forked from Alexey/DAS_2024_1
58 lines
1.7 KiB
Python
58 lines
1.7 KiB
Python
|
import random
|
|||
|
import time
|
|||
|
import multiprocessing
|
|||
|
import numpy as np
|
|||
|
|
|||
|
# Генерация матрицы
|
|||
|
def generate_matrix(size):
|
|||
|
return [[random.randint(0, 10) for _ in range(size)] for _ in range(size)]
|
|||
|
|
|||
|
# Умножение одной строки
|
|||
|
def multiply_row(i, A, B, result):
|
|||
|
size = len(A)
|
|||
|
for j in range(size):
|
|||
|
for k in range(size):
|
|||
|
result[i][j] += A[i][k] * B[k][j]
|
|||
|
|
|||
|
# параллельное умножение матриц с помощью multiprocessing
|
|||
|
def parallel_matrix_multiply(A, B, num_processes):
|
|||
|
size = len(A)
|
|||
|
result = [[0] * size for _ in range(size)]
|
|||
|
|
|||
|
with multiprocessing.Pool(processes=num_processes) as pool:
|
|||
|
pool.starmap(multiply_row, [(i, A, B, result) for i in range(size)])
|
|||
|
|
|||
|
return result
|
|||
|
|
|||
|
# Замер времени на умножение
|
|||
|
def benchmark(size, num_processes=1):
|
|||
|
A = generate_matrix(size)
|
|||
|
B = generate_matrix(size)
|
|||
|
|
|||
|
start_time = time.time()
|
|||
|
parallel_matrix_multiply(A, B, num_processes)
|
|||
|
par_time = time.time() - start_time
|
|||
|
|
|||
|
return par_time
|
|||
|
|
|||
|
def main():
|
|||
|
# Размеры матриц
|
|||
|
matrix_sizes = [100, 300, 500]
|
|||
|
# Количество потоков
|
|||
|
num_processes_list = [1, 2, 4, 6, 8]
|
|||
|
# Таблица с бенчмарками
|
|||
|
print("-*" * 40)
|
|||
|
print(f"{'Количество потоков':<20}{'|100x100 (сек.)':<20}{'|300x300 (сек.)':<20}{'|500x500 (сек.)'}")
|
|||
|
print("-*" * 40)
|
|||
|
|
|||
|
for num_processes in num_processes_list:
|
|||
|
row = f"{num_processes:<20}"
|
|||
|
|
|||
|
for size in matrix_sizes:
|
|||
|
par_time = benchmark(size, num_processes)
|
|||
|
row += f"|{par_time:.4f}".ljust(20)
|
|||
|
print(row)
|
|||
|
print("-*" * 40)
|
|||
|
|
|||
|
if __name__ == "__main__":
|
|||
|
main()
|