forked from Alexey/DAS_2024_1
67 lines
2.2 KiB
Python
67 lines
2.2 KiB
Python
import numpy as np
|
|
from multiprocessing import Pool
|
|
import time
|
|
|
|
# Генерация квадратной матрицы случайными значениями
|
|
def generate_matrix(size):
|
|
return np.random.randint(1, 10, (size, size))
|
|
|
|
|
|
# Обычное умножение матриц
|
|
def matrix_multiply_sequential(A, B):
|
|
size = A.shape[0]
|
|
C = np.zeros((size, size), dtype=int)
|
|
for i in range(size):
|
|
for j in range(size):
|
|
C[i, j] = sum(A[i, k] * B[k, j] for k in range(size))
|
|
return C
|
|
|
|
def multiply_row(args):
|
|
A, B, row = args
|
|
return np.dot(A[row, :], B)
|
|
|
|
|
|
# Параллельное умножение матриц
|
|
def parallel_matrix_multiply(A, B, num_processes):
|
|
n = A.shape[0]
|
|
C = np.zeros((n, n))
|
|
|
|
# Создаем пул процессов
|
|
with Pool(processes=num_processes) as pool:
|
|
results = pool.map(multiply_row, [(A, B, i) for i in range(n)])
|
|
|
|
# Записываем результат
|
|
for i, row in enumerate(results):
|
|
C[i, :] = row
|
|
|
|
return C
|
|
|
|
|
|
# Бенчмарк функции
|
|
def benchmark(matrix_size, num_processes_list):
|
|
A = np.random.randint(0, 10, (matrix_size, matrix_size))
|
|
B = np.random.randint(0, 10, (matrix_size, matrix_size))
|
|
|
|
# Последовательное умножение
|
|
start_time = time.time()
|
|
C_seq = np.dot(A, B)
|
|
sequential_time = time.time() - start_time
|
|
print(f"Sequential time for {matrix_size}x{matrix_size}: {sequential_time:.4f} seconds")
|
|
|
|
# Параллельное умножение
|
|
for num_processes in num_processes_list:
|
|
start_time = time.time()
|
|
C_par = parallel_matrix_multiply(A, B, num_processes)
|
|
parallel_time = time.time() - start_time
|
|
speedup = sequential_time / parallel_time
|
|
print(f"Parallel time with {num_processes} processes: {parallel_time:.4f} seconds, Speedup: {speedup:.2f}")
|
|
|
|
|
|
if __name__ == '__main__':
|
|
# Запуск бенчмарков
|
|
matrix_sizes = [100, 500, 1000, 2500, 400]
|
|
num_processes_list = [1, 2, 4, 6, 8, 12, 16]
|
|
|
|
for size in matrix_sizes:
|
|
print(f"\n--- Benchmark for {size}x{size} Matrix ---")
|
|
benchmark(size, num_processes_list) |