VJMmTZSUlFTqN9PZ2dlmHyX54YcftHv3br355pulxiQlJal79+5ydHQ014WGhuqdd97R2bNnVa9evWLv4YnhqKqOHz+uM2fO3NB7L1y4oGPHjt3ahMqpadOmcnFxuaH3NmjQQE2aNLnFGQF3rsuXL2vlypXKzc1VUFBQmcbqpKQktWnTRt7e3mZMaGioRo0apbS0NN13331KSkqy6qMoZsyYMZKk/Px8paSkKCoqymy3t7dXcHCwkpKSJN34eQPjN1Dc77//rkOHDt3w+4vG/5sZg6Urn+FatWrd8PuB6u7jjz+22e7s7KyYmBjFxMSUGuPn56eNGzfa7Kdnz5764YcfbMZEREQoIiLipnIBcH03M4YzfgO31w0X0gsLCzVmzBh17dpVrVu3liRlZmbK0dFRdevWtYr19vZWZmZmif3s3r1by5cv14YNG4q1NW7cWKdPn9alS5c0efJkjRgxotR8MjMz1axZs2LbLWorqZAeHR2tKVOm2NxP4E5z/Phx3dvSXxcv/F7RqVQIZ5daSj90kGI6qr0ff/xRQUFBunjxolxdXbVmzRoFBAQoNTX1umN1ZmamVRG9qL2ozVZMTk6OLly4oLNnz+ry5cslxhT9Q+FGzhskxm+gJIcOHVJgYGBFp6GUlBR16NChotMAAOCOURnGcMZvoGxuuJBusVi0f/9+ff311ze88f3792vgwIGaNGmSQkJCirV/9dVXOn/+vJKTk/XXv/5VLVq00ODBg294e9eKiopSZGSk+TonJ0e+vr63rH+gIpw5c0YXL/yu+g//j2rWL//vs3EpX5eyK/ZBfzXcvWVXw/H6gdco+OWEflk/U2fOnKGQjmrv3nvvVWpqqrKzs7Vq1SqFh4dr586dFZ3WLcH4DRTXsmVLpaSk3PD7Dx48qOeee07x8fHy9/e/qTwAAEDZ3cwYzvgN3F43VEiPiIjQ+vXrtWvXLjVu3Nhc7+Pjo/z8fJ07d87q6rKsrCz5+PhY9XHgwAH16dNHI0eO1IQJE0rcTtEV5m3atFFWVpYmT55caiHdx8dHWVnWxb+i19duu4iTk5P5wBWgqqlZ31dOPi1u7M2NA25tMgBuO0dHR7VoceVvQGBgoP71r39pzpw5euqpp647Vvv4+Oi7776z6u/aMbW0cdfNzU0uLi5ycHCQg4NDiTFX91HW84arMX4DxdWqVeuWXEnm7+/PFWkAANxGt2IMZ/wGbg/78gQbhqGIiAitWbNG27ZtKzaVSmBgoGrWrKmtW7ea69LT03X8+HEFBQWZ69LS0tSrVy+Fh4frrbfeKtO2CwsLreZDvVZQUJB27dqlgoICc11iYqLuvffeEqd1AQCgOikaR8syVgcFBenHH3/UqVOnzJjExES5ubkpICDAjLm6j6KYoj4cHR0VGBhoFVNYWKitW7eaMWU9bwAAAAAAoKKV64p0i8WihIQErV27VnXq1DHnL3V3d5eLi4vc3d01fPhwRUZGysPDQ25ubho9erSCgoLMB4bt379fvXv3VmhoqCIjI80+HBwc5OnpKUmKiYlRkyZNzFtLdu3apXfffVevvvqqmcvcuXO1Zs0a8x/fzzzzjKZMmaLhw4dr/Pjx2r9/v+bMmaPZs2ff5CECAODOEhUVpX79+qlJkyb67bfflJCQoB07dmjz5s1lGqtDQkIUEBCg559/XtOnT1dmZqYmTJggi8ViXgn+8ssva+7cuRo3bpyGDRumbdu2acWKFVbPPImMjFR4eLjuv/9+derUSe+9955yc3M1dOhQSSpTLgAAAAAAVAblKqTPnz9f0pUnfF8tNjZWQ4YMkSTNnj1b9vb2CgsLU15enkJDQzVv3jwzdtWqVTp9+rTi4+MVHx9vrvfz89OxY8ckXbliLSoqSkePHlWNGjV011136Z133tFLL71kxp85c0aHDx82X7u7u2vLli2yWCwKDAxUgwYNNHHiRI0cObI8uwgAwB3v1KlTeuGFF3Ty5Em5u7urbdu22rx5sx566CFJ1x+rHRwctH79eo0aNUpBQUGqXbu2wsPDNXXqVDOmWbNm2rBhg8aOHas5c+aocePGWrRokUJDQ82Yp556SqdPn9bEiROVmZmp9u3ba9OmTVYPIL1eLgAAAAAAVAZ2hmEYFZ1EZZGTkyN3d3dlZ2fLzc2totMBbsiePXsUGBgon/D3bnyO9DtUXuZPylwyhieO447GWFR+HDPg5hWdPzCGAjeO8aj8OGbAzWH8Bm5eecaics2RDgAAAAAAAABAdUMhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAoBKIjo5Wx44dVadOHXl5eWnQoEFKT0+3iunZs6fs7Oyslpdfftkq5vjx4+rfv79q1aolLy8vvf7667p06ZJVzI4dO9ShQwc5OTmpRYsWiouLK5ZPTEyMmjZtKmdnZ3Xu3FnfffedVfvFixdlsVhUv359ubq6KiwsTFlZWbfmYAAAUMlQSAcAAAAAoBLYuXOnLBaLkpOTlZiYqIKCAoWEhCg3N9cq7sUXX9TJkyfNZfr06Wbb5cuX1b9/f+Xn52v37t1asmSJ4uLiNHHiRDPm6NGj6t+/v3r16qXU1FSNGTNGI0aM0ObNm82Y5cuXKzIyUpMmTdKePXvUrl07hYaG6tSpU2bM2LFjtW7dOq1cuVI7d+5URkaGHnvssT/wCAEAUHFqVHQCAAAAAABA2rRpk9XruLg4eXl5KSUlRd27dzfX16pVSz4+PiX2sWXLFh04cEBffvmlvL291b59e02bNk3jx4/X5MmT5ejoqAULFqhZs2aaOXOmJMnf319ff/21Zs+erdDQUEnSrFmz9OKLL2ro0KGSpAULFmjDhg1avHix/vrXvyo7O1sff/yxEhIS1Lt3b0lSbGys/P39lZycrC5dutzy4wMAQEXiinQAAAAAACqh7OxsSZKHh4fV+qVLl6pBgwZq3bq1oqKi9Pvvv5ttSUlJatOmjby9vc11oaGhysnJUVpamhkTHBxs1WdoaKiSkpIkSfn5+UpJSbGKsbe3V3BwsBmTkpKigoICq5iWLVuqSZMmZsy18vLylJOTY7UAAHCn4Ip0AAAAAAAqmcLCQo0ZM0Zdu3ZV69atzfXPPPOM/Pz81KhRI+3bt0/jx49Xenq6Vq9eLUnKzMy0KqJLMl9nZmbajMnJydGFCxd09uxZXb58ucSYQ4cOmX04Ojqqbt26xWKKtnOt6OhoTZkypZxHAgCAyoEr0gEAqGJ4UBkAAHc+i8Wi/fv3a9myZVbrR44cqdDQULVp00bPPvusPvnkE61Zs0aHDx+uoEzLLioqStnZ2eZy4sSJik4JAIAyo5AOAEAVw4PKAAC4s0VERGj9+vXavn27GjdubDO2c+fOkqSffvpJkuTj41PsC+mi10XzqpcW4+bmJhcXFzVo0EAODg4lxlzdR35+vs6dO1dqzLWcnJzk5uZmtQAAcKegkA4AQBWzadMmDRkyRK1atVK7du0UFxen48ePKyUlxSqu6EFlRcvV/5gtelBZfHy82rdvr379+mnatGmKiYlRfn6+JFk9qMzf318RERF6/PHHNXv2bLOfqx9UFhAQoAULFqhWrVpavHixJJkPKps1a5Z69+6twMBAxcbGavfu3UpOTr4NRwsAgMrDMAxFRERozZo12rZtm5o1a3bd96SmpkqSGjZsKEkKCgrSjz/+aPWldWJiotzc3BQQEGDGbN261aqfxMREBQUFSZIcHR0VGBhoFVNYWKitW7eaMYGBgapZs6ZVTHp6uo4fP27GAABQlVBIBwCgiqtqDyoDAKCqslgsio+PV0JCgurUqaPMzExlZmbqwoULkqTDhw9r2rRpSklJ0bFjx/TFF1/ohRdeUPfu3dW2bVtJUkhIiAICAvT8889r79692rx5syZMmCCLxSInJydJ0ssvv6wjR45o3LhxOnTokObNm6cVK1Zo7NixZi6RkZH66KOPtGTJEh08eFCjRo1Sbm6uhg4dKklyd3fX8OHDFRkZqe3btyslJUVDhw5VUFCQunTpcpuPHAAAfzweNgoAQBVWFR9UlpeXp7y8PPN1Tk5OWQ8HAACV2vz58yVdeZbJ1WJjYzVkyBA5Ojrqyy+/1Hvvvafc3Fz5+voqLCxMEyZMMGMdHBy0fv16jRo1SkFBQapdu7bCw8M1depUM6ZZs2basGGDxo4dqzlz5qhx48ZatGiRQkNDzZinnnpKp0+f1sSJE5WZman27dtr06ZNVuP67NmzZW9vr7CwMOXl5Sk0NFTz5s37g44OAAAVi0I6AABVWNGDyr7++mur9SNHjjT/v02bNmrYsKH69Omjw4cP66677rrdaZZLdHS0pkyZUtFpAABwyxmGYbPd19dXO3fuvG4/fn5+2rhxo82Ynj176ocffrAZExERoYiIiFLbnZ2dFRMTo5iYmOvmBADAnY6pXQAAqKKq6oPKoqKilJ2dbS4nTpywuW8AAAAAANwsCukAAFQxVf1BZU5OTnJzc7NaAAAAAAD4IzG1CwAAVYzFYlFCQoLWrl1rPqhMuvJQMBcXFx0+fFgJCQn685//rPr162vfvn0aO3ZsqQ8qmz59ujIzM0t8UNncuXM1btw4DRs2TNu2bdOKFSu0YcMGM5fIyEiFh4fr/vvvV6dOncw5XUt6UJmHh4fc3Nw0evRoHlQGAAAAAKhUKKQDAFDF8KAyAAAAAABuLQrpAABUMTyoDAAAAACAW6tcc6RHR0erY8eOqlOnjry8vDRo0CClp6dbxVy8eFEWi0X169eXq6urwsLCrB4ytnfvXg0ePFi+vr5ycXGRv7+/5syZY9XH6tWr9dBDD8nT01Nubm4KCgrS5s2bbeZ27Ngx2dnZFVuSk5PLs4sAAAAAAAAAAFgpVyF9586dslgsSk5OVmJiogoKChQSEqLc3FwzZuzYsVq3bp1WrlypnTt3KiMjQ4899pjZnpKSIi8vL8XHxystLU1vvPGGoqKiNHfuXDNm165deuihh7Rx40alpKSoV69eeuSRR657xZskffnllzp58qS5BAYGlmcXAQAAAAAAAACwUq6pXTZt2mT1Oi4uTl5eXkpJSVH37t2VnZ2tjz/+WAkJCerdu7ekK/Ox+vv7Kzk5WV26dNGwYcOs+mjevLmSkpK0evVq87bv9957zyrm7bff1tq1a7Vu3Trdd999NnOsX7++fHx8yrNbAAAAAAAAAACUqlxXpF8rOztbkuTh4SHpytXmBQUFCg4ONmNatmypJk2aKCkpyWY/RX2UpLCwUL/99pvNmCIDBgyQl5eXHnzwQX3xxRdl3RUAAAAAAAAAAEp0ww8bLSws1JgxY9S1a1e1bt1akpSZmSlHR0fVrVvXKtbb21uZmZkl9rN7924tX75cGzZsKHVb7777rs6fP68nn3yy1BhXV1fNnDlTXbt2lb29vT777DMNGjRIn3/+uQYMGFDie/Ly8pSXl2e+zsnJKbV/AAAAAAAAAED1dMOFdIvFov379+vrr7++4Y3v379fAwcO1KRJkxQSElJiTEJCgqZMmaK1a9fKy8ur1L4aNGigyMhI83XHjh2VkZGhGTNmlFpIj46O1pQpU244fwAAAAAAAABA1XdDU7tERERo/fr12r59uxo3bmyu9/HxUX5+vs6dO2cVn5WVVWze8gMHDqhPnz4aOXKkJkyYUOJ2li1bphEjRmjFihVW08WUVefOnfXTTz+V2h4VFaXs7GxzOXHiRLm3AQAAAAAAAACo2spVSDcMQxEREVqzZo22bdumZs2aWbUHBgaqZs2a2rp1q7kuPT1dx48fV1BQkLkuLS1NvXr1Unh4uN56660St/Xpp59q6NCh+vTTT9W/f//ypGlKTU1Vw4YNS213cnKSm5ub1QIAAAAAAAAAwNXKNbWLxWJRQkKC1q5dqzp16pjznru7u8vFxUXu7u4aPny4IiMj5eHhITc3N40ePVpBQUHq0qWLpCvTufTu3VuhoaGKjIw0+3BwcJCnp6ekK9O5hIeHa86cOercubMZU7QNSZo7d67WrFljFu2XLFkiR0dH3XfffZKk1atXa/HixVq0aNHNHiMAAAAAAAAAQDVWrkL6/PnzJUk9e/a0Wh8bG6shQ4ZIkmbPni17e3uFhYUpLy9PoaGhmjdvnhm7atUqnT59WvHx8YqPjzfX+/n56dixY5KkhQsX6tKlS7JYLLJYLGZMeHi44uLiJElnzpzR4cOHrfKYNm2afv75Z9WoUUMtW7bU8uXL9fjjj5dnFwEAAAAAAAAAsFKuQrphGNeNcXZ2VkxMjGJiYkpsnzx5siZPnmyzjx07dlx3O9f2Ex4ervDw8Ou+DwAAAAAAAACA8rihh40CAAAAAAAAAFBdUEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAKoHo6Gh17NhRderUkZeXlwYNGqT09HSrmIsXL8pisah+/fpydXVVWFiYsrKyrGKOHz+u/v37q1atWvLy8tLrr7+uS5cuWcXs2LFDHTp0kJOTk1q0aKG4uLhi+cTExKhp06ZydnZW586d9d1335U7FwAAqgoK6QAAAAAAVAI7d+6UxWJRcnKyEhMTVVBQoJCQEOXm5poxY8eO1bp167Ry5Urt3LlTGRkZeuyxx8z2y5cvq3///srPz9fu3bu1ZMkSxcXFaeLEiWbM0aNH1b9/f/Xq1UupqakaM2aMRowYoc2bN5sxy5cvV2RkpCZNmqQ9e/aoXbt2Cg0N1alTp8qcCwAAVUmNik4AAAAAAABImzZtsnodFxcnLy8vpaSkqHv37srOztbHH3+shIQE9e7dW5IUGxsrf39/JScnq0uXLtqyZYsOHDigL7/8Ut7e3mrfvr2mTZum8ePHa/LkyXJ0dNSCBQvUrFkzzZw5U5Lk7++vr7/+WrNnz1ZoaKgkadasWXrxxRc1dOhQSdKCBQu0YcMGLV68WH/961/LlAsAAFUJV6QDAAAAAFAJZWdnS5I8PDwkSSkpKSooKFBwcLAZ07JlSzVp0kRJSUmSpKSkJLVp00be3t5mTGhoqHJycpSWlmbGXN1HUUxRH/n5+UpJSbGKsbe3V3BwsBlTllwAAKhKuCIdAAAAAIBKprCwUGPGjFHXrl3VunVrSVJmZqYcHR1Vt25dq1hvb29lZmaaMVcX0Yvai9psxeTk5OjChQs6e/asLl++XGLMoUOHypzLtfLy8pSXl2e+zsnJud5hAACg0uCKdAAAqhgeVAYAwJ3PYrFo//79WrZsWUWncstER0fL3d3dXHx9fSs6JQAAyoxCOgAAVQwPKgMA4M4WERGh9evXa/v27WrcuLG53sfHR/n5+Tp37pxVfFZWlnx8fMyYa7+QLnp9vRg3Nze5uLioQYMGcnBwKDHm6j6ul8u1oqKilJ2dbS4nTpwow9EAAKByoJAOAEAVs2nTJg0ZMkStWrVSu3btFBcXp+PHjyslJUWSzIeDzZo1S71791ZgYKBiY2O1e/duJScnS5L5oLL4+Hi1b99e/fr107Rp0xQTE6P8/HxJsnpQmb+/vyIiIvT4449r9uzZZi5XP6gsICBACxYsUK1atbR48eIy5wIAQHVhGIYiIiK0Zs0abdu2Tc2aNbNqDwwMVM2aNbV161ZzXXp6uo4fP66goCBJUlBQkH788UerL60TExPl5uamgIAAM+bqPopiivpwdHRUYGCgVUxhYaG2bt1qxpQll2s5OTnJzc3NagEA4E5BIR0AgCquqj2oLC8vTzk5OVYLAABVgcViUXx8vBISElSnTh1lZmYqMzNTFy5ckCS5u7tr+PDhioyM1Pbt25WSkqKhQ4cqKChIXbp0kSSFhIQoICBAzz//vPbu3avNmzdrwoQJslgscnJykiS9/PLLOnLkiMaNG6dDhw5p3rx5WrFihcaOHWvmEhkZqY8++khLlizRwYMHNWrUKOXm5mro0KFlzgUAgKqEh40CAFCFVcUHlUVHR2vKlCllPAIAANw55s+fL0nq2bOn1frY2FgNGTJEkjR79mzZ29srLCxMeXl5Cg0N1bx588xYBwcHrV+/XqNGjVJQUJBq166t8PBwTZ061Yxp1qyZNmzYoLFjx2rOnDlq3LixFi1apNDQUDPmqaee0unTpzVx4kRlZmaqffv22rRpk9W4fr1cAACoSiikAwBQhRU9qOzrr7+u6FRumaioKEVGRpqvc3JyeFgZAKBKMAzjujHOzs6KiYlRTExMqTF+fn7auHGjzX569uypH374wWZMRESEIiIibioXAACqCgrpAABUUUUPKtu1a1epDyq7+krwax8g9t1331n1V94HlTk4OJTrQWWl5XItJycn89Z0AAAAAABuB+ZIBwCgiqnqDyoDAAAAAOB244p0AACqGIvFooSEBK1du9Z8UJl05aFgLi4uVg8H8/DwkJubm0aPHl3qg8qmT5+uzMzMEh9UNnfuXI0bN07Dhg3Ttm3btGLFCm3YsMHMJTIyUuHh4br//vvVqVMnvffee6U+qKy0XAAAAAAAqGgU0gEAqGJ4UBkAAAAAALcWhXQAAKoYHlQGAAAAAMCtxRzpAAAAAAAAAADYQCEdAAAAAAAAAAAbKKQDAAAAAAAAAGADhXQAAAAAAAAAAGygkA4AAAAAAAAAgA0U0gEAAAAAAAAAsIFCOgAAAAAAAAAANlBIBwAAAAAAAADABgrpAAAAAAAAAADYQCEdAAAAAAAAAAAbKKQDAAAAAAAAAGBDuQrp0dHR6tixo+rUqSMvLy8NGjRI6enpVjEXL16UxWJR/fr15erqqrCwMGVlZZnte/fu1eDBg+Xr6ysXFxf5+/trzpw5Vn2sXr1aDz30kDw9PeXm5qagoCBt3rz5uvnt27dP3bp1k7Ozs3x9fTV9+vTy7B4AAAAAAAAAAMWUq5C+c+dOWSwWJScnKzExUQUFBQoJCVFubq4ZM3bsWK1bt04rV67Uzp07lZGRoccee8xsT0lJkZeXl+Lj45WWlqY33nhDUVFRmjt3rhmza9cuPfTQQ9q4caNSUlLUq1cvPfLII/rhhx9KzS0nJ0chISHy8/NTSkqKZsyYocmTJ2vhwoXl2UUAAAAAAAAAAKzUKE/wpk2brF7HxcXJy8tLKSkp6t69u7Kzs/Xxxx8rISFBvXv3liTFxsbK399fycnJ6tKli4YNG2bVR/PmzZWUlKTVq1crIiJCkvTee+9Zxbz99ttau3at1q1bp/vuu6/E3JYuXar8/HwtXrxYjo6OatWqlVJTUzVr1iyNHDmyPLsJAAAAAAAAAIDppuZIz87OliR5eHhIunK1eUFBgYKDg82Yli1bqkmTJkpKSrLZT1EfJSksLNRvv/1mMyYpKUndu3eXo6OjuS40NFTp6ek6e/ZsmfcJAAAAAAAAAICrleuK9KsVFhZqzJgx6tq1q1q3bi1JyszMlKOjo+rWrWsV6+3trczMzBL72b17t5YvX64NGzaUuq13331X58+f15NPPllqTGZmppo1a1Zsu0Vt9erVK/aevLw85eXlma9zcnJK7R+4k/i42sn/9x9U49eM275t43KBLv/2qxzqeMjOoeZt3fal37MkV7vbuk0AAAAAAABUfTdcSLdYLNq/f7++/vrrG974/v37NXDgQE2aNEkhISElxiQkJGjKlClau3atvLy8bnhbJYmOjtaUKVNuaZ9ARWvQoIEsXWprQsCaik7l9mskvXm2tho0aFDRmQAAAAAAAKAKuaFCekREhNavX69du3apcePG5nofHx/l5+fr3LlzVlelZ2VlycfHx6qPAwcOqE+fPho5cqQmTJhQ4naWLVumESNGaOXKlVbTxZTEx8dHWVlZVuuKXl+77SJRUVGKjIw0X+fk5MjX19fmdoDKrkmTJhrywQ4dzPh3hWz/6NGjmjBhgt58881id4ncDkOevluNmzS57dsFAAAAAABA1VWuQrphGBo9erTWrFmjHTt2FCuSBQYGqmbNmtq6davCwsIkSenp6Tp+/LiCgoLMuLS0NPXu3Vvh4eF66623StzWp59+qmHDhmnZsmXq37//dXMLCgrSG2+8oYKCAtWseWU6icTERN17770lTusiSU5OTnJycirTvgN3ksYtA6WWgRWy7Qt79uiHzL/J575Q+XfoUCE5AABwpzp+/LjOnDlz27d78OBBq//ebg0aNFATvggHAABAJVauQrrFYlFCQoLWrl2rOnXqmPOeu7u7y8XFRe7u7ho+fLgiIyPl4eEhNzc3jR49WkFBQerSpYukK9O59O7dW6GhoYqMjDT7cHBwkKenp6Qr07mEh4drzpw56ty5sxlTtA1Jmjt3rtasWaOtW7dKkp555hlNmTJFw4cP1/jx47V//37NmTNHs2fPvgWHCQAAAPhjHT9+XPe29NfFC79XWA7PPfdchWzX2aWW0g8dpJgOAACASqtchfT58+dLknr27Gm1PjY2VkOGDJEkzZ49W/b29goLC1NeXp5CQ0M1b948M3bVqlU6ffq04uPjFR8fb6738/PTsWPHJEkLFy7UpUuXZLFYZLFYzJjw8HDFxcVJks6cOaPDhw+bbe7u7tqyZYssFosCAwPVoEEDTZw4USNHjizPLgIAAAAV4syZM7p44XfVf/h/VLP+7Z1u0LiUr0vZWarh7i27Go63ddsFv5zQL+tn6syZMxTSAQB3pOp6R5nEXWWoXuwMwzAqOonKIicnR+7u7srOzpabm1tFpwPckfbs2aPAwEClpKSoA1O7AOXGWFR+HDNUFUVjqE/4e3LyaVHR6dw2eZk/KXPJGM4dcMdjPCo/jhmqgspwR1lF4q4y3OnKMxbd0MNGAQAAAAAAgOquut5RJnFXGaofCukAAAAAAADATahZ37di7ihrHHD7twlUU/YVnQAAAAAAAAAAAJUZhXQAAAAAAAAAAGygkA4AAAAAAAAAgA0U0gEAAAAAAAAAsIFCOgAAAAAAAAAANlBIBwAAAAAAAADABgrpAAAAAAAAAADYQCEdAAAAAAAAAAAbKKQDAAAAAAAAAGADhXQAAAAAAAAAAGygkA4AAAAAAAAAgA0U0gEAAAAAAAAAsIFCOgAAAAAAAAAANlBIBwAAAAAAAADABgrpAAAAAAAAAADYQCEdAAAAAAAAAAAbKKQDAAAAAAAAAGADhXQAAAAAAAAAAGygkA4AAAAAAAAAgA0U0gEAAAAAAAAAsIFCOgAAAAAAAAAANlBIBwAAAAAAAADABgrpAAAAAAAAAADYQCEdAAAAAAAAAAAbKKQDAAAAAAAAAGADhXQAAAAAACqBXbt26ZFHHlGjRo1kZ2enzz//3Kp9yJAhsrOzs1r69u1rFfPrr7/q2WeflZubm+rWravhw4fr/PnzVjH79u1Tt27d5OzsLF9fX02fPr1YLitXrlTLli3l7OysNm3aaOPGjVbthmFo4sSJatiwoVxcXBQcHKx///vft+ZAAABQCVFIBwAAAACgEsjNzVW7du0UExNTakzfvn118uRJc/n000+t2p999lmlpaUpMTFR69ev165duzRy5EizPScnRyEhIfLz81NKSopmzJihyZMna+HChWbM7t27NXjwYA0fPlw//PCDBg0apEGDBmn//v1mzPTp0/X+++9rwYIF+vbbb1W7dm2Fhobq4sWLt/CIAABQedSo6AQAAAAAAIDUr18/9evXz2aMk5OTfHx8Smw7ePCgNm3apH/961+6//77JUkffPCB/vznP+vdd99Vo0aNtHTpUuXn52vx4sVydHRUq1atlJqaqlmzZpkF9zlz5qhv3756/fXXJUnTpk1TYmKi5s6dqwULFsgwDL333nuaMGGCBg4cKEn65JNP5O3trc8//1xPP/30rTokAABUGlyRDgAAAADAHWLHjh3y8vLSvffeq1GjRumXX34x25KSklS3bl2ziC5JwcHBsre317fffmvGdO/eXY6OjmZMaGio0tPTdfbsWTMmODjYaruhoaFKSkqSJB09elSZmZlWMe7u7urcubMZU5K8vDzl5ORYLQAA3CkopAMAUAUxxyoAAFVP37599cknn2jr1q165513tHPnTvXr10+XL1+WJGVmZsrLy8vqPTVq1JCHh4cyMzPNGG9vb6uYotfXi7m6/er3lRRTkujoaLm7u5uLr69vufYfAICKRCEdAIAqiDlWAQCoep5++mkNGDBAbdq00aBBg7R+/Xr961//0o4dOyo6tTKJiopSdna2uZw4caKiUwIAoMyYIx0AgCqIOVYBAKj6mjdvrgYNGuinn35Snz595OPjo1OnTlnFXLp0Sb/++qs55vv4+CgrK8sqpuj19WKubi9a17BhQ6uY9u3bl5qvk5OTnJycbmBPAQCoeFyRDgBANXWnzrHK/KoAAFzxn//8R7/88otZzA4KCtK5c+eUkpJixmzbtk2FhYXq3LmzGbNr1y4VFBSYMYmJibr33ntVr149M2br1q1W20pMTFRQUJAkqVmzZvLx8bGKycnJ0bfffmvGAABQ1VBIBwCgGrqT51hlflUAQFV1/vx5paamKjU1VdKVL5xTU1N1/PhxnT9/Xq+//rqSk5N17Ngxbd26VQMHDlSLFi0UGhoqSfL391ffvn314osv6rvvvtM333yjiIgIPf3002rUqJEk6ZlnnpGjo6OGDx+utLQ0LV++XHPmzFFkZKSZx2uvvaZNmzZp5syZOnTokCZPnqzvv/9eERERkiQ7OzuNGTNGb775pr744gv9+OOPeuGFF9SoUSMNGjToth4zAABuF6Z2AQCgGrp6ypQ2bdqobdu2uuuuu7Rjxw716dOnAjO7vqioKKt/7Ofk5FBMBwBUCd9//7169eplvi4a78LDwzV//nzt27dPS5Ys0blz59SoUSOFhIRo2rRpVtOlLF26VBEREerTp4/s7e0VFham999/32x3d3fXli1bZLFYFBgYqAYNGmjixIlWz0F54IEHlJCQoAkTJuhvf/ub7r77bn3++edq3bq1GTNu3Djl5uZq5MiROnfunB588EFt2rRJzs7Of+QhAgCgwlBIBwAAd9Qcq8yvCgCoqnr27CnDMEpt37x583X78PDwUEJCgs2Ytm3b6quvvrIZ88QTT+iJJ54otd3Ozk5Tp07V1KlTr5sTAABVAVO7AAAA5lgFAAAAAMAGCukAAFRBzLEKAAAAAMCtw9QuAABUQcyxCgAAAADArUMhHQCAKog5VgEAAAAAuHWY2gUAAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMCGGhWdAAAAAIArfFzt1MYxQzXtHCo6ldumwDFDcrWr6DQAAAAAmyikAwAAAJXES4GOmtxoQUWncXs1kiYHOlZ0FgAA3LDq+EW4xJfhqH4opAMAAACVxIcp+dp9z2uqWd+3olO5bQp+OaEfU2ZoQEUnAgDADaqWX4RLfBmOaodCOgAAAFBJZJ43pPxGcjKaVXQqt01e/uUr+w0AwB2qOn4RLvFlOKofCukAAAAAAADADaqOX4RLfBmO6se+ohMAAAAAAAAAAKAyo5AOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIAN5SqkR0dHq2PHjqpTp468vLw0aNAgpaenW8VcvHhRFotF9evXl6urq8LCwpSVlWW27927V4MHD5avr69cXFzk7++vOXPmWPVx8uRJPfPMM7rnnntkb2+vMWPGlCk/Ozu7YsuyZcvKs4sAAAAAAAAAAFgpVyF9586dslgsSk5OVmJiogoKChQSEqLc3FwzZuzYsVq3bp1WrlypnTt3KiMjQ4899pjZnpKSIi8vL8XHxystLU1vvPGGoqKiNHfuXDMmLy9Pnp6emjBhgtq1a1euHYqNjdXJkyfNZdCgQeV6PwAAAAAAAAAAV6tRnuBNmzZZvY6Li5OXl5dSUlLUvXt3ZWdn6+OPP1ZCQoJ69+4t6Uph29/fX8nJyerSpYuGDRtm1Ufz5s2VlJSk1atXKyIiQpLUtGlT8yr1xYsXl2uH6tatKx8fn3K9BwAAAAAAAACA0tzUHOnZ2dmSJA8PD0lXrjYvKChQcHCwGdOyZUs1adJESUlJNvsp6uNmWSwWNWjQQJ06ddLixYtlGMYt6RcAAAAAAAAAUD2V64r0qxUWFmrMmDHq2rWrWrduLUnKzMyUo6Oj6tataxXr7e2tzMzMEvvZvXu3li9frg0bNtxoKqapU6eqd+/eqlWrlrZs2aJXXnlF58+f16uvvlpifF5envLy8szXOTk5N50DAAAAAAAAAKBqueFCusVi0f79+/X111/f8Mb379+vgQMHatKkSQoJCbnhfor8/e9/N///vvvuU25urmbMmFFqIT06OlpTpky56e0CAAAAAAAAAKquG5raJSIiQuvXr9f27dvVuHFjc72Pj4/y8/N17tw5q/isrKxi85YfOHBAffr00ciRIzVhwoQbSeO6OnfurP/85z9WV51fLSoqStnZ2eZy4sSJPyQPAAAAAAAAAMCdq1yFdMMwFBERoTVr1mjbtm1q1qyZVXtgYKBq1qyprVu3muvS09N1/PhxBQUFmevS0tLUq1cvhYeH66233rrJXShdamqq6tWrJycnpxLbnZyc5ObmZrUAAAAAAAAAAHC1ck3tYrFYlJCQoLVr16pOnTrmvOfu7u5ycXGRu7u7hg8frsjISHl4eMjNzU2jR49WUFCQunTpIunKdC69e/dWaGioIiMjzT4cHBzk6elpbis1NVWSdP78eZ0+fVqpqalydHRUQECAJGnNmjWKiorSoUOHJEnr1q1TVlaWunTpImdnZyUmJurtt9/WX/7yl5s7QgAAAAAAAACAaq1chfT58+dLknr27Gm1PjY2VkOGDJEkzZ49W/b29goLC1NeXp5CQ0M1b948M3bVqlU6ffq04uPjFR8fb6738/PTsWPHzNf33Xef+f8pKSlKSEiwisnOzlZ6eroZU7NmTcXExGjs2LEyDEMtWrTQrFmz9OKLL5ZnFwEAAAAAAAAAsFKuQrphGNeNcXZ2VkxMjGJiYkpsnzx5siZPnnzT2xoyZIhZvJekvn37qm/fvtftFwAAAAAAAACA8rihh40CAAAAAAAAAFBdUEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAACVwK5du/TII4+oUaNGsrOz0+eff27VbhiGJk6cqIYNG8rFxUXBwcH697//bRXz66+/6tlnn5Wbm5vq1q2r4cOH6/z581Yx+/btU7du3eTs7CxfX19Nnz69WC4rV65Uy5Yt5ezsrDZt2mjjxo3lzgUAgKqEQjoAAAAAAJVAbm6u2rVrp5iYmBLbp0+frvfff18LFizQt99+q9q1ays0NFQXL140Y5599lmlpaUpMTFR69ev165duzRy5EizPScnRyEhIfLz81NKSopmzJihyZMna+HChWbM7t27NXjwYA0fPlw//PCDBg0apEGDBmn//v3lygUAgKqkRkUnAAAAAAAApH79+qlfv34lthmGoffee08TJkzQwIEDJUmffPKJvL299fnnn+vpp5/WwYMHtWnTJv3rX//S/fffL0n64IMP9Oc//1nvvvuuGjVqpKVLlyo/P1+LFy+Wo6OjWrVqpdTUVM2aNcssuM+ZM0d9+/bV66+/LkmaNm2aEhMTNXfuXC1YsKBMuQAAUNVwRToAAFUQt4YDAFC1HD16VJmZmQoODjbXubu7q3PnzkpKSpIkJSUlqW7dumYRXZKCg4Nlb2+vb7/91ozp3r27HB0dzZjQ0FClp6fr7NmzZszV2ymKKdpOWXIBAKCqoZAOAEAVxK3hAABULZmZmZIkb29vq/Xe3t5mW2Zmpry8vKzaa9SoIQ8PD6uYkvq4ehulxVzdfr1cSpKXl6ecnByrBQCAOwWFdAAAqqB+/frpzTff1KOPPlqs7drbsdu2batPPvlEGRkZ5pXrRbeGL1q0SJ07d9aDDz6oDz74QMuWLVNGRoYkWd0a3qpVKz399NN69dVXNWvWLHNbV98a7u/vr2nTpqlDhw6aO3dumXMBAABVQ3R0tNzd3c3F19e3olMCAKDMKKQDAFDNcGs4AAB3Hh8fH0lSVlaW1fqsrCyzzcfHR6dOnbJqv3Tpkn799VermJL6uHobpcVc3X69XEoSFRWl7Oxsczlx4sR19hoAgMqDh40CAFDN3Mpbw5s1a1asj6K2evXq/SG3hufl5SkvL898zW3hqGoKfrn9hSXjUr4uZWephru37Go4Xv8Nt1BF7C9wJ2rWrJl8fHy0detWtW/fXtKVMfDbb7/VqFGjJElBQUE6d+6cUlJSFBgYKEnatm2bCgsL1blzZzPmjTfeUEFBgWrWrClJSkxM1L333qt69eqZMVu3btWYMWPM7ScmJiooKKjMuZTEyclJTk5Ot+yYAABwO1FIBwAAd5To6GhNmTKlotMAbrkGDRrI2aWWflk/s6JTue2cXWqpQYMGFZ0GUOHOnz+vn376yXx99OhRpaamysPDQ02aNNGYMWP05ptv6u6771azZs3097//XY0aNdKgQYMkSf7+/urbt69efPFFLViwQAUFBYqIiNDTTz+tRo0aSZKeeeYZTZkyRcOHD9f48eO1f/9+zZkzR7Nnzza3+9prr6lHjx6aOXOm+vfvr2XLlun77783n4NiZ2d33VwAAKhqKKQDAFDNXH07dsOGDc31WVlZ5lVlFXFreGm5XCsqKkqRkZHm65ycHOZYRZXQpEkTpR86qDNnztz2bR88eFDPPfec4uPj5e/vf9u336BBAzVp0uS2bxeobL7//nv16tXLfF003oWHhysuLk7jxo1Tbm6uRo4cqXPnzunBBx/Upk2b5OzsbL5n6dKlioiIUJ8+fWRvb6+wsDC9//77Zru7u7u2bNkii8WiwMBANWjQQBMnTrR6oPgDDzyghIQETZgwQX/7299099136/PPP1fr1q3NmLLkAgBAVUIhHQCAauZOvzWc28JRlTVp0qRCC8r+/v7q0KFDhW0fqO569uwpwzBKbbezs9PUqVM1derUUmM8PDyUkJBgcztt27bVV199ZTPmiSee0BNPPHFTuQDVSXWbmk1iejZUPxTSAQCogrg1HAAAAPjjVeep2SSmZ0P1QiEdAIAqiFvDAQAAgD9edZ6aTWJ6NlQvdoat+8aqmZycHLm7uys7O1tubm4VnQ5wR9qzZ48CAwOVkpLCreHADWAsKj+OGXDzGL+Bm8d4VH4cM+DmMH4DN688Y5H9bcoJAAAAAAAAAIA7EoV0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAGyikAwAAAAAAAABgA4V0AAAAAAAAAABsKFchPTo6Wh07dlSdOnXk5eWlQYMGKT093Srm4sWLslgsql+/vlxdXRUWFqasrCyzfe/evRo8eLB8fX3l4uIif39/zZkzx6qPkydP6plnntE999wje3t7jRkzpkz5HT9+XP3791etWrXk5eWl119/XZcuXSrPLgIAAAAAAAAAYKVchfSdO3fKYrEoOTlZiYmJKigoUEhIiHJzc82YsWPHat26dVq5cqV27typjIwMPfbYY2Z7SkqKvLy8FB8fr7S0NL3xxhuKiorS3LlzzZi8vDx5enpqwoQJateuXZlyu3z5svr376/8/Hzt3r1bS5YsUVxcnCZOnFieXQQAAAAAAAAAwEqN8gRv2rTJ6nVcXJy8vLyUkpKi7t27Kzs7Wx9//LESEhLUu3dvSVJsbKz8/f2VnJysLl26aNiwYVZ9NG/eXElJSVq9erUiIiIkSU2bNjWvUl+8eHGZctuyZYsOHDigL7/8Ut7e3mrfvr2mTZum8ePHa/LkyXJ0dCzPrgIAAAAAAAAAIOkm50jPzs6WJHl4eEi6crV5QUGBgoODzZiWLVuqSZMmSkpKstlPUR83KikpSW3atJG3t7e5LjQ0VDk5OUpLS7upvgEAAAAAAAAA1Ve5rki/WmFhocaMGaOuXbuqdevWkqTMzEw5Ojqqbt26VrHe3t7KzMwssZ/du3dr+fLl2rBhw42mYm776iJ60XaL2kqSl5envLw883VOTs5N5QAAAAAAAAAAqHpu+Ip0i8Wi/fv3a9myZTe88f3792vgwIGaNGmSQkJCbrifGxUdHS13d3dz8fX1ve05AAAAAAAAAAAqtxsqpEdERGj9+vXavn27GjdubK738fFRfn6+zp07ZxWflZUlHx8fq3UHDhxQnz59NHLkSE2YMOFG0rDi4+OjrKysYtstaitJVFSUsrOzzeXEiRM3nQcAAAAAAAAAoGopVyHdMAxFRERozZo12rZtm5o1a2bVHhgYqJo1a2rr1q3muvT0dB0/flxBQUHmurS0NPXq1Uvh4eF66623bnIXrggKCtKPP/6oU6dOmesSExPl5uamgICAEt/j5OQkNzc3qwUAAAAAAAAAgKuVa450i8WihIQErV27VnXq1DHnHnd3d5eLi4vc3d01fPhwRUZGysPDQ25ubho9erSCgoLUpUsXSVemc+ndu7dCQ0MVGRlp9uHg4CBPT09zW6mpqZKk8+fP6/Tp00pNTZWjo6NZFF+zZo2ioqJ06NAhSVJISIgCAgL0/PPPa/r06crMzNSECRNksVjk5OR0c0cJAAAAAAAAAFBtlauQPn/+fElSz549rdbHxsZqyJAhkqTZs2fL3t5eYWFhysvLU2hoqObNm2fGrlq1SqdPn1Z8fLzi4+PN9X5+fjp27Jj5+r777jP/PyUlRQkJCVYx2dnZSk9PN2McHBy0fv16jRo1SkFBQapdu7bCw8M1derU8uwiAAAAAAAAAABWylVINwzjujHOzs6KiYlRTExMie2TJ0/W5MmTb3pbQ4YMMYv3Rfz8/LRx48br9g0AAAAAAAAAQFnd0MNGAQAAAAAAAACoLiikAwAAAAAAAABgA4V0AAAAAAAAAABsoJAOAAAAAAAAAIANFNIBAAAAAAAAALCBQjoAAAAAAAAAADZQSAcAAAAA4A4wefJk2dnZWS0tW7Y02y9evCiLxaL69evL1dVVYWFhysrKsurj+PHj6t+/v2rVqiUvLy+9/vrrunTpklXMjh071KFDBzk5OalFixaKi4srlktMTIyaNm0qZ2dnde7cWd99990fss8AAFQWFNIBAAAAALhDtGrVSidPnjSXr7/+2mwbO3as1q1bp5UrV2rnzp3KyMjQY489ZrZfvnxZ/fv3V35+vnbv3q0lS5YoLi5OEydONGOOHj2q/v37q1evXkpNTdWYMWM0YsQIbd682YxZvny5IiMjNWnSJO3Zs0ft2rVTaGioTp06dXsOAgAAFYBCOgAA1RBXtAEAcGeqUaOGfHx8zKVBgwaSpOzsbH388ceaNWuWevfurcDAQMXGxmr37t1KTk6WJG3ZskUHDhxQfHy82rdvr379+mnatGmKiYlRfn6+JGnBggVq1qyZZs6cKX9/f0VEROjxxx/X7NmzzRxmzZqlF198UUOHDlVAQIAWLFigWrVqafHixbf/gAAAcJtQSAcAoJriijYAAO48//73v9WoUSM1b95czz77rI4fPy5JSklJUUFBgYKDg83Yli1bqkmTJkpKSpIkJSUlqU2bNvL29jZjQkNDlZOTo7S0NDPm6j6KYor6yM/PV0pKilWMvb29goODzZjS5OXlKScnx2oBAOBOQSEdAIBqiivaAAC4s3Tu3FlxcXHatGmT5s+fr6NHj6pbt2767bfflJmZKUdHR9WtW9fqPd7e3srMzJQkZWZmWhXRi9qL2mzF5OTk6MKFCzpz5owuX75cYkxRH6WJjo6Wu7u7ufj6+pb7GAAAUFEopAMAUE3dqVe0cTUbAKC66tevn5544gm1bdtWoaGh2rhxo86dO6cVK1ZUdGplEhUVpezsbHM5ceJERacEAECZUUgHAKAaupOvaONqNgAArqhbt67uuece/fTTT/Lx8VF+fr7OnTtnFZOVlSUfHx9Jko+PT7FnnhS9vl6Mm5ubXFxc1KBBAzk4OJQYU9RHaZycnOTm5ma1AABwp6CQDgBANXQnX9HG1WwAAFxx/vx5HT58WA0bNlRgYKBq1qyprVu3mu3p6ek6fvy4goKCJElBQUH68ccfrZ5FkpiYKDc3NwUEBJgxV/dRFFPUh6OjowIDA61iCgsLtXXrVjMGAICqiEI6AAC4o65o42o2AEB19Ze//EU7d+7UsWPHtHv3bj366KNycHDQ4MGD5e7uruHDhysyMlLbt29XSkqKhg4dqqCgIHXp0kWSFBISooCAAD3//PPau3evNm/erAkTJshiscjJyUmS9PLLL+vIkSMaN26cDh06pHnz5mnFihUaO3asmUdkZKQ++ugjLVmyRAcPHtSoUaOUm5uroUOHVshxAQDgdqCQDgAAuKINAIA7wH/+8x8NHjxY9957r5588knVr19fycnJ8vT0lCTNnj1bDz/8sMLCwtS9e3f5+Pho9erV5vsdHBy0fv16OTg4KCgoSM8995xeeOEFTZ061Yxp1qyZNmzYoMTERLVr104zZ87UokWLFBoaasY89dRTevfddzVx4kS1b99eqamp2rRpU7Hp2gAAqEpqVHQCAADg9vvLX/6iRx55RH5+fsrIyNCkSZNKvKLNw8NDbm5uGj16dKlXtE2fPl2ZmZklXtE2d+5cjRs3TsOGDdO2bdu0YsUKbdiwwcwjMjJS4eHhuv/++9WpUye99957XNEGAEApli1bZrPd2dlZMTExiomJKTXGz89PGzdutNlPz5499cMPP9iMiYiIUEREhM0YAACqEgrpAABUQ0VXtP3yyy/y9PTUgw8+WOyKNnt7e4WFhSkvL0+hoaGaN2+e+f6iK9pGjRqloKAg1a5dW+Hh4SVe0TZ27FjNmTNHjRs3LvGKttOnT2vixInKzMxU+/btuaINAAAAAFDpUEgHAKAa4oo2AAAAAADKjjnSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABsopAMAAAAAAAAAYAOFdAAAAAAAAAAAbKCQDgAAAAAAAACADRTSAQAAAAAAAACwgUI6AAAAAAAAAAA2UEgHAAAAAAAAAMAGCukAAAAAAAAAANhAIR0AAAAAAAAAABvKVUiPjo5Wx44dVadOHXl5eWnQoEFKT0+3irl48aIsFovq168vV1dXhYWFKSsry2zfu3evBg8eLF9fX7m4uMjf319z5swptq0dO3aoQ4cOcnJyUosWLRQXF2czt2PHjsnOzq7YkpycXJ5dBAAAAAAAAADASrkK6Tt37pTFYlFycrISExNVUFCgkJAQ5ebmmjFjx47VunXrtHLlSu3cuVMZGRl67LHHzPaUlBR5eXkpPj5eaWlpeuONNxQVFaW5c+eaMUePHlX//v3Vq1cvpaamasyYMRoxYoQ2b9583Ry//PJLnTx50lwCAwPLs4sAAAAAAAAAAFipUZ7gTZs2Wb2Oi4uTl5eXUlJS1L17d2VnZ+vjjz9WQkKCevfuLUmKjY2Vv7+/kpOT1aVLFw0bNsyqj+bNmyspKUmrV69WRESEJGnBggVq1qyZZs6cKUny9/fX119/rdmzZys0NNRmjvXr15ePj095dgsAAAAAAAAAgFKVq5B+rezsbEmSh4eHpCtXmxcUFCg4ONiMadmypZo0aaKkpCR16dKl1H6K+pCkpKQkqz4kKTQ0VGPGjLluTgMGDNDFixd1zz33aNy4cRowYECpsXl5ecrLyzNf5+TkXLd/oKr7/fffdejQoRt+/8GDB63+eyNatmypWrVq3fD7AQCobirD+C0xhgMAUF43M4YzfgO31w0X0gsLCzVmzBh17dpVrVu3liRlZmbK0dFRdevWtYr19vZWZmZmif3s3r1by5cv14YNG8x1mZmZ8vb2LtZHTk6OLly4IBcXl2L9uLq6aubMmeratavs7e312WefadCgQfr8889LLaZHR0drypQp5dltoMo7dOjQLZkS6bnnnrvh96akpKhDhw43nQMAANVFZRi/JcZwAADK61aM4YzfwO1xw4V0i8Wi/fv36+uvv77hje/fv18DBw7UpEmTFBIScsP9SFKDBg0UGRlpvu7YsaMyMjI0Y8aMUgvpUVFRVu/JycmRr6/vTeUB3OlatmyplJSUG37/hQsXdOzYMTVt2rTEL73KmgMAACi7yjB+F+UBAADK7mbGcMZv4Pa6oUJ6RESE1q9fr127dqlx48bmeh8fH+Xn5+vcuXNWV6VnZWUVm7f8wIED6tOnj0aOHKkJEyZYtfn4+CgrK8tqXVZWltzc3Mr1h6Fz585KTEwstd3JyUlOTk5l7g+oDmrVqnXT30R37dr1FmUDAADKgvEbQEWJiYnRjBkzlJmZqXbt2umDDz5Qp06dKjot4I5xs2M44zdw+9iXJ9gwDEVERGjNmjXatm2bmjVrZtUeGBiomjVrauvWrea69PR0HT9+XEFBQea6tLQ09erVS+Hh4XrrrbeKbScoKMiqD0lKTEy06qMsUlNT1bBhw3K9BwAAAAAAXN/y5csVGRmpSZMmac+ePWrXrp1CQ0N16tSpik4NAIBbrlyFdIvFovj4eCUkJKhOnTrKzMxUZmamLly4IElyd3fX8OHDFRkZqe3btyslJUVDhw5VUFCQ+aDR/fv3q1evXgoJCVFkZKTZx+nTp83tvPzyyzpy5IjGjRunQ4cOad68eVqxYoXGjh1rxsydO1d9+vQxXy9ZskSffvqpDh06pEOHDuntt9/W4sWLNXr06Js6QAAA4PaIiYlR06ZN5ezsrM6dO+u7776r6JQAAIANs2bN0osvvqihQ4cqICBACxYsUK1atbR48eKKTg0AgFuuXIX0+fPnKzs7Wz179lTDhg3NZfny5WbM7Nmz9fDDDyssLEzdu3eXj4+PVq9ebbavWrVKp0+fVnx8vFUfHTt2NGOaNWumDRs2KDExUe3atdPMmTO1aNEihYaGmjFnzpzR4cOHrfKbNm2aAgMD1blzZ61du1bLly/X0KFDy31QAADA7cUVbQAA3Fny8/OVkpKi4OBgc529vb2Cg4OVlJRUgZkBAPDHsDMMw6joJCqLnJwcubu7Kzs7W25ubhWdDgCgGqquY1Hnzp3VsWNHzZ07V5JUWFgoX19fjR49Wn/9619tvre6HjMAQOVS3cajjIwM/elPf9Lu3butpmEdN26cdu7cqW+//bbYe/Ly8pSXl2e+zsnJka+vb7U5ZgCAyqc843e5rkgHAAC41cp7RVteXp5ycnKsFgAAUPlFR0fL3d3dXHx9fSs6JQAAyoxCOgAAqFBnzpzR5cuX5e3tbbXe29tbmZmZxeL5RzgAABWvQYMGcnBwUFZWltX6rKws+fj4lPieqKgoZWdnm8uJEyduR6oAANwSFNIBAMAdhX+EAwBQ8RwdHRUYGKitW7ea6woLC7V161arqV6u5uTkJDc3N6sFAIA7RY2KTgAAAFRv5b2izcnJSU5OTrcrPQAAUIrIyEiFh4fr/vvvV6dOnfTee+8pNzdXQ4cOrejUAAC45bgiHQAAVKgbuaINAABUvKeeekrvvvuuJk6cqPbt2ys1NVWbNm0qNl0bAABVAVekAwCACscVbQAA3JkiIiIUERFR0WkAAPCHo5AOAAAq3FNPPaXTp09r4sSJyszMVPv27bmiDQAAAABQaVBIBwAAlQJXtAEAAAAAKivmSAcAAAAAAAAAwAYK6QAAAAAAAAAA2EAhHQAAAAAAAAAAG5gj/SqGYUiScnJyKjgTAEB1VTQGFY1JuD7GbwBAZcAYXn6M4QCAilae8ZtC+lV+++03SZKvr28FZwIAqO5+++03ubu7V3QadwTGbwBAZcIYXnaM4QCAyuL/a+++w6wo7/9xv5a2EDpIW6VpsGDvikaIkhCs2GM0QSBirEFjTEysaCR27DUBWxJbNMbeQBPFEhWT2D4WECygRGUBBZU9vz/8cn6uwAiKrov3fV3nujjPPPPMe2bnOO5rZp+zJNfvipLb5WU1NTV5/fXX07Jly1RUVNR1OVAvVVdXp2vXrpk6dWpatWpV1+VAvVMqlTJr1qxUVVWlQQMzsC0J12/44ly/4YtzDV96ruHwxbh+wxe3NNdvQTqwTFVXV6d169aZOXOmCzkA1BOu3wBQ/7h+w1fLbXIAAAAAACggSAcAAAAAgAKCdGCZqqyszHHHHZfKysq6LgUAWEKu3wBQ/7h+w1fLHOkAAAAAAFDAE+kAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpwDLxwAMPZIcddkhVVVUqKipy00031XVJAMBncP0GgPrJNRy+eoJ0YJmYM2dO1l133Zx//vl1XQoAsIRcvwGgfnINh69eo7ouAFg+DBw4MAMHDqzrMgCApeD6DQD1k2s4fPU8kQ4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFGtV1AcDyYfbs2XnxxRfL7ydNmpSJEyemXbt26datWx1WBgAsjus3ANRPruHw1asolUqlui4CqP/Gjx+f7373uwu1Dx48OGPHjv3qCwIAPpPrNwDUT67h8NUTpAMAAAAAQAFzpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAfANVVFTkpptuqusyAACgXhCkA0tk8uTJqaioyMSJE+u6FAAAAPha+TrcoD7++OOz3nrr1WkNn+XrcJzg8xKkAwAAS+2DDz6o6xIAgE844ogjcu+999Z1GbDcEqQDn6m+/qJcX+sGgCV1/fXXZ+21106zZs3Svn379O/fP3PmzMljjz2W733ve1lhhRXSunXr9O3bN0888UThWL/61a+y6qqr5lvf+lZWXnnlHHPMMfnwww/Lyxc85XbZZZelZ8+eadq0aa644oq0b98+8+bNqzXWoEGD8uMf//hL2WcAWB4ti99fW7Rokfbt2y+DaoBFEaTDcuCWW25JmzZtMn/+/CTJxIkTU1FRkV//+tflPj/96U+zzz77JEluuOGGrLnmmqmsrEyPHj1yxhln1BqvR48eOfHEE/OTn/wkrVq1yvDhwxfa5vz58zN06NCsvvrqmTJlSmF9Q4cOzfbbb1+r7cMPP0zHjh3zhz/8IUlSU1OTUaNGpWfPnmnWrFnWXXfdXH/99bW2N2zYsPLy1VZbLWeffXatMffdd98MGjQov/vd71JVVZXVVlvtsw4dANRbb7zxRvbaa68MHTo0zz77bMaPH59ddtklpVIps2bNyuDBg/PPf/4zDz/8cHr16pVtt902s2bNWux4LVu2zNixY/PMM8/k7LPPzqWXXpqzzjqrVp8XX3wxN9xwQ/76179m4sSJ2X333TN//vzcfPPN5T5vvvlmbr311gwdOvRL23cA+DLU9xvUn57aZcHvyKeffnq6dOmS9u3b56CDDqpVR5FFTcPSpk2bjB07NsnH4f/BBx+cLl26pGnTpunevXtGjRpV7vvCCy9kq622StOmTdO7d+/cfffdS7Rd+LpqVNcFAF/cd77zncyaNStPPvlkNtpoo9x///1ZYYUVMn78+HKf+++/P7/61a/y+OOPZ4899sjxxx+fPffcMw899FAOPPDAtG/fPvvuu2+5/+mnn55jjz02xx133ELbmzdvXvbaa69Mnjw5//jHP9KhQ4fC+n76059mq622yhtvvJEuXbok+Tj8f++997LnnnsmSUaNGpWrrroqF110UXr16pUHHngg++yzTzp06JC+ffumpqYmK620Uq677rq0b98+Dz30UIYPH54uXbpkjz32KG/r3nvvTatWrVygAVjuvfHGG/noo4+yyy67pHv37kmStddeO0my9dZb1+p7ySWXpE2bNrn//vsXurm9wNFHH13+d48ePXLEEUfkL3/5S4488shy+wcffJArrrii1rX/Rz/6UcaMGZPdd989SXLVVVelW7du6dev3zLZTwD4Kiy4QX3qqadm5513zqxZs/KPf/yj1g3qc889N6VSKWeccUa23XbbvPDCC2nZsuUix1twg7qqqir/+c9/st9++6Vly5a1rqufvEHdsGHD9OrVK4ceemhuvvnm8nV1wQ3qu+6663Pt17hx49KlS5eMGzcuL774Yvbcc8+st9562W+//T7XeJ90zjnn5Oabb861116bbt26ZerUqZk6dWqSjx+W22WXXdKpU6c88sgjmTlzZkaMGPGFtwl1SZAOy4HWrVtnvfXWy/jx47PRRhtl/PjxOeyww3LCCSdk9uzZmTlzZl588cX07ds3xx9/fLbZZpscc8wxSZJVV101zzzzTE477bRaQfrWW2+dX/ziF+X3kydPTpLMnj072223XebNm5dx48aldevWn1lfnz59stpqq+XKK68s/0/Dgl+4W7RokXnz5uXkk0/OPffck8033zxJsvLKK+ef//xnLr744vTt2zeNGzfOCSecUB6zZ8+emTBhQq699tpaQXrz5s1z2WWXpUmTJp/7eAJAfbDuuutmm222ydprr50BAwbk+9//fnbbbbe0bds206dPz9FHH53x48fnzTffzPz58/Pee+8V/hXZNddck3POOScvvfRSZs+enY8++iitWrWq1ad79+4L3UDfb7/9svHGG+e1117LiiuumLFjx2bfffdNRUXFl7LfAPBlWF5vULdt2zbnnXdeGjZsmNVXXz3bbbdd7r333mUSpE+ZMiW9evXKlltumYqKivJxS5J77rknzz33XO68885UVVUlSU4++eQMHDjwC28X6oqpXWA50bdv34wfPz6lUin/+Mc/sssuu2SNNdbIP//5z9x///2pqqpKr1698uyzz2aLLbaote4WW2yRF154oTw1TJJstNFGi9zOXnvtlTlz5uSuu+5aohB9gZ/+9KcZM2ZMkmT69Om5/fbby3/y/eKLL+a9997L9773vbRo0aL8uuKKK/LSSy+Vxzj//POz4YYbpkOHDmnRokUuueSShQKBtddeW4gOwDdCw4YNc/fdd+f2229P7969c+6552a11VbLpEmTMnjw4EycODFnn312HnrooUycODHt27df7PyrEyZMyN57751tt902t9xyS5588sn89re/Xah/8+bNF1p3/fXXz7rrrpsrrrgijz/+eJ5++ulaN+cBoD745A3q3XffPZdeemneeeedJB//DrvffvulV69ead26dVq1apXZs2d/5g3qLbbYIp07d06LFi1y9NFHL9R/cTeo77rrrrz22mtJ8oVvUK+55ppp2LBh+X2XLl3y5ptvfq6xPm3ffffNxIkTs9pqq+XQQw+t9dT8s88+m65du5ZD9CTlB+egvhKkw3KiX79++ec//5mnnnoqjRs3zuqrr55+/fpl/Pjxuf/++9O3b9+lGm9Rvygnybbbbpt///vfmTBhwlKN95Of/CQvv/xyJkyYkKuuuio9e/bMd77znSQfP+WeJLfeemsmTpxYfj3zzDPledL/8pe/5IgjjsiwYcNy1113ZeLEiRkyZMgS/YIPAMurioqKbLHFFjnhhBPy5JNPpkmTJrnxxhvz4IMP5tBDD822225b/l6UGTNmLHachx56KN27d89vf/vbbLTRRunVq1deeeWVJa7jpz/9acaOHZsxY8akf//+6dq167LYPQD4yiyvN6gbN25c631FRUVqamqWaN2KioqUSqVabZ+cX32DDTbIpEmTcuKJJ+b999/PHnvskd122+1z1wpfd6Z2geXEgnnSzzrrrHJo3q9fv/z+97/PO++8U56mZY011siDDz5Ya90HH3wwq666aq271ItzwAEHZK211sqOO+6YW2+9dYkD+vbt22fQoEEZM2ZMJkyYkCFDhpSX9e7dO5WVlZkyZcpix3vwwQfTp0+fHHjggeW2Tz6tDgDfNI888kjuvffefP/730/Hjh3zyCOP5K233soaa6yRXr165corr8xGG22U6urq/PKXv0yzZs0WO1avXr0yZcqU/OUvf8nGG2+cW2+9NTfeeOMS1/KjH/0oRxxxRC699NJcccUVy2L3AOArt+AG9RZbbJFjjz023bt3L9+gvuCCC7LtttsmSaZOnbrEN6gXWNob1KNHj85rr71WpzeoO3TokDfeeKP8/oUXXsh7771Xq0+rVq2y5557Zs8998xuu+2WH/zgB3n77bezxhprZOrUqbW+K+3hhx/+SuuHZU2QDsuJtm3bZp111snVV1+d8847L0my1VZbZY899siHH35YDqh/8YtfZOONN86JJ56YPffcMxMmTMh5552XCy64YIm3dcghh2T+/PnZfvvtc/vtt2fLLbdcovV++tOfZvvtt8/8+fMzePDgcnvLli1zxBFH5LDDDktNTU223HLLzJw5Mw8++GBatWqVwYMHp1evXrniiity5513pmfPnrnyyivz2GOPpWfPnktxlABg+dGqVas88MADGT16dKqrq9O9e/ecccYZGThwYDp37pzhw4dngw02SNeuXXPyySfniCOOWOxYO+64Yw477LAcfPDBmTdvXrbbbrscc8wxOf7445eoltatW2fXXXfNrbfemkGDBi2bHQSAr5Ab1Avbeuutc95552XzzTfP/Pnz86tf/arWE+5nnnlmunTpkvXXXz8NGjTIddddl86dO6dNmzbp379/Vl111QwePDinnXZaqqura91YgPpIkA7Lkb59+2bixInlLyFp165devfunenTp2e11VZL8vGfXl177bU59thjc+KJJ6ZLly4ZOXLkUv+p2IgRI1JTU5Ntt902d9xxR/r06fOZ6/Tv3z9dunTJmmuuWWuetCQ58cQT06FDh4waNSovv/xy2rRpkw022CC/+c1vkiT7779/nnzyyey5556pqKjIXnvtlQMPPDC33377UtUNAMuLNdZYI3fccccil62//vp57LHHarV9+k+tP/2n2qeeempOPfXUWm0jRowo//v4448vDNZfe+217L333qmsrFyC6gHg68UN6oWdccYZGTJkSL7zne+kqqoqZ599dh5//PHy8pYtW+bUU0/NCy+8kIYNG2bjjTfObbfdlgYNPp5J+sYbb8ywYcOyySabpEePHjnnnHPygx/8oK52B76witKn/w8a4Esye/bsrLjiihkzZkx22WWXui4HAFgG3nnnnYwfPz677bZbnnnmmfLNewDg89tmm22y5ppr5pxzzqnrUoD/xxPpwJeupqYmM2bMyBlnnJE2bdpkxx13rOuSAIBlZP31188777yTU045RYgOAF/QghvU48ePX6opWIEvnyAd+MKuvvrq7L///otc1r1799x6663p2bNnVlpppYwdOzaNGvlPDwAsLyZPnlzXJQDAcqPoBvWaa6652C8tvfjii7P33nsv8Xb+8Y9/ZODAgYtdPnv27CUeC74pTO0CfGGzZs3K9OnTF7mscePG6d69+1dcEQAAACxfXnnllXz44YeLXNapU6e0bNlyicd6//3389prry12+be//e2lrg+Wd4J0AAAAAAAo0KCuCwAAAAAAgK8zQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToA9c748eNTUVGR8ePH13UpAAAAwDeAIL0euP7661NRUbHI11prrVXX5cE3Rr9+/bLvvvsmSfbdd9/069evTuv5Ik4++eTcdNNNdV3GZ7rgggsyduzYZTrm8ccfnx49eiRJxo4dm4qKimU6PgAAALD8aVTXBbDkfvOb32SNNdYov//d735Xh9UA9dnJJ5+c3XbbLYMGDarrUgpdcMEFWWGFFco3MBbYaqut8v7776dJkyZ1UxgAAADwjSJIr0e+973v1XoC9rLLLsuMGTPqriCg0EcffZSamhph7/9TKpUyd+7cNGvW7AuP1aBBgzRt2nQZVAUAAADw2UztUg988MEHST4Ojj7LgmkKJk+eXG6rqanJOuusk4qKilpTJPz73//Ovvvum5VXXjlNmzZN586dM3To0Pzvf/+rNebxxx+/yGllGjX6/+/D9OvXL2uttVYef/zx9OnTJ82aNUvPnj1z0UUXLbQvxx57bDbccMO0bt06zZs3z3e+852MGzeuVr/JkyeXt/Pp6Sfmzp2btm3bpqKiIqeffvpCdXbs2DEffvhhrXX+/Oc/l8f75M2Hv/3tb9luu+1SVVWVysrKrLLKKjnxxBMzf/78zzzWC7b33HPPZY899kirVq3Svn37/PznP8/cuXNr9R0zZky23nrrdOzYMZWVlendu3cuvPDChcbcaaed0qNHjzRt2jQdO3bMjjvumP/85z+1+izYj9GjRy+0/uqrr56KioocfPDB5ba33347RxxxRNZee+20aNEirVq1ysCBA/PUU0/VWnfw4MFp2rRpnn322VrtAwYMSNu2bfP666+X215++eXsvvvuadeuXb71rW9ls802y6233lprvQVzWC94VVZWZtVVV82oUaNSKpWKD+7/s7hzb1FTqnzynPn065PefPPNDBs2LN26dUvDhg3LfVq0aLFENS3Ogu2ffvrpGT16dFZZZZVUVlbmmWeeSZI899xz2W233dKuXbs0bdo0G220UW6++eZaYyz4/P7zn//MoYcemg4dOqRNmzbZf//988EHH+Tdd9/NT37yk7Rt2zZt27bNkUceudCxnDNnTn7xi1+ka9euqayszGqrrZbTTz+9Vr+KiorMmTMnl19+eXn/P/nE92uvvZahQ4emU6dOqayszJprrpk//vGPS31MevToke233z533nlnNtpoozRr1iwXX3xxkiX7TPTo0SNPP/107r///oV+9oubI/26667LhhtumGbNmmWFFVbIPvvsk9dee22pawcAAAD4JE+k1wMLgvTKysrPtf6VV165UBibJHfffXdefvnlDBkyJJ07d87TTz+dSy65JE8//XQefvjhhQLICy+8sFbY+Olg/5133sm2226bPfbYI3vttVeuvfbaHHDAAWnSpEmGDh2aJKmurs5ll12WvfbaK/vtt19mzZqVP/zhDxkwYEAeffTRrLfeerXGbNq0acaMGVNr+om//vWvCwXVnzRr1qzccsst2XnnncttY8aMSdOmTRdab+zYsWnRokUOP/zwtGjRIvfdd1+OPfbYVFdX57TTTlvsNj5pjz32SI8ePTJq1Kg8/PDDOeecc/LOO+/kiiuuqHXs1lxzzey4445p1KhR/v73v+fAAw9MTU1NDjrooFrjDR8+PJ07d87rr7+e8847L/3798+kSZPyrW99a6HjMmLEiHLbQw89lFdeeWWh+l5++eXcdNNN2X333dOzZ89Mnz49F198cfr27ZtnnnkmVVVVSZKzzz479913XwYPHpwJEyakYcOGufjii3PXXXflyiuvLPebPn16+vTpk/feey+HHnpo2rdvn8svvzw77rhjrr/++lrHPfn/pyR6//33c8011+Q3v/lNOnbsmGHDhi3R8V1w/Bace0cddVRh3+HDh+c73/lOko/PlRtvvLHW8sGDB+eee+7JIYccknXXXTcNGzbMJZdckieeeGKJ6ykyZsyYzJ07N8OHD09lZWXatWuXp59+OltssUVWXHHF/PrXv07z5s1z7bXXZtCgQbnhhhsWOmaHHHJIOnfunBNOOCEPP/xwLrnkkrRp0yYPPfRQunXrlpNPPjm33XZbTjvttKy11lr5yU9+kuTjJ7533HHHjBs3LsOGDct6662XO++8M7/85S/z2muv5ayzzkry8X8TfvrTn2aTTTbJ8OHDkySrrLJKko9/vptttln5hkyHDh1y++23Z9iwYamurq51zi2J559/PnvttVf233//7LfffllttdWSLNlnYvTo0TnkkEPSokWL/Pa3v02SdOrUabHbGjt2bIYMGZKNN944o0aNyvTp03P22WfnwQcfzJNPPpk2bdosVe0AAAAAZSW+9kaPHl1KUnrqqadqtfft27e05ppr1mobM2ZMKUlp0qRJpVKpVJo7d26pW7dupYEDB5aSlMaMGVPu+9577y20rT//+c+lJKUHHnig3HbccceVkpTeeuutxdbYt2/fUpLSGWecUW6bN29eab311it17Nix9MEHH5RKpVLpo48+Ks2bN6/Wuu+8806pU6dOpaFDh5bbJk2aVEpS2muvvUqNGjUqTZs2rbxsm222Kf3oRz8qJSmddtppC9W51157lbbffvty+yuvvFJq0KBBaa+99lpoPxZ1DPbff//St771rdLcuXMXu7+f3N6OO+5Yq/3AAw9c6Oe1qO0MGDCgtPLKKxdu49prry0lKf3rX/8qtyUp7bbbbqVGjRrVah82bFj5uBx00EHl9rlz55bmz59fa9xJkyaVKisrSyNHjqzVfuedd5aSlE466aTSyy+/XGrRokVp0KBBtfqMGDGilKT0j3/8o9w2a9asUs+ePUs9evQob2vcuHGlJKVx48bVqqVBgwalAw88sHC/F/jNb35TSlKaMWNGuW3NNdcs9e3bd6G+L7zwQilJ6fLLLy+3LfgZLfD++++XGjRoUNp///1rrTt48OBS8+bNl6imxVlwzrZq1ar05ptv1lq2zTbblNZee+1a51RNTU2pT58+pV69epXbFnx+BwwYUKqpqSm3b7755qWKiorSz372s3LbRx99VFpppZVqHYubbrqp/PP7pN12261UUVFRevHFF8ttzZs3Lw0ePHih/Rg2bFipS5cutY55qVQq/fCHPyy1bt16kefy4nTv3r2UpHTHHXcstGxJPxOL+3l/+vz64IMPSh07diyttdZapffff7/c75ZbbiklKR177LFLXDcAAADAp5napR5YMNVKhw4dlnrd888/P//73/9y3HHHLbTsk/MUz507NzNmzMhmm22WJJ/r6dxGjRpl//33L79v0qRJ9t9//7z55pt5/PHHkyQNGzYszxddU1OTt99+Ox999FE22mijRW5zgw02yJprrpkrr7wySfLKK69k3LhxC33x4CcNHTo0d9xxR6ZNm5Ykufzyy7P55ptn1VVXXajvJ4/BrFmzMmPGjHznO9/Je++9l+eee26J9vvTT5QfcsghSZLbbrttkduZOXNmZsyYkb59++bll1/OzJkza63/3nvvZcaMGZk4cWIuvfTSdOrUaaHaO3XqlO222y5jxowpr3PttddmyJAhC9VXWVlZ/uuB+fPn53//+19atGiR1VZbbaFj/v3vfz/7779/Ro4cmV122SVNmzYtT8WxwG233ZZNNtkkW265ZbmtRYsWGT58eCZPnlyeyuTT+ztlypSceuqpqampydZbb72II7mwBX9BsCRzYS/JX27MmTMnNTU1ad++/RJt//PYdddda31W33777dx3333ZY489yufYjBkz8r///S8DBgzICy+8sNDUI8OGDav1FyGbbrppSqVSraf4GzZsmI022igvv/xyue22225Lw4YNc+ihh9Ya7xe/+EVKpVJuv/32wtpLpVJuuOGG7LDDDimVSuVaZ8yYkQEDBmTmzJlL/d+Gnj17ZsCAAQu1L81nYkn861//yptvvpkDDzyw1vmy3XbbZfXVV19o6iEAAACApSFIrwdeeeWVNGrUaKmD9JkzZ+bkk0/O4YcfvsjpEN5+++38/Oc/T6dOndKsWbN06NAhPXv2LK+7tKqqqtK8efNabQsC4E/O2X755ZdnnXXWSdOmTdO+fft06NAht95662K3OWTIkHJgPHbs2PTp0ye9evVabB3rrbde1lprrVxxxRUplUrl6R4W5emnn87OO++c1q1bp1WrVunQoUP22WefJEt+DD5dyyqrrJIGDRrU2ucHH3ww/fv3T/PmzdOmTZt06NAhv/nNbxa5nZEjR6ZDhw5Zf/31M3ny5IwfPz4tW7ZcaLtDhgzJn/70p8ybNy/XXXdd2rZtu8iAuqamJmeddVZ69eqVysrKrLDCCunQoUP+/e9/L3IfTz/99LRr1y4TJ07MOeeck44dO9Za/sorr5Sn5/ikNdZYo7z8kwYNGpQOHTqke/fuOf7443P00Udn1113XWj9RZkxY0YaN25ca1qbxXn33XeTpHCu8/bt26dXr1657LLLctddd+XNN9/MjBkzMm/evCWqZ0ks+Awt8OKLL6ZUKuWYY45Jhw4dar0W3OB68803a63TrVu3Wu9bt26dJOnatetC7e+88075/SuvvJKqqqqFzpfF/Ww+7a233sq7776bSy65ZKFaF3yGPl3rZ/n08VhgaT4TS2LBvi3q3Fx99dU/c98BAAAAipgjvR54/vnns/LKK9f6cs8lccopp6RBgwb55S9/udAXiCYfz+390EMP5Ze//GXWW2+9tGjRIjU1NfnBD36QmpqaZVV+LVdddVX23XffDBo0KL/85S/TsWPHNGzYMKNGjcpLL720yHX22WefHHnkkXn44Ydz+eWX5+ijj/7M7QwdOjQXXHBBNtlkk0ybNi177LFHzjjjjFp93n333fTt2zetWrXKyJEjs8oqq6Rp06Z54okn8qtf/epzH4NPzy3/0ksvZZtttsnqq6+eM888M127dk2TJk1y22235ayzzlpoOz/96U+zzTbb5NVXX81ZZ52VXXfdNQ899FA5TF1gu+22S5MmTXLTTTdlzJgxGTx48CK/kPbkk0/OMccck6FDh+bEE09Mu3bt0qBBg4wYMWKR+/jkk0+Ww9L//Oc/2WuvvT7XcVjg9NNPz7rrrpsPP/wwjz32WE466aQ0atRokX8l8WmTJ09Ot27dFjqmi7LgLxA6d+5c2O+aa67J3nvvvdBT0p++CfR5ffJJ6yTlY3zEEUcs8snsJPn2t79d633Dhg0X2W9R7aUl/OLWJbGg1n322SeDBw9eZJ911llnqcb89PFIlv4zAQAAAFDXBOlfc/PmzcvEiRNrfdnmknj99ddz9tlnZ9SoUWnZsuVCQfo777yTe++9NyeccEKOPfbYcvsLL7zwuWt9/fXXM2fOnFqB5P/93/8lSXr06JEkuf7667Pyyivnr3/9a61wtChUbd++fXbcccfyNDF77LFHZsyYUVjL3nvvnV/+8pf5+c9/nt12222RT3SPHz8+//vf//LXv/41W221Vbl90qRJS7S/C7zwwgu1nrp98cUXU1NTU97nv//975k3b15uvvnmWk8ajxs3bpHjffvb3y4Hq/3790+3bt3ypz/9KQcccECtfo0aNcqPf/zj/O53v8vTTz+dP/7xj4sc7/rrr893v/vd/OEPf6jV/u6772aFFVao1TZnzpwMGTIkvXv3Tp8+fXLqqadm5513zsYbb1zu07179zz//PMLbWfBVDjdu3ev1b7hhhumX79+SZKBAwfmtddeyymnnJJjjjlmkcH/Ah999FGeeuqp/OAHP1hsn0965plnUlFRscgnkj9p/fXXz6WXXprvfOc7GTlyZDbbbLOcdtppefDBB5doO0tr5ZVXTpI0btw4/fv3/1K2sUD37t1zzz33ZNasWbXO+UX9bBZ1c6JDhw5p2bJl5s+f/6XWujSfiSW5iZL8//v2/PPPL/SXGc8///xC5yUAAADA0jC1y9fcgqk7ttlmm6Va74QTTkinTp3ys5/9bJHLFzzZ+umnWUePHv256kw+Dj4/OZ/2Bx98kIsvvjgdOnTIhhtuuNjtPvLII5kwYULh2EOHDs2///3v7L777oVTdyzQrl277LTTTvn3v/+doUOHLrLPomr54IMPcsEFF3zm+J90/vnn13p/7rnnJvk4NF7cdmbOnFmerqbIghsGi5t6ZOjQofnPf/6TrbbaqhzYflrDhg0X+jlfd911C83LnSS/+tWvMmXKlFx++eU588wz06NHjwwePLjW9rfddts8+uijtX5mc+bMySWXXJIePXqkd+/ehfv0/vvv56OPPspHH31U2O+uu+7KzJkzs9NOOxX2Sz4+92644YZssskmn3l+VFdX58c//nF23HHHHH300enfv3+6dOnymdv4vDp27Jh+/frl4osvzhtvvLHQ8rfeemuZbWvbbbfN/Pnzc95559VqP+uss1JRUVE+J5OPn8BfMB3OAg0bNsyuu+6aG264If/973+/tFqX5jOxqDoXZaONNkrHjh1z0UUX1Tpfb7/99jz77LPZbrvtvnjhAAAAwDeWJ9K/pubMmZNzzz03I0eOLAehV111Va0+06dPz+zZs3PVVVfle9/7Xq150O+6665cffXV5S/2/LRWrVplq622yqmnnpoPP/wwK664Yu66666lfhr7k6qqqnLKKadk8uTJWXXVVXPNNddk4sSJueSSS9K4ceMkyfbbb5+//vWv2XnnnbPddttl0qRJueiii9K7d+/Mnj17sWP/4Ac/yFtvvbVEIfoCY8eOzfnnn7/QU9cL9OnTJ23bts3gwYNz6KGHpqKiIldeeeVST5UxadKk7LjjjvnBD36QCRMm5KqrrsqPfvSjrLvuukk+/gLPJk2aZIcddsj++++f2bNn59JLL03Hjh1rBau33XZbLrvssvTp0yft2rXLyy+/nEsvvTTNmzfPzjvvvMhtr7HGGpkxY8Yip89YYPvtt8/IkSMzZMiQ9OnTJ//5z39y9dVXLxS833fffbngggty3HHHZYMNNkiSjBkzJv369csxxxyTU089NUny61//On/+858zcODAHHrooWnXrl0uv/zyTJo0KTfccMNCT5nffffdefXVV8tTu1x99dXZcccdF3tuJh9Pv3LEEUeksrIy77//fq1zf+bMmZk/f35uuummDBo0KPfcc0+OOeaY/Pvf/87f//73xY65wEEHHZT3338/l1122Wf2XVbOP//8bLnllll77bWz3377ZeWVV8706dMzYcKEvPrqq3nqqaeWyXZ22GGHfPe7381vf/vbTJ48Oeuuu27uuuuu/O1vf8uIESOyyiqrlPtuuOGGueeee3LmmWemqqoqPXv2zKabbprf//73GTduXDbddNPst99+6d27d95+++088cQTueeee/L2229/4TqX9DOxoM4LL7wwJ510Ur797W+nY8eOi/wugMaNG+eUU07JkCFD0rdv3+y1116ZPn16zj777PTo0SOHHXbYF64bAAAA+AYr8bU0adKkUpIlfo0bN65UKpVKY8aMKSUprbfeeqWampqFxhszZky57dVXXy3tvPPOpTZt2pRat25d2n333Uuvv/56KUnpuOOOK/c77rjjSklKb7311mLr7du3b2nNNdcs/etf/yptvvnmpaZNm5a6d+9eOu+882r1q6mpKZ188sml7t27lyorK0vrr79+6ZZbbikNHjy41L1794XqPe200wqPzyeXf1adi1r+4IMPljbbbLNSs2bNSlVVVaUjjzyydOedd9Y6pouzYLxnnnmmtNtuu5VatmxZatu2benggw8uvf/++7X63nzzzaV11lmn1LRp01KPHj1Kp5xySumPf/xjKUlp0qRJpVKpVPrvf/9b+v73v19q3759qUmTJqWuXbuWfvjDH5b+/e9/1xorSemggw5abF2fXj537tzSL37xi1KXLl1KzZo1K22xxRalCRMmlPr27Vvq27dvqVQqlaqrq0vdu3cvbbDBBqUPP/yw1niHHXZYqUGDBqUJEyaU21566aXSbrvtVmrTpk2padOmpU022aR0yy231Fpv3Lhxtc7RRo0albp371469NBDS++8807hse3evftnnvMLzpdDDjmktNVWW5XuuOOOhcZZ8DNa4M9//nOpoqJiob6DBw8uNW/evLCmz/JZ5+xLL71U+slPflLq3LlzqXHjxqUVV1yxtP3225euv/76cp8Fn9/HHntskfvx6XN7UXXPmjWrdNhhh5WqqqpKjRs3LvXq1at02mmn1frvQalUKj333HOlrbbaqtSsWbNSktLgwYPLy6ZPn1466KCDSl27di01bty41Llz59I222xTuuSSS5bqmHTv3r203XbbLXLZknwmSqVSadq0aaXtttuu1LJly1KS8jm74Pz69Of0mmuuKa2//vqlysrKUrt27Up777136dVXX12qugEAAAA+raJUWobfVMcyM3ny5PTs2TPjxo0rzy/9Rfp92fr165cZM2YscjqI5dXxxx+fE044IW+99dZin3rn8+nRo0eOP/747LvvvotcPn78+Oy7776ZPHnyV1oXAAAAAN9M5kgHAAAAAIAC5kj/mmrRokX23nvvWvOef5F+UJ/svPPOtebz/rROnTotdt54vnxvvfVW5s+fv9jlTZo0Sbt27b7CigAAAAC+XKZ2YZkwtYupXfjm6NGjR1555ZXFLu/bt2/Gjx//1RUEAAAA8CUTpAOwVB588MG8//77i13etm3bbLjhhl9hRQAAAABfLkE6AAAAAAAU8GWjAAAAAABQwJeNfkJNTU1ef/31tGzZMhUVFXVdDgDfQKVSKbNmzUpVVVUaNHC/GwAAAL4OBOmf8Prrr6dr1651XQYAZOrUqVlppZXqugwAAAAggvRaWrZsmeTj8KJVq1Z1XA0A30TV1dXp2rVr+ZoEAAAA1D1B+icsmM6lVatWgnQA6pQpxgAAAODrw+SrAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUOBrEaQ/8MAD2WGHHVJVVZWKiorcdNNNtZaXSqUce+yx6dKlS5o1a5b+/fvnhRdeqNXn7bffzt57751WrVqlTZs2GTZsWGbPnv0V7gUAAAAAAMujr0WQPmfOnKy77ro5//zzF7n81FNPzTnnnJOLLroojzzySJo3b54BAwZk7ty55T577713nn766dx999255ZZb8sADD2T48OFf1S4AAAAAALCcqiiVSqW6LuKTKioqcuONN2bQoEFJPn4avaqqKr/4xS9yxBFHJElmzpyZTp06ZezYsfnhD3+YZ599Nr17985jjz2WjTbaKElyxx13ZNttt82rr76aqqqqJdp2dXV1WrdunZkzZ6ZVq1Zfyv4BQBHXIgAAAPj6+Vo8kV5k0qRJmTZtWvr3719ua926dTbddNNMmDAhSTJhwoS0adOmHKInSf/+/dOgQYM88sgjX3nNAAAAAAAsPxrVdQGfZdq0aUmSTp061Wrv1KlTedm0adPSsWPHWssbNWqUdu3alfssyrx58zJv3rzy++rq6mVVNtSpKVOmZMaMGZ9r3ffffz+TJ09etgUtpR49eqRZs2afa90VVlgh3bp1W8YVAQAAAPBN9rUP0r9Mo0aNygknnFDXZcAyNWXKlKy2+hqZ+/57dV1KnWja7Ft5/rlnhekAAAAALDNf+yC9c+fOSZLp06enS5cu5fbp06dnvfXWK/d58803a6330Ucf5e233y6vvyhHHXVUDj/88PL76urqdO3adRlWD1+9GTNmZO7776X99r9I4/ZLfz6XPvogH82c/iVUtuQate6UikZNlnq9D/83Nf+75YzMmDFDkA4AAADAMvO1D9J79uyZzp0759577y0H59XV1XnkkUdywAEHJEk233zzvPvuu3n88cez4YYbJknuu+++1NTUZNNNN13s2JWVlamsrPzS9wHqQuP2XVPZ+dufb+WVei/bYgAAAACgHvtaBOmzZ8/Oiy++WH4/adKkTJw4Me3atUu3bt0yYsSInHTSSenVq1d69uyZY445JlVVVRk0aFCSZI011sgPfvCD7Lfffrnooovy4Ycf5uCDD84Pf/jDVFVV1dFeAQAAAACwPPhaBOn/+te/8t3vfrf8fsF0K4MHD87YsWNz5JFHZs6cORk+fHjefffdbLnllrnjjjvStGnT8jpXX311Dj744GyzzTZp0KBBdt1115xzzjlf+b4AAAAAALB8+VoE6f369UupVFrs8oqKiowcOTIjR45cbJ927drlT3/605dRHgAAAAAA32AN6roAAAAAAAD4OhOkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAEABQToAAAAAABQQpAMAAAAAQAFBOgAAAAAAFBCkAwAAAABAAUE6AAAAAAAUEKQDAAAAAECBehOkz58/P8ccc0x69uyZZs2aZZVVVsmJJ56YUqlU7lMqlXLsscemS5cuadasWfr3758XXnihDqsGAAAAAKC+qzdB+imnnJILL7ww5513Xp599tmccsopOfXUU3PuueeW+5x66qk555xzctFFF+WRRx5J8+bNM2DAgMydO7cOKwcAAAAAoD5rVNcFLKmHHnooO+20U7bbbrskSY8ePfLnP/85jz76aJKPn0YfPXp0jj766Oy0005JkiuuuCKdOnXKTTfdlB/+8Id1VjsAAAAAAPVXvXkivU+fPrn33nvzf//3f0mSp556Kv/85z8zcODAJMmkSZMybdq09O/fv7xO69ats+mmm2bChAmLHHPevHmprq6u9QIAAAAAgE+qN0+k//rXv051dXVWX331NGzYMPPnz8/vfve77L333kmSadOmJUk6depUa71OnTqVl33aqFGjcsIJJ3y5hQMAAAAAUK/VmyfSr7322lx99dX505/+lCeeeCKXX355Tj/99Fx++eWfe8yjjjoqM2fOLL+mTp26DCsGAAAAAGB5UG+eSP/lL3+ZX//61+W5ztdee+288sorGTVqVAYPHpzOnTsnSaZPn54uXbqU15s+fXrWW2+9RY5ZWVmZysrKL712AAAAAADqr3rzRPp7772XBg1ql9uwYcPU1NQkSXr27JnOnTvn3nvvLS+vrq7OI488ks033/wrrRUAAAAAgOVHvXkifYcddsjvfve7dOvWLWuuuWaefPLJnHnmmRk6dGiSpKKiIiNGjMhJJ52UXr16pWfPnjnmmGNSVVWVQYMG1W3xAAAAAADUW/UmSD/33HNzzDHH5MADD8ybb76Zqqqq7L///jn22GPLfY488sjMmTMnw4cPz7vvvpstt9wyd9xxR5o2bVqHlQMAAAAAUJ/VmyC9ZcuWGT16dEaPHr3YPhUVFRk5cmRGjhz51RUGAAAAAMByrd7MkQ4AAAAAAHVBkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABepVkP7aa69ln332Sfv27dOsWbOsvfba+de//lVeXiqVcuyxx6ZLly5p1qxZ+vfvnxdeeKEOKwYAAAAAoL6rN0H6O++8ky222CKNGzfO7bffnmeeeSZnnHFG2rZtW+5z6qmn5pxzzslFF12URx55JM2bN8+AAQMyd+7cOqwcAAAAAID6rFFdF7CkTjnllHTt2jVjxowpt/Xs2bP871KplNGjR+foo4/OTjvtlCS54oor0qlTp9x000354Q9/+JXXDAAAAABA/Vdvnki/+eabs9FGG2X33XdPx44ds/766+fSSy8tL580aVKmTZuW/v37l9tat26dTTfdNBMmTFjkmPPmzUt1dXWtFwAAAAAAfFK9CdJffvnlXHjhhenVq1fuvPPOHHDAATn00ENz+eWXJ0mmTZuWJOnUqVOt9Tp16lRe9mmjRo1K69aty6+uXbt+uTsBAAAAAEC9U2+C9JqammywwQY5+eSTs/7662f48OHZb7/9ctFFF33uMY866qjMnDmz/Jo6deoyrBgAAAAAgOVBvQnSu3Tpkt69e9dqW2ONNTJlypQkSefOnZMk06dPr9Vn+vTp5WWfVllZmVatWtV6AQAAAADAJ9WbIH2LLbbI888/X6vt//7v/9K9e/ckH3/xaOfOnXPvvfeWl1dXV+eRRx7J5ptv/pXWCgAAAADA8qNRXRewpA477LD06dMnJ598cvbYY488+uijueSSS3LJJZckSSoqKjJixIicdNJJ6dWrV3r27JljjjkmVVVVGTRoUN0WDwAAAABAvVVvgvSNN944N954Y4466qiMHDkyPXv2zOjRo7P33nuX+xx55JGZM2dOhg8fnnfffTdbbrll7rjjjjRt2rQOKwcAAAAAoD6rN0F6kmy//fbZfvvtF7u8oqIiI0eOzMiRI7/CqgAAAAAAWJ7VmznSAQAAAACgLgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKBAvQzSf//736eioiIjRowot82dOzcHHXRQ2rdvnxYtWmTXXXfN9OnT665IAAAAAACWC/UuSH/sscdy8cUXZ5111qnVfthhh+Xvf/97rrvuutx///15/fXXs8suu9RRlQAAAAAALC/qVZA+e/bs7L333rn00kvTtm3bcvvMmTPzhz/8IWeeeWa23nrrbLjhhhkzZkweeuihPPzww3VYMQAAAAAA9V29CtIPOuigbLfddunfv3+t9scffzwffvhhrfbVV1893bp1y4QJExY73rx581JdXV3rBQAAAAAAn9SorgtYUn/5y1/yxBNP5LHHHlto2bRp09KkSZO0adOmVnunTp0ybdq0xY45atSonHDCCcu6VAAAAAAAliP14on0qVOn5uc//3muvvrqNG3adJmNe9RRR2XmzJnl19SpU5fZ2AAAAAAALB/qRZD++OOP580338wGG2yQRo0apVGjRrn//vtzzjnnpFGjRunUqVM++OCDvPvuu7XWmz59ejp37rzYcSsrK9OqVataLwAAAAAA+KR6MbXLNttsk//85z+12oYMGZLVV189v/rVr9K1a9c0btw49957b3bdddckyfPPP58pU6Zk8803r4uSAQAAAABYTtSLIL1ly5ZZa621arU1b9487du3L7cPGzYshx9+eNq1a5dWrVrlkEMOyeabb57NNtusLkoGAAAAAGA5US+C9CVx1llnpUGDBtl1110zb968DBgwIBdccEFdlwUAAAAAQD1Xb4P08ePH13rftGnTnH/++Tn//PPrpiAAAAAAAJZL9eLLRgEAAAAAoK4I0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACgQL0J0keNGpWNN944LVu2TMeOHTNo0KA8//zztfrMnTs3Bx10UNq3b58WLVpk1113zfTp0+uoYgAAAAAAlgf1Jki///77c9BBB+Xhhx/O3XffnQ8//DDf//73M2fOnHKfww47LH//+99z3XXX5f7778/rr7+eXXbZpQ6rBgAAAACgvmtU1wUsqTvuuKPW+7Fjx6Zjx455/PHHs9VWW2XmzJn5wx/+kD/96U/ZeuutkyRjxozJGmuskYcffjibbbZZXZQNAAAAAEA9V2+eSP+0mTNnJknatWuXJHn88cfz4Ycfpn///uU+q6++erp165YJEyYscox58+alurq61gsAAAAAAD6pXgbpNTU1GTFiRLbYYoustdZaSZJp06alSZMmadOmTa2+nTp1yrRp0xY5zqhRo9K6devyq2vXrl926QAAAAAA1DP1Mkg/6KCD8t///jd/+ctfvtA4Rx11VGbOnFl+TZ06dRlVCAAAAADA8qLezJG+wMEHH5xbbrklDzzwQFZaaaVye+fOnfPBBx/k3XffrfVU+vTp09O5c+dFjlVZWZnKysovu2QAAAAAAOqxevNEeqlUysEHH5wbb7wx9913X3r27Flr+YYbbpjGjRvn3nvvLbc9//zzmTJlSjbffPOvulwAAAAAAJYT9eaJ9IMOOih/+tOf8re//S0tW7Ysz3veunXrNGvWLK1bt86wYcNy+OGHp127dmnVqlUOOeSQbL755tlss83quHoAAAAAAOqrehOkX3jhhUmSfv361WofM2ZM9t133yTJWWedlQYNGmTXXXfNvHnzMmDAgFxwwQVfcaUAAAAAACxP6k2QXiqVPrNP06ZNc/755+f888//CioCAAAAAOCboN7MkQ4AAAAAAHVBkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUGC5C9LPP//89OjRI02bNs2mm26aRx99tK5LAgAAAACgHluugvRrrrkmhx9+eI477rg88cQTWXfddTNgwIC8+eabdV0aAAAAAAD11HIVpJ955pnZb7/9MmTIkPTu3TsXXXRRvvWtb+WPf/xjXZcGAAAAAEA9tdwE6R988EEef/zx9O/fv9zWoEGD9O/fPxMmTKjDygAAAAAAqM8a1XUBy8qMGTMyf/78dOrUqVZ7p06d8txzzy1ynXnz5mXevHnl99XV1V9qjfBV6dyiImu892Qavf36Uq9bmv9h5s96+0uoask1bNkuFQ0bL/V6H703PWlR8SVUBAAAAMA32XITpH8eo0aNygknnFDXZcAytcIKK+SgzZrn6N431nUpX72q5KR3mmeFFVao60oAAAAAWI4sN0H6CiuskIYNG2b69Om12qdPn57OnTsvcp2jjjoqhx9+ePl9dXV1unbt+qXWCV+2bt26Zd9zx+fZ11/4XOvPmzcvr7++9E+yL0tVVVWprKz8XOvu+8NeWalbt2VcEQAAAADfZMtNkN6kSZNsuOGGuffeezNo0KAkSU1NTe69994cfPDBi1ynsrLyc4d18HW20uobJqtv+LnXX2/ZlQIAAAAA9d5yE6QnyeGHH57Bgwdno402yiabbJLRo0dnzpw5GTJkSF2XBgAAAABAPbVcBel77rln3nrrrRx77LGZNm1a1ltvvdxxxx0LfQEpAAAAAAAsqYpSqVSq6yK+Lqqrq9O6devMnDkzrVq1qutyAPgGci0CAACAr58GdV0AAAAAAAB8nQnSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKCNIBAAAAAKCAIB0AAAAAAAoI0gEAAAAAoECjui7g66RUKiVJqqur67gSAL6pFlyDFlyTAAAAgLonSP+EWbNmJUm6du1ax5UA8E03a9astG7duq7LAAAAAJJUlDzyVlZTU5PXX389LVu2TEVFRV2XA/VSdXV1unbtmqlTp6ZVq1Z1XQ7UO6VSKbNmzUpVVVUaNDADGwAAAHwdCNKBZaq6ujqtW7fOzJkzBekAAAAALBc86gYAAAAAAAUE6QAAAAAAUECQDixTlZWVOe6441JZWVnXpQAAAADAMmGOdAAAAAAAKOCJdAAAAAAAKCBIBwAAAACAAoJ0AAAAAAAoIEgHlokHHnggO+ywQ6qqqlJRUZGbbrqprksCAAAAgGVCkA4sE3PmzMm6666b888/v65LAQAAAIBlqlFdFwAsHwYOHJiBAwfWdRkAAAAAsMx5Ih0AAAAAAAoI0gEAAAAAoIAgHQAAAAAACgjSAQAAAACggCAdAAAAAAAKNKrrAoDlw+zZs/Piiy+W30+aNCkTJ05Mu3bt0q1btzqsDAAAAAC+mIpSqVSq6yKA+m/8+PH57ne/u1D74MGDM3bs2K++IAAAAABYRgTpAAAAAABQwBzpAAAAAABQQJAOAAAAAAAFBOkAAAAAAFBAkA4AAAAAAAUE6QAAAAAAUECQDgAAAAAABQTpAAAAAABQQJAOAAAAAAAFBOnAcqdHjx4ZPXp0XZcBAAAAwHJCkA4slX79+mXEiBF1XUaSZOzYsWnTps1C7Y899liGDx/+1RcEAAAAwHJJkA710AcffFDXJXypvuj+dejQId/61reWUTUAAAAAfNMJ0qEe6NevXw4++OCMGDEiK6ywQgYMGJD//ve/GThwYFq0aJFOnTrlxz/+cWbMmFFrnUMOOSQjRoxI27Zt06lTp1x66aWZM2dOhgwZkpYtW+bb3/52br/99lrbuv/++7PJJpuksrIyXbp0ya9//et89NFHSZJ99903999/f84+++xUVFSkoqIikydPTpLPrGdp9y9JzjzzzKy99tpp3rx5unbtmgMPPDCzZ89OkowfPz5DhgzJzJkzy7Ucf/zxSRae2mXKlCnZaaed0qJFi7Rq1Sp77LFHpk+f/nl+FAAAAAB8AwnSoZ64/PLL06RJkzz44IP5/e9/n6233jrrr79+/vWvf+WOO+7I9OnTs8ceeyy0zgorrJBHH300hxxySA444IDsvvvu6dOnT5544ol8//vfz49//OO89957SZLXXnst2267bTbeeOM89dRTufDCC/OHP/whJ510UpLk7LPPzuabb5799tsvb7zxRt5444107do177777hLVs6T7d9FFFyVJGjRokHPOOSdPP/10Lr/88tx333058sgjkyR9+vTJ6NGj06pVq3ItRxxxxELj1tTUZKeddsrbb7+d+++/P3fffXdefvnl7Lnnnp/r5wAAAADAN09FqVQq1XURQLF+/fqluro6TzzxRJLkpJNOyj/+8Y/ceeed5T6vvvpqunbtmueffz6rrrpq+vXrl/nz5+cf//hHkmT+/Plp3bp1dtlll1xxxRVJkmnTpqVLly6ZMGFCNttss/z2t7/NDTfckGeffTYVFRVJkgsuuCC/+tWvMnPmzDRo0CD9+vXLeuutV+uJ7yWpZ2n2b3Guv/76/OxnPys/6T527NiMGDEi7777bq1+PXr0yIgRIzJixIjcfffdGThwYCZNmpSuXbsmSZ555pmsueaaefTRR7PxxhsXbhMAAAAAPJEO9cSGG25Y/vdTTz2VcePGpUWLFuXX6quvniR56aWXyv3WWWed8r8bNmyY9u3bZ+211y63derUKUny5ptvJkmeffbZbL755uUQPUm22GKLzJ49O6+++upia1vSepZ0/xa45557ss0222TFFVdMy5Yt8+Mf/zj/+9//yk/QL4lnn302Xbt2LYfoSdK7d++0adMmzz777BKPAwAAAMA3V6O6LgBYMs2bNy//e/bs2dlhhx1yyimnLNSvS5cu5X83bty41rKKiopabQsC85qami9U25LWU+ST+5ckkydPzvbbb58DDjggv/vd79KuXbv885//zLBhw/LBBx/4MlEAAAAAvjKCdKiHNthgg9xwww3p0aNHGjVadh/jNdZYIzfccENKpVI5ZH/wwQfTsmXLrLTSSkmSJk2aZP78+V96PY8//nhqampyxhlnpEGDj/945tprr63VZ1G1LGqfpk6dmqlTp9aa2uXdd99N7969l0mtAAAAACzfTO0C9dBBBx2Ut99+O3vttVcee+yxvPTSS7nzzjszZMiQzwyWixx44IGZOnVqDjnkkDz33HP529/+luOOOy6HH354Oczu0aNHHnnkkUyePDkzZsxITU3Nl1LPt7/97Xz44Yc599xz8/LLL+fKK68sfwnpAj169Mjs2bNz7733ZsaMGYuc8qV///5Ze+21s/fee+eJJ57Io48+mp/85Cfp27dvNtpoo89VGwAAAADfLIJ0qIeqqqry4IMPZv78+fn+97+ftddeOyNGjEibNm3KgffnseKKK+a2227Lo48+mnXXXTc/+9nPMmzYsBx99NHlPkcccUQaNmyY3r17p0OHDpkyZcqXUs+6666bM888M6ecckrWWmutXH311Rk1alStPn369MnPfvaz7LnnnunQoUNOPfXUhcapqKjI3/72t7Rt2zZbbbVV+vfvn5VXXjnXXHPN56oLAAAAgG+eilKpVKrrIgAAAAAA4OvKE+kAAAAAAFBAkA58qaZMmZIWLVos9jVlypS6LhEAAAAACpnaBfhSffTRR5k8efJil/fo0SONGjX66goCAAAAgKUkSAcAAAAAgAKmdgEAAAAAgAKCdAAAAAAAKCBIBwAAAACAAoJ0AAAAAAAoIEgHAAAAAIACgnQAAAAAACggSAcAAAAAgAKCdAAAAAAAKPD/AbYjeXlGhk1oAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 1500x1000 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"check_outliers(df)\n",
"visualize_outliers(df)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Разбиение набора данных на выборки:¶\n",
"Групповое разбиение данных это метод разделения данных на несколько групп или подмножеств на основе определенного признака или характеристики. При этом наблюдения для одного объекта должны попасть только в одну выборку.\n",
"\n",
"Основные виды выборки данных:\n",
"- Обучающая выборка (60-80%). Обучение модели (подбор коэффициентов некоторой математической функции для аппроксимации).\n",
"- Контрольная выборка (10-20%). Выбор метода обучения, настройка гиперпараметров.\n",
"- Тестовая выборка (10-20% или 20-30%). Оценка качества модели перед передачей заказчику.\n",
"\n",
"Разделим выборку данных на 3 группы и проанализируем качество распределения данных."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Функция для создания выборок"
]
},
{
"cell_type": "code",
"execution_count": 158,
"metadata": {},
"outputs": [],
"source": [
"def split_stratified_into_train_val_test(\n",
" df_input,\n",
" stratify_colname=\"y\",\n",
" frac_train=0.6,\n",
" frac_val=0.15,\n",
" frac_test=0.25,\n",
" random_state=None,\n",
") -> tuple[Any, Any, Any]:\n",
" if frac_train + frac_val + frac_test != 1.0:\n",
" raise ValueError(\n",
" \"fractions %f, %f, %f do not add up to 1.0\"\n",
" % (frac_train, frac_val, frac_test)\n",
" )\n",
"\n",
" if stratify_colname not in df_input.columns:\n",
" raise ValueError(\"%s is not a column in the dataframe\" % (stratify_colname))\n",
"\n",
" X: DataFrame = df_input\n",
" y: DataFrame = df_input[\n",
" [stratify_colname]\n",
" ]\n",
"\n",
" df_train, df_temp, y_train, y_temp = train_test_split(\n",
" X, y, \n",
" stratify=y, \n",
" test_size=(1.0 - frac_train), \n",
" random_state=random_state\n",
" )\n",
"\n",
" relative_frac_test: float = frac_test / (frac_val + frac_test)\n",
" df_val, df_test, y_val, y_test = train_test_split(\n",
" df_temp,\n",
" y_temp,\n",
" stratify=y_temp,\n",
" test_size=relative_frac_test,\n",
" random_state=random_state,\n",
" )\n",
"\n",
" assert len(df_input) == len(df_train) + len(df_val) + len(df_test)\n",
"\n",
" return df_train, df_val, df_test"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Функция оценки сбалансированности по колонке"
]
},
{
"cell_type": "code",
"execution_count": 159,
"metadata": {},
"outputs": [],
"source": [
"def check_balance(dataframe: DataFrame, dataframe_name: str, column: str) -> None:\n",
" counts: Series[int] = dataframe[column].value_counts()\n",
" print(dataframe_name + \": \", dataframe.shape)\n",
" print(f\"Распределение выборки данных по классам в колонке \\\"{column}\\\":\\n\", counts)\n",
" total_count: int = len(dataframe)\n",
" for value in counts.index:\n",
" percentage: float = counts[value] / total_count * 100\n",
" print(f\"Процент объектов класса \\\"{value}\\\": {percentage:.2f}%\")\n",
" print()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Функция определения необходимости аугментации данных"
]
},
{
"cell_type": "code",
"execution_count": 160,
"metadata": {},
"outputs": [],
"source": [
"def need_augmentation(dataframe: DataFrame,\n",
" column: str, \n",
" first_value: Any, second_value: Any) -> bool:\n",
" counts: Series[int] = dataframe[column].value_counts()\n",
" ratio: float = counts[first_value] / counts[second_value]\n",
" return ratio > 1.5 or ratio < 0.67"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Метод визуализации сбалансированности классов"
]
},
{
"cell_type": "code",
"execution_count": 161,
"metadata": {},
"outputs": [],
"source": [
"def visualize_balance(dataframe: DataFrame,\n",
" column: str) -> None:\n",
" fig, axes = plt.subplots(1, 1, figsize=(15, 5))\n",
"\n",
" counts_train: Series[int] = dataframe[column].value_counts()\n",
" axes.pie(counts_train, labels=counts_train.index, autopct='%1.1f%%', startangle=90)\n",
" axes.set_title(f\"Распределение классов \\\"{column}\\\"\\n\")\n",
"\n",
" plt.tight_layout()\n",
" plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Разделим выборку данных на 3 группы и проанализируем качество распределения данных.\n",
"\n",
"Стратифицированное разбиение требует, чтобы в каждом классе, по которому происходит стратификация, было минимум по два элемента, иначе метод не сможет корректно разделить данные на тренировочные, валидационные и тестовые наборы.\n",
"\n",
"Чтобы решить эту проблему введём категории для значения зарплаты. Вместо того, чтобы использовать точные значения зарплаты для стратификации, мы создадим категории зарплат, основываясь на квартилях (25%, 50%, 75%) и минимальном и максимальном значении зарплаты. Это позволит создать более крупные классы, что устранит проблему с редкими значениями\n",
"\n",
"Категории для разбиения зарплат:\n",
"- Низкая зарплата: зарплаты ниже первого квартиля (25%) — это значения меньше 95000.\n",
"- Средняя зарплата: зарплаты между первым квартилем (25%) и третьим квартилем (75%) — это зарплаты от 95000 до 175000.\n",
"- Высокая зарплата: зарплаты выше третьего квартиля (75%) и до максимального значения — это зарплаты выше 175000."
