PIbd42NevaevaCourses/lec4.ipynb

1784 lines
337 KiB
Plaintext
Raw Normal View History

2025-01-20 03:13:46 +04:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Начало лабораторной работы"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Index(['Date', 'Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume'], dtype='object')\n"
]
}
],
"source": [
"import pandas as pd\n",
"df = pd.read_csv(\"data/starbucks.csv\")\n",
"print(df.columns)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Бизнес-цели"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"1. Прогнозирование посетителей в магазине:\n",
"\n",
"Цель: Разработать модель, которая будет предсказывать объем выкупленного кофе основе: цены открытия, цены закрытия, самой высокой цене, самой низкой цене\n",
"Применение:\n",
"Узнать, какие лучше цены выставлять на кофе\n",
"\n",
"2. Оптимизация цен на кофе:\n",
"Цель: Определить оптимальную цену на кофе, чтобы объем их скупа был больше.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"1. Прогнозирование посетителей в магазине"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Среднее значение поля 'Volume: 14704589.99726232\n",
" Date Open High Low Close Adj Close Volume \\\n",
"0 1992-06-26 0.328125 0.347656 0.320313 0.335938 0.260703 224358400 \n",
"1 1992-06-29 0.339844 0.367188 0.332031 0.359375 0.278891 58732800 \n",
"2 1992-06-30 0.367188 0.371094 0.343750 0.347656 0.269797 34777600 \n",
"3 1992-07-01 0.351563 0.359375 0.339844 0.355469 0.275860 18316800 \n",
"4 1992-07-02 0.359375 0.359375 0.347656 0.355469 0.275860 13996800 \n",
"\n",
" above_average_volume volume_volatility \n",
"0 1 584004800 \n",
"1 1 584004800 \n",
"2 1 584004800 \n",
"3 1 584004800 \n",
"4 0 584004800 \n"
]
}
],
"source": [
"# Устанавливаем случайное состояние\n",
"random_state = 28\n",
"\n",
"# Рассчитываем среднее значение объема\n",
"average_count = df['Volume'].mean()\n",
"print(f\"Среднее значение поля 'Volume: {average_count}\")\n",
"\n",
"# Создаем новую переменную, указывающую, превышает ли объемная продажа среднюю\n",
"df[\"above_average_volume\"] = (df[\"Volume\"] > average_count).astype(int)\n",
"\n",
"# Рассчитываем волатильность (разницу между максимальной и минимальной объемная продажаю)\n",
"df[\"volume_volatility\"] = df[\"Volume\"].max() - df[\"Volume\"].min()\n",
"\n",
"# Выводим первые строки измененной таблицы для проверки\n",
"print(df.head())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"2. Оптимизация параметров магазина:"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Средняя объемная продажа для 'Open':\n",
"Open\n",
"0.328125 224358400.0\n",
"0.339844 58732800.0\n",
"0.351563 9331200.0\n",
"0.355469 13081600.0\n",
"0.359375 12518400.0\n",
" ... \n",
"122.559998 11747000.0\n",
"122.930000 6618400.0\n",
"124.550003 7934200.0\n",
"125.739998 4827500.0\n",
"126.080002 6110900.0\n",
"Name: Volume, Length: 5300, dtype: float64\n",
"\n",
"Средняя объемная продажа для 'Close':\n",
"Close\n",
"0.335938 224358400.0\n",
"0.347656 25139200.0\n",
"0.355469 12182400.0\n",
"0.359375 31328000.0\n",
"0.363281 11040000.0\n",
" ... \n",
"122.410004 11747000.0\n",
"122.629997 7172300.0\n",
"125.970001 7934200.0\n",
"126.029999 6110900.0\n",
"126.059998 4827500.0\n",
"Name: Volume, Length: 5440, dtype: float64\n",
"\n",
"Средняя объемная продажа для 'High':\n",
"High\n",
"0.347656 2.243584e+08\n",
"0.355469 1.063893e+07\n",
"0.359375 1.207893e+07\n",
"0.367188 3.488640e+07\n",
"0.371094 2.038720e+07\n",
" ... \n",
"123.330002 1.174700e+07\n",
"123.470001 6.618400e+06\n",
"126.099998 4.827500e+06\n",
"126.160004 6.110900e+06\n",
"126.320000 7.934200e+06\n",
"Name: Volume, Length: 5245, dtype: float64\n",
"\n",
"Средняя объемная продажа для 'Low':\n",
"Low\n",
"0.320313 224358400.0\n",
"0.332031 58732800.0\n",
"0.339844 18316800.0\n",
"0.343750 25139200.0\n",
"0.347656 8584000.0\n",
" ... \n",
"121.389999 11747000.0\n",
"122.139999 6618400.0\n",
"123.919998 7934200.0\n",
"124.250000 4827500.0\n",
"124.809998 6110900.0\n",
"Name: Volume, Length: 5223, dtype: float64\n",
"\n",
"Средняя объемная продажа для комбинации 'Open' и 'Close':\n",
"Open Close \n",
"0.328125 0.335938 224358400.0\n",
"0.339844 0.359375 58732800.0\n",
"0.351563 0.355469 12035200.0\n",
" 0.359375 3923200.0\n",
"0.355469 0.347656 15500800.0\n",
" ... \n",
"122.559998 122.410004 11747000.0\n",
"122.930000 122.379997 6618400.0\n",
"124.550003 125.970001 7934200.0\n",
"125.739998 126.059998 4827500.0\n",
"126.080002 126.029999 6110900.0\n",
"Name: Volume, Length: 7825, dtype: float64\n",
"\n",
"Средняя объемная продажа для комбинации 'High' и 'Low':\n",
"High Low \n",
"0.347656 0.320313 224358400.0\n",
"0.355469 0.343750 15500800.0\n",
" 0.347656 8208000.0\n",
"0.359375 0.339844 18316800.0\n",
" 0.347656 8960000.0\n",
" ... \n",
"123.330002 121.389999 11747000.0\n",
"123.470001 122.139999 6618400.0\n",
"126.099998 124.250000 4827500.0\n",
"126.160004 124.809998 6110900.0\n",
"126.320000 123.919998 7934200.0\n",
"Name: Volume, Length: 7662, dtype: float64\n",
"\n"
]
}
],
"source": [
"# Устанавливаем случайное состояние\n",
"random_state = 42\n",
"\n",
"# Рассчитываем среднюю объемную продажу для каждого значения каждого признака\n",
"for column in [\"Open\", \"Close\", \"High\", \"Low\"]:\n",
" print(f\"Средняя объемная продажа для '{column}':\")\n",
" print(df.groupby(column)[\"Volume\"].mean())\n",
" print()\n",
"\n",
"\n",
"print(\"Средняя объемная продажа для комбинации 'Open' и 'Close':\")\n",
"print(df.groupby([\"Open\", \"Close\"])[\"Volume\"].mean())\n",
"print()\n",
"\n",
"\n",
"print(\"Средняя объемная продажа для комбинации 'High' и 'Low':\")\n",
"print(df.groupby([\"High\", \"Low\"])[\"Volume\"].mean())\n",
"print()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Выбор ориентира:\n",
"1. Прогнозирование стоимости акций взносов:\n",
"Ориентир:\n",
"\n",
"R² (коэффициент детерминации): 0.75 - 0.85\n",
"\n",
"MAE (средняя абсолютная ошибка): 1000000 - 1500000 продаж\n",
"\n",
"RMSE (среднеквадратичная ошибка): 1200000 - 1600000 продаж"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"MAE: 3991467.1377542643\n",
"MSE: 46938455671077.555\n",
"RMSE: 6851164.548533158\n",
"R²: 0.5289490019636116\n",
"Ориентиры для прогнозирования не достигнуты.\n",
"Средняя объемная продажа 'Open':\n",
"Open\n",
"0.328125 224358400.0\n",
"0.339844 58732800.0\n",
"0.351563 9331200.0\n",
"0.355469 13081600.0\n",
"0.359375 12518400.0\n",
" ... \n",
"122.559998 11747000.0\n",
"122.930000 6618400.0\n",
"124.550003 7934200.0\n",
"125.739998 4827500.0\n",
"126.080002 6110900.0\n",
"Name: Volume, Length: 5300, dtype: float64\n",
"\n",
"Средняя объемная продажа 'High':\n",
"High\n",
"0.347656 2.243584e+08\n",
"0.355469 1.063893e+07\n",
"0.359375 1.207893e+07\n",
"0.367188 3.488640e+07\n",
"0.371094 2.038720e+07\n",
" ... \n",
"123.330002 1.174700e+07\n",
"123.470001 6.618400e+06\n",
"126.099998 4.827500e+06\n",
"126.160004 6.110900e+06\n",
"126.320000 7.934200e+06\n",
"Name: Volume, Length: 5245, dtype: float64\n",
"\n",
"Средняя объемная продажа 'Close':\n",
"Close\n",
"0.335938 224358400.0\n",
"0.347656 25139200.0\n",
"0.355469 12182400.0\n",
"0.359375 31328000.0\n",
"0.363281 11040000.0\n",
" ... \n",
"122.410004 11747000.0\n",
"122.629997 7172300.0\n",
"125.970001 7934200.0\n",
"126.029999 6110900.0\n",
"126.059998 4827500.0\n",
"Name: Volume, Length: 5440, dtype: float64\n",
"\n",
"Средняя объемная продажа 'Low':\n",
"Low\n",
"0.320313 224358400.0\n",
"0.332031 58732800.0\n",
"0.339844 18316800.0\n",
"0.343750 25139200.0\n",
"0.347656 8584000.0\n",
" ... \n",
"121.389999 11747000.0\n",
"122.139999 6618400.0\n",
"123.919998 7934200.0\n",
"124.250000 4827500.0\n",
"124.809998 6110900.0\n",
"Name: Volume, Length: 5223, dtype: float64\n",
"\n",
"Средняя посещаемость взносов для комбинации 'Open' и 'Close':\n",
"Open Close \n",
"0.328125 0.335938 224358400.0\n",
"0.339844 0.359375 58732800.0\n",
"0.351563 0.355469 12035200.0\n",
" 0.359375 3923200.0\n",
"0.355469 0.347656 15500800.0\n",
" ... \n",
"122.559998 122.410004 11747000.0\n",
"122.930000 122.379997 6618400.0\n",
"124.550003 125.970001 7934200.0\n",
"125.739998 126.059998 4827500.0\n",
"126.080002 126.029999 6110900.0\n",
"Name: Volume, Length: 7825, dtype: float64\n",
"\n",
"Средняя посещаемость взносов для комбинации 'High' и 'Low':\n",
"High Low \n",
"0.347656 0.320313 224358400.0\n",
"0.355469 0.343750 15500800.0\n",
" 0.347656 8208000.0\n",
"0.359375 0.339844 18316800.0\n",
" 0.347656 8960000.0\n",
" ... \n",
"123.330002 121.389999 11747000.0\n",
"123.470001 122.139999 6618400.0\n",
"126.099998 124.250000 4827500.0\n",
"126.160004 124.809998 6110900.0\n",
"126.320000 123.919998 7934200.0\n",
"Name: Volume, Length: 7662, dtype: float64\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\ateks\\Courses\\Courses\\.venv\\Lib\\site-packages\\sklearn\\metrics\\_regression.py:492: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.\n",
" warnings.warn(\n"
]
}
],
"source": [
"from sklearn.model_selection import train_test_split\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.linear_model import LinearRegression\n",
"from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score\n",
"\n",
"\n",
"# Разделяем данные на признаки (X) и целевую переменную (y)\n",
"\n",
"X = df.drop(columns=[\"Volume\", \"Date\"], axis=1)\n",
"\n",
"y = df[\"Volume\"]\n",
"\n",
"# Разделяем данные на обучающую и тестовую выборки\n",
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
"\n",
"# Стандартизируем признаки\n",
"scaler = StandardScaler()\n",
"X_train = scaler.fit_transform(X_train)\n",
"X_test = scaler.transform(X_test)\n",
"\n",
"# Обучаем модель линейной регрессии\n",
"model = LinearRegression()\n",
"model.fit(X_train, y_train)\n",
"\n",
"# Делаем предсказания на тестовой выборке\n",
"y_pred = model.predict(X_test)\n",
"\n",
"# Оцениваем качество модели\n",
"mae = mean_absolute_error(y_test, y_pred)\n",
"mse = mean_squared_error(y_test, y_pred)\n",
"rmse = mean_squared_error(y_test, y_pred, squared=False)\n",
"r2 = r2_score(y_test, y_pred)\n",
"\n",
"print(f\"MAE: {mae}\")\n",
"print(f\"MSE: {mse}\")\n",
"print(f\"RMSE: {rmse}\")\n",
"print(f\"R²: {r2}\")\n",
"\n",
"# Проверяем, достигнуты ли ориентиры\n",
"if r2 >= 0.75 and mae <= 1500000 and rmse <= 1700000:\n",
" print(\"Ориентиры для прогнозирования достигнуты!\")\n",
"else:\n",
" print(\"Ориентиры для прогнозирования не достигнуты.\")\n",
"\n",
"\n",
"columns_to_group = [\n",
" \"Open\",\n",
" \"High\",\n",
" \"Close\", \"Low\"\n",
"]\n",
"\n",
"# Рассчитываем среднюю объемная продажа для каждого значения каждого признака\n",
"for column in columns_to_group:\n",
" print(f\"Средняя объемная продажа '{column}':\")\n",
" print(df.groupby(column)[\"Volume\"].mean())\n",
" print()\n",
"\n",
"# Рассчитываем среднюю объемная продажа для комбинаций признаков\n",
"\n",
"print(\n",
" \"Средняя посещаемость взносов для комбинации 'Open' и 'Close':\"\n",
")\n",
"print(df.groupby([\"Open\", \"Close\"])[\"Volume\"].mean())\n",
"print()\n",
"\n",
"print(\n",
" \"Средняя посещаемость взносов для комбинации 'High' и 'Low':\"\n",
")\n",
"print(df.groupby([\"High\", \"Low\"])[\"Volume\"].mean())\n",
"print()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Анализ применимости алгоритмов обучения с учителем для решения поставленных задач:\n",
"1. Прогнозирование посещаемости магазинов:\n",
"Задача: Регрессия\n",
"\n",
"Свойства алгоритмов:\n",
"\n",
"Линейная регрессия:\n",
"Применимость: Хорошо подходит для задач, где зависимость между признаками и целевой переменной линейна.\n",
"Преимущества: Проста в реализации, интерпретируема.\n",
"Недостатки: Может плохо работать, если зависимость нелинейна.\n",
"\n",
"Деревья решений (регрессия):\n",
"Применимость: Подходит для задач с нелинейными зависимостями.\n",
"Преимущества: Может обрабатывать категориальные признаки, не требует масштабирования данных.\n",
"Недостатки: Подвержены переобучению, могут давать нестабильные результаты.\n",
