MII/lab1.ipynb

514 lines
192 KiB
Plaintext
Raw Normal View History

2024-09-21 08:59:30 +04:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"работа с данными, чтение и запись csv"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"df = pd.read_csv(\"data/country.csv\")\n",
"\n",
"df.to_csv(\"test1.csv\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"работа с даннными, основные команды"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 234 entries, 0 to 233\n",
"Data columns (total 3 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 Country/Territory 234 non-null object\n",
" 1 Capital 232 non-null object\n",
" 2 Continent 234 non-null object\n",
"dtypes: object(3)\n",
"memory usage: 5.6+ KB\n",
" count unique top freq\n",
"Country/Territory 234 234 Afghanistan 1\n",
"Capital 232 232 Kabul 1\n",
"Continent 234 6 Africa 57\n",
" Country/Territory Capital\n",
"0 Afghanistan Kabul\n",
"1 Albania Tirana\n",
"2 Algeria Algiers\n",
"3 American Samoa Pago Pago\n",
"4 Andorra Andorra la Vella\n",
" Country/Territory Capital\n",
"229 Wallis and Futuna Mata-Utu\n",
"230 Western Sahara El Aain\n",
"231 Yemen Sanaa\n",
"232 Zambia Lusaka\n",
"233 Zimbabwe Harare\n",
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\n",
" Country/Territory Capital\n",
"219 United Arab Emirates Abu Dhabi\n",
"149 Nigeria Abuja\n",
"75 Ghana Accra\n",
"63 Ethiopia Addis Ababa\n",
"2 Algeria Algiers\n",
" Country/Territory Capital\n",
"142 Nauru Yaren\n",
"9 Armenia Yerevan\n",
"46 Croatia Zagreb\n",
"121 Malawi NaN\n",
"127 Martinique NaN\n"
]
}
],
"source": [
"df.info()\n",
"\n",
"print(df.describe().transpose())\n",
"\n",
"cleared_df = df.drop([\"Continent\"], axis=1) # удаляет колонку\n",
"print(cleared_df.head())\n",
"print(cleared_df.tail())\n",
"\n",
"print(\"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\")\n",
"\n",
"sorted_df = cleared_df.sort_values(by=\"Capital\")\n",
"print(sorted_df.head())\n",
"print(sorted_df.tail())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"работа с данными, работа с элементами"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 Asia\n",
"1 Europe\n",
"2 Africa\n",
"3 Oceania\n",
"4 Europe\n",
" ... \n",
"229 Oceania\n",
"230 Africa\n",
"231 Asia\n",
"232 Africa\n",
"233 Africa\n",
"Name: Continent, Length: 234, dtype: object\n",
"Country/Territory Ivory Coast\n",
"Capital Yamoussoukro\n",
"Continent Africa\n",
"Name: 100, dtype: object\n",
"Ivory Coast\n",
" Country/Territory Capital\n",
"100 Ivory Coast Yamoussoukro\n",
"101 Jamaica Kingston\n",
"102 Japan Tokyo\n",
"103 Jersey Saint Helier\n",
"104 Jordan Amman\n",
".. ... ...\n",
"196 Spain Madrid\n",
"197 Sri Lanka Colombo\n",
"198 Sudan Khartoum\n",
"199 Suriname Paramaribo\n",
"200 Sweden Stockholm\n",
"\n",
"[101 rows x 2 columns]\n",
" Country/Territory Capital Continent\n",
"0 Afghanistan Kabul Asia\n",
"1 Albania Tirana Europe\n",
"2 Algeria Algiers Africa\n",
"Country/Territory Afghanistan\n",
"Capital Kabul\n",
"Continent Asia\n",
"Name: 0, dtype: object\n",
" Country/Territory Capital\n",
"0 Afghanistan Kabul\n",
"1 Albania Tirana\n",
"2 Algeria Algiers\n",
"3 American Samoa Pago Pago\n",
"4 Andorra Andorra la Vella\n",
".. ... ...\n",
"229 Wallis and Futuna Mata-Utu\n",
"230 Western Sahara El Aain\n",
"231 Yemen Sanaa\n",
"232 Zambia Lusaka\n",
"233 Zimbabwe Harare\n",
"\n",
"[234 rows x 2 columns]\n",
" Country/Territory Capital\n",
"3 American Samoa Pago Pago\n",
"6 Anguilla The Valley\n"
]
}
],
"source": [
"print(df[\"Continent\"]) # выводит колонку таблицы\n",
"\n",
"print(df.loc[100]) # выводит данные по одному объекту таблицы(по строке)\n",
"\n",
"print(df.loc[100, \"Country/Territory\"]) # выводит данные по конкретному столбцу конкретной строки\n",