]
},
{
"cell_type": "code",
"execution_count": 162,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Распределение количества наблюдений по меткам (классам):\n",
"salary_in_usd\n",
"100000.0 99\n",
"150000.0 98\n",
"120000.0 91\n",
"160000.0 84\n",
"130000.0 82\n",
" ..\n",
"39916.0 1\n",
"26005.0 1\n",
"22611.0 1\n",
"5679.0 1\n",
"40038.0 1\n",
"Name: count, Length: 1002, dtype: int64 \n",
"\n",
"Статистическое описание целевого признака:\n",
"count 3755.000000\n",
"mean 136959.779760\n",
"std 61098.121137\n",
"min 5132.000000\n",
"25% 95000.000000\n",
"50% 135000.000000\n",
"75% 175000.000000\n",
"max 295000.000000\n",
"Name: salary_in_usd, dtype: float64 \n",
"\n",
"Распределение количества наблюдений по меткам (классам):\n",
"salary_category\n",
"medium 1867\n",
"low 956\n",
"high 932\n",
"Name: count, dtype: int64 \n",
"\n",
"Проверка сбалансированности:\n",
"Весь датасет: (3755, 12)\n",
"Распределение выборки данных по классам в колонке \"salary_category\":\n",
" salary_category\n",
"medium 1867\n",
"low 956\n",
"high 932\n",
"Name: count, dtype: int64\n",
"Процент объектов класса \"medium\": 49.72%\n",
"Процент объектов класса \"low\": 25.46%\n",
"Процент объектов класса \"high\": 24.82%\n",
"\n",
"Проверка необходимости аугментации:\n",
"Для датасета аугментация данных ТРЕБУЕТСЯ\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAd0AAAHqCAYAAABBQpR7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABV/ElEQVR4nO3dd3QUZcMF8Du72Wx6L4QaIJBQgoSqtAQEBBEsCAoCAqKogOJn5bWAYEcFBStKUcGCKEXpVXoPNZRAQgnpkN62zPdHyMKSkATYzLPl/s7hhMzOztzdlJtnqiTLsgwiIiKqcSrRAYiIiBwFS5eIiEghLF0iIiKFsHSJiIgUwtIlIiJSCEuXiIhIISxdIiIihbB0iYiIFMLSJSIiUghLl4gcRmhoKEaOHCk6Bjkwlm41zZ8/H5Ikmf65uLigadOmGD9+PFJTU0XHI7JZU6ZMQWhoKIBrP2d0577++mvMnz9fdAyLGzlyJGJiYgCYf+/YCifRAWzN1KlT0bBhQxQVFWHbtm345ptvsHLlShw9ehRubm6i4xERASgt3YCAAI7srQxL9xb17dsX7dq1AwCMGTMG/v7++Pzzz7Fs2TIMGTJEcDoiUkpRURGcnZ2hUnGD4Z3Iz8+Hu7u76BiK4XfLHerRowcAICEhAQBw+fJlvPLKK4iMjISHhwe8vLzQt29fHDp0qNxzi4qKMGXKFDRt2hQuLi4ICQnBI488gjNnzgAAEhMTzTZp3/ivbBMLAGzevBmSJOH333/H//73P9SqVQvu7u4YMGAALly4UG7du3fvRp8+feDt7Q03NzdER0dj+/btFb7GmJiYCtc/ZcqUcvP+8ssvaNu2LVxdXeHn54fHH3+8wvVX9tquZzQaMXPmTLRo0QIuLi4IDg7G2LFjceXKFbP5QkND8cADD5Rbz/jx48sts6Ls06dPL/eeAkBxcTEmT56MsLAwaLVa1KtXD6+99hqKi4srfK+uFxMTU25577//PlQqFRYtWnRb78enn36KTp06wd/fH66urmjbti3+/PPPCtf/yy+/oEOHDnBzc4Ovry+6deuGtWvXms2zatUqREdHw9PTE15eXmjfvn25bIsXLzZ9TQMCAjBs2DAkJSWZzTNy5EizzL6+voiJicHWrVurfJ+qsm/fPtx3330ICAiAq6srGjZsiNGjR9/2+3K96v68lv18/fbbb3jrrbdQp04duLm5ITY2FpIkYcaMGeWWvWPHDkiShF9//bXar9VoNOKLL75AZGQkXFxcEBgYiD59+mDfvn2meebNm4cePXogKCgIWq0WzZs3xzfffGO2nNDQUBw7dgxbtmyp8PdFVlYWJk6ciHr16kGr1SIsLAwff/wxjEaj2XIyMzMxfPhweHl5wcfHB08++SQOHToESZLKbbreuHEjunbtCnd3d/j4+ODBBx9EXFyc2TxTpkyBJEk4fvw4hg4dCl9fX3Tp0gXz5s2DJEk4ePBguffkgw8+gFqtLvc9Z6s40r1DZQXp7+8PADh79iyWLl2KQYMGoWHDhkhNTcV3332H6OhoHD9+HLVr1wYAGAwGPPDAA9iwYQMef/xxvPjii8jNzcW6detw9OhRNG7c2LSOIUOG4P777zdb76RJkyrM8/7770OSJLz++utIS0vDzJkz0bNnT8TGxsLV1RVA6Q9H37590bZtW0yePBkqlcr0g7x161Z06NCh3HLr1q2LDz/8EACQl5eH5557rsJ1v/322xg8eDDGjBmD9PR0zJo1C926dcPBgwfh4+NT7jnPPPMMunbtCgD466+/8Pfff5s9PnbsWMyfPx+jRo3CCy+8gISEBMyePRsHDx7E9u3bodFoKnwfbkVWVpbptV3PaDRiwIAB2LZtG5555hk0a9YMR44cwYwZM3Dq1CksXbr0ltYzb948vPXWW/jss88wdOjQCuep6v344osvMGDAADzxxBMoKSnBb7/9hkGDBuGff/5Bv379TPO9++67mDJlCjp16oSpU6fC2dkZu3fvxsaNG9G7d28ApftPR48ejRYtWmDSpEnw8fHBwYMHsXr1alO+sve+ffv2+PDDD5GamoovvvgC27dvL/c1DQgIMJXPxYsX8cUXX+D+++/HhQsXKvzaV0daWhp69+6NwMBAvPHGG/Dx8UFiYiL++uuv23pfblTdn9cy06ZNg7OzM1555RUUFxcjIiICnTt3xsKFC/HSSy+Zzbtw4UJ4enriwQcfrPbrfeqppzB//nz07dsXY8aMgV6vx9atW7Fr1y7TFrZvvvkGLVq0wIABA+Dk5IQVK1bg+eefh9FoxLhx4wAAM2fOxIQJE+Dh4YE333wTABAcHAwAKCgoQHR0NJKSkjB27FjUr18fO3bswKRJk5CcnIyZM2cCKP3+79+/P/bs2YPnnnsOERERWLZsGZ588slyudevX4++ffuiUaNGmDJlCgoLCzFr1ix07twZBw4cKLffddCgQWjSpAk++OADyLKMRx99FOPGjcPChQsRFRVV7n2MiYlBnTp1qv0+WjWZqmXevHkyAHn9+vVyenq6fOHCBfm3336T/f39ZVdXV/nixYuyLMtyUVGRbDAYzJ6bkJAga7VaeerUqaZpc+fOlQHIn3/+ebl1GY1G0/MAyNOnTy83T4sWLeTo6GjT55s2bZIByHXq1JFzcnJM0//44w8ZgPzFF1+Ylt2kSRP5vvvuM61HlmW5oKBAbtiwodyrV69y6+rUqZPcsmVL0+fp6ekyAHny5MmmaYmJibJarZbff/99s+ceOXJEdnJyKjf99OnTMgB5wYIFpmmTJ0+Wr/+W3Lp1qwxAXrhwodlzV69eXW56gwYN5H79+pXLPm7cOPnGb/Mbs7/22mtyUFCQ3LZtW7P39Oeff5ZVKpW8detWs+d/++23MgB5+/bt5dZ3vejoaNPy/v33X9nJyUl++eWXK5y3Ou+HLJd+na5XUlIit2zZUu7Ro4fZslQqlfzwww+X+14s+5pnZWXJnp6ecseOHeXCwsIK5ykpKZGDgoLkli1bms3zzz//yADkd955xzTtySeflBs0aGC2nO+//14GIO/Zs6fC11wdf//9twxA3rt3b6XzVed9keXS75Mnn3zS9Hl1f17Lfr4aNWpUbl3fffedDECOi4szW39AQIDZuqqyceNGGYD8wgsvlHvsxp/VG913331yo0aNzKbd+DuizLRp02R3d3f51KlTZtPfeOMNWa1Wy+fPn5dlWZaXLFkiA5BnzpxpmsdgMMg9evSQAcjz5s0zTW/durUcFBQkZ2ZmmqYdOnRIVqlU8ogRI0zTyr6nhwwZUi7XkCFD5Nq1a5t9PQ4cOFBuXbaOm5dvUc+ePREYGIh69erh8ccfh4eHB/7++2/TX2Farda0j8dgMCAzMxMeHh4IDw/HgQMHTMtZsmQJAgICMGHChHLruJOjN0eMGAFPT0/T548++ihCQkKwcuVKAEBsbCxOnz6NoUOHIjMzExkZGcjIyEB+fj7uvfde/Pfff+U2MRUVFcHFxaXS9f71118wGo0YPHiwaZkZGRmoVasWmjRpgk2bNpnNX1JSAqD0/bqZxYsXw9vbG7169TJbZtu2beHh4VFumTqdzmy+jIwMFBUVVZo7KSkJs2bNwttvvw0PD49y62/WrBkiIiLMllm2S+HG9d/Mnj17MHjwYAwcOBDTp0+vcJ7qvB8ATFsrAODKlSvIzs5G165dzb63li5dCqPRiHfeeafc/say761169YhNzcXb7zxRrmvbdk8+/btQ1paGp5//nmzefr164eIiAj8+++/Zs8zGo2m9yg2NhY//fQTQkJC0KxZs0pfU2XKRsj//PMPdDrdTeerzvtSker+vJZ58sknzdYFAIMHD4aLiwsWLlxomrZmzRpkZGRg2LBhVb7GMkuWLIEkSZg8eXK5x67/nXD9+rOzs5GRkYHo6GicPXsW2dnZVa5n8eLF6Nq1K3x9fc2+r3v27AmDwYD//vsPALB69WpoNBo8/fTTpueqVCrTaLpMcnIyYmNjMXLkSPj5+Zmmt2rVCr169TL97rnes88+W27aiBEjcOnSJbOfq4ULF8LV1RUDBw6s8nXZCm5evkVfffUVmjZtCicnJwQHByM8PNzsF1vZPpmvv/4aCQkJMBgMpsfKNkEDpZulw8PD4eRk2S9BkyZNzD6XJAlhYWFITEwEAJw+fRoAKtxEVCY7Oxu+vr6mzzMyMsot90anT5+GLMs3ne/GzcBZWVkAUK7oblxmdnY2goKCKnw8LS3N7PO1a9ciMDCw0pw3mjx5MmrXro2xY8eW2wd4+vRpxMXF3XSZN66/IklJSejXrx/y8/ORmZl50z+oqvN+AKXl89577yE2NtZsv/L1yz1z5gxUKhWaN29+0+WU7RZp2bLlTec5d+4cACA8PLzcYxEREdi2bZvZtAsXLpi9VyEhIViyZEmVr6ky0dHRGDhwIN59913MmDEDMTExeOihhzB06FCzP1Cq875UpLo/r2UaNmxYbpqPjw/69++PRYsWYdq0aQBKy6JOnTqmP9Cq48yZM6hdu7ZZcVVk+/btmDx5Mnbu3ImCggKzx7Kzs+Ht7V3p80+fPo3Dhw9X+X197tw5hISElDsrIywszOzzyr5PmjVrhjVr1pQ7WKqi97FXr14ICQnBwoULce+998JoNOLXX3/Fgw8+aDaQsHUs3VvUoUMH076VinzwwQd4++23MXr0aEybNg1+fn5QqVSYOHFiuRGkCGUZpk+fjtatW1c4z/W/JEtKSpCcnIxevXpVuVxJkrBq1Sqo1epKlwkAKSkpAIBatWpVusygoCCzEcT1bvyl0bFjR7z33ntm02bPno1ly5ZV+Py4uDjMnz8fv/zyS4X7ho1GIyIjI/H5559X+Px69erdNHuZ+Ph4tGnTBjNmzMDw4cOxYMGCCv/gqc77sXXrVgwYMADdunXD119/jZCQEGg0GsybN6/cwU8iBAcH45dffgFQ+st/7ty56NOnD7Zt24bIyMjbWqYkSfjzzz+xa9curFixAmvWrMHo0aPx2WefYdeuXfDw8Lij9+VWf15vHOWWGTFiBBYvXowdO3YgMjISy5cvx/PPP2/xI5vPnDmDe++9FxEREfj8889Rr149ODs7Y+XKlZgxY0a1fscYjUb06tULr732WoWPN23a1KKZK1LR+6hWqzF06FDMmTMHX3/9NbZv345Lly7d0tYCW8DStbA///wT3bt3x48//mg2PSsrCwEBAabPGzdujN27d0On01nkYKAyZSPZMrIsIz4+Hq1atTKtFwC8vLzQs2fPKpd36NAh6HS6Sv/QKFuuLMto2LBhtX5ojx8/DkmSKvzr+Pplrl+/Hp07d77pL7vrBQQElHtNlR3sNGnSJLRu3RqPPfbYTdd/6NAh3Hvvvbe9yb9s035wcDCWLVuGl19+Gffff3+5Pxiq834sWbIELi4uWLNmjdkob968eeVyG41GHD9+/KZ/WJV9Hxw9erTcyKVMgwYNAAAnT54sN2I7efKk6fEyLi4uZu//gAED4Ofnh9mzZ+O777676euqjrvvvht333033n//fSxatAhPPPEEfvvtN4wZM6ba70tFqvvzWpU+ffogMDAQCxcuRMeOHVFQUIDhw4dX/wWi9GuyZs0aXL58+aaj3RUrVqC4uBjLly9H/fr1TdMr2tVxs+/Zxo0bIy8vr8qf/wYNGmDTpk0oKCgwG+3Gx8eXmw8o/Z640YkTJxAQEFDtU4JGjBiBzz77DCtWrMCqVasQGBiI++67r1rPtRXcp2tharUasiybTVu8eHG5w90HDhyIjIwMzJ49u9wybnz+rfjpp5+Qm5tr+vzPP/9EcnIy+vbtCwBo27YtGjdujE8//RR5eXnlnp+enl4uu1qtrvB0nOs98sgjUKvVePfdd8vll2UZmZmZps/1ej2WLFmCDh06VLrpcfDgwTAYDKZNdtfT6/WmTbK3Y+fOnVi2bBk++uijm/5yGjx4MJKSkjBnzpxyjxUWFiI/P7/K9TRt2tR01OisWbNgNBrx4osvms1T3fdDrVZDkiSzTaCJiYnl/rB46KGHoFKpMHXq1HIjn7KvTe/eveHp6YkPP/yw3H7vsnnatWuHoKAgfPvtt2abbFetWoW4uLhKjwoGSreS6PX6ap1edTNXrlwp9/1U9odE2XKr+75UpLo/r1VxcnLCkCFD8Mcff2D+/PmIjIw0/aFbXQMHDoQsy3j33XfLPVaWsWwr0vWZs7OzK/wDw93dvcKfkcGDB2Pnzp1Ys2ZNuceysrKg1+sBAPfddx90Op3Z97/RaMRXX31l9pyQkBC0bt0aCxYsMFvf0aNHsXbt2nJnXlSmVatWaNWqFX744QcsWbIEjz/+uMV3wYlmX6/GCjzwwAOYOnUqRo0ahU6dOuHIkSNYuHAhGjVqZDbfiBEj8NNPP+H//u//sGfPHnTt2hX5+flYv349nn/++Vs6zeB6fn5+6NKlC0aNGoXU1FTMnDkTYWFhpoMhVCoVfvjhB/Tt2xctWrTAqFGjUKdOHSQlJWHTpk3w8vLCihUrkJ+fj6+++gpffvklmjZtis2bN5vWUVbWhw8fxs6dO3HPPfegcePGeO+99zBp0iQkJibioYcegqenJxISEvD333/jmWeewSuvvIL169fj7bffxuHDh7FixYpKX0t0dDTGjh2LDz/8ELGxsejduzc0Gg1Onz6NxYsX44svvsCjjz56W+/T2rVr0atXr0r/2h8+fDj++OMPPPvss9i0aRM6d+4Mg8GAEydO4I8//sCaNWuq3AJwvVq1amH69OkYM2YMhg0bhvvvv/+W3o9+/frh888/R58+fTB06FCkpaXhq6++QlhYGA4fPmyaLywsDG+++SamTZuGrl274pFHHoFWq8XevXtRu3ZtfPjhh/Dy8sKMGTMwZswYtG/f3nTO5KFDh1BQUIAFCxZAo9Hg448/xqhRoxAdHY0hQ4aYThkKDQ0td4pMfn6+2ebln3/+GUVFRXj44Yer/R7daMGCBfj666/x8MMPo3HjxsjNzcWcOXPg5eVl+mVe3felItX9ea2OESNG4Msvv8SmTZvw8ccf3/Lzu3fvjuHDh+PLL7/E6dOn0adPHxiNRmzduhXdu3fH+PHj0bt3bzg7O6N///4YO3Ys8vLyMGfOHAQFBSE5OdlseW3btsU333yD9957D2FhYQgKCkKPHj3w6quvYvny5XjggQcwcuRItG3bFvn5+Thy5Aj+/PNPJCYmIiAgAA899BA6dOiAl19+GfHx8YiIiMDy5ctx+fJlAOYj6enTp6Nv376455578NRTT5lOGfL29q7wfP6q3sdXXnkFAOxu0zIAnjJUXWWnDFV16kJRUZH88ssvyyEhIbKrq6vcuXNneefOnWanj5QpKCiQ33zzTblhw4ayRqORa9WqJT/66KPymTNnZFm+vVOGfv31V3nSpElyUFCQ7OrqKvfr108+d+5cuecfPHhQfuSRR2R/f39Zq9XKDRo0kAcPHixv2LDBbN1V/bvxlIglS5bIXbp0kd3d3WV3d3c5IiJCHjdunHzy5ElZlmV5woQJcrdu3eTVq1eXy1TRKTKyXHrqSdu2bWVXV1fZ09NTjoyMlF977TX50qVLpnlu9ZQhSZLk/fv3m02v6GtUUlIif/zxx3KLFi1krVYr+/r6ym3btpXfffddOTs7u9z6qlqeLMtyjx495Pr168u5ubm3/H78+OOPcpMmTWStVitHRETI8+bNu+n7NnfuXDkqKsqUOzo6Wl63bp3ZPMuXL5c7deoku7q6yl5eXnKHDh3kX3/91Wye33//3bQcPz8/+YknnjCdIlfmySefNPu+8PDwkNu0aSP//PPPlb5HVTlw4IA8ZMgQuX79+rJWq5WDgoLkBx54QN63b99tvS8VnTJUnZ/Xsp+vxYsXV5q3RYsWskqlKvf+VJder5enT58uR0REyM7OznJgYKDct29fs+/V5cuXy61atZJdXFzk0NBQ+eOPPzadgpiQkGCaLyUlRe7Xr5/s6ekpAzB7Pbm5ufKkSZPksLAw2dnZWQ4ICJA7deokf/rpp3JJSYlpvvT0dHno0KGyp6en7O3tLY8cOVLevn27DED+7bffzLKvX79e7ty5s+l7qX///vLx48fN5in7mqSnp9/0PUhOTpbVarXctGnT23oPrZ0ky3ewLZOsxubNm9G9e3csXrz4tkd/10tMTETDhg2RkJBw0wuKT5kyBYmJiXZ5UXWi2xEVFQU/Pz9s2LBBdJQas3TpUjz88MPYtm0bOnfubPHlZ2RkICQkBO+88w7efvttiy9fNO7TJSKygH379iE2NhYjRowQHcViCgsLzT43GAyYNWsWvLy80KZNmxpZ5/z582EwGG75QDRbwX26VCEPDw888cQTlR7Y06pVq3KXySNyNEePHsX+/fvx2WefISQkpNzR8AaDodwBijfy8PC4o/OZa8qECRNQWFiIe+65B8XFxfjrr7+wY8cOfPDBB9U6o+BWbNy4EcePH8f777+Phx56yOZu2Vdtordvk2VUd58TEVnW5MmTZUmS5IiICHnz5s3lHq/O8RHXX5bUmixcuFBu06aN7OXlJTs7O8vNmzeXZ82aVSPrio6OljUajRwTE3Pb+8RtAffpEhHVoLJ7b1emUaNGt3XENNkeli4REZFCeCAVERGRQli6RERECmHpEhERKYSlS0REpBCWLhERkUJYukRERAph6RIRESmEpUtERKQQli4REZFCWLpEREQKYekSEREphKVLRESkEJYuERGRQli6RERECmHpEhERKYSlS0REpBCWLhERkUJYukRERAph6RIRESmEpUtERKQQli4REZFCWLpEREQKYekSEREphKVLRESkEJYuERGRQli6RERECmHpEhERKYSlS0REpBCWLhERkUJYukRERAph6RIRESmEpUtERKQQli4REZFCWLpEREQKYekSEREphKVLRESkEJYuERGRQli6RERECmHpEhERKYSlS0REpBCWLhERkUJYukRERAph6RIRESmEpUtERKQQli4REZFCWLpEREQKYekSEREphKVLRESkEJYuERGRQli6RERECmHpEhERKYSlS0REpBCWLhERkUJYukRERAph6RIRESmEpUtERKQQli4REZFCWLpEREQKYekSEREphKVLRESkEJYuERGRQli6RERECmHpEhERKYSlS0REpBCWLhERkUJYukRERApxEh2AiG5NYYkBablFSM0pRlpuEdJyinGloAR5xXrkF+uRX2JAfrEeBcWG0mklehSUGGAwyjDKMoxGGS2bJCNR+h6SJEEtqaGSVHBWO8Nd4w43jRvcnNzgrnGHu8Ydrk6ucNe4w9PZE4GugQh0DUSAWwACXQPho/WBJEmi3xIim8HSJbIyhSUGnM3IQ0JGPhLS85GQmY/krCKk5hYhPacYucX6O15Hsb4Euci94+VoVBoEuJYWcKBbIOp51kMDrwZo4NUAoV6hCHQLvON1ENkTli6RIHnFehxLysaxSzk4k15asmfT85GaWwRZFp2uenRGHZLzk5Gcn1zh4+4ad9T3rI9Qr1CEeoci3Dcczf2bI8QjROGkRNaBpUukgNwiHY5dysHRpGwcufovMSMfRhsp19uVr8tH3OU4xF2OM5vuq/VFM/9maO7f3PSvjkcdQSmJlCPJsq38TU1kO1Kyi7DzbAZ2nbmMvecuIyEj36pGr22bJeEUZomOYcZH64NWga3QPrg92tdqjwi/CKhVatGxiCyKpUtkAdeX7K6ETJzLLBAdqVLWWLo38tB4ICooCu1rlZZwM79mLGGyeSxdotugMxixJ+Ey1h1PxeaTaUi08pK9kS2U7o08NB7oGNIR0XWj0a1uN/i7+ouORHTLWLpE1ZRdoMOmk2lYF5eK/06lI7fozo8iFsUWS/d6KkmFlgEt0b1ed0TXjUYT3yaiIxFVC0uXqBIp2UX45/AlrDueiv3nrkBvJ0c+2Xrp3qiORx1E141G79DeaBPUhucOk9Vi6RLdIKdIh1VHkrH04CXsTsi0yyOM7a10r1fbvTbub3Q/+jXshzDfMNFxiMywdIkAFOsN2HQiDUsPXsLGk2ko0RtFR6pR9ly61wv3DUe/Rv3Qt2Ff1HKvJToOEUuXHNvRpGws2nMe/xy6hBwb3kd7qxyldMuoJBXaBbfDwCYD0atBL2jUGtGRyEGxdMnhFOkM+PdwMn7ZfQ4Hz2eJjiOEo5Xu9fxc/PBw2MMYFD6IF+QgxbF0yWGcy8zHwt3nsXjfBVwp0ImOI5Qjl24ZlaRClzpd8Fj4Y+hSpwtUEm+6RjWPpUt2b/PJNPy4LQHb4jOs6qpQIrF0zdXxqIPHwh/DoKaD4OHsIToO2TGWLtklg1HGP4cv4dstZxGXnCM6jtVh6VbMU+OJweGDMaz5MAS4BoiOQ3aIpUt2pVhvwOJ9FzFn61mrvxSjSCzdymnVWjzY+EGMbDkS9TzriY5DdoSlS3Yht0iHn3edw7ztiUjPLRYdx+qxdKtHLanRu0FvPBX5FML9wkXHITvA0iWbVlhiwNztCfhuyxmHOuXnTrF0b13P+j0xoc0ENPJuJDoK2TCWLtkkncGI3/ZewKwNp5HGke0tY+neHrWkRv/G/TGu9ThebINuC0uXbIosy1h+6BI+X3eK+2zvAEv3zjirnDE4fDCeafUMfF18RcchG8LSJZux6UQaPllzkkcjWwBL1zLcNe4Y0XwERrYYCTeNm+g4ZANYumT1zqbnYcqK4/jvVLroKHaDpWtZQa5BeKndS3ig0QOio5CVY+mS1cov1uPLjacxb1siSgz2fQMCpbF0a0aboDb4X8f/8UhnuimWLlmlZbFJ+HDlCaTkFImOYpdYujVHLakxqOkgTGgzAV7OXqLjkJVh6ZJVOZmSi3eWHcXuhMuio9g1lm7N83PxwwtRL+CRJo9AkiTRcchKsHTJKhTrDZix7jR+2HoWenu8a7yVYekqp3Vga0ztPBUNvRuKjkJWgLfVIOEOnL+Cfl9uw7dbzrBwye7Epsdi0IpBmHt0LgxGg+g4JBhHuiRMkc6Az9aexI/bEsCuVRZHumJEBkRiaqepCPMNEx2FBOFIl4TYf+4y7v9yK+ZsZeGS4ziScQSD/xmM7w9/D72Rly11RCxdUlSRzoBp/xzHoG934mx6vug4RIrTGXWYdXAWhv47FKevnBYdx0xMTAwmTpx408clScLSpUurvbzNmzdDkiRkZWXdcTZ7wdIlxcSn5eKhr7ZzczIRgLjLcRjy7xD8fuJ30VGqLTk5GX379hUdw6axdEkRv+89j/6ztuNESq7oKERWo9hQjPd2v4f/2/x/yCmx/sub1qpVC1qtVnQMm8bSpRqVW6TDhF8P4vUlR1Co45GbRBVZd24dBi0fhNi0WNFRYDQa8dprr8HPzw+1atXClClTTI/duHl5x44daN26NVxcXNCuXTssXboUkiQhNjbWbJn79+9Hu3bt4Obmhk6dOuHkyZPKvBgrxNKlGnPoQhb6fbkNKw5dEh2FyOpdyr+EUatH4YcjP8Aoi7vs6YIFC+Du7o7du3fjk08+wdSpU7Fu3bpy8+Xk5KB///6IjIzEgQMHMG3aNLz++usVLvPNN9/EZ599hn379sHJyQmjR4+u6ZdhtZxEByD79MPWs/h49QnoDNx5S1RdelmPLw58gd3Ju/Fxt4/h5+KneIZWrVph8uTJAIAmTZpg9uzZ2LBhA3r16mU236JFiyBJEubMmQMXFxc0b94cSUlJePrpp8st8/3330d0dDQA4I033kC/fv1QVFQEFxeXmn9BVoYjXbKoIp0BL/x6EO/9G8fCJbpNu5J34fF/HkdcZpzi627VqpXZ5yEhIUhLSys338mTJ9GqVSuz4uzQoUOVywwJCQGACpfpCFi6ZDGXsgrx6Lc7sJybk4nuWHJ+MkasGoFVCasUXa9GozH7XJIkGI13trn7+mWWXYf6Tpdpq1i6ZBF7Ey9jwOxtOJpk/UdgEtmKIkMRXvvvNczYP0Poft6KhIeH48iRIyguLjZN27t3r8BEtoGlS3ds0e7zGDpnFzLySkRHIbJLc4/OxbgN46zqtKKhQ4fCaDTimWeeQVxcHNasWYNPP/0UAHhXpUqwdOm26QxGvLX0CP739xHuvyWqYduStuGJf5/A2eyzoqMAALy8vLBixQrExsaidevWePPNN/HOO+8AgEMeIFVdvOEB3Zb8Yj2e/WU/tp7OEB2FbgNveGC7vLXemNVjFqKCokRHKWfhwoUYNWoUsrOz4erqKjqOVeJIl25ZRl4xHv9+FwuXSIDs4mw8vfZpbDi/QXQU/PTTT9i2bRsSEhKwdOlSvP766xg8eDALtxIsXboliRn5GPjNDhxJyhYdhchhFRuK8fLml/HHyT+E5khJScGwYcPQrFkzvPTSSxg0aBC+//57oZmsHTcvU7UdvpiF0fP38oApO8DNy/bjmVbPYELUBNExqJo40qVq2XIqHUO+5xHKRNbm+8PfY/KOyTAYeW1zW8DSpSoti03CmAV7kV/CH2oia/TX6b8wcdNElBj4R7G1Y+lSpf7YdwEv/R7LU4KIrNzmi5sxfsN4FOmLREehSrB06aZ+2XUOry85zBvOE9mInck7MW7DOBToCkRHoZtg6VKF5m9PwFtLj4KH2RHZlj0pe/Dc+udYvFaKpUvlLNiRiCkrjouOQUS36UDaARavlWLpkpmfdyZi8vJjomMQ0R1i8Vonli6Z/LrnPN5h4RLZjQNpBzB+43gUG4qrnpkUwdIlAMCqI8l48+8j3IdLZGf2puzFq1te5Xm8VoKlS9gRn4EXf4/lUcpEdmrThU14d+e7omMQWLoO72hSNp75eT9K9NZ1g2wisqy/4//G5/s/Fx3D4bF0HVhiRj5GztuDvGK96ChEpIB5R+dhwbEFomM4NJaug0rLKcLwubt5LWUiB/PZvs+wLH6Z6BgOi6XrgHKKdBgxdw8uXC4UHYWIFCZDxpQdU/Dfxf9ER3FILF0HYzDKmLDoIE6k5IqOQkSC6GU9XvvvNcRfiRcdxeGwdB3MByvjsOVUuugYRCRYvi4f4zeOx5WiK6KjOBSWrgP5Y+8F/LgtQXQMIrISSXlJ+L/N/wedUSc6isNg6TqIvYmX8dbSo6JjEJGV2Ze6D+/vel90DIfB0nUAF68U4Nmf96PEwHNxiai8JaeX4Jfjv4iO4RBYunYuv1iPMQv2ITOfpwYR0c19uu9TbE/aLjqG3WPp2rnXlhzmkcpEVCWDbMBr/72GS3mXREexayxdO/bzzkT8ezhZdAwishE5JTl49b9XeWBVDWLp2qmjSdmY9m+c6BhEZGMOpx/GzP0zRcewWyxdO5RXrMf4RQd4EwMiui0/Hf8Jm85vEh3DLrF07dAbSw4jMbNAdAwismFvbX+L+3drAEvXzvyy6xz+4X5cIrpDOSU5eHUL9+9aGkvXjhy/lINp/xwXHYOI7MThjMP4Yv8XomPYFZaunSjRG/HS77Eo5n5cIrKgn47/hL0pe0XHsBssXTsxY/0pnEzl+bhEZFkyZLy9/W0U6HiciCWwdO3AwfNX8P1/Z0XHICI7lZSXhE/3fSo6hl1g6dq4Ip0Bryw+BINRFh2FiOzY4lOLsSNph+gYNo+la+M+XXMSZ9LzRccgIgfwzo53kFvC3Vh3gqVrw/YmXsbc7bw/LhEpI7UgFR/t+Uh0DJvG0rVRhSWlm5W5VZmIlLT8zHL8d/E/0TFsFkvXRs3edBrneNUpIhLgg90foEhfJDqGTWLp2qAz6XmY8x83KxORGEl5Sfj+8PeiY9gklq4NemfZUZQYeBEMIhJn/rH5SMxOFB3D5rB0bcyKQ5ewPT5TdAwicnA6ow7v735fdAybw9K1IXnFerz3L6+tTETWYVfyLqxOWC06hk1h6dqQmetOITWnWHQMIiKT6XunI1/HawVUF0vXRpxMycX8HYmiYxARmUkrTMPXsV+LjmEzWLo24v2VcdDzpFwiskK/nvgVF3Mvio5hE1i6NmB7fAb+O5UuOgYRUYV0Rh1mHZwlOoZNYOlaOVmW8dGqE6JjEBFValXCKhzP5IGeVWHpWrkVh5NxJClbdAwiokrJkPH5/s9Fx7B6LF0rpjMY8dnak6JjEBFVy+7k3dietF10DKvG0rViC3ed4/WVicimzNg/A0aZV8y7GSfRAahiecV6zNoYLzoGkU1I/ycdOftzUJxcDEkjwS3MDbUG14I2RFtuXlmWce7zc8g7kof6E+rDq63XTZdrKDIgdXEqcg7kwJBngHOgM/x7+sOvh59pnuRfk5G1LQuSVkKtR2vBp5OP6bHsPdnI2p6FBi81sOjrtWYnr5zEv2f/Rf/G/UVHsUoc6Vqp+dsTkJlfIjoGkU3IP5EPvx5+aPR2I4S+GgrZICPx00QYi8uPuDLXZgJS9Zab8msK8o7koe4zddHkgybw7+2PS79cQs7BHABAzsEcZO/MRugroag1uBaS5iVBn6sHABgKDEhdkoqQESEWe5224ttD38JgNIiOYZVYulaooESPudsTRccgshmhr4TCt6svXOq4wLW+K+qOqQtdpg6FiYVm8xWeK0TG6gzUGV2nWsstiC+AT2cfeDTzgHOgM/xi/OBSzwWFZ0uXW5xcDPcId7g2dIXP3T5QuapQkl76x3LKHynw6+EHZ39ny75YG3A+9zxWJ/LykBVh6VqhRbvP4zJHuUS3zVBYOspSu6tN04zFRlz87iJqD68NjY+mWstxC3NDbmwudFd0kGUZeXF5KEktgUdLDwAoLeDEQhjyDShMLIRcIkMbrEX+qXwUnSuCfy9/y784G/HDkR8gy7ygz424T9fKFOsNmLP1rOgYRDZLNspIWZQCtyZucKnrYpqe/Gsy3MLc4NXm5vtwbxQyLASX5l/CyZdOAmpAkiTUHlUb7uHuAADPSE8U3FOAM++egeQsoe7TdSFpJVz66RLqjqmLyxsvI3N9Jpw8nFB7VG241HGpYo32Iz4rHhvPb8S9De4VHcWqsHStzJ/7L/KmBkR3IPnnZBRdLEKjNxuZpuUczEF+XD4av9v4lpZ1ef1lFJwpQP0X68M5wBn5J/OR/HMyND4aeLQoHe0GPxyM4IeDTc9JW5oGj+YekNQS0penI+y9MOQeysXF7y8i7N0wy7xIG/H9ke9Zujfg5mUrojcY8e2WM6JjENmsSz9fQs6hHDR8oyE0ftc2Iecfz0dJWgnino/D0dFHcXT0UQDA+dnncfbDircsGUuMSP0zFSGPh8Arygsu9Vzg39Mf3h28kbEqo8LnFF8qRtbOLAQ9EoT8E/lwC3eDk5cTvDt4o+hckWmzt6M4nnkc25K2iY5hVTjStSLLD13ChcuFVc9IRGZkWUbyL8nI2V9auM6B5gcvBfQLgG+0r9m0+LfiETI0BJ6tPStepkGGbJDLD01UqHBfpSzLSFqQhFqP14LaRQ3ZePX5AGT91fkd8PTV7w9/jy51uoiOYTU40rUSsizjm80c5RLdjuSfk5G1Iwv1nq0HlYsKuiwddFk6GEtKW07jo4FLXRezfwCg8dOYFfSpN04hZ3/p6UBqVzXcwt2Q8ntK6QFU6SW4svUKsrZnVXhu75UtV+Dk6QSvqNLH3Jq4IT8uHwXxBchYmwFtba3ZgV2O4mDaQRxMOyg6htXgSNdKbD2dgdNpeaJjENmkyxsvAwASPkowm17nqTrw7epb0VMqVJJSAkPBtU3A9Z6rh9Q/U3Hxu4sw5Bug8dcgeGAw/Lr7mT1Pn61H+op0NHrr2n5kt0ZuCOgTgHMzzsHJywl1nq7eaUr2aFHcIkQFRYmOYRUkmcd0W4UxC/ZifVya6BjkINo2S8Ip8FZspAwnlRPWDFyDILcg0VGE4+ZlK3DhcgE2nmDhEpF90hv1WHxqsegYVoGlawV+2XUORm5vICI7tvjkYugMOtExhGPpClakM+D3fRdExyAiqlGZRZlYe26t6BjCsXQFWx57CVkF/OuPiOzfohOLREcQjqUr2IKdiaIjEBEp4nD6YRzLPCY6hlAsXYEOX8zCsUs5omMQESnmr1N/iY4gFEtXoCX7L4qOQESkqNWJq1FicNy7qLF0BdEZjFhxOFl0DCIiReWU5GDzhc2iYwjD0hVk88l03jOXiBzSijMrREcQhqUryF8HuGmZiBzTtqRtuFx0WXQMIVi6AmQX6LCBV6AiIgell/VYeXal6BhCsHQFWHH4Ekr0DniPLyKiq5afWS46ghAsXQH+PpgkOgIRkVBxl+MQfyVedAzFsXQVlpxdiP3nroiOQUQk3Lrz60RHUBxLV2Frj6WKjkBEZBU2nt8oOoLiWLoKW3s8RXQEIiKrcOLyCVzKuyQ6hqJYugrKLtRh91nHPEyeiKgijjbaZekqaNOJNOh541wiIpMN5zeIjqAolq6CuGmZiMjcwbSDuFLkOAeXsnQVUqw3YMvJdNExiIisikE2ONS1mFm6CtkRn4n8EoPoGEREVmfThU2iIyiGpauQzSd52UcioorsS9kHg9ExBiUsXYXsOJMpOgIRkVXK1eXiWOYx0TEUwdJVQFpuEU6n5YmOQURktXYn7xYdQREsXQXs5CiXiKhSLF2ymB3xLF0iosrEpsei2FAsOkaNY+kqYMfZDNERiIisWrGhGAfTDoqOUeNYujXswuUCXLhcKDoGEZHVc4RNzCzdGsb9uURE1bMnZY/oCDWOpVvD9p3jDQ6IiKojLjMOOoNOdIwaxdKtYYcvZouOQERkE3RGHU5eOSk6Ro1i6dagghI9z88lIroFRzKOiI5Qo1i6NehoUg4MvJUfEVG1Hc04KjpCjWLp1qDDF7NERyAisikc6dJtO8T9uUREtyQxOxF5Jfa7W46lW4M40iUiujUyZBzNtN9NzCzdGpJVUIJzmQWiYxAR2Rx73q/L0q0hx5NzREcgIrJJ8VnxoiPUGJZuDTnDU4WIiG5LQnaC6Ag1hqVbQ86k54uOQERkkxKyEyDL9nm6JUu3hpxJ50iXiOh2FOoLkZKfIjpGjWDp1hBuXiYiun1ns8+KjlAjWLo1IL9Yj+ScItExiIhsFkuXqu1sej7sdHcEEZEiWLpUbdyfS0R0Z85msXSpmhIyeOQyEdGdSMpLEh2hRrB0a0BydqHoCERENi2jMAMGo0F0DItj6daAlJxi0RGIiGyaQTYgvTBddAyLY+nWgBSOdImI7lhqQaroCBbH0q0Bydk8XYiI6E6l5rN0qQoFJXrkFulFxyAisnkc6VKVOMolIrIMe7wUJEvXwlJYukREFsGRLlUplZd/JCKyiIzCDNERLI6la2HZhTrREYiI7EJeif1d3Y+la2E8iIqIyDJyS3JFR7A4lq6F5RZxpEtEZAksXaoSR7pERJaRr8+HbGe3bGPpWhhLl4jIMoyyEXk6+9qva5WlGxMTg4kTJ5o+Dw0NxcyZM4XluRW5xSxdIiJLsbeDqZxEB6iOvXv3wt3dXXSMauE+XSIiy8kpyUEIQkTHsBibKN3AwEDREarNnjYvZ+9ajKwtC+DZdgD8ej4DANBdScaVTT+i+OJxyAYdXBu2hV+vsVC7+950ORe/GQ1DTlq56R5R/eDf+zkAwOUNc5B/dAMkjQt8op+ER4vupvnyT2xD/tENCHp0soVfIRFZu3ydfd2f/JY2L8fExGDChAmYOHEifH19ERwcjDlz5iA/Px+jRo2Cp6cnwsLCsGrVKtNzjh49ir59+8LDwwPBwcEYPnw4MjKunfCcn5+PESNGwMPDAyEhIfjss8/Krff6zcuJiYmQJAmxsbGmx7OysiBJEjZv3gwA2Lx5MyRJwpo1axAVFQVXV1f06NEDaWlpWLVqFZo1awYvLy8MHToUBQUFt/IWVKmwxD7u/1icfAq5sauhCQw1TTOWFCHtj7cBSULwkA9Qa9h0yEY90pZMhSwbb7qskCdnoO64n03/gh57DwDgHtEZAFAQvxv5cVsQNHgafGNG4fLqWTAUZJeuszgfWf/9BL+r5UxEjqXEWCI6gkXd8j7dBQsWICAgAHv27MGECRPw3HPPYdCgQejUqRMOHDiA3r17Y/jw4SgoKEBWVhZ69OiBqKgo7Nu3D6tXr0ZqaioGDx5sWt6rr76KLVu2YNmyZVi7di02b96MAwcOWOTFTZkyBbNnz8aOHTtw4cIFDB48GDNnzsSiRYvw77//Yu3atZg1a5ZF1lXGYLT9I+2MJYXIWPEp/PtMgMrFwzS9OOk49NlpCLj/JTgHhsI5MBQB/V5CSXI8is4dvuny1G7eUHv4mv4Vxu+Bk08ItPUiAQC6zAtwqRcJbUgTuDePhuTsBn126eXfrmyaB8+o++HkFVSzL5qIrJLeaD9bD4HbKN277roLb731Fpo0aYJJkybBxcUFAQEBePrpp9GkSRO88847yMzMxOHDhzF79mxERUXhgw8+QEREBKKiojB37lxs2rQJp06dQl5eHn788Ud8+umnuPfeexEZGYkFCxZAr7fMm/zee++hc+fOiIqKwlNPPYUtW7bgm2++QVRUFLp27YpHH30UmzZtssi6yuiNNx/x2YrL676Ba+P2cA1tbTZdNpTur5bUGtM0Se0MSBKKLx6r1rJlgw75xzfDo1UvSJIEAHAObIiSlHgYivJQnBIPWV8MJ9/aKLp4DCWpZ+DZtr9lXhgR2Rx7K91b3qfbqlUr0//VajX8/f0RGRlpmhYcHAwASEtLw6FDh7Bp0yZ4eHiUW86ZM2dQWFiIkpISdOzY0TTdz88P4eHhtxqryqzBwcFwc3NDo0aNzKbt2bPHIusqo7fxkW7+8S0oSTmDkCdnlHtMWzsCksYFVzbPg0/0CEAGsrbMB2QjDHlXqrX8glO7YCzKg3vLe03TXBu1hXuLGKQseAmSkzMC+r0ElUaLy2u+hn+/l5B7cCVyD/wDtasX/O4bD+fABpZ6uURkYRIkqCU1JEmCWlJBJamvflSVfkTZ/yWoJAkqqEyPq3D1OZBKH4cK7nYwkLneLZeuRqMx+1ySJLNpZaMXo9GIvLw89O/fHx9//HG55YSEhCA+Pv5WVw+VqnRwfv0J0zpdxUcM35irouxGC39BbXnzsj4nHZc3zEHwY9MgOTmXe1zt5o3Ah97A5bVfI3f/CkCS4N48Gs7BjYGrX/eq5B1eC9dGbeHk6W823afLE/Dp8oTp86xti+AS2hqSSo3snb+j9uivUBi/B5n/fo6QkV/c2Qslh6YyFYD6WhFIKqhxrRgkSTL7vFwZXP3/tXKQoEZZiVz9PySoJFz9P65Ov/4joAYg4eo8Mq5Ol0s/ln0uy1efD6iv/r/0o1z6US79KEGGWi6dXw3j1enG0uXIRqhM/8qeZ4TaaIQKVz/KRqiNMiTZcPVxQ+nzjFc/NxqgNhqgMhqgkg3Xni8boDaUTlMbDZBg4d+BTUdadnmC1ejRy23atMGSJUsQGhoKJ6fyq2rcuDE0Gg12796N+vXrAwCuXLmCU6dOITo6usJllh3JnJycjKioKAAwO6iKbl9JSjyMBVlInv/itYmyEcUXjiH3wD+o/8rfcG3YBnXG/gBDQTYklRoqFw9cmD0Mbj61qly+PjsNRecOIfDh/1U6ny7zAvKPb0LIyC+Rd3gdXOq2hNrNG24RXZG56gsYiwug0rrd6ct1aD4GFboHNDcVwo0fTb/kAahkCWqprASuFoB8/ePydR/lq49dKwTVdWVwbbrRrDBUshEqyFAZjaWFYZRNRVH6i//6wrj6i77sF75RvvYL33h9URjNikJ9tSiIRKrR0h03bhzmzJmDIUOG4LXXXoOfnx/i4+Px22+/4YcffoCHhweeeuopvPrqq/D390dQUBDefPNN02i2Iq6urrj77rvx0UcfoWHDhkhLS8Nbb71Vky/DYbg0uAsho2ebTctc+QU0/nXh1XEgJJXaNF3t5g0AKDx3CMb8bLiFdURV8o6sg9rNG66N2990HlmWkbnmK/j2GAOVsysgGyGX7dMp+8hfnHesfXEunj2wWnQMomqw3a2HFanR0q1duza2b9+O119/Hb1790ZxcTEaNGiAPn36mIp1+vTpps3Qnp6eePnll5GdnV3pcufOnYunnnoKbdu2RXh4OD755BP07t27Jl+KQ1Bp3eB83SlCACBptFC5eJqm5x1eB41/PajcvFF86QSurP8enu0fhMa/ruk5qb/9D65N7oHXdQdAybIReUfWw73lvWblfaO8Q2ugdvUylbi2TjNkbVuE4qQTKDy7Hxr/+mZHVNPt0aj4hwvZCDu79rIk29vVpAW76921dnVP3ZRFb8A5qJHp4hhXNs9H3tH1MBbmwck7CJ6t+8Kz/UOmfflA6cUwPCLvNdtHW5hwAGl/vIPaT38HjV+dCtdlyL+C5J9eRq1h0832+WZt/xW5+5ZD5eaNgH4vQVvbMgfaObKpDY9hRPL7omMQVW3wz0DzAaJTWAxL18I6frAeqTnFomMQVerDRkcw5NKHomMQVe2JJUCTnqJTWIxV3vDAlrlqbr7plMhaaGAfV04jB6BxFZ3Aoli6FubqbBOXsyYHp5G4T5dsBEuXKuOq4VtK1k8j2ddVfsiOaezr9EA2hIW5OnPzMlk/J3CkSzaCI12qjKuGm5fJ+jlJ3KdLNoIjXaoMR7pkCzjSJZvBkS5Vxo1HL5MNcOLRy2QTJI50qXI+7pqqZyISjKVLNsHVF6jkssC2yL5ejRUI9NCKjkBUJSfw6GWyAR5BohNYHEvXwgJYumQDuE+XbIJ7oOgEFsfStTCWLtkCNUe6ZAtYulSVAM/yN38nsjYc6ZJN4OZlqgpHumQLONIlm8CRLlXFz80ZapVU9YxEAql59DLZAo50qSoqlQRfN25iJuumllm6ZAPcWbpUDSHeLqIjEFVKxZEu2QKv2qITWBxLtwbU97evK6iQ/VHL3KdLNsCvoegEFsfSrQGhLF2ycty8TFbPPRDQeopOYXEs3RrQwN9ddASiSqk40iVr59dIdIIawdKtAaEsXbJyKo50ydr52t+mZYClWyMacPMyWTnu0yWrx5EuVVewlwtceYs/smISR7pk7Vi6dCs42iVrxn26ZPVYunQrGgVyvy5ZL+7TJavnz9KlW9CslpfoCEQ3JXGkS9bMq27pDeztEEu3hjSvzdIl66UycqRLViyklegENYalW0NYumTNJFknOgLRzdVi6dItCvF2hZ87b3xA1kniSJesGUe6dDuah3C0S9aJ+3TJqnGkS7ejBTcxk5WSjCxdslKuvoBPPdEpagxLtwZxvy5ZK5YuWS07HuUCLN0a1bKOt+gIRBVi6ZLVsuP9uQBLt0Y1DvTgwVRknVi6ZK3qthedoEaxdGtYuwb2eYI32TiWLlmrBp1FJ6hRLN0a1qGhn+gIROUZeZ4uWaGAcMA9QHSKGsXSrWEsXbI2kiRDko2iYxCV16CT6AQ1jqVbw1rU9oaH1kl0DCITVxULl6yUnW9aBli6NU6tktCG+3XJimhVsugIRBXjSJcsoUMoS5eshwtHumSNfEMB7zqiU9Q4lq4COjbyFx2ByETL0iVr5ACblgGWriKi6vnAy4X7dck6sHTJKjWMFp1AESxdBTipVejaNFB0DCIAgFbN0iUrI6mBJr1Ep1AES1chPcKDREcgAgBoJZYuWZm67QE3xzi9kqWrkJjwQKgk0SmIAK2aRy+TlWl6n+gEimHpKsTfQ4tWdX1ExyCCs8Qb2JOVadpHdALFsHQV1COCm5hJPB5IRVbFpz4Q3Fx0CsWwdBXE0iVr4MzSJWvSxHE2LQMsXUW1qO2FWl4uomOQg3PmgVRkTcIdZ9MywNJVlCRJ6BtZS3QMcnBa7tMla6H1AkK7ik6hKJauwgbcVVt0BHJw3LxMVqNZf8BJKzqFoli6Couq74v6fm6iY5AD4+ZlshqRj4pOoDiWrgAPtAoRHYEcmIYjXbIGHsEOc+nH67F0BRjQmpuYSRxncJ8uWYEWDwMqtegUimPpChBRywtNgz1ExyAHpeHmZbIGkYNEJxCCpStI/1Yc7ZIYGhVHuiSYXyOgbjvRKYRg6QryYOs6kHgtZhLAGRzpkmAtHe8AqjIsXUHq+7uhc+MA0THIAXHzMgnX6jHRCYRh6Qo0tGN90RHIAWl4cQwSqUEXICBMdAphWLoC9WoejAAPxzoxnMRz4tHLJFLbkaITCMXSFUijVmFQu7qiY5CD4eZlEsbVD2g+QHQKoVi6gg1pX58HVJGiONIlYVoPdbjLPt6IpStYfX83dAnjAVWkHCfu0yUhJKD9U6JDCOckOgABT3Ssj62nM0THIAehscOR7odbi/HXCR1OZBjh6iShUz01Pu6pRXjAtSsexczPx5Zz5q99bFsNvn3A9abLHbm0EAsO6cym3ddYjdXD3AEAxXoZY1YUYdkJHWp5qPB1Pxf0bHTt1+r07cU4n23ErPtvvg6HEdaz9PxcB8fStQI9mwWjjo8rkrIKRUchB+Bkh+fpbjmnx7j2zmhfWw29EfjfxmL0/qUAx5/3gLvztf03T7fRYGr3a5s33TRV79vpE6bGvAevlaZWfe053+/XYf8lA3Y+5Y5V8XoMXVKI1Fc8IEkSEq4YMeeADvuecbfQq7RxHZ4WncAqcPOyFXBSqzC6S0PRMchBOEEvOoLFrR7mjpGtndEiSI27aqkx/0EXnM+WsT/ZfGTrppFQy0Nl+uelrbp0tWrz5/i6XntOXIYBA8Kd0CJIjXHtnZFeICOjQAYAPPdvIT7uqa3WOuyeXyMgrJfoFFaBpWslHm9fD96uGtExyAGo7XCke6Ps4tKPfq7mhbfwiA4Bn+Si5dd5mLS+CAU6ucplbU7UI2h6LsJn5+G5fwqRWXDt/bsrWI1t5w0o1MlYc0aPEA8JAW4SFh7WwcVJwsPN+DMNAOj8IqBi3QDcvGw13LVOGHZ3fXy16YzoKGTn7HGkez2jLGPi6iJ0rqdGy6Br+3SHRmrQwFuF2p4SDqca8fr6IpzMNOKvx25+f+s+YU54pJkTGvqocOaKEf/bUIy+Cwuw8yl3qFUSRkdpcDjVgOZf5yHATcIfg1xxpQh4Z3MRNj/pjrc2FuG3ozo09lNh7gBX1PFywOLxDAHuGio6hdWQZFmu+k89UkR6bjE6f7wRJXr7H4mQOCubrEDzC7+KjlFjnvunEKvi9dg22h11Kym5jQl63PtTAeIneKCxX/XK8OwVIxp/mYf1w91wb6OKxyyjlhWidbAKDX1V+N+GYuwe445PthfjaLoRSwbfvODtVq+ppSNdAsDNy1Yl0FOLgW3qiI5Bdk5th0cvlxm/shD/nNZj05OVFy4AdKxTOgqOv1z9P3Ib+aoQ4Cbd9DmbEvQ4lmbA+A7O2JxowP1NnODuLGFwCw02J9rv+35TLt5Au9GiU1gVlq6VGdO1EVQ87oJqkD2WrizLGL+yEH+f0GPjCDc09K36V1tsSun7EOJZ/R+4izlGZBbIFT6nSC9j3MoifPeAK9QqCQYjoLv6VuuMgMHogBsV248BtJ6iU1gVlq6VaRzogV7Ng0XHIDumlu2vdMetLMIvh3VY9IgrPLUSUvKMSMkzovDqgVJnLhsxbUsx9l8yIDHLiOUndRixtBDdGqjRKvjaft+I2Xn4O670vNy8Ehmvri3Crot6JGYZseGsHg/+VoAwPxXua1x+0/K0LcW4v4kTokJKl9e5vhp/ndDhcKoBs/eUoHN9BzuExskV6Pic6BRWx8G+C2zDxJ5NsfZ4Kri3nWqCPY50v9lXWpQxCwrMps970AUjWzvDWQ2sT9Bj5u4S5JfIqOetwsBmGrzVzfyShCczjcguLv3BU0vA4TQDFhzSIatIRm1PCb0bO2Fady20TuYj3aNpBvxxXI/YsdfOyX20uRM2Jzqh67x8hPursGigg+3PjXoC8AgUncLq8EAqKzV+0QH8czhZdAyyQ9sb/4w6SatExyB75uQCTNgPePOGLjfi5mUr9VKvplBz5y7VAHsc6ZKVaT+GhXsTLF0r1TjQA49E8UhmsjyVbN/n6ZJgWi+g68uiU1gtlq4Ve7FnEzir+SUiy1LZ4YFUZEU6TQDc/ESnsFr8jW7F6vq64fEO9UTHIDvD0qUa4x4E3DNOdAqrxtK1cuO7h8FFwy8TWY6am5eppnR7FXDmXZUqw9/mVi7IywXPdOU9KMlyJI50qSb4NADajRKdwuqxdG3AczFhqO3tIjoG2QkeSEU1osfbgJp3VaoKS9cGuDqr8cb9zUTHIDvBfbpkcfXvAVoNEp3CJrB0bcSAu2qjQyiPCKQ7J3GkS5YkqYH7PxWdwmawdG3I5AHNeTMEumMqI0e6ZEHtxwC1WopOYTNYujakRW1vPNa+vugYZOMkWSc6AtkL9yCgx5uiU9gUlq6NefW+cHi58D4VdPskjnTJUnq9W3rPXKo2lq6N8XN3xmt9IkTHIBvGfbpkEfU6AncNEZ3C5rB0bdATHeujQ0MeVEW3RzKydOkOlR08JfEgk1vF0rVBkiTh44GteKUqui0sXbpjncYDIa1Ep7BJ/K1toxoGuGNiz6aiY5ANYunSHQkIB7rz4KnbxdK1YU93bYTIOjyIgW4RS5dul6QGHvoacNKKTmKzWLo2TK2S8MmjraBRc78K3QKWLt2uTuOBuu1Ep7BpLF0b1yzEC89GNxYdg2yJkefp0m3gZmWLYOnagQk9mqB5iJfoGGQDJEmGJBtFxyBbI6mBh77hZmULYOnaAWcnFb4cEgVXjVp0FLJyrioWLt2GThOAum1Fp7ALLF07ERbkgXf6Nxcdg6ycViWLjkC2JqQ1NytbEEvXjgzpUB99W9YSHYOsmAtHunQrtF7AoHmAk7PoJHaDpWtnPnqkFW94TzelZenSreg/E/BrJDqFXWHp2hlvNw1mPNaatwCkCrF0qdrajgRaDhSdwu6wdO1Qx0b+GN89THQMskJaNUuXqiGoBdDnY9Ep7BJL10692LMpujYJEB2DrIxWYulSFTTuwKD5gIa7qWoCS9dOqVUSZg2JQj0/V9FRyIpo1Tx6marQ7zMgkNd1ryksXTvm4+aM74a14/m7ZOIs8Qb2VIkOY4HWvEduTWLp2rnmtb3w0cBI0THISvBAKrqpRjFAnw9Fp7B7LF0H8GDrOni6a0PRMcgKOLN0qSJ+jUr346q4VaymsXQdxBt9m6FzmL/oGCSYMw+kohtpvYAhvwGuvqKTOASWroNQqyTMHtIGDfzdREchgbTcp0vXk1TAwB+AwHDRSRwGS9eB+Lo7Y8GoDvBz5yXdHBU3L5OZeycDTe8TncKhsHQdTGiAO358sh1cNPzSOyJuXiaT1k8AXSaKTuFw+JvXAUXV98WsIW2g5rUiHY6GI10CgKZ9gP5fik7hkFi6DqpX82BM4a0AHY4zuE/X4dXrWHqkstpJdBKHxNJ1YMPvCcXYaN5BxJFouHnZsQU2A4b+Dmh4pTpRWLoO7o0+EXiodW3RMUghGhVHug7Lux4w/C+eGiQYS9fBSZKETwfdhV7Ng0VHIQU4gyNdh+TmDwz/G/DiH9iisXQJTmoVZg+N4l2JHAA3LzsgZw9g6GIgoInoJASWLl2ldVJjzoh26NjQT3QUqkEaXhzDsWjcgScWA3Xbik5CV7F0ycRFo8bcke3RPpT7fOyVE49edhwaN+CJP4AGnUQnoeuwdMmMu9YJ80d1QNsGLF57xM3LDkLjVnqUcmgX0UnoBixdKsdd64QFozugTX0f0VHIwjjSdQDOHsATfwINu4lOQhVg6VKFPLRO+GVMR3QJ48FV9sSJ+3Ttm9YLGPYXENpZdBK6CZYu3ZSbsxPmjmyPvi1riY5CFqLhSNd+ufgAw5cC9TuKTkKVYOlSpZydVJg9tA0Gt6srOgpZgBPP07VPXnWA0at5lLINYOlSldQqCZ88ehee7tpQdBS6Q07Qi45AlhYYATy1DghqJjoJVQNLl6rtzX7N8ep9vNm1LVNzpGtf6t9TOsL1rmORxcXExGDixIkWWRZVjKVLt2Rc9zB88HAknHhbQJvEka4dCe9Xug+X11K2KSxdumVDO9bHvFHt4enCW4PZGp4yZCfajgIe+xnQuIhOQreIpUu3pWuTQPz9fCc08HcTHYVugZqla+MkoPtbQP+ZgEpdo2u6cuUKRowYAV9fX7i5uaFv3744ffo0AECWZQQGBuLPP/80zd+6dWuEhISYPt+2bRu0Wi0KCgpqNKetYenSbQsL8sTS5zujQyiv12wrWLo2zNkTeHwhEP2qIqsbOXIk9u3bh+XLl2Pnzp2QZRn3338/dDodJElCt27dsHnzZgClBR0XF4fCwkKcOHECALBlyxa0b98ebm78w/x6LF26I77uzvhlTEcMbMNTimyBWmbp2iS/RsCY9UBEP0VWd/r0aSxfvhw//PADunbtirvuugsLFy5EUlISli5dCqD0oKuy0v3vv/8QFRVlNm3z5s2Ijo5WJK8tYenSHXN2UuGzwXfh9T4R4PFV1o0jXRvUuAfw9EYgKEKxVcbFxcHJyQkdO1670Ia/vz/Cw8MRFxcHAIiOjsbx48eRnp6OLVu2ICYmxlS6Op0OO3bsQExMjGKZbQVLlyzmuZjGmD+qA/zcnUVHoZtQyzx62abcM770OspWeIRyZGQk/Pz8sGXLFrPS3bJlC/bu3QudTodOnXiHoxuxdMmiujUNxL8vdOFdiqwUR7o2wskFePg74L73a/yAqYo0a9YMer0eu3fvNk3LzMzEyZMn0bx5cwCAJEno2rUrli1bhmPHjqFLly5o1aoViouL8d1336Fdu3Zwd3dXPLu1Y+mSxYV4u+L3Z+7GmC68gpW1UXGka/0CI4CnNwF3PS4sQpMmTfDggw/i6aefxrZt23Do0CEMGzYMderUwYMPPmiaLyYmBr/++itat24NDw8PqFQqdOvWDQsXLuT+3Jtg6VKNcFKr8NYDzfHtsLY8n9eK8EAqK9fmydLCDW4uOgnmzZuHtm3b4oEHHsA999wDWZaxcuVKaDQa0zzR0dEwGAxm+25jYmLKTaNrJFmWZdEhyL6dy8zH8wsP4NilHNFRHN7B0K/gm7JddAy6kda79Nzblo+ITkI1jCNdqnEN/N3x9/OdMTa6EY9uFkzFka71qdMOePY/Fq6DYOmSIpydVJjUtxn+GHsP6vvxZHlRuE/XikgqoPOLpTcs8A0VnYYUwtIlRbUL9cOqF7tiSIf6oqM4JIkjXevgHwaMWgX0mgqoNVXPT3aDpUuKc9c64cNHIjFvVHsEeWpFx3EoHOkKJqmBTi8Az24H6t8tOg0JwNIlYbqHB2HtS90w4K7aoqM4DO7TFajsZvO9p/HuQA6MpUtC+bg548shUfhpdAfesUgBkpEjXcWpnICurwBjtwJ124pOQ4LxlCGyGkU6A77eFI9vt5xFicEoOo5dOlXrLThnnRUdw3HUjgIemAnUbi06CVkJli5ZnTPpeXjr76PYeTZTdBS7Ex/0BpxyzouOYf/cAoB73wGihgMqblCka1i6ZLX+OnARH6yMQ0ZeiegodiM+8FU45SaJjmG/JDXQ4WkgZhLg6iM6DVkhli5ZtZwiHb7aFI/52xNRrOcm5zt1xn8i1PlpomPYp9CuQN9PrOISjmS9WLpkE5KyCjF99QksO3QJ/I69fWd9J0BVyM32FuVVt/SIZF5RiqqBpUs25cjFbLy/8jh2nb0sOopNSvB+FlIxr4FtEW4BQNf/A9qPAZx4vjlVD0uXbNL646n4aPUJxKfliY5iUxI8n4akyxcdw7ZpvYFO44G7nwe0HqLTkI1h6ZLNMhhlLD+UhNkb43EmnUVSHQnuIyEZeGDabdG4lR4k1Xki4OYnOg3ZKJYu2TyjUcY/R5Ixe+NpnErlyLcyCa7DIMk8IO2WqLVAm+FAt1cBz1qi05CNY+mS3ZBlGauPpuDLjfGIS+Z+yxupJCPOaoeJjmE7tN5Au1HA3c+xbMliWLpkd2RZxvq4NHy9OR4Hz2eJjmM13NVGHNOwdKvkWbu0aNuNArSeotOQnWHpkl2LvZCFedsTsPJIMnQGx/5W99PocED9pOgY1isgHOj8AhA5GHByFp2G7BRLlxxCWk4Rftl1Dov2nHfYK1yFuJRgJ0aKjmFlJKBxd6DDM0DTPoAkiQ5Edo6lSw6lWG/A8thLmL8jEccuOdZ+34auhdgkPyU6hnVw9QVaPwG0Gw34NxadhhwIS5cc1pGL2fhz/wUsO3QJWQU60XFqXIRHAVbrx4iOIZAEhHYB2owAmg3gPW1JCJYuObwSvRHr41Lx5/6L2HIqHQajff5I3OWVh2Ulz4iOoTzvekDko6V3/OGolgRj6RJdJy23CH8fSMJfB5JwMjVXdByL6uCTgz+KnhUdQxnuQUCLh4GWA4F6HbivlqwGS5foJuLT8rDmWApWH03BkaRs0XHuWFe/LPxc8LzoGDXHxQdo1r90VBvaFVCpRSciKoelS1QNF68UYPXRFKw5loL9567AFrdA3+t/GT/mjxcdw7K86gBNegHh9wONewBqjehERJVi6RLdorTcImyIS8PW0+nYHp+J7ELbOAirb2AGvsl9QXSMO6NyAup2KC3aJr2BWi1FJyK6JSxdojtgNMo4kpSNbfEZ2Ho6HQfOZaHEYJ3XNn4oOA0zsyeKjnHrvOoADbuVFm3jewFXH9GJiG4bS5fIggpLDNidkIkdZzJx4NwVHEnKRrHeOkp4cK0UfJL1f6JjVEECAsOB+veU/mtwD+BTX3QoIotxEh2AyJ64OqsREx6EmPAgAIDOYMSJ5FwcvHAFseezcPBCFhIyxNyGUKsyCFlvpbReQHALoG77q0V7N2+bR3aNpUtUgzRqFSLreiOyrjdG3FM6LaugBLEXsnAyJRen0/JwOrX0Y0FJzZaiRhI54pYA3wZAcEugVuTVjy0BnwY8nYccCkuXSGE+bs5mo2Gg9M5ISVmFOJ2ah1NXS/j85QJcyipEak6RRW7WoFUpULoewYBvqPk/v0ZAUHPAxavm109k5Vi6RFZAkiTU9XVDXV83dI8IMnvMaJSRlluMpKxCXMoqRHJ2IS5lFSEttwjZhbpr/wp0yC3W42ZHaWik2xxJS2rAzR9wD7j6MfDq/wMAd//SW+GVFayz2+2tg8hB8EAqIjtiNMrILdIju1CHnCIdivUGFOuN0Blk+CMLLQ0nAKMBkI2l/1RqwMnlun9aQONa+tHJpfT/Lj7cBExkISxdIiIihahEByAiInIULF0iIiKFsHSJiIgUwtIlIiJSCEuXiIhIISxdIiIihbB0iYiIFMLSJSIiUghLl4iISCEsXSIiIoWwdImIiBTC0iUiIlIIS5eIiEghLF0iIiKFsHSJiIgUwtIlIiJSCEuXiIhIISxdIiIihbB0iYiIFMLSJSIiUghLl4iISCEsXSIiIoWwdImIiBTC0iUiIlIIS5eIiEghLF0iIiKFsHSJiIgUwtIlIiJSCEuXiIhIISxdIiIihbB0iYiIFMLSJSIiUghLl4iISCEsXSIiIoWwdImIiBTC0iUiIlIIS5eIiEghLF0iIiKFsHSJiIgUwtIlIiJSCEuXiIhIISxdIiIihbB0iYiIFMLSJSIiUghLl4iISCEsXSIiIoWwdImIiBTC0iUiIlIIS5eIiEghLF0iIiKFsHSJiIgU8v/e25Gjp15RggAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 1500x500 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Вывод распределения количества наблюдений по меткам (классам)\n",
"print('Распределение количества наблюдений по меткам (классам):')\n",
"print(df.salary_in_usd.value_counts(), '\\n')\n",
"\n",
"# Статистическое описание целевого признака\n",
"print('Статистическое описание целевого признака:')\n",
"print(df['salary_in_usd'].describe().transpose(), '\\n')\n",
"\n",
"# Определим границы для каждой категории зарплаты\n",
"bins: list[float] = [df['salary_in_usd'].min() - 1, \n",
" df['salary_in_usd'].quantile(0.25), \n",
" df['salary_in_usd'].quantile(0.75), \n",
" df['salary_in_usd'].max() + 1]\n",
"labels: list[str] = ['low', 'medium', 'high']\n",
"\n",
"# Создаем новую колонку с категориями зарплат#\n",
"df['salary_category'] = pd.cut(df['salary_in_usd'], bins=bins, labels=labels)\n",
"\n",
"# Вывод распределения количества наблюдений по меткам (классам)\n",
"print('Распределение количества наблюдений по меткам (классам):')\n",
"print(df['salary_category'].value_counts(), '\\n')\n",
"\n",
"# Проверка сбалансированности\n",
"print('Проверка сбалансированности:')\n",
"check_balance(df, 'Весь датасет', 'salary_category')\n",
"\n",
"# Проверка необходимости аугментации\n",
"print('Проверка необходимости аугментации:')\n",
"print(f\"Для датасета аугментация данных {'НЕ ' if not need_augmentation(df, 'salary_category', 'low', 'medium') else ''}ТРЕБУЕТСЯ\")\n",
" \n",
"# Визуализация сбалансированности классов\n",
"visualize_balance(df, 'salary_category')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Данные обладают значительным дисбалансом между классами. Это может быть проблемой при обучении модели, так как она может иметь тенденцию игнорировать низкие или высокие зарплаты (low или high), что следует учитывать при дальнейшем анализе и выборе методов обработки данных.\n",
"\n",
"Для получения более сбалансированных данных необходимо воспользоваться методами приращения (аугментации) данных, а именно методами oversampling и undersampling."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Метод приращения с избытком (oversampling)"
]
},
{
"cell_type": "code",
"execution_count": 163,
"metadata": {},
"outputs": [],
"source": [
"def oversample(df: DataFrame, column: str) -> DataFrame:\n",
" X: DataFrame = pd.get_dummies(df.drop(column, axis=1))\n",
" y: DataFrame = df[column] # type: ignore\n",
" \n",
" adasyn = ADASYN()\n",
" X_resampled, y_resampled = adasyn.fit_resample(X, y) # type: ignore\n",
" \n",
" df_resampled: DataFrame = pd.concat([X_resampled, y_resampled], axis=1)\n",
" return df_resampled"
]
},
{
"cell_type": "code",
"execution_count": 164,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Проверка сбалансированности выборок после применения метода oversampling:\n",
"Весь датасет: (5601, 279)\n",
"Распределение выборки данных по классам в колонке \"salary_category\":\n",
" salary_category\n",
"high 1868\n",
"medium 1867\n",
"low 1866\n",
"Name: count, dtype: int64\n",
"Процент объектов класса \"high\": 33.35%\n",
"Процент объектов класса \"medium\": 33.33%\n",
"Процент объектов класса \"low\": 33.32%\n",
"\n",
"Проверка необходимости аугментации выборок после применения метода oversampling:\n",
"Для всего датасета аугментация данных НЕ ТРЕБУЕТСЯ\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAHqCAYAAAB7kisIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABaO0lEQVR4nO3dd3gUVcMF8LMlZdMbqZQQEnoQCEVqItIREBQEFARFsbwq72flRQWxIiooiCIqoIJIkd6U3mtI6BAggTTSe90y3x8xKyEJBNjk7u6c3/PwaHY3M2c3m5ydmTt3FJIkSSAiIpIJpegAREREdYnFR0REssLiIyIiWWHxERGRrLD4iIhIVlh8REQkKyw+IiKSFRYfERHJCouPiIhkhcVHRHUqMDAQ48ePFx2DZMyiim/x4sVQKBTGf/b29mjatCn+85//ICUlRXQ8Ios1ffp0BAYGAvj394zu3/z587F48WLRMUxu/PjxiIiIAFDxvWMp1KID3IsZM2agcePGKC4uxv79+/Hdd99h8+bNOHPmDBwcHETHIyICUFZ8Xl5e3MI1MxZZfAMGDECHDh0AABMnToSnpye++uorrFu3DqNHjxacjojqSnFxMWxtbaFUWtTOK7NTUFAAR0dH0THqjFW8W3r16gUAiI2NBQBkZmbijTfeQGhoKJycnODi4oIBAwYgOjq60vcWFxdj+vTpaNq0Kezt7eHn54fhw4fjypUrAIC4uLgKu1dv/Ve+uQ8Au3fvhkKhwB9//IH//e9/8PX1haOjI4YMGYL4+PhK6z5y5Aj69+8PV1dXODg4IDw8HAcOHKjyOUZERFS5/unTp1d67G+//YawsDBoNBp4eHhg1KhRVa7/ds/tZgaDAXPmzEGrVq1gb28PHx8fTJo0CVlZWRUeFxgYiEceeaTSev7zn/9UWmZV2WfNmlXpNQWAkpISTJs2DcHBwbCzs0ODBg3w1ltvoaSkpMrX6mYRERGVlvfxxx9DqVRi2bJl9/R6fPHFF+jatSs8PT2h0WgQFhaGVatWVbn+3377DZ06dYKDgwPc3d3Rs2dP/PXXXxUes2XLFoSHh8PZ2RkuLi7o2LFjpWwrV640/ky9vLzw1FNPITExscJjxo8fXyGzu7s7IiIisG/fvju+Tndy/Phx9OvXD15eXtBoNGjcuDGeeeaZe35dblbT39fy36/ly5fj3XffRUBAABwcHBAVFQWFQoHZs2dXWvbBgwehUCjw+++/1/i5GgwGfP311wgNDYW9vT3q1auH/v374/jx48bHLFq0CL169YK3tzfs7OzQsmVLfPfddxWWExgYiLNnz2LPnj1V/r3Izs7G5MmT0aBBA9jZ2SE4OBgzZ86EwWCosJyMjAyMHTsWLi4ucHNzw9NPP43o6GgoFIpKu1F37tyJHj16wNHREW5ubhg6dCjOnz9f4THTp0+HQqHAuXPnMGbMGLi7u6N79+5YtGgRFAoFTp48Wek1+eSTT6BSqSq95yyVRW7x3aq8pDw9PQEAV69exdq1azFixAg0btwYKSkpWLBgAcLDw3Hu3Dn4+/sDAPR6PR555BHs2LEDo0aNwmuvvYa8vDz8/fffOHPmDJo0aWJcx+jRozFw4MAK650yZUqVeT7++GMoFAq8/fbbSE1NxZw5c9C7d29ERUVBo9EAKHuDDhgwAGFhYZg2bRqUSqXxl2nfvn3o1KlTpeXWr18fn376KQAgPz8fL774YpXrfu+99zBy5EhMnDgRaWlpmDt3Lnr27ImTJ0/Czc2t0vc8//zz6NGjBwDgzz//xJo1ayrcP2nSJCxevBgTJkzAq6++itjYWMybNw8nT57EgQMHYGNjU+XrcDeys7ONz+1mBoMBQ4YMwf79+/H888+jRYsWOH36NGbPno1Lly5h7dq1d7WeRYsW4d1338WXX36JMWPGVPmYO70eX3/9NYYMGYInn3wSpaWlWL58OUaMGIGNGzdi0KBBxsd98MEHmD59Orp27YoZM2bA1tYWR44cwc6dO9G3b18AZcfTnnnmGbRq1QpTpkyBm5sbTp48ia1btxrzlb/2HTt2xKeffoqUlBR8/fXXOHDgQKWfqZeXl7EAEhIS8PXXX2PgwIGIj4+v8mdfE6mpqejbty/q1auHd955B25uboiLi8Off/55T6/LrWr6+1ruww8/hK2tLd544w2UlJSgefPm6NatG5YuXYr//ve/FR67dOlSODs7Y+jQoTV+vs8++ywWL16MAQMGYOLEidDpdNi3bx8OHz5s3NP03XffoVWrVhgyZAjUajU2bNiAl156CQaDAS+//DIAYM6cOXjllVfg5OSEqVOnAgB8fHwAAIWFhQgPD0diYiImTZqEhg0b4uDBg5gyZQqSk5MxZ84cAGXv/8GDB+Po0aN48cUX0bx5c6xbtw5PP/10pdzbt2/HgAEDEBQUhOnTp6OoqAhz585Ft27dEBkZWek43IgRIxASEoJPPvkEkiTh8ccfx8svv4ylS5eiXbt2lV7HiIgIBAQE1Ph1NGuSBVm0aJEEQNq+fbuUlpYmxcfHS8uXL5c8PT0ljUYjJSQkSJIkScXFxZJer6/wvbGxsZKdnZ00Y8YM420///yzBED66quvKq3LYDAYvw+ANGvWrEqPadWqlRQeHm78eteuXRIAKSAgQMrNzTXevmLFCgmA9PXXXxuXHRISIvXr18+4HkmSpMLCQqlx48ZSnz59Kq2ra9euUuvWrY1fp6WlSQCkadOmGW+Li4uTVCqV9PHHH1f43tOnT0tqtbrS7TExMRIAacmSJcbbpk2bJt38tti3b58EQFq6dGmF7926dWul2xs1aiQNGjSoUvaXX35ZuvWtdmv2t956S/L29pbCwsIqvKa//vqrpFQqpX379lX4/u+//14CIB04cKDS+m4WHh5uXN6mTZsktVotvf7661U+tiavhySV/ZxuVlpaKrVu3Vrq1atXhWUplUpp2LBhld6L5T/z7OxsydnZWercubNUVFRU5WNKS0slb29vqXXr1hUes3HjRgmA9P777xtve/rpp6VGjRpVWM4PP/wgAZCOHj1a5XOuiTVr1kgApGPHjt32cTV5XSSp7H3y9NNPG7+u6e9r+e9XUFBQpXUtWLBAAiCdP3++wvq9vLwqrOtOdu7cKQGQXn311Ur33fq7eqt+/fpJQUFBFW679W9EuQ8//FBydHSULl26VOH2d955R1KpVNL169clSZKk1atXSwCkOXPmGB+j1+ulXr16SQCkRYsWGW9v27at5O3tLWVkZBhvi46OlpRKpTRu3DjjbeXv6dGjR1fKNXr0aMnf37/CzyMyMrLSuiydRe7q7N27N+rVq4cGDRpg1KhRcHJywpo1a4yfRuzs7Iz7/PV6PTIyMuDk5IRmzZohMjLSuJzVq1fDy8sLr7zySqV13M+otnHjxsHZ2dn49eOPPw4/Pz9s3rwZABAVFYWYmBiMGTMGGRkZSE9PR3p6OgoKCvDwww9j7969lXZ3FBcXw97e/rbr/fPPP2EwGDBy5EjjMtPT0+Hr64uQkBDs2rWrwuNLS0sBlL1e1Vm5ciVcXV3Rp0+fCssMCwuDk5NTpWVqtdoKj0tPT0dxcfFtcycmJmLu3Ll477334OTkVGn9LVq0QPPmzSsss3z39q3rr87Ro0cxcuRIPPbYY5g1a1aVj6nJ6wHAuNUOAFlZWcjJyUGPHj0qvLfWrl0Lg8GA999/v9Lxp/L31t9//428vDy88847lX625Y85fvw4UlNT8dJLL1V4zKBBg9C8eXNs2rSpwvcZDAbjaxQVFYVffvkFfn5+aNGixW2f0+2Ubylu3LgRWq222sfV5HWpSk1/X8s9/fTTFdYFACNHjoS9vT2WLl1qvG3btm1IT0/HU089dcfnWG716tVQKBSYNm1apftu/ptw8/pzcnKQnp6O8PBwXL16FTk5OXdcz8qVK9GjRw+4u7tXeF/37t0ber0ee/fuBQBs3boVNjY2eO6554zfq1QqjVuV5ZKTkxEVFYXx48fDw8PDeHubNm3Qp08f49+em73wwguVbhs3bhySkpIq/F4tXboUGo0Gjz322B2fl6WwyF2d3377LZo2bQq1Wg0fHx80a9aswh+X8n308+fPR2xsLPR6vfG+8t2hQNku0mbNmkGtNu3LEBISUuFrhUKB4OBgxMXFAQBiYmIAoMrdFeVycnLg7u5u/Do9Pb3Scm8VExMDSZKqfdytuySzs7MBoFLZ3LrMnJwceHt7V3l/ampqha//+usv1KtX77Y5bzVt2jT4+/tj0qRJlY4JxcTE4Pz589Uu89b1VyUxMRGDBg1CQUEBMjIyqv1QU5PXAygrgI8++ghRUVEVjjPevNwrV65AqVSiZcuW1S6nfBd969atq33MtWvXAADNmjWrdF/z5s2xf//+CrfFx8dXeK38/PywevXqOz6n2wkPD8djjz2GDz74ALNnz0ZERAQeffRRjBkzpsKHhJq8LlWp6e9rucaNG1e6zc3NDYMHD8ayZcvw4YcfAij7gx0QEGD8kFQTV65cgb+/f4XyqMqBAwcwbdo0HDp0CIWFhRXuy8nJgaur622/PyYmBqdOnbrj+/ratWvw8/OrNFo9ODi4wte3e5+0aNEC27ZtqzSAparXsU+fPvDz88PSpUvx8MMPw2Aw4Pfff8fQoUMrfJi3dBZZfJ06dTLua6/KJ598gvfeew/PPPMMPvzwQ3h4eECpVGLy5MmVtqREKM8wa9YstG3btsrH3PyHqrS0FMnJyejTp88dl6tQKLBlyxaoVKrbLhMAbty4AQDw9fW97TK9vb0rfJK+2a2/uJ07d8ZHH31U4bZ58+Zh3bp1VX7/+fPnsXjxYvz2229VHis0GAwIDQ3FV199VeX3N2jQoNrs5S5fvoz27dtj9uzZGDt2LJYsWVLlh46avB779u3DkCFD0LNnT8yfPx9+fn6wsbHBokWLKg1IEcHHxwe//fYbgLI/wD///DP69++P/fv3IzQ09J6WqVAosGrVKhw+fBgbNmzAtm3b8Mwzz+DLL7/E4cOH4eTkdF+vy93+vt66tVdu3LhxWLlyJQ4ePIjQ0FCsX78eL730kslHfF65cgUPP/wwmjdvjq+++goNGjSAra0tNm/ejNmzZ9fob4zBYECfPn3w1ltvVXl/06ZNTZq5KlW9jiqVCmPGjMHChQsxf/58HDhwAElJSXe11WwJLLL47mTVqlV46KGH8NNPP1W4PTs7G15eXsavmzRpgiNHjkCr1ZpkgEa58i26cpIk4fLly2jTpo1xvQDg4uKC3r1733F50dHR0Gq1ty378uVKkoTGjRvX6Bfn3LlzUCgUVX5KvHmZ27dvR7du3ar9g3MzLy+vSs/pdgNQpkyZgrZt2+KJJ56odv3R0dF4+OGH73n3c/luZh8fH6xbtw6vv/46Bg4cWKm0a/J6rF69Gvb29ti2bVuFrZ1FixZVym0wGHDu3LlqP9yUvw/OnDlT6RN8uUaNGgEALl68WGnL5eLFi8b7y9nb21d4/YcMGQIPDw/MmzcPCxYsqPZ51cSDDz6IBx98EB9//DGWLVuGJ598EsuXL8fEiRNr/LpUpaa/r3fSv39/1KtXD0uXLkXnzp1RWFiIsWPH1vwJouxnsm3bNmRmZla71bdhwwaUlJRg/fr1aNiwofH2qna7V/eebdKkCfLz8+/4+9+oUSPs2rULhYWFFbb6Ll++XOlxQNl74lYXLlyAl5dXjU9XGDduHL788kts2LABW7ZsQb169dCvX78afa+lsMhjfHeiUqkgSVKF21auXFlpKO5jjz2G9PR0zJs3r9Iybv3+u/HLL78gLy/P+PWqVauQnJyMAQMGAADCwsLQpEkTfPHFF8jPz6/0/WlpaZWyq1SqKk8VuNnw4cOhUqnwwQcfVMovSRIyMjKMX+t0OqxevRqdOnW67W6wkSNHQq/XG3cf3Uyn0xl3D96LQ4cOYd26dfjss8+q/QMxcuRIJCYmYuHChZXuKyoqQkFBwR3X07RpU+Nourlz58JgMOC1116r8Jiavh4qlQoKhaLC7ri4uLhK5f7oo49CqVRixowZlbYAyn82ffv2hbOzMz799NNKx0HLH9OhQwd4e3vj+++/r7D7cMuWLTh//vxtR0sCZXsLdDpdjU79qE5WVlal91N5mZcvt6avS1Vq+vt6J2q1GqNHj8aKFSuwePFihIaGGj9s1tRjjz0GSZLwwQcfVLqvPGP53pSbM+fk5FRZ8o6OjlX+jowcORKHDh3Ctm3bKt2XnZ0NnU4HAOjXrx+0Wm2F97/BYMC3335b4Xv8/PzQtm1bLFmypML6zpw5g7/++qvSiPTbadOmDdq0aYMff/wRq1evxqhRo0x+OEg063o2/3jkkUcwY8YMTJgwAV27dsXp06exdOlSBAUFVXjcuHHj8Msvv+D//u//cPToUfTo0QMFBQXYvn07XnrppbsaAn0zDw8PdO/eHRMmTEBKSgrmzJmD4OBg4wFqpVKJH3/8EQMGDECrVq0wYcIEBAQEIDExEbt27YKLiws2bNiAgoICfPvtt/jmm2/QtGlT7N6927iO8sI8deoUDh06hC5duqBJkyb46KOPMGXKFMTFxeHRRx+Fs7MzYmNjsWbNGjz//PN44403sH37drz33ns4deoUNmzYcNvnEh4ejkmTJuHTTz9FVFQU+vbtCxsbG8TExGDlypX4+uuv8fjjj9/T6/TXX3+hT58+t/3UO3bsWKxYsQIvvPACdu3ahW7dukGv1+PChQtYsWIFtm3bdsct4Zv5+vpi1qxZmDhxIp566ikMHDjwrl6PQYMG4auvvkL//v0xZswYpKam4ttvv0VwcDBOnTplfFxwcDCmTp2KDz/8ED169MDw4cNhZ2eHY8eOwd/fH59++ilcXFwwe/ZsTJw4ER07djSeUxUdHY3CwkIsWbIENjY2mDlzJiZMmIDw8HCMHj3aeDpDYGBgpeH7BQUFFXZ1/vrrryguLsawYcNq/BrdasmSJZg/fz6GDRuGJk2aIC8vDwsXLoSLi4vxD2pNX5eq1PT3tSbGjRuHb775Brt27cLMmTPv+vsfeughjB07Ft988w1iYmLQv39/GAwG7Nu3Dw899BD+85//oG/fvrC1tcXgwYMxadIk5OfnY+HChfD29kZycnKF5YWFheG7777DRx99hODgYHh7e6NXr1548803sX79ejzyyCMYP348wsLCUFBQgNOnT2PVqlWIi4uDl5cXHn30UXTq1Amvv/46Ll++jObNm2P9+vXIzMwEUHGLctasWRgwYAC6dOmCZ5991ng6g6ura5Xn+97pdXzjjTcAwOp2cwKwzNMZ7jSsuri4WHr99dclPz8/SaPRSN26dZMOHTpUYWh7ucLCQmnq1KlS48aNJRsbG8nX11d6/PHHpStXrkiSdG+nM/z+++/SlClTJG9vb0mj0UiDBg2Srl27Vun7T548KQ0fPlzy9PSU7OzspEaNGkkjR46UduzYUWHdd/p363Dt1atXS927d5ccHR0lR0dHqXnz5tLLL78sXbx4UZIkSXrllVeknj17Slu3bq2Uqarh+5JUNiw+LCxM0mg0krOzsxQaGiq99dZbUlJSkvExd3s6g0KhkE6cOFHh9qp+RqWlpdLMmTOlVq1aSXZ2dpK7u7sUFhYmffDBB1JOTk6l9d1peZIkSb169ZIaNmwo5eXl3fXr8dNPP0khISGSnZ2d1Lx5c2nRokXVvm4///yz1K5dO2Pu8PBw6e+//67wmPXr10tdu3aVNBqN5OLiInXq1En6/fffKzzmjz/+MC7Hw8NDevLJJ42n75R7+umnK7wvnJycpPbt20u//vrrbV+jO4mMjJRGjx4tNWzYULKzs5O8vb2lRx55RDp+/Pg9vS5Vnc5Qk9/X8t+vlStX3jZvq1atJKVSWen1qSmdTifNmjVLat68uWRrayvVq1dPGjBgQIX36vr166U2bdpI9vb2UmBgoDRz5kzj6VGxsbHGx924cUMaNGiQ5OzsLAGo8Hzy8vKkKVOmSMHBwZKtra3k5eUlde3aVfriiy+k0tJS4+PS0tKkMWPGSM7OzpKrq6s0fvx46cCBAxIAafny5RWyb9++XerWrZvxvTR48GDp3LlzFR5T/jNJS0ur9jVITk6WVCqV1LRp03t6Dc2dQpLuY58eVbB792489NBDWLly5T1vBd0sLi4OjRs3RmxsbLWTwE6fPh1xcXFWOREu0b1o164dPDw8sGPHDtFRas3atWsxbNgw7N+/H926dTP58tPT0+Hn54f3338f7733nsmXL5pVHuMjInk6fvw4oqKiMG7cONFRTKaoqKjC13q9HnPnzoWLiwvat29fK+tcvHgx9Hr9XQ8OshRWeYzPWjg5OeHJJ5+87WCLNm3aVJrSiUhuzpw5gxMnTuDLL7+En59fpVHCer2+0qCxWzk5Od3X+Y615ZVXXkFRURG6dOmCkpIS/Pnnnzh48CA++eSTGo20vhs7d+7EuXPn8PHHH+PRRx+1uMsN1Zjofa3WpKbHIIjItKZNmyYpFAqpefPm0u7duyvdX5Pj5TdPoWdOli5dKrVv315ycXGRbG1tpZYtW0pz586tlXWFh4dLNjY2UkRExD0fI7UEPMZHRFav/NqdtxMUFHRPI0nJ8rD4iIhIVji4hYiIZIXFR0REssLiIyIiWWHxERGRrLD4iIhIVlh8REQkKyw+IiKSFRYfERHJCouPiIhkhcVHRESywuIjIiJZYfEREZGssPiIiEhWWHxERCQrLD4iIpIVFh8REckKi4+IiGSFxUdERLLC4iMiIllh8RERkayw+IiISFZYfEREJCssPiIikhUWHxERyQqLj4iIZIXFR0REssLiIyIiWWHxERGRrLD4iIhIVlh8REQkKyw+IiKSFRYfERHJCouPiIhkhcVHRESywuIjIiJZYfEREZGssPiIiEhWWHxERCQrLD4iIpIVFh8REckKi4+IiGSFxUdERLLC4iMiIllh8RERkayw+IiISFZYfEREJCssPiIikhUWHxERyQqLj4iIZIXFR0REssLiIyIiWWHxERGRrLD4iIhIVlh8REQkKyw+IiKSFRYfERHJCouPiIhkhcVHRESywuIjIiJZYfEREZGssPiIiEhWWHxERCQrLD4iIpIVFh8REckKi4+IiGSFxUdERLKiFh2AyNJo9QYkZxcjs7AUuUVa5Nz0r/zr3OKbb9NBqzdAb5BgkCToDWX/2nXYiMt5kVApVFAqlGX/VSqhUWvgYusCF1sXONs6l/2/nYvxtpv/30vjBU+Np+iXhMiisPiIqpCWV4L4rELEZxbiekYhrmeW/UvIKkJyThEM0v2vo1hXjNzS3PtejkatQYBTAOo71Ud953/+OdUvu825PuzV9vcflsiKsPhI1lJzi3E6MQenE3NwLikX1zIKEZ9ViMJSvehoNVakK8Ll7Mu4nH25yvu9NF4IcApAkGsQWnq2REvPlmjm0Qx2Krs6TkpkHhSSJJngsyuR+UvJLcbphLKSO/NP2aXmlQjL0/nBtTiXc1jIutUKNYLc/i3Clp4t0cy9GbcOSRZYfGSVdHoDTsZn4+DlDJxKyBZeclURWXxVUSvUaOzWGC09WqKddzt08e8Cfyd/0bGITI7FR1bjcmoe9sWkY39MOo7EZiK/RCc60m2ZW/FVpaFzQzzo9yC6+HdBJ79OcLF1ER2J6L6x+MhipeWV4MDldOyLSceBy+m4kVssOtJdsYTiu5lKoUJLz5bGImxbry1sVDaiYxHdNRYfWZQziTnYeCoZuy+m4sKNPNFx7oulFd+tNGoNwnzC0KthL/Rp2Adu9m6iIxHVCIuPzN755FxsOpWMTaeTEZteIDqOyVh68d1MrVCjs19n9Avsh4cbPcxdomTWWHxkli6n5mFDdFnZXU7NFx2nVlhT8d3MRmmDLv5d0D+wPx5q8BCcbJ1ERyKqgMVHZiMuvQAbTyVh46lki9+NWRPWWnw3s1XaoltAN/QP7I+IBhFwsHEQHYmIxUdiafUGbD1zA78evoajsZmi49QpORTfzRxtHPFI0CMY1WwUgt2DRcchGWPxkRDJOUVYduQ6lh+LR5qZnV9XV+RWfDdr790eo5qPQu9GvWGj5MhQqlucsozqjCRJOHA5A78ejsP286nQm2LCS7JIkamRiEyNhKe9J4aHDMfIZiPh6+grOhbJBLf4qNblFGmx6kQClh65hqtp1jMq837JeYvvViqFCj3r98SoZqPQxb8LFAqF6EhkxVh8VGuSsovw/Z4rWHk8AUVay5n0ua6w+KoW6BKIZ1o/g8FNBkOt5E4pMj0WH5lcQlYh5u++glXHE1CqN4iOY7ZYfLcX4BSAiaETMTR4KI8Dkkmx+MhkrmcU4ttdl/HnyQRo9Xxb3QmLr2b8HP3wbOtnMTxkOKdII5Ng8dF9i0svwNydl7EuKhE6DlipMRbf3fFx8MEzrZ/B400fh63KVnQcsmAsPrpnV9LyMW/nZayPTuIIzXvA4rs33hpvjG89HiOajuD1A+mesPjort3IKcasbRex5mQC2Hf3jsV3f7w0Xnip7UsYHjwcKqVKdByyICw+qrGiUj2+33MFP+y9ylGaJsDiM40Q9xC80eENdPXvKjoKWQgWH92RJElYdSIBX/x1ESm58pxlpTaw+Eyre0B3vNnhTQS5BYmOQmaOJ8nQbUXFZ2PaujOITsgRHYXotvYn7sfhpMMY3WI0XnrgJV4VgqrFLT6qUkZ+CWZuvYCVJxLAd0jt4BZf7fG098R/w/6LIU2GcBYYqoTFRxUYDBJ+PXwNX/51EbnFOtFxrBqLr/Y9UO8BTO08FS08W4iOQmaExUdGV9Ly8ebKaERezxYdRRZYfHVDrVBjQusJePGBF3kCPAEAlKIDkHgGg4SFe69i4Nf7WHpkdXSSDgtPL8QTm57AuYxzouOQGWDxydzVtHyMWHAIH28+jxId59Uk6xWTFYMnNz2JuSfnQqvXio5DArH4ZMpgkPDjvqsY+M0+nLiWJToOUZ3QSTr8cOoHPLHpCZzPOC86DgnC4pOh2PQCjFxwCB9tOo9iLbfySH5ismIwZtMYzDs5D1oDt/7khsUnIwaDhJ/2x2LA13txnFt5JHM6SYcFpxZg1MZR3PqTGRafTGQWlOLpRUfx4cZz3MojusmlrEt4cvOTWHp+qegoVEdYfDJw4loWBn2zD/ti0kVHITJLWoMWnx39DG/ueROF2kLRcaiWsfis3M/7YzHqh0NIzikWHYXI7G2N24pRm0bhSvYV0VGoFrH4rFR+iQ4vL4vEjI3neDV0orsQmxOL0ZtGY+PVjaKjUC1h8VmhSyl5GDJvPzadShYdhcgiFemKMGXfFHx46EOU6ktFxyETY/FZmbUnE/HotwdwNa1AdBQii7fi0gqM2zIOSflJoqOQCbH4rESpzoCpa05j8h9RKCzlRWKJTOVsxlmM3DgS+xL2iY5CJsLiswI5RVqM+/kIlh65LjoKkVXKKcnBKztfwfILy0VHIRNg8Vm4xOwijPj+IA5fzRQdhciq6SU9Pj7yMb46/hV4URvLxuKzYGeTcjDs2wO4lJIvOgqRbCw6uwhv732bg14sGIvPQu25lIYnFhxGal6J6ChEsrMlbgue//t55JTkiI5C94DFZ4FWHIvHs4uPIb+EV0gnEuVEygmM3TIWifmJoqPQXWLxWZiv/r6Et1afgs7AYwxEosXmxOKpzU/hbMZZ0VHoLrD4LIRWb8DrK6LxzY4Y0VGI6CbpRemYsHUC9ibsFR2FaojFZwFKdHo8/8txrI5MEB2FiKpQpCvCqztfxZbYLaKjUA2w+MxciU6PF349gV0X00RHIaLb0Et6TNk3heVnAVh8ZoylR2RZWH6WgcVnplh6RJaJ5Wf+WHxmiKVHZNnKy2/z1c2io1AVWHxmpkSnx4u/RbL0iCycXtLjf/v/x/IzQyw+M1JeejsvpIqOQkQmwPIzTyw+M8HSI7JO5eW36eom0VHoHyw+M2AwSPjvH1EsPSIrpZf0eHf/u7ymn5lg8ZmBjzefx+bTN0THIKJapJN0eGPPGziXcU50FNlj8Qn28/5Y/LQ/VnQMIqoDhbpCvLzjZU5sLRiLT6CtZ5Lx0SZ++iOSk/SidLy4/UVe0kggFp8gJ65lYfIfUeBFFojkJzYnFq/ufJUXsxWExSdAbHoBnvvlOIq1BtFRiEiQyNRITN0/FZLET791jcVXxzLySzB+0VFkFvCTHpHcbY3bitknZouOITssvjpUrNXj2SXHcS2jUHQUIjITi84uwu8XfhcdQ1ZYfHXov39EISo+W3QMIjIznx39jOf41SEWXx1ZsOcKtpzhuXpEVJlBMmDK/ilIyk8SHUUWWHx14GhsJmZtuyg6BhGZsZySHLy++3Vo9VrRUawei6+WpeWV4D/LIqHjeQtEdAdnMs5g5rGZomNYPRZfLdIbJLzyeyRS80pERyEiC/HHxT84oXUtY/HVoi//uojDVzNFxyAiC/PBoQ9wJfuK6BhWi8VXS3acT8F3e/jGJaK7V6Qrwn93/xeFWp76VBtYfLUgPrMQ/7ciGpyQgYjuVWxOLKYdnCY6hlUSXnwRERGYPHlytfcrFAqsXbu2xsvbvXs3FAoFsrOz7zvbvSjR6fHS0kjkFHFkFhHdn61xW7H0/NI6Wded/hZbE7XoAHeSnJwMd3d30TFq7NPNF3A6kbOuE5FpfHH8C4T5hKG5R3PRUayG8C2+O/H19YWdnZ3oGDVy+GoGlhyKEx2DiKyIzqDDu/vfhdbAvUimYhbFZzAY8NZbb8HDwwO+vr6YPn268b5bd3UePHgQbdu2hb29PTp06IC1a9dCoVAgKiqqwjJPnDiBDh06wMHBAV27dsXFi7V7AnlhqQ5vrTrF43pEZHIXsy5i4amFdba+rKwsjBs3Du7u7nBwcMCAAQMQExMDAJAkCfXq1cOqVauMj2/bti38/PyMX+/fvx92dnYoLDTPwTlmUXxLliyBo6Mjjhw5gs8//xwzZszA33//Xelxubm5GDx4MEJDQxEZGYkPP/wQb7/9dpXLnDp1Kr788kscP34carUazzzzTK0+h5lbLuB6pnn+kInI8i08vRDnM87XybrGjx+P48ePY/369Th06BAkScLAgQOh1WqhUCjQs2dP7N69G0BZSZ4/fx5FRUW4cOECAGDPnj3o2LEjHBwc6iTv3TKL4mvTpg2mTZuGkJAQjBs3Dh06dMCOHTsqPW7ZsmVQKBRYuHAhWrZsiQEDBuDNN9+scpkff/wxwsPD0bJlS7zzzjs4ePAgiouLayX/oSsZ+OXwtVpZNhER8M8uzwO1v8szJiYG69evx48//ogePXrggQcewNKlS5GYmGjc+xYREWEsvr1796Jdu3YVbtu9ezfCw8NrNef9MJviu5mfnx9SU1MrPe7ixYto06YN7O3tjbd16tTpjsss3wSvapn3q7BUh7dW89QFIqp9l7IuYUH0glpdx/nz56FWq9G5c2fjbZ6enmjWrBnOny/b4gwPD8e5c+eQlpaGPXv2ICIiwlh8Wq0WBw8eRERERK3mvB9mUXw2NjYVvlYoFDAY7u/q5DcvU6FQAMB9L7Mqn225gPjMIpMvl4ioKj+d/gnnMs4JzRAaGgoPDw/s2bOnQvHt2bMHx44dg1arRdeuXYVmvB2zKL6aatasGU6fPo2Skn/nvjx27JiwPAevpONX7uIkojqkk3SYun9qrV3FoUWLFtDpdDhy5IjxtoyMDFy8eBEtW7YEULYx0aNHD6xbtw5nz55F9+7d0aZNG5SUlGDBggXo0KEDHB0dayWfKVhU8Y0ZMwYGgwHPP/88zp8/j23btuGLL74A8O9WXV0pKNHh7dUcxUlEde9y9mV8F/1drSw7JCQEQ4cOxXPPPYf9+/cjOjoaTz31FAICAjB06FDj4yIiIvD777+jbdu2cHJyglKpRM+ePbF06VKzPr4HWFjxubi4YMOGDYiKikLbtm0xdepUvP/++wBQ4bhfXfh8K3dxEpE4P5/5udZGeS5atAhhYWF45JFH0KVLF0iShM2bN1c4hBQeHg69Xl/hWF5ERESl28yRQpIse5tl6dKlmDBhAnJycqDRaOpknWcSczBk3n7wEnt0Pzo/uBbncg6LjkEW7IF6D+DXAb/W+R4vS2f2U5bd6pdffkFQUBACAgIQHR2Nt99+GyNHjqyz0pMkCdPWn2XpEZFw0WnRWH9lPYYGD73zg8nIonZ1AsCNGzfw1FNPoUWLFvjvf/+LESNG4Icffqiz9f8ZmYgT17LqbH1ERLcz+8Rs5Jfmi45hUSx+V2ddyivWoteXe5DGK6qTCXBXJ5nK2JZj8VbHt0THsBgWt8Un0jc7Ylh6RGR2fj//O65mXxUdw2Kw+GroWkYBlhzkOXtEZH50kg5fHP9CdAyLweKroU83X0Cp3vQzvxARmcK+xH04mHRQdAyLwOKrgaOxmdh69oboGEREt/XF8S+gN+hFxzB7LL47kCQJH20SOy8eEVFNxGTF4M/Lf4qOYfZYfHew4VQyTiXkiI5BRFQj86Pmo1hXO5dgsxYsvtswGCTM3REjOgYRUY2lF6Vj1aVVd36gjLH4bmPzmWTEpPLEUCKyLIvOLEKpvlR0DLPF4quGJEmYt/Oy6BhERHcttSgVq2NWi45htlh81dh29gYu3MgTHYOI6J78dPqnWrtmn6Vj8VXjmx3c2iMiy5VSmII1l9eIjmGWWHxV+PtcCs4l54qOQUR0X346/RO0Bm713YrFV4W5OzmSk4gsX1JBEtZdXic6htlh8d1i14VUnrdHRFbjx9M/QmfQiY5hVlh8t/iGW3tEZEUS8xOx4coG0THMCovvJgcvp+Pk9WzRMYiITOrnMz+Dl179F4vvJr8c4mWHiMj6xOXG4XAyL3pcjsX3jxs5xdh+PkV0DCKiWvHHxT9ERzAbLL5/LDt6HToDdwUQkXXaHb8bNwp4eTWAxQcA0OkNWH70uugYRES1Ri/psfLSStExzAKLD8Bf51KQmlciOgYRUa36M+ZPntAOFh8A4FcOaiEiGUgvSseOaztExxBO9sV3OTUfh65miI5BRFQnll9cLjqCcLIvvt8Oc2uPiOTjRMoJxGTJe6IOWRdfUakeqyMTRMcgIqpTcj+1QdbFty4qEXnFnMOOiORl49WNKNQWio4hjKyLb83JRNERiIjqXIG2AHsT9oqOIYxsiy81txjH4jJFxyAiEmJr3FbREYRRiw4gyubTyeBELUTmI2NnBjJ3ZkKbXnaemV2AHbyHesO5jTMAIHFxIvLP5kOXrYPSXgmHYAf4jvCFnb9dtctMWZOCnCM50GZqoVAroAnUwOcxHzg0cQAAGLQGJP6ciLyTeVC7quE/zh9OrZyM35+2OQ3aDC38x/rX4jMXY3/ifhRoC+Bo4yg6Sp2TbfFtPJUsOoJJ5Z3cjLyTm6HLKZtv1MarIdy6joamSQcAQMbWeSi+FgV9fiYUNvawC2gB94jxsPFsUKPlZ2ybh/yorXDv9RxcOg4FAEg6LTK2foPCmMNQObrDo+9L0AS2NX5PzpHV0OemwaPPC6Z9smSVbNxt4DvCF7Y+tgCA7P3ZuP71dTSZ0QT2AfbQBGrg1sUNNh420Bfokbo2FXFfxKHpF02hUCqqXKadrx38x/rDtp4tDFoDMrZllH3PzKZQu6iRtTsLxdeKEfReEPJP5SP++3g0/6Y5FAoFStNKkbUnC02mN6nLl6HOlOhLsPP6TgxuMlh0lDony12dyTlFOHE9S3QMk1I5e8I9/Gn4PT0Hfk/PgX2jB5D650coTSs7XcPWNxieAyfDf+J38B45A4CElD/eh2TQ33HZhZcOoiTpIlROHhVuz4veitIbl+H71BdweqA/0jfMMl76RJt9A/nR2+DWc5zJnytZJ5d2LnB+wBl2vnaw87WDz+M+UNorUXi5bBCGR4QHHJs5wraerXHLTZupRWl6abXLdOviBqdWTrD1toV9gD18R/vCUGRAcUIxAKAkuQTObZ1hH2APj4c9oM/TQ59X9juRtCQJviN9odKoav/JC7ItbpvoCELIsvg2nUqGtV2ayiG4MzRNOsLGIwA2HgFw7zkOSlt7lCRdBAA4t+0P+watoXb1gZ1vMNx6jIU+Lw26nNTbLleXl47MvxfA65E3AGXFHQTajHhogjvDtl4jOLcfBENhDgxFuQCAzL/mwz1iPJR2DrXzhMmqSQYJ2YezYSgxwCG48nvIUGJA1r4s2NSzgY2HTY2WadAZkLU7C0qNEvYN7AEA9g3sURhTCEOpAfmn86F2U0PlrEL2wWwobBRwCXMx6fMyNweTDiK3NFd0jDony12dm05b127OW0kGPQov7IdBWwy7gOaV7jeUFiP/9HaoXX2gdvGqfjmSAekbv4JL5+Gwrdeo0v223o1RcGYXDNoSFMdGQuXkAaXGBflnd0GhtoVD064mfV5k/Yrji3H1o6swaA1Q2inR8JWGsA+wN96fsSMDKStSYCgxwNbXFoFvBkKpvv3n99yoXCR8lwBDqQFqVzUC3wyE2rnsT597D3cUxxcj5n8xUDur0eClBtAX6JGyJgWN32mMlNVlxwhtvW0R8GwAbNxrVrKWQmvQYse1HRgWMkx0lDolu+JLyCq02qusl6bF4cavb0DSlUJhq4H3sKmw9WpovD8vchOydi+CpC2G2qM+vJ/4CApV9b/IuYdXQaFUwTlsSJX3O4X2QWlqHJJ+egkqjQu8hr4NQ3E+cvYvhc/oT5G191cUnt8LtZsvPAe+BrVz9SVLBAC2frZoMqMJDEUG5BzLQcKPCWj8TmNj+ZXvutTl6JC+JR3x38YjaGoQlLbVl59TCyc0mdEE+jw9MvdkIn5+PJq83wRqFzUUagX8x1UcuJLwYwI8+3ii+HoxciNzEfxhMNI2pyH5t2Q0fKVhNWuxXNvitsmu+GS3q3OTlQ1quZmNRwD8JnwD33FfwbndAKRvmo3S9H8vt+TYKgJ+47+Gz5jPYOPhj/R1n0HSVX18pOTGZeSeWA/PgZOhUFQ9cEChUsOz74uo/8JP8Ht6Nuzrt0LWzp/gHDYYpSlXURRzCH4T5sLOvzmytv9QK8+ZrItSrYSdjx00gRr4jvCFfQN7ZPz971y6KgcV7Hzt4NjMEQ3+0wAlySXIjbz9rjqlXdkyHYIdUP/Z+lCoFMjaW/Ux/vzz+ShJLIFnb08UXCiAcxtnKO2UcO3kioILBSZ9rubiSPIRZBVb15iHO5Ff8Vnxbk6FygY27v6w8w2Ge/h42Ho3Rt7x9cb7lXaOsPEIgH2D1qj36BRoMxNQeOlQlcsqiT8LQ0EOEr+bgGufD8G1z4dAn5uKrF0/IeG7Z6r8nuJrp6DNuAbn9o+g+PopaII6QGlrD4fm3VF8/XStPGeychIgaas5IP/PzdXeX90iDRIMWkOl2w2lBiT/mgz/8f5lo0QNgKQvW7akkyBZ6flPOkmH7de3i45Rp2S1qzMxuwinEnJEx6gzkiRB0ldz7S2p7F919zu2fgj2gQ9UuC11xftwbNULTqG9Ky9OV4rMv7+D1+A3oFCqAMkAqfxvi0EPSar8h4boZjdW3oBzG2fYeNjAUGxA9uFsFFwoQODrgShNLUXO0Rw4tXaCylkFXaYOaZvSoLRRwvkBZ+MyLr1zCb4jfOES5gJDiQGpG1Lh0tYFajc19Pl6ZOzIgC5LB9dOrpXWn7Y+DU5tnKBppAEAOIQ44MYfN+Dewx2ZOzLhEGK9A7V2Xd+FEU1HiI5RZ2RVfPtj0kRHqDVZexZDE9QBapd6MJQWoeDcbpRcPw3XkTOgzb6BwvN7Yd+4PVQOLtDlZiD3yEoo1LbQBHUwLiNx4QtwDx8Hh6ZdodK4QKW5ZUSbUg2VoztsPOtXWn/2weXQBHWArU/ZOU92AS2RtftnOIX2Rl7kRtgHtKjV50+WT5erQ8IPCdDl6IwjLwNfD4RTaydos7QouFSA9L/SYSgwQOWqgmNTRwS9GwS1y79/xkpvlEJf+M8pOgqgNLkU1/dfhz5fD5WTCprGGjT+X+MKA2YAoDihGDnHchA8I9h4m0sHFxRcKMDVT67CztcO9V+o/L63FsdTjkOr18LmNsf8rYm8iu+y9V53T1+Qg/SNX0FfkAmlnSNs6wXCe+QMaBq3gy4vA8UJZ5F7fD0MxflQObrBrkEr+D41CypHN+MydJkJMJTc/cS1pWlxKLywD37j5xpvc2jeDcXxp3Fj6duw8QyA1+A3TfE0yYrVf7b6YrFxt0Hg/wXecRmtF7c2/r/SVlnjwSj29e3RdGbTCrcplGUDX24d/GKNinRFiEqLQkffjqKj1AmFJFnbGW1VkyQJHT7ajoyC6k92JapLnR9ci3M5h0XHIAIAPBf6HF5t/6roGHVCNoNbziXnsvSIiKpxJPmI6Ah1RjbFtz8mXXQEIiKzdTbjrGxmcZFP8V1m8RERVUcv6XE0+ajoGHVCFsVXotPz2ntERHdwKKnq83qtjSyK70RcFoqrOGGViIj+dThZHoOtZFF83M1JRHRn1/OuIzE/UXSMWsfiIyIiIzns7rT64isq1eNskjxGKhER3a9TaadER6h1Vl9855JzoLfSyWWJiEztbMZZ0RFqndUX32kZTUpNRHS/rmZfRYm+RHSMWmX1xXeGuzmJiGpMJ+lwMfOi6Bi1yvqLL5FbfEREd+NcxjnREWqVVRdfsVaPmNR80TGIiCwKi8+CnUvO5cAWIqK7ZO0DXKy6+M5yNycR0V2z9gEuVl18p1l8RER3zdoHuFh58XFEJxHRvbDm43xWW3wlOj1iUvJExyAiskgsPgsUm14AHQe2EBHdk7jcONERao3VFl98ZpHoCEREFishL0F0hFpjtcV3PbNQdAQiIouVXpSOYl2x6Bi1wmqLL57FR0R0zyRIVnttPhYfERFVyVp3d1pt8XFXJxHR/UnIZ/FZlIQsDm4hIrof3OKzIKl5xSjS6kXHICKyaCw+C8JTGYiI7h93dVoQDmwhIrp/HNVpQTiwhYjo/hXpipBelC46hslZZfGl5lnnSZdERHUtszhTdASTs8riyynSiY5ARGQVckus7yo3Vlp8WtERiIisQm4pi88i5LL4iIhMgsVnIVh8RESmwV2dFiK3mMVHRGQK3OKzEDzGR0RkGiw+C1BYqoNWzyuvExGZAovPAuTyVAYiIpPhMT4LwN2cRESmwy0+C8CBLUREpsPiswAFJdzVSURkKsU665sC0uqKT2/gwBYiIlPRS9Z3bVOrKz72HhGR6Rgkg+gIJmd1xcctPiIi02HxWQCDxOIjIjIV7uq0ACw+sgQ2Sgn1VDaiYxDdkcHALT6zp4BCdASi25pYPx5nfGfgm8jf8YGmKTzt3EVHIqqWQmF9f1PVogOYmsrqqpysRWe3XHzjsQo+SduNtw0/tx197V3wQ4se+C33ArQGnodK5kWlUImOYHJWVxNKK/x0Qpatnq0Wq0P+xnLtaxVKr5xTcS7+7+QmrM0xIMKtpYCERNVTKqyuJqxxi4/FR+ZBoZDwceAZPJG7CKr4G3d8fMP0WMxNj8Whxp3wuZMNLufH10FKottj8VkAJYuPzMAI3xuYbvMLHJOj7vp7u8QexSqFCita9ca32kTkWOGUUWQ5WHwWwEZpfT8kshwtnArxve96NEzYAAXufYSxStJj9JltGOjgjvnNu2FF9jnoJE7HR3XPVmUrOoLJWV1LuGisrsvJAjiq9VgSsg+bla+hUcL6+yq9m7kWZmFK5Easylejq1szkyyT6G642LqIjmByVtcSrhqeG0V1661GMXiu6GfYxF+rtXU0Sb2EBamXsCe4G2bZ63GtIKnW1kV0MxafBWDxUV3p65WJz52Wwe3GwTpbZ/jlA+iqtMGy1g9jQfF15Gnz62zdJE/Ots6iI5ic9e3qtLcBz2ig2tRQU4ytIeuwoOC1Oi29cjYGLZ4+tRUbktLwmHuoVQ4+IPPhYmd9W3xW9xujVCrgZGd1G7JkBmyUEuYFH8Nuu9fRPP4PKATPYeiZn4bpkZvwR5EDOriGCM1C1ssat/issiFcNTbIK+YIODKd5+tfx+uGRbBLuCg6SiXNk89hUfI5/NWsJ75SFyGxMEV0JLIiPMZnIVw1NkjIKhIdg6xAVdOMmau+F/ciXG2PJa164cfCKyjS8XeA7p81Fp/V7eoEOMCF7l/ZNGN/VTvNmLmy0xXj+ejN2Jiai8HuoZy0ne4bi89CuDmw+OjeKBQSPgk6jcPObyEsfjEU+hLRke6Jd04yPonchN+0bmjjEiQ6Dlkwayw+q93VSXS3jNOMJUWJjmIybRKi8VuCAhtbPIQ5yEZqcbroSGRhOLjFQrhqrG+KHao9pppmzFwpIGHw+Z142NYRP7WMwJL8Syix0C1Zqntu9m6iI5icVe7qDHCzFx2BLEBtTTNmrhxKC/BK1CaszyhBX/dWouOQBVApVPBz9BMdw+SscouvgYeD6Ahk5upimjFz5Z91HV9mXcfxRmH43NUB5/Pk9xpQzfg6+kKttL6asL5nBKAhi4+qIWKaMXPV4doJLFcosaZlL3yjT0NmSZboSGRmApwCREeoFVa5q7O+uwN4WT66mehpxsyVUjLgsbPbsSkuFuPd2sBGyYFh9K/6zvVFR6gVVll8tmolfF14nI/Mb5oxc+VUnIvXT27E2hwDItxaiI5DZsJat/isclcnUHacLymnWHQMEsicpxkzVw3TYzE3PRYHG3fGLCc1LufHi45EAtV3ss4tPqstvoYeDjgSmyk6BglQNs3YSvgk7RAdxWJ1jT2ClUo1VrR6GPNLE5FTmis6EgkQ4GydW3xWuasT4AAXOapnq8WfTcunGWPp3S+1QYcxp7dhU3wiRru1gVphtZ+TqRrWusVnvcXnyeKTi5unGWt/3XKnGTNXroVZ+N/JjVhZYIMubs1Ex6E6olFr4KnxFB2jVljtRzieyycP1jjNmLkKTrmIH1IuYndwd3xhr8O1giTRkagWWevAFsCKi68Ri8+qtXIuwHc+69EgYaPVz7hibiIu70c3lS2WtnoYC4rjkK8tEB2JakEjl0aiI9Qaq93V6elkB29nO9ExyMQc1Xr8ErIPGxWTrXZuTUtgoy/F+FNbsDEpHY+5h0KpsNo/JbLVwsN6T2ux6ndraICr6AhkQu80uoRoj6noGf8dFKXcyjAHnvlpmB65CcuLHBDmGiI6DplQC08Wn0VqzeKzCv3rZSAqcC5eSJkOde510XGoCi2Sz2Fx1A58YdsY/hpv0XHIBFp6thQdodZY7TE+AGhTn8VnyRpqivFD/W1olrAKijzOuGIJ+l3cgwi1PRa36oWfCq+gSFckOhLdA28Hb3hpvETHqDVWvcXHXZ2WyU5pwPzgo5xmzELZ6YoxKXozNqTm4RH31lCAE+dampYe1ru1B1h58Xm72HOAi4WZVP86Tvl8iIEJc6As5tUCLJlPThI+jdyMX7VuaOMSJDoO3QVr3s0JWHnxAdzqsxRd3HNwNOgnTEl/B3ZZnFvTmjyQEI3fovfgE/tgeNtb5wnR1obFZ+FCeZzPrNWz1eLPkG1YVjoZ3pxmzGopIGHw+Z3YcOUSnnMNhZ2Ke2LMmTWP6ATkUHzc4jNLCoWET8unGYtfwmnGZMKhtACvRm3CuswS9HFvJToOVcFL4wVvB+semWvVozoBFp85esLvBt5Xc5oxOQvIvI6vMq/jWKMO+NxVgwt510RHon9Y+25OQAbF5+1iD18Xe9zI5bX5ROM0Y3SrjteO4w+FEn+2fBhz9anILOGAJtFCvUJFR6h1Vr+rEwC6NOEBdZEc1Xr8GrIXG8FpxqgypWTA42f/xqa4WDztFgq10uo/j5u1B/0eFB2h1smi+LoHW++JmOZuyj/TjPWI/x4KTmZMt+FUnIs3Tm7C2hwg3M26B1eYKycbJ7T2ai06Rq2TxUer7iEsvrrWv14GPnNcBrcbh0RHIQvTKP0q5qVfxcGgB/G5oxJX8hNER5KNDr4dZLHFbf3PEICPiz1CvJ0Qk5ovOorVC9QUY0H9rWiasJrTjNF96Xr1MFYp1fij1cOYX5qA3NI80ZGsnhx2cwIy2dUJcKuvtpVNM3YMO+3+D83iV3CaMTIJtUGHJ09vw+b4JIxyC4VKoRIdyap18esiOkKdkE3x9WDx1Zp/pxmbDWVxtug4ZIVcC7Mw9eQmrCqwxYNuzUTHsUreDt4IcpPH1HKy2NUJAJ0be8JGpYBWzxGFptLFPQdfu6+Ed9JO0VFIJoJTLmJhykXsCumOL2y1uF6YLDqS1ZDLbk5ARlt8jnZqtGvoLjqGVSibZuwvLCt9jaVHQjwUsx9rL5zE/zm3gpONo+g4VqGLvzx2cwIyKj4A6MHTGu6LQiHhM+M0Y4uh0JeKjkQyZqMvxYRTW7AhKQPD3UOhVMjqz5nJcYvPSnGAy717wu8GzgZ8jlFJn0JVkCI6DpGRV34qPojchN+LHdHeNVh0HIsU7BZs1ReevZVsjvEBQJv6bvBwtEVmAbdUairUuQDf+qxDg4RNnHGFzFrLpLNYknQWW5uFY7aqAElFqaIjWYyIBhGiI9QpWW3xqZQK9GvlKzqGRXBW6/BryF6sx2Q05NyaZEH6X9yD9ZfO4GWX1tCo7EXHsQj9AvuJjlCnZFV8ADC4jZ/oCGZvSqNLOOnxLqcZI4tlpyvGC9GbsSEtH4PcW0MBhehIZivQJRDNPZqLjlGnZFd8nYM84eXEi2BWpX+9DEQ3+gaTUqZDnXtddByi++aTk4TPIjfjV50bQl3kcY7a3eob2Fd0hDonu+JTKRUYGMrdnTcL1BRjW8hafJc/Ga4ph0XHITK5B+KjsTR6Dz62D4G3Pa/WcrP+gf1FR6hzsis+AHikjb/oCGbBTmnAd8FHOc0YyYICEoac34ENVy7hOddQ2Km456eJaxOEuIeIjlHnZFl8HQPd4esi74PeLza4hlM+MzAgYQ6nGSNZcSgtwKtRm7AuswR93K3/auO3I7dBLeVkWXwKhQKDZDrIpZt7Do4F/Yi306bALuuS6DhEwgRkXsdXkVvxs8EbzZwbiY4jBItPZh6RWfF522mxJmQbfit9DfU4zRiRUcdrx7Hi9AG879AMHnZuouPUmRD3ENlMSn0r2RZfu4buqO+uER2j1ikUEmYGncIhpzfRLn4JpxkjqoJSMmDE2b+xMe4axrmFyuJirP0ayXNrD5Bx8QGw+t2do/yScTbgczyR9BlUBZzFguhOnItz8ObJTViTq0BPtxai49Sq/o3lN5qznKyLb0RYA9ERakWocwH2BS/Dp1lvwCE9WnQcIosTmHYF357chu8V/ghyqi86jsl18u2ERi7yPK4JyLz4gr2d0LWJ9ZzT46zW4beQPViPyWjAacaI7lu3q4ex+uxRvOPYAi62zqLjmMwTzZ4QHUEoWRcfAIx90Do+9ZRPM9Y9fgGnGSMyIbVBhyfPbMOm+GQ84R4KlUIlOtJ98dZ4o1fDXqJjCCX74uvT0seiz+kbUC+d04wR1QG3wky8G7kJKwts0dmtqeg492x40+GyGLxzO7IvPrVKidGdGoqOcdfKphlbg/n5/+U0Y0R1KCTlIn48uR1fqxuhgYNlTX+oVqjxeMjjomMIJ/viA4DRnRrARmUZs7dXnGZsJacZIxKkV8w+rLsQhf86t4Kj2kF0nBoJbxAOH0cf0TGEY/EB8HaxR9+W5v/JjdOMEZkXG30pnjm1BRuTMzHMPRRKhXn/SZX7oJZyCkmSOPQPwOGrGRj1g3nuMuzmnoM57is54wqRmTvn3wozvX0QmXNZdJRKAl0Csf7R9VAoLGPvVm0y748ndejBIE809XESHaMCbzst1oZs5TRjRBaiZdJZLInaiVm2QfDT1BMdp4IRTUew9P7B4rvJU2ZyasPN04y1jf+F04wRWZj+F3djfcw5vOTSGhqV+FHj9ip7DA0eKjqG2WDx3WR4+/pw1dgIzVA2zdhMTjNGZOHstUV4MXoz1qcXYKB7a6FZhocMh6udq9AM5oTH+G7xzY4YfPV33V+uJ9S5APN91qJBwqY6XzcR1b6oBm0x08MVZ3Jj63S9tkpbbB6+maM5b8ItvluM7xYIF/u6O7mz4jRjLD0ia9U2PgrLovfiI/sQ1LP3qLP1DgsZxtK7BYvvFi72NpjQrXGdrOt/gRdx0mMqpxkjkgkFJAw9vwMbr17GRNdQ2Cpta3V9aqUaz7Z+tlbXYYlYfFV4pntjONvV3lZf+TRjz9/4AOrc+FpbDxGZJ4eSfLwWtQnrskrR271lra1naJOh8HOy7suv3Qse46vGl39dxNydpj0XJ8ihGN8HbEFIwp+ccYWIjI4FdsRMF3tczLtmsmWqFWpsGLYB9Z2t77JK94tbfNV4tntjOJloq69smrEj2G77f2jKacaI6BYd445hxekDeM+hGdxtTTP6clDQIJZeNVh81XBzsMW4Lvd/Xt+LDeJw2ucDDEj4mtOMEVG1lJIBI8/+jY3Xr2OsW5v7uoKCSqHC822eN2E668Liu43negTB0fberr3VzT0Hx4J+xNtp/4NtVoyJkxGRtXIpysFbJzfiz1wFerg1v6dlDGg8AA1dLO+qM3WFx/ju4NMt57Fgz9UaP97bTosfGu7AA0nLOeMKEd23/U264HMNEFuQWKPHKxVKrBm6BkGuQbWczHJxi+8OJvVsUqMRngqFhM+DonHY8Q1OM0ZEJtP9yiH8ee4Y3nZqARdb5zs+fkiTISy9O+AWXw18v+cKPttyodr7R/kl433VEjikn6rDVEQkN9kOHpjXrAtW5ZyDvopBchq1BpuGbUI9B/OaINvccIuvBiZ0C0QDD02l20OdC7AveCk+y3qdpUdEtc6tMBPvntyEFQV26OzWtNL9E1pNYOnVALf4amjTqWS8vCwSQNk0Y983PoCuN37jjCtEJMyOkO740rYU8YU34O3gjY3DNkKjrvwhnSpi8d2Fx787iH6Kw5hQ+DNnXCEis1CqssOvrXrBv80YDAgeIjqORWDx3YWSpLOwW9gdkAyioxAR/SsgDJi4A+CFZmuEx/jugp1/K6DdU6JjEBHdRAEMnMXSuwssvrv18HTA3k10CiKiMu2eKtvioxpj8d0tR0+g17uiUxARAfauQO/polNYHBbfvejwDOAbKjoFEcndQ1MBRy/RKSwOi+9eKFXA4K8Bxb3N40lEdN8adgE6Pic6hUVi8d2rgDCg22uiUxCRHKk1wNBvASX/hN8Lvmr3I2IK4F17V08mIqrSw+8Bnk1Ep7BYLL77obYFHp0P3Md1s4iI7krDLkDnF0WnsGgsvvvl3w7o/l/RKYhIDriL0yT46plCz7cAn9aiUxCRteMuTpPglGWmkhwNLOwFGHSik1At+e5YKb47Xoq47LIp61p5q/B+T1sMCLEBAEzaUITtsTok5UlwslWgawMVZva2Q3Ov6kf/Tt9djOVndIjPNcBWBYT5qfBxLzt0rl+2+7xEJ2HihmKsu6CFr5MS8wfZo3fQv7vWZx0owfUcA+YO5MTEVq9hF2D8Zm7tmQBfQVPxewDo8broFFSL6rso8FlvO5x43hHHn3dEr0AVhi4vwtnUsuuihfmrsGioBudfdsK2pxwgSUDfXwuhN1T/2bKppwrzBtrj9ItO2D/BEYFuSvT9rRBpBWXl+sMJLU4k6XHoWUc8H2aDMauLUP5ZNTbLgIWRWnz8sH3tP3kSi7s4TYpbfKak1wILHwJunBadhOqIx8xczOpjj2fb21a671SKHg98X4DLrzihiUfN/mDllkhw/SwP28c64OEgNV7aVAQXOwU+622PIq0Eh0/ykPqGE+o5KtH/twJMCrPFsBY2pn5aZG76fQJ0eVl0CqvBjw+mpLIBhv1Q9umMrJreIGH5GS0KtECXBpV3ZRaUSlh0UovGbgo0cK3Z5MGlegk/nCiFqx3wgG/Zr+YDPirsv65HkVbCtis6+Dkp4OWgwNJTWtirFSw9OQjuDTz4kugUVoVbfLUhahmwlsONrdHpFD26/FSAYh3gZAsse0yDgSH/ls/8Y6V46+9iFGiBZp5KbBrjcMetvY2XtBi1qgiFWsDPWYG1TzigY0BZmWr1EiZvLcbmyzp4OSgwu589WtZToePCfOx+2hELTpRi+Rktmngo8fMQDQJc+FnWqrg2ACbtBRw8RCexKiy+2rL+VSByiegUZGKlegnXcyTkFEtYdU6LH09qsWe8A1rWKyuqnGIJqQUGJOdL+OJgKRLzDDjwjCPs1dVv9RWUSkjOl5BeaMDCE1rsjNPhyERHeDtWXWIT1hWhrY8Sjd2V+N+OEhyZ6IjPD5TgTJoBq0c61MrzJgFUtsCELUD9DqKTWB1+PKwtA2eVDXghq2KrUiDYQ4kwfxU+7W2PB3yU+PpwqfF+V3sFQjxV6NlIjVUjNbiQbsCa87cf6etoW7bMB+ur8dNQDdRKBX6K1Fb52F2xOpxN1eM/nWyxO06PgSFqONoqMLKVDXbH6U36XEmwvh+x9GoJi6+2qO2Akb/w2n1WziABJdX0jSSV/SvR391OFYMkVfk9xToJL28uxoJHNFApFdAbAO0/69YacNvRo2RhWg0HOk8SncJqsfhqk3sgMGwBAF4Z2RpM2V6Mvdd0iMs24HSKHlO2F2N3nB5PhtrgapYBn+4rwYkkPa7nGHAwXocRK4ugsVFgYMi/5901n5ePNefLtuYKSiX8b0cxDifocC3bgBNJejyzrgiJuRJGtKw8aOXDPSUYGKJGO7+y3ardGqrw5wUtTqXoMe9oKbo15NR5VsGrKTBkrugUVo2/KbWtWf+yKc32fyU6Cd2n1AIJ49YUITlfgqudAm18lNj2lAP6NFEjKc+Afdf1mHOkFFlFEnycFOjZSIWDzzhUOFZ3McOAnJKyLTOVEriQbsCS6CKkF0rw1CjQMUCFfRMc0cq74kjRM6l6rDinQ9QkR+Ntj7dUY3ecGj0WFaCZpxLLHuPxPYtn41i2p8jOSXQSq8bBLXXBoAd+fRSI3Ss6CRGZs2E/AA88ITqF1eOuzrqgVAGP/Qw4+4lOQkTmKmwCS6+OsPjqilM94ImlgA13RxHRLRqHl40EpzrB4qtL9cOAx34EFHzZiegf3q2AJ34rm/mJ6gT/Ate15oOAAZ+LTkFE5sDZH3hyJWDvIjqJrLD4ROj0HND1VdEpiEgkW2fgyRWAa4DoJLLD4hOlzwyg9WOiUxCRCEo1MHIJ4BsqOokssfhEUSiAR78DGnUTnYSI6tojc4Dgh0WnkC0Wn0hqO2DUUqBec9FJiKiu9HwLaD9WdApZY/GJpnEHnlwFOPmKTkJEte2B0UCvqaJTyB6Lzxy4NSg7yG3vKjoJEdWWpv05B6eZYPGZC78HgLFrWH5E1qhpf2DkrzxXz0yw+MxJQBgwdi3Lj8iahPQrKz21regk9A8Wn7kJaM/yI7IWIf3KZmVh6ZkVFp85CmgPjFvH8iOyZCF9gSe4pWeOWHzmyr/dP+XnJjoJEd2tkL7/bOnZiU5CVWDxmTOWH5HlCe7D0jNzLD5z59+W5UdkKYL7lE1KwdIzayw+S+DfFnh6PeDoLToJEVWn1TCWnoVQSJIkiQ5BNZR1DVj6OJB+SXQSIrpZl/8AfT8qm4OXzB6Lz9IUZQHLnwSuHRCdhIgUSqD/TKDz86KT0F1g8VkiXQmw9kXgzGrRSYjkS60BHvsRaPGI6CR0l1h8lkqSgO3TgANfi05CJD8OnsDoP4AGHUUnoXvA4rN0x34ENr8FSHrRSYjkwb0x8NRqwLOJ6CR0j1h81uDiVmDVM4C2QHQSIusW0AEY8wfg6CU6Cd0HFp+1SIwEfh8F5KeITkJknVoOBYYtAGw0opPQfWLxWZO8lLItv2v7RSchsh5KNdBnBtDlZdFJyERYfNbGoAd2zPhn0At/tET3xdkfGLEIaPig6CRkQiw+a3VxC7DmBaA4W3QSIsvUuCfw2M+AUz3RScjEWHzWLCsOWPE0kBwlOgmRBVEAPf4PeGgqoFSJDkO1gMVn7XQlwJa3gROLRCchMn/2bsDwH4Cm/UQnoVrE4pOL6D+AjZMBbaHoJETmya8tMPIXwL2R6CRUy1h8cpJ6Hlg9EUg5IzoJkflQKIHOLwC9p/PKCjLB4pMbvRbY8zmw/yvAoBOdhkgsjyBg6HygURfRSagOsfjkKjkaWPsSt/5IphRA50nAw9MAWwfRYaiOsfjkjFt/JEfugcDQb4HA7qKTkCAsPuLWH8mEAuj4bNksLLaOosOQQCw+KsOtP7Jmbg3LtvIa9xSdhMwAi48qSo4G1r4MpJwWnYTo/ilUQIdnykZs2jmJTkNmgsVHlRn0wPGfgZ0fccozslwNHgQGzgL82ohOQmaGxUfVK8gAds4AIn8BJIPoNEQ14+RTdhzvgVGik5CZYvHRnSWdLJv2LP6I6CRE1VPZlp2IHv4WYOcsOg2ZMRYf1dzZNcDf04Dsa6KTEFXUcijQ+wPAo7HoJGQBWHx0d3QlwJHvgb1fAiU5otOQ3Pm3B/p9wplX6K6w+OjeFGSUnfpwfBGgLRCdhuTGuxXQ8w2g1TBAoRCdhiwMi4/uT0E6cHAucOxHoDRfdBqydj6hZcfwWgxm4dE9Y/GRaRRmAofnA0d+4C5QMj2/B4Dwt4FmA1l4dN9YfGRaRdllxwAPf8dzAOn++bf/p/D6i05CVoTFR7WjOBc4ugA4NB8oyhSdhixNQAcg4h0gpI/oJGSFWHxUu0rygZO/Acd/AtIviU5D5kxpAzQfBHR6jldOoFrF4qO6E7sXOPYTcGETYNCKTkPmwtkfCBsPhD0NOPuKTkMywOKjupd3o2watBOLgdxE0WlIlMY9gY4TgWaDAJVadBqSERYfiWPQAxe3lJ0KcXU3AL4VrZ6da9kcmh0nAvWaik5DMsXiI/OQcaVsC/DsGiAnXnQaMiWFquyYXejjQOvHeBFYEo7FR+ZFkoCE48DZP4Gza4G8JNGJ6J4ogEZdy2ZWaTkUcPIWHYjIiMVH5kuSgOuHy0rw3DogP0V0IrqT+h2BVsOBVo8CLv6i0xBVicVHlsFgAK4dKNsVen49UJAmOhGV83ugbBdmq2GAW0PRaYjuiMVHlsegBxJPAFd2lQ2KSTjG0yPqkqM3EBQBNHmo7L/csiMLw+Ijy1eSX7Y1eHV3WRmmnRedyLqoNWXH65o8BAQ9BPi04nyZZNFYfGR98lLKSrD8HwfI3B2lGvANLSu5oAig4YOA2k50KiKTYfGR9ctNApKigORoIPmf/+Yli05lHpRqoF4LwP8BwL8d4NeubIvOxl50MqJaw+IjecpL+bcIy0sxN0F0qtp1c8n5tS278gFLjmSIxUdUriADyLwCZF0DsuKA7Lh//v9a2dRqkl50wjuzcQTcGwHugVX/4y5LIhYfUY3otUD2dSC7vBSvl119vjgbKM4puw5h+f8X58Kk06+pbAF7N0Djdst/3QFHr4rFxhPFie6IxUdkagYDUJJbsRR1JYBkKNtqlAxlp2RIBkCpKpvSy/hfZdkoyptLjlN8EZkUi4+IiGRFKToAERFRXWLxERGRrLD4iIhIVlh8REQkKyw+IiKSFRYfERHJCouPiIhkhcVHRESywuIjkomIiAhMnjzZ+HVgYCDmzJkjLA+RKGrRAYhIjGPHjsHRkdOhkfyw+Ihkql69eqIjEAnBXZ1EgkVEROCVV17B5MmT4e7uDh8fHyxcuBAFBQWYMGECnJ2dERwcjC1bthi/58yZMxgwYACcnJzg4+ODsWPHIj093Xh/QUEBxo0bBycnJ/j5+eHLL7+stN6bd3XGxcVBoVAgKirKeH92djYUCgV2794NANi9ezcUCgW2bduGdu3aQaPRoFevXkhNTcWWLVvQokULuLi4YMyYMSgsLKyV14rIFFh8RGZgyZIl8PLywtGjR/HKK6/gxRdfxIgRI9C1a1dERkaib9++GDt2LAoLC5GdnY1evXqhXbt2OH78OLZu3YqUlBSMHDnSuLw333wTe/bswbp16/DXX39h9+7diIyMNEnW6dOnY968eTh48CDi4+MxcuRIzJkzB8uWLcOmTZvw119/Ye7cuSZZF1GtkIhIqPDwcKl79+7Gr3U6neTo6CiNHTvWeFtycrIEQDp06JD04YcfSn379q2wjPj4eAmAdPHiRSkvL0+ytbWVVqxYYbw/IyND0mg00muvvWa8rVGjRtLs2bMlSZKk2NhYCYB08uRJ4/1ZWVkSAGnXrl2SJEnSrl27JADS9u3bjY/59NNPJQDSlStXjLdNmjRJ6tev3/28JES1isf4iMxAmzZtjP+vUqng6emJ0NBQ420+Pj4AgNTUVERHR2PXrl1wcnKqtJwrV66gqKgIpaWl6Ny5s/F2Dw8PNGvWzORZfXx84ODggKCgoAq3HT161CTrIqoNLD4iM2BjY1Pha4VCUeE2hUIBADAYDMjPz8fgwYMxc+bMSsvx8/PD5cuX73r9SmXZUQ/ppstzarXaO2a9NWf5bQaD4a4zENUVHuMjsjDt27fH2bNnERgYiODg4Ar/HB0d0aRJE9jY2ODIkSPG78nKysKlS5eqXWb5CM/k5GTjbTcPdCGyJiw+Igvz8ssvIzMzE6NHj8axY8dw5coVbNu2DRMmTIBer4eTkxOeffZZvPnmm9i5cyfOnDmD8ePHG7fqqqLRaPDggw/is88+w/nz57Fnzx68++67dfisiOoOi4/Iwvj7++PAgQPQ6/Xo27cvQkNDMXnyZLi5uRnLbdasWejRowcGDx6M3r17o3v37ggLC7vtcn/++WfodDqEhYVh8uTJ+Oijj+ri6RDVOYV08059IiIiK8ctPiIikhUWHxERyQqLj4iIZIXFR0REssLiIyIiWWHxERGRrLD4iIhIVlh8REQkKyw+IiKSFRYfERHJCouPiIhkhcVHRESywuIjIiJZYfEREZGssPiIiEhWWHxERCQrLD4iIpIVFh8REckKi4+IiGSFxUdERLLC4iMiIllh8RERkayw+IiISFZYfEREJCssPiIikhUWHxERyQqLj4iIZIXFR0REssLiIyIiWWHxERGRrLD4iIhIVv4fGjQTfy8PqnUAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 1500x500 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Приращение данных (oversampling)\n",
"df_oversampled: DataFrame = oversample(df, 'salary_category')\n",
"\n",
"# Проверка сбалансированности\n",
"print('Проверка сбалансированности выборок после применения метода oversampling:')\n",
"check_balance(df_oversampled, 'Весь датасет', 'salary_category')\n",
"\n",
"# Проверка необходимости аугментации\n",
"print('Проверка необходимости аугментации выборок после применения метода oversampling:')\n",
"print(f\"Для всего датасета аугментация данных {'НЕ ' if not need_augmentation(df_oversampled, 'salary_category', 'low', 'medium') else ''}ТРЕБУЕТСЯ\")\n",
" \n",
"# Визуализация сбалансированности классов\n",
"visualize_balance(df_oversampled, 'salary_category')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Разделим датасет на выборки"
]
},
{
"cell_type": "code",
"execution_count": 165,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Тренировочная выборка\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAHqCAYAAAB7kisIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbz0lEQVR4nO3dd3gU5cIF8DO7m7LpvVJS6UGaIDWRJkVERRFQEJQr1it+Vq4FBBuigIIgFooKIkVqKErvNYTeIZCEQHpvW+b7I2YlJECATd7dnfN7njyQLTNnJ5ucnXeaJMuyDCIiIoVQiQ5ARERUm1h8RESkKCw+IiJSFBYfEREpCouPiIgUhcVHRESKwuIjIiJFYfEREZGisPiIiEhRWHxEVKtCQkIwfPhw0TFIwayq+ObOnQtJkkxfjo6OaNCgAV599VVcu3ZNdDwiqzVu3DiEhIQA+Pf3jO7djBkzMHfuXNExzG748OGIiYkBUPG9Yy00ogPcjfHjxyM0NBTFxcXYsWMHZs6ciTVr1uDYsWNwcnISHY+ICEBZ8fn4+HAN18JYZfH17t0bbdq0AQCMHDkS3t7emDx5MlasWIHBgwcLTkdEtaW4uBj29vZQqaxq8MriFBQUwNnZWXSMWmMT75auXbsCAC5evAgAyMzMxFtvvYWoqCi4uLjAzc0NvXv3xuHDhys9t7i4GOPGjUODBg3g6OiIwMBAPP744zh//jwAICEhocLw6o1f5av7ALBlyxZIkoQ//vgD//vf/xAQEABnZ2c88sgjSExMrDTvvXv3olevXnB3d4eTkxOio6Oxc+fOKl9jTExMlfMfN25cpcf+9ttvaN26NbRaLby8vDBo0KAq53+r13Y9o9GIqVOnomnTpnB0dIS/vz9GjRqFrKysCo8LCQnBww8/XGk+r776aqVpVpV90qRJlZYpAJSUlGDs2LGIiIiAg4MD6tati3feeQclJSVVLqvrxcTEVJrep59+CpVKhQULFtzV8vjqq6/QoUMHeHt7Q6vVonXr1liyZEmV8//tt9/Qtm1bODk5wdPTE126dMFff/1V4TFr165FdHQ0XF1d4ebmhvvvv79StsWLF5t+pj4+PnjmmWeQnJxc4THDhw+vkNnT0xMxMTHYvn37bZfT7Rw4cAAPPfQQfHx8oNVqERoaiueee+6ul8v1qvv7Wv77tXDhQnzwwQcIDg6Gk5MT4uPjIUkSpkyZUmnau3btgiRJ+P3336v9Wo1GI7755htERUXB0dERvr6+6NWrFw4cOGB6zJw5c9C1a1f4+fnBwcEBTZo0wcyZMytMJyQkBMePH8fWrVur/HuRnZ2N0aNHo27dunBwcEBERAQmTpwIo9FYYToZGRkYOnQo3Nzc4OHhgWeffRaHDx+GJEmVhlE3bdqEzp07w9nZGR4eHujfvz9OnjxZ4THjxo2DJEk4ceIEhgwZAk9PT3Tq1Alz5syBJEk4dOhQpWXy2WefQa1WV3rPWSurXOO7UXlJeXt7AwAuXLiA5cuX48knn0RoaCiuXbuGWbNmITo6GidOnEBQUBAAwGAw4OGHH8bGjRsxaNAgvP7668jLy8Pff/+NY8eOITw83DSPwYMHo0+fPhXmO2bMmCrzfPrpp5AkCe+++y5SU1MxdepUdO/eHfHx8dBqtQDK3qC9e/dG69atMXbsWKhUKtMv0/bt29G2bdtK061Tpw4+//xzAEB+fj5eeumlKuf94YcfYuDAgRg5ciTS0tIwbdo0dOnSBYcOHYKHh0el57zwwgvo3LkzAODPP//EsmXLKtw/atQozJ07FyNGjMB///tfXLx4EdOnT8ehQ4ewc+dO2NnZVbkc7kR2drbptV3PaDTikUcewY4dO/DCCy+gcePGOHr0KKZMmYIzZ85g+fLldzSfOXPm4IMPPsDXX3+NIUOGVPmY2y2Pb775Bo888giefvpplJaWYuHChXjyySexevVq9O3b1/S4jz/+GOPGjUOHDh0wfvx42NvbY+/evdi0aRN69uwJoGx72nPPPYemTZtizJgx8PDwwKFDh7Bu3TpTvvJlf//99+Pzzz/HtWvX8M0332Dnzp2VfqY+Pj6mAkhKSsI333yDPn36IDExscqffXWkpqaiZ8+e8PX1xXvvvQcPDw8kJCTgzz//vKvlcqPq/r6WmzBhAuzt7fHWW2+hpKQEjRo1QseOHTF//ny88cYbFR47f/58uLq6on///tV+vc8//zzmzp2L3r17Y+TIkdDr9di+fTv27NljGmmaOXMmmjZtikceeQQajQarVq3Cyy+/DKPRiFdeeQUAMHXqVLz22mtwcXHB+++/DwDw9/cHABQWFiI6OhrJyckYNWoU6tWrh127dmHMmDFISUnB1KlTAZS9//v164d9+/bhpZdeQqNGjbBixQo8++yzlXJv2LABvXv3RlhYGMaNG4eioiJMmzYNHTt2RFxcXKXtcE8++SQiIyPx2WefQZZlPPHEE3jllVcwf/58tGzZstJyjImJQXBwcLWXo0WTrcicOXNkAPKGDRvktLQ0OTExUV64cKHs7e0ta7VaOSkpSZZlWS4uLpYNBkOF5168eFF2cHCQx48fb7pt9uzZMgB58uTJleZlNBpNzwMgT5o0qdJjmjZtKkdHR5u+37x5swxADg4OlnNzc023L1q0SAYgf/PNN6ZpR0ZGyg899JBpPrIsy4WFhXJoaKjco0ePSvPq0KGD3KxZM9P3aWlpMgB57NixptsSEhJktVotf/rppxWee/ToUVmj0VS6/ezZszIAed68eabbxo4dK1//tti+fbsMQJ4/f36F565bt67S7fXr15f79u1bKfsrr7wi3/hWuzH7O++8I/v5+cmtW7eusEx//fVXWaVSydu3b6/w/O+//14GIO/cubPS/K4XHR1tml5sbKys0WjkN998s8rHVmd5yHLZz+l6paWlcrNmzeSuXbtWmJZKpZIfe+yxSu/F8p95dna27OrqKrdr104uKiqq8jGlpaWyn5+f3KxZswqPWb16tQxA/uijj0y3Pfvss3L9+vUrTOeHH36QAcj79u2r8jVXx7Jly2QA8v79+2/5uOosF1kue588++yzpu+r+/ta/vsVFhZWaV6zZs2SAcgnT56sMH8fH58K87qdTZs2yQDk//73v5Xuu/F39UYPPfSQHBYWVuG2G/9GlJswYYLs7OwsnzlzpsLt7733nqxWq+XLly/LsizLS5culQHIU6dONT3GYDDIXbt2lQHIc+bMMd3eokUL2c/PT87IyDDddvjwYVmlUsnDhg0z3Vb+nh48eHClXIMHD5aDgoIq/Dzi4uIqzcvaWeVQZ/fu3eHr64u6deti0KBBcHFxwbJly0yfRhwcHExj/gaDARkZGXBxcUHDhg0RFxdnms7SpUvh4+OD1157rdI87mWvtmHDhsHV1dX0/RNPPIHAwECsWbMGABAfH4+zZ89iyJAhyMjIQHp6OtLT01FQUIBu3bph27ZtlYY7iouL4ejoeMv5/vnnnzAajRg4cKBpmunp6QgICEBkZCQ2b95c4fGlpaUAypbXzSxevBju7u7o0aNHhWm2bt0aLi4ulaap0+kqPC49PR3FxcW3zJ2cnIxp06bhww8/hIuLS6X5N27cGI0aNaowzfLh7RvnfzP79u3DwIEDMWDAAEyaNKnKx1RneQAwrbUDQFZWFnJyctC5c+cK763ly5fDaDTio48+qrT9qfy99ffffyMvLw/vvfdepZ9t+WMOHDiA1NRUvPzyyxUe07dvXzRq1AixsbEVnmc0Gk3LKD4+Hr/88gsCAwPRuHHjW76mWylfU1y9ejV0Ot1NH1ed5VKV6v6+lnv22WcrzAsABg4cCEdHR8yfP9902/r165Geno5nnnnmtq+x3NKlSyFJEsaOHVvpvuv/Jlw//5ycHKSnpyM6OhoXLlxATk7ObeezePFidO7cGZ6enhXe1927d4fBYMC2bdsAAOvWrYOdnR3+85//mJ6rUqlMa5XlUlJSEB8fj+HDh8PLy8t0e/PmzdGjRw/T357rvfjii5VuGzZsGK5cuVLh92r+/PnQarUYMGDAbV+XtbDKoc7vvvsODRo0gEajgb+/Pxo2bFjhj0v5GP2MGTNw8eJFGAwG033lw6FA2RBpw4YNodGYdzFERkZW+F6SJERERCAhIQEAcPbsWQCocriiXE5ODjw9PU3fp6enV5rujc6ePQtZlm/6uBuHJLOzswGgUtncOM2cnBz4+flVeX9qamqF7//66y/4+vreMueNxo4di6CgIIwaNarSNqGzZ8/i5MmTN53mjfOvSnJyMvr27YuCggJkZGTc9ENNdZYHUFYAn3zyCeLj4ytsZ7x+uufPn4dKpUKTJk1uOp3yIfpmzZrd9DGXLl0CADRs2LDSfY0aNcKOHTsq3JaYmFhhWQUGBmLp0qW3fU23Eh0djQEDBuDjjz/GlClTEBMTg0cffRRDhgyp8CGhOsulKtX9fS0XGhpa6TYPDw/069cPCxYswIQJEwCU/cEODg42fUiqjvPnzyMoKKhCeVRl586dGDt2LHbv3o3CwsIK9+Xk5MDd3f2Wzz979iyOHDly2/f1pUuXEBgYWGlv9YiIiArf3+p90rhxY6xfv77SDixVLccePXogMDAQ8+fPR7du3WA0GvH777+jf//+FT7MWzurLL62bduaxtqr8tlnn+HDDz/Ec889hwkTJsDLywsqlQqjR4+utCYlQnmGSZMmoUWLFlU+5vo/VKWlpUhJSUGPHj1uO11JkrB27Vqo1epbThMArl69CgAICAi45TT9/PwqfJK+3o2/uO3atcMnn3xS4bbp06djxYoVVT7/5MmTmDt3Ln777bcqtxUajUZERUVh8uTJVT6/bt26N81e7ty5c2jVqhWmTJmCoUOHYt68eVV+6KjO8ti+fTseeeQRdOnSBTNmzEBgYCDs7OwwZ86cSjukiODv74/ffvsNQNkf4NmzZ6NXr17YsWMHoqKi7mqakiRhyZIl2LNnD1atWoX169fjueeew9dff409e/bAxcXlnpbLnf6+3ri2V27YsGFYvHgxdu3ahaioKKxcuRIvv/yy2ff4PH/+PLp164ZGjRph8uTJqFu3Luzt7bFmzRpMmTKlWn9jjEYjevTogXfeeafK+xs0aGDWzFWpajmq1WoMGTIEP/74I2bMmIGdO3fiypUrd7TWbA2ssvhuZ8mSJXjwwQfx888/V7g9OzsbPj4+pu/Dw8Oxd+9e6HQ6s+ygUa58ja6cLMs4d+4cmjdvbpovALi5uaF79+63nd7hw4eh0+luWfbl05VlGaGhodX6xTlx4gQkSaryU+L109ywYQM6dux40z841/Px8an0mm61A8qYMWPQokULPPXUUzed/+HDh9GtW7e7Hn4uH2b29/fHihUr8Oabb6JPnz6VSrs6y2Pp0qVwdHTE+vXrK6ztzJkzp1Juo9GIEydO3PTDTfn74NixY5U+wZerX78+AOD06dOV1lxOnz5tur+co6NjheX/yCOPwMvLC9OnT8esWbNu+rqq44EHHsADDzyATz/9FAsWLMDTTz+NhQsXYuTIkdVeLlWp7u/r7fTq1Qu+vr6YP38+2rVrh8LCQgwdOrT6LxBlP5P169cjMzPzpmt9q1atQklJCVauXIl69eqZbq9q2P1m79nw8HDk5+ff9ve/fv362Lx5MwoLCyus9Z07d67S44Cy98SNTp06BR8fn2ofrjBs2DB8/fXXWLVqFdauXQtfX1889NBD1XqutbDKbXy3o1arIctyhdsWL15caVfcAQMGID09HdOnT680jRuffyd++eUX5OXlmb5fsmQJUlJS0Lt3bwBA69atER4ejq+++gr5+fmVnp+WllYpu1qtrvJQges9/vjjUKvV+Pjjjyvll2UZGRkZpu/1ej2WLl2Ktm3b3nIYbODAgTAYDKbho+vp9XrT8ODd2L17N1asWIEvvvjipn8gBg4ciOTkZPz444+V7isqKkJBQcFt59OgQQPT3nTTpk2D0WjE66+/XuEx1V0earUakiRVGI5LSEioVO6PPvooVCoVxo8fX2kNoPxn07NnT7i6uuLzzz+vtB20/DFt2rSBn58fvv/++wrDh2vXrsXJkydvubckUDZaoNfrq3Xox81kZWVVej+Vl3n5dKu7XKpS3d/X29FoNBg8eDAWLVqEuXPnIioqyvRhs7oGDBgAWZbx8ccfV7qvPGP5aMr1mXNycqoseWdn5yp/RwYOHIjdu3dj/fr1le7Lzs6GXq8HADz00EPQ6XQV3v9GoxHfffddhecEBgaiRYsWmDdvXoX5HTt2DH/99VelPdJvpXnz5mjevDl++uknLF26FIMGDTL75iDRbOvV/OPhhx/G+PHjMWLECHTo0AFHjx7F/PnzERYWVuFxw4YNwy+//IL/+7//w759+9C5c2cUFBRgw4YNePnll+9oF+jreXl5oVOnThgxYgSuXbuGqVOnIiIiwrSBWqVS4aeffkLv3r3RtGlTjBgxAsHBwUhOTsbmzZvh5uaGVatWoaCgAN999x2+/fZbNGjQAFu2bDHNo7wwjxw5gt27d6N9+/YIDw/HJ598gjFjxiAhIQGPPvooXF1dcfHiRSxbtgwvvPAC3nrrLWzYsAEffvghjhw5glWrVt3ytURHR2PUqFH4/PPPER8fj549e8LOzg5nz57F4sWL8c033+CJJ564q+X0119/oUePHrf81Dt06FAsWrQIL774IjZv3oyOHTvCYDDg1KlTWLRoEdavX3/bNeHrBQQEYNKkSRg5ciSeeeYZ9OnT546WR9++fTF58mT06tULQ4YMQWpqKr777jtERETgyJEjpsdFRETg/fffx4QJE9C5c2c8/vjjcHBwwP79+xEUFITPP/8cbm5umDJlCkaOHIn777/fdEzV4cOHUVhYiHnz5sHOzg4TJ07EiBEjEB0djcGDB5sOZwgJCam0+35BQUGFoc5ff/0VxcXFeOyxx6q9jG40b948zJgxA4899hjCw8ORl5eHH3/8EW5ubqY/qNVdLlWp7u9rdQwbNgzffvstNm/ejIkTJ97x8x988EEMHToU3377Lc6ePYtevXrBaDRi+/btePDBB/Hqq6+iZ8+esLe3R79+/TBq1Cjk5+fjxx9/hJ+fH1JSUipMr3Xr1pg5cyY++eQTREREwM/PD127dsXbb7+NlStX4uGHH8bw4cPRunVrFBQU4OjRo1iyZAkSEhLg4+ODRx99FG3btsWbb76Jc+fOoVGjRli5ciUyMzMBVFyjnDRpEnr37o327dvj+eefNx3O4O7uXuXxvrdbjm+99RYA2NwwJwDrPJzhdrtVFxcXy2+++aYcGBgoa7VauWPHjvLu3bsr7NperrCwUH7//ffl0NBQ2c7OTg4ICJCfeOIJ+fz587Is393hDL///rs8ZswY2c/PT9ZqtXLfvn3lS5cuVXr+oUOH5Mcff1z29vaWHRwc5Pr168sDBw6UN27cWGHet/u6cXftpUuXyp06dZKdnZ1lZ2dnuVGjRvIrr7winz59WpZlWX7ttdfkLl26yOvWrauUqard92W5bLf41q1by1qtVnZ1dZWjoqLkd955R75y5YrpMXd6OIMkSfLBgwcr3F7Vz6i0tFSeOHGi3LRpU9nBwUH29PSUW7duLX/88cdyTk5OpfndbnqyLMtdu3aV69WrJ+fl5d3x8vj555/lyMhI2cHBQW7UqJE8Z86cmy632bNnyy1btjTljo6Olv/+++8Kj1m5cqXcoUMHWavVym5ubnLbtm3l33//vcJj/vjjD9N0vLy85Kefftp0+E65Z599tsL7wsXFRW7VqpX866+/3nIZ3U5cXJw8ePBguV69erKDg4Ps5+cnP/zww/KBAwfuarlUdThDdX5fy3+/Fi9efMu8TZs2lVUqVaXlU116vV6eNGmS3KhRI9ne3l729fWVe/fuXeG9unLlSrl58+ayo6OjHBISIk+cONF0eNTFixdNj7t69arct29f2dXVVQZQ4fXk5eXJY8aMkSMiImR7e3vZx8dH7tChg/zVV1/JpaWlpselpaXJQ4YMkV1dXWV3d3d5+PDh8s6dO2UA8sKFCytk37Bhg9yxY0fTe6lfv37yiRMnKjym/GeSlpZ202WQkpIiq9VquUGDBne1DC2dJMv3MKZHFWzZsgUPPvggFi9efNdrQddLSEhAaGgoLl68eNOTwI4bNw4JCQk2eSJcorvRsmVLeHl5YePGjaKj1Jjly5fjsccew44dO9CxY0ezTz89PR2BgYH46KOP8OGHH5p9+qLZ5DY+IlKmAwcOID4+HsOGDRMdxWyKiooqfG8wGDBt2jS4ubmhVatWNTLPuXPnwmAw3PHOQdbCJrfx2QoXFxc8/fTTt9zZonnz5pVO6USkNMeOHcPBgwfx9ddfIzAwsNJewgaDodJOYzdycXG5p+Mda8prr72GoqIitG/fHiUlJfjzzz+xa9cufPbZZ9Xa0/pObNq0CSdOnMCnn36KRx991OouN1RtosdabUl1t0EQkXmNHTtWliRJbtSokbxly5ZK91dne/n1p9CzJPPnz5dbtWolu7m5yfb29nKTJk3kadOm1ci8oqOjZTs7OzkmJuaut5FaA27jIyKbV37tzlsJCwu7qz1Jyfqw+IiISFG4cwsRESkKi4+IiBSFxUdERIrC4iMiIkVh8RERkaKw+IiISFFYfEREpCgsPiIiUhQWHxERKQqLj4iIFIXFR0REisLiIyIiRWHxERGRorD4iIhIUVh8RESkKCw+IiJSFBYfEREpCouPiIgUhcVHRESKwuIjIiJFYfEREZGisPiIiEhRWHxERKQoLD4iIlIUFh8RESkKi4+IiBSFxUdERIrC4iMiIkVh8RERkaKw+IiISFFYfEREpCgsPiIiUhQWHxERKQqLj4iIFIXFR0REisLiIyIiRWHxERGRorD4iIhIUVh8RESkKCw+IiJSFBYfEREpCouPiIgUhcVHRESKwuIjIiJFYfEREZGisPiIiEhRWHxERKQoLD4iIlIUFh8RESkKi4+IiBSFxUdERIrC4iMiIkVh8RERkaKw+IiISFFYfEREpCgsPiIiUhQWHxERKQqLj4iIFIXFR0REisLiIyIiRWHxERGRorD4iIhIUVh8RESkKCw+IiJSFBYfEREpCouPiIgURSM6AJG10RmMSMkuRmZhKXKKdMgt0iHnn68K/y8uv00PncEIg1GGUZZhMJZ9tWyzGufy4qCW1FBJqrJ/VSpoNVq42bvBzd4NrvauZf93cDPddv3/fbQ+8NZ6i14kRFaFxUdUhfT8ElzOLERiZiEuZxTicmbZV1JWEVJyimCU730exfpi5Jbm3vN0tBotgl2CUce1Duq41Knwb7BLMBw1jvcelsiGsPhI0VLzinEsOQdHk3JxIiUHCemFSMwqRGGpQXS0aivSF+Fc9jmcyz5X6T4JEry13qjjUgdhHmFo7NUYTbyboKFXQzioHQSkJRKPxUeKkZpbjKPJOTianINjyTk4kpSD1LwS0bFqlAwZ6UXpSC9KR3xavOl2jaRBmEcYmng3MX019GzItUNSBEmWZTMM2hBZFr3BiEOJ2dh1LgNHkrJxNNnySq7dA8txImeP6BgmGkmDUI9QNPFqgpZ+LdE+qD2CXIJExyIyOxYf2YxzqXnYfjYdO86mY+/FTOSX6EVHuiVLK76q1HOthwcCH0D7oPZoG9gWbvZuoiMR3TMWH1mttLwS7DyXju1n07HzXDqu5haLjnRHrKH4rqeW1Gjs1Rjtg9rjgcAH0NKvJezUdqJjEd0xFh9ZlWPJOVh9JAVbTqfi1NU80XHuibUV3420Gi1a+bdCt3rd0KNeD3g4eoiORFQtLD6yeCdTchF7JAWrj1xBQkah6DhmY+3Fdz2NpEG7wHZ4KOQhdKvfjUOiZNFYfGSRzqXmYdXhFMQeTcG51HzRcWqELRXf9exUdmgf1B69QnrhwboPwsXeRXQkogpYfGQxEtILsPrIFaw+kmL1w5jVYavFdz17lT06BndEr5BeiKkbAyc7J9GRiFh8JJbOYMS6Y1fx655L2HcxU3ScWqWE4rues50zHg57GIMaDkKEZ4ToOKRgLD4SIiWnCAv2XsbC/YlIs7Dj62qL0orveq38WmFQo0HoXr877FTcM5RqF8/cQrVGlmXsPJeBX/ckYMPJVBjMccJLskpxqXGIS42Dt6M3Ho98HAMbDkSAc4DoWKQQXOOjGpdTpMOSg0mYv/cSLqQViI5jMZS8xncjtaRGlzpdMKjhILQPag9JkkRHIhvG4qMacyW7CN9vPY/FB5JQpLOekz7XFhZf1ULcQvBcs+fQL7wfNCoOSpH5sfjI7JKyCjFjy3ksOZCEUoNRdByLxeK7tWCXYIyMGon+Ef25HZDMisVHZpOYWYjpm87hz0NJ0Bn4trodFl/1BDoH4vlmz+PxyMd5ijQyCxYf3bOE9AJM33wOyw8lQ88dVqqNxXdn/J38MaLZCDzR4AleS5DuCYuP7tr5tHxM33QOKw9f4R6ad4HFd3d8tb4Y3nQ4BjYcyOsH0l1h8dEdu5pTjEnrT2PZoSSw7+4ei+/e+Gh98HKLl/F4xONQq9Si45AVYfFRtRWVGvD91vP4YdsF7qVpBiw+84j0jMRbbd5Ch6AOoqOQlWDx0W3JsoylccmYtP4UruUq8ywrNYHFZ16dgjvhrTZvIdwjXHQUsnA8SIZuKT4xG2NXHMPhpBzRUYhuaUfyDuy5sgeDGg3Cyy1ehqu9q+hIZKG4xkdVysgvwcR1p7D4YBL4DqkZXOOrOd6O3ni91et4NOJRngWGKmHxUQUGo4xfdydg8t9nkFusFx3HprH4al5z3+Z4v937aOLdRHQUsiAsPjI5n5aPtxYfxqHL2aKjKAKLr3ZoJA1GNBuBl+57iQfAEwBAJToAiWc0yvhh23n0+WY7S49sjl7W48ejP+Kp2KdwIuOE6DhkAVh8CnchLR9PztqNz9acQome59Uk23U26yyejn0a0w5Ng86gEx2HBGLxKZTRKOOn7RfQ59vtOHgpS3Qcolqhl/X44cgPeCr2KZzMOCk6DgnC4lOghPQCPPXDbnwSexLFOq7lkfKczTqLIbFDMP3QdOiMXPtTGhafgsiyjNk7LqL3N9uxP4FreaRselmPWUdmYdDqQVz7UxgWn0JkFpRi2Ox9GL/6BE83RnSdM1ln8PSap7Hg5ALRUaiWsPgUIO5yFvp+ux3bz6aLjkJkkXRGHT7f9zne2foOCnWFouNQDWPx2bjZOy7iqVm7kZJTLDoKkcVbm7AWg2MH43z2edFRqAax+GxUfokeryyIw/jVJ3g1dKI7cCHnAgbHDkbshVjRUaiGsPhs0JlreXhk+g7EHkkRHYXIKhXpi/De9vcwYfcElBpKRcchM2Px2Zjlh5Lx6Hc7cSGtQHQUIqu36MwiDFs7DFfyr4iOQmbE4rMRpXoj3l92FKP/iEdhKffaJDKX4xnHMXD1QGxP2i46CpkJi88G5BTpMGz2Xszfe1l0FCKblFOSg9c2vYaFpxaKjkJmwOKzcsnZRXhi5i7suZApOgqRTTPIBny691NMPjAZvKiNdWPxWbFjyTl47LudOJuaLzoKkWLMOT4H7257lzu9WDEWn5XaeiYNT83ajdS8EtFRiBRnbcJavPD3C8gpyREdhe4Ci88KLdqfiOfn7kcBd2IhEubgtYMYunYokvOTRUehO8TiszKT/z6Dd5Yegd7IbQxEol3MuYinY5/G8YzjoqPQHWDxWQmdwYg3Fx3GtxvPio5CRNfJKM7AiHUjsC1pm+goVE0sPitQojfghV8OYGlckugoRFSFIn0R/rvpv1h7ca3oKFQNGtEB6NZK9AaM+vUgtpxOEx2FiG7BIBswZvsYAEDv0N6C09CtcI3PgrH0iKxLeflxzc+ysfgsVInegBdZekRWp7z81lxYIzoK3QSLzwKVl95mlh6RVTLIBvxvx/9YfhaKxWdhWHpEtoHlZ7lYfBakRG/AS7/FsfSIbATLzzKx+CxEeeltOpUqOgoRmVF5+fGK7paDxWcBjEYZoxfGs/SIbJRBNuCDHR9gR/IO0VEILD6L8EnsSaw9dlV0DCKqQXpZjze3vIkTGSdER1E8Fp9gs3dcxOydF0XHIKJaUKgvxCsbX8GV/Cuioygai0+gdcdS8EksP/0RKUl6UTpe2vASL2kkEItPkIOXsjD6j3jwIgtEynMh5wJe3/w6L2YrCItPgIT0AvznlwMo1hlFRyEiQQ5eO4j3d7wPWean39rG4qtlmQWlGD5nHzIL+EmPSOnWJazD5IOTRcdQHBZfLSrWGfD8vP1IyCgUHYWILMTc43Ox4OQC0TEUhcVXi/5vUTwOXc4WHYOILMzE/ROxPWm76BiKweKrJbO2nseaozxWj4gqM8pGjNkxhoc51BIWXy3YdzETk9afFh2DiCxYTkkO3tzyJnQGnegoNo/FV8PS8krw6oI46HncAhHdxrGMY5i4f6LoGDaPxVeDDEYZr/0eh9S8EtFRiMhK/HH6D6y+sFp0DJvG4qtBX/91GnsuZIqOQURWZvzu8TiffV50DJvF4qshG09ew8ytfOMS0Z0r0hfhjS1voFDHQ59qAouvBiRmFuL/Fh0GT8hARHfrYs5FfLTrI9ExbJLw4ouJicHo0aNver8kSVi+fHm1p7dlyxZIkoTs7Ox7znY3SvQGvDw/DjlF3DOLiO7N+oT1mH9yfq3M63Z/i22JRnSA20lJSYGnp6foGNX2+ZpTOJrMs64TkXl8deArtPZvjUZejURHsRnC1/huJyAgAA4ODqJjVMvu8xmYtztBdAwisiF6ox4f7PgAOiNHkczFIorPaDTinXfegZeXFwICAjBu3DjTfTcOde7atQstWrSAo6Mj2rRpg+XLl0OSJMTHx1eY5sGDB9GmTRs4OTmhQ4cOOH26Zg8gLyzV452l3K5HROZ3Ous0fjjyQ63NLysrC8OGDYOnpyecnJzQu3dvnD17FgAgyzJ8fX2xZMkS0+NbtGiBwMBA0/c7duyAg4MDCgstc+cciyi+efPmwdnZGXv37sWXX36J8ePH4++//670uNzcXPTr1w9RUVGIi4vDhAkT8O6771Y5zffffx9ff/01Dhw4AI1Gg+eee65GX8MXa08hMbOoRudBRMr105GfcDLjZK3Ma/jw4Thw4ABWrlyJ3bt3Q5Zl9OnTBzqdDpIkoUuXLtiyZQuAspI8efIkioqKcOrUKQDA1q1bcf/998PJyalW8t4piyi+5s2bY+zYsYiMjMSwYcPQpk0bbNy4sdLjFixYAEmS8OOPP6JJkybo3bs33n777Sqn+emnnyI6OhpNmjTBe++9h127dqG4uLhG8u8+n4Ff91yqkWkTEQGAXtbjg501P+R59uxZrFy5Ej/99BM6d+6M++67D/Pnz0dycrJp9C0mJsZUfNu2bUPLli0r3LZlyxZER0fXaM57YTHFd73AwECkpqZWetzp06fRvHlzODo6mm5r27btbadZvgpe1TTvFYc4iai2nMk6g+8Pf1+j8zh58iQ0Gg3atWtnus3b2xsNGzbEyZNla5zR0dE4ceIE0tLSsHXrVsTExJiKT6fTYdeuXYiJianRnPfCIorPzs6uwveSJMFovLerk18/TUmSAOCep1kVDnESUW2afXQ2jmccF5ohKioKXl5e2Lp1a4Xi27p1K/bv3w+dTocOHToIzXgrFlF81dWwYUMcPXoUJSX/nvty//79wvLsOp/OIU4iqlV6+Z+9PGvoKg6NGzeGXq/H3r17TbdlZGTg9OnTaNKkCYCylYnOnTtjxYoVOH78ODp16oTmzZujpKQEs2bNQps2beDs7Fwj+czBqopvyJAhMBqNeOGFF3Dy5EmsX78eX331FYB/1+pqS2GpHu8uPcIhTiKqdeeyz2Hm4Zk1Mu3IyEj0798f//nPf7Bjxw4cPnwYzzzzDIKDg9G/f3/T42JiYvD777+jRYsWcHFxgUqlQpcuXTB//nyL3r4HWFnxubm5YdWqVYiPj0eLFi3w/vvv46OPyk7pc/12v9owkUOcRCTQ7GOza2wvzzlz5qB169Z4+OGH0b59e8iyjDVr1lTYhBQdHQ2DwVBhW15MTEyl2yyRJMvWvc4yf/58jBgxAjk5OdBqtbUyz2PJOXhk+g7wEnt0L9o9sBwncvaIjkFWrIVvC/zS+5daH/GydhZ/yrIb/fLLLwgLC0NwcDAOHz6Md999FwMHDqy10pNlGWNXHmfpEZFw8WnxWHl+JfpH9L/9g8nEqoY6AeDq1at45pln0LhxY7zxxht48skn8cMPtXdGgz/jknHwUlatzY+I6FamHJyC/NJ80TGsitUPddamvGIdun69FWm8ojqZAYc6yVyeafwM3m1b9VmsqDKrW+MTadqmcyw9IrI4C08txIXsC6JjWA0WXzVdyijA3J0JomMQEVWil/X46sBXomNYDRZfNX2+5hRKDeY/8wsRkTlsT96OXVd2iY5hFVh81bDvYibWHb8qOgYR0S1N2j8JBqNBdAyLx+K7DVmW8WnsCdExiIhu61z2Ofx57k/RMSwei+82Vh1JweGkHNExiIiqZUb8DJQYuBPerbD4bsFolDFt41nRMYiIqi29KB1Lziy5/QMVjMV3C2uOpeBsKg8MJSLrMvvobJQaSkXHsFgsvpuQZRnTN50THYOI6I6lFqVi6dmlomNYLBbfTaw/fhWnruaJjkFEdFd+PvpzjV2zz9qx+G7i241c2yMi63Wt8BqWnVsmOoZFYvFVYcOJaziRkis6BhHRPfnp6E/QGbnWdyMWXxWmbeKenERk/VIKUrDi3ArRMSwOi+8Gm0+n8rg9IrIZPx39CXqjXnQMi8Liu8G3PG6PiGxIcn4yVp1fJTqGRWHxXWfX+XQcupwtOgYRkVnNPjYbvPTqv1h815m3K0F0BCIis0vITcCeFF70uByL7x9Xc4qx4WSq6BhERDXij9N/iI5gMVh8/1iw7zIMRg4FEJFt2pK4BVcLeHk1gMUHANAbjFi477LoGERENcYgG7D4zGLRMSwCiw/AXyeuITWPl/EgItv259k/eUA7WHwAgF93XxIdgYioxqUXpWPjpY2iYwin+OI7l5qP3RcyRMcgIqoVC08vFB1BOMUX3297uLZHRMpx8NpBnM1S9ok6FF18RaUGLI1LEh2DiKhWKf3QBkUX38rDycgr5jnsiEhZVl9YjSJ9kegYwii6+P6MSxYdgYio1hXoCrA1aavoGMIotvhSc4uxPyFTdAwiIiHWX1wvOoIwGtEBRFlzNAU8UQuR5cjYlIHMTZnQpZcdZ+YQ7AC//n5wbe4KAEiem4z84/nQZ+uhclTBKcIJAU8GwCHI4abTvLbsGnL25kCXqYOkkaAN0cJ/gD+cwp0AAEadEcmzk5F3KA8adw2ChgXBpamL6flpa9Kgy9AhaGhQDb5yMbYnb0eBrgDOds6io9Q6xRbf6iMpoiOYVd6hNcg7tAb6nGsAADufevDoMBja8DYAgIx101F8KR6G/ExIdo5wCG4Mz5jhsPOuW63pZ6yfjvz4dfDs+h+43d8fACDrdchY9y0Kz+6B2tkTXj1fhjakhek5OXuXwpCbBq8eL5r3xZJNsvO0Q8CTAbD3twcAZO/IxuVvLiN8fDgcgx2hDdHCo70H7LzsYCgwIHV5KhK+SkCDrxpAUklVTtMhwAFBQ4Ng72sPo86IjPUZZc+Z2AAaNw2ytmSh+FIxwj4MQ/6RfCR+n4hG3zaCJEkoTStF1tYshI8Lr83FUGtKDCXYdHkT+oX3Ex2l1ilyqDMlpwgHL2eJjmFWaldveEY/i8BnpyLw2alwrH8fUv/8BKVpZYdr2AdEwLvPaASNnAm/geMByLj2x0eQjYbbTrvwzC6UXDkNtYtXhdvzDq9D6dVzCHjmK7jc1wvpqyaZLn2iy76K/MPr4dFlmNlfK9kmt5ZucL3PFQ4BDnAIcID/E/5QOapQeK4QAOAV4wXnhs6w97U3rbnpMnUoTS+96TQ92nvApakL7P3s4RjsiIDBATAWGVGcVAwAKEkpgWsLVzgGO8KrmxcMeQYY8sp+J67Mu4KAgQFQa9U1/+IFWZ+gzOFORRZf7JEU2NqlqZwi2kEbfj/svIJh5xUMzy7DoLJ3RMmV0wAA1xa94Fi3GTTu/nAIiIBH56Ew5KVBn3PrK1Lo89KR+fcs+Dz8FqCqOECgy0iENqId7H3rw7VVXxgLc2AsygUAZP41A54xw6FycKqZF0w2TTbKyN6TDWOJEU4Rld9DxhIjsrZnwc7XDnZedtWaplFvRNaWLKi0KjjWdQQAONZ1ROHZQhhLjcg/mg+NhwZqVzWyd2VDspPg1trNrK/L0uy6sgu5pbmiY9Q6RQ51xh61rWHOG8lGAwpP7YBRVwyH4EaV7jeWFiP/6AZo3P2hcfO5+XRkI9JXT4Zbu8dh71u/0v32fqEoOLYZRl0Jii/GQe3iBZXWDfnHN0PS2MOpQQezvi6yfcWJxbjwyQUYdUaoHFSo91o9OAY7mu7P2JiBa4uuwVhihH2APULeDoFKc+vP77nxuUiamQRjqREadw1C3g6BxrXsT59nZ08UJxbj7P/OQuOqQd2X68JQYMC1ZdcQ+l4ori0t20Zo72eP4OeDYedZvZK1FjqjDhsvbcRjkY+JjlKrFFd8SVmFNnuV9dK0BFz99S3I+lJI9lr4PfY+7H3qme7Pi4tF1pY5kHXF0HjVgd9Tn0BS3/wXOXfPEkgqNVxbP1Ll/S5RPVCamoArP78MtdYNPv3fhbE4Hzk75sN/8OfI2vYrCk9ug8YjAN59XofG9eYlSwQA9oH2CB8fDmORETn7c5D0UxJC3ws1lV/50KU+R4/0telI/C4RYe+HQWV/8/JzaeyC8PHhMOQZkLk1E4kzEhH+UTg0bhpIGglBwyruuJL0UxK8e3ij+HIxcuNyETEhAmlr0pDyWwrqvVbvJnOxXusT1iuu+BQ31LnGhtf27LyCETjiWwQMmwzXlr2RHjsFpen/Xm7JuWkMAod/A/8hX8DOKwjpK76ArK96+0jJ1XPIPbgS3n1GQ5Kq3nFAUmvg3fMl1HnxZwQ+OwWOdZoia9PPcG3dD6XXLqDo7G4EjpgGh6BGyNrwQ428ZrItKo0KDv4O0IZoEfBkABzrOiLj73/Ppat2UsMhwAHODZ1R99W6KEkpQW7crYfqVA5l03SKcEKd5+tAUkvI2lb1Nv78k/koSS6Bd3dvFJwqgGtzV6gcVHBv646CUwVmfa2WYm/KXmQV29Y+D7ejuOKztb05ryep7WDnGQSHgAh4Rg+HvV8o8g6sNN2vcnCGnVcwHOs2g++jY6DLTELhmd1VTqsk8TiMBTlInjkCl758BJe+fASG3FRkbf4ZSTOfq/I5xZeOQJdxCa6tHkbx5SPQhrWByt4RTo06ofjy0Rp5zWTjZEDW3WSD/D833/T+m03SKMOoM1a63VhqRMqvKQgaHlS2l6gRkA1l05b1MmQbPf5JL+vx96W/RceoVYoa6kzOLsKRpBzRMWqNLMuQDTe59pZc9nWz+52bPQjHkPsq3Ja66CM4N+0Kl6julSenL0Xm3zPh0+8tSCo1IBshl/9tMRogy5X/0BBd7+riq3Bt7go7LzsYi43I3pONglMFCHkzBKWppcjZlwOXZi5Qu6qhz9QjLTYNKjsVXO9zNU3jzHtnEPBkANxau8FYYkTqqlS4tXCDxkMDQ74BGRszoM/Sw72te6X5p61Mg0tzF2jrawEATpFOuPrHVXh29kTmxkw4RdrujlpbErdgYMOBomPUGkUV346zaaIj1JisrXOhDWsDjZsvjKVFKDixBSWXj8J94Hjosq+i8OQ2OIa2gtrJDfrcDOTuXQxJYw9tWBvTNJJ/fBGe0cPg1KAD1Fo3qLU37NGm0kDt7Ak77zqV5p+9ayG0YW1g7192zJNDcBNkbZkNl6juyItbDcfgxjX6+sn66XP1SPohCfocvWnPy5A3Q+DSzAW6LB0KzhQg/a90GAuMULur4dzAGWEfhEHj9u+fsdKrpTAU/nOIjgSUppTi8o7LMOQboHZRQxuqRej/QivsMAMAxUnFyNmfg4jxEabb3Nq4oeBUAS58dgEOAQ6o82Ll972tOHjtIHRGHexUtrXzzs0oq/jO2e519wwFOUhfPRmGgkyoHJxh7xsCv4HjoQ1tCX1eBoqTjiP3wEoYi/OhdvaAQ92mCHhmEtTOHqZp6DOTYCwpvON5l6YloPDUdgQOn2a6zalRRxQnHsXV+e/CzjsYPv3eNsfLJBtW5/mbF4udpx1C/i/kttNoNreZ6f8qe1W1d0ZxrOOIBhMbVLhNUpXt+HLjzi+2qFBfiMOph9EmoM3tH2wDJFm2tSPaqibLMtp8sgEZBTc/2JWoNrV7YDlO5OwRHYMIAPBC8xfwWsvXRMeoFYrZueVESi5Lj4joJvZcUc6HMMUU385z6aIjEBFZrOMZxxVzFhfFFJ8tb98jIrpXBtmAfSn7RMeoFYoovhK9Afsv8tp7RES3svtK1cf12hpFFN/BS1ko0t3+KgREREq2J0UZ2/kUUXzcvkdEdHuX8y4jOT9ZdIwap4ji4/Y9IqLqUcJwp80XX1GpAceSlXOaMiKie3Ek7YjoCDXO5ovvREoODDZ6clkiInM7kXFCdIQaZ/PFdyxZGcelEBGZw/ns8ygxlIiOUaNsvviOcpiTiKja9LIepzNPi45Ro2y++Lh9j4joztj6cKdNF1+xzoBzqfmiYxARWRUWnxU7mZILPXdsISK6Iyw+K3bsCndsISK6U7a+g4ttF18St+8REd0pW9/BxaaLj3t0EhHdHVse7rTZ4ivRG3A2NU90DCIiq8Tis0IJ6YXQGbhjCxHR3biUe0l0hBpjs8V3ObNQdAQiIquVlJckOkKNYfEREVElaUVpNrtnp80WXyKLj4jorsmQkZxnm9fmY/EREVGVkvJtc7jTdosvi8VHRHQvEvMSRUeoEbZbfJlFoiMQEVk1W93BxSaLLy2vBEU6g+gYRERWjUOdVoR7dBIR3Tuu8VmRJG7fIyK6Z8n53KvTalzOYPEREd2rIn0R0ovSRccwO5ssvqu5xaIjEBHZhKziLNERzM4miy+nSCc6AhGRTcgttb3rmtpk8eUW60VHICKyCbklLD6rwDU+IiLzyCm1veua2mTx5bH4iIjMgmt8ViK3mMVHRGQO3MZnJXKLuI2PiMgcWHxWoKjUgFKDUXQMIiKbwOKzAtyxhYjIfHJKuHOLxeP2PSIi8+EanxXgGh8Rkflwr04rUFDCHVuIiMyl1FAqOoLZ2VzxGYyy6AhERDbDINvetU1ZfEREdFMsPivA3iMiMh+jbHuHh9lg8bH5iIjMhWt8VoDFR9bATiXDV20nOgbRbRmNXOOzeBIk0RGIbmlknUQcCxiPb+N+x8faBvB28BQdieimJMn2/qZqRAcwN7XNVTnZirYeufjWaykCrvxtuu3xExvQ08EVPzTpgt9yT0Fn5HGoZFnUklp0BLOzuZpQ2eCnE7Ju3vY6LIn8G3/oR1covXIuJXn4v0OxWJFtwIMeTQQkJLo5rvFZAbXK9n5IZJ0kScaE0BMYnPMz1IlXb/v4uhkJ+DYjAXtC22Kiix3O5SfWQkqiW7PFNT4WH1ENGOB/DR/b/wqXK3F3/NwHLu7DEkmNJU274TtdCrJs8ArYZD24xmcF7LiRjwRq5FKImQGrEZK0AhLufg9jtWzAU8f+Qm+tO2Y26oSFOSehl3k6Pqp9jmpH0RHMzuZawsXB5rqcrICz2ojZkTuxVjUaoUnL76n0rudWlIN3D8Viab4KnTwamWWaRHfC1d5VdASzs7mWcNfy2CiqXf9X7zxeKpkDu8QLNTaPsNRzmJl6DtvD22OSFrhYkFxj8yK6npu9m+gIZmdzxefhxOKj2tHVOwtfuS2EV8r2Wptn5/O70V6lwcKm3TGj5DLydPm1Nm9SJltc47O5oU43RzvY4LZYsiDBjiVYHbkaPxe9XqulV05j1OOZo+uwJukqnvKMssm97shyuDnY3hqfzRWfSiVxOx/VCLVkxJTwOGzXvo1miQsgGcXubOJRmIkP4mKxuMAe7TwaCM1CtssW1/hssiHctXbIK+YecGQ+zwYl4z1pLrTJx0VHqSTy2mn8dO00NkV2xlf2JUgsvP0xg0TVxW18VsJda4ekrCLRMcgGtHLPx3SfPxGUvE50lNvqenY7Oqvt8VvTbvihOAH5ugLRkcgG2GLx2dxQJ8A9O+neudvpsTByM5YaXreK0itnZyjFiCNrsepKBh73jIJKsslfcapFLD4rwT076V6MDTmJgx5j8EDij5D01jly4JOfio/jYrGwyAmt3CNExyErxm18VoJrfHQ3+vml4VPH3+B2db/oKGbTOOUE5qWcwPqG0ZisLsCVolTRkcjK2OIan40Wn73oCGRFwp2KMCt4DcKTlkHKtb2LbgLAQ6e3IkbjiHlNu+KnwvMostI1Wap9no62d71ImxzqDPKwvXPLkflp1Qb8ELEHG+zeQETiUkiybZZeOQd9MV44vAarU3PRzzOKF22m29JIGgQ4B4iOYXY2WXx1vZxERyAL92rdBBz2/Rg9k76FVJIrOk6t8stJwWdxsfhN54HmbuGi45AF83f2h0ZlewODtveKANRj8dFNdPLKwVSPP+BzZYvoKMI1TzqM35IkxDZ6EFOkbKQWp4uORBamjksd0RFqhG2u8Xk6gZflo+sFOJRiRYO1+LXkdZbedSTIePjUJqw+fwqj3KPgqHYQHYksSB1XFp/VsNeoEODG7XxUdhX0L8MPY5fz27jv8q+QDKWiI1kkbWkhXo2PxcqMYvTybCo6DlmIYJdg0RFqhE0WH8DtfAQMCUzB8eCJGJg8EarCNNFxrEJgViImxa3FPIMPmriGiI5DgrH4rAy38ylXlGsBtkfMx2dZb8Ip/YjoOFap1eU4/H50B8ZrG8DbwfZ2Z6fq4VCnlanvzeJTGleNHr9FbsVKjEbdpFjRcayeSjbisRMbEHvxAp7ziIK9isfHKg3X+KwMhzqV5X8hZ3DI6310SpwFiSdnNivnkjy8cSgWy7N16ObZRHQcqiVajRbeWm/RMWqETR7OAHCoUyl6+WZgotN8uF/dIzqKzaubcQlTMy5hX8j9mOjqgDP5l0VHohpkq2t7gA0XX31vZ9ERqAaFaIsxq846NEhaCinPIDqOorRN2I9FkhpLm3TFdP1VZJXmiI5ENSDELUR0hBpjs0OdXs728HPlMUm2xkFlxIyI/djk8H9omLgIkszSE0EtGzDw+N9Yffkyhno0t8mzeyhdI69GoiPUGJstPgCICnYXHYHMaFSdyzjiPwF9kqZAVZwtOg4BcCvKwTuHVuPPXAldPBqLjkNm1MTbdrfn2nbx1WHx2YJ2HrnYG/YzxqS/B4es06LjUBVC087ju0Pr8b0UhDAbPc2V0thy8dn0+ATX+Kybr70O39ffjFZXfod0pUR0HKqGjhf2YKlKgz+adMMMXRJyS/NER6K74OfkZ7N7dAK2vsbH4rNKkiTjs9Cj2OP6LlonzoVkYOlZE41Rj6ePrUdsYgoGeTaHWlKLjkR3yJbX9gAbLz4/N0f4u3EHF2vyRMA1HKszCUNSPoe64KroOHQPPAoz8X7caiwpsEd7j4ai49AdaOJl28Vn00OdQNla37XcVNEx6DYauxRiZsBK1E9aBQmy6DhkRhHXTuOHa6exJaITvnLU41LBFdGR6Da4xmflmnG406I5awyYG7kDa1SvIyRpJUvPhsWc24FlJ+PwpmtTuNjxOFtL1tjbtvfQtfnia849Oy3WW/XOId77Q8QkzoBUytOMKYGdoRTDj6zF6ivpGOAZBZVk83+CrI6P1gd+Tn6iY9Qom3/XcY3P8nTzzsShkO/waupHsMtJEB2HBPDOT8O4uFj8UeSENu6RouPQdRp72fbaHqCA4vNzdUSgOy9KawnqOJZgTeQq/FQ0Gp5Xd4qOQxagUcoJzInfiK/tQhDs5C86DgFo7ttcdIQaZ/PFBwAPhNnu8SjWwE4l45vwg9imfQtNEn+HZNSLjkQWpueZbVhx+ij+69YMThqeYF6kBwIfEB2hximi+DpF+IiOoFjPBSfiaOCn6J/8NVRFGaLjkAVz0BfjP4fXYPW1bDziGQUJkuhIiuNi54IonyjRMWqcMoovksVX21q552F3+Dx8lPEuHDNOiI5DVsQ39yo+jYvFglI33OcWLjqOorQJaAO1yvZPOKCI4vN3c0QDfxfRMRTB006PRZEbsdTwOgKT14uOQ1asWfJR/HZ4M75wCIe/lh9ea4MShjkBhRQfAHSK8BUdweZ9HHoCB9zfQ9vEnyHpi0XHIRvR99RmrDp3Ci+5R8FRzTMx1aT2Qe1FR6gViim+zhzurDH9/VNxtN5kPJvyCdT5PCsHmZ+2tBAvx8diVXoRens2Ex3HJvk7+SPMPUx0jFqhmOJrF+YFe7ViXm6tiHQuwqbIJZia+39wTT0gOg4pQEB2Er6MW4Nf9N5o6hYqOo5NaRfYTnSEWqOYJnCy16BlPQ/RMWyCVm3ATxG78JdmNMIS/4QkG0VHIoVpmXgIvx/ehgnaBvB19BIdxyYoZfseoKDiAzjcaQ6v17uAw75j0T1pOqQSXmuNxJEg49ETG7D6wjmM9IiCvcpedCSrppTte4DCiq9TJHdwuVvR3lk4GDoLb6R+APvsC6LjEJk4leTj9UOxWJFVih6eTUXHsUoRHhHwUdCeszZ/WaLrNQ92h6eTHbIKdaKjWI1Ax1L8UG8DmiX9AamAy40sV53My5iceRn7Q+7HRDdHnM67JDqS1Xiw7oOiI9QqRa3xqVQSejULEB3DKqglI74OP4SdTm8h6vJvkIwsPbIO9yfsx6KjO/GRU0N4OXiIjmMVHgp5SHSEWqWo4gOAfs2DREeweEODknEs+AsMSJ4EVWG66DhEd0wlG/Hk8b+xOuEShnlEQaNS1ODWHQlxC0FDr4aiY9QqxRVfuzBv+LjwINiqtHDLx47w3zAh821o04+JjkN0z1yLc/D2oVgsy5UQ7WH7l9u5G0pb2wMUWHxqlYQ+URzuvJ67nR4LIrdgmTwadZLXiI5DZHYhaecx/dB6zJKCEO5SR3Qci8LiU4h+93G4s9yHIadw0ON/6JD4AyRdoeg4RDWqw4U9WHJ8H8a4NIa7vZvoOMKFu4cj0lN5FwJWZPG1qe+p+IvT9vFNx5H63+D5q+OhyUsSHYeo1miMegw5uh6xickY7BEFjaTc7X9KXNsDFFp8kiShT1Sg6BhChDkV46/IZfgu/w24XdsrOg6RMO6FWfjfoVgsydegg4eydu4ox+JTGKUNdzqojPg+Yi822r2BBomLIckG0ZGILEJ46hnMOvQ3pqvror6zcv4uRHpGIsxDGSelvpFi1/Fb1PVAXS8tEjOLREepcS/VTcAb+jmwTzorOgqRxYo+txMdVHZY0Kw7ZhVfQp4uX3SkGvVQfWWu7QEKXuMDgL5Rtv3prqNnDvaH/YR30/4H+yyWHtHt2Bl1ePbIWqxOTsUTnlFQSbb5J1KChN6hvUXHEMY2f6rV9ERr29yt2c9Bh2WR6/Fb6evwvbJJdBwiq+NVkI6xcbFYVOiE+91tb6/HtoFtUc+tnugYwii6+CL8XNAh3Ft0DLORJBlfhB3Fbpe30TJxHiRDqehIRFat4dUTmB2/EVPs6iPYyV90HLN5quFToiMIJcmyLIsOIdLaoyl4aX6c6Bj37KnAqxirngen9MOioxDZpFK1A35p1hU/Fl5Eod56j3n10/ph/RPrFX0aN0Wv8QFAjyb+CHCz3mP6mroWYFvE7/gi602WHlENsjeUYOThtVh9LRv9PaMgQRId6a4MaDBA0aUHsPigUaswuK31jXU7awz4JXI7VkujUS9pFSQoesWdqNb45l7FJ3Gx+L3UDS3dI0THuSMaSYMBkQNExxBO8cUHAIPb1YWd2no+vb1T/yzivT5Al8SZkEoLRMchUqSmyUfxS/wmfOkQhgCtdVzkOqZuDPydbWdb5d1i8QHwc3VEz6aWf+Lqnj6ZiA+ZjpevjYVdLi+ySWQJep/aglVnT+Bl9yho1Za92WRgw4GiI1gEFt8/hj5QX3SEm6qnLca6yBWYVfA6PK7uEh2HiG7gqCvCS/GxWJlegD6ezUTHqVKIWwgeCHxAdAyLwOL7xwNh3mjo7yo6RgV2KhnTIg5ii+NbaJT4B08zRmThArKTMTFuDX7Ve6GZW6joOBU82eBJSJL1bNKpSYo/nOF6v+5OwIcrjouOAQB4PjgRb8tz4Jh5SnQUIroLMiSsbNwV3yADacWZQrM4qh2x4ckNcHdwF5rDUnCN7zqPt6oDd62d0Axt3POwJ3wOPsx4l6VHZMUkyOh/ciNWXziH/7hHwUHtICzLEw2eYOldh8V3HWcHDZ7rKGZ4wtteh8WRG7DY8DoCkv8WkoGIzM+pJB//jY/FiswS9PBsWuvzt1fZY0SzEbU+X0vG4rvBiE4hcHOs3YM7J4Qexz6393B/4mxI+uJanTcR1Y7gzMuYHLcWs41+aORaezvTPRb5GPyc/GptftaA2/iqMOXvM/hmY81fzeBx/1SMd/gVLqkHa3xeRGQ5jJIKfzbphmmGVGSWZNXYfOxUdljz+BoEOFv+4Vq1iWt8VXiuUyhca3Ctr4FzETZHLsLXOW+w9IgUSCUb8cTxvxGbcBHDPZrDTlUz+xY8Ev4IS68KLL4quGvtMLxDiNmn66w2YnbkLqxXv47QxOU8zRiRwrkU5+LNQ6uxPMeIGI8mZp22RtJgZNRIs07TVrD4buL5TqFwcTDfWt8b9S4g3ucjdE2cDqnUtq/sTER3pl76RUw7tA6zEIgIl7pmmWbfsL6o42qb1xy9V9zGdwuT1p/Cd5vP39M0Yryy8LX7H/BO2WamVERkywySGouadsMMXQqyS3PuahpqSY0Vj65AfTfLPSOVSFzju4WRncLgbK++q+cGOpZidWQs5hS/ztIjompTywYMPvYXVl9OxNMezaGR7nzkqVdoL5beLbD4bsHT2R5D24fc0XPUkhGTww9hp/YtNEucD8mor5lwRGTT3Iuy8d6h1Viar0ZHj0bVfp5KUuGF5i/UYDLrx6HO28gsKEX0l5uRV3L7AhsWdAVjpDnQZljGac+IyHZsC++ASVoZCQXJt3zcYxGPYXzH8bWUyjqx+Kph5pbzmLju5qcPa+Wej2k+fyI4eV0tpiIipdGp7PB70274vuQy8nSVd5LTarSIfSwWvk7WcX1AUTjUWQ3PdQpBHU9tpdvd7fRYGLkZSw2vs/SIqMbZGXUYdnQdYpOvYaBnFNRSxX0QRjQbwdKrBq7xVdPqI1fw6oJDpu8/Cj2JYfmzocm79bADEVFNOePfCF8G1sHenDPwc/LD6sdWQ6up/CGdKmLx3YEnZu5CQOFZfKb9FW6p+0XHISICAGyM7Ay0exHdIh4WHcUqsPjuQEbyBXj9fD/31CQiyxLcBhi5AeCFZquF2/jugHdwGKQWQ0THICK6jgT0+ZKldwdYfHeq2zjA0UN0CiKiMi2fAYJbi05hVVh8d8rZG+j6gegURESAozvQfZzoFFaHxXc32jwPBDQXnYKIlO7BDwBnH9EprA6L726oVEC/qYB0d+fxJCK6Z/XaA/fzskN3g8V3t4JbAx1fF52CiJRIowX6f1f2IZzuGJfavYgZA/iZ9+KRRES31e0jwDtcdAqrxeK7Fxp74NEZgMp8F6wlIrqleu2Bdi+KTmHVWHz3Kqgl0OkN0SmISAk4xGkWXHrmEP0u4B8lOgUR2bpuH3KI0wx4yjJzSTkC/NgVMOpEJ6EaMnN/KWYeKEVCthEA0NRPjY+62KN3pB0AYNSqImy4qMeVPBku9hI61FVjYncHNPK5+d6/47YUY+ExPRJzjbBXA60D1fi0qwPa1SkbPi/Ryxi5qhgrTukQ4KLCjL6O6B7279D6pJ0luJxjxLQ+PDGxzav7ADBiLdf2zIBL0FwCmwOd3xSdgmpQHTcJX3R3wMEXnHHgBWd0DVGj/8IiHE81AABaB6kxp78WJ19xwfpnnCDLQM9fC2Ew3vyzZQNvNab3ccTRl1ywY4QzQjxU6PlbIdIKysr1h4M6HLxiwO7nnfFCazsMWVqE8s+qF7OM+DFOh0+7Odb8iyexNNp/9ifgn2xz4BqfORl0ZWt9V4+ITkK1xGtiLib1cMTzrewr3XfkmgH3fV+Ac6+5INyren+wcktkuH+Rhw1DndAtTIOXY4vg5iDhi+6OKNLJcPosD6lvucDXWYVevxVgVGt7PNbYztwviyxNz0+BDq+KTmEz+PHBnNR2wGOzyj6dkU0zGGUsPKZDgQ5oX7fyUGZBqYw5h3QI9ZBQ1716Jw8uNcj44WAp3B2A+wLKfjXv81djx2UDinQy1p/XI9BFgo+ThPlHdHDUSCw9JYjsCbR/RXQKm8I1vppwaD6w4mXRKagGHL1mQPufC1CsB1zsgQUDtOgT+W/5zNhfinf+LkaBDmjorULsEKfbru2tPqPDoCVFKNQBga4Slj/lhPuDy8pUZ5Axel0x1pzTw8dJwpSHHNHEV437f8zHlmedMetgKRYe0yHcS4XZj2gR7MbPsjbFvS4wahvg5CU6iU1h8dWUla8Bcb+ITkFmVmqQcTlHRk6xjCUndPjpkA5bhzuhiW9ZUeUUy0gtMCIlX8ZXu0qRnGfEzuec4ai5+VpfQamMlHwZ6YVG/HhQh00Jeuwd6Qw/56pLbMSKIrTwVyHUU4X/bSzB3pHO+HJnCY6lGbF0oFONvG4SQG1ftjNLnTaik9gcfjysKb0nAYH3iU5BZmavlhDhpULrIDU+7+6I+/xV+GZPqel+d0cJkd5qdKmvwZKBWpxKN2LZyVtfuNjZvmyaD9TR4Of+WmhUEn6Oq3rv4M0X9TieasCrbe2xJcGAPpEaONtLGNjUDlsSDGZ9rSRYz09YejWExVdT7ByBgb/w2n02zigDJTfpG1ku+yox3NmgilGWq3xOsV7GK2uKMethLdQqCQYjoPtn3jojbrn3KFmZpo8D7UaJTmGzWHw1yTOkbGcX8MrItmDMhmJsu6RHQrYRR68ZMGZDMbYkGPB0lB0uZBnx+fYSHLxiwOUcI3Yl6vHk4iJo7ST0ifz3uLtG0/Ox7GTZ2lxBqYz/bSzGniQ9LmUbcfCKAc+tKEJyrownm1TeaWXC1hL0idSgZWDZsGrHemr8eUqHI9cMmL6vFB3r8dR5NsGnAfDINNEpbBp/U2paw15lpzTbMVl0ErpHqQUyhi0rQkq+DHcHCc39VVj/jBN6hGtwJc+I7ZcNmLq3FFlFMvxdJHSpr8au55wqbKs7nWFETknZmplaBZxKN2Le4SKkF8rw1kq4P1iN7SOc0dSv4p6ix1INWHRCj/hRzqbbnmiiwZYEDTrPKUBDbxUWDOD2Patn51Q2UuTgIjqJTePOLbXBaAB+fRS4uE10EiKyZI/NAu4bJDqFzeNQZ21QqYEBswHXQNFJiMhStR7O0qslLL7a4uILPPUbD24nospCo4E+X4lOoRgsvtpUpw0w4CdA4mInon/4NS37UKzmWXhqC/8C17bGDwO9vxSdgogsgWsQ8PRiwNFNdBJFYfGJ0PY/QIf/ik5BRCLZuwJPLwLcg0UnURwWnyg9xgPNBohOQUQiqDTAwLlAAC9gLQKLTxRJAh79HqjfSXQSIqptD08BIrqLTqFYLD6RNPbAoPmAbyPRSYiotnR5G2g1THQKRWPxiab1AJ5eArgEiE5CRDWt+SCg6weiUygei88SeNQt27PLwV10EiKqKQ16A/2ni05BYPFZjsDmwLBlgCPLj8jmNOhVdg5OHqtnEVh8liS4NTB0OcuPyJY06AUM/LVsmz5ZBBafpQluxfIjshWRD7H0LBCLzxIFtwKGrWD5EVmzyJ7AUyw9S8Tis1RBLf8pPw/RSYjoTkX0+Oek9A6ik1AVWHyWjOVHZH0iepQdn8vSs1gsPksX1ILlR2QtIrqz9KwAi88aBLUAnl0JOPuJTkJEN9P0cWDQApaeFZBkWZZFh6BqykoA5j8JpJ8RnYSIrtfhv2Unnpck0UmoGlh81qYoC/h9CHB5l+gkRCSpgF4TgXYviE5Cd4DFZ430JcDyl4BjS0UnIVIujRYY8FPZxaXJqrD4rJUsAxvGAju/EZ2ESHmcvIHBfwB17xedhO4Ci8/a7f8ZWPM2IBtEJyFSBs9Q4JmlgHe46CR0l1h8tuDMemDxCEBXIDoJkW0Lbg0MWQQ4+4hOQveAxWcrrhwCFgwC8q+KTkJkm5r0Bx79HrB3Ep2E7hGLz5bkXQOWPAdc2iE6CZHtUGnKDlVo/4roJGQmLD5bYzQAG8f/s9MLf7RE98Q1EHhyLlDvAdFJyIxYfLbq9Fpg2YtAcbboJETWKbQLMGA24OIrOgmZGYvPlmVdAhYNA1LiRSchsiIS0Pn/gAffB1Rq0WGoBrD4bJ2+BFj3HnBgtugkRJbP0R147AegYS/RSagGsfiU4sgiYNVoHvJAdDOB9wEDfwE8Q0QnoRrG4lOS1FNle32mHhedhMhySCqg3UtAt48AO0fRaagWsPiURl8KbPsS2DEFMOpFpyESyysM6D8DqN9edBKqRSw+pboSDyx/mWt/pFAS0G4U0G0sD0hXIBafkulLgW2TgB2TufZHyuEZAvT/DgjpJDoJCcLiIyDlcNna37VjopMQ1SAJuP/5srOw2DuLDkMCsfiojEEHbP2Sa39km9zrAf2nA2HRopOQBWDxUUUph4HlrwDXjopOQnTvJDXQ5jmg+1jAwVV0GrIQLD6qzGgou87f5k95yjOyXnUfAPpMAgKbi05CFobFRzdXkAFsGg/E/QLIRtFpiKrHxb9sO959g0QnIQvF4qPbu3IIWPsukLhXdBKim1Pblx2i0OUdwNFNdBqyYCw+qr7jy4AN44CsBNFJiCpq/EjZWp5XqOgkZAVYfHRn9KXA3u+BbV8BJTmi05DSBbYAen0O1O8gOglZERYf3Z2CjLJDHw7MBnSFotOQ0vg1BaLfBpo8CkiS6DRkZVh8dG8K0oFd04D9PwGl+aLTkK3zjwKi3wEa92Ph0V1j8ZF5FGYCe2YAe3/gECiZX0BzIPpdoFFfFh7dMxYfmVdRNrB3VlkJ8hhAuleBLYCY94CGvUUnIRvC4qOaUZIH7PsB2P0dUJghOg1Zm6BWZYXX4CHRScgGsfioZpUWAHG/Agd+BtLPiE5DlkxlBzR+GLh/JK+cQDWKxUe15+K2slOhnYoFjDrRachSuAYBrYcDrZ8FXANEpyEFYPFR7cu7WnYatINzgdxk0WlIlNAuZWt3DfsCao3oNKQgLD4Sx2gATq8tOxTiwhYAfCvaPAc34L7BZdfF820oOg0pFIuPLEPG+bI1wGN/ArlJotOQOUlqILQz0GxA2RcvAkuCsfjIssgykLS/rABPrADyrohORHdFKjuNWNPHys6u4uIrOhCRCYuPLJcsA5f3AMf/BE6sBPKvik5EtxPcpmytrumjgFuQ6DREVWLxkXUwGoHLu8quEHFiBVCQJjoRlQtoDjR7HGj6OOBZX3Qaotti8ZH1MRqApANlO8Rc2FI2NMrDI2qPsx8QFgOEP1j2L9fsyMqw+Mj6leQDl3b+W4SpJ0Qnsi0abdn2uvAHgbAHAf+mPF8mWTUWH9mevGvAxa3/FiGPFbwzKruycitfq6vXHtA4iE5FZDYsPrJ9OclAymEgJb7s3yvx3FGmnEoD+DYGgu4DgloCgS2BgGYsOrJpLD5SprxrFYsw5bDtHz+o0gC+jcqueBDUoqzo/JsBdo6ikxHVKhYfUbmCDCDjHJCVAGRfArIu/fNvQtlwqWwUnfD27JwAz5AbvkL/+bc+1+SIwOIjqh6DDshJLCvD8mIsSCu7/mBxzj9f//y/JM+8Jam2Bxw9AK0HoPX89/+OHoCzD+BR/9+Sc/U333yJbBSLj8jcjEagJLdiGeqKAdlQVoiyseyQDNkIqNRlp/RSaf75vwrQOP5bbFoPnuKLyMxYfEREpCgq0QGIiIhqE4uPiIgUhcVHRESKwuIjIiJFYfEREZGisPiIiEhRWHxERKQoLD4iIlIUFh+RQsTExGD06NGm70NCQjB16lRheYhE0YgOQERi7N+/H87OPB0aKQ+Lj0ihfH19RUcgEoJDnUSCxcTE4LXXXsPo0aPh6ekJf39//PjjjygoKMCIESPg6uqKiIgIrF271vScY8eOoXfv3nBxcYG/vz+GDh2K9PR00/0FBQUYNmwYXFxcEBgYiK+//rrSfK8f6kxISIAkSYiPjzfdn52dDUmSsGXLFgDAli1bIEkS1q9fj5YtW0Kr1aJr165ITU3F2rVr0bhxY7i5uWHIkCEoLCyskWVFZA4sPiILMG/ePPj4+GDfvn147bXX8NJLL+HJJ59Ehw4dEBcXh549e2Lo0KEoLCxEdnY2unbtipYtW+LAgQNYt24drl27hoEDB5qm9/bbb2Pr1q1YsWIF/vrrL2zZsgVxcXFmyTpu3DhMnz4du3btQmJiIgYOHIipU6diwYIFiI2NxV9//YVp06aZZV5ENUImIqGio6PlTp06mb7X6/Wys7OzPHToUNNtKSkpMgB59+7d8oQJE+SePXtWmEZiYqIMQD59+rScl5cn29vby4sWLTLdn5GRIWu1Wvn111833Va/fn15ypQpsizL8sWLF2UA8qFDh0z3Z2VlyQDkzZs3y7Isy5s3b5YByBs2bDA95vPPP5cByOfPnzfdNmrUKPmhhx66l0VCVKO4jY/IAjRv3tz0f7VaDW9vb0RFRZlu8/cvu8BsamoqDh8+jM2bN8PFxaXSdM6fP4+ioiKUlpaiXbt2ptu9vLzQsGFDs2f19/eHk5MTwsLCKty2b98+s8yLqCaw+IgsgJ2dXYXvJUmqcJskSQAAo9GI/Px89OvXDxMnTqw0ncDAQJw7d+6O569SlW31kK+7PKdOp7tt1htzlt9mNJrxCvREZsZtfERWplWrVjh+/DhCQkIQERFR4cvZ2Rnh4eGws7PD3r17Tc/JysrCmTNnbjrN8j08U1JSTLddv6MLkS1h8RFZmVdeeQWZmZkYPHgw9u/fj/Pnz2P9+vUYMWIEDAYDXFxc8Pzzz+Ptt9/Gpk2bcOzYMQwfPty0VlcVrVaLBx54AF988QVOnjyJrVu34oMPPqjFV0VUe1h8RFYmKCgIO3fuhMFgQM+ePREVFYXRo0fDw8PDVG6TJk1C586d0a9fP3Tv3h2dOnVC69atbznd2bNnQ6/Xo3Xr1hg9ejQ++eST2ng5RLVOkq8f1CciIrJxXOMjIiJFYfEREZGisPiIiEhRWHxERKQoLD4iIlIUFh8RESkKi4+IiBSFxUdERIrC4iMiIkVh8RERkaKw+IiISFFYfEREpCgsPiIiUhQWHxERKQqLj4iIFIXFR0REisLiIyIiRWHxERGRorD4iIhIUVh8RESkKCw+IiJSFBYfEREpCouPiIgUhcVHRESKwuIjIiJFYfEREZGisPiIiEhRWHxERKQoLD4iIlIUFh8RESkKi4+IiBTl/wFfIhKOVwyiqAAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 1500x500 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Контрольная