forked from Alexey/DAS_2024_1
39 lines
1.0 KiB
Python
39 lines
1.0 KiB
Python
import numpy as np
|
|
from multiprocessing import Pool
|
|
import time
|
|
|
|
|
|
def determinant_block(matrix_block):
|
|
return np.linalg.det(matrix_block)
|
|
|
|
|
|
def determinant_parallel(matrix, num_processes):
|
|
size = matrix.shape[0]
|
|
step = size // num_processes
|
|
|
|
pool = Pool(processes=num_processes)
|
|
blocks = []
|
|
for i in range(0, size, step):
|
|
blocks.append(matrix[i:i+step, i:i+step])
|
|
|
|
dets = pool.map(determinant_block, blocks)
|
|
return np.prod(dets)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
sizes = [100, 300, 500]
|
|
processes = [2, 4, 8]
|
|
|
|
for size in sizes:
|
|
matrix = np.random.rand(size, size)
|
|
|
|
for p in processes:
|
|
start = time.time()
|
|
det = determinant_parallel(matrix, p)
|
|
end = time.time()
|
|
print(f"{size}x{size} matrix with {p} processes took {end - start:.5f} secs")
|
|
|
|
start = time.time()
|
|
det_seq = determinant_block(matrix)
|
|
end = time.time()
|
|
print(f"{size}x{size} matrix sequential took {end - start:.5f} secs") |