{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "
Возьмем и заменим нулевые значения в столбце bmi на средние значения по столбцу
" ] }, { "cell_type": "code", "execution_count": 332, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Наличие пропущенных значений:\n", "id 0\n", "gender 0\n", "age 0\n", "hypertension 0\n", "heart_disease 0\n", "ever_married 0\n", "work_type 0\n", "Residence_type 0\n", "avg_glucose_level 0\n", "bmi 0\n", "smoking_status 0\n", "stroke 0\n", "dtype: int64\n" ] } ], "source": [ "data['bmi'] = data['bmi'].fillna(data['bmi'].median())\n", "print(\"\\nНаличие пропущенных значений:\")\n", "print(data.isnull().sum())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Взглянем на выбросы:
" ] }, { "cell_type": "code", "execution_count": 333, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAHqCAYAAADrpwd3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABscUlEQVR4nO3de1yUdf7//+cwHD0wiAcGChDPirIeKiOM3GTDU6vlZhaltX7081G0zG0rNw9hGFvblj9bsGz7mBau1ZZmZVpiylZoahoeWtMicdPBCgEPiQjX74++XB9HmRQdGAYe99ttbs28r9dc87rwlm988uZ9WQzDMAQAAAAAAAAAAM7j4+kGAAAAAAAAAABoqAjRAQAAAAAAAABwgRAdAAAAAAAAAAAXCNEBAAAAAAAAAHCBEB0AAAAAAAAAABcI0QEAAAAAAAAAcIEQHQAAAAAAAAAAFwjRAQAAAAAAAABwgRAdAAAAAAAAAAAXCNEBAACAemCxWPTYY495uo16tWHDBlksFm3YsMHTrTSoXgAAjddjjz0mi8WiH374oU4/55577lH79u3r9DMA/B9CdAAAAAAAAAAAXPD1dAMAAAAAAAAALt6LL76oqqoqT7cBNBmE6AAAAAAAAIAX8fPz83QLQJPCdi5AI3TgwAFNnjxZXbt2VVBQkFq3bq3bbrtN33777Xm1+fn5uuGGGxQUFKQrr7xS6enpWrx4sSwWy3n177//vq6//no1b95cLVu21LBhw7R79+76uSgAQJN1MfPa1q1bZbFYtGTJkvPev3btWlksFr377rvm2IYNG3TVVVcpMDBQHTt21AsvvGDuYVpbb7zxhnr06KHAwED17NlTK1asuKh9Sl3VuOrj1Vdf1TXXXKNmzZqpVatWSkxM1AcffOBUk5WVpdjYWAUEBCgiIkKpqakqKSlxqtm3b59GjRolu92uwMBAXXnllRozZoxKS0vP+7x+/fopKChIoaGhGjNmjA4ePHhRX5ML2bx5swYPHiybzaZmzZrphhtu0CeffGIe/+c//ymLxaKNGzee994XXnhBFotFu3btMsf+/e9/63e/+51CQ0MVGBioq666SqtWrXJLrwAAXIoffvhBo0ePVnBwsFq3bq37779fp06dMo9bLBZNmTLF/D4iKChI8fHx2rlzp6Sf57tOnTopMDBQAwcOPO/f5+yJDtQvVqIDjdCWLVv06aefasyYMbryyiv17bffauHChRo4cKD27NmjZs2aSZK+++47/frXv5bFYtGMGTPUvHlz/f3vf1dAQMB553zllVc0btw4JScn68knn9TJkye1cOFCDRgwQNu3b2fyBgDUmYuZ16666ip16NBBr7/+usaNG+f0/tdee02tWrVScnKyJGn79u0aPHiwwsPDlZaWpsrKSs2dO1dt27atdW/vvfeebr/9dvXq1UsZGRk6evSoxo8fryuuuMIt114tLS1Njz32mK677jrNnTtX/v7+2rx5s9avX6+bbrpJ0s/he1pampKSkjRp0iTt3btXCxcu1JYtW/TJJ5/Iz89Pp0+fVnJyssrLyzV16lTZ7XZ99913evfdd1VSUiKbzSZJmjdvnmbNmqXRo0frv/7rv/T999/rueeeU2JiorZv366QkJBLvpb169dryJAh6tevn+bMmSMfHx8tXrxYN954o/71r3/pmmuu0bBhw9SiRQu9/vrruuGGG5ze/9prryk2NlY9e/aUJO3evVsJCQm64oor9Mgjj6h58+Z6/fXXNXLkSL355pu65ZZbLrlXAAAu1ejRo9W+fXtlZGRo06ZNWrBggY4ePaqlS5eaNf/617+0atUqpaamSpIyMjI0fPhwPfTQQ8rKytLkyZN19OhRPfXUU/r973+v9evXe+pyABgAGp2TJ0+eN5aXl2dIMpYuXWqOTZ061bBYLMb27dvNsR9//NEIDQ01JBkFBQWGYRjGsWPHjJCQEGPChAlO53Q4HIbNZjtvHAAAd7rYeW3GjBmGn5+fUVxcbI6Vl5cbISEhxu9//3tz7OabbzaaNWtmfPfdd+bYvn37DF9fX6O23x736tXLuPLKK41jx46ZYxs2bDAkGdHR0U61kow5c+aYr8eNG3dejWEYxpw5c5z62Ldvn+Hj42PccsstRmVlpVNtVVWVYRiGceTIEcPf39+46aabnGr+9re/GZKM//3f/zUMwzC2b99uSDLeeOMNl9f07bffGlar1Zg3b57T+M6dOw1fX9/zxn/JRx99ZEgyPvroI7Pfzp07G8nJyWbvhvHzn3FMTIzxm9/8xhy74447jHbt2hlnzpwxxw4fPmz4+PgYc+fONccGDRpk9OrVyzh16pTT1+W6664zOnfu7LIXAADqQvU8/tvf/tZpfPLkyYYk44svvjAM4+fvCwICAsx/dxuGYbzwwguGJMNutxtlZWXm+IwZM5z+jW4Yrr+PAFA32M4FaISCgoLM5xUVFfrxxx/VqVMnhYSE6PPPPzePrVmzRvHx8erdu7c5FhoaqpSUFKfzffjhhyopKdEdd9yhH374wXxYrVb1799fH330UZ1fEwCg6brYee32229XRUWF3nrrLXPsgw8+UElJiW6//XZJUmVlpdatW6eRI0cqIiLCrOvUqZOGDBlSq74OHTqknTt3auzYsWrRooU5fsMNN6hXr161vk5XVq5cqaqqKs2ePVs+Ps7fvldv+7Ju3TqdPn1a06ZNc6qZMGGCgoOD9d5770mSudJ87dq1OnnyZI2f99Zbb6mqqkqjR492mvftdrs6d+58WfP+jh07tG/fPt1555368ccfzXOfOHFCgwYNUm5urnmTtNtvv11HjhzRhg0bzPf/85//VFVVlfnnWVxcrPXr12v06NE6duyYeb4ff/xRycnJ2rdvn7777rtL7hcAgEtVvbq82tSpUyVJq1evNscGDRrk9Fvd/fv3lySNGjVKLVu2PG/8m2++qat2AVwA27kAjdBPP/2kjIwMLV68WN99950MwzCPnb3f6YEDBxQfH3/e+zt16uT0et++fZKkG2+8scbPCw4OdkfbAADU6GLntV/96lfq1q2bXnvtNY0fP17Sz1t/tGnTxpzDjhw5op9++um8uU46f/67kAMHDrh8X6dOnZwC/svx9ddfy8fHRz169LhgL127dnUa9/f3V4cOHczjMTExmj59up555hllZ2fr+uuv129/+1vdddddZsC+b98+GYahzp071/hZl3Mjs+rvKc7dcudspaWlatWqlbln+muvvaZBgwZJ+vnPs3fv3urSpYskaf/+/TIMQ7NmzdKsWbNqPN+RI0fcvr0OAAAXcu482rFjR/n4+DjtbR4VFeVUUz0XR0ZG1jh+9OjROugUwMUgRAcaoalTp2rx4sWaNm2a4uPjZbPZZLFYNGbMGHN1V21Uv+eVV16R3W4/77ivL3+VAADqTm3mtdtvv13z5s3TDz/8oJYtW2rVqlW64447GuRc5eomppWVlXX6uX/96191zz336O2339YHH3yg++67z9yv9corr1RVVZUsFovef/99Wa3W895/9qr72qr+8/rLX/7i9JtwNZ0/ICBAI0eO1IoVK5SVlaWioiJ98skneuKJJ84734MPPmjueX+u2v5wBACAulDTvF/TPPtL42cvJABQvxrevyYAXLZ//vOfGjdunP7617+aY6dOnVJJSYlTXXR0tPbv33/e+88d69ixoySpXbt2SkpKcn/DAAD8goud16SfQ/S0tDS9+eabCgsLU1lZmcaMGWMeb9eunQIDAy9q/ruQ6Ohol++7mHO1atWqxmuoXjVerWPHjqqqqtKePXtcBs/Vvezdu1cdOnQwx0+fPq2CgoLz5u9evXqpV69emjlzpj799FMlJCTo+eefV3p6ujp27CjDMBQTE2Ou+HaX6u8pgoODL+p7ittvv11LlixRTk6OvvzySxmGYW7lIsm8Vj8/P75HAQA0KPv27VNMTIz5ev/+/aqqqnLavgWA92BPdKARslqt5/2E+rnnnjtvZVtycrLy8vK0Y8cOc6y4uFjZ2dnn1QUHB+uJJ55QRUXFeZ/3/fffu695AADOcbHzmiR1795dvXr10muvvabXXntN4eHhSkxMdDpXUlKSVq5cqUOHDpnj+/fv1/vvv1+rviIiItSzZ08tXbpUx48fN8c3btyonTt3XvD9HTt2VGlpqfLz882xw4cPa8WKFU51I0eOlI+Pj+bOnXveyvvqr0tSUpL8/f21YMECp6/VSy+9pNLSUg0bNkySVFZWpjNnzjido1evXvLx8VF5ebkk6dZbb5XValVaWtp5X3fDMPTjjz9e8Npc6devnzp27Kinn37a6WtW7dzvKZKSkhQaGmr+eV5zzTVOgUS7du00cOBAvfDCCzp8+PAFzwcAQH3JzMx0ev3cc89JUq3vwQKgYWAlOtAIDR8+XK+88opsNpt69OihvLw8rVu3Tq1bt3aqe+ihh/Tqq6/qN7/5jaZOnarmzZvr73//u6KiolRcXGz+ullwcLAWLlyou+++W3379tWYMWPUtm1bFRYW6r333lNCQoL+9re/eeJSAQBNwMXOa9Vuv/12zZ49W4GBgRo/fvx5N+N87LHH9MEHHyghIUGTJk1SZWWl/va3v6lnz55OP1i+GE888YRGjBihhIQE3XvvvTp69Kh5rppC4rONGTNGDz/8sG655Rbdd999OnnypBYuXKguXbo47afeqVMnPfroo3r88cd1/fXX69Zbb1VAQIC2bNmiiIgIZWRkqG3btpoxY4bS0tI0ePBg/fa3v9XevXuVlZWlq6++WnfddZckaf369ZoyZYpuu+02denSRWfOnNErr7wiq9WqUaNGSfo53E9PT9eMGTP07bffauTIkWrZsqUKCgq0YsUKTZw4UQ8++GCtvk7VfHx89Pe//11DhgxRbGys7r33Xl1xxRX67rvv9NFHHyk4OFjvvPOOWe/n56dbb71Vy5cv14kTJ/T000+fd87MzEwNGDBAvXr10oQJE9ShQwcVFRUpLy9P//nPf/TFF19cUq8AAFyOgoIC/fa3v9XgwYOVl5enV199VXfeead+9atfebo1AJfCANDoHD161Lj33nuNNm3aGC1atDCSk5ONf//730Z0dLQxbtw4p9rt27cb119/vREQEGBceeWVRkZGhrFgwQJDkuFwOJxqP/roIyM5Odmw2WxGYGCg0bFjR+Oee+4xtm7dWo9XBwBoamozrxmGYezbt8+QZEgyPv744xrPmZOTY/Tp08fw9/c3OnbsaPz97383/vCHPxiBgYG17m/58uVGt27djICAAKNnz57GqlWrjFGjRhndunVzqpNkzJkzx2nsgw8+MHr27Gn4+/sbXbt2NV599VVjzpw5Rk3fpv/v//6v0adPHyMgIMBo1aqVccMNNxgffvihU83f/vY3o1u3boafn58RFhZmTJo0yTh69Kh5/JtvvjF+//vfGx07djQCAwON0NBQ49e//rWxbt268z7vzTffNAYMGGA0b97caN68udGtWzcjNTXV2Lt370V/bT766CNDkvHRRx85jW/fvt249dZbjdatWxsBAQFGdHS0MXr0aCMnJ+e8c3z44YeGJMNisRgHDx6s8XO+/vprY+zYsYbdbjf8/PyMK664whg+fLjxz3/+84K9AADgTtXz+J49e4zf/e53RsuWLY1WrVoZU6ZMMX766SezTpKRmprq9N6CggJDkvGXv/zFabx6DnvjjTfMsXHjxhnR0dF1ei0A/o/FMLgrAQBn06ZN0wsvvKDjx4+7vKEJAACNzciRI7V7927t27fvss/Vu3dvtW3bVh9++KEbOgMAAADgSeyJDjRxP/30k9PrH3/8Ua+88ooGDBhAgA4AaLTOnf/27dun1atXa+DAgbU6T0VFxXl7jG/YsEFffPFFrc8FAAAAoGFiJTrQxPXu3VsDBw5U9+7dVVRUpJdeekmHDh1STk6O043YAABoTMLDw3XPPfeoQ4cOOnDggBYuXKjy8nJt375dnTt3Vmlp6XlB+7nsdru+/fZbJSUl6a677lJERIT+/e9/6/nnn5fNZtOuXbtc7tvu7X766SeVlpb+Yk1oaKj8/f3rqSMAAACg7nBjUaCJGzp0qP75z39q0aJFslgs6tu3r1566SUCdABAozZ48GD94x//kMPhUEBAgOLj4/XEE0+oc+fOkqT7779fS5Ys+cVzGIahVq1aqV+/fvr73/+u77//Xs2bN9ewYcP05z//udEG6JL02muv6d577/3Fmo8++ojV+AAAAGgUWIkOAAAAnGPPnj06dOjQL9YkJSXVUzcNz+HDh7V79+5frOnXr59atWpVTx0BAAAAdYcQHQAAAAAAAAAAF7ixKAAAAAAAAAAALjS4PdGrqqp06NAhtWzZUhaLxdPtAABQ5wzD0LFjxxQRESEfH+/++TbzOACgqWEeBwDAe13sPN7gQvRDhw4pMjLS020AAFDvDh48qCuvvNLTbVwW5nEAQFPFPA4AgPe60Dze4EL0li1bSvq58eDgYA93AwBA3SsrK1NkZKQ5B3oz5nEAQFPDPA4AgPe62Hm8wYXo1b8yFhwczKQNAGhSGsOvTTOPAwCaKuZxAAC814Xmce/esA0AAAAAAAAAgDpEiA4AAAAAgIfl5ubq5ptvVkREhCwWi1auXOl03DAMzZ49W+Hh4QoKClJSUpL27dvnVFNcXKyUlBQFBwcrJCRE48eP1/Hjx+vxKgAAaJwI0QEAAAAA8LATJ07oV7/6lTIzM2s8/tRTT2nBggV6/vnntXnzZjVv3lzJyck6deqUWZOSkqLdu3frww8/1Lvvvqvc3FxNnDixvi4BAIBGq8HtiQ4AAAAAQFMzZMgQDRkypMZjhmFo/vz5mjlzpkaMGCFJWrp0qcLCwrRy5UqNGTNGX375pdasWaMtW7boqquukiQ999xzGjp0qJ5++mlFRETU27UAANDYsBIdAAAAAIAGrKCgQA6HQ0lJSeaYzWZT//79lZeXJ0nKy8tTSEiIGaBLUlJSknx8fLR58+Z67xkAgMaElegAAAAAADRgDodDkhQWFuY0HhYWZh5zOBxq166d03FfX1+FhoaaNecqLy9XeXm5+bqsrMydbQMA0GiwEh0AAAAAgCYoIyNDNpvNfERGRnq6JQAAGiRCdAAAAAAAGjC73S5JKioqchovKioyj9ntdh05csTp+JkzZ1RcXGzWnGvGjBkqLS01HwcPHqyD7gEA8H6E6AAAAAAANGAxMTGy2+3Kyckxx8rKyrR582bFx8dLkuLj41VSUqJt27aZNevXr1dVVZX69+9f43kDAgIUHBzs9AAAAOdjT3QAAAAAADzs+PHj2r9/v/m6oKBAO3bsUGhoqKKiojRt2jSlp6erc+fOiomJ0axZsxQREaGRI0dKkrp3767BgwdrwoQJev7551VRUaEpU6ZozJgxioiI8NBVAQDQOBCiAwAAAADgYVu3btWvf/1r8/X06dMlSePGjdPLL7+shx56SCdOnNDEiRNVUlKiAQMGaM2aNQoMDDTfk52drSlTpmjQoEHy8fHRqFGjtGDBgnq/FgAAGhuLYRiGp5s4W1lZmWw2m0pLS/lVMgBAk9CY5r7GdC2AN6msrFR+fr6Ki4sVGhqquLg4Wa1WT7cFNAmNae5rTNcCeBPmccBzLnbuYyU6AAAA4MVyc3OVlZUlh8Nhjtntdk2ePFmJiYke7AwAAFwI8zjgHbixKAAAAOClcnNzNWfOHHXo0EGZmZlavXq1MjMz1aFDB82ZM0e5ubmebhEAALjAPA54D0J0AAAAwAtVVlYqKytL8fHxSk9PV2xsrJo1a6bY2Filp6crPj5eCxcuVGVlpadbBQAA52AeB7wL27nAK5w6dUqFhYWebgNwm6ioKKebQAEAUFv5+flyOByaNWuWfHyc18b4+PgoJSVFqampys/PV58+fTzUJQAAqAnzOOBdCNHhFQoLCzVx4kRPtwG4zaJFi9SlSxdPtwEA8GLFxcWSpJiYmBqPV49X1wEAgIaDeRzwLoTo8ApRUVFatGiRp9to9A4cOKB58+bp0UcfVXR0tKfbadSioqI83QIAwMuFhoZKkgoKChQbG3ve8YKCAqc6AADQcDCPA96FEB1eITAwkFW79Sg6OpqvNwAADVxcXJzsdruys7OVlpamXbt2qbi4WKGhoerZs6eys7MVHh6uuLg4T7cKAADOcfY8np6e7rSlS1VVFfM40MAQogMAAABeyGq1avLkyZo9e7aGDh2qiooK85ifn58qKio0d+5cWa1WD3YJAABqUj2Pz5kzRzNnzlRKSopiYmJUUFCg7Oxs5eXlKS0tjXkcaCAI0QEAAAAvd3aAXtNrAADQ8CQmJiotLU1ZWVlKTU01x8PDw5WWlqbExEQPdgfgbD4XLvk/lZWVmjVrlmJiYhQUFKSOHTvq8ccfl2EYZo1hGJo9e7bCw8MVFBSkpKQk7du3z+2NAwAAAE1ZZWWl/vznP0uS06+An/36z3/+syorK+u9NwAAcHESExOVnZ2tZ599VrNmzdKzzz6rV199lQAdaGBqtRL9ySef1MKFC7VkyRLFxsZq69atuvfee2Wz2XTfffdJkp566iktWLBAS5YsUUxMjGbNmqXk5GTt2bNHgYGBdXIRAAAAQFPz+eef6+TJk5Kka665Rnfffbf5a+CvvPKKNm3apJMnT+rzzz/X1Vdf7eFuAQCAK1arVX369PF0GwB+Qa1Won/66acaMWKEhg0bpvbt2+t3v/udbrrpJn322WeSfl6FPn/+fM2cOVMjRoxQXFycli5dqkOHDmnlypV10T8AAADQJK1du1aS1L59ez3xxBOKjY1Vs2bNFBsbqyeeeELt27d3qgMAAABwaWoVol933XXKycnRV199JUn64osv9PHHH2vIkCGSpIKCAjkcDiUlJZnvsdls6t+/v/Ly8tzYNgAAANC0ORwOSdLgwYNr3M4lOTnZqQ4AAADApanVdi6PPPKIysrK1K1bN1mtVlVWVmrevHlKSUmR9H/foIeFhTm9LywszOU37+Xl5SovLzdfl5WV1eoCAAAAgKbIbrdr165dWrNmjUaPHu0UpFdVVZkr0O12u6daBAAAABqFWoXor7/+urKzs7Vs2TLFxsZqx44dmjZtmiIiIjRu3LhLaiAjI0NpaWmX9F4AAACgqUpOTta6dev07bff6pFHHlFkZKTKy8sVEBCggwcP6ttvvzXrAAAAAFy6WoXof/zjH/XII49ozJgxkqRevXrpwIEDysjI0Lhx48xVLkVFRQoPDzffV1RUpN69e9d4zhkzZmj69Onm67KyMkVGRtb2OgAAAIAmpW/fvmrWrJlOnjypzz77zLxP0dmaNWumvn37eqA7AAAAoPGo1Z7oJ0+ePG+/RavVqqqqKklSTEyM7Ha7cnJyzONlZWXavHmz4uPjazxnQECAgoODnR4AAAAAfpnValWfPn1+saZPnz6yWq311BEAAADQONVqJfrNN9+sefPmKSoqSrGxsdq+fbueeeYZ/f73v5ckWSwWTZs2Tenp6ercubNiYmI0a9YsRUREaOTIkXXRPwAAANAknT59Wps2bVLz5s0VFBSkH374wTzWtm1bnTx5Ups2bdLp06fl7+/vwU4BAAAA71arlejPPfecfve732ny5Mnq3r27HnzwQf33f/+3Hn/8cbPmoYce0tSpUzVx4kRdffXVOn78uNasWaPAwEC3Nw8AAAA0VW+//bYqKys1aNCg81ab+/j4aNCgQaqsrNTbb7/toQ4BAACAxqFWK9Fbtmyp+fPna/78+S5rLBaL5s6dq7lz515ubwAAAABcOHTokCRp1apVCggIcDpWUlKiVatWOdUBAAAAuDS1CtEBAAAANAx2u9183rdvX911112KiYlRQUGBXn31VeXl5Z1XBwAAAKD2arWdCwAAAICGoX379pJ+vsHo7Nmzdfr0aeXl5en06dOaPXu2ucVLdR0AAACAS8NKdAAAAMAL7dq1S5JUWVmpYcOGqaqqyjzm4+Njvt61a5f69+/vkR4BAACAxoCV6AAAAICXOztAr+k1AAAAgEvHSnQAAADAC8XFxUmSWrZsqddee03vvfeeDh06pIiICA0bNky33367jh07ZtYBAICGqbKyUvn5+SouLlZoaKji4uLMbdkANAyE6AAAAIAX8vH5+ZdKjx07pscff1x33XWXhg0bpoKCAj3++OM6duyYUx0AAGh4cnNzlZWVJYfDYY7Z7XZNnjxZiYmJHuwMwNkI0QEAAAAvVFJSYj7ftm2b8vLyzNf+/v411gEAgIYjNzdXc+bMUXx8vGbNmqWYmBgVFBQoOztbc+bMUVpaGkE60ECwLAUAAADwQqGhoZKkpKQknTlzxulYZWWlkpKSnOoAAEDDUVlZqaysLMXHxys9PV2xsbFq1qyZYmNjlZ6ervj4eC1cuFCVlZWebhWAWIkOAAAAeKW4uDiFhIRo3bp16t+/v6688kqdPn1a/v7++s9//qN169YpJCSEPdEBAGiA8vPz5XA4NGvWrPO2XvPx8VFKSopSU1OVn5+vPn36eKhLANUI0QEAAAAv9/nnn2vz5s3maz8/P0mSxWLxVEsAAOAXFBcXS5JiYmJqPF49Xl0HwLPYzgUAAADwQvn5+eZ+5xUVFU7Hql8fPXpU+fn59d0aAAC4gOrt1goKCmo8Xj3OtmxAw0CIDgAAAHihH374wXxutVrVqVMn9ezZU506dZLVaq2xDgAANAxxcXGy2+3Kzs5WVVWV07GqqiplZ2crPDycbdmABoIQHQAAAPBC33//vfncMAzt379fu3bt0v79+2UYRo11AACgYbBarZo8ebLy8vI0c+ZM7d69WydPntTu3bs1c+ZM5eXladKkSU4/GAfgOeyJDgAAAHihrVu3ms/PDs3Pfb1161bdeeed9dYXAAC4OImJiUpLS1NWVpZSU1PN8fDwcKWlpSkxMdGD3QE4GyE6AAAA4IWOHTtmPv+lEP3sOgAA0LAkJiYqISFB+fn5Ki4uVmhoqOLi4liBDjQwhOgAAACAF/Lz83NrHQAA8Ayr1ao+ffp4ug0Av4A90QEAAAAvFBwc7NY6AAAAADUjRAcAAAC80OnTp91aBwAAAKBmhOgAADQCGRkZuvrqq9WyZUu1a9dOI0eO1N69e51qBg4cKIvF4vT4n//5H6eawsJCDRs2TM2aNVO7du30xz/+UWfOnKnPSwFwkWw2m1vrAAAAANSMPdEBAGgENm7cqNTUVF199dU6c+aM/vSnP+mmm27Snj171Lx5c7NuwoQJmjt3rvm6WbNm5vPKykoNGzZMdrtdn376qQ4fPqyxY8fKz89PTzzxRL1eD4ALO3r0qPnc19dXISEhqqqqko+Pj0pKSswfgJ1dBwAAAKD2CNEBAGgE1qxZ4/T65ZdfVrt27bRt2zYlJiaa482