forked from Alexey/DAS_2024_1
141 lines
4.6 KiB
Python
141 lines
4.6 KiB
Python
|
import math
|
|||
|
from multiprocessing import Pool
|
|||
|
import numpy as np
|
|||
|
from datetime import datetime
|
|||
|
|
|||
|
# Поиск строки с наибольшим кол-вом нулей
|
|||
|
def check_zeros_string(arr, start=0, end=0):
|
|||
|
if end == 0:
|
|||
|
end = len(arr)
|
|||
|
max_zeros = []
|
|||
|
for i in range(start, end):
|
|||
|
max_zeros.append((i, len(arr[start]) - int(np.count_nonzero(arr[i]))))
|
|||
|
max = max_zeros[0]
|
|||
|
for zero in max_zeros:
|
|||
|
if zero[1] >= max[1]:
|
|||
|
max = zero
|
|||
|
return max
|
|||
|
|
|||
|
|
|||
|
# Поиск столбца с наибольшим кол-вом нулей
|
|||
|
def check_zeros_column(arr, start=0, end=0):
|
|||
|
if end == 0:
|
|||
|
end = len(arr)
|
|||
|
max_zeros = []
|
|||
|
for i in range(start, end):
|
|||
|
max_zeros.append((i, len(arr[:, start]) - int(np.count_nonzero(arr[:, i]))))
|
|||
|
max = max_zeros[0]
|
|||
|
for zero in max_zeros:
|
|||
|
if zero[1] >= max[1]:
|
|||
|
max = zero
|
|||
|
return max
|
|||
|
|
|||
|
# Уменьшение порядка матрицы по строке
|
|||
|
|
|||
|
def delta_string(arr, id, start=0, end=0):
|
|||
|
if end == 0:
|
|||
|
end = len(arr)
|
|||
|
if arr.shape == (2, 2):
|
|||
|
return arr[0][0] * arr[1][1] - arr[0][1] * arr[1][0]
|
|||
|
num_arrays = []
|
|||
|
for j in range(start, end):
|
|||
|
if arr[id][j] == 0:
|
|||
|
continue
|
|||
|
minor = np.delete(arr, id, 0)
|
|||
|
minor = np.delete(minor, j, 1)
|
|||
|
num_arrays.append((arr[id][j] * pow(-1, id + j + 2), minor))
|
|||
|
result = 0
|
|||
|
for n_a in num_arrays:
|
|||
|
max_zeros_strings = check_zeros_string(n_a[1])
|
|||
|
max_zeros_columns = check_zeros_column(n_a[1])
|
|||
|
if max_zeros_strings[1] >= max_zeros_columns[1]:
|
|||
|
delta = delta_string(n_a[1], max_zeros_strings[0])
|
|||
|
else:
|
|||
|
delta = delta_column(n_a[1], max_zeros_columns[0])
|
|||
|
result += n_a[0] * delta
|
|||
|
return result
|
|||
|
|
|||
|
# Уменьшение порядка матрицы по столбцу
|
|||
|
def delta_column(arr, id, start=0, end=0):
|
|||
|
if end == 0:
|
|||
|
end = len(arr)
|
|||
|
if arr.shape == (2, 2):
|
|||
|
return arr[0][0] * arr[1][1] - arr[0][1] * arr[1][0]
|
|||
|
num_arrays = []
|
|||
|
for i in range(start, end):
|
|||
|
if arr[i][id] == 0:
|
|||
|
continue
|
|||
|
minor = np.delete(arr, i, 0)
|
|||
|
minor = np.delete(minor, id, 1)
|
|||
|
num_arrays.append((arr[i][id] * pow(-1, i + id + 2), minor))
|
|||
|
result = 0
|
|||
|
for n_a in num_arrays:
|
|||
|
max_zeros_strings = check_zeros_string(n_a[1])
|
|||
|
max_zeros_columns = check_zeros_column(n_a[1])
|
|||
|
if max_zeros_strings[1] >= max_zeros_columns[1]:
|
|||
|
delta = delta_string(n_a[1], max_zeros_strings[0])
|
|||
|
else:
|
|||
|
delta = delta_column(n_a[1], max_zeros_columns[0])
|
|||
|
result += n_a[0] * delta
|
|||
|
return result
|
|||
|
|
|||
|
|
|||
|
if __name__ == '__main__':
|
|||
|
print("Start")
|
|||
|
sizes = [6, 8, 11]
|
|||
|
threads_counts = [1, 2, 4]
|
|||
|
for size in sizes:
|
|||
|
fst = np.random.randint(0, 5, size=(size, size))
|
|||
|
for thread_count in threads_counts:
|
|||
|
step = math.floor(size / thread_count)
|
|||
|
remaining_lines = size % thread_count
|
|||
|
steps = [step] * thread_count
|
|||
|
pool = Pool(thread_count)
|
|||
|
|
|||
|
for i in range(0, len(steps)):
|
|||
|
steps[i] = steps[i] + math.ceil(remaining_lines / thread_count)
|
|||
|
remaining_lines -= math.ceil(remaining_lines / thread_count)
|
|||
|
if remaining_lines == 0:
|
|||
|
break
|
|||
|
args = []
|
|||
|
i = 0
|
|||
|
for step in steps:
|
|||
|
args.append([fst,i, i + step])
|
|||
|
i += step
|
|||
|
|
|||
|
|
|||
|
startTime = datetime.now()
|
|||
|
max_zero_string = pool.starmap(check_zeros_string, args)
|
|||
|
|
|||
|
max_zero_column = pool.starmap(check_zeros_column, args)
|
|||
|
|
|||
|
mzs = max_zero_string[0]
|
|||
|
for mz in max_zero_string:
|
|||
|
if mz[1] >= mzs[1]:
|
|||
|
mzs = mz
|
|||
|
|
|||
|
mzc = max_zero_column[0]
|
|||
|
for mz in max_zero_column:
|
|||
|
if mz[1] >= mzc[1]:
|
|||
|
mzc = mz
|
|||
|
|
|||
|
args.clear()
|
|||
|
i = 0
|
|||
|
if mzs[1] >= mzc[1]:
|
|||
|
for step in steps:
|
|||
|
args.append([fst, mzs[0], i, i + step])
|
|||
|
i += step
|
|||
|
result = pool.starmap(delta_string, args)
|
|||
|
else:
|
|||
|
for step in steps:
|
|||
|
args.append([fst, mzc[0], i, i + step])
|
|||
|
i += step
|
|||
|
result = pool.starmap(delta_column, args)
|
|||
|
endTime = datetime.now()
|
|||
|
print(f"Size: {size}")
|
|||
|
print(f"Count of threads: {thread_count}")
|
|||
|
print(f"Work time: {endTime-startTime}")
|
|||
|
print("_-_-_-_-_-_-_-_-_-")
|
|||
|
print("-------------------------------------------")
|
|||
|
|