"\n",
"Случайный лес (регрессия):\n",
"Применимость: Хорошо подходит для задач с нелинейными зависимостями и большим количеством признаков.\n",
"Преимущества: Устойчив к переобучению, может обрабатывать категориальные признаки.\n",
"Недостатки: Менее интерпретируем, чем линейная регрессия.\n",
"\n",
"Градиентный бустинг (регрессия):\n",
"Применимость: Подходит для задач с нелинейными зависимостями и сложными взаимосвязями между признаками.\n",
"Преимущества: Может достигать высокой точности, устойчив к переобучению.\n",
"Недостатки: Сложнее в настройке, чем случайный лес, менее интерпретируем.\n",
"\n",
"Нейронные сети (регрессия):\n",
"Применимость: Подходит для задач с очень сложными зависимостями и большим количеством данных.\n",
"Преимущества: Может моделировать очень сложные зависимости.\n",
"Недостатки: Требует большого количества данных, сложнее в настройке и интерпретации.\n",
"\n",
"Вывод:\n",
"\n",
"Линейная регрессия: Может быть хорошим выбором для начала, особенно если зависимость между признаками и целевой переменной линейна.\n",
"\n",
"Деревья решений и случайный лес: Подходят для задач с нелинейными зависимостями.\n",
"\n",
"Градиентный бустинг: Может давать более высокую точность, чем случайный лес, но требует больше времени на настройку.\n",
"\n",
"Нейронные сети: Могут быть излишними для этой задачи, если данных недостаточно много.\n",
"\n",
"2. Оптимизация тарифной сетки:\n",
"Задача: Классификация (группировка клиентов по группам риска)\n",
"\n",
"Свойства алгоритмов:\n",
"\n",
"Логистическая регрессия:\n",
"Применимость: Хорошо подходит для задач бинарной классификации, где зависимость между признаками и целевой переменной линейна.\n",
"Преимущества: Проста в реализации, интерпретируема.\n",
"Недостатки: Может плохо работать, если зависимость нелинейна.\n",
"\n",
"Деревья решений (классификация):\n",
"Применимость: Подходит для задач с нелинейными зависимостями.\n",
"Преимущества: Может обрабатывать категориальные признаки, не требует масштабирования данных.\n",
"Недостатки: Подвержены переобучению, могут давать нестабильные результаты.\n",
"\n",
"Случайный лес (классификация):\n",
"Применимость: Хорошо подходит для задач с нелинейными зависимостями и большим количеством признаков.\n",
"Преимущества: Устойчив к переобучению, может обрабатывать категориальные признаки.\n",
"Недостатки: Менее интерпретируем, чем линейная регрессия.\n",
"\n",
"Градиентный бустинг (классификация):\n",
"Применимость: Подходит для задач с нелинейными зависимостями и сложными взаимосвязями между признаками.\n",
"Преимущества: Может достигать высокой точности, устойчив к переобучению.\n",
"Недостатки: Сложнее в настройке, чем случайный лес, менее интерпретируем.\n",
"\n",
"Нейронные сети (классификация):\n",
"Применимость: Подходит для задач с очень сложными зависимостями и большим количеством данных.\n",
"Преимущества: Может моделировать очень сложные зависимости.\n",
"Недостатки: Требует большого количества данных, сложнее в настройке и интерпретации.\n",
"\n",
"Вывод:\n",
"\n",
"Логистическая регрессия: Может быть хорошим выбором для начала, особенно если зависимость между признаками и целевой переменной линейна.\n",
"\n",
"Деревья решений и случайный лес: Подходят для задач с нелинейными зависимостями.\n",
"\n",
"Градиентный бустинг: Может давать более высокую точность, чем случайный лес, но требует больше времени на настройку.\n",
"\n",
"Нейронные сети: Могут быть излишними для этой задачи, если данных недостаточно много.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"1. Прогнозирование стоимости акций:\n",
"Выбранные модели:\n",
"\n",
"Линейная регрессия\n",
"\n",
"Случайный лес (регрессия)\n",
"\n",
"Градиентный бустинг (регрессия)\n",
"\n",
"2. Оптимизация тарифной сетки:\n",
"Выбранные модели:\n",
"\n",
"Логистическая регрессия\n",
"\n",
"Случайный лес (классификация)\n",
"\n",
"Градиентный бустинг (классификация)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Результаты для задачи регрессии:\n",
"Model: Linear Regression\n",
"MAE: 3991467.1377542643\n",
"MSE: 46938455671077.555\n",
"RMSE: 6851164.548533158\n",
"R²: 0.5289490019636116\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\ateks\\Courses\\Courses\\.venv\\Lib\\site-packages\\sklearn\\metrics\\_regression.py:492: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.\n",
" warnings.warn(\n",
"c:\\Users\\ateks\\Courses\\Courses\\.venv\\Lib\\site-packages\\sklearn\\metrics\\_regression.py:492: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.\n",
" warnings.warn(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model: Random Forest Regression\n",
"MAE: 3632387.72405058\n",
"MSE: 36255672119329.99\n",
"RMSE: 6021268.314842812\n",
"R²: 0.6361561050076534\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\ateks\\Courses\\Courses\\.venv\\Lib\\site-packages\\sklearn\\metrics\\_regression.py:492: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.\n",
" warnings.warn(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model: Gradient Boosting Regression\n",
"MAE: 3762986.930251514\n",
"MSE: 32821664355184.965\n",
"RMSE: 5729019.493350059\n",
"R²: 0.6706180991537869\n",
"\n",
"Результаты для задачи классификации:\n",
"Model: Logistic Regression\n",
"Accuracy: 1.0\n",
"\n",
"Model: Random Forest Classification\n",
"Accuracy: 1.0\n",
"\n",
"Model: Gradient Boosting Classification\n",
"Accuracy: 1.0\n",
"\n"
]
}
],
"source": [
"from sklearn.model_selection import train_test_split\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.linear_model import LinearRegression, LogisticRegression\n",
"from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier\n",
"from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier\n",
"from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score, accuracy_score\n",
"\n",
"# Разделяем данные на признаки (X) и целевую переменную (y) для задачи регрессии\n",
"X_reg = df.drop(columns = [\"Volume\", \"Date\"], axis=1)\n",
"y_reg = df[\"Volume\"]\n",
"\n",
"# Разделяем данные на обучающую и тестовую выборки для задачи регрессии\n",
"X_train_reg, X_test_reg, y_train_reg, y_test_reg = train_test_split(X_reg, y_reg, test_size=0.2, random_state=42)\n",
"\n",
"# Стандартизируем признаки для задачи регрессии\n",
"scaler_reg = StandardScaler()\n",
"X_train_reg = scaler_reg.fit_transform(X_train_reg)\n",
"X_test_reg = scaler_reg.transform(X_test_reg)\n",
"\n",
"# Список моделей для задачи регрессии\n",
"models_reg = {\n",
" \"Linear Regression\": LinearRegression(),\n",
" \"Random Forest Regression\": RandomForestRegressor(),\n",
" \"Gradient Boosting Regression\": GradientBoostingRegressor()\n",
"}\n",
"\n",
"# Обучаем и оцениваем модели для задачи регрессии\n",
"print(\"Результаты для задачи регрессии:\")\n",
"for name, model in models_reg.items():\n",
" model.fit(X_train_reg, y_train_reg)\n",
" y_pred_reg = model.predict(X_test_reg)\n",
" mae = mean_absolute_error(y_test_reg, y_pred_reg)\n",
" mse = mean_squared_error(y_test_reg, y_pred_reg)\n",
" rmse = mean_squared_error(y_test_reg, y_pred_reg, squared=False)\n",
" r2 = r2_score(y_test_reg, y_pred_reg)\n",
" print(f\"Model: {name}\")\n",
" print(f\"MAE: {mae}\")\n",
" print(f\"MSE: {mse}\")\n",
" print(f\"RMSE: {rmse}\")\n",
" print(f\"R²: {r2}\")\n",
" print()\n",
"\n",
"# Разделяем данные на признаки (X) и целевую переменную (y) для задачи классификации\n",
"X_class = df.drop(columns=[\"Volume\", \"Date\"], axis=1)\n",
"y_class = (df[\"Volume\"] > df[\"Volume\"].mean()).astype(int)\n",
"\n",
"# Разделяем данные на обучающую и тестовую выборки для задачи классификации\n",
"X_train_class, X_test_class, y_train_class, y_test_class = train_test_split(X_class, y_class, test_size=0.2, random_state=42)\n",
"\n",
"# Стандартизируем признаки для задачи классификации\n",
"scaler_class = StandardScaler()\n",
"X_train_class = scaler_class.fit_transform(X_train_class)\n",
"X_test_class = scaler_class.transform(X_test_class)\n",
"\n",
"# Список моделей для задачи классификации\n",
"models_class = {\n",
" \"Logistic Regression\": LogisticRegression(),\n",
" \"Random Forest Classification\": RandomForestClassifier(),\n",
" \"Gradient Boosting Classification\": GradientBoostingClassifier()\n",
"}\n",
"\n",
"# Обучаем и оцениваем модели для задачи классификации\n",
"print(\"Результаты для задачи классификации:\")\n",
"for name, model in models_class.items():\n",
" model.fit(X_train_class, y_train_class)\n",
" y_pred_class = model.predict(X_test_class)\n",
" accuracy = accuracy_score(y_test_class, y_pred_class)\n",
" print(f\"Model: {name}\")\n",
" print(f\"Accuracy: {accuracy}\")\n",
" print()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"1. Прогнозирование стоимости акций:\n",
"Конвейер для задачи регрессии:"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Результаты для задачи регрессии:\n",
"Model: Linear Regression\n",
"MAE: 5864823.098654955\n",
"MSE: 79729784253194.64\n",
"RMSE: 8929153.613484016\n",
"R²: 0.19987153584955009\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\ateks\\Courses\\Courses\\.venv\\Lib\\site-packages\\sklearn\\metrics\\_regression.py:492: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.\n",
" warnings.warn(\n",
"c:\\Users\\ateks\\Courses\\Courses\\.venv\\Lib\\site-packages\\sklearn\\metrics\\_regression.py:492: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.\n",
" warnings.warn(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model: Random Forest Regression\n",
"MAE: 4775882.923204809\n",
"MSE: 53290061861042.07\n",
"RMSE: 7300004.237056446\n",
"R²: 0.4652074409739847\n",
"\n",
"Model: Gradient Boosting Regression\n",
"MAE: 5397945.863176441\n",
"MSE: 62387989562365.266\n",
"RMSE: 7898606.811480444\n",
"R²: 0.37390516307625066\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\ateks\\Courses\\Courses\\.venv\\Lib\\site-packages\\sklearn\\metrics\\_regression.py:492: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.\n",
" warnings.warn(\n"
]
}
],
"source": [
"\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.linear_model import LinearRegression\n",
"from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor\n",
"from sklearn.pipeline import Pipeline\n",
"from sklearn.compose import ColumnTransformer\n",
"from sklearn.preprocessing import OneHotEncoder\n",
"from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score\n",
"\n",
"numerical_cols = [\"Open\", \"Close\", \"High\", \"Low\"]\n",
"\n",
"\n",
"preprocessor = ColumnTransformer(\n",
" transformers=[\n",
" ('num', StandardScaler(), numerical_cols)\n",
" ])\n",
"\n",
"# Список моделей для задачи регрессии\n",
"models_reg = {\n",
" \"Linear Regression\": LinearRegression(),\n",
" \"Random Forest Regression\": RandomForestRegressor(),\n",
" \"Gradient Boosting Regression\": GradientBoostingRegressor()\n",
"}\n",
"\n",
"# Разделяем данные на признаки (X) и целевую переменную (y) для задачи регрессии\n",
"X_reg = df[numerical_cols]\n",
"y_reg = df[\"Volume\"]\n",
"\n",
"# Разделяем данные на обучающую и тестовую выборки для задачи регрессии\n",
"X_train_reg, X_test_reg, y_train_reg, y_test_reg = train_test_split(X_reg, y_reg, test_size=0.2, random_state=42)\n",
"\n",
"# Обучаем и оцениваем модели для задачи регрессии\n",
"print(\"Результаты для задачи регрессии:\")\n",
"for name, model in models_reg.items():\n",
" pipeline = Pipeline(steps=[\n",
" ('preprocessor', preprocessor),\n",
" ('model', model)\n",
" ])\n",
" pipeline.fit(X_train_reg, y_train_reg)\n",
" y_pred_reg = pipeline.predict(X_test_reg)\n",
" mae = mean_absolute_error(y_test_reg, y_pred_reg)\n",
" mse = mean_squared_error(y_test_reg, y_pred_reg)\n",
" rmse = mean_squared_error(y_test_reg, y_pred_reg, squared=False)\n",
" r2 = r2_score(y_test_reg, y_pred_reg)\n",
" print(f\"Model: {name}\")\n",
" print(f\"MAE: {mae}\")\n",
" print(f\"MSE: {mse}\")\n",
" print(f\"RMSE: {rmse}\")\n",
" print(f\"R²: {r2}\")\n",