aNZPdbq/xHB988IH27NmjdevWKSwsTL1799bjjz+uhx9+WI899pj8/f3r9BoA1M7Z4fiZM2f0ww8/XLAOAAAAQO2xnQsAAI1QaWmpJCk0NNRpPDs7W23atFHPnj01Y8YMnTx50jyWl5enXr16KSwszBxLTk5WWVmZdu/eXT+NA7hoFovFrXUAAAAAasZKdAAAGpmqqipNmzZNCQkJ6tmzpzl+5513Kjo6WhEREcrPz9fDDz+svXv36q233pIkORwOpwBdkvna4XDU+Fnl5eUqLy83X5eVlbn7cgC40L59e3377bcXVQcAAADg0hGiAwDQyKSmpmrXrl36+OOPncYnTpxoPu/Vq5fCw8M1aNAgff311+rYseMlfVZGRobS0tIuq18Al6ZFixZurQMAAABQM7ZzAQCgEZkyZYreffddffTRR7ryyit/sbZ///6SpP3790uS7Ha7ioqKnGqqX7vaR33GjBkqLS01HwcPHrzcSwBwkVztgX6pdQAAAABqRogOAEAjYBiGpkyZohUrVmj9+vWKiYm54Ht27NghSQoPD5ckxcfHa+fOnTpy5IhZ8+GHHyo4OFg9evSo8RwBAQEKDg52egCoH4WFhW6tAwAAAFAztnMBAKARSE1N1bJly/T222+rZcuW5h7mNptNQUFB+vrrr7Vs2TINHTpUrVu3Vn5+vh544AElJiYqLi5OknTTTTepR48euvvuu/XUU0/J4XBo5syZSk1NVUBAgCcvD0ANTpw44dY6AAAAADUjRAcAoBFYuHChJGngwIFO44sXL9Y999wjf39/rVu3TvPnz9eJEycUGRmpUaNGaebMmWat1WrVu+++q0mTJik+Pl7NmzfXuHHjNHfu3Pq8FAAXyc/Pz3xus9mUnJys8PBwHT58WGvXrlVpael5dQAAAABqjxAdAIBGwDCMXzweGRmpjRs3XvA80dHRWr16tbvaAlCH2rZta+53Xlpaqtdff91lHQAAAIBLx57oAAAAgBfq1KmTW+sAAAAA1IwQHQAAAPBCUVFRbq0DAAAAUDNCdAAAAMALDRkyxK11AAAAAGpGiA4AAAB4oTfffNOtdQAAAABqRogOAAAAeCFXNxK91DoAAAAANSNEBwAAALzQyZMnzefLly9XWFiYAgMDFRYWpuXLl9dYBwAAAKD2fD3dAAAAAIDa8/HxUWVlpSRpzJgx5vipU6ecXvv4sG4GAAAAuBx8Rw0AAAB4ofDwcLfWAQAAAKgZIToAAADghW644Qa31gEAAACoGSE6AAAA4IU+//xzt9YBAAAAqBkhOgAAAOCFvvnmG7fWAQAAAKgZIToAAADghcrLy91aBwAAAKBmhOgAAACAF7JYLG6tAwAAAFAzQnQAAADACwUEBLi1DgAAAEDNCNEBAAAAL+Tv7+/WOgAAAAA1I0QHAAAAvNDp06fdWgcAAACgZoToAAAAgBcyDMOtdQAAAABqRogOAAAAeCFfX1+31gEAAACoGSE6AAAA4IVYiQ4AAADUD0J0AAAAwAtVVFS4tQ4AAABAzQjRAQAAAC9UWVnp1joAAAAANSNEBwAAALxQVVWVW+sAAAAA1IwQHQAAAAAAAAAAFwjRAQAAAAAAAABwgRAdAAAA8EIWi8WtdQAAAABqRogOAAAAeCHDMNxaBwAAAKBmhOgAAAAAAAAAALhAiA4AAAAAQANXWVmpWbNmKSYmRkFBQerYsaMef/xxp982MQxDs2fPVnh4uIKCgpSUlKR9+/Z5sGsAABoHQnQAAADAC7EnOtC0PPnkk1q4cKH+9re/6csvv9STTz6pp556Ss8995xZ89RTT2nBggV6/vnntXnzZjVv3lzJyck6deqUBzsHAMD7+Xq6AQAAAAC1Z7VadebMmYuqA+D9Pv30U40YMULDhg2TJLVv317/+Mc/9Nlnn0n6eRX6/PnzNXPmTI0YMUKStHTpUoWFhWnlypUaM2aMx3oHAMDbsRIdAAAA8EIXE6DXpg5Aw3bdddcpJydHX331lSTpiy++0Mcff6whQ4ZIkgoKCuRwOJSUlGS+x2azqX///srLy/NIzwAANBasRAcAAAAAoIF75JFHVFZWpm7duslqtaqyslLz5s1TSkqKJMnhcEiSwsLCnN4XFhZmHjtXeXm5ysvLzddlZWV11D0AAN6NlegAAAAAADRwr7/+urKzs7Vs2TJ9/vnnWrJkiZ5++mktWbLkks+ZkZEhm81mPiIjI93YMQAAjQchOgAAAAAADdwf//hHPfLIIxozZox69eqlu+++Ww888IAyMjIkSXa7XZJUVFTk9L6ioiLz2LlmzJih0tJS83Hw4MG6vQgAALwUIToAAAAAAA3cyZMn5ePj/E94q9WqqqoqSVJMTIzsdrtycnLM42VlZdq8ebPi4+NrPGdAQICCg4OdHgAA4HzsiQ4AAAAAQAN38803a968eYqKilJsbKy2b9+uZ555Rr///e8lSRaLRdOmTVN6ero6d+6smJgYzZo1SxERERo5cqRnmwcAwMsRogMAAABeKCws7LxtG1zVAfB+zz33nGbNmqXJkyfryJEjioiI0H//939r9uzZZs1DDz2kEydOaOLEiSopKdGAAQO0Zs0aBQYGerBzABdSWVmp/Px8FRcXKzQ0VHFxcbJarZ5uC8BZCNEBAAAAL+Tv7+/WOgANW8uWLTV//nzNnz/fZY3FYtHcuXM1d+7c+msMwGXJzc1VVlaWHA6HOWa32zV58mQlJiZ6sDMAZ2NPdAAAAMALlZSUuLUOAADUr9zcXM2ZM0cdOnRQZmamVq9erczMTHXo0EFz5sxRbm6up1sE8P8QogMAAABe6NixY26tAwAA9aeyslJZWVmKj49Xenq6YmNj1axZM8XGxio9PV3x8fFauHChKisrPd0qABGiAwAAAAAAAPUqPz9fDodDKSkp8vFxjud8fHyUkpKiw4cPKz8/30MdAjgbIToAAAAAAABQj4qLiyVJMTExNR6vHq+uA+BZhOgAAAAAAABAPQoNDZUkFRQU1Hi8ery6DoBnEaIDAAAAAAAA9SguLk52u13Z2dmqqqpyOlZVVaXs7GyFh4crLi7OQx0COBshOgAAAAAAAFCPrFarJk+erLy8PM2cOVO7d+/WyZMntXv3bs2cOVN5eXmaNGmSrFarp1sFIMnX0w0AAAAAAAAATU1iYqLS0tKUlZWl1NRUczw8PFxpaWlKTEz0YHcAzkaIDgAAAAAAAHhAYmKiEhISlJ+fr+LiYoWGhiouLo4V6EADQ4gOAAAAAAAAeIjValWfPn083QaAX8Ce6AAAAAAAAAAAuECIDgAAAAAAAACAC4ToAAAAAAAAAAC4QIgOAAAAAAAAAIAL3FjUTYqKilRaWurpNoDLcuDAAaf/At7KZrMpLCzM020AAAAAAIBGoNYh+nfffaeHH35Y77//vk6ePKlOnTpp8eLFuuqqqyRJhmFozpw5evHFF1VSUqKEhAQtXLhQnTt3dnvzDUVRUZHuunusKk6Xe7oVwC3mzZvn6RaAy+LnH6BXX1lKkA4AAAAAAC5brUL0o0ePKiEhQb/+9a/1/vvvq23bttq3b59atWpl1jz11FNasGCBlixZopiYGM2aNUvJycnas2ePAgMD3X4BDUFpaakqTpfrpw43qCrQ5ul2AKBJ8zlVKn2zUaWlpYToAAAAAADgstUqRH/yyScVGRmpxYsXm2MxMTHmc8MwNH/+fM2cOVMjRoyQJC1d+vNKwJUrV2rMmDFuarthqgq0qap5G0+3AQAAAAAAAABwk1rdWHTVqlW66qqrdNttt6ldu3bq06ePXnzxRfN4QUGBHA6HkpKSzDGbzab+/fsrLy+vxnOWl5errKzM6QEAAAAAAAAAQENQqxD9m2++Mfc3X7t2rSZNmqT77rtPS5YskSQ5HA5JOu/X58PCwsxj58rIyJDNZjMfkZGRl3IdAAAAAAAAAAC4Xa1C9KqqKvXt21dPPPGE+vTpo4kTJ2rChAl6/vnnL7mBGTNmqLS01HwcPHjwks8FAAAAAAAAAIA71SpEDw8PV48ePZzGunfvrsLCQkmS3W6XJBUVFTnVFBUVmcfOFRAQoODgYKcHAAAAAAAAAAANQa1C9ISEBO3du9dp7KuvvlJ0dLSkn28yarfblZOTYx4vKyvT5s2bFR8f74Z2AQAAAAAAAACoP761KX7ggQd03XXX6YknntDo0aP12WefadGiRVq0aJEkyWKxaNq0aUpPT1fnzp0VExOjWbNmKSIiQiNHjqyL/gEAAAAAAAAAqDO1CtGvvvpqrVixQjNmzNDcuXMVExOj+fPnKyUlxax56KGHdOLECU2cOFElJSUaMGCA1qxZo8DAQLc3DwAAAAAAAHizyspK5efnq7i4WKGhoYqLi5PVavV0WwDOUqsQXZKGDx+u4cOHuzxusVg0d+5czZ0797IaAwAAAAAAABqz3NxcZWVlyeFwmGN2u12TJ09WYmKiBzsDcLZa7YkOAAAAAAAA4PLl5uZqzpw56tChgzIzM7V69WplZmaqQ4cOmjNnjnJzcz3dIoD/hxAdAAAAAAAAqEeVlZXKyspSfHy80tPTFRsbq2bNmik2Nlbp6emKj4/XwoULVVlZ6elWAYgQHQAAAAAAAKhX+fn5cjgcSklJkY+Pczzn4+OjlJQUHT58WPn5+R7qEMDZCNEBAAAAAACAelRcXCxJiomJqfF49Xh1HQDPIkQHAAAAAAAA6lFoaKgkqaCgoMbj1ePVdQA8ixAdAAAAAAAAqEdxcXGy2+3Kzs5WVVWV07GqqiplZ2crPDxccXFxHuoQwNkI0QEAAAAAAIB6ZLVaNXnyZOXl5WnmzJnavXu3Tp48qd27d2vmzJnKy8vTpEmTZLVaPd0qAEm+nm4AAAAAAAAAaGoSExOVlpamrKwspaammuPh4eFKS0tTYmKiB7sDcDZCdAAAAAAAAMADEhMTlZCQoPz8fBUXFys0NFRxcXGsQAcaGEJ0AAAAAAAAwEOsVqv69Onj6TYA/AL2RAcAAAAAAAAAwAVCdAAAAAAAAAAAXCBEBwAAAAAAAADABUJ0AAAagYyMDF199dVq2bKl2rVrp5EjR2rv3r1ONadOnVJqaqpat26tFi1aaNSoUSoqKnKqKSws1LBhw9SsWTO1a9dOf/zjH3XmzJn6vBQAAAAAABoUQnQAABqBjRs3KjU1VZs2bdKHH36oiooK3XTTTTpx4oRZ88ADD+idd97RG2+8oY0bN+rQoUO69dZbzeOVlZUaNmyYTp8+rU8//VRLlizRyy+/rNmzZ3vikgAAAAAAaBB8Pd0AAAC4fGvWrHF6/fLLL6tdu3batm2bEhMTVVpaqpdeeknLli3TjTfeKElavHixunfvrk2bNunaa6/VBx98oD179mjdunUKCwtT79699fjjj+vhhx/WY489Jn9/f09cGgAAAAAAHsVKdAAAGqHS0lJJUmhoqCRp27ZtqqioUFJSklnTrVs3RUVFKS8vT5KUl5enXr16KSwszKxJTk5WWVmZdu/eXePnlJeXq6yszOkBAAAAAEBjQogOAEAjU1VVpWnTpikhIUE9e/aUJDkcDvn7+yskJMSpNiwsTA6Hw6w5O0CvPl59rCYZGRmy2WzmIzIy0s1XAwAAAACAZxGiAwDQyKSmpmrXrl1avnx5nX/WjBkzVFpaaj4OHjxY558JAAAAAEB9Yk90AAAakSlTpujdd99Vbm6urrzySnPcbrfr9OnTKikpcVqNXlRUJLvdbtZ89tlnTucrKioyj9UkICBAAQEBbr4KAAAAAAAaDlaiAwDQCBiGoSlTpmjFihVav369YmJinI7369dPfn5+ysnJMcf27t2rwsJCxcfHS5Li4+O1c+dOHTlyxKz58MMPFRwcrB49etTPhQAAAABNTGVlpbZv366cnBxt375dlZWVnm4JwDlYiQ4AQCOQmpqqZcuW6e2331bLli3NPcxtNpuCgoJks9k0fvx4TZ8+XaGhoQoODtbUqVMVHx+va6+9VpJ00003qUePHrr77rv11FNPyeFwaObMmUpNTWW1OQAAAFAHcnNzlZWV5XQPIrvdrsmTJysxMdGDnQE4GyvRAQBoBBYuXKjS0lINHDhQ4eHh5uO1114za5599lkNHz5co0aNUmJioux2u9566y3zuNVq1bvvviur1ar4+HjdddddGjt2rObOneuJSwIAAAAatdzcXM2ZM0cdOnRQZmamVq9erczMTHXo0EFz5sxRbm6up1sE8P+wEh0AgEbAMIwL1gQGBiozM1OZmZkua6Kjo7V69Wp3tgYAAADgHJWVlcrKylJ8fLzS09Pl4/PzOtfY2Filp6dr5syZWrhwoRISEmS1Wj3cLQBWogMAAAAAAAD1KD8/Xw6HQykpKWaAXs3Hx0cpKSk6fPiw8vPzPdQhgLMRogMAAAAAAAD1qLi4WJIUExNT4/Hq8eo6AJ5FiA4AAAAAAADUo9DQUElSQUFBjcerx6vrAHgWIToAAAAAAABQj+Li4mS325Wdna2qqiqnY1VVVcrOzlZ4eLji4uI81CGAsxGiAwAAAAAAAPXIarVq8uTJysvL08yZM7V7926dPHlSu3fv1syZM5WXl6dJkyZxU1GggfD1dAMAAAAAas9iscgwjIuqAwAADU9iYqLS0tKUlZWl1NRUczw8PFxpaWlKTEz0YHcAzsZKdAAAAMAL+fv7u7UOAAB4xrk/FD93excAnsdKdAAAAMALlZeXu7UOAADUr9zcXM2ZM0fXXnutxowZo4CAAJWXl+uzzz7TnDlzWI0ONCCE6AAAAAAAAEA9qqysVFZWlrp06aKCggLl5eWZx+x2u7p06aKFCxcqISGBfdGBBoDtXAAAAAAAAIB6lJ+fL4fDoa+++kodOnRQZmamVq9erczMTHXo0EFfffWVDh8+rPz8fE+3CkCE6AAAAAAAAEC9+uGHHyRJ11xzjdLT0xUbG6tmzZopNjZW6enpuuaaa5zqAHgWIToAAAAAAABQj0pKSiRJ119/vXx8nOM5Hx8fDRgwwKkOgGcRogMAAABeyGKxuLUOAADUn5CQEEnSv/71L1VUVGj79u3KycnR9u3bVVFRoY8//tipDoBncWNRAAAAwAsFBQXp5MmTF1UHAAAaljZt2kiSNm/erOHDh6u8vNw8FhAQYL6urgPgWaxEBwAAALyQYRhurQMAAPUnLi7OXGV+7lxd/bpVq1aKi4ur79YA1ICV6AAAAIAXOnPmjFvrAACAZ/Tt21f9+/c3V6Bv3rxZmzZt4gfhQANCiA4AAAB4ocrKSrfWAQCA+pOfn6+SkhJNmDBB77zzjjZt2mQeCw8P14QJE/Tiiy8qPz9fffr08WCnACRCdAAAAMArsZ0LAADeq7i4WJJ0yy23aMyYMcrPz1dxcbFCQ0MVFxen8vJyvfjii2YdAM8iRAcAAAAAAADqUWhoqCSpoKBAsbGx5602LygocKoD4FncWBQAAADwQn5+fm6tAwAA9ScuLk52u13Z2dmqqKjQ9u3blZOTo+3bt6uiokLZ2dkKDw/nxqJAA8FKdAAAAMAL+fhc3HqYi60DAAD1x2q1avLkyZo9e7aGDx+u8vJy81j1DUbnzp0rq9XqwS4BVOM7agAAAMALEaIDAOD9LBZLjfcvsVgsHugGgCt8Rw0AAAB4oZMnT7q1DgAA1J/KykplZWWpS5custlsTseCg4PVpUsXLVy4UJWVlR7qEMDZ2M4FAAAA8EKuVq7VVAcAABqW/Px8ORwOORyO8459//33+v777826c286CqD+sRIdAAAA8EL+/v5urQMAAPXnhx9+MJ+3atVKDz74oN588009+OCDatWqVY11ADyHEB0AAADwQiEhIW6tAwAA9ac6HG/WrJmWL1+uK664Qjt27NAVV1yh5cuXq1mzZk51ADyL7VwAAAAAL1RWVubWOgAAUH++/vprSVKLFi00duxYFRUVmcfCwsLUvHlznTx50qwD4FmsRAcAAAC80MXeaIwbkgGNx3fffae77rpLrVu3VlBQkHr16qWtW7eaxw3D0OzZsxUeHq6goCAlJSVp3759HuwYgCunTp2SJB05ckSnT5/W6NGjdf/992v06NE6ffq0uSd6dR0Az2IlOgAAAOCFmjdvrtOnT19UHQDvd/ToUSUkJOjXv/613n//fbVt21b79u1z2jv5qaee0oIFC7RkyRLFxMRo1qxZSk5O1p49exQYGOjB7gGcq2fPnvr4449ltVpVVlam119/3TxmtVpltVpVWVmpnj17erBLANUI0QEAAAAv5Ofn59Y6AA3bk08+qcjISC1evNgci4mJMZ8bhqH58+dr5syZGjFihCRp6dKlCgsL08qVKzVmzJh67xmAax07dpT082+M2Ww2JScnKyIiQocOHdLatWtVWlrqVAfAswjRAQAAAC90/Phxt9YBaNhWrVql5ORk3Xbbbdq4caOuuOIKTZ48WRMmTJAkFRQUyOFwKCkpyXyPzWZT//79lZeXV2OIXl5ervLycvM191AA6k9JSYn5/NyV6BaLpcY6AJ7DnugAAACAF/Lxubhv5S+2DkDD9s0332jhwoXq3Lmz1q5dq0mTJum+++7TkiVLJEkOh0PSzzckPFtYWJh57FwZGRmy2WzmIzIysm4vAoCpOhy/6qqrnEJz6ee5+6qrrnKqA+BZrEQHAAAAvFBYWNhFrTI/N1AD4J2qqqp01VVX6YknnpAk9enTR7t27dLzzz+vcePGXdI5Z8yYoenTp5uvy8rKCNKBehISEiLp5/3PV69erXfeeUeHDh1SRESEbr75Zs2ZM8epDoBnsSwFAAAA8ELNmjVzax2Ahi08PFw9evRwGuvevbsKCwslSXa7XZJUVFTkVFNUVGQeO1dAQICCg4OdHgDqR5s2bSRJmzdv1ty5c9WjRw9NmDBBPXr00Ny5c7V582anOgCexUp0AAAAwAt98803bq0D0LAlJCRo7969TmNfffWVoqOjJf18k1G73a6cnBz17t1b0s8ryzdv3qxJkybVd7sALiAuLk52u102m0379+9XamqqeSwsLExdu3ZVWVmZ4uLiPNglgGqsRAcAAAC80OnTp91aB6Bhe+CBB7Rp0yY98cQT2r9/v5YtW6ZFixaZwZvFYtG0adOUnp6uVatWaefOnRo7dqwiIiI0cuRIzzYP4DxWq1WTJ0/WV199dd6+50ePHtVXX32lSZMmyWq1eqZBAE5YiQ4AAAB4IX9/f1VUVFxUHQDvd/XVV2vFihWaMWOG5s6dq5iYGM2fP18pKSlmzUMPPaQTJ05o4sSJKikp0YABA7RmzRoFBgZ6sHMAv8QwjPN+4M0PwIGGhxAdAAAA8EItWrTQiRMnLqoOQOMwfPhwDR8+3OVxi8WiuXPnau7cufXYFYBLUVlZqWeeeUbSzz/wPjs4r379zDPPKCEhgdXoQANAiO5GPj+VeLoFAGjy+LsYQFNRVlbm1joAAFB/duzYYW7jUllZ6XSs+nVJSYl27Nihfv361Xd7AM5BiO5GQQW5nm4BAAAATcSZM2fcWgcAAOrP9u3bzeeuQvTqOkJ0wPMI0d3op5hEVQWFeLoNAGjSfH4q4YeaAJqEoKCgi9oTPSgoqB66AQAAteFwOMznfn5+uu222zR06FCtXr1ab7zxhjnHn10HwHMI0d2oKihEVc3beLoNAAAANAHt2rW7qK1a2rVrVw/dAACA2jj7N8XefPNNrV27Vm+++aYiIiL05ptv6re//e15dQA8hxAdAAAA8EKhoaFurQMAAPXnu+++M59XB+bVMjMza6wD4Dk+nm4AAAAAQO0VFRW5tQ4AANQfi8Xi1joAdYsQHQAAAPBCJ0+edGsdAACoP126dHFrHYC6RYgOAAAAeKETJ06Yz318nL+tP/v12XUAAKBhiIiIcGsdgLpFiA4AAAB4oaqqKvO5YRgXVQcAABqGI0eOuLUOQN3ixqIAAACoU6dOnVJhYaGn22h0rFar+dwwDEVFRalt27b6/vvvnb7eVqtVX331lSdabLSioqIUGBjo6TYAAF7szJkzbq0DULcI0QEAAFCnCgsLNXHiRE+30egVFhbW+MOKEydO8PV3s0WLFrFHLQDgslzsAgMWIgANAyE6AAAA6lRUVJQWLVrk6TYandOnT2vKlCkXrPvb3/4mf3//euio6YiKivJ0CwAAL7d//3631gGoW4ToAAAAqFOBgYGs2q0jCQkJ+uSTT37xeM+ePeuxIwAAcDHO3pbNHXUA6hY3FgUAAAC81Lx585SQkFDjsYSEBM2bN6+eOwIAABcjJCTErXUA6hYr0QEAAAAvNm/ePP3000968skntWHDBg0cOFAPP/ywgoKCPN0aAABw4WLnaeZzoGFgJToAAADg5YKCgnTnnXdKku68807+wQ0AQAN3+PBht9YBqFuE6AAAAAAAAEA9qqiocGsdgLpFiA4AAAAAAADUI4vF4tY6AHWLEB0AAAAAAACoRy1atHBrHYC6RYgOAAAAAAAA1CO2cwG8y2WF6H/+859lsVg0bdo0c+zUqVNKTU1V69at1aJFC40aNUpFRUWX2ycAAAAAAADQKFitVrfWAahblxyib9myRS+88ILi4uKcxh944AG98847euONN7Rx40YdOnRIt95662U3CgAAAAAAADQGAQEBbq0DULcuKUQ/fvy4UlJS9OKLL6pVq1bmeGlpqV566SU988wzuvHGG9WvXz8tXrxYn376qTZt2uS2pgEAAAAAAABvdcUVV7i1DkDduqQQPTU1VcOGDVNSUpLT+LZt21RRUeE03q1bN0VFRSkvL6/Gc5WXl6usrMzpAQAAAAAAADRWF7v1MVskAw2Db23fsHz5cn3++efasmXLecccDof8/f0VEhLiNB4WFiaHw1Hj+TIyMpSWllbbNgAAAAAAAACvdLGLSFlsCjQMtVqJfvDgQd1///3Kzs5WYGCgWxqYMWOGSktLzcfBgwfdcl4AAAAAAACgIbJYLG6tA1C3ahWib9u2TUeOHFHfvn3l6+srX19fbdy4UQsWLJCvr6/CwsJ0+vRplZSUOL2vqKhIdru9xnMGBAQoODjY6QEAAAAAAAA0VpGRkW6tA1C3arWdy6BBg7Rz506nsXvvvVfdunXTww8/rMjISPn5+SknJ0ejRo2SJO3du1eFhYWKj493X9cAAAAAAACAlzp3hXnbtm0VGhqq4uJiff/99y7rAHhGrUL0li1bqmfPnk5jzZs3V+vWrc3x8ePHa/r06QoNDVVwcLCmTp2q+Ph4XXvtte7rGgAAAAAAAPBSpaWlTq+///57p/DcVR0Az6j1jUUv5Nlnn5WPj49GjRql8vJyJScnKysry90fAwAAAAAAAABAnbvsEH3Dhg1OrwMDA5WZmanMzMzLPTUAAAAAAADQ6MTExOjbb7+9qDoAnlerG4sCAAAAAAAAuDwdOnRwax2AukWIDgAAAAAAANSjb775xq11AOoWIToAAAAAAABQj/bs2ePWOgB1ixAdAAAAAAAAqEelpaVurQNQtwjRAQAAAAAAgHp06tQpt9YBqFuE6AAAAAAAAEA9slgsbq0DULcI0QEAAAAAAIB65Ovr69Y6AHWLEB0AAAAAAACoR/7+/m6tA1C3CNEBAGgkcnNzdfPNNysiIkIWi0UrV650On7PPffIYrE4PQYPHuxUU1xcrJSUFAUHByskJETjx4/X8ePH6/EqAAAAgMavvLzcrXUA6hYhOgAAjcSJEyf0q1/9SpmZmS5rBg8erMOHD5uPf/zjH07HU1JStHv3bn344Yd69913lZubq4kTJ9Z16wAAAECTUlVV5dY6AHWLjZUAAGgkhgwZoiFDhvxiTUBAgOx2e43HvvzyS61Zs0ZbtmzRVVddJUl67rnnNHToUD399NOKiIhwe88AAABAU+Tj43NRAbmPD+tfgYaA/xMBAGhCNmzYoHbt2qlr166aNGmSfvzxR/NYXl6eQkJCzABdkpKSkuTj46PNmzfXeL7y8nKVlZU5PQAAAAD8MqvV6tY6AHWLEB0AgCZi8ODBWrp0qXJycvTkk09q48aNGjJkiCorKyVJDodD7dq1c3qPr6+vQkND5XA4ajxnRkaGbDab+YiMjKzz6wAAAAC8HSE64F3YzgUAgCZizJgx5vNevXopLi5OHTt21IYNGzRo0KBLOueMGTM0ffp083VZWRlBOgAAAHAB1QtZ3FUHoG6xEh0AgCaqQ4cOatOmjfbv3y9JstvtOnLkiFPNmTNnVFxc7HIf9YCAAAUHBzs9AAAAAPwybiwKeBdCdAAAmqj//Oc/+vHHHxUeHi5Jio+PV0lJibZt22bWrF+/XlVVVerfv7+n2gQAAAAaHYvF4tY6AHWL7VwAAGgkjh8/bq4ql6SCggLt2LFDoaGhCg0NVVpamkaNGiW73a6vv/5aDz30kDp16qTk5GRJUvfu3TV48GBNmDBBzz//vCoqKjRlyhSNGTNGERERnrosAAAAoNGpqKhwax2AusVKdAAAGomtW7eqT58+6tOnjyRp+vTp6tOnj2bPni2r1ar8/Hz99re/VZcuXTR+/Hj169dP//rXvxQQEGCeIzs7W926ddOgQYM0dOhQDRgwQIsWLfLUJQEAAACNkmEYbq0DULdYiQ4AQCMxcODAX/wme+3atRc8R2hoqJYtW+bOtgAAAACcIzAwUKdOnbqoOgCex0p0AAAAAAAAoB61adPGrXUA6hYhOgAAAAAAAFCPjh075tY6AHWL7VwAAAAAAABQo1OnTqmwsNDTbTQ6tdkT/auvvqrjbpqWqKgotslBrRGiAwAAAAAAoEaFhYWaOHGip9tossrKyvj6u9miRYvUpUsXT7cBL0OIDgAAAAAAgBpFRUVp0aJFnm6j0dm1a5cWLFhwwbr77rtPPXv2rIeOmo6oqChPtwAvRIgOAAAAAACAGgUGBrJqtw507NhRL7zwgsrLy13WBAQEaMSIEbJarfXYGYCacGNRAAAAAAAAoB5ZrVY9+uijv1jz6KOPEqADDQQhOgAAAAAAAFDPEhMTNXfuXIWFhTmN2+12zZ07V4mJiR7qDMC52M4FAAAAAAAA8IDExEQlJCRo9erV+utf/6o//OEPGjp0KCvQgQaGlegAAAAAAACAh1itVnXt2lWS1LVrVwJ0oAEiRAcAAAAAAAAAwAVCdAAAAAAAAAAAXCBEBwAAAAAAAADABUJ0AAAAAAAAAABcIEQHAAAAAAAAAMAFQnQAAAAAAAAAAFwgRAcAAAAAAAAAwAVCdAAAAAAAAAAAXCBEBwAAAAAAAADABUJ0AAAAAAAAAABcIEQHAAAAAAAAAMAFQnQAAAAAAAAAAFwgRAcAAAAAAAAAwAVCdAAAAAAAAAAAXCBEBwAAAAAAAADABUJ0AAAAAAAAAABcIEQHAAAAAMDL/PnPf5bFYtG0adPMsVOnTik1NVWtW7dWixYtNGrUKBUVFXmuSQAAGglCdAAAAAAAvMiWLVv0wgsvKC4uzmn8gQce0DvvvKM33nhDGzdu1KFDh3Trrbd6qEsAABoPQnQAAAAAALzE8ePHlZKSohdffFGtWrUyx0tLS/XSSy/pmWee0Y033qh+/fpp8eLF+vTTT7Vp0yYPdgwAgPcjRAcAAAAAwEukpqZq2LBhSkpKchrftm2bKioqnMa7deumqKgo5eXl1Xiu8vJylZWVOT0AAMD5fD3dAAAAAAAAuLDly5fr888/15YtW8475nA45O/vr5CQEKfxsLAwORyOGs+XkZGhtLS0umgVAIBGhZXoAAAAAAA0cAcPHtT999+v7OxsBQYGuuWcM2bMUGlpqfk4ePCgW84LAEBjQ4gOAAAAAEADt23bNh05ckR9+/aVr6+vfH19tXHjRi1YsEC+vr4KCwvT6dOnVVJS4vS+oqIi2e32Gs8ZEBCg4OBgpwcAADgf27kAAAAAANDADRo0SDt37nQau/fee9WtWzc9/PDDioyMlJ+fn3JycjRq1ChJ0t69e1VYWKj4+HhPtAwAQKNBiA4AAAAAQAPXsmVL9ezZ02msefPmat26tTk+fvx4TZ8+XaGhoQoODtbUqVMVHx+va6+91hMtAwDQaBCiAwAAAADQCDz77LPy8fHRqFGjVF5eruTkZGVlZXm6LQAAvB4hOgAAAAAAXmjDhg1OrwMDA5WZmanMzEzPNAQAQCPFjUUBAAAAAAAAAHCBEB0AAAAAAAAAABcI0QEAAAAAAAAAcIEQHQAAAAAAAAAAFwjRAQAAAAAAAABwgRAdAAAAAAAAAAAXfD3dQGPic6rU0y0AQJPH38UAAAAAAMCdCNHdwGazyc8/QPpmo6dbAQBI8vMPkM1m83QbAAAAAACgESBEd4OwsDC9+spSlZay+hHe7cCBA5o3b54effRRRUdHe7od4JLZbDaFhYV5ug0AAAAAANAIEKK7SVhYGIENGo3o6Gh16dLF020AAAAAAAAAHseNRQEAAAAAAAAAcIEQHQAAAAAAAAAAFwjRAQAAAAAAAABwgRAdAAAAAAAAAAAXCNEBAAAAAAAAAHCBEB0AAAAAAAAAABcI0QEAAAAAAAAAcIEQHQAAAAAAAAAAF3w93QAAAICnFRUVqbS01NNtAJflwIEDTv8FvJXNZlNYWJin2wAAADARogMAgCatqKhId909VhWnyz3dCuAW8+bN83QLwGXx8w/Qq68sJUgHAAANBiE6AABo0kpLS1Vxulw/dbhBVYE2T7cDAE2az6lS6ZuNKi0tJUQHAAANBiE6AACApKpAm6qat/F0GwAAAACABoYbiwIAAAAAAAAA4AIhOgAAAAAAAAAALrCdCwAAAAAA8FpFRUUqLS31dBvAZTlw4IDTfwFvZbPZGuV9TQjRAQAAAACAVyoqKtJdd49VxelyT7cCuMW8efM83QJwWfz8A/TqK0sbXZBeqxA9IyNDb731lv79738rKChI1113nZ588kl17drVrDl16pT+8Ic/aPny5SovL1dycrKysrIa3RcOAAAAAAB4VmlpqSpOl+unDjeoKtDm6XYAoEnzOVUqfbNRpaWljS4LrlWIvnHjRqWmpurqq6/WmTNn9Kc//Uk33XST9uzZo+bNm0uSHnjgAb333nt64403ZLPZNGXKFN1666365JNP6uQCAAAAAABA01YVaFNV8zaebgMA0EjVKkRfs2aN0+uXX35Z7dq107Zt25SYmKjS0lK99NJLWrZsmW688UZJ0uLFi9W9e3dt2rRJ1157rfs6BwAAAAAAAACgjvlczpurb9wRGhoqSdq2bZsqKiqUlJRk1nTr1k1RUVHKy8ur8Rzl5eUqKytzegAAAAAAAAAA0BBccoheVVWladOmKSEhQT179pQkORwO+fv7KyQkxKk2LCxMDoejxvNkZGTIZrOZj8jIyEttCQAAAAAAAAAAt7rkED01NVW7du3S8uXLL6uBGTNmqLS01HwcPHjwss4HAAAAAAAAAIC71GpP9GpTpkzRu+++q9zcXF155ZXmuN1u1+nTp1VSUuK0Gr2oqEh2u73GcwUEBCggIOBS2gAAAAAAAAAAoE7VaiW6YRiaMmWKVqxYofXr1ysmJsbpeL9+/eTn56ecnBxzbO/evSosLFR8fLx7OgYAAAAAAAAAoJ7UaiV6amqqli1bprffflstW7Y09zm32WwKCgqSzWbT+PHjNX36dIWGhio4OFhTp05VfHy8rr322jq5AAAAAAAAAAAA6kqtQvSFCxdKkgYOHOg0vnjxYt1zzz2SpGeffVY+Pj4aNWqUysvLlZycrKysLLc0CwAAAAAAAABAfapViG4YxgVrAgMDlZmZqczMzEtuCgAAAAAAAACAhqBWe6IDAAAAAAAAANCUEKIDAAAAAAAAAOACIToAAI1Ebm6ubr75ZkVERMhisWjlypVOxw3D0OzZsxUeHq6goCAlJSVp3759TjXFxcVKSUlRcHCwQkJCNH78eB0/frwerwIAAAAAgIaFEB0AgEbixIkT+tWvfuXyviRPPfWUFixYoOeff16bN29W8+bNlZycrFOnTpk1KSkp2r17tz788EO9++67ys3N1cSJE+vrEgAAAAAAaHBqdWNRAADQcA0ZMkRDhgyp8ZhhGJo/f75mzpypESNGSJKWLl2qsLAwrVy5UmPGjNGXX36pNWvWaMuWLbrqqqskSc8995yGDh2qp59+WhEREfV2LQAAAAAANBSsRAcAoAkoKCiQw+FQUlKSOWaz2dS/f3/l5eVJkvLy8hQSEmIG6JKUlJQkHx8fbd68ud57BgAAAACgIWAlOgAATYDD4ZAkhYWFOY2HhYWZxxwOh9q1a+d03NfXV6GhoWbNucrLy1VeXm6+Lisrc2fbAAAAAAB4HCE6AAC4ZBkZGUpLS/N0GwAAoInz+anE0y0AQJPXmP8uJkQHAKAJsNvtkqSioiKFh4eb40VFRerdu7dZc+TIEaf3nTlzRsXFxeb7zzVjxgxNnz7dfF1WVqbIyEg3dw8AAPDLggpyPd0CAKARI0QHAKAJiImJkd1uV05Ojhmal5WVafPmzZo0aZIkKT4+XiUlJdq2bZv69esnSVq/fr2qqqrUv3//Gs8bEBCggICAerkGAAAAV36KSVRVUIin2wCAJs3np5JG+0NNQnQAABqJ48ePa//+/ebrgoIC7dixQ6GhoYqKitK0adOUnp6uzp07KyYmRrNmzVJERIRGjhwpSerevbsGDx6sCRMm6Pnnn1dFRYWmTJmiMWPGKCIiwkNXBQAAcGFVQSGqat7G020AABopQnQAABqJrVu36te//rX5unqblXHjxunll1/WQw89pBMnTmjixIkqKSnRgAEDtGbNGgUGBprvyc7O1pQpUzRo0CD5+Pho1KhRWrBgQb1fCwAAAAAADQUhOgAAjcTAgQNlGIbL4xaLRXPnztXcuXNd1oSGhmrZsmV10R4AAAAAAF7Jx9MNAAAAAAAAAADQUBGiAwAAAAAAAADgAiE6AAAAAAAAAAAuEKIDAAAAAAAAAOACIToAAAAAAAAAAC4QogMAAAAAAAAA4AIhOgAAAAAAAAAALvh6ugEAAICGwOenEk+3AABNHn8XAwCAhogQHQAAQFJQQa6nWwAAAAAANECE6AAAAJJ+iklUVVCIp9sAgCbN56cSfqgJAAAaHEJ0AAAASVVBIapq3sbTbQAAAAAAGhhuLAoAAAAAAAAAgAuE6AAAAAAAAAAAuMB2LgAAAAAAwKv5nCr1dAsA0OQ15r+LCdEBAAAAAIBXstls8vMPkL7Z6OlWAACS/PwDZLPZPN2G2xGiAwAAAAAArxQWFqZXX1mq0tLGu/oRTcOBAwc0b948Pfroo4qOjvZ0O8Als9lsCgsL83QbbkeIDgAAAAAAvFZYWFijDGzQNEVHR6tLly6ebgPAObixKAAAAAAAAAAALhCiAwAAAAAAAADgAiE6AAAAAAAAAAAuEKIDAAAAAAAAAOACIToAAAAAAAAAAC4QogMAAAAAAAAA4AIhOgAAAAAAAAAALhCiAwAAAAAAAADgAiE6AAAAAAAAAAAuEKIDAAAAANDAZWRk6Oqrr1bLli3Vrl07jRw5Unv37nWqOXXqlFJTU9W6dWu1aNFCo0aNUlFRkYc6BgCg8SBEBwAAAACggdu4caNSU1O1adMmffjhh6qoqNBNN92kEydOmDUPPPCA3nnnHb3xxhvauHGjDh06pFtvvdWDXQMA0Dj4eroBAAAAAADwy9asWeP0+uWXX1a7du20bds2JSYmqrS0VC+99JKWLVumG2+8UZK0ePFide/eXZs2bdK1117ribYBAGgUWIkOAAAAAICXKS0tlSSFhoZKkrZt26aKigolJSWZNd26dVNUVJTy8vJqPEd5ebnKysqcHgAA4HyE6AAAAAAAeJGqqipNmzZNCQkJ6tmzpyTJ4XDI399fISEhTrVhYWFyOBw1nicjI0M2m818REZG1nXrAAB4JUJ0AAAAAAC8SGpqqnbt2qXly5df1nlmzJih0tJS83Hw4EE3dQgAQOPCnugAAAAAAHiJKVOm6N1331Vubq6uvPJKc9xut+v06dMqKSlxWo1eVFQku91e47kCAgIUEBBQ1y0DAOD1CNEBAAAk+Zwq9XQLANDk8Xexa4ZhaOrUqVqxYoU2bNigmJgYp+P9+vWTn5+fcnJyNGrUKEnS3r17VVhYqPj4eE+0DABAo0GIDgAAmjSbzSY//wDpm42ebgUAIMnPP0A2m83TbTQ4qampWrZsmd5++221bNnS3OfcZrMpKChINptN48eP1/Tp0xUaGqrg4GBNnTpV8fHxuvbaaz3cPQAA3o0QHQAANGlhYWF69ZWlKi1l9SO824EDBzRv3jw9+uijio6O9nQ7wCWz2WwKCwvzdBsNzsKFCyVJAwcOdBpfvHix7rnnHknSs88+Kx8fH40aNUrl5eVKTk5WVlZWPXcKAEDjQ4gOAACavLCwMAIbNBrR0dHq0qWLp9sA4GaGYVywJjAwUJmZmcrMzKyHjgAAaDp8PN0AAAAAAAAAAAANFSE6AAAAAAAAAAAuEKIDAAAAAAAAAOACIToAAAAAAAAAAC4QogMAAAAAAAAA4AIhOgAAAAAAAAAALhCiAwAAAAAAAADgAiE6AAAAAAAAAAAuEKIDAAAAAAAAAOACIToAAAAAAAAAAC4QogMAAAAAAAAA4AIhOgAAAAAAAAAALhCiAwAAAAAAAADgAiE6AAAAAAAAAAAuEKIDAAAAAAAAAOACIToAAAAAAAAAAC4QogMAAAAAAAAA4AIhOgAAAAAAAAAALhCiAwAAAAAAAADgAiE6AAAAAAAAAAAuEKIDAAAAAAAAAOACIToAAAAAAAAAAC4QogMAAAAAAAAA4AIhOgAAAAAAAAAALhCiAwAAAAAAAADgAiE6AAAAAAAAAAAuEKIDAAAAAAAAAOACIToAAAAAAAAAAC4QogMAAAAAAAAA4AIhOgAAAAAAAAAALvh6ugEAAAAAAAA0TKdOnVJhYaGn22j0Dhw44PRf1J2oqCgFBgZ6ug14mToL0TMzM/WXv/xFDodDv/rVr/Tcc8/pmmuuqauPAwAAAAAAgJsVFhZq4sSJnm6jyZg3b56nW2j0Fi1apC5duni6DXiZOgnRX3vtNU2fPl3PP/+8+vfvr/nz5ys5OVl79+5Vu3bt6uIjAQAAAAAA4GZRUVFatGiRp9totD7//HO98cYb+vHHH82x1q1b67bbblPfvn092FnjFRUV5ekW4IXqJER/5plnNGHCBN17772SpOeff17vvfee/vd//1ePPPJIXXwkAAAAAAAA3CwwMJBVu3UkNzdXL7zwguLj45WSkqKYmBgVFBQoOztbL7zwgtLS0pSYmOjpNgGoDm4sevr0aW3btk1JSUn/9yE+PkpKSlJeXp67Pw4AAAAAAADwKpWVlcrKylJ8fLzS09MVGxurZs2aKTY2Vunp6YqPj9fChQtVWVnp6VYBqA5Wov/www+qrKxUWFiY03hYWJj+/e9/n1dfXl6u8vJy83VZWZm7W0IjwI1M6gc3Mqk/3MgEQFPCPF4/mMfrD/M4AOBy5efny+FwaNasWfLxcV7j6uPjo5SUFKWmpio/P199+vTxUJcAqtXZjUUvVkZGhtLS0jzdBho4bmRSv7iRSd3jRiYAmhLm8frFPF73mMcBAJeruLhYkhQTE1Pj8erx6joAnuX2EL1NmzayWq0qKipyGi8qKpLdbj+vfsaMGZo+fbr5uqysTJGRke5uC16OG5mgseFGJgCaEuZxNDbM4wCAyxUaGipJKigoUGxs7HnHCwoKnOoAeJbbQ3R/f3/169dPOTk5GjlypCSpqqpKOTk5mjJlynn1AQEBCggIcHcbaGS4kQkAAN6LeRwAAMBZXFyc7Ha7srOzlZ6e7rSlS1VVlbKzsxUeHq64uDgPdgmgmttvLCpJ06dP14svvqglS5boyy+/1KRJk3TixAnde++9dfFxAAAAAAAAgNewWq2aPHmy8vLyNHPmTO3evVsnT57U7t27NXPmTOXl5WnSpEmyWq2ebhWA6ihEv/322/X0009r9uzZ6t27t3bs2KE1a9acd7NRAABQfx577DFZLBanR7du3czjp06dUmpqqlq3bq0WLVpo1KhR523PBgAAAMA9EhMTlZaWpm+++UapqakaOnSoUlNTVVBQoLS0NCUmJnq6RQD/T53dWHTKlCk1bt8CAAA8JzY2VuvWrTNf+/r+37cCDzzwgN577z298cYbstlsmjJlim699VZ98sknnmgVAAAAaPQSExOVkJCg/Px8FRcXKzQ0VHFxcaxABxqYOgvRAQBAw+Pr61vjjb5LS0v10ksvadmyZbrxxhslSYsXL1b37t21adMmXXvttfXdKgAAANAkWK1W9enTx9NtAPgFdbKdCwAAaJj27duniIgIdejQQSkpKSosLJQkbdu2TRUVFUpKSjJru3XrpqioKOXl5XmqXQAAAAAAPI6V6AAANBH9+/fXyy+/rK5du+rw4cNKS0vT9ddfr127dsnhcMjf318hISFO7wkLC5PD4XB5zvLycpWXl5uvy8rK6qp9AAAAAAA8ghAdAIAmYsiQIebzuLg49e/fX9HR0Xr99dcVFBR0SefMyMhQWlqau1oEAAAAAKDBYTsXAACaqJCQEHXp0kX79++X3W7X6dOnVVJS4lRTVFRU4x7q1WbMmKHS0lLzcfDgwTruGgAAAACA+kWIDgBAE3X8+HF9/fXXCg8PV79+/eTn56ecnBzz+N69e1VYWKj4+HiX5wgICFBwcLDTAwAAAACAxoTtXAAAaCIefPBB3XzzzYqOjtahQ4c0Z84cWa1W3XHHHbLZbBo/frymT5+u0NBQBQcHa+rUqYqPj9e1117r6dYBAAAAAPAYQnQAAJqI//znP7rjjjv0448/qm3bthowYIA2bdqktm3bSpKeffZZ+fj4aNSoUSovL1dycrKysrI83DUAAAAAAJ5FiA4AQBOxfPnyXzweGBiozMxMZWZm1lNHAAAAAAA0fOyJDgAAAAAAAACAC4ToAAAAAAAAAAC4QIgOAAAAAAAAAIALDW5PdMMwJEllZWUe7gQAgPpRPedVz4HejHkcANDUMI8DAOC9LnYeb3Ah+rFjxyRJkZGRHu4EAID6dezYMdlsNk+3cVmYxwEATRXzOAAA3utC87jFaGA/Lq+qqtKhQ4fUsmVLWSwWT7cDNCllZWWKjIzUwYMHFRwc7Ol2gCbDMAwdO3ZMERER8vHx7p3WmMcBz2EeBzyDeRyAOzCPA55xsfN4gwvRAXhOWVmZbDabSktLmbQBAPAyzOMAAHgv5nGgYfPuH5MDAAAAAAAAAFCHCNEBAAAAAAAAAHCBEB2AKSAgQHPmzFFAQICnWwEAALXEPA4AgPdiHgcaNvZEBwAAAAAAAADABVaiAwAAAAAAAADgAiE6AAAAAAAAAAAuEKIDAAAAAAAAAOACIToAAAAAAAAAAC4QogMAAAAAAAAA4AIhOgAAAAAAAAAALhCiAwAAAAAAAADgAiE6AAAAAAAAAAAuEKIDAAAAHvDtt9/KYrFox44dnm7FLQYOHKhp06bV62fec889GjlyZL1+JgAAF6su5saXX35ZISEhbj0ngAsjRAcAAAAAAAC8wO23366vvvrK020ATY6vpxsAAAAAAAAAcGFBQUEKCgrydBtAk8NKdKAJWLNmjQYMGKCQkBC1bt1aw4cP19dff20e//TTT9W7d28FBgbqqquu0sqVK8/79fJdu3ZpyJAhatGihcLCwnT33Xfrhx9+8MDVAABwcX5p/rvuuuv08MMPO9V///338vPzU25uriTp8OHDGjZsmIKCghQTE6Nly5apffv2mj9//kV9/r///W8NGDBAgYGB6tGjh9atWyeLxaKVK1fWWF/Tr2dXz8lne+edd3T11VcrMDBQbdq00S233GIeO3r0qMaOHatWrVqpWbNmGjJkiPbt22ceP3DggG6++Wa1atVKzZs3V2xsrFavXm0ed+d8X15ergcffFBXXHGFmjdvrv79+2vDhg2SpLKyMgUFBen99993es+KFSvUsmVLnTx5UpJ08OBBjR49WiEhIQoNDdWIESP07bffXlI/AAB4wpkzZzRlyhTZbDa1adNGs2bNkmEYkqT27dsrPT1dY8eOVYsWLRQdHa1Vq1bp+++/14gRI9SiRQvFxcVp69at5vnYzgXwDEJ0oAk4ceKEpk+frq1btyonJ0c+Pj665ZZbVFVVpbKyMt18883q1auXPv/8cz3++OPnhQolJSW68cYb1adPH23dulVr1qxRUVGRRo8e7aErAgDgwn5p/ktJSdHy5cvNf8RK0muvvaaIiAhdf/31kqSxY8fq0KFD2rBhg958800tWrRIR44cuajPrqys1MiRI9WsWTNt3rxZixYt0qOPPnrZ1/Tee+/plltu0dChQ7V9+3bl5OTommuuMY/fc8892rp1q1atWqW8vDwZhqGhQ4eqoqJCkpSamqry8nLl5uZq586devLJJ9WiRQtJ7p/vp0yZory8PC1fvlz5+fm67bbbNHjwYO3bt0/BwcEaPny4li1b5vSe7Oxs8+tWUVGh5ORktWzZUv/617/0ySefqEWLFho8eLBOnz59iV9BAADq15IlS+Tr66vPPvtM/9//9//pmWee0d///nfz+LPPPquEhARt375dw4YN0913362xY8fqrrvu0ueff66OHTtq7NixTt+zAPAAA0CT8/333xuSjJ07dxoLFy40Wrdubfz000/m8RdffNGQZGzfvt0wDMN4/PHHjZtuusnpHAcPHjQkGXv37q3P1gEAuGRnz39HjhwxfH19jdzcXPN4fHy88fDDDxuGYRhffvmlIcnYsmWLeXzfvn2GJOPZZ5+94Ge9//77hq+vr3H48GFz7MMPPzQkGStWrDAMwzAKCgqc5tvFixcbNpvN6TwrVqwwzv6WPT4+3khJSanxM7/66itDkvHJJ5+YYz/88IMRFBRkvP7664ZhGEavXr2Mxx57rMb3X+58f8MNNxj333+/YRiGceDAAcNqtRrfffedU82gQYOMGTNmmNfWokUL48SJE4ZhGEZpaakRGBhovP/++4ZhGMYrr7xidO3a1aiqqjLfX15ebgQFBRlr1641DMMwxo0bZ4wYMeKCvQEA4Ak33HCD0b17d6e57OGHHza6d+9uGIZhREdHG3fddZd57PDhw4YkY9asWeZYXl6eIcn8nqKm7xcA1D1WogNNwL59+3THHXeoQ4cOCg4OVvv27SVJhYWF2rt3r+Li4hQYGGjWn72iTZK++OILffTRR2rRooX56NatmyQ5bQsDAEBD8kvzX9u2bXXTTTcpOztbklRQUKC8vDylpKRIkvbu3StfX1/17dvXPF+nTp3UqlWri/rsvXv3KjIyUna73Rw7d369FDt27NCgQYNqPPbll1/K19dX/fv3N8dat26trl276ssvv5Qk3XfffUpPT1dCQoLmzJmj/Px8s9ad8/3OnTtVWVmpLl26OJ1v48aN5rmGDh0qPz8/rVq1SpL05ptvKjg4WElJSWY/+/fvV8uWLc33h4aG6tSpU3z/AQDwGtdee63T1mzx8fHat2+fKisrJUlxcXHmsbCwMElSr169zhu72N+GA1A3uLEo0ATcfPPNio6O1osvvqiIiAhVVVWpZ8+eF/2r0MePH9fNN9+sJ5988rxj4eHh7m4XAAC3uND8l5KSovvuu0/PPfecli1bpl69ejn9o7W++fj4nPer2tXbsFS73BuJ/dd//ZeSk5P13nvv6YMPPlBGRob++te/aurUqW6d748fPy6r1apt27bJarU6HavePsbf31+/+93vtGzZMo0ZM0bLli3T7bffLl9fX/Mc/fr1M3/Qcba2bdvWqh8AABoqPz8/83l12F7TWFVVVf02BsAJK9GBRu7HH3/U3r17NXPmTA0aNEjdu3fX0aNHzeNdu3bVzp07VV5ebo5t2bLF6Rx9+/bV7t271b59e3Xq1Mnp0bx583q7FgAALtaF5j9JGjFihE6dOqU1a9Zo2bJl5ip06ef58cyZM9q+fbs5tn///vPO4UrXrl118OBBFRUVmWPnzq/natu2rY4dO6YTJ06YY2ff5Fv6ebVaTk5Oje/v3r27zpw5o82bN5tj1V+HHj16mGORkZH6n//5H7311lv6wx/+oBdffFGSe+f7Pn36qLKyUkeOHDnvXGevzk9JSdGaNWu0e/durV+/3unPoG/fvtq3b5/atWt33jlsNlut+gEAwFPOnpcladOmTercufN5P2QG0LARogONXKtWrdS6dWstWrRI+/fv1/r16zV9+nTz+J133qmqqipNnDhRX375pdauXaunn35a0v/9xDs1NVXFxcW64447tGXLFn399ddau3at7r33XvNX0AAAaEguNP9JUvPmzTVy5EjNmjVLX375pe644w7zWLdu3ZSUlKSJEyfqs88+0/bt2zVx4kQFBQU5/Uq2K7/5zW/UsWNHjRs3Tvn5+frkk080c+ZMSXL5/v79+6tZs2b605/+pK+//lrLli3Tyy+/7FQzZ84c/eMf/9CcOXP05ZdfmjcHlaTOnTtrxIgRmjBhgj7++GN98cUXuuuuu3TFFVdoxIgRkqRp06Zp7dq1Kigo0Oeff66PPvpI3bt3l+Te+b5Lly5KSUnR2LFj9dZbb6mgoECfffaZMjIy9N5775l1iYmJstvtSklJUUxMjNNWNCkpKWrTpo1GjBihf/3rXyooKNCGDRt033336T//+U+t+gEAwFMKCws1ffp07d27V//4xz/03HPP6f777/d0WwBqiRAdaOR8fHy0fPlybdu2TT179tQDDzygv/zlL+bx4OBgvfPOO9qxY4d69+6tRx99VLNnz5Ykc5/0iIgIffLJJ6qsrNRNN92kXr16adq0aQoJCZGPD3+NAAAangvNf9VSUlL0xRdf6Prrr1dUVJTTsaVLlyosLEyJiYm65ZZbNGHCBLVs2dLpPiKuWK1WrVy5UsePH9fVV1+t//qv/9Kjjz4qSS7fHxoaqldffVWrV69Wr1699I9//EOPPfaYU83AgQP1xhtvaNWqVerdu7duvPFGffbZZ+bxxYsXq1+/fho+fLji4+NlGIZWr15t/lp4ZWWlUlNT1b17dw0ePFhdunRRVlaWJPfP94sXL9bYsWP1hz/8QV27dtXIkSO1ZcsWp6+zxWLRHXfcoS+++MJpFbokNWvWTLm5uYqKitKtt96q7t27a/z48Tp16pSCg4Nr3Q8AAJ4wduxY/fTTT7rmmmuUmpqq+++/XxMnTvR0WwBqyWKcu/EigCYvOztb9957r0pLSy9771UAABqL//znP4qMjNS6detc3tzzl3zyyScaMGCA9u/fr44dO9ZBhwAAAADqAjcWBaClS5eqQ4cOuuKKK/TFF1/o4Ycf1ujRownQAQBN2vr163X8+HH16tVLhw8f1kMPPaT27dsrMTHxot6/YsUKtWjRQp07d9b+/ft1//33KyEhgQAdAAAA8DKE6ADkcDg0e/ZsORwOhYeH67bbbtO8efM83RYAAB5VUVGhP/3pT/rmm2/UsmVLXXfddcrOzpafn5+ys7P13//93zW+Lzo6Wrt379axY8f08MMPq7CwUG3atFFSUpL++te/1vNVuEdhYaHTzUnPtWfPnvO2wwEAAAAaC7ZzAQAAAGrp2LFjKioqqvGYn5+foqOj67mjunXmzBl9++23Lo+3b99evr6szwEAAEDjRIgOAAAAAAAAAIALPp5uAAAAAAAAAACAhooQHQAAAAAAAAAAFwjRAQAAAAAAAABwgRAdAAAAAAAAAAAXCNEBAAAAAAAAAHCBEB0AAAAAAAAAABcI0QEAAAAAAAAAcIEQHQAAAAAAAAAAF/5/07FPQBKRGFwAAAAASUVORK5CYII=", "text/plain": [ "Видим выбросы в столбцах со средним уровнем глюкозы и в столбце bmi (индекс массы тела). устраним выбросы - поставим верхние и нижние границы