"\n",
"print(df.loc[100:200, [\"Country/Territory\", \"Capital\"]]) # выводит данные с диапозона строк по столбцам\n",
"\n",
"print(df[0:3]) # просто выводит данные с с диапозона строк в таблице\n",
"\n",
"print(df.iloc[0])\n",
"\n",
"print(df.iloc[:, 0:2]) # так как айлок работает с индексами с помощью 3-5 мы задаем строки, которые хотим вывести, а спомощью 0-2 задаем столбцы которые хотим вывести\n",
"\n",
"print(df.iloc[[3, 6], [0, 1]]) # здесь 3,4 означает также номера строк, но не диапазон. 0,1 означает номера столбцов. но также не диапазон\n",
"\n",
"# лок отличается от айлока тем что позволяет создавать срезы, использует метки(названия столбцов как минимум). Айлок работает с индексами"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"работа с данными - отбор и группировка"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['Asia' 'Europe' 'Africa' 'Oceania' 'North America' 'South America']\n",
"Asia count = 50\n",
"Europe count = 50\n",
"Africa count = 57\n",
"Oceania count = 23\n",
"North America count = 40\n",
"South America count = 14\n",
"Total count = 234\n"
]
}
],
"source": [
"s_values = df[\"Continent\"].unique() # выводит все уникальные значения по столбцу\n",
"print(s_values)\n",
"\n",
"s_total = 0\n",
"for s_value in s_values:\n",
" count = df[df[\"Continent\"] == s_value].shape[0] # шэйп возвращаеет кортеж колва строк и колва столбцов в таблице. так как мы толлько что таблицу фильтранули, мы выводим шэйп с индексом 0(строки)\n",
" s_total += count\n",
" print(s_value, \"count =\", count)\n",
"print(\"Total count = \", s_total)\n",
"\n",
"# print(df.groupby([\"Pclass\", \"Survived\"]).size().reset_index(name=\"Count\")) # невозможно применить к данным таблицы"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"визуализация - исходные данные "
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Country/Territory Capital Continent\n",
"0 Afghanistan Kabul Asia\n",
"1 Albania Tirana Europe\n",
"2 Algeria Algiers Africa\n",
"3 American Samoa Pago Pago Oceania\n",
"4 Andorra Andorra la Vella Europe\n",
".. ... ... ...\n",
"229 Wallis and Futuna Mata-Utu Oceania\n",
"230 Western Sahara El Aain Africa\n",
"231 Yemen Sanaa Asia\n",
"232 Zambia Lusaka Africa\n",
"233 Zimbabwe Harare Africa\n",
"\n",
"[232 rows x 3 columns]\n"
]
}
],
"source": [
"data = df.copy()\n",
"data.dropna(subset=[\"Capital\"], inplace=True) # дропна позволяет удалить строчки, с пустым значением по столбцу(сабсет) и не перезаписывать таблицу(инплэйс тру)\n",
"print(data)\n",
"data.to_csv('test2.csv')"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"dd = pd.read_csv(\"data/healthcare.csv\")\n",
"ddata = dd[[\"age\", \"work_type\", \"avg_glucose_level\"]].copy()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" avg_glucose_level \n",
" min q1 q2 median q3 max\n",
"work_type \n",
"Govt_job 55.27 76.6600 91.93 91.93 114.3200 266.59\n",
"Never_worked 59.99 78.4575 86.02 86.02 112.8075 161.28\n",
"Private 55.12 77.8200 91.92 91.92 114.4600 271.74\n",
"Self-employed 55.23 76.6050 93.60 93.60 124.9900 267.61\n",
"children 55.34 76.2550 90.22 90.22 108.7100 219.81\n",
" avg_glucose_level \n",
" low_iqr iqr high_iqr\n",
"work_type \n",
"Govt_job 20.1700 37.660 170.8100\n",
"Never_worked 26.9325 34.350 164.3325\n",
"Private 22.8600 36.640 169.4200\n",
"Self-employed 4.0275 48.385 197.5675\n",
"children 27.5725 32.455 157.3925\n"
]
},
{
"data": {
"text/plain": [