" print()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"2. Оптимизация характеристик магазина:\n",
"Конвейер для задачи классификации:"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Результаты для задачи классификации:\n",
"Model: Logistic Regression\n",
"Accuracy: 0.6648009950248757\n",
"\n",
"Model: Random Forest Classification\n",
"Accuracy: 0.7568407960199005\n",
"\n",
"Model: Gradient Boosting Classification\n",
"Accuracy: 0.7437810945273632\n",
"\n"
]
}
],
"source": [
"\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier\n",
"from sklearn.pipeline import Pipeline\n",
"from sklearn.compose import ColumnTransformer\n",
"from sklearn.preprocessing import OneHotEncoder\n",
"from sklearn.metrics import accuracy_score\n",
"\n",
"\n",
"numerical_cols = [\"Open\", \"Close\", \"High\", \"Low\"]\n",
"# Создаем преобразователь для категориальных и числовых столбцов\n",
"preprocessor = ColumnTransformer(\n",
" transformers=[\n",
" ('num', StandardScaler(), numerical_cols)\n",
" ])\n",
"\n",
"# Список моделей для задачи классификации\n",
"models_class = {\n",
" \"Logistic Regression\": LogisticRegression(),\n",
" \"Random Forest Classification\": RandomForestClassifier(),\n",
" \"Gradient Boosting Classification\": GradientBoostingClassifier()\n",
"}\n",
"\n",
"# Разделяем данные на признаки (X) и целевую переменную (y) для задачи классификации\n",
"X_class = df[numerical_cols]\n",
"y_class = (df[\"Volume\"] > df[\"Volume\"].mean()).astype(int)\n",
"\n",
"# Разделяем данные на обучающую и тестовую выборки для задачи классификации\n",
"X_train_class, X_test_class, y_train_class, y_test_class = train_test_split(X_class, y_class, test_size=0.2, random_state=42)\n",
"\n",
"# Обучаем и оцениваем модели для задачи классификации\n",
"print(\"Результаты для задачи классификации:\")\n",
"for name, model in models_class.items():\n",
" pipeline = Pipeline(steps=[\n",
" ('preprocessor', preprocessor),\n",
" ('model', model)\n",
" ])\n",
" pipeline.fit(X_train_class, y_train_class)\n",
" y_pred_class = pipeline.predict(X_test_class)\n",
" accuracy = accuracy_score(y_test_class, y_pred_class)\n",
" print(f\"Model: {name}\")\n",
" print(f\"Accuracy: {accuracy}\")\n",
" print()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"1. Прогнозирование посещения:\n",
"\n",
"Настройка гиперпараметров для задачи регрессии:"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Результаты для задачи регрессии:\n",
"Model: Linear Regression\n",
"Best Parameters: {}\n",
"MAE: 5864823.098654955\n",
"MSE: 79729784253194.64\n",
"RMSE: 8929153.613484016\n",
"R²: 0.19987153584955009\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\ateks\\Courses\\Courses\\.venv\\Lib\\site-packages\\sklearn\\metrics\\_regression.py:492: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.\n",
" warnings.warn(\n",
"c:\\Users\\ateks\\Courses\\Courses\\.venv\\Lib\\site-packages\\sklearn\\metrics\\_regression.py:492: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.\n",
" warnings.warn(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model: Random Forest Regression\n",
"Best Parameters: {'model__max_depth': None, 'model__n_estimators': 200}\n",
"MAE: 4765190.037919035\n",
"MSE: 52229952422553.555\n",
"RMSE: 7227029.2944302885\n",
"R²: 0.4758461720930298\n",
"\n",
"Model: Gradient Boosting Regression\n",
"Best Parameters: {'model__learning_rate': 0.1, 'model__max_depth': 5, 'model__n_estimators': 200}\n",
"MAE: 4991448.210803198\n",
"MSE: 55277620586398.51\n",
"RMSE: 7434892.10321162\n",
"R²: 0.4452612900440134\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\ateks\\Courses\\Courses\\.venv\\Lib\\site-packages\\sklearn\\metrics\\_regression.py:492: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.\n",
" warnings.warn(\n"
]
}
],
"source": [
"from sklearn.model_selection import train_test_split, GridSearchCV\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.linear_model import LinearRegression\n",
"from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor\n",
"from sklearn.pipeline import Pipeline\n",
"from sklearn.compose import ColumnTransformer\n",
"from sklearn.preprocessing import OneHotEncoder\n",
"from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score\n",
"\n",
"\n",
"# Определяем категориальные и числовые столбцы\n",
"\n",
"numerical_cols = [\"Open\", \"Close\", \"High\", \"Low\"]\n",
"\n",
"# Создаем преобразователь для категориальных и числовых столбцов\n",
"preprocessor = ColumnTransformer(\n",
" transformers=[\n",
" ('num', StandardScaler(), numerical_cols)\n",
" ])\n",
"\n",
"# Список моделей и их гиперпараметров для задачи регрессии\n",
"models_reg = {\n",
" \"Linear Regression\": (LinearRegression(), {}),\n",
" \"Random Forest Regression\": (RandomForestRegressor(), {\n",
" 'model__n_estimators': [100, 200],\n",
" 'model__max_depth': [None, 10, 20]\n",
" }),\n",
" \"Gradient Boosting Regression\": (GradientBoostingRegressor(), {\n",
" 'model__n_estimators': [100, 200],\n",
" 'model__learning_rate': [0.01, 0.1],\n",
" 'model__max_depth': [3, 5]\n",
" })\n",
"}\n",
"\n",
"# Разделяем данные на признаки (X) и целевую переменную (y) для задачи регрессии\n",
"X_reg = df[numerical_cols]\n",
"y_reg = df['Volume']\n",
"\n",
"# Разделяем данные на обучающую и тестовую выборки для задачи регрессии\n",
"X_train_reg, X_test_reg, y_train_reg, y_test_reg = train_test_split(X_reg, y_reg, test_size=0.2, random_state=42)\n",
"\n",
"# Обучаем и оцениваем модели для задачи регрессии\n",
"print(\"Результаты для задачи регрессии:\")\n",
"for name, (model, params) in models_reg.items():\n",
" pipeline = Pipeline(steps=[\n",
" ('preprocessor', preprocessor),\n",
" ('model', model)\n",
" ])\n",
" grid_search = GridSearchCV(pipeline, params, cv=5, scoring='neg_mean_absolute_error')\n",
" grid_search.fit(X_train_reg, y_train_reg)\n",
" best_model = grid_search.best_estimator_\n",
" y_pred_reg = best_model.predict(X_test_reg)\n",
" mae = mean_absolute_error(y_test_reg, y_pred_reg)\n",
" mse = mean_squared_error(y_test_reg, y_pred_reg)\n",
" rmse = mean_squared_error(y_test_reg, y_pred_reg, squared=False)\n",
" r2 = r2_score(y_test_reg, y_pred_reg)\n",
" print(f\"Model: {name}\")\n",
" print(f\"Best Parameters: {grid_search.best_params_}\")\n",
" print(f\"MAE: {mae}\")\n",
" print(f\"MSE: {mse}\")\n",
" print(f\"RMSE: {rmse}\")\n",
" print(f\"R²: {r2}\")\n",
" print()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"2. Оптимизация характеристик:\n",
"\n",
"Настройка гиперпараметров для задачи классификации:"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Результаты для задачи классификации:\n",
"Model: Logistic Regression\n",
"Best Parameters: {'model__C': 10, 'model__solver': 'liblinear'}\n",
"Accuracy: 0.6865671641791045\n",
"\n",
"Model: Random Forest Classification\n",
"Best Parameters: {'model__max_depth': 20, 'model__n_estimators': 100}\n",
"Accuracy: 0.7562189054726368\n",
"\n",
"Model: Gradient Boosting Classification\n",
"Best Parameters: {'model__learning_rate': 0.1, 'model__max_depth': 5, 'model__n_estimators': 200}\n",
"Accuracy: 0.7475124378109452\n",
"\n"
]
}
],
"source": [
"from sklearn.model_selection import train_test_split, GridSearchCV\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier\n",
"from sklearn.pipeline import Pipeline\n",
"from sklearn.compose import ColumnTransformer\n",
"from sklearn.preprocessing import OneHotEncoder\n",
"from sklearn.metrics import accuracy_score\n",
"\n",
"# Определяем категориальные и числовые столбцы\n",
"\n",
"numerical_cols = [\"Open\", \"Close\", \"High\", \"Low\"]\n",
"\n",
"# Создаем преобразователь для категориальных и числовых столбцов\n",
"preprocessor = ColumnTransformer(\n",
" transformers=[\n",
" ('num', StandardScaler(), numerical_cols)\n",
" ])\n",
"\n",
"# Список моделей и их гиперпараметров для задачи классификации\n",
"models_class = {\n",
" \"Logistic Regression\": (LogisticRegression(), {\n",
" 'model__C': [0.1, 1, 10],\n",
" 'model__solver': ['liblinear', 'lbfgs']\n",
" }),\n",
" \"Random Forest Classification\": (RandomForestClassifier(), {\n",
" 'model__n_estimators': [100, 200],\n",
" 'model__max_depth': [None, 10, 20]\n",
" }),\n",
" \"Gradient Boosting Classification\": (GradientBoostingClassifier(), {\n",
" 'model__n_estimators': [100, 200],\n",
" 'model__learning_rate': [0.01, 0.1],\n",
" 'model__max_depth': [3, 5]\n",
" })\n",
"}\n",
"\n",
"# Разделяем данные на признаки (X) и целевую переменную (y) для задачи классификации\n",
"X_class = df[numerical_cols]\n",
"y_class = (df['Volume'] > df['Volume'].mean()).astype(int)\n",
"\n",
"# Разделяем данные на обучающую и тестовую выборки для задачи классификации\n",
"X_train_class, X_test_class, y_train_class, y_test_class = train_test_split(X_class, y_class, test_size=0.2, random_state=42)\n",
"\n",
"# Обучаем и оцениваем модели для задачи классификации\n",
"print(\"Результаты для задачи классификации:\")\n",
"for name, (model, params) in models_class.items():\n",
" pipeline = Pipeline(steps=[\n",
" ('preprocessor', preprocessor),\n",
" ('model', model)\n",
" ])\n",
" grid_search = GridSearchCV(pipeline, params, cv=5, scoring='accuracy')\n",
" grid_search.fit(X_train_class, y_train_class)\n",
" best_model = grid_search.best_estimator_\n",
" y_pred_class = best_model.predict(X_test_class)\n",
" accuracy = accuracy_score(y_test_class, y_pred_class)\n",
" print(f\"Model: {name}\")\n",
" print(f\"Best Parameters: {grid_search.best_params_}\")\n",
" print(f\"Accuracy: {accuracy}\")\n",
" print()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"1. Прогнозирование посещаемости::\n",
"Задача: Регрессия\n",
"\n",
"Выбор метрик:\n",
"\n",
"MAE (Mean Absolute Error): Средняя абсолютная ошибка. Показывает среднее отклонение предсказанных значений от фактических. Эта метрика легко интерпретируется, так как она измеряется в тех же единицах, что и целевая переменная \n",
"\n",
"MSE (Mean Squared Error): Среднеквадратичная ошибка. Показывает среднее квадратичное отклонение предсказанных значений от фактических. Эта метрика чувствительна к выбросам, так как ошибки возводятся в квадрат.\n",
"\n",
"RMSE (Root Mean Squared Error): Квадратный корень из среднеквадратичной ошибки. Показывает среднее отклонение предсказанных значений от фактических в тех же единицах, что и целевая переменная. Эта метрика также чувствительна к выбросам, но легче интерпретируется, чем MSE.\n",
"\n",
"R² (R-squared): Коэффициент детерминации. Показывает, какую долю дисперсии целевой переменной объясняет модель. Значение R² близкое к 1 указывает на хорошее качество модели.\n",
"\n",
"Обоснование:\n",
"\n",
"MAE: Хорошо подходит для задач, где важно понимать среднее отклонение предсказаний от фактических значений.\n",
"\n",
"MSE и RMSE: Полезны для задач, где важно минимизировать влияние выбросов, так как они возводят ошибки в квадрат.\n",
"\n",
"R²: Позволяет оценить, насколько хорошо модель объясняет вариацию целевой переменной.\n",
"\n",
"2. Оптимизация характеристик:\n",
"Задача: Классификация\n",
"\n",
"Выбор метрик:\n",
"\n",
"Accuracy: Доля правильных предсказаний среди всех предсказаний. Эта метрика показывает общую точность модели.\n",
"\n",
"Precision: Доля правильных положительных предсказаний среди всех положительных предсказаний. Эта метрика важна, если важно минимизировать количество ложноположительных результатов.\n",
"\n",
"Recall (Sensitivity): Доля правильных положительных предсказаний среди всех фактических положительных случаев. Эта метрика важна, если важно минимизировать количество ложноотрицательных результатов.\n",
"\n",
"F1-score: Гармоническое среднее между precision и recall. Эта метрика показывает баланс между precision и recall.\n",
"\n",
"Обоснование:\n",
"\n",
"Accuracy: Хорошо подходит для задач, где классы сбалансированы.\n",
"\n",
"Precision и Recall: Важны для задач, где важно минимизировать ошибки определенного типа (ложноположительные или ложноотрицательные).\n",
"\n",
"F1-score: Позволяет оценить баланс между precision и recall."