выборка\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcQAAAHqCAYAAACa+T5ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABcFElEQVR4nO3dd3hTZcMG8Psk6Uj3noxOKKPIEgSEIks2IoKAgqC45ZX3c/I6QJyIAwVEUBkKiAIyy5K9Z2kpu4xCF917Zpzvj9pK6aBA2yfj/l1XL2jGOXfSJHeeMyVZlmUQERGZOYXoAERERIaAhUhERAQWIhEREQAWIhEREQAWIhEREQAWIhEREQAWIhEREQAWIhEREQAWIhEREQAWIhE1MD8/P0yYMEF0DKJKjKoQlyxZAkmSyn+sra3RrFkzvPbaa0hOThYdj8hoTZ8+HX5+fgD+fZ/R/fvhhx+wZMkS0THq3IQJE9CzZ08AFV87xk4lOsC9mDFjBvz9/VFUVIQDBw5g/vz52Lx5M86cOQMbGxvR8YiIAJQWopubG0fERsIoC3HAgAHo2LEjAGDSpElwdXXFN998g/Xr12PMmDGC0xFRQykqKoKlpSUUCqNa2GVw8vPzYWtrKzqGcCbxKurVqxcA4Nq1awCAjIwMvPnmmwgNDYWdnR0cHBwwYMAAREVFVbpvUVERpk+fjmbNmsHa2hre3t54/PHHceXKFQBAbGxshcW0t/+ULTYAgD179kCSJPzxxx/43//+By8vL9ja2mLo0KGIi4urNO+jR4+if//+cHR0hI2NDcLCwnDw4MEqH2PPnj2rnP/06dMr3XbZsmXo0KED1Go1XFxcMHr06CrnX9Nju5Ver8fs2bPRqlUrWFtbw9PTEy+++CIyMzMr3M7Pzw+DBw+uNJ/XXnut0jSryj5r1qxKzykAFBcXY9q0aQgKCoKVlRUaN26Mt99+G8XFxVU+V7fq2bNnpel9+umnUCgUWLFixT09H1999RW6du0KV1dXqNVqdOjQAatXr65y/suWLUOnTp1gY2MDZ2dn9OjRA9u3b69wmy1btiAsLAz29vZwcHDAgw8+WCnbqlWryv+mbm5uePrpp5GQkFDhNhMmTKiQ2dnZGT179sT+/fvv+DzdyYkTJ/Doo4/Czc0NarUa/v7+ePbZZ+/5eblVbd+vZe+vlStX4v3334evry9sbGwQGRkJSZLw7bffVpr2oUOHIEkSfv/991o/Vr1ej++++w6hoaGwtraGu7s7+vfvjxMnTpTfZvHixejVqxc8PDxgZWWFli1bYv78+RWm4+fnh7Nnz2Lv3r1Vfl5kZWVhypQpaNy4MaysrBAUFISZM2dCr9dXmE56ejrGjRsHBwcHODk54ZlnnkFUVBQkSaq0OHbXrl3o3r07bG1t4eTkhGHDhuH8+fMVbjN9+nRIkoRz585h7NixcHZ2xsMPP4zFixdDkiScOnWq0nPy2WefQalUVnrNmRqjHCHerqy8XF1dAQBXr17FunXrMHLkSPj7+yM5ORkLFixAWFgYzp07Bx8fHwCATqfD4MGDsXPnTowePRqvv/46cnNz8ffff+PMmTMIDAwsn8eYMWMwcODACvOdOnVqlXk+/fRTSJKEd955BykpKZg9ezb69OmDyMhIqNVqAKUv3AEDBqBDhw6YNm0aFApF+Zts//796NSpU6XpNmrUCJ9//jkAIC8vDy+//HKV8/7ggw8watQoTJo0CampqZgzZw569OiBU6dOwcnJqdJ9XnjhBXTv3h0A8Ndff2Ht2rUVrn/xxRexZMkSTJw4Ef/5z39w7do1zJ07F6dOncLBgwdhYWFR5fNwN7Kyssof2630ej2GDh2KAwcO4IUXXkCLFi0QHR2Nb7/9FpcuXcK6devuaj6LFy/G+++/j6+//hpjx46t8jZ3ej6+++47DB06FE899RRKSkqwcuVKjBw5Eps2bcKgQYPKb/fRRx9h+vTp6Nq1K2bMmAFLS0scPXoUu3btQr9+/QCUrq979tln0apVK0ydOhVOTk44deoUtm7dWp6v7Ll/8MEH8fnnnyM5ORnfffcdDh48WOlv6ubmVl4M8fHx+O677zBw4EDExcVV+bevjZSUFPTr1w/u7u5499134eTkhNjYWPz111/39Lzcrrbv1zIff/wxLC0t8eabb6K4uBghISHo1q0bli9fjv/+978Vbrt8+XLY29tj2LBhtX68zz33HJYsWYIBAwZg0qRJ0Gq12L9/P44cOVK+ZGr+/Plo1aoVhg4dCpVKhY0bN+KVV16BXq/Hq6++CgCYPXs2Jk+eDDs7O7z33nsAAE9PTwBAQUEBwsLCkJCQgBdffBFNmjTBoUOHMHXqVCQlJWH27NkASl//Q4YMwbFjx/Dyyy8jJCQE69evxzPPPFMp944dOzBgwAAEBARg+vTpKCwsxJw5c9CtWzdERERUWs83cuRIBAcH47PPPoMsy3jiiSfw6quvYvny5WjXrl2l57Fnz57w9fWt9fNolGQjsnjxYhmAvGPHDjk1NVWOi4uTV65cKbu6uspqtVqOj4+XZVmWi4qKZJ1OV+G+165dk62srOQZM2aUX7Zo0SIZgPzNN99Umpdery+/HwB51qxZlW7TqlUrOSwsrPz33bt3ywBkX19fOScnp/zyP//8UwYgf/fdd+XTDg4Olh999NHy+ciyLBcUFMj+/v5y3759K82ra9eucuvWrct/T01NlQHI06ZNK78sNjZWViqV8qefflrhvtHR0bJKpap0eUxMjAxAXrp0afll06ZNk299Wezfv18GIC9fvrzCfbdu3Vrp8qZNm8qDBg2qlP3VV1+Vb3+p3Z797bfflj08POQOHTpUeE5/++03WaFQyPv3769w/x9//FEGIB88eLDS/G4VFhZWPr3w8HBZpVLJb7zxRpW3rc3zIculf6dblZSUyK1bt5Z79epVYVoKhUIePnx4pddi2d88KytLtre3lzt37iwXFhZWeZuSkhLZw8NDbt26dYXbbNq0SQYgf/jhh+WXPfPMM3LTpk0rTGfhwoUyAPnYsWNVPubaWLt2rQxAPn78eI23q83zIsulr5Nnnnmm/Pfavl/L3l8BAQGV5rVgwQIZgHz+/PkK83dzc6swrzvZtWuXDED+z3/+U+m629+rt3v00UflgICACpfd/hlR5uOPP5ZtbW3lS5cuVbj83XfflZVKpXzjxg1ZlmV5zZo1MgB59uzZ5bfR6XRyr169ZADy4sWLyy9v27at7OHhIaenp5dfFhUVJSsUCnn8+PHll5W9pseMGVMp15gxY2QfH58Kf4+IiIhK8zJVRrnItE+fPnB3d0fjxo0xevRo2NnZYe3ateXfXqysrMrXKeh0OqSnp8POzg7NmzdHRERE+XTWrFkDNzc3TJ48udI87mcru/Hjx8Pe3r789yeeeALe3t7YvHkzACAyMhIxMTEYO3Ys0tPTkZaWhrS0NOTn56N3797Yt29fpcUmRUVFsLa2rnG+f/31F/R6PUaNGlU+zbS0NHh5eSE4OBi7d++ucPuSkhIApc9XdVatWgVHR0f07du3wjQ7dOgAOzu7StPUaDQVbpeWloaioqIacyckJGDOnDn44IMPYGdnV2n+LVq0QEhISIVpli0mv33+1Tl27BhGjRqFESNGYNasWVXepjbPB4DyUT4AZGZmIjs7G927d6/w2lq3bh30ej0+/PDDSuu3yl5bf//9N3Jzc/Huu+9W+tuW3ebEiRNISUnBK6+8UuE2gwYNQkhICMLDwyvcT6/Xlz9HkZGR+PXXX+Ht7Y0WLVrU+JhqUjay3LRpEzQaTbW3q83zUpXavl/LPPPMMxXmBQCjRo2CtbU1li9fXn7Ztm3bkJaWhqeffvqOj7HMmjVrIEkSpk2bVum6Wz8Tbp1/dnY20tLSEBYWhqtXryI7O/uO81m1ahW6d+8OZ2fnCq/rPn36QKfTYd++fQCArVu3wsLCAs8//3z5fRUKRfkotExSUhIiIyMxYcIEuLi4lF/epk0b9O3bt/yz51YvvfRSpcvGjx+PxMTECu+r5cuXQ61WY8SIEXd8XMbOKBeZzps3D82aNYNKpYKnpyeaN29e4UOnbB3ADz/8gGvXrkGn05VfV7ZYFShd1Nq8eXOoVHX7NAQHB1f4XZIkBAUFITY2FgAQExMDAFUu9iiTnZ0NZ2fn8t/T0tIqTfd2MTExkGW52tvdvmgzKysLACqV0O3TzM7OhoeHR5XXp6SkVPh9+/btcHd3rzHn7aZNmwYfHx+8+OKLldY5xcTE4Pz589VO8/b5VyUhIQGDBg1Cfn4+0tPTq/2yU5vnAygthk8++QSRkZEV1mPeOt0rV65AoVCgZcuW1U6nbFF/69atq73N9evXAQDNmzevdF1ISAgOHDhQ4bK4uLgKz5W3tzfWrFlzx8dUk7CwMIwYMQIfffQRvv32W/Ts2ROPPfYYxo4dW+HLQ22el6rU9v1axt/fv9JlTk5OGDJkCFasWIGPP/4YQOkHua+vb/mXp9q4cuUKfHx8KpRKVQ4ePIhp06bh8OHDKCgoqHBddnY2HB0da7x/TEwMTp8+fcfX9fXr1+Ht7V1p6/mgoKAKv9f0OmnRogW2bdtWacOZqp7Hvn37wtvbG8uXL0fv3r2h1+vx+++/Y9iwYRW+5JsqoyzETp06lS/Lr8pnn32GDz74AM8++yw+/vhjuLi4QKFQYMqUKZVGXiKUZZg1axbatm1b5W1u/QArKSlBUlIS+vbte8fpSpKELVu2QKlU1jhNALh58yYAwMvLq8Zpenh4VPjmfavb39CdO3fGJ598UuGyuXPnYv369VXe//z581iyZAmWLVtW5bpIvV6P0NBQfPPNN1Xev3HjxtVmL3P58mW0b98e3377LcaNG4elS5dW+WWkNs/H/v37MXToUPTo0QM//PADvL29YWFhgcWLF1faEEYET09PLFu2DEDpB/OiRYvQv39/HDhwAKGhofc0TUmSsHr1ahw5cgQbN27Etm3b8Oyzz+Lrr7/GkSNHYGdnd1/Py92+X28fHZYZP348Vq1ahUOHDiE0NBQbNmzAK6+8UudboF65cgW9e/dGSEgIvvnmGzRu3BiWlpbYvHkzvv3221p9xuj1evTt2xdvv/12ldc3a9asTjNXparnUalUYuzYsfjpp5/www8/4ODBg0hMTLyrUbYxM8pCvJPVq1fjkUcewS+//FLh8qysLLi5uZX/HhgYiKNHj0Kj0dTJhiFlykaAZWRZxuXLl9GmTZvy+QKAg4MD+vTpc8fpRUVFQaPR1PgloGy6sizD39+/Vm+oc+fOQZKkKr9V3jrNHTt2oFu3btV+EN3Kzc2t0mOqacOXqVOnom3btnjyySernX9UVBR69+59z4uxyxZXe3p6Yv369XjjjTcwcODASmVem+djzZo1sLa2xrZt2yqMjhYvXlwpt16vx7lz56r90lP2Ojhz5kylb/xlmjZtCgC4ePFipZHOxYsXy68vY21tXeH5Hzp0KFxcXDB37lwsWLCg2sdVGw899BAeeughfPrpp1ixYgWeeuoprFy5EpMmTar181KV2r5f76R///5wd3fH8uXL0blzZxQUFGDcuHG1f4Ao/Zts27YNGRkZ1Y4SN27ciOLiYmzYsAFNmjQpv7yqxffVvWYDAwORl5d3x/d/06ZNsXv3bhQUFFQYJV6+fLnS7YDS18TtLly4ADc3t1rvVjF+/Hh8/fXX2LhxI7Zs2QJ3d3c8+uijtbqvsTPKdYh3olQqIctyhctWrVpVaZPhESNGIC0tDXPnzq00jdvvfzd+/fVX5Obmlv++evVqJCUlYcCAAQCADh06IDAwEF999RXy8vIq3T81NbVSdqVSWeUuDbd6/PHHoVQq8dFHH1XKL8sy0tPTy3/XarVYs2YNOnXqVOPitFGjRkGn05UvhrqVVqstX8x4Lw4fPoz169fjiy++qPaDY9SoUUhISMBPP/1U6brCwkLk5+ffcT7NmjUr37pvzpw50Ov1eP311yvcprbPh1KphCRJFRbrxcbGVir9xx57DAqFAjNmzKg0Yij72/Tr1w/29vb4/PPPK61nLbtNx44d4eHhgR9//LHCYsgtW7bg/PnzNW69CZQuXdBqtbXaRaU6mZmZlV5PZSVfNt3aPi9Vqe379U5UKhXGjBmDP//8E0uWLEFoaGj5l9DaGjFiBGRZxkcffVTpurKMZUtfbs2cnZ1dZfnb2tpW+R4ZNWoUDh8+jG3btlW6LisrC1qtFgDw6KOPQqPRVHj96/V6zJs3r8J9vL290bZtWyxdurTC/M6cOYPt27dX2kK+Jm3atEGbNm3w888/Y82aNRg9enSdr1YyVCb5KAcPHowZM2Zg4sSJ6Nq1K6Kjo7F8+XIEBARUuN348ePx66+/4v/+7/9w7NgxdO/eHfn5+dixYwdeeeWVu9pU+1YuLi54+OGHMXHiRCQnJ2P27NkICgoqXzGuUCjw888/Y8CAAWjVqhUmTpwIX19fJCQkYPfu3XBwcMDGjRuRn5+PefPm4fvvv0ezZs2wZ8+e8nmUFenp06dx+PBhdOnSBYGBgfjkk08wdepUxMbG4rHHHoO9vT2uXbuGtWvX4oUXXsCbb76JHTt24IMPPsDp06excePGGh9LWFgYXnzxRXz++eeIjIxEv379YGFhgZiYGKxatQrfffcdnnjiiXt6nrZv346+ffvW+C153Lhx+PPPP/HSSy9h9+7d6NatG3Q6HS5cuIA///wT27Ztu+PI+VZeXl6YNWsWJk2ahKeffhoDBw68q+dj0KBB+Oabb9C/f3+MHTsWKSkpmDdvHoKCgnD69Ony2wUFBeG9997Dxx9/jO7du+Pxxx+HlZUVjh8/Dh8fH3z++edwcHDAt99+i0mTJuHBBx8s3ycsKioKBQUFWLp0KSwsLDBz5kxMnDgRYWFhGDNmTPluF35+fpV2M8jPz6+wyPS3335DUVERhg8fXuvn6HZLly7FDz/8gOHDhyMwMBC5ubn46aef4ODgUP5BW9vnpSq1fb/Wxvjx4/H9999j9+7dmDlz5l3f/5FHHsG4cePw/fffIyYmBv3794der8f+/fvxyCOP4LXXXkO/fv1gaWmJIUOG4MUXX0ReXh5++ukneHh4ICkpqcL0OnTogPnz5+OTTz5BUFAQPDw80KtXL7z11lvYsGEDBg8ejAkTJqBDhw7Iz89HdHQ0Vq9ejdjYWLi5ueGxxx5Dp06d8MYbb+Dy5csICQnBhg0bkJGRAaDiCHTWrFkYMGAAunTpgueee658twtHR8cq91e+0/P45ptvAoDZLC4FYJy7Xdxp8++ioiL5jTfekL29vWW1Wi1369ZNPnz4cIVN8MsUFBTI7733nuzv7y9bWFjIXl5e8hNPPCFfuXJFluV72+3i999/l6dOnSp7eHjIarVaHjRokHz9+vVK9z916pT8+OOPy66urrKVlZXctGlTedSoUfLOnTsrzPtOP7dvVr5mzRr54Ycflm1tbWVbW1s5JCREfvXVV+WLFy/KsizLkydPlnv06CFv3bq1UqaqdjOQ5dLN9zt06CCr1WrZ3t5eDg0Nld9++205MTGx/DZ3u9uFJEnyyZMnK1xe1d+opKREnjlzptyqVSvZyspKdnZ2ljt06CB/9NFHcnZ2dqX53Wl6sizLvXr1kps0aSLn5ube9fPxyy+/yMHBwbKVlZUcEhIiL168uNrnbdGiRXK7du3Kc4eFhcl///13hdts2LBB7tq1q6xWq2UHBwe5U6dO8u+//17hNn/88Uf5dFxcXOSnnnqqfDejMs8880yF14WdnZ3cvn17+bfffqvxObqTiIgIecyYMXKTJk1kKysr2cPDQx48eLB84sSJe3peqtrtojbv17L316pVq2rM26pVK1mhUFR6fmpLq9XKs2bNkkNCQmRLS0vZ3d1dHjBgQIXX6oYNG+Q2bdrI1tbWsp+fnzxz5szy3biuXbtWfrubN2/KgwYNku3t7WUAFR5Pbm6uPHXqVDkoKEi2tLSU3dzc5K5du8pfffWVXFJSUn671NRUeezYsbK9vb3s6OgoT5gwQT548KAMQF65cmWF7Dt27JC7detW/loaMmSIfO7cuQq3KfubpKamVvscJCUlyUqlUm7WrNk9PYfGSpLl+1g2SBXs2bMHjzzyCFatWnXPo6ZbxcbGwt/fH9euXav24LnTp09HbGysSR5AmOhetGvXDi4uLti5c6foKPVm3bp1GD58OA4cOIBu3brV+fTT0tLg7e2NDz/8EB988EGdT99QmeQ6RCIyTydOnEBkZCTGjx8vOkqdKSwsrPC7TqfDnDlz4ODggPbt29fLPJcsWQKdTnfXGyUZO5Nch2gq7Ozs8NRTT9W4kUebNm0qHdqKyNycOXMGJ0+exNdffw1vb+9KWy3rdLpKG6vdzs7O7r7216wvkydPRmFhIbp06YLi4mL89ddfOHToED777LNabfl9N3bt2oVz587h008/xWOPPWYyp3WqNdHLbE1JbddxEFHdmjZtmixJkhwSEiLv2bOn0vW1WR9/66EEDcny5cvl9u3byw4ODrKlpaXcsmVLec6cOfUyr7CwMNnCwkLu2bPnPa+DNWZch0hEJq/s3Kk1CQgIuKctW8l0sBCJiIjAjWqIiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAsBCJiIgAACrRAYiMjUanR1JWETILSpBdqKnwk1OoQU7R7ZdpodHpodPL0MsydPrSn3YdN+FybgSUkhIKSVH6r0IBtUoNB0sHOFg6wN7SvvT/Vg7ll936fze1G1zVrqKfEiKTwEIkqkJaXjFuZBQgLqMAN9ILEJdZ8M/vhUjKLoRevv95FGmLkFOSc9/TUavU8LXzRSP7Rmhk16jCv752vrBWWd9/WCIzwEIks5aSU4TohGxEJ2TjfFIOrqeXlmB+iU50tFor1BbictZlXM66XOk6CRJc1a5oZNcIAU4BaOHSAi1dW6K5S3NYKa0EpCUyXCxEMhu3lt+ZhGycjs9GSm6x6Fj1SoaMtMI0pBWmITI1svxylaRCgFMAWrq2LP9p7tyco0kya5Isy3Ww8IfIsGh1epyKy8Khy+k4HZ+F6ATDK7/OD63DuewjomOUU0kq+Dv5o6VLS7TzaIcuPl3gY+cjOhZRg2Ehksm4nJKL/TFpOBCThqPXMpBXrBUdqUaGVohVaWLfBA95P4QuPl3QybsTHCwdREciqjcsRDJaqbnFOHg5Dftj0nDwchpu5hSJjnRXjKEQb6WUlGjh0gJdfLrgIe+H0M6jHSyUFqJjEdUZFiIZlej4bGyKTsTei6m4cDNXdJz7YmyFeDu1So32nu3Ru0lv9G3SF07WTqIjEd0XFiIZvPNJOdh0OhHhp5MQm14gOk6dMfZCvJVKUqGzd2c86vcoejftzUWrZJRYiGSQLqfkYWNUIsKjk3A5JU90nHphSoV4KwuFBbr4dEF/v/54pPEjsLO0Ex2JqFZYiGQwrqfnY9PpJGyMSjT6xaG1YaqFeCtLhSW6+XZDf7/+6Nm4J2wsbERHIqoWC5GE0uj02HrmJn47ch3HrmWIjtOgzKEQb2VrYYvBAYMxuvloBDkHiY5DVAkLkYRIyi7EiqM3sPJ4HFINbP/AhmJuhXir9h7tMTpkNPo07QMLBbdUJcPAI9VQg5FlGQcvp+O3I7HYcT4Furo4ICgZpYiUCESkRMDV2hWPBz+OUc1HwcvWS3QsMnMcIVK9yy7UYPXJeCw/eh1XU/NFxzEY5jxCvJ1SUqJHox4Y3Xw0uvh0gSRJoiORGWIhUr1JzCrE/D1XsPpkPAo1xnOw7IbCQqyan4Mfnm39LIYEDoFKwYVY1HBYiFTn4jMLMG/3Faw5GY8SnV50HIPFQqyZr50vJoVOwrCgYVzPSA2ChUh15kZ6Aebtvoy/TsVDo+PL6k5YiLXjbeuN51o/h8eDH+eh4qhesRDpvsWm5WPu7stYdyoBWm4oU2ssxLvjaeOJia0n4olmT/BcjlQvWIh0z66m5mHurstYH5XILUbvAQvx3rir3TGh1QSMaj6K52+kOsVCpLt2M7sIs7ZdxNpT8WAP3jsW4v1xU7vhlbav4PGgx6FUKEXHIRPAQqRaKyzR4ce9V7Bw31VuNVoHWIh1I9g5GG92fBNdfbqKjkJGjoVIdyTLMtZEJGDWtgtIzjHPo8rUBxZi3XrY92G82fFNBDoFio5CRoo7+VCNIuOyMG39GUTFZ4uOQlSjAwkHcCTxCEaHjMYrbV+BvaW96EhkZDhCpCql5xVj5tYLWHUyHnyF1A+OEOuPq7UrXm//Oh4LeoxHvaFaYyFSBTq9jGVHruPr7ReRU6QVHceksRDrXxv3Nniv83to6dpSdBQyAixEKnclNQ9vrorCqRtZoqOYBRZiw1BJKkxsPREvP/Ayd+ynGilEByDx9HoZC/ddwcDv9rMMyeRoZS1+iv4JT4Y/iXPp50THIQPGQjRz19LyMXLBYXy2+QKKtTzuKJmumMwYPBX+FOacmgONTiM6DhkgFqKZ0utl/Lz/KgZ8tw8nr2eKjkPUILSyFgtPL8ST4U/ifPp50XHIwLAQzVBsWj6eXHgYn4SfR5GGo0IyPzGZMRgbPhZzT82FRs/RIpViIZoRWZax6MA1DPhuP47HclRI5k0ra7Hg9AKM3jSao0UCwEI0G+l5xRj3yzHM2HSOh10jusWlzEt4avNTWHF+hegoJBgL0QycvJ6JwXMO4MDlNNFRiAySRq/B58c+x9t730aBpkB0HBKEhWjiFh24htELDyMpu0h0FCKDtyV2C8aEj8GVrCuio5AALEQTlV+sxasrIjBj0zmevZ7oLlzNvoox4WMQfjVcdBRqYCxEExSTnIuhcw8g/HSS6ChERqlQW4h397+Ljw9/jBJdieg41EBYiCZmfWQChs07iCup+aKjEBm9Py/9ifFbxiMxL1F0FGoALEQTUaLV44N1Z/D6ykgUlHArUqK6cjb9LEZtGoX98ftFR6F6xkI0AdmFGoz75Sh+O3JddBQik5RdnI3JuyZj5YWVoqNQPWIhGrmErEI8Mf8Qjl7LEB2FyKTpZB0+PfopvjnxDXiSINPEQjRiZxOzMXzeQcSk5ImOQmQ2Fp9djHf2vcONbUwQC9FI7b2UiicXHEFKbrHoKERmZ0vsFrzw9wvILs4WHYXqEAvRCP15PA7PLTmOvGKe0Z5IlJPJJzFuyzgk5CWIjkJ1hIVoZL75+xLeXnMaWj3XYRCJdi37Gp4Kfwpn08+KjkJ1gIVoJLQ6Pd5aFYXvd8aIjkJEt0gvSsfErROxL36f6Ch0n1iIRqBYq8Pzv57AqpPxoqMQURUKtYX4z67/YMu1LaKj0H1QiQ5ANSvW6vDCryex91Kq6ChEVAOdrMPU/VMBAAP8BwhOQ/eCI0QDVqzV4cXfWIZExqKsFDlSNE4sRANVrNXhpd9OYs9FliGRMSkrxc1XN4uOQneJhWiAyspwN8uQyCjpZB3+d+B/LEUjw0I0MCVaPV5eFsEyJDJyLEXjw0I0ICVaPV5adhK7LqSIjkJEdYClaFxYiAaidGTIMiQyNWWlGH41XHQUugMWogHQ62X85/dT2MkyJDJJOlmH9w+8jwMJB0RHoRqwEA3Ax+HnsPXsTdExiKgeaWUt3tjzBs6lnxMdharBQhTslwPXsPhgrOgYRNQACrQFeHXnq0jMSxQdharAQhRo65kkfBrOb4tE5iStMA0v73iZp44yQCxEQSJuZGLKH5HgSSuIzM/V7Kt4fffrPMmwgWEhChCblo9JS0+gSKMXHYWIBDmZfBLvHXgPssxvxYaChdjAMvJLMHHJcWTk85shkbnbGrsV35z8RnQM+gcLsQEVaXSYtPQ4rqXli45CRAZiydklWHF+hegYBBZig5FlGf/3ZyQibmSJjkJEBmbm8ZnYH79fdAyzx0JsIAv2XcXmaO5rSESV6WU9ph6Yyt0xBGMhNoCjV9Px1baLomMQkQHLLs7GG3vegEanER3FbLEQ61lqbjEm/34KWu5fQUR3cCb9DGYenyk6htliIdYjnV7G5N8jkJJbLDoKERmJPy7+gU1XN4mOYZZYiPXo6+0XceRqhugYRGRkZhyegStZV0THMDssxHqy60Iy5u/lC5qI7l6hthD/3fNfFGgKREcxKyzEehCXUYD//hEFHoCCiO7Vtexr+PDQh6JjmBXhhdizZ09MmTKl2uslScK6detqPb09e/ZAkiRkZWXdd7Z7UaLV49UVEcgu5JZiRHR/tsVuw/Lzy0XHqFO3f+b7+flh9uzZwvLcSiU6wJ0kJSXB2dlZdIxa+2zzeZyO51HsiahufHXiK3Tw7IAQlxDRUerF8ePHYWtrKzoGAAMYId6Jl5cXrKysRMeolUNX0rD0cKzoGERkQrR6Ld4/8D40etNc6uTu7g4bGxvRMQAYSCHq9Xq8/fbbcHFxgZeXF6ZPn15+3e2LTA8dOoS2bdvC2toaHTt2xLp16yBJEiIjIytM8+TJk+jYsSNsbGzQtWtXXLxYvzvGF5Ro8c6a01xvSER17mLmRSw8vbBe59GzZ09MnjwZU6ZMgbOzMzw9PfHTTz8hPz8fEydOhL29PYKCgrBly5by+5w5cwYDBgyAnZ0dPD09MW7cOKSlpZVfn5+fj/Hjx8POzg7e3t74+uuvK8331kWmsbGxlT7Ps7KyIEkS9uzZA+Df1WLbtm1Du3btoFar0atXL6SkpGDLli1o0aIFHBwcMHbsWBQU3N1GSQZRiEuXLoWtrS2OHj2KL7/8EjNmzMDff/9d6XY5OTkYMmQIQkNDERERgY8//hjvvPNOldN877338PXXX+PEiRNQqVR49tln6/UxfLHlAuIyCut1HkRkvn4+/TPOp5+v13ksXboUbm5uOHbsGCZPnoyXX34ZI0eORNeuXREREYF+/fph3LhxKCgoQFZWFnr16oV27drhxIkT2Lp1K5KTkzFq1Kjy6b311lvYu3cv1q9fj+3bt2PPnj2IiIiok6zTp0/H3LlzcejQIcTFxWHUqFGYPXs2VqxYgfDwcGzfvh1z5sy5q2kaxDrENm3aYNq0aQCA4OBgzJ07Fzt37kTfvn0r3G7FihWQJAk//fQTrK2t0bJlSyQkJOD555+vNM1PP/0UYWFhAIB3330XgwYNQlFREaytres8/+Er6fjtyPU6ny4RURmtrMX7B9/HysErYaGwqJd5PPDAA3j//fcBAFOnTsUXX3wBNze38s/YDz/8EPPnz8fp06exY8cOtGvXDp999ln5/RctWoTGjRvj0qVL8PHxwS+//IJly5ahd+/eAEoLt1GjRnWS9ZNPPkG3bt0AAM899xymTp2KK1euICAgAADwxBNPYPfu3dUOmqpiECPENm3aVPjd29sbKSkplW538eJFtGnTpkKpderU6Y7T9Pb2BoAqp3m/Ckq0eHsNd7Egovp3KfMSfoz6sd6mf+vnplKphKurK0JDQ8sv8/T0BFD6WRoVFYXdu3fDzs6u/CckpHTDnytXruDKlSsoKSlB586dy+/v4uKC5s2b13lWT09P2NjYlJdh2WV3+5lvECNEC4uK33YkSYJef39nk791mpIkAcB9T7MqXFRKRA1pUfQi9GrSC61cW9X5tKv6LK7uszQvLw9DhgzBzJmVj73q7e2Ny5cv3/X8FYrSMZp8ywhDo6l6Y6Lbc9VFjxjECLG2mjdvjujoaBQX/3ts0OPHjwvLw0WlRNTQtPI/W50KPitG+/btcfbsWfj5+SEoKKjCj62tLQIDA2FhYYGjR4+W3yczMxOXLl2qdpru7u4ASne3K3P7BpP1yagKcezYsdDr9XjhhRdw/vx5bNu2DV999RWAf7+5NBRuVUpEolzOuoz5UfOFZnj11VeRkZGBMWPG4Pjx47hy5Qq2bduGiRMnQqfTwc7ODs899xzeeust7Nq1C2fOnMGECRPKR4FVUavVeOihh/DFF1/g/Pnz2Lt3b/k6zYZgVIXo4OCAjRs3IjIyEm3btsV7772HDz8sPbRRfWwsU5Mvt17EjQweZ5CIxFh0ZlG9b3VaEx8fHxw8eBA6nQ79+vVDaGgopkyZAicnp/LSmzVrFrp3744hQ4agT58+ePjhh9GhQ4cap7to0SJotVp06NABU6ZMwSeffNIQDwcAIMmycY9xli9fjokTJyI7OxtqtbpB5hkdn41h8w6Apzik+9H5oXU4l31EdAwyYm3d2+LXAb82+BIyU2UQG9XcjV9//RUBAQHw9fVFVFQU3nnnHYwaNarBylCWZUzbcIZlSETCRaZGYsOVDRgWNEx0FJNgVItMAeDmzZt4+umn0aJFC/z3v//FyJEjsXBh/R7B4VZ/RSQg4kZWg82PiKgm3578FnkleaJjmASjX2TakPKKtXjkqz1IzS2+842J7oCLTKmuPN3iabzTqfY7oFPVjG6EKNL3O2NYhkRkcFZeWImrWVdFxzB6LMRaup6ejyUHY0XHICKqRCtr8dWJr0THMHosxFr6YssFlOjq/kg3RER1YX/CfhxKPCQ6hlFjIdbC8dgMbDlzU3QMIqIazTo+Czq9TnQMo8VCvANZlvFJuLidX4mIauty1mX8dfkv0TGMFgvxDjaeTkJUXJboGEREtfJD5A8o1nHjv3vBQqyBXi/j+50xomMQEdVaWmEaVl9aLTqGUWIh1mDzmSRcTuEOr0RkXBZFL0KJrkR0DKPDQqyGLMuYu+vuz+dFRCRaSmEK1sSsER3D6LAQq7HtbDIu3MwVHYOI6J78Ev2L8HMmGhsWYjXm7OK6QyIyXskFyVh7ea3oGEaFhViFHeeScTYxR3QMIqL78nP0z9DoOUqsLRZiFTg6JCJTkJSfhPWX14uOYTRYiLfZczEFUfHZomMQEdWJn6N/hlavFR3DKLAQbzOHW5YSkQlJyEvAxisbRccwCizEWxy6koaT1zNFxyAiqlOLziwCT317ZyzEWyw9FCs6AhFRnYvNicWRJJ6M+k5YiP+4mV2EHedTRMcgIqoXf1z8Q3QEg8dC/MeKYzeg03ORAhGZpj1xe3Azn6exqwkLEYBWp8cfx2+IjkFEVG90sg6rLq0SHcOgsRABbD+XjOQcni6FiEzbXzF/cUf9GrAQASw7cl10BCKiepdWmIad13eKjmGwzL4Qr6Tm4dCVdNExiIgaxMqLK0VHMFhmX4gcHRKROTmZfBIxmTw8ZVXMuhALS3RYczJedAwiogbFXTCqZtaFuDEqETlFPMYfEZmXTVc3oVBbKDqGwTHrQlzN0SERmaF8TT72xu8VHcPgmG0hJucU4cT1DNExiIiE2HZtm+gIBkclOoAom6OTwAPTEBmO9F3pyNiVAU1a6X5yVr5W8BjmAfs29gCAhCUJyDubB22WFgprBWyCbOA10gtWPlbVTjN5bTKyj2ZDk6GBpJKg9lPDc4QnbAJtAAB6jR4JixKQeyoXKkcVfMb7wK6VXfn9UzenQpOugc84n3p85GLsT9iPfE0+bC1sRUcxGGZbiOGnk0RHqFO5pzYj99RmaLOTAQAWbk3g1HUM1IEdAQDpW+ei6HokdHkZkCysYeXbAs49J8DCtXGtpp++bS7yIrfCudfzcHhwGABA1mqQvvV7FMQcgdLWGS79XoHar235fbKProEuJxUufV+q2wdLJsnC2QJeI71g6WkJAMg6kIUb391A4IxAWPtaQ+2nhlMXJ1i4WECXr0PKuhTEfhWLZl81g6SQqpymlZcVfMb5wNLdEnqNHunb0kvvM7MZVA4qZO7JRNH1IgR8EIC803mI+zEOId+HQJIklKSWIHNvJgKnBzbk09BginXF2HVjF4YEDhEdxWCY5SLTpOxCnLxhWqd5Utq7wjnsGXg/Mxvez8yGddMHkPLXJyhJLd2txNIrCK4Dp8Bn0nx4jJoBQEbyHx9C1uvuOO2CS4dQnHgRSjuXCpfnRm1Fyc3L8Hr6K9g90B9pG2eVn2JGk3UTeVHb4NRjfJ0/VjJNDu0cYP+APay8rGDlZQXPJzyhsFag4HIBAMClpwtsm9vC0t2yfKSnydCgJK2k2mk6dXGCXSs7WHpYwtrXGl5jvKAv1KMovggAUJxUDPu29rD2tYZLbxfocnXQ5Za+JxKXJsJrlBeUamX9P3hBtsVysemtzLIQw08nwdRODWYT1BnqwAdh4eILCxdfOPcYD4WlNYoTLwIA7Nv2h3Xj1lA5esLKKwhO3cdBl5sKbXbNZ/jQ5qYh4+8FcBv8JqCouEBBkx4HdVBnWLo3hX37QdAXZENfmAMAyNj+A5x7ToDCyqZ+HjCZNFkvI+tIFvTFetgEVX4N6Yv1yNyfCQt3C1i4WNRqmnqtHpl7MqFQK2Dd2BoAYN3YGgUxBdCX6JEXnQeVkwpKeyWyDmVBspDg0MGhTh+XoTmUeAg5JTmiYxgMs1xkGh5tWotLbyfrdSi4cAB6TRGsfEMqXa8vKUJe9A6oHD2hcnCrfjqyHmmbvoFD58dh6d600vWWHv7IP7Mbek0xiq5FQGnnAoXaAXlnd0NSWcKmWdc6fVxk+oriinD1k6vQa/RQWCnQZHITWPtal1+fvjMdyX8mQ1+sh6WXJfze8oNCVfP3+pzIHMTPj4e+RA+Vowp+b/lBZV/60efc3RlFcUWI+V8MVPYqNH6lMXT5OiSvTYb/u/5IXlO6DtLSwxK+z/nCwrl25WssNHoNdl7fieHBw0VHMQhmV4gJWYWIjMsSHaNelKTG4uZvb0LWlkCyVMNj+HuwdGtSfn1uRDgy9yyGrCmCyqURPJ78BJKy+jd4zpHVkBRK2HcYWuX1dqF9UZISi8RfXoFS7QC3Ye9AX5SH7APL4Tnmc2Tu+w0F5/dB5eQF14GvQ2VfffkSAYCltyUCZwRCX6hH9vFsxP8cD/93/ctLsWwRqDZbi7QtaYibF4eA9wKgsKy+FO1a2CFwRiB0uTpk7M1A3A9xCPwwECoHFSSVBJ/xFTeYif85Hq59XVF0owg5ETkI+jgIqZtTkbQsCU0mN6lmLsZrW+w2FuI/zG6R6WYTXFxaxsLFF94Tv4fX+G9g324A0sK/RUnav6e1sm3VE94TvoPn2C9g4eKDtPVfQNZWvf6l+OZl5JzcANeBUyBJVW+wIClVcO33Mhq99Au8n/kW1o1aIXPXL7DvMAQlyVdRGHMY3hPnwMonBJk7FtbLYybTolApYOVpBbWfGl4jvWDd2Brpf/97rGGljRJWXlawbW6Lxq81RnFSMXIial7kp7AqnaZNkA0aPdcIklJC5r6qtyHIO5+H4oRiuPZxRf6FfNi3sYfCSgHHTo7Iv5Bfp4/VUBxNOorMItPapuJemV0hbjLhxaWS0gIWzj6w8gqCc9gEWHr4I/fEhvLrFVa2sHDxhXXj1nB/bCo0GfEouHS4ymkVx52FPj8bCfMn4vqXQ3H9y6HQ5aQgc/cviJ//bJX3Kbp+Gpr067BvPxhFN05DHdARCktr2IQ8jKIb0fXymMnEyYCsqeYb7D8XV3t9dZPUy9Br9JUu15fokfRbEnwm+JRutaoHZF3ptGWtDNlE99PSylr8ff1v0TEMglktMk3IKkSUiS4urYosy5B11Zz7TC79qe5629aPwNrvgQqXpfz5IWxb9YJdaJ/Kk9OWIOPv+XAb8iYkhRKQ9ZDLPnP0Oshy5Q8golvdXHUT9m3sYeFiAX2RHllHspB/IR9+b/ihJKUE2ceyYdfaDkp7JbQZWqSGp0JhoYD9A/bl07j07iV4jfSCQwcH6Iv1SNmYAoe2DlA5qaDL0yF9Zzq0mVo4dnKsNP/UDamwa2MHdVM1AMAm2AY3/7gJ5+7OyNiZAZtg091AbE/cHoxqPkp0DOHMqhD3XUoVHaHeZO5dAnVAR6gc3KEvKUT+uT0ovhENx1EzoMm6iYLz+2Dt3x5KGwdoc9KRc3QVJJUl1AEdy6eR8NNLcA4bD5tmXaFUO0Cpvm0LO4UKSltnWLg2qjT/rEMroQ7oCEvP0n22rHxbInPPItiF9kFuxCZY+7ao18dPxk+bo0X8wnhos7XlW4L6veEHu9Z20GRqkH8pH2nb06DP10PpqIRtM1sEvB8AlcO/H2MlN0ugK/hnVyIJKEkqwY0DN6DL00Fpp4TaXw3///lX2FAHAIrii5B9PBtBM4LKL3Po6ID8C/m4+tlVWHlZodFLlV/3puJk8klo9BpYKExro6G7ZVaFePBymugI9UaXn420Td9Al58BhZUtLN394DFqBtT+7aDNTUdR/FnknNgAfVEelLZOsGrcCl5Pz4LS1ql8GtqMeOiLC+563iWpsSi4sB/eE+aUX2YT0g1FcdG4ufwdWLj6wm3IW3XxMMmENXqu+sKxcLaA3//53XEarZe0Lv+/wlJR641grBtZo9nMZhUukxSlG9zcvtGNKSrQFiAqJQodvTre+cYmTJJlU93EpCJZltHxkx1Iz69+J16ihtT5oXU4l31EdAwiAMALbV7A5HaTRccQymw2qjmXlMMyJCKqxpFEfjkzm0I05cWlRET362z6WbM/ao3ZFOKBy+l3vhERkZnSyTocSzomOoZQZlGIJVo9jl/juQ+JiGpyOLHq/ZLNhVkU4snrmSjU3PmsDkRE5uxIknmvRzSLQuT6QyKiO7uRewMJeQmiYwhjFoV4gIVIRFQr5rzY1OQLsaBEi+iEbNExiIiMwunU06IjCGPyhXguMQc6Ez0oLxFRXTuXfk50BGFMvhA5OiQiqr0rWVdQrCsWHUMIky/EMwnmvaMpEdHd0MpaXMy4KDqGECZfiGcTOUIkIrob5rrY1KQLsUijQ0xKnugYRERGhYVogs4ncYMaIqK7xUI0QWcSuf6QiOhumeuGNSZdiGe5hSkR0V0z1w1rTLoQucsFEdG9McfFpiZbiCVaPWKSuUENEdG9YCGakKtpeSjR6UXHICIyStdzrouO0OBMthBvpBeIjkBEZLTic+NFR2hwpluIGSxEIqJ7lVqYanZbmppsIcZnFoqOQERktGTISMg1r3MjmmwhxnGESER0X+LzzGuxqekWYiYLkYjofsTlxomO0KBMthC5yJSI6P6Y24Y1JlmIaXnFKCjRiY5BRGTUuMjUBHD9IRHR/eMI0QTEcXEpEdF9S8jjVqZGjyNEIqL7V6gtRFphmugYDcYkCzExiyNEIqK6kFmUKTpCgzHJQswq1IiOQERkEnJKzOe8siZZiDksRCKiOpFTzEI0ajlFWtERiIhMQnaJ+ZxX1iQLMZcjRCKiOsERopHLKWIhEhHVBa5DNHI5hVxkSkRUF1iIRqywRIcSnV50DCIik8BCNGJcXEpEVHeyi7lRjdHiLhdERHWHI0QjxhEiEVHd4VamRoz7IBIR1Z0SXYnoCA3G5ApRp5NFRyAiMhk62XzOLWt6hSizEImI6goL0YjJLEQiojqjl81nNzaTK0Q9+5CIqM5whGjE9BwhkhGwUMhwV1qIjkF0R3o9R4hEVE+e841DtNfH+D7id3ykbgZXK2fRkYiqJUmS6AgNRiU6QF1TmtEfj4xLe8dc/OC2Bl4J28sve/zcDvSzssfClj2wLOcCNHruR0uGRSkpRUdoMCY3QlQqWIhkWJwttPgjeBfW6F6vUIZl7Ipz8X+nwrE+S4dHnFoKSEhUPY4QjZhKaT5/PDJ80/zOY1z+IqjiEu5428bpsfg+PRZH/Dthpp0FLufFNUBCopqZ0wjR5ApRYUbfZshwDXZPw2c2y+Bw89hd3/eha8ewWlJidavemKdJQqYZnbGcDI85jRBNbpGphdLkHhIZkQCbIvwdvBZz8qbAIfnuy7CMUtbhyTPbsenGDTztFAqVZHLfXclIWCutRUdoMCbXHjaW5jO8J8NhpdBjftAx7LD8PwTHrYJURzszOxRm451T4ViTp8DDTiF1Mk2iu2FvaS86QoMxua+dTjaWoiOQmXmx0Q38n24xrOIv1ts8AlIuY37KZewP7IJZauBa/p3XSRLVBQdLB9ERGozJFaKjmjs7U8Po5JSDOS6r4Zm4o8Hm2f3KYXRRqLCyVR/8UHwDuZq8Bps3mSdzGiGa3CJTR7UFzGgdMAngaqnB6mY78Ifm9QYtwzIqvRZPR2/F5vibeNI51Ky2AqSG52BlPiNEkytEpUKCnaXJDXzJQMzwP4tjDu+i441FkHTFQrM4FWTg/YhwrMq3RGenZkKzkOkypxGiSTaHo40Fcot5omCqO8M8U/CJ1TLYJ50QHaWS4OSL+Dn5InYFd8dXlsWIK7gpOhKZEK5DNHJONhaIzywUHYNMQKBNIRb6bkZA/No623K0vvSK2Y/uSkssa9UbC4tikafJFx2JTIA5FaLJLTIFuGEN3T+1UoeFQUeww+K/CIxbY/BlWMZCV4KJp7dgY2I6HncOhUIyybc4NSAWopFzUnPXC7p3rzaORZT7R+gX/z2k4hzRce6JW14KPooIx8pCG7R3DBIdh4wY1yEaOUcbjhDp7nVzzsZs51VwT9wlOkqdaZF0DkuTzmFb8zB8o8xHYmGK6EhkZMxphGiShejERaZ0F9wtNVjQdDfaJa6AlFgiOk69ePTiXvRUWWNpq174ueAKCrVcx06142xtPufrNMlFpp4O5nPsPbp3kiTjs4BoHLF/G+3jlkDSmWYZlrHSFuGFqM3YlJKDIc6hkMAddqlmKkkFL1sv0TEajEkWYhMXG9ERyMCN8ExGdKOvMDbxcyjzk0XHaVAe2Un4LCIcyzROaOMQKDoOGTBPW0+oFCa5ILFKJvlIm7iyEKlqzWwLscBnI/zi1kOCLDqOUG3io7AsXkJ4yCP4VspCSlGa6EhkYBrZNRIdoUGZ5AixkbMaCi4NoluolTr8EnwY21RT4B+3zuzLsIwEGYMv7MKmKxfwomMorJVWoiORAWlkz0I0elYqJby4HpH+8XqTq4hyn4becXMgFeeKjmOQ1CUFeC0yHBvSi9DfuZXoOGQgfO18RUdoUCa5yBQAGrvYIDG7SHQMEqiHSxa+dfwDrkl7RUcxGt6ZcZiVGYcxTdpjppMdzuXGio5EAplbIZrkCBEAmnI9otnysNJgfbMtWFr0OsvwHrW/EYHfow9ghroZXK3MZ7N7qoiLTE1EU1db0RGogUmSjJkBp3HE9k08cOM3SHqN6EhGTSHrMfzcDoRfu4pnnUJhqeARoMwNR4gmojF3vTArT3rfxFnfL/Fk4hdQFKSKjmNSbItz8d9T4ViXpUFv55ai41ADUavUcFW7io7RoEx2HWJTFqJZaGFXgB+9NqBJ/EZuOVrPGqdfx+z06zjm9yBm2lvhUt4N0ZGoHpnb6BAw4ULkzvmmzVapx9yAw+iZvARSPE9z1JA6xR7Hn5ISa1r2wlztTWSWZIuORPXAz8FPdIQGZ7KLTJ1tLeFmx32qTNEbTa8g0u0DPBI3D1IJy1AEpazDqLN/Y9ONGxjn1MasjmZiLkJcQkRHaHAmW4gAEOprPkdpNwc9XTIR4T8fk5M/gEX2NdFxCIBDYTbePrUJf+VI6OHUQnQcqkMtXc1vfbFpF2IjJ9ERqA54W5dgY3A4FhdNgUvSftFxqAr+qVcw79Q2/Cj5IMDMDvdlqsyxEE16OUcbX0fREeg+KCU9vgw4jeGZi6CI43E2jUG3q0ewRqHCHy174wdNPHJKeGQgY+Rh42F2W5gCJj5CbNOIhWisxnonIdp3JkYkfAlFAcvQmKj0Wjx1ZhvC45Iw2rkNlJJSdCS6S+Y4OgRMvBA9HKzhYc8Na4xJqH0+9gctx2eZb8AmLVp0HLoPTgUZeC9iE1bnW6KLU3PRcegutHRhIZokjhKNg61Kh9+C92EDpqBxfLjoOFSHgpIvYuGpvzFH2QRNbX1Ex6Fa4AjRRIX6OomOQHfwdtMYRLq8j+5xP0LScDcKU9Xz8gGsPR+BN+xbwc6Ch1Y0ZC1czXOLYZMvRI4QDVdv1wyc8puHV5KnwSLnuug41AAsdCWYcHoLNiWmYYRzKBSSyX8EGR03tRs8bDxExxDC5F+NoSxEg+NrXYzNwRvxc+EUON88KDoOCeCal4rpEeH4o9AGHR2DRcehW7RwMc/RIWAGhehmZwVvR54s2BAoJT1mB0Vgv/pNtIz7HZJeKzoSCRaSdA6LI3fiaws/+Np4io5DANq4txEdQRiTL0QA6OTvIjqC2Rvvk4gzPp/jsfivoChMFx2HDEy/S/uw/mI0/uPQGjYqHodYpIe8HxIdQRizKMSHg9xERzBbbR3ycDDwN8zIeBPq9LOi45ABs9IW4fmozdiUnIWhzqGQIImOZHbsLOwQ6hYqOoYwZlGI3YPdRUcwO/YqLVYE78FaeQp8E7aIjkNGxD3nJj6NCMeKEgc84BAoOo5Z6ejVEUqF+R5IwSwK0cvRGsEedqJjmI3/+V3CKZf30DVuISRNgeg4ZKRaJ0RjWdRufGEVCE81l/I0BHNeXAqYSSECwMPBfEPVt/7u6Yhq+j1euDkdqpw40XHIRAy6sBsbL1/Ay46hsFbyyFP1qYtPF9ERhDKbQuzBxab1pom6CFuD12N+3hQ4Jh8RHYdMkLqkAK9EhmNjWiEGOLcWHcckedp4IsAxQHQMocymEDsHuMBSaTYPt0FYKGTMCTqJPdZvIiTuD0iyTnQkMnFeWfH4MmIzftW6opWDv+g4JqWzd2fREYQzm4awsVShfVMn0TFMxrO+cYj2+gRD4r+GojBDdBwyM+3iTuH3qH34WN0M7tbcraoumPv6Q8CMChHg1qZ1ob1jLg4HLsWH6e/AOuO86DhkxiTIeOzcDmy6ehmTnEJhqbAUHcmomfv6Q8DsCpEb1twrRwst/gjejTW6KfBO2CY6DlE5m+I8vH4qHOszS9DXuZXoOEYpyCkIbtySFyrRARpSax9HONtYILNAIzqKUfnA/wKeyfsFqrgE0VGIqtUo4wa+ybiB434PYqaDNS7m8oDxtfVI40dERzAIZjVCVCgk9GvpJTqG0RjonobTTb/Dc0kzoMplGZJxeDD2OP6MPogPbZrDxcpJdByj8Kjfo6IjGASzKkQAGPyAt+gIBs9PXYTtwWsxL++/cEg+KjoO0V1TyHqMPPs3NsVex3inUKgUZrUw7K74OfihuUtz0TEMgtkVYtdAN7jZceV7VawUevwQdBy7rP4PzeJWcTcKMnr2Rdl461Q41uZICHMy39Ma1YSjw3+ZXSEqFRIGtOYo8XYvNLqB054fY2D8t1AUZYmOQ1Sn/FKvYO6pbVgg+SDQrpHoOAaFhfgvsytEABjygI/oCAajk1MOjgQsxv/S3oVV5kXRcYjqVderR7D67DFMtWsBR0sH0XGEC3QMRLAzT9BcxiwL8UE/Z7M/abCrpQargnfgD+0UeCX+LToOUYNR6bUYG70N4XEJGOMUCpVkvusXOTqsyCwLUZIkDAw138WmM/zP4ZjDVDwYtwiStkh0HCIhHAsy8b9T4Vidp0JXJ/PcqISFWJFZFiJgnotNh3ikIrrJNxif9AmUeYmi4xAZhMCUS1hw6m/MVTZGU1vz+VwIdg5GgJN5H8z7dma7rKBtYyc0cbHBjQzTP19foE0hFvhuRmD8Wkg5etFxiAxS2OWD6KqwwIrWfbCg6DpyNXmiI9WrR5tydHg7sx0hAsDgNqa92NRKoceCoKPYYfF/CIpbA0lmGRLVxEKvwTOnt2BTQgqecA6FQjLNj0gJEgb4DxAdw+CY5l+7loa38xUdod683DgW0Z4f4dH47yAVZ4uOQ2RUXPLTMC0iHH8W2OBBR9PbCrOTdyc0cWgiOobBMetCDPa0R2d/0zp1TBfnbBwL+AXvpP4PlpkxouMQGbXmN89hUeROfGvRFL42nqLj1Jknmz8pOoJBMutCBIDxXfxER6gT7pYa/NVsO1aUTIFH4k7RcYhMSp9L+7Hhwmm87tAKNiob0XHui4fagwfzrobZF+KjrTzh6WAlOsY9kyQZnwacwRH7d9D+xhJIumLRkYhMkqWuGJOitmBTchaGOYdCgiQ60j0Z0WwEj+1aDbMvRJVSgTGdjHNZ+uOeKYhu9DWeSvwMyvybouMQmQX3nJv4JCIcv5c4oJ1jkOg4d0UlqTAieIToGAbL7AsRAMZ2agILpfF822tmW4jdQX/i6+z/wi41QnQcIrPUKiEav0buwpdWAfBSu4uOUys9G/eEp63prAutayxEAB4O1ujXyvDPk6hW6vBz8GFsU02Bf/w6SJBFRyIyewMu7MHGmHN4xTEUaqVhHxJyVPNRoiMYNBbiP8Y/1FR0hBpNbnINUe7T0SduDqTiXNFxiOgW1ppCvBwZjg1p+Rjo3Fp0nCr5OfjhIe+HRMcwaCzEf3QOcEVzT3vRMSp52CUbJwIW4o2U92CZdUV0HCKqgVdWAmZGbMZvWhe0dvAXHaeCkc1GQpKMZ9WQCJIsy1zu9o9lR67j/XVnRMcAAHhYabCwyU48kLgSkq5EdBwiuksyJGxo0QvfIR2pRRlCs1grrbFj5A44WjkKzWHoOEK8xePtfeFgLXZzZEmS8UVANA7bvYW2cb+yDImMlAQZw87vxKarl/G8YyislOJ273qi2RMsw1pgId7CxlKFid3ELeYY6XUTZ3y/xOjEz6HMTxGWg4jqjk1xHv4TGY71GcXo69yqwedvqbDExNYTG3y+xoiFeJtnH/aHfQOPEkPsCrAnaCW+zHoDtmlRDTpvImoYvhk38E3EFizSeyDEvuE24hsePBweNh4NNj9jxnWIVfhm+0V8v+tyvc/HVqnHnIDDeCR5KaQS0z7VDBH9Sy8p8FfL3pijS0FGcWa9zcdCYYHNj2+Gl63h71ZmCDhCrMJzDwfA3qp+R4n/bXIVkW4folfcPJYhkZlRyHo8cfZvhMdewwSnNrBQWNTLfIYGDmUZ3gUWYhUcbSwwoZtfvUw7zDUTJ/1/xOsp78Mi+2q9zIOIjINdUQ7eOLUJ67L16OnUsk6nrZJUmBQ6qU6naepYiNV47mH/Oh0lelmVYGOzzVhSOAWuSfvqbLpEZPyapF3DnFNbsQDeCLJrXCfTHBQwCI3sG9XJtMwF1yHW4KttFzF39/2tS5QkGV/6R2FE1iIoCtLqKBkRmSqdpMSfrXrjB00Sskru7eTeSkmJ9Y+tR1MHwz4Cl6HhCLEGk7r7w+4+RomjvZNw1ncmRiZ+yTIkolpRyjqMObMdm27E4SmnNlBJd/8Z1N+/P8vwHrAQa+BkY4nxXe7+RdXKPh/7glbg88w3YZN2uh6SEZGpcyzMwrunNmFNnhLdnEJqfT+FpMALbV6ox2Smi4V4B893D6j1KNFWpcPS4P3YJE1Bk/hNPBsFEd23gJQY/HhqO+YpGsHP1veOtx8WOAwBjgENkMz0cB1iLczbfRmztl2s8TZvNr2MF4sWwSI7tmFCEZHZ0Sgs8Hur3vix+AZyNZV311Kr1AgfHg53G+M4P6Oh4QixFiZ190cjZ3WV1/VyzcApv3l4LflDliER1SsLvQbjo7ciPCEZo5xDoZSUFa6f2Hoiy/A+cIRYS5tOJ+K1FafKf/e1LsbCxn+jZcKfkPRagcmIyFxd8gzBl96NcDT7EjxsPLBp+CaoVVV/eac7YyHehSfmH8KpG+mYFRCFxzIWQ1HILUeJSLydwd2Bzi+hd9Bg0VGMGgvxLlxMSEWTtcOhTosWHYWI6F++HYFJOwCeAPi+cB3iXWju6w51k3aiYxAR3UICBn7JMqwDLMS71Xs6YO0kOgURUal2TwO+HUSnMAksxLtl6wr0/kB0CiIiwNoR6DNddAqTwUK8Fx2eBbzaiE5BRObukfcAWzfRKUwGC/FeKBTA4G8BiU8fEQnSpAvw4POiU5gUfqLfq0Ydga6TRacgInOkUgPD5pV+Oac6w2fzfjzyHuDeQnQKIjI3vT8AXANFpzA5LMT7obICHvsBUNTdiYSJiGrUpAvQ+WXRKUwSC/F++bYHHv6v6BREZA64qLRe8VmtC2HvAJ6holMQkanjotJ6xUO31ZWb0cDCRwC9RnQSqifzj5dg/okSxGbpAQCtPJT4sIclBgRbAABe3FiIHde0SMyVYWcpoWtjJWb2sUKIm7LaaU7fU4SVZ7SIy9HDUgl08Fbi015W6NyodDF8sVbGpI1FWH9BAy87BX4YZI0+Af8uop91sBg3svWYM5AHdDZ5jR8CJm7h6LAe8ZmtK16hQNjbolNQPWrkIOGLPlY4+YItTrxgi15+SgxbWYizKToAQAcfJRYPU+P8q3bY9rQNZBno91sBdPrqv3M2c1Vi7kBrRL9shwMTbeHnpEC/ZQVIzS8t3YUnNTiZqMPh52zxQgcLjF1TiLLvsNcy9fgpQoNPe1vX/4MnsVTqf7ZX4Ed2feIIsS7ptMDPvYGkSNFJqIG4zMzBrL7WeK69ZaXrTifr8MCP+bg82Q6BLrX7IMspluH4RS52jLNB7wAVXgkvhIOVhC/6WKNQI8Pms1ykvGkHd1sF+i/Lx4sdLDG8hUVdPywyNP0+Bbq+JjqFyePXjbqkVAHDfwRU/MZu6nR6GSvPaJCvAbo0rrxINL9ExuJTGvg7SWjsWLuDLpfoZCw8WQJHK+ABr9K35gOeShy4oUOhRsa2K1p420lws5Gw/LQG1iqJZWgOgvsBXV4VncIscIRYHyJ+Azbw25wpik7Wocsv+SjSAnaWwIoRagwM/reUfjhegrf/LkK+BmjuqkD4WJs7jg43XdJg9OpCFGgAb3sJ6560wYO+pSWr0cmYsrUImy9r4WYj4dtHrdHSXYkHf8rDnmdsseBkCVae0SDQRYFFQ9XwdeB3XJPi2Bh4cR9g4yI6iVlgIdaX9a8Cp5aJTkF1rEQn40a2jOwiGavPafDzKQ32TrBBS/fSAssukpGSr0dSnoyvDpUgIVePg8/awlpV/Sgxv0RGUp6MtAI9fjqpwa5YLY5OsoWHbdXlNnF9Idp6KuDvrMD/dhbj6CRbfHmwGGdS9VgzyqZeHjcJoLQEJm4FGvFMFg2FXyfry8CveQBwE2SplBDkokAHHyU+72ONBzwV+O5ISfn1jtYSgl2V6NFUhdWj1LiQpsfa89oap2lrWTrNhxqp8MswNVQKCb9EVL218u5rWpxN0eG1TpbYE6vDwGAVbC0ljGplgT2xujp9rCRYv09Yhg2MhVhfLKyBJ3/juRNNnF4GiqvpIVku/SnW3d1CGL0sV3mfIq2MVzcXYcFgNZQKCTo9oPln3ho9atyalYxMq8eBzi+KTmF2WIj1ydkPGL4AAM9kbQqm7ijCvutaxGbpEZ2sw9QdRdgTq8NToRa4mqnH5/uLcTJRhxvZehyK02LkqkKoLSQMDP53v8GQuXlYe7509JdfIuN/O4twJF6L61l6nEzU4dn1hUjIkTGyZeWNZT7eW4yBwSq08y5dPNutiRJ/XdDgdLIOc4+VoFsTHkLQJLg1A4bOEZ3CLPEdVN+a9we6/x+w/2vRSeg+peTLGL+2EEl5MhytJLTxVGDb0zboG6hCYq4e+2/oMPtoCTILZXjaSejRVIlDz9pUWBd4MV2P7OLSkZxSAVxI02NpVCHSCmS4qiU86KvE/om2aOVRccvVMyk6/HlOi8gXbcsve6KlCntiVei+OB/NXRVYMYLrD42ehQ0w6lfAyk50ErPEjWoagl4PLBsOXN0jOgkRGbLhC4AHRotOYba4yLQhKBTAiF8AB1/RSYjIUHWYwDIUjIXYUGzdSheFcKd9IrpdQE9g4FeiU5g9FmJDatQRePwnQOLTTkT/8GgFjPoNUPKoQ6Lxk7mhtRwK9P9CdAoiMgT2PsBTqwBrB9FJCCxEMTq/CHSdLDoFEYlkaQ889SfgyG0LDAULUZS+HwOtR4hOQUQiKFTAqKWlp40jg8FCFEWSgMd+BPy6i05CRA1t8LdAUG/RKeg2LESRVJbAk8sAj5aikxBRQ+nxFtB+vOgUVAUWomhqp9KV6vY+opMQUX1rMxro9b7oFFQNFqIhcGxUWopWjqKTEFF9aT4QGDZXdAqqAQvRUHi1Bsb9xVIkMkXNBgAjl3JfQwPHQjQkjToC49ayFIlMSbP+/xylylJ0EroDFqKhadQBGL8WsGYpEhm9Zv1Lj0LDMjQKLERD5NsBGL+eJxcmMmbBj7IMjQwL0VD5tGMpEhmr4H7AkyxDY8NCNGQ+bYFnNgBqZ9FJiKi2gvqW7l+sshKdhO4SC9HQeT8AjN8AqF1EJyGiOwnqC4xezjI0UixEY+DdpnSkaOMmOgkRVaf1CJahkZNkWZZFh6BayrgGLH8CSL8sOgkR3arrf4C+M0qPUUxGi4VobAoygJVjgRuHRSchIkkB9J8JdH5BdBKqAyxEY6QtBta+BJz9S3QSIvOlUgMjfgZaDBadhOoIC9FYyTKwYzpwcLboJETmx8YVGPMH0PhB0UmoDrEQjd2JRUD4m4CsE52EyDw4+wNPrwFcA0UnoTrGQjQFMX8DqyYAJXmikxCZNt8OwNg/AVtu8W2KWIimIikKWD4KyLspOgmRaWr5GPDYfMDSRnQSqicsRFOSexNYNRG4cUh0EiLTobAo3aWiyyuik1A9YyGaGp0W2DUDOPg9AP5pie6LvQ8wcgnQpLPoJNQAWIim6uKW0l0zirJEJyEyTv49gBGLADt30UmogbAQTVnmdWDVM0DiKdFJiIyIBHT/P+CR9wCFUnQYakAsRFOnLQa2TgVO/CI6CZHhs3YEhi8EmvcXnYQEYCGai+jVwMbXuWsGUXW8HwBG/Qo4+4lOQoKwEM1J6qXSRagp50QnITIckgJ46BWg1weAhbXoNCQQC9HcaEuAvV8AB78D9FrRaYjEcgko3bewyUOik5ABYCGaq8RIYN0rQMpZ0UmIBJCAzi8CvadxR3sqx0I0Z9oSYN8s4MA3HC2S+XD2A4bNA/weFp2EDAwLkUoP+7buVSA5WnQSonokAQ8+V3rUGUtb0WHIALEQqZROA+z7Ctj/NaDXiE5DVLccmwDD5gIBYaKTkAFjIVJFN6NL1y3ePC06CdH9k5Slo8LeHwJW9qLTkIFjIVJleh1w/Gdg92c89BsZryZdgIGzAK9Q0UnISLAQqXr56cDOj4BTvwGyXnQaotqx8wT6fgw88KToJGRkWIh0Z4mngC3vAHFHRSchqp7SCnjoJaDHW1w8SveEhUi1d+av0hFjZqzoJEQVtRwG9PkIcPEXnYSMGAuR7o62BDi2oHT/xaJs0WnI3Pm0Ax79DGjaVXQSMgEsRLo3BRmlu2mcWARoC0WnIXPj2RoIextoMRSQJNFpyESwEOn+5KUCh+cAx3/hmTSo/nmFAmHvACGDWYRU51iIVDcKMoAjPwBHFwLFXJRKdcyrDdDzXaD5QBYh1RsWItWtwizg6ILScuQ+jHS/vNv+U4QDRCchM8BCpPpRnAsc+wk4PA8oSBOdhoyNT/vSImz2qOgkZEZYiFS/SgqAiKWl6xjTY0SnIUOmsABaDAYefB7w6yY6DZkhFiI1nKt7gRO/ABfCebop+pe9D9BhAtDhGcDeS3QaMmMsRGp4uTeBiF+Bk0uAnATRaUgUv+5Ap+eB5oMApUp0GiIWIgmk1wGXtpYuTr2yCwBfiibPygF4YDTw4CTAvbnoNEQVsBDJMGRcBU4sBs6s4ajR1EhKwL870HoE0OpxwMpOdCKiKrEQybDIculBxM+uBc6tB3KTRCeieyKVHk6t1XCg5WOAnbvoQER3xEIkwyXLwI3DwNl1peWYd1N0IroT347/jAQfAxx8RKchuissRDIOev0/5bgWOL8ByEsWnYjKeLUBWj9eujjUuanoNET3jIVIxkevB+KPAVd2A9f2AvEnAL1GdCrzYecJBPQEAh4BAh/hrhJkMliIZPyK84DrB4Gre0r3dUw5KzqRaVGpS9cHBj5SWoJerUUnIqoXLEQyPXkppcV4dU/pCDI7TnQi46KwKC09/7DSEmzSBVBZiU5FVO9YiGT6suOBpKh/fxIjuYFOGYUKcG8B+LT956dd6bkGWYBkhliIZJ5yk28pyUgg6TSQfUN0qvolKQH3kNLSu7X8LKxFJyMyCCxEojIFGUDaJSDzOpB1veK/OQmArBOd8M4sbABnv39+/Ev/dfnnX6cmHPkR1YCFSFQbOk3potdbizI3ufScj0XZt/ybXXrqK1lfd/NWWgLWToDaCVA7//N/59LfbVxLi66sAO09626+RGaGhUhU12QZKM75tyALswBNQWlJyvrSY7iW/V9SlK7HUyj//VdpCVg7/lt+PNQZUYNgIRIREQFQiA5ARERkCFiIREREYCESEREBYCESEREBYCESEREBYCESEREBYCESEREBYCESEREBYCESCdezZ09MmTJFdAwis8dCJCIiAguRiIgIAAuRyKBkZmZi/PjxcHZ2ho2NDQYMGICYmBgAgCzLcHd3x+rVq8tv37ZtW3h7e5f/fuDAAVhZWaGgoKDBsxMZOxYikQGZMGECTpw4gQ0bNuDw4cOQZRkDBw6ERqOBJEno0aMH9uzZA6C0PM+fP4/CwkJcuHABALB37148+OCDsLGxEfgoiIwTC5HIQMTExGDDhg34+eef0b17dzzwwANYvnw5EhISsG7dOgClG+CUFeK+ffvQrl27Cpft2bMHYWFhYh4AkZFjIRIZiPPnz0OlUqFz587ll7m6uqJ58+Y4f/48ACAsLAznzp1Damoq9u7di549e5YXokajwaFDh9CzZ09Bj4DIuLEQiYxIaGgoXFxcsHfv3gqFuHfvXhw/fhwajQZdu3YVHZPIKLEQiQxEixYtoNVqcfTo0fLL0tPTcfHiRbRs2RIAIEkSunfvjvXr1+Ps2bN4+OGH0aZNGxQXF2PBggXo2LEjbG1tRT0EIqPGQiQyEMHBwRg2bBief/55HDhwAFFRUXj66afh6+uLYcOGld+uZ8+e+P3339G2bVvY2dlBoVCgR48eWL58OdcfEt0HFiKRAVm8eDE6dOiAwYMHo0uXLpBlGZs3b4aFhUX5bcLCwqDT6SqsK+zZs2ely4jo7kiyLMuiQxAREYnGESIRERFYiERERABYiERERABYiERERABYiERERABYiERERABYiERERABYiERERABYiERERABYiERERABYiERERABYiERERABYiERERABYiERERABYiERERABYiERERABYiERERABYiERERABYiERERABYiERERABYiERERABYiERERABYiERERABYiERERABYiERERABYiERERABYiERERABYiERERABYiERERABYiERERABYiERERACA/wef9L4xDS2z6gAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 1500x500 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Тестовая выборка\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAHqCAYAAAB7kisIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABblElEQVR4nO3dd3gU5cIF8DNbkmx6r5SQhE6QJkgN0ouAiqKgINiwfuK1ci0gqFxEBAXFShFBpEivUqW3EHoJJZCEQHpvW+b7IyYSkkCA3by7O+f3PHk0W2bODrs5O+80SZZlGURERAqhEh2AiIioJrH4iIhIUVh8RESkKCw+IiJSFBYfEREpCouPiIgUhcVHRESKwuIjIiJFYfEREZGisPiIqEaFhoZi5MiRomOQgtlU8c2dOxeSJJX9ODk5oUGDBnjttddw/fp10fGIbNb48eMRGhoK4N/PGd277777DnPnzhUdw+xGjhyJrl27Aij/3rEVGtEB7saECRNQr149FBYWYteuXZg1axbWrVuHEydOwNnZWXQ8IiIAJcXn6+vLNVwrY5PF17dvX7Rp0wYA8Pzzz8PHxwdfffUVVq5ciaFDhwpOR0Q1pbCwEA4ODlCpbGrwyurk5eXBxcVFdIwaYxfvlm7dugEALl26BABIT0/H22+/jcjISLi6usLd3R19+/bF0aNHKzy3sLAQ48ePR4MGDeDk5ISgoCA8+uijuHDhAgAgLi6u3PDqzT+lq/sAsH37dkiShD/++AP//e9/ERgYCBcXFwwcOBDx8fEV5r1//3706dMHHh4ecHZ2RlRUFHbv3l3pa+zatWul8x8/fnyFx/72229o3bo1dDodvL298eSTT1Y6/1u9thuZTCZMnz4dTZs2hZOTEwICAjB69GhkZGSUe1xoaCgeeuihCvN57bXXKkyzsuxTpkypsEwBoKioCOPGjUNERAQcHR1Ru3ZtvPvuuygqKqp0Wd2oa9euFab32WefQaVSYeHChXe1PL788kt06NABPj4+0Ol0aN26NZYuXVrp/H/77Te0bdsWzs7O8PLyQpcuXbBp06Zyj1m/fj2ioqLg5uYGd3d33H///RWyLVmypOzf1NfXF08//TQSExPLPWbkyJHlMnt5eaFr167YuXPnbZfT7Rw6dAi9e/eGr68vdDod6tWrh2efffaul8uNqvt5Lf18LVq0CB9++CFCQkLg7OyMmJgYSJKEadOmVZj2nj17IEkSfv/992q/VpPJhK+//hqRkZFwcnKCn58f+vTpg0OHDpU9Zs6cOejWrRv8/f3h6OiIJk2aYNasWeWmExoaipMnT2LHjh2V/r3IzMzEmDFjULt2bTg6OiIiIgKTJ0+GyWQqN520tDQMHz4c7u7u8PT0xDPPPIOjR49CkqQKw6hbt25F586d4eLiAk9PTwwaNAinT58u95jx48dDkiScOnUKw4YNg5eXFzp16oQ5c+ZAkiQcOXKkwjL5/PPPoVarK7znbJVNrvHdrLSkfHx8AAAXL17EihUr8Pjjj6NevXq4fv06fvjhB0RFReHUqVMIDg4GABiNRjz00EPYsmULnnzySbzxxhvIycnBX3/9hRMnTiA8PLxsHkOHDkW/fv3KzXfs2LGV5vnss88gSRLee+89JCcnY/r06ejRowdiYmKg0+kAlLxB+/bti9atW2PcuHFQqVRlH6adO3eibdu2FaZbq1YtTJo0CQCQm5uLl19+udJ5f/TRRxgyZAief/55pKSkYMaMGejSpQuOHDkCT0/PCs958cUX0blzZwDAn3/+ieXLl5e7f/To0Zg7dy5GjRqF//u//8OlS5cwc+ZMHDlyBLt374ZWq610OdyJzMzMstd2I5PJhIEDB2LXrl148cUX0bhxYxw/fhzTpk3DuXPnsGLFijuaz5w5c/Dhhx9i6tSpGDZsWKWPud3y+PrrrzFw4EA89dRTKC4uxqJFi/D4449jzZo16N+/f9njPvnkE4wfPx4dOnTAhAkT4ODggP3792Pr1q3o1asXgJLtac8++yyaNm2KsWPHwtPTE0eOHMGGDRvK8pUu+/vvvx+TJk3C9evX8fXXX2P37t0V/k19fX3LCiAhIQFff/01+vXrh/j4+Er/7asjOTkZvXr1gp+fH95//314enoiLi4Of/75510tl5tV9/NaauLEiXBwcMDbb7+NoqIiNGrUCB07dsSCBQvw5ptvlnvsggUL4ObmhkGDBlX79T733HOYO3cu+vbti+effx4GgwE7d+7Evn37ykaaZs2ahaZNm2LgwIHQaDRYvXo1XnnlFZhMJrz66qsAgOnTp+P111+Hq6srPvjgAwBAQEAAACA/Px9RUVFITEzE6NGjUadOHezZswdjx45FUlISpk+fDqDk/T9gwAAcOHAAL7/8Mho1aoSVK1fimWeeqZB78+bN6Nu3L8LCwjB+/HgUFBRgxowZ6NixI6Kjoytsh3v88cdRv359fP7555BlGY899hheffVVLFiwAC1btqywHLt27YqQkJBqL0erJtuQOXPmyADkzZs3yykpKXJ8fLy8aNEi2cfHR9bpdHJCQoIsy7JcWFgoG43Gcs+9dOmS7OjoKE+YMKHsttmzZ8sA5K+++qrCvEwmU9nzAMhTpkyp8JimTZvKUVFRZb9v27ZNBiCHhITI2dnZZbcvXrxYBiB//fXXZdOuX7++3Lt377L5yLIs5+fny/Xq1ZN79uxZYV4dOnSQmzVrVvZ7SkqKDEAeN25c2W1xcXGyWq2WP/vss3LPPX78uKzRaCrcHhsbKwOQ582bV3bbuHHj5BvfFjt37pQByAsWLCj33A0bNlS4vW7dunL//v0rZH/11Vflm99qN2d/9913ZX9/f7l169bllun8+fNllUol79y5s9zzv//+exmAvHv37grzu1FUVFTZ9NauXStrNBr5rbfeqvSx1Vkeslzy73Sj4uJiuVmzZnK3bt3KTUulUsmPPPJIhfdi6b95Zmam7ObmJrdr104uKCio9DHFxcWyv7+/3KxZs3KPWbNmjQxA/vjjj8tue+aZZ+S6deuWm86PP/4oA5APHDhQ6WuujuXLl8sA5IMHD97ycdVZLrJc8j555plnyn6v7ue19PMVFhZWYV4//PCDDEA+ffp0ufn7+vqWm9ftbN26VQYg/9///V+F+27+rN6sd+/eclhYWLnbbv4bUWrixImyi4uLfO7cuXK3v//++7JarZavXLkiy7IsL1u2TAYgT58+vewxRqNR7tatmwxAnjNnTtntLVq0kP39/eW0tLSy244ePSqrVCp5xIgRZbeVvqeHDh1aIdfQoUPl4ODgcv8e0dHRFeZl62xyqLNHjx7w8/ND7dq18eSTT8LV1RXLly8v+zbi6OhYNuZvNBqRlpYGV1dXNGzYENHR0WXTWbZsGXx9ffH6669XmMe97NU2YsQIuLm5lf3+2GOPISgoCOvWrQMAxMTEIDY2FsOGDUNaWhpSU1ORmpqKvLw8dO/eHX///XeF4Y7CwkI4OTndcr5//vknTCYThgwZUjbN1NRUBAYGon79+ti2bVu5xxcXFwMoWV5VWbJkCTw8PNCzZ89y02zdujVcXV0rTFOv15d7XGpqKgoLC2+ZOzExETNmzMBHH30EV1fXCvNv3LgxGjVqVG6apcPbN8+/KgcOHMCQIUMwePBgTJkypdLHVGd5AChbaweAjIwMZGVloXPnzuXeWytWrIDJZMLHH39cYftT6Xvrr7/+Qk5ODt5///0K/7aljzl06BCSk5PxyiuvlHtM//790ahRI6xdu7bc80wmU9kyiomJwa+//oqgoCA0btz4lq/pVkrXFNesWQO9Xl/l46qzXCpT3c9rqWeeeabcvABgyJAhcHJywoIFC8pu27hxI1JTU/H000/f9jWWWrZsGSRJwrhx4yrcd+PfhBvnn5WVhdTUVERFReHixYvIysq67XyWLFmCzp07w8vLq9z7ukePHjAajfj7778BABs2bIBWq8ULL7xQ9lyVSlW2VlkqKSkJMTExGDlyJLy9vctub968OXr27Fn2t+dGL730UoXbRowYgatXr5b7XC1YsAA6nQ6DBw++7euyFTY51Pntt9+iQYMG0Gg0CAgIQMOGDcv9cSkdo//uu+9w6dIlGI3GsvtKh0OBkiHShg0bQqMx72KoX79+ud8lSUJERATi4uIAALGxsQBQ6XBFqaysLHh5eZX9npqaWmG6N4uNjYUsy1U+7uYhyczMTACoUDY3TzMrKwv+/v6V3p+cnFzu902bNsHPz++WOW82btw4BAcHY/To0RW2CcXGxuL06dNVTvPm+VcmMTER/fv3R15eHtLS0qr8UlOd5QGUFMCnn36KmJiYctsZb5zuhQsXoFKp0KRJkyqnUzpE36xZsyofc/nyZQBAw4YNK9zXqFEj7Nq1q9xt8fHx5ZZVUFAQli1bdtvXdCtRUVEYPHgwPvnkE0ybNg1du3bFww8/jGHDhpX7klCd5VKZ6n5eS9WrV6/CbZ6enhgwYAAWLlyIiRMnAij5gx0SElL2Jak6Lly4gODg4HLlUZndu3dj3Lhx2Lt3L/Lz88vdl5WVBQ8Pj1s+PzY2FseOHbvt+/ry5csICgqqsLd6REREud9v9T5p3LgxNm7cWGEHlsqWY8+ePREUFIQFCxage/fuMJlM+P333zFo0KByX+ZtnU0WX9u2bcvG2ivz+eef46OPPsKzzz6LiRMnwtvbGyqVCmPGjKmwJiVCaYYpU6agRYsWlT7mxj9UxcXFSEpKQs+ePW87XUmSsH79eqjV6ltOEwCuXbsGAAgMDLzlNP39/ct9k77RzR/cdu3a4dNPPy1328yZM7Fy5cpKn3/69GnMnTsXv/32W6XbCk0mEyIjI/HVV19V+vzatWtXmb3U+fPn0apVK0ybNg3Dhw/HvHnzKv3SUZ3lsXPnTgwcOBBdunTBd999h6CgIGi1WsyZM6fCDikiBAQE4LfffgNQ8gd49uzZ6NOnD3bt2oXIyMi7mqYkSVi6dCn27duH1atXY+PGjXj22WcxdepU7Nu3D66urve0XO7083rz2l6pESNGYMmSJdizZw8iIyOxatUqvPLKK2bf4/PChQvo3r07GjVqhK+++gq1a9eGg4MD1q1bh2nTplXrb4zJZELPnj3x7rvvVnp/gwYNzJq5MpUtR7VajWHDhuGnn37Cd999h927d+Pq1at3tNZsC2yy+G5n6dKlePDBB/HLL7+Uuz0zMxO+vr5lv4eHh2P//v3Q6/Vm2UGjVOkaXSlZlnH+/Hk0b968bL4A4O7ujh49etx2ekePHoVer79l2ZdOV5Zl1KtXr1ofnFOnTkGSpEq/Jd44zc2bN6Njx45V/sG5ka+vb4XXdKsdUMaOHYsWLVrgiSeeqHL+R48eRffu3e96+Ll0mDkgIAArV67EW2+9hX79+lUo7eosj2XLlsHJyQkbN24st7YzZ86cCrlNJhNOnTpV5Zeb0vfBiRMnKnyDL1W3bl0AwNmzZyusuZw9e7bs/lJOTk7llv/AgQPh7e2NmTNn4ocffqjydVXHAw88gAceeACfffYZFi5ciKeeegqLFi3C888/X+3lUpnqfl5vp0+fPvDz88OCBQvQrl075OfnY/jw4dV/gSj5N9m4cSPS09OrXOtbvXo1ioqKsGrVKtSpU6fs9sqG3at6z4aHhyM3N/e2n/+6deti27ZtyM/PL7fWd/78+QqPA0reEzc7c+YMfH19q324wogRIzB16lSsXr0a69evh5+fH3r37l2t59oKm9zGdztqtRqyLJe7bcmSJRV2xR08eDBSU1Mxc+bMCtO4+fl34tdff0VOTk7Z70uXLkVSUhL69u0LAGjdujXCw8Px5ZdfIjc3t8LzU1JSKmRXq9WVHipwo0cffRRqtRqffPJJhfyyLCMtLa3sd4PBgGXLlqFt27a3HAYbMmQIjEZj2fDRjQwGQ9nw4N3Yu3cvVq5cif/9739V/oEYMmQIEhMT8dNPP1W4r6CgAHl5ebedT4MGDcr2ppsxYwZMJhPeeOONco+p7vJQq9WQJKnccFxcXFyFcn/44YehUqkwYcKECmsApf82vXr1gpubGyZNmlRhO2jpY9q0aQN/f398//335YYP169fj9OnT99yb0mgZLTAYDBU69CPqmRkZFR4P5WWeel0q7tcKlPdz+vtaDQaDB06FIsXL8bcuXMRGRlZ9mWzugYPHgxZlvHJJ59UuK80Y+loyo2Zs7KyKi15FxeXSj8jQ4YMwd69e7Fx48YK92VmZsJgMAAAevfuDb1eX+79bzKZ8O2335Z7TlBQEFq0aIF58+aVm9+JEyewadOmCnuk30rz5s3RvHlz/Pzzz1i2bBmefPJJs28OEs2+Xs0/HnroIUyYMAGjRo1Chw4dcPz4cSxYsABhYWHlHjdixAj8+uuv+M9//oMDBw6gc+fOyMvLw+bNm/HKK6/c0S7QN/L29kanTp0watQoXL9+HdOnT0dERETZBmqVSoWff/4Zffv2RdOmTTFq1CiEhIQgMTER27Ztg7u7O1avXo28vDx8++23+Oabb9CgQQNs3769bB6lhXns2DHs3bsX7du3R3h4OD799FOMHTsWcXFxePjhh+Hm5oZLly5h+fLlePHFF/H2229j8+bN+Oijj3Ds2DGsXr36lq8lKioKo0ePxqRJkxATE4NevXpBq9UiNjYWS5Yswddff43HHnvsrpbTpk2b0LNnz1t+6x0+fDgWL16Ml156Cdu2bUPHjh1hNBpx5swZLF68GBs3brztmvCNAgMDMWXKFDz//PN4+umn0a9fvztaHv3798dXX32FPn36YNiwYUhOTsa3336LiIgIHDt2rOxxERER+OCDDzBx4kR07twZjz76KBwdHXHw4EEEBwdj0qRJcHd3x7Rp0/D888/j/vvvLzum6ujRo8jPz8e8efOg1WoxefJkjBo1ClFRURg6dGjZ4QyhoaEVdt/Py8srN9Q5f/58FBYW4pFHHqn2MrrZvHnz8N133+GRRx5BeHg4cnJy8NNPP8Hd3b3sD2p1l0tlqvt5rY4RI0bgm2++wbZt2zB58uQ7fv6DDz6I4cOH45tvvkFsbCz69OkDk8mEnTt34sEHH8Rrr72GXr16wcHBAQMGDMDo0aORm5uLn376Cf7+/khKSio3vdatW2PWrFn49NNPERERAX9/f3Tr1g3vvPMOVq1ahYceeggjR45E69atkZeXh+PHj2Pp0qWIi4uDr68vHn74YbRt2xZvvfUWzp8/j0aNGmHVqlVIT08HUH6NcsqUKejbty/at2+P5557ruxwBg8Pj0qP973dcnz77bcBwO6GOQHY5uEMt9uturCwUH7rrbfkoKAgWafTyR07dpT37t1bbtf2Uvn5+fIHH3wg16tXT9ZqtXJgYKD82GOPyRcuXJBl+e4OZ/j999/lsWPHyv7+/rJOp5P79+8vX758ucLzjxw5Ij/66KOyj4+P7OjoKNetW1ceMmSIvGXLlnLzvt3PzbtrL1u2TO7UqZPs4uIiu7i4yI0aNZJfffVV+ezZs7Isy/Lrr78ud+nSRd6wYUOFTJXtvi/LJbvFt27dWtbpdLKbm5scGRkpv/vuu/LVq1fLHnOnhzNIkiQfPny43O2V/RsVFxfLkydPlps2bSo7OjrKXl5ecuvWreVPPvlEzsrKqjC/201PlmW5W7ducp06deScnJw7Xh6//PKLXL9+fdnR0VFu1KiRPGfOnCqX2+zZs+WWLVuW5Y6KipL/+uuvco9ZtWqV3KFDB1mn08nu7u5y27Zt5d9//73cY/7444+y6Xh7e8tPPfVU2eE7pZ555ply7wtXV1e5VatW8vz582+5jG4nOjpaHjp0qFynTh3Z0dFR9vf3lx966CH50KFDd7VcKjucoTqf19LP15IlS26Zt2nTprJKpaqwfKrLYDDIU6ZMkRs1aiQ7ODjIfn5+ct++fcu9V1etWiU3b95cdnJykkNDQ+XJkyeXHR516dKlssddu3ZN7t+/v+zm5iYDKPd6cnJy5LFjx8oRERGyg4OD7OvrK3fo0EH+8ssv5eLi4rLHpaSkyMOGDZPd3NxkDw8PeeTIkfLu3btlAPKiRYvKZd+8ebPcsWPHsvfSgAED5FOnTpV7TOm/SUpKSpXLICkpSVar1XKDBg3uahlaO0mW72FMj8rZvn07HnzwQSxZsuSu14JuFBcXh3r16uHSpUtVngR2/PjxiIuLs8sT4RLdjZYtW8Lb2xtbtmwRHcViVqxYgUceeQS7du1Cx44dzT791NRUBAUF4eOPP8ZHH31k9umLZpfb+IhImQ4dOoSYmBiMGDFCdBSzKSgoKPe70WjEjBkz4O7ujlatWllknnPnzoXRaLzjnYNshV1u47MXrq6ueOqpp265s0Xz5s0rnNKJSGlOnDiBw4cPY+rUqQgKCqqwl7DRaKyw09jNXF1d7+l4R0t5/fXXUVBQgPbt26OoqAh//vkn9uzZg88//7xae1rfia1bt+LUqVP47LPP8PDDD9vc5YaqTfRYqz2p7jYIIjKvcePGyZIkyY0aNZK3b99e4f7qbC+/8RR61mTBggVyq1atZHd3d9nBwUFu0qSJPGPGDIvMKyoqStZqtXLXrl3vehupLeA2PiKye6XX7ryVsLCwu9qTlGwPi4+IiBSFO7cQEZGisPiIiEhRWHxERKQoLD4iIlIUFh8RESkKi4+IiBSFxUdERIrC4iMiIkVh8RERkaKw+IiISFFYfEREpCgsPiIiUhQWHxERKQqLj4iIFIXFR0REisLiIyIiRWHxERGRorD4iIhIUVh8RESkKCw+IiJSFBYfEREpCouPiIgUhcVHRESKwuIjIiJFYfEREZGisPiIiEhRWHxERKQoLD4iIlIUFh8RESkKi4+IiBSFxUdERIrC4iMiIkVh8RERkaKw+IiISFFYfEREpCgsPiIiUhQWHxERKQqLj4iIFIXFR0REisLiIyIiRWHxERGRorD4iIhIUVh8RESkKCw+IiJSFBYfEREpCouPiIgUhcVHRESKwuIjIiJFYfEREZGisPiIiEhRWHxERKQoLD4iIlIUFh8RESkKi4+IiBSFxUdERIrC4iMiIkVh8RERkaKw+IiISFFYfEREpCgsPiIiUhQWHxERKQqLj4iIFIXFR0REisLiIyIiRWHxERGRorD4iIhIUTSiAxDZGr3RhKTMQqTnFyOrQI/sAj2y/vkp9/+FpbcZoDeaYDTJMMkyjKaSn5Zt1uB8TjTUkhoqSVXyX5UKOo0O7g7ucHNwg7uDe8mPo/u//3/D7746X/jofEQvEiKbwuIjqkRqbhGupOcjPj0fV9LycSW95CchowBJWQUwyfc+j0JDIbKLs+95OjqNDiGuIajlWgu13P75ca1VcptbLThpnO49LJEdYfGRoiXnFOJEYhaOJ2TjVFIW4lLzEZ+Rj/xio+ho1VZgKMD5zPM4n3m+0vt9db6o5VoLYZ5haOLdBI19GqOhd0M4qh1rOCmRdZBkWTbDd1ci65ecXYjjiVk4npiFE4lZOJaQheScImF52j2wAqey9gmZt0bSlBShT5Oyn4ZeDbl2SIrA4iO7ZDCacCQ+E3vOp+FYQiaOJ4otucqILL7KqCU16nnUQxOfJmjl3wrtg9sj2DVYdCwis2Pxkd04n5yDnbGp2BWbiv2X0pFbZBAd6ZasrfgqU8etDh4IegDtg9ujbVBbuDu4i45EdM9YfGSzUnKKsPt8KnbGpmL3+VRcyy4UHemO2ELx3UgtqdHYuzHaB7fHA0EPoKV/S2jVWtGxiO4Yi49syonELKw5loTtZ5Nx5lqO6Dj3xNaK72Y6jQ6tAlqhR50e6FGnBzydPEVHIqoWFh9ZvdNJ2Vh7LAlrjl1FXFq+6DhmY+vFdyONpEG7oHboHdob3et255AoWTUWH1ml88k5WH00CWuPJ+F8cq7oOBZhT8V3I61Ki/bB7dEntA8erP0gXB1cRUciKofFR1YjLjUPa45dxZpjSTY/jFkd9lp8N3JQOaBjSEf0Du2NB2s/CGets+hIRCw+EktvNGHDiWuYv+8yDlxKFx2nRimh+G7konXBQ2EP4cmGTyLCK0J0HFIwFh8JkZRVgIX7r2DRwXikWNnxdTVFacV3o9YBrfFkwyfRvW53aFXcM5RqFk9ZRjVGlmXsPp+G+fvisPl0MozmOOEl2aTD1w/j8PXD8HHywaP1H8WQhkMQ6BIoOhYpBNf4yOKyCvRYejgBC/ZfxsWUPNFxrIaS1/huppbU6FyrM55s+CQ6BHeAJEmiI5EdY/GRxVzNLMD3Oy5gyaEEFOht56TPNYXFV7lQ91A82+xZDAgfAI2Kg1Jkfiw+MruEjHx8t/0Clh5KQLHRJDqO1WLx3VqIawiej3wegyIGcTsgmRWLj8wmPj0fM7eex59HEqA38m11Oyy+6glyCcJzzZ7Do/Uf5SnSyCxYfHTP4lLzMHPbeaw4kggDd1ipNhbfnQlwDsCoZqPwWIPHeC1BuicsPrprF1JyMXPreaw6epV7aN4FFt/d8dP5YWTTkXi84ePQaXSi45ANYvHRHbuWVYgpG89i+ZEEsO/uHovv3vjqfPFKi1fwaMSjUKvUouOQDWHxUbUVFBvx/Y4L+PHvi9xL0wxYfOZR36s+3m7zNjoEdxAdhWwEi49uS5ZlLItOxJSNZ3A9W5lnWbEEFp95dQrphLfbvI1wz3DRUcjK8SAZuqWY+EyMW3kCRxOyREchuqVdibuw7+o+PNnoSbzS4hW4ObiJjkRWimt8VKm03CJM3nAGSw4ngO8Qy+Aan+X4OPlgTOsxGBQ+iGeBoQpYfFSO0SRj/t44fPXXOWQXGkTHsWssPstr7tccH7b7EI19GouOQlZEJToAWY8LKbl47Ps9GL/6FEuP7MKxlGMYtnYYZhyZAb1RLzoOWQkWH8FkkvHj3xfQ7+udOHIlU3QcIrMyyAb8eOxHPLH2CZxKOyU6DlkBFp/CXUzJxeM/7MXn686gyMDzapL9is2IxVNrn+LaH7H4lMpkkvHzzovo981OHL6cIToOUY3g2h8BLD5FikvNwxM/7sWna0+jUM+1PFIerv0pG4tPQWRZxuxdl9D36504GMe1PFK2G9f+TqedFh2HahCLTyHS84oxYvYBTFhziqcbI7pBbEYsnlr3FBaeXig6CtUQFp8CRF/JQP9vdmJnbKroKERWSW/SY9KBSXj373eRr88XHYcsjMVn52bvuoQnftiLpKxC0VGIrN76S+vx5NoncSHzgugoZEEsPjuVW2TAqwujMWHNKV4NnegOXMq6hKFrh2LNxTWio5CFsPjs0LnrORg4cxfWHksSHYXIJhUYCjB251hM3DsRxcZi0XHIzFh8dmbFkUQ8/O1uXEzJEx2FyOYtPrcYI9aPQGJuougoZEYsPjtRbDDhg+XHMeaPGOQXc69NInM5mXYSQ1YPwc6EnaKjkJmw+OxAVoEeI2bvx4L9V0RHIbJL2cXZeH3r61h8drHoKGQGLD4bl5hZgMdm7cG+i+mioxDZNaNsxMR9E/HV4a/Aq7nZNhafDTuRmIVHvt2N2ORc0VGIFGPOiTl47+/3uNOLDWPx2agd51LwxA97kZxTJDoKkeKsj1uPF/96EVlFWaKj0F1g8dmgxQfj8dzcg8jjTixEwhy+fhjD1w/nHp82iMVnY7766xzeXXYMBhO3MRCJdinrEp5a+xROpp0UHYXuAIvPRuiNJry1+Ci+2RIrOgoR3SCtMA2jNozCjvgdoqNQNbH4bECRwYgXfz2EZdEJoqMQUSUKDAV4Y9sb2BC3QXQUqgYWn5UrMhgxev5hbDubIjoKEd2CUTbi/b/fx4ZLLD9rx+KzYqWlt52lR2QTjLIR7+98H+svrRcdhW6BxWeligxGvMTSI7I5RtmIsTvHYt3FdaKjUBVYfFaotPQ4vElkm4yyEf/d9V+svbhWdBSqBIvPyrD0iOyDUTbig10f8Lp+VojFZ0WKDEa8/Fs0S4/IThhlIz7c9SHLz8qw+KxEaeltPZMsOgoRmVHpmt/qC6tFR6F/sPisgMkkY8yiGJYekZ0yySZ8vPtjXtPPSrD4rMCna09j/YlromMQkQUZZAPe3vE2TqWdEh1F8Vh8gs3edQmzd18SHYOIakC+IR+vbnmVJ7YWjMUn0IYTSfh0Lb/9ESlJakEqXt78Mi9pJBCLT5DDlzMw5o8Y8CILRMpzKesS/m/r//FitoKw+ASIS83DC78eQqHeJDoKEQkSnRyN/+76L2SZ335rGouvhqXnFWPknANIz+M3PSKl2xi3EVMPTRUdQ3FYfDWoUG/Ec/MOIi4tX3QUIrIS807Nw4LTC0THUBQWXw36z+IYHLmSKToGEVmZLw5+gV2Ju0THUAwWXw35YccFrDvOY/WIqCKTbMLYnWORlJskOooisPhqwIFL6Ziy8azoGERkxTKLMvGf7f+B3qgXHcXusfgsLCWnCK8tjIaBxy0Q0W2cSDuByQcni45h91h8FmQ0yXj992gk5xSJjkJENuKPs3/wOn4WxuKzoKmbzmLfxXTRMYjIxnyy9xOczzgvOobdYvFZyJbT1zFrxwXRMYjIBhUYCvDm9jeRp88THcUusfgsID49H/9ZfBQ8IQMR3a247Dh8vPtj0THsktUWX9euXTFmzBjRMe5YkcGIVxZEI6uAe2YR0b3ZdHkTfjv1W43M63Z/cyVJwooVK6o9ve3bt0OSJGRmZt5zNnPTiA5gbyatO4PjiTzrOhGZx9TDU3F/4P1o6N1QaI6kpCR4eXkJzWAuVrvGZ4v2XkjDvL1xomMQkR0xmAz4aPdH0JvEjiIFBgbC0dFRaAZzsYniy8jIwIgRI+Dl5QVnZ2f07dsXsbGxAABZluHn54elS5eWPb5FixYICgoq+33Xrl1wdHREfr7lzpGZX2zAu8u4XY+IzO90+mn8dOwni8/HZDLh3Xffhbe3NwIDAzF+/Piy+24e6tyzZw9atGgBJycntGnTBitWrIAkSYiJiSk3zcOHD6NNmzZwdnZGhw4dcPas+JN52ETxjRw5EocOHcKqVauwd+9eyLKMfv36Qa/XQ5IkdOnSBdu3bwdQUpKnT59GQUEBzpw5AwDYsWMH7r//fjg7O1ss4//Wn0F8eoHFpk9EyvbT8Z9wOu20Recxb948uLi4YP/+/fjiiy8wYcIE/PXXXxUel52djQEDBiAyMhLR0dGYOHEi3nvvvUqn+cEHH2Dq1Kk4dOgQNBoNnn32WYu+huqw+uKLjY3FqlWr8PPPP6Nz58647777sGDBAiQmJpZ9++jatWtZ8f39999o2bJludu2b9+OqKgoi2XceyEN8/ddttj0iYgMJgM+3P2hRU9p1rx5c4wbNw7169fHiBEj0KZNG2zZsqXC4xYuXAhJkvDTTz+hSZMm6Nu3L955551Kp/nZZ58hKioKTZo0wfvvv489e/agsLDQYq+hOqy++E6fPg2NRoN27dqV3ebj44OGDRvi9OmSbz9RUVE4deoUUlJSsGPHDnTt2rWs+PR6Pfbs2YOuXbtaJB+HOImoppzLOIfvj31vsek3b9683O9BQUFITk6u8LizZ8+iefPmcHJyKrutbdu2t51m6SaoyqZZk6y++KojMjIS3t7e2LFjR7ni27FjBw4ePAi9Xo8OHTpYZN4c4iSimjT7+GycTDtpkWlrtdpyv0uSBJPJZLZpSpIEAPc8zXtl9cXXuHFjGAwG7N+/v+y2tLQ0nD17Fk2aNAFQsjA7d+6MlStX4uTJk+jUqROaN2+OoqIi/PDDD2jTpg1cXFzMnm3PhVQOcRJRjTLIBny4y7JDnrfTsGFDHD9+HEVF/56H+ODBg8Ly3CmrL7769etj0KBBeOGFF7Br1y4cPXoUTz/9NEJCQjBo0KCyx3Xt2hW///47WrRoAVdXV6hUKnTp0gULFiywyPa9/GID3lt2jEOcRFTjzmeex7cx3wqb/7Bhw2AymfDiiy/i9OnT2LhxI7788ksA/67VWTOrLz4AmDNnDlq3bo2HHnoI7du3hyzLWLduXblV6KioKBiNxnLb8rp27VrhNnOZzCFOIhJo7sm5Ft/Lsyru7u5YvXo1YmJi0KJFC3zwwQf4+OOS06vduN3PWkmyzHWWO3UiMQsDZ+4CL7FH96LdAytwKmuf6Bhkw1r4tcCvfX+1irWsBQsWYNSoUcjKyoJOpxMd55Z4yrI7JMsyxq06ydIjIuFiUmKw6sIqDIoYdPsHm9mvv/6KsLAwhISE4OjRo3jvvfcwZMgQqy89wEaGOq3Jn9GJOHw5Q3QMIiIAwLTD05BbnFvj87127RqefvppNG7cGG+++SYef/xx/PjjjzWe425wqPMO5BTq0W3qDqTwiupkBhzqJHN5uvHTeK9t5WdOoYq4xncHZmw9z9IjIquz6MwiXMy8KDqGzWDxVdPltDzM3R0nOgYRUQUG2YAvD30pOobNYPFV06R1Z1BsFHu2ASKiquxM3Ik9V/eIjmETWHzVcOBSOjacvCY6BhHRLU05OAVGk1F0DKvH4rsNWZbx2dpTomMQEd3W+czzWBa7THQMq8fiu43Vx5JwNCFLdAwiomr5/uj3KDJyJ7xbYfHdgskkY8aWWNExiIiqLaUgBUvPLRUdw6qx+G5h3YkkxCbX/IGhRET3YvaJ2Sg2FouOYbVYfFWQZRkzt54XHYOI6I4l5yfjz9g/RcewWiy+Kmw8eQ1nruWIjkFEdFd+OfGL0Gv2WTMWXxW+2cK1PSKyXdfyrmH5+eWiY1glFl8lNp+6jlNJ2aJjEBHdk5+P/8y1vkqw+CoxYyv35CQi25eUl4QVF1aIjmF1WHw32XY2mcftEZHd+OX4L9CbuNZ3IxbfTb7hcXtEZEcScxOx+sJq0TGsCovvBnsupOLIlUzRMYiIzGruybmiI1gVFt8N5u2JEx2BiMjsLmVdwv6k/aJjWA0W3z+uZRVi8+lk0TGIiCxi0ZlFoiNYDRbfPxYeuAKjSRYdg4jIIrbFb8P1vOuiY1gFFh8Ag9GERQeuiI5BRGQxRtmIJeeWiI5hFVh8ADaduo7kHF7Gg4js27LYZTy0ASw+AMD8vZdFRyAisrjUglRsvrxZdAzhFF9855NzsfdimugYREQ1gju5sPjw2z6u7RGRckQnR+NcxjnRMYRSdPEVFBuxLDpBdAwiohql9LU+RRffqqOJyCk0iI5BRFSj1l5ciwJDgegYwii6+P6MThQdgYioxuUb8vF3wt+iYwij2OJLzi7Ewbh00TGIiITYcGmD6AjCaEQHEGXd8STwRC1E1iNtaxrSt6ZDn1pynJljiCP8B/nDrbkbACBxbiJyT+bCkGmAykkF5whnBD4eCMdgxyqneX35dWTtz4I+XQ9JI0EXqkPA4AA4hzsDAEx6ExJnJyLnSA40HhoEjwiGa1PXsuenrEuBPk2P4OHBFnzlYuxM3Ik8fR5ctC6io9Q4xRbfmmNJoiOYVc6Rdcg5sg6GrJJTEml968Czw1DowtsAANI2zETh5RgYc9MhaZ3gGNIYXl1HQutTu1rTT9s4E7kxG+DV7QW43z8IACAb9Ejb8A3yY/dB7eIF716vQBfaouw5WfuXwZidAu+eL5n3xZJd0nppEfh4IBwCHAAAmbsyceXrKwifEA6nECfoQnXwbO8JrbcWxjwjklckI+7LODT4sgEklVTpNB0DHRE8PBgOfg4w6U1I25hW8pzJDaBx1yBjewYKLxci7KMw5B7LRfz38Wj0TSNIkoTilGJk7MhA+PjwmlwMNabIWIStV7ZiQPgA0VFqnCKHOpOyCnD4SoboGGaldvOBV9QzCHpmOoKemQ6nuvch+c9PUZxScriGQ2AEfPqNQfDzs+A/ZAIAGdf/+BiyyXjbaeef24Oiq2ehdvUud3vO0Q0ovnYegU9/Cdf7+iB19RTIcslqtD7zGnKPboRnlxFmf61kn9xbusPtPjc4BjrCMdARAY8FQOWkQv75fACAd1dvuDR0gYOfQ9mamz5dj+LU4iqn6dneE65NXeHg7wCnECcEDg2EqcCEwoRCAEBRUhHcWrjBKcQJ3t29YcwxwphT8pm4Ou8qAocEQq1TW/7FC7IxbqPoCEIosvjWHkuCbGfDnM4R7aALvx9a7xBovUPg1WUEVA5OKLp6FgDg1qIPnGo3g8YjAI6BEfDsPBzGnBQYsm59RQpDTirS//oBvg+9DajKDxDo0+Khi2gHB7+6cGvVH6b8LJgKsgEA6Zu+g1fXkVA5OlvmBZNdk00yMvdlwlRkgnNExfeQqciEjJ0Z0PppofXWVmuaJoMJGdszoNKp4FTbCQDgVNsJ+bH5MBWbkHs8FxpPDdRuamTuyYSkleDe2t2sr8va7Lm6B9nF2aJj1DhFDnXa2zDnzWSTEflndsGkL4RjSKMK95uKC5F7fDM0HgHQuPtWPR3ZhNQ1X8G93aNw8Ktb4X4H/3rIO7ENJn0RCi9FQ+3qDZXOHbknt0HSOMC5QQezvi6yf4Xxhbj46UWY9CaoHFWo83odOIU4ld2ftiUN1xdfh6nIBIdAB4S+EwqV5tbf37NjspEwKwGmYhM0HhqEvhMKjVvJnz6vzl4ojC9E7H9joXHToPYrtWHMM+L68uuo9349XF9Wso3Qwd8BIc+FQOtVvZK1FXqTHlsub8Ej9R8RHaVGKa74EjLyEROfKTqGRRSnxOHa/LchG4ohOejg/8gHcPCtU3Z/TvRaZGyfA1lfCI13Lfg/8SkkddUf5Ox9SyGp1HBrPbDS+10je6I4OQ5Xf3kFap07fAe9B1NhLrJ2LUDA0EnI+Hs+8k//DY1nIHz6vQGNW9UlSwQADkEOCJ8QDlOBCVkHs5DwcwLqvV+vrPxKhy4NWQakrk9F/LfxCPsgDCqHqsvPtbErwieEw5hjRPqOdMR/F4/wj8OhcddA0kgIHlF+x5WEnxPg09MHhVcKkR2djYiJEUhZl4Kk35JQ5/U6VczFdm2I26C44lPcUOdaO17b03qHIGjUNwgc8RXcWvZF6tppKE7993JLLk27Imjk1wgY9j9ovYORuvJ/kA2Vbx8punYe2YdXwaffGEhS5TsOSGoNfHq9jFov/YKgZ6bBqVZTZGz9BW6tB6D4+kUUxO5F0KgZcAxuhIzNP1rkNZN9UWlUcAxwhC5Uh8DHA+FU2wlpf/17Ll21sxqOgY5waeiC2q/VRlFSEbKjbz1Up3IsmaZzhDNqPVcLklpCxt+Vb+PPPZ2LosQi+PTwQd6ZPLg1d4PKUQWPth7IO5Nn1tdqLQ4kHUB6obIO7VJe8R233+KT1FpovYLhGBgBr6iRcPCvh5xDq8ruVzm6QOsdAqfazeD38Fjo0xOQf25vpdMqij8JU14WEmeNwuUvBuLyFwNhzE5GxrZfkDDr2UqfU3j5GPRpl+HW6iEUXjkGXVgbqByc4NyoEwqvHLfIayY7JwOyvooN8v/cXOX9VU3SJMOkN1W43VRsQtL8JASPDC7ZS9QEyMaSacsGGbKdHv9kkA2Ku2KDooY6EzMLcCwhS3SMGiPLMmRjFdfekkt+qrrfpdmDcAq9r9xtyYs/hkvTbnCN7FFxcoZipP81C74D3oakUgOyCXLp3xaTEbJc8Q8N0Y2uLbkGt+Zu0HprYSo0IXNfJvLO5CH0rVAUJxcj60AWXJu5Qu2mhiHdgJS1KVBpVXC7z61sGufeP4fAxwPh3todpiITklcnw72FOzSeGhhzjUjbkgZDhgEebT0qzD9lVQpcm7tCV1cHAHCu74xrf1yDV2cvpG9Jh3N9+91R6++EvzGk4RDRMWqMoopvV2yK6AgWk7FjLnRhbaBx94OpuAB5p7aj6MpxeAyZAH3mNeSf/htO9VpB7ewOQ3YasvcvgaRxgC6sTdk0En96CV5RI+DcoAPUOneodTft0abSQO3iBa1PrQrzz9yzCLqwNnAIKDnmyTGkCTK2z4ZrZA/kRK+BU0hji75+sn2GbAMSfkyAIctQtudl6FuhcG3mCn2GHnnn8pC6KRWmPBPUHmq4NHBB2Idh0Lj/+2es+FoxjPn/HKIjAcVJxbiy6wqMuUaoXdXQ1dOh3n/rldthBgAKEwqRdTALERMiym5zb+OOvDN5uPj5RTgGOqLWSxXf9/bi4LWD0Jv00Krsa+edqiiq+HbGpoqOYDHGvCykrvkKxrx0qBxd4OAXCv8hE6Cr1xKGnDQUJpxE9qFVMBXmQu3iCcfaTRH49BSoXTzLpmFIT4CpKP+O512cEof8MzsRNHJG2W3OjTqiMP44ri14D1qfEPgOeMccL5PsWK3nqi4WrZcWof8Jve00ms1tVvb/KgdVtXdGcarlhAaTG5S7TVKV7Phy884v9ijfkI9jKcfQOqC16Cg1QpJlezuirXKyLKPNp5uRllf1wa5ENandAytwKmuf6BhEAIDRzUfjtZaviY5RIxSzc8uppGyWHhFRFfZerXxHN3ukmOLbfd5+hzmJiO7VybSTijmLi2KKz5637xER3SujbMSBpAOiY9QIRRRfkcGIQ3H2dVJqIiJzU8pwpyKK7/DlDBTob38VAiIiJdubxOKzG9y+R0R0e/E58YjPiRcdw+IUUXy7zqfd/kFERIT9SftFR7A4uy++gmIjTiQq5zRlRET34kTqCdERLM7ui+9UUhaMdnpyWSIiczuZdlJ0BIuz++I7kaiM41KIiMzhfOZ5FBmLRMewKLsvvuMc5iQiqjaDyYBz6edEx7Aouy8+bt8jIroz9j7cadfFV6g34nxyrugYREQ2hcVnw04nZcPAHVuIiO7IqbRToiNYlF0X34mr3LGFiOhOXcy8iEJDoegYFmPfxZfA7XtERHfKIBtwNuOs6BgWY9fFxz06iYjuzslU+93OZ7fFV2QwIjY5R3QMIiKbdCb9jOgIFmO3xReXmg+9kTu2EBHdjSs5V0RHsBi7Lb4r6fmiIxAR2Sx7vkoDi4+IiCpIyU+x21OX2W3xxbP4iIjumgwZiTmJomNYBIuPiIgqlZCbIDqCRdhv8WWw+IiI7oW9buez3+JLLxAdgYjIpiXkcI3PZqTkFKFAbxQdg4jIpnGNz4Zwj04ionvHNT4bksDte0RE9ywxNxGybH8nArHL4ruSxuIjIrpXhcZCpBWmiY5hdnZZfNey7fdyGkRENSmzMFN0BLOzy+LLKtCLjkBEZBeyiu3vKjd2WXzZhQbREYiI7EJ2kf1d0Nsui49rfERE5sE1PhuRw+IjIjILrvHZiOxCFh8RkTlwjc9GZBdwGx8RkTlwjc8GFBQbUWw0iY5BRGQXuMZnA7hjCxGR+WQXc43P6nH7HhGR+XCo0wZwjY+IyHxyinNERzA7uyu+vCLu2EJEZC56k/2tTNhd8RlN9ncmcSIiUQwm+1uZYPEREVGVjLL9XdTb7oqPvUdEZD4m2f4OD7PD4mPzERGZC4c6bQCLj2yBViXDT60VHYPotngFdhsgQRIdgeiWnq8VjxOBE/BN9O+YoGsAH0cv0ZGIqiRJ9vc3VSM6gLmp7a7KyV609czGN97LEHj1r7LbHjm1Gb0c3fBTky6Yn30WxaZigQmJKlJJ9vdH1e5ekcoOv52QbfNx0GNp/b/wh2FMudIr5VKUgzFH1mJlRjF6ejUVkJCoavZYfHa4xsfiI+sgSTIm1juFoVm/QB1/7baPr5V+BV+lX8HBum3whYcOZ3Iu10BKoltj8dkAFh9Zg8EB1/GJw3y4Xo2+4+fef/kQ/pBUWN6kG74xpiC9KMMCCYmqR2V/A4P2V3xabuQjgRq55mNW4BqEJqyEhLvfG04lmzD45Gb0dnLHj407YwG3/5EgOq1OdASzs7uWcHW0uy4nG+CiNmF2/d1YrxqDegkr7qn0buRamI3/HFmLFZl6dPdsYpZpEt0JN62b6AhmZ3ct4aHjsVFUs/5T5wJeLpoDbfxFi82jdtplTE+7jAOh9+MLdyec5fY/qiFuDiw+q+fpzOKjmtHNJwNfui+Cd9LOGptn27iDWCypsKxJd8w0JnP7H1mcu6O76AhmZ3dDne5OWvCIBrKkEKcirKm/Br8UvFGjpVdKJZvw+Mm/sDbuEkZ6RkKr4pc9shx7XOOzu+JTqSRu5yOLUEsmTAuPxk7dO2gWvxCS4HMYuhZm460ja7Eiy4QHuf2PLMQei88uG8JDp0VOof2dWJXEeSY4Ee9Lc6FLPCk6SgV1Ui/hm9RL2F/vfkx2dURs7hXRkciOuDvY31Cn3RZfQkaB6BhkB1p55GKm758ITtwgOspttbt0EEskNZY16YZvjdeRXpQpOhLZAXvcq9PuhjoB7tlJ985Da8Ci+tuwzPiGTZReKbVsxJCTf2FN3GWM8IyERmWX322pBtnjUKddFh/37KR7MS70NA57jsUD8T9BMtjmyIFbYRbeObIWK7KArp6NRcchG2aPxWeXXwe5xkd3Y4B/Cj5z+g3u1w6KjmI2dVMvYkbqReyt1xZfuGpxPjdedCSyMSw+G+GhcxAdgWxIuHMBfghZh/CE5ZCyTaLjWET7SwewVFJjadPu+FafhIziLNGRyEb4OfuJjmB2djnUGezpJDoC2QCd2ogfI/Zhs/ZNRMQvgyTbZ+mVUstGPHFiE9ZcuYLhns25/Y9uSyNpEOgcKDqG2dll8dX2dhYdgazca7XjcNTvE/RK+AZSUbboODXKvSAL7x5Zg+XZEqK4/Y9uIcAlAGqVWnQMs7PLr3x1WHxUhU7eWZju+Qd8r24XHUW40JQLmJlyAXvCHsAUFzW3/1EFtdxqiY5gEXZZfLW9nKGSAJN5TpBPdiDQsRg/1N2C5ol/QLrKy/vcqMPFfVgqqbG4aXd8p09CJrf/0T9qudpn8dnlUKeDRoVAd27no5KroH8RfhR7XN7BfVfmQzKy9Cqjlo0YemIT1lyJx9NezaGR7PI7Md2hENcQ0REswi6LD+B2PgKGBSXhZMhkDEmcDFV+iug4NsGjIBPvRa/BslwVOns2Eh2HBGPx2Rhu51OuSLc87IxYgM8z3oJz6jHRcWxSWPJ5fHdkE76XghFmp8NddHshbvZZfHY7nlHXh8WnNG4aA2bV242O136DlJAnOo5d6HhxH5apNPijaXfMKk5EVrGy9oBVOq7x2RgOdSrLf0PP4Yj3B+gU/wMkPUvPnDQmA546vhFr4xMxzDOS2/8UQqfRwVfnKzqGRdht8XGoUxn6+KXhaN1v8OK18dBkc3d8S/LIz8DYI2uxLFeNjtz+Z/eCXYJFR7AYu/3qVtfHRXQEsqBQXSF+qLUBDRKWQcoxio6jKGHJsfg+ORY7w9tjig64lJcoOhJZQJhnmOgIFmO3xeft4gB/N0ck5xSJjkJm5KgyYVrYYfRJnQNVfKboOIrW+cJetFdp8EfTHviuOB7ZxTmiI5EZNfa237P62O1QJwBEhniIjkBmNLrWFRwLmIh+CdOgKswUHYdQuv1vA9bGJ+FJbv+zK419WHw2KbIWi88etPPMxv6wXzA29X04ZpwVHYcq4Zmfjg+OrMXSXA06eDYUHYfMwJ7X+Oz66xnX+Gybn4Me39fdhlZXf4d0lUPWtiA8+Rx+SD6Hv8M7YIpORhy3/9kkf2d/+Oh8RMewGBYfWR1JkvFZ6Ak8kT0H6vhrouPQXehyYQ/aq7RY1LQ7ZhVdQY4+V3QkugNNvJuIjmBRdj3U6e/uhAB3R9Ex6A48FngdJ2pNwbCkSVDnsfRsmdakx/DjG7Au4Rqe8IqEWrK/y9vYK3vevgfYefEBXOuzFY1d87E9YhGmZP4HLikxouOQGXnmp+PD6LVYmueA9tz+ZxPsefseoIDia8bis2ouGiPm1t+Fdao3EJqwChJ4LSl7FXH9LH488hdmqGsj1I4PjrYH9r7GZ9fb+ACgOffstFpv1zmP0UWzoY2PEx2FalDX87vRUaXFwqbd8QO3/1kdbydvBLoEio5hUVzjoxrX3ScdR0K/xWvJH0ObFSc6DgmgNenxzPENWJt4HUO4/c+q2PvaHqCA4vN3c0KQBy9Kaw1qORVhXf3V+LlgDLyu7RYdh6yAV14aPopei8V5jmjn2UB0HALQyr+V6AgWZ/fFBwAPhNnv8Si2QKuS8XX4YfytextN4n+HZDKIjkRWpsH1M/j5yGZ8o6mDOs5BouMoWrugdqIjWJwiiq9ThH1eWsMWPBsSj+NBn2FQ4lSoCtJExyEr92DsLqw4cwRvuzWBm9ZVdBzFcdO6oZlPM9ExLM7ud24BgE71WXw1rZVHDr71/RNBiRtFRyEbozUW45ljGzDAxRczGrbDn5knYZJNomMpQpvANlCr7H97qyLW+ALcndAggN8ea4KX1oDF9bdgmfENlh7dE++8VIyLXovF+Tq09eD2v5rwQNADoiPUCEUUHwB0ivATHcHufVLvFA55vI+28b9AMhSKjkN2ouG10/glZjOma+qitrN972YvGovPznTmcKfFDApIxvE6X+GZpE+hzr0qOg7Zqe6xO7HyTAz+49YUrlpeaNrc/J397friszdSTPG1C/OGg1oxL7dG1HcpwNb6SzE9+z9wSz4kOg4pgNZYjFHH1mPN1VQM9oqESuJn2lyUsrYHKKj4nB00aFnHU3QMu6BTG/FzxB5s0oxBWPyfkLjjAdUwn9wUjI9ei8X5zrjfo77oOHaBxWenONx5796ocxFH/cahR8JMSEU5ouOQwjW8dgqzY7ZgmqYuanH73z1RwvF7pRRVfJ3qcweXuxXlk4HD9X7Am8kfwiHzoug4ROX0iN2JlWeOYoxbU7honEXHsTnhHuHwd/YXHaPGKKr4mod4wMtZKzqGTQlyKsbqBuswt2AMfJJ2iI5DVCUHYxGeO7Yea5LS8Si3/92R7nW7i45QoxT1zlCpJPRpxuGQ6lBLJkwNP4Ldzm8j8spvkEx60ZGIqsU3NxmfRK/FogJntOb2v2rpVbeX6Ag1SlHFBwADmvM6YLczPDgRJ0L+h8GJU6DKTxUdh+iuNE46hbkxW/CVNhQhzgGi41iteh710NBbWRcIVsQpy27ULswHvq6OSM0tEh3F6rRwz8VMvxWolbhOdBQis+l57m9EqR3xa7Nu+Cn/EvIN+aIjWRWlre0BClzjU6sk9IvkcOeNPLQGLKy/HcvlMSw9sksOxiI8f3Q91l7LwMPc/ldO79DeoiPUOEX+6w+4j8OdpT4KPYPDnv9Fh/gfIen5TZjsm2/OdUyMXovfC13QyiNCdBzhwjzCUN9LedtBFTfUCQBt6nohyMMJSVnKPZ9kP79U/M95Adyv7RcdhajGNbl6EvOunsTGhlGYpslHYv510ZGE6BWqvGFOQKFrfJIkoV+kMi92GeZciE31l+Pb3Dfhfp2lR8rW++wOrDx7HP/n3gzOCjz+r3dd5Q1zAgotPkB5w52OKhO+j9iPLdo30SB+CSTZKDoSkVVwNBTihaPrsOZ6JgZ6NYMESXSkGhHuEY4IL2UO9yq2+FrU9kRtb53oGDXi5dpxOB7wCfokfA2pKEt0HCKr5Jd9DZ9Fr8Pvxe5oqYDtf0rcqaWUYosPAPpH2vdaX0evLBwM+xnvpfwXDhmxouMQ2YSmicfxa8xWTHGoh2CdfZ7GS4KEfmH9RMcQRtHF91jrWqIjWIS/ox7L62/Eb8VvwO/qVtFxiGxSn7M7sOrcCbzm3gw6jX2NDrULaoe67nVFxxBG0cUX4e+KDuE+omOYjSTJ+F/Ycex1fQct4+dBMhaLjkRk0xwNhRh9dB3WJGdjoFek3Wz/e6LhE6IjCCXJsiyLDiHS+uNJeHlBtOgY9+yJoGsYp54H59SjoqMQ2a0TIZGY7OuLmOwLoqPcNX+dPzY+thEalSKPZgOg0OP4btSzSQAC3Z1wLds2j+lr6paHWQGrUDthDSQo+jsMkcU1SzyO+YnAukZdMU2Vg2sFKaIj3bHBDQYruvQAhQ91AoBGrcLQtnVEx7hjLhojfq2/E2ukMaiTsJqlR1SD+p3ZjtWxp/CKezPo1E6i41SbRtJgcP3BomMIp/jiA4Ch7WpDq7adsft368YixvtDdImfBak4T3QcIkVy0hfg5aPrsDolFw/ZyPF/UbWjEODCK1Ww+AD4uzmhV1PrP3F1L990xITOxCvXx0GbfVl0HCICEJB1FZOi1+E3vSeau4eLjnNLQxoOER3BKih+55ZS+y6m4ckf94mOUak6ukL8WGsjGiYs5RlXiKyYDOmf7X9ZuF5gXdeyrONWB2seWQNJsv41U0vjGt8/HgjzQcMAN9ExytGqZMyIOIztTm+jUfwfLD0iKydBRv8z27D6/Bm84hFpVdv/hjQcwtL7B4vvBk8/YD07uTwXEo/jgRMxIGEqVAXpouMQ0R3QFefj5Zi1WJWah35WsP1Pp9FhUPggoRmsCYvvBo+2qgUPnVZohjYeOdgXPgcfpb0Hp/QzQrMQ0b0JzEzE5Oh1mG/wRHP3MGE5HmvwGDydPIXN39pwG99Nvt4ci2mbz9X4fH0c9Pi+7g60SVoIyWCbxxQSUdVkSFjT+EFMRyaSC2tu+5+j2hHrH10PP2e/GpunteMa301GdQqFu1PNHtw5sd5JHHB/H/fHz2bpEdkpCTIGnN6KNRfO4CWPSDipHWtkvo9EPMLSuwmL7ybuTlqM6livRub1aEAyTtSZiuFJn0Gdm1Qj8yQisXTF+Xg1Zi1Wpxagr1czi85Lq9LiucjnLDoPW8Tiq8SznerBzYJrfQ1cCrCt/mJMzXoTrsmHLTYfIrJegZkJ+CJ6HeYbfNDM3TJftgeGD0Sgi/Ufo1zTuI2vClM3ncWMrefNOk0XtQkzwvbhwetzIRXnmnXaRGS7ZEhY3fhBfI0MJBemmWWaGkmD1Y+sRi03+7z82r3gGl8VnutUD66O5lvre7PORcT4foxu8TNZekRUjgQZA09vxeoL5/CiRyQczbD9r39Yf5ZeFVh8VfB0dsAzHe79Qo1dvTNwuN73eCP5Q2izLpohGRHZK+fiPLwesxar0wrRx6vpXU9HLanxQvMXzJjMvrD4buH5TmFwcVDf1XODnIqxpv5azCl8Az5Jf5s5GRHZs6CMeEyJXo9fDT5oehfb/3qH9lb0FdZvh9v4buN/68/g+x3Vv+ikWjJhSthRPJw+ByorO1cfEdkeGRJWNe6Gr5GGlMLbn8VJJanw58A/Ee5p3SfMFolrfLfxYpcwuFVzW9+I4Ks4ETwJjyZOYekRkVlIkDHo9BasuXgeL1Rj+98jEY+w9G6Da3zVMGv7BUzeUPXpw1p55GKG758ISdxQg6mISIkSvevgq9Cm2JRxssJ9Oo0O6x5dB1+dr4BktoNrfNXwbKdQ1PLSVbjdQ2vAovrbsMz4BkuPiGpESPoVTI1ej7lGPzR2Cy1336hmo1h61cA1vmpac+wqXlt4pOz3j+udxojc2dDkJApMRURKZpJUWNm4G74xpUKl1mDNI2ug01T8kk7lsfjuwGOz9iAwPxaf6+bDPfmg6DhERACAfEdXXBr8A5o2eEh0FJvA4rsDaYkX4f3L/ZBMBtFRiIj+FdIGeH4zwAvNVgu38d0Bn5AwSC2GiY5BRHQDCej3BUvvDrD47lT38QAv6EhE1qLFU0BIa9EpbAqL7065+ADdPhSdgogIcPQAeowXncLmsPjuRptngcBI0SmISOm6fQi48iKzd4rFdzdUauChrwHp7s7jSUR0z+p2BNryRNR3g8V3t2q1Bjr+n+gURKREWmdg4Azu0HKXWHz3out/Af8molMQkdJ0+wjw4fk47xaL715oHICHvwNU5rtgLRHRLdVpD7R7SXQKm8biu1fBLYFOb4pOQURKoNEBg74FVPzTfS+49Myhy7tAQDPRKYjI3nX7gEOcZsDiM4eyIU+t6CRkQbMOFqP5rFy4T8qG+6RstP8lD+tj9WX3j15dgPBvcqD7LBt+U3IwaFE+zqQaqz39l9YUQPokG9P3FZXdVmSQMXx5AdwnZaPBjFxsvlj+dHlTdhfh9XUF9/7iyPrVags88KroFHaBxWcuQfcBnd8SnYIsqJa7hP/1cMThF11w6EUXdAtVY9CiApxMLim31sFqzBmkw+lXXbHxaWfIMtBrfj6MptufDnf5aT32JRgR7FZ+L70fD+tx+KoRe59zwYuttRi2rAClp9e9lGHCT9F6fNbdyfwvlqyLxumfL9f8k20OXIrm1OVtILC56BRkIQMaatGvvhb1fdRo4KPGZ92d4OoA7EsoKb4XWzugS10NQj1VaBWkxqfdHBGfLSMu89bFl5htwuvrC7HgUR20N30iT6caMbChBk391Xj1fgek5MtIzS+Z3strCzC5hyPcHblLu93r9iHgW190CrvB4jMntRZ45IeSDdBk14wmGYtO6JGnB9rXrngig7xiGXOO6FHPU0Jtj6qLySSXDGW+08EBTf0rTue+ADV2XTGiQC9j4wUDglwl+DpLWHBMDyeNhEcac3jd7tXvDbR/TXQKu8L98M0toAnQfyqw8hXRScgCjl83ov0veSg0AK4OwPIndGji929hfXewGO/+VYg8PdDQR4W/hrvAQV118U3eVQyNCvi/dg6V3v9sSy2OXTeiyXe58HWWsPhxHTIKgY+3F2L7My74cGshFp3QI9xbhdkDdQhx53dZu+JRB3jkex6obma8Hp+lrHodiP5VdAoys2KjjCtZMrIKZSw9pcfPR/TYMdK5rPyyCmUk55mQlCvjyz3FSMwxYfezLnDSVPzDdfiqEf0X5iN6tAuC3UoKK3R6DsY84IAxDzhWmWHUygK0CFChnpcK/91ShP3Pu+CL3UU4kWLCsiHOlnnhVPPUDsCzG3jlBQtg8VmKvhCY3QtIOio6CVlQj1/zEO6lwg8DKg5vFxtleE3Owc8DdBgaWXFIcvq+IvxnYxFUN3SiUQZUElDbXULcGLcKz9l2yYD3Nhdi73MueOevImhUwBc9nXAy2Yguc/OR9m7F55CN6jsFaPei6BR2iUOdlqJ1Aob8CvwQBRRmik5DFmKSgaIqjliQ5ZKfImPl3y2HN9eiR1j5j2Dv3/IxvLkWo1pULMpCg4xX15XsBKNWSTCaSqYPAHoTqrX3KNmIpo+w9CyIGwQsySu0ZGcXcHzeHozdXIi/LxsQl2nC8etGjN1ciO1xRjwVqcXFDBMm7SzC4atGXMkyYU+8AY8vKYBOK6Ff/X/LrdHMXCw/XXLsn4+zCs381eV+tCog0FVCQ9+KO7pM3FGEfvU1aBlUcl/HOmr8eUaPY9eNmHmgGB3r8HusXfCJKDkBNVkMPymW1rBPySnNdn0lOgndo+Q8GSOWFyApV4aHo4TmASpsfNoZPcM1uJpjws4rRkzfX4yMAhkBrhK61FVjz7PO8Hf59/vl2TQTsorufM3sRLIRi08ZEDPapey2x5posD1Og85z8tDQR4WFg7l9z+ZpnYEh8wFHDllbErfx1QSTEZj/MHDpb9FJiMiaPTwLaDFMdAq7x6HOmqBSA4NnA25BopMQkbVqPZKlV0NYfDXF1Q944jce3E5EFYV3A/pNFZ1CMVh8NalWG2Dwz4DExU5E/whoVrIHuJq7XNQU/gWuaY0fAvp+IToFEVkDt2Bg2GLuzFLDWHwitH0B6PB/olMQkUgObsBTiwGPENFJFIfFJ0rPCUCzwaJTEJEIKg0wZB4QGCk6iSKx+ESRJODh74HQzqKTEFFNe2gaENFddArFYvGJpHEo2dPTr7HoJERUUzq/DbQaITqForH4RNN5Ak8t4TF+REoQOQTo/pHoFIrH4rMGnrVLys/RQ3QSIrKURg8BD38nOgWBxWc9AiOBEcsBJ5Yfkd1p2B94fC6grnjVDap5LD5rEtIaGL6C5UdkTxr2K9mDk6VnNVh81iakFcuPyF406AM8ztKzNiw+axTSChixEnDyFJ2EiO5W/d4llxjSOIhOQjdh8Vmr4JYsPyJbFdETeIKlZ61YfNYsuAXLj8jWhHcHnlwAaBxFJ6EqsPisXXAL4JlVgM5LdBIiup3wbsCTC1l6Vo7FZwuC7gNGrAJc/EUnIaKqNHsMGPoHoHUSnYRuQ5JlWRYdgqopIw5Y8DiQek50EiK6Ucc3gB6flJyDl6wei8/WFGQAvw8DruwRnYSIJFXJ9TXbviA6Cd0BFp8tMhQBK14GTiwTnYRIuTQ6YPDPJReXJpvC4rNVsgxsHgfs/lp0EiLl0XkDw/4AarcVnYTuAovP1h38BVj3DiAbRSchUgavUOCpZYBvhOgkdJdYfPbg3EZgyShAnyc6CZF9C24JDFsCuPqJTkL3gMVnL64eARY+CeReE52EyD41fRQYNBNwcBGdhO4Ri8+e5FwDlj4LXN4tOgmR/VBpgV4TgQdeFp2EzITFZ29MRmDLhH92euE/LdE9cQsuuY5enXaik5AZsfjs1dn1wPKXgMJM0UmIbFO9LsDg2dyeZ4dYfPYs4zKweASQFCM6CZENkYBOY4BuHwEqtegwZAEsPntnKAI2vA8cmi06CZH1c/IAHv4eaNRPdBKyIBafUhxbDKwew0MeiKoSGFly4VjveqKTkIWx+JQk+QywdBSQfEp0EiLrIamAB14pGdrklRUUgcWnNIZiYMdkYPd0wGQQnYZILO9w4OFZ3GtTYVh8SnX1CLDiVSD5pOgkRAJIQLvRQPdxgIOz6DBUw1h8SmYoBv7+Atg1jWt/pBxeocCgb4HQTqKTkCAsPgKuxgArXwWunxCdhMiCJKDNsyVnYeFpxxSNxUcljHpgxxfArq+49kf2x6MOMGgGENZVdBKyAiw+Ki/paMm2v+vHRSchuneSGrj/eaD7R4Cjm+g0ZCVYfFSRyQgc/BnY9jlPeUa2q04HoN8UILCZ6CRkZVh8VLW8NGDLJ8CR+YBsEp2GqHpcA4CeE4H7nhCdhKwUi49u7+oRYP17QPx+0UmIqqZ2BB54Cej8NuDkLjoNWTEWH1XfyeXA5vFARpzoJETlNR4I9JzA041RtbD46M4YioH93wM7vwQKs0SnIaULagH0/hwI7Sg6CdkQFh/dnfx0YOfUkqs+6PNFpyGlCYgEot4FGg8AJEl0GrIxLD66N3mpwJ5vgIO/AMW5otOQvQuMBKLeAxo9xMKju8biI/PITwf2fQfs/xEo4hAomVlgc6Dr+0DDfiw8umcsPjKvgkxg/w8lJchjAOleBd0HRL3PC8OSWbH4yDKKcoADPwJ7vwXy00SnIVsT3LKk8Br2EZ2E7BCLjyyrOA+Ing8c+gVIPSc6DVkzlRZoMhC4/wWgbnvRaciOsfio5lz6u2QnmDNrAZNedBqyFm7BQJtRQKtnALcA0WlIAVh8VPNyrgHRvwKH5wLZiaLTkCihnYG2LwAN+wNqjeg0pCAsPhLHZATObShZC7ywFQDfinbPwQ2478mSKyb4NxKdhhSKxUfWIe1CyRrgiT+B7ATRacicJDVQrwvQ7FGg6SO8PBAJx+Ij6yLLQPyBkvOCnloJ5FwVnYjuhqQC6rQvKbvGgwBXP9GJiMqw+Mh6yTJwZR9w8k/g1Cog95roRHQ7IW2AZoOBpg8D7sGi0xBVisVHtsFkAq7s+WdNcBWQlyw6EZUKbF4yhNnsUcArVHQaotti8ZHtMZmAhAPAhW3Axe1A4iHAZBCdSjlcA4CwB4HwB4GwroBboOhERHeExUe2rygXuLy7pAQvbgeST4lOZF80OqBuh5KiC+8GBDQVnYjonrD4yP7kXAcu7QAu7igpQu4lemdUWiCwWcmemOHdSnZS0TiKTkVkNiw+sn9ZiUBSDJB09N+fnCTRqayDSgP4NQaCW5ScHzO4BRDQjEVHdo3FR8qUc/2GIowp+W9WvOhUliWpAb+G/xTcPz8BzQCtk+hkRDWKxUdUKj+95ETaGZeBzMvl/5udCMhG0QlvT+sMeNYFvOsBXvVK9rL0/ue/nnW4JkcEFh9R9Rj1JWuEN5Zh7nWgMOufn8x//78oB5BN5pu3SgvoPAGdF+D0z39Lf9d5lxRaablxD0ui22LxEZmbyQQUZd9QilmAPr+kDGVTyTlKS/9fUpVsZ1Op//2v2gFw8vi36BxdRb8iIrvC4iMiIkVRiQ5ARERUk1h8RESkKCw+IiJSFBYfEREpCouPiIgUhcVHRESKwuIjIiJFYfEREZGisPiIFKJr164YM2ZM2e+hoaGYPn26sDxEomhEByAiMQ4ePAgXFxfRMYhqHIuPSKH8/PxERyASgkOdRIJ17doVr7/+OsaMGQMvLy8EBATgp59+Ql5eHkaNGgU3NzdERERg/fr1Zc85ceIE+vbtC1dXVwQEBGD48OFITU0tuz8vLw8jRoyAq6srgoKCMHXq1ArzvXGoMy4uDpIkISYmpuz+zMxMSJKE7du3AwC2b98OSZKwceNGtGzZEjqdDt26dUNycjLWr1+Pxo0bw93dHcOGDUN+fr5FlhWRObD4iKzAvHnz4OvriwMHDuD111/Hyy+/jMcffxwdOnRAdHQ0evXqheHDhyM/Px+ZmZno1q0bWrZsiUOHDmHDhg24fv06hgwZUja9d955Bzt27MDKlSuxadMmbN++HdHR0WbJOn78eMycORN79uxBfHw8hgwZgunTp2PhwoVYu3YtNm3ahBkzZphlXkQWIRORUFFRUXKnTp3KfjcYDLKLi4s8fPjwstuSkpJkAPLevXvliRMnyr169So3jfj4eBmAfPbsWTknJ0d2cHCQFy9eXHZ/WlqarNPp5DfeeKPstrp168rTpk2TZVmWL126JAOQjxw5UnZ/RkaGDEDetm2bLMuyvG3bNhmAvHnz5rLHTJo0SQYgX7hwoey20aNHy717976XRUJkUdzGR2QFmjdvXvb/arUaPj4+iIyMLLstICAAAJCcnIyjR49i27ZtcHWteJ2+CxcuoKCgAMXFxWjXrl3Z7d7e3mjYsKHZswYEBMDZ2RlhYWHlbjtw4IBZ5kVkCSw+Iiug1WrL/S5JUrnbJEkCAJhMJuTm5mLAgAGYPHlyhekEBQXh/Pnzdzx/lapkq4d8w+U59Xr9bbPenLP0NpPJjFegJzIzbuMjsjGtWrXCyZMnERoaioiIiHI/Li4uCA8Ph1arxf79+8uek5GRgXPnzlU5zdI9PJOSkspuu3FHFyJ7wuIjsjGvvvoq0tPTMXToUBw8eBAXLlzAxo0bMWrUKBiNRri6uuK5557DO++8g61bt+LEiRMYOXJk2VpdZXQ6HR544AH873//w+nTp7Fjxw58+OGHNfiqiGoOi4/IxgQHB2P37t0wGo3o1asXIiMjMWbMGHh6epaV25QpU9C5c2cMGDAAPXr0QKdOndC6detbTnf27NkwGAxo3bo1xowZg08//bQmXg5RjZPkGwf1iYiI7BzX+IiISFFYfEREpCgsPiIiUhQWHxERKQqLj4iIFIXFR0REisLiIyIiRWHxERGRorD4iIhIUVh8RESkKCw+IiJSFBYfEREpCouPiIgUhcVHRESKwuIjIiJFYfEREZGisPiIiEhRWHxERKQoLD4iIlIUFh8RESkKi4+IiBSFxUdERIrC4iMiIkVh8RERkaKw+IiISFFYfEREpCgsPiIiUhQWHxERKQqLj4iIFIXFR0REisLiIyIiRfl/BefznqDSyfsAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 1500x500 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"df_train, df_val, df_test = split_stratified_into_train_val_test(\n",
