forked from Alexey/DAS_2024_1
103 lines
2.2 KiB
Python
103 lines
2.2 KiB
Python
|
import random as rnd
|
||
|
import threading
|
||
|
import time
|
||
|
import concurrent.futures
|
||
|
from copy import deepcopy
|
||
|
|
||
|
def generateSquareMatrix(size):
|
||
|
return [[rnd.randint(0, 100) for i in range(size)] for j in range(size)]
|
||
|
|
||
|
def printMatrix(matrix):
|
||
|
for row in matrix:
|
||
|
print(*row, sep="\t")
|
||
|
|
||
|
testmatrix = generateSquareMatrix(500)
|
||
|
|
||
|
def process_row(args):
|
||
|
i, j, m, n = args
|
||
|
|
||
|
factor = m[j][i] / m[i][i]
|
||
|
|
||
|
for k in range(i, n):
|
||
|
m[j][k] -= factor * m[i][k]
|
||
|
|
||
|
return m[j]
|
||
|
|
||
|
|
||
|
def parallel_det(matrix, threadss):
|
||
|
n = len(matrix)
|
||
|
|
||
|
m = deepcopy(matrix)
|
||
|
|
||
|
det_value = 1
|
||
|
|
||
|
def process_row(i, j):
|
||
|
factor = m[j][i] / m[i][i]
|
||
|
for k in range(i, n):
|
||
|
m[j][k] -= factor * m[i][k]
|
||
|
|
||
|
for i in range(n):
|
||
|
if m[i][i] == 0:
|
||
|
for j in range(i + 1, n):
|
||
|
if m[j][i] != 0:
|
||
|
m[i], m[j] = m[j], m[i]
|
||
|
|
||
|
det_value *= -1
|
||
|
|
||
|
break
|
||
|
else:
|
||
|
return 0
|
||
|
|
||
|
with concurrent.futures.ThreadPoolExecutor(max_workers=threadss) as executor:
|
||
|
futures = [
|
||
|
executor.submit(process_row, i, j) for j in range(i + 1, n)
|
||
|
]
|
||
|
concurrent.futures.wait(futures)
|
||
|
|
||
|
det_value *= m[i][i]
|
||
|
|
||
|
return det_value
|
||
|
|
||
|
|
||
|
def det(matrix):
|
||
|
n = len(matrix)
|
||
|
m = [row[:] for row in matrix]
|
||
|
det_value = 1
|
||
|
|
||
|
for i in range(n):
|
||
|
if m[i][i] == 0:
|
||
|
for j in range(i + 1, n):
|
||
|
if m[j][i] != 0:
|
||
|
m[i], m[j] = m[j], m[i]
|
||
|
|
||
|
det_value *= -1
|
||
|
|
||
|
break
|
||
|
else:
|
||
|
return 0
|
||
|
|
||
|
for j in range(i + 1, n):
|
||
|
factor = m[j][i] / m[i][i]
|
||
|
|
||
|
for k in range(i, n):
|
||
|
m[j][k] -= factor * m[i][k]
|
||
|
|
||
|
det_value *= m[i][i]
|
||
|
|
||
|
return det_value
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
|
||
|
sizes = [100, 300, 500]
|
||
|
num_threads = [1, 5, 8, 12]
|
||
|
|
||
|
for size in sizes:
|
||
|
matrix1 = generateSquareMatrix(size)
|
||
|
for threads in num_threads:
|
||
|
start_time = time.time()
|
||
|
parallel_det(matrix1, threads)
|
||
|
end_time = time.time()
|
||
|
print(f"Parallel size {size}, {threads} thread(s): {end_time - start_time}s")
|
||
|
|
||
|
print("-" * 100)
|