"<Axes: title={'center': 'avg_glucose_level'}, xlabel='work_type'>"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAHNCAYAAAATwgHBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8wElEQVR4nO3dd1xTV/8H8E8IEJYs2YqAOEDBha3iYLg3FLe2amuXs+7WPq2DVm2to7WutrbS1lGfqsXWVXGAuFq34kTEDbhBAZnn9we/3IcAatCQhPB5v16+JPd+c++5OcnNN+eec65MCCFAREREZECMdF0AIiIiIk1jgkNEREQGhwkOERERGRwmOERERGRwmOAQERGRwWGCQ0RERAaHCQ4REREZHCY4REREZHCY4BAREZHBYYJDpAUymQwzZszQdTEMXmxsLGQyGWJjY58ZN2PGDMhkMty9e1c7BdMy5euwfv16XReFSGeY4FClFhUVBZlMpvLPyckJoaGh2LZtm66L99LOnj2LGTNm4MqVK7ouClVBWVlZmDFjxnMTRiJ9ZKzrAhBpQmRkJLy8vCCEQFpaGqKiotCtWzf89ddf6NGjh66L98LOnj2LmTNnIiQkBJ6enrouDlUxWVlZmDlzJgAgJCREt4UhKicmOGQQunbtiubNm0uPhw8fDmdnZ6xdu7ZSJzjalJ+fj8LCQpiamuq6KPSClHVIRLxERQbK1tYW5ubmMDZWzeEzMzMxceJEuLu7Q6FQoH79+pg3bx6EEACA7Oxs+Pj4wMfHB9nZ2dLz7t+/D1dXV7Rq1QoFBQUAgGHDhsHKygqXL19G586dYWlpCTc3N0RGRkrbe5bjx4+ja9eusLa2hpWVFdq3b49Dhw5J66OiotC3b18AQGhoqHQJ7nmXC37//Xc0aNAAZmZm8PPzwx9//IFhw4aptABduXIFMpkM8+bNw9dffw1vb28oFAqcPXsWALB79260bdsWlpaWsLW1RVhYGM6dO6eyn5LbVFL2bylOJpNh9OjRWL16NerXrw8zMzMEBARg7969pZ5/8+ZNvPXWW3B2doZCoUDDhg3x008/lYq7ceMGwsPDYWlpCScnJ4wfPx45OTnPfG1Kunv3Lvr16wdra2tUr14dH3zwAZ48eSKtDw4ORuPGjct8bv369dG5c+enbnvChAmoXr26ynthzJgxkMlkWLRokbQsLS0NMpkMy5Ytk5bdvn1bStLNzMzQuHFj/Pzzzyrbf14dlpSTk4MePXrAxsYGBw4cePYL8//bd3R0BADMnDlTev/NmDEDK1euhEwmw/Hjx0s9b/bs2ZDL5bh58yaAopYfPz8/HD16FK1atYK5uTm8vLywfPnyMss4ffp01KlTBwqFAu7u7pgyZUq565UIACCIKrGVK1cKAGLnzp3izp074vbt2yIhIUG89957wsjISOzYsUOKLSwsFO3atRMymUy8/fbbYvHixaJnz54CgBg3bpwUd+jQISGXy8X48eOlZQMGDBDm5ubiwoUL0rKhQ4cKMzMzUbduXfHGG2+IxYsXix49eggA4tNPP1UpJwAxffp06XFCQoKwtLQUrq6u4rPPPhNffPGF8PLyEgqFQhw6dEgIIURSUpIYO3asACA+/vhj8euvv4pff/1VpKamPvX12Lx5s5DJZKJRo0ZiwYIF4tNPPxV2dnbCz89PeHh4SHHJyckCgGjQoIGoXbu2+OKLL8TChQvF1atXRUxMjDA2Nhb16tUTc+fOFTNnzhQODg7Czs5OJCcnqxx/8W0qTZ8+XZQ8tQAQfn5+wsHBQURGRoovv/xSeHh4CHNzc3H69GkpLjU1VdSsWVO4u7uLyMhIsWzZMtGrVy8BQCxcuFCKy8rKEvXq1RNmZmZiypQp4uuvvxYBAQGiUaNGAoDYs2fPU1+j4mX09/cXPXv2FIsXLxavv/66ACDeeOMNKe6HH34QAFTKKIQQ//77rwAgfvnll6fuY+PGjaWe27hxY2FkZCT69OkjLfv9998FAJGQkCAdm6+vrzAxMRHjx48XixYtEm3bthUAxNdffy0971l1uGfPHgFA/P7779I2O3bsKOzs7MS///77zNdG6fHjx2LZsmUCgHjttdek99/JkydFRkaGMDc3FxMnTiz1vAYNGoh27dpJj4ODg4Wbm5twcnISo0ePFosWLRJt2rQRAMSPP/4oxRUUFIhOnToJCwsLMW7cOPHdd9+J0aNHC2NjYxEWFqZWmYmKY4JDlZoywSn5T6FQiKioKJXY6OhoAUB8/vnnKsv79OkjZDKZuHTpkrRs6tSpwsjISOzdu1f6Air+5SJE0Rc8ADFmzBhpWWFhoejevbswNTUVd+7ckZaXTHDCw8OFqampSEpKkpbdunVLVKtWTQQFBUnLlPt+3he2kr+/v6hZs6Z49OiRtCw2NlYAKDPBsba2Frdv31bZRpMmTYSTk5O4d++etOzkyZPCyMhIDBkyROX4y5PgABBHjhyRll29elWYmZmJ1157TVo2fPhw4erqKu7evavy/AEDBggbGxuRlZUlhBDi66+/FgDEf//7XykmMzNT1KlTp1wJTq9evVSWjxw5UgAQJ0+eFEII8fDhQ2FmZiY+/PBDlbixY8cKS0tL8fjx46fu4/bt2wKAWLp0qbQtIyMj0bdvX+Hs7KyyLXt7e1FYWKhybKtWrZJicnNzRWBgoLCyshIZGRlCiGfXYfEE59GjRyI4OFg4ODiI48ePP/N1KenOnTul3rtKAwcOFG5ubqKgoEBaduzYMQFArFy5UloWHBwsAIj58+dLy3JycqT3WW5urhBCiF9//VUYGRmJ+Ph4lf0sX75cABD79+8vV9mJeImKDMKSJUsQExODmJgYrFq1CqGhoXj77bexceNGKWbr1q2Qy+UYO3asynMnTpwIIYTKqKsZM2agYcOGGDp0KEaOHIng4OBSz1MaPXq09LfyUkxubi527txZZnxBQQF27NiB8PBw1K5dW1ru6uqKQYMGYd++fcjIyCj3a3Dr1i2cPn0aQ4YMgZWVlbQ8ODgY/v7+ZT6nd+/e0mUIAEhJScGJEycwbNgw2NvbS8sbNWqEjh07YuvWreUul1JgYCACAgKkx7Vq1UJYWBj+/vtvFBQUQAiBDRs2oGfPnhBC4O7du9K/zp07Iz09HceOHQNQVJeurq7o06ePtD0LCwu8++675SrTqFGjVB6PGTNG2j4A2NjYICwsDGvXrpUuNRUUFGDdunXS5bGncXR0hI+Pj3QZbv/+/ZDL5Zg8eTLS0tKQmJgIAIiPj0ebNm2ky3pbt26Fi4sLBg4cKG3LxMQEY8eOxePHjxEXF6eyn5J1WFx6ejo6deqE8+fPIzY2Fk2aNFH3pXmuIUOG4NatW9izZ4+0bPXq1TA3N0fv3r1VYo2NjfHee+9Jj01NTfHee+/h9u3bOHr0KICiS6u+vr7w8fFRqft27doBgMp+iNTBBIcMwquvvooOHTqgQ4cOGDx4MLZs2YIGDRpIyQYAXL16FW5ubqhWrZrKc319faX1Sqampvjpp5+QnJyMR48eSX0OSjIyMlJJUgCgXr16APDUod137txBVlYW6tevX2qdr68vCgsLcf36dfUP/v8py1+nTp1S68paBgBeXl5lbuNpZbt79y4yMzPLXTYAqFu3bqll9erVQ1ZWFu7cuYM7d+7g4cOH+P777+Ho6Kjy78033wRQ1DdFWc46deqUqpOyyl2eMnl7e8PIyEil7oYMGYJr164hPj4eALBz506kpaXhjTfeeO7227ZtKz0vPj4ezZs3R/PmzWFvb4/4+HhkZGTg5MmTaNu2rfScq1evom7dujAyUj09l/U+BUrXYXHjxo3D4cOHsXPnTjRs2PC55S2Pjh07wtXVFatXrwYAFBYWYu3atQgLCyv1GXNzcyuVDJb8nCQmJuLMmTOl6l4Zp6x7InVxFBUZJCMjI4SGhuKbb75BYmLiC53c//77bwDAkydPkJiY+MwvksrK3Nz8hZ9bVsIHQOqEXV7K0T+vv/46hg4dWmZMo0aNXmjb6irrmDp37gxnZ2esWrUKQUFBWLVqFVxcXNChQ4fnbq9Nmzb44Yc
