MII/utils_clusters.py

101 lines
3.3 KiB
Python
Raw Permalink Normal View History

2024-11-15 23:06:57 +04:00
import math
from typing import Dict, List, Tuple
import numpy as np
from pandas import DataFrame
from sklearn import cluster
from sklearn.metrics import silhouette_samples, silhouette_score
def run_agglomerative(
df: DataFrame, num_clusters: int | None = 2
) -> cluster.AgglomerativeClustering:
agglomerative = cluster.AgglomerativeClustering(
n_clusters=num_clusters,
compute_distances=True,
)
return agglomerative.fit(df)
def get_linkage_matrix(model: cluster.AgglomerativeClustering) -> np.ndarray:
counts = np.zeros(model.children_.shape[0]) # type: ignore
n_samples = len(model.labels_)
for i, merge in enumerate(model.children_): # type: ignore
current_count = 0
for child_idx in merge:
if child_idx < n_samples:
current_count += 1
else:
current_count += counts[child_idx - n_samples]
counts[i] = current_count
return np.column_stack([model.children_, model.distances_, counts]).astype(float)
def print_cluster_result(
df: DataFrame, clusters_num: int, labels: np.ndarray, separator: str = ", "
):
for cluster_id in range(clusters_num):
cluster_indices = np.where(labels == cluster_id)[0]
print(f"Cluster {cluster_id + 1} ({len(cluster_indices)}):")
rules = [str(df.index[idx]) for idx in cluster_indices]
print(separator.join(rules))
print("")
print("--------")
def run_kmeans(
df: DataFrame, num_clusters: int, random_state: int
) -> Tuple[np.ndarray, np.ndarray]:
kmeans = cluster.KMeans(n_clusters=num_clusters, random_state=random_state)
labels = kmeans.fit_predict(df)
return labels, kmeans.cluster_centers_
def fit_kmeans(
reduced_data: np.ndarray, num_clusters: int, random_state: int
) -> cluster.KMeans:
kmeans = cluster.KMeans(n_clusters=num_clusters, random_state=random_state)
kmeans.fit(reduced_data)
return kmeans
def _get_kmeans_range(
df: DataFrame | np.ndarray, random_state: int
) -> Tuple[List, range]:
max_clusters = int(math.sqrt(len(df)))
clusters_range = range(2, max_clusters + 1)
kmeans_per_k = [
cluster.KMeans(n_clusters=k, random_state=random_state).fit(df)
for k in clusters_range
]
return kmeans_per_k, clusters_range
def get_clusters_inertia(df: DataFrame, random_state: int) -> Tuple[List, range]:
kmeans_per_k, clusters_range = _get_kmeans_range(df, random_state)
return [model.inertia_ for model in kmeans_per_k], clusters_range
def get_clusters_silhouette_scores(
df: DataFrame, random_state: int
) -> Tuple[List, range]:
kmeans_per_k, clusters_range = _get_kmeans_range(df, random_state)
return [
float(silhouette_score(df, model.labels_)) for model in kmeans_per_k
], clusters_range
def get_clusters_silhouettes(df: np.ndarray, random_state: int) -> Dict:
kmeans_per_k, _ = _get_kmeans_range(df, random_state)
clusters_silhouettes: Dict = {}
for model in kmeans_per_k:
silhouette_value = silhouette_score(df, model.labels_)
sample_silhouette_values = silhouette_samples(df, model.labels_)
clusters_silhouettes[model.n_clusters] = (
silhouette_value,
sample_silhouette_values,
model,
)
return clusters_silhouettes