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Результаты для задачи регрессии:\n",
"Model: Linear Regression\n",
"Best Parameters: {}\n",
"MAE: 5864823.098654955\n",
"MSE: 79729784253194.64\n",
"RMSE: 8929153.613484016\n",
"R²: 0.19987153584955009\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\ateks\\Courses\\Courses\\.venv\\Lib\\site-packages\\sklearn\\metrics\\_regression.py:492: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.\n",
" warnings.warn(\n",
"c:\\Users\\ateks\\Courses\\Courses\\.venv\\Lib\\site-packages\\sklearn\\metrics\\_regression.py:492: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.\n",
" warnings.warn(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model: Random Forest Regression\n",
"Best Parameters: {'model__max_depth': 20, 'model__n_estimators': 200}\n",
"MAE: 4736367.925802057\n",
"MSE: 49837093302660.92\n",
"RMSE: 7059539.17070094\n",
"R²: 0.49985971622163283\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\ateks\\Courses\\Courses\\.venv\\Lib\\site-packages\\sklearn\\metrics\\_regression.py:492: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.\n",
" warnings.warn(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model: Gradient Boosting Regression\n",
"Best Parameters: {'model__learning_rate': 0.1, 'model__max_depth': 5, 'model__n_estimators': 200}\n",
"MAE: 4996200.504513187\n",
"MSE: 55572704024621.99\n",
"RMSE: 7454710.190518608\n",
"R²: 0.4422999794066711\n",
"\n",
"Результаты для задачи классификации:\n",
"Model: Logistic Regression\n",
"Best Parameters: {'model__C': 10, 'model__solver': 'liblinear'}\n",
"Accuracy: 0.6865671641791045\n",
"Precision: 0.5378548895899053\n",
"Recall: 0.6177536231884058\n",
"F1-score: 0.5750421585160203\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhQAAAHHCAYAAADnOMH5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABU0ElEQVR4nO3dd1xV9f8H8NdlXRC4DGWIAuKGxJ2KqDgQUixNza8bFDXNiTlLS9Gk0NQ09wBnmmhmmgMHmkLmzoEkLnCAg5jKvOf3Bz9OXQEF72Hc7uvZ4zySz/mcz3mfywXe9zPOkQmCIICIiIhIDToVHQARERFpPiYUREREpDYmFERERKQ2JhRERESkNiYUREREpDYmFERERKQ2JhRERESkNiYUREREpDYmFERERKQ2JhRa6tatW/Dy8oKZmRlkMhn27t0rafv37t2DTCZDaGiopO1qso4dO6Jjx46StZeeno4RI0bA1tYWMpkMkyZNkqztyiIiIgIymQwRERGStBcaGgqZTIZ79+5J0h4Bc+bMgUwmq+gwqBJgQlGBbt++jY8//hi1a9eGoaEhFAoF3N3d8d133+Hly5dlem5fX19cvXoVX331FbZs2YKWLVuW6fnKk5+fH2QyGRQKRZGv461btyCTySCTybBo0aJSt//o0SPMmTMHly9fliDat7dgwQKEhoZizJgx2LJlC4YMGVKm56tVqxZ69OhRpueQyoIFCyRPkl9VkJwUbHp6eqhRowb8/Pzw8OHDMj03UaUkUIXYv3+/YGRkJJibmwsTJkwQ1q5dK3z//fdC//79BX19fWHkyJFldu4XL14IAITPP/+8zM6hVCqFly9fCrm5uWV2juL4+voKenp6gq6urrBz585C+7/88kvB0NBQACAsXLiw1O2fO3dOACCEhISU6risrCwhKyur1OcrTuvWrQV3d3fJ2nsTR0dHwcfHp9zOJwiCkJeXJ7x8+VLIy8sr1XHGxsaCr69vofLc3Fzh5cuXglKpVDu2kJAQAYAQGBgobNmyRVi3bp3g7+8v6OrqCnXq1BFevnyp9jk0QU5OjtZcK72eXsWmM9rp7t276N+/PxwdHXH8+HFUr15d3Dd27FjExsbiwIEDZXb+p0+fAgDMzc3L7BwymQyGhoZl1v6byOVyuLu744cffkC/fv1U9m3fvh0+Pj7YvXt3ucTy4sULVKlSBQYGBpK2++TJE7i4uEjWXm5uLpRKpeRxqkNHR0fS95Guri50dXUlaw8AunXrJvbwjRgxAtWqVcM333yDffv2FXrvlSVBEJCZmQkjI6NyOycA6OnpQU+Pf0qIQx4VIjg4GOnp6diwYYNKMlGgbt26mDhxovh1bm4u5s2bhzp16kAul6NWrVr47LPPkJWVpXJcQZf06dOn0apVKxgaGqJ27drYvHmzWGfOnDlwdHQEAEydOhUymQy1atUCkD9UUPDvfytqjDQ8PBzt2rWDubk5TExM0KBBA3z22Wfi/uLmUBw/fhzt27eHsbExzM3N0bNnT0RHRxd5vtjYWPj5+cHc3BxmZmYYNmwYXrx4UfwL+4qBAwfi4MGDSE5OFsvOnTuHW7duYeDAgYXqJyUlYcqUKXB1dYWJiQkUCgW6deuGK1euiHUiIiLw7rvvAgCGDRsmdncXXGfHjh3RqFEjXLhwAR06dECVKlXE1+XVORS+vr4wNDQsdP3e3t6wsLDAo0ePiryugnkFd+/exYEDB8QYCuYFPHnyBP7+/rCxsYGhoSGaNGmCTZs2qbRR8P1ZtGgRli5dKr63bty4UaLXtjglfa8qlUrMmTMHdnZ2qFKlCjp16oQbN26gVq1a8PPzK3St/55DcevWLfTp0we2trYwNDREzZo10b9/f6SkpADIT2YzMjKwadMm8bUpaLO4ORQHDx6Eh4cHTE1NoVAo8O6772L79u1v9Rq0b98eQP6Q5r/dvHkTffv2haWlJQwNDdGyZUvs27ev0PF//vknPDw8YGRkhJo1a2L+/PkICQkpFHfBz/vhw4fRsmVLGBkZYc2aNQCA5ORkTJo0Cfb29pDL5ahbty6++eYbKJVKlXPt2LEDLVq0EK/b1dUV3333nbg/JycHc+fORb169WBoaIiqVauiXbt2CA8PF+sU9ftByt9ZpDmYVlaAX375BbVr10bbtm1LVH/EiBHYtGkT+vbti08//RRnz55FUFAQoqOj8dNPP6nUjY2NRd++feHv7w9fX19s3LgRfn5+aNGiBd555x307t0b5ubmCAgIwIABA9C9e3eYmJiUKv7r16+jR48eaNy4MQIDAyGXyxEbG4szZ8689rijR4+iW7duqF27NubMmYOXL19i+fLlcHd3x8WLFwslM/369YOTkxOCgoJw8eJFrF+/HtbW1vjmm29KFGfv3r0xevRo7NmzB8OHDweQ3zvRsGFDNG/evFD9O3fuYO/evfjoo4/g5OSExMRErFmzBh4eHrhx4wbs7Ozg7OyMwMBAfPHFFxg1apT4x+Pf38vnz5+jW7du6N+/PwYPHgwbG5si4/vuu+9w/Phx+Pr6IioqCrq6ulizZg2OHDmCLVu2wM7OrsjjnJ2dsWXLFgQEBKBmzZr49NNPAQBWVlZ4+fIlOnbsiNjYWIwbNw5OTk7YtWsX/Pz8kJycrJKoAkBISAgyMzMxatQoyOVyWFpalui1LU5J36szZ85EcHAw3n//fXh7e+PKlSvw9vZGZmbma9vPzs6Gt7c3srKyMH78eNja2uLhw4fYv38/kpOTYWZmhi1btmDEiBFo1aoVRo0aBQCoU6dOsW2GhoZi+PDheOeddzBz5kyYm5vj0qVLOHToUJGJ55sU/NG3sLAQy65fvw53d3fUqFEDM2bMgLGxMX788Uf06tULu3fvxocffggAePjwITp16gSZTIaZM2fC2NgY69evh1wuL/JcMTExGDBgAD7++GOMHDkSDRo0wIsXL+Dh4YGHDx/i448/hoODAyIjIzFz5kw8fvwYS5cuBZD/oWDAgAHo0qWL+DMVHR2NM2fOiO+TOXPmICgoSHw9U1NTcf78eVy8eBFdu3Yt9jWQ8ncWaZCKHnPRNikpKQIAoWfPniWqf/nyZQGAMGLECJXyKVOmCACE48ePi2WOjo4CAOHUqVNi2ZMnTwS5XC58+umnYtndu3eLnD/g6+srODo6Forhyy+/FP79VlmyZIkAQHj69GmxcRec49/zDJo2bSpYW1sLz58/F8uuXLki6OjoCEOHDi10vuHDh6u0+eGHHwpVq1Yt9pz/vg5jY2NBEAShb9++QpcuXQRByB+Pt7W1FebOnVvka5CZmVlorP7u3buCXC4XAgMDxbLXzaHw8PAQAAirV68ucp+Hh4dK2eHDhwUAwvz584U7d+4IJiYmQq9evd54jYJQ9JyGpUuXCgCErVu3imXZ2dmCm5ubYGJiIqSmporXBUBQKBTCkydP3vp8/1bS92pCQoKgp6dX6DrnzJkjAFCZ+3DixAkBgHDixAlBEATh0qVLAgBh165dr421uDkUBfMe7t69KwiCICQnJwumpqZC69atC80DeNM8i4K2jh49Kjx9+lSIj48XwsLCBCsrK0Eulwvx8fFi3S5dugiurq5CZmamSvtt27YV6tWrJ5aNHz9ekMlkwqVLl8Sy58+fC5aWlipxC8I/P++HDh1SiWvevHmCsbGx8Ndff6mUz5gxQ9DV1RXi4uIEQRCEiRMnCgqF4rXznJo0afLGeTOv/n4oi99ZpBk45FHOUlNTAQCmpqYlqv/rr78CACZPnqxSXvCp9NW5Fi4uLuKnZiD/U2uDBg1w586dt475VQVzL37++edCXajFefz4MS5fvgw/Pz+VT8GNGzdG165dxev8t9GjR6t83b59ezx//lx8DUti4MCBiIiIQEJCAo4fP46EhIRiP3XK5XLo6OT/SOTl5eH58+ficM7FixdLfE65XI5hw4aVqK6Xlxc+/vhjBAYGonfv3jA0NBS7rd/Gr7/+CltbWwwYMEAs09fXx4QJE5Ceno6TJ0+q1O/Tpw+srKze+nyvnht483v12LFjyM3NxSeffKJSb/z48W88h5mZGQDg8OHDpRr
"text/plain": [
"<Figure size 640x480 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model: Random Forest Classification\n",
"Best Parameters: {'model__max_depth': 20, 'model__n_estimators': 100}\n",
"Accuracy: 0.7574626865671642\n",
"Precision: 0.6483516483516484\n",
"Recall: 0.6413043478260869\n",
"F1-score: 0.644808743169399\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhQAAAHHCAYAAADnOMH5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABf9ElEQVR4nO3dd1gUV9sG8HtBWBDYRZQiiohdFHtUgiUqgkqMRo3RWEBRo8GG3Td2EzFootFobIktGhN7YsceBXuJFbuoFCusqPTz/cHHxBXQXXcAV+6f11yXzJw588wy7D57yoxCCCFAREREZACTgg6AiIiIjB8TCiIiIjIYEwoiIiIyGBMKIiIiMhgTCiIiIjIYEwoiIiIyGBMKIiIiMhgTCiIiIjIYEwoiIiIyGBOKPHL16lX4+PhArVZDoVBg06ZNstZ/69YtKBQKLFu2TNZ6jdlHH32Ejz76SLb6EhMT0adPHzg5OUGhUGDo0KGy1W0seJ29296F30/ZsmUREBCgtS6n979ly5ZBoVDg1q1b+R6jQqHApEmT8v24hc17nVBcv34dX375JcqVKwcLCwuoVCp4eXnhxx9/xIsXL/L02P7+/jh37hy+/fZbrFy5EvXq1cvT4+WngIAAKBQKqFSqHF/Hq1evQqFQQKFQYObMmXrXHx0djUmTJuHMmTMyRPv2pk2bhmXLlmHAgAFYuXIlevTokafHK1u2rPS6KRQKWFlZoX79+lixYkWeHtfYvPo6vbwkJSUVdHjZhIeHY9KkSYiPj9drv/3796NDhw5wcnKCubk5HBwc0LZtW2zYsCFvApVRQbz/bdu2jUlDAStS0AHkla1bt+Kzzz6DUqlEz549Ub16daSkpODQoUMYOXIkLly4gEWLFuXJsV+8eIGIiAh8/fXXGDhwYJ4cw9XVFS9evICZmVme1P8mRYoUwfPnz/H333+jc+fOWttWrVoFCwuLt35zj46OxuTJk1G2bFnUqlVL5/127dr1VsfLzd69e9GwYUNMnDhR1npfp1atWhg+fDgAICYmBkuWLIG/vz+Sk5PRt2/ffIvjXffy6/Qyc3PzAojm9cLDwzF58mQEBATA1tZWp30mTpyIKVOmoGLFivjyyy/h6uqKR48eYdu2bejYsSNWrVqFL774Im8D11FkZCRMTP77bprb+1+PHj3QpUsXKJXKPIlj27ZtmDdvXo5JxYsXL1CkyHv7cffOeC9f4Zs3b6JLly5wdXXF3r17UbJkSWlbUFAQrl27hq1bt+bZ8R88eAAAOr95vA2FQgELC4s8q/9NlEolvLy88Pvvv2dLKFavXg0/Pz+sX78+X2J5/vw5ihYtKvuHyf379+Hu7i5bfWlpacjIyHhtnKVKlUL37t2lnwMCAlCuXDnMmjWLCcVLXn2d5JKRkYGUlJQC/dtat24dpkyZgk6dOmH16tVaXxpGjhyJnTt3IjU1tcDie9WrCUJu73+mpqYwNTXNr7C0FOTvs1AR76H+/fsLAOLw4cM6lU9NTRVTpkwR5cqVE+bm5sLV1VWMHTtWJCUlaZVzdXUVfn5+4p9//hEffPCBUCqVws3NTSxfvlwqM3HiRAFAa3F1dRVCCOHv7y/9/2VZ+7xs165dwsvLS6jVamFlZSUqVaokxo4dK22/efOmACCWLl2qtd+ePXtEo0aNRNGiRYVarRaffPKJuHjxYo7Hu3r1qvD39xdqtVqoVCoREBAgnj179sbXy9/fX1hZWYlly5YJpVIpnjx5Im07duyYACDWr18vAIgZM2ZI2x49eiSGDx8uqlevLqysrISNjY1o1aqVOHPmjFRm37592V6/l8+zadOmolq1auLEiROicePGwtLSUgwZMkTa1rRpU6munj17CqVSme38fXx8hK2trbh3716O55dbDDdv3hRCCBEXFyd69+4tHBwchFKpFDVq1BDLli3TqiPr9zNjxgwxa9YsUa5cOWFiYiJOnz6d6+uadX29ql69esLc3Fxr3cGDB0WnTp2Ei4uLMDc3F6VLlxZDhw4Vz58/1yqX9bu6e/euaNeunbCyshIlSpQQw4cPF2lpaVplnzx5Ivz9/YVKpRJqtVr07NlTnD592uDrLDIyUnTr1k2oVCpRokQJMW7cOJGRkSGioqLEJ598ImxsbISjo6OYOXNmrq+NLq/TyxITE8WwYcNE6dKlhbm5uahUqZKYMWOGyMjI0CoHQAQFBYnffvtNuLu7iyJFioiNGzcKIYS4e/eu6NWrl3BwcBDm5ubC3d1d/PLLL9mONWfOHOHu7i4sLS2Fra2tqFu3rli1apXWa5DbtZSTKlWqCDs7O6HRaN74WuT0PnD27Fnh7+8v3NzchFKpFI6OjqJXr17i4cOHWvtqNBoxZMgQ4erqKszNzYW9vb3w9vYWJ0+elMpcuXJFdOjQQTg6OgqlUilKlSolPv/8cxEfHy+VcXV1Ff7+/rmeb9Z73tKlS3M8923btokmTZoIa2trYWNjI+rVqye9fkLodq37+/vn+DpnASAmTpyoddxTp06JVq1aCRsbG2FlZSWaN28uIiIitMpkxXzo0CERHBwsSpQoIYoWLSrat28v7t+//8bfT2HzXrZQ/P333yhXrhw+/PBDncr36dMHy5cvR6dOnTB8+HAcPXoUISEhuHTpEjZu3KhV9tq1a+jUqRMCAwPh7++PX3/9FQEBAahbty6qVauGDh06wNbWFsHBwejatSvatGkDa2trveK/cOECPv74Y9SoUQNTpkyBUqnEtWvXcPjw4dfut3v3brRu3RrlypXDpEmT8OLFC8ydOxdeXl44deoUypYtq1W+c+fOcHNzQ0hICE6dOoUlS5bAwcEB3333nU5xdujQAf3798eGDRvQu3dvAJmtE1WqVEGdOnWylb9x4wY2bdqEzz77DG5uboiLi8PChQvRtGlTXLx4Ec7OzqhatSqmTJmCCRMmoF+/fmjcuDEAaP0uHz16hNatW6NLly7o3r07HB0dc4zvxx9/xN69e+Hv74+IiAiYmppi4cKF2LVrF1auXAlnZ+cc96tatSpWrlyJ4OBglC5dWmpat7e3x4sXL/DRRx/h2rVrGDhwINzc3LB27VoEBAQgPj4eQ4YM0apr6dKlSEpKQr9+/aBUKmFnZ6fTa5slLS0Nd+/eRbFixbTWr127Fs+fP8eAAQNQvHhxHDt2DHPnzsXdu3exdu1arbLp6enw9fVFgwYNMHPmTOzevRvff/89ypcvjwEDBgAAhBBo164dDh06hP79+6Nq1arYuHEj/P39s8Wk73X2+eefo2rVqpg+fTq2bt2Kb775BnZ2dli4cCGaN2+O7777DqtWrcKIESPwwQcfoEmTJm98XVJTU/Hw4UOtdUWLFkXRokUhhMAnn3yCffv2ITAwELVq1cLOnTsxcuRI3Lt3D7NmzdLab+/evfjzzz8xcOBAlChRAmXLlkVcXBwaNmwIhUKBgQMHwt7eHtu3b0dgYCA0Go00QHfx4sUYPHgwOnXqhCFDhiApKQn//vsvjh49ii+++AIdOnTAlStX8Pvvv2PWrFkoUaIEgMxrKSdXr17F5cuX0bt3b9jY2LzxdchJWFgYbty4gV69esHJyUnq3r1w4QKOHDkChUIBAOjfvz/WrVuHgQMHwt3dHY8ePcKhQ4dw6dIl1KlTBykpKfD19UVycjIGDRoEJycn3Lt3D1u2bEF8fDzUanW2Y+v7/rds2TL07t0b1apVw9ixY2Fra4vTp09jx44dUpeOLtf6l19+iejoaISFhWHlypVvfI0uXLiAxo0bQ6VSYdSoUTAzM8PChQvx0Ucf4cCBA2jQoIFW+UGDBqFYsWKYOHEibt26hdmzZ2PgwIH4448/dP69FAoFndHILSEhQQAQ7dq106n8mTNnBADRp08frfUjRowQAMTevXulda6urgKAOHjwoLTu/v37QqlUiuHDh0vrXv52+jJdWyhmzZolAIgHDx7kGndO30xq1aolHBwcxKNHj6R1Z8+eFSYmJqJnz57Zjte7d2+tOj/99FNRvHjxXI/58nlYWVkJIYTo1KmTaNGihRBCiPT0dOHk5CQmT56c42uQlJQk0tPTs52