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"\n",
"# функции для поиска квартилей\n",
"def q1(x):\n",
" return x.quantile(0.25)\n",
"\n",
"# median = quantile(0.5)\n",
"def q2(x):\n",
" return x.quantile(0.5)\n",
"\n",
"\n",
"def q3(x):\n",
" return x.quantile(0.75)\n",
"\n",
"# интерквартильный размах\n",
"def iqr(x):\n",
" return q3(x) - q1(x)\n",
"\n",
"# нижняя граница для обнаружения выбросов(е..ть)\n",
"def low_iqr(x):\n",
" return max(0, q1(x) - 1.5 * iqr(x))\n",
"\n",
"# верхняя граница для обнаружения выбросов\n",
"def high_iqr(x):\n",
" return q3(x) + 1.5 * iqr(x)\n",
"\n",
"# aggregate позволяет выполнить все эти функции к данным каждой группы и записать их в таблицу\n",
"quantiles = ddata[[\"work_type\", \"avg_glucose_level\"]].groupby([\"work_type\"]).aggregate([\"min\", q1, q2, \"median\", q3, \"max\"])\n",
"print(quantiles)\n",
"\n",
"iqrs = ddata[[\"work_type\", \"avg_glucose_level\"]].groupby([\"work_type\"]).aggregate([low_iqr, iqr, high_iqr])\n",
"print(iqrs)\n",
"\n",
"ddata.boxplot(column=\"avg_glucose_level\", by=\"work_type\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"визуализация- гистограмма"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<Axes: ylabel='Frequency'>"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGdCAYAAAD0e7I1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAyGklEQVR4nO3de1RVdf7/8RfIJVAuIvcixftdU4sYzbEk8ZJfbzOlUV7Gr35rsDKyi02j3SbKJqd7rmZKa32liyu11KK8oVlkal7SjIRB0QHUNEE0EeHz+6Of+9tJVDgcOIft87HWXquz9+fs8958hPPqsz97by9jjBEAAIBNebu7AAAAgPpE2AEAALZG2AEAALZG2AEAALZG2AEAALZG2AEAALZG2AEAALZG2AEAALbm4+4CPEFVVZUKCwsVFBQkLy8vd5cDAABqwBij48ePKzY2Vt7e5x+/IexIKiwsVFxcnLvLAAAATti/f7+uuOKK824n7EgKCgqS9MsPKzg42M3VAACAmigtLVVcXJz1PX4+hB3JOnUVHBxM2AEAoJG52BQUJigDAABbI+wAAABbI+wAAABbY84OAFwiKisrVVFR4e4ygBpr0qSJfHx86nxbGMIOAFwCysrKdODAARlj3F0KUCuBgYGKiYmRn5+f0/sg7ACAzVVWVurAgQMKDAxUREQEN09Fo2CM0enTp3X48GHl5+erXbt2F7xx4IUQdgDA5ioqKmSMUUREhAICAtxdDlBjAQEB8vX11b59+3T69GlddtllTu2HCcoAcIlgRAeNkbOjOQ77cEEdAAAAHouwAwAAbI05OwBwiWr10IoG/by9Tw9r0M9rCHv37lV8fLy2bt2qnj17urucOhswYIB69uyp559/vsE+c+LEiTp27JiWLl1ab5/ByA4AALA1wg4AALA1wg4AwGNlZmaqX79+Cg0NVYsWLXTTTTcpLy9PkvS73/1ODz74oEP7w4cPy9fXV+vXr5ckFRUVadiwYQoICFB8fLwyMjLUqlWrGp+m+f7779WvXz9ddtll6ty5s1atWiUvL6/znnJZsGCBQkNDHdYtXbr0nCvhli1bpquvvlqXXXaZwsPDNWrUKGvbTz/9pPHjx6t58+YKDAzUkCFDtGfPHmv7vn37NHz4cDVv3lxNmzZVly5d9PHHH1vbd+7cqSFDhqhZs2aKiorS7bffrh9//LFGx/tb5eXlmjFjhi6//HI1bdpUCQkJysrKkiSVlpYqICBAn3zyicN7lixZoqCgIJ08eVKStH//ft18880KDQ1VWFiYRowYob179zpVj7MIO6izVg+tOGcBAFc4ceKE0tLStHnzZq1evVre3t4aNWqUqqqqlJKSonfffdfhrtDvvfeeYmNjdd1110mSxo8fr8LCQmVlZemDDz7Q66+/rkOHDtXosysrKzVy5EgFBgZq48aNev311/WXv/ylzse0YsUKjRo1SkOHDtXWrVu1evVqXXPNNdb2iRMnavPmzfroo4+UnZ0tY4yGDh1qPeojNTVV5eXlWr9+vb799ls988wzatasmSTp2LFjuuGGG3TVVVdp8+bNyszM1MGDB3XzzTc7Veu0adOUnZ2td999Vzt27NAf//hHDR48WHv27FFwcLBuuukmZWRkOLxn4cKF1s+toqJCycnJCgoK0ueff64vvvhCzZo10+DBg3X69Gknf4K1xwRlAIDHGjNmjMPrN998UxEREfruu+908803a/r06dqwYYMVbjIyMjRu3Dh5eXnp+++/16pVq7Rp0yb16dNHkvSvf/1L7dq1q9Fnr1y5Unl5ecrKylJ0dLQk6W9/+5tuvPHGOh3T3/72N40dO1aPPfaYta5Hjx6SpD179uijjz7SF198od/97neSfgkPcXFxWrp0qf74xz+qoKBAY8aMUbdu3SRJrVu3tvbz8ssv66qrrtJTTz1lrXvzzTcVFxenH374Qe3bt69xnQUFBZo/f74KCgoUGxsrSZoxY4YyMzM1f/58PfXUU0pJSdHtt9+ukydPKjAwUKWlpVqxYoWWLFki6ZfwWVVVpX/961/W6Nb8+fMVGhqqrKwsDRo0yJkfYa0xsgMA8Fh79uzRuHHj1Lp1awUHB6tVq1aSfvkijoiI0KBBg7Rw4UJJUn5+vrKzs5WSkiJJysnJkY+Pj3r16mXtr23btmrevHmNPjsnJ0dxcXFW0JHkMALjrG3btmngwIHVbtu9e7d8fHyUkJBgrWvRooU6dOig3bt3S5LuvvtuPfnkk+rbt69mz56tHTt2WG23b9+utWvXqlmzZtbSsWNHSbJO/9XUt99+