" df_oversampled,\n",
" stratify_colname=\"salary_category\", \n",
" frac_train=0.60, \n",
" frac_val=0.20, \n",
" frac_test=0.20\n",
")\n",
"\n",
"print('Тренировочная выборка')\n",
"visualize_balance(df_train, 'salary_category')\n",
"print('Контрольная выборка')\n",
"visualize_balance(df_val, 'salary_category')\n",
"print('Тестовая выборка')\n",
"visualize_balance(df_test, 'salary_category')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Датасет 2. Анализ продаж филиалов супермаркетов\n",
"https://www.kaggle.com/datasets/surajjha101/stores-area-and-sales-data\n",
"## Анализ сведений о датасете\n",
"\n",
"### **Проблемная область** \n",
"Датасет описывает производственные и экономические характеристики магазинов супермаркетов с целью анализа их деятельности и выявления факторов, влияющих на прибыльность. Задачи включают:\n",
"- Оценку производительности магазинов;\n",
"- Поиск факторов, которые могут улучшить прибыль и эффективность;\n",
"- Определение взаимосвязи между различными характеристиками магазинов.\n",
"\n",
"### **Актуальность** \n",
"Анализ эффективности супермаркетов актуален в сфере розничной торговли, поскольку помогает:\n",
"- Повышать прибыльность магазинов;\n",
"- Улучшать распределение ресурсов (например, товаров или пространства);\n",
"- Оптимизировать маркетинговые и операционные стратегии;\n",
"- Оценивать влияние внешних факторов (например, площади магазина или ассортимента товаров) на продажи.\n",
"\n",
"### **Объекты наблюдений** \n",
"Объектами наблюдения являются **магазины супермаркетов**, каждый из которых представлен в датасете через уникальный идентификатор (Store ID). Для каждого магазина представлены различные параметры, которые отражают его физическую структуру и экономическую деятельность.\n",
"\n",
"### **Атрибуты объектов** \n",
"Каждое наблюдение (магазин) имеет следующие атрибуты:\n",
"- **Store ID** — уникальный идентификатор магазина (индекс);\n",
"- **Store_Area** — физическая площадь магазина в квадратных ярдах (меряет размер магазина);\n",
"- **Items_Available** — количество различных товаров, доступных в магазине (ассортимент);\n",
"- **Daily_Customer_Count** — среднее количество клиентов, посещающих магазин ежедневно (популярность);\n",
"- **Store_Sales** — объем продаж магазина в долларах США (экономическая эффективность).\n",
"\n",
"### **Связь между объектами** \n",
"Связь между атрибутами объектов (магазинов) может быть следующей:\n",
"- **Store_Area ↔ Items_Available**: Большее количество товаров может требовать большей площади для их размещения.\n",
"- **Store_Area ↔ Store_Sales**: Большая площадь магазина может свидетельствовать о большем объеме продаж, поскольку позволяет разместить больше товаров и обслуживать больше клиентов.\n",
"- **Items_Available ↔ Daily_Customer_Count**: Магазины с большим ассортиментом товаров могут привлекать больше клиентов, особенно если товары соответствуют потребительским ожиданиям.\n",
"- **Daily_Customer_Count ↔ Store_Sales**: Прямая зависимость — большее количество клиентов может привести к большему объему продаж.\n",
"\n",
"Для дальнейшего анализа можно использовать корреляционные методы, чтобы понять, как различные факторы (площадь, ассортимент, количество клиентов) влияют на продажи.\n",
"\n",
"### Качество набора данных\n",
"\n",
"1. **Информативность**: \n",
" Датасет содержит несколько ключевых атрибутов, которые отражают как физические характеристики магазинов, так и их экономическую эффективность. Эти атрибуты (площадь, ассортимент товаров, количество клиентов и продажи) достаточно информативны для начального анализа производительности супермаркетов.\n",
"\n",
"2. **Степень покрытия**: \n",
" Датасет охватывает информацию по нескольким магазинам компании, однако он может не быть репрезентативным для всей розничной сети, так как данные собраны только для определенных магазинов с их уникальными характеристиками. Это может ограничить выводы, если не все магазины покрыты в данных.\n",
"\n",
"3. **Соответствие реальным данным**: \n",
" Данные, представленные в датасете, соответствуют реальной практической ситуации, поскольку информация о площади магазинов, количестве товаров и клиентском потоке довольно типична для анализа розничных торговых точек.\n",
"\n",
"4. **Согласованность меток**: \n",
" Метки данных (например, Store ID, Store_Area, Items_Available и т.д.) хорошо согласованы и имеют понятные и логичные наименования. Однако для полной уверенности в корректности данных потребуется проверка на наличие пропусков или аномалий (например, если площадь магазина или количество товаров кажется необычно низким или высоким).\n",
"\n",
"### Бизнес цели, которые может решить датасет:\n",
"\n",
"1. **Оптимизация ассортимента товаров и пространства** \n",
" **Цель**: Разработать стратегию по оптимальному размещению товаров и выбору ассортимента в зависимости от площади магазина и его клиентской базы. \n",
" **Эффект на бизнес**: Поможет увеличить продажи путем улучшения доступности популярных товаров и оптимизации использования пространства в магазинах. \n",
" \n",
" **Цели технического проекта**:\n",
" - **Входные данные**: Площадь магазина, количество товаров, ежедневное количество клиентов.\n",
" - **Целевой признак**: Объем продаж (Store_Sales).\n",
"\n",
"2. **Увеличение продаж через улучшение привлечения клиентов** \n",
" **Цель**: Разработать стратегию по увеличению потока клиентов в магазины на основе текущего количества покупателей и их корреляции с объемом продаж. \n",
" **Эффект на бизнес**: Увеличение количества клиентов может прямо повлиять на рост продаж и прибыльность, особенно если будет применена стратегия привлечения дополнительного потока потребителей. \n",
" \n",
" **Цели технического проекта**:\n",
" - **Входные данные**: Количество товаров в магазине, площадь магазина, среднее количество клиентов.\n",
" - **Целевой признак**: Объем продаж (Store_Sales).\n",
"\n",
"3. **Предсказание и управление производительностью магазинов** \n",
" **Цель**: Оценить, какие факторы (площадь, ассортимент, количество клиентов) влияют на эффективность магазина и как прогнозировать его продажи в будущем. \n",
" **Эффект на бизнес**: Ожидаемый результат — повышение точности прогнозов продаж и улучшение стратегического планирования для различных магазинов сети. \n",
" \n",
" **Цели технического проекта**:\n",
" - **Входные данные**: Площадь магазина, количество товаров, ежедневное количество клиентов.\n",
" - **Целевой признак**: Объем продаж (Store_Sales).\n",
"\n",
"### Примеры целей технического проекта для каждой бизнес-цели:\n",
"\n",
"1. **Оптимизация ассортимента товаров и пространства**\n",
" - **Задача**: Построить модель, которая на основе площади магазина и ассортимента товаров будет предсказывать оптимальный объем продаж.\n",
" - **Вход**: Площадь магазина (Store_Area), Количество товаров (Items_Available).\n",
" - **Цель**: Прогнозировать объем продаж (Store_Sales).\n",
"\n",
"2. **Увеличение продаж через улучшение привлечения клиентов**\n",
" - **Задача**: Разработать алгоритм, который будет анализировать связи между количеством клиентов и продажами для оценки эффективности маркетинговых усилий.\n",
" - **Вход**: Среднее количество клиентов (Daily_Customer_Count), Количество товаров (Items_Available), Площадь магазина (Store_Area).\n",
" - **Цель**: Прогнозировать объем продаж (Store_Sales).\n",
"\n",
"3. **Предсказание и управление производительностью магазинов**\n",
" - **Задача**: Построить модель для предсказания объемов продаж на основе характеристик магазинов, чтобы заранее прогнозировать производительность и принимать меры по улучшению результатов.\n",
" - **Вход**: Площадь магазина (Store_Area), Среднее количество клиентов (Daily_Customer_Count), Количество товаров (Items_Available).\n",
" - **Цель**: Прогнозировать объем продаж (Store_Sales)."
]
},
{
"cell_type": "code",
"execution_count": 171,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 896 entries, 0 to 895\n",
"Data columns (total 5 columns):\n",
" # Column Non-Null Count Dtype\n",
"--- ------ -------------- -----\n",
" 0 Store ID 896 non-null int64\n",
" 1 Store_Area 896 non-null int64\n",
" 2 Items_Available 896 non-null int64\n",
" 3 Daily_Customer_Count 896 non-null int64\n",
" 4 Store_Sales 896 non-null int64\n",
"dtypes: int64(5)\n",
"memory usage: 35.1 KB\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>count</th>\n",
" <th>mean</th>\n",
" <th>std</th>\n",
" <th>min</th>\n",
" <th>25%</th>\n",
" <th>50%</th>\n",
" <th>75%</th>\n",
" <th>max</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Store ID</th>\n",
" <td>896.0</td>\n",
" <td>448.500000</td>\n",
" <td>258.797218</td>\n",
" <td>1.0</td>\n",
" <td>224.75</td>\n",
" <td>448.5</td>\n",
" <td>672.25</td>\n",
" <td>896.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store_Area</th>\n",
" <td>896.0</td>\n",
" <td>1485.409598</td>\n",
" <td>250.237011</td>\n",
" <td>775.0</td>\n",
" <td>1316.75</td>\n",
" <td>1477.0</td>\n",
" <td>1653.50</td>\n",
" <td>2229.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Items_Available</th>\n",
" <td>896.0</td>\n",
" <td>1782.035714</td>\n",
" <td>299.872053</td>\n",
" <td>932.0</td>\n",
" <td>1575.50</td>\n",
" <td>1773.5</td>\n",
" <td>1982.75</td>\n",
" <td>2667.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Daily_Customer_Count</th>\n",
" <td>896.0</td>\n",
" <td>786.350446</td>\n",
" <td>265.389281</td>\n",
" <td>10.0</td>\n",
" <td>600.00</td>\n",
" <td>780.0</td>\n",
" <td>970.00</td>\n",
" <td>1560.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store_Sales</th>\n",
" <td>896.0</td>\n",
" <td>59351.305804</td>\n",
" <td>17190.741895</td>\n",
" <td>14920.0</td>\n",
" <td>46530.00</td>\n",
" <td>58605.0</td>\n",
" <td>71872.50</td>\n",
" <td>116320.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" count mean std min 25% \\\n",
"Store ID 896.0 448.500000 258.797218 1.0 224.75 \n",
"Store_Area 896.0 1485.409598 250.237011 775.0 1316.75 \n",
"Items_Available 896.0 1782.035714 299.872053 932.0 1575.50 \n",
"Daily_Customer_Count 896.0 786.350446 265.389281 10.0 600.00 \n",
"Store_Sales 896.0 59351.305804 17190.741895 14920.0 46530.00 \n",
"\n",
" 50% 75% max \n",
"Store ID 448.5 672.25 896.0 \n",
"Store_Area 1477.0 1653.50 2229.0 \n",
"Items_Available 1773.5 1982.75 2667.0 \n",
"Daily_Customer_Count 780.0 970.00 1560.0 \n",
"Store_Sales 58605.0 71872.50 116320.0 "
]
},
"execution_count": 171,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.read_csv('csv/9.Stores.csv')\n",
"df.info()\n",
"df.describe().transpose()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Удалим колонку с ID магазинов, она нам вряд ли понадобится"
]
},
{
"cell_type": "code",
"execution_count": 192,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 896 entries, 0 to 895\n",
"Data columns (total 4 columns):\n",
" # Column Non-Null Count Dtype\n",
"--- ------ -------------- -----\n",
" 0 Store_Area 896 non-null int64\n",
" 1 Items_Available 896 non-null int64\n",
" 2 Daily_Customer_Count 896 non-null int64\n",
" 3 Store_Sales 896 non-null int64\n",
"dtypes: int64(4)\n",
"memory usage: 28.1 KB\n"
]
}
],
"source": [
"if \"Store ID \" in df.columns:\n",
" df = df.drop(columns=[\"Store ID \"])\n",
"\n",
"df.info()"
]
},
{
"cell_type": "code",
"execution_count": 193,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Присутствуют ли пустые значения признаков в колонке:\n",
"Store_Area False\n",
"Items_Available False\n",
"Daily_Customer_Count False\n",
"Store_Sales False\n",
"dtype: bool \n",
"\n"
]
}
],
"source": [
"check_null_columns(df)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Проверим на наличие выбросов"
]
},
{
"cell_type": "code",
"execution_count": 194,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Колонка Store_Area:\n",
"\tЕсть выбросы: Да\n",
"\tКоличество выбросов: 5\n",
"\tМинимальное значение: 775\n",
"\tМаксимальное значение: 2229\n",
"\t1-й квартиль (Q1): 1316.75\n",
"\t3-й квартиль (Q3): 1653.5\n",
"\n",
"Колонка Items_Available:\n",
"\tЕсть выбросы: Да\n",
"\tКоличество выбросов: 5\n",
"\tМинимальное значение: 932\n",
"\tМаксимальное значение: 2667\n",
"\t1-й квартиль (Q1): 1575.5\n",
"\t3-й квартиль (Q3): 1982.75\n",
"\n",
"Колонка Daily_Customer_Count:\n",
"\tЕсть выбросы: Да\n",
"\tКоличество выбросов: 3\n",
"\tМинимальное значение: 10\n",
"\tМаксимальное значение: 1560\n",
"\t1-й квартиль (Q1): 600.0\n",
"\t3-й квартиль (Q3): 970.0\n",
"\n",
"Колонка Store_Sales:\n",
"\tЕсть выбросы: Да\n",
"\tКоличество выбросов: 1\n",
"\tМинимальное значение: 14920\n",
"\tМаксимальное значение: 116320\n",
"\t1-й квартиль (Q1): 46530.0\n",
"\t3-й квартиль (Q3): 71872.5\n",
"\n"
]
}
],
"source": [
"columns_with_outliers = check_outliers(df)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Визуализируем выбросы"
]
},
{
"cell_type": "code",
"execution_count": 195,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABdMAAAPdCAYAAABhsvF2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxN1/7/8XcGGYQkgiRyRZLSSww1pC3RmipXEDNttWhUSmlQw1VXL4oOqZmqcnUQvaK3tGhLixRBK1TTpmqoUjG0mqDIaYKM+/dHf9lfRxKJIRLyej4e+8Fe67P3XuvknLPO+Zy917YxDMMQAAAAAAAAAAAolG1pNwAAAAAAAAAAgLKOZDoAAAAAAAAAAEUgmQ4AAAAAAAAAQBFIpgMAAAAAAAAAUASS6QAAAAAAAAAAFIFkOgAAAAAAAAAARSCZDgAAAAAAAABAEUimAwAAAAAAAABQBJLpAAAAAAAAAAAUgWQ6AAAAAKBYBg4cKH9/f6syGxsbTZky5br3FR0dLRsbG3377bdFxrZt21Zt27a97mMAAErX1WNE3nv/sWPHSq1NwM0gmV6OfPTRR7KxsSlwadiwYWk3Dyg32rZtq4EDB0r66wvp1V8M09LS9NJLL6lhw4ZycXFR1apV1aRJEz3//PM6deqUGff555/f0BfX0vTggw/KxsZGixYtKu2maMqUKWYyIO8DHVBcjKlA2VDUmGpjY6Phw4eb66dOndKUKVOUmJh4+xpZwi5cuCAnJyfZ2Njo4MGDpd2cMsnf39/8zHTlcwYlj/ESKBuKM17mLfb29vLw8FBQUJCef/55HThw4PY3+CYlJiaqf//+8vX1laOjozw8PBQSEqKlS5cqJyenRI751ltvKTo6ukT2XRb98ssvevbZZ3XPPffIyclJrq6ueuihhzR//nxdunSptJsnqfC/SVxcnPmDzrFjx2RjY6O4uLhi79f+1jURd4oXX3xRgYGB5vqrr75aiq0BcKWsrCy1bt1aP/30k8LDwzVixAilpaVp//79WrFihXr27CkfHx9JfyXTFy5ceMck1A8fPqw9e/bI399fMTExGjZsWGk3CbhpjKnAneXUqVOaOnWq/P391aRJk9Juzi2xatUq2djYyNvbWzExMXrllVdK9Hhvv/22cnNzS/QYuPswXgJl3z/+8Q899dRTMgxDqamp+uGHH7Rs2TK99dZbmj59usaMGXND+7106ZLs7W9f+vGdd97R0KFD5eXlpQEDBujee+/Vn3/+qc2bNysiIkK///67XnzxxVt+3LfeekvVqlUrFz/Yrl+/Xo8++qgcHR311FNPqWHDhsrMzNRXX32lcePGaf/+/VqyZElpN7PE/iYk08uhf/zjH1a/Qr7zzjs6e/Zs6TUIgGnt2rX6/vvvFRMToyeffNKq7vLly8rMzCzR4+fm5iozM1NOTk63fN/Lly+Xp6enZs+erT59+ujYsWP5LhMvSHp6ulxcXG55e4BbgTEVQGlbvny5OnfuLD8/P61YsaLEk+kVKlQo0f3j7sR4CZR9f//739W/f3+rstdff11du3bV2LFjVa9ePXXu3Pm691sS3y0Ls2vXLg0dOlTBwcH6/PPPVblyZbNu1KhR+vbbb7Vv377b1p47ycWLF1WxYsUi45KSktS3b1/5+flpy5YtqlGjhlkXGRmpI0eOaP369SXZ1FLHNC/lSF4Szta26D97QXNY5ebm6r777pONjY3VZRJ79+7VwIEDzUs7vL29NWjQIP3xxx9W+5wyZUqBl/dd+Qtl27Zt1bBhQyUkJKhly5ZydnZWQECAFi9enK8vkydPVlBQkNzc3OTi4qJWrVpp69atVnF5l2vY2Nho7dq1VnWXL19WlSpVZGNjo1mzZuVrp6enp7Kysqy2+eCDD8z9Xfnh75NPPlFYWJh8fHzk6Oio2rVr6+WXXy7W5UN5x/vpp5/02GOPydXVVVWrVtXzzz+vy5cvW8UuXbpUjzzyiDw9PeXo6Kj69esXOF1G9+7d5e/vLycnJ3l6eqpbt2768ccfrWLy+jFv3rx829erVy/fZdHnzp3TP//5TzVq1EiVKlWSq6urOnXqpB9++MFq2/DwcDk5OeW7zDg0NFRVqlSxmqbk6NGjevTRR+Xh4aGKFSuqRYsW+d508y6/yVscHR3197//XVFRUTIM49oP7v9X2HOvoHk3r3zOXL1c6fTp04qIiFCtWrVkZ2dnxlSqVKlYbSrML7/8Ikl66KGH8tXlXTol/XVp3sKFCyWpwDamp6dr7Nix5mVtdevW1axZs/I9Znl/55iYGDVo0ECOjo7asGGDJOm3337ToEGD5OXlJUdHRzVo0EDvvffeDfdtxYoV6tOnj7p06SI3NzetWLEiX0ze3+rAgQN68sknVaVKFT388MNm/fLlyxUUFCRnZ2d5eHiob9++OnnypNU+duzYoUcffVS1atWSo6OjfH19NXr06DJzqRnuDoypa63qGFMZU8vimHq1uLg4PfDAA5Kkp59+2jzOla/B3bt3q2PHjnJzc1PFihXVpk0bff311wU+Bj///LP69+8vNzc3Va9eXZMmTZJhGDp58qS6d+8uV1dXeXt7a/bs2fnasmDBAjVo0EAVK1ZUlSpVdP/99xc4LhblxIkT2rFjh/r27au+ffsqKSlJO3fuNOuHDx+uSpUq6eLFi/m2feKJJ+Tt7W2+tor72itozvSrHT9+XM8995zq1q0rZ2dnVa1aVY8++mih8+NevHhRzz77rKpWrSpXV1c99dRTOn/+fJH9z8jI0EsvvaQ6deqYY/4LL7ygjIyMIrfF7cF4udaqjvGS8fJOGC+vVLVqVf3vf/+Tvb291RUlxX09SEXfVyM8PFzVqlXL99yXpA4dOqhu3brFbu/UqVNlY2OjmJgYq0R6nvvvv988Sznv73z19B55f48r33OSk5P19NNPq2bNmnJ0dFSNGjXUvXt38/3K399f+/fv17Zt2wr8W1/P827lypWaOnWq/va3v6ly5crq06ePUlNTlZGRoVGjRsnT01OVKlXS008/XeB4V5zvzFe+77Vu3VoVK1Ys9tn6M2bMUFpamt59912rRHqeOnXq6PnnnzfXs7Oz9fLLL6t27dpydHSUv7+/XnzxxXxtL+x54u/vb3Vmed5Y8fXXX2vMmDGqXr26XFxc1LNnT505c8Zqu2v9TW4GZ6aXI3kfZBwdHW9o+//+97/5BkNJio2N1dGjR/X000/L29vbvJxj//792rVrV74BYNGiRVZv9ld/sDp//rw6d+6sxx57TE888YRWrlypYcOGycHBQYMGDZIkWSwWvfPOO3riiSc0ePBg/fnnn3r33XcVGhqqb775Jt9lu05OTlq6dKl69Ohhlq1evTrfB4Ur/fnnn1q3bp169uxpli1dulROTk75touOjlalSpU0ZswYVapUSVu2bNHkyZNlsVg0c+bMQo9xpccee0z+/v6KiorSrl279MYbb+j8+fN6//33rR67Bg0aqFu3brK3t9dnn32m5557Trm5uYqMjLTa35AhQ+Tt7a1Tp07pzTffVEhIiJKSkqx+acx7XEaNGmWW7dy5U8ePH8/XvqNHj2rt2rV69NFHFRAQoJSUFP3nP/9RmzZtdODAAXPqkfnz52vLli0KDw9XfHy87Ozs9J///EebNm3Sf//7XzMuJSVFLVu21MWLFzVy5EhVrVpVy5YtU7du3fTRRx9ZPe7S/10aeunSJX344Yd68cUX5enpqYiIiGI9vnmPX95zb8KECdeMHTJkiFq1aiXpr+fKmjVrrOrDw8P15ZdfasSIEWrcuLHs7Oy0ZMkSfffdd8VuT0H8/PwkSe+//74mTpyY7/WT59lnn9WpU6cUGxur//73v1Z1hmGoW7du2rp1qyIiItSkSRNt3LhR48aN02+//aa5c+daxW/ZskUrV67U8OHDVa1aNfn7+yslJUUtWrQwP9BWr15dX3zxhSIiImSxWKyeM8Wxe/duHTlyREuXLpWDg4N69eqlmJiYQgfsRx99VPfee69ee+018wPrq6++qkmTJumxxx7TM888ozNnzmjBggVq3bq1vv/+e7m7u0v663L3ixcvatiwYapataq++eYbLViwQL/++qtWrVp1Xe0GCsOYypjKmFr2x9SrBQYGatq0aZo8ebJVm1q2bCnpr/GwU6dOCgoK0ksvvSRbW1szibRjxw49+OCDVvt7/PHHFRgYqNdff13r16/XK6+8Ig8PD/3nP//RI488ounTpysmJkb//Oc/9cADD6h169aS/pomZeTIkerTp4+ZuNq7d692796d76q0onzwwQdycXFRly5d5OzsrNq1aysmJsbs0+OPP66FCxeal2PnuXjxoj777DMNHDhQdnZ2km7Nay/Pnj17tHPnTvXt21c1a9bUsWPHtGjRIrVt21YHDhzId+bb8OHD5e7urilTpujQoUNatGiRjh8/biYWCpKbm6tu3brpq6++0pAhQxQYGKgff/xRc+fO1c8//5wviYnSwXjJeMl4eeeNl1erVauW2rRpo61bt8piscjV1fW6Xw/XMmDAAL3//vvauHGjunTpYpYnJydry5Yteumll4q1n4sXL2rz5s1q3bq1atWqdb3dvKbevXtr//79GjFihPz9/XX69GnFxsbqxIkT8vf317x58zRixAhVqlRJ//73vyVJXl5ekq7/eRcVFSVnZ2f961//0pEjR7RgwQJVqFBBtra2On/+vKZMmaJdu3YpOjpaAQEBmjx5srltcb8zS9Iff/yhTp06qW/fvurfv7/Z3qJ89tlnuueee8zPGkV55plntGzZMvXp00djx47V7t27FRUVpYMHD+Z7jl+PESNGqEqVKnrppZd07NgxzZs3T8OHD9eHH34oSdf8m9w0A+XGvHnzDEnGDz/8YFXepk0bo0GDBlZlS5cuNSQZSUlJhmEYxuXLl41atWoZnTp1MiQZS5cuNWMvXryY71gffPCBIcnYvn27WfbSSy8ZkowzZ84U2sY2bdoYkozZs2ebZRkZGUaTJk0MT09PIzMz0zAMw8jOzjYyMjKstj1//rzh5eVlDBo0yCxLSkoyJBlPPPGEYW9vbyQnJ5t17du3N5588klDkjFz5sx87XziiSeMLl26mOXHjx83bG1tjSeeeCJfPwp6DJ599lmjYsWKxuXLlwvt75XH69atm1X5c889l+/vVdBxQkNDjXvuueeax1i5cqUhyfj222/NMklGnz59DHt7e6vyiIgI83GJjIw0yy9fvmzk5ORY7TcpKclwdHQ0pk2bZlW+ceNGQ5LxyiuvGEePHjUqVapk9OjRwypm1KhRhiRjx44dZtmff/5pBAQEGP7+/uaxtm7dakgytm7datUWW1tb47nnnrtmv/O8+OKLhiTj7NmzZlmDBg2MNm3a5Is9fPiwIclYtmyZWZb3N8pz6dIlw9bW1nj22Wettg0PDzdcXFyK1abCXLx40ahbt64hyfDz8zMGDhxovPvuu0ZKSkq+2MjISKOgt/G1a9eaj/+V+vTpY9jY2BhHjhwxyyQZtra2xv79+61iIyIijBo1alg9ZoZhGH379jXc3NwKfC5ey/Dhww1fX18jNzfXMAzD2LRpkyHJ+P77763irnz9XenYsWOGnZ2d8eqrr1qV//jjj4a9vb1VeUFti4qKMmxsbIzjx49fV7uBwjCmMqYyppb9MdUwjHyP/Z49e/K97gzDMHJzc417773XCA0NNccqw/jreRIQEGD84x//yNeHIUOGmGXZ2dlGzZo1DRsbG+P11183y8+fP284Ozsb4eHhZln37t3zvU/cqEaNGhn9+vUz11988UWjWrVqRlZWltmvv/3tb0bv3r2ttst7Hl/5vlLc1154eLjh5+dnFSfJeOmll665r/j4eEOS8f7775tlee+PQUFB5nuSYRjGjBkzDEnGJ598Ypa1adPG6nn23//+17C1tbV63huGYSxevNiQZHz99df52oDbj/GS8ZLx8s4cL6/2/PPPWz03ivt6yNv3lWPE1a/1nJwco2bNmsbjjz9utd2cOXMMGxsb4+jRo8Xqww8//GBIMp5//vlixRf0dzaM/3sN573nnD9/Pt9rtiCF/X2v93nXsGFDqzHxiSeeMGxsbIxOnTpZ7Tc4ONhqPL6e78x573uLFy++Zp+ulpqaakgyunfvXqz4xMREQ5LxzDPPWJX/85//NCQZW7ZsMcuufp7k8fPzs/oclff8CQkJsfrMNnr0aMPOzs64cOGCWVbY3+RmMc1LOZJ3yVv16tWve9uFCxfqjz/+KPAXQWdnZ/P/ly9f1tmzZ9WiRQtJuqFfSO3t7fXss8+a6w4ODnr22Wd1+vRpJSQkSJLs7Ozk4OAg6a+zUs6dO6fs7Gzdf//9BR6zWbNmatCggXkG7/Hjx7V169Zr3oRg0KBB2rBhg5KTkyVJy5YtU3BwsP7+97/ni73yMfjzzz919uxZtWrVShcvXtRPP/1UrH5f/av+iBEjJP11k8mCjpOamqqzZ8+qTZs2Onr0qFJTU622v3jxos6ePavExES9/fbb8vLyytd2Ly8vhYWFaenSpeY2K1eu1NNPP52vfY6OjuYZHDk5Ofrjjz9UqVIl1a1bN99j3qFDBz377LOaNm2aevXqJScnJ/3nP/+xivn888/14IMPWk3hUalSJQ0ZMkTHjh3Ld8fwvP6eOHFCM2bMUG5urh555JECHsn88s7iKM5cbcU5eyY9PV25ubmqWrVqsY5/PZydnbV7926NGzdO0l9nnERERKhGjRoaMWJEsS5b/vzzz2VnZ6eRI0dalY8dO1aGYeiLL76wKm/Tpo3q169vrhuGoY8//lhdu3aVYRg6e/asuYSGhio1NfW6XtvZ2dn68MMP9fjjj5tnCeVdKhoTE1PgNkOHDrVaX716tXJzc/XYY49Ztcfb21v33nuv1eWEV75O0tPTdfbsWbVs2VKGYej7778vdruBa2FMZUxlTC37Y+r1SExM1OHDh/Xkk0/qjz/+MMeZ9PR0tW/fXtu3b893081nnnnG/L+dnZ3uv/9+GYZhdcaiu7u76tatq6NHj1qV/frrr9qzZ89NtXnv3r368ccf9cQTT5hlTzzxhM6ePauNGzdK+uuS6UcffVSff/650tLSzLgPP/xQf/vb36yeM7fitVfQvrKysvTHH3+oTp06cnd3L/B9ZciQIVZzsQ8bNkz29vZWr9mrrVq1SoGBgapXr57VZ4O853JBUw3g9mO8ZLxkvLw7xsu8s+v//PNPSdf/ergWW1tb9evXT59++qm5f0nmlVYBAQHF2o/FYpGkAqd3uRnOzs5ycHBQXFxcsaYgu9r1Pu+eeuopqzGxefPmMgzDvErmyvKTJ08qOztb0vV9Z5b+er4V9Lq7lut9jPPeS66+ee3YsWMl6abmVh8yZIjVVUitWrVSTk5OgVe53Gok08uR48ePy97e/ro/yKSmpuq1117TmDFjCrwk4ty5c3r++efl5eUlZ2dnVa9e3Xyzu3pwLQ4fH598NxvMG4CvnD9v2bJluu++++Tk5KSqVauqevXqWr9+faHHfPrpp80BOzo6Wi1bttS9995baDuaNGmihg0b6v3335dhGIqOji70jWb//v3q2bOn3Nzc5OrqqurVq5s37ijuY3B1W2rXri1bW1urPn/99dcKCQmRi4uL3N3dVb16dXOajKuPM23aNFWvXl1NmzbVsWPHFBcXV+Ab3tNPP60VK1YoIyNDq1atUpUqVQr8gJCbm6u5c+fq3nvvlaOjo6pVq6bq1atr7969BfZx1qxZ8vDwUGJiot544w15enpa1R8/frzAuc8CAwPN+iv16NFD1atXl5+fn6ZMmaKJEyeqd+/e+bYvyNmzZ1WhQoVi3UzjwoULknTNeeeqVq2qe++9V++88442bdqk06dP6+zZs7dsfk43NzfNmDFDx44d07Fjx/Tuu++qbt26evPNN/Xyyy8Xuf3x48fl4+OT7+9d2GN79YeTM2fO6MKFC1qyZImqV69uteS9Bk6fPl3s/mzatElnzpzRgw8+qCNHjujIkSNKSkpSu3bt9MEHH+RLThTUpsOHD8swDN1777352nTw4EGr9pw4cUIDBw6Uh4eHKlWqpOrVq6tNmzaSbuw9CSgIYypjKmPqnTGmFtfhw4cl/XUJ/dXjzDvvvKOMjIx8f5urLyF3c3OTk5OTqlWrlq/8yi/f48ePV6VKlfTggw/q3nvvVWRkZL552Ytj+fLlcnFx0T333GOOr05OTvL397f6sfrxxx/XpUuX9Omnn0qS0tLS9Pnnn+vRRx+1+hJ6K157eS5duqTJkyeb927Je45fuHChwH1d/ZqtVKmSatSoUegc69Jff7P9+/fn+3vlvcddz2cVlBzGS8ZLxsu7Y7zM+0H2yr/n9b4eruWpp57SpUuXzGk/Dh06pISEBA0YMKDY+8i7v9iVCflbwdHRUdOnT9cXX3whLy8vtW7dWjNmzDB/9CrK9T7vCvp8IUm+vr75ynNzc83H+3q+M0vS3/72N/MHkeK63sf4+PHjsrW1VZ06dazKvb295e7uflOJ76sfpypVqkjSDf3gcb2YM70cOXTokO655x6rm60Ux/Tp02Vra6tx48blu6GL9Nc8azt37tS4cePUpEkTVapUSbm5uerYsWOBSbJbYfny5Ro4cKB69OihcePGydPTU3Z2doqKijJv4Hi1/v3764UXXtCuXbu0bNkyTZw4scjjDBo0SG+99ZYefPBBJScn67HHHst3E6kLFy6oTZs2cnV11bRp01S7dm05OTnpu+++0/jx42/4Mbh6nr9ffvlF7du3V7169TRnzhz5+vrKwcFBn3/+uebOnVvg2VLt27fXr7/+qrlz56p3797auXOn+UacJywsTA4ODlq7dq2WLl2q8PDwAm8Q9Nprr2nSpEkaNGiQXn75ZXl4eMjW1lajRo0qsI/ff/+9+WZ99VlTN2LWrFlq3LixsrKytGfPHr3yyiuyt7cv1vxpx44dU61atQqdc/NKeQOit7f3NeM+/PBD9evXT6GhoVblV38Iv1l+fn4aNGiQevbsqXvuuUcxMTF65ZVXbukxrjzbRJL59+zfv7/Cw8ML3Oa+++4r9v7zvtA/9thjBdZv27ZN7dq1K7JNNjY2+uKLL8y5Xa+U98EzJydH//jHP3Tu3DmNHz9e9erVk4uLi3777TcNHDiwxN6TUP4wpjKmMqbeeWPqteQ97jNnzix0nterkxwFjUcFlUmyumFdYGCgDh06pHXr1mnDhg36+OOP9dZbb2ny5MmaOnVqsdprGIY++OADpaenW11dluf06dNKS0tTpUqV1KJFC/n7+2vlypV68skn9dlnn+nSpUt6/PHHzfhb/dobMWKEOSdycHCw3NzcZGNjo759+96y97Lc3Fw1atRIc+bMKbD+6qQDSgfjJeMl4+XdMV7u27dPdnZ25o9WN/J6uJb69esrKChIy5cv11NPPaXly5fLwcGh0O+QBalTp47s7e0LvM9CQQr72xR0E99Ro0apa9euWrt2rTZu3KhJkyYpKipKW7ZsUdOmTYvdxuIo7LNEUZ8xivudOc/V37mLw9XVVT4+Ptq3b991bVec10FhCrupcnE+c5UUkunlREZGhhITE61uflIcp06d0vz58xUVFaXKlSvn+yBz/vx5bd68WVOnTrW66UHe2T034tSpU0pPT7caEH7++WdJf92NV5I++ugj3XPPPVq9erXVi/Jag1rVqlXVrVs383K9vEtfrqVfv34aN26cnn/+efXp06fAX9Xj4uL0xx9/aPXq1eaNpSQpKSmpWP3Nc/jwYauzcY8cOaLc3Fyzz5999pkyMjL06aefWv0CV9glrHXq1DF//QsJCVGtWrW0YsUKDRs2zCrO3t5eAwYM0Kuvvqr9+/frvffeK3B/H330kdq1a6d3333XqvzChQv5zsBKT0/X008/rfr166tly5aaMWOGevbsqQceeMCM8fPz06FDh/IdJ++SxLwbceYJCgoy77zcqVMn/fbbb5o+fbomTZpU4AevPNnZ2frhhx/UsWPHQmOudODAAdnY2BR5x/CmTZvq7bffVqtWrTRt2jS1aNFCM2fOvKEzy4qjSpUqql27ttWgVdiA5Ofnpy+//FJ//vmn1XO2sMf2atWrV1flypWVk5OjkJCQm2p3enq6PvnkEz3++OPq06dPvvqRI0cqJiYmXzL9arVr15ZhGAoICCjwMtc8P/74o37++WctW7ZMTz31lFkeGxt7450ArsKYypjKmHrnjqmFjZ21a9eW9NeXxJsd+4rDxcVFjz/+uB5//HFlZmaqV69eevXVVzVhwoRiTQmwbds2/frrr5o2bZp5Zlue8+fPa8iQIVq7dq15lupjjz2m+fPny2Kx6MMPP5S/v785JYZ06157eT766COFh4dbJQAvX75snn15tcOHD1t9FkhLS9Pvv/+uzp07F3qM2rVr64cfflD79u1v6ks6Sg7jJeMl4+WdO15e6cSJE9q2bZuCg4PN5+ONvB6K8tRTT2nMmDH6/ffftWLFCoWFhZlnGxdHxYoV9cgjj2jLli06efJkkT+q5u376rGpsLOla9eurbFjx2rs2LE6fPiwmjRpotmzZ2v58uWSrv39/HqedzequN+Zb1aXLl20ZMkSxcfHKzg4+Jqxfn5+ys3N1eHDh60+r6SkpOjChQtWfa9SpUq+v0VmZqZ+//33G25rSX0+YJqXciLvEqr27dtf13ZTp06Vl5dXvvmL8+T9EnT1Lz/z5s27oXZKfw08V85tlpmZqf/85z+qXr26goKCCj3u7t27FR8ff819Dxo0SHv37tWjjz56zUuo8nh4eKh79+7au3dvvvmp8hTUlszMTL311ltF7v9KCxcutFpfsGCBpL8G7cKOk5qaal42eC15H9gKuwRs0KBB+vHHH9W6dWvdc889BcbY2dnl+zuvWrVKv/32W77Y8ePH68SJE1q2bJnmzJkjf39/hYeHWx2/c+fO+uabb6z+Zunp6VqyZIn8/f0LPMvqSpcuXVJ2drY5P1hhNm3apNTUVHXv3v2acdJfz72PP/5YDz74YJHPD4vFogEDBqhbt26aOHGiQkJCVKNGjSKPUZQffvihwA/Yx48f14EDB6w+YOV92L96wOncubNycnL05ptvWpXPnTtXNjY25nOqMHZ2durdu7c+/vjjAn9xPnPmTHG7ozVr1ig9PV2RkZHq06dPvqVLly76+OOPi7w8sVevXrKzs9PUqVPzPQ8NwzC/ZBX0OjEMQ/Pnzy92m4GiMKb+hTGVMfVaysKYWpDCxs6goCDVrl1bs2bNsppbPM/1jH1FuTox6ODgoPr168swDGVlZRVrH3lTvIwbNy7f2Dp48GDde++9+aZ6ycjI0LJly7Rhw4Z8Z/rdqtfelfu7+jm+YMGCQs8uW7JkiVXfFy1apOzs7Gt+Znnsscf022+/6e23385Xd+nSJaWnp99Q23HrMF7+hfGS8fJayup4mefcuXN64oknlJOTo3//+99m+Y2+Hq7liSeekI2NjZ5//nkdPXrU/EH4erz00ksyDEMDBgwocDxPSEjQsmXLJP2V6LWzs9P27dutYq5+HV28eNGcAz9P7dq1VblyZavnl4uLS4E/Gt/s8664ivud+Wa98MILcnFx0TPPPKOUlJR89b/88ov5/TvvR/Gr35/zrioLCwszy2rXrp3vb7FkyZJCPzsUR2F/k5vFmel3ufT0dC1YsEDTpk0zB6K8X83ypKSkKC0tTcuXL9c//vEPqznpNm3apJiYmELnUXJ1dTXni8rKytLf/vY3bdq06YbPYpH+mq9u+vTpOnbsmP7+97/rww8/VGJiopYsWWLehKFLly5avXq1evbsqbCwMCUlJWnx4sWqX79+gW+YeTp27KgzZ84U60NMnujoaC1cuDDfL995WrZsqSpVqig8PFwjR46UjY2N/vvf/173pSVJSUnq1q2bOnbsqPj4eC1fvlxPPvmkGjduLOmvG6o4ODioa9euevbZZ5WWlqa3335bnp6eVr/Uff7553rnnXfUsmVLeXh46OjRo3r77bfl4uKinj17FnjswMBAnT179pqX+XTp0kXTpk3T008/rZYtW+rHH39UTExMvg8+W7Zs0VtvvaWXXnpJzZo1kyQtXbpUbdu21aRJkzRjxgxJ0r/+9S998MEH6tSpk0aOHCkPDw8tW7ZMSUlJ+vjjj/P90h8bG6tff/3VvMQuJiZG3bp1u+YcXx9++KH++c9/ytHRUZcuXbJ67qempionJ0dr165Vjx499OWXX2rSpEnau3evPvvss0L3mScyMlKXLl3SO++8U2Ts9YiNjdVLL72kbt26qUWLFqpUqZKOHj2q9957TxkZGZoyZYoZm/fBfuTIkQoNDZWdnZ369u2rrl27ql27dvr3v/+tY8eOqXHjxtq0aZM++eQTjRo1yjz77lpef/11bd26Vc2bN9fgwYNVv359nTt3Tt99952+/PJLnTt3rlj9iYmJUdWqVdWyZcsC67t166a3335b69evV69evQrdT+3atfXKK69owoQJOnbsmHr06KHKlSsrKSlJa9as0ZAhQ/TPf/5T9erVU+3atfXPf/5Tv/32m1xdXfXxxx/flnnTcPdjTLXGmMqYmqesjqkFqV27ttzd3bV48WJVrlxZLi4uat68uQICAvTOO++oU6dOatCggZ5++mn97W9/02+//aatW7fK1dW1WH0pjg4dOsjb21sPPfSQvLy8dPDgQb355psKCwsr1g29MjIy9PHHH+sf//hHoWexd+vWTfPnz9fp06fl6empZs2aqU6dOvr3v/+tjIwMqylepFv32svTpUsX/fe//5Wbm5vq16+v+Ph4ffnll4XeOC8zM1Pt27fXY489pkOHDumtt97Sww8/rG7duhV6jAEDBmjlypUaOnSotm7dqoceekg5OTn66aeftHLlSm3cuFH333//DbUfN4fx0hrjJeNlnrI+Xv78889avny5DMOQxWLRDz/8oFWrViktLU1z5syxOtP+Rl8P11K9enV17NhRq1atkru7u1WitbhatmyphQsX6rnnnlO9evU0YMAA3Xvvvfrzzz8VFxenTz/91Jw21c3NTY8++qgWLFggGxsb1a5dW+vWrcs3t/jPP/9sjlH169eXvb291qxZo5SUFPXt29eMCwoK0qJFi/TKK6+oTp068vT01COPPHLdz7sbVdzvzLfiOCtWrNDjjz+uwMBAPfXUU2rYsKEyMzO1c+dOrVq1yrzRcuPGjRUeHq4lS5aY01N98803WrZsmXr06GF1VdozzzyjoUOHqnfv3vrHP/6hH374QRs3biz0fbA4Cvub3DQDd7WkpCRDUrGXrVu3GoZhGEuXLjUkGU2aNDFyc3Pz7W/p0qVm2a+//mr07NnTcHd3N9zc3IxHH33UOHXqlCHJeOmll8y4l156yZBknDlzptD2tmnTxmjQoIHx7bffGsHBwYaTk5Ph5+dnvPnmm1Zxubm5xmuvvWb4+fkZjo6ORtOmTY1169YZ4eHhhp+fX772zpw585qPz5X1RbWzoPqvv/7aaNGiheHs7Gz4+PgYL7zwgrFx40arx7Qwefs7cOCA0adPH6Ny5cpGlSpVjOHDhxuXLl2yiv3000+N++67z3BycjL8/f2N6dOnG++9954hyUhKSjIMwzD27dtndOjQwahatarh4OBg+Pr6Gn379jX27t1rtS9JRmRkZKHturr+8uXLxtixY40aNWoYzs7OxkMPPWTEx8cbbdq0Mdq0aWMYhmFYLBbDz8/PaNasmZGVlWW1v9GjRxu2trZGfHy8WfbLL78Yffr0Mdzd3Q0nJyfjwQcfNNatW2e13datW62eo/b29oafn58xcuRI4/z589d8bP38/Ip8zuc9X0aMGGG0bt3a2LBhQ7795P2N8nzwwQeGjY1Nvtjw8HDDxcXlmm0qytGjR43JkycbLVq0MDw9PQ17e3ujevXqRlhYmLFlyxar2OzsbGPEiBFG9erVDRsbG6s2/vnnn8bo0aMNHx8fo0KFCsa9995rzJw50+r1bBjXfh6kpKQYkZGRhq+vr1GhQgXD29vbaN++vbFkyZJi9SUlJcWwt7c3BgwYUGjMxYsXjYoVKxo9e/Y0DKPo19/HH39sPPzww4aLi4vh4uJi1KtXz4iMjDQOHTpkxhw4cMAICQkxKlWqZFSrVs0YPHiw8cMPP+R77wKuF2MqYypj6p01phpGwX+bTz75xKhfv75hb2+f7zX4/fffG7169TKqVq1qODo6Gn5+fsZjjz1mbN68OV8frn5eF9bmvNdinv/85z9G69atzWPUrl3bGDdunJGamlqsPn388ceGJOPdd98tNCYuLs6QZMyfP98s+/e//21IMurUqVPgNsV97V393mAYRr73qPPnzxtPP/20Ua1aNaNSpUpGaGio8dNPPxl+fn5GeHi4GZf3/rht2zZjyJAhRpUqVYxKlSoZ/fr1M/744w+rY1z5+siTmZlpTJ8+3WjQoIHh6OhoVKlSxQgKCjKmTp1a7McTtx7jJeMl4+WdOV7mLba2toa7u7vRtGlT4/nnnzf279+fL764r4e8fV/5usx7rec9f660cuVKQ5IxZMiQm+pPQkKC8eSTT5rfh6tUqWK0b9/eWLZsmZGTk2PGnTlzxujdu7dRsWJFo0qVKsazzz5r7Nu3z+o95+zZs0ZkZKRRr149w8XFxXBzczOaN29urFy50uqYycnJRlhYmFG5cmVDktWYdT3Pu1WrVlmV5z1ee/bssSov7H2jON+Zr/5sciN+/vlnY/DgwYa/v7/h4OBgVK5c2XjooYeMBQsWGJcvXzbjsrKyjKlTpxoBAQFGhQoVDF9fX2PChAlWMYZhGDk5Ocb48eONatWqGRUrVjRCQ0ONI0eOFPrZ4erHI+/xu/L971p/k5thYxi3YWZ2lJpjx44pICBAW7duNef6upm4kta2bVudPXv2um9mcCebMmWKpk6dqjNnztzUL27Iz9/fX1OmTDF/Fb1aXFycBg4caHW3egAoDGNq2ceYWnIYUwEUF+Nl2cd4WXIYL2/OJ598oh49emj79u1q1apVaTcHKBBzpgMAAAAAAAAoVW+//bbuuecePfzww6XdFKBQzJl+l6tUqZL69etnNQfdzcQBd5KePXtec35wLy+vQufwQ9HOnDlzzZuBODg4yMPD4za2CChZjKkozxhTb4+cnJwib3ZaqVKl65p7GbjdGC9RnjFe3pj//e9/2rt3r9avX6/58+fLxsbGqj41NVWXLl265j68vb1Lsol3vbS0tCLnu69evbp589nyjGleUKZwiR2X2OHO4e/vr+PHjxda36ZNG8XFxd2+BgGwwpjKmIo7T960F9fy0ksvWd2QHMDNYbxkvETps7GxUaVKlfT4449r8eLFsre3Pvd34MCBWrZs2TX3QXrz5uS9L1xLUlKS/P39b0+DyjCS6QCAG/L1119f8+yAKlWqKCgo6Da2CACAO9vly5f11VdfXTPmnnvu0T333HObWgQAQOk7cOCATp06dc2YkJCQ29Sau9PRo0d19OjRa8Y8/PDDcnJyuk0tKrtIpgMAAFNUVJRWr16tn376Sc7OzmrZsqWmT5+uunXrSrr2WZMrV67Uo48+Kkn5Ls2UpA8++EB9+/Y11+Pi4jRmzBjt379fvr6+mjhxYqE3awIAAAAAoLSRTL+G3NxcnTp1SpUrVy4wKQAAQFliGIb+/PNP+fj4yNb2xu4x3rFjR/Xt21cPPPCAsrOz9eKLL2rfvn06cOCAXFxcCpzPd8mSJZo5c6Z+//13cx5fGxsbLV26VB07djTj3N3dzTMZkpKS1LBhQw0dOlTPPPOMNm/erFGjRmn9+vUKDQ0tVlsZpwEAd4pbMUbfSRijAQB3iusdo0mmX8Ovv/4qX1/f0m4GAADX5eTJk6pZs+Yt2deZM2fk6empbdu2qXXr1gXGNG3aVM2aNdO7775rltnY2GjNmjXq0aNHgduMHz9e69evt5qftG/fvrpw4YI2bNhQ4DYZGRnKyMgw13/77TfVr1//BnoFAEDpuJVjdFnGd2kAwJ2muGO0fZER5VjlypUl/fVgurq6lnJrAAC4NovFIl9fX3P8uhVSU1MlSR4eHgXWJyQkKDExUQsXLsxXFxkZqWeeeUb33HOPhg4dqqeffto8Oy0+Pj7fvIahoaEaNWpUoW2Jiooq8KY4jNMAgLKuJMbosozv0gCAO8X1jtEk068h7wu/q6srHwAAAHeMW3U5dW5urkaNGqWHHnpIDRs2LDDm3XffVWBgoFq2bGlVPm3aND3yyCOqWLGiNm3apOeee05paWkaOXKkJCk5OVleXl5W23h5eclisejSpUtydnbOd6wJEyZozJgx5nrehx7GaQDAnaK8THnCd2kAwJ2muGM0yXQAAFCgyMhI7du3T1999VWB9ZcuXdKKFSs0adKkfHVXljVt2lTp6emaOXOmmUy/EY6OjnJ0dLzh7QEAAAAAuBl3/51PAADAdRs+fLjWrVunrVu3Fjpv3EcffaSLFy/qqaeeKnJ/zZs316+//mrOee7t7a2UlBSrmJSUFLm6uhZ4VjoAAAAAAKWNZDoAADAZhqHhw4drzZo12rJliwICAgqNfffdd9WtWzdVr169yP0mJiaqSpUq5pnlwcHB2rx5s1VMbGysgoODb64DAAAAAACUEJLpAADAFBkZqeXLl2vFihWqXLmykpOTlZycrEuXLlnFHTlyRNu3b9czzzyTbx+fffaZ3nnnHe3bt09HjhzRokWL9Nprr2nEiBFmzNChQ3X06FG98MIL+umnn/TWW29p5cqVGj16dIn3EQCAO9H27dvVtWtX+fj4yMbGRmvXrs0Xc/DgQXXr1k1ubm5ycXHRAw88oBMnTpj1ly9fVmRkpKpWrapKlSqpd+/e+a4UO3HihMLCwlSxYkV5enpq3Lhxys7OLunuAQBwRyCZDgAATIsWLVJqaqratm2rGjVqmMuHH35oFffee++pZs2a6tChQ759VKhQQQsXLlRwcLCaNGmi//znP5ozZ45eeuklMyYgIEDr169XbGysGjdurNmzZ+udd95RaGhoifcRAIA7UXp6uho3bqyFCxcWWP/LL7/o4YcfVr169RQXF6e9e/dq0qRJcnJyMmNGjx6tzz77TKtWrdK2bdt06tQp9erVy6zPyclRWFiYMjMztXPnTi1btkzR0dGaPHlyifcPAIA7gY1hGEZpN6KsslgscnNzU2pqKncgBwCUeeVt3Cpv/QUA3Llu9ZhlY2OjNWvWqEePHmZZ3759VaFCBf33v/8tcJvU1FRVr15dK1asUJ8+fSRJP/30kwIDAxUfH68WLVroiy++UJcuXXTq1Cl5eXlJkhYvXqzx48frzJkzcnBwKHDfGRkZ5n1R8vrr6+vLGA0AKPOud4zmzHQAAAAAAO5gubm5Wr9+vf7+978rNDRUnp6eat68udVUMAkJCcrKylJISIhZVq9ePdWqVUvx8fGSpPj4eDVq1MhMpEtSaGioLBaL9u/fX+jxo6Ki5ObmZi6+vr63vpMAAJQBJNMBAAAAALiDnT59WmlpaXr99dfVsWNHbdq0ST179lSvXr20bds2SVJycrIcHBzk7u5uta2Xl5eSk5PNmCsT6Xn1eXWFmTBhglJTU83l5MmTt7B3AACUHfal3QAAAAAAAHDjcnNzJUndu3c3b+bdpEkT7dy5U4sXL1abNm1K9PiOjo5ydHQs0WMAAFAWcGY6AAAAAAB3sGrVqsne3l7169e3Kg8MDNSJEyckSd7e3srMzNSFCxesYlJSUuTt7W3GpKSk5KvPqwMAoLwjmQ4AAAAAwB3MwcFBDzzwgA4dOmRV/vPPP8vPz0+SFBQUpAoVKmjz5s1m/aFDh3TixAkFBwdLkoKDg/Xjjz/q9OnTZkxsbKxcXV3zJeoBACiPmOYFwG2Vk5OjHTt26Pfff1eNGjXUqlUr2dnZlXazAAAo9xijgbItLS1NR44cMdeTkpKUmJgoDw8P1apVS+PGjdPjjz+u1q1bq127dtqwYYM+++wzxcXFSZLc3NwUERGhMWPGyMPDQ66urhoxYoSCg4PVokULSVKHDh1Uv359DRgwQDNmzFBycrImTpyoyMhIpnEBShFjNFB2kEwHcNusXr1aY8eO1bFjx8wyf39/zZ49W7169Sq9hgEAUM4xRgNl37fffqt27dqZ62PGjJEkhYeHKzo6Wj179tTixYsVFRWlkSNHqm7duvr444/18MMPm9vMnTtXtra26t27tzIyMhQaGqq33nrLrLezs9O6des0bNgwBQcHy8XFReHh4Zo2bdrt6ygAK4zRQNnCNC8AbovVq1erT58+atSokeLj4/Xnn38qPj5ejRo1Up8+fbR69erSbiIAAOUSYzRwZ2jbtq0Mw8i3REdHmzGDBg3S4cOHdenSJSUmJqp79+5W+3ByctLChQt17tw5paena/Xq1fnmQvfz89Pnn3+uixcv6syZM5o1a5bs7TkPDygNjNFA2WNjGIZR2o0oqywWi9zc3JSamipXV9fSbg5wx8rJyVGdOnXUqFEjrV27Vra2//c7Xm5urnr06KF9+/bp8OHDXKoG3ITyNm6Vt/4CJYExGrg9ytuYVd76C5QExmjg9rjeMYsz0wGUuB07dujYsWN68cUXZRiG4uLi9MEHHyguLk6GYWjChAlKSkrSjh07SrupAACUK4zRAACUTVeO0Vcm0iXJ1taWMRooJVyrBaDE/f7775KkX375RU888US+ud5eeeUVqzgAAHB7MEYDAFA25Y29DRs2LLA+r5wxGri9ODMdQImrUaOGJGnAgAEFzvU2YMAAqzgAAHB7MEYDAFA25Y29+/btK7A+r5wxGri9mDP9GpjnDbg1MjMz5eLioqpVq+rXX3+1uoFRdna2atasqT/++EPp6elycHAoxZYCd7byNm6Vt/4CJYExGrg9ytuYVd76C5SEK+dM//jjj/X111/r999/V40aNfTQQw+pd+/ezJkO3ALMmQ6gzNm5c6eys7OVkpKiXr16WZ311qtXL6WkpCg7O1s7d+4s7aYCAFCuMEYDAFA22dnZafbs2Vq3bp3c3NzUrl07Pfnkk2rXrp3c3Ny0bt06zZo1i0Q6cJuVSjI9KipKDzzwgCpXrixPT0/16NFDhw4dMuvPnTunESNGqG7dunJ2dlatWrU0cuRIpaamWu3nxIkTCgsLU8WKFeXp6alx48YpOzvbKiYuLk7NmjWTo6Oj6tSpo+jo6NvRRQBXyJvDbfny5frxxx/VsmVLubq6qmXLltq3b5+WL19uFQcAAG4PxmgAAMq2giaUsLGxKbAcQMkrlWT6tm3bFBkZqV27dik2NlZZWVnq0KGD0tPTJUmnTp3SqVOnNGvWLO3bt0/R0dHasGGDIiIizH3k5OQoLCxMmZmZ2rlzp5YtW6bo6GhNnjzZjElKSlJYWJjatWunxMREjRo1Ss8884w2btx42/sMlGd5c7jVrl1bR44c0datW7VixQpt3bpVhw8f1j333GMVBwAAbg/GaAAAyqacnByNHTtWXbt2VWpqqtUYfeHCBXXt2lX//Oc/lZOTU9pNBcqVMjFn+pkzZ+Tp6alt27apdevWBcasWrVK/fv3V3p6uuzt7fXFF1+oS5cuOnXqlLy8vCRJixcv1vjx43XmzBk5ODho/PjxWr9+vdXNGvr27asLFy5ow4YNRbaLed6AW+PKud7Wrl0rW9v/+x0vNzdXPXr0YK434BYob+NWeesvUBKYjxW4PcrbmFXe+guUhLi4OLVr107x8fFq0aJFvvr4+Hi1bNlSW7duVdu2bW9/A4G7xPWOWfZFRtwGedO3eHh4XDPG1dXVvClSfHy8GjVqZCbSJSk0NFTDhg3T/v371bRpU8XHxyskJMRqP6GhoRo1alSBx8jIyFBGRoa5brFYbrRLAK6QN9dbnz591KNHD02YMEENGzbUvn37FBUVpXXr1umjjz7iSzoAALfZlWO0m5ubLl26ZNY5Ozvr8uXLjNEAAJSCvCnWGjZsWGB9XjlTsQG3V6nfgDQ3N1ejRo3SQw89VOgbxNmzZ/Xyyy9ryJAhZllycrJVIl2SuZ6cnHzNGIvFYvVFIU9UVJTc3NzMxdfX96b6BuD/9OrVSx999FGB87F+9NFH6tWrV2k3EQCAcov5WAEAKFvypli7craFK+WVMxUbcHuVejI9MjJS+/bt0//+978C6y0Wi8LCwlS/fn1NmTKlRNsyYcIEpaammsvJkydL9HhAedOrV68C52MlkQ4AQOlgPlYAAMqmVq1ayd/fX6+99ppyc3Ot6nJzcxUVFaWAgAC1atWqlFoIlE+lOs3L8OHDtW7dOm3fvl01a9bMV//nn3+qY8eOqly5stasWaMKFSqYdd7e3vrmm2+s4lNSUsy6vH/zyq6McXV1lbOzc77jOTo6ytHR8ab7BaBwdnZ2zOcGAEAZsWPHDh07dkwffPCBKlSokG+MnjBhglq2bKkdO3YwfgMAcBsxXSpQNpXKmemGYWj48OFas2aNtmzZooCAgHwxFotFHTp0kIODgz799FM5OTlZ1QcHB+vHH3/U6dOnzbLY2Fi5urqqfv36ZszmzZuttouNjVVwcHAJ9ApAceTk5CguLk4ffPCB4uLiONMNAIBSxHysAACUXUyXCpQ9pXJmemRkpFasWKFPPvlElStXNuc4d3Nzk7Ozs5lIv3jxopYvXy6LxWLeDLR69eqys7NThw4dVL9+fQ0YMEAzZsxQcnKyJk6cqMjISPPs8qFDh+rNN9/UCy+8oEGDBmnLli1auXKl1q9fXxrdBsq91atXa+zYsTp27JhZ5u/vr9mzZ/MhAACAUnDlfKwtWrTIV898rAAAlK5evXqpe/fu2rFjh37//XfVqFFDrVq14ox0oJTYGKVwVyEbG5sCy5cuXaqBAwcqLi5O7dq1KzAmKSlJ/v7+kqTjx49r2LBhiouLk4uLi8LDw/X666/L3v7/fiOIi4vT6NGjdeDAAdWsWVOTJk3SwIEDi9VOi8UiNzc3paamytXV9br6CMDa6tWr1adPH3Xp0kUvvviieXnaa6+9Zl6eRkIduDnlbdwqb/0FSkJOTo7q1KmjRo0aae3atbK1/b8LV3Nzc9WjRw/t27dPhw8f5ks7cBPK25hV3voLALhzXe+YVSrJ9DsFHwCAW4Mv6sDtUd7GrfLWX6CkXPmDd2HzsfKDN3BzytuYVd76CwC4c13vmFUqc6YDKF/ybm724osvWiXSJcnW1lYTJkxQUlKSduzYUUotBACg/GI+VgAAAKB4SmXOdADlCzc3AwCgbGM+VgAAStbFixf1008/3fD2ly5d0rFjx+Tv7y9nZ+cb3k+9evVUsWLFG94eKO9IpgMocdzcDACAss/Ozk5t27Yt7WYAAHBX+umnnxQUFFTazVBCQoKaNWtW2s0A7lgk0wGUuFatWsnf31+vvfZagXOmR0VFKSAgQK1atSrFVgIAAAAAUDLq1aunhISEG97+4MGD6t+/v5YvX67AwMCbageAG0cyHUCJs7Oz0+zZs9WnTx/16NGj0JubcSk5AAAAAOBuVLFixVtyRnhgYCBnlgOliGQ6gNsi7+ZmY8eOVcuWLc3ygIAAbm4GAAAAAACAMo9kOoDbhpubAQAAAAAA4E5FMh3AbcXNzQAAAAAAAHAnsi06BAAAAAAAAACA8o1kOgAAAAAAAAAARSCZDgAAAAAAAABAEUimAwAAAAAAAABQBJLpAAAAAAAAAAAUgWQ6AAAAAAAAAABFIJkOAAAAAAAAAEARSKYDAAAAAAAAAFAEkukAAAAAAAAAABSBZDoAAAAAAAAAAEUgmQ4AAExRUVF64IEHVLlyZXl6eqpHjx46dOiQVUzbtm1lY2NjtQwdOtQq5sSJEwoLC1PFihXl6empcePGKTs72yomLi5OzZo1k6Ojo+rUqaPo6OiS7h4AAAAAADeMZDoAADBt27ZNkZGR2rVrl2JjY5WVlaUOHTooPT3dKm7w4MH6/fffzWXGjBlmXU5OjsLCwpSZmamdO3dq2bJlio6O1uTJk82YpKQkhYWFqV27dkpMTNSoUaP0zDPPaOPGjbetrwAAAAAAXA+S6QAAwLRhwwYNHDhQDRo0UOPGjRUdHa0TJ04oISHBKq5ixYry9vY2F1dXV7Nu06ZNOnDggJYvX64mTZqoU6dOevnll7Vw4UJlZmZKkhYvXqyAgADNnj1bgYGBGj58uPr06aO5c+cW2raMjAxZLBarBQCA8mL79u3q2rWrfHx8ZGNjo7Vr1xYaO3ToUNnY2GjevHlW5efOnVO/fv3k6uoqd3d3RUREKC0tzSpm7969atWqlZycnOTr62v1gzkAAOUdyXQAAFCo1NRUSZKHh4dVeUxMjKpVq6aGDRtqwoQJunjxolkXHx+vRo0aycvLyywLDQ2VxWLR/v37zZiQkBCrfYaGhio+Pr7QtkRFRcnNzc1cfH19b7p/AADcKdLT09W4cWMtXLjwmnFr1qzRrl275OPjk6+uX79+2r9/v2JjY7Vu3Tpt375dQ4YMMestFos6dOggPz8/JSQkaObMmZoyZYqWLFlyy/sDAMCdyL60GwAAAMqm3NxcjRo1Sg899JAaNmxolj/55JPy8/OTj4+P9u7dq/Hjx+vQoUNavXq1JCk5OdkqkS7JXE9OTr5mjMVi0aVLl+Ts7JyvPRMmTNCYMWPMdYvFQkIduMrFixf1008/3fD2ly5d0rFjx+Tv71/g67C46tWrp4oVK97w9gDy69Spkzp16nTNmN9++00jRozQxo0bFRYWZlV38OBBbdiwQXv27NH9998vSVqwYIE6d+6sWbNmycfHRzExMcrMzNR7770nBwcHNWjQQImJiZozZ45V0h0AgPKKZDoAAChQZGSk9u3bp6+++sqq/Mov040aNVKNGjXUvn17/fLLL6pdu3aJtcfR0VGOjo4ltn/gbvDTTz8pKCiotJuhhIQENWvWrLSbAZQrubm5GjBggMaNG6cGDRrkq4+Pj5e7u7uZSJekkJAQ2draavfu3erZs6fi4+PVunVrOTg4mDGhoaGaPn26zp8/rypVqhR47IyMDGVkZJjrTMUGALhbkUwHAAD5DB8+3Lz8u2bNmteMbd68uSTpyJEjql27try9vfXNN99YxaSkpEiSvL29zX/zyq6McXV1vamzYYHyrl69evnucXA9Dh48qP79+2v58uUKDAy8qXYAuL2mT58ue3t7jRw5ssD65ORkeXp6WpXZ29vLw8PD6sqxgIAAq5grry4rLJkeFRWlqVOn3mwXAAAo80imAwAAk2EYGjFihNasWaO4uLh8X6gLkpiYKEmqUaOGJCk4OFivvvqqTp8+bX5pj42Nlaurq+rXr2/GfP7551b7iY2NVXBw8C3sDVD+VKxY8ZacER4YGMiZ5cAdJCEhQfPnz9d3330nGxub2358pmIDAJQXJNMBXDfmYwXuXpGRkVqxYoU++eQTVa5c2TxTzc3NTc7Ozvrll1+0YsUKde7cWVWrVtXevXs1evRotW7dWvfdd58kqUOHDqpfv74GDBigGTNmKDk5WRMnTlRkZKQ5TcvQoUP15ptv6oUXXtCgQYO0ZcsWrVy5UuvXry+1vgMAcKfasWOHTp8+rVq1apllOTk5Gjt2rObNm6djx47J29tbp0+fttouOztb586dK/LKsby6wjAVGwCgvCCZDuC6MR8rcPdatGiRJKlt27ZW5UuXLtXAgQPl4OCgL7/8UvPmzVN6erp8fX3Vu3dvTZw40Yy1s7PTunXrNGzYMAUHB8vFxUXh4eGaNm2aGRMQEKD169dr9OjRmj9/vmrWrKl33nlHoaGht6WfAADcTQYMGKCQkBCrstDQUA0YMEBPP/20pL+uCrtw4YISEhLMz/JbtmxRbm6uOWVbcHCw/v3vfysrK0sVKlSQ9NeVY3Xr1i10ihcAAMoTkukArhvzsQJ3L8Mwrlnv6+urbdu2FbkfPz+/fNO4XK1t27b6/vvvr6t9AACUV2lpaTpy5Ii5npSUpMTERHl4eKhWrVqqWrWqVXyFChXk7e2tunXrSvpr+qaOHTtq8ODBWrx4sbKysjR8+HD17dtXPj4+kqQnn3xSU6dOVUREhMaPH699+/Zp/vz5mjt37u3rKAAAZRjJdADXjflYAQAAgNvr22+/Vbt27cz1vDnKw8PDFR0dXax9xMTEaPjw4Wrfvr1sbW3Vu3dvvfHGG2a9m5ubNm3apMjISAUFBalatWqaPHmyhgwZckv7AgDAnYpkOgAAAAAAZVzbtm2LvILsSseOHctX5uHhoRUrVlxzu/vuu087duy43uYBAFAu2JZ2AwAAAAAAAAAAKOtIpgMAAAAAAAAAUASS6QAAAAAAAAAAFIFkOgAAAAAAAAAARSCZDgAAAAAAAABAEUimAwAAAAAAAABQBJLpAAAAAAAAAAAUgWQ6AAAAAAAAAABFIJkOAAAAAAAAAEARSKYDAAAAAAAAAFCEUkmmR0VF6YEHHlDlypXl6empHj166NChQ1Yxly9fVmRkpKpWrapKlSqpd+/eSklJsYo5ceKEwsLCVLFiRXl6emrcuHHKzs62iomLi1OzZs3k6OioOnXqKDo6uqS7BwAAAAAAAAC4y5RKMn3btm2KjIzUrl27FBsbq6ysLHXo0EHp6elmzOjRo/XZZ59p1apV2rZtm06dOqVevXqZ9Tk5OQoLC1NmZqZ27typZcuWKTo6WpMnTzZjkpKSFBYWpnbt2ikxMVGjRo3SM888o40bN97W/gIAAAAAAAAA7mz2pXHQDRs2WK1HR0fL09NTCQkJat26tVJTU/Xuu+9qxYoVeuSRRyRJS5cuVWBgoHbt2qUWLVpo06ZNOnDggL788kt5eXmpSZMmevnllzV+/HhNmTJFDg4OWrx4sQICAjR79mxJUmBgoL766ivNnTtXoaGh+dqVkZGhjIwMc91isZTgowAAAAAAAAAAuFOUiTnTU1NTJUkeHh6SpISEBGVlZSkkJMSMqVevnmrVqqX4+HhJUnx8vBo1aiQvLy8zJjQ0VBaLRfv37zdjrtxHXkzePq4WFRUlNzc3c/H19b11nQQAAAAAAAAA3LFKPZmem5urUaNG6aGHHlLDhg0lScnJyXJwcJC7u7tVrJeXl5KTk82YKxPpefV5ddeKsVgsunTpUr62TJgwQampqeZy8uTJW9JHAAAAAAAAAMCdrVSmeblSZGSk9u3bp6+++qq0myJHR0c5OjqWdjMAAAAAAAAAAGVMqZ6ZPnz4cK1bt05bt25VzZo1zXJvb29lZmbqwoULVvEpKSny9vY2Y1JSUvLV59VdK8bV1VXOzs63ujsAAAAAAAAAgLtUqSTTDcPQ8OHDtWbNGm3ZskUBAQFW9UFBQapQoYI2b95slh06dEgnTpxQcHCwJCk4OFg//vijTp8+bcbExsbK1dVV9evXN2Ou3EdeTN4+AAAAAAAAAAAojlKZ5iUyMlIrVqzQJ598osqVK5tznLu5ucnZ2Vlubm6KiIjQmDFj5OHhIVdXV40YMULBwcFq0aKFJKlDhw6qX7++BgwYoBkzZig5OVkTJ05UZGSkOVXL0KFD9eabb+qFF17QoEGDtGXLFq1cuVLr168vjW4DAAAAAAAAAO5QpXJm+qJFi5Samqq2bduqRo0a5vLhhx+aMXPnzlWXLl3Uu3dvtW7dWt7e3lq9erVZb2dnp3Xr1snOzk7BwcHq37+/nnrqKU2bNs2MCQgI0Pr16xUbG6vGjRtr9uzZeueddxQaGnpb+wsAAAAAAAAAuLOVypnphmEUGePk5KSFCxdq4cKFhcb4+fnp888/v+Z+2rZtq++///662wgAAAAAAAAAQJ5SvQEpAAAAAAAAAAB3ApLpAAAAAAAAAAAUgWQ6AAAAAAAAAABFIJkOAAAAAAAAAEARSKYDAAAAAAAAAFAEkukAAAAAAAAAABSBZDoAAAAAAAAAAEUgmQ4AAAAAAAAAQBFIpgMAAAAAAAAAUASS6QAAAAAAAAAAFIFkOgAAAAAAAAAARSCZDgAAAAAAAABAEUimAwAAAAAAAABQBJLpAAAAAAAAAAAUgWQ6AAAAAAAAAABFIJkOAAAAAAAAAEARSKYDAAAAAAAAAFAEkukAAAAAAJRx27dvV9euXeXj4yMbGxutXbvWrMvKytL48ePVqFEjubi4yMfHR0899ZROnTpltY9z586pX79+cnV1lbu7uyIiIpSWlmYVs3fvXrVq1UpOTk7y9fXVjBkzbkf3AAC4I5BMBwAAAACgjEtPT1fjxo21cOHCfHUXL17Ud999p0mTJum7777T6tWrdejQIXXr1s0qrl+/ftq/f79iY2O1bt06bd++XUOGDDHrLRaLOnToID8/PyUkJGjmzJmaMmWKlixZUuL9AwDgTmBf2g0AAAAAAADX1qlTJ3Xq1KnAOjc3N8XGxlqVvfnmm3rwwQd14sQJ1apVSwcPHtSGDRu0Z88e3X///ZKkBQsWqHPnzpo1a5Z8fHwUExOjzMxMvffee3JwcFCDBg2UmJioOXPmWCXdr5aRkaGMjAxz3WKx3IIeAwBQ9nBmOgAAMEVFRemBBx5Q5cqV5enpqR49eujQoUNm/blz5zRixAjVrVtXzs7OqlWrlkaOHKnU1FSr/djY2ORb/ve//1nFxMXFqVmzZnJ0dFSdOnUUHR19O7oIAEC5kJqaKhsbG7m7u0uS4uPj5e7ubibSJSkkJES2trbavXu3GdO6dWs5ODiYMaGhoTp06JDOnz9f6LGioqLk5uZmLr6+viXTKQAAShnJdAAAYNq2bZsiIyO1a9cuxcbGKisrSx06dFB6erok6dSpUzp16pRmzZqlffv2KTo6Whs2bFBERES+fS1dulS///67ufTo0cOsS0pKUlhYmNq1a6fExESNGjVKzzzzjDZu3Hi7ugoAwF3r8uXLGj9+vJ544gm5urpKkpKTk+Xp6WkVZ29vLw8PDyUnJ5sxXl5eVjF563kxBZkwYYJSU1PN5eTJk7eyOwAAlBlM8wIAAEwbNmywWo+Ojpanp6cSEhLUunVrNWzYUB9//LFZX7t2bb366qvq37+/srOzZW//fx8t3N3d5e3tXeBxFi9erICAAM2ePVuSFBgYqK+++kpz585VaGhogdtwCTkAAEXLysrSY489JsMwtGjRottyTEdHRzk6Ot6WYwEAUJo4Mx0AABQqb/oWDw+Pa8a4urpaJdIlKTIyUtWqVdODDz6o9957T4ZhmHXx8fEKCQmxig8NDVV8fHyhx+EScgAAri0vkX78+HHFxsaaZ6VLkre3t06fPm0Vn52drXPnzpk/fnt7eyslJcUqJm+9sB/IAQAoT0imAwCAAuXm5mrUqFF66KGH1LBhwwJjzp49q5dffjnfTcmmTZumlStXKjY2Vr1799Zzzz2nBQsWmPWFXUZusVh06dKlAo/FJeQAABQuL5F++PBhffnll6patapVfXBwsC5cuKCEhASzbMuWLcrNzVXz5s3NmO3btysrK8uMiY2NVd26dVWlSpXb0xEAAMowpnkBAAAFioyM1L59+/TVV18VWG+xWBQWFqb69etrypQpVnWTJk0y/9+0aVOlp6dr5syZGjly5A23h0vIAQDlWVpamo4cOWKuJyUlKTExUR4eHqpRo4b69Omj7777TuvWrVNOTo45x7mHh4ccHBwUGBiojh07avDgwVq8eLGysrI0fPhw9e3bVz4+PpKkJ598UlOnTlVERITGjx+vffv2af78+Zo7d26p9BkAgLKGM9MBAEA+w4cP17p167R161bVrFkzX/2ff/6pjh07qnLlylqzZo0qVKhwzf01b95cv/76qznneWGXkbu6usrZ2fnWdQQAgLvEt99+q6ZNm6pp06aSpDFjxqhp06aaPHmyfvvtN3366af69ddf1aRJE9WoUcNcdu7cae4jJiZG9erVU/v27dW5c2c9/PDDWrJkiVnv5uamTZs2KSkpSUFBQRo7dqwmT56c7wo0AADKK85MBwAAJsMwNGLECK1Zs0ZxcXEKCAjIF2OxWBQaGipHR0d9+umncnJyKnK/iYmJqlKlinlmeXBwsD7//HOrmNjYWAUHB9+ajgAAcJdp27at1f1HrnatujweHh5asWLFNWPuu+8+7dix47rbBwBAeUAyHQAAmCIjI7VixQp98sknqly5snmJuJubm5ydnWWxWNShQwddvHhRy5cvl8VikcVikSRVr15ddnZ2+uyzz5SSkqIWLVrIyclJsbGxeu211/TPf/7TPM7QoUP15ptv6oUXXtCgQYO0ZcsWrVy5UuvXry+VfgMAAAAAUBSS6QAAwLRo0SJJf539dqWlS5dq4MCB+u6777R7925JUp06daxikpKS5O/vrwoVKmjhwoUaPXq0DMNQnTp1NGfOHA0ePNiMDQgI0Pr16zV69GjNnz9fNWvW1DvvvKPQ0NCS7SAAAAAAADeIZDoAADAVdYl4UZeYS1LHjh3VsWPHIo/Vtm1bff/999fVPgAAAAAASgs3IAUAAAAAAAAAoAgk0wEAAAAAAAAAKALJdAAAAAAAAAAAikAyHQAAAAAAAACAIpBMBwAAAAAAAACgCCTTAQAAAAAAAAAoAsl0AAAAAAAAAACKQDIdAAAAAAAAAIAikEwHAAAAAAAAAKAIpZJM3759u7p27SofHx/Z2Nho7dq1VvVpaWkaPny4atasKWdnZ9WvX1+LFy+2irl8+bIiIyNVtWpVVapUSb1791ZKSopVzIkTJxQWFqaKFSvK09NT48aNU3Z2dkl3DwAAAAAAAABwlymVZHp6eroaN26shQsXFlg/ZswYbdiwQcuXL9fBgwc1atQoDR8+XJ9++qkZM3r0aH322WdatWqVtm3bplOnTqlXr15mfU5OjsLCwpSZmamdO3dq2bJlio6O1uTJk0u8fwAAAAAAAACAu0upJNM7deqkV155RT179iywfufOnQoPD1fbtm3l7++vIUOGqHHjxvrmm28kSampqXr33Xc1Z84cPfLIIwoKCtLSpUu1c+dO7dq1S5K0adMmHThwQMuXL1eTJk3UqVMnvfzyy1q4cKEyMzNvW18BAAAAAAAAAHe+MjlnesuWLfXpp5/qt99+k2EY2rp1q37++Wd16NBBkpSQkKCsrCyFhISY29SrV0+1atVSfHy8JCk+Pl6NGjWSl5eXGRMaGiqLxaL9+/cXeNyMjAxZLBarBQAAAAAAAACAMplMX7BggerXr6+aNWvKwcFBHTt21MKFC9W6dWtJUnJyshwcHOTu7m61nZeXl5KTk82YKxPpefV5dQWJioqSm5ubufj6+t7ingEAAAAAAAAA7kRlNpm+a9cuffrpp0pISNDs2bMVGRmpL7/8skSPO2HCBKWmpprLyZMnS/R4AAAAAAAAAIA7g31pN+Bqly5d0osvvqg1a9YoLCxMknTfffcpMTFRs2bNUkhIiLy9vZWZmakLFy5YnZ2ekpIib29vSZK3t7c5x/qV9Xl1BXF0dJSjo2MJ9AoAAAAAAAAAcCcrc2emZ2VlKSsrS7a21k2zs7NTbm6uJCkoKEgVKlTQ5s2bzfpDhw7pxIkTCg4OliQFBwfrxx9/1OnTp82Y2NhYubq6qn79+rehJwAAAAAAAACAu0WpnJmelpamI0eOmOtJSUlKTEyUh4eHatWqpTZt2mjcuHFydnaWn5+ftm3bpvfff19z5syRJLm5uSkiIkJjxoyRh4eHXF1dNWLECAUHB6tFixaSpA4dOqh+/foaMGCAZsyYoeTkZE2cOFGRkZGcfQ4AAAAAAAAAuC6lkkz/9ttv1a5dO3N9zJgxkqTw8HBFR0frf//7nyZMmKB+/frp3Llz8vPz06uvvqqhQ4ea28ydO1e2trbq3bu3MjIyFBoaqrfeesust7Oz07p16zRs2DAFBwfLxcVF4eHhmjZt2u3rKAAAAAAAAADgrlAqyfS2bdvKMIxC6729vbV06dJr7sPJyUkLFy7UwoULC43x8/PT559/fsPtBAAAAAAAAABAKoNzpgMAAAAAAAAAUNaQTAcAAAAAAAAAoAgk0wEAAAAAAAAAKALJdAAAAAAAAAAAikAyHQAAAAAAAACAIpBMBwAAAAAAAACgCCTTAQAAAAAAAAAoAsl0AAAAAAAAAACKQDIdAAAAAAAAAIAikEwHAAAAAAAAAKAIJNMBAAAAAAAAACgCyXQAAAAAAAAAAIpAMh0AAAAAAAAAgCKQTAcAAAAAAAAAoAgk0wEAAAAAKOO2b9+url27ysfHRzY2Nlq7dq1VvWEYmjx5smrUqCFnZ2eFhITo8OHDVjHnzp1Tv3795OrqKnd3d0VERCgtLc0qZu/evWrVqpWcnJzk6+urGTNmlHTXAAC4Y5BMBwAAAACgjEtPT1fjxo21cOHCAutnzJihN954Q4sXL9bu3bvl4uKi0NBQXb582Yzp16+f9u/fr9jYWK1bt07bt2/XkCFDzHqLxaIOHTrIz89PCQkJmjlzpqZMmaIlS5aUeP8AALgT2Jd2AwAAAAAAwLV16tRJnTp1KrDOMAzNmzdPEydOVPfu3SVJ77//vry8vLR27Vr17dtXBw8e1IYNG7Rnzx7df//9kqQFCxaoc+fOmjVrlnx8fBQTE6PMzEy99957cnBwUIMGDZSYmKg5c+ZYJd2vlpGRoYyMDHPdYrHcwp4DAFB2cGY6AAAAAAB3sKSkJCUnJyskJMQsc3NzU/PmzRUfHy9Jio+Pl7u7u5lIl6SQkBDZ2tpq9+7dZkzr1q3l4OBgxoSGhurQoUM6f/58ocePioqSm5ubufj6+t7qLgIAUCaQTAcAAAAA4A6WnJwsSfLy8rIq9/LyMuuSk5Pl6elpVW9vby8PDw+rmIL2ceUxCjJhwgSlpqaay8mTJ2+uQwAAlFFM8wIAAAAAAG6Yo6OjHB0dS7sZAACUOM5MBwAAAADgDubt7S1JSklJsSpPSUkx67y9vXX69Gmr+uzsbJ07d84qpqB9XHkMAADKM5LpAAAAAADcwQICAuTt7a3NmzebZRaLRbt371ZwcLAkKTg4WBcuXFBCQoIZs2XLFuXm5qp58+ZmzPbt25WVlWXGxMbGqm7duqpSpcpt6g0AAGUXyXQAAGCKiorSAw88oMqVK8vT01M9evTQoUOHrGIuX76syMhIVa1aVZUqVVLv3r3zncV24sQJhYWFqWLFivL09NS4ceOUnZ1tFRMXF6dmzZrJ0dFRderUUXR0dEl3DwCAO1ZaWpoSExOVmJgo6a+bjiYmJurEiROysbHRqFGj9Morr+jTTz/Vjz/+qKeeeko+Pj7q0aOHJCkwMFAdO3bU4MGD9c033+jrr7/W8OHD1bdvX/n4+EiSnnzySTk4OCgiIkL79+/Xhx9+qPnz52vMmDGl1GsAAMoWkukAAMC0bds2RUZGateuXYqNjVVWVpY6dOig9PR0M2b06NH67LPPtGrVKm3btk2nTp1Sr169zPqcnByFhYUpMzNTO3fu1LJlyxQdHa3JkyebMUlJSQoLC1O7du2UmJioUaNG6ZlnntHGjRtva38BALhTfPvtt2ratKmaNm0qSRozZoyaNm1qjq8vvPCCRowYoSFDhuiBBx5QWlqaNmzYICcnJ3MfMTExqlevntq3b6/OnTvr4Ycf1pIlS8x6Nzc3bdq0SUlJSQoKCtLYsWM1efJkDRky5PZ2FgCAMsrGMAyjtBtRVlksFrm5uSk1NVWurq6l3RzgrvHdd98pKChICQkJatasWWk3B7hrlMS4debMGXl6emrbtm1q3bq1UlNTVb16da1YsUJ9+vSRJP30008KDAxUfHy8WrRooS+++EJdunTRqVOn5OXlJUlavHixxo8frzNnzsjBwUHjx4/X+vXrtW/fPvNYffv21YULF7Rhw4ZS6y9Q3jFGAyWjvI1Z5a2/KD9OnDihs2fPlsqxDx48qP79+2v58uUKDAwslTZIUrVq1VSrVq1SOz5wq13vmGV/G9oEAADuUKmpqZIkDw8PSVJCQoKysrIUEhJixtSrV0+1atUyk+nx8fFq1KiRmUiXpNDQUA0bNkz79+9X06ZNFR8fb7WPvJhRo0YV2paMjAxlZGSY6xaL5VZ0EQAAACjSiRMnVLdeoC5fuliq7ejfv3+pHt/JuaIO/XSQhDrKLZLpAACgQLm5uRo1apQeeughNWzYUJKUnJwsBwcHubu7W8V6eXkpOTnZjLkykZ5Xn1d3rRiLxaJLly7J2dk5X3uioqI0derUW9I3AAAA4HqcPXtWly9dVNUuY1Whqu9tP76Rnans1BTZu3nJxt7hth9fkrL+OKk/1s3W2bNnSaaj3CKZDgAAChQZGal9+/bpq6++Ku2mSJImTJhgdQM0i8UiX9/b/0UGAAAA5VeFqr5y9K5TOgevWb90jgvARDIdAADkM3z4cK1bt07bt29XzZo1zXJvb29lZmbqwoULVmenp6SkyNvb24z55ptvrPaXkpJi1uX9m1d2ZYyrq2uBZ6VLkqOjoxwdHW+6bwAAAAAA3AiS6UA5Vdo3Trny39LATVOAghmGoREjRmjNmjWKi4tTQECAVX1QUJAqVKigzZs3q3fv3pKkQ4cO6cSJEwoODpYkBQcH69VXX9Xp06fl6ekpSYqNjZWrq6vq169vxnz++edW+46NjTX3AZRnjNGM0QAAACibSKYD5RA3TuGmKUBhIiMjtWLFCn3yySeqXLmyOce5m5ubnJ2d5ebmpoiICI0ZM0YeHh5ydXXViBEjFBwcrBYtWkiSOnTooPr162vAgAGaMWOGkpOTNXHiREVGRppnlg8dOlRvvvmmXnjhBQ0aNEhbtmzRypUrtX79+lLrO1AWMEYzRgMAAKDsIpkOlEPl/cYp3DQFKNyiRYskSW3btrUqX7p0qQYOHChJmjt3rmxtbdW7d29lZGQoNDRUb731lhlrZ2endevWadiwYQoODpaLi4vCw8M1bdo0MyYgIEDr16/X6NGjNX/+fNWsWVPvvPOOQkNDS7yPQFnGGM0YDQAAgLKLZDpQjnHjFABXMwyjyBgnJyctXLhQCxcuLDTGz88v3zQuV2vbtq2+//77624jUB4wRgMAAABlj21pNwAAAAAAAAAAgLKOZDoAAAAAAAAAAEUgmQ4AAAAAAAAAQBFIpgMAAAAAAAAAUASS6QAAAAAAAAAAFIFkOgAAAAAAAAAARSCZDgAAAAAAAABAEUimAwAAAAAAAABQhFJJpm/fvl1du3aVj4+PbGxstHbt2nwxBw8eVLdu3eTm5iYXFxc98MADOnHihFl/+fJlRUZGqmrVqqpUqZJ69+6tlJQUq32cOHFCYWFhqlixojw9PTVu3DhlZ2eXdPcAAAAAAAAAAHeZUkmmp6enq3Hjxlq4cGGB9b/88osefvhh1atXT3Fxcdq7d68mTZokJycnM2b06NH67LPPtGrVKm3btk2nTp1Sr169zPqcnByFhYUpMzNTO3fu1LJlyxQdHa3JkyeXeP8AAAAAAAAAAHcX+9I4aKdOndSpU6dC6//973+rc+fOmjFjhllWu3Zt8/+pqal69913tWLFCj3yyCOSpKVLlyowMFC7du1SixYttGnTJh04cEBffvmlvLy81KRJE7388ssaP368pkyZIgcHh3zHzcjIUEZGhrlusVhuRXcBAAAAAAAAAHe4Mjdnem5urtavX6+///3vCg0Nlaenp5o3b241FUxCQoKysrIUEhJiltWrV0+1atVSfHy8JCk+Pl6NGjWSl5eXGRMaGiqLxaL9+/cXeOyoqCi5ubmZi6+vb8l0EgAAAAAAAABwRylzyfTTp08rLS1Nr7/+ujp27KhNmzapZ8+e6tWrl7Zt2yZJSk5OloODg9zd3a229fLyUnJyshlzZSI9rz6vriATJkxQamqquZw8efIW9w4AAAAAAAAAcCcqlWleriU3N1eS1L17d40ePVqS1KRJE+3cuVOLFy9WmzZtSuzYjo6OcnR0LLH9AwAAAAAAAADuTGXuzPRq1arJ3t5e9evXtyoPDAzUiRMnJEne3t7KzMzUhQsXrGJSUlLk7e1txqSkpOSrz6sDAAAAAAAAAKC4ylwy3cHBQQ888IAOHTpkVf7zzz/Lz89PkhQUFKQKFSpo8+bNZv2hQ4d04sQJBQcHS5KCg4P1448/6vTp02ZMbGysXF1d8yXqAQAAAAAAAAC4llKZ5iUtLU1Hjhwx15OSkpSYmCgPDw/VqlVL48aN0+OPP67WrVurXbt22rBhgz777DPFxcVJktzc3BQREaExY8bIw8NDrq6uGjFihIKDg9WiRQtJUocOHVS/fn0NGDBAM2bMUHJysiZOnKjIyEimcgEAAAAAAAAAXJdSSaZ/++23ateunbk+ZswYSVJ4eLiio6PVs2dPLV68WFFRURo5cqTq1q2rjz/+WA8//LC5zdy5c2Vra6vevXsrIyNDoaGheuutt8x6Ozs7rVu3TsOGDVNwcLBcXFwUHh6uadOm3b6OAgAAAAAAAADuCqWSTG/btq0Mw7hmzKBBgzRo0KBC652cnLRw4UItXLiw0Bg/Pz99/vnnN9xOAAAAAAAAAACkMjhnOgAAAAAAAAAAZQ3JdAAAAAAAAAAAikAyHQAAAAAAAACAIpBMBwAAAAAAAACgCCTTAQAAAAAAAAAoAsl0AAAAAAAAAACKQDIdAAAAAAAAAIAikEwHAAAAAAAAAKAIJNMBAAAAAAAAACgCyXQAAAAAAAAAAIpAMh0AAAAAgLtATk6OJk2apICAADk7O6t27dp6+eWXZRiGGWMYhiZPnqwaNWrI2dlZISEhOnz4sNV+zp07p379+snV1VXu7u6KiIhQWlra7e4OAABlDsl0AAAAAADuAtOnT9eiRYv05ptv6uDBg5o+fbpmzJihBQsWmDEzZszQG2+8ocWLF2v37t1ycXFRaGioLl++bMb069dP+/fvV2xsrNatW6ft27dryJAhpdElAADKFPvSbgAAAAAAALh5O3fuVPfu3RUWFiZJ8vf31wcffKBvvvlG0l9npc+bN08TJ05U9+7dJUnvv/++vLy8tHbtWvXt21cHDx7Uhg0btGfPHt1///2SpAULFqhz586aNWuWfHx8SqdzAACUAZyZDgAAAADAXaBly5bavHmzfv75Z0nSDz/8oK+++kqdOnWSJCUlJSk5OVkhISHmNm5ubmrevLni4+MlSfHx8XJ3dzcT6ZIUEhIiW1tb7d69u8DjZmRkyGKxWC0AANyNODMdAAAAAIC7wL/+9S9ZLBbVq1dPdnZ2ysnJ0auvvqp+/fpJkpKTkyVJXl5eVtt5eXmZdcnJyfL09LSqt7e3l4eHhxlztaioKE2dOvVWdwcAgDKHM9MBAAAAALgLrFy5UjExMVqxYoW+++47LVu2TLNmzdKyZctK9LgTJkxQamqquZw8ebJEjwcAQGnhzHQAAAAAAO4C48aN07/+9S/17dtXktSoUSMdP35cUVFRCg8Pl7e3tyQpJSVFNWrUMLdLSUlRkyZNJEne3t46ffq01X6zs7N17tw5c/urOTo6ytHRsQR6BABA2UIyHQAAAACAu8DFixdla2t9AbqdnZ1yc3MlSQEBAfL29tbmzZvN5LnFYtHu3bs1bNgwSVJwcLAuXLighIQEBQUFSZK2bNmi3NxcNW/e/PZ1BiiDvCvZqJHDKVWwsSvtppSKLIdTUiWb0m4GUKpIpgMAAAAAcBfo2rWrXn31VdWqVUsNGjTQ999/rzlz5mjQoEGSJBsbG40aNUqvvPKK7r33XgUEBGjSpEny8fFRjx49JEmBgYHq2LGjBg8erMWLFysrK0vDhw9X37595ePjU4q9A0rfs0EOmuKzuLSbUXp8pClBDqXdCqBUkUwHAAAAAOAusGDBAk2aNEnPPfecTp8+LR8fHz377LOaPHmyGfPCCy8oPT1dQ4YM0YULF/Twww9rw4YNcnJyMmNiYmI0fPhwtW/fXra2turdu7feeOON0ugSUKb8JyFTO//+vCpU9S3tppSKrD9O6seEmepW2g0BShHJdAAAAAAA7gKVK1fWvHnzNG/evEJjbGxsNG3aNE2bNq3QGA8PD61YsaIEWgjc2ZLTDCnTR45GQGk3pVRkZOb89RgA5Zht0SEAAAAAAAAAAJRvnJkOAAAAlCHl+eZm3NgMAAAAZRnJdKCc4os6X9QBAGVTub65GTc2AwAAQBlGMh0op/iizhd1oCDbt2/XzJkzlZCQoN9//11r1qxRjx49zHobm4J/iJoxY4bGjRsnSfL399fx48et6qOiovSvf/3LXN+7d68iIyO1Z88eVa9eXSNGjNALL7xw6zsE3IHK883NuLEZAAAAyjKS6UA5xRd1vqgDBUlPT1fjxo01aNAg9erVK1/977//brX+xRdfKCIiQr1797YqnzZtmgYPHmyuV65c2fy/xWJRhw4dFBISosWLF+vHH3/UoEGD5O7uriFDhtziHgF3nvJ8czNubAYAAICyjGQ6UE7xRZ0v6kBBOnXqpE6dOhVa7+3tbbX+ySefqF27drrnnnusyitXrpwvNk9MTIwyMzP13nvvycHBQQ0aNFBiYqLmzJlDMh0AAAAAUGbZlnYDAADAnSklJUXr169XREREvrrXX39dVatWVdOmTTVz5kxlZ2ebdfHx8WrdurUcHP5vuqXQ0FAdOnRI58+fL/R4GRkZslgsVgsAAAAAALcLZ6YDAIAbsmzZMlWuXDnfdDAjR45Us2bN5OHhoZ07d2rChAn6/fffNWfOHElScnKyAgKsr4rx8vIy66pUqVLg8aKiojR16tQS6AkAAAAAAEUjmQ4AAG7Ie++9p379+snJycmqfMyYMeb/77vvPjk4OOjZZ59VVFSUHB0db/h4EyZMsNq3xWKRr2/5u+8DAAAAAKB0kEwHAADXbceOHTp06JA+/PDDImObN2+u7OxsHTt2THXr1pW3t7dSUlKsYvLWC5tnXZIcHR1vKhkPAAAAAMDNYM50AABw3d59910FBQWpcePGRcYmJibK1tZWnp6ekqTg4GBt375dWVlZZkxsbKzq1q1b6BQvAAAAAACUNpLpAADAlJaWpsTERCUmJkqSkpKSlJiYqBMnTpgxFotFq1at0jPPPJNv+/j4eM2bN08//PCDjh49qpiYGI0ePVr9+/c3E+VPPvmkHBwcFBERof379+vDDz/U/PnzraZwAQAAAACgrGGaFwAAYPr222/Vrl07cz0vwR0eHq7o6GhJ0v/+9z8ZhqEnnngi3/aOjo763//+pylTpigjI0MBAQEaPXq0VaLczc1NmzZtUmRkpIKCglStWjVNnjxZQ4YMKdnOAQAAAABwE0imAwAAU9u2bWUYxjVjhgwZUmjiu1mzZtq1a1eRx7nvvvu0Y8eOG2ojAAAAAAClgWleAAAAAAAAAAAoAsl0AAAAAAAAAACKQDIdAAAAAAAAAIAikEwHAAAAAAAAAKAIJNMBAAAAAAAAAChCqSTTt2/frq5du8rHx0c2NjZau3ZtobFDhw6VjY2N5s2bZ1V+7tw59evXT66urnJ3d1dERITS0tKsYvbu3atWrVrJyclJvr6+mjFjRgn0BgAAAAAAAABwtyuVZHp6eroaN26shQsXXjNuzZo12rVrl3x8fPLV9evXT/v371dsbKzWrVun7du3a8iQIWa9xWJRhw4d5Ofnp4SEBM2cOVNTpkzRkiVLbnl/AAAAAAAAAAB3N/vSOGinTp3UqVOna8b89ttvGjFihDZu3KiwsDCruoMHD2rDhg3as2eP7r//fknSggUL1LlzZ82aNUs+Pj6KiYlRZmam3nvvPTk4OKhBgwZKTEzUnDlzrJLuAAAAAAAAAAAUpUzOmZ6bm6sBAwZo3LhxatCgQb76+Ph4ubu7m4l0SQoJCZGtra12795txrRu3VoODg5mTGhoqA4dOqTz588XeNyMjAxZLBarBQAAAAAAAACAMplMnz59uuzt7TVy5MgC65OTk+Xp6WlVZm9vLw8PDyUnJ5sxXl5eVjF563kxV4uKipKbm5u5+Pr63mxXAAAAAAAAAAB3gTKXTE9ISND8+fMVHR0tGxub23rsCRMmKDU11VxOnjx5W48PAAAAAAAAACibylwyfceOHTp9+rRq1aole3t72dvb6/jx4xo7dqz8/f0lSd7e3jp9+rTVdtnZ2Tp37py8vb3NmJSUFKuYvPW8mKs5OjrK1dXVagEAAAAAAAAAoMwl0wcMGKC9e/cqMTHRXHx8fDRu3Dht3LhRkhQcHKwLFy4oISHB3G7Lli3Kzc1V8+bNzZjt27crKyvLjImNjVXdunVVpUqV29spAAAAAAAAAMAdzb40DpqWlqYjR46Y60lJSUpMTJSHh4dq1aqlqlWrWsVXqFBB3t7eqlu3riQpMDBQHTt21ODBg7V48WJlZWVp+PDh6tu3r3x8fCRJTz75pKZOnaqIiAiNHz9e+/bt0/z58zV37tzb11EAAAAAAAAAwF2hVJLp3377rdq1a2eujxkzRpIUHh6u6OjoYu0jJiZGw4cPV/v27WVra6vevXvrjTfeMOvd3Ny0adMmRUZGKigoSNWqVdPkyZM1ZMiQW9oXAAAAAAAAAMDdr1SS6W3btpVhGMWOP3bsWL4yDw8PrVix4prb3XfffdqxY8f1Ng8AAAAAAAAAACtlbs50AAAAAAAAAADKGpLpAAAAAAAAAAAUgWQ6AAAAAAAAAABFIJkOAAAAAAAAAEARSKYDAAAAAAAAAFAEkukAAAAAAAAAABSBZDoAAAAAAAAAAEUgmQ4AAAAAwF3it99+U//+/VW1alU5OzurUaNG+vbbb816wzA0efJk1ahRQ87OzgoJCdHhw4et9nHu3Dn169dPrq6ucnd3V0REhNLS0m53VwAAKHNIpgMAAAAAcBc4f/68HnroIVWoUEFffPGFDhw4oNmzZ6tKlSpmzIwZM/TGG29o8eLF2r17t1xcXBQaGqrLly+bMf369dP+/fsVGxurdevWafv27RoyZEhpdAkAgDLFvrQbAAAAAAAAbt706dPl6+urpUuXmmUBAQHm/w3D0Lx58zRx4kR1795dkvT+++/Ly8tLa9euVd++fXXw4EFt2LBBe/bs0f333y9JWrBggTp37qxZs2bJx8fn9nYKAIAyhGQ6AAAAAAB3gU8//VShoaF69NFHtW3bNv3tb3/Tc889p8GDB0uSkpKSlJycrJCQEHMbNzc3NW/eXPHx8erbt6/i4+Pl7u5uJtIlKSQkRLa2ttq9e7d69uyZ77gZGRnKyMgw1y0WSwn2EihdWX+cLJXjGtmZyk5Nkb2bl2zsHUqlDaXVd6AsIZkOAAAAAMBd4OjRo1q0aJHGjBmjF198UXv27NHIkSPl4OCg8PBwJScnS5K8vLystvPy8jLrkpOT5enpaVVvb28vDw8PM+ZqUVFRmjp1agn0CCg7qlWrJifnivpj3ezSbkqpcnKuqGrVqpV2M4BSQzIdAAAAAIC7QG5uru6//3699tprkqSmTZtq3759Wrx4scLDw0vsuBMmTNCYMWPMdYvFIl9f3xI7HlAaatWqpUM/HdTZs2dL5fgHDx5U//79tXz5cgUGBpZKG6S/flSoVatWqR0fKG0k04FyrLxensalaQAAALgb1ahRQ/Xr17cqCwwM1McffyxJ8vb2liSlpKSoRo0aZkxKSoqaNGlixpw+fdpqH9nZ2Tp37py5/dUcHR3l6Oh4q7oBlFm1atUq9URyYGCgmjVrVqptAMozkulAOcTlaVyaBgAo2/jBG8CNeOihh3To0CGrsp9//ll+fn6S/roZqbe3tzZv3mwmzy0Wi3bv3q1hw4ZJkoKDg3XhwgUlJCQoKChIkrRlyxbl5uaqefPmt68zAACUQSTTgXKIy9O4NA0AUDbxgzc/eAM3Y/To0WrZsqVee+01PfbYY/rmm2+0ZMkSLVmyRJJkY2OjUaNG6ZVXXtG9996rgIAATZo0ST4+PurRo4ekv8567dixowYPHqzFixcrKytLw4cPV9++feXj41OKvQMAoPSRTAfKKS5PAwCg7OEHb37wBm7GAw88oDVr1mjChAmaNm2aAgICNG/ePPXr18+MeeGFF5Senq4hQ4bowoULevjhh7VhwwY5OTmZMTExMRo+fLjat28vW1tb9e7dW2+88UZpdAkAgDKFZDoAAABQhvCDN4Cb0aVLF3Xp0qXQehsbG02bNk3Tpk0rNMbDw0MrVqwoieYBAHBHsy3tBgAAAAAAAAAAUNaRTAcAAAAAAAAAoAgk0wEAAAAAAAAAKALJdAAAAAAAAAAAikAyHQAAAAAAAACAIpBMBwAAAAAAAACgCCTTAQAAAAAAAAAoAsl0AAAAAAAAAACKQDIdAAAAAAAAAIAikEwHAACm7du3q2vXrvLx8ZGNjY3Wrl1rVT9w4EDZ2NhYLR07drSKOXfunPr16ydXV1e5u7srIiJCaWlpVjF79+5Vq1at5OTkJF9fX82YMaOkuwYAAAAAwE0hmQ4AAEzp6elq3LixFi5cWGhMx44d9fvvv5vLBx98YFXfr18/7d+/X7GxsVq3bp22b9+uIUOGmPUWi0UdOnSQn5+fEhISNHPmTE2ZMkVLliwpsX4BAAAAAHCz7Eu7AQAAoOzo1KmTOnXqdM0YR0dHeXt7F1h38OBBbdiwQXv27NH9998vSVqwYIE6d+6sWbNmycfHRzExMcrMzNR7770nBwcHNWjQQImJiZozZ45V0h0AAAAAgLKEM9MBAMB1iYuLk6enp+rWrathw4bpjz/+MOvi4+Pl7u5uJtIlKSQkRLa2ttq9e7cZ07p1azk4OJgxoaGhOnTokM6fP1/ocTMyMmSxWKwWAAAAAABuF5LpAACg2Dp27Kj3339fmzdv1vTp07Vt2zZ16tRJOTk5kqTk5GR5enpabWNvby8PDw8lJyebMV5eXlYxeet5MQWJioqSm5ubufj6+t7KrgEAAAAAcE1M8wIAAIqtb9++5v8bNWqk++67T7Vr11ZcXJzat29foseeMGGCxowZY65bLBYS6gAAAACA24Yz0wEAwA275557VK1aNR05ckSS5O3trdOnT1vFZGdn69y5c+Y8697e3kpJSbGKyVsvbC526a+52l1dXa0WAAAAAABuF5LpAADghv3666/6448/VKNGDUlScHCwLly4oISEBDNmy5Ytys3NVfPmzc2Y7du3Kysry4yJjY1V3bp1VaVKldvbAQAAAAAAiolkOgAAMKWlpSkxMVGJiYmSpKSkJCUmJurEiRNKS0vTuHHjtGvXLh07dkybN29W9+7dVadOHYWGhkqSAgMD1bFjRw0ePFjffPONvv76aw0fPlx9+/aVj4+PJOnJJ5+Ug4ODIiIitH//fn344YeaP3++1RQuAAAAAACUNSTTAQCA6dtvv1XTpk3VtGlTSdKYMWPUtGlTTZ48WXZ2dtq7d6+6deumv//974qIiFBQUJB27NghR0dHcx8xMTGqV6+e2rdvr86dO+vhhx/WkiVLzHo3Nzdt2rRJSUlJCgoK0tixYzV58mQNGTLktvcXAAAAAIDi4gakAADA1LZtWxmGUWj9xo0bi9yHh4eHVqxYcc2Y++67Tzt27Lju9gEAAAAAUFo4Mx0AAAAAAAAAgCKQTAcAAAAAAAAAoAgk0wEAAAAAAAAAKEKpJNO3b9+url27ysfHRzY2Nlq7dq1Zl5WVpfHjx6tRo0ZycXGRj4+PnnrqKZ06dcpqH+fOnVO/fv3k6uoqd3d3RUREKC0tzSpm7969atWqlZycnOTr66sZM2bcju4BAAAAAAAAAO4ypZJMT09PV+PGjbVw4cJ8dRcvXtR3332nSZMm6bvvvtPq1at16NAhdevWzSquX79+2r9/v2JjY7Vu3Tpt375dQ4YMMestFos6dOggPz8/JSQkaObMmZoyZYqWLFlS4v0DAAAAAAAAANxd7EvjoJ06dVKnTp0KrHNzc1NsbKxV2ZtvvqkHH3xQJ06cUK1atXTw4EFt2LBBe/bs0f333y9JWrBggTp37qxZs2bJx8dHMTExyszM1HvvvScHBwc1aNBAiYmJmjNnjlXS/UoZGRnKyMgw1y0Wyy3qMQAAAAAAAADgTnZHzJmempoqGxsbubu7S5Li4+Pl7u5uJtIlKSQkRLa2ttq9e7cZ07p1azk4OJgxoaGhOnTokM6fP1/gcaKiouTm5mYuvr6+JdcpAAAAAAAAAMAdo8wn0y9fvqzx48friSeekKurqyQpOTlZnp6eVnH29vby8PBQcnKyGePl5WUVk7eeF3O1CRMmKDU11VxOnjx5q7sDAAAAAAAAALgDlco0L8WVlZWlxx57TIZhaNGiRSV+PEdHRzk6Opb4cQAAAAAAAAAAd5Yym0zPS6QfP35cW7ZsMc9KlyRvb2+dPn3aKj47O1vnzp2Tt7e3GZOSkmIVk7eeFwMAAAAAAAAAQHGUyWle8hLphw8f1pdffqmqVata1QcHB+vChQtKSEgwy7Zs2aLc3Fw1b97cjNm+fbuysrLMmNjYWNWtW1dVqlS5PR0BAAAAAAAAANwVSiWZnpaWpsTERCUmJkqSkpKSlJiYqBMnTigrK0t9+vTRt99+q5iYGOXk5Cg5OVnJycnKzMyUJAUGBqpjx44aPHiwvvnmG3399dcaPny4+vbtKx8fH0n6f+zdeXxMd////+ckkYVIIkgiVyOi1L4URSiiUim1xFK1tUEu8dVQSmm5LKGLWlpLq1RraxtdtKiquqSWUlJLNLW7tLW1JGjISBCRnN8ffjkfI2GiDUl53G+3uV2d9/t9znm9x7jOeM6Z91HPnj3l7OysyMhI7du3T5999plmzpypYcOGFcaUAQAAAAAAAAD/YIWyzMvOnTvVsmVL83lOwB0REaGYmBitXLlSklS3bl2b7TZs2KCQkBBJUmxsrAYNGqRWrVrJwcFBXbp00axZs8yxnp6eWrt2raKjo1W/fn2VKVNG48aNU1RU1J2dHAAAAAAAAADgnlMoYXpISIgMw7hp/636cnh7e2vJkiW3HFO7dm1t3rz5tusDAAAAAAAAAOB6RXLNdAAAAAAAAAAAihLCdAAAAAAAAAAA7CBMBwAAAAAAAADADsJ0AAAAAAAAAADsIEwHAAAAAOAe88Ybb8hisWjo0KFm2+XLlxUdHa3SpUvL3d1dXbp0UXJyss12x48f15NPPqnixYvLx8dHI0aM0NWrV+9y9QAAFE2E6QAAAAAA3EN27Nih9957T7Vr17Zpf+GFF/T1119r6dKl+v7773Xy5El17tzZ7M/KytKTTz6pK1euaOvWrVq8eLEWLVqkcePG3e0pAABQJBGmAwAAAABwj0hLS1OvXr30/vvvq1SpUmZ7amqq5s+fr7feekuPPfaY6tevr4ULF2rr1q368ccfJUlr167V/v379fHHH6tu3bpq06aNXnnlFc2ePVtXrly56TEzMjJktVptHgAA3IsI0wEAAAAAuEdER0frySefVGhoqE17QkKCMjMzbdqrVq2q8uXLKz4+XpIUHx+vWrVqydfX1xwTFhYmq9Wqffv23fSYkyZNkqenp/kICAgo4FkBAFA0EKYDAAAAAHAP+PTTT7Vr1y5NmjQpV19SUpKcnZ3l5eVl0+7r66ukpCRzzPVBek5/Tt/NjBo1SqmpqebjxIkTf3MmAAAUTU6FXQAAAAAAAPh7Tpw4oSFDhiguLk6urq539dguLi5ycXG5q8cEAKAwcGU6AAAAAAD/cAkJCTp9+rTq1asnJycnOTk56fvvv9esWbPk5OQkX19fXblyRefPn7fZLjk5WX5+fpIkPz8/JScn5+rP6QMA4H5HmA4AAAAAwD9cq1attGfPHiUmJpqPBg0aqFevXuZ/FytWTOvWrTO3OXTokI4fP67g4GBJUnBwsPbs2aPTp0+bY+Li4uTh4aHq1avf9TkBAFDUsMwLAAAAAAD/cCVLllTNmjVt2kqUKKHSpUub7ZGRkRo2bJi8vb3l4eGhwYMHKzg4WI0bN5YktW7dWtWrV9czzzyjKVOmKCkpSWPGjFF0dDTLuAAAIMJ0AAAAAADuC9OnT5eDg4O6dOmijIwMhYWF6d133zX7HR0dtWrVKg0cOFDBwcEqUaKEIiIiNHHixEKsGgCAooMwHQAAAACAe9DGjRttnru6umr27NmaPXv2TbcJDAzU6tWr73BlAAD8M7FmOgAAAAAAAAAAdhCmAwAAAAAAAABgB2E6AAAAAAAAAAB2EKYDAAAAAAAAAGAHYToAAAAAAAAAAHYQpgMAAAAAAAAAYAdhOgAAAAAAAAAAdhCmAwAAAAAAAABgB2E6AAAAAAAAAAB2EKYDAAAAAAAAAGAHYToAAAAAAAAAAHYQpgMAAAAAAAAAYAdhOgAAAAAAAAAAdhCmAwAAAAAAAABgB2E6AAAwbdq0Se3bt5e/v78sFotWrFhh9mVmZuqll15SrVq1VKJECfn7++vZZ5/VyZMnbfZRoUIFWSwWm8cbb7xhM2b37t1q1qyZXF1dFRAQoClTptyN6QEAAAAA8JcRpgMAAFN6errq1Kmj2bNn5+q7ePGidu3apbFjx2rXrl1atmyZDh06pA4dOuQaO3HiRJ06dcp8DB482OyzWq1q3bq1AgMDlZCQoKlTpyomJkbz5s27o3MDAAAAAODvcCrsAgAAQNHRpk0btWnTJs8+T09PxcXF2bS98847atiwoY4fP67y5cub7SVLlpSfn1+e+4mNjdWVK1e0YMECOTs7q0aNGkpMTNRbb72lqKiogpsMAAAAAAAFiCvTAQDAX5aamiqLxSIvLy+b9jfeeEOlS5fWww8/rKlTp+rq1atmX3x8vJo3by5nZ2ezLSwsTIcOHdK5c+dueqyMjAxZrVabBwAAAAAAdwtXpgMAgL/k8uXLeumll9SjRw95eHiY7c8//7zq1asnb29vbd26VaNGjdKpU6f01ltvSZKSkpIUFBRksy9fX1+zr1SpUnkeb9KkSZowYcIdmg0AAAAAALdGmA4AAG5bZmamunXrJsMwNGfOHJu+YcOGmf9du3ZtOTs7a8CAAZo0aZJcXFz+8jFHjRpls2+r1aqAgIC/vD8AAAAAAG4HYToAALgtOUH6sWPHtH79epur0vPSqFEjXb16VUePHlWVKlXk5+en5ORkmzE5z2+2zrokubi4/K0wHgAAAACAv4M10wEAQL7lBOmHDx/Wd999p9KlS9vdJjExUQ4ODvLx8ZEkBQcHa9OmTcrMzDTHxMXFqUqVKjdd4gUAAAAAgMLGlekAAMCUlpamX375xXx+5MgRJSYmytvbW+XKlVPXrl21a9curVq1SllZWUpKSpIkeXt7y9nZWfHx8dq2bZtatmypkiVLKj4+Xi+88IJ69+5tBuU9e/bUhAkTFBkZqZdeekl79+7VzJkzNX369EKZMwAAAAAA+UGYDgAATDt37lTLli3N5zlrlEdERCgmJkYrV66UJNWtW9dmuw0bNigkJEQuLi769NNPFRMTo4yMDAUFBemFF16wWevc09NTa9euVXR0tOrXr68yZcpo3LhxioqKuvMTBAAAAADgLyJMBwAAppCQEBmGcdP+W/VJUr169fTjjz/aPU7t2rW1efPm264PAAAAAIDCUihrpm/atEnt27eXv7+/LBaLVqxYYdNvGIbGjRuncuXKyc3NTaGhoTp8+LDNmJSUFPXq1UseHh7y8vJSZGSk0tLSbMbs3r1bzZo1k6urqwICAjRlypQ7PTUAAAAAAAAAwD2oUML09PR01alTR7Nnz86zf8qUKZo1a5bmzp2rbdu2qUSJEgoLC9Ply5fNMb169dK+ffsUFxenVatWadOmTTY/D7darWrdurUCAwOVkJCgqVOnKiYmRvPmzbvj8wMAAAAAAAAA3FsKZZmXNm3aqE2bNnn2GYahGTNmaMyYMerYsaMk6cMPP5Svr69WrFih7t2768CBA1qzZo127NihBg0aSJLefvtttW3bVtOmTZO/v79iY2N15coVLViwQM7OzqpRo4YSExP11ltv3XRN1oyMDGVkZJjPrVZrAc8cAAAAAAAAAPBPVChXpt/KkSNHlJSUpNDQULPN09NTjRo1Unx8vCQpPj5eXl5eZpAuSaGhoXJwcNC2bdvMMc2bN5ezs7M5JiwsTIcOHdK5c+fyPPakSZPk6elpPgICAu7EFAEAAAAAAAAA/zBFLkxPSkqSJPn6+tq0+/r6mn1JSUny8fGx6XdycpK3t7fNmLz2cf0xbjRq1CilpqaajxMnTvz9CQEAAAAAAAAA/vEKZZmXosrFxUUuLi6FXQYAAAAAAAAAoIgpclem+/n5SZKSk5Nt2pOTk80+Pz8/nT592qb/6tWrSklJsRmT1z6uPwYAAAAAAAAAAPlR5ML0oKAg+fn5ad26dWab1WrVtm3bFBwcLEkKDg7W+fPnlZCQYI5Zv369srOz1ahRI3PMpk2blJmZaY6Ji4tTlSpVVKpUqbs0GwAAAAAAAADAvaBQwvS0tDQlJiYqMTFR0rWbjiYmJur48eOyWCwaOnSoXn31Va1cuVJ79uzRs88+K39/f4WHh0uSqlWrpieeeEL9+/fX9u3btWXLFg0aNEjdu3eXv7+/JKlnz55ydnZWZGSk9u3bp88++0wzZ87UsGHDCmPKAAAAAAAAAIB/sEJZM33nzp1q2bKl+Twn4I6IiNCiRYs0cuRIpaenKyoqSufPn9ejjz6qNWvWyNXV1dwmNjZWgwYNUqtWreTg4KAuXbpo1qxZZr+np6fWrl2r6Oho1a9fX2XKlNG4ceMUFRV19yYKAAAAAAAAALgnFEqYHhISIsMwbtpvsVg0ceJETZw48aZjvL29tWTJklsep3bt2tq8efNfrhMAAAAAAAAAAKkIrpkOAAAAAAAAAEBRQ5gOAAAAAMA9YNKkSXrkkUdUsmRJ+fj4KDw8XIcOHbIZc/nyZUVHR6t06dJyd3dXly5dlJycbDPm+PHjevLJJ1W8eHH5+PhoxIgRunr16t2cCgAARRJhOgAAAAAA94Dvv/9e0dHR+vHHHxUXF6fMzEy1bt1a6enp5pgXXnhBX3/9tZYuXarvv/9eJ0+eVOfOnc3+rKwsPfnkk7py5Yq2bt2qxYsXa9GiRRo3blxhTAkAgCKlUNZMBwAAAAAABWvNmjU2zxctWiQfHx8lJCSoefPmSk1N1fz587VkyRI99thjkqSFCxeqWrVq+vHHH9W4cWOtXbtW+/fv13fffSdfX1/VrVtXr7zyil566SXFxMTI2dm5MKYGAECRwJXpAAAAAADcg1JTUyVJ3t7ekqSEhARlZmYqNDTUHFO1alWVL19e8fHxkqT4+HjVqlVLvr6+5piwsDBZrVbt27cvz+NkZGTIarXaPAAAuBcRpgMAAAAAcI/Jzs7W0KFD1bRpU9WsWVOSlJSUJGdnZ3l5edmM9fX1VVJSkjnm+iA9pz+nLy+TJk2Sp6en+QgICCjg2QAAUDQQpgMAAAAAcI+Jjo7W3r179emnn97xY40aNUqpqanm48SJE3f8mAAAFAbWTAcAAAAA4B4yaNAgrVq1Sps2bdIDDzxgtvv5+enKlSs6f/68zdXpycnJ8vPzM8ds377dZn/JyclmX15cXFzk4uJSwLMAAKDo4cp0AAAAAADuAYZhaNCgQVq+fLnWr1+voKAgm/769eurWLFiWrdundl26NAhHT9+XMHBwZKk4OBg7dmzR6dPnzbHxMXFycPDQ9WrV787EwEAoIjiynQAAAAAAO4B0dHRWrJkib766iuVLFnSXOPc09NTbm5u8vT0VGRkpIYNGyZvb295eHho8ODBCg4OVuPGjSVJrVu3VvXq1fXMM89oypQpSkpK0pgxYxQdHc3V5wCA+x5hOgAAAAAA94A5c+ZIkkJCQmzaFy5cqD59+kiSpk+fLgcHB3Xp0kUZGRkKCwvTu+++a451dHTUqlWrNHDgQAUHB6tEiRKKiIjQxIkT79Y0AAAosgjTAQAAAAC4BxiGYXeMq6urZs+erdmzZ990TGBgoFavXl2QpQEAcE9gzXQAAAAAAAAAAOwgTAcAAAAAAAAAwA7CdAAAAAAAAAAA7CBMBwAAAAAAAADADsJ0AAAAAAAAAADsIEwHAAAAAAAAAMAOwnQAAAAAAAAAAOwgTAcAAAAAAAAAwA7CdAAAAAAAAAAA7CBMBwAAAAAAAADADsJ0AAAAAAAAAADsIEwHAAAAAAAAAMAOwnQAAAAAAAAAAOwgTAcAAAAAAAAAwA7CdAAAAAAAAAAA7CBMBwAAAAAAAADADsJ0AAAAAAAAAADscCrsAgD881y8eFEHDx78y9sfOHDA5n//qqpVq6p48eJ/ax8AAAAAAABAfhCmA7htBw8eVP369f/2fnr37v23tk9ISFC9evX+dh0AAAAAAACAPYTpAG5b1apVlZCQ8Je3v3Tpko4ePaoKFSrIzc3tb9UBAAD+D78eAwAAAO4cwnQAt6148eJ/+4rwpk2bFlA1AArSpk2bNHXqVCUkJOjUqVNavny5wsPDzX7DMDR+/Hi9//77On/+vJo2bao5c+aocuXK5piUlBQNHjxYX3/9tRwcHNSlSxfNnDlT7u7u5pjdu3crOjpaO3bsUNmyZTV48GCNHDnybk4VuCfx6zEAAADgziFMBwAApvT0dNWpU0f9+vVT586dc/VPmTJFs2bN0uLFixUUFKSxY8cqLCxM+/fvl6urqySpV69eOnXqlOLi4pSZmam+ffsqKipKS5YskSRZrVa1bt1aoaGhmjt3rvbs2aN+/frJy8tLUVFRd3W+wL2GX48BAAAAdw5hOgAAMLVp00Zt2rTJs88wDM2YMUNjxoxRx44dJUkffvihfH19tWLFCnXv3l0HDhzQmjVrtGPHDjVo0ECS9Pbbb6tt27aaNm2a/P39FRsbqytXrmjBggVydnZWjRo1lJiYqLfeeoswHfib+PUYAAAAcOcQpgMAgHw5cuSIkpKSFBoaarZ5enqqUaNGio+PV/fu3RUfHy8vLy8zSJek0NBQOTg4aNu2berUqZPi4+PVvHlzOTs7m2PCwsI0efJknTt3TqVKlcrz+BkZGcrIyDCfW63WOzBLAAAAoOBxXxPg3kCYDgAA8iUpKUmS5Ovra9Pu6+tr9iUlJcnHx8em38nJSd7e3jZjgoKCcu0jp+9mYfqkSZM0YcKEvz8RAAAA4C7jvibAvYEwHQAA/COMGjVKw4YNM59brVYFBAQUYkUAAABA/nBfE+DeQJgOAADyxc/PT5KUnJyscuXKme3JycmqW7euOeb06dM22129elUpKSnm9n5+fkpOTrYZk/M8Z0xeXFxc5OLi8rfnAQAAANxt3NcEuDc4FHYBAADgnyEoKEh+fn5at26d2Wa1WrVt2zYFBwdLkoKDg3X+/Hmbq27Wr1+v7OxsNWrUyByzadMmZWZmmmPi4uJUpUqVmy7xAgAAAABAYSuSYXpWVpbGjh2roKAgubm56cEHH9Qrr7wiwzDMMYZhaNy4cSpXrpzc3NwUGhqqw4cP2+wnJSVFvXr1koeHh7y8vBQZGam0tLS7PR0AAP4x0tLSlJiYqMTEREnXbjqamJio48ePy2KxaOjQoXr11Ve1cuVK7dmzR88++6z8/f0VHh4uSapWrZqeeOIJ9e/fX9u3b9eWLVs0aNAgde/eXf7+/pKknj17ytnZWZGRkdq3b58+++wzzZw502YJFwAAAAAAipoiuczL5MmTNWfOHC1evFg1atTQzp071bdvX3l6eur555+XJE2ZMkWzZs3S4sWLFRQUpLFjxyosLEz79++Xq6urJKlXr146deqU4uLilJmZqb59+yoqKkpLliwpzOkBAFBk7dy5Uy1btjSf5wTcERERWrRokUaOHKn09HRFRUXp/PnzevTRR7VmzRrz3CtJsbGxGjRokFq1aiUHBwd16dJFs2bNMvs9PT21du1aRUdHq379+ipTpozGjRunqKiouzdRALlkZWVp8+bNOnXqlMqVK6dmzZrJ0dGxsMsCAAAAigyLcf3l3kVEu3bt5Ovrq/nz55ttXbp0kZubmz7++GMZhiF/f38NHz5cL774oiQpNTVVvr6+WrRokbp3764DBw6oevXq2rFjhxo0aCBJWrNmjdq2bavff//dvDruVqxWqzw9PZWamioPD487M1kAAArI/Xbeut/mC9xJy5Yt0/Dhw3X06FGzrUKFCnrzzTfVuXPnwisMuEfcb+es+22+AIB/rts9ZxXJZV6aNGmidevW6X//+58k6eeff9YPP/ygNm3aSLr2k/OkpCSFhoaa23h6eqpRo0aKj4+XJMXHx8vLy8sM0iUpNDRUDg4O2rZtW57HzcjIkNVqtXkAAAAA97Jly5apa9euqlWrluLj43XhwgXFx8erVq1a6tq1q5YtW1bYJQIAAABFQpFc5uXll1+W1WpV1apV5ejoqKysLL322mvq1auXJCkpKUmS5Ovra7Odr6+v2ZeUlCQfHx+bficnJ3l7e5tjbjRp0iRNmDChoKcD4Dr8hBwAgKIjKytLw4cPV7t27bRixQo5OFy71qZx48ZasWKFwsPD9eKLL6pjx46crwEAAHDfK5JXpn/++eeKjY3VkiVLtGvXLi1evFjTpk3T4sWL7+hxR40apdTUVPNx4sSJO3o84H6zbNkyVapUSS1btlTPnj3VsmVLVapUiSveAAAoJJs3b9bRo0c1evRoGYahjRs36pNPPtHGjRtlGIZGjRqlI0eOaPPmzYVdKgAA962srCybc3RWVlZhlwTct4rklekjRozQyy+/rO7du0uSatWqpWPHjmnSpEmKiIiQn5+fJCk5OVnlypUzt0tOTlbdunUlSX5+fjp9+rTNfq9evaqUlBRz+xu5uLjIxcXlDswIQM5PyK+/SaF07e9t165d9cUXX7AmKwAAd9mpU6ckSb/++qt69OiRa830V1991WYcAAC4u7ivCVC0FMkr0y9evGj+xDSHo6OjsrOzJUlBQUHy8/PTunXrzH6r1apt27YpODhYkhQcHKzz588rISHBHLN+/XplZ2erUaNGd2EWAHJkZWVp4MCBMgxDrVq1slmPtVWrVjIMQwMHDuTbdQAA7rKcC1N69+6d55rpvXv3thkHAADuHu5rAhQ9FsMwjMIu4kZ9+vTRd999p/fee081atTQTz/9pKioKPXr10+TJ0+WJE2ePFlvvPGGFi9erKCgII0dO1a7d+/W/v37zStf27Rpo+TkZM2dO1eZmZnq27evGjRooCVLluSrDu5ADhSMdevWKTQ0VI8++qi+//57my/LsrOz1bx5c23ZskXfffedWrVqVYiVAv9s99t5636bL3AnXLlyRSVKlFDp0qX1+++/y8np/364evXqVT3wwAP6888/lZ6eLmdn50KsFPhnu9/OWffbfIE7ISsrS5UqVVKtWrVs7msiXft3dHh4uPbu3avDhw9zXxPgb7jdc1aRvDL97bffVteuXfXcc8+pWrVqevHFFzVgwAC98sor5piRI0dq8ODBioqK0iOPPKK0tDStWbPGZgmJ2NhYVa1aVa1atVLbtm316KOPat68eYUxJeC+tnHjRknShAkTcv3qxMHBQTExMTbjAADA3bF161ZdvXpVp0+fVufOnW2ueuvcubNOnz6tq1evauvWrYVdKoC7bPbs2apQoYJcXV3VqFEjbd++vbBLAu4r19/XJK9/R3NfE6BwFMk100uWLKkZM2ZoxowZNx1jsVg0ceJETZw48aZjvL29830VOgAAAHC/yVkL/aOPPtKYMWPUpEkTsy8oKEgfffSRevfuzZrpwH3ms88+07BhwzR37lw1atRIM2bMUFhYmA4dOiQfH5/CLg+4L+Sce2vWrJlnf04752jg7iqSV6YDuLeEhIRIksaPH2/e+yBHdna2JkyYYDMOAADcHTlroT/44IP65ZdftGHDBi1ZskQbNmzQ4cOHVbFiRZtxAO4Pb731lvr376++ffuqevXqmjt3rooXL64FCxYUdmnAfSPn3Lt37948+3PaOUcDdxdhOoA7LiQkRGXLltUPP/ygjh072vyEvGPHjvrhhx/k4+NDmA4AwF3WrFkzVahQQa+//rosFotCQkLUo0cPhYSEyGKxaNKkSQoKClKzZs0Ku1QAd8mVK1eUkJCg0NBQs83BwUGhoaGKj4/Pc5uMjAxZrVabB4C/5/pzdF4XpXGOBgoHYTqAO87R0VFz586VdO1mpE2aNJGHh4eaNGmi9evXS5LmzJnDTVMAALjLHB0d9eabb2rVqlUKDw+3+cI7PDxcq1at0rRp0zhHA/eRs2fPKisrS76+vjbtvr6+SkpKynObSZMmydPT03wEBATcjVKBexrnaKBoIkwHcFd07txZX375Za41Fn18fPTll1+qc+fOhVQZAAD3t86dO+uLL77Qnj17bL7w3rt3r7744gvO0QDsGjVqlFJTU83HiRMnCrsk4J7AORooeorkDUgB3Js6d+6sjh07avPmzTp16pTKlSunZs2a8U06AACFjHM0gBxlypSRo6OjkpOTbdqTk5Pl5+eX5zYuLi5ycXG5G+UB9x3O0UDRQpgO4K5ydHRkbXQAAIogztEAJMnZ2Vn169fXunXrFB4eLuna+szr1q3ToEGDCrc44D7FORooOgjTAQAAAACAadiwYYqIiFCDBg3UsGFDzZgxQ+np6erbt29hlwYAQKEiTAcAAAAAAKann35aZ86c0bhx45SUlKS6detqzZo1uW5KCgDA/YYwHQAAAAAA2Bg0aBDLugAAcAOHwi4AAAAAAAAAAICijjAdAAAAAAAAAAA7CNMBAAAAAAAAALCDMB0AAAAAAAAAADsI0wEAAAAAAAAAsIMwHQAAAAAAAAAAOwjTAQAAAAAAAACwgzAdAAAAAAAAAAA7nAq7gKLMMAxJktVqLeRKAACwL+d8lXP+utdxngYA/FNwjgYAoGi63XM0YfotXLhwQZIUEBBQyJUAAJB/Fy5ckKenZ2GXccdxngYA/NNwjgYAoGjK7znaYtwvX43/BdnZ2Tp58qRKliwpi8VS2OUA9wyr1aqAgACdOHFCHh4ehV0OcM8wDEMXLlyQv7+/HBzu/ZXcOE8DBY9zNHBncI4G8HdxjgbujNs9RxOmA7jrrFarPD09lZqayocAAACKEM7RAAAUTZyjgaLh3v9KHAAAAAAAAACAv4kwHQAAAAAAAAAAOwjTAdx1Li4uGj9+vFxcXAq7FAAAcB3O0QAAFE2co4GigTXTAQAAAAAAAACwgyvTAQAAAAAAAACwgzAdAAAAAAAAAAA7CNMBAAAAAAAAALCDMB0AAAAAAAAAADsI0wEAAAAAAAAAsIMwHcBds2nTJrVv317+/v6yWCxasWJFYZcEAADEORoAgKKM8zRQdBCmA7hr0tPTVadOHc2ePbuwSwEAANfhHA0AQNHFeRooOpwKuwAA9482bdqoTZs2hV0GAAC4AedoAACKLs7TQNHBlekAAAAAAAAAANhBmA4AAAAAAAAAgB2E6QAAAAAAAAAA2EGYDgAAAAAAAACAHYTpAAAAAAAAAADY4VTYBQC4f6SlpemXX34xnx85ckSJiYny9vZW+fLlC7EyAADub5yjAQAoujhPA0WHxTAMo7CLAHB/2Lhxo1q2bJmrPSIiQosWLbr7BQEAAEmcowEAKMo4TwNFB2E6AAAAAAAAAAB2sGY6AAAAAAAAAAB2EKYDAAAAAAAAAGAHYToAAAAAAAAAAHYQpgMAAAAAAAAAYAdhOgAAAAAAAAAAdhCmAwAAAAAAAABgB2E6AAAAAAAAAAB2EKYDAAAAAAAAAGAHYTpwnzhz5owGDhyo8uXLy8XFRX5+fgoLC9OWLVskSRaLRStWrCjcIm8wadIkOTo6aurUqYVdCgAAuA0xMTGqW7eu+bxPnz4KDw/P9/ZHjx6VxWJRYmLiTcds3LhRFotF58+f/8t1AgD++RYtWiQvLy/z+Y3nIAAoSITpwH2iS5cu+umnn7R48WL973//08qVKxUSEqI///yzQI+TmZlZYPtasGCBRo4cqQULFtgde+XKlQI7LgAA+XV9SBwSEqKhQ4cWaj23Y8CAAXJ0dNTSpUsLfN8vvvii1q1bV+D7BQDcO/r06SOLxSKLxaJixYrJ19dXjz/+uBYsWKDs7Ox87+fpp5/W//73vztWp2EYmjdvnho1aiR3d3d5eXmpQYMGmjFjhi5evFggx/infYa4mZ9++klPPfWUfH195erqqsqVK6t///539M8nL3zhjjuJMB24D5w/f16bN2/W5MmT1bJlSwUGBqphw4YaNWqUOnTooAoVKkiSOnXqJIvFYj6XpDlz5ujBBx+Us7OzqlSpoo8++shm3xaLRXPmzFGHDh1UokQJvfbaa5Kkr776SvXq1ZOrq6sqVqyoCRMm6OrVq/mu+fvvv9elS5c0ceJEWa1Wbd261aY/52qDDz74QEFBQXJ1dTXn+u9//1tly5aVh4eHHnvsMf3888/mdr/++qs6duwoX19fubu765FHHtF33313Oy8nAAD/eBcvXtSnn36a7y+tb5e7u7tKly5d4PsFANxbnnjiCZ06dUpHjx7Vt99+q5YtW2rIkCFq165dvv/96ObmJh8fnztW4zPPPKOhQ4eqY8eO2rBhgxITEzV27Fh99dVXWrt27R07blGSn4vXVq1apcaNGysjI0OxsbE6cOCAPv74Y3l6emrs2LF3oUrg7iBMB+4D7u7ucnd314oVK5SRkZGrf8eOHZKkhQsX6tSpU+bz5cuXa8iQIRo+fLj27t2rAQMGqG/fvtqwYYPN9jExMerUqZP27Nmjfv36afPmzXr22Wc1ZMgQ7d+/X++9954WLVpkBu35MX/+fPXo0UPFihVTjx49NH/+/FxjfvnlF3355ZdatmyZ+TPwp556SqdPn9a3336rhIQE1atXT61atVJKSookKS0tTW3bttW6dev0008/6YknnlD79u11/PjxfNcGAMCN+vTpo++//14zZ840r7I7evSoJGnv3r1q06aN3N3d5evrq2eeeUZnz541tw0JCdHgwYM1dOhQlSpVSr6+vnr//feVnp6uvn37qmTJkqpUqZK+/fZbc5tz586pV69eKlu2rNzc3FS5cmUtXLgw3/UuXbpU1atX18svv6xNmzbpxIkTkiSr1So3NzebY0nXPhOULFnSvALvpZde0kMPPaTixYurYsWKGjt2rM2v0+z9xH7NmjV69NFH5eXlpdKlS6tdu3b69ddfc407ePCgmjRpIldXV9WsWVPff//9Lef1ww8/qFmzZnJzc1NAQICef/55paen5/dlAQDcZTlLkP7rX/9SvXr1NHr0aH311Vf69ttvtWjRIknSW2+9pVq1aqlEiRIKCAjQc889p7S0NHMfNy7zcr1NmzapWLFiSkpKsmkfOnSomjVrZre+zz//XLGxsfrkk080evRoPfLII6pQoYI6duyo9evXq2XLlpLyvrI8PDxcffr0MZ+/++67qly5slxdXeXr66uuXbtKuvVniO+//14NGzaUi4uLypUrp5dfftnmS4a/8hlCyt9nk0GDBmno0KEqU6aMwsLCbvk6Xbx4UX379lXbtm21cuVKhYaGKigoSI0aNdK0adP03nvvmWPtzalChQqaMWOGzf7r1q2rmJgY87nFYtEHH3ygTp06qXjx4qpcubJWrlwp6dpScTl/LqVKlZLFYrH5cwD+LsJ04D7g5OSkRYsWafHixfLy8lLTpk01evRo7d69W5JUtmxZSZKXl5f8/PzM59OmTVOfPn303HPP6aGHHtKwYcPUuXNnTZs2zWb/PXv2VN++fVWxYkWVL19eEyZM0Msvv6yIiAhVrFhRjz/+uF555RWbE+itWK1WffHFF+rdu7ckqXfv3vr8889tPjBJ174d//DDD/Xwww+rdu3a+uGHH7R9+3YtXbpUDRo0UOXKlTVt2jR5eXnpiy++kCTVqVNHAwYMUM2aNVW5cmW98sorevDBB80TLwAAf8XMmTMVHBys/v3769SpUzp16pQCAgJ0/vx5PfbYY3r44Ye1c+dOrVmzRsnJyerWrZvN9osXL1aZMmW0fft2DR48WAMHDtRTTz2lJk2aaNeuXWrdurWeeeYZM8weO3as9u/fr2+//VYHDhzQnDlzVKZMmXzXO3/+fPXu3Vuenp5q06aNGVh4eHioXbt2WrJkic342NhYhYeHq3jx4pKkkiVLatGiRdq/f79mzpyp999/X9OnT8/38dPT0zVs2DDt3LlT69atk4ODgzp16pTrZ/0jRozQ8OHD9dNPPyk4OFjt27e/6RJ1v/76q5544gl16dJFu3fv1meffaYffvhBgwYNynddAIDC99hjj6lOnTpatmyZJMnBwUGzZs3Svn37tHjxYq1fv14jR47M176aN2+uihUr2vzCOjMzU7GxserXr5/d7WNjY1WlShV17NgxV5/FYpGnp2e+6ti5c6eef/55TZw4UYcOHdKaNWvUvHlzSTf/DPHHH3+obdu2euSRR/Tzzz9rzpw5mj9/vl599VWbfd/uZ4jb+Wzi7OysLVu2aO7cubec33//+1+dPXv2pn8uOV925HdO+TFhwgR169ZNu3fvVtu2bdWrVy+lpKQoICBAX375pSTp0KFDOnXqlGbOnHnb+wduygBw37h06ZKxdu1aY+LEiUZwcLDh6OhoLFy40DAMw5BkLF++3GZ8qVKljEWLFtm0zZgxwwgKCjKfSzI+/vhjmzFlypQxXF1djRIlSpgPV1dXQ5KRnp5ut865c+caNWvWtGmrUaOG8cEHH5jPx48fb1SqVMlmzDvvvGM4ODjYHLdEiRKGg4ODMXLkSMMwDOPChQvG8OHDjapVqxqenp5m/4gRI+zWBQDAjSIiIoyOHTsahmEYLVq0MIYMGWLT/8orrxitW7e2aTtx4oQhyTh06JC53aOPPmr2X7161ShRooTxzDPPmG2nTp0yJBnx8fGGYRhG+/btjb59+/6lmv/3v/8ZxYoVM86cOWMYhmEsX77cCAoKMrKzs83n7u7u5jk7NTXVcHV1Nb799tub7nPq1KlG/fr1zefjx4836tSpYz6//nXKy5kzZwxJxp49ewzDMIwjR44Ykow33njDHJOZmWk88MADxuTJkw3DMIwNGzYYkoxz584ZhmEYkZGRRlRUlM1+N2/ebDg4OBiXLl2y86oAAO62W50bnn76aaNatWp59i1dutQoXbq0+XzhwoWGp6en+fzGc9DkyZNt9vXll18a7u7uRlpamt0aq1WrZnTo0MHuuLw+A3Ts2NGIiIgwj+nh4WFYrdZ8bz969GijSpUq5vnZMAxj9uzZhru7u5GVlWVud7ufIfL72eThhx+2O+8ckydPNiQZKSkptxyXnzkFBgYa06dPt9muTp06xvjx483nkowxY8aYz9PS0gxJ5meVGz8jAAWJK9OB+4irq6sef/xxjR07Vlu3blWfPn00fvz4v73fEiVK2DxPS0vThAkTlJiYaD727Nmjw4cPm2ub38r8+fO1b98+OTk5mY/9+/fnWtM1r+OWK1fO5riJiYk6dOiQRowYIenaDdGWL1+u119/XZs3b1ZiYqJq1arFDUwBAHfEzz//rA0bNphLrrm7u6tq1aqSZLOsSe3atc3/dnR0VOnSpVWrVi2zzdfXV5J0+vRpSdLAgQP16aefqm7duho5cmSue4vcyoIFCxQWFmZeyd62bVulpqZq/fr15vNixYqZv9r68ssv5eHhodDQUHMfn332mZo2bSo/Pz+5u7trzJgxt7Vk2uHDh9WjRw9VrFhRHh4e5v1abtxHcHCw+d9OTk5q0KCBDhw4kOc+f/75Zy1atMjmtQ4LC1N2draOHDmS79oAAIXPMAxZLBZJ0nfffadWrVrpX//6l0qWLKlnnnlGf/75Z75v/tmnTx/98ssv+vHHHyVdWxamW7duuf49ebM6CsLjjz+uwMBAVaxYUc8884xiY2Pt1n/gwAEFBwebr4MkNW3aVGlpafr999/Nttv9DJHfzyb169fP9/zy+zrld075cf28S5QoIQ8PD3OOwJ3kVNgFACg81atX14oVKyRJxYoVU1ZWlk1/tWrVtGXLFkVERJhtW7ZsUfXq1W+533r16unQoUOqVKnSbde0Z88e7dy5Uxs3bpS3t7fZnpKSopCQEB08eNA80ed13KSkJDk5OdncRPV6W7ZsUZ8+fdSpUydJ1wL4nPXoAAAoaGlpaWrfvr0mT56cq69cuXLmfxcrVsymz2Kx2LTl/KMzZxmUNm3a6NixY1q9erXi4uLUqlUrRUdH51qK7UZZWVlavHixeb68vn3BggVq1aqVnJ2d1bVrVy1ZskTdu3fXkiVL9PTTT5vj4+Pj1atXL02YMEFhYWHy9PTUp59+qjfffDPfr0v79u0VGBio999/X/7+/srOzlbNmjX/1pfbaWlpGjBggJ5//vlcfeXLl//L+wUA3H0HDhxQUFCQjh49qnbt2mngwIF67bXX5O3trR9++EGRkZG6cuWKufzYrfj4+Kh9+/ZauHChgoKC9O2332rjxo35quOhhx7SwYMH7Y5zcHDIFShffy+RkiVLateuXdq4caPWrl2rcePGKSYmRjt27Ljpeu/5dbufIfL72SQ/XzbkeOihhyRdu9fJ9V+E/xX2Xsscec37xuXigDuBMB24D/z555966qmn1K9fP9WuXVslS5bUzp07NWXKFHPttwoVKmjdunVq2rSpXFxcVKpUKY0YMULdunXTww8/rNDQUH399ddatmyZvvvuu1seb9y4cWrXrp3Kly+vrl27ysHBQT///LP27t1rdy20+fPnq2HDhub6cdd75JFHNH/+fE2dOjXPbUNDQxUcHKzw8HBNmTJFDz30kE6ePKlvvvlGnTp1MtdRX7Zsmdq3by+LxaKxY8dywgUAFAhnZ+dcX0zXq1dPX375pSpUqGATXheEsmXLKiIiQhEREWrWrJlGjBhhN0xfvXq1Lly4oJ9++kmOjo5m+969e9W3b1+dP39eXl5e6tWrlx5//HHt27dP69evtzl/b926VYGBgfrPf/5jth07dizfdf/55586dOiQ3n//ffPmbz/88EOeY3/88UfzM8HVq1eVkJBw0zXQ69Wrp/379/+lL/MBAEXH+vXrtWfPHr3wwgtKSEhQdna23nzzTTk4XFtc4fPPP7/tff773/9Wjx499MADD+jBBx9U06ZN87Vdz5491b17d3311Ve51k03DENWq1Wenp4qW7asTp06ZfZlZWVp79695o0wpWu/sAoNDVVoaKjGjx8vLy8vrV+/Xp07d87zM0S1atX05Zdf2lylv2XLFpUsWVIPPPDAbb8GOe7EZ5PWrVurTJkymjJlipYvX56rP+fzRX7mdONrabVab/sXZs7OzpKU6zUFCgLLvAD3AXd3dzVq1EjTp09X8+bNVbNmTY0dO1b9+/fXO++8I0l68803FRcXp4CAAD388MOSrt19fObMmZo2bZpq1Kih9957TwsXLlRISMgtjxcWFqZVq1Zp7dq1euSRR9S4cWNNnz5dgYGBt9zuypUr+vjjj9WlS5c8+7t06aIPP/wwz2+lpWvfRK9evVrNmzdX37599dBDD6l79+46duyY+dO2t956S6VKlVKTJk3Uvn17hYWFqV69eresCwCA/KhQoYK2bdumo0eP6uzZs8rOzlZ0dLRSUlLUo0cP7dixQ7/++qv++9//qm/fvn/rH3jjxo3TV199pV9++UX79u3TqlWrVK1aNbvbzZ8/X08++aTq1KmjmjVrmo9u3brJy8tLsbGxkq7dsM3Pz0+9evVSUFCQGjVqZO6jcuXKOn78uD799FP9+uuvmjVrVp7/cL6ZUqVKqXTp0po3b55++eUXrV+/XsOGDctz7OzZs7V8+XIdPHhQ0dHROnfu3E1vGPfSSy9p69atGjRokBITE3X48GF99dVX3IAUAIqwjIwMJSUl6Y8//tCuXbv0+uuvq2PHjmrXrp2effZZVapUSZmZmXr77bf122+/6aOPPrJ7M8y8hIWFycPDQ6+++qr69u2b7+26deump59+Wj169NDrr7+unTt36tixY1q1apVCQ0O1YcMGSddumvrNN9/om2++0cGDBzVw4ECdP3/e3M+qVas0a9YsJSYm6tixY/rwww+VnZ2tKlWqSMr7M8Rzzz2nEydOaPDgwTp48KC++uorjR8/XsOGDTO/WPgr7sRnkxIlSuiDDz7QN998ow4dOui7777T0aNHtXPnTo0cOVL/7//9P0nK15wee+wxffTRR9q8ebP27NmjiIgImwsA8iMwMFAWi0WrVq3SmTNnlJaW9pfmBeSp8JZrBwAAAP7Zrr952qFDh4zGjRsbbm5uhiTjyJEjhmFcu+Fnp06dDC8vL8PNzc2oWrWqMXToUPPmW3nddCyvm2/pupuFv/LKK0a1atUMNzc3w9vb2+jYsaPx22+/3bLWpKQkw8nJyfj888/z7B84cKDNzcZGjhxpSDLGjRuXa+yIESOM0qVLG+7u7sbTTz9tTJ8+/ZY3f7vxJnNxcXFGtWrVDBcXF6N27drGxo0bbeaXcwPSJUuWGA0bNjScnZ2N6tWrG+vXrzf3kdfNxbZv3248/vjjhru7u1GiRAmjdu3axmuvvXbL1wUAUDgiIiIMSYYkw8nJyShbtqwRGhpqLFiwwLwZpWEYxltvvWWUK1fOcHNzM8LCwowPP/zQ5v//7d2ANMfYsWMNR0dH4+TJk7dVZ1ZWljFnzhzjkUceMYoXL254eHgY9evXN2bOnGlcvHjRMAzDuHLlijFw4EDD29vb8PHxMSZNmmRzA9LNmzcbLVq0MEqVKmW4ubkZtWvXNj777DPzGDf7DLFx40bjkUceMZydnQ0/Pz/jpZdeMjIzM83t/spnCMP4a59N8mPHjh1G586djbJlyxouLi5GpUqVjKioKOPw4cPmGHtzSk1NNZ5++mnDw8PDCAgIMBYtWpTnDUivn49hGIanp6excOFC8/nEiRMNPz8/w2KxmH8OQEGwGEYB3U0BAAAAAAAAKIIiIyN15swZ8wbbAPBXsMwLgLsqNjbW5q7h1z9q1KhR2OUBAAAAAO4hqamp+uGHH7RkyRINHjy4sMsB8A/HlekA7qoLFy4oOTk5z75ixYrZXVcdAADc3Ouvv67XX389z75mzZrp22+/vcsVAQBQuEJCQrR9+3YNGDBA06dPt+lr06aNNm/enOd2o0eP1ujRo+9GiUVebGysBgwYkGdfYGCg9u3bd5crAgoPYToAAABwj0hJSVFKSkqefW5ubvrXv/51lysCAKDo+uOPP3Tp0qU8+7y9veXt7X2XKyqauCgO+D+E6QAAAAAAAAAA2MGa6QAAAAAAAAAA2EGYDgAAAAAAAACAHYTpAAAAAAAAAADYQZgOAAAAAAAAAIAdhOkAAAAAAAAAANhBmA4AAAAAAAAAgB2E6QAAAAAAAAAA2EGYDgAAAAAAAACAHYTpAAAAAAAAAADYQZgOAAAAAAAAAIAdhOkAAAAAAAAAANhBmA4AAAAAAAAAgB2E6QAAAAAAAAAA2EGYDgAo8o4ePSqLxaJFixYVdikAAAAAAOA+RZh+j/viiy9ksVjyfNSsWbOwywPuGyEhIerTp48kqU+fPgoJCbHpT0tL0/jx41WzZk2VKFFCpUuXVt26dTVkyBCdPHnSHLd69WrFxMTcvcL/ouzsbH344Ydq1KiRvL29VbJkST300EN69tln9eOPPxZ2ebnExMSoQoUKkqRFixbJYrEUbkEAAAAAAKDIcSrsAnB3jB49WtWqVTOfv/baa4VYDYDrZWZmqnnz5jp48KAiIiI0ePBgpaWlad++fVqyZIk6deokf39/SdfC9NmzZxf5QP3555/X7Nmz1bFjR/Xq1UtOTk46dOiQvv32W1WsWFGNGzcu7BIBAAAAAABuC2H6feLxxx+3uRL2gw8+0NmzZwuvIACmFStW6KefflJsbKx69uxp03f58mVduXLljh4/OztbV65ckaura4HsLzk5We+++6769++vefPm2fTNmDFDZ86cKZDjAAAAAAAA3E0s83KPywnhHBzs/1HnLG1w9OhRsy07O1u1a9fOtVbx7t271adPH1WsWFGurq7y8/NTv3799Oeff9rsMyYmJs8lZpyc/u97nJCQENWsWVMJCQlq0qSJ3NzcFBQUpLlz5+aay7hx41S/fn15enqqRIkSatasmTZs2GAzLmdtZYvFohUrVtj0Xb58WaVKlZLFYtG0adNy1enj46PMzEybbT755BNzf9d/AfHVV1/pySeflL+/v1xcXPTggw/qlVdeUVZWlt3XOud4Bw8eVLdu3eTh4aHSpUtryJAhunz5ss3YhQsX6rHHHpOPj49cXFxUvXp1zZkzJ9c+O3bsqAoVKsjV1VU+Pj7q0KGD9uzZYzMmZx4zZszItX3VqlVlsVg0aNAgsy0lJUUvvviiatWqJXd3d3l4eKhNmzb6+eefbbaNiIiQq6urDhw4YNMeFhamUqVK2SxT8ttvv+mpp56St7e3ihcvrsaNG+ubb76x2W7jxo027xcXFxc99NBDmjRpkgzDuPWL+/+72XvvxuVVJNv3zI2P650+fVqRkZEqX768HB0dzTHu7u75qulmfv31V0lS06ZNc/W5urrKw8ND0rXlYWbPni1JedaYnp6u4cOHKyAgQC4uLqpSpYqmTZuW6zXL+XOOjY1VjRo15OLiojVr1kiS/vjjD/Xr10++vr5ycXFRjRo1tGDBgtuaz5EjR2QYRp7zyfl7liO/77GbOXjwoLp27Spvb2+5urqqQYMGWrlypc2YzMxMTZgwQZUrV5arq6tKly6tRx99VHFxcbc1LwAAAAAAcH/jyvR7XE6Y7uLi8pe2/+ijj3IFspIUFxen3377TX379pWfn5/27dunefPmad++ffrxxx9zhZBz5syxCRxvDPfPnTuntm3bqlu3burRo4c+//xzDRw4UM7OzurXr58kyWq16oMPPlCPHj3Uv39/XbhwQfPnz1dYWJi2b9+uunXr2uzT1dVVCxcuVHh4uNm2bNmyXGH19S5cuKBVq1apU6dOZtvChQvl6uqaa7tFixbJ3d1dw4YNk7u7u9avX69x48bJarVq6tSpNz3G9bp166YKFSpo0qRJ+vHHHzVr1iydO3dOH374oc1rV6NGDXXo0EFOTk76+uuv9dxzzyk7O1vR0dE2+4uKipKfn59Onjypd955R6GhoTpy5IiKFy+e63UZOnSo2bZ161YdO3YsV32//fabVqxYoaeeekpBQUFKTk7We++9pxYtWmj//v3m0iMzZ87U+vXrFRERofj4eDk6Ouq9997T2rVr9dFHH5njkpOT1aRJE128eFHPP/+8SpcurcWLF6tDhw764osvbF536f+WJ7p06ZI+++wzjR49Wj4+PoqMjMzX65vz+uW890aNGnXLsVFRUWrWrJmka++V5cuX2/RHRETou+++0+DBg1WnTh05Ojpq3rx52rVrV77ryUtgYKAk6cMPP9SYMWNuul73gAEDdPLkScXFxemjjz6y6TMMQx06dNCGDRsUGRmpunXr6r///a9GjBihP/74Q9OnT7cZv379en3++ecaNGiQypQpowoVKig5OVmNGzc2w/ayZcvq22+/VWRkpKxWq817Jj/zWbp0qZ566imb99+N8vsey8u+ffvUtGlT/etf/9LLL7+sEiVK6PPPP1d4eLi+/PJL8/0UExOjSZMm6d///rcaNmwoq9WqnTt3ateuXXr88cfzNScAAAAAAAAZuKfNmDHDkGT8/PPPNu0tWrQwatSoYdO2cOFCQ5Jx5MgRwzAM4/Lly0b58uWNNm3aGJKMhQsXmmMvXryY61iffPKJIcnYtGmT2TZ+/HhDknHmzJmb1tiiRQtDkvHmm2+abRkZGUbdunUNHx8f48qVK4ZhGMbVq1eNjIwMm23PnTtn+Pr6Gv369TPbjhw5YkgyevToYTg5ORlJSUlmX6tWrYyePXsakoypU6fmqrNHjx5Gu3btzPZjx44ZDg4ORo8ePXLNI6/XYMCAAUbx4sWNy5cv33S+1x+vQ4cONu3PPfdcrj+vvI4TFhZmVKxY8ZbH+Pzzzw1Jxs6dO802SUbXrl0NJycnm/bIyEjzdYmOjjbbL1++bGRlZdns98iRI4aLi4sxceJEm/b//ve/hiTj1VdfNX777TfD3d3dCA8PtxkzdOhQQ5KxefNms+3ChQtGUFCQUaFCBfNYGzZsMCQZGzZssKnFwcHBeO6552457xyjR482JBlnz54122rUqGG0aNEi19jDhw8bkozFixebbTl/RjkuXbpkODg4GAMGDLDZNiIiwihRokS+arqZixcvGlWqVDEkGYGBgUafPn2M+fPnG8nJybnGRkdHG3n9X/eKFSvM1/96Xbt2NSwWi/HLL7+YbZIMBwcHY9++fTZjIyMjjXLlytm8ZoZhGN27dzc8PT3zfC/ezLPPPmtIMkqVKmV06tTJmDZtmnHgwIFc4/L7Hsv5e339/w+1atXKqFWrls3ft+zsbKNJkyZG5cqVzbY6deoYTz75ZL5rBwAAAAAAyAvLvNzjcpZdKVu27G1vO3v2bP35558aP358rj43Nzfzvy9fvqyzZ8+aNxT8K1fpOjk5acCAAeZzZ2dnDRgwQKdPn1ZCQoIkydHRUc7OzpKuLT+TkpKiq1evqkGDBnkes169eqpRo4Z5Be+xY8e0YcMG9enT56Z19OvXT2vWrFFSUpIkafHixQoODtZDDz2Ua+z1r8GFCxd09uxZNWvWTBcvXtTBgwfzNe8brywfPHiwpGs3mczrOKmpqTp79qxatGih3377TampqTbbX7x4UWfPnlViYqLef/99+fr65qrd19dXTz75pBYuXGhu8/nnn6tv37656nNxcTF/RZCVlaU///xT7u7uqlKlSq7XvHXr1howYIAmTpyozp07y9XVVe+9957NmNWrV6thw4Z69NFHzTZ3d3dFRUXp6NGj2r9/v834nPkeP35cU6ZMUXZ2th577LE8Xsnccn5JkJ91wPPzC4709HRlZ2erdOnS+Tr+7XBzc9O2bds0YsQISdd+9RAZGaly5cpp8ODBysjIsLuP1atXy9HRUc8//7xN+/Dhw2UYhr799lub9hYtWqh69ermc8Mw9OWXX6p9+/YyDENnz541H2FhYUpNTb2tv9sLFy7UO++8o6CgIC1fvlwvvviiqlWrplatWumPP/4wx93Oe+x6KSkpWr9+vbp162b+/Tt79qz+/PNPhYWF6fDhw+ZxvLy8tG/fPh0+fDjf9QMAAAAAANyIMP0ed+zYMTk5Od12mJ6amqrXX39dw4YNk6+vb67+lJQUDRkyRL6+vnJzc1PZsmUVFBRkbnu7/P39VaJECZu2nBD4+jXcFy9erNq1a5vrHpctW1bffPPNTY/Zt29fMzRetGiRmjRposqVK9+0jrp166pmzZr68MMPZRiGFi1alGfILF1bYqJTp07y9PSUh4eHypYtq969e0vK/2twYy0PPvigHBwcbOa8ZcsWhYaGqkSJEvLy8lLZsmU1evToPI8zceJElS1bVg8//LCOHj2qjRs3qmTJkrmO27dvXy1ZskQZGRlaunSpSpUqlWdInZ2drenTp6ty5cpycXFRmTJlVLZsWe3evTvPOU6bNk3e3t5KTEzUrFmzbNbGlq69H6tUqZJru2rVqpn91wsPD1fZsmUVGBiomJgYjRkzRl26dMm1fV7Onj2rYsWK3XKJkRznz5+XpFuufV66dGlVrlxZH3zwgdauXavTp0/r7Nmz+Qq688PT01NTpkzR0aNHdfToUc2fP19VqlTRO++8o1deecXu9seOHZO/v3+uP++bvbY5f19znDlzRufPn9e8efNUtmxZm0fO34HTp0/nez4ODg6Kjo5WQkKCzp49q6+++kpt2rTR+vXr1b17d3Pc7b7Hcvzyyy8yDENjx47NVW/OF4A59U6cOFHnz5/XQw89pFq1amnEiBHavXt3vucCAAAAAAAgsWb6Pe/QoUOqWLGizQ0/82Py5MlycHDQiBEjct1UVLq21vfWrVs1YsQI1a1bV+7u7srOztYTTzyh7Ozsgirfxscff6w+ffooPDxcI0aMkI+PjxwdHTVp0iTzBo436t27t0aOHKkff/xRixcv1pgxY+wep1+/fnr33XfVsGFDJSUlqVu3bnrzzTdtxpw/f14tWrSQh4eHJk6cqAcffFCurq7atWuXXnrppb/8Gty4Vvavv/6qVq1aqWrVqnrrrbcUEBAgZ2dnrV69WtOnT891nH//+99q1aqVfv/9d02fPl1dunTR1q1b5enpaTPuySeflLOzs1asWKGFCxcqIiIiz5vUvv766xo7dqz69eunV155Rd7e3nJwcNDQoUPznONPP/1kBph79uxRjx49/tLrkGPatGmqU6eOMjMztWPHDr366qtycnLK89cSNzp69KjKly9/0/XHr5fzSwQ/P79bjvvss8/Uq1cvhYWF2bTf+EXQ3xUYGKh+/fqpU6dOqlixomJjY/Xqq68W6DGu/8WDJPPPs3fv3oqIiMhzm9q1a/+lY5UuXVodOnRQhw4dFBISou+//17Hjh1TYGDgbb/Hbqz3xRdfzPXnkaNSpUqSpObNm+vXX3/VV199pbVr1+qDDz7Q9OnTNXfuXP373//+S3MCAAAAAAD3H8L0e1hGRoYSExNtbsCZHydPntTMmTM1adIklSxZMleYfu7cOa1bt04TJkzQuHHjzPa/s4TCyZMnlZ6ebhNK/u9//5MkVahQQZL0xRdfqGLFilq2bJlNQHqrYDUnxMtZMqZbt246e/bsLWvp1auXRowYoSFDhqhr1655Xtm9ceNG/fnnn1q2bJmaN29uth85ciRf881x+PBhmyuEf/nlF2VnZ5tz/vrrr5WRkaGVK1eqfPny5rgNGzbkub9KlSqZAWJoaKjKly+vJUuWaODAgTbjnJyc9Mwzz+i1117Tvn37tGDBgjz398UXX6hly5aaP3++Tfv58+dVpkwZm7b09HT17dtX1atXV5MmTTRlyhR16tRJjzzyiDkmMDBQhw4dynWcnGVxcm5cmaN+/foKCQmRJLVp00Z//PGHJk+erLFjx+YZ/ue4evWqfv75Zz3xxBM3HXO9/fv3y2Kx5HnV/PUefvhhvf/++2rWrJkmTpyoxo0ba+rUqdqyZUu+jnO7SpUqpQcffFB79+4122725UBgYKC+++47XbhwweY9e7PX9kZly5ZVyZIllZWVpdDQ0AKoPm8NGjTQ999/r1OnTikwMPC23mPXq1ixoiSpWLFi+arX29tbffv2Vd++fZWWlqbmzZsrJiaGMB0AAAAAAOQby7zcw3KW8WjVqtVtbTdhwgT5+vrq//2//5dnv6Ojo6Rrayxfb8aMGX+pTula+Hn9+tpXrlzRe++9p7Jly6p+/fo3Pe62bdsUHx9/y33369dPu3fv1lNPPXXLZTxyeHt7q2PHjtq9e7f69euX55i8arly5Yreffddu/u/3uzZs22ev/3225KuBcc3O05qaqq5dM2t5HxpcLNlSPr166c9e/aoefPmZjB5I0dHx1x/zkuXLrVZ8zrHSy+9pOPHj2vx4sV66623VKFCBUVERNgcv23bttq+fbvNn1l6errmzZunChUq2KzhnZdLly7p6tWrunr16i3HrV27VqmpqerYseMtx0nX3ntffvmlGjZsaPf9YbVa9cwzz6hDhw4aM2aMQkNDVa5cObvHsOfnn3/O80ueY8eOaf/+/TYhf84XTjlL0+Ro27atsrKy9M4779i0T58+XRaLxXxP3Yyjo6O6dOmiL7/80ia8z3HmzJn8TkdJSUm51r+Xrv0dWbdunRwcHMwvfW7nPXY9Hx8fhYSE6L333tOpU6duWe+NXwi6u7urUqVKBbZEDwAAAAAAuD9wZfo9KD09XW+//bYmTpxoBlUff/yxzZjk5GSlpaXp448/1uOPP26zLvratWsVGxtr3uzzRh4eHmrevLmmTJmizMxM/etf/9LatWtv+6rs6/n7+2vy5Mk6evSoHnroIX322WdKTEzUvHnzVKxYMUlSu3bttGzZMnXq1ElPPvmkjhw5orlz56p69epKS0u76b6feOIJnTlzJl9Beo5FixZp9uzZN70ytkmTJipVqpQiIiL0/PPPy2Kx6KOPPsoVCtpz5MgRdejQQU888YTi4+P18ccfq2fPnqpTp46kazf1dHZ2Vvv27TVgwAClpaXp/fffl4+Pj02AuHr1an3wwQdq0qSJvL299dtvv+n9999XiRIl1KlTpzyPXa1aNZ09ezbXch/Xa9eunSZOnKi+ffuqSZMm2rNnj2JjY3OF7+vXr9e7776r8ePHq169epKu3YAyJCREY8eO1ZQpUyRJL7/8sj755BO1adNGzz//vLy9vbV48WIdOXJEX375Za6rzePi4vT777+by7zExsaqQ4cON31vSteWYnnxxRfl4uKiS5cu2bz3U1NTlZWVpRUrVig8PFzfffedxo4dq927d+vrr7++6T5zREdH69KlS/rggw/sjr0dcXFxGj9+vDp06KDGjRvL3d1dv/32mxYsWKCMjAzFxMSYY3O+XHr++ecVFhYmR0dHde/eXe3bt1fLli31n//8R0ePHlWdOnW0du1affXVVxo6dKgefPBBu3W88cYb2rBhgxo1aqT+/furevXqSklJ0a5du/Tdd98pJSUlX/P5/fff1bBhQz322GNq1aqV/Pz8dPr0aX3yySf6+eefNXToUPPvVn7fY3mZPXu2Hn30UdWqVUv9+/dXxYoVlZycrPj4eP3+++/6+eefJUnVq1dXSEiI6tevL29vb+3cuVNffPGFBg0alK/5AAAAAAAASJIM3HOOHDliSMr3Y8OGDYZhGMbChQsNSUbdunWN7OzsXPtbuHCh2fb7778bnTp1Mry8vAxPT0/jqaeeMk6ePGlIMsaPH2+OGz9+vCHJOHPmzE3rbdGihVGjRg1j586dRnBwsOHq6moEBgYa77zzjs247Oxs4/XXXzcCAwMNFxcX4+GHHzZWrVplREREGIGBgbnqnTp16i1fn+v77dWZV/+WLVuMxo0bG25uboa/v78xcuRI47///a/Na3ozOfvbv3+/0bVrV6NkyZJGqVKljEGDBhmXLl2yGbty5Uqjdu3ahqurq1GhQgVj8uTJxoIFCwxJxpEjRwzDMIy9e/carVu3NkqXLm04OzsbAQEBRvfu3Y3du3fb7EuSER0dfdO6buy/fPmyMXz4cKNcuXKGm5ub0bRpUyM+Pt5o0aKF0aJFC8MwDMNqtRqBgYFGvXr1jMzMTJv9vfDCC4aDg4MRHx9vtv36669G165dDS8vL8PV1dVo2LChsWrVKpvtNmzYYPMedXJyMgIDA43nn3/eOHfu3C1f28DAQLvv+Zz3y+DBg43mzZsba9asybWfnD+jHJ988olhsVhyjY2IiDBKlChxy5rs+e2334xx48YZjRs3Nnx8fAwnJyejbNmyxpNPPmmsX7/eZuzVq1eNwYMHG2XLljUsFotNjRcuXDBeeOEFw9/f3yhWrJhRuXJlY+rUqTZ/nw3j1u+D5ORkIzo62ggICDCKFStm+Pn5Ga1atTLmzZuX7/lYrVZj5syZRlhYmPHAAw8YxYoVM0qWLGkEBwcb77//vk09+XmPGUbe/z9kGNfeT88++6zh5+dnFCtWzPjXv/5ltGvXzvjiiy/MMa+++qrRsGFDw8vLy3BzczOqVq1qvPbaa8aVK1fyPScAAAAAAACLYdzmpbQo8o4ePaqgoCBt2LDBXG/674y700JCQnT27Nk8l5a4V8XExGjChAk6c+bMLdeFxu2rUKGCYmJi1KdPnzz7N27cqD59+ujo0aN3tS4AAAAAAAD8s7FmOgAAAAAAAAAAdrBm+j3I3d1dvXr1slkH/e+MA/5JOnXqdMv1wX19fW+6jjzsO3PmjLKysm7a7+zsLG9v77tYEQAAAAAAwN3BMi8odCzzwjIv+OeoUKGCjh07dtP+Fi1aaOPGjXevIAAAAAAAgLuEMB0AkG9btmzRpUuXbtpfqlQp1a9f/y5WBAAAAAAAcHcQpgMAAAAAAAAAYAdrpt9Cdna2Tp48qZIlS8pisRR2OQAA3JJhGLpw4YL8/f3l4MA9xgEAAAAAKEiE6bdw8uRJBQQEFHYZAADclhMnTuiBBx4o7DIAAAAAALin3HaYvmnTJk2dOlUJCQk6deqUli9frvDwcElSZmamxowZo9WrV+u3336Tp6enQkND9cYbb8jf39/cR0pKigYPHqyvv/5aDg4O6tKli2bOnCl3d3dzzO7duxUdHa0dO3aobNmyGjx4sEaOHGlTy9KlSzV27FgdPXpUlStX1uTJk9W2bVuz3zAMjR8/Xu+//77Onz+vpk2bas6cOapcuXK+5lqyZElJ10IJDw+P232pAAC4q6xWqwICAszzFwAAAAAAKDi3Haanp6erTp066tevnzp37mzTd/HiRe3atUtjx45VnTp1dO7cOQ0ZMkQdOnTQzp07zXG9evXSqVOnFBcXp8zMTPXt21dRUVFasmSJpGthQOvWrRUaGqq5c+dqz5496tevn7y8vBQVFSVJ2rp1q3r06KFJkyapXbt2WrJkicLDw7Vr1y7VrFlTkjRlyhTNmjVLixcvVlBQkMaOHauwsDDt379frq6udueas7SLh4cHYToA4B+DpckAAAAAACh4f+sGpBaLxebK9Lzs2LFDDRs21LFjx1S+fHkdOHBA1atX144dO9SgQQNJ0po1a9S2bVv9/vvv8vf315w5c/Sf//xHSUlJcnZ2liS9/PLLWrFihQ4ePChJevrpp5Wenq5Vq1aZx2rcuLHq1q2ruXPnyjAM+fv7a/jw4XrxxRclSampqfL19dWiRYvUvXt3u/OzWq3y9PRUamoqYToAoMjjvAUAAAAAwJ1zx+9OlpqaKovFIi8vL0lSfHy8vLy8zCBdkkJDQ+Xg4KBt27aZY5o3b24G6ZIUFhamQ4cO6dy5c+aY0NBQm2OFhYUpPj5eknTkyBElJSXZjPH09FSjRo3MMTfKyMiQ1Wq1eQAAAAAAAAAAcEfD9MuXL+ull15Sjx49zCvkkpKS5OPjYzPOyclJ3t7eSkpKMsf4+vrajMl5bm/M9f3Xb5fXmBtNmjRJnp6e5oObjwIAAAAAAAAApDsYpmdmZqpbt24yDENz5sy5U4cpUKNGjVJqaqr5OHHiRGGXBAAAAAAAAAAoAm77BqT5kROkHzt2TOvXr7dZt9XPz0+nT5+2GX/16lWlpKTIz8/PHJOcnGwzJue5vTHX9+e0lStXzmZM3bp186zbxcVFLi4utztdAAAAAAAAAMA9rsCvTM8J0g8fPqzvvvtOpUuXtukPDg7W+fPnlZCQYLatX79e2dnZatSokTlm06ZNyszMNMfExcWpSpUqKlWqlDlm3bp1NvuOi4tTcHCwJCkoKEh+fn42Y6xWq7Zt22aOAQAAAAAAAAAgP247TE9LS1NiYqISExMlXbvRZ2Jioo4fP67MzEx17dpVO3fuVGxsrLKyspSUlKSkpCRduXJFklStWjU98cQT6t+/v7Zv364tW7Zo0KBB6t69u/z9/SVJPXv2lLOzsyIjI7Vv3z599tlnmjlzpoYNG2bWMWTIEK1Zs0ZvvvmmDh48qJiYGO3cuVODBg2SJFksFg0dOlSvvvqqVq5cqT179ujZZ5+Vv7+/wsPD/+bLBgAAAAAAAAC4n1gMwzBuZ4ONGzeqZcuWudojIiIUExOjoKCgPLfbsGGDQkJCJEkpKSkaNGiQvv76azk4OKhLly6aNWuW3N3dzfG7d+9WdHS0duzYoTJlymjw4MF66aWXbPa5dOlSjRkzRkePHlXlypU1ZcoUtW3b1uw3DEPjx4/XvHnzdP78eT366KN699139dBDD+VrrlarVZ6enkpNTbVZqgYAgKKI8xYAAAAAAHfObYfp9xNCCQDAPwnnLQAAAAAA7pwCXzMdAAAAAAAAAIB7jVNhFwDg/pKVlaXNmzfr1KlTKleunJo1ayZHR8fCLgsAAAAAAAC4Ja5MB3DXLFu2TJUqVVLLli3Vs2dPtWzZUpUqVdKyZcsKuzQAAAAAAADglgjTAdwVy5YtU9euXVWrVi3Fx8frwoULio+PV61atdS1a1cCdQAAAAAAABRp3ID0FriRG1AwsrKyVKlSJdWqVUsrVqyQg8P/fY+XnZ2t8PBw7d27V4cPH2bJF+Bv4LwFAAAAAMCdw5XpAO64zZs36+jRoxo9erRNkC5JDg4OGjVqlI4cOaLNmzcXUoUAAAAAAADArRGmA7jjTp06JUmqWbNmnv057TnjAAAAAAAAgKKGMB3AHVeuXDlJ0t69e/Psz2nPGQcAAAAAAAAUNYTpAO64Zs2aqUKFCnr99deVnZ1t05edna1JkyYpKChIzZo1K6QKAQAAAAAAgFsjTAdwxzk6OurNN9/UqlWrFB4ervj4eF24cEHx8fEKDw/XqlWrNG3aNG4+CgAAAAAAgCLLqbALAHB/6Ny5s7744gsNHz5cTZo0MduDgoL0xRdfqHPnzoVYHQAAAAAAAHBrFsMwjMIuoqiyWq3y9PRUamqqPDw8Crsc4J6QlZWlzZs369SpUypXrpyaNWvGFelAAeG8BQAAAADAncOV6QDuKkdHR4WEhBR2GQAAAAAAAMBtYc10AAAAAAAAAADsIEwHAAAAAAAAAMAOwnQAAAAAAAAAAOwgTAcAAAAAAAAAwA7CdAAAAAAAAAAA7CBMBwAAAAAAAADADsJ0AAAAAAAAAADsIEwHAAAAAAAAAMAOwnQAAAAAAAAAAOwgTAcAAAAAAAAAwA7CdAAAAAAAAAAA7CBMBwAAAAAAAADADsJ0AAAAAAAAAADsIEwHAAAAAAAAAMAOwnQAAAAAAAAAAOwgTAcAAAAAAAAAwA7CdAAAAAAAAAAA7CBMBwAAAAAAAADADsJ0AAAAAAAAAADsIEwHAAAAAAAAAMAOwnQAAAAAAAAAAOwgTAcAAAAAAAAAwA7CdAAAAAAAAAAA7CBMBwAAAAAAAADADsJ0AAAAAAAAAADsIEwHAAAAAAAAAMAOwnQAAAAAAAAAAOwgTAcAAAAAAAAAwA7CdAAAAAAAAAAA7CBMBwAAAAAAAADADsJ0AAAAAAAAAADsIEwHAAAAAAAAAMAOwnQAAAAAAAAAAOwgTAcAAAAAAAAAwA6nwi4AwD/PxYsXdfDgwb+8/aVLl3T06FFVqFBBbm5uf3k/VatWVfHixf/y9gAAAAAAAEB+EaYDuG0HDx5U/fr1C7sMJSQkqF69eoVdBgAAAAAAAO4DhOkAblvVqlWVkJDwl7c/cOCAevfurY8//ljVqlX7W3UAAAAAAAAAdwNhOoDbVrx48QK5IrxatWpcWQ4AAAAAAIB/BG5ACgAAAAAAAACAHYTpAAAAAAAAAADYQZgOAAAAAAAAAIAdhOkAAAAAAAAAANhBmA4AAAAAAAAAgB2E6QAAAAAAAAAA2EGYDgAAAAAAAACAHYTpAAAAAAAAAADYQZgOAAAAAAAAAIAdhOkAAAAAAAAAANhBmA4AAAAAAAAAgB2E6QAAAAAAAAAA2HHbYfqmTZvUvn17+fv7y2KxaMWKFTb9hmFo3LhxKleunNzc3BQaGqrDhw/bjElJSVGvXr3k4eEhLy8vRUZGKi0tzWbM7t271axZM7m6uiogIEBTpkzJVcvSpUtVtWpVubq6qlatWlq9evVt1wIAAAAAAAAAgD23Haanp6erTp06mj17dp79U6ZM0axZszR37lxt27ZNJUqUUFhYmC5fvmyO6dWrl/bt26e4uDitWrVKmzZtUlRUlNlvtVrVunVrBQYGKiEhQVOnTlVMTIzmzZtnjtm6dat69OihyMhI/fTTTwoPD1d4eLj27t17W7UAAAAAAAAAAGCPxTAM4y9vbLFo+fLlCg8Pl3TtSnB/f38NHz5cL774oiQpNTVVvr6+WrRokbp3764DBw6oevXq2rFjhxo0aCBJWrNmjdq2bavff/9d/v7+mjNnjv7zn/8oKSlJzs7OkqSXX35ZK1as0MGDByVJTz/9tNLT07Vq1SqznsaNG6tu3bqaO3duvmqxx2q1ytPTU6mpqfLw8PirLxOAG+zatUv169dXQkKC6tWrV9jlAPcMzlsAAAAAANw5Bbpm+pEjR5SUlKTQ0FCzzdPTU40aNVJ8fLwkKT4+Xl5eXmaQLkmhoaFycHDQtm3bzDHNmzc3g3RJCgsL06FDh3Tu3DlzzPXHyRmTc5z81HKjjIwMWa1WmwcAAAAAAAAAAAUapiclJUmSfH19bdp9fX3NvqSkJPn4+Nj0Ozk5ydvb22ZMXvu4/hg3G3N9v71abjRp0iR5enqaj4CAgHzMGgAAAAAAAABwryvQMP2fbtSoUUpNTTUfJ06cKOySAAAAAAAAAABFQIGG6X5+fpKk5ORkm/bk5GSzz8/PT6dPn7bpv3r1qlJSUmzG5LWP649xszHX99ur5UYuLi7y8PCweQAAAAAAAAAAUKBhelBQkPz8/LRu3TqzzWq1atu2bQoODpYkBQcH6/z580pISDDHrF+/XtnZ2WrUqJE5ZtOmTcrMzDTHxMXFqUqVKipVqpQ55vrj5IzJOU5+agEAAAAAAAAAID9uO0xPS0tTYmKiEhMTJV270WdiYqKOHz8ui8WioUOH6tVXX9XKlSu1Z88ePfvss/L391d4eLgkqVq1anriiSfUv39/bd++XVu2bNGgQYPUvXt3+fv7S5J69uwpZ2dnRUZGat++ffrss880c+ZMDRs2zKxjyJAhWrNmjd58800dPHhQMTEx2rlzpwYNGiRJ+aoFAAAAAAAAAID8cLrdDXbu3KmWLVuaz3MC7oiICC1atEgjR45Uenq6oqKidP78eT366KNas2aNXF1dzW1iY2M1aNAgtWrVSg4ODurSpYtmzZpl9nt6emrt2rWKjo5W/fr1VaZMGY0bN05RUVHmmCZNmmjJkiUaM2aMRo8ercqVK2vFihWqWbOmOSY/tQAAAAAAAAAAYI/FMAyjsIsoqqxWqzw9PZWamsr66UAB2rVrl+rXr6+EhATVq1evsMsB7hmctwAAAAAAuHMKdM10AAAAAAAAAADuRYTpAAAAAAAAAADYQZgOAAAAAAAAAIAdhOkAAAAAAAAAANhBmA4AAAAAAAAAgB2E6QAAAAAAAAAA2EGYDgAAAAAAAACAHYTpAAAAAAAAAADYQZgOAAAAAAAAAIAdhOkAAAAAAAAAANhBmA4AAAAAAAAAgB2E6QAAAAAAAAAA2EGYDgAAAAAAAACAHYTpAAAAAAAAAADYQZgOAAAAAAAAAIAdhOkAAAAAAAAAANhBmA4AAAAAAAAAgB2E6QAAAAAAAAAA2EGYDgAAAAAAAACAHYTpAAAAAAAAAADYQZgOAAAAAAAAAIAdhOkAAAAAAAAAANhBmA4AAAAAAAAAgB2E6QAAAAAAAAAA2EGYDgAAAAAAAACAHYTpAAAAAAAAAADYQZgOAAAAAAAAAIAdhOkAAAAAAAAAANhBmA4AAAAAAAAAgB2E6QAAAAAAAAAA2EGYDgAAAAAAAACAHYTpAAAAAAAAAADYQZgOAAAAAAAAAIAdhOkAAAAAAAAAANhBmA4AAAAAAAAAgB2E6QAAAAAAAAAA2EGYDgAAAAAAAACAHYTpAAAAAAAAAADYQZgOAAAAAAAAAIAdhOkAAAAAAAAAANhBmA4AAAAAAAAAgB2E6QAAAAAAAAAA2EGYDgAAAAAAAACAHYTpAAAAAAAAAADYQZgOAAAAAAAAAIAdhOkAAAAAAAAAANhBmA4AAAAAAAAAgB2E6QAAAAAAAAAA2EGYDgAAAAAAAACAHYTpAAAAAAAAAADYQZgOAAAAAAAAAIAdhOkAAAAAAAAAANhBmA4AAAAAAAAAgB2E6QAAAAAAAAAA2EGYDgAAAAAAAACAHYTpAAAAAAAAAADYQZgOAAAAAAAAAIAdhOkAAAAAAAAAANhBmA4AAAAAAAAAgB2E6QAAAAAAAAAA2EGYDgAAAAAAAACAHYTpAAAAAAAAAADYQZgOAAAAAAAAAIAdBR6mZ2VlaezYsQoKCpKbm5sefPBBvfLKKzIMwxxjGIbGjRuncuXKyc3NTaGhoTp8+LDNflJSUtSrVy95eHjIy8tLkZGRSktLsxmze/duNWvWTK6urgoICNCUKVNy1bN06VJVrVpVrq6uqlWrllavXl3QUwYAAAAAAAAA3OMKPEyfPHmy5syZo3feeUcHDhzQ5MmTNWXKFL399tvmmClTpmjWrFmaO3eutm3bphIlSigsLEyXL182x/Tq1Uv79u1TXFycVq1apU2bNikqKsrst1qtat26tQIDA5WQkKCpU6cqJiZG8+bNM8ds3bpVPXr0UGRkpH766SeFh4crPDxce/fuLehpAwAAAAAAAADuYRbj+kvGC0C7du3k6+ur+fPnm21dunSRm5ubPv74YxmGIX9/fw0fPlwvvviiJCk1NVW+vr5atGiRunfvrgMHDqh69erasWOHGjRoIElas2aN2rZtq99//13+/v6aM2eO/vOf/ygpKUnOzs6SpJdfflkrVqzQwYMHJUlPP/200tPTtWrVKrOWxo0bq27dupo7d67duVitVnl6eio1NVUeHh4F9hoB97tdu3apfv36SkhIUL169Qq7HOCewXkLAAAAAIA7p8CvTG/SpInWrVun//3vf5Kkn3/+WT/88IPatGkjSTpy5IiSkpIUGhpqbuPp6alGjRopPj5ekhQfHy8vLy8zSJek0NBQOTg4aNu2beaY5s2bm0G6JIWFhenQoUM6d+6cOeb64+SMyTnOjTIyMmS1Wm0eAAAAAAAAAAA4FfQOX375ZVmtVlWtWlWOjo7KysrSa6+9pl69ekmSkpKSJEm+vr422/n6+pp9SUlJ8vHxsS3UyUne3t42Y4KCgnLtI6evVKlSSkpKuuVxbjRp0iRNmDDhr0wbAAAAAAAAAHAPK/Ar0z///HPFxsZqyZIl2rVrlxYvXqxp06Zp8eLFBX2oAjdq1CilpqaajxMnThR2SQAAAAAAAACAIqDAr0wfMWKEXn75ZXXv3l2SVKtWLR07dkyTJk1SRESE/Pz8JEnJyckqV66cuV1ycrLq1q0rSfLz89Pp06dt9nv16lWlpKSY2/v5+Sk5OdlmTM5ze2Ny+m/k4uIiFxeXvzJtAAAAAAAAAMA9rMCvTL948aIcHGx36+joqOzsbElSUFCQ/Pz8tG7dOrPfarVq27ZtCg4OliQFBwfr/PnzSkhIMMesX79e2dnZatSokTlm06ZNyszMNMfExcWpSpUqKlWqlDnm+uPkjMk5DgAAAAAAAAAA+VHgYXr79u312muv6ZtvvtHRo0e1fPlyvfXWW+rUqZMkyWKxaOjQoXr11Ve1cuVK7dmzR88++6z8/f0VHh4uSapWrZqeeOIJ9e/fX9u3b9eWLVs0aNAgde/eXf7+/pKknj17ytnZWZGRkdq3b58+++wzzZw5U8OGDTNrGTJkiNasWaM333xTBw8eVExMjHbu3KlBgwYV9LQBAAAAAAAAAPewAl/m5e2339bYsWP13HPP6fTp0/L399eAAQM0btw4c8zIkSOVnp6uqKgonT9/Xo8++qjWrFkjV1dXc0xsbKwGDRqkVq1aycHBQV26dNGsWbPMfk9PT61du1bR0dGqX7++ypQpo3HjxikqKsoc06RJEy1ZskRjxozR6NGjVblyZa1YsUI1a9Ys6GkDAAAAAAAAAO5hFsMwjMIuoqiyWq3y9PRUamqqPDw8Crsc4J6xa9cu1a9fXwkJCapXr15hlwPcMzhvAQAAAABw5xT4Mi8AAAAAAAAAANxrCNMBAAAAAAAAALCDMB0AAAAAAAAAADsI0wEAAAAAAAAAsIMwHQAAAAAAAAAAOwjTAQAAAAAAAACwgzAdAAAAAAAAAAA7CNMBAAAAAAAAALCDMB0AAAAAAAAAADsI0wEAAAAAAAAAsIMwHQAAAAAAAAAAOwjTAQAAAAAAAACwgzAdAAAAAAAAAAA7CNMBAAAAAAAAALCDMB0AAAAAAAAAADsI0wEAAAAAAAAAsIMwHQAAAAAAAAAAOwjTAQAAAAAAAACwgzAdAAAAAAAAAAA7CNMBAAAAAAAAALCDMB0AAAAAAAAAADsI0wEAAAAAAAAAsMOpsAsAUDiOHz+us2fPFsqxDxw4YPO/haFMmTIqX758oR0fAAAAAAAA/yyE6cB96Pjx46pStZouX7pYqHX07t270I7t6lZchw4eIFAHAAAAAABAvhCmA/ehs2fP6vKliyrdbriKlQ6468c3rl7R1dRkOXn6yuLkfNePn/nnCf256k2dPXuWMB0AAAAAAAD5QpgO3MeKlQ6Qi1+lwjn4A9UL57gAAAAAAADAX8ANSAEAAAAAAAAAsIMwHQAAAAAAAAAAOwjTAQAAAAAAAACwgzAdAAAAAAAAAAA7CNMBAAAAAAAAALCDMB0AAAAAAAAAADsI0wEAAAAAAAAAsIMwHQAAAAAAAAAAOwjTAQAAAAAAAACwgzAdAAAAAAAAAAA7CNMBAAAAAAAAALCDMB0AAAAAAAAAADsI0wEAAAAAAAAAsIMwHQAAAAAAAAAAOwjTAQAAAAAAAACwgzAdAAAAAAAAAAA7CNMBAAAAAAAAALCDMB0AAAAAAAAAADsI0wEAAAAAAAAAsIMwHQAAAAAAAAAAOwjTAQAAAAAAAACwgzAdAAAAAAAAAAA7CNMBAAAAAAAAALCDMB0AAAAAAAAAADsI0wEAAAAAAAAAsIMwHQAAAAAAAAAAOwjTAQAAAAAAAACwgzAdAAAAAAAAAAA7CNMBAAAAAAAAALCDMB0AAAAAAAAAADsI0wEAAAAAAAAAsIMwHQAAAAAAAAAAOwjTAQAAAAAAAACwgzAdAAAAAAAAAAA7CNMBAAAAAAAAALCDMB0AAAAAAAAAADsI0wEAAAAAAAAAsOOOhOl//PGHevfurdKlS8vNzU21atXSzp07zX7DMDRu3DiVK1dObm5uCg0N1eHDh232kZKSol69esnDw0NeXl6KjIxUWlqazZjdu3erWbNmcnV1VUBAgKZMmZKrlqVLl6pq1apydXVVrVq1tHr16jsxZQAAAAAAAADAPazAw/Rz586padOmKlasmL799lvt379fb775pkqVKmWOmTJlimbNmqW5c+dq27ZtKlGihMLCwnT58mVzTK9evbRv3z7FxcVp1apV2rRpk6Kiosx+q9Wq1q1bKzAwUAkJCZo6dapiYmI0b948c8zWrVvVo0cPRUZG6qefflJ4eLjCw8O1d+/egp42AAAAAAAAAOAeZjEMwyjIHb788svasmWLNm/enGe/YRjy9/fX8OHD9eKLL0qSUlNT5evrq0WLFql79+46cOCAqlevrh07dqhBgwaSpDVr1qht27b6/fff5e/vrzlz5ug///mPkpKS5OzsbB57xYoVOnjwoCTp6aefVnp6ulatWmUev3Hjxqpbt67mzp2bq7aMjAxlZGSYz61WqwICApSamioPD4+CeYGAImDXrl2qX7++/CJmyMWvUmGXc9dlJP2ipMVDlZCQoHr16hV2OUCBsVqt8vT05LwFAAAAAMAdUOBXpq9cuVINGjTQU089JR8fHz388MN6//33zf4jR44oKSlJoaGhZpunp6caNWqk+Ph4SVJ8fLy8vLzMIF2SQkND5eDgoG3btpljmjdvbgbpkhQWFqZDhw7p3Llz5pjrj5MzJuc4N5o0aZI8PT3NR0BAwN98NQAAAAAAAAAA94ICD9N/++03zZkzR5UrV9Z///tfDRw4UM8//7wWL14sSUpKSpIk+fr62mzn6+tr9iUlJcnHx8em38nJSd7e3jZj8trH9ce42Zic/huNGjVKqamp5uPEiRO3PX8AAAAAAAAAwL3HqaB3mJ2drQYNGuj111+XJD388MPau3ev5s6dq4iIiII+XIFycXGRi4tLYZcBAAAAAAAAAChiCvzK9HLlyql69eo2bdWqVdPx48clSX5+fpKk5ORkmzHJyclmn5+fn06fPm3Tf/XqVaWkpNiMyWsf1x/jZmNy+gEAAAAAAAAAyI8CD9ObNm2qQ4cO2bT973//U2BgoCQpKChIfn5+WrdundlvtVq1bds2BQcHS5KCg4N1/vx5JSQkmGPWr1+v7OxsNWrUyByzadMmZWZmmmPi4uJUpUoVlSpVyhxz/XFyxuQcBwAAAAAAAACA/CjwZV5eeOEFNWnSRK+//rq6deum7du3a968eZo3b54kyWKxaOjQoXr11VdVuXJlBQUFaezYsfL391d4eLika1eyP/HEE+rfv7/mzp2rzMxMDRo0SN27d5e/v78kqWfPnpowYYIiIyP10ksvae/evZo5c6amT59u1jJkyBC1aNFCb775pp588kl9+umn2rlzp1kLcD/zc7eolvNJFbM4FnYpd12m80nJ3VLYZQAAAAAAAOAfpMDD9EceeUTLly/XqFGjNHHiRAUFBWnGjBnq1auXOWbkyJFKT09XVFSUzp8/r0cffVRr1qyRq6urOSY2NlaDBg1Sq1at5ODgoC5dumjWrFlmv6enp9auXavo6GjVr19fZcqU0bhx4xQVFWWOadKkiZYsWaIxY8Zo9OjRqly5slasWKGaNWsW9LSBf5wB9Z0V4z+3sMsoHP5STH3nwq4CAAAAAAAA/yAWwzCMwi6iqLJarfL09FRqaqo8PDwKuxygwOzatUtPtmigWj1GqFjpgMIu567L/POE9nwyVd98v1P16tUr7HKAAsN5CwAAAACAO6fAr0wH8M+QlGZIV/zlYgQVdil3XcaVrGvzBwAAAAAAAPKpwG9ACgAAAAAAAADAvYYwHQAAAAAAAAAAOwjTAQAAAAAAAACwgzAdAAAAAAAAAAA7CNMBAAAAAAAAALCDMB0AAAAAAAAAADsI0wEAAAAAAAAAsIMwHQAAAAAAAAAAOwjTAQAAAAAAAACwgzAdAAAAAAAAAAA7CNMBAAAAAAAAALCDMB0AAAAAAAAAADsI0wEAAAAAAAAAsIMwHQAAAAAAAAAAOwjTAQAAAAAAAACwgzAdAAAAAAAAAAA7CNMBAAAAAAAAALCDMB0AAAAAAAAAADsI0wEAAAAAAAAAsIMwHQAAAAAAAAAAOwjTAQAAAAAAAACwgzAdAAAAAAAAAAA7CNMBAAAAAAAAALCDMB0AAAAAAAAAADsI0wEAAAAAAID/r727D/Kyrvc//lpudrnd9XB/jCW2tABLbVeFPeQxjuTm4DELU5u09bYydATyJk6FJ6shHRvQ8YbTcQ5Y5lCek5SQmmFSAU22hIMFzNGjB2ZoF3RiV5FYYPf88fvxnTaNixRcWx6Pme/AXtfnuq739/vPd+Y511xfgAJiOgAAAAAAFBDTAQAAAACggJgOAAAAAAAFxHQAAAAAACggpgMAAAAAQAExHQAAAAAACojpAAAAAABQQEwHAAAAAIACYjoAAAAAABQQ0wEAAAAAoICYDgAAAAAABcR0AAAAAAAoIKYDAAAAAEABMR0AAAAAAAqI6QAAAAAAUKBPdw8AdJ89L27plut27m3P3taW9KkambI+5W/69bvrfQMAAADwt0tMhyPQsGHD0q//gLy47BvdPUq36dd/QIYNG9bdYwAAAADwN0JMhyPQmDFjsmnjhrzwwgvdcv0NGzbkwgsvzH333Zfx48d3ywzDhg3LmDFjuuXaAAAAAPztEdPhCDVmzJhuj8njx49PbW1tt84AAAAAAAfDD5ACAAAAAEABMR0AAAAAAAqI6QAAAAAAUEBMBwAAAACAAmI6AAAAAAAUENMBAAAAAKCAmA4AAAAAAAXEdAAAAAAAKCCmAwAAAABAATEdAAAAAAAKiOkAAAAAAFBATAcAAAAAgAJiOgAAAAAAFBDTAQAAAACggJgOAAAAAAAFxHQAAAAAACggpgMAAAAAQAExHQAAAAAAChz2mP71r389ZWVlmTlzZmnbH//4x8yYMSNDhw7NoEGDMn369LS0tHQ5bvPmzZk2bVoGDBiQESNG5LrrrsvevXu7rHniiSdSW1ubioqKHHPMMVm8ePGrrn/nnXdm7Nix6devXyZOnJhf/epXh+NtAgAAAADQgx3WmP7kk0/m3/7t33L88cd32T5r1qw89NBDeeCBB7Jy5cps3bo1H/3oR0v79+3bl2nTpqW9vT2rV6/Ovffem8WLF2fu3LmlNc8991ymTZuWKVOmZN26dZk5c2Yuv/zyPProo6U13/3udzN79uzceOONWbt2bU444YQ0NDRk27Zth/NtAwAAAADQw5R1dnZ2Ho4Tv/zyy6mtrc1dd92Vr371qznxxBOzYMGCtLa2Zvjw4bn//vtz7rnnJkk2btyY8ePHZ82aNZk0aVIefvjhnHXWWdm6dWtGjhyZJFm4cGFuuOGGbN++PeXl5bnhhhuyfPnyPP3006VrXnDBBdmxY0ceeeSRJMnEiRNz8skn54477kiSdHR0pLq6OldffXU+//nPv2rm3bt3Z/fu3aW/29raUl1dndbW1lRWVh6OjwmOSGvXrk1dXV2amppSW1vb3eNAj9HW1paqqirfWwAAAHAYHLY702fMmJFp06Zl6tSpXbY3NTVlz549XbaPGzcuY8aMyZo1a5Ika9asyXvf+95SSE+ShoaGtLW15be//W1pzZ+fu6GhoXSO9vb2NDU1dVnTq1evTJ06tbTmz82bNy9VVVWlV3V19Rv4BAAAAAAA6CkOS0xfsmRJ1q5dm3nz5r1qX3Nzc8rLy3PUUUd12T5y5Mg0NzeX1vxpSN+/f/++A61pa2vLrl278sILL2Tfvn2vuWb/Of7cnDlz0traWnpt2bLl4N80AAAAAAA9Vp9DfcItW7bkmmuuyWOPPZZ+/fod6tMfVhUVFamoqOjuMQAAAAAAeIs55HemNzU1Zdu2bamtrU2fPn3Sp0+frFy5Mrfffnv69OmTkSNHpr29PTt27OhyXEtLS0aNGpUkGTVqVFpaWl61f/++A62prKxM//79M2zYsPTu3fs11+w/BwAAAAAAHIxDHtNPP/30rF+/PuvWrSu9TjrppHziE58o/b9v375ZsWJF6ZhNmzZl8+bNqa+vT5LU19dn/fr12bZtW2nNY489lsrKykyYMKG05k/PsX/N/nOUl5enrq6uy5qOjo6sWLGitAYAAAAAAA7GIX/My+DBg/Oe97yny7aBAwdm6NChpe2XXXZZZs+enSFDhqSysjJXX3116uvrM2nSpCTJGWeckQkTJuSiiy7KLbfckubm5nzxi1/MjBkzSo9h+cxnPpM77rgj119/fS699NI8/vjj+d73vpfly5eXrjt79uw0NjbmpJNOyimnnJIFCxZk586dueSSSw712wYAAAAAoAc75DH9YMyfPz+9evXK9OnTs3v37jQ0NOSuu+4q7e/du3eWLVuWK6+8MvX19Rk4cGAaGxtz0003ldbU1NRk+fLlmTVrVm677baMHj0699xzTxoaGkprzj///Gzfvj1z585Nc3NzTjzxxDzyyCOv+lFSAAAAAAA4kLLOzs7O7h7iraqtrS1VVVVpbW1NZWVld48DPcbatWtTV1eXpqam1NbWdvc40GP43gIAAIDD55A/Mx0AAAAAAHoaMR0AAAAAAAqI6QAAAAAAUEBMBwAAAACAAmI6AAAAAAAUENMBAAAAAKCAmA4AAAAAAAXEdAAAAAAAKCCmAwAAAABAATEdAAAAAAAKiOkAAAAAAFBATAcAAAAAgAJiOgAAAAAAFBDTAQAAAACggJgOAAAAAAAFxHQAAAAAACggpgMAAAAAQAExHQAAAAAACojpAAAAAABQQEwHAAAAAIACYjoAAAAAABQQ0wEAAAAAoICYDgAAAAAABcR0AAAAAAAoIKYDAAAAAEABMR0AAAAAAAqI6QAAAAAAUEBMBwAAAACAAmI6AAAAAAAUENMBAAAAAKCAmA4AAAAAAAXEdAAAAAAAKCCmAwAAAABAATEdAAAAAAAKiOkAAAAAAFBATAcAAAAAgAJiOgAAAAAAFBDTAQAAAACggJgOAAAAAAAFxHQAAAAAACggpgMAAAAAQAExHQAAAAAACojpAAAAAABQQEwHAAAAAIACYjoAAAAAABQQ0wEAAAAAoICYDgAAAAAABcR0AAAAAAAoIKYDAAAAAEABMR0AAAAAAAqI6QAAAAAAUEBMBwAAAACAAmI6AAAAAAAUENMBAAAAAKCAmA4AAAAAAAXEdAAAAAAAKCCmAwAAAABAATEdAAAAAAAKiOkAAAAAAFBATAcAAAAAgAJiOgAAAAAAFBDTAQAAAACggJgOAAAAAAAFDnlMnzdvXk4++eQMHjw4I0aMyDnnnJNNmzZ1WfPHP/4xM2bMyNChQzNo0KBMnz49LS0tXdZs3rw506ZNy4ABAzJixIhcd9112bt3b5c1TzzxRGpra1NRUZFjjjkmixcvftU8d955Z8aOHZt+/fpl4sSJ+dWvfnWo3zIAAAAAAD3cIY/pK1euzIwZM/LLX/4yjz32WPbs2ZMzzjgjO3fuLK2ZNWtWHnrooTzwwANZuXJltm7dmo9+9KOl/fv27cu0adPS3t6e1atX5957783ixYszd+7c0prnnnsu06ZNy5QpU7Ju3brMnDkzl19+eR599NHSmu9+97uZPXt2brzxxqxduzYnnHBCGhoasm3btkP9tgEAAAAA6MHKOjs7Ow/nBbZv354RI0Zk5cqV+cd//Me0trZm+PDhuf/++3PuuecmSTZu3Jjx48dnzZo1mTRpUh5++OGcddZZ2bp1a0aOHJkkWbhwYW644YZs37495eXlueGGG7J8+fI8/fTTpWtdcMEF2bFjRx555JEkycSJE3PyySfnjjvuSJJ0dHSkuro6V199dT7/+c+/atbdu3dn9+7dpb/b2tpSXV2d1tbWVFZWHrbPCI40a9euTV1dXZqamlJbW9vd40CP0dbWlqqqKt9bAAAAcBgc9memt7a2JkmGDBmSJGlqasqePXsyderU0ppx48ZlzJgxWbNmTZJkzZo1ee9731sK6UnS0NCQtra2/Pa3vy2t+dNz7F+z/xzt7e1pamrqsqZXr16ZOnVqac2fmzdvXqqqqkqv6urqN/r2AQAAAADoAQ5rTO/o6MjMmTMzefLkvOc970mSNDc3p7y8PEcddVSXtSNHjkxzc3NpzZ+G9P379+870Jq2trbs2rUrL7zwQvbt2/eaa/af48/NmTMnra2tpdeWLVte3xsHAAAAAKBH6XM4Tz5jxow8/fTT+cUvfnE4L3PIVFRUpKKiorvHAAAAAADgLeaw3Zl+1VVXZdmyZfnpT3+a0aNHl7aPGjUq7e3t2bFjR5f1LS0tGTVqVGlNS0vLq/bv33egNZWVlenfv3+GDRuW3r17v+aa/ecAAAAAAICDcchjemdnZ6666qo8+OCDefzxx1NTU9Nlf11dXfr27ZsVK1aUtm3atCmbN29OfX19kqS+vj7r16/Ptm3bSmsee+yxVFZWZsKECaU1f3qO/Wv2n6O8vDx1dXVd1nR0dGTFihWlNQAAAAAAcDAO+WNeZsyYkfvvvz8/+MEPMnjw4NLzyauqqtK/f/9UVVXlsssuy+zZszNkyJBUVlbm6quvTn19fSZNmpQkOeOMMzJhwoRcdNFFueWWW9Lc3JwvfvGLmTFjRukxLJ/5zGdyxx135Prrr8+ll16axx9/PN/73veyfPny0iyzZ89OY2NjTjrppJxyyilZsGBBdu7cmUsuueRQv20AAAAAAHqwQx7T77777iTJBz7wgS7bFy1alIsvvjhJMn/+/PTq1SvTp0/P7t2709DQkLvuuqu0tnfv3lm2bFmuvPLK1NfXZ+DAgWlsbMxNN91UWlNTU5Ply5dn1qxZue222zJ69Ojcc889aWhoKK05//zzs3379sydOzfNzc058cQT88gjj7zqR0kBAAAAAOBAyjo7Ozu7e4i3qra2tlRVVaW1tTWVlZXdPQ70GGvXrk1dXV2amppSW1vb3eNAj+F7CwAAAA6fw/YDpAAAAAAA0FOI6QAAAAAAUEBMBwAAAACAAmI6AAAAAAAUENMBAAAAAKCAmA4AAAAAAAXEdAAAAAAAKCCmAwAAAABAATEdAAAAAAAKiOkAAAAAAFCgT3cPAPzteeWVV7Jx48bXffyGDRu6/Pt6jRs3LgMGDHhD5wAAAACAgyGmA3+1jRs3pq6u7g2f58ILL3xDxzc1NaW2tvYNzwEAAAAARcR04K82bty4NDU1ve7jd+3aleeffz5jx45N//7939AcAAAAAPBmKOvs7Ozs7iHeqtra2lJVVZXW1tZUVlZ29zgAcEC+twAAAODw8QOkAAAAAABQQEwHAAAAAIACYjoAAAAAABQQ0wEAAAAAoICYDgAAAAAABcR0AAAAAAAoIKYDAAAAAEABMR0AAAAAAAqI6QAAAAAAUEBMBwAAAACAAmI6AAAAAAAUENMBAAAAAKCAmA4AAAAAAAXEdAAAAAAAKCCmAwAAAABAgT7dPcBbWWdnZ5Kkra2tmycBgGL7v6/2f38BAAAAh46YfgAvvfRSkqS6urqbJwGAg/fSSy+lqqqqu8cAAACAHqWs0+1rf1FHR0e2bt2awYMHp6ysrLvHgR6jra0t1dXV2bJlSyorK7t7HOgxOjs789JLL+Xoo49Or16e5AYAAACHkpgOvOna2tpSVVWV1tZWMR0AAACAvwluWwMAAAAAgAJiOgAAAAAAFBDTgTddRUVFbrzxxlRUVHT3KAAAAABwUDwzHQAAAAAACrgzHQAAAAAACojpAAAAAABQQEwHAAAAAIACYjoAAAAAABQQ04E3zc9+9rP88z//c44++uiUlZVl6dKl3T0SAAAAABwUMR140+zcuTMnnHBC7rzzzu4eBQAAAAD+Kn26ewDgyHHmmWfmzDPP7O4xAAAAAOCv5s50AAAAAAAoIKYDAAAAAEABMR0AAAAAAAqI6QAAAAAAUEBMBwAAAACAAn26ewDgyPHyyy/nmWeeKf393HPPZd26dRkyZEjGjBnTjZMBAAAAwIGVdXZ2dnb3EMCR4YknnsiUKVNetb2xsTGLFy9+8wcCAAAAgIMkpgMAAAAAQAHPTAcAAAAAgAJiOgAAAAAAFBDTAQAAAACggJgOAAAAAAAFxHQAAAAAACggpgMAAAAAQAExHQAAAAAACojpAAAAAABQQEwHepSLL74455xzTnePAQAAAEAPI6ZDD7d9+/ZceeWVGTNmTCoqKjJq1Kg0NDRk1apVSZKysrIsXbq0e4f8/5566qmcffbZGTFiRPr165exY8fm/PPPz7Zt27p7NAAAAACOcH26ewDg8Jo+fXra29tz77335h3veEdaWlqyYsWKvPjii4f0Onv27Enfvn1f9/Hbt2/P6aefnrPOOiuPPvpojjrqqDz//PP54Q9/mJ07dx7CSQEAAADgr+fOdOjBduzYkZ///Oe5+eabM2XKlLz97W/PKaeckjlz5uTss8/O2LFjkyQf+chHUlZWVvo7Se6+++68853vTHl5ed797nfn29/+dpdzl5WV5e67787ZZ5+dgQMH5mtf+1qS5Ac/+EFqa2vTr1+/vOMd78iXv/zl7N27t3DWVatWpbW1Nffcc0/e9773paamJlOmTMn8+fNTU1OTJNm3b18uu+yy1NTUpH///nn3u9+d22677YDn7ejoyLx580rHnHDCCfnP//zP0v4//OEP+cQnPpHhw4enf//+OfbYY7No6tShRQAABmNJREFU0aKD+XgBAAAAOIK4Mx16sEGDBmXQoEFZunRpJk2alIqKii77n3zyyYwYMSKLFi3Khz70ofTu3TtJ8uCDD+aaa67JggULMnXq1CxbtiyXXHJJRo8enSlTppSO/9d//dd8/etfz4IFC9KnT5/8/Oc/zyc/+cncfvvtOfXUU/Pss8/mU5/6VJLkxhtvPOCso0aNyt69e/Pggw/m3HPPTVlZ2avWdHR0ZPTo0XnggQcydOjQrF69Op/61Kfy93//9znvvPNe87zz5s3Lfffdl4ULF+bYY4/Nz372s1x44YUZPnx4TjvttHzpS1/K7373uzz88MMZNmxYnnnmmezateuv+pwBAAAA6PnKOjs7O7t7CODw+a//+q9cccUV2bVrV2pra3PaaaflggsuyPHHH5/k/91h/uCDD3b50c7JkyfnuOOOyze/+c3StvPOOy87d+7M8uXLS8fNnDkz8+fPL62ZOnVqTj/99MyZM6e07b777sv111+frVu3Fs76hS98IbfccksqKytzyimn5J/+6Z/yyU9+MiNHjvyLx1x11VVpbm4u3W1+8cUXZ8eOHVm6dGl2796dIUOG5Cc/+Unq6+tLx1x++eV55ZVXcv/99+fss8/OsGHD8h//8R+F8wEAAABw5PKYF+jhpk+fnq1bt+aHP/xhPvShD+WJJ55IbW1tFi9e/BeP2bBhQyZPntxl2+TJk7Nhw4Yu20466aQufz/11FO56aabSnfEDxo0KFdccUV+//vf55VXXimc9Wtf+1qam5uzcOHCHHfccVm4cGHGjRuX9evXl9bceeedqaury/DhwzNo0KB885vfzObNm1/zfM8880xeeeWVfPCDH+wy07e+9a08++yzSZIrr7wyS5YsyYknnpjrr78+q1evLpwTAAAAgCOPmA5HgH79+uWDH/xgvvSlL2X16tW5+OKLCx+7cjAGDhzY5e+XX345X/7yl7Nu3brSa/369fnv//7v9OvX76DOOXTo0HzsYx/Lrbfemg0bNuToo4/OrbfemiRZsmRJrr322lx22WX58Y9/nHXr1uWSSy5Je3v7a57r5ZdfTpIsX768y0y/+93vSneyn3nmmfnf//3fzJo1K1u3bs3pp5+ea6+99vV+JAAAAAD0UJ6ZDkegCRMmZOnSpUmSvn37Zt++fV32jx8/PqtWrUpjY2Np26pVqzJhwoQDnre2tjabNm3KMcccc0jmLC8vzzvf+c7s3LmzNMM//MM/5LOf/Wxpzf47zF/LhAkTUlFRkc2bN+e00077i+uGDx+exsbGNDY25tRTT811111XCvgAAAAAkIjp0KO9+OKL+djHPpZLL700xx9/fAYPHpxf//rXueWWW/LhD384STJ27NisWLEikydPTkVFRf7u7/4u1113Xc4777y8733vy9SpU/PQQw/l+9//fn7yk58c8Hpz587NWWedlTFjxuTcc89Nr1698tRTT+Xpp5/OV7/61QMeu2zZsixZsiQXXHBB3vWud6WzszMPPfRQfvSjH2XRokVJkmOPPTbf+ta38uijj6ampibf/va38+STT6ampuY1zzl48OBce+21mTVrVjo6OvL+978/ra2tWbVqVSorK9PY2Ji5c+emrq4uxx13XHbv3p1ly5Zl/Pjxr+PTBgAAAKAnE9OhBxs0aFAmTpyY+fPn59lnn82ePXtSXV2dK664Iv/yL/+SJPnGN76R2bNn59///d/ztre9Lc8//3zOOeec3Hbbbbn11ltzzTXXpKamJosWLcoHPvCBA16voaEhy5Yty0033ZSbb745ffv2zbhx43L55ZcXzjphwoQMGDAgn/vc57Jly5ZUVFTk2GOPzT333JOLLrooSfLpT386v/nNb3L++eenrKwsH//4x/PZz342Dz/88F8871e+8pUMHz488+bNy//8z//kqKOOSm1tben9l5eXZ86cOXn++efTv3//nHrqqVmyZMlBfsIAAAAAHCnKOjs7O7t7CAAAAAAAeCvzA6QAAAAAAFBATAfeFN/5zncyaNCg13wdd9xx3T0eAAAAAByQx7wAb4qXXnopLS0tr7mvb9++efvb3/4mTwQAAAAAB09MBwAAAACAAh7zAgAAAAAABcR0AAAAAAAoIKYDAAAAAEABMR0AAAAAAAqI6QAAAAAAUEBMBwAAAACAAmI6AAAAAAAU+D/6XlGRIW6VygAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 1500x1000 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"visualize_outliers(df)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Устраняем выбросы, если они имеются"
]
},
{
"cell_type": "code",
"execution_count": 196,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Колонки с выбросами:\n",
"Store_Area\n",
"Items_Available\n",
"Daily_Customer_Count\n",
"Store_Sales\n"
]
}
],
"source": [
"df = remove_outliers(df, columns_with_outliers)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Проверим наличие выбросов и визуализируем"
]
},
{
"cell_type": "code",
"execution_count": 197,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Колонка Store_Area:\n",
"\tЕсть выбросы: Нет\n",
"\tКоличество выбросов: 0\n",
"\tМинимальное значение: 811.625\n",
"\tМаксимальное значение: 2158.625\n",
"\t1-й квартиль (Q1): 1316.75\n",
"\t3-й квартиль (Q3): 1653.5\n",
"\n",
"Колонка Items_Available:\n",
"\tЕсть выбросы: Нет\n",
"\tКоличество выбросов: 0\n",
"\tМинимальное значение: 964.625\n",
"\tМаксимальное значение: 2593.625\n",
"\t1-й квартиль (Q1): 1575.5\n",
"\t3-й квартиль (Q3): 1982.75\n",
"\n",
"Колонка Daily_Customer_Count:\n",
"\tЕсть выбросы: Нет\n",
"\tКоличество выбросов: 0\n",
"\tМинимальное значение: 45.0\n",
"\tМаксимальное значение: 1525.0\n",
"\t1-й квартиль (Q1): 600.0\n",
"\t3-й квартиль (Q3): 970.0\n",
"\n",
"Колонка Store_Sales:\n",
"\tЕсть выбросы: Нет\n",
"\tКоличество выбросов: 0\n",
"\tМинимальное значение: 14920.0\n",
"\tМаксимальное значение: 109886.25\n",
"\t1-й квартиль (Q1): 46530.0\n",
"\t3-й квартиль (Q3): 71872.5\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABdMAAAPdCAYAAABhsvF2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD1VUlEQVR4nOzdeVhV5fr/8Q+DDIKAqIAcGUw7KmZaWIqVQ5KIpDk0WGaUFA1gqR0zS82h4mSmmWFmg9gRT+UpzdSjkqZUoilFKhplopgeIFPZgQoo6/eHP9bXLcPGEdT367rWpXs9917refZ0b+691rPsDMMwBAAAAAAAAAAAqmRf2x0AAAAAAAAAAKCuo5gOAAAAAAAAAIANFNMBAAAAAAAAALCBYjoAAAAAAAAAADZQTAcAAAAAAAAAwAaK6QAAAAAAAAAA2EAxHQAAAAAAAAAAGyimAwAAAAAAAABgA8V0AAAAAAAAAABsoJgOAAAAAKiRhx9+WMHBwVbr7OzsNHHixLPeVlJSkuzs7LRlyxabsd27d1f37t3Peh8AgNp1Zo4o/+zfs2dPrfUJOB8U068i//nPf2RnZ1fpct1119V294CrRvfu3fXwww9LOvUH6Zl/GBYWFuqll17SddddJzc3NzVq1EgdOnTQM888owMHDphxK1asOKc/XGvTzTffLDs7O73zzju13RVNnDjRLAaUf6EDaoqcCtQNtnKqnZ2d4uPjzdsHDhzQxIkTlZGRcek6eZEdOXJELi4usrOz086dO2u7O3VScHCw+Z3p9NcMLj7yJVA31CRfli+Ojo7y9vZWaGionnnmGe3YsePSd/g8ZWRk6MEHH1RAQICcnZ3l7e2t8PBwzZs3TydPnrwo+5w9e7aSkpIuyrbrot9++02PP/64rrnmGrm4uMjDw0O33HKLZs6cqWPHjtV29yRV/ZysW7fO/EFnz549srOz07p162q8XccL10VcLl544QW1adPGvP3KK6/UYm8AnK60tFRdu3bVzz//rOjoaA0fPlyFhYXKzMzUwoULNWDAAPn7+0s6VUxPTEy8bArqv/76qzZv3qzg4GAlJyfrySefrO0uAeeNnApcXg4cOKBJkyYpODhYHTp0qO3uXBCLFi2SnZ2d/Pz8lJycrJdffvmi7u+9995TWVnZRd0HrjzkS6Duu+OOO/TQQw/JMAwVFBTop59+0vz58zV79my99tprGjVq1Dlt99ixY3J0vHTlx/fff19PPPGEfH19NXToUF177bX666+/tGbNGsXExOh///ufXnjhhQu+39mzZ6tx48ZXxQ+2y5cv1z333CNnZ2c99NBDuu6661RSUqJvv/1Wo0ePVmZmpubOnVvb3bxozwnF9KvQHXfcYfUr5Pvvv6+DBw/WXocAmJYsWaIff/xRycnJeuCBB6zajh8/rpKSkou6/7KyMpWUlMjFxeWCb3vBggXy8fHRG2+8obvvvlt79uypcJp4ZYqKiuTm5nbB+wNcCORUALVtwYIF6tOnj4KCgrRw4cKLXkyvV6/eRd0+rkzkS6Du+/vf/64HH3zQat0///lP9e3bV88++6xat26tPn36nPV2L8bfllXZuHGjnnjiCYWFhWnFihVq0KCB2TZixAht2bJF27dvv2T9uZwcPXpU9evXtxmXnZ2twYMHKygoSGvXrlXTpk3Ntri4OO3atUvLly+/mF2tdUzzchUpL8LZ29t+2iubw6qsrEzXX3+97OzsrE6T2Lp1qx5++GHz1A4/Pz8NGzZMf/75p9U2J06cWOnpfaf/Qtm9e3ddd911Sk9PV5cuXeTq6qrmzZtrzpw5FcYyYcIEhYaGytPTU25ubrrtttv09ddfW8WVn65hZ2enJUuWWLUdP35cDRs2lJ2dnaZNm1ahnz4+PiotLbW6z7///W9ze6d/+fviiy8UFRUlf39/OTs7q0WLFpoyZUqNTh8q39/PP/+se++9Vx4eHmrUqJGeeeYZHT9+3Cp23rx5uv322+Xj4yNnZ2eFhIRUOl3GXXfdpeDgYLm4uMjHx0f9+vXTtm3brGLKx/Hmm29WuH/r1q0rnBZ96NAh/eMf/1C7du3k7u4uDw8PRUZG6qeffrK6b3R0tFxcXCqcZhwREaGGDRtaTVOye/du3XPPPfL29lb9+vXVuXPnCh+65afflC/Ozs76+9//roSEBBmGUf2D+/9V9dqrbN7N018zZy6ny8/PV0xMjAIDA+Xg4GDGuLu716hPVfntt98kSbfcckuFtvJTp6RTp+YlJiZKUqV9LCoq0rPPPmue1taqVStNmzatwmNW/jwnJyerbdu2cnZ21sqVKyVJ+/fv17Bhw+Tr6ytnZ2e1bdtWH3744TmPbeHChbr77rt15513ytPTUwsXLqwQU/5c7dixQw888IAaNmyoW2+91WxfsGCBQkND5erqKm9vbw0ePFj79u2z2sY333yje+65R4GBgXJ2dlZAQIBGjhxZZ041w5WBnLrEqo2cSk6tizn1TOvWrdNNN90kSXrkkUfM/Zz+Hty0aZN69+4tT09P1a9fX926ddN3331X6WPwyy+/6MEHH5Snp6eaNGmi8ePHyzAM7du3T3fddZc8PDzk5+enN954o0JfZs2apbZt26p+/fpq2LChOnbsWGletCUnJ0fffPONBg8erMGDBys7O1sbNmww2+Pj4+Xu7q6jR49WuO/9998vPz8/871V0/deZXOmn2nv3r166qmn1KpVK7m6uqpRo0a65557qpwf9+jRo3r88cfVqFEjeXh46KGHHtLhw4dtjr+4uFgvvfSSWrZsaeb85557TsXFxTbvi0uDfLnEqo18Sb68HPLl6Ro1aqSPP/5Yjo6OVmeU1PT9INm+rkZ0dLQaN25c4bUvSb169VKrVq1q3N9JkybJzs5OycnJVoX0ch07djSPUi5/ns+c3qP8+Tj9Myc3N1ePPPKImjVrJmdnZzVt2lR33XWX+XkVHByszMxMrV+/vtLn+mxed59++qkmTZqkv/3tb2rQoIHuvvtuFRQUqLi4WCNGjJCPj4/c3d31yCOPVJrvavI38+mfe127dlX9+vVrfLT+1KlTVVhYqA8++MCqkF6uZcuWeuaZZ8zbJ06c0JQpU9SiRQs5OzsrODhYL7zwQoW+V/U6CQ4OtjqyvDxXfPfddxo1apSaNGkiNzc3DRgwQH/88YfV/ap7Ts4HR6ZfRcq/yDg7O5/T/f/1r39VSIaSlJKSot27d+uRRx6Rn5+feTpHZmamNm7cWCEBvPPOO1Yf9md+sTp8+LD69Omje++9V/fff78+/fRTPfnkk3JyctKwYcMkSRaLRe+//77uv/9+PfbYY/rrr7/0wQcfKCIiQt9//32F03ZdXFw0b9489e/f31z3+eefV/iicLq//vpLy5Yt04ABA8x18+bNk4uLS4X7JSUlyd3dXaNGjZK7u7vWrl2rCRMmyGKx6PXXX69yH6e79957FRwcrISEBG3cuFFvvfWWDh8+rI8++sjqsWvbtq369esnR0dHffnll3rqqadUVlamuLg4q+3FxsbKz89PBw4c0Ntvv63w8HBlZ2db/dJY/riMGDHCXLdhwwbt3bu3Qv92796tJUuW6J577lHz5s2Vl5end999V926ddOOHTvMqUdmzpyptWvXKjo6WmlpaXJwcNC7776r1atX61//+pcZl5eXpy5duujo0aN6+umn1ahRI82fP1/9+vXTf/7zH6vHXfq/U0OPHTumTz75RC+88IJ8fHwUExNTo8e3/PErf+2NHTu22tjY2Fjddtttkk69VhYvXmzVHh0dra+++krDhw9X+/bt5eDgoLlz5+qHH36ocX8qExQUJEn66KOPNG7cuArvn3KPP/64Dhw4oJSUFP3rX/+yajMMQ/369dPXX3+tmJgYdejQQatWrdLo0aO1f/9+zZgxwyp+7dq1+vTTTxUfH6/GjRsrODhYeXl56ty5s/mFtkmTJvrvf/+rmJgYWSwWq9dMTWzatEm7du3SvHnz5OTkpIEDByo5ObnKhH3PPffo2muv1auvvmp+YX3llVc0fvx43XvvvXr00Uf1xx9/aNasWeratat+/PFHeXl5STp1uvvRo0f15JNPqlGjRvr+++81a9Ys/f7771q0aNFZ9RuoCjmVnEpOrfs59Uxt2rTR5MmTNWHCBKs+denSRdKpfBgZGanQ0FC99NJLsre3N4tI33zzjW6++War7d13331q06aN/vnPf2r58uV6+eWX5e3trXfffVe33367XnvtNSUnJ+sf//iHbrrpJnXt2lXSqWlSnn76ad19991m4Wrr1q3atGlThbPSbPn3v/8tNzc33XnnnXJ1dVWLFi2UnJxsjum+++5TYmKieTp2uaNHj+rLL7/Uww8/LAcHB0kX5r1XbvPmzdqwYYMGDx6sZs2aac+ePXrnnXfUvXt37dixo8KRb/Hx8fLy8tLEiROVlZWld955R3v37jULC5UpKytTv3799O233yo2NlZt2rTRtm3bNGPGDP3yyy8VipioHeRL8iX58vLLl2cKDAxUt27d9PXXX8tiscjDw+Os3w/VGTp0qD766COtWrVKd955p7k+NzdXa9eu1UsvvVSj7Rw9elRr1qxR165dFRgYeLbDrNagQYOUmZmp4cOHKzg4WPn5+UpJSVFOTo6Cg4P15ptvavjw4XJ3d9eLL74oSfL19ZV09q+7hIQEubq66vnnn9euXbs0a9Ys1atXT/b29jp8+LAmTpyojRs3KikpSc2bN9eECRPM+9b0b2ZJ+vPPPxUZGanBgwfrwQcfNPtry5dffqlrrrnG/K5hy6OPPqr58+fr7rvv1rPPPqtNmzYpISFBO3furPAaPxvDhw9Xw4YN9dJLL2nPnj168803FR8fr08++USSqn1OzpuBq8abb75pSDJ++uknq/XdunUz2rZta7Vu3rx5hiQjOzvbMAzDOH78uBEYGGhERkYakox58+aZsUePHq2wr3//+9+GJCM1NdVc99JLLxmSjD/++KPKPnbr1s2QZLzxxhvmuuLiYqNDhw6Gj4+PUVJSYhiGYZw4ccIoLi62uu/hw4cNX19fY9iwYea67OxsQ5Jx//33G46OjkZubq7Z1rNnT+OBBx4wJBmvv/56hX7ef//9xp133mmu37t3r2Fvb2/cf//9FcZR2WPw+OOPG/Xr1zeOHz9e5XhP31+/fv2s1j/11FMVnq/K9hMREWFcc8011e7j008/NSQZW7ZsMddJMu6++27D0dHRan1MTIz5uMTFxZnrjx8/bpw8edJqu9nZ2Yazs7MxefJkq/WrVq0yJBkvv/yysXv3bsPd3d3o37+/VcyIESMMScY333xjrvvrr7+M5s2bG8HBwea+vv76a0OS8fXXX1v1xd7e3njqqaeqHXe5F154wZBkHDx40FzXtm1bo1u3bhVif/31V0OSMX/+fHNd+XNU7tixY4a9vb3x+OOPW903OjracHNzq1GfqnL06FGjVatWhiQjKCjIePjhh40PPvjAyMvLqxAbFxdnVPYxvmTJEvPxP93dd99t2NnZGbt27TLXSTLs7e2NzMxMq9iYmBijadOmVo+ZYRjG4MGDDU9Pz0pfi9WJj483AgICjLKyMsMwDGP16tWGJOPHH3+0ijv9/Xe6PXv2GA4ODsYrr7xitX7btm2Go6Oj1frK+paQkGDY2dkZe/fuPat+A1Uhp5JTyal1P6cahlHhsd+8eXOF951hGEZZWZlx7bXXGhEREWauMoxTr5PmzZsbd9xxR4UxxMbGmutOnDhhNGvWzLCzszP++c9/musPHz5suLq6GtHR0ea6u+66q8LnxLlq166dMWTIEPP2Cy+8YDRu3NgoLS01x/W3v/3NGDRokNX9yl/Hp3+u1PS9Fx0dbQQFBVnFSTJeeumlareVlpZmSDI++ugjc13552NoaKj5mWQYhjF16lRDkvHFF1+Y67p162b1OvvXv/5l2NvbW73uDcMw5syZY0gyvvvuuwp9wKVHviRfki8vz3x5pmeeecbqtVHT90P5tk/PEWe+10+ePGk0a9bMuO+++6zuN336dMPOzs7YvXt3jcbw008/GZKMZ555pkbxlT3PhvF/7+Hyz5zDhw9XeM9Wpqrn92xfd9ddd51VTrz//vsNOzs7IzIy0mq7YWFhVvn4bP5mLv/cmzNnTrVjOlNBQYEhybjrrrtqFJ+RkWFIMh599FGr9f/4xz8MScbatWvNdWe+TsoFBQVZfY8qf/2Eh4dbfWcbOXKk4eDgYBw5csRcV9Vzcr6Y5uUqUn7KW5MmTc76vomJifrzzz8r/UXQ1dXV/P/x48d18OBBde7cWZLO6RdSR0dHPf744+ZtJycnPf7448rPz1d6erokycHBQU5OTpJOHZVy6NAhnThxQh07dqx0nzfeeKPatm1rHsG7d+9eff3119VehGDYsGFauXKlcnNzJUnz589XWFiY/v73v1eIPf0x+Ouvv3Tw4EHddtttOnr0qH7++ecajfvMX/WHDx8u6dRFJivbT0FBgQ4ePKhu3bpp9+7dKigosLr/0aNHdfDgQWVkZOi9996Tr69vhb77+voqKipK8+bNM+/z6aef6pFHHqnQP2dnZ/MIjpMnT+rPP/+Uu7u7WrVqVeEx79Wrlx5//HFNnjxZAwcOlIuLi959912rmBUrVujmm2+2msLD3d1dsbGx2rNnT4UrhpePNycnR1OnTlVZWZluv/32Sh7JisqP4qjJXG01OXqmqKhIZWVlatSoUY32fzZcXV21adMmjR49WtKpI05iYmLUtGlTDR8+vEanLa9YsUIODg56+umnrdY/++yzMgxD//3vf63Wd+vWTSEhIeZtwzD02WefqW/fvjIMQwcPHjSXiIgIFRQUnNV7+8SJE/rkk0903333mUcJlZ8qmpycXOl9nnjiCavbn3/+ucrKynTvvfda9cfPz0/XXnut1emEp79PioqKdPDgQXXp0kWGYejHH3+scb+B6pBTyank1LqfU89GRkaGfv31Vz3wwAP6888/zTxTVFSknj17KjU1tcJFNx999FHz/w4ODurYsaMMw7A6YtHLy0utWrXS7t27rdb9/vvv2rx583n1eevWrdq2bZvuv/9+c93999+vgwcPatWqVZJOnTJ9zz33aMWKFSosLDTjPvnkE/3tb3+zes1ciPdeZdsqLS3Vn3/+qZYtW8rLy6vSz5XY2FirudiffPJJOTo6Wr1nz7Ro0SK1adNGrVu3tvpuUP5armyqAVx65EvyJfnyysiX5UfX//XXX5LO/v1QHXt7ew0ZMkRLly41ty/JPNOqefPmNdqOxWKRpEqndzkfrq6ucnJy0rp162o0BdmZzvZ199BDD1nlxE6dOskwDPMsmdPX79u3TydOnJB0dn8zS6deb5W976pzto9x+WfJmRevffbZZyXpvOZWj42NtToL6bbbbtPJkycrPcvlQqOYfhXZu3evHB0dz/qLTEFBgV599VWNGjWq0lMiDh06pGeeeUa+vr5ydXVVkyZNzA+7M5NrTfj7+1e42GB5Aj59/rz58+fr+uuvl4uLixo1aqQmTZpo+fLlVe7zkUceMRN2UlKSunTpomuvvbbKfnTo0EHXXXedPvroIxmGoaSkpCo/aDIzMzVgwAB5enrKw8NDTZo0MS/cUdPH4My+tGjRQvb29lZj/u677xQeHi43Nzd5eXmpSZMm5jQZZ+5n8uTJatKkiW644Qbt2bNH69atq/QD75FHHtHChQtVXFysRYsWqWHDhpV+QSgrK9OMGTN07bXXytnZWY0bN1aTJk20devWSsc4bdo0eXt7KyMjQ2+99ZZ8fHys2vfu3Vvp3Gdt2rQx20/Xv39/NWnSREFBQZo4caLGjRunQYMGVbh/ZQ4ePKh69erV6GIaR44ckaRq551r1KiRrr32Wr3//vtavXq18vPzdfDgwQs2P6enp6emTp2qPXv2aM+ePfrggw/UqlUrvf3225oyZYrN++/du1f+/v4Vnu+qHtszv5z88ccfOnLkiObOnasmTZpYLeXvgfz8/BqPZ/Xq1frjjz908803a9euXdq1a5eys7PVo0cP/fvf/65QnKisT7/++qsMw9C1115boU87d+606k9OTo4efvhheXt7y93dXU2aNFG3bt0kndtnElAZcio5lZx6eeTUmvr1118lnTqF/sw88/7776u4uLjCc3PmKeSenp5ycXFR48aNK6w//Y/vMWPGyN3dXTfffLOuvfZaxcXFVZiXvSYWLFggNzc3XXPNNWZ+dXFxUXBwsNWP1ffdd5+OHTumpUuXSpIKCwu1YsUK3XPPPVZ/hF6I9165Y8eOacKECea1W8pf40eOHKl0W2e+Z93d3dW0adMq51iXTj1nmZmZFZ6v8s+4s/mugouHfEm+JF9eGfmy/AfZ05/Ps30/VOehhx7SsWPHzGk/srKylJ6erqFDh9Z4G+XXFzu9IH8hODs767XXXtN///tf+fr6qmvXrpo6dar5o5ctZ/u6q+z7hSQFBARUWF9WVmY+3mfzN7Mk/e1vfzN/EKmps32M9+7dK3t7e7Vs2dJqvZ+fn7y8vM6r8H3m49SwYUNJOqcfPM4Wc6ZfRbKysnTNNddYXWylJl577TXZ29tr9OjRFS7oIp2aZ23Dhg0aPXq0OnToIHd3d5WVlal3796VFskuhAULFujhhx9W//79NXr0aPn4+MjBwUEJCQnmBRzP9OCDD+q5557Txo0bNX/+fI0bN87mfoYNG6bZs2fr5ptvVm5uru69994KF5E6cuSIunXrJg8PD02ePFktWrSQi4uLfvjhB40ZM+acH4Mz5/n77bff1LNnT7Vu3VrTp09XQECAnJyctGLFCs2YMaPSo6V69uyp33//XTNmzNCgQYO0YcMG84O4XFRUlJycnLRkyRLNmzdP0dHRlV4g6NVXX9X48eM1bNgwTZkyRd7e3rK3t9eIESMqHeOPP/5oflifedTUuZg2bZrat2+v0tJSbd68WS+//LIcHR1rNH/anj17FBgYWOWcm6crT4h+fn7Vxn3yyScaMmSIIiIirNaf+SX8fAUFBWnYsGEaMGCArrnmGiUnJ+vll1++oPs4/WgTSebz+eCDDyo6OrrS+1x//fU13n75H/T33ntvpe3r169Xjx49bPbJzs5O//3vf825XU9X/sXz5MmTuuOOO3To0CGNGTNGrVu3lpubm/bv36+HH374on0m4epDTiWnklMvv5xanfLH/fXXX69yntczixyV5aPK1kmyumBdmzZtlJWVpWXLlmnlypX67LPPNHv2bE2YMEGTJk2qUX8Nw9C///1vFRUVWZ1dVi4/P1+FhYVyd3dX586dFRwcrE8//VQPPPCAvvzySx07dkz33XefGX+h33vDhw8350QOCwuTp6en7OzsNHjw4Av2WVZWVqZ27dpp+vTplbafWXRA7SBfki/Jl1dGvty+fbscHBzMH63O5f1QnZCQEIWGhmrBggV66KGHtGDBAjk5OVX5N2RlWrZsKUdHx0qvs1CZqp6byi7iO2LECPXt21dLlizRqlWrNH78eCUkJGjt2rW64YYbatzHmqjqu4St7xg1/Zu53Jl/c9eEh4eH/P39tX379rO6X03eB1Wp6qLKNfnOdbFQTL9KFBcXKyMjw+riJzVx4MABzZw5UwkJCWrQoEGFLzKHDx/WmjVrNGnSJKuLHpQf3XMuDhw4oKKiIquE8Msvv0g6dTVeSfrPf/6ja665Rp9//rnVm7K6pNaoUSP169fPPF2v/NSX6gwZMkSjR4/WM888o7vvvrvSX9XXrVunP//8U59//rl5YSlJys7OrtF4y/36669WR+Pu2rVLZWVl5pi//PJLFRcXa+nSpVa/wFV1CmvLli3NX//Cw8MVGBiohQsX6sknn7SKc3R01NChQ/XKK68oMzNTH374YaXb+89//qMePXrogw8+sFp/5MiRCkdgFRUV6ZFHHlFISIi6dOmiqVOnasCAAbrpppvMmKCgIGVlZVXYT/kpieUX4iwXGhpqXnk5MjJS+/fv12uvvabx48dX+sWr3IkTJ/TTTz+pd+/eVcacbseOHbKzs7N5xfAbbrhB7733nm677TZNnjxZnTt31uuvv35OR5bVRMOGDdWiRQurpFVVQgoKCtJXX32lv/76y+o1W9Vje6YmTZqoQYMGOnnypMLDw8+r30VFRfriiy9033336e67767Q/vTTTys5OblCMf1MLVq0kGEYat68eaWnuZbbtm2bfvnlF82fP18PPfSQuT4lJeXcBwGcgZxKTiWnXr45tarc2aJFC0mn/kg839xXE25ubrrvvvt03333qaSkRAMHDtQrr7yisWPH1mhKgPXr1+v333/X5MmTzSPbyh0+fFixsbFasmSJeZTqvffeq5kzZ8piseiTTz5RcHCwOSWGdOHee+X+85//KDo62qoAePz4cfPoyzP9+uuvVt8FCgsL9b///U99+vSpch8tWrTQTz/9pJ49e57XH+m4eMiX5Evy5eWbL0+Xk5Oj9evXKywszHw9nsv7wZaHHnpIo0aN0v/+9z8tXLhQUVFR5tHGNVG/fn3dfvvtWrt2rfbt22fzR9XybZ+Zm6o6WrpFixZ69tln9eyzz+rXX39Vhw4d9MYbb2jBggWSqv/7/Gxed+eqpn8zn68777xTc+fOVVpamsLCwqqNDQoKUllZmX799Ver7yt5eXk6cuSI1dgbNmxY4bkoKSnR//73v3Pu68X6fsA0L1eJ8lOoevbseVb3mzRpknx9fSvMX1yu/JegM3/5efPNN8+pn9KpxHP63GYlJSV699131aRJE4WGhla5302bNiktLa3abQ8bNkxbt27VPffcU+0pVOW8vb111113aevWrRXmpypXWV9KSko0e/Zsm9s/XWJiotXtWbNmSTqVtKvaT0FBgXnaYHXKv7BVdQrYsGHDtG3bNnXt2lXXXHNNpTEODg4VnudFixZp//79FWLHjBmjnJwczZ8/X9OnT1dwcLCio6Ot9t+nTx99//33Vs9ZUVGR5s6dq+Dg4EqPsjrdsWPHdOLECXN+sKqsXr1aBQUFuuuuu6qNk0699j777DPdfPPNNl8fFotFQ4cOVb9+/TRu3DiFh4eradOmNvdhy08//VTpF+y9e/dqx44dVl+wyr/sn5lw+vTpo5MnT+rtt9+2Wj9jxgzZ2dmZr6mqODg4aNCgQfrss88q/cX5jz/+qOlwtHjxYhUVFSkuLk533313heXOO+/UZ599ZvP0xIEDB8rBwUGTJk2q8Do0DMP8I6uy94lhGJo5c2aN+wzYQk49hZxKTq1OXciplakqd4aGhqpFixaaNm2a1dzi5c4m99lyZmHQyclJISEhMgxDpaWlNdpG+RQvo0ePrpBbH3vsMV177bUVpnopLi7W/PnztXLlygpH+l2o997p2zvzNT5r1qwqjy6bO3eu1djfeecdnThxotrvLPfee6/279+v9957r0LbsWPHVFRUdE59x4VDvjyFfEm+rE5dzZflDh06pPvvv18nT57Uiy++aK4/1/dDde6//37Z2dnpmWee0e7du80fhM/GSy+9JMMwNHTo0ErzeXp6uubPny/pVKHXwcFBqampVjFnvo+OHj1qzoFfrkWLFmrQoIHV68vNza3SH43P93VXUzX9m/l8Pffcc3Jzc9Ojjz6qvLy8Cu2//fab+fd3+Y/iZ34+l59VFhUVZa5r0aJFhedi7ty5VX53qImqnpPzxZHpV7iioiLNmjVLkydPNhNR+a9m5fLy8lRYWKgFCxbojjvusJqTbvXq1UpOTq5yHiUPDw9zvqjS0lL97W9/0+rVq8/5KBbp1Hx1r732mvbs2aO///3v+uSTT5SRkaG5c+eaF2G488479fnnn2vAgAGKiopSdna25syZo5CQkEo/MMv17t1bf/zxR42+xJRLSkpSYmJihV++y3Xp0kUNGzZUdHS0nn76adnZ2elf//rXWZ9akp2drX79+ql3795KS0vTggUL9MADD6h9+/aSTl1QxcnJSX379tXjjz+uwsJCvffee/Lx8bH6pW7FihV6//331aVLF3l7e2v37t1677335ObmpgEDBlS67zZt2ujgwYPVnuZz5513avLkyXrkkUfUpUsXbdu2TcnJyRW++Kxdu1azZ8/WSy+9pBtvvFGSNG/ePHXv3l3jx4/X1KlTJUnPP/+8/v3vfysyMlJPP/20vL29NX/+fGVnZ+uzzz6r8Et/SkqKfv/9d/MUu+TkZPXr16/aOb4++eQT/eMf/5Czs7OOHTtm9dovKCjQyZMntWTJEvXv319fffWVxo8fr61bt+rLL7+scpvl4uLidOzYMb3//vs2Y89GSkqKXnrpJfXr10+dO3eWu7u7du/erQ8//FDFxcWaOHGiGVv+xf7pp59WRESEHBwcNHjwYPXt21c9evTQiy++qD179qh9+/ZavXq1vvjiC40YMcI8+q46//znP/X111+rU6dOeuyxxxQSEqJDhw7phx9+0FdffaVDhw7VaDzJyclq1KiRunTpUml7v3799N5772n58uUaOHBgldtp0aKFXn75ZY0dO1Z79uxR//791aBBA2VnZ2vx4sWKjY3VP/7xD7Vu3VotWrTQP/7xD+3fv18eHh767LPPLsm8abjykVOtkVPJqeXqak6tTIsWLeTl5aU5c+aoQYMGcnNzU6dOndS8eXO9//77ioyMVNu2bfXII4/ob3/7m/bv36+vv/5aHh4eNRpLTfTq1Ut+fn665ZZb5Ovrq507d+rtt99WVFRUjS7oVVxcrM8++0x33HFHlUex9+vXTzNnzlR+fr58fHx04403qmXLlnrxxRdVXFxsNcWLdOHee+XuvPNO/etf/5Knp6dCQkKUlpamr776qsoL55WUlKhnz5669957lZWVpdmzZ+vWW29Vv379qtzH0KFD9emnn+qJJ57Q119/rVtuuUUnT57Uzz//rE8//VSrVq1Sx44dz6n/OD/kS2vkS/JlubqeL3/55RctWLBAhmHIYrHop59+0qJFi1RYWKjp06dbHWl/ru+H6jRp0kS9e/fWokWL5OXlZVVorakuXbooMTFRTz31lFq3bq2hQ4fq2muv1V9//aV169Zp6dKl5rSpnp6euueeezRr1izZ2dmpRYsWWrZsWYW5xX/55RczR4WEhMjR0VGLFy9WXl6eBg8ebMaFhobqnXfe0csvv6yWLVvKx8dHt99++1m/7s5VTf9mvhD7Wbhwoe677z61adNGDz30kK677jqVlJRow4YNWrRokXmh5fbt2ys6Olpz5841p6f6/vvvNX/+fPXv39/qrLRHH31UTzzxhAYNGqQ77rhDP/30k1atWlXl52BNVPWcnDcDV7Ts7GxDUo2Xr7/+2jAMw5g3b54hyejQoYNRVlZWYXvz5s0z1/3+++/GgAEDDC8vL8PT09O45557jAMHDhiSjJdeesmMe+mllwxJxh9//FFlf7t162a0bdvW2LJlixEWFma4uLgYQUFBxttvv20VV1ZWZrz66qtGUFCQ4ezsbNxwww3GsmXLjOjoaCMoKKhCf19//fVqH5/T2231s7L27777zujcubPh6upq+Pv7G88995yxatUqq8e0KuXb27Fjh3H33XcbDRo0MBo2bGjEx8cbx44ds4pdunSpcf311xsuLi5GcHCw8dprrxkffvihIcnIzs42DMMwtm/fbvTq1cto1KiR4eTkZAQEBBiDBw82tm7darUtSUZcXFyV/Tqz/fjx48azzz5rNG3a1HB1dTVuueUWIy0tzejWrZvRrVs3wzAMw2KxGEFBQcaNN95olJaWWm1v5MiRhr29vZGWlmau++2334y7777b8PLyMlxcXIybb77ZWLZsmdX9vv76a6vXqKOjoxEUFGQ8/fTTxuHDh6t9bIOCgmy+5stfL8OHDze6du1qrFy5ssJ2yp+jcv/+978NOzu7CrHR0dGGm5tbtX2yZffu3caECROMzp07Gz4+Poajo6PRpEkTIyoqyli7dq1V7IkTJ4zhw4cbTZo0Mezs7Kz6+NdffxkjR440/P39jXr16hnXXnut8frrr1u9nw2j+tdBXl6eERcXZwQEBBj16tUz/Pz8jJ49expz586t0Vjy8vIMR0dHY+jQoVXGHD161Khfv74xYMAAwzBsv/8+++wz49ZbbzXc3NwMNzc3o3Xr1kZcXJyRlZVlxuzYscMIDw833N3djcaNGxuPPfaY8dNPP1X47ALOFjmVnEpOvbxyqmFU/tx88cUXRkhIiOHo6FjhPfjjjz8aAwcONBo1amQ4OzsbQUFBxr333musWbOmwhjOfF1X1efy92K5d9991+jatau5jxYtWhijR482CgoKajSmzz77zJBkfPDBB1XGrFu3zpBkzJw501z34osvGpKMli1bVnqfmr73zvxsMAyjwmfU4cOHjUceecRo3Lix4e7ubkRERBg///yzERQUZERHR5tx5Z+P69evN2JjY42GDRsa7u7uxpAhQ4w///zTah+nvz/KlZSUGK+99prRtm1bw9nZ2WjYsKERGhpqTJo0qcaPJy488iX5knx5eebL8sXe3t7w8vIybrjhBuOZZ54xMjMzK8TX9P1Qvu3T35fl7/Xy18/pPv30U0OSERsbe17jSU9PNx544AHz7+GGDRsaPXv2NObPn2+cPHnSjPvjjz+MQYMGGfXr1zcaNmxoPP7448b27dutPnMOHjxoxMXFGa1btzbc3NwMT09Po1OnTsann35qtc/c3FwjKirKaNCggSHJKmedzetu0aJFVuvLH6/Nmzdbra/qc6MmfzOf+d3kXPzyyy/GY489ZgQHBxtOTk5GgwYNjFtuucWYNWuWcfz4cTOutLTUmDRpktG8eXOjXr16RkBAgDF27FirGMMwjJMnTxpjxowxGjdubNSvX9+IiIgwdu3aVeV3hzMfj/LH7/TPv+qek/NhZxiXYGZ21Jo9e/aoefPm+vrrr825vs4n7mLr3r27Dh48eNYXM7icTZw4UZMmTdIff/xxXr+4oaLg4GBNnDjR/FX0TOvWrdPDDz9sdbV6AKgKObXuI6dePORUADVFvqz7yJcXD/ny/HzxxRfq37+/UlNTddttt9V2d4BKMWc6AAAAAAAAgFr13nvv6ZprrtGtt95a210BqsSc6Vc4d3d3DRkyxGoOuvOJAy4nAwYMqHZ+cF9f3yrn8INtf/zxR7UXA3FycpK3t/cl7BFwcZFTcTUjp14aJ0+etHmxU3d397Oaexm41MiXuJqRL8/Nxx9/rK1bt2r58uWaOXOm7OzsrNoLCgp07Nixarfh5+d3Mbt4xSssLLQ5332TJk3Mi89ezZjmBXUKp9hxih0uH8HBwdq7d2+V7d26ddO6desuXYcAWCGnklNx+Smf9qI6L730ktUFyQGcH/Il+RK1z87OTu7u7rrvvvs0Z84cOTpaH/v78MMPa/78+dVug/Lm+Sn/XKhOdna2goODL02H6jCK6QCAc/Ldd99Ve3RAw4YNFRoaegl7BADA5e348eP69ttvq4255pprdM0111yiHgEAUPt27NihAwcOVBsTHh5+iXpzZdq9e7d2795dbcytt94qFxeXS9SjuotiOgAAAAAAAAAANjBnejXKysp04MABNWjQoMJ8TQAA1DWGYeivv/6Sv7+/7O2v/GuMk6cBAJcLcjQAAHXT2eZoiunVOHDggAICAmq7GwAAnJV9+/apWbNmtd2Ni448DQC43JCjAQCom2qaoymmV6NBgwaSTj2YHh4etdwbAACqZ7FYFBAQYOavKx15GgBwuSBHAwBQN51tjqaYXo3y09E8PDz4AgAAuGxcLadTk6cBAJcbcjQAAHVTTXP0lT9ZGwAAAAAAAAAA56lWiukJCQm66aab1KBBA/n4+Kh///7Kysoy2w8dOqThw4erVatWcnV1VWBgoJ5++mkVFBRYbScnJ0dRUVGqX7++fHx8NHr0aJ04ccIqZt26dbrxxhvl7Oysli1bKikp6VIMEQAAAAAAAABwBamVYvr69esVFxenjRs3KiUlRaWlperVq5eKiooknbpYyYEDBzRt2jRt375dSUlJWrlypWJiYsxtnDx5UlFRUSopKdGGDRs0f/58JSUlacKECWZMdna2oqKi1KNHD2VkZGjEiBF69NFHtWrVqks+ZgAAAAAAAADA5cvOMAyjtjvxxx9/yMfHR+vXr1fXrl0rjVm0aJEefPBBFRUVydHRUf/9739155136sCBA/L19ZUkzZkzR2PGjNEff/whJycnjRkzRsuXL9f27dvN7QwePFhHjhzRypUrbfbLYrHI09NTBQUFzPMGAKjzrra8dbWNFwBw+bractbVNl4AwOXrbHNWnZgzvXz6Fm9v72pjPDw85Oh46pqpaWlpateunVlIl6SIiAhZLBZlZmaaMeHh4VbbiYiIUFpaWqX7KC4ulsVisVoAAAAAAAAAAKj1YnpZWZlGjBihW265Rdddd12lMQcPHtSUKVMUGxtrrsvNzbUqpEsyb+fm5lYbY7FYdOzYsQr7SUhIkKenp7kEBASc19gAAAAAAAAAAFeGWi+mx8XFafv27fr4448rbbdYLIqKilJISIgmTpx4UfsyduxYFRQUmMu+ffsu6v4AAAAAAAAAAJcHx9rceXx8vJYtW6bU1FQ1a9asQvtff/2l3r17q0GDBlq8eLHq1atntvn5+en777+3is/LyzPbyv8tX3d6jIeHh1xdXSvsz9nZWc7Ozuc9LgAAAAAAAADAlaVWjkw3DEPx8fFavHix1q5dq+bNm1eIsVgs6tWrl5ycnLR06VK5uLhYtYeFhWnbtm3Kz88316WkpMjDw0MhISFmzJo1a6zul5KSorCwsIswKgAAAAAAAADAlapWiulxcXFasGCBFi5cqAYNGig3N1e5ubnmPOblhfSioiJ98MEHslgsZszJkyclSb169VJISIiGDh2qn376SatWrdK4ceMUFxdnHl3+xBNPaPfu3Xruuef0888/a/bs2fr00081cuTI2hg2AAAAAAAAAOAyVSvTvLzzzjuSpO7du1utnzdvnh5++GH98MMP2rRpkySpZcuWVjHZ2dkKDg6Wg4ODli1bpieffFJhYWFyc3NTdHS0Jk+ebMY2b95cy5cv18iRIzVz5kw1a9ZM77//viIiIi7uAAEAAAAAAAAAV5Ram+alsuXhhx+WdKrIXlVMcHCwuZ2goCCtWLFCR48e1R9//KFp06bJ0dH694Hu3bvrxx9/VHFxsX777TdzHwAAoKKEhATddNNNatCggXx8fNS/f39lZWVViEtLS9Ptt98uNzc3eXh4qGvXruYZZpJ06NAhDRkyRB4eHvLy8lJMTIwKCwuttrF161bddtttcnFxUUBAgKZOnXrRxwcAAAAAwLmqlWI6AACom9avX6+4uDht3LhRKSkpKi0tNadeK5eWlqbevXurV69e+v7777V582bFx8fL3v7/vlYMGTJEmZmZSklJMS82Hhsba7aXT+kWFBSk9PR0vf7665o4caLmzp17SccLAAAAAEBN2RmGYdR2J+oqi8UiT09PFRQUyMPDo7a7AwBAtS5G3vrjjz/k4+Oj9evXq2vXrpKkzp0764477tCUKVMqvc/OnTsVEhKizZs3q2PHjpKklStXqk+fPvr999/l7++vd955Ry+++KJyc3Pl5OQkSXr++ee1ZMkS/fzzzzXqG3kaAHC5uNpy1tU2XgDA5etscxZHpgMAgCoVFBRIkry9vSVJ+fn52rRpk3x8fNSlSxf5+vqqW7du+vbbb837pKWlycvLyyykS1J4eLjs7e3Na6KkpaWpa9euZiFdkiIiIpSVlaXDhw9X2pfi4mJZLBarBQAAAACAS6VWLkAK4PJ29OjRGh85Wpljx45pz549Cg4Olqur6zlvp3Xr1qpfv/453x9A9crKyjRixAjdcsstuu666yRJu3fvliRNnDhR06ZNU4cOHfTRRx+pZ8+e2r59u6699lrl5ubKx8fHaluOjo7y9vZWbm6uJCk3N1fNmze3ivH19TXbGjZsWKE/CQkJmjRp0gUfJ3AlIUcDAFA3kaOBKwPFdABn7eeff1ZoaGhtd0Pp6em68cYba7sbwBUrLi5O27dvtzrqvKysTJL0+OOP65FHHpEk3XDDDVqzZo0+/PBDJSQkXLT+jB07VqNGjTJvWywWBQQEXLT9AZcjcjQAAHUTORq4MlBMB3DWWrdurfT09HO+/86dO/Xggw9qwYIFatOmzXn1A8DFER8fb144tFmzZub6pk2bSpJCQkKs4tu0aaOcnBxJkp+fn/Lz863aT5w4oUOHDsnPz8+MycvLs4opv10ecyZnZ2c5Ozufx6iAKx85GgCAuokcDVwZKKYDOGv169e/IL9kt2nThl/EgTrGMAwNHz5cixcv1rp16ypMxRIcHCx/f39lZWVZrf/ll18UGRkpSQoLC9ORI0eUnp5uHn2zdu1alZWVqVOnTmbMiy++qNLSUtWrV0+SlJKSolatWlU6xQuAmiFHAwBQN5GjgSsDFyAFAACmuLg4LViwQAsXLlSDBg2Um5ur3NxcHTt2TJJkZ2en0aNH66233tJ//vMf7dq1S+PHj9fPP/+smJgYSae+4Pfu3VuPPfaYvv/+e3333XeKj4/X4MGD5e/vL0l64IEH5OTkpJiYGGVmZuqTTz7RzJkzraZxAQAAAACgLuHIdAAAYHrnnXckSd27d7daP2/ePD388MOSpBEjRuj48eMaOXKkDh06pPbt2yslJUUtWrQw45OTkxUfH6+ePXvK3t5egwYN0ltvvWW2e3p6avXq1YqLi1NoaKgaN26sCRMmKDY29qKPEQAAAACAc0ExHQAAmAzDqFHc888/r+eff77Kdm9vby1cuLDabVx//fX65ptvzqp/AAAAAADUFqZ5AQAAAAAAAADABorpAAAAAAAAAADYQDEdAAAAAAAAAAAbKKYDAAAAAAAAAGADxXQAAAAAAAAAAGygmA4AAAAAAAAAgA0U0wEAAAAAAAAAsIFiOgAAAAAAAAAANlBMBwAAAAAAAADABorpAAAAAAAAAADYQDEdAAAAAAAAAAAbKKYDAAAAAAAAAGADxXQAAAAAAAAAAGygmA4AAAAAAAAAgA0U0wEAAAAAAAAAsIFiOgAAAAAAAAAANlBMBwAAAAAAAADABorpAAAAAAAAAADYQDEdAAAAAAAAAAAbKKYDAAAAAAAAAGADxXQAAAAAAAAAAGygmA4AAAAAAAAAgA0U0wEAAAAAqONSU1PVt29f+fv7y87OTkuWLKky9oknnpCdnZ3efPNNq/WHDh3SkCFD5OHhIS8vL8XExKiwsNAqZuvWrbrtttvk4uKigIAATZ069SKMBgCAyxPFdAAAAAAA6riioiK1b99eiYmJ1cYtXrxYGzdulL+/f4W2IUOGKDMzUykpKVq2bJlSU1MVGxtrtlssFvXq1UtBQUFKT0/X66+/rokTJ2ru3LkXfDwAAFyOHGu7AwAAAAAAoHqRkZGKjIysNmb//v0aPny4Vq1apaioKKu2nTt3auXKldq8ebM6duwoSZo1a5b69OmjadOmyd/fX8nJySopKdGHH34oJycntW3bVhkZGZo+fbpV0R0AgKsVR6YDAAAAAHCZKysr09ChQzV69Gi1bdu2QntaWpq8vLzMQrokhYeHy97eXps2bTJjunbtKicnJzMmIiJCWVlZOnz4cJX7Li4ulsVisVoAALgSUUwHAAAAAOAy99prr8nR0VFPP/10pe25ubny8fGxWufo6Chvb2/l5uaaMb6+vlYx5bfLYyqTkJAgT09PcwkICDifoQAAUGdRTAcAAAAA4DKWnp6umTNnKikpSXZ2dpd8/2PHjlVBQYG57Nu375L3AQCAS4FiOgAAAAAAl7FvvvlG+fn5CgwMlKOjoxwdHbV37149++yzCg4OliT5+fkpPz/f6n4nTpzQoUOH5OfnZ8bk5eVZxZTfLo+pjLOzszw8PKwWAACuRBTTAQAAAAC4jA0dOlRbt25VRkaGufj7+2v06NFatWqVJCksLExHjhxRenq6eb+1a9eqrKxMnTp1MmNSU1NVWlpqxqSkpKhVq1Zq2LDhpR0UAAB1kGNtdwAAAAAAAFSvsLBQu3btMm9nZ2crIyND3t7eCgwMVKNGjazi69WrJz8/P7Vq1UqS1KZNG/Xu3VuPPfaY5syZo9LSUsXHx2vw4MHy9/eXJD3wwAOaNGmSYmJiNGbMGG3fvl0zZ87UjBkzLt1AAQCowyimAwAAAABQx23ZskU9evQwb48aNUqSFB0draSkpBptIzk5WfHx8erZs6fs7e01aNAgvfXWW2a7p6enVq9erbi4OIWGhqpx48aaMGGCYmNjL+hYAAC4XFFMBwAAAACgjuvevbsMw6hx/J49eyqs8/b21sKFC6u93/XXX69vvvnmbLsHAMBVgTnTAQAAAAAAAACwgWI6AAAAAAAAAAA21EoxPSEhQTfddJMaNGggHx8f9e/fX1lZWVYxx48fV1xcnBo1aiR3d3cNGjRIeXl5VjE5OTmKiopS/fr15ePjo9GjR+vEiRNWMevWrdONN94oZ2dntWzZssZzyQEAcDWqSY4uZxiGIiMjZWdnpyVLlli1kaMBAAAAAFeaWimmr1+/XnFxcdq4caNSUlJUWlqqXr16qaioyIwZOXKkvvzySy1atEjr16/XgQMHNHDgQLP95MmTioqKUklJiTZs2KD58+crKSlJEyZMMGOys7MVFRWlHj16KCMjQyNGjNCjjz6qVatWXdLxAgBwuahJji735ptvys7OrsJ6cjQAAAAA4EpUKxcgXblypdXtpKQk+fj4KD09XV27dlVBQYE++OADLVy4ULfffrskad68eWrTpo02btyozp07a/Xq1dqxY4e++uor+fr6qkOHDpoyZYrGjBmjiRMnysnJSXPmzFHz5s31xhtvSJLatGmjb7/9VjNmzFBERESFfhUXF6u4uNi8bbFYLuKjAABA3WMrR5fLyMjQG2+8oS1btqhp06ZW97kYORoAAAAAgNpWJ+ZMLygokHTqyuKSlJ6ertLSUoWHh5sxrVu3VmBgoNLS0iRJaWlpateunXx9fc2YiIgIWSwWZWZmmjGnb6M8pnwbZ0pISJCnp6e5BAQEXLhBAgBwGTozR0vS0aNH9cADDygxMVF+fn4V7nMxcrR06kdvi8VitQAAAAAAcKnUejG9rKxMI0aM0C233KLrrrtOkpSbmysnJyd5eXlZxfr6+io3N9eMOf2P9PL28rbqYiwWi44dO1ahL2PHjlVBQYG57Nu374KMEQCAy1FlOVo6NRVbly5ddNddd1V6v4uRoyV+9AYAAAAA1K5amebldHFxcdq+fbu+/fbb2u6KnJ2d5ezsXNvdAACgTqgsRy9dulRr167Vjz/+eMn7M3bsWI0aNcq8bbFYKKgDAAAAAC6ZWj0yPT4+XsuWLdPXX3+tZs2amev9/PxUUlKiI0eOWMXn5eWZp5P7+fkpLy+vQnt5W3UxHh4ecnV1vdDDAQDgilFVjl67dq1+++03eXl5ydHRUY6Op36XHzRokLp37y7p4uVoZ2dneXh4WC0AAAAAAFwqtVJMNwxD8fHxWrx4sdauXavmzZtbtYeGhqpevXpas2aNuS4rK0s5OTkKCwuTJIWFhWnbtm3Kz883Y1JSUuTh4aGQkBAz5vRtlMeUbwMAAFizlaOff/55bd26VRkZGeYiSTNmzNC8efMkkaMBAAAAAFemWpnmJS4uTgsXLtQXX3yhBg0amPOnenp6ytXVVZ6enoqJidGoUaPk7e0tDw8PDR8+XGFhYercubMkqVevXgoJCdHQoUM1depU5ebmaty4cYqLizOnanniiSf09ttv67nnntOwYcO0du1affrpp1q+fHltDBsAgDrPVo728/Or9KKjgYGBZuGdHA0AAAAAuBLVypHp77zzjgoKCtS9e3c1bdrUXD755BMzZsaMGbrzzjs1aNAgde3aVX5+fvr888/NdgcHBy1btkwODg4KCwvTgw8+qIceekiTJ082Y5o3b67ly5crJSVF7du31xtvvKH3339fERERl3S8AABcLmqSo20hRwMAAAAArkS1cmS6YRg2Y1xcXJSYmKjExMQqY4KCgrRixYpqt9O9e/dauUgaAACXo5rk6JrchxwNAAAAALjS1OoFSAEAAAAAAAAAuBxQTAcAAAAAAAAAwAaK6QAAAAAAAAAA2EAxHQAAAAAAAAAAGyimAwAAAAAAAABgA8V0AAAAAAAAAABsoJgOAAAAAAAAAIANFNMBAAAAAAAAALCBYjoAAAAAAAAAADZQTAcAAAAAAAAAwAaK6QAAAAAAAAAA2EAxHQAAAAAAAAAAGyimAwAAAAAAAABgA8V0AAAAAAAAAABsoJgOAAAAAAAAAIANFNMBAAAAAAAAALCBYjoAAAAAAAAAADZQTAcAAAAAAAAAwAaK6QAAAAAAAAAA2EAxHQAAAAAAAAAAGyimAwAAAAAAAABgA8V0AAAAAAAAAABsoJgOAAAAAAAAAIANFNMBAAAAAAAAALCBYjoAAAAAAAAAADZQTAcAAAAAAAAAwAaK6QAAAAAAAAAA2EAxHQAAAACAOi41NVV9+/aVv7+/7OzstGTJErOttLRUY8aMUbt27eTm5iZ/f3899NBDOnDggNU2Dh06pCFDhsjDw0NeXl6KiYlRYWGhVczWrVt12223ycXFRQEBAZo6deqlGB4AAJcFiukAAAAAANRxRUVFat++vRITEyu0HT16VD/88IPGjx+vH374QZ9//rmysrLUr18/q7ghQ4YoMzNTKSkpWrZsmVJTUxUbG2u2WywW9erVS0FBQUpPT9frr7+uiRMnau7cuRd9fAAAXA4ca7sDAAAAAACgepGRkYqMjKy0zdPTUykpKVbr3n77bd18883KyclRYGCgdu7cqZUrV2rz5s3q2LGjJGnWrFnq06ePpk2bJn9/fyUnJ6ukpEQffvihnJyc1LZtW2VkZGj69OlWRfczFRcXq7i42LxtsVguwIgBAKh7ODIdAAAAAIArTEFBgezs7OTl5SVJSktLk5eXl1lIl6Tw8HDZ29tr06ZNZkzXrl3l5ORkxkRERCgrK0uHDx+ucl8JCQny9PQ0l4CAgIszKAAAahnFdAAAAAAAriDHjx/XmDFjdP/998vDw0OSlJubKx8fH6s4R0dHeXt7Kzc314zx9fW1iim/XR5TmbFjx6qgoMBc9u3bdyGHAwBAncE0LwAAAAAAXCFKS0t17733yjAMvfPOO5dkn87OznJ2dr4k+wIAoDZRTAcAAAAA4ApQXkjfu3ev1q5dax6VLkl+fn7Kz8+3ij9x4oQOHTokPz8/MyYvL88qpvx2eQwAAFczpnkBAAAAAOAyV15I//XXX/XVV1+pUaNGVu1hYWE6cuSI0tPTzXVr165VWVmZOnXqZMakpqaqtLTUjElJSVGrVq3UsGHDSzMQAADqMIrpAADAlJCQoJtuukkNGjSQj4+P+vfvr6ysLLP90KFDGj58uFq1aiVXV1cFBgbq6aefVkFBgdV2cnJyFBUVpfr168vHx0ejR4/WiRMnrGLWrVunG2+8Uc7OzmrZsqWSkpIuxRABALgsFRYWKiMjQxkZGZKk7OxsZWRkKCcnR6Wlpbr77ru1ZcsWJScn6+TJk8rNzVVubq5KSkokSW3atFHv3r312GOP6fvvv9d3332n+Ph4DR48WP7+/pKkBx54QE5OToqJiVFmZqY++eQTzZw5U6NGjaqtYQMAUKdQTAcAAKb169crLi5OGzduVEpKikpLS9WrVy8VFRVJkg4cOKADBw5o2rRp2r59u5KSkrRy5UrFxMSY2zh58qSioqJUUlKiDRs2aP78+UpKStKECRPMmOzsbEVFRalHjx7KyMjQiBEj9Oijj2rVqlWXfMwAAFwOtmzZohtuuEE33HCDJGnUqFG64YYbNGHCBO3fv19Lly7V77//rg4dOqhp06bmsmHDBnMbycnJat26tXr27Kk+ffro1ltv1dy5c812T09PrV69WtnZ2QoNDdWzzz6rCRMmKDY29pKPFwCAuog50wEAgGnlypVWt5OSkuTj46P09HR17dpV1113nT777DOzvUWLFnrllVf04IMP6sSJE3J0dNTq1au1Y8cOffXVV/L19VWHDh00ZcoUjRkzRhMnTpSTk5PmzJmj5s2b64033pB06mi5b7/9VjNmzFBERMQlHTMAAJeD7t27yzCMKturayvn7e2thQsXVhtz/fXX65tvvjnr/gEAcDXgyHQAAFCl8ulbvL29q43x8PCQo+Op3+jT0tLUrl07+fr6mjERERGyWCzKzMw0Y8LDw622ExERobS0tCr3U1xcLIvFYrUAAAAAAHCpUEwHAACVKisr04gRI3TLLbfouuuuqzTm4MGDmjJlitXp37m5uVaFdEnm7dzc3GpjLBaLjh07Vum+EhIS5OnpaS4BAQHnPDYAAAAAAM4WxXQAAFCpuLg4bd++XR9//HGl7RaLRVFRUQoJCdHEiRMven/Gjh2rgoICc9m3b99F3ycAAAAAAOWYMx0AAFQQHx+vZcuWKTU1Vc2aNavQ/tdff6l3795q0KCBFi9erHr16pltfn5++v77763i8/LyzLbyf8vXnR7j4eEhV1fXSvvk7OwsZ2fn8xoXAAAAAADniiPTAQCAyTAMxcfHa/HixVq7dq2aN29eIcZisahXr15ycnLS0qVL5eLiYtUeFhambdu2KT8/31yXkpIiDw8PhYSEmDFr1qyxul9KSorCwsIuwqgAAAAAADh/FNMBAIApLi5OCxYs0MKFC9WgQQPl5uYqNzfXnMe8vJBeVFSkDz74QBaLxYw5efKkJKlXr14KCQnR0KFD9dNPP2nVqlUaN26c4uLizCPLn3jiCe3evVvPPfecfv75Z82ePVuffvqpRo4cWWtjBwAAAACgOrVSTE9NTVXfvn3l7+8vOzs7LVmyxKq9sLBQ8fHxatasmVxdXRUSEqI5c+ZYxRw/flxxcXFq1KiR3N3dNWjQoAqni+fk5CgqKkr169eXj4+PRo8erRMnTlzs4QEAcNl65513VFBQoO7du6tp06bm8sknn0iSfvjhB23atEnbtm1Ty5YtrWLK5zB3cHDQsmXL5ODgoLCwMD344IN66KGHNHnyZHM/zZs31/Lly5WSkqL27dvrjTfe0Pvvv6+IiIhaGTcAAAAAALbUypzpRUVFat++vYYNG6aBAwdWaB81apTWrl2rBQsWKDg4WKtXr9ZTTz0lf39/9evXT5I0cuRILV++XIsWLZKnp6fi4+M1cOBAfffdd5KkkydPKioqSn5+ftqwYYP+97//6aGHHlK9evX06quvXtLxAgBwuTAMo9r27t2724yRpKCgIK1YscLmtn788cez6h8AAAAAALWlVo5Mj4yM1Msvv6wBAwZU2r5hwwZFR0ere/fuCg4OVmxsrNq3b29ezKygoEAffPCBpk+frttvv12hoaGaN2+eNmzYoI0bN0qSVq9erR07dmjBggXq0KGDIiMjNWXKFCUmJqqkpOSSjRUAAAAAAAAAcPmrk3Omd+nSRUuXLtX+/ftlGIa+/vpr/fLLL+rVq5ckKT09XaWlpQoPDzfv07p1awUGBiotLU2SlJaWpnbt2snX19eMiYiIkMViUWZmZqX7LS4ulsVisVoAAAAAAAAAAKiTxfRZs2YpJCREzZo1k5OTk3r37q3ExER17dpVkpSbmysnJyd5eXlZ3c/X11e5ublmzOmF9PL28rbKJCQkyNPT01wCAgIu8MgAAAAAAAAAAJejOltM37hxo5YuXar09HS98cYbiouL01dffXVR9zt27FgVFBSYS/mF1AAAAAAAAAAAV7dauQBpdY4dO6YXXnhBixcvVlRUlCTp+uuvV0ZGhqZNm6bw8HD5+fmppKRER44csTo6PS8vT35+fpIkPz8/c47109vL2yrj7OwsZ2fnizAqAAAAAAAAAMDlrM4dmV5aWqrS0lLZ21t3zcHBQWVlZZKk0NBQ1atXT2vWrDHbs7KylJOTo7CwMElSWFiYtm3bpvz8fDMmJSVFHh4eCgkJuQQjAQAAAAAAAABcKWrlyPTCwkLt2rXLvJ2dna2MjAx5e3srMDBQ3bp10+jRo+Xq6qqgoCCtX79eH330kaZPny5J8vT0VExMjEaNGiVvb295eHho+PDhCgsLU+fOnSVJvXr1UkhIiIYOHaqpU6cqNzdX48aNU1xcHEefAwAAAAAAAADOSq0U07ds2aIePXqYt0eNGiVJio6OVlJSkj7++GONHTtWQ4YM0aFDhxQUFKRXXnlFTzzxhHmfGTNmyN7eXoMGDVJxcbEiIiI0e/Zss93BwUHLli3Tk08+qbCwMLm5uSk6OlqTJ0++dAMFAAAAAAAAAFwRaqWY3r17dxmGUWW7n5+f5s2bV+02XFxclJiYqMTExCpjgoKCtGLFinPuJwAAAAAAAAAAUh2cMx0AAAAAAAAAgLqGYjoAAAAAAAAAADZQTAcAAAAAAAAAwAaK6QAAAAAAAAAA2EAxHQAAAAAAAAAAGyimAwAAAAAAAABgA8V0AAAAAAAAAABsoJgOAAAAAAAAAIANFNMBAAAAAAAAALCBYjoAAAAAAAAAADZQTAcAAAAAAAAAwAaK6QAAAAAAAAAA2EAxHQAAAAAAAAAAGyimAwAAAAAAAABgA8V0AAAAAAAAAABsoJgOAAAAAAAAAIANFNMBAAAAAAAAALCBYjoAAAAAAAAAADZQTAcAAAAAAAAAwAaK6QAAAAAAAAAA2EAxHQAAAAAAAAAAGyimAwAAAAAAAABgA8V0AAAAAADquNTUVPXt21f+/v6ys7PTkiVLrNoNw9CECRPUtGlTubq6Kjw8XL/++qtVzKFDhzRkyBB5eHjIy8tLMTExKiwstIrZunWrbrvtNrm4uCggIEBTp0692EMDAOCyQTEdAAAAAIA6rqioSO3bt1diYmKl7VOnTtVbb72lOXPmaNOmTXJzc1NERISOHz9uxgwZMkSZmZlKSUnRsmXLlJqaqtjYWLPdYrGoV69eCgoKUnp6ul5//XVNnDhRc+fOvejjAwDgcuBY2x0AAAAAAADVi4yMVGRkZKVthmHozTff1Lhx43TXXXdJkj766CP5+vpqyZIlGjx4sHbu3KmVK1dq8+bN6tixoyRp1qxZ6tOnj6ZNmyZ/f38lJyerpKREH374oZycnNS2bVtlZGRo+vTpVkV3AACuVhyZDgAAAADAZSw7O1u5ubkKDw8313l6eqpTp05KS0uTJKWlpcnLy8sspEtSeHi47O3ttWnTJjOma9eucnJyMmMiIiKUlZWlw4cPV7n/4uJiWSwWqwUAgCsRxXQAAGBKSEjQTTfdpAYNGsjHx0f9+/dXVlaWVczx48cVFxenRo0ayd3dXYMGDVJeXp5VTE5OjqKiolS/fn35+Pho9OjROnHihFXMunXrdOONN8rZ2VktW7ZUUlLSxR4eAABXpNzcXEmSr6+v1XpfX1+zLTc3Vz4+Plbtjo6O8vb2toqpbBun76MyCQkJ8vT0NJeAgIDzGxAAAHUUxXQAAGBav3694uLitHHjRqWkpKi0tFS9evVSUVGRGTNy5Eh9+eWXWrRokdavX68DBw5o4MCBZvvJkycVFRWlkpISbdiwQfPnz1dSUpImTJhgxmRnZysqKko9evRQRkaGRowYoUcffVSrVq26pOMFAADnb+zYsSooKDCXffv21XaXAAC4KJgzHQAAmFauXGl1OykpST4+PkpPT1fXrl1VUFCgDz74QAsXLtTtt98uSZo3b57atGmjjRs3qnPnzlq9erV27Nihr776Sr6+vurQoYOmTJmiMWPGaOLEiXJyctKcOXPUvHlzvfHGG5KkNm3a6Ntvv9WMGTMUERFRad+Ki4tVXFxs3uYUcgAATvHz85Mk5eXlqWnTpub6vLw8dejQwYzJz8+3ut+JEyd06NAh8/5+fn4VzjYrv10eUxlnZ2c5Ozuf9zgAAKjrODIdAABUqaCgQJLk7e0tSUpPT1dpaanVnKytW7dWYGCg1Zys7dq1szpNPCIiQhaLRZmZmWbM6dsojynfRmU4hRwAgMo1b95cfn5+WrNmjbnOYrFo06ZNCgsLkySFhYXpyJEjSk9PN2PWrl2rsrIyderUyYxJTU1VaWmpGZOSkqJWrVqpYcOGl2g0AADUXRTTAQBApcrKyjRixAjdcsstuu666ySdmi/VyclJXl5eVrFnzslqa77VqmIsFouOHTtWaX84hRwAcDUrLCxURkaGMjIyJJ2aMi0jI0M5OTmys7PTiBEj9PLLL2vp0qXatm2bHnroIfn7+6t///6STp0F1rt3bz322GP6/vvv9d133yk+Pl6DBw+Wv7+/JOmBBx6Qk5OTYmJilJmZqU8++UQzZ87UqFGjamnUAADULUzzAgAAKhUXF6ft27fr22+/re2uSOIUcgDA1W3Lli3q0aOHebu8wB0dHa2kpCQ999xzKioqUmxsrI4cOaJbb71VK1eulIuLi3mf5ORkxcfHq2fPnrK3t9egQYP01ltvme2enp5avXq14uLiFBoaqsaNG2vChAmKjY29dAMFAKAOo5gOXKVycnJ08ODBWtn3zp07rf6tDY0bN1ZgYGCt7R+o6+Lj47Vs2TKlpqaqWbNm5no/Pz+VlJToyJEjVken5+XlWc23+v3331tt78z5Vquak9XDw0Ourq4XY0jAZYMcTY4GKtO9e3cZhlFlu52dnSZPnqzJkydXGePt7a2FCxdWu5/rr79e33zzzTn3E7iSXe05WiJPAxTTgatQTk6OWrVuo+PHjtZqPx588MFa27eLa31l/byTLwHAGQzD0PDhw7V48WKtW7dOzZs3t2oPDQ1VvXr1tGbNGg0aNEiSlJWVpZycHKs5WV955RXl5+fLx8dH0qn5Vj08PBQSEmLGrFixwmrbKSkp5jaAqxU5mhwNAKibyNGnkKdxtaOYDlyFDh48qOPHjqrRnc+qXqNLfwE/40SJThTkydHTV3aOTpd8/6V/7tOfy97QwYMH+QIAnCEuLk4LFy7UF198oQYNGphznHt6esrV1VWenp6KiYnRqFGj5O3tLQ8PDw0fPlxhYWHq3LmzJKlXr14KCQnR0KFDNXXqVOXm5mrcuHGKi4szp2l54okn9Pbbb+u5557TsGHDtHbtWn366adavnx5rY0dqAvI0eRoAEDddLXnaIk8DUgU04GrWr1GAXL2a1k7O28WUjv7BVCtd955R9KpU8lPN2/ePD388MOSpBkzZpjzrBYXFysiIkKzZ882Yx0cHLRs2TI9+eSTCgsLk5ubm6Kjo61OO2/evLmWL1+ukSNHaubMmWrWrJnef/99RUREXPQxApcDcjQAAHUTORq4ulFMBwAApurmYi3n4uKixMREJSYmVhkTFBRUYRqXM3Xv3l0//vjjWfcRAAAAAIDaYF/bHQAAAAAAAAAAoK6jmA4AAAAAAAAAgA0U0wEAAAAAAAAAsIFiOgAAAAAAAAAANlBMBwAAAAAAAADABorpAAAAAAAAAADYQDEdAAAAAAAAAAAbKKYDAAAAAAAAAGBDrRTTU1NT1bdvX/n7+8vOzk5LliypELNz507169dPnp6ecnNz00033aScnByz/fjx44qLi1OjRo3k7u6uQYMGKS8vz2obOTk5ioqKUv369eXj46PRo0frxIkTF3t4AAAAAAAAAIArTK0U04uKitS+fXslJiZW2v7bb7/p1ltvVevWrbVu3Tpt3bpV48ePl4uLixkzcuRIffnll1q0aJHWr1+vAwcOaODAgWb7yZMnFRUVpZKSEm3YsEHz589XUlKSJkyYcNHHBwAAAAAAAAC4sjjWxk4jIyMVGRlZZfuLL76oPn36aOrUqea6Fi1amP8vKCjQBx98oIULF+r222+XJM2bN09t2rTRxo0b1blzZ61evVo7duzQV199JV9fX3Xo0EFTpkzRmDFjNHHiRDk5OVXYb3FxsYqLi83bFovlQgwXAAAAAAAAAHCZq3NzppeVlWn58uX6+9//roiICPn4+KhTp05WU8Gkp6ertLRU4eHh5rrWrVsrMDBQaWlpkqS0tDS1a9dOvr6+ZkxERIQsFosyMzMr3XdCQoI8PT3NJSAg4OIMEgAAAAAAAABwWalzxfT8/HwVFhbqn//8p3r37q3Vq1drwIABGjhwoNavXy9Jys3NlZOTk7y8vKzu6+vrq9zcXDPm9EJ6eXt5W2XGjh2rgoICc9m3b98FHh0AAAAAAAAA4HJUK9O8VKesrEySdNddd2nkyJGSpA4dOmjDhg2aM2eOunXrdtH27ezsLGdn54u2fQAAAAAAAADA5anOHZneuHFjOTo6KiQkxGp9mzZtlJOTI0ny8/NTSUmJjhw5YhWTl5cnPz8/MyYvL69Ce3kbAAAAAAAAAAA1VeeK6U5OTrrpppuUlZVltf6XX35RUFCQJCk0NFT16tXTmjVrzPasrCzl5OQoLCxMkhQWFqZt27YpPz/fjElJSZGHh0eFQj0AAAAAAAAAANWplWleCgsLtWvXLvN2dna2MjIy5O3trcDAQI0ePVr33Xefunbtqh49emjlypX68ssvtW7dOkmSp6enYmJiNGrUKHl7e8vDw0PDhw9XWFiYOnfuLEnq1auXQkJCNHToUE2dOlW5ubkaN26c4uLimMoFAAAAAAAAAHBWaqWYvmXLFvXo0cO8PWrUKElSdHS0kpKSNGDAAM2ZM0cJCQl6+umn1apVK3322We69dZbzfvMmDFD9vb2GjRokIqLixUREaHZs2eb7Q4ODlq2bJmefPJJhYWFyc3NTdHR0Zo8efKlGygAAAAAAAAA4IpQK8X07t27yzCMamOGDRumYcOGVdnu4uKixMREJSYmVhkTFBSkFStWnHM/AQAAAAAAAACQ6uCc6QAAAAAAAAAA1DUU0wEAAAAAAAAAsIFiOgAAAAAAAAAANlBMBwAAAAAAAADABorpAAAAAAAAAADYQDEdAAAAAAAAAAAbKKYDAAAAAAAAAGADxXQAAAAAAAAAAGygmA4AAAAAAAAAgA0U0wEAAAAAAAAAsIFiOgAAAAAAAAAANlBMBwAAAAAAAADABorpAAAAAAAAAADYQDEdAAAAAAAAAAAbKKYDAAAAAAAAAGADxXQAAAAAAAAAAGygmA4AAEypqanq27ev/P39ZWdnpyVLlli1FxYWKj4+Xs2aNZOrq6tCQkI0Z84cq5jjx48rLi5OjRo1kru7uwYNGqS8vDyrmJycHEVFRal+/fry8fHR6NGjdeLEiYs9PAAAAAAAzhnFdAAAYCoqKlL79u2VmJhYafuoUaO0cuVKLViwQDt37tSIESMUHx+vpUuXmjEjR47Ul19+qUWLFmn9+vU6cOCABg4caLafPHlSUVFRKikp0YYNGzR//nwlJSVpwoQJF318AABcyU6ePKnx48erefPmcnV1VYsWLTRlyhQZhmHGGIahCRMmqGnTpnJ1dVV4eLh+/fVXq+0cOnRIQ4YMkYeHh7y8vBQTE6PCwsJLPRwAAOociukAAMAUGRmpl19+WQMGDKi0fcOGDYqOjlb37t0VHBys2NhYtW/fXt9//70kqaCgQB988IGmT5+u22+/XaGhoZo3b542bNigjRs3SpJWr16tHTt2aMGCBerQoYMiIyM1ZcoUJSYmqqSkpMq+FRcXy2KxWC0AAOD/vPbaa3rnnXf09ttva+fOnXrttdc0depUzZo1y4yZOnWq3nrrLc2ZM0ebNm2Sm5ubIiIidPz4cTNmyJAhyszMVEpKipYtW6bU1FTFxsbWxpAAAKhTKKYDAIAa69Kli5YuXar9+/fLMAx9/fXX+uWXX9SrVy9JUnp6ukpLSxUeHm7ep3Xr1goMDFRaWpokKS0tTe3atZOvr68ZExERIYvFoszMzCr3nZCQIE9PT3MJCAi4SKMEAODytGHDBt11112KiopScHCw7r77bvXq1cv80dswDL355psaN26c7rrrLl1//fX66KOPdODAAXNqt507d2rlypV6//331alTJ916662aNWuWPv74Yx04cKDS/fKDNwDgakExHQAA1NisWbMUEhKiZs2aycnJSb1791ZiYqK6du0qScrNzZWTk5O8vLys7ufr66vc3Fwz5vRCenl7eVtVxo4dq4KCAnPZt2/fBRwZAACXvy5dumjNmjX65ZdfJEk//fSTvv32W0VGRkqSsrOzlZuba/Wjt6enpzp16mT1o7eXl5c6duxoxoSHh8ve3l6bNm2qdL/84A0AuFo41nYHAADA5WPWrFnauHGjli5dqqCgIKWmpiouLk7+/v5Wf5hfDM7OznJ2dr6o+wAA4HL2/PPPy2KxqHXr1nJwcNDJkyf1yiuvaMiQIZL+70fryn7UPv1Hbx8fH6t2R0dHeXt7V/mj99ixYzVq1CjztsVioaAOALgiUUwHAAA1cuzYMb3wwgtavHixoqKiJEnXX3+9MjIyNG3aNIWHh8vPz08lJSU6cuSI1dHpeXl58vPzkyT5+fmZp5uf3l7eBgAAzs2nn36q5ORkLVy4UG3btlVGRoZGjBghf39/RUdHX7T98oM3AOBqwTQvAACgRkpLS1VaWip7e+uvDw4ODiorK5MkhYaGql69elqzZo3ZnpWVpZycHIWFhUmSwsLCtG3bNuXn55sxKSkp8vDwUEhIyCUYCQAAV6bRo0fr+eef1+DBg9WuXTsNHTpUI0eOVEJCgqT/+9G6/Efscmf+6H16jpakEydO6NChQ/zoDQC46nFkOgAAMBUWFmrXrl3m7ezsbGVkZMjb21uBgYHq1q2bRo8eLVdXVwUFBWn9+vX66KOPNH36dEmn5l2NiYnRqFGj5O3tLQ8PDw0fPlxhYWHq3LmzJKlXr14KCQnR0KFDNXXqVOXm5mrcuHGKi4vjqDYAAM7D0aNHq/3Ru3nz5vLz89OaNWvUoUMHSaemZNm0aZOefPJJSad+9D5y5IjS09MVGhoqSVq7dq3KysrUqVOnSzcYAADqIIrpAADAtGXLFvXo0cO8XT7/aXR0tJKSkvTxxx9r7NixGjJkiA4dOqSgoCC98soreuKJJ8z7zJgxQ/b29ho0aJCKi4sVERGh2bNnm+0ODg5atmyZnnzySYWFhcnNzU3R0dGaPHnypRsoUIf5udupndMB1bNzqO2uXHKlTgckd7va7gZw2erbt69eeeUVBQYGqm3btvrxxx81ffp0DRs2TJJkZ2enESNG6OWXX9a1116r5s2ba/z48fL391f//v0lSW3atFHv3r312GOPac6cOSotLVV8fLwGDx4sf3//WhwdUPuu5hwtkacBiWI6cNW6mr8E8AUAqFr37t1lGEaV7X5+fpo3b16123BxcVFiYqISExOrjAkKCtKKFSvOuZ/AlezxUCdN9J9T292oHf7SxFCn2u4FcNmaNWuWxo8fr6eeekr5+fny9/fX448/rgkTJpgxzz33nIqKihQbG6sjR47o1ltv1cqVK+Xi4mLGJCcnKz4+Xj179jR/IH/rrbdqY0hAnXJV52iJPA2IYjpw1bqqvwTwBQAAUIe9m16iDX9/RvUaBdR2Vy650j/3aVv66+pX2x0BLlMNGjTQm2++qTfffLPKGDs7O02ePLnaM8K8vb21cOHCi9BD4PJ2NedoiTwNSBTTgavW1fwlgC8AAIC6LLfQkEr85Ww0r+2uXHLFJSdPjR8AgDroas7REnkakCimA1etq/lLAF8AAAAAAAAAcLbsbYcAAAAAAAAAAHB1o5gOAAAAAAAAAIANFNMBAAAAAAAAALCBYjoAAAAAAAAAADZQTAcAAAAAAAAAwAaK6QAAAAAAAAAA2EAxHQAAAAAAAAAAGyimAwAAAAAAAABgA8V0AAAAAAAAAABsoJgOAAAAAAAAAIANFNMBAAAAAAAAALCBYjoAAAAAAAAAADZQTAcAAAAAAAAAwAaK6QAAAAAAAAAA2FArxfTU1FT17dtX/v7+srOz05IlS6qMfeKJJ2RnZ6c333zTav2hQ4c0ZMgQeXh4yMvLSzExMSosLLSK2bp1q2677Ta5uLgoICBAU6dOvQijAQAAAAAAAABc6WqlmF5UVKT27dsrMTGx2rjFixdr48aN8vf3r9A2ZMgQZWZmKiUlRcuWLVNqaqpiY2PNdovFol69eikoKEjp6el6/fXXNXHiRM2dO/eCjwcAAAAAAAAAcGVzrI2dRkZGKjIystqY/fv3a/jw4Vq1apWioqKs2nbu3KmVK1dq8+bN6tixoyRp1qxZ6tOnj6ZNmyZ/f38lJyerpKREH374oZycnNS2bVtlZGRo+vTpVkV3AAAAAAAAAABsqZNzppeVlWno0KEaPXq02rZtW6E9LS1NXl5eZiFdksLDw2Vvb69NmzaZMV27dpWTk5MZExERoaysLB0+fLjS/RYXF8tisVgtAAAAAAAAAADUyWL6a6+9JkdHRz399NOVtufm5srHx8dqnaOjo7y9vZWbm2vG+Pr6WsWU3y6POVNCQoI8PT3NJSAg4HyHAgAAAAAAAAC4AtS5Ynp6erpmzpyppKQk2dnZXdJ9jx07VgUFBeayb9++S7p/AAAAAAAAAEDdVOeK6d98843y8/MVGBgoR0dHOTo6au/evXr22WcVHBwsSfLz81N+fr7V/U6cOKFDhw7Jz8/PjMnLy7OKKb9dHnMmZ2dneXh4WC0AAAAAAAAAANS5YvrQoUO1detWZWRkmIu/v79Gjx6tVatWSZLCwsJ05MgRpaenm/dbu3atysrK1KlTJzMmNTVVpaWlZkxKSopatWqlhg0bXtpBAQAAAAAAAAAua461sdPCwkLt2rXLvJ2dna2MjAx5e3srMDBQjRo1soqvV6+e/Pz81KpVK0lSmzZt1Lt3bz322GOaM2eOSktLFR8fr8GDB8vf31+S9MADD2jSpEmKiYnRmDFjtH37ds2cOVMzZsy4dAMFAAAAAAAAAFwRaqWYvmXLFvXo0cO8PWrUKElSdHS0kpKSarSN5ORkxcfHq2fPnrK3t9egQYP01ltvme2enp5avXq14uLiFBoaqsaNG2vChAmKjY29oGMBAAAAAAAAAFz5aqWY3r17dxmGUeP4PXv2VFjn7e2thQsXVnu/66+/Xt98883Zdg8AAAAAAAAAACt1bs50AAAAAAAAAADqGorpAAAAAAAAAADYQDEdAAAAAAAAAAAbKKYDAAAAAAAAAGADxXQAAAAAAAAAAGygmA4AAAAAAAAAgA0U0wEAAAAAAAAAsIFiOgAAMKWmpqpv377y9/eXnZ2dlixZUiFm586d6tevnzw9PeXm5qabbrpJOTk5Zvvx48cVFxenRo0ayd3dXYMGDVJeXp7VNnJychQVFaX69evLx8dHo0eP1okTJy728AAAAAAAOGcU0wEAgKmoqEjt27dXYmJipe2//fabbr31VrVu3Vrr1q3T1q1bNX78eLm4uJgxI0eO1JdffqlFixZp/fr1OnDggAYOHGi2nzx5UlFRUSopKdGGDRs0f/58JSUlacKECRd9fAAAAAAAnCvH2u4AAACoOyIjIxUZGVll+4svvqg+ffpo6tSp5roWLVqY/y8oKNAHH3yghQsX6vbbb5ckzZs3T23atNHGjRvVuXNnrV69Wjt27NBXX30lX19fdejQQVOmTNGYMWM0ceJEOTk5Vbrv4uJiFRcXm7ctFsv5DhcAAAAAgBrjyHQAAFAjZWVlWr58uf7+978rIiJCPj4+6tSpk9VUMOnp6SotLVV4eLi5rnXr1goMDFRaWpokKS0tTe3atZOvr68ZExERIYvFoszMzCr3n5CQIE9PT3MJCAi48IMEAAAAAKAKFNMBAECN5Ofnq7CwUP/85z/Vu3dvrV69WgMGDNDAgQO1fv16SVJubq6cnJzk5eVldV9fX1/l5uaaMacX0svby9uqMnbsWBUUFJjLvn37LuDoAAAAAACoHtO8AACAGikrK5Mk3XXXXRo5cqQkqUOHDtqwYYPmzJmjbt26XdT9Ozs7y9nZ+aLuAwAAAACAqnBkOgAAqJHGjRvL0dFRISEhVuvbtGmjnJwcSZKfn59KSkp05MgRq5i8vDz5+fmZMXl5eRXay9sAAMC5279/vx588EE1atRIrq6uateunbZs2WK2G4ahCRMmqGnTpnJ1dVV4eLh+/fVXq20cOnRIQ4YMkYeHh7y8vBQTE6PCwsJLPRQAAOociukAAKBGnJycdNNNNykrK8tq/S+//KKgoCBJUmhoqOrVq6c1a9aY7VlZWcrJyVFYWJgkKSwsTNu2bVN+fr4Zk5KSIg8PjwqFegAAUHOHDx/WLbfconr16um///2vduzYoTfeeEMNGzY0Y6ZOnaq33npLc+bM0aZNm+Tm5qaIiAgdP37cjBkyZIgyMzOVkpKiZcuWKTU1VbGxsbUxJAAA6hSmeQGuYqV/1s58w8aJEp0oyJOjp6/sHJ0u+f5ra9zA5aCwsFC7du0yb2dnZysjI0Pe3t4KDAzU6NGjdd9996lr167q0aOHVq5cqS+//FLr1q2TJHl6eiomJkajRo2St7e3PDw8NHz4cIWFhalz586SpF69eikkJERDhw7V1KlTlZubq3HjxikuLo5pXID/jxwN4Fy89tprCggI0Lx588x1zZs3N/9vGIbefPNNjRs3TnfddZck6aOPPpKvr6+WLFmiwYMHa+fOnVq5cqU2b96sjh07SpJmzZqlPn36aNq0afL396+w3+LiYhUXF5u3LRbLxRoiUOuu1hwtkacBiWI6cFVq3LixXFzr689lb9R2V2qNi2t9NW7cuLa7AdQ5W7ZsUY8ePczbo0aNkiRFR0crKSlJAwYM0Jw5c5SQkKCnn35arVq10meffaZbb73VvM+MGTNkb2+vQYMGqbi4WBEREZo9e7bZ7uDgoGXLlunJJ59UWFiY3NzcFB0drcmTJ1+6gQJ1FDmaHA2cj6VLlyoiIkL33HOP1q9fr7/97W966qmn9Nhjj0k69SN5bm6uwsPDzft4enqqU6dOSktL0+DBg5WWliYvLy+zkC5J4eHhsre316ZNmzRgwIAK+01ISNCkSZMu/gCBWkSOPoU8jaudnWEYRm13oq6yWCzy9PRUQUGBPDw8ars7wAWVk5OjgwcP1sq+d+7cqQcffFALFixQmzZtaqUPjRs3VmBgYK3sG7hYrra8dbWNF1cPcjQ5GleeS5WzXFxcJJ36Mfyee+7R5s2b9cwzz2jOnDmKjo7Whg0bdMstt+jAgQNq2rSpeb97771XdnZ2+uSTT/Tqq69q/vz5FaZ18/Hx0aRJk/Tkk09W2G9lR6YHBASQo3HFudpztESexpXnbHM0R6YDV6nAwMBaT4Bt2rTRjTfeWKt9AACgriFHAzhXZWVl6tixo1599VVJ0g033KDt27ebxfSLxdnZmanacFUgRwPgAqQAAAAAAFwBmjZtWuFi3m3atFFOTo4kyc/PT5KUl5dnFZOXl2e2+fn5WV0kXJJOnDihQ4cOmTEAAFytKKYDAAAAAHAFuOWWWypMz/LLL78oKChI0qmLkfr5+WnNmjVmu8Vi0aZNmxQWFiZJCgsL05EjR5Senm7GrF27VmVlZerUqdMlGAUAAHUX07wAAAAAAHAFGDlypLp06aJXX31V9957r77//nvNnTtXc+fOlSTZ2dlpxIgRevnll3XttdeqefPmGj9+vPz9/dW/f39Jp45k7927tx577DHNmTNHpaWlio+P1+DBg+Xv71+LowMAoPZRTAcAAAAA4Apw0003afHixRo7dqwmT56s5s2b680339SQIUPMmOeee05FRUWKjY3VkSNHdOutt2rlypXmxUslKTk5WfHx8erZs6fs7e01aNAgvfXWW7UxJAAA6hSK6QAAAAAAXCHuvPNO3XnnnVW229nZafLkyZo8eXKVMd7e3lq4cOHF6B4AAJc15kwHAAAAAAAAAMAGiukAAAAAAAAAANhAMR0AAAAAAAAAABsopgMAAAAAAAAAYAPFdAAAAAAAAAAAbKCYDgAAAAAAAACADRTTAQAAAAAAAACwgWI6AAAAAAAAAAA2UEwHAAAAAAAAAMAGiukAAAAAAAAAANhAMR0AAAAAAAAAABsopgMAAAAAAAAAYAPFdAAAAAAAAAAAbKCYDgAAAAAAAACADRTTAQAAAAAAAACwgWI6AAAAAAAAAAA2UEwHAAAAAAAAAMAGiukAAAAAAAAAANhAMR0AAAAAAAAAABsopgMAAAAAAAAAYAPFdAAAAAAAAAAAbKiVYnpqaqr69u0rf39/2dnZacmSJWZbaWmpxowZo3bt2snNzU3+/v566KGHdODAAattHDp0SEOGDJGHh4e8vLwUExOjwsJCq5itW7fqtttuk4uLiwICAjR16tRLMTwAAAAAAAAAwBWmVorpRUVFat++vRITEyu0HT16VD/88IPGjx+vH374QZ9//rmysrLUr18/q7ghQ4YoMzNTKSkpWrZsmVJTUxUbG2u2WywW9erVS0FBQUpPT9frr7+uiRMnau7cuRd9fAAAAAAAAACAK4tjbew0MjJSkZGRlbZ5enoqJSXFat3bb7+tm2++WTk5OQoMDNTOnTu1cuVKbd68WR07dpQkzZo1S3369NG0adPk7++v5ORklZSU6MMPP5STk5Patm2rjIwMTZ8+3arofrri4mIVFxebty0WywUaMQAAAAAAAADgcnZZzJleUFAgOzs7eXl5SZLS0tLk5eVlFtIlKTw8XPb29tq0aZMZ07VrVzk5OZkxERERysrK0uHDhyvdT0JCgjw9Pc0lICDg4g0KAAAAAAAAAHDZqPPF9OPHj2vMmDG6//775eHhIUnKzc2Vj4+PVZyjo6O8vb2Vm5trxvj6+lrFlN8ujznT2LFjVVBQYC779u270MMBAAAAAAAAAFyGamWal5oqLS3VvffeK8Mw9M4771z0/Tk7O8vZ2fmi7wcAAAAAAAAAcHmps8X08kL63r17tXbtWvOodEny8/NTfn6+VfyJEyd06NAh+fn5mTF5eXlWMeW3y2MAAAAAAAAAAKiJOjnNS3kh/ddff9VXX32lRo0aWbWHhYXpyJEjSk9PN9etXbtWZWVl6tSpkxmTmpqq0tJSMyYlJUWtWrVSw4YNL81AAAAAAAAAAABXhFopphcWFiojI0MZGRmSpOzsbGVkZCgnJ0elpaW6++67tWXLFiUnJ+vkyZPKzc1Vbm6uSkpKJElt2rRR79699dhjj+n777/Xd999p/j4eA0ePFj+/v6SpAceeEBOTk6KiYlRZmamPvnkE82cOVOjRo2qjSEDAHBZSE1NVd++feXv7y87OzstWbKkytgnnnhCdnZ2evPNN63WHzp0SEOGDJGHh4e8vLwUExOjwsJCq5itW7fqtttuk4uLiwICAjR16tSLMBoAAAAAAC6cWimmb9myRTfccINuuOEGSdKoUaN0ww03aMKECdq/f7+WLl2q33//XR06dFDTpk3NZcOGDeY2kpOT1bp1a/Xs2VN9+vTRrbfeqrlz55rtnp6eWr16tbKzsxUaGqpnn31WEyZMUGxs7CUfLwAAl4uioiK1b99eiYmJ1cYtXrxYGzduNH/EPt2QIUOUmZmplJQULVu2TKmpqVb512KxqFevXgoKClJ6erpef/11TZw40SqPAwAAAABQ19TKnOndu3eXYRhVtlfXVs7b21sLFy6sNub666/XN998c9b9AwDgahUZGanIyMhqY/bv36/hw4dr1apVioqKsmrbuXOnVq5cqc2bN6tjx46SpFmzZqlPnz6aNm2a/P39lZycrJKSEn344YdycnJS27ZtlZGRoenTp1f7o3dxcbGKi4vN2xaL5TxGCgAAAADA2amTc6YDAIC6qaysTEOHDtXo0aPVtm3bCu1paWny8vIyC+mSFB4eLnt7e23atMmM6dq1q5ycnMyYiIgIZWVl6fDhw1XuOyEhQZ6enuYSEBBwAUcGAAAAAED1KKYDAIAae+211+To6Kinn3660vbc3Fz5+PhYrXN0dJS3t7dyc3PNGF9fX6uY8tvlMZUZO3asCgoKzGXfvn3nMxQAAAAAAM5KrUzzAgAALj/p6emaOXOmfvjhB9nZ2V3y/Ts7O8vZ2fmS7xcAAAAAAIkj0wEAQA198803ys/PV2BgoBwdHeXo6Ki9e/fq2WefVXBwsCTJz89P+fn5Vvc7ceKEDh06JD8/PzMmLy/PKqb8dnkMAAAAAAB1DcV0AABQI0OHDtXWrVuVkZFhLv7+/ho9erRWrVolSQoLC9ORI0eUnp5u3m/t2rUqKytTp06dzJjU1FSVlpaaMSkpKWrVqpUaNmx4aQcFAAAAAEANMc0LAAAwFRYWateuXebt7OxsZWRkyNvbW4GBgWrUqJFVfL169eTn56dWrVpJktq0aaPevXvrscce05w5c1RaWqr4+HgNHjxY/v7+kqQHHnhAkyZNUkxMjMaMGaPt27dr5syZmjFjxqUbKAAAAAAAZ4liOgAAMG3ZskU9evQwb48aNUqSFB0draSkpBptIzk5WfHx8erZs6fs7e01aNAgvfXWW2a7p6enVq9erbi4OIWGhqpx48aaMGGCYmNjL+hYAAAAAAC4kJjmBQAAmLp37y7DMCosVRXS9+zZoxEjRlit8/b21sKFC/XXX3+poKBAH374odzd3a1irr/+en3zzTc6fvy4fv/9d40ZM+YijQgAgKvTP//5T9nZ2Vnl6ePHjysuLk6NGjWSu7u7Bg0aVOE6Jjk5OYqKilL9+vXl4+Oj0aNH68SJE5e49wAA1E0U0wEAAAAAuIJs3rxZ7777rq6//nqr9SNHjtSXX36pRYsWaf369Tpw4IAGDhxotp88eVJRUVEqKSnRhg0bNH/+fCUlJWnChAmXeggAANRJFNMBAAAAALhCFBYWasiQIXrvvfesLuxdUFCgDz74QNOnT9ftt9+u0NBQzZs3Txs2bNDGjRslSatXr9aOHTu0YMECdejQQZGRkZoyZYoSExNVUlJSW0MCAKDOoJgOAAAAAMAVIi4uTlFRUQoPD7dan56ertLSUqv1rVu3VmBgoNLS0iRJaWlpateunXx9fc2YiIgIWSwWZWZmVrnP4uJiWSwWqwUAgCsRFyAFAAAAAOAK8PHHH+uHH37Q5s2bK7Tl5ubKyclJXl5eVut9fX2Vm5trxpxeSC9vL2+rSkJCgiZNmnSevQcAoO7jyHQAAAAAAC5z+/bt0zPPPKPk5GS5uLhc0n2PHTtWBQUF5rJv375Lun8AAC4ViukAAAAAAFzm0tPTlZ+frxtvvFGOjo5ydHTU+vXr9dZbb8nR0VG+vr4qKSnRkSNHrO6Xl5cnPz8/SZKfn5/y8vIqtJe3VcXZ2VkeHh5WCwAAVyKK6QAAAAAAXOZ69uypbdu2KSMjw1w6duyoIUOGmP+vV6+e1qxZY94nKytLOTk5CgsLkySFhYVp27Ztys/PN2NSUlLk4eGhkJCQSz4mAADqGuZMBwAAAADgMtegQQNdd911Vuvc3NzUqFEjc31MTIxGjRolb29veXh4aPjw4QoLC1Pnzp0lSb169VJISIiGDh2qqVOnKjc3V+PGjVNcXJycnZ0v+ZgAAKhrKKYDAAAAAHAVmDFjhuzt7TVo0CAVFxcrIiJCs2fPNtsdHBy0bNkyPfnkkwoLC5Obm5uio6M1efLkWuw1AAB1B8V0AAAAAACuQOvWrbO67eLiosTERCUmJlZ5n6CgIK1YseIi9wwAgMsTc6YD+H/s3Xv81/P9P/7bu1LvlN4d1DttqcwpZ4XkvGlyljGybEmTjxUaY/iQmM1HzsaYYzbZMBNzaJqcRkNZDqHZlMPsHUm9FSr1/P3h1+vrrfSKxTu5Xi+X10Wv5+P+fD4ej9f7leer2+v5fjwBAAAAgDKE6QAAAAAAUIYwHQAAAAAAyhCmAwAAAABAGcJ0AAAAAAAoQ5gOAAAAAABlCNMBAAAAAKAMYToAAAAAAJQhTAcAAAAAgDKE6QAAAAAAUIYwHQAAAAAAyhCmAwAAAABAGcJ0AAAAAAAoQ5gOAAAAAABlCNMBAAAAAKAMYToAAAAAAJQhTAcAAAAAgDKE6QAAAAAAUIYwHQAAAAAAyhCmAwAAAABAGcJ0AAAAAAAoQ5gOAAAAAABlCNMBAAAAAKAMYToAAAAAAJQhTAcAAAAAgDKE6QBAyUMPPZR99tknHTp0SEVFRUaPHl1qW7BgQX76059m0003TbNmzdKhQ4f84Ac/yOuvv17nGDNnzky/fv3SokWLtGzZMgMHDsycOXPq1Dz99NPZcccdU1lZmY4dO2bEiBFfxPQAAADgMxOmAwAlc+fOzeabb57LLrtsibZ33303Tz75ZE477bQ8+eST+eMf/5gpU6Zk3333rVPXr1+/TJ48OWPHjs2dd96Zhx56KIMGDSq119bWZrfddkunTp0yceLEnHvuuRk+fHiuvPLKz31+AAAA8FnVS5i+rKvekqQoigwbNixrrbVWmjZtml69euXFF1+sU+OqNwBY8fbYY4+cddZZ2X///Zdoq6qqytixY3PQQQdlgw02yLbbbptLL700EydOzCuvvJIkef755zNmzJhcffXV6dGjR3bYYYf88pe/zO9///vSFeyjRo3K/Pnzc+2112bjjTdO3759c8wxx+SCCy5Y5tjmzZuX2traOg8AAAD4otRLmL6sq96SZMSIEbnkkktyxRVX5LHHHkuzZs3Su3fvvP/++6UaV70BQP2bPXt2Kioq0rJlyyTJ+PHj07Jly2y11Valml69eqVBgwZ57LHHSjU77bRTGjduXKrp3bt3pkyZkrfffvsT+zr77LNTVVVVenTs2PHzmRQAAAAsRaP66HSPPfbIHnvssdS2oihy0UUX5dRTT81+++2XJPnNb36T6urqjB49On379i1d9fbEE0+U/rH+y1/+MnvuuWfOO++8dOjQoc5Vb40bN87GG2+cSZMm5YILLqgTun/UvHnzMm/evNJzV7wBwCd7//3389Of/jSHHHJIWrRokSSpqalJu3bt6tQ1atQorVu3Tk1NTammS5cudWqqq6tLba1atVpqfyeffHKOO+640vPa2lqBOgAAAF+YlW7N9KlTp6ampia9evUqbauqqkqPHj0yfvz4JJ/fVW+ueAOA5bNgwYIcdNBBKYoil19++RfSZ5MmTdKiRYs6DwAAAPiirHRh+uKr1hZfobZYdXV1nSvalueqt6Ud46N9fNzJJ5+c2bNnlx6vvvrqfz8hAFjFLA7SX3755YwdO7ZOqN2+ffu88cYbdeo/+OCDzJw5M+3bty/VTJ8+vU7N4ueLawAAAGBls9KF6fXJFW8AsGyLg/QXX3wxf/nLX9KmTZs67T179sysWbMyceLE0rZx48Zl0aJF6dGjR6nmoYceyoIFC0o1Y8eOzQYbbPCJS7wAAABAfVvpwvTFV6Qt7Yq1j17R5qo3AFjx5syZk0mTJmXSpElJPlx+bdKkSXnllVeyYMGCHHjggZkwYUJGjRqVhQsXpqamJjU1NZk/f36SpGvXrtl9991zxBFH5PHHH88jjzySIUOGpG/fvunQoUOS5Hvf+14aN26cgQMHZvLkybnpppty8cUX11kPHQAAAFY2K12Y3qVLl7Rv3z733XdfaVttbW0ee+yx9OzZM4mr3gDg8zJhwoRsueWW2XLLLZMkxx13XLbccssMGzYs//73v3PHHXfktddeyxZbbJG11lqr9Hj00UdLxxg1alQ23HDD7Lrrrtlzzz2zww475Morryy1V1VV5d57783UqVPTvXv3HH/88Rk2bNgn3iAcAAAAVgaN6qPTOXPm5J///Gfp+eKr3lq3bp211147Q4cOzVlnnZX11lsvXbp0yWmnnZYOHTqkT58+Sepe9XbFFVdkwYIFS73q7YwzzsjAgQPz05/+NM8++2wuvvjiXHjhhfUxZQD4Uthll11SFMUnti+rbbHWrVvnxhtvXGbNZpttlocffvhTjw8AAADqS72E6RMmTMg3v/nN0vPFv9bdv3//jBw5MieeeGLmzp2bQYMGZdasWdlhhx0yZsyYVFZWlvYZNWpUhgwZkl133TUNGjTIAQcckEsuuaTUvviqt8GDB6d79+5Zc801XfUGAAAAAMBnUi9hermr3ioqKnLmmWfmzDPP/MQaV70BAAAAAPBFWenWTAcAAAAAgJWNMB0AAAAAAMoQpgMAAMAq4Oyzz87WW2+dNdZYI+3atUufPn0yZcqUOjXvv/9+Bg8enDZt2qR58+Y54IADMn369Do1r7zySvbaa6+svvrqadeuXU444YR88MEHX+RUAGClJEwHAACAVcCDDz6YwYMH529/+1vGjh2bBQsWZLfddsvcuXNLNT/+8Y/zpz/9KbfccksefPDBvP766/nOd75Tal+4cGH22muvzJ8/P48++miuv/76jBw5MsOGDauPKQHASqVebkAKAAAArFhjxoyp83zkyJFp165dJk6cmJ122imzZ8/ONddckxtvvDHf+ta3kiTXXXddunbtmr/97W/Zdtttc++99+a5557LX/7yl1RXV2eLLbbIz372s/z0pz/N8OHD07hx4yX6nTdvXubNm1d6Xltb+/lOFADqiSvTAQAAYBU0e/bsJEnr1q2TJBMnTsyCBQvSq1evUs2GG26YtddeO+PHj0+SjB8/Pptuummqq6tLNb17905tbW0mT5681H7OPvvsVFVVlR4dO3b8vKYEAPVKmA4AAACrmEWLFmXo0KHZfvvts8kmmyRJampq0rhx47Rs2bJObXV1dWpqako1Hw3SF7cvbluak08+ObNnzy49Xn311RU8GwBYOVjmBQAAAFYxgwcPzrPPPpu//vWvn3tfTZo0SZMmTT73fgCgvrkyHQAAAFYhQ4YMyZ133pn7778/X//610vb27dvn/nz52fWrFl16qdPn5727duXaqZPn75E++I2APgqE6YDAADAKqAoigwZMiS33XZbxo0bly5dutRp7969e1ZbbbXcd999pW1TpkzJK6+8kp49eyZJevbsmWeeeSZvvPFGqWbs2LFp0aJFNtpooy9mIgCwkrLMCwAAAKwCBg8enBtvvDG333571lhjjdIa51VVVWnatGmqqqoycODAHHfccWndunVatGiRo48+Oj179sy2226bJNltt92y0UYb5fvf/35GjBiRmpqanHrqqRk8eLClXAD4yhOmAwAAwCrg8ssvT5LssssudbZfd911Oeyww5IkF154YRo0aJADDjgg8+bNS+/evfOrX/2qVNuwYcPceeedOeqoo9KzZ880a9Ys/fv3z5lnnvlFTQMAVlrCdAAAAFgFFEVRtqaysjKXXXZZLrvssk+s6dSpU+6+++4VOTQAWCVYMx0AAAAAAMoQpgMAAAAAQBnCdAAAAAAAKEOYDgAAAAAAZQjTAQAAAACgDGE6AAAAAACUIUwHAAAAAIAyhOkAAAAAAFCGMB0AAAAAAMoQpgMAAAAAQBnCdAAAAAAAKEOYDgAAAAAAZQjTAQAAAACgDGE6AAAAAACUIUwHAAAAAIAyhOkAAAAAAFCGMB0AAAAAAMoQpgMAAAAAQBnCdAAAAAAAKEOYDgAAAAAAZQjTAYCShx56KPvss086dOiQioqKjB49uk57URQZNmxY1lprrTRt2jS9evXKiy++WKdm5syZ6devX1q0aJGWLVtm4MCBmTNnTp2ap59+OjvuuGMqKyvTsWPHjBgx4vOeGgAAAPxXhOkAQMncuXOz+eab57LLLltq+4gRI3LJJZfkiiuuyGOPPZZmzZqld+/eef/990s1/fr1y+TJkzN27NjceeedeeihhzJo0KBSe21tbXbbbbd06tQpEydOzLnnnpvhw4fnyiuv/NznBwAAAJ9Vo/oeAACw8thjjz2yxx57LLWtKIpcdNFFOfXUU7PffvslSX7zm9+kuro6o0ePTt++ffP8889nzJgxeeKJJ7LVVlslSX75y19mzz33zHnnnZcOHTpk1KhRmT9/fq699to0btw4G2+8cSZNmpQLLrigTuj+cfPmzcu8efNKz2tra1fgzAEAAGDZXJkOACyXqVOnpqamJr169Sptq6qqSo8ePTJ+/Pgkyfjx49OyZctSkJ4kvXr1SoMGDfLYY4+Vanbaaac0bty4VNO7d+9MmTIlb7/99if2f/bZZ6eqqqr06Nix44qeIgAAAHwiYToAsFxqamqSJNXV1XW2V1dXl9pqamrSrl27Ou2NGjVK69at69Qs7Rgf7WNpTj755MyePbv0ePXVV/+7CQEAAMCnYJkXAOBLoUmTJmnSpEl9DwMAAICvKFemAwDLpX379kmS6dOn19k+ffr0Ulv79u3zxhtv1Gn/4IMPMnPmzDo1SzvGR/sAAACAlY0wHQBYLl26dEn79u1z3333lbbV1tbmscceS8+ePZMkPXv2zKxZszJx4sRSzbhx47Jo0aL06NGjVPPQQw9lwYIFpZqxY8dmgw02SKtWrb6g2QAAAMCnI0wHAErmzJmTSZMmZdKkSUk+vOnopEmT8sorr6SioiJDhw7NWWedlTvuuCPPPPNMfvCDH6RDhw7p06dPkqRr167Zfffdc8QRR+Txxx/PI488kiFDhqRv377p0KFDkuR73/teGjdunIEDB2by5Mm56aabcvHFF+e4446rp1kDAABAedZMBwBKJkyYkG9+85ul54sD7v79+2fkyJE58cQTM3fu3AwaNCizZs3KDjvskDFjxqSysrK0z6hRozJkyJDsuuuuadCgQQ444IBccsklpfaqqqrce++9GTx4cLp3754111wzw4YNy6BBg764iQIAAMCnJEwHPrV33303L7zwwmfe//nnn6/z389qww03zOqrr/5fHQOoa5dddklRFJ/YXlFRkTPPPDNnnnnmJ9a0bt06N9544zL72WyzzfLwww9/5nECS+ccDQArJ+doWDWslGH6woULM3z48Nxwww2pqalJhw4dcthhh+XUU09NRUVFkqQoipx++um56qqrMmvWrGy//fa5/PLLs95665WOM3PmzBx99NH505/+VLoy7uKLL07z5s3ra2qwSnjhhRfSvXv3//o4hx566H+1/8SJE9OtW7f/ehwAsKpwjgaAlZNzNKwaVsow/Zxzzsnll1+e66+/PhtvvHEmTJiQAQMGpKqqKsccc0ySZMSIEbnkkkty/fXXp0uXLjnttNPSu3fvPPfcc6VfNe/Xr1/+85//ZOzYsVmwYEEGDBiQQYMGlb1aDli2DTfcsM7NBT+t9957L9OmTUvnzp3TtGnT/2ocAMD/4xwNACsn52hYNVQUy/pd7nqy9957p7q6Otdcc01p2wEHHJCmTZvmhhtuSFEU6dChQ44//vj85Cc/SZLMnj071dXVGTlyZPr27Zvnn38+G220UZ544olstdVWSZIxY8Zkzz33zGuvvVa6Cdqy1NbWpqqqKrNnz06LFi0+n8kCwAryVTtvfdXmC8CX11ftnPVVmy8AX16f9pzV4AsY06e23Xbb5b777ss//vGPJMlTTz2Vv/71r9ljjz2SJFOnTk1NTU169epV2qeqqio9evTI+PHjkyTjx49Py5YtS0F6kvTq1SsNGjTIY489ttR+582bl9ra2joPAAAAAABYKZd5Oemkk1JbW5sNN9wwDRs2zMKFC/Pzn/88/fr1S5LU1NQkSaqrq+vsV11dXWqrqalJu3bt6rQ3atQorVu3LtV83Nlnn50zzjhjRU8HAAAAAIAvuZXyyvSbb745o0aNyo033pgnn3wy119/fc4777xcf/31n2u/J598cmbPnl16vPrqq59rfwAAAAAAfDmslFemn3DCCTnppJPSt2/fJMmmm26al19+OWeffXb69++f9u3bJ0mmT5+etdZaq7Tf9OnTs8UWWyRJ2rdvnzfeeKPOcT/44IPMnDmztP/HNWnSJE2aNPkcZgQAAAAAwJfZSnll+rvvvpsGDeoOrWHDhlm0aFGSpEuXLmnfvn3uu+++UnttbW0ee+yx9OzZM0nSs2fPzJo1q86dkseNG5dFixalR48eX8AsAAAAAABYVayUYfo+++yTn//857nrrrsybdq03Hbbbbnggguy//77J0kqKioydOjQnHXWWbnjjjvyzDPP5Ac/+EE6dOiQPn36JEm6du2a3XffPUcccUQef/zxPPLIIxkyZEj69u2bDh061OPsAAAAYOV22WWXpXPnzqmsrEyPHj3y+OOP1/eQAKDerZTLvPzyl7/Maaedlh/96Ed544030qFDhxx55JEZNmxYqebEE0/M3LlzM2jQoMyaNSs77LBDxowZk8rKylLNqFGjMmTIkOy6665p0KBBDjjggFxyySX1MSUAAAD4Urjpppty3HHH5YorrkiPHj1y0UUXpXfv3pkyZUratWtX38MDgHpTURRFUd+DWFnV1tamqqoqs2fPTosWLep7OACwTF+189ZXbb4AfHl92c5ZPXr0yNZbb51LL700SbJo0aJ07NgxRx99dE466aSy+3/Z5gvAV9enPWetlMu8AAAAAF+8+fPnZ+LEienVq1dpW4MGDdKrV6+MHz9+qfvMmzcvtbW1dR4AsCoSpgMAAABJkhkzZmThwoWprq6us726ujo1NTVL3efss89OVVVV6dGxY8cvYqgA8IUTpgMAAACf2cknn5zZs2eXHq+++mp9DwkAPhcr5Q1IAQAAgC/emmuumYYNG2b69Ol1tk+fPj3t27df6j5NmjRJkyZNvojhAUC9cmU6AAAAkCRp3Lhxunfvnvvuu6+0bdGiRbnvvvvSs2fPehwZANQ/V6YDAAAAJccdd1z69++frbbaKttss00uuuiizJ07NwMGDKjvoQFAvRKmAwAAACUHH3xw3nzzzQwbNiw1NTXZYostMmbMmCVuSgoAXzXC9GUoiiJJUltbW88jAYDyFp+vFp+/VnXO0wB8WXwZz9FDhgzJkCFDPtO+ztEAfFl82nO0MH0Z3nnnnSRJx44d63kkALD83nnnnVRVVdX3MD53ztMAfNk4RwPAyml5z9EVxZfpq/Ev2KJFi/L6669njTXWSEVFRX0PB1YZtbW16dixY1599dW0aNGivocDq4yiKPLOO++kQ4cOadBg1b/HuPM0rHjO0fD5cI4G/lvO0fD5+LTnaGE68IWrra1NVVVVZs+e7UMAAKxEnKMBYOXkHA0rh1X/K3EAAAAAAPgvCdMBAAAAAKAMYTrwhWvSpElOP/30NGnSpL6HAgB8hHM0AKycnKNh5WDNdAAAAAAAKMOV6QAAAAAAUIYwHQAAAAAAyhCmAwAAAABAGcJ0AAAAAAAoQ5gOAAAAAABlCNOBL8xDDz2UffbZJx06dEhFRUVGjx5d30MCAOIcDQArM+dpWHkI04EvzNy5c7P55pvnsssuq++hAAAf4RwNACsv52lYeTSq7wEAXx177LFH9thjj/oeBgDwMc7RALDycp6GlYcr0wEAAAAAoAxhOgAAAAAAlCFMBwAAAACAMoTpAAAAAABQhjAdAAAAAADKaFTfAwC+OubMmZN//vOfpedTp07NpEmT0rp166y99tr1ODIA+GpzjgaAlZfzNKw8KoqiKOp7EMBXwwMPPJBvfvObS2zv379/Ro4c+cUPCABI4hwNACsz52lYeQjTAQAAAACgDGumAwAAAABAGcJ0AAAAAAAoQ5gOAAAAAABlCNMBAAAAAKAMYToAAAAAAJQhTAcAAAAAgDKE6QAAAAAAUIYwHQAAAAAAyhCmw1fEm2++maOOOiprr712mjRpkvbt26d379555JFHkiQVFRUZPXp0/Q7yY84+++w0bNgw5557bn0PBQD4FIYPH54tttii9Pywww5Lnz59lnv/adOmpaKiIpMmTfrEmgceeCAVFRWZNWvWZx4nAF9+I0eOTMuWLUvPP34OAliRhOnwFXHAAQfk73//e66//vr84x//yB133JFddtklb7311grtZ8GCBSvsWNdee21OPPHEXHvttWVr58+fv8L6BYDl9dGQeJdddsnQoUPrdTyfxpFHHpmGDRvmlltuWeHH/slPfpL77rtvhR8XgFXHYYcdloqKilRUVGS11VZLdXV1vv3tb+faa6/NokWLlvs4Bx98cP7xj398buMsiiJXXnllevTokebNm6dly5bZaqutctFFF+Xdd99dIX182T5DfJK///3v+e53v5vq6upUVlZmvfXWyxFHHPG5/nyWxhfufJ6E6fAVMGvWrDz88MM555xz8s1vfjOdOnXKNttsk5NPPjn77rtvOnfunCTZf//9U1FRUXqeJJdffnm+8Y1vpHHjxtlggw3y29/+ts6xKyoqcvnll2ffffdNs2bN8vOf/zxJcvvtt6dbt26prKzMOuuskzPOOCMffPDBco/5wQcfzHvvvZczzzwztbW1efTRR+u0L77a4Oqrr06XLl1SWVlZmusPf/jDtG3bNi1atMi3vvWtPPXUU6X9/vWvf2W//fZLdXV1mjdvnq233jp/+ctfPs3LCQBfeu+++25+//vfL/eX1p9W8+bN06ZNmxV+XABWLbvvvnv+85//ZNq0abnnnnvyzW9+M8cee2z23nvv5f73Y9OmTdOuXbvPbYzf//73M3To0Oy33365//77M2nSpJx22mm5/fbbc++9935u/a5MlufitTvvvDPbbrtt5s2bl1GjRuX555/PDTfckKqqqpx22mlfwCjhiyFMh6+A5s2bp3nz5hk9enTmzZu3RPsTTzyRJLnuuuvyn//8p/T8tttuy7HHHpvjjz8+zz77bI488sgMGDAg999/f539hw8fnv333z/PPPNMDj/88Dz88MP5wQ9+kGOPPTbPPfdcfv3rX2fkyJGloH15XHPNNTnkkEOy2mqr5ZBDDsk111yzRM0///nP3HrrrfnjH/9Y+jXw7373u3njjTdyzz33ZOLEienWrVt23XXXzJw5M0kyZ86c7Lnnnrnvvvvy97//Pbvvvnv22WefvPLKK8s9NgD4uMMOOywPPvhgLr744tJVdtOmTUuSPPvss9ljjz3SvHnzVFdX5/vf/35mzJhR2neXXXbJ0UcfnaFDh6ZVq1aprq7OVVddlblz52bAgAFZY401su666+aee+4p7fP222+nX79+adu2bZo2bZr11lsv11133XKP95ZbbslGG22Uk046KQ899FBeffXVJEltbW2aNm1ap6/kw88Ea6yxRukKvJ/+9KdZf/31s/rqq2edddbJaaedVue308r9iv2YMWOyww47pGXLlmnTpk323nvv/Otf/1qi7oUXXsh2222XysrKbLLJJnnwwQeXOa+//vWv2XHHHdO0adN07NgxxxxzTObOnbu8LwsAX7DFS5B+7WtfS7du3XLKKafk9ttvzz333JORI0cmSS644IJsuummadasWTp27Jgf/ehHmTNnTukYH1/m5aMeeuihrLbaaqmpqamzfejQodlxxx3Lju/mm2/OqFGj8rvf/S6nnHJKtt5663Tu3Dn77bdfxo0bl29+85tJln5leZ8+fXLYYYeVnv/qV7/Keuutl8rKylRXV+fAAw9MsuzPEA8++GC22WabNGnSJGuttVZOOumkOl8yfJbPEMnyfTYZMmRIhg4dmjXXXDO9e/de5uv07rvvZsCAAdlzzz1zxx13pFevXunSpUt69OiR8847L7/+9a9LteXm1Llz51x00UV1jr/FFltk+PDhpecVFRW5+uqrs//++2f11VfPeuutlzvuuCPJh0vFLf65tGrVKhUVFXV+DvDfEqbDV0CjRo0ycuTIXH/99WnZsmW23377nHLKKXn66aeTJG3btk2StGzZMu3bty89P++883LYYYflRz/6UdZff/0cd9xx+c53vpPzzjuvzvG/973vZcCAAVlnnXWy9tpr54wzzshJJ52U/v37Z5111sm3v/3t/OxnP6tzAl2W2tra/OEPf8ihhx6aJDn00ENz88031/nAlHz47fhvfvObbLnlltlss83y17/+NY8//nhuueWWbLXVVllvvfVy3nnnpWXLlvnDH/6QJNl8881z5JFHZpNNNsl6662Xn/3sZ/nGN75ROvECwGdx8cUXp2fPnjniiCPyn//8J//5z3/SsWPHzJo1K9/61rey5ZZbZsKECRkzZkymT5+egw46qM7+119/fdZcc808/vjjOfroo3PUUUflu9/9brbbbrs8+eST2W233fL973+/FGafdtppee6553LPPffk+eefz+WXX54111xzucd7zTXX5NBDD01VVVX22GOPUmDRokWL7L333rnxxhvr1I8aNSp9+vTJ6quvniRZY401MnLkyDz33HO5+OKLc9VVV+XCCy9c7v7nzp2b4447LhMmTMh9992XBg0aZP/991/i1/pPOOGEHH/88fn73/+enj17Zp999vnEJer+9a9/Zffdd88BBxyQp59+OjfddFP++te/ZsiQIcs9LgDq37e+9a1svvnm+eMf/5gkadCgQS655JJMnjw5119/fcaNG5cTTzxxuY610047ZZ111qnzG9YLFizIqFGjcvjhh5fdf9SoUdlggw2y3377LdFWUVGRqqqq5RrHhAkTcswxx+TMM8/MlClTMmbMmOy0005JPvkzxL///e/sueee2XrrrfPUU0/l8ssvzzXXXJOzzjqrzrE/7WeIT/PZpHHjxnnkkUdyxRVXLHN+f/7znzNjxoxP/Lks/rJjeee0PM4444wcdNBBefrpp7PnnnumX79+mTlzZjp27Jhbb701STJlypT85z//ycUXX/ypjw+fqAC+Mt57773i3nvvLc4888yiZ8+eRcOGDYvrrruuKIqiSFLcdtttdepbtWpVjBw5ss62iy66qOjSpUvpeZLihhtuqFOz5pprFpWVlUWzZs1Kj8rKyiJJMXfu3LLjvOKKK4pNNtmkzraNN964uPrqq0vPTz/99GLdddetU3PppZcWDRo0qNNvs2bNigYNGhQnnnhiURRF8c477xTHH398seGGGxZVVVWl9hNOOKHsuADg4/r371/st99+RVEUxc4771wce+yxddp/9rOfFbvttludba+++mqRpJgyZUppvx122KHU/sEHHxTNmjUrvv/975e2/ec//ymSFOPHjy+Koij22WefYsCAAZ9pzP/4xz+K1VZbrXjzzTeLoiiK2267rejSpUuxaNGi0vPmzZuXztmzZ88uKisri3vuuecTj3nuuecW3bt3Lz0//fTTi80337z0/KOv09K8+eabRZLimWeeKYqiKKZOnVokKf7v//6vVLNgwYLi61//enHOOecURVEU999/f5GkePvtt4uiKIqBAwcWgwYNqnPchx9+uGjQoEHx3nvvlXlVAPiiLevccPDBBxddu3Zdatstt9xStGnTpvT8uuuuK6qqqkrPP34OOuecc+oc69Zbby2aN29ezJkzp+wYu3btWuy7775l65b2GWC//fYr+vfvX+qzRYsWRW1t7XLvf8oppxQbbLBB6fxcFEVx2WWXFc2bNy8WLlxY2u/TfoZY3s8mW265Zdl5L3bOOecUSYqZM2cus2555tSpU6fiwgsvrLPf5ptvXpx++uml50mKU089tfR8zpw5RZLSZ5WPf0aAFcmV6fAVUllZmW9/+9s57bTT8uijj+awww7L6aef/l8ft1mzZnWez5kzJ2eccUYmTZpUejzzzDN58cUXS2ubL8s111yTyZMnp1GjRqXHc889t8Sarkvrd6211qrT76RJkzJlypSccMIJST68Idptt92WX/ziF3n44YczadKkbLrppm5gCsDn4qmnnsr9999fWnKtefPm2XDDDZOkzrImm222WenPDRs2TJs2bbLpppuWtlVXVydJ3njjjSTJUUcdld///vfZYostcuKJJy5xb5Flufbaa9O7d+/Slex77rlnZs+enXHjxpWer7baaqXf2rr11lvTokWL9OrVq3SMm266Kdtvv33at2+f5s2b59RTT/1US6a9+OKLOeSQQ7LOOuukRYsWpfu1fPwYPXv2LP25UaNG2WqrrfL8888v9ZhPPfVURo4cWee17t27dxYtWpSpU6cu99gAqH9FUaSioiJJ8pe//CW77rprvva1r2WNNdbI97///bz11lvLffPPww47LP/85z/zt7/9LcmHy8IcdNBBS/x78pPGsSJ8+9vfTqdOnbLOOuvk+9//fkaNGlV2/M8//3x69uxZeh2SZPvtt8+cOXPy2muvlbZ92s8Qy/vZpHv37ss9v+V9nZZ3Tsvjo/Nu1qxZWrRoUZojfJ4a1fcAgPqz0UYbZfTo0UmS1VZbLQsXLqzT3rVr1zzyyCPp379/adsjjzySjTbaaJnH7datW6ZMmZJ11133U4/pmWeeyYQJE/LAAw+kdevWpe0zZ87MLrvskhdeeKF0ol9avzU1NWnUqFGdm6h+1COPPJLDDjss+++/f5IPA/jF69EBwIo2Z86c7LPPPjnnnHOWaFtrrbVKf15ttdXqtFVUVNTZtvgfnYuXQdljjz3y8ssv5+67787YsWOz6667ZvDgwUssxfZxCxcuzPXXX186X350+7XXXptdd901jRs3zoEHHpgbb7wxffv2zY033piDDz64VD9+/Pj069cvZ5xxRnr37p2qqqr8/ve/z/nnn7/cr8s+++yTTp065aqrrkqHDh2yaNGibLLJJv/Vl9tz5szJkUcemWOOOWaJtrXXXvszHxeAL97zzz+fLl26ZNq0adl7771z1FFH5ec//3lat26dv/71rxk4cGDmz59fWn5sWdq1a5d99tkn1113Xbp06ZJ77rknDzzwwHKNY/31188LL7xQtq5BgwZLBMofvZfIGmuskSeffDIPPPBA7r333gwbNizDhw/PE0888YnrvS+vT/sZYnk/myzPlw2Lrb/++kk+vNfJR78I/yzKvZaLLW3eH18uDj4PwnT4Cnjrrbfy3e9+N4cffng222yzrLHGGpkwYUJGjBhRWvutc+fOue+++7L99tunSZMmadWqVU444YQcdNBB2XLLLdOrV6/86U9/yh//+Mf85S9/WWZ/w4YNy95775211147Bx54YBo0aJCnnnoqzz77bNm10K655ppss802pfXjPmrrrbfONddck3PPPXep+/bq1Ss9e/ZMnz59MmLEiKy//vp5/fXXc9ddd2X//fcvraP+xz/+Mfvss08qKipy2mmnOeECsEI0btx4iS+mu3XrlltvvTWdO3euE16vCG3btk3//v3Tv3//7LjjjjnhhBPKhul333133nnnnfz9739Pw4YNS9ufffbZDBgwILNmzUrLli3Tr1+/fPvb387kyZMzbty4OufvRx99NJ06dcr//u//lra9/PLLyz3ut956K1OmTMlVV11VuvnbX//616XW/u1vfyt9Jvjggw8yceLET1wDvVu3bnnuuec+05f5AKw8xo0bl2eeeSY//vGPM3HixCxatCjnn39+GjT4cHGFm2+++VMf84c//GEOOeSQfP3rX883vvGNbL/99su13/e+97307ds3t99++xLrphdFkdra2lRVVaVt27b5z3/+U2pbuHBhnn322dKNMJMPf8OqV69e6dWrV04//fS0bNky48aNy3e+852lfobo2rVrbr311jpX6T/yyCNZY4018vWvf/1TvwaLfR6fTXbbbbesueaaGTFiRG677bYl2hd/vlieOX38taytrf3Uv2HWuHHjJFniNYUVwTIv8BXQvHnz9OjRIxdeeGF22mmnbLLJJjnttNNyxBFH5NJLL02SnH/++Rk7dmw6duyYLbfcMsmHdx+/+OKLc95552XjjTfOr3/961x33XXZZZddltlf7969c+edd+bee+/N1ltvnW233TYXXnhhOnXqtMz95s+fnxtuuCEHHHDAUtsPOOCA/OY3v1nqt9LJh99E33333dlpp50yYMCArL/++unbt29efvnl0q+2XXDBBWnVqlW222677LPPPundu3e6deu2zHEBwPLo3LlzHnvssUybNi0zZszIokWLMnjw4MycOTOHHHJInnjiifzrX//Kn//85wwYMOC/+gfesGHDcvvtt+ef//xnJk+enDvvvDNdu3Ytu98111yTvfbaK5tvvnk22WST0uOggw5Ky5YtM2rUqCQf3rCtffv26devX7p06ZIePXqUjrHeeuvllVdeye9///v861//yiWXXLLUfzh/klatWqVNmza58sor889//jPjxo3Lcccdt9Tayy67LLfddlteeOGFDB48OG+//fYn3jDupz/9aR599NEMGTIkkyZNyosvvpjbb7/dDUgBVmLz5s1LTU1N/v3vf+fJJ5/ML37xi+y3337Ze++984Mf/CDrrrtuFixYkF/+8pd56aWX8tvf/rbszTCXpnfv3mnRokXOOuusDBgwYLn3O+igg3LwwQfnkEMOyS9+8YtMmDAhL7/8cu6888706tUr999/f5IPb5p611135a677soLL7yQo446KrNmzSod584778wll1ySSZMm5eWXX85vfvObLFq0KBtssEGSpX+G+NGPfpRXX301Rx99dF544YXcfvvtOf3003PccceVvlj4LD6PzybNmjXL1Vdfnbvuuiv77rtv/vKXv2TatGmZMGFCTjzxxPzP//xPkizXnL71rW/lt7/9bR5++OE888wz6d+/f50LAJZHp06dUlFRkTvvvDNvvvlm5syZ85nmBUtVf8u1AwDAl9tHb542ZcqUYtttty2aNm1aJCmmTp1aFMWHN/zcf//9i5YtWxZNmzYtNtxww2Lo0KGlm28t7aZjS7v5Vj5ys/Cf/exnRdeuXYumTZsWrVu3Lvbbb7/ipZdeWuZYa2pqikaNGhU333zzUtuPOuqoOjcbO/HEE4skxbBhw5aoPeGEE4o2bdoUzZs3Lw4++ODiwgsvXObN3z5+k7mxY8cWXbt2LZo0aVJsttlmxQMPPFBnfotvQHrjjTcW22yzTdG4ceNio402KsaNG1c6xtJuLvb4448X3/72t4vmzZsXzZo1KzbbbLPi5z//+TJfFwDqR//+/YskRZKiUaNGRdu2bYtevXoV1157belmlEVRFBdccEGx1lprFU2bNi169+5d/OY3v6nz//9yNyBd7LTTTisaNmxYvP76659qnAsXLiwuv/zyYuutty5WX331okWLFkX37t2Liy++uHj33XeLoiiK+fPnF0cddVTRunXrol27dsXZZ59d5wakDz/8cLHzzjsXrVq1Kpo2bVpsttlmxU033VTq45M+QzzwwAPF1ltvXTRu3Lho37598dOf/rRYsGBBab/P8hmiKD7bZ5Pl8cQTTxTf+c53irZt2xZNmjQp1l133WLQoEHFiy++WKopN6fZs2cXBx98cNGiRYuiY8eOxciRI5d6A9KPzqcoiqKqqqq47rrrSs/PPPPMon379kVFRUXp5wArQkVRrKC7KQAAAADASmjgwIF58803SzfYBvgsLPMCfKFGjRpV567hH31svPHG9T08AAAAViGzZ8/OX//619x44405+uij63s4wJecK9OBL9Q777yT6dOnL7VttdVWK7uuOgDwyX7xi1/kF7/4xVLbdtxxx9xzzz1f8IgAoH7tsssuefzxx3PkkUfmwgsvrNO2xx575OGHH17qfqecckpOOeWUL2KIK71Ro0blyCOPXGpbp06dMnny5C94RFB/hOkAALCKmDlzZmbOnLnUtqZNm+ZrX/vaFzwiAFh5/fvf/85777231LbWrVundevWX/CIVk4uioP/R5gOAAAAAABlWDMdAAAAAADKEKYDAAAAAEAZwnQAAAAAAChDmA4AAAAAAGUI0wEAAAAAoAxhOgAAAAAAlCFMBwAAAACAMoTpAAAAAABQhjAdAAAAAADKEKYDAAAAAEAZwnQAAAAAAChDmA4AAAAAAGUI0wEAAAAAoAxhOgArvWnTpqWioiIjR46s76EAAAAAX1HC9FXcH/7wh1RUVCz1sckmm9T38OArY5dddslhhx2WJDnssMOyyy671GmfM2dOTj/99GyyySZp1qxZ2rRpky222CLHHntsXn/99VLd3XffneHDh39xA/+MFi1alN/85jfp0aNHWrdunTXWWCPrr79+fvCDH+Rvf/tbfQ9vCcOHD0/nzp2TJCNHjkxFRUX9DggAAABY6TSq7wHwxTjllFPStWvX0vOf//zn9Tga4KMWLFiQnXbaKS+88EL69++fo48+OnPmzMnkyZNz4403Zv/990+HDh2SfBimX3bZZSt9oH7MMcfksssuy3777Zd+/fqlUaNGmTJlSu65556ss8462Xbbbet7iAAAAACfijD9K+Lb3/52nSthr7766syYMaP+BgSUjB49On//+98zatSofO9736vT9v7772f+/Pmfa/+LFi3K/PnzU1lZuUKON3369PzqV7/KEUcckSuvvLJO20UXXZQ333xzhfQDAAAA8EWyzMsqbnEI16BB+R/14qUNpk2bVtq2aNGibLbZZkusVfz000/nsMMOyzrrrJPKysq0b98+hx9+eN566606xxw+fPhSl5hp1Oj/fY+zyy67ZJNNNsnEiROz3XbbpWnTpunSpUuuuOKKJeYybNiwdO/ePVVVVWnWrFl23HHH3H///XXqFq+tXFFRkdGjR9dpe//999OqVatUVFTkvPPOW2Kc7dq1y4IFC+rs87vf/a50vI9+AXH77bdnr732SocOHdKkSZN84xvfyM9+9rMsXLiw7Gu9uL8XXnghBx10UFq0aJE2bdrk2GOPzfvvv1+n9rrrrsu3vvWttGvXLk2aNMlGG22Uyy+/fIlj7rfffuncuXMqKyvTrl277LvvvnnmmWfq1Cyex0UXXbTE/htuuGEqKioyZMiQ0raZM2fmJz/5STbddNM0b948LVq0yB577JGnnnqqzr79+/dPZWVlnn/++Trbe/funVatWtVZpuSll17Kd7/73bRu3Tqrr756tt1229x111119nvggQfqvF+aNGmS9ddfP2effXaKolj2i/v/+6T33seXV0nqvmc+/vioN954IwMHDszaa6+dhg0blmqaN2++XGP6JP/617+SJNtvv/0SbZWVlWnRokWSD5eHueyyy5JkqWOcO3dujj/++HTs2DFNmjTJBhtskPPOO2+J12zxz3nUqFHZeOON06RJk4wZMyZJ8u9//zuHH354qqur06RJk2y88ca59tprP9V8pk6dmqIoljqfxX/PFlve99gneeGFF3LggQemdevWqayszFZbbZU77rijTs2CBQtyxhlnZL311ktlZWXatGmTHXbYIWPHjv1U8wIAAAC+2lyZvopbHKY3adLkM+3/29/+dolANknGjh2bl156KQMGDEj79u0zefLkXHnllZk8eXL+9re/LRFCXn755XUCx4+H+2+//Xb23HPPHHTQQTnkkENy880356ijjkrjxo1z+OGHJ0lqa2tz9dVX55BDDskRRxyRd955J9dcc0169+6dxx9/PFtssUWdY1ZWVua6665Lnz59Stv++Mc/LhFWf9Q777yTO++8M/vvv39p23XXXZfKysol9hs5cmSaN2+e4447Ls2bN8+4ceMybNiw1NbW5txzz/3EPj7qoIMOSufOnXP22Wfnb3/7Wy655JK8/fbb+c1vflPntdt4442z7777plGjRvnTn/6UH/3oR1m0aFEGDx5c53iDBg1K+/bt8/rrr+fSSy9Nr169MnXq1Ky++upLvC5Dhw4tbXv00Ufz8ssvLzG+l156KaNHj853v/vddOnSJdOnT8+vf/3r7LzzznnuuedKS49cfPHFGTduXPr375/x48enYcOG+fWvf5177703v/3tb0t106dPz3bbbZd33303xxxzTNq0aZPrr78+++67b/7whz/Ued2T/7c80XvvvZebbropp5xyStq1a5eBAwcu1+u7+PVb/N47+eSTl1k7aNCg7Ljjjkk+fK/cdtttddr79++fv/zlLzn66KOz+eabp2HDhrnyyivz5JNPLvd4lqZTp05Jkt/85jc59dRTP3G97iOPPDKvv/56xo4dm9/+9rd12oqiyL777pv7778/AwcOzBZbbJE///nPOeGEE/Lvf/87F154YZ36cePG5eabb86QIUOy5pprpnPnzpk+fXq23XbbUtjetm3b3HPPPRk4cGBqa2vrvGeWZz633HJLvvvd79Z5/33c8r7Hlmby5MnZfvvt87WvfS0nnXRSmjVrlptvvjl9+vTJrbfeWno/DR8+PGeffXZ++MMfZptttkltbW0mTJiQJ598Mt/+9reXa04AAAAAKVilXXTRRUWS4qmnnqqzfeeddy423njjOtuuu+66IkkxderUoiiK4v333y/WXnvtYo899iiSFNddd12p9t13312ir9/97ndFkuKhhx4qbTv99NOLJMWbb775iWPceeediyTF+eefX9o2b968YosttijatWtXzJ8/vyiKovjggw+KefPm1dn37bffLqqrq4vDDz+8tG3q1KlFkuKQQw4pGjVqVNTU1JTadt111+J73/tekaQ499xzlxjnIYccUuy9996l7S+//HLRoEGD4pBDDlliHkt7DY488shi9dVXL95///1PnO9H+9t3333rbP/Rj360xM9raf307t27WGeddZbZx80331wkKSZMmFDalqQ48MADi0aNGtXZPnDgwNLrMnjw4NL2999/v1i4cGGd406dOrVo0qRJceaZZ9bZ/uc//7lIUpx11lnFSy+9VDRv3rzo06dPnZqhQ4cWSYqHH364tO2dd94punTpUnTu3LnU1/33318kKe6///46Y2nQoEHxox/9aJnzXuyUU04pkhQzZswobdt4442LnXfeeYnaF198sUhSXH/99aVti39Gi7333ntFgwYNiiOPPLLOvv379y+aNWu2XGP6JO+++26xwQYbFEmKTp06FYcddlhxzTXXFNOnT1+idvDgwcXS/tc9evTo0uv/UQceeGBRUVFR/POf/yxtS1I0aNCgmDx5cp3agQMHFmuttVad16woiqJv375FVVXVUt+Ln+QHP/hBkaRo1apVsf/++xfnnXde8fzzzy9Rt7zvscV/rz/6/6Fdd9212HTTTev8fVu0aFGx3XbbFeutt15p2+abb17stddeyz12AAAAgKWxzMsqbvGyK23btv3U+1522WV56623cvrppy/R1rRp09Kf33///cyYMaN0Q8HPcpVuo0aNcuSRR5aeN27cOEceeWTeeOONTJw4MUnSsGHDNG7cOMmHy8/MnDkzH3zwQbbaaqul9tmtW7dsvPHGpSt4X3755dx///057LDDPnEchx9+eMaMGZOampokyfXXX5+ePXtm/fXXX6L2o6/BO++8kxkzZmTHHXfMu+++mxdeeGG55v3xK8uPPvroJB/eZHJp/cyePTszZszIzjvvnJdeeimzZ8+us/+7776bGTNmZNKkSbnqqqtSXV29xNirq6uz11575brrrivtc/PNN2fAgAFLjK9Jkyal3yJYuHBh3nrrrTRv3jwbbLDBEq/5brvtliOPPDJnnnlmvvOd76SysjK//vWv69Tcfffd2WabbbLDDjuUtjVv3jyDBg3KtGnT8txzz9WpXzzfV155JSNGjMiiRYvyrW99aymv5JIW/ybB8qwDvjy/wTF37twsWrQobdq0Wa7+P42mTZvmscceywknnJDkw996GDhwYNZaa60cffTRmTdvXtlj3H333WnYsGGOOeaYOtuPP/74FEWRe+65p872nXfeORtttFHpeVEUufXWW7PPPvukKIrMmDGj9Ojdu3dmz579qf5uX3fddbn00kvTpUuX3HbbbfnJT36Srl27Ztddd82///3vUt2neY991MyZMzNu3LgcdNBBpb9/M2bMyFtvvZXevXvnxRdfLPXTsmXLTJ48OS+++OJyjx8AAADg44Tpq7iXX345jRo1+tRh+uzZs/OLX/wixx13XKqrq5donzlzZo499thUV1enadOmadu2bbp06VLa99Pq0KFDmjVrVmfb4hD4o2u4X3/99dlss81K6x63bds2d9111yf2OWDAgFJoPHLkyGy33XZZb731PnEcW2yxRTbZZJP85je/SVEUGTly5FJD5uTDJSb233//VFVVpUWLFmnbtm0OPfTQJMv/Gnx8LN/4xjfSoEGDOnN+5JFH0qtXrzRr1iwtW7ZM27Ztc8oppyy1nzPPPDNt27bNlltumWnTpuWBBx7IGmussUS/AwYMyI033ph58+bllltuSatWrZYaUi9atCgXXnhh1ltvvTRp0iRrrrlm2rZtm6effnqpczzvvPPSunXrTJo0KZdcckmdtbGTD9+PG2ywwRL7de3atdT+UX369Enbtm3TqVOnDB8+PKeeemoOOOCAJfZfmhkzZmS11VZb5hIji82aNStJlrn2eZs2bbLeeuvl6quvzr333ps33ngjM2bMWK6ge3lUVVVlxIgRmTZtWqZNm5ZrrrkmG2ywQS699NL87Gc/K7v/yy+/nA4dOizx8/6k13bx39fF3nzzzcyaNStXXnll2rZtW+ex+O/AG2+8sdzzadCgQQYPHpyJEydmxowZuf3227PHHntk3Lhx6du3b6nu077HFvvnP/+Zoihy2mmnLTHexV8ALh7vmWeemVmzZmX99dfPpptumhNOOCFPP/30cs8FAAAAILFm+ipvypQpWWedderc8HN5nHPOOWnQoEFOOOGEJW4qmny41vejjz6aE044IVtssUWaN2+eRYsWZffdd8+iRYtW1PDruOGGG3LYYYelT58+OeGEE9KuXbs0bNgwZ599dukGjh936KGH5sQTT8zf/va3XH/99Tn11FPL9nP44YfnV7/6VbbZZpvU1NTkoIMOyvnnn1+nZtasWdl5553TokWLnHnmmfnGN76RysrKPPnkk/npT3/6mV+Dj6+V/a9//Su77rprNtxww1xwwQXp2LFjGjdunLvvvjsXXnjhEv388Ic/zK677prXXnstF154YQ444IA8+uijqaqqqlO31157pXHjxhk9enSuu+669O/ff6k3qf3FL36R0047LYcffnh+9rOfpXXr1mnQoEGGDh261Dn+/e9/LwWYzzzzTA455JDP9Dosdt5552XzzTfPggUL8sQTT+Sss85Ko0aNlvrbEh83bdq0rL322p+4/vhHLf5NhPbt2y+z7qabbkq/fv3Su3fvOts//kXQf6tTp045/PDDs//++2edddbJqFGjctZZZ63QPj76Gw9JSj/PQw89NP3791/qPpttttln6qtNmzbZd999s++++2aXXXbJgw8+mJdffjmdOnX61O+xj4/3Jz/5yRI/j8XWXXfdJMlOO+2Uf/3rX7n99ttz77335uqrr86FF16YK664Ij/84Q8/05wAAACArx5h+ips3rx5mTRpUp0bcC6P119/PRdffHHOPvvsrLHGGkuE6W+//Xbuu+++nHHGGRk2bFhp+3+zhMLrr7+euXPn1gkl//GPfyRJOnfunCT5wx/+kHXWWSd//OMf6wSkywpWF4d4i5eMOeiggzJjxoxljqVfv3454YQTcuyxx+bAAw9c6pXdDzzwQN5666388Y9/zE477VTaPnXq1OWa72IvvvhinSuE//nPf2bRokWlOf/pT3/KvHnzcscdd2Tttdcu1d1///1LPd66665bChB79eqVtddeOzfeeGOOOuqoOnWNGjXK97///fz85z/P5MmTc+211y71eH/4wx/yzW9+M9dcc02d7bNmzcqaa65ZZ9vcuXMzYMCAbLTRRtluu+0yYsSI7L///tl6661LNZ06dcqUKVOW6GfxsjiLb1y5WPfu3bPLLrskSfbYY4/8+9//zjnnnJPTTjttqeH/Yh988EGeeuqp7L777p9Y81HPPfdcKioqlnrV/EdtueWWueqqq7LjjjvmzDPPzLbbbptzzz03jzzyyHL182m1atUq3/jGN/Lss8+Wtn3SlwOdOnXKX/7yl7zzzjt13rOf9Np+XNu2bbPGGmtk4cKF6dWr1woY/dJttdVWefDBB/Of//wnnTp1+lTvsY9aZ511kiSrrbbaco23devWGTBgQAYMGJA5c+Zkp512yvDhw4XpAAAAwHKzzMsqbPEyHrvuuuun2u+MM85IdXV1/ud//mep7Q0bNkzy4RrLH3XRRRd9pnEmH4afH11fe/78+fn1r3+dtm3bpnv37p/Y72OPPZbx48cv89iHH354nn766Xz3u99d5jIei7Vu3Tr77bdfnn766Rx++OFLrVnaWObPn59f/epXZY//UZdddlmd57/85S+TfBgcf1I/s2fPLi1dsyyLvzT4pGVIDj/88DzzzDPZaaedSsHkxzVs2HCJn/Mtt9xSZ83rxX7605/mlVdeyfXXX58LLrggnTt3Tv/+/ev0v+eee+bxxx+v8zObO3durrzyynTu3LnOGt5L89577+WDDz7IBx98sMy6e++9N7Nnz85+++23zLrkw/ferbfemm222abs+6O2tjbf//73s+++++bUU09Nr169stZaa5Xto5ynnnpqqV/yvPzyy3nuuefqhPyLv3BavDTNYnvuuWcWLlyYSy+9tM72Cy+8MBUVFaX31Cdp2LBhDjjggNx66611wvvF3nzzzeWdTmpqapZY/z758O/IfffdlwYNGpS+9Pk077GPateuXXbZZZf8+te/zn/+859ljvfjXwg2b94866677gpbogcAAAD4anBl+ipo7ty5+eUvf5kzzzyzFFTdcMMNdWqmT5+eOXPm5IYbbsi3v/3tOuui33vvvRk1alTpZp8f16JFi+y0004ZMWJEFixYkK997Wu59957P/VV2R/VoUOHnHPOOZk2bVrWX3/93HTTTZk0aVKuvPLKrLbaakmSvffeO3/84x+z//77Z6+99srUqVNzxRVXZKONNsqcOXM+8di777573nzzzeUK0hcbOXJkLrvssk+8Mna77bZLq1at0r9//xxzzDGpqKjIb3/72yVCwXKmTp2afffdN7vvvnvGjx+fG264Id/73vey+eabJ/nwpp6NGzfOPvvskyOPPDJz5szJVVddlXbt2tUJEO++++5cffXV2W677dK6deu89NJLueqqq9KsWbPsv//+S+27a9eumTFjxhLLfXzU3nvvnTPPPDMDBgzIdtttl2eeeSajRo1aInwfN25cfvWrX+X0009Pt27dknx4A8pddtklp512WkaMGJEkOemkk/K73/0ue+yxR4455pi0bt06119/faZOnZpbb711iavNx44dm9dee620zMuoUaOy7777fuJ7M/lwKZaf/OQnadKkSd5777067/3Zs2dn4cKFGT16dPr06ZO//OUvOe200/L000/nT3/60ycec7HBgwfnvffey9VXX1229tMYO3ZsTj/99Oy7777Zdttt07x587z00ku59tprM2/evAwfPrxUu/jLpWOOOSa9e/dOw4YN07dv3+yzzz755je/mf/93//NtGnTsvnmm+fee+/N7bffnqFDh+Yb3/hG2XH83//9X+6///706NEjRxxxRDbaaKPMnDkzTz75ZP7yl79k5syZyzWf1157Ldtss02+9a1vZdddd0379u3zxhtv5He/+12eeuqpDB06tPR3a3nfY0tz2WWXZYcddsimm26aI444Iuuss06mT5+e8ePH57XXXstTTz2VJNloo42yyy67pHv37mndunUmTJiQP/zhDxkyZMhyzQcAAAAgSVKwypk6dWqRZLkf999/f1EURXHdddcVSYotttiiWLRo0RLHu+6660rbXnvttWL//fcvWrZsWVRVVRXf/e53i9dff71IUpx++umlutNPP71IUrz55pufON6dd9652HjjjYsJEyYUPXv2LCorK4tOnToVl156aZ26RYsWFb/4xS+KTp06FU2aNCm23HLL4s477yz69+9fdOrUaYnxnnvuuct8fT7aXm6cS2t/5JFHim233bZo2rRp0aFDh+LEE08s/vznP9d5TT/J4uM999xzxYEHHlisscYaRatWrYohQ4YU7733Xp3aO+64o9hss82KysrKonPnzsU555xTXHvttUWSYurUqUVRFMWzzz5b7LbbbkWbNm2Kxo0bFx07diz69u1bPP3003WOlaQYPHjwJ47r4+3vv/9+cfzxxxdrrbVW0bRp02L77bcvxo8fX+y8887FzjvvXBRFUdTW1hadOnUqunXrVixYsKDO8X784x8XDRo0KMaPH1/a9q9//as48MADi5YtWxaVlZXFNttsU9x555119rv//vvrvEcbNWpUdOrUqTjmmGOKt99+e5mvbadOncq+5xe/X44++uhip512KsaMGbPEcRb/jBb73e9+V1RUVCxR279//6JZs2bLHFM5L730UjFs2LBi2223Ldq1a1c0atSoaNu2bbHXXnsV48aNq1P7wQcfFEcffXTRtm3boqKios4Y33nnneLHP/5x0aFDh2K11VYr1ltvveLcc8+t8/e5KJb9Ppg+fXoxePDgomPHjsVqq61WtG/fvth1112LK6+8crnnU1tbW1x88cVF7969i69//evFaqutVqyxxhpFz549i6uuuqrOeJbnPVYUS///UFF8+H76wQ9+ULRv375YbbXViq997WvF3nvvXfzhD38o1Zx11lnFNttsU7Rs2bJo2rRpseGGGxY///nPi/nz5y/3nAAAAAAqiuJTXkrLSm/atGnp0qVL7r///tJ60/9N3edtl112yYwZM5a6tMSqavjw4TnjjDPy5ptvLnNdaD69zp07Z/jw4TnssMOW2v7AAw/ksMMOy7Rp077QcQEAAADw5WbNdAAAAAAAKMOa6aug5s2bp1+/fnXWQf9v6uDLZP/991/m+uDV1dWfuI485b355ptZuHDhJ7Y3btw4rVu3/gJHBAAAAPDFsMwL9c4yL5Z54cujc+fOefnllz+xfeedd84DDzzwxQ0IAAAA4AsiTAdguT3yyCN57733PrG9VatW6d69+xc4IgAAAIAvhjAdAAAAAADKsGb6MixatCivv/561lhjjVRUVNT3cABgmYqiyDvvvJMOHTqkQQP3GAcAAIAVSZi+DK+//no6duxY38MAgE/l1Vdfzde//vX6HgYAAACsUoTpy7DGGmsk+TCUaNGiRT2PBgCWrba2Nh07diydvwAAAIAVR5i+DIuXdmnRooUwHYAvDUuTAQAAwIpnQVUAAAAAAChDmA4AAAAAAGUI0wEAAAAAoAxhOgAAAAAAlCFMBwAAAACAMoTpAAAAAABQhjAdAAAAAADKEKYDAAAAAEAZwnQAAAAAAChDmA4AAAAAAGUI0wEAAAAAoAxhOgAAAAAAlCFMBwAAAACAMoTpAAAAAABQRqP6HgDw5fPuu+/mhRde+Mz7v/fee5k2bVo6d+6cpk2bfubjbLjhhll99dU/8/4AAAAAsLyE6cCn9sILL6R79+71PYxMnDgx3bp1q+9hAAAAAPAVIEwHPrUNN9wwEydO/Mz7P//88zn00ENzww03pGvXrv/VOAAAAADgiyBMBz611VdffYVcEd61a1dXlgMAAADwpeAGpAAAAAAAUIYwHQAAAAAAyhCmAwAAAABAGcJ0AAAAAAAoQ5gOAAAAAABlCNMBAAAAAKAMYToAAAAAAJQhTAcAAAAAgDKE6QAAAAAAUIYwHQAAAAAAyhCmAwAAAABAGcJ0AAAAAAAoQ5gOAAAAAABlCNMBAAAAAKAMYToAAAAAAJQhTAcAAAAAgDKE6QAAAAAAUIYwHQAAAAAAyhCmAwAAAABAGcJ0AAAAAAAoQ5gOAAAAAABlCNMBAAAAAKAMYToAAAAAAJQhTAcAAAAAgDKE6QAAAAAAUIYwHQAAAAAAyhCmAwAAAABAGcJ0AAAAAAAoQ5gOAAAAAABlCNMBAAAAAKAMYToAAAAAAJQhTAcAAAAAgDKE6QAAAAAAUManDtMfeuih7LPPPunQoUMqKioyevToOu1FUWTYsGFZa6210rRp0/Tq1SsvvvhinZqZM2emX79+adGiRVq2bJmBAwdmzpw5dWqefvrp7LjjjqmsrEzHjh0zYsSIJcZyyy23ZMMNN0xlZWU23XTT3H333Z96LAAAAAAAUM6nDtPnzp2bzTffPJdddtlS20eMGJFLLrkkV1xxRR577LE0a9YsvXv3zvvvv1+q6devXyZPnpyxY8fmzjvvzEMPPZRBgwaV2mtra7PbbrulU6dOmThxYs4999wMHz48V155Zanm0UcfzSGHHJKBAwfm73//e/r06ZM+ffrk2Wef/VRjAQAAAACAciqKoig+884VFbntttvSp0+fJB9eCd6hQ4ccf/zx+clPfpIkmT17dqqrqzNy5Mj07ds3zz//fDbaaKM88cQT2WqrrZIkY8aMyZ577pnXXnstHTp0yOWXX57//d//TU1NTRo3bpwkOemkkzJ69Oi88MILSZKDDz44c+fOzZ133lkaz7bbbpstttgiV1xxxXKN5ePmzZuXefPmlZ7X1tamY8eOmT17dlq0aPFZXybgY5588sl07949EydOTLdu3ep7OLDKqK2tTVVVlfMWAAAAfA5W6JrpU6dOTU1NTXr16lXaVlVVlR49emT8+PFJkvHjx6dly5alID1JevXqlQYNGuSxxx4r1ey0006lID1JevfunSlTpuTtt98u1Xy0n8U1i/tZnrF83Nlnn52qqqrSo2PHjv/NywEAAAAAwCpihYbpNTU1SZLq6uo626urq0ttNTU1adeuXZ32Ro0apXXr1nVqlnaMj/bxSTUfbS83lo87+eSTM3v27NLj1VdfXY5ZAwAAAACwqmtU3wNYmTRp0iRNmjSp72EAAAAAALCSWaFXprdv3z5JMn369Drbp0+fXmpr37593njjjTrtH3zwQWbOnFmnZmnH+Ggfn1Tz0fZyYwEAAAAAgOWxQsP0Ll26pH379rnvvvtK22pra/PYY4+lZ8+eSZKePXtm1qxZmThxYqlm3LhxWbRoUXr06FGqeeihh7JgwYJSzdixY7PBBhukVatWpZqP9rO4ZnE/yzMWAAAAAABYHp86TJ8zZ04mTZqUSZMmJfnwRp+TJk3KK6+8koqKigwdOjRnnXVW7rjjjjzzzDP5wQ9+kA4dOqRPnz5Jkq5du2b33XfPEUcckccffzyPPPJIhgwZkr59+6ZDhw5Jku9973tp3LhxBg4cmMmTJ+emm27KxRdfnOOOO640jmOPPTZjxozJ+eefnxdeeCHDhw/PhAkTMmTIkCRZrrEAAAAAAMDy+NRrpk+YMCHf/OY3S88XB9z9+/fPyJEjc+KJJ2bu3LkZNGhQZs2alR122CFjxoxJZWVlaZ9Ro0ZlyJAh2XXXXdOgQYMccMABueSSS0rtVVVVuffeezN48OB07949a665ZoYNG5ZBgwaVarbbbrvceOONOfXUU3PKKadkvfXWy+jRo7PJJpuUapZnLAAAAAAAUE5FURRFfQ9iZVVbW5uqqqrMnj07LVq0qO/hwCrjySefTPfu3TNx4sR069atvocDqwznLQAAAPj8rNA10wEAAAAAYFUkTAcAAAAAgDKE6QAAAAAAUIYwHQAAAAAAyhCmAwAAAABAGcJ0AAAAAAAoQ5gOAAAAAABlCNMBAAAAAKAMYToAAAAAAJQhTAcAAAAAgDKE6QAAAAAAUIYwHQAAAAAAyhCmAwAAAABAGcJ0AAAAAAAoQ5gOAAAAAABlCNMBAAAAAKAMYToAAAAAAJQhTAcAAAAAgDKE6QAAAAAAUIYwHQAAAAAAyhCmAwAAAABAGcJ0AAAAAAAoQ5gOAAAAAABlCNMBAAAAAKAMYToAAAAAAJQhTAcAAAAAgDKE6QAAAAAAUIYwHQAAAAAAyhCmAwAAAABAGcJ0AAAAAAAoQ5gOAAAAAABlCNMBAAAAAKAMYToAAAAAAJQhTAcAAAAAgDKE6QAAAAAAUIYwHQAAAAAAyhCmAwAAAABAGcJ0AAAAAAAoQ5gOAAAAAABlCNMBAAAAAKAMYToAAAAAAJQhTAcAAAAAgDKE6QAAAAAAUIYwHQAAAAAAyhCmAwAAAABAGcJ0AAAAAAAoQ5gOAAAAAABlCNMBAAAAAKAMYToAAAAAAJQhTAcAAAAAgDKE6QAAAAAAUIYwHQAAAAAAyhCmAwAAAABAGcJ0AAAAAAAoQ5gOAAAAAABlCNMBAAAAAKAMYToAAAAAAJQhTAcAAAAAgDKE6QAAAAAAUIYwHQAAAAAAyhCmAwAAAABAGcJ0AAAAAAAoQ5gOAAAAAABlCNMBAAAAAKAMYToAAAAAAJQhTAcAAAAAgDKE6QAAAAAAUIYwHQAAAAAAyljhYfrChQtz2mmnpUuXLmnatGm+8Y1v5Gc/+1mKoijVFEWRYcOGZa211krTpk3Tq1evvPjii3WOM3PmzPTr1y8tWrRIy5YtM3DgwMyZM6dOzdNPP50dd9wxlZWV6dixY0aMGLHEeG655ZZsuOGGqayszKabbpq77757RU8ZAAAAAIBV3AoP088555xcfvnlufTSS/P888/nnHPOyYgRI/LLX/6yVDNixIhccsklueKKK/LYY4+lWbNm6d27d95///1STb9+/TJ58uSMHTs2d955Zx566KEMGjSo1F5bW5vddtstnTp1ysSJE3Puuedm+PDhufLKK0s1jz76aA455JAMHDgwf//739OnT5/06dMnzz777IqeNgAAAAAAq7CK4qOXjK8Ae++9d6qrq3PNNdeUth1wwAFp2rRpbrjhhhRFkQ4dOuT444/PT37ykyTJ7NmzU11dnZEjR6Zv3755/vnns9FGG+WJJ57IVlttlSQZM2ZM9txzz7z22mvp0KFDLr/88vzv//5vampq0rhx4yTJSSedlNGjR+eFF15Ikhx88MGZO3du7rzzztJYtt1222yxxRa54oorlhj7vHnzMm/evNLz2tradOzYMbNnz06LFi1W5MsEX2lPPvlkunfvnokTJ6Zbt271PRxYZdTW1qaqqsp5CwAAAD4HK/zK9O222y733Xdf/vGPfyRJnnrqqfz1r3/NHnvskSSZOnVqampq0qtXr9I+VVVV6dGjR8aPH58kGT9+fFq2bFkK0pOkV69eadCgQR577LFSzU477VQK0pOkd+/emTJlSt5+++1SzUf7WVyzuJ+PO/vss1NVVVV6dOzY8b99OQAAAAAAWAU0WtEHPOmkk1JbW5sNN9wwDRs2zMKFC/Pzn/88/fr1S5LU1NQkSaqrq+vsV11dXWqrqalJu3bt6g60UaO0bt26Tk2XLl2WOMbitlatWqWmpmaZ/XzcySefnOOOO670fPGV6QAAAAAAfLWt8DD95ptvzqhRo3LjjTdm4403zqRJkzJ06NB06NAh/fv3X9HdrVBNmjRJkyZN6nsYAAAAAACsZFZ4mH7CCSfkpJNOSt++fZMkm266aV5++eWcffbZ6d+/f9q3b58kmT59etZaa63SftOnT88WW2yRJGnfvn3eeOONOsf94IMPMnPmzNL+7du3z/Tp0+vULH5ermZxOwAAAAAALI8Vvmb6u+++mwYN6h62YcOGWbRoUZKkS5cuad++fe67775Se21tbR577LH07NkzSdKzZ8/MmjUrEydOLNWMGzcuixYtSo8ePUo1Dz30UBYsWFCqGTt2bDbYYIO0atWqVPPRfhbXLO4HAAAAAACWxwoP0/fZZ5/8/Oc/z1133ZVp06bltttuywUXXJD9998/SVJRUZGhQ4fmrLPOyh133JFnnnkmP/jBD9KhQ4f06dMnSdK1a9fsvvvuOeKII/L444/nkUceyZAhQ9K3b9906NAhSfK9730vjRs3zsCBAzN58uTcdNNNufjii+useX7sscdmzJgxOf/88/PCCy9k+PDhmTBhQoYMGbKipw0AAAAAwCpshS/z8stf/jKnnXZafvSjH+WNN95Ihw4dcuSRR2bYsGGlmhNPPDFz587NoEGDMmvWrOywww4ZM2ZMKisrSzWjRo3KkCFDsuuuu6ZBgwY54IADcskll5Taq6qqcu+992bw4MHp3r171lxzzQwbNiyDBg0q1Wy33Xa58cYbc+qpp+aUU07Jeuutl9GjR2eTTTZZ0dMGAAAAAGAVVlEURVHfg1hZ1dbWpqqqKrNnz06LFi3qeziwynjyySfTvXv3TJw4Md26davv4cAqw3kLAAAAPj8rfJkXAAAAAABY1QjTAQAAAACgDGE6AAAAAACUIUwHAAAAAIAyhOkAAAAAAFCGMB0AAAAAAMoQpgMAAAAAQBnCdAAAAAAAKEOYDgAAAAAAZQjTAQAAAACgDGE6AAAAAACUIUwHAAAAAIAyhOkAAAAAAFCGMB0AAAAAAMoQpgMAAAAAQBnCdAAAAAAAKEOYDgAAAAAAZQjTAQAAAACgDGE6AAAAAACUIUwHAAAAAIAyhOkAAAAAAFCGMB0AAAAAAMoQpgMAAAAAQBmN6nsAQP145ZVXMmPGjHrp+/nnn6/z3/qw5pprZu211663/gEAAAD4chGmw1fQK6+8kg027Jr333u3Xsdx6KGH1lvflU1Xz5QXnheoAwAAALBchOnwFTRjxoy8/967abP38VmtTccvvP/ig/n5YPb0NKqqTkWjxl94/wveejVv3Xl+ZsyYIUwHAAAAYLkI0+ErbLU2HdOk/br10/nXN6qffgEAAADgM3ADUgAAAAAAKEOYDgAAAAAAZQjTAQAAAACgDGE6AAAAAACUIUwHAAAAAIAyhOkAAAAAAFCGMB0AAAAAAMoQpgMAAAAAQBnCdAAAAAAAKEOYDgAAAAAAZQjTAQAAAACgDGE6AAAAAACUIUwHAAAAAIAyhOkAAAAAAFCGMB0AAAAAAMoQpgMAAAAAQBnCdAAAAAAAKEOYDgAAAAAAZQjTAQAAAACgDGE6AAAAAACUIUwHAAAAAIAyhOkAAAAAAFCGMB0AAAAAAMoQpgMAAAAAQBnCdAAAAAAAKEOYDgAAAAAAZQjTAQAAAACgDGE6AAAAAACUIUwHAAAAAIAyhOkAAAAAAFCGMB0AAAAAAMoQpgMAAAAAQBnCdAAAAAAAKEOYDgAAAAAAZQjTAQAAAACgDGE6AAAAAACUIUwHAAAAAIAyhOkAAAAAAFCGMB0AAAAAAMoQpgMAAAAAQBnCdAAAAAAAKONzCdP//e9/59BDD02bNm3StGnTbLrpppkwYUKpvSiKDBs2LGuttVaaNm2aXr165cUXX6xzjJkzZ6Zfv35p0aJFWrZsmYEDB2bOnDl1ap5++unsuOOOqaysTMeOHTNixIglxnLLLbdkww03TGVlZTbddNPcfffdn8eUAQAAAABYha3wMP3tt9/O9ttvn9VWWy333HNPnnvuuZx//vlp1apVqWbEiBG55JJLcsUVV+Sxxx5Ls2bN0rt377z//vulmn79+mXy5MkZO3Zs7rzzzjz00EMZNGhQqb22tja77bZbOnXqlIkTJ+bcc8/N8OHDc+WVV5ZqHn300RxyyCEZOHBg/v73v6dPnz7p06dPnn322RU9bQAAAAAAVmEVRVEUK/KAJ510Uh555JE8/PDDS20viiIdOnTI8ccfn5/85CdJktmzZ6e6ujojR45M37598/zzz2ejjTbKE088ka222ipJMmbMmOy555557bXX0qFDh1x++eX53//939TU1KRx48alvkePHp0XXnghSXLwwQdn7ty5ufPOO0v9b7vtttliiy1yxRVXLDG2efPmZd68eaXntbW16dixY2bPnp0WLVqsmBcIVgJPPvlkunfvnvb9L0qT9uvW93C+cPNq/pma64dm4sSJ6datW30PB1aY2traVFVVOW8BAADA52CFX5l+xx13ZKuttsp3v/vdtGvXLltuuWWuuuqqUvvUqVNTU1OTXr16lbZVVVWlR48eGT9+fJJk/PjxadmyZSlIT5JevXqlQYMGeeyxx0o1O+20UylIT5LevXtnypQpefvtt0s1H+1ncc3ifj7u7LPPTlVVVenRsWPH//LVAAAAAABgVbDCw/SXXnopl19+edZbb738+c9/zlFHHZVjjjkm119/fZKkpqYmSVJdXV1nv+rq6lJbTU1N2rVrV6e9UaNGad26dZ2apR3jo318Us3i9o87+eSTM3v27NLj1Vdf/dTzBwAAAABg1dNoRR9w0aJF2WqrrfKLX/wiSbLlllvm2WefzRVXXJH+/fuv6O5WqCZNmqRJkyb1PQwAAAAAAFYyK/zK9LXWWisbbbRRnW1du3bNK6+8kiRp3759kmT69Ol1aqZPn15qa9++fd5444067R988EFmzpxZp2Zpx/hoH59Us7gdAAAAAACWxwoP07fffvtMmTKlzrZ//OMf6dSpU5KkS5cuad++fe67775Se21tbR577LH07NkzSdKzZ8/MmjUrEydOLNWMGzcuixYtSo8ePUo1Dz30UBYsWFCqGTt2bDbYYIO0atWqVPPRfhbXLO4HAAAAAACWxwpf5uXHP/5xtttuu/ziF7/IQQcdlMcffzxXXnllrrzyyiRJRUVFhg4dmrPOOivrrbdeunTpktNOOy0dOnRInz59knx4Jfvuu++eI444IldccUUWLFiQIUOGpG/fvunQoUOS5Hvf+17OOOOMDBw4MD/96U/z7LPP5uKLL86FF15YGsuxxx6bnXfeOeeff3722muv/P73v8+ECRNKY4GvsvbNK7Jp49ezWkXD+h7KF25B49eT5hX1PQwAAAAAvkRWeJi+9dZb57bbbsvJJ5+cM888M126dMlFF12Ufv36lWpOPPHEzJ07N4MGDcqsWbOyww47ZMyYMamsrCzVjBo1KkOGDMmuu+6aBg0a5IADDsgll1xSaq+qqsq9996bwYMHp3v37llzzTUzbNiwDBo0qFSz3Xbb5cYbb8ypp56aU045Jeutt15Gjx6dTTbZZEVPG750juzeOMM7XFHfw6gfHZLh3RvX9ygAAAAA+BKpKIqiqO9BrKxqa2tTVVWV2bNnp0WLFvU9HFhhnnzyyey181bZ9JATslqbjvU9nC/cgrdezTO/Ozd3PTgh3bp1q+/hwArjvAUAAACfnxV+ZTrw5VAzp0jmd0iTokt9D+ULN2/+wg/nDwAAAADLaYXfgBQAAAAAAFY1wnQAAAAAAChDmA4AAAAAAGUI0wEAAAAAoAxhOgAAAAAAlCFMBwAAAACAMoTpAAAAAABQhjAdAAAAAADKEKYDAAAAAEAZwnQAAAAAAChDmA4AAAAAAGUI0wEAAAAAoAxhOgAAAAAAlCFMBwAAAACAMoTpAAAAAABQhjAdAAAAAADKEKYDAAAAAEAZwnQAAAAAAChDmA4AAAAAAGUI0wEAAAAAoAxhOgAAAAAAlCFMBwAAAACAMoTpAAAAAABQhjAdAAAAAADKEKYDAAAAAEAZwnQAAAAAAChDmA4AAAAAAGUI0wEAAAAAoAxhOgAAAAAAlCFMBwAAAACAMoTpAAAAAABQhjAdAAAAAADKEKYDAAAAAEAZwnQAAAAAAChDmA4AAAAAAGUI0wEAAAAAoAxhOgAAAAAAlCFMBwAAAACAMoTpAAAAAABQhjAdAAAAAADKEKYDAAAAAEAZwnQAAAAAAChDmA4AAAAAAGU0qu8BAPVnwVuv1ku/xQfz88Hs6WlUVZ2KRo2/8P7ra94AAAAAfHkJ0+EraM0110xl09Xz1p3n1/dQ6k1l09Wz5ppr1vcwAAAAAPiSEKbDV9Daa6+dKS88nxkzZtRL/88//3wOPfTQ3HDDDenatWu9jGHNNdfM2muvXS99AwAAAPDlI0yHr6i111673sPkrl27plu3bvU6BgAAAABYHm5ACgAAAAAAZQjTAQAAAACgDGE6AAAAAACUIUwHAAAAAIAyhOkAAAAAAFCGMB0AAAAAAMoQpgMAAAAAQBnCdAAAAAAAKEOYDgAAAAAAZQjTAQAAAACgDGE6AAAAAACUIUwHAAAAAIAyhOkAAAAAAFCGMB0AAAAAAMoQpgMAAAAAQBnCdAAAAAAAKEOYDgAAAAAAZQjTAQAAAACgDGE6AAAAAACU8bmH6f/3f/+XioqKDB06tLTt/fffz+DBg9OmTZs0b948BxxwQKZPn15nv1deeSV77bVXVl999bRr1y4nnHBCPvjggzo1DzzwQLp165YmTZpk3XXXzciRI5fo/7LLLkvnzp1TWVmZHj165PHHH/88pgkAAAAAwCrscw3Tn3jiifz617/OZpttVmf7j3/84/zpT3/KLbfckgcffDCvv/56vvOd75TaFy5cmL322ivz58/Po48+muuvvz4jR47MsGHDSjVTp07NXnvtlW9+85uZNGlShg4dmh/+8If585//XKq56aabctxxx+X000/Pk08+mc033zy9e/fOG2+88XlOGwAAAACAVcznFqbPmTMn/fr1y1VXXZVWrVqVts+ePTvXXHNNLrjggnzrW99K9+7dc9111+XRRx/N3/72tyTJvffem+eeey433HBDtthii+yxxx752c9+lssuuyzz589PklxxxRXp0qVLzj///HTt2jVDhgzJgQcemAsvvLDU1wUXXJAjjjgiAwYMyEYbbZQrrrgiq6++eq699trPa9oAAAAAAKyCPrcwffDgwdlrr73Sq1evOtsnTpyYBQsW1Nm+4YYbZu2118748eOTJOPHj8+mm26a6urqUk3v3r1TW1ubyZMnl2o+fuzevXuXjjF//vxMnDixTk2DBg3Sq1evUs3HzZs3L7W1tXUeAAAAAADQ6PM46O9///s8+eSTeeKJJ5Zoq6mpSePGjdOyZcs626urq1NTU1Oq+WiQvrh9cduyampra/Pee+/l7bffzsKFC5da88ILLyx13GeffXbOOOOM5Z8oAAAAAABfCSv8yvRXX301xx57bEaNGpXKysoVffjP1cknn5zZs2eXHq+++mp9DwkAAAAAgJXACg/TJ06cmDfeeCPdunVLo0aN0qhRozz44IO55JJL0qhRo1RXV2f+/PmZNWtWnf2mT5+e9u3bJ0nat2+f6dOnL9G+uG1ZNS1atEjTpk2z5pprpmHDhkutWXyMj2vSpElatGhR5wEAAAAAACs8TN91113zzDPPZNKkSaXHVlttlX79+pX+vNpqq+W+++4r7TNlypS88sor6dmzZ5KkZ8+eeeaZZ/LGG2+UasaOHZsWLVpko402KtV89BiLaxYfo3HjxunevXudmkWLFuW+++4r1QAAAAAAwPJY4Wumr7HGGtlkk03qbGvWrFnatGlT2j5w4MAcd9xxad26dVq0aJGjjz46PXv2zLbbbpsk2W233bLRRhvl+9//fkaMGJGampqceuqpGTx4cJo0aZIk+Z//+Z9ceumlOfHEE3P44Ydn3Lhxufnmm3PXXXeV+j3uuOPSv3//bLXVVtlmm21y0UUXZe7cuRkwYMCKnjYAAAAAAKuwz+UGpOVceOGFadCgQQ444IDMmzcvvXv3zq9+9atSe8OGDXPnnXfmqKOOSs+ePdOsWbP0798/Z555ZqmmS5cuueuuu/LjH/84F198cb7+9a/n6quvTu/evUs1Bx98cN58880MGzYsNTU12WKLLTJmzJglbkoKAAAAAADLUlEURVHfg1hZ1dbWpqqqKrNnz7Z+OqxATz75ZLp3756JEyemW7du9T0cWGU4bwEAAMDnZ4WvmQ4AAAAAAKsaYToAAAAAAJQhTAcAAAAAgDKE6QAAAAAAUIYwHQAAAAAAyhCmAwAAAABAGcJ0AAAAAAAoQ5gOAAAAAABlCNMBAAAAAKAMYToAAAAAAJQhTAcAAAAAgDKE6QAAAAAAUIYwHQAAAAAAyhCmAwAAAABAGcJ0AAAAAAAoQ5gOAAAAAABlCNMBAAAAAKAMYToAAAAAAJQhTAcAAAAAgDKE6QAAAAAAUIYwHQAAAAAAyhCmAwAAAABAGcJ0AAAAAAAoQ5gOAAAAAABlCNMBAAAAAKAMYToAAAAAAJQhTAcAAAAAgDKE6QAAAAAAUIYwHQAAAAAAyhCmAwAAAABAGcJ0AAAAAAAoQ5gOAAAAAABlCNMBAAAAAKAMYToAAAAAAJQhTAcAAAAAgDKE6QAAAAAAUIYwHQAAAAAAyhCmAwAAAABAGcJ0AAAAAAAoQ5gOAAAAAABlCNMBAAAAAKAMYToAAAAAAJQhTAcAAAAAgDKE6QAAAAAAUIYwHQAAAAAAyhCmAwAAAABAGcJ0AAAAAAAoQ5gOAAAAAABlCNMBAAAAAKAMYToAAAAAAJQhTAcAAAAAgDKE6QAAAAAAUIYwHQAAAAAAyhCmAwAAAABAGcJ0AAAAAAAoQ5gOAAAAAABlCNMBAAAAAKAMYToAAAAAAJQhTAcAAAAAgDKE6QAAAAAAUIYwHQAAAAAAyhCmAwAAAABAGcJ0AAAAAAAoQ5gOAAAAAABlCNMBAAAAAKAMYToAAAAAAJQhTAcAAAAAgDKE6QAAAAAAUMYKD9PPPvvsbL311lljjTXSrl279OnTJ1OmTKlT8/7772fw4MFp06ZNmjdvngMOOCDTp0+vU/PKK69kr732yuqrr5527drlhBNOyAcffFCn5oEHHki3bt3SpEmTrLvuuhk5cuQS47nsssvSuXPnVFZWpkePHnn88cdX9JQBAAAAAFjFrfAw/cEHH8zgwYPzt7/9LWPHjs2CBQuy2267Ze7/197dB1lZ120Av5a3BYFdQ3mJAFmNRChfdk0lMiWxlZHIUtEmdUHB8m0E8iUqISmHZGjQRoMxJ/Alh7ICFUJLHMUBZjIMRhKcIElnCCQndhEYUPY8fzwPZ9xSDiq4PsvnM3PmzLnv7/071zn/nJlrfnOf7duLM+PHj89jjz2Whx9+OM8880w2btyYr33ta8Xze/bsybnnnpvdu3dn2bJlue+++zJnzpxMmjSpOPPyyy/n3HPPzZAhQ7Jy5cqMGzcuY8aMyRNPPFGc+dWvfpUJEyZk8uTJef7553PCCSektrY2r7322oH+2AAAAAAAtGBlhUKhcDDfYMuWLenWrVueeeaZfOELX0h9fX26du2ahx56KBdccEGSZO3atTnuuOOyfPnynHbaaVm0aFGGDx+ejRs3pnv37kmSWbNm5eabb86WLVvSrl273HzzzVm4cGFWr15dfK+LL744W7duzeOPP54kOfXUU/PZz342d911V5KksbExvXv3znXXXZfvfOc7JbM3NDSksrIy9fX1qaioONBfDRyynn/++dTU1GTFihWprq5u7jjQYvjdAgAAgIPnoN8zvb6+PknSpUuXJMmKFSvy5ptvZujQocWZ/v37p0+fPlm+fHmSZPny5fnMZz5TLNKTpLa2Ng0NDfnrX/9anHn7Gntn9q6xe/furFixoslMq1atMnTo0OLMf9q1a1caGhqaPAAAAAAA4KCW6Y2NjRk3blwGDx6cT3/600mSTZs2pV27djn88MObzHbv3j2bNm0qzry9SN97fu+5fc00NDRk586d+de//pU9e/a848zeNf7T1KlTU1lZWXz07t37/X1wAAAAAABalINapl9zzTVZvXp15s6dezDf5oCZOHFi6uvri49XX321uSMBAAAAAPAR0OZgLXzttddmwYIFWbJkSXr16lU83qNHj+zevTtbt25tsjt98+bN6dGjR3HmT3/6U5P1Nm/eXDy393nvsbfPVFRUpEOHDmndunVat279jjN71/hP5eXlKS8vf38fGAAAAACAFuuA70wvFAq59tprM2/evDz11FOpqqpqcr6mpiZt27bN4sWLi8deeumlvPLKKxk0aFCSZNCgQXnhhRfy2muvFWf++Mc/pqKiIgMGDCjOvH2NvTN712jXrl1qamqazDQ2Nmbx4sXFGQAAAAAA2B8HfGf6Nddck4ceeiiPPPJIOnfuXLw/eWVlZTp06JDKyspcccUVmTBhQrp06ZKKiopcd911GTRoUE477bQkyZe+9KUMGDAgl156aaZNm5ZNmzbl+9//fq655prizvFvfetbueuuu3LTTTfl8ssvz1NPPZVf//rXWbhwYTHLhAkTUldXl5NPPjmnnHJK7rjjjmzfvj2jR48+0B8bAAAAAIAW7ICX6TNnzkySnHnmmU2Oz549O6NGjUqSzJgxI61atcr555+fXbt2pba2Nj/72c+Ks61bt86CBQty1VVXZdCgQenYsWPq6uoyZcqU4kxVVVUWLlyY8ePH584770yvXr1y7733pra2tjhz0UUXZcuWLZk0aVI2bdqUE088MY8//vh//SkpAAAAAADsS1mhUCg0d4iPqoaGhlRWVqa+vj4VFRXNHQdajOeffz41NTVZsWJFqqurmzsOtBh+twAAAODgOeD3TAcAAAAAgJZGmQ4AAAAAACUo0wEAAAAAoARlOgAAAAAAlKBMBwAAAACAEpTpAAAAAABQgjIdAAAAAABKUKYDAAAAAEAJynQAAAAAAChBmQ4AAAAAACUo0wEAAAAAoARlOgAAAAAAlNCmuQMA///s2LEja9eufd/Xr1mzpsnz+9W/f/8cdthhH2gNAAAAANgfynTgPVu7dm1qamo+8DqXXHLJB7p+xYoVqa6u/sA5AAAAAKAUZTrwnvXv3z8rVqx439fv3LkzGzZsSN++fdOhQ4cPlAMAAAAAPgxlhUKh0NwhPqoaGhpSWVmZ+vr6VFRUNHccANgnv1sAAABw8PgDUgAAAAAAKEGZDgAAAAAAJSjTAQAAAACgBGU6AAAAAACUoEwHAAAAAIASlOkAAAAAAFCCMh0AAAAAAEpQpgMAAAAAQAnKdAAAAAAAKEGZDgAAAAAAJSjTAQAAAACgBGU6AAAAAACUoEwHAAAAAIASlOkAAAAAAFCCMh0AAAAAAEpo09wBPsoKhUKSpKGhoZmTAEBpe3+v9v5+AQAAAAeOMn0ftm3bliTp3bt3MycBgP23bdu2VFZWNncMAAAAaFHKCravvavGxsZs3LgxnTt3TllZWXPHgRajoaEhvXv3zquvvpqKiormjgMtRqFQyLZt29KzZ8+0auVObgAAAHAgKdOBD11DQ0MqKytTX1+vTAcAAADg/wXb1gAAAAAAoARlOgAAAAAAlKBMBz505eXlmTx5csrLy5s7CgAAAADsF/dMBwAAAACAEuxMBwAAAACAEpTpAAAAAABQgjIdAAAAAABKUKYDAAAAAEAJynTgQ7NkyZJ8+ctfTs+ePVNWVpb58+c3dyQAAAAA2C/KdOBDs3379pxwwgm5++67mzsKAAAAALwnbZo7AHDoGDZsWIYNG9bcMQAAAADgPbMzHQAAAAAASlCmAwAAAABACcp0AAAAAAAoQZkOAAAAAAAlKNMBAAAAAKCENs0dADh0vPHGG1m3bl3x9csvv5yVK1emS5cu6dOnTzMmAwAAAIB9KysUCoXmDgEcGp5++ukMGTLkv47X1dVlzpw5H34gAAAAANhPynQAAAAAACjBPdMBAAAAAKAEZToAAAAAAJSgTAcAAAAAgBKU6QAAAAAAUIIyHQAAAAAASlCmAwAAAABACcp0AAAAAAAoQZkOAAAAAAAlKNOBFmXUqFE577zzmjsGAAAAAC2MMh1auC1btuSqq65Knz59Ul5enh49eqS2tjZLly5NkpSVlWX+/PnNG/L/rFq1KiNGjEi3bt3Svn379O3bNxdddFFee+215o4GAAAAwCGuTXMHAA6u888/P7t37859992Xo48+Ops3b87ixYvz+uuvH9D3efPNN9O2bdv3ff2WLVty1llnZfjw4XniiSdy+OGHZ8OGDXn00Uezffv2A5gUAAAAAN47O9OhBdu6dWueffbZ3H777RkyZEiOOuqonHLKKZk4cWJGjBiRvn37Jkm++tWvpqysrPg6SWbOnJljjjkm7dq1y7HHHpsHHnigydplZWWZOXNmRowYkY4dO+a2225LkjzyyCOprq5O+/btc/TRR+fWW2/NW2+9VTLr0qVLU19fn3vvvTcnnXRSqqqqMmTIkMyYMSNVVVVJkj179uSKK65IVVVVOnTokGOPPTZ33nnnPtdtbGzM1KlTi9eccMIJ+c1vflM8/+9//zvf+MY30rVr13To0CH9+vXL7Nmz9+frBQAAAOAQYmc6tGCdOnVKp06dMn/+/Jx22mkpLy9vcv65555Lt27dMnv27Jxzzjlp3bp1kmTevHm5/vrrc8cdd2To0KFZsGBBRo8enV69emXIkCHF63/wgx/kxz/+ce644460adMmzz77bC677LL89Kc/zemnn57169fnyiuvTJJMnjx5n1l79OiRt956K/PmzcsFF1yQsrKy/5ppbGxMr1698vDDD+eII47IsmXLcuWVV+bjH/94Ro4c+Y7rTp06NQ8++GBmzZqVfv36ZcmSJbnkkkvStWvXnHHGGbnlllvy4osvZtGiRTnyyCOzbt267Ny58z19zwAAAAC0fGWFQqHQ3CGAg+e3v/1txo4dm507d6a6ujpnnHFGLr744hx//PFJ/neH+bx585r8aefgwYMzcODA3HPPPcVjI0eOzPbt27Nw4cLidePGjcuMGTOKM0OHDs1ZZ52ViRMnFo89+OCDuemmm7Jx48aSWb/3ve9l2rRpqaioyCmnnJIvfvGLueyyy9K9e/d3vebaa6/Npk2birvNR40ala1bt2b+/PnZtWtXunTpkieffDKDBg0qXjNmzJjs2LEjDz30UEaMGJEjjzwyv/jFL0rmAwAAAODQ5TYv0MKdf/752bhxYx599NGcc845efrpp1NdXZ05c+a86zVr1qzJ4MGDmxwbPHhw1qxZ0+TYySef3OT1qlWrMmXKlOKO+E6dOmXs2LH55z//mR07dpTMetttt2XTpk2ZNWtWBg4cmFmzZqV///554YUXijN33313ampq0rVr13Tq1Cn33HNPXnnllXdcb926ddmxY0fOPvvsJpnuv//+rF+/Pkly1VVXZe7cuTnxxBNz0003ZdmyZSVzAgAAAHDoUabDIaB9+/Y5++yzc8stt2TZsmUZNWpUyduu7I+OHTs2ef3GG2/k1ltvzcqVK4uPF154IX/729/Svn37/VrziCOOyIUXXpjp06dnzZo16dmzZ6ZPn54kmTt3bm644YZcccUV+cMf/pCVK1dm9OjR2b179zuu9cYbbyRJFi5c2CTTiy++WNzJPmzYsPzjH//I+PHjs3Hjxpx11lm54YYb3u9XAgAAAEAL5Z7pcAgaMGBA5s+fnyRp27Zt9uzZ0+T8cccdl6VLl6aurq54bOnSpRkwYMA+162urs5LL72UT37ykwckZ7t27XLMMcdk+/btxQyf+9zncvXVVxdn9u4wfycDBgxIeXl5XnnllZxxxhnvOte1a9fU1dWlrq4up59+em688cZigQ8AAAAAiTIdWrTXX389F154YS6//PIcf/zx6dy5c/785z9n2rRp+cpXvpIk6du3bxYvXpzBgwenvLw8H/vYx3LjjTdm5MiROemkkzJ06NA89thj+d3vfpcnn3xyn+83adKkDB8+PH369MkFF1yQVq1aZdWqVVm9enV+9KMf7fPaBQsWZO7cubn44ovzqU99KoVCIY899lh+//vfZ/bs2UmSfv365f77788TTzyRqqqqPPDAA3nuuedSVVX1jmt27tw5N9xwQ8aPH5/GxsZ8/vOfT319fZYuXZqKiorU1dVl0qRJqampycCBA7Nr164sWLAgxx133Pv4tgEAAABoyZTp0IJ16tQpp556ambMmJH169fnzTffTO/evTN27Nh897vfTZL85Cc/yYQJE/Lzn/88n/jEJ7Jhw4acd955ufPOOzN9+vRcf/31qaqqyuzZs3PmmWfu8/1qa2uzYMGCTJkyJbfffnvatm2b/v37Z8yYMSWzDhgwIIcddli+/e1v59VXX015eXn69euXe++9N5deemmS5Jvf/Gb+8pe/5KKLLkpZWVm+/vWv5+qrr86iRYvedd0f/vCH6dq1a6ZOnZq///3vOfzww1NdXV38/O3atcvEiROzYcOGdOjQIaeffnrmzp27n98wAAAAAIeKskKhUGjuEAAAAAAA8FHmD0gBAAAAAKAEZTrwofjlL3+ZTp06veNj4MCBzR0PAAAAAPbJbV6AD8W2bduyefPmdzzXtm3bHHXUUR9yIgAAAADYf8p0AAAAAAAowW1eAAAAAACgBGU6AAAAAACUoEwHAAAAAIASlOkAAAAAAFCCMh0AAAAAAEpQpgMAAAAAQAnKdAAAAAAAKOF/AKRTzfYHJH1+AAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 1500x1000 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"check_outliers(df)\n",
"visualize_outliers(df)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Датасет 3. Прогнозирование стоимости медицинского страхования\n",
"https://www.kaggle.com/datasets/harishkumardatalab/medical-insurance-price-prediction\n",
"## Анализ сведений о датасете\n",
"\n",
"### **Проблемная область**: \n",
"Задача прогнозирования медицинских расходов на основе различных факторов, влияющих на стоимость страхования. Это важно для компаний медицинского страхования для оптимизации ценообразования и управления рисками.\n",
"\n",
"### **Актуальность**: \n",
"Прогнозирование медицинских расходов является ключевым элементом для страховых компаний, чтобы правильно оценить риски, установить справедливые страховые взносы и обеспечить финансовую устойчивость компании. Актуальность такого анализа возрастает с увеличением потребности в персонализированном страховании.\n",
"\n",
"### **Объекты наблюдений**: \n",
"Каждый объект наблюдения представляет собой запись о человеке, который является клиентом медицинской страховой компании.\n",
"\n",
"### **Атрибуты объектов**:\n",
"- **Age (возраст)** — числовой атрибут, показывает возраст клиента.\n",
"- **Sex (пол)** — категориальный атрибут (мужчина/женщина), который может повлиять на тип медицинских услуг и расходы.\n",
"- **BMI (индекс массы тела)** — числовой атрибут, который может быть важным для оценки здоровья клиента и возможных заболеваний.\n",
"- **Children (дети)** — числовой атрибут, который может показывать потребность в медицинских услугах для детей.\n",
"- **Smoker (курящий)** — булев атрибут, показывающий, является ли человек курильщиком, что влияет на его здоровье и расходы.\n",
"- **Region (регион)** — текстовый атрибут, который может учитывать различия в стоимости медицинских услуг в разных регионах.\n",
"- **Charges (расходы)** — целевой числовой атрибут, показывающий медицинские расходы, которые следует предсказать.\n",
"\n",
"### **Связь между объектами**:\n",
" Атрибуты данных взаимосвязаны. Например, возраст, ИМТ и курение могут быть связанными с увеличением медицинских расходов, так как старение и ожирение повышают риски заболеваний. Регион может определять базовый уровень расходов, а наличие детей может указывать на дополнительные расходы на медицинские услуги для детей.\n",
"\n",
"## Качество набора данных\n",
"\n",
"### **Информативность**: \n",
"Набор данных содержит важные параметры для оценки медицинских расходов, такие как возраст, ИМТ, статус курящего и наличие детей. Однако дополнительные параметры, такие как хронические заболевания, история медицинских визитов или история страховки, могут улучшить модель.\n",
"\n",
"### **Степень покрытия**: \n",
"Набор данных охватывает несколько ключевых факторов (возраст, пол, ИМТ, количество детей, курение, регион), которые являются важными для прогнозирования расходов. Однако для более точных прогнозов могут быть полезны дополнительные данные, такие как образ жизни или медицинская история.\n",
"\n",
"### **Соответствие реальным данным**: \n",
"Данные вполне могут соответствовать реальной ситуации в медицинском страховании, так как параметры, такие как курение, возраст и ИМТ, действительно влияют на здоровье и, следовательно, на расходы на лечение. Однако важно, чтобы данные были сбалансированы и не содержали искажений.\n",
"\n",
"### **Согласованность меток**: \n",
"Метки, такие как пол, курящий/не курящий, и регион, должны быть корректно представлены. Необходимо убедиться в отсутствии противоречий в данных (например, отсутствие значений для категориальных переменных или неверных числовых значений).\n",
"\n",
"## Бизнес-цели, которые может решить этот датасет\n",
"\n",
"1. **Оптимизация ценообразования на медицинское страхование**\n",
" - **Эффект на бизнес**: Компании смогут более точно оценивать потенциальные расходы на медицинские услуги для клиентов, что позволит устанавливать адекватные страховые взносы, минимизируя риски и обеспечивая прибыльность.\n",
"\n",
"2. **Оценка рисков клиентов**\n",
" - **Эффект на бизнес**: Страховые компании смогут выявлять группы клиентов с высоким риском, что поможет предсказать, какие клиенты могут потребовать больше затрат на лечение, и соответственно, предлагать им более высокие премии или дополнительные услуги.\n",
"\n",
"3. **Разработка персонализированных предложений для клиентов**\n",
" - **Эффект на бизнес**: Возможность предложить клиентам индивидуальные страховые планы и дополнительные услуги, основанные на их рисках и потребностях, повысит их удовлетворенность и лояльность, а также улучшит финансовые результаты компании.\n",
"\n",
"## Примеры целей технического проекта для каждой бизнес-цели\n",
"\n",
"1. **Оптимизация ценообразования на медицинское страхование**\n",
" - **Цель технического проекта**: Построить модель регрессии для прогнозирования медицинских расходов на основе демографических данных (возраст, пол, ИМТ, курение и т.д.).\n",
" - **Что поступает на вход**: Возраст, пол, ИМТ, количество детей, курение, регион.\n",
" - **Целевой признак**: Расходы (charges).\n",
"\n",
"2. **Оценка рисков клиентов**\n",
" - **Цель технического проекта**: Разработать модель классификации для оценки уровня риска клиента (низкий, средний, высокий риск).\n",
" - **Что поступает на вход**: Возраст, пол, ИМТ, количество детей, курение, регион.\n",
" - **Целевой признак**: Риск (классификация на категории: низкий, средний, высокий).\n",
"\n",
"3. **Разработка персонализированных предложений для клиентов**\n",
" - **Цель технического проекта**: Создать систему рекомендаций, которая будет предлагать персонализированные страховые планы и услуги на основе характеристик клиента.\n",
" - **Что поступает на вход**: Все атрибуты клиента (возраст, пол, ИМТ, дети, курение, регион).\n",
" - **Целевой признак**: Рекомендуемый план страхования или дополнительная услуга.\n",
"\n",
"Каждый из этих проектов направлен на повышение прибыльности компании, улучшение персонализированного подхода к клиентам и снижение финансовых рисков."
]
},
{
"cell_type": "code",
"execution_count": 168,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 2772 entries, 0 to 2771\n",
"Data columns (total 7 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 age 2772 non-null int64 \n",
" 1 sex 2772 non-null object \n",
" 2 bmi 2772 non-null float64\n",
" 3 children 2772 non-null int64 \n",
" 4 smoker 2772 non-null object \n",
" 5 region 2772 non-null object \n",
" 6 charges 2772 non-null float64\n",
"dtypes: float64(2), int64(2), object(3)\n",
"memory usage: 151.7+ KB\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>count</th>\n",
" <th>mean</th>\n",
" <th>std</th>\n",
" <th>min</th>\n",
" <th>25%</th>\n",
" <th>50%</th>\n",
" <th>75%</th>\n",
" <th>max</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>age</th>\n",
" <td>2772.0</td>\n",
" <td>39.109668</td>\n",
" <td>14.081459</td>\n",
" <td>18.0000</td>\n",
" <td>26.000</td>\n",
" <td>39.00000</td>\n",
" <td>51.0000</td>\n",
" <td>64.00000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>bmi</th>\n",
" <td>2772.0</td>\n",
" <td>30.701349</td>\n",
" <td>6.129449</td>\n",
" <td>15.9600</td>\n",
" <td>26.220</td>\n",
" <td>30.44750</td>\n",
" <td>34.7700</td>\n",
" <td>53.13000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>children</th>\n",
" <td>2772.0</td>\n",
" <td>1.101732</td>\n",
" <td>1.214806</td>\n",
" <td>0.0000</td>\n",
" <td>0.000</td>\n",
" <td>1.00000</td>\n",
" <td>2.0000</td>\n",
" <td>5.00000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>charges</th>\n",
" <td>2772.0</td>\n",
" <td>13261.369959</td>\n",
" <td>12151.768945</td>\n",
" <td>1121.8739</td>\n",
" <td>4687.797</td>\n",
" <td>9333.01435</td>\n",
" <td>16577.7795</td>\n",
" <td>63770.42801</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" count mean std min 25% 50% \\\n",
"age 2772.0 39.109668 14.081459 18.0000 26.000 39.00000 \n",
"bmi 2772.0 30.701349 6.129449 15.9600 26.220 30.44750 \n",
"children 2772.0 1.101732 1.214806 0.0000 0.000 1.00000 \n",
"charges 2772.0 13261.369959 12151.768945 1121.8739 4687.797 9333.01435 \n",
"\n",
" 75% max \n",
"age 51.0000 64.00000 \n",
"bmi 34.7700 53.13000 \n",
"children 2.0000 5.00000 \n",
"charges 16577.7795 63770.42801 "
]
},
"execution_count": 168,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.read_csv('csv/5.medical_insurance.csv')\n",
"df.info()\n",
"df.describe().transpose()"
]
},
{
"cell_type": "code",
"execution_count": 169,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Присутствуют ли пустые значения признаков в колонке:\n",
"age False\n",
"sex False\n",
"bmi False\n",
"children False\n",
"smoker False\n",
"region False\n",
"charges False\n",
"dtype: bool \n",
"\n"
]
}
],
"source": [
"check_null_columns(df)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}