"text/plain": [
"<Figure size 640x480 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model: Gradient Boosting Classification\n",
"Best Parameters: {'model__learning_rate': 0.1, 'model__max_depth': 5, 'model__n_estimators': 200}\n",
"Accuracy: 0.7493781094527363\n",
"Precision: 0.6469428007889546\n",
"Recall: 0.5942028985507246\n",
"F1-score: 0.619452313503305\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhQAAAHHCAYAAADnOMH5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABia0lEQVR4nO3dd1hT1/8H8HdAEmZAlKmAuEFxV6U4WwSVWhWt1aoFZ7WoFbetWsUqrbbVat1awVVbZ+sWdxXco+66sSrggojIzPn94Y98jYAm5gKmvF8+93nMveeee24Skk8+55x7ZUIIASIiIiIDmBR3A4iIiMj4MaAgIiIigzGgICIiIoMxoCAiIiKDMaAgIiIigzGgICIiIoMxoCAiIiKDMaAgIiIigzGgICIiIoMxoNDBlStXEBAQAFtbW8hkMmzcuFHS+m/evAmZTIaoqChJ6zVmLVq0QIsWLSSrLzU1FX379oWzszNkMhmGDh0qWd1vu/zeXxMnToRMJiu+Rv3HGMvz+TZ81lSoUAGhoaFa6/L7jI2KioJMJsPNmzeLvI0ymQwTJ04s8uMaO6MJKK5du4bPPvsMFStWhLm5OZRKJfz8/PDTTz/h2bNnhXrskJAQnD17FlOmTMHy5cvRoEGDQj1eUQoNDYVMJoNSqcz3ebxy5QpkMhlkMhm+//57veu/e/cuJk6ciNOnT0vQ2jc3depUREVFYeDAgVi+fDl69uxZ6MdUq9VYtmwZWrVqhbJly8LMzAyOjo4ICAjAwoULkZGRUehtKE76vva5XyAvLo6OjmjZsiW2bdtWuI3VQVpaGiZOnIh9+/YVd1PytW/fPgQHB8PZ2RlyuRyOjo5o164d1q9fX9xNe63i+IzdunUrgwapCSOwefNmYWFhIezs7MSQIUPEwoULxc8//yy6du0qzMzMRL9+/Qrt2GlpaQKA+OqrrwrtGGq1Wjx79kxkZ2cX2jEKEhISIkqVKiVMTU3Fb7/9lmf7119/LczNzQUAMX36dL3rP3bsmAAgli5dqtd+GRkZIiMjQ+/jFaRRo0bCz89PsvpeJy0tTQQGBgoA4t133xWRkZHil19+Ed9//71o166dMDU1Fb179y6Stty4cSPPa5CVlSWePXtWqMfV97VfunSpACAiIiLE8uXLxbJly8T06dNFjRo1BACxadOmQm3v69y/f18AEF9//XWebUXxfL7KhAkTBABRpUoVMWHCBLFkyRIxbdo00aJFCwFArFy5UgiR/3uhqKWnp4vMzEzN44I+Y7Ozs8WzZ8+EWq0ulHaEhYWJgr4Cnz17JrKysgrluP9lpYojiNHHjRs30LVrV3h4eGDPnj1wcXHRbAsLC8PVq1exZcuWQjv+/fv3AQB2dnaFdgyZTAZzc/NCq/91FAoF/Pz88Ouvv6JLly5a21atWoWgoCCsW7euSNqSlpYGS0tLyOVySetNSkqCt7e3ZPVlZ2dDrVYX2M7w8HDs2LEDM2fOxBdffKG1bfjw4bhy5QpiYmIMOoYhSpUqhVKl3s4//zZt2mj9Qu3Tpw+cnJzw66+/4oMPPijGlhWsOJ/PtWvXIiIiAp07d8aqVatgZmam2TZy5Ejs2LEDWVlZxdK2/CgUCq3HBX3GmpqawtTUtKiapaU4P4+NWnFHNK8zYMAAAUAcOnRIp/JZWVkiIiJCVKxYUcjlcuHh4SHGjh0r0tPTtcp5eHiIoKAg8ddff4l33nlHKBQK4enpKaKjozVlvv76awFAa/Hw8BBCPP9ln/v/F+Xu86KdO3cKPz8/YWtrK6ysrETVqlXF2LFjNdsL+tWwe/du0aRJE2FpaSlsbW3Fhx9+KC5cuJDv8a5cuSJCQkKEra2tUCqVIjQ0VDx9+vS1z1dISIiwsrISUVFRQqFQiMePH2u2HT16VAAQ69aty5OhePjwoRg+fLioWbOmsLKyEjY2NqJ169bi9OnTmjJ79+7N8/y9eJ7NmzcXNWrUEMePHxdNmzYVFhYW4osvvtBsa968uaauTz/9VCgUijznHxAQIOzs7MSdO3fyPb+C2nDjxg0hhBCJiYmid+/ewtHRUSgUClGrVi0RFRWlVUfu6zN9+nQxY8YMUbFiRWFiYiJOnTqV7zHj4+OFqampaN269SueeW2vOkZGRoYYP368qFevnlAqlcLS0lI0adJE7NmzJ089jx8/FiEhIUKpVApbW1vx6aefilOnTuV5f+X3PhVCiOXLl4t69eoJc3NzUbp0afHxxx+L+Ph4rTK5r9v58+dFixYthIWFhXB1dRXfffedpszrXvv85GYojh07prVerVYLpVIpPv30U631qampYtiwYaJ8+fJCLpeLqlWriunTp+f5RavrZ8KxY8dEQECAKFOmjDA3NxcVKlQQvXr10np9Xl5ysxX5PZ8ARFhYmNiwYYOoUaOGkMvlwtvbW2zbti3Pue/du1fUr19fKBQKUbFiRTF//vwCX6OXVa9eXdjb2wuVSvXasvl91pw5c0aEhIQIT09PoVAohJOTk+jVq5d48OCB1r4qlUp88cUXwsPDQ8jlcuHg4CD8/f3FiRMnNGX++ecfERwcLJycnIRCoRDlypUTH3/8sUhOTtaU8fDwECEhIVrPW36fsbnvh9y/1Vxbt24VzZo1E9bW1sLGxkY0aNBAk4ERQogDBw6Izp07Czc3NyGXy0X58uXF0KFDRVpamqZMSEhIvq9nrhdf21wnT54UrVu3FjY2NsLKykq89957Ii4uTqtMbpsPHjwowsPDRdmyZYWlpaXo0KGDSEpKeu3rY+zezp8oL9i0aRMqVqyId999V6fyffv2RXR0NDp37ozhw4fjyJEjiIyMxMWLF7FhwwatslevXkXnzp3Rp08fhISE4JdffkFoaCjq16+PGjVqIDg4GHZ2dggPD0e3bt3Qtm1bWFtb69X+8+fP44MPPkCtWrUQEREBhUKBq1ev4tChQ6/cb9euXWjTpg0qVqyIiRMn4tmzZ5g9ezb8/Pxw8uRJVKhQQat8ly5d4OnpicjISJw8eRKLFy+Go6MjvvvuO53aGRwcjAEDBmD9+vXo3bs3gOfZierVq6NevXp5yl+/fh0bN27ERx99BE9PTyQmJmLBggVo3rw5Lly4AFdXV3h5eSEiIgITJkxA//790bRpUwDQei0fPnyINm3aoGvXrujRowecnJzybd9PP/2EPXv2ICQkBHFxcTA1NcWCBQuwc+dOLF++HK6urvnu5+XlheXLlyM8PBzly5fH8OHDAQAODg549uwZWrRogatXr2LQoEHw9PTEmjVrEBoaiuTk5DyZhaVLlyI9PR39+/eHQqGAvb19vsfctm0bcnJy0KNHj9c863nldwyVSoXFixejW7du6NevH548eYIlS5YgMDAQR48eRZ06dQAAQgi0b98eBw8exIABA+Dl5YUNGzYgJCREp2NPmTIF48ePR5cuXdC3b1/cv38fs2fPRrNmzXDq1CmtX5CPHz9G69atERwcjC5dumDt2rUYPXo0fHx80KZNG51e+4KkpKTgwYMHEEIgKSkJs2fPRmpqqtbzKYTAhx9+iL1796JPnz6oU6cOduzYgZEjR+LOnTuYMWOGpqwunwlJSUkICAiAg4MDxowZAzs7O9y8eVMz/sDBwQHz5s3DwIED0bFjRwQHBwMAatWq9cpzOXjwINavX4/PP/8cNjY2mDVrFjp16oT4+HiUKVMGAHDq1Cm0bt0aLi4umDRpEnJychAREQEHB4fXPldXrlzBpUuX0Lt3b9jY2Ly2fH5iYmJw/fp19OrVC87Ozjh//jwWLlyI8+fP4/Dhw5rBpgMGDMDatWsxaNAgeHt74+HDhzh48CAuXryIevXqITMzE4GBgcjIyMDgwYPh7OyMO3fuYPPmzUhOToatrW2eY+v7GRsVFYXevXujRo0aGDt2LOzs7HDq1Cls374dn3zyCQBgzZo1SEtLw8CBA1GmTBkcPXoUs2fPxr///os1a9YAAD777DPcvXsXMTExWL58+Wufo/Pnz6Np06ZQKpUYNWoUzMzMsGDBArRo0QL79+9Ho0aNtMoPHjwYpUuXxtdff42bN29i5syZGDRoEH777Te
"text/plain": [
"<Figure size 640x480 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOZElEQVR4nO3deXhTdb4G8DdJm3RvKaVbGiz7Dm0KVEBlWKSAsrQKzMhAZVzGBeTKuIDK5gKOC+IdmGFkRlGvDou2gIIwUkUBUZak7BShRWi6U2i6p01+94/SlEqBpjY5Sfp+nqfPY07Pab49oHnNeXN+MiGEABEREZGbkEs9ABEREVFrYrghIiIit8JwQ0RERG6F4YaIiIjcCsMNERERuRWGGyIiInIrDDdERETkVjykHsDRLBYLcnJy4O/vD5lMJvU4RERE1AxCCJSWliIyMhJy+c3fm2lz4SYnJwcajUbqMYiIiKgFLl68iKioqJvu0+bCjb+/P4C6kxMQECDxNERERNQcRqMRGo3G+jp+M20u3NRfigoICGC4ISIicjHNqZSwUExERERuheGGiIiI3ArDDREREbkVhhsiIiJyKww3RERE5FYYboiIiMitMNwQERGRW2G4ISIiIrfCcENERERuheGGiIiI3Iqk4eb777/HhAkTEBkZCZlMhs2bN9/ymN27d0Or1UKlUqFr165Yt26d3eckIiIi1yFpuCkvL8eAAQOwevXqZu2flZWFe+65ByNGjEB6ejr+53/+Bw8//DB27txp50mJiIjIVUi6cOa4ceMwbty4Zu+/Zs0adOrUCW+//TYAoFevXti7dy/eeecdJCQk2GtMIiIiaqacK5WoMJnRNdRPshlcalXw/fv3Y/To0Y22JSQk4H/+539ueEx1dTWqq6utj41Go73GIyIiapNKq2rw1fE8pOoM+DHrEkb3CsPamQMlm8elwk1eXh7CwsIabQsLC4PRaERlZSW8vb2vO2b58uVYunSpo0YkIiJqE2rNFuw5W4QUnQFfn8xDVY3F+r2qGjMsFgG5XCbJbC4VblpiwYIFmDdvnvWx0WiERqORcCIiIiLXJITAiRwjUnQGbD2Sg6KyhisjXTr4IkkbhUkxkYhq5yPhlC4WbsLDw5Gfn99oW35+PgICApp81wYAVCoVVCqVI8YjIiJyS7klldisz0GqPhtn8sus24N9lZg4IBJJWjX6qQMhk0nzTs2vuVS4GTJkCLZv395o29dff40hQ4ZINBEREZF7KquuxVfHcpGqN2B/5iUIUbdd6SHH3b3DkBSrxl3dO8BT4Xy3zJM03JSVleHs2bPWx1lZWUhPT0dwcDA6duyIBQsWwGAw4KOPPgIAPPbYY1i1ahWee+45/OlPf8I333yDjRs3Ytu2bVL9CkRERG6j1mzB3rNFSNUbsPNE4x7N4E7BSIpVY1y/CAR6e0o45a1JGm4OHTqEESNGWB/Xd2OSk5Oxbt065Obm4sKFC9bvd+rUCdu2bcPTTz+Nd999F1FRUfjXv/7Fj4ETERG1kBACJ3ONSNUZsOVIDgpLG3o0nUN8kaRVY1KMGppgaXs0tpAJUf9GU9tgNBoRGBiIkpISBAQESD0OERGRJPJKqrA53YBUnQEZ+aXW7cG+SkzoH4FEbRQGRDlPj8aW12+X6twQERFRy5VX12LH8Tyk6g3Yd66oUY9mdK9QJMVGYXgP5+zR2ILhhoiIyI2ZLQL7zhYhRZeNnSfyUVljtn5vcHQwErVqjHeBHo0tGG6IiIjc0MkcI1L12diSnoOCa3o0nUJ8kRSrxuRY1+rR2ILhhoiIyE3kG6uwWW9Aqt6A03kNPZp2Pp6YMCASibFqxGiCnKZHYy8MN0RERC6svLoWO09c7dGcLYKlvkejkGNUr1Akxqrxux6hUHq4do/GFgw3RERELsZsEfjhXN26TjtP5KHC1NCjGRTdDomxUbinXwQCfdynR2MLhhsiIiIXcSrXiFS9AVvSDcg3NvRootv7IDE2ComxanRs7549Glsw3BARETmxAmMVtqTnIEVvwKlco3V7kI8n7u0fgSRtFGLbQI/GFgw3RERETqbCVNejSdFd36MZ2TMUiVo1RrSxHo0tGG6IiIicgNkisP/cJaTos7HjeOMeTdxt7ZAYq8a9/SMQ5KOUcErXwHBDREQkoYy8UqTos7FFn4M8Y5V1+23tfZAYq0ZirBq3tfeVcELXw3BDRETkYAWlVdianoMUnQEnr+nRBHrX92jU0HZsxx5NCzHcEBEROUClyYz/nqzr0ez5udDao/FUyDCiRyiStFEY0bMDVB4KaQd1Aww3REREdmK2CPyYeQkpOgN2HM9F+TU9Gm3HICRqo3Bvvwi082WPpjUx3BAREbWyM/mlSNEZsFlvaNSj6Rjc0KOJDmGPxl4YboiIiFpBfY8mVW/AiZyGHk2AlwfuHRCJpFg14m5jj8YRGG6IiIhaqL5Hk6o3YM/PRTBfLdJ4KmT4XY9QJMWqMbJXKHs0DsZwQ0REZAOLReDHrPoeTR7Kqmut34vtGISkWDXu7R/JHo2EGG6IiIia4ef8UqToDdiiNyCnpKFHown2RmKMGpNj1ejcwU/CCakeww0REdENFJVVW3s0xwwl1u3+Xh7WdZ0GskfjdBhuiIiIrlFVY8Z/T+YjVZeN76/p0XjIr/ZotGqM7BkKL0/2aJwVww0REbV5FovAT1nFSNVn46tjeSi9pkczQFPfo4lAez+VhFNSczHcEBFRm3W2oAyp+mxs1ufAcKXSul0d5I0kbV2Ppgt7NC6H4YaIiNqUorJqfHGkrkdzNLtxj+aefhFIjFVjUHQw5HL2aFwVww0REbm9qhozdp3KR6rOgN1nCn/Vo+mAxNgojOrFHo27YLghIiK3ZLEIHDhfjFSdAduP5Tbu0UQFIjFWjQkDItmjcUMMN0RE5FbOFZYhVWdAqt5wXY8mMbauR9M1lD0ad8ZwQ0RELu/SNT2aI9f2aFQeGN8vAolaNQazR9NmMNwQEZFLqqoxI+1UAVL12didUYjaqz0ahVyG4d07IDFWjbt7h7FH0wYx3BARkcuwWAQO/XIZKbpsbDuWi9Kqhh5N/2t6NCHs0bRpDDdEROT0MgvLkKqv69FkX27o0UQGemFyrBpJWjW6hvpLOCE5E4YbIiJySsXlJnx5NAcpOgPSL16xbvdTeWBc33AkaaMQ34k9Groeww0RETmNqhozvjldgBSdAbszChr1aO7qFoJEbRTu7hUGbyV7NHRjDDdERCQpIep7NAZsO5oD4zU9mr7qACTGRmHigEh08GePhpqH4YaIiCSRVVR+tUeTjYvFDT2aiPoeTawa3cLYoyHbMdwQEZHDXK7v0egN0F+4Yt3uq1RgXL8IJGnVuL1Te/Zo6DdhuCEiIruqrjXj26s9mm8zClBjruvRyGXAXVfvRzOmdzh7NNRqGG6IiKjVCSFw+JfLSNEbsO1oLkoqa6zf6xMZgMRYNSbGRCLU30vCKcldMdwQEVGrOW/t0RhwobjCuj08oOF+NN3ZoyE7Y7ghIqLf5EqFCV8czUWqLhu6X/Voxva92qPp3B4K9mjIQRhuiIjIZnU9mkKk6rPxzenGPZo7unVAUqwaY/qEwUfJlxlyPP6tIyKiZhFCQHfhClJ02fjyVz2a3hEBSNKqMXFAJEID2KMhaTHcEBHRTf1yqa5Hs1lvwPlLDT2asAAVJseokahVo2d4gIQTEjXGcENERNcpqajBl8dykKoz4NAvl63bfZQKjO1Tt67TkC7s0ZBzYrghIiIAgKnWgm8zCpCqM+Cb0wUwmS0A6no0w7qGIEmrRkKfcPZoyOnxbygRURsmhID+4hWk6gz48mgOLlc09Gh6hvsjSavGpBg1wtijIRfCcENE1AZdLK6w3o8mq6jcuj3UX4XJsWokxqrRK4I9GnJNDDdERG1ESUUNth3LRao+GwfPN/RovD0VGNs3HElaNYZ2CWGPhlweww0RkRsz1Vrw3ZlCpOiykXaqoUcjkwF3dA1BYmxdj8ZXxZcDch/820xE5GaEEEi/eAWpegO+OHJ9jyYxtq5HEx7IHg25J4YbIiI3cbG4Apu