q8rKSrVv395hf+vWrbP2NXToUPn6+uqjjz6SJH3wwQcKDg5WUlKSVU9ubq6CgoKs94eFhenUqVO1rqcuGNkBAHis4cOHq2XLlvrnP/+p2NhYVVVVqWvXrtYpkJSUFN1999166aWXlJGRoW7dulkjHu7g7e19zsNWf/uk+bo+suO///u/lZycrBUrVuizzz5Tenq6nnvuOd11110qKyvT8OHD9cwzz5zzvpiYmFp9TllZmZo0aaItW7aoSZMmDtvOnjbz8/PTH/7wB2VkZGjs2LHKyMjQLbfcIh8fH2sfvXv3tgLpr0VERNSqnrpgZAcA4JGOHDminJwcPfLIIxo4cKA6deqkn376yaHNiBEjdOrUKWVmZiojI8Ma1ZGkDh066MyZM9q6dau1Ljc395x9nE+HDh20f/9+HTx40Fq3adOmC74nIiJCx48f14kTJ6x127Ztc2jTvXt3rV69utr3d+rUSWfOnNHGjRutdWd/Dp07d7bWxcXF6Y477tDixYt133336Z///KckqVevXtq1a5datWqltm3bOixNmzat0XGfddVVV6myslKHDh06Z1+/Hu1KSUlRZmamdu3apTVr1jj0Qa9evbRnzx5FRkaes4+QkJBa1VMXhB0AgEdq3ry5WrRooddff125ublas2aN0tLSHNo0bdpUI0eO1F//+lft3r1b48aNs7Z17NhRSUlJmjp1qr7++mtt3bpVU6dOVUBAQI2eE3bjjTeqTZs2mjBhgnbs2KEvvvhCjzzyiKTzP2csISFBgYGBevjhh5WXl6eMjAwtWLDAoc3s2bP1zjvvaPbs2dq9e7c1yViS2rVrpxEjRmjKlCnasGGDtm/frttuu02XX365RowYIUmaPn26Pv30U+Xn5+ubb77R2rVr1alTJ0m/TF4+evSoxo0bp02bNikvL0+ffvqpJk2apMrKypr94P+/9u3bKyUlRePHj9fixYuVn5+vr7/+Wunp6Vqx4v8uROnfv7+io6OVkpKi+Ph4h1NwKSkpCg8P14gRI/T5558rPz9fWVlZuvvuu3XgwIFa1VMnBqakpMRIMiUlJe4upVFq+eDycxYAnuPnn3823333nfn555/dXUqtrVy50nTq1Mn4+/ub7t27m6ysLCPJLFmyxGrz8ccfG0mmf//+57y/sLDQDBkyxPj7+5uWLVuajIwMExkZaebNm1ejz9+9e7fp27ev8fPzMx07djTLli0zkkxmZqYxxpj8/HwjyWzdutV6z5IlS0zbtm1NQECAuemmm8zrr79ufvt1+8EHH5iePXsaPz8/Ex4ebkaPHm1tO3r0qLn99ttNSEiICQgIMMnJyeaHH36wtk+bNs20adPG+Pv7m4iICHP77bebH3/80dr+ww8/mFGjRpnQ0FATEBBgOnbsaKZPn26qqqouery///3vzT333GO9Pn36tJk1a5Zp1aqV8fX1NTExMWbUqFFmx44dDu974IEHjCQza9asc/ZZVFRkxo8fb8LDw42/v79p3bq1mTJlivWdO2HCBDNixIjz1nShf781/f72MuY3JxcvQaWlpQoJCVFJSYmCg4PdXU6jU92l5na8LTzQWJ06dUr5+fmKj4/XZZdd5u5y3OrAgQOKi4vTqlWrzjtJ+EK++OIL9evXT7m5uWrTpk09VIjfutC/35p+fzNBGQBgW2vWrFFZWZm6deumoqIiPfDAA2rVqpX69+9fo/cvWbJEzZo1U7t27ZSbm6t77rlHffv2Jeg0MszZAQDYVkVFhR5++GF16dJFo0a
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"ddata.plot.hist(column=[\"avg_glucose_level\"], bins=80)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Визуализация - точечная диаграмма"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<Axes: xlabel='age', ylabel='work_type'>"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGxCAYAAAB4AFyyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADHaklEQVR4nOy9e3wU9b3//9okC2RDstlsQiAh5AIJdzRRLgmXimKotQWkp6dSTxXqsb9TsFiFttLaqv22R+sRbaVoT3sU6mmLbU9RsRcLAkIlXNQEBcEkkISES0iyuZEsIQmZ3x9hltnZmfl8PnPZWz7Px8NHS3bmc5/Zz877Na+3TRAEARwOh8PhcDgRSEyoG8DhcDgcDoejF76R4XA4HA6HE7HwjQyHw+FwOJyIhW9kOBwOh8PhRCx8I8PhcDgcDidi4RsZDofD4XA4EQvfyHA4HA6Hw4lY+EaGw+FwOBxOxBIX6gZYzcDAAM6fP4/ExETYbLZQN4fD4XA4HA4FgiDg0qVLyMjIQEyM+nOXqN/InD9/HllZWaFuBofD4XA4HB00NDRg7Nixqp9H/UYmMTERwOBAJCUlhbg1HA6Hw+FwaOjs7ERWVpbve1yNqN/IiOGkpKQkvpHhcDgcDifCIMlCuNiXw+FwOBxOxMI3MhwOh8PhcCIWvpHhcDgcDocTsfCNDIfD4XA4nIiFb2Q4HA6Hw+FELHwjw+FwOBwOJ2LhGxkOh8PhcDgRC9/IcDgcDofDiVj4RobD4XA4HE7EwjcyHA6Hw+FwIpaoT1EQLGqau3Cm1YtYmw3n2r0AbMhMHoGrApDjTkBuaoLsOAR8Zkb9TR09aLzUg6JxLszPT1M99nBtK2wAZue5kZuagH2VTTh6th1jnCOQljgCOe4ECILgd1y9pxt7K5sRAyB/dCLm5LkhCALOtHp9/RDbIZ4v/YylL/L2Sfsolie2WdpX+TGDZXkwOB/xuCoImu1ROl/eB5pjogXp+M2RzEWo2xSt420WWmNkdPxIZSutF9/9JWkErgqC3+e07aE5Tl6/eA8y+35Lg9nrlK97dfhGxiDt3l6s3XYU+6ubNY8rznPDZgPKTnsCPluQn4ZNKwrhdNhNrd/lsGPHmnnIcjt8x37jt+U4WOPfhrgYG/oHBOa6lepr8/YpfkbTR7X2zcpJQWyMze/v8jYnx9uRP2ok3j/T5vubM96Ojst07VEaR3l/Ssa7IQjwa4f8GCNzGU60e3ux+nflAeu1OM+NX/7bTSHpn9IcRct4m4XWGAkQDI0fqWyl9XLjWCfqPF60q1yH8mtUqT008662XpWwes2YvU75uidjEwTB+DdYGNPZ2Qmn04mOjg5Lkkbe+/IRHDjVcu1Xhj5ibTbMnZCKV++fZXr9LocdFT8s9R1L2nBZBU0fg9k+eXvMmEelciMVrblYkJ8Wkv4pzVG0jLdZaI0RAEPjRyrbjGtXqT00885y77B6zZi9Tofyuqf9/uYaGQPUNHdhf3Wz4S+/q4KA/dXNqG3pNr3+Nm8f/lnd7Ds2VJD6GOz2Sdtj1jzKy41USHMRiv6pzVE0jLdZkMbIyPjRlG0G8vbQzDvrvcPKNWP2OuXrng4eWjLAmVavqeXVebqZYr9vfXyeqtzy+jZTQkdm8GpZHRZOSsO59suQxskP17aGpD11HmtuBKS5VNIR6dUUaZWvpxyada3VPysgtanO031N06Wu52EdF73jSKtPMWu+RYzcj0jzafa9joQ4n6R7nJHr93CNx3T9EGmcDtW0oM7TTa0HutjRo1lesK/DcIVvZAyQneIwtbwX95xCUZYrID5MG/tV451PLuKWglFmNNEwW8rqsKWszu9vSSPi0NnTH5L2iF8oVpQrh1ZPBeiLgZsVS6dZ10r9sxJSm154pxoVDe1+fxP1PKzaEL3jyKpPkWKG5sHI/Yg0n2bf60i8uOeUn95NDSPX76Pbj+FvxxpN0Q+JkMZpw/bjmuWz3COA4F+H4QoPLRkgL20kFqi8GaSH8vp2fHNbhd/f1m47amgTAwAnLlzCxp1VcIWpMCwUm5hYmw0L8tOQm5rgm8dYm82Usl0Ou+KvpLXbjuLAqRaqMg6caglYCySUytdTDmldi+MWTNTmKNZmG9SByTYxwKAo+5vbKpjHRe84ap1Hmns98yRHa4wW5KdpfkaaT7OvES3iYmwor2/XPEbp+tWD1vwYuXZoxkmpfNp7BO28DRX4RsYg60oLTCtLLT5sVrlqbxRFK8549Y3b3Amp2LSi0PfvTSsKfaJFEb0bvzZvX0DsmlWHwxoDNzuWvmlFIUrGuwP+Xpzn9hu3YKI0R4XjkjXXNas2RO846tGnsJRPi9IYiWtd6zO9ZVtB/4BAvE6Url+l9UrCDP2QHNpxotUDKcEyb0OBkIaWrl69iieeeAK//e1v0djYiIyMDKxcuRKPPfYYbNd2tIIg4PHHH8evf/1rtLe3Y+7cuXjppZeQn58fyqb7aPX2ml6mGEc9frbd9LKjnaIsJ1JGDsfiqaPxpZuzsL+qCXs+bUbqyGG4ISsZ/QPKPjKe7itYNS8HDyzI9Ttm25F6bNh+jLkdb310DgLg87jRqzGgjYHTaEhYfr05HXb8/oE5qG3pxuEaDwRA1UcmWF4zTocdr94/C7Ut3T6dQZ2nG6u2vK+7TPm4sI4jrZZBb3tYUVvHIvLxU5tPJZ2IdPx3fHQOz++q1t1OvawsycHEax5W0pCM2noFBsf0+LkObNxZpatONV0LzTjVebrR2NGjeQ8R55y09laWZGPS6CQ/by0SQ8V7JqQbmZ/+9Kd46aWX8Jvf/AZTp07FBx98gFWrVsHpdGLt2rUAgGeeeQYvvPACfvOb3yA3Nxc/+MEPsHjxYpw4cQIjRowIZfMBACkWhGukcVQOG+UNHQCAd0424dE/f4yrkh83rB4V7d5ebC8/q6sdz0lu8i6HHb/Q+euJNgZOis3rjaXnpqrfAEPlNSNtk1F9k3xcSOMo6thImhez2kOL1jqWozantNqg3NQEfGFGRkg2Mlsl+jq1tsn7lpuaAFe8XfdGRq5r+fGyqXjsjU+oxkk0/NNCnHPS2ttadka1LjlDzXsmpKGlsrIyLF26FHfeeSdycnLwL//yLygtLcWRI0cADN6kfvazn+Gxxx7D0qVLMWPGDLz66qs4f/483njjjVA23cfGncG/mIcKRjU9V2XfcbQxaWncvPxMu6E2AIOhpge3VTBrDFhi4CR9hBW/xtT0W6I2JRjQ6HlYxoWkcRB1bCx6J5fDTpx7o/NkhsaDpQwrNTNxMTbdGhM1njNp03XgVAuWbj7ANNa01ybtmBrVa0UjId3IlJSUYPfu3aiqGtwpf/TRR3jvvfdwxx13AABqa2vR2NiIRYsW+c5xOp2YPXs2Dh48qFjmlStX0NnZ6fefVYTamyXaMVvTw+pRYZa3DDDYl6/MymLSGKxfzKa/MqqBYCGcvGZIeh7Wcdm0ohBF2cmKn+lZG23ePqwvLdCceyPzZIY+Sk8ZWuNkhP4BAUXjyOWyeuCYwVVBQJu3j3msadcgjb7GqF4rGr1nQhpaevTRR9HZ2YlJkyYhNjYWV69exU9+8hPcc889AIDGxkYAQHp6ut956enpvs/kPPXUU3jyySetbfg1gu2tEE1kuUagoc0cXQErtDFpWtaXFmBqphP7Kpv9Hn3LqWy6xKQxOHG+EyOHxynmilGKfStpSKyKi4eT1wyNnkc6LuJYtnp7FR+zOx12LC/KxPt15Nd/afF4ewPmBoAp80TrsSP3r4m12Xy5x1i0QdIcZ6sXTmDWKK0rLYCn64ovVKLE6lsn+DRQFzt68CiFxgRQzoNG67dlBvKxZr02WXRIateX2Xq5SCCkG5k//vGP+N3vfoff//73mDp1Ko4ePYpvfetbyMjIwH333aerzA0bNuCRRx7x/buzsxNZWVlmNdmPYHsrRBOh2sQAwIt7B3UOZs3fszursCA/DUtuGKN5XNE4FwB6jYHazZuU30lL12IW4eg1Q+q3y2HH42/WEXP2WKl9kbfRjHmi0fWQPFlm5rg0P39oWwV+9dWb8I3flfutvaQR7F8hNFo
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAoQAAAGwCAYAAAAwtHRpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJhUlEQVR4nO3dd3wUdf7H8fem90ISAtEAwdBbKIIQBFQQEJHiAYecwFlOT6qcCqg0lar81NOzwUk5g2IDRe7gMEIQRKkBJTFAAhKklyQQIIRkfn94rCzZJZuQsAnzej4e+3gk3/3Odz4zE3bfzOx812IYhiEAAACYlpurCwAAAIBrEQgBAABMjkAIAABgcgRCAAAAkyMQAgAAmByBEAAAwOQIhAAAACbn4eoCUDkUFhbq4MGDCgwMlMVicXU5AADACYZh6PTp04qKipKbm+PzgARCOOXgwYOKjo52dRkAAKAUMjMzdfPNNzt8nkAIpwQGBkr67Q8qKCjIxdUAAABn5OTkKDo62vo+7giBEE65dJk4KCiIQAgAQCVT3Me9uKkEAADA5AiEAAAAJkcgBAAAMDkCIQAAgMkRCAEAAEyOQAgAAGByBEIAAACTIxACAACYHIEQAADA5AiEFVynTp00evToMh1z6NCh6t27d5mOCQAAKi+XBsKhQ4fKYrFoxowZNu1Lly4t9itWgBvd4o37NXrxNn2yObPY9qS0o3o9cZe+3X3Mpu+bibs18L0Nemv1HmvbC1/uVLfXkvTSVynFjptx7IxWpx3V3uO5Zblp5TYuAKB0XP5dxj4+Ppo5c6Yee+wxhYaGurocq/z8fHl6erps/RcuXJCXl5fL1g/X+fFAlvq89Z0uFhqSpKXbDmr85z9q9h+a6G+f/mjTPu6zHfL38lBO3kXr8qF+nprUo6FGf7Ld2rYh46RmrUyzWc/Ph89o7rq9mtCjnqb/Z1eR9TWJCtK2A9nW/h3qROiNgc0V7Ff6fxdZZy9o5IfJWntZcC2LcQEA18bll4w7d+6satWqafr06Q77rFu3Trfffrt8fX0VHR2tkSNHKjf3tzMLzz77rNq0aVNkmWbNmumFF16w/j537lw1aNBAPj4+ql+/vt566y3rc/v27ZPFYtHixYvVsWNH+fj4KCEhwWE9hmEoIiJCn376qbUtLi5O1atXt6nZ29tbZ8+elSTt379fvXr1UkBAgIKCgtS/f38dOXLE2n/y5MmKi4vT3LlzFRMTIx8fH7vrXr58uYKDg631ZWZmqn///goJCVGVKlXUq1cv7du3z9q/oKBAY8aMUUhIiMLCwvTMM8/IMAyH2wbXuzwMXnKx0NCoj3cUaS8wZBMGJenU2XybMFicF5en2V3f5WFQktbvOa4RH25zelx7Rn6YrPV7jpf5uACAa+PyQOju7q5p06bpjTfe0IEDB4o8n56erm7duun+++/Xjh07tHjxYq1bt07Dhw+XJA0aNEgbN25Uenq6dZmdO3dqx44deuCBByRJCQkJmjhxoqZOnarU1FRNmzZNEyZM0IIFC2zWNW7cOI0aNUqpqanq2rWrw5otFos6dOigNWvWSJJOnTql1NRUnTt3Tj///LMkKSkpSbfeeqv8/PxUWFioXr166eTJk0pKStKqVauUkZGhAQMG2Iy7Z88effbZZ/r888+VnJxcZL2LFi3SwIEDlZCQoEGDBik/P19du3ZVYGCgvv32W61fv14BAQHq1q2bLly4IEmaPXu25s+fr/fff1/r1q3TyZMntWTJkmKOipSXl6ecnBybB8rf4o37i4SziqLAMLR297FSX+bNOHZGa3cfU4FxZai9tnEBANfO5YFQkvr06aO4uDhNmjSpyHPTp0/XoEGDNHr0aNWpU0ft2rXT3//+dy1cuFDnz59Xo0aN1KxZMy1atMi6TEJCgtq0aaPY2FhJ0qRJkzR79mz17dtXMTEx6tu3r5588km9++67NusaPXq0tc/lZ/vs6dSpkzUQrl27Vs2bN7dpW7NmjTp27ChJSkxM1I8//qhFixapZcuWatOmjRYuXKikpCRt2rTJOuaFCxe0cOFCNW/eXE2bNrVZ3z/+8Q898cQTWrZsme69915J0uLFi1VYWKi5c+eqSZMmatCggebNm6f9+/db63jttdc0fvx49e3bVw0aNNA777yj4ODgYo7Ib/s9ODjY+oiOji52GVy7DXtPuLqEYu07Ubrg9svJs+UyLgDg2lWIQChJM2fO1IIFC5SammrTvn37ds2fP18BAQHWR9euXVVYWKi9e/dK+u0s4aVAaBiGPvzwQw0aNEiSlJubq/T0dD388MM2Y7z00ks2ZxUlqVWrVk7X27FjR6WkpOjYsWNKSkpSp06drIEwPz9f3333nTp16iRJSk1NVXR0tE2oatiwoUJCQmy2t2bNmoqIiCiyrk8//VRPPvmkVq1aZQ2Zl/bNnj17FBgYaN2uKlWq6Pz580pPT1d2drYOHTpkc0ndw8PDqe0cP368srOzrY/MzMxil8G1axsT5uoSilUrzL9Uy9Ws4lcu4wIArp3Lbyq5pEOHDuratavGjx+voUOHWtvPnDmjxx57TCNHjiyyTI0aNSRJAwcO1NixY7V161adO3dOmZmZ1suxZ86ckSTNmTOnyGcN3d3dbX7393f+DalJkyaqUqWKkpKSlJSUpKlTp6patWqaOXOmNm3apPz8fLVr187p8a62/ubNm2vr1q16//331apVK+sd2GfOnFHLli3tft7RXrAsCW9vb3l7e1/TGCi5Aa1r6LmlP1XIy8buFoviY8MVE1664FY7IkAd6kRo/Z7jNpeNr3VcAMC1qzBnCCVpxowZWrZsmTZs2GBta9GihVJSUhQbG1vkceku3JtvvlkdO3ZUQkKCEhIS1KVLF1WtWlWSFBkZqaioKGVkZBRZPiYmptS1WiwW3X777friiy+0c+dOtW/fXk2bNlVeXp7effddtWrVyhrwGjRooMzMTJuzbCkpKcrKylLDhg2LXdctt9yi1atX64svvtCIESNs9s3u3btVtWrVItt26VJv9erV9cMPP1iXuXjxorZs2VLq7Ub5+3JYvDzcbKdd8nCz6O8D4oq0u1ukIG/b/9eF+nnq7wPinF7fxB4N7K6v+c22Hy2Ijw3XGwObOz2uPW8MbK742PAyHxcAcI0MFxoyZIjRq1cvm7YHH3zQ8PHxMS6Vtn37dsPX19cYNmyYsW3bNmPXrl3G0qVLjWHDhtksN2fOHCMqKsoIDw83/vWvfxV5ztfX13j99deNtLQ0Y8eOHcb7779vzJ492zAMw9i7d68hydi2bVuJ6n/ttdcMd3d3o02bNta2Xr16Ge7u7sa4ceOsbYWFhUZcXJxx++23G1u2bDF++OEHo2XLlkbHjh2tfSZNmmQ0a9asyDo6duxojBo1yjAMw/j555+NatWqWX/Pzc016tSpY3Tq1MlYu3atkZGRYaxevdoYMWKEkZmZaRiGYcyYMcOoUqWKsWTJEiM1NdV49NFHjcDAwCL7vTjZ2dmGJCM7O7tEy6H0Pt603xj10Vbj4037i21fu+uo8drXacbaXUdt+v7jm93GH9/9zvjHN7utbS8u22l0fXWN8eKyncWOm3HsjPHNz0eMjGNnynLTym1cAIAtZ9+/K1wg3Lt3r+Hl5WVcnlU3btxodOnSxQgICDD8/f2Npk2bGlOnTrVZ7tSpU4a3t7fh5+dnnD59usi6EhISjLi4OMPLy8sIDQ01OnToYHz++efWdZYmEG7bts2QZIwdO9ba9uqrrxqSjBUrVtj0/eWXX4z77rvP8Pf3NwIDA41+/foZhw8ftj7vTCA0DMNISUkxqlataowZM8YwDMM4dOiQMXjwYCM8PNzw9vY2ateubTz66KPWA5+fn2+MGjXKCAoKMkJCQowxY8YYgwcPJhACAGACzr5/WwyDSelQvJycHAUHBys7O1tBQUGuLgcAADjB2ffvCvUZQgAAAFx/BEIHunfvbjNNzeWPadOmubo8AACAMlNhpp2paObOnatz587Zfa5KlSrXuRoAAIDyQyB04KabbnJ1CQAAANcFl4wBAABMjkAIAABgcgRCAAA
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"ddata.plot.scatter(x=\"avg_glucose_level\", y=\"age\")\n",
"\n",
"ddata.plot.scatter(x=\"age\", y=\"work_type\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"столбчатая диаграмма"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.legend.Legend at 0x243abeb0140>"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAIGCAYAAABK0rXfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNLUlEQVR4nO3deVyU5f7/8feAgKACLshSiPu+4ZJRLrgccUlzKXMpN9Qy1BJT41RundTUSjst1im1Tm6nc9RKz8/jUu6UogG54RKJlWipMOICAvP7o69zmoOaC3DPzbyej8f9eMxc9zX3fIYpeHvd133dFpvNZhMAAICJuBldAAAAwO0iwAAAANMhwAAAANMhwAAAANMhwAAAANMhwAAAANMhwAAAANMhwAAAANMpZXQBRSU/P18///yzypUrJ4vFYnQ5AADgFthsNl24cEEhISFyc7vxOEuJDTA///yzQkNDjS4DAADcgZMnT+ree++94f4SG2DKlSsn6bcfgK+vr8HVAACAW2G1WhUaGmr/O34jJTbAXDtt5OvrS4ABAMBk/mj6B5N4AQCA6RBgAACA6RBgAACA6ZTYOTAAAPyv/Px85eTkGF2GS/Pw8JC7u/tdH4cAAwBwCTk5OUpNTVV+fr7Rpbg8f39/BQUF3dU6bQQYAECJZ7PZdOrUKbm7uys0NPSmC6Sh6NhsNl26dElnzpyRJAUHB9/xsQgwAIASLzc3V5cuXVJISIh8fHyMLseleXt7S5LOnDmjypUr3/HpJCIoAKDEy8vLkyR5enoaXAkk2UPk1atX7/gYBBgAgMvg3njOoTC+BwIMAAAwHQIMAAAu4IcffpDFYlFiYqLRpRSK2w4w27ZtU48ePRQSEiKLxaI1a9Y47LdYLNfd5s6da+9TtWrVAvtnz57tcJzk5GS1adNGpUuXVmhoqObMmXNnnxAAgBvZmlC8220aOnSoLBaLnnrqqQL7YmJiZLFYNHTo0EL4QZjPbQeYixcvqkmTJnr77bevu//UqVMO26JFi2SxWNS3b1+HfjNmzHDoN3bsWPs+q9Wqzp07KywsTHv37tXcuXM1bdo0vf/++7dbLgAAphYaGqoVK1bo8uXL9rYrV65o2bJlqlKlioGVGeu2A0zXrl31l7/8Rb17977u/qCgIIfts88+U/v27VW9enWHfuXKlXPoV6ZMGfu+pUuXKicnR4sWLVKDBg3Uv39/jRs3Tq+//vrtlgsAgKk1a9ZMoaGhWrVqlb1t1apVqlKlisLDw+1t69evV+vWreXv76+KFSvqoYce0vHjx2967P3796tr164qW7asAgMD9cQTT+jXX38tss9SmIp0Dszp06e1bt06RUdHF9g3e/ZsVaxYUeHh4Zo7d65yc3Pt++Lj49W2bVuHy92ioqKUkpKi8+fPX/e9srOzZbVaHTYABjFgqB0oyYYPH67Fixfbny9atEjDhg1z6HPx4kXFxsYqISFBmzdvlpubm3r37n3DlYczMjLUoUMHhYeHKyEhQevXr9fp06fVr1+/Iv0shaVIF7L76KOPVK5cOfXp08ehfdy4cWrWrJkqVKigXbt2KS4uTqdOnbKPsKSnp6tatWoOrwkMDLTvK1++fIH3mjVrlqZPn15EnwQAAOM8/vjjiouL04kTJyRJO3fu1IoVK7RlyxZ7n/+dqrFo0SIFBATo4MGDatiwYYFjvvXWWwoPD9fMmTMdXhMaGqojR46odu3aRfNhCkmRBphFixZp0KBBKl26tEN7bGys/XHjxo3l6empJ598UrNmzZKXl9cdvVdcXJzDca1Wq0JDQ++scAAAnEhAQIC6d++uJUuWyGazqXv37qpUqZJDn6NHj2rKlCn65ptv9Ouvv9pHXtLS0q4bYJKSkvTVV1+pbNmyBfYdP37cdQPM9u3blZKSopUrV/5h31atWik3N1c//PCD6tSpo6CgIJ0+fdqhz7XnQUFB1z2Gl5fXHYcfAACc3fDhwzVmzBhJuu6FND169FBYWJj+9re/KSQkRPn5+WrYsOEN776dlZWlHj166NVXXy2w727uUVRciizAfPjhh2revLmaNGnyh30TExPl5uamypUrS5IiIiL0wgsv6OrVq/Lw8JAkbdy4UXXq1Lnu6SMAAEq6Ll26KCcnRxaLRVFRUQ77zp49q5SUFP3tb39TmzZtJEk7duy46fGaNWumf/3rX6patapKlTLfrRFvexJvVlaWEhMT7QvhpKamKjExUWlpafY+VqtVn376qUaMGFHg9fHx8Zo/f76SkpL0/fffa+nSpRo/frwef/xxezgZOHCgPD09FR0drQMHDmjlypVasGCBwykiAABcibu7uw4dOqSDBw8WuAFi+fLlVbFiRb3//vs6duyYvvzyyz/8mxkTE6Nz585pwIAB2rNnj44fP67//Oc/GjZsmP3eUc7stiNXQkKC2rdvb39+7Qc0ZMgQLVmyRJK0YsUK2Ww2DRgwoMDrvby8tGLFCk2bNk3Z2dmqVq2axo8f7/CD9vPz04YNGxQTE6PmzZurUqVKmjJlikaNGnW75QIAcGPtWhhdwW3x9fW9brubm5tWrFihcePGqWHDhqpTp47efPNNRUZG3vBYISEh2rlzpyZPnqzOnTsrOztbYWFh6tKli9zcnH+hfovNZrMZXURRsFqt8vPzU2Zm5g2/cABFpDAugzbZHxY4tytXrig1NVXVqlUrcGEJit/Nvo9b/fvt/BELAADgfxBgAACA6RBgAACA6RBgAACA6RBgAACA6RBgAACA6RBgAACA6RBgAACA6RBgAADALatatarmz59vdBkEGAAAnNXQoUNlsVgKbMeOHTO6NMOZ7/aTAAAUEst0S7G+n23q7d+9p0uXLlq8eLFDW0BAQGGVZFqMwAAA4MS8vLwUFBTksLm7u+uzzz5Ts2bNVLp0aVWvXl3Tp09Xbm6u/XUWi0XvvfeeHnroIfn4+KhevXqKj4/XsWPHFBkZqTJlyuiBBx7Q8ePH7a85fvy4Hn74YQUGBqps2bJq2bKlNm3adNP6MjIyNGLECAUEBMjX11cdOnRQUlJSkf08riHAAABgMtu3b9fgwYP1zDPP6ODBg3rvvfe0ZMkSvfLKKw79Xn75ZQ0ePFiJiYmqW7euBg4cqCeffFJxcXFKSEiQzWbTmDFj7P2zsrLUrVs3bd68Wd9++626dOmiHj16KC0t7Ya1PProozpz5oz+3//7f9q7d6+aNWumjh076ty5c0X2+SVOIQEA4NTWrl2rsmXL2p937dpV58+f1/PPP68hQ4ZIkqpXr66XX35ZkyZN0tSpU+19hw0bpn79+kmSJk+erIiICL300kuKioqSJD3zzDMaNmyYvX+TJk3UpEkT+/OXX35Zq1ev1ueff+4QdK7ZsWOHdu/erTNnzsjLy0uSNG/ePK1Zs0b//Oc/NWrUqEL8STgiwAAA4MTat2+vd9991/68TJkyaty4sXbu3Okw4pKXl6crV67o0qVL8vHxkSQ1btzYvj8wMFCS1KhRI4e2K1euyGq1ytfXV1lZWZo2bZrWrVunU6dOKTc3V5cvX77hCExSUpKysrJUsWJFh/bLly87nJoqCgQYAACcWJkyZVSzZk2HtqysLE2fPl19+vQp0L906dL2xx4eHvbHFovlhm35+fmSpOeee04bN27UvHnzVLNmTXl7e+uRRx5RTk7OdWvLyspScHCwtmzZUmCfv7//rX3AO0SAAQDAZJo1a6aUlJQCweZu7dy5U0OHDlXv3r0l/RZQfvjhh5vWkZ6erlKlSqlq1aqFWssfIcAAAGAyU6ZM0UMPPaQqVarokUcekZubm5KSkrR//3795S9/uePj1qpVS6tWrVKPHj1ksVj00ksv2UdnrqdTp06KiIhQr169NGfOHNWuXVs///yz1q1bp969e6tFixZ3XMsf4SokAABMJioqSmvXrtWGDRvUsmVL3X///XrjjTcUFhZ2V8d9/fXXVb58eT3wwAPq0aOHoqKi1KxZsxv2t1gs+ve//622bdtq2LBhql27tvr3768TJ07Y59wUFYvNZrv9VXVMwGq1ys/PT5mZmfL19TW6HMC1bE24+2O0K7p
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot = dd.groupby([\"work_type\", \"gender\"]).size().unstack().plot.bar(color=[\"pink\", \"green\"])\n",
"plot.legend([\"Male\", \"Female\"])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}