" ] }, { "cell_type": "code", "execution_count": 334, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAHqCAYAAADrpwd3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABcoElEQVR4nO3dfZiVVb0//vcgMIPADIIxAwmI+AAGPhuSZqQk4kOgnJSiNPPIqfCRThpH0SSJ9Fh5NMQ0j2lBmqUezcQUBcpQEUVNjdBQSAVKZUZQRmT2749+7m8j7BIFBobX67ruS/Za6177cw9erJn33HvdZYVCoRAAAAAAAGAtLZq6AAAAAAAA2FwJ0QEAAAAAoAQhOgAAAAAAlCBEBwAAAACAEoToAAAAAABQghAdAAAAAABKEKIDAAAAAEAJQnQAAAAAAChBiA4AAAAAACUI0QEAYBMoKyvLN7/5zaYuY5OaMWNGysrKMmPGjKYuZbOqBYDm65vf/GbKysryt7/9baO+zxe/+MXsuOOOG/U9gP9HiA4AAAAAACW0bOoCAAAAAID37pprrklDQ0NTlwFbDSE6AAAAAGxBWrVq1dQlwFbFdi7QDL3wwgv56le/mt122y1t2rRJp06d8pnPfCbPP//8WmOfeOKJfOITn0ibNm2yww475KKLLsp1112XsrKytcbfdddd+fjHP562bdumffv2OfLII/PUU09tmosCYKv1Xta1Rx55JGVlZbn++uvXOv/uu+9OWVlZfvWrXxXbZsyYkf322y8VFRXp1atXfvjDHxb3MF1fN998c3bfffdUVFSkb9++ufXWW9/TPqWlxpSq46c//Wk++tGPZtttt812222Xgw8+OL/5zW8ajbnyyivzkY98JOXl5enatWtGjx6d5cuXNxqzYMGCDB8+PDU1NamoqMgOO+yQESNGpLa2dq3323fffdOmTZt07NgxI0aMyOLFi9/T1+Rfeeihh3L44Yenqqoq2267bT7xiU/kgQceKPb/4he/SFlZWWbOnLnWuT/84Q9TVlaWP/zhD8W2P/7xj/m3f/u3dOzYMRUVFdlvv/1y++23b5BaAeD9+Nvf/pbjjjsulZWV6dSpU84444ysWrWq2F9WVpZTTz21+H1EmzZtMmDAgDz55JNJ/r7e7bzzzqmoqMjAgQPX+vncnuiwabkTHZqhOXPm5Pe//31GjBiRHXbYIc8//3wmT56cgQMH5umnn862226bJHnxxRfzyU9+MmVlZRk7dmzatm2bH/3oRykvL19rzp/85Cc58cQTM3jw4Fx88cV54403Mnny5Bx00EF57LHHLN4AbDTvZV3bb7/9stNOO+XnP/95TjzxxEbn33TTTdluu+0yePDgJMljjz2Www8/PF26dMmFF16YNWvWZPz48fnQhz603rXdeeedOf7449OvX79MnDgxr732Wk4++eR8+MMf3iDX/o4LL7ww3/zmN/Oxj30s48ePT+vWrfPQQw/lvvvuy2GHHZbk7+H7hRdemEGDBuUrX/lK5s+fn8mTJ2fOnDl54IEH0qpVq7z11lsZPHhw6uvrc9ppp6WmpiYvvvhifvWrX2X58uWpqqpKkkyYMCHjxo3Lcccdl3//93/PX//611xxxRU5+OCD89hjj6VDhw7v+1ruu+++DBkyJPvuu28uuOCCtGjRItddd10OOeSQ/Pa3v81HP/rRHHnkkWnXrl1+/vOf5xOf+ESj82+66aZ85CMfSd++fZMkTz31VA488MB8+MMfzje+8Y20bds2P//5zzNs2LD88pe/zDHHHPO+awWA9+u4447LjjvumIkTJ+bBBx/M5Zdfntdeey033HBDccxvf/vb3H777Rk9enSSZOLEiTnqqKNy9tln58orr8xXv/rVvPbaa7nkkkvypS99Kffdd19TXQ5QAJqdN954Y6222bNnF5IUbrjhhmLbaaedVigrKys89thjxbZXXnml0LFjx0KSwsKFCwuFQqHw+uuvFzp06FA45ZRTGs25ZMmSQlVV1VrtALAhvdd1bezYsYVWrVoVXn311WJbfX19oUOHDoUvfelLxbajjz66sO222xZefPHFYtuCBQsKLVu2LKzvt8f9+vUr7LDDDoXXX3+92DZjxoxCkkKPHj0ajU1SuOCCC4qvTzzxxLXGFAqFwgUXXNCojgULFhRatGhROOaYYwpr1qxpNLahoaFQKBQKy5YtK7Ru3bpw2GGHNRrzgx/8oJCk8L//+7+FQqFQeOyxxwpJCjfffHPJa3r++ecL22yzTWHChAmN2p988slCy5Yt12r/Z+6///5CksL9999frHeXXXYpDB48uFh7ofD3v+OePXsWPvWpTxXbPvvZzxY6d+5cePvtt4ttL7/8cqFFixaF8ePHF9sOPfTQQr9+/QqrVq1q9HX52Mc+Vthll11K1gIAG8M76/inP/3pRu1f/epXC0kKjz/+eKFQ+Pv3BeXl5cWfuwuFQuGHP/xhIUmhpqamUFdXV2wfO3Zso5/RC4XS30cAG4ftXKAZatOmTfHPq1evziuvvJKdd945HTp0yKOPPlrsmzZtWgYMGJC99tqr2NaxY8eMHDmy0Xz33HNPli9fns9+9rP529/+Vjy22Wab9O/fP/fff/9GvyYAtl7vdV07/vjjs3r16txyyy3Ftt/85jdZvnx5jj/++CTJmjVrcu+992bYsGHp2rVrcdzOO++cIUOGrFddL730Up588smccMIJadeuXbH9E5/4RPr167fe11nKbbfdloaGhpx//vlp0aLxt+/vbPty77335q233sqZZ57ZaMwpp5ySysrK3HnnnUlSvNP87rvvzhtvvLHO97vlllvS0NCQ4447rtG6X1NTk1122eUDrfvz5s3LggUL8rnPfS6vvPJKce6VK1fm0EMPzaxZs4oPSTv++OOzbNmyzJgxo3j+L37xizQ0NBT/Pl999dXcd999Oe644/L6668X53vllVcyePDgLFiwIC+++OL7rhcA3q937i5/x2mnnZYk+fWvf11sO/TQQxt9qrt///5JkuHDh6d9+/Zrtf/5z3/eWOUC/4LtXKAZevPNNzNx4sRcd911efHFF1MoFIp9/7jf6QsvvJABAwasdf7OO+/c6PWCBQuSJIcccsg636+ysnJDlA0A6/Re17U999wzvXv3zk033ZSTTz45yd+3/th+++2La9iyZcvy5ptvrrXWJWuvf//KCy+8UPK8nXfeuVHA/0E899xzadGiRXbfffd/Wctuu+3WqL1169bZaaediv09e/bMmDFj8r3vfS9TpkzJxz/+8Xz605/O5z//+WLAvmDBghQKheyyyy7rfK8P8iCzd76nePeWO/+otrY22223XXHP9JtuuimHHnpokr//fe61117ZddddkyTPPvtsCoVCxo0bl3Hjxq1zvmXLlm3w7XUA4F959zraq1evtGjRotHe5t27d2805p21uFu3butsf+211zZCpcB7IUSHZui0007LddddlzPPPDMDBgxIVVVVysrKMmLEiOLdXevjnXN+8pOfpKamZq3+li39UwLAxrM+69rxxx+fCRMm5G9/+1vat2+f22+/PZ/97Gc3y7Wq1ENM16xZs1Hf97vf/W6++MUv5v/+7//ym9/8Jqeffnpxv9YddtghDQ0NKSsry1133ZVtttlmrfP/8a779fXO39d///d/N/ok3LrmLy8vz7Bhw3LrrbfmyiuvzNKlS/PAAw/k29/+9lrz/ed//mdxz/t3W99fjgDAxrCudX9d6+w/a//HGwmATWvz+2kC+MB+8Ytf5MQTT8x3v/vdYtuqVauyfPnyRuN69OiRZ599dq3z393Wq1evJEnnzp0zaNCgDV8wAPwT73VdS/4eol944YX55S9/merq6tTV1WXEiBHF/s6dO6eiouI9rX//So8ePUqe917m2m677dZ5De/cNf6OXr16paGhIU8//XTJ4PmdWubPn5+ddtqp2P7WW29l4cKFa63f/fr1S79+/XLeeefl97//fQ488MBcddVVueiii9KrV68UCoX07NmzeMf3hvLO9xSVlZXv6XuK448/Ptdff32mT5+eZ555JoVCobiVS5LitbZq1cr3KABsVhYsWJCePXsWXz/77LNpaGhotH0LsOWwJzo0Q9tss81av6G+4oor1rqzbfDgwZk9e3bmzZtXbHv11VczZcqUtcZVVlbm29/+dlavXr3W+/31r3/dcMUDwLu813UtSfr06ZN+/frlpptuyk033ZQuXbrk4IMPbjTXoEGDctttt+Wll14qtj/77LO566671quurl27pm/fvrnhhhuyYsWKYvvMmTPz5JNP/svze/Xqldra2jzxxBPFtpdffjm33npro3HDhg1LixYtMn78+LXuvH/n6zJo0KC0bt06l19+eaOv1bXXXpva2toceeSRSZK6urq8/fbbjebo169fWrRokfr6+iTJsccem2222SYXXnjhWl/3QqGQV1555V9eWyn77rtvevXqlUsvvbTR1+wd7/6eYtCgQenYsWPx7/OjH/1oo0Cic+fOGThwYH74wx/m5Zdf/pfzAcCmMmnSpEavr7jiiiRZ72ewAJsHd6JDM3TUUUflJz/5SaqqqrL77rtn9uzZuffee9OpU6dG484+++z89Kc/zac+9amcdtppadu2bX70ox+le/fuefXVV4sfN6usrMzkyZPzhS98Ifvss09GjBiRD33oQ1m0aFHuvPPOHHjggfnBD37QFJcKwFbgva5r7zj++ONz/vnnp6KiIieffPJaD+P85je/md/85jc58MAD85WvfCVr1qzJD37wg/Tt27fRL5bfi29/+9sZOnRoDjzwwJx00kl57bXXinOtKyT+RyNGjMg555yTY445JqeffnreeOONTJ48Obvuumuj/dR33nnnnHvuufnWt76Vj3/84zn22GNTXl6eOXPmpGvXrpk4cWI+9KEPZezYsbnwwgtz+OGH59Of/nTmz5+fK6+8Mvvvv38+//nPJ0nuu+++nHrqqfnMZz6TXXfdNW+//XZ+8pOfZJtttsnw4cOT/D3cv+iiizJ27Ng8//zzGTZsWNq3b5+FCxfm1ltvzahRo/Kf//mf6/V1ekeLFi3yox/9KEOGDMlHPvKRnHTSSfnwhz+cF198Mffff38qKytzxx13FMe3atUqxx57bG688casXLkyl1566VpzTpo0KQcddFD69euXU045JTvttFOWLl2a2bNn5y9/+Usef/zx91UrAHwQCxcuzKc//ekcfvjhmT17dn7605/mc5/7XPbcc8+mLg14PwpAs/Paa68VTjrppML2229faNeuXWHw4MGFP/7xj4UePXoUTjzxxEZjH3vsscLHP/7xQnl5eWGHHXYoTJw4sXD55ZcXkhSWLFnSaOz9999fGDx4cKGqqqpQUVFR6NWrV+GLX/xi4ZFHHtmEVwfA1mZ91rVCoVBYsGBBIUkhSeF3v/vdOuecPn16Ye+99y60bt260KtXr8KPfvSjwte+9rVCRUXFetd34403Fnr37l0oLy8v9O3bt3D77bcXhg8fXujdu3ejcUkKF1xwQaO23/zmN4W+ffsWWrduXdhtt90KP/3pTwsXXHBBYV3fpv/v//5vYe+99y6Ul5cXtttuu8InPvGJwj333NNozA9+8INC7969C61atSpUV1cXvvKVrxRee+21Yv+f//znwpe+9KVCr169ChUVFYWOHTsWPvnJTxbuvffetd7vl7/8ZeGggw4qtG3bttC2bdtC7969C6NHjy7Mnz//PX9t7r///kKSwv3339+o/bHHHisce+yxhU6dOhXKy8sLPXr0KBx33HGF6dOnrzXHPffcU0hSKCsrKyxevHid7/Pcc88VTjjhhEJNTU2hVatWhQ9/+MOFo446qvCLX/ziX9YCABvSO+v4008/Xfi3f/u3Qvv27Qvbbbdd4dRTTy28+eabxXFJCqNHj2507sKFCwtJCv/93//dqP2dNezmm28utp144omFHj16bNRrAf6fskLBUwmAxs4888z88Ic/zIoVK0o+0AQAmpthw4blqaeeyoIFCz7wXHvttVc+9KEP5Z577tkAlQEAAE3JnuiwlXvzzTcbvX7llVfyk5/8JAcddJAAHYBm693r34IFC/LrX/86AwcOXK95Vq9evdYe4zNmzMjjjz++3nMBAACbJ3eiw1Zur732ysCBA9OnT58sXbo01157bV566aVMnz690YPYAKA56dKlS774xS9mp512ygsvvJDJkyenvr4+jz32WHbZZZfU1tauFbS/W01NTZ5//vkMGjQon//859O1a9f88Y9/zFVXXZWqqqr84Q9/KLlv+5buzTffTG1t7T8d07Fjx7Ru3XoTVQQAABuPB4vCVu6II47IL37xi1x99dUpKyvLPvvsk2uvvVaADkCzdvjhh+dnP/tZlixZkvLy8gwYMCDf/va3s8suuyRJzjjjjFx//fX/dI5CoZDtttsu++67b370ox/lr3/9a9q2bZsjjzwy3/nOd5ptgJ4kN910U0466aR/Oub+++93Nz4AAM2CO9EBAOBdnn766bz00kv/dMygQYM2UTWbn5dffjlPPfXUPx2z7777ZrvttttEFQEAwMYjRAcAAAAAgBI8WBQAAAAAAErY7PZEb2hoyEsvvZT27dunrKysqcsBgI2uUCjk9ddfT9euXdOixZb9+23rOABbG+s4AGy53us6vtmF6C+99FK6devW1GUAwCa3ePHi7LDDDk1dxgdiHQdga2UdB4At179axze7EL19+/ZJ/l54ZWVlE1cDABtfXV1dunXrVlwDt2TWcQC2NtZxANhyvdd1fLML0d/5yFhlZaVFG4CtSnP42LR1HICtlXUcALZc/2od37I3bAMAAAAAgI1IiA4AAAAAACUI0QEAAAAAoAQhOgAAAAAAlCBEBwAAAACAEoToAAAAAABQghAdAAAAAABKEKIDAAAAAEAJQnQAAAAAAChBiA4AAAAAACUI0QEAAAAAoAQhOgAAAAAAlCBEBwAAAACAEoToAAAAAABQghAdAAAAAABKaNnUBcB7sWrVqixatKipy4ANpnv37qmoqGjqMgA2Ces4zY11HNiaWMdpbqzjvB9CdLYIixYtyqhRo5q6DNhgrr766uy6665NXQbAJmEdp7mxjgNbE+s4zY11nPdDiM4WoXv37rn66qubuoxm74UXXsiECRNy7rnnpkePHk1dTrPWvXv3pi4BYJOxjm8a1vFNxzoObE2s45uGdXzTsY7zfgjR2SJUVFT4LeEm1KNHD19vADYY6/imZR0HYEOyjm9a1nHYPHmwKAAAAAAAlCBEBwAAAACAEtYrRF+zZk3GjRuXnj17pk2bNunVq1e+9a1vpVAoFMcUCoWcf/756dKlS9q0aZNBgwZlwYIFG7xwAAAAAADY2NYrRL/44oszefLk/OAHP8gzzzyTiy++OJdcckmuuOKK4phLLrkkl19+ea666qo89NBDadu2bQYPHpxVq1Zt8OIBAAAAAGBjWq8Hi/7+97/P0KFDc+SRRyZJdtxxx/zsZz/Lww8/nOTvd6FfdtllOe+88zJ06NAkyQ033JDq6urcdtttGTFixAYuHwAAAAAANp71uhP9Yx/7WKZPn54//elPSZLHH388v/vd7zJkyJAkycKFC7NkyZIMGjSoeE5VVVX69++f2bNnb8CyAQAAAABg41uvO9G/8Y1vpK6uLr17984222yTNWvWZMKECRk5cmSSZMmSJUmS6urqRudVV1cX+96tvr4+9fX1xdd1dXXrdQEAAAAAALCxrNed6D//+c8zZcqUTJ06NY8++miuv/76XHrppbn++uvfdwETJ05MVVVV8ejWrdv7ngsAAAC2Bt/5zndSVlaWM888s9g2cODAlJWVNTq+/OUvN12RANBMrNed6F//+tfzjW98o7i3eb9+/fLCCy9k4sSJOfHEE1NTU5MkWbp0abp06VI8b+nSpdlrr73WOefYsWMzZsyY4uu6ujpBOgAAAJQwZ86c/PCHP8wee+yxVt8pp5yS8ePHF19vu+22m7I0AGiW1utO9DfeeCMtWjQ+ZZtttklDQ0OSpGfPnqmpqcn06dOL/XV1dXnooYcyYMCAdc5ZXl6eysrKRgcAAACwthUrVmTkyJG55pprst12263Vv+2226ampqZ4+BkbAD649QrRjz766EyYMCF33nlnnn/++dx666353ve+l2OOOSZJih8lu+iii3L77bfnySefzAknnJCuXbtm2LBhG6N+AAAA2GqMHj06Rx55ZAYNGrTO/ilTpmT77bdP3759M3bs2Lzxxhsl56qvr09dXV2jAwBY23pt53LFFVdk3Lhx+epXv5ply5ala9eu+Y//+I+cf/75xTFnn312Vq5cmVGjRmX58uU56KCDMm3atFRUVGzw4gEAAGBrceONN+bRRx/NnDlz1tn/uc99Lj169EjXrl3zxBNP5Jxzzsn8+fNzyy23rHP8xIkTc+GFF27MkgGgWVivEL19+/a57LLLctlll5UcU1ZWlvHjxzfagw0AAAB4/xYvXpwzzjgj99xzT8mb1EaNGlX8c79+/dKlS5cceuihee6559KrV6+1xntGGQC8N+sVogMAAACb3ty5c7Ns2bLss88+xbY1a9Zk1qxZ+cEPfpD6+vpss802jc7p379/kuTZZ59dZ4heXl6e8vLyjVs4ADQDQnQAAADYzB166KF58sknG7WddNJJ6d27d84555y1AvQkmTdvXpKkS5cum6JEAGi2hOgAAACwmWvfvn369u3bqK1t27bp1KlT+vbtm+eeey5Tp07NEUcckU6dOuWJJ57IWWedlYMPPjh77LFHE1UNAM2DEB0AAAC2cK1bt869996byy67LCtXrky3bt0yfPjwnHfeeU1dGgBs8YToAAAAsAWaMWNG8c/dunXLzJkzm64YAGjGWjR1AQAAAAAAsLkSogMAAAAAQAlCdAAAAAAAKEGIDgAAAAAAJQjRAQAAAACgBCE6AAAAAACUIEQHgGZi1qxZOfroo9O1a9eUlZXltttuW2vMM888k09/+tOpqqpK27Zts//++2fRokXF/lWrVmX06NHp1KlT2rVrl+HDh2fp0qWb8CoAAABg8yJEB4BmYuXKldlzzz0zadKkdfY/99xzOeigg9K7d+/MmDEjTzzxRMaNG5eKiorimLPOOit33HFHbr755sycOTMvvfRSjj322E11CQAAALDZadnUBQAAG8aQIUMyZMiQkv3nnntujjjiiFxyySXFtl69ehX/XFtbm2uvvTZTp07NIYcckiS57rrr0qdPnzz44IM54IADNl7xAAAAsJlyJzoAbAUaGhpy5513Ztddd83gwYPTuXPn9O/fv9GWL3Pnzs3q1aszaNCgYlvv3r3TvXv3zJ49e53z1tfXp66urtEBAAAAzYkQHQC2AsuWLcuKFSvyne98J4cffnh+85vf5Jhjjsmxxx6bmTNnJkmWLFmS1q1bp0OHDo3Ora6uzpIlS9Y578SJE1NVVVU8unXrtrEvBQAAADYpIToAbAUaGhqSJEOHDs1ZZ52VvfbaK9/4xjdy1FFH5aqrrnrf844dOza1tbXFY/HixRuqZAAAANgs2BMdALYC22+/fVq2bJndd9+9UXufPn3yu9/9LklSU1OTt956K8uXL290N/rSpUtTU1OzznnLy8tTXl6+0eoGAACApuZOdADYCrRu3Tr7779/5s+f36j9T3/6U3r06JEk2XfffdOqVatMnz692D9//vwsWrQoAwYM2KT1AgAAwObCnegA0EysWLEizz77bPH1woULM2/evHTs2DHdu3fP17/+9Rx//PE5+OCD88lPfjLTpk3LHXfckRkzZiRJqqqqcvLJJ2fMmDHp2LFjKisrc9ppp2XAgAE54IADmuiqAAAAoGkJ0QGgmXjkkUfyyU9+svh6zJgxSZITTzwxP/7xj3PMMcfkqquuysSJE3P66adnt912yy9/+cscdNBBxXO+//3vp0WLFhk+fHjq6+szePDgXHnllZv8WgAAAGBzIUQHgGZi4MCBKRQK/3TMl770pXzpS18q2V9RUZFJkyZl0qRJG7o8AAAA2CLZEx0AAAAAAEoQogMAAAAAQAlCdAAAAAAAKEGIDgAAAAAAJQjRAQAAAACgBCE6AAAAAACUIEQHAAAAAIAShOgAAAAAAFCCEB0AAAAAAEoQogMAAAAAQAlCdAAAAAAAKEGIDgAAAAAAJQjRAQAAAACgBCE6AAAAAACUIEQHAAAAAIAShOgAAAAAAFCCEB0AAAAAAEoQogMAAAAAQAlCdAAAAAAAKEGIDgAAAAAAJQjRAQAAAACgBCE6AAAAAACUIEQHAAAAAIAShOgAAAAAAFCCEB0AAAC2MN/5zndSVlaWM888s9i2atWqjB49Op06dUq7du0yfPjwLF26tOmKBIBmQogOAAAAW5A5c+bkhz/8YfbYY49