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"from sklearn.model_selection import train_test_split, GridSearchCV\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.linear_model import LinearRegression, LogisticRegression\n",
"from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier\n",
"from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier\n",
"from sklearn.pipeline import Pipeline\n",
"from sklearn.compose import ColumnTransformer\n",
"from sklearn.preprocessing import OneHotEncoder\n",
"from sklearn import metrics\n",
"from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score, accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, ConfusionMatrixDisplay\n",
"\n",
"\n",
"numerical_cols = [\"Open\", \"Close\", \"High\", \"Low\"]\n",
"\n",
"# Создаем преобразователь для категориальных и числовых столбцов\n",
"preprocessor = ColumnTransformer(\n",
" transformers=[\n",
" ('num', StandardScaler(), numerical_cols)\n",
" ])\n",
"\n",
"# Список моделей и их гиперпараметров для задачи регрессии\n",
"models_reg = {\n",
" \"Linear Regression\": (LinearRegression(), {}),\n",
" \"Random Forest Regression\": (RandomForestRegressor(), {\n",
" 'model__n_estimators': [100, 200],\n",
" 'model__max_depth': [None, 10, 20]\n",
" }),\n",
" \"Gradient Boosting Regression\": (GradientBoostingRegressor(), {\n",
" 'model__n_estimators': [100, 200],\n",
" 'model__learning_rate': [0.01, 0.1],\n",
" 'model__max_depth': [3, 5]\n",
" })\n",
"}\n",
"\n",
"# Разделяем данные на признаки (X) и целевую переменную (y) для задачи регрессии\n",
"X_reg = df[numerical_cols]\n",
"y_reg = df['Volume']\n",
"\n",
"# Разделяем данные на обучающую и тестовую выборки для задачи регрессии\n",
"X_train_reg, X_test_reg, y_train_reg, y_test_reg = train_test_split(X_reg, y_reg, test_size=0.2, random_state=42)\n",
"\n",
"# Обучаем и оцениваем модели для задачи регрессии\n",
"print(\"Результаты для задачи регрессии:\")\n",
"for name, (model, params) in models_reg.items():\n",
" pipeline = Pipeline(steps=[\n",
" ('preprocessor', preprocessor),\n",
" ('model', model)\n",
" ])\n",
" grid_search = GridSearchCV(pipeline, params, cv=5, scoring='neg_mean_absolute_error')\n",
" grid_search.fit(X_train_reg, y_train_reg)\n",
" best_model = grid_search.best_estimator_\n",
" y_pred_reg = best_model.predict(X_test_reg)\n",
" mae = mean_absolute_error(y_test_reg, y_pred_reg)\n",
" mse = mean_squared_error(y_test_reg, y_pred_reg)\n",
" rmse = mean_squared_error(y_test_reg, y_pred_reg, squared=False)\n",
" r2 = r2_score(y_test_reg, y_pred_reg)\n",
" print(f\"Model: {name}\")\n",
" print(f\"Best Parameters: {grid_search.best_params_}\")\n",
" print(f\"MAE: {mae}\")\n",
" print(f\"MSE: {mse}\")\n",
" print(f\"RMSE: {rmse}\")\n",
" print(f\"R²: {r2}\")\n",
" print()\n",
"\n",
"# Список моделей и их гиперпараметров для задачи классификации\n",
"models_class = {\n",
" \"Logistic Regression\": (LogisticRegression(), {\n",
" 'model__C': [0.1, 1, 10],\n",
" 'model__solver': ['liblinear', 'lbfgs']\n",
" }),\n",
" \"Random Forest Classification\": (RandomForestClassifier(), {\n",
" 'model__n_estimators': [100, 200],\n",
" 'model__max_depth': [None, 10, 20]\n",
" }),\n",
" \"Gradient Boosting Classification\": (GradientBoostingClassifier(), {\n",
" 'model__n_estimators': [100, 200],\n",
" 'model__learning_rate': [0.01, 0.1],\n",
" 'model__max_depth': [3, 5]\n",
" })\n",
"}\n",
"\n",
"# Разделяем данные на признаки (X) и целевую переменную (y) для задачи классификации\n",
"X_class = df[numerical_cols]\n",
"y_class = (df['Volume'] > df['Volume'].mean()).astype(int)\n",
"\n",
"# Разделяем данные на обучающую и тестовую выборки для задачи классификации\n",
"X_train_class, X_test_class, y_train_class, y_test_class = train_test_split(X_class, y_class, test_size=0.2, random_state=42)\n",
"\n",
"# Обучаем и оцениваем модели для задачи классификации\n",
"print(\"Результаты для задачи классификации:\")\n",
"for name, (model, params) in models_class.items():\n",
" pipeline = Pipeline(steps=[\n",
" ('preprocessor', preprocessor),\n",
" ('model', model)\n",
" ])\n",
" grid_search = GridSearchCV(pipeline, params, cv=5, scoring='accuracy')\n",
" grid_search.fit(X_train_class, y_train_class)\n",
" best_model = grid_search.best_estimator_\n",
" y_pred_class = best_model.predict(X_test_class)\n",
" accuracy = accuracy_score(y_test_class, y_pred_class)\n",
" precision = precision_score(y_test_class, y_pred_class)\n",
" recall = recall_score(y_test_class, y_pred_class)\n",
" f1 = f1_score(y_test_class, y_pred_class)\n",
" print(f\"Model: {name}\")\n",
" print(f\"Best Parameters: {grid_search.best_params_}\")\n",
" print(f\"Accuracy: {accuracy}\")\n",
" print(f\"Precision: {precision}\")\n",
" print(f\"Recall: {recall}\")\n",
" print(f\"F1-score: {f1}\")\n",
" print()\n",
"\n",
" # Визуализация матрицы ошибок\n",
" cm = confusion_matrix(y_test_class, y_pred_class)\n",
" disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=['Less', 'More'])\n",
" disp.plot(cmap=plt.cm.Blues)\n",
" plt.title(f'Confusion Matrix for {name}')\n",
" plt.show()\n",
"\n",
" fpr, tpr, _ = metrics.roc_curve(y_test_class, y_pred_class)\n",
"# построение ROC кривой\n",
"plt.plot(fpr, tpr)\n",
"plt.ylabel(\"True Positive Rate\")\n",
"plt.xlabel(\"False Positive Rate\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Давайте проанализируем полученные значения метрик и определим, являются ли они нормальными или есть возможность улушчения.\n",
"\n",
"### Оценка смещения и дисперсии для задачи регрессии:\n",
"\n",
"### Вывод для задачи регрессии:\n",
"\n",
"- **Random Forest Regression** демонстрирует наилучшие результаты по метрикам MAE и R², что указывает на высокую точность и стабильность модели.\n",
"- **Linear Regression** и **Gradient Boosting Regression** также показывают хорошие результаты, но уступают случайному лесу.\n",
"\n",
"### Вывод для задачи классификации:\n",
"\n",
"- **Random Forest Classification** демонстрирует наилучшие результаты по всем метрикам (Accuracy, Precision, Recall, F1-score), что указывает на высокую точность и стабильность модели.\n",
"- **Logistic Regression** и **Gradient Boosting Classification** также показывают хорошие результаты, но уступают случайному лесу.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Для оценки смещения (bias) и дисперсии (variance) моделей можно использовать метод перекрестной проверки (cross-validation). Этот метод позволяет оценить, насколько хорошо модель обобщается на новых данных.\n",
"\n",
"Оценка смещения и дисперсии для задачи регрессии:\n",
"Для задачи регрессии мы будем использовать метрики MAE (Mean Absolute Error) и R² (R-squared) для оценки смещения и дисперсии.\n",
"\n",
"Оценка смещения и дисперсии для задачи классификации:\n",
"Для задачи классификации мы будем использовать метрики Accuracy, Precision, Recall и F1-score для оценки смещения и дисперсии.\n",
"\n",
"Пример кода для оценки смещения и дисперсии:"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Оценка смещения и дисперсии для задачи регрессии:\n",
"Model: Linear Regression\n",
"MAE (Cross-Validation): Mean = 7579277.521464063, Std = 1960011.680230822\n",
"R² (Cross-Validation): Mean = -1.1347990784665143, Std = 2.306562184953969\n",
"\n",
"Model: Random Forest Regression\n",
"MAE (Cross-Validation): Mean = 7806347.158011436, Std = 3478782.4486245485\n",
"R² (Cross-Validation): Mean = -0.1365001480998081, Std = 0.12973311964755527\n",
"\n",
"Model: Gradient Boosting Regression\n",
"MAE (Cross-Validation): Mean = 7893683.279353255, Std = 3518932.5109060933\n",
"R² (Cross-Validation): Mean = -0.1057513351347448, Std = 0.08711611953829208\n",
"\n",
"Оценка смещения и дисперсии для задачи классификации:\n",
"Model: Logistic Regression\n",
"Accuracy (Cross-Validation): Mean = 0.5892532514775223, Std = 0.12093239665054567\n",
"Precision (Cross-Validation): Mean = 0.35360976489674945, Std = 0.34878959634336554\n",
"Recall (Cross-Validation): Mean = 0.41634103019538193, Std = 0.47748852647480444\n",
"F1-score (Cross-Validation): Mean = 0.26337058226161625, Std = 0.2700065991354378\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\ateks\\Courses\\Courses\\.venv\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
"c:\\Users\\ateks\\Courses\\Courses\\.venv\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model: Random Forest Classification\n",
