forked from Alexey/DAS_2024_1
53 lines
1.5 KiB
Python
53 lines
1.5 KiB
Python
import numpy as np
|
|
import time
|
|
import multiprocessing
|
|
|
|
|
|
def matrix_multiply(A, B):
|
|
n = A.shape[0]
|
|
C = np.zeros((n, n))
|
|
for i in range(n):
|
|
for j in range(n):
|
|
for k in range(n):
|
|
C[i, j] += A[i, k] * B[k, j]
|
|
return C
|
|
|
|
def worker(A, B, C, row_indices):
|
|
for i in row_indices:
|
|
for j in range(B.shape[1]):
|
|
for k in range(A.shape[1]):
|
|
C[i, j] += A[i, k] * B[k, j]
|
|
|
|
def parallel_matrix_multiply(A, B, num_processes):
|
|
n = A.shape[0]
|
|
C = np.zeros((n, n))
|
|
|
|
rows_per_process = n // num_processes
|
|
processes = []
|
|
for i in range(num_processes):
|
|
start_row = i * rows_per_process
|
|
end_row = start_row + rows_per_process if i != num_processes - 1 else n
|
|
p = multiprocessing.Process(target=worker, args=(A, B, C, range(start_row, end_row)))
|
|
processes.append(p)
|
|
p.start()
|
|
|
|
for p in processes:
|
|
p.join()
|
|
|
|
return C
|
|
|
|
def benchmark(matrix_size, num_processes):
|
|
A = np.random.rand(matrix_size, matrix_size)
|
|
B = np.random.rand(matrix_size, matrix_size)
|
|
|
|
start_time = time.time()
|
|
C_par = parallel_matrix_multiply(A, B, num_processes)
|
|
par_time = time.time() - start_time
|
|
print(f"Размер матрицы: {matrix_size}x{matrix_size}, Потоки: {num_processes}, Время: {par_time:.4f} сек.")
|
|
|
|
if __name__ == "__main__":
|
|
mat_sizes = [100, 300, 500]
|
|
for size in mat_sizes:
|
|
for num_processes in [1, 2, 4]:
|
|
benchmark(size, num_processes)
|