G7WeddVbuuOOO3HzzzZk5c2ZeeumlHHvssU1UJQA0H0J0AAAA2EKsWLEiI0eOzDXXXJPtttuu2F5bW5trr7023/ve93LIIYdk3333zXXXXZff//73efDBB5uwYgDY8gnRAQAAYAsxevToHHnkkRk0aFCj9rlz52b16tWN2nv37p3u3btn9uzZm7pMAGhWWjZ1AQAAAMC/duONN+bRRx/NnDlz1upbsmRJWrdunQ4dOjRqr66uzpIlS9Y5X319ferr64uv6+rqNmi9ANBcuBMdAAAANnOLFy/OGWeckSlTpqSiomKDzDlx4sRUVVUVj27dum2QeQGguRGiAwAAwGZu7ty5WbZsWfbZZ5+0bNkyLVu2zMyZM3P55ZenZcuWqa6uzltvvZXly5c3Om/p0qWpqalZ55xjx45NbW1t8Vi8ePEmuBIA2PLYzgUAAAA2c4ceemiefPLJRm0nnXRSevfunXPOOSfdunVLq1atMn369AwfPjxJMn/+/CxatCgDBgxY55zl5eUpLy/f6LUDwJZOiA4AAACbufbt26dv376N2tq2bZtOnToV208++eSMGTMmHTt2TGVlZU477bQMGDAgBxxwQFOUDADNhhAdAAAAmoHvf//7adGiRYYPH576+voMHjw4V155ZVOXBQBbPCE6AAAAbIFmzJjR6HVFRUUmTZqUSZMmNU1BANBMebAoAAAAAACUIEQHAAAAAIAShOgAAAAAAFCCEB0AAAAAAEoQogMAAAAAQAlCdAAAAAAAKEGIDgAAAAAAJQjRAQAAAACgBCE6AAAAAACUIEQHAAAAAIAShOgAAAAAAFCCEB0AAAAAAEoQogMAAAAAQAlCdAAAAAAAKEGIDgAAAAAAJQjRAQAAAACgBCE6AAAAAACUIEQHAAAAAIAShOgAAAAAAFCCEB0AAAAAAEoQogMAAAAAQAlCdABoJmbNmpWjjz46Xbt2TVlZWW677baSY7/85S+nrKwsl112WaP2V199NSNHjkxlZWU6dOiQk08+OStWrNi4hQMAAMBmTIgOAM3EypUrs+eee2bSpEn/dNytt96aBx98MF27dl2rb+TIkXnqqadyzz335Fe/+lVmzZqVUaNGbaySAQAAYLPXsqkLAAA2jCFDhmTIkCH/dMyLL76Y0047LXfffXeOPPLIRn3PPPNMpk2bljlz5mS//fZLklxxxRU54ogjcumll64zdAcAAIDmToi+gSxdujS1tbVNXQZ8IC+88EKj/8KWqqqqKtXV1U1dxmanoaEhX/jCF/L1r389H/nIR9bqnz17djp06FAM0JNk0KBBadGiRR566KEcc8wxa51TX1+f+vr64uu6urqNUzwAAAA0kfUO0V988cWcc845ueuuu/LGG29k5513znXXXVf8gbtQKOSCCy7INddck+XLl+fAAw/M5MmTs8suu2zw4jcXS5cuzee/cEJWv1X/rwfDFmDChAlNXQJ8IK1al+enP7lBkP4uF198cVq2bJnTTz99nf1LlixJ586dG7W1bNkyHTt2zJIlS9Z5zsSJE3PhhRdu8FoBAABgc7FeIfprr72WAw88MJ/85Cdz11135UMf+lAWLFiQ7bbbrjjmkksuyeWXX57rr78+PXv2zLhx4zJ48OA8/fTTqaio2OAXsDmora3N6rfq8+ZOn0hDRVVTlwOwVWuxqjb588zU1tYK0f/B3Llz8z//8z959NFHU1ZWtsHmHTt2bMaMGVN8XVdXl27dum2w+QEAAKCprVeIfvHFF6dbt2657rrrim09e/Ys/rlQKOSyyy7Leeedl6FDhyZJbrjh73cC3nbbbRkxYsQGKnvz1FBRlYa22zd1GQCwlt/+9rdZtmxZunfvXmxbs2ZNvva1r+Wyyy7L888/n5qamixbtqzReW+//XZeffXV1NTUrHPe8vLylJeXb9TaAQAAoCm1WJ/Bt99+e/bbb7985jOfSefOnbP33nvnmmuuKfYvXLgwS5YsyaBBg4ptVVVV6d+/f2bPnr3OOevr61NXV9foAAA2rC984Qt54oknMm/evOLRtWvXfP3rX8/dd9+dJBkwYECWL1+euXPnFs+777770tDQkP79+zdV6QAAANCk1utO9D//+c+ZPHlyxowZk//6r//KnDlzcvrpp6d169Y58cQTi/ulvvvj89XV1fZSBYCNbMWKFXn22WeLrxcuXJh58+alY8eO6d69ezp16tRofKtWrVJTU5PddtstSdKnT58cfvjhOeWUU3LVVVdl9erVOfXUUzNixIh07dp1k14LAAAAbC7W6070hoaG7LPPPvn2t7+dvffeO6NGjSr+oP1+jR07NrW1tcVj8eLF73suANiaPfLII9l7772z9957J0nGjBmTvffeO+eff/57nmPKlCnp3bt3Dj300BxxxBE56KCDcvXVV2+skgEAAGCzt153onfp0iW77757o7Y+ffrkl7/8ZZIU90tdunRpunTpUhyzdOnS7LXXXuuc016qALBhDBw4MIVC4T2Pf/7559dq69ixY6ZOnboBqwIAAIAt23rdiX7ggQdm/vz5jdr+9Kc/pUePHkn+/pDRmpqaTJ8+vdhfV1eXhx56KAMGDNgA5QIAAAAAwKazXnein3XWWfnYxz6Wb3/72znuuOPy8MMP5+qrry5+zLusrCxnnnlmLrroouyyyy7p2bNnxo0bl65du2bYsGEbo34AAAAAANho1itE33///XPrrbdm7NixGT9+fHr27JnLLrssI0eOLI45++yzs3LlyowaNSrLly/PQQcdlGnTpqWiomKDFw8AAAAAABvTeoXoSXLUUUflqKOOKtlfVlaW8ePHZ/z48R+oMAAAAAAAaGrrtSc6AAAAAABsTYToAAAAAABQghAdAAAAAABKEKIDAAAAAEAJQnQAAAAAAChBiA4AAAAAACUI0QEAAGAzN3ny5Oyxxx6prKxMZWVlBgwYkLvuuqvYP3DgwJSVlTU6vvzlLzdhxQDQfLRs6gIAAACAf26HHXbId77zneyyyy4pFAq5/vrrM3To0Dz22GP5yEc+kiQ55ZRTMn78+OI52267bVOVCwDNihAdAAAANnNHH310o9cTJkzI5MmT8+CDDxZD9G233TY1NTVNUR4ANGu2cwEAAIAtyJo1a3LjjTdm5cqVGTBgQLF9ypQp2X777dO3b9+MHTs2b7zxRhNWCQDNhzvRAQAAYAvw5JNPZsCAAVm1alXatWuXW2+9NbvvvnuS5HOf+1x69OiRrl275oknnsg555yT+fPn55Zbbik5X319ferr64uv6+rqNvo1AMCWSIgOAAAAW4Dddtst8+bNS21tbX7xi1/kxBNPzMyZM7P77rtn1KhRxXH9+vVLly5dcuihh+a5555Lr1691jnfxIkTc+GFF26q8gFgi2U7FwAAANgCtG7dOjvvvHP23XffTJw4MXvuuWf+53/+Z51j+/fvnyR59tlnS843duzY1NbWFo/FixdvlLoBYEvnTnQAAADYAjU0NDTajuUfzZs3L0nSpUuXkueXl5envLx8Y5QGAM2KEB0AAAA2c2PHjs2QIUPSvXv3vP7665k6dWpmzJiRu+++O88991ymTp2aI444Ip06dcoTTzyRs846KwcffHD22GOPpi4dALZ4QnQAAADYzC1btiwnnHBCXn755VRVVWWPPfbI3XffnU996lNZvHhx7r333lx22WVZuXJlunXrluHDh+e8885r6rIBoFkQogMAAMBm7tprry3Z161bt8ycOXMTVgMAWxcPFgUAAAAAgBKE6AAAAAAAUIIQHQAAAAAAShCiAwAAAABACUJ0AAAAAAAoQYgOAAAAAAAlCNEBAAAAAKAEIToAAAAAAJQgRAcAAAAAgBKE6AAAAAAAUIIQHQAAAAAAShCiAwAAAABACUJ0AAAAAAAoQYgOAAAAAAAlCNEBAAAAAKAEIToAAAAAAJTQsqkLAAAAAHi/li5dmtra2qYuAz6QF154odF/YUtVVVWV6urqpi5jgxOiAwAAAFukpUuX5vNfOCGr36pv6lJgg5gwYUJTlwAfSKvW5fnpT25odkG6EB0AAADYItXW1mb1W/V5c6dPpKGiqqnLAdiqtVhVm/x5Zmpra4XoAAAAAJuThoqqNLTdvqnLAKCZ8mBRAAAAAAAoQYgOAAAAAAAlCNEBAAAAAKAEIToAAAAAAJQgRAcAAAAAgBKE6AAAAAAAUIIQHQAAAAAAShCiAwAAAABACUJ0AAAAAAAoQYgOAAAAAAAlCNEBAAAAAKAEIToAAAAAAJQgRAcAAAAAgBKE6AAAAAAAUIIQHQCaiVmzZuXoo49O165dU1ZWlttuu63Yt3r16pxzzjnp169f2rZtm65du+aEE07ISy+91GiOV199NSNHjkxlZWU6dOiQk08+OStWrNjEVwIAAACbDyE6ADQTK1euzJ577plJkyat1ffGG2/k0Ucfzbhx4/Loo4/mlltuyfz58/PpT3+60biRI0fmqaeeyj333JNf/epXmTVrVkaNGrWpLgEAAAA2Oy2bugAAYMMYMmRIhgwZss6+qqqq3HPPPY3afvCDH+SjH/1oFi1alO7du+eZZ57JtGnTMmfOnOy3335JkiuuuCJHHHFELr300nTt2nWjXwMAAABsbtyJDgBbqdra2pSVlaVDhw5JktmzZ6dDhw7FAD1JBg0alBYtWuShhx5qoioBAACgabkTHQC2QqtWrco555yTz372s6msrEySLFmyJJ07d240rmXLlunYsWOWLFmyznnq6+tTX19ffF1XV7fxigYAAIAm4E50ANjKrF69Oscdd1wKhUImT578geaaOHFiqqqqike3bt02UJUAAACweRCiA8BW5J0A/YUXXsg999xTvAs9SWpqarJs2bJG499+++28+uqrqampWed8Y8eOTW1tbfFYvHjxRq0fAAAANjXbuQDAVuKdAH3BggW5//7706lTp0b9AwYMyPLlyzN37tzsu+++SZL77rsvDQ0N6d+//zrnLC8vT3l5+UavHQAAAJqKO9EBoJlYsWJF5s2bl3nz5iVJFi5cmHnz5mXRokVZvXp1/u3f/i2PPPJIpkyZkjVr1mTJkiVZsmRJ3nrrrSRJnz59cvjhh+eUU07Jww8/nAceeCCnnnpqRowYka5duzbhlQEAkydPzh577JHKyspUVlZmwIABueuuu4r9q1atyujRo9OpU6e0a9cuw4cPz9KlS5uwYgBoPoToANBMPPLII9l7772z9957J0nGjBmTvffeO+eff35efPHF3H777fnLX/6SvfbaK126dCkev//974tzTJkyJb17986hhx6aI444IgcddFCuvvrqprokAOD/t8MOO+Q73/lO5s6dm0ceeSSHHHJIhg4dmqeeeipJctZZZ+WOO+7IzTffnJkzZ+all17Kscce28RVA0DzYDsXAGgmBg4cmEKhULL/n/W9o2PHjpk6deqGLAsA2ACOPvroRq8nTJiQyZMn58EHH8wOO+yQa6+9NlOnTs0hhxySJLnuuuvSp0+fPPjggznggAOaomQAaDaE6BtQizeXN3UJAFs9/xYDAM3dmjVrcvPNN2flypUZMGBA5s6dm9WrV2fQoEHFMb1790737t0ze/ZsIToAfEBC9A2ozcJZTV0CAAAAzdSTTz6ZAQMGZNWqVWnXrl1uvfXW7L777pk3b15at26dDh06NBpfXV2dJUuWlJyvvr4+9fX1xdd1dXUbq3QA2KIJ0TegN3senIY2HZq6DICtWos3l/ulJgDQLO22226ZN29eamtr84tf/CInnnhiZs6c+b7nmzhxYi688MINWCEANE9C9A2ooU2HNLTdvqnLAAAAoBlq3bp1dt555yTJvvvumzlz5uR//ud/cvzxx+ett97K8uXLG92NvnTp0tTU1JScb+zYsRkzZkzxdV1dXbp167bR6geALVWLpi4AAAAAWH8NDQ2pr6/Pvvvum1atWmX69OnFvvnz52fRokUZMGBAyfPLy8tTWVnZ6AAA1uZOdAAAANjMjR07NkOGDEn37t3z+uuvZ+rUqZkxY0buvvvuVFVV5eSTT86YMWPSsWPHVFZW5rTTTsuAAQM8VBQANgAhOgAAAGzmli1blhNOOCEvv/xyqqqqsscee+Tuu+/Opz71qSTJ97///bRo0SLDhw9PfX19Bg8enCuvvLKJqwaA5kGIDgAAAJu5a6+99p/2V1RUZNKkSZk0adImqggAth72RAcAAAAAgBKE6AAAAAAAUIIQHQAAAAAAShCiAwAAAABACR4sCgBs9ZYuXZra2tqmLgM+kBdeeKHRf2FLVVVVlerq6qYuAwCgSIgOAGzVli5dms9/4YSsfqu+qUuBDWLChAlNXQJ8IK1al+enP7lBkA4AbDaE6ADAVq22tjar36rPmzt9Ig0VVU1dDsBWrcWq2uTPM1NbWytEBwA2G0J0AIAkDRVVaWi7fVOXAQAAwGbGg0UBAAAAAKAEIToAAAAAAJQgRAcAAAAAgBKE6AAAAAAAUMIHCtG/853vpKysLGeeeWaxbdWqVRk9enQ6deqUdu3aZfjw4Vm6dOkHrRMAAAAAADa5lu/3xDlz5uSHP/xh9thjj0btZ511Vu68887cfPPNqaqqyqmnnppjjz02DzzwwAcuFgAAAODdWry5vKlLANjqNed/i99XiL5ixYqMHDky11xzTS666KJie21tba699tpMnTo1hxxySJLkuuuuS58+ffLggw/mgAMO2DBVAwAAAPz/2iyc1dQlANCMva8QffTo0TnyyCMzaNCgRiH63Llzs3r16gwaNKjY1rt373Tv3j2zZ89eZ4heX1+f+vr64uu6urr3UxIAAACwlXqz58FpaNOhqcsA2Kq1eHN5s/2l5nqH6DfeeGMeffTRzJkzZ62+JUuWpHXr1unQoUOj9urq6ixZsmSd802cODEXXnjh+pYBAAAAkCRpaNMhDW23b+oyAGim1uvBoosXL84ZZ5yRKVOmpKKiYoMUMHbs2NTW1haPxYsXb5B5AQAAAADgg1qvEH3u3LlZtmxZ9tlnn7Rs2TItW7bMzJkzc/nll6dly5aprq7OW2+9leXLlzc6b+nSpampqVnnnOXl5amsrGx0AAAAAADA5mC9tnM59NBD8+STTzZqO+mkk9K7d++cc8456datW1q1apXp06dn+PDhSZL58+dn0aJFGTBgwIarGgAAAAAANoH1CtHbt2+fvn37Nmpr27ZtOnXqVGw/+eSTM2bMmHTs2DGVlZU57bTTMmDAgHU+VBQAAAAAADZn6/1g0X/l+9//flq0aJHhw4envr4+gwcPzpVXXrmh3wYAAAAAADa6Dxyiz5gxo9HrioqKTJo0KZMmTfqgUwMAAAAAQJNarweLAgAAAADA1kSIDgAAAAAAJQjRAQAAAACgBCE6AAAAAACUIEQHAAAAAIAShOgAAAAAAFCCEB0AAAAAAEoQogMAAAAAQAlCdAAAAAAAKEGIDgAAAAAAJQjRAQAAAACgBCE6AAAAAACUIEQHAAAAAIAShOgAAAAAAFCCEB0AAAAAAEoQogMAAAAAQAlCdAAAAAAAKEGIDgAAAAAAJQjRAQAAAACgBCE6AAAAbOYmTpyY/fffP+3bt0/nzp0zbNiwzJ8/v9GYgQMHpqysrNHx5S9/uYkqBoDmQ4gOAAAAm7mZM2dm9OjRefDBB3PPPfdk9erVOeyww7Jy5cpG40455ZS8/PLLxeOSSy5poooBoPlo2dQFAAAAAP/ctGnTGr3+8Y9/nM6dO2fu3Lk5+OCDi+3bbrttampqNnV5ANCsuRMdAAAAtjC1tbVJko4dOzZqnzJlSrbffvv07ds3Y8eOzRtvvFFyjvr6+tTV1TU6AIC1uRMdAAAAtiANDQ0588wzc+CBB6Zv377F9s997nPp0aNHunbtmieeeCLnnHNO5s+fn1tuuWWd80ycODEXXnjhpiobALZYQnQAAADYgowePTp/+MMf8rvf/a5R+6hRo4p/7tevX7p06ZJDDz00zz33XHr16rXWPGPHjs2YMWOKr+vq6tKtW7eNVzgAbKFs5wIAzcSsWbNy9NFHp2vXrikrK8ttt93WqL9QKOT8889Ply5d0qZNmwwaNCgLFixoNObVV1/NyJEjU1lZmQ4dOuTkk0/OihUrNuFVAAD/zKmnnppf/epXuf/++7PDDjv807H9+/dPkjz77LPr7C8vL09lZWWjAwBYmxAdAJqJlStXZs8998ykSZPW2X/JJZfk8ssvz1VXXZWHHnoobdu2zeDBg7Nq1arimJEjR+app57KPffck1/96leZNWtWo7vaAICmUSgUcuqpp+bWW2/Nfffdl549e/7Lc+bNm5ck6dKly0auDgCaN9u5AEAzMWTIkAwZMmSdfYVCIZdddlnOO++8DB06NElyww03pLq6OrfddltGjBiRZ555JtOmTcucOXOy3377JUmuuOKKHHHEEbn00kvTtWvXTXYtAEBjo0ePztSpU/N///d/ad++fZYsWZIkqaqqSps2bfLcc89l6tSpOeKII9KpU6c88cQTOeuss3LwwQdnjz32aOLqAWDL5k50ANgKLFy4MEuWLMmgQYOKbVVVVenfv39mz56dJJk9e3Y6dOhQDNCTZNCgQWnRokUeeuihdc5bX1+furq6RgcAsOFNnjw5tbW1GThwYLp06VI8brrppiRJ69atc++99+awww5L796987WvfS3Dhw/PHXfc0cSVA8CWz53oALAVeOduterq6kbt1dXVxb4lS5akc+fOjfpbtmyZjh07Fse828SJE3PhhRduhIoBgH9UKBT+aX+3bt0yc+bMTVQNAGxd3IkOALxvY8eOTW1tbfFYvHhxU5cEAAAAG5QQHQC2AjU1NUmSpUuXNmpfunRpsa+mpibLli1r1P/222/n1VdfLY55t/Ly8lRWVjY6AAAAoDkRogPAVqBnz56pqanJ9OnTi211dXV56KGHMmDAgCTJgAEDsnz58sydO7c45r777ktDQ0P69++/yWsGAACAzYE90QGgmVixYkWeffbZ4uuFCxdm3rx56dixY7p3754zzzwzF110UXbZZZf07Nkz48aNS9euXTNs2LAkSZ8+fXL44YfnlFNOyVVXXZXVq1fn1FNPzYgRI9K1a9cmuioAAABoWkJ0AGgmHnnkkXzyk58svh4zZkyS5MQTT8yPf/zjnH322Vm5cmVGjRqV5cuX56CDDsq0adNSUVFRPGfKlCk59dRTc+ihh6ZFixYZPnx4Lr/88k1+LQAAALC5EKIDQDMxcODAFAqFkv1lZWUZP358xo8fX3JMx44dM3Xq1I1RHgDARtNiVW1TlwCw1WvO/xYL0QEAAIAtUlVVVVq1Lk/+PLOpSwEgSavW5amqqmrqMjY4IToAAACwRaqurs5Pf3JDamub792PbB1eeOGFTJgwIeeee2569OjR1OXA+1ZVVZXq6uqmLmODE6IDAAAAW6zq6upmGdiwderRo0d23XXXpi4DeJcWTV0AAAAAAABsroToAAAAAABQghAdAAAAAABKEKIDAAAAAEAJQnQAAAAAAChBiA4AAAAAACUI0QEAAAAAoAQhOgAAAAAAlCBEBwAAAACAEoToAAAAAABQghAdAAAAAABKEKIDAAAAAEAJQnQAAAAAAChBiA4AAAAAACUI0QEAAAAAoAQhOgAAAAAAlNCyqQsAANgctHhzeVOXALDV828xALA5EqIDACRps3BWU5cAAADAZkiIDgCQ5M2eB6ehTYemLgNgq9bizeV+qQkAbHaE6AAASRradEhD2+2bugwAAAA2Mx4sCgAAAAAAJQjRAQAAAACgBCE6AAAAAACUYE/0DajFqtqmLgFgq+ffYgAAAGBDEqJvAFVVVWnVujz588ymLgWAJK1al6eqqqqpywAAAACaASH6BlBdXZ2f/uSG1Na6+5Et2wsvvJAJEybk3HPPTY8ePZq6HHjfqqqqUl1d3dRlAAAAAM2AEH0Dqa6uFtjQbPTo0SO77rprU5cBAAAAAE3Og0UBAAAAAKAEIToAAAAAAJQgRAcAAAAAgBKE6AAAAAAAUIIQHQAAAAAAShCiAwAAAABACUJ0AAAA2MxNnDgx+++/f9q3b5/OnTtn2LBhmT9/fqMxq1atyujRo9OpU6e0a9cuw4cPz9KlS5uoYgBoPoToAAAAsJmbOXNmRo8enQcffDD33HNPVq9encMOOywrV64sjjnrrLNyxx135Oabb87MmTPz0ksv5dhjj23CqgGgeWjZ1AUAAAAA/9y0adMavf7xj3+czp07Z+7cuTn44INTW1uba6+9NlOnTs0hhxySJLnuuuvSp0+fPPjggznggAOaomwAaBbciQ4AAABbmNra2iRJx44dkyRz587N6tWrM2jQoOKY3r17p3v37pk9e/Y656ivr09dXV2jAwBYmxAdAAAAtiANDQ0588wzc+CBB6Zv375JkiVLlqR169bp0KFDo7HV1dVZsmTJOueZOHFiqqqqike3bt02dukAsEUSogMAAMAWZPTo0fnDH/6QG2+88QPNM3bs2NTW1haPxYsXb6AKAaB5sSc6AAAAbCFOPfXU/OpXv8qsWbOyww47FNtramry1ltvZfny5Y3uRl+6dGlqamrWOVd5eXnKy8s3dskAsMVzJzoAAABs5gqFQk499dTceuutue+++9KzZ89G/fvuu29atWqV6dOnF9vmz5+fRYsWZcCAAZu6XABoVtyJDgAAAJu50aNHZ+rUqfm///u/tG/fvrjPeVVVVdq0aZOqqqqcfPLJGTNmTDp27JjKysqcdtppGTBgQA444IAmrh4AtmxCdAAAANjMTZ48OUkycODARu3XXXddvvjFLyZJvv/976dFixYZPnx46uvrM3jw4Fx55ZWbuFIAaH7WazuXiRMnZv/990/79u3TuXPnDBs2LPPnz280ZtWqVRk9enQ6deqUdu3aZfjw4Vm6dOkGLRoAAAC2JoVCYZ3HOwF6klRUVGTSpEl59dVXs3Llytxyyy0l90MHAN679QrRZ86cmdGjR+fBBx/MPffck9WrV+ewww7LypUri2POOuus3HHHHbn55pszc+bMvPTSSzn22GM3eOEAAAAAALCxrdd2LtOmTWv0+sc//nE6d+6cuXPn5uCDD05tbW2uvfbaTJ06NYccckiSv3+0rE+fPnnwwQftwwYAAAAAwBZlve5Ef7fa2tokSceOHZMkc+fOzerVqzNo0KDimN69e6d79+6ZPXv2Oueor69PXV1dowMAAAAAADYH7ztEb2hoyJlnnpkDDzwwffv2TZIsWbIkrVu3TocOHRqNra6uLj45/N0mTpyYqqqq4tGtW7f3WxIAAAAAAGxQ7ztEHz16dP7whz/kxhtv/EAFjB07NrW1tcVj8eLFH2g+AAAAAADYUNZrT/R3nHrqqfnVr36VWbNmZYcddii219TU5K233sry5csb3Y2+dOnSkk8ELy8vT3l5+fspAwAAAAAANqr1uhO9UCjk1FNPza233pr77rsvPXv2bNS/7777plWrVpk+fXqxbf78+Vm0aFEGDBiwYSoGAAAAAIBNZL3uRB89enSmTp2a//u//0v79u2L+5xXVVWlTZs2qaqqysknn5wxY8akY8eOqayszGmnnZYBAwbkgAMO2CgXAAAAAAAAG8t63Yk+efLk1NbWZuDAgenSpUvxuOmmm4pjvv/97+eoo47K8OHDc/DBB6empia33HLLBi8cAFg/a9asybhx49KzZ8+0adMmvXr1yre+9a0UCoXimEKhkPPPPz9dunRJmzZtMmjQoCxYsKAJqwYAAICmtV53ov/jD9mlVFRUZNKkSZk0adL7LgoA2PAuvvjiTJ48Oddff30+8pGP5JFHHslJJ52UqqqqnH766UmSSy65JJdffnmuv/769OzZM+PGjcvgwYPz9NNPp6KioomvAAAAADa99/VgUQBgy/P73/8+Q4cOzZFHHpkk2XHHHfOzn/0sDz/8cJK//7L8sssuy3nnnZehQ4cmSW644YZUV1fntttuy4gRI5qsdgAAAGgq67WdCwCw5frYxz6W6dOn509/+lOS5PHHH8/vfve7DBkyJEmycOHCLFmyJIMGDSqeU1VVlf79+2f27NlNUjMAAAA0NXeiA8BW4hvf+Ebq6urSu3fvbLPNNlmzZk0mTJiQkSNHJknxgeHV1dWNzquuri72vVt9fX3q6+uLr+vq6jZS9QAAANA03IkOAFuJn//855kyZUqmTp2aRx99NNdff30uvfTSXH/99e97zokTJ6aqqqp4dOvWbQNWDAAAAE1PiA4AW4mvf/3r+cY3vpERI0akX79++cIXvpCzzjorEydOTJLU1NQkSZYuXdrovKVLlxb73m3s2LGpra0tHosXL964FwEAAACbmBAdALYSb7zxRlq0aLz0b7PNNmloaEiS9OzZMzU1NZk+fXqxv66uLg899FAGDBiwzjnLy8tTWVnZ6AAAAIDmxJ7oALCVOProozNhwoR07949H/nIR/LYY4/le9/7Xr70pS8lScrKynLmmWfmoosuyi677JKePXtm3Lhx6dq1a4YNG9a0xQMAAEATEaIDwFbiiiuuyLhx4/LVr341y5YtS9euXfMf//EfOf/884tjzj777KxcuTKjRo3K8uXLc9BBB2XatGmpqKhowsoBAACg6QjRAWAr0b59+1x22WW57LLLSo4pKyvL+PHjM378+E1XGAAAAGzG7IkOAAAAAAAlCNEBAAAAAKAE27kAACRpsaq2qUsA2Or5txgA2BwJ0QGArVpVVVVatS5P/jyzqUsBIEmr1uWpqqpq6jIAAIqE6ADAVq26ujo//ckNqa119yNbthdeeCETJkzIueeemx49ejR1OfC+VVVVpbq6uqnLAAAoEqIDAFu96upqgQ3NRo8ePbLrrrs2dRkAANBseLAoAAAAAACUIEQHAAAAAIAShOgAAAAAAFCCEB0AAAAAAEoQogMAAAAAQAlCdAAAAAAAKEGIDgAAAAAAJQjRAQAAAACgBCE6AAAAAACUIEQHAAAAAIAShOgAAAAAAFCCEB0AAAAAAEoQogMAAAAAQAlCdAAAAAAAKEGIDgAAAAAAJQjRAQAAAACgBCE6AAAAbOZmzZqVo48+Ol27dk1ZWVluu+22Rv1f/OIXU1ZW1ug4/PDDm6ZYAGhmhOgAAACwmVu5cmX23HPPTJo0qeSYww8/PC+//HLx+NnPfrYJKwSA5qtlUxcAAAAA/HNDhgzJkCFD/umY8vLy1NTUbKKKAGDr4U50AAAAaAZmzJiRzp07Z7fddstXvvKVvPLKK01dEgA0C+5EBwAAgC3c4YcfnmOPPTY9e/bMc889l//6r//KkCFDMnv27GyzzTbrPKe+vj719fXF13V1dZuqXADYogjRAQAAYAs3YsSI4p/79euXPfbYI7169cqMGTNy6KGHrvOciRMn5sILL9xUJQLAFst2LgAAANDM7LTTTtl+++3z7LPPlhwzduzY1NbWFo/FixdvwgoBYMvhTnQAAABoZv7yl7/klVdeSZcuXUqOKS8vT3l5+SasCgC2TEJ0AAAA2MytWLGi0V3lCxcuzLx589KxY8d07NgxF154YYYPH56ampo899xzOfvss7Pzzjtn8ODBTVg1ADQPQnQAAADYzD3yyCP55Cc/WXw9ZsyYJMmJJ56YyZMn54knnsj111+f5cuXp2vXrjnssMPyrW99y53mALABCNEBAABgMzdw4MAUCoWS/XffffcmrAYAti4eLAoAAAAAACUI0QEAAAAAoAQhOgAAAAAAlCBEBwAAAACAEoToAAAAAABQghAdAAAAAABKEKIDAAAAAEAJQnQAAAAAAChBiA4AAAAAACUI0QEAAAAAoAQhOgAAAAAAlCBEBwAAAACAEoToAAAAAABQghAdAAAAAABKEKIDAAAAAEAJQnQAAAAAAChBiA4AAAAAACUI0QEAAAAAoAQhOgAAAAAAlCBEBwAAAACAEoToAAAAAABQghAdAAAAAABKEKIDAAAAAEAJQnQA2Iq8+OKL+fznP59OnTqlTZs26devXx555JFif6FQyPnnn58uXbqkTZs2GTRoUBYsWNCEFQMAAEDTEqIDwFbitddey4EHHphWrVrlrrvuytNPP53vfve72W677YpjLrnkklx++eW56qqr8tBDD6Vt27YZPHhwVq1a1YSVAwAAQNNp2dQFAACbxsUXX5xu3brluuuuK7b17Nmz+OdCoZDLLrss5513XoYOHZokueGGG1JdXZ3bbrstI0aM2OQ1AwAAQFNzJzoAbCVuv/327LfffvnMZz6Tzp07Z++9984111xT7F+4cGGWLFmSQYMGFduqqqrSv3//zJ49e51z1tfXp66urtEBAAAAzYkQHQC2En/+858zefLk7LLLLrn77rvzla98Jaeffnquv/76JMmSJUuSJNXV1Y3Oq66uLva928SJE1NVVVU8unXrtnEvAgAAADYxIToAbCUaGhqyzz775Nvf/nb23nvvjBo1Kqecckquuuqq9z3n2LFjU1tbWzwWL168ASsGAACApidEB4CtRJcuXbL77rs3auvTp08WLVqUJKmpqUmSLF26tNGYpUuXFvverby8PJWVlY0OAAAAaE6E6ACwlTjwwAMzf/78Rm1/+tOf0qNHjyR/f8hoTU1Npk+fXuyvq6vLQw89lAEDBmzSWgEAAGBz0bKpCwAANo2zzjorH/vYx/Ltb387xx13XB5++OFcffXVufrqq5MkZWVlOfPMM3PRRRdll112Sc+ePTNu3Lh07do1w4YNa9riAQAAoIkI0QFgK7H//vvn1ltvzdixYzN+/Pj07Nkzl112WUaOHFkcc/bZZ2flypUZNWpUli9fnoMOOijTpk1LRUVFE1YOAAAATUeIDgBbkaOOOipHHXVUyf6ysrKMHz8+48eP34RVAQAAwObLnugAAAAAAFCCEB0AAAAAAEoQogMAAAAAQAlCdAAAAAAAKEGIDgAAAAAAJWy0EH3SpEnZcccdU1FRkf79++fhhx/eWG8FAAAAAAAbxUYJ0W+66aaMGTMmF1xwQR599NHsueeeGTx4cJYtW7Yx3g4AAAAAADaKjRKif+9738spp5ySk046KbvvvnuuuuqqbLvttvnf//3fjfF2AAAAAACwUWzwEP2tt97K3LlzM2jQoP/3Ji1aZNCgQZk9e/aGfjsAAABo9mbNmpWjjz46Xbt2TVlZWW677bZG/YVCIeeff366dOmSNm3aZNCgQVmwYEHTFAsAzUzLDT3h3/72t6xZsybV1dWN2qurq/PHP/5xrfH19fWpr68vvq6rq9vQJdEMrFq1KosWLWrqMpq9F154odF/2Xi6d++eioqKpi4DYJOwjm8a1vFNxzpOU1i5cmX23HPPfOlLX8qxxx67Vv8ll1ySyy+/PNdff3169uyZcePGZfDgwXn66af9/8oHYh3fNKzjm451nPdjg4fo62vixIm58MILm7oMNnOLFi3KqFGjmrqMrcaECROauoRm7+qrr86uu+7a1GUAbBLW8U3LOr7xWcdpCkOGDMmQIUPW2VcoFHLZZZflvPPOy9ChQ5MkN9xwQ6qrq3PbbbdlxIgRm7JUmhnr+KZlHd/4rOO8Hxs8RN9+++2zzTbbZOnSpY3aly5dmpqamrXGjx07NmPGjCm+rqurS7du3TZ0WWzhunfvnquvvrqpy4ANpnv37k1dAsAmYx2nubGOs7lZuHBhlixZ0mhb1aqqqvTv3z+zZ88WovOBWMdpbqzjvB8bPERv3bp19t1330yfPj3Dhg1LkjQ0NGT69Ok59dRT1xpfXl6e8vLyDV0GzUxFRYXfEgLAFso6DrBxLVmyJEnWua3qO33rYntV3gvrOMBGeLBokowZMybXXHNNrr/++jzzzDP5yle+kpUrV+akk07aGG8HAAAArKeJEyemqqqqePhUOACs20YJ0Y8//vhceumlOf/887PXXntl3rx5mTZt2lq/FQcAAAA+mHe2Tn2v26q+Y+zYsamtrS0eixcv3qh1AsCWaqOE6Ely6qmn5oUXXkh9fX0eeuih9O/ff2O9FQAAAGy1evbsmZqamkyfPr3YVldXl4ceeigDBgwoeV55eXkqKysbHQDA2jb4nugAAADAhrVixYo8++yzxdcLFy7MvHnz0rFjx3Tv3j1nnnlmLrroouyyyy7p2bNnxo0bl65duxafVQYAvH9CdAAAANjMPfLII/nkJz9ZfD1mzJgkyYknnpgf//jHOfvss7Ny5cqMGjUqy5cvz0EHHZRp06aloqKiqUoGgGZDiA4AAACbuYEDB6ZQKJTsLysry/jx4zN+/PhNWBUAbB022p7oAAAAAACwpROiAwAAAABACUJ0AAAAAAAoQYgOAAAAAAAlCNEBAAAAAKAEIToAAAAAAJQgRAcAAAAAgBKE6AAAAAAAUIIQHQAAAAAASmjZ1AW8W6FQSJLU1dU1cSUAsGm8s+a9swZuyazjAGxtrOMAsOV6r+v4Zheiv/7660mSbt26NXElALBpvf7666mqqmrqMj4Q6zgAWyvrOABsuf7VOl5W2Mx+Xd7Q0JCXXnop7du3T1lZWVOXA1uVurq6dOvWLYsXL05lZWVTlwNbjUKhkNdffz1du3ZNixZb9k5r1nFoOtZxaBrWcWBDsI5D03iv6/hmF6IDTaeuri5VVVWpra21aAPAFsY6DgBbLus4bN627F+TAwAAAADARiREBwAAAACAEoToQFF5eXkuuOCClJeXN3UpAMB6so4DwJbLOg6bN3uiAwAAAABACe5EBwAAAACAEoToAAAAAABQghAdAAAAAABKEKIDAAAAAEAJQnQAAAAAAChBiA4AAAAAACUI0QEAAAAAoAQhOgAAAAAAlCBEBwCAJvD888+nrKws8+bNa+pSNoiBAwfmzDPP3KTv+cUvfjHDhg3bpO8JAO/Vxlgbf/zjH6dDhw4bdE7gXxOiAwAAAMAW4Pjjj8+f/vSnpi4Dtjotm7oAAAAAAOBfa9OmTdq0adPUZcBWx53osBWYNm1aDjrooHTo0CGdOnXKUUcdleeee67Y//vf/z577bVXKioqst9+++W2225b6+Plf/jDHzJkyJC0a9cu1dXV+cIXvpC//e1vTXA1APDe/LP172Mf+1jOOeecRuP/+te/plWrVpk1a1aS5OWXX86RRx6ZNm3apGfPnpk6dWp23HHHXHbZZe/p/f/4xz/moIMOSkVFRXbffffce++9KSsry2233bbO8ev6ePY7a/I/uuOOO7L//vunoqIi22+/fY455phi32uvvZYTTjgh2223XbbddtsMGTIkCxYsKPa/8MILOfroo7Pddtulbdu2+chHPpJf//rXxf4Nud7X19fnP//zP/PhD384bdu2Tf/+/TNjxowkSV1dXdq0aZO77rqr0Tm33npr2rdvnzfeeCNJsnjx4hx33HHp0KFDOnbsmKFDh+b5559/X/UAQFN4++23c+qpp6aqqirbb799xo0bl0KhkCTZcccdc9FFF+WEE05Iu3bt0qNHj9x+++3561//mqFDh6Zdu3bZY4898sgjjxTns50LNA0hOmwFVq5cmTFjxuSRRx7J9OnT06JFixxzzDFpaGhIXV1djj766PTr1y+PPvpovvWtb60VKixfvjyHHHJI9t577zzyyCOZNm1ali5dmuOOO66JrggA/rV/tv6NHDkyN954Y/GH2CS56aab0rVr13z84x9Pkpxwwgl56aWXMmPGjPzyl7/M1VdfnWXLlr2n916zZk2GDRuWbbfdNg899FCuvvrqnHvuuR/4mu68884cc8wxOeKII/LYY49l+vTp+ehHP1rs/+IXv5hHHnkkt99+e2bPnp1CoZAjjjgiq1evTpKMHj069fX1mTVrVp588slcfPHFadeuXZINv96feuqpmT17dm688cY88cQT+cxnPpPDDz88CxYsSGVlZY466qhMnTq10TlTpkwpft1Wr16dwYMHp3379vntb3+bBx54IO3atcvhhx+et956631+BQFg07r++uvTsmXLPPzww/mf//mffO9738uPfvSjYv/3v//9HHjggXnsscdy5JFH5gtf+EJOOOGEfP7zn8+jjz6aXr165YQTTmj0PQvQBArAVuevf/1rIUnhySefLEyePLnQqVOnwptvvlnsv+aaawpJCo899lihUCgUvvWtbxUOO+ywRnMsXry4kKQwf/78TVk6ALxv/7j+LVu2rNCyZcvCrFmziv0DBgwonHPOOYVCoVB45plnCkkKc+bMKfYvWLCgkKTw/e9//1++11133VVo2bJl4eWXXy623XPPPYUkhVtvvbVQKBQKCxcubLTeXnfddYWqqqpG89x6662Ff/yWfcCAAYWRI0eu8z3/9Kc/FZIUHnjggWLb3/72t0KbNm0KP//5zwuFQqHQr1+/wje/+c11nv9B1/tPfOIThTPOOKNQKBQKL7zwQmGbbbYpvPjii43GHHrooYWxY8cWr61du3aFlStXFgqFQqG2trZQUVFRuOuuuwqFQqHwk5/8pLDbbrsVGhoaiufX19cX2rRpU7j77rsLhUKhcOKJJxaGDh36L2sDgKbwiU98otCnT59Ga9k555xT6NOnT6FQKBR69OhR+PznP1/se/nllwtJCuPGjSu2zZ49u5Ck+D3Fur5fADY+d6LDVmDBggX57Gc/m5122imVlZXZcccdkySLFi3K/Pnzs8cee6SioqI4/h/vaEuSxx9/PPfff3/atWtXPHr37p0kjbaFAYDNyT9b/z70oQ/lsMMOy5QpU5IkCxcuzOzZszNy5Mgkyfz589OyZcvss88+xfl23nnnbLfddu/pvefPn59u3bqlpqam2Pbu9fX9mDdvXg499NB19j3zzDNp2bJl+vfvX2zr1KlTdttttzzzzDNJktNPPz0XXXRRDjzwwFxwwQV54oknimM35Hr/5JNPZs2aNdl1110bzTdz5sziXEcccURatWqV22+/PUnyy1/+MpWVlRk0aFCxnmeffTbt27cvnt+xY8esWrXK9x8AbDEOOOCARluzDRgwIAsWLMiaNWuSJHvssUexr7q6OknSr1+/tdre66fhgI3Dg0VhK3D00UenR48eueaaa9K1a9c0NDSkb9++7/mj0CtWrMjRRx+diy++eK2+Ll26bOhyAWCD+Ffr38iRI3P66afniiuuyNSpU9OvX79GP7Ruai1atFjro9rvbMPyjg/6ILF///d/z+DBg3PnnXfmN7/5TSZOnJjvfve7Oe200zboer9ixYpss802mTt3brbZZptGfe9sH9O6dev827/9W6ZOnZoRI0Zk6tSpOf7449OyZcviHPvuu2/xFx3/6EMf+tB61QMAm6tWrVoV//xO2L6utoaGhk1bGNCIO9GhmXvllVcyf/78nHfeeTn00EPTp0+fvPbaa8X+3XbbLU8++WTq6+uLbXPmzGk0xz777JOnnnoqO+64Y3beeedGR9u2bTfZtQDAe/Wv1r8kGTp0aFatWpVp06Zl6tSpxbvQk7+vj2+//XYee+yxYtuzzz671hyl7Lbbblm8eHGWLl1abHv3+vpuH/rQh/L6669n5cqVxbZ/fMh38ve71aZPn77O8/v06ZO33347Dz30ULHtna/D7rvvXmzr1q1bvvzlL+eWW27J1772tVxzzTVJNux6v/fee2fNmjVZtmzZWnP94935I0eOzLRp0/LUU0/lvvvua/R3sM8++2TBggXp3LnzWnNUVVWtVz0A0FT+cV1OkgcffDC77LLLWr9kBjZvQnRo5rbbbrt06tQpV199dZ599tncd999GTNmTLH/c5/7XBoaGjJq1Kg888wzufvuu3PppZcm+X+/8R49enReffXVfPazn82cOXPy3HPP5e67785JJ51U/AgaAGxO/tX6lyRt27bNsGHDMm7cuDzzzDP57Gc/W+zr3bt3Bg0alFGjRuXhhx/OY489llGjRqVNmzaNPpJdyqc+9an06tUrJ554Yp544ok88MADOe+885Kk5Pn9+/fPtttum//6r//Kc889l6lTp+bHP/5xozEXXHBBfvazn+WCCy7IM888U3w4aJLssssuGTp0aE455ZT87ne/y+OPP57Pf/7z+fCHP5yhQ4cmSc4888zcfffdWbhwYR599NHcf//96dOnT5INu97vuuuuGTlyZE444YTccsstWbhwYR5++OFMnDgxd955Z3HcwQcfnJqamowcOTI9e/ZstBXNyJEjs/3222fo0KH57W9/m4ULF2bGjBk5/fTT85e//GW96gGAprJo0aKMGTMm8+fPz89+9rNcccUVOeOMM5q6LGA9CdGhmWvRokVuvPHGzJ07N3379s1ZZ52V//7v/y72V1ZW5o477si8efOy11575dxzz83555+fJMV90rt27ZoHHngga9asyWGHHZZ+/frlzDPPTIcOHdKihX9GANj8/Kv17x0jR47M448/no9//OPp3r17o74bbrgh1dXVOfjgg3PMMcfklFNOSfv27Rs9R6SUbbbZJrfddltWrFiR/fffP//+7/+ec889N0lKnt+xY8f89Kc/za9//ev069cvP/vZz/LNb36z0ZiBAwfm5ptvzu2335699torhxxySB5++OFi/3XXXZd99903Rx11VAYMGJBCoZBf//rXxY+Fr1mzJqNHj06fPn1y+OGHZ9ddd82VV16ZZMOv99ddd11OOOGEfO1rX8tuu+2WYcOGZc6cOY2+zmVlZfnsZz+bxx9/vNFd6Emy7bbbZtasWenevXuOPfbY9OnTJyeffHJWrVqVysrK9a4HAJrCCSeckDfffDMf/ehHM3r06JxxxhkZNWpUU5cFrKeywrs3XgS2elOmTMlJJ52U2traD7z3KgA0F3/5y1/SrVu33HvvvSUf7vnPPPDAAznooIPy7LPPplevXhuhQgAAYGPwYFEgN9xwQ3baaad8+MMfzuOPP55zzjknxx13nAAdgK3afffdlxUrVqRfv355+eWXc/bZZ2fHHXfMwQcf/J7Ov/XWW9OuXbvssssuefbZZ3PGGWfkwAMPFKADAMAWRogOZMmSJTn//POzZMmSdOnSJZ/5zGcyYcKEpi4LAJrU6tWr81//9V/585//nPbt2+djH/tYpkyZklatWmXKlCn5j//4j3We16NHjzz11FN5/fXXc84552TRokXZfvvtM2jQoHz3u9/dxFexYSxatKjRw0nf7emnn15rOxwAAGgubOcCAADr6fXXX8/SpUvX2deqVav06NFjE1e0cb399tt5/vnnS/bvuOOOadnS/TkAADRPQnQAAAAAACihRVMXAAAAAAAAmyshOgAAAAAAlCBEBwAAAACAEoToAAAAAABQghAdAAAAAABKEKIDAAAAAEAJQnQAAAAAAChBiA4AAAAAACX8f+U3LgqAEG6qAAAAAElFTkSuQmCC", "text/plain": [ "Теперь можно и к конструированию признаков приступить) данные ведь сбалансированы (в выборках)
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Унитарное кодирование категориальных признаков
Применяем к категориальным (НЕ числовым) признакам: 'gender', 'ever_married', 'work_type', 'Residence_type', 'smoking_status'
\n", " | id | \n", "age | \n", "hypertension | \n", "heart_disease | \n", "avg_glucose_level | \n", "bmi | \n", "stroke | \n", "gender_Male | \n", "gender_Other | \n", "ever_married_Yes | \n", "work_type_Never_worked | \n", "work_type_Private | \n", "work_type_Self-employed | \n", "work_type_children | \n", "Residence_type_Urban | \n", "smoking_status_formerly smoked | \n", "smoking_status_never smoked | \n", "smoking_status_smokes | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "9046 | \n", "67.0 | \n", "0 | \n", "1 | \n", "169.3575 | \n", "36.6 | \n", "1 | \n", "True | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "True | \n", "False | \n", "False | \n", "
1 | \n", "51676 | \n", "61.0 | \n", "0 | \n", "0 | \n", "169.3575 | \n", "28.1 | \n", "1 | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "False | \n", "True | \n", "False | \n", "
2 | \n", "31112 | \n", "80.0 | \n", "0 | \n", "1 | \n", "105.9200 | \n", "32.5 | \n", "1 | \n", "True | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "False | \n", "False | \n", "False | \n", "True | \n", "False | \n", "
3 | \n", "60182 | \n", "49.0 | \n", "0 | \n", "0 | \n", "169.3575 | \n", "34.4 | \n", "1 | \n", "False | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "
4 | \n", "1665 | \n", "79.0 | \n", "1 | \n", "0 | \n", "169.3575 | \n", "24.0 | \n", "1 | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "False | \n", "True | \n", "False | \n", "
5 | \n", "56669 | \n", "81.0 | \n", "0 | \n", "0 | \n", "169.3575 | \n", "29.0 | \n", "1 | \n", "True | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "True | \n", "False | \n", "False | \n", "
6 | \n", "53882 | \n", "74.0 | \n", "1 | \n", "1 | \n", "70.0900 | \n", "27.4 | \n", "1 | \n", "True | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "False | \n", "False | \n", "False | \n", "True | \n", "False | \n", "
7 | \n", "10434 | \n", "69.0 | \n", "0 | \n", "0 | \n", "94.3900 | \n", "22.8 | \n", "1 | \n", "False | \n", "False | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "
8 | \n", "27419 | \n", "59.0 | \n", "0 | \n", "0 | \n", "76.1500 | \n", "28.1 | \n", "1 | \n", "False | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "False | \n", "False | \n", "False | \n", "False | \n", "False | \n", "
9 | \n", "60491 | \n", "78.0 | \n", "0 | \n", "0 | \n", "58.5700 | \n", "24.2 | \n", "1 | \n", "False | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "False | \n", "
Дискретизация числовых признаков
Числовые признаки, такие как 'age', 'avg_glucose_level', 'bmi', можно разделить на категории (биннинг).