"Accuracy (Cross-Validation): Mean = 0.3738201494085268, Std = 0.16711322364727796\n",
"Precision (Cross-Validation): Mean = 0.40131211828076446, Std = 0.30406982088770196\n",
"Recall (Cross-Validation): Mean = 0.48331005101041064, Std = 0.28204866326457984\n",
"F1-score (Cross-Validation): Mean = 0.32735686540449993, Std = 0.09990409789532408\n",
"\n",
"Model: Gradient Boosting Classification\n",
"Accuracy (Cross-Validation): Mean = 0.3266515895940335, Std = 0.17857049420400362\n",
"Precision (Cross-Validation): Mean = 0.36258531023350526, Std = 0.3286759742498122\n",
"Recall (Cross-Validation): Mean = 0.3801836880463708, Std = 0.3324199402098825\n",
"F1-score (Cross-Validation): Mean = 0.23705262823922438, Std = 0.15533217789069204\n",
"\n"
]
}
],
"source": [
"from sklearn.model_selection import cross_val_score\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.linear_model import LinearRegression, LogisticRegression\n",
"from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier\n",
"from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier\n",
"from sklearn.pipeline import Pipeline\n",
"from sklearn.compose import ColumnTransformer\n",
"from sklearn.preprocessing import OneHotEncoder\n",
"\n",
"# Определяем категориальные и числовые столбцы\n",
"\n",
"numerical_cols = [\"Open\", \"Close\", \"High\", \"Low\"]\n",
"\n",
"# Создаем преобразователь для категориальных и числовых столбцов\n",
"preprocessor = ColumnTransformer(\n",
" transformers=[\n",
" ('num', StandardScaler(), numerical_cols)\n",
" ])\n",
"\n",
"# Разделяем данные на признаки (X) и целевую переменную (y) для задачи регрессии\n",
"X_reg = df[numerical_cols]\n",
"y_reg = df['Volume']\n",
"\n",
"# Список моделей для задачи регрессии\n",
"models_reg = {\n",
" \"Linear Regression\": LinearRegression(),\n",
" \"Random Forest Regression\": RandomForestRegressor(),\n",
" \"Gradient Boosting Regression\": GradientBoostingRegressor()\n",
"}\n",
"\n",
"# Оценка смещения и дисперсии для задачи регрессии\n",
"print(\"Оценка смещения и дисперсии для задачи регрессии:\")\n",
"for name, model in models_reg.items():\n",
" pipeline = Pipeline(steps=[\n",
" ('preprocessor', preprocessor),\n",
" ('model', model)\n",
" ])\n",
" mae_scores = -cross_val_score(pipeline, X_reg, y_reg, cv=5, scoring='neg_mean_absolute_error')\n",
" r2_scores = cross_val_score(pipeline, X_reg, y_reg, cv=5, scoring='r2')\n",
" print(f\"Model: {name}\")\n",
" print(f\"MAE (Cross-Validation): Mean = {mae_scores.mean()}, Std = {mae_scores.std()}\")\n",
" print(f\"R² (Cross-Validation): Mean = {r2_scores.mean()}, Std = {r2_scores.std()}\")\n",
" print()\n",
"\n",
"# Разделяем данные на признаки (X) и целевую переменную (y) для задачи классификации\n",
"X_class = df[numerical_cols]\n",
"y_class = (df['Volume'] > df['Volume'].mean()).astype(int)\n",
"\n",
"# Список моделей для задачи классификации\n",
"models_class = {\n",
" \"Logistic Regression\": LogisticRegression(),\n",
" \"Random Forest Classification\": RandomForestClassifier(),\n",
" \"Gradient Boosting Classification\": GradientBoostingClassifier()\n",
"}\n",
"\n",
"# Оценка смещения и дисперсии для задачи классификации\n",
"print(\"Оценка смещения и дисперсии для задачи классификации:\")\n",
"for name, model in models_class.items():\n",
" pipeline = Pipeline(steps=[\n",
" ('preprocessor', preprocessor),\n",
" ('model', model)\n",
" ])\n",
" accuracy_scores = cross_val_score(pipeline, X_class, y_class, cv=5, scoring='accuracy')\n",
" precision_scores = cross_val_score(pipeline, X_class, y_class, cv=5, scoring='precision')\n",
" recall_scores = cross_val_score(pipeline, X_class, y_class, cv=5, scoring='recall')\n",
" f1_scores = cross_val_score(pipeline, X_class, y_class, cv=5, scoring='f1')\n",
" print(f\"Model: {name}\")\n",
" print(f\"Accuracy (Cross-Validation): Mean = {accuracy_scores.mean()}, Std = {accuracy_scores.std()}\")\n",
" print(f\"Precision (Cross-Validation): Mean = {precision_scores.mean()}, Std = {precision_scores.std()}\")\n",
" print(f\"Recall (Cross-Validation): Mean = {recall_scores.mean()}, Std = {recall_scores.std()}\")\n",
" print(f\"F1-score (Cross-Validation): Mean = {f1_scores.mean()}, Std = {f1_scores.std()}\")\n",
" print()"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAI+CAYAAADwwbB5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAACDuElEQVR4nOzdeZyNdf/H8fesZzaDYcwMhhFlyTIieyFjxhK570RUliRli6lEdxlTSqVwhywVugsplTZZI1m6y9qGLGNJYw3DYNbv7w+/Ofccs5hxzcwZ4/V8PDycc51r+VzX+Z7rfOd9rsXFGGMEAAAAAAAAXCNXZxcAAAAAAACA6xsBEwAAAAAAACwhYAIAAAAAAIAlBEwAAAAAAACwhIAJAAAAAAAAlhAwAQAAAAAAwBICJgAAAAAAAFhCwAQAAAAAAABLCJgAAAAAAABgCQETirV+/frJz8+vSJd54MABubi4aN68eUW63JLso48+UkBAgM6fP+/sUnLUrFkzjRo1Ks/jnz9/Xo888oiCg4Pl4uKiESNGFF5xsHNxcdG4ceOcXUaRsbI/Wrt2rVxcXLR27doCrwsArjf5+f748ccf5enpqYMHDxZ4HTNnzlSVKlWUlJSU52nef/991apVSx4eHipTpkyB14Ss+vXrp7CwMGeXUaTatGmjNm3aXNO0YWFh6tevX4HWg+sTAdN1Yt68eXJxcZGLi4vWr1+f5XVjjEJDQ+Xi4qK7777bCRXmX1pamipWrCgXFxd98803zi6nQFy4cEHjxo0rlD/oMt7/7P499thjBb68gpKWlqaYmBgNGzbMISwMCwuTi4uLIiIisp3u7bfftq/f5s2bsx1n1KhRcnFxUc+ePbN9PeOP85z+vfLKK/Zxn3nmGU2fPl1Hjx7N03q9/PLLmjdvnh5//HG9//77euihh/I03bXK2F4Z/3x9fdWkSRP95z//KdTl4rJx48bJxcVFrq6uOnz4cJbXExIS5O3tLRcXFw0dOtQJFQIo6TL3BV1cXOTu7q5KlSqpX79+OnLkiLPLK1H+9a9/qVevXqpatap9WJs2bRy2v7e3t+rXr68pU6YoPT3dYfqHHnpIrVq1UtOmTdW6dWvt3LnT/lq/fv2UnJysWbNm5amWXbt2qV+/fqpevbrefvttzZ49u2BWMgcZ33cZ/zw8PBQWFqbhw4frzJkzhbpsOPZdx48fn+04DzzwgFxcXIr8R3ggL9ydXQDyx8vLSwsWLFCrVq0chn/33Xf6888/ZbPZnFRZ/n377beKj49XWFiY5s+fr44dOzq7JMsuXLig2NhYSbrmXwBy0759e/Xp0yfL8FtuuaXAl1VQvvzyS+3evVuPPvpolte8vLy0Zs0aHT16VMHBwQ6vzZ8/X15eXrp06VK28zXGaOHChQoLC9OXX36pc+fOqVSpUtmO26tXL3Xq1CnL8IYNG9of33PPPfL399dbb72lF1544arr9e2336pZs2aKiYm56rgFJTw8XE8++aQkKT4+Xu+884769u2rpKQkDRw4sMjqcKaLFy/K3d15X102m00LFy7McrTbp59+6qSKANxoXnjhBVWrVk2XLl3SDz/8oHnz5mn9+vX69ddf5eXl5ezyrnvbt2/XqlWrtHHjxiyvVa5cWRMmTJAknTx5UgsWLNDIkSN14sQJvfTSS/bxnn/+eXvfbMSIERo8eLDWrFkj6XLfp2/fvpo0aZKGDRsmFxeXXOtZu3at0tPT9e9//1s1atQoqNW8qhkzZsjPz0+JiYlavXq1pk6dqq1bt2b7Q3dJ9Pbbb2cJDouSl5eXFi5cqOeee85heGJioj7//HM+6yi2OILpOtOpUyd9/PHHSk1NdRi+YMECNWrUKMsf6cXZBx98oNtuu00jR47UkiVLlJiY6OySir1bbrlFDz74YJZ/TZo0yXW6CxcuZDs8NTVVycnJlmq62vs2d+5ctWzZUpUqVcryWsuWLeXn56dFixY5DP/zzz/1/fffq3PnzjnOd+3atfrzzz81Z84cpaam5voH/m233Zbtdrv11lvt47i6uqp79+76z3/+I2NMruskScePHy/Qw9Tz8l5UqlTJXvvTTz+t9evXy8/PT5MnTy6wOvLKWZ9XLy8vpwZMnTp10sKFC7MMX7BgQa7tFQAKSseOHfXggw/qkUce0TvvvKOnnnpK+/bt0xdffOHs0gpFTn2YwjJ37lxVqVJFzZo1y/Ja6dKl7d/DI0aM0Lp161S1alVNnTpVaWlp9vEy//BnjJGrq+OfXD169NDBgwftoVNujh8/LkkF2ufIyzbt3r27HnzwQQ0aNEgfffSRevbsqQ0bNujHH38ssDryIj09PccfGwuTh4eHU3+479Spk37//Xft2LHDYfjnn3+u5ORktW/f3kmVAbkjYLrO9OrVS6dOndLKlSvtw5KTk7V48WL17t0722nS09M1ZcoU3XrrrfLy8lJQUJAGDRqk06dPO4z3+eefq3PnzqpYsaJsNpuqV6+uF1980eELU7p8ZE7dunX1+++/q23btvLx8VGlSpX02muv5Xk9Ll68qM8++0z333+/evTooYsXL+rzzz/Pcfz9+/crKipKvr6+qlixol544YUsIcCHH36oRo0aqVSpUvL391e9evX073//O8t87rvvPgUEBMjHx0fNmjXT119/fdV6czonOfP52QcOHFBgYKAkKTY21n54a+bz/Xft2qXu3bsrICBAXl5eaty4cYF3CDPeny1btujOO++Uj4+Pnn32Wfsht6+//rqmTJmi6tWry2az6ffff5d0+YicO+64Q76+vipTpozuueceh0O6pf8dNv3777+rd+/eKlu2bJaj6TK7dOmSli1bluNpcF5eXvrnP/+pBQsWOAxfuHChypYtq6ioqBznPX/+fNWpU0dt27ZVRESE5s+fn9dNlKP27dvr4MGD2r59e47jZFzXJi4uTl9//bX9fT5w4ICkyx3BAQMGKCgoSF5eXmrQoIHee+89h3lc7b3Iq8DAQNWqVUv79u1zGJ7Xz3x6errGjRunihUrysfHR23bttXvv/+e5Tz6jNMyvvvuOw0ePFgVKlRQ5cqV7a9/88039rZTqlQpde7cWb/99pvDso4ePar+/furcuXKstlsCgkJ0T333GPfbpK0efNmRUVFqXz58vL29la1atX08MMPO8wnu2tobNu2TR07dpS/v7/8/PzUrl07/fDDDw7jZKzDhg0bFB0drcDAQPn6+uof//iHTpw4kddNrt69e2v79u3atWuXw7p9++23Oe6D89ImJOnMmTPq16+fSpcurTJlyqhv3745no5wrfuSPXv26N5771VwcLC8vLxUuXJl3X///Tp79mzeNgCAYueOO+6QpCzfBdnJy77YGKPx48ercuXK9u+G3377Lct3Q0af4EoZ+9vM88xvH/PKPowkJSUlKSYmRjVq1JDNZlNoaKhGjRqV5VpGSUlJGjlypAIDA1WqVCl17dpVf/7551W3TYYlS5borrvuuuqRRdLlfsztt9+uc+fO2YOgzFavXq133nnH4ZR8SWrUqJECAgJy7ftKl0+PzzhSOjAwMMt34FtvvaVbb71VNptNFStW1JAhQ7J8b+S2TfMjp3b23//+Vx06dFDp0qXl4+Oj1q1ba8OGDVmmX7t2rRo3biwvLy9Vr15ds2bNyrYNZZxqPn/+fPu6LVu2TJJ05MgRPfzwwwoKCpLNZtOtt96qOXPmZFnW1KlTdeutt8rHx0dly5ZV48aNHfqa586d04gRIxQWFiabzaYKFSqoffv22rp1q32c7K7BlJiYqCeffFKhoaGy2WyqWbOmXn/99Sx/k2Ssw5IlS1S3bl17rRnrkRfNmzdXtWrVsvSR58+frw4dOiggICDb6fLSJiRp9uzZql69ury9vdWkSRN9//332c4vr5+7K6WkpCg2NlY333yzvLy8VK5cObVq1crhb1iUTJwid50JCwtT8+bNtXDhQvspZd98843Onj2r+++/X2+++WaWaQYNGqR58+apf//+Gj58uOLi4jRt2jRt27ZNGzZskIeHh6TLHQI/Pz9FR0fLz89P3377rcaOHauEhAR
"text/plain": [
"<Figure size 1200x600 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\ateks\\Courses\\Courses\\.venv\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
"c:\\Users\\ateks\\Courses\\Courses\\.venv\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJoAAASlCAYAAADgRbP+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde3zP9f//8ft7s/PMeXPax5wihyZzyLkkC5HkEJXTJwmTT+vERxlK+0i0kiIfp4r4iOSLnBaV8qGEVMghKbY5xRhmtufvD7+9P3vbxt689n7PdrteLi7e79f7dXi8Xu/n+/1+7PF8vl4vmzHGCAAAAAAAALhJHu4OAAAAAAAAAIUDhSYAAAAAAABYgkITAAAAAAAALEGhCQAAAAAAAJag0AQAAAAAAABLUGgCAAAAAACAJSg0AQAAAAAAwBIUmgAAAAAAAGAJCk0AAAAAAACwBIUmoJDat2+f2rdvrxIlSshms2nZsmXuDsmuf//+CgsLc9v2586dK5vNpkOHDjlMnzRpkqpVqyZPT081aNBAkhQWFqb+/fu7PMaxY8fKZrO5fLvudDPt4u6779bdd99taTwAgJt3I9/tGzdulM1m08aNG/MlpuvJKR8oCA4dOiSbzaa5c+e6LYac8qKccs7cci1XsNlsGjt2rMu36y430y7c/VlD4UWhCQXau+++K5vNpqZNm7o7lFtOv379tGvXLk2YMEEffvihGjVqlO/bTE5O1rhx4xQeHq7AwED5+fmpXr16evHFF3X06NF83/7NWLt2rV544QW1aNFCc+bM0WuvvZbv2zx//rzGjh1b4H7cbTabbDabnnjiiRxfHz16tH2eEydOuDg6AMC1ZP6Bn/nP19dXt912m6KiopSUlOTu8Ao8d+QD0pU/+Lt166by5cvL29tbwcHB6ty5s5YuXeqS7d8Md+Scq1atKnDFpMxOQg8PD/3xxx/ZXk9OTpafn59sNpuioqLcECHgOsXcHQBwLfPnz1dYWJi2bt2q/fv3q0aNGu4O6ZZw4cIFbd68WaNHj3bZD9nBgwfVrl07HT58WD169NCTTz4pb29v/fjjj5o1a5Y+/fRT/frrry6J5Xoef/xxPfLII/Lx8bFP++KLL+Th4aFZs2bJ29vbPn3v3r3y8Mifmvz58+c1btw4Sco2Guell17SyJEj82W7eeHr66slS5bo3XffdTgekvTxxx/L19dXFy9edFN0AIDrGT9+vKpWraqLFy9q06ZNeu+997Rq1Sr99NNP8vf3d1kcM2fOVEZGhlPLtG7dWhcuXMj2++MKueUD+SkmJkbjx49XzZo1NXjwYFWpUkUnT57UqlWr9PDDD2v+/Pnq06ePS2K5nqvzotxyzpxyLSutWrVK06ZNy7HYdOHCBRUr5r4/c318fPTxxx/rhRdecJh+KxQNAaswogkF1m+//aZvv/1WU6ZMUbly5TR//nx3h5SrlJQUd4fg4Pjx45KkkiVLWrbOa+3j5cuX1a1bNyUlJWnjxo36+OOPNWzYMA0aNEhTp07VwYMH1aNHD8tiuVmenp7y9fV1ODXt2LFj8vPzy5ZU+vj4yMvLy9UhqlixYvL19XX5djPdf//9Sk5O1ueff+4w/dtvv9Vvv/2mTp06uSkyAEBedOjQQY899pieeOIJzZ07V//4xz/022+/6bPPPst1mfzIZ7y8vJwuNnh4eMjX1zffOnquJbd84EYZY3ThwoVcX//kk080fvx4de/eXT///LPGjRungQMH6vnnn9eGDRu0evVqBQUFWRKLFa7Oi3LLOXPKtVzF19fXrYWmjh076uOPP842fcGCBeRPKDIoNKHAmj9/vkqVKqVOnTqpe/fuuRaaTp8+rWeeeUZhYWHy8fFR5cqV1bdvX4dTei5evKixY8fqtttuk6+vrypUqKBu3brpwIEDknI/Pzmnc5779++vwMBAHThwQB07dlTx4sX16KOPSpK+/vpr9ejRQ3/729/k4+Oj0NBQPfPMMzkmGHv27FHPnj1Vrlw5+fn5qVatWho9erQkacOGDbLZbPr000+zLbdgwQLZbDZt3rw5x+MxduxYValSRZL0/PPPy2azOVwbYfv27erQoYOCgoIUGBioe++9V//9738d1pE57P7LL7/U0KFDFRwcrMqVK+e4PUlasmSJdu7cqdGjR6tly5bZXg8KCtKECRNyXV6S3njjDTVv3lxlypSRn5+fIiIi9Mknn2Sbb926dWrZsqVKliypwMBA1apVS//85z8d5pk6darq1q0rf39/lSpVSo0aNdKCBQuy7V/mdQNsNpvmzJmjlJQU+6kGme95TtciuF6bu3TpksaMGaOIiAiVKFFCAQEBatWqlTZs2GBfx6FDh1SuXDlJ0rhx4+zbzeyZy+kaTZcvX9Yrr7yi6tWry8fHR2FhYfrnP/+p1NRUh/nCwsL0wAMPaNOmTWrSpIl8fX1VrVo1ffDBB9d8D7KqVKmSWrdu7XDcpCufy/r166tevXo5Lrd48WJFRETIz89PZcuW1WOPPaYjR45km2/ZsmWqV6+efH19Va9evRzbuiRlZGQoLi5OdevWla+vr0JCQjR48GD99ddf192H67UDAChK2rZtK+lKR5507XzGme/ezz//XG3atFHx4sUVFBSkxo0bO3zX5nSNpoULFyoiIsK+TP369fXWW2/ZX88tL8vLb0zmfh05ckRdu3ZVYGCgypUrp+eee07p6enXPEbXygec/Q1es2aNGjVqJD8/P82YMSPXbb788ssqXbq0Zs+enWPHVmRkpB544IFcl//xxx/Vv39/VatWTb6+vipfvrwGDhyokydPOsx39uxZ/eMf/7DnLsHBwbrvvvv0ww8/2OfZt2+fHn74YZUvX16+vr6qXLmyHnnkEZ05c8Zh/zLzomvlnLldo+l67SUvuXT//v01bdo0SXI4TTRTTtdocib//eabbxQdHa1y5copICBADz30kL2glhd9+vTRjh07tGfPHvu0xMREffHFF7mOTDt27Jj+/ve/KyQkRL6+vgoPD9e8efOyzXf69Gn1799fJUqUUMmSJdWvXz+dPn06x3Xu2bNH3bt3V+nSpeXr66tGjRpp+fLl140/L+0AuB5OnUOBNX/+fHXr1k3e3t7q3bu33nvvPX333Xdq3LixfZ5z586pVatW2r17twYOHKiGDRvqxIkTWr58uf7880+VLVtW6enpeuCBBxQfH69HHnlEI0aM0NmzZ7Vu3Tr99NNPql69utOxXb58WZGRkWrZsqXeeOMN+xD0xYsX6/z58xoyZIjKlCmjrVu3aurUqfrzzz+1ePFi+/I//vijWrVqJS8vLz355JMKCwvTgQMH9H//93+aMGGC7r77boWGhmr+/Pl66KGHsh2X6tWrq1mzZjnG1q1bN5UsWVLPPPOMevfurY4dOyowMFCS9PPPP6tVq1YKCgrSCy+8IC8vL82YMUN33323vvzyy2zXwho6dKjKlSunMWPGXLOXM/NH6/HHH3f6WGZ666231KVLFz366KO6dOmSFi5cqB49emjFihX23p+ff/5ZDzzwgO644w6NHz9ePj4+2r9/v7755hv7embOnKmnn35a3bt314gRI3Tx4kX9+OOP2rJlS64/7h9++KHef/99bd26Vf/+978lSc2bN89x3ry0ueTkZP373/9W7969NWjQIJ09e1azZs1SZGSktm7dqgYNGqhcuXJ67733NGTIED300EPq1q2bJOmOO+7I9Rg98cQTmjdvnrp3765nn31WW7ZsUWxsrHbv3p2tULN//351795df//739WvXz/Nnj1b/fv3V0REhOrWrZun96RPnz4aMWKEzp07p8DAQF2+fFmLFy9WdHR0jqfNzZ07VwMGDFDjxo0VGxurpKQkvfXWW/rmm2+0fft2e2/n2rVr9fDDD6tOnTqKjY3VyZMnNWDAgByLmYMHD7av9+mnn9Zvv/2md955R9u3b9c333yT62izG2kHAFCYZXaulSlTxj4tt3wmr9+9c+fO1cCBA1W3bl2NGjVKJUuW1Pbt27V69epcv2vXrVun3r17695779XEiRMlSbt379Y333yjESNG5Bp
"text/plain": [
"<Figure size 1200x1200 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"from sklearn.model_selection import cross_val_score\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.linear_model import LinearRegression, LogisticRegression\n",
"from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier\n",
"from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier\n",
"from sklearn.pipeline import Pipeline\n",
"from sklearn.compose import ColumnTransformer\n",
"from sklearn.preprocessing import OneHotEncoder\n",
"\n",
"# Определяем категориальные и числовые столбцы\n",
"numerical_cols = [\"Open\", \"Close\", \"High\", \"Low\"]\n",
"\n",
"# Создаем преобразователь для категориальных и числовых столбцов\n",
"preprocessor = ColumnTransformer(\n",
" transformers=[\n",
" ('num', StandardScaler(), numerical_cols)\n",
" ])\n",
"\n",
"# Разделяем данные на признаки (X) и целевую переменную (y) для задачи регрессии\n",
"X_reg = df[numerical_cols]\n",
"y_reg = df['Volume']\n",
"\n",
"# Список моделей для задачи регрессии\n",
"models_reg = {\n",
" \"Linear Regression\": LinearRegression(),\n",
" \"Random Forest Regression\": RandomForestRegressor(),\n",
" \"Gradient Boosting Regression\": GradientBoostingRegressor()\n",
"}\n",
"\n",
"# Оценка смещения и дисперсии для задачи регрессии\n",
"mae_means = []\n",
"mae_stds = []\n",
"r2_means = []\n",
"r2_stds = []\n",
"\n",
"for name, model in models_reg.items():\n",
" pipeline = Pipeline(steps=[\n",
" ('preprocessor', preprocessor),\n",
" ('model', model)\n",
" ])\n",
" mae_scores = -cross_val_score(pipeline, X_reg, y_reg, cv=5, scoring='neg_mean_absolute_error')\n",
" r2_scores = cross_val_score(pipeline, X_reg, y_reg, cv=5, scoring='r2')\n",
" mae_means.append(mae_scores.mean())\n",
" mae_stds.append(mae_scores.std())\n",
" r2_means.append(r2_scores.mean())\n",
" r2_stds.append(r2_scores.std())\n",
"\n",
"# Визуализация результатов для задачи регрессии\n",
"fig, ax = plt.subplots(1, 2, figsize=(12, 6))\n",
"\n",
"ax[0].bar(models_reg.keys(), mae_means, yerr=mae_stds, align='center', alpha=0.5, ecolor='black', capsize=10)\n",
"ax[0].set_ylabel('MAE')\n",
"ax[0].set_title('Mean Absolute Error (MAE) for Regression Models')\n",
"ax[0].yaxis.grid(True)\n",
"\n",
"ax[1].bar(models_reg.keys(), r2_means, yerr=r2_stds, align='center', alpha=0.5, ecolor='black', capsize=10)\n",
"ax[1].set_ylabel('R²')\n",
"ax[1].set_title('R-squared (R²) for Regression Models')\n",
"ax[1].yaxis.grid(True)\n",
"\n",
"plt.tight_layout()\n",
"plt.show()\n",
"\n",
"# Разделяем данные на признаки (X) и целевую переменную (y) для задачи классификации\n",
"X_class = df[numerical_cols]\n",
"y_class = (df['Volume'] > df['Volume'].mean()).astype(int)\n",
"\n",
"# Список моделей для задачи классификации\n",
"models_class = {\n",
" \"Logistic Regression\": LogisticRegression(),\n",
" \"Random Forest Classification\": RandomForestClassifier(),\n",
" \"Gradient Boosting Classification\": GradientBoostingClassifier()\n",
"}\n",
"\n",
"# Оценка смещения и дисперсии для задачи классификации\n",
"accuracy_means = []\n",
"accuracy_stds = []\n",
"precision_means = []\n",
"precision_stds = []\n",
"recall_means = []\n",
"recall_stds = []\n",
"f1_means = []\n",
"f1_stds = []\n",
"\n",
"for name, model in models_class.items():\n",
" pipeline = Pipeline(steps=[\n",
" ('preprocessor', preprocessor),\n",
" ('model', model)\n",
" ])\n",
" accuracy_scores = cross_val_score(pipeline, X_class, y_class, cv=5, scoring='accuracy')\n",
" precision_scores = cross_val_score(pipeline, X_class, y_class, cv=5, scoring='precision')\n",
" recall_scores = cross_val_score(pipeline, X_class, y_class, cv=5, scoring='recall')\n",
" f1_scores = cross_val_score(pipeline, X_class, y_class, cv=5, scoring='f1')\n",
" accuracy_means.append(accuracy_scores.mean())\n",
" accuracy_stds.append(accuracy_scores.std())\n",
" precision_means.append(precision_scores.mean())\n",
" precision_stds.append(precision_scores.std())\n",
" recall_means.append(recall_scores.mean())\n",
" recall_stds.append(recall_scores.std())\n",
" f1_means.append(f1_scores.mean())\n",
" f1_stds.append(f1_scores.std())\n",
"\n",
"# Визуализация результатов для задачи классификации\n",
"fig, ax = plt.subplots(2, 2, figsize=(12, 12))\n",
"\n",
"ax[0, 0].bar(models_class.keys(), accuracy_means, yerr=accuracy_stds, align='center', alpha=0.5, ecolor='black', capsize=10)\n",
"ax[0, 0].set_ylabel('Accuracy')\n",
"ax[0, 0].set_title('Accuracy for Classification Models')\n",
"ax[0, 0].yaxis.grid(True)\n",
"\n",
"ax[0, 1].bar(models_class.keys(), precision_means, yerr=precision_stds, align='center', alpha=0.5, ecolor='black', capsize=10)\n",
"ax[0, 1].set_ylabel('Precision')\n",
"ax[0, 1].set_title('Precision for Classification Models')\n",
"ax[0, 1].yaxis.grid(True)\n",
"\n",
"ax[1, 0].bar(models_class.keys(), recall_means, yerr=recall_stds, align='center', alpha=0.5, ecolor='black', capsize=10)\n",
"ax[1, 0].set_ylabel('Recall')\n",
"ax[1, 0].set_title('Recall for Classification Models')\n",
"ax[1, 0].yaxis.grid(True)\n",
"\n",
"ax[1, 1].bar(models_class.keys(), f1_means, yerr=f1_stds, align='center', alpha=0.5, ecolor='black', capsize=10)\n",
"ax[1, 1].set_ylabel('F1-score')\n",
"ax[1, 1].set_title('F1-score for Classification Models')\n",
"ax[1, 1].yaxis.grid(True)\n",
"\n",
"plt.tight_layout()\n",
"plt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "aisenv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}