Ручной синтез новых признаков
\n",
"
\n", " | age_glucose_index | \n", "bmi_glucose_ratio | \n", "
---|---|---|
0 | \n", "11346.9525 | \n", "0.216111 | \n", "
1 | \n", "10330.8075 | \n", "0.165921 | \n", "
2 | \n", "8473.6000 | \n", "0.306835 | \n", "
3 | \n", "8298.5175 | \n", "0.203121 | \n", "
4 | \n", "13379.2425 | \n", "0.141712 | \n", "
5 | \n", "13717.9575 | \n", "0.171235 | \n", "
6 | \n", "5186.6600 | \n", "0.390926 | \n", "
7 | \n", "6512.9100 | \n", "0.241551 | \n", "
8 | \n", "4492.8500 | \n", "0.369009 | \n", "
9 | \n", "4568.4600 | \n", "0.413181 | \n", "
Масштабирование признаков
Применяем нормализацию (для сжатия в диапазон [0, 1]) и стандартизацию (для приведения к среднему 0 и стандартному отклонению 1)
\n", " | id | \n", "age | \n", "hypertension | \n", "heart_disease | \n", "avg_glucose_level | \n", "bmi | \n", "stroke | \n", "gender_Male | \n", "gender_Other | \n", "ever_married_Yes | \n", "work_type_Never_worked | \n", "work_type_Private | \n", "work_type_Self-employed | \n", "work_type_children | \n", "Residence_type_Urban | \n", "smoking_status_formerly smoked | \n", "smoking_status_never smoked | \n", "smoking_status_smokes | \n", "age_glucose_index | \n", "bmi_glucose_ratio | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "9046 | \n", "0.816895 | \n", "0 | \n", "1 | \n", "1.000000 | \n", "0.730556 | \n", "1 | \n", "True | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "True | \n", "False | \n", "False | \n", "11346.9525 | \n", "0.216111 | \n", "
1 | \n", "51676 | \n", "0.743652 | \n", "0 | \n", "0 | \n", "1.000000 | \n", "0.494444 | \n", "1 | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "False | \n", "True | \n", "False | \n", "10330.8075 | \n", "0.165921 | \n", "
2 | \n", "31112 | \n", "0.975586 | \n", "0 | \n", "1 | \n", "0.444688 | \n", "0.616667 | \n", "1 | \n", "True | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "False | \n", "False | \n", "False | \n", "True | \n", "False | \n", "8473.6000 | \n", "0.306835 | \n", "
3 | \n", "60182 | \n", "0.597168 | \n", "0 | \n", "0 | \n", "1.000000 | \n", "0.669444 | \n", "1 | \n", "False | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "8298.5175 | \n", "0.203121 | \n", "
4 | \n", "1665 | \n", "0.963379 | \n", "1 | \n", "0 | \n", "1.000000 | \n", "0.380556 | \n", "1 | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "False | \n", "True | \n", "False | \n", "13379.2425 | \n", "0.141712 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
5105 | \n", "18234 | \n", "0.975586 | \n", "1 | \n", "0 | \n", "0.250618 | \n", "0.494444 | \n", "0 | \n", "False | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "6700.0000 | \n", "0.335522 | \n", "
5106 | \n", "44873 | \n", "0.987793 | \n", "0 | \n", "0 | \n", "0.613459 | \n", "0.825000 | \n", "0 | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "10141.2000 | \n", "0.319489 | \n", "
5107 | \n", "19723 | \n", "0.426270 | \n", "0 | \n", "0 | \n", "0.243965 | \n", "0.563889 | \n", "0 | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "False | \n", "True | \n", "False | \n", "2904.6500 | \n", "0.368719 | \n", "
5108 | \n", "37544 | \n", "0.621582 | \n", "0 | \n", "0 | \n", "0.973148 | \n", "0.425000 | \n", "0 | \n", "True | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "8480.7900 | \n", "0.153948 | \n", "
5109 | \n", "44679 | \n", "0.536133 | \n", "0 | \n", "0 | \n", "0.264011 | \n", "0.441667 | \n", "0 | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "False | \n", "3752.3200 | \n", "0.307223 | \n", "
5110 rows × 20 columns
\n", "Конструирование признаков с применением фреймворка Featuretools
" ] }, { "cell_type": "code", "execution_count": 339, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Столбцы в data: ['id', 'gender', 'age', 'hypertension', 'heart_disease', 'ever_married', 'work_type', 'Residence_type', 'avg_glucose_level', 'bmi', 'smoking_status', 'stroke']\n", "id 0\n", "gender 0\n", "age 0\n", "hypertension 0\n", "heart_disease 0\n", "ever_married 0\n", "work_type 0\n", "Residence_type 0\n", "avg_glucose_level 0\n", "bmi 0\n", "smoking_status 0\n", "stroke 0\n", "dtype: int64\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "d:\\code\\mai\\labs\\AIM-PIbd-31-Bakalskaya-E-D\\lab_3\\venv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", " pd.to_datetime(\n", "d:\\code\\mai\\labs\\AIM-PIbd-31-Bakalskaya-E-D\\lab_3\\venv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", " pd.to_datetime(\n", "d:\\code\\mai\\labs\\AIM-PIbd-31-Bakalskaya-E-D\\lab_3\\venv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", " pd.to_datetime(\n", "d:\\code\\mai\\labs\\AIM-PIbd-31-Bakalskaya-E-D\\lab_3\\venv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", " pd.to_datetime(\n", "d:\\code\\mai\\labs\\AIM-PIbd-31-Bakalskaya-E-D\\lab_3\\venv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", " pd.to_datetime(\n", "d:\\code\\mai\\labs\\AIM-PIbd-31-Bakalskaya-E-D\\lab_3\\venv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", " pd.to_datetime(\n", "d:\\code\\mai\\labs\\AIM-PIbd-31-Bakalskaya-E-D\\lab_3\\venv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", " pd.to_datetime(\n", "d:\\code\\mai\\labs\\AIM-PIbd-31-Bakalskaya-E-D\\lab_3\\venv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", " pd.to_datetime(\n", "d:\\code\\mai\\labs\\AIM-PIbd-31-Bakalskaya-E-D\\lab_3\\venv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", " pd.to_datetime(\n", "d:\\code\\mai\\labs\\AIM-PIbd-31-Bakalskaya-E-D\\lab_3\\venv\\Lib\\site-packages\\woodwork\\type_sys\\utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", " pd.to_datetime(\n", "d:\\code\\mai\\labs\\AIM-PIbd-31-Bakalskaya-E-D\\lab_3\\venv\\Lib\\site-packages\\featuretools\\synthesis\\deep_feature_synthesis.py:169: UserWarning: Only one dataframe in entityset, changing max_depth to 1 since deeper features cannot be created\n", " warnings.warn(\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Сгенерированные признаки:\n", " gender age hypertension heart_disease ever_married work_type \\\n", "id \n", "9046 Male 67.0 0 1 True Private \n", "51676 Female 61.0 0 0 True Self-employed \n", "31112 Male 80.0 0 1 True Private \n", "60182 Female 49.0 0 0 True Private \n", "1665 Female 79.0 1 0 True Self-employed \n", "\n", " Residence_type avg_glucose_level bmi smoking_status stroke \n", "id \n", "9046 Urban 169.3575 36.6 formerly smoked 1 \n", "51676 Rural 169.3575 28.1 never smoked 1 \n", "31112 Rural 105.9200 32.5 never smoked 1 \n", "60182 Urban 169.3575 34.4 smokes 1 \n", "1665 Rural 169.3575 24.0 never smoked 1 \n" ] }, { "data": { "text/html": [ "\n", " | gender | \n", "age | \n", "hypertension | \n", "heart_disease | \n", "ever_married | \n", "work_type | \n", "Residence_type | \n", "avg_glucose_level | \n", "bmi | \n", "smoking_status | \n", "stroke | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|
id | \n", "\n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " |
9046 | \n", "Male | \n", "67.0 | \n", "0 | \n", "1 | \n", "True | \n", "Private | \n", "Urban | \n", "169.3575 | \n", "36.6 | \n", "formerly smoked | \n", "1 | \n", "
51676 | \n", "Female | \n", "61.0 | \n", "0 | \n", "0 | \n", "True | \n", "Self-employed | \n", "Rural | \n", "169.3575 | \n", "28.1 | \n", "never smoked | \n", "1 | \n", "
31112 | \n", "Male | \n", "80.0 | \n", "0 | \n", "1 | \n", "True | \n", "Private | \n", "Rural | \n", "105.9200 | \n", "32.5 | \n", "never smoked | \n", "1 | \n", "
60182 | \n", "Female | \n", "49.0 | \n", "0 | \n", "0 | \n", "True | \n", "Private | \n", "Urban | \n", "169.3575 | \n", "34.4 | \n", "smokes | \n", "1 | \n", "
1665 | \n", "Female | \n", "79.0 | \n", "1 | \n", "0 | \n", "True | \n", "Self-employed | \n", "Rural | \n", "169.3575 | \n", "24.0 | \n", "never smoked | \n", "1 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
18234 | \n", "Female | \n", "80.0 | \n", "1 | \n", "0 | \n", "True | \n", "Private | \n", "Urban | \n", "83.7500 | \n", "28.1 | \n", "never smoked | \n", "0 | \n", "
44873 | \n", "Female | \n", "81.0 | \n", "0 | \n", "0 | \n", "True | \n", "Self-employed | \n", "Urban | \n", "125.2000 | \n", "40.0 | \n", "never smoked | \n", "0 | \n", "
19723 | \n", "Female | \n", "35.0 | \n", "0 | \n", "0 | \n", "True | \n", "Self-employed | \n", "Rural | \n", "82.9900 | \n", "30.6 | \n", "never smoked | \n", "0 | \n", "
37544 | \n", "Male | \n", "51.0 | \n", "0 | \n", "0 | \n", "True | \n", "Private | \n", "Rural | \n", "166.2900 | \n", "25.6 | \n", "formerly smoked | \n", "0 | \n", "
44679 | \n", "Female | \n", "44.0 | \n", "0 | \n", "0 | \n", "True | \n", "Govt_job | \n", "Urban | \n", "85.2800 | \n", "26.2 | \n", "Unknown | \n", "0 | \n", "
5110 rows × 11 columns
\n", "Так, теперь разобьем на выборки
" ] }, { "cell_type": "code", "execution_count": 340, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Размеры выборок:\n", "Обучающая выборка: (4088, 18)\n", "Тестовая выборка: (511, 18)\n", "Контрольная выборка: (511, 18)\n" ] }, { "data": { "text/html": [ "\n", " | id | \n", "age | \n", "hypertension | \n", "heart_disease | \n", "avg_glucose_level | \n", "bmi | \n", "stroke | \n", "gender_Male | \n", "gender_Other | \n", "ever_married_Yes | \n", "work_type_Never_worked | \n", "work_type_Private | \n", "work_type_Self-employed | \n", "work_type_children | \n", "Residence_type_Urban | \n", "smoking_status_formerly smoked | \n", "smoking_status_never smoked | \n", "smoking_status_smokes | \n", "age_glucose_index | \n", "bmi_glucose_ratio | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "9046 | \n", "0.816895 | \n", "0 | \n", "1 | \n", "1.000000 | \n", "0.730556 | \n", "1 | \n", "True | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "True | \n", "False | \n", "False | \n", "11346.9525 | \n", "0.216111 | \n", "
1 | \n", "51676 | \n", "0.743652 | \n", "0 | \n", "0 | \n", "1.000000 | \n", "0.494444 | \n", "1 | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "False | \n", "True | \n", "False | \n", "10330.8075 | \n", "0.165921 | \n", "
2 | \n", "31112 | \n", "0.975586 | \n", "0 | \n", "1 | \n", "0.444688 | \n", "0.616667 | \n", "1 | \n", "True | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "False | \n", "False | \n", "False | \n", "True | \n", "False | \n", "8473.6000 | \n", "0.306835 | \n", "
3 | \n", "60182 | \n", "0.597168 | \n", "0 | \n", "0 | \n", "1.000000 | \n", "0.669444 | \n", "1 | \n", "False | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "8298.5175 | \n", "0.203121 | \n", "
4 | \n", "1665 | \n", "0.963379 | \n", "1 | \n", "0 | \n", "1.000000 | \n", "0.380556 | \n", "1 | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "False | \n", "True | \n", "False | \n", "13379.2425 | \n", "0.141712 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
5105 | \n", "18234 | \n", "0.975586 | \n", "1 | \n", "0 | \n", "0.250618 | \n", "0.494444 | \n", "0 | \n", "False | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "6700.0000 | \n", "0.335522 | \n", "
5106 | \n", "44873 | \n", "0.987793 | \n", "0 | \n", "0 | \n", "0.613459 | \n", "0.825000 | \n", "0 | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "10141.2000 | \n", "0.319489 | \n", "
5107 | \n", "19723 | \n", "0.426270 | \n", "0 | \n", "0 | \n", "0.243965 | \n", "0.563889 | \n", "0 | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "False | \n", "True | \n", "False | \n", "2904.6500 | \n", "0.368719 | \n", "
5108 | \n", "37544 | \n", "0.621582 | \n", "0 | \n", "0 | \n", "0.973148 | \n", "0.425000 | \n", "0 | \n", "True | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "8480.7900 | \n", "0.153948 | \n", "
5109 | \n", "44679 | \n", "0.536133 | \n", "0 | \n", "0 | \n", "0.264011 | \n", "0.441667 | \n", "0 | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "False | \n", "3752.3200 | \n", "0.307223 | \n", "
5110 rows × 20 columns
\n", "Напишем функцию и сделаем аугментацию данных
" ] }, { "cell_type": "code", "execution_count": 342, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Данные ДО аугментации в ОБУЧАЮЩЕЙ ВЫБОРКЕ (60-80% данных)\n", "\n", "stroke\n", "0 3889\n", "1 199\n", "Name: count, dtype: int64\n", "\n", "После оверсемплинга\n", "\n", "stroke\n", "0 3889\n", "1 777\n", "Name: count, dtype: int64\n", "\n", "После балансировки данных (андерсемплинга)\n", "\n", "stroke\n", "0 777\n", "1 777\n", "Name: count, dtype: int64\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAGbCAYAAAAr/4yjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA8YklEQVR4nO3deXhTVcIG8PfeJE3apmVpaUsBoew7aNlBdlAEFRFBEUX8UGdcZ3R0hnHcdRwHR0Vxm3EEQcYFERxEFkGQVUD2nQItlK2lBUq3NNv5/ii9Q2iBLklO7s378+mDTXPvfZOmfXvOuUkUIYQAERERAFV2ACIiCh0sBSIi0rAUiIhIw1IgIiINS4GIiDQsBSIi0rAUiIhIw1IgIiINS4GIiDQsBSKqkYcffhhDhgyRHUMzY8YMKIqCX3/9tcb7crlcaNSoET744AM/JNMHw5dC2QOk7MNms6Fly5Z49NFHkZWVJTseka6lp6fjk08+wZ///Ocqbbdu3Tq8+OKLOHfuXGCC+YnFYsGTTz6J1157DQ6HQ3acoDB8KZR5+eWXMWvWLEybNg29evXChx9+iJ49e6KoqEh2NCLdmjp1KlJSUjBgwIAqbbdu3Tq89NJLIV8KADBx4kTk5OTgP//5j+woQRE2pTBs2DCMHz8ekyZNwowZM/C73/0O6enp+O6772RHI9Ill8uF2bNnY8yYMQE9jtfrlfpXeu3atTF06FDMmDFDWoZgCptSuNTAgQMBlA5/AeDMmTP4wx/+gA4dOsButyM2NhbDhg3D9u3by23rcDjw4osvomXLlrDZbKhfvz5GjRqFQ4cOAQAyMjJ8pqwu/ejfv7+2r5UrV0JRFHz11Vf485//jKSkJERHR+OWW25BZmZmuWNv2LABN954I2rVqoWoqCj069cPa9eurfA29u/fv8Ljv/jii+Wu+/nnnyM1NRWRkZGoW7cu7rzzzgqPf6XbdjGv14t33nkH7dq1g81mQ2JiIh566CGcPXvW53pNmjTBiBEjyh3n0UcfLbfPirJPmTKl3H0KACUlJXjhhRfQvHlzWK1WNGrUCM888wxKSkoqvK8u1r9//3L7e+2116Cqarm/Fit7f7z55pvo1asX4uLiEBkZidTUVHzzzTcVHv/zzz9Ht27dEBUVhTp16qBv375YunSpz3UWLVqEfv36ISYmBrGxsejatWu5bHPmzNG+p/Hx8Rg/fjyOHz/uc5377rvPJ3OdOnXQv39/rF69+qr305o1a5CTk4PBgweX+9p7772Hdu3aabehS5cuWr4XX3wRTz/9NAAgJSVFO3ZGRgaA0u/zo48+itmzZ6Ndu3awWq1YvHgxAGDr1q0YNmwYYmNjYbfbMWjQIPzyyy9XzXr27Fl069YNDRs2xP79+wFU7TEyZMgQrFmzBmfOnLnqsfTOLDuALGW/wOPi4gAAhw8fxvz583HHHXcgJSUFWVlZ+Pjjj9GvXz/s2bMHycnJAACPx4MRI0Zg+fLluPPOO/HEE08gPz8fP/74I3bt2oVmzZppx7jrrrtw0003+Rx38uTJFeZ57bXXoCgK/vjHPyI7OxvvvPMOBg8ejG3btiEyMhIA8NNPP2HYsGFITU3FCy+8AFVVMX36dAwcOBCrV69Gt27dyu23YcOGeP311wEABQUF+O1vf1vhsZ977jmMGTMGkyZNwunTp/Hee++hb9++2Lp1K2rXrl1umwcffBDXX389AODbb7/FvHnzfL7+0EMPYcaMGZg4cSIef/xxpKenY9q0adi6dSvWrl0Li8VS4f1QFefOndNu28W8Xi9uueUWrFmzBg8++CDatGmDnTt34u2338aBAwcwf/78Kh1n+vTp+Mtf/oJ//OMfGDduXIXXudr9MXXqVNxyyy24++674XQ68eWXX+KOO+7A999/j+HDh2vXe+mll/Diiy+iV69eePnllxEREYENGzbgp59+wtChQwGUrpPdf//9aNeuHSZPnozatWtj69atWLx4sZav7L7v2rUrXn/9dWRlZWHq1KlYu3Ztue9pfHw83n77bQDAsWPHMHXqVNx0003IzMys8HtfZt26dVAUBddee63P5f/617/w+OOPY/To0XjiiSfgcDiwY8cObNiwAePGjcOoUaNw4MABfPHFF3j77bcRHx8PAKhXr562j59++glff/01Hn30UcTHx6NJkybYvXs3rr/+esTGxuKZZ56BxWLBxx9/jP79++Pnn39G9+7dK8yZk5ODIUOG4MyZM/j555/RrFmzKj9GUlNTIYTAunXrKvwjxlCEwU2fPl0AEMuWLROnT58WmZmZ4ssvvxRxcXEiMjJSHDt2TAghhMPhEB6Px2fb9PR0YbVaxcsvv6xd9umnnwoA4q233ip3LK/Xq20HQEyZMqXcddq1ayf69eunfb5ixQoBQDRo0ECcP39eu/zrr78WAMTUqVO1fbdo0ULccMMN2nGEEKKoqEikpKSIIUOGlDtWr169RPv27bXPT58+LQCIF154QbssIyNDmEwm8dprr/lsu3PnTmE2m8tdnpaWJgCIzz77TLvshRdeEBc/lFavXi0AiNmzZ/tsu3jx4nKXN27cWAwfPrxc9kceeURc+vC8NPszzzwjEhISRGpqqs99OmvWLKGqqli9erXP9h999JEAINauXVvueBfr16+ftr+FCxcKs9ksnnrqqQqvW5n7Q4jS79PFnE6naN++vRg4cKDPvlRVFbfddlu5x2LZ9/zcuXMiJiZGdO/eXRQXF1d4HafTKRISEkT79u19rvP9998LAOL555/XLpswYYJo3Lixz37++c9/CgBi48aNFd7mMuPHjxdxcXHlLr/11ltFu3btrrjtlClTBACRnp5e7msAhKqqYvfu3T6Xjxw5UkRERIhDhw5pl504cULExMSIvn37apeV/cxv2rRJnDx5UrRr1040bdpUZGRkaNep6mPkxIkTAoB44403rni7jCBspo8GDx6MevXqoVGjRrjzzjtht9sxb948NGjQAABgtVqhqqV3h8fjQW5uLux2O1q1aoUtW7Zo+5k7dy7i4+Px2GOPlTvGpVMGVXHvvfciJiZG+3z06NGoX78+fvjhBwDAtm3bkJaWhnHjxiE3Nxc5OTnIyclBYWEhBg0ahFWrVsHr9frs0+FwwGazXfG43377LbxeL8aMGaPtMycnB0lJSWjRogVWrFjhc32n0wmg9P66nDlz5qBWrVoYMmSIzz5TU1Nht9vL7dPlcvlcLycn56pzyMePH8d7772H5557Dna7vdzx27Rpg9atW/vss2zK8NLjX87GjRsxZswY3H777ZgyZUqF16nM/QFAG+0BpVMZeXl5uP76630eW/Pnz4fX68Xzzz+vPRbLlD22fvzxR+Tn5+NPf/pTue9t2XV+/fVXZGdn4+GHH/a5zvDhw9G6dWssXLjQZzuv16vdR9u2bcPMmTNRv359tGnT5oq3KTc3F3Xq1Cl3ee3atXHs2DFs2rTpittfSb9+/dC2bVvtc4/Hg6VLl2LkyJFo2rSpdnn9+vUxbtw4rFmzBufPn/fZx7Fjx9CvXz+4XC6sWrUKjRs31r5W1cdI2e3Mycmp9m3Si7CZPnr//ffRsmVLmM1mJCYmolWrVj4/eF6vF1OnTsUHH3yA9PR0eDwe7WtlU0xA6bRTq1atYDb7965r0aKFz+eKoqB58+baPGtaWhoAYMKECZfdR15ens8PaU5OTrn9XiotLQ1CiMte79JpnrKzRS79RXzpPvPy8pCQkFDh17Ozs30+X7p0qc/UQWW88MILSE5OxkMPPVRubj4tLQ179+697D4vPX5Fjh8/juHDh6OwsBC5ubmXLfzK3B8A8P333+PVV1/Ftm3bfOasL97voUOHoKqqzy/DS5VNe7Zv3/6y1zly5AgAoFWrVuW+1rp1a6xZs8bnsszMTJ/7qn79+pg7d+5VbxMAiAreuPGPf/wjli1bhm7duqF58+YYOnQoxo0bh969e191f2VSUlJ8Pj99+jSKiooqvE1t2rSB1+tFZmYm2rVrp11+zz33wGw2Y+/evUhKSvLZpqqPkbLbWZM//PQibEqhW7du6NKly2W//te//hXPPfcc7r//frzyyiuoW7cuVFXF7373u3J/gctQlmHKlCno3Llzhde5+IfY6XTi5MmTV31SkdfrhaIoWLRoEUwm0xX3CQCnTp0CgHI/ZJfuMyEhAbNnz67w65f+IHbv3h2vvvqqz2XTpk277Jlhe/fuxYwZM/D5559XuDbh9XrRoUMHvPXWWxVu36hRo8tmL3Pw4EFcd911ePvtt3HPPffgs88+q7CQK3N/rF69Grfccgv69u2LDz74APXr14fFYsH06dND4jTHxMREfP755wBK/7D49NNPceONN2LNmjXo0KHDZbeLi4srd+IAUPpLev/+/fj++++xePFizJ07Fx988AGef/55vPTSS5XKdPHIqrpGjRqFmTNnYurUqeXWnqr6GCm7nWXrH0YWNqVwNd988w0GDBiAf//73z6Xnzt3zueB0KxZM2zYsAEul8svi6VlykYCZYQQOHjwIDp27KgdFwBiY2MrPNvjUtu3b4fL5bpiEZbtVwiBlJQUtGzZ8qr73bNnDxRFqfAvtov3uWzZMvTu3btSP9zx8fHlbtOVFoMnT56Mzp07Y+zYsZc9/vbt2zFo0KBq/2VXNnWXmJiI7777Dk899RRuuummcoVWmftj7ty5sNlsWLJkic800/Tp08vl9nq92LNnz2WLv+xxsGvXLjRv3rzC65RNk+zfv1+bDimzf/9+n2kUALDZbD73/y233IK6deti2rRp+Pjjjy97u1q3bo3Zs2cjLy8PtWrV8vladHQ0xo4di7Fjx8LpdGLUqFF47bXXMHnyZNhstip/X+rVq4eoqCjtzKGL7du3D6qqlvtF/thjj6F58+Z4/vnnUatWLfzpT3/SvlbVx0jZWYpXm1IzgrBZU7gak8lUbig8Z86ccqfw3X777cjJycG0adPK7aOioXRlzZw5E/n5+drn33zzDU6ePIlhw4YBKD37oVmzZnjzzTdRUFBQbvvTp0+Xy24yma56psSoUaNgMpnw0ksvlcsvhEBubq72udvtxty5c9GtW7crTi2MGTMGHo8Hr7zySrmvud3uGj1haf369fjuu+/wt7/97bI/zGPGjMHx48fxr3/9q9zXiouLUVhYeNXjtGzZEomJiQBKT6/0er144oknfK5T2fvDZDJBURSfKcmMjIxyxTdy5EioqoqXX3653Oi07HszdOhQxMTE4PXXXy+37lJ2nS5duiAhIQEfffSRz1TVokWLsHfvXp+znSridDrhdruvevpuz549IYTA5s2bfS6/+DEDABEREWjbti2EEHC5XABKSwNApR8LJpMJQ4cOxXfffadNqQJAVlYW/vOf/6BPnz6IjY0tt91zzz2HP/zhD5g8eTI+/PBD7fKqPkY2b94MRVHQs2fPSuXVM44ULhgxYgRefvllTJw4Eb169cLOnTsxe/Zsn0UtoHRBeObMmXjyySexceNGXH/99SgsLMSyZcvw8MMP49Zbb63W8evWrYs+ffpg4sSJyMrKwjvvvIPmzZvjgQceAACoqopPPvkEw4YNQ7t27TBx4kQ0aNAAx48fx4oVKxAbG4sFCxagsLAQ77//Pt599120bNkSK1eu1I5RViY7duzA+vXr0bNnTzRr1gyvvvoqJk+ejIyMDIwcORIxMTFIT0/HvHnz8OCDD+IPf/gDli1bhueeew47duzAggULrnhb+vXrh4ceegivv/46tm3bhqFDh8JisSAtLQ1z5szB1KlTMXr06GrdT0uXLsWQIUOuOFq655578PXXX+M3v/kNVqxYgd69e8Pj8WDfvn34+uuvsWTJkquOoC6WlJSEKVOmYNKkSRg/fjxuuummKt0fw4cPx1tvvYUbb7wR48aNQ3Z2Nt5//300b94cO3bs0K7XvHlzPPvss3jllVdw/fXXY9SoUbBardi0aROSk5Px+uuvIzY2Fm+//TYmTZqErl27Yty4cahTpw62b9+OoqIifPbZZ7BYLHjjjTcwceJE9OvXD3fddZd2SmqTJk3w+9//3idfYWGhz/TRrFmz4HA4cNttt13xdvXp0wdxcXFYtmyZz4hk6NChSEpKQu/evZGYmIi9e/di2rRpGD58uHYyRWpqKgDg2WefxZ133gmLxYKbb75ZK4uKvPrqq/jxxx/Rp08fPPzwwzCbzfj4449RUlKCv//975fdbsqUKcjLy8MjjzyCmJgYjB8/vsqPkR9//BG9e/f2WV80LCnnPAXRxaenXYnD4RBPPfWUqF+/voiMjBS9e/cW69ev9zk9sUxRUZF49tlnRUpKirBYLCIpKUmMHj1aO1WuOqekfvHFF2Ly5MkiISFBREZGiuHDh4sjR46U237r1q1i1KhRIi4uTlitVtG4cWMxZswYsXz5cp9jX+1jwoQJPvudO3eu6NOnj4iOjhbR0dGidevW4pFHHhH79+8XQgjx2GOPib59+4rFixeXy1TRKZhClJ7amJqaKiIjI0VMTIzo0KGDeOaZZ8SJEye061T1lFRFUcTmzZt9Lq/oe+R0OsUbb7wh2rVrJ6xWq6hTp45ITU0VL730ksjLyyt3vKvtTwghBg4cKK655hqRn59f5fvj3//+t2jRooWwWq2idevWYvr06Ze93z799FNx7bXXarn79esnfvzxR5/r/Pe//xW9evUSkZGRIjY2VnTr1k188cUXPtf56quvtP3UrVtX3H333dop2GUmTJjg87iw2+3iuuuuE7NmzbrifVTm8ccfF82bN/e57OOPPxZ9+/bVHqPNmjUTTz/9dLn7/ZVXXhENGjQQqqr6nJ4KQDzyyCMVHm/Lli3ihhtuEHa7XURFRYkBAwaIdevW+Vynop95j8cj7rrrLmE2m8X8+fOFEJV/jJw7d05ERESITz75pFL3id4pQtRgzoNqbOXKlRgwYADmzJlT7b+eL5aRkYGUlBSkp6ejSZMmFV7nxRdfREZGRtg8bZ8C5/Dhw2jdujUWLVqEQYMGyY4TEO+88w7+/ve/49ChQ35ZAA91XFMgompr2rQp/u///g9/+9vfZEcJCJfLhbfeegt/+ctfwqIQAK4pGI7dbsfdd999xYXPjh07ai/bQVRTFy/gGo3FYsHRo0dlxwgqloLBxMfHa4uGlzNq1KggpSEiveGaAhERabimQEREGpYCERFpWApERKRhKRARkYalQEREGpYCERFpWApERKRhKRARkYalQEREGpYCERFpWApERKRhKRARkYalQEREGpYCERFpWApERKRhKRARkYalQEREGpYCERFpWApERKRhKRARkYalQEREGpYCERFpWApERKRhKRARkYalQEREGpYCERFpWApERKRhKRARkYalQEREGpYCERFpWApERKRhKRARkYalQEREGpYCERFpWApERKRhKRARkYalQEREGpYCERFpWApERKQxyw5AFAhu4UaRtwgFogCF3kIUegtRLIrhER54L/5PlP4rIKBc+E+FClVRUfafAgURSgSi1CjYVTuilWhEq9GIVCKhKIrsm0rkVywF0hWv8CLfm49CUaj9si/wFqBIFJX+e6EISkRJwLOoUBGlRCFaLS2JsrK4+HO7akeUGhXwLET+ogghhOwQRBXxCi9yPbnI8mQh25ONbHc2cjw58MAjO1qVRClRSDAlIMGcgERTIhLMCbCrdtmxiCrEUqCQYJQCqKwoJQoJ5gQkmFgUFFpYCiTFWc9ZnHCfKC0BgxdAZV1aFA0sDWBVrLJjUZhhKVBQeIUXJ9wncNh1GOmudJzznpMdKeSpUNHA3ABNLU3R1NIUsaZY2ZEoDLAUKGBKRAmOuI7gsOswjriOwCEcsiPpWpwpTiuIRFMiz3yigGApkF+d95zHYddhHHYdxnH3cXjhlR3JkKKUKKRYUtDU0hTXWK6BWeGJhOQfLAWqESEEsjxZSHel47DrMHI8ObIjhR0zzGhkaYSmlqZIsaQgWo2WHYl0jKVA1eLwOrDHuQc7S3ZyfSCEKFCQYklBR2tHXGO+hlNMVGUsBaqSLHcWdpTswAHnAbjhlh2HrqCWWgsdrR3RNqItbKpNdhzSCZYCXZVbuHHAeQA7SnYgy5MlOw5VkRlmtIhogU7WTkg0J8qOQyGOpUCXdc5zDjtLdmKPcw/PHDKIBFMCOlo7olVEKy5OU4VYCuRDCIF0Vzp2lOzAEfcR2XEoQGyKDW0j2qKDtQNqm2rLjkMhhKVAAEqniHaU7MC2km3I9+bLjkNB1NjcGF1tXdHA0kB2FAoBLIUw5xVe7HHuwYbiDSgQBbLjkESNzY3RO7I36pnryY5CErEUwliaMw3ri9fjrPes7CgUQlpFtEJPW0/UMtWSHYUkYCmEoUxXJtYWr+WZRHRZKlR0sHZAN1s3vh9EmGEphJFsdzbWFq/FUfdR2VFIJyyw4FrbtUi1pSJCiZAdh4KApRAGznnOYX3xehxwHZAdhXQqUolEF1sXdLR25KmsBsdSMLBCbyE2FG/AbuduvjAd+UWMGoMeth5oE9GGL6FhUCwFA/IKLzaXbMbG4o18KQoKiDg1DoOjByPJnCQ7CvkZS8Fgcj25+LHwRy4iU8ApUHCd9Tr0iOzBKSUDYSkYhFd4sdmxGRscG8L+bS0puOqqdTEkeghHDQbBUjAAjg5INo4ajIOloGMcHVCo4ahB/1gKOsXRAYUqjhr0jaWgMxwdkF5w1KBPquwAevH++++jSZMmsNls6N69OzZu3Bj0DLmeXHyd/zXWOdaxECjknfGewdf5X2NN0Rq4BU+N1guWQiV89dVXePLJJ/HCCy9gy5Yt6NSpE2644QZkZ2cHLcN2x3Z8cf4LTheRrggIbC7ZjC/Of4EznjOy41AlcPqoErp3746uXbti2rRpAACv14tGjRrhsccew5/+9KeAHtsjPFhRtAK7nbsDehyiQItQIjAsehiaWJrIjkJXwJHCVTidTmzevBmDBw/WLlNVFYMHD8b69esDeuwibxG+LfiWhUCG4BRO/Lfgv9js2Cw7Cl0BS+EqcnJy4PF4kJjo+4bniYmJOHXqVMCOe9p9Gl/mf4kT7hMBOwZRsAkIrClegyWFS7jOEKJ4vlgISnOmYWnhUr5uERnWPuc+nPWcxQj7CNhVu+w4dBGOFK4iPj4eJpMJWVm+C7xZWVlISvLvqXZCCKwvXo8fCn9gIZDhZXmy8OX5L3HKHbgRN1UdS+EqIiIikJqaiuXLl2uXeb1eLF++HD179vTbcZzCiYWFC7HREfxTXYlkKRSF+Cb/G+wt2Ss7Cl3A6aNKePLJJzFhwgR06dIF3bp1wzvvvIPCwkJMnDjRL/vP8+RhQcEC5Hpz/bI/Ij3xwIOlRUuR48lBn8g+fJ8GyVgKlTB27FicPn0azz//PE6dOoXOnTtj8eLF5Rafq+OY6xgWFi6EQzj8kJRIv7aUbEGuJxfD7MNgVayy44QtPk9Bol0lu7CiaAXfFY3oInXUOrjVfitqmWrJjhKWWAqSbHFsweri1bJjEIUku2LHqJhRqGOqIztK2GEpSLCxeCPWOwL7xDcivYtSojAqZhTiTHGyo4QVlkKQrS9ezzOMiCopUonEbfbbUM9cT3aUsMFSCKI1RWuwuYRP8SeqCqtixUj7SL4Ed5DweQpB8nPRzywEomooESWYlz8P+d582VHCAkshCFYVrcK2km2yYxDp1rW2axGjxsiOERZYCgG2rngdtpZslR2DSLe627qjR2QP2THCBkshgDYUb8AmxybZMYh0i4UQfCyFANns2IxfHL/IjkGkWywEOVgKAbDdsR1ritfIjkGkW5UtBOHlqwH4G0vBzw45D2Fl8UrZMYh0q7KF4MnNRcGHH8J9/HgQUoUPloIf5XhysKRwiewYRLpVlUIo/OwzeHNyUPT55/AE8F0Qww1LwU+KvcVYULAALrhkRyHSpaoWgsgvfd6CcDhQOGsWPNnZgY4YFlgKfuAVXvxQ+APOe8/LjkKkS9UthDKiqAiFM2fCk8v3JKkploIf/Fz8M465j8mOQaRLNS2EMqKwsHRK6exZf0cMKyyFGtpZshM7SnbIjkGkS/4qhDIiPx+Fs2bBW1Tkr4hhh6VQA8ddx7GyaKXsGES65O9CKOM9exZFc+bwdNVqYilU03nPeSwsXMh3TSOqhkAVgrZdRgYcixdXN15YYylUg0u4sKBwAYpFsewoRLoT6EIo49y0Cc7NfGXiqmIpVJEQAksKlyDHkyM7CpHuBKsQyhT/8APcR47UaB/hhqVQRRscG3DIdUh2DCLdCXYhAAC8XhR9/TW8587VfF9hgqVQBUdcR7DBsUF2DCLdkVIIF4iiIhR++SWE0+m3fRoZS6GSSkQJlhUukx2DSHdkFkIZb1YWir77Dnz34atjKVTS6qLVKBAFsmMQ6UooFEIZ9549KFm1KmD7NwqWQiUccR3Bbudu2TGIdCWUCqFMycqVcO3dG/Dj6BlL4So4bURUdaFYCGWK5s2DJysraMfTG5bCVXDaiKhqQrkQAAAuV+nCc0lJcI+rEyyFK+C0EVHVhHwhXCDOnUPxEr73SUVYCpfBaSOiqtFLIZRxbd0K18GDUjOEIpbCZXDaiKjy9FYIZYoXLOA00iVYChXgtBFR5em1EABAnD/PaaRLsBQuwWkjosrTcyGU4TSSL5bCJThtRFQ5RiiEMpxG+h+WwkWOu49z2oioEoxUCACnkS7GUrjI2qK1siMQhTyjFUIZTiOVYilccNh5GCc9J2XHIAppRi2EMpxGYikAKH3jnHXF62THIAppRi8EgNNIAEsBALDXuRe53lzZMYhCVjgUQplwn0YK+1JwCzd+cfwiOwZRyAqnQihTvGABhMslO4YUYV8KO0p2IN+r/wcxUSCEYyEApdNIJb+E5x+LYV0KJaIEvzp+lR2DKCSFayGUKVm7Ft7iYtkxgs4sO4BMWxxbUCz0+01f9LdFWPJ330WxhBYJ+POGPwMAXA4XvnvuO2z5dgvcTjdaD2iNO968AzEJMZfdpxACi15fhF9m/YLivGKkdE/BHW/egXrN6gEA3CVufPnEl9j5w07EJsZi9JTRaNW/lbb9T+/+hLPHz+L2N24PwC2mYAn3QgAAlJSgZPVqRA4dKjtJUIXtSKHQW4itjq2yY9RYUuskvLz3Ze3j8R8e174279l52LV4F+6bfh8eW/AY8k7l4dN7P73i/pa/uxyr/rkKd/zjDvz+x98jIioCH43+CC5H6fzqus/WIXNbJn635HfoeW9PzHpwlva+t7lHcrF+1noMf3Z44G4wBRwL4X+cmzbBe/687BhBFbalsNGxES7ofyFJNauITYzVPuxxdgBA8flibPh8A0a+OhIt+7ZEo86NMG7aOKRvTEfGpowK9yWEwKqPVmHoU0PR4aYOSG6XjLs/vBt5p/Kwc+FOAEDWgSy0H9Ye9dvUR59JfVCQU4DC3EIAwJyn5uDmF26GLdYWlNtO/sdCuITbDcfKlbJTBFVYlkKeJw+7SnbJjuEXOYdz8Hzb5/HKta9g1oOzcPbYWQBA5rZMeFwetOzfUrtuYstE1GlY57KlkHskF+ezzvtsExkbicapjbVtktsn4/Avh+EsdmLfT/sQmxSL6Lho/DrnV5htZnQc0TFgt5UCi4VQMde2bfCcPi07RtCE5ZrCesd6eOGVHaPGGqc2xrhp45DQIgF5p/Kw5O9L8O5N7+KPa/+I/Ox8mCJMiKoV5bNNTEIMzmdXPBzOzyr9IY+p57vmEFPvf9v0uLsHTu4+ib/1/Bui46Jx36f3oehcERa9vgiP/vdRLHxtIbZ+uxVxTeJw13t3oXZybf/fcPI7FsIVCAHHTz8heuxY2UmCIuxKIc+ThwPOA7Jj+EXbIW21/09ul4zGXRrj5Y4vY9v8bbBEWgJyTJPFhNFTRvtc9p9H/oO+D/bF8Z3HsXPhTjy96mn89O5P+PZP3+L+mfcHJAf5Dwvh6tz79sF97BjMDRvKjhJwYTd9tLNkJwSE7BgBEVUrCvWa18Pp9NOISYiBx+lBUV6Rz3Xys/MRmxBb4fYxiaUjhPzTvj/0+acvv03a6jSc2n8K1z9wPdLWpKHtkLawRlvReWRnHFwbvs8K1QsWQuU5li+XHSEowqoU3MKNPc49smMETElBCXLTcxGbGItGnRvBZDEh7ec07etZaVk4e+wsmnRtUuH2cY3jEJsY67ON47wDRzYfqXAbl8OFb57+BmPeGgPVpEJ4BDwuDwDA4/bA69H/FJ2RsRCqxpORERYvfxFWpZDmTNP18xIu9d1z3+Hg2oPIPZqL9A3p+Pc9/4ZiUpB6eyoiYyPRfXx3zP/LfKStTkPmtkx88egXaNK1ic8v+L92/yt2fL8DAKAoCvr+pi+W/mMpdi3ahRN7TuDzhz9HraRa6DC8Q7njL31zKdoOaYuGHUuH1CndU7Dj+x04sfsE1vxrDZp2bxqU+4GqjoVQPY7ly7VTsI0qrNYUdpTskB3Br86dOIeZD8xE4ZlC2OPsaNqjKX6/9Pewx5eelnrba7dBVVVMnzC99MlrA1uXWw/ITstG8fn/FeWgxwfBWejEV7//CsV5xWjaoykemvMQLDbfNYqTe05i6/ytePrnp7XLOt3aCQfXHsS7N72LhBYJuOef9wTw1lN1sRCqz3vqFFy7diGiQ/k/koxCEUavvQuy3dn4Iv8L2TGIpGIh1JwaFwf7I49AURTZUQIibKaPjDZKIKoqFoJ/eHNz4UlPlx0jYMKiFEpECfY798uOQSQNC8G/SjZtkh0hYMKiFPaU7IEbbtkxiKRgIfife/9+w74mUliUws6SnbIjEEnBQggQIeDcvFl2ioAwfCkcdR3FWe9Z2TGIgo6FEFjOLVsgPB7ZMfzO8KXABWYKRyyEwBMFBXDt2yc7ht8ZuhQKvAVIdxn3LAGiirAQgsdpwAVnQ5fCnpI9hng1VKLKYiEEl+fIEcO9rLahS+Gw67DsCERBw0KQw2ijBcOWQqG3EFmeLNkxiIKChSCPc8cOCKdTdgy/MWwpcJRA4YKFIFlJCZw7jHNCC0uBSMdYCKHB+euvsiP4jSFLwSVcyHRlyo5BFFAshNDhzcqCO9MYv3MMWQpHXUfhgfGeVEJUhoUQelx798qO4BeGLAVOHZGRsRBCk/uAMd773XClIITgE9bIsFgIocubmwtPTo7sGDVmuFI45TllqLfcJCrDQgh97v36f4l+w5UCp47IiFgI+uAywBSS8UrByVIgY2Eh6IcnMxPeoiLZMWrEUKVwznMOZ7xnZMcg8hsWgs4IAXdamuwUNWKoUuDUERkJC0GfXDpfVzBUKWS6jfHkESIWgn65Dx2CcOv37X8NVQrZ7mzZEYhqjIWgc04n3BkZslNUm2FKocBbgCKh7wUeIhaCMej51FTDlAJHCaR3LATj0POpqYYpBb53AukZC8FYxPnz8Jw8KTtGtRimFDhSIL1iIRiT6+BB2RGqxTil4GEpkP6wEIzLc+KE7AjVYohS4CIz6RELwdhYChJx6oj0hoVgfOL8eXgLC2XHqDJDlAIXmUlPWAjhQ4+LzYYoBY4USC9YCOFFj1NIxigFLjKTDrAQwg9HChJwkZn0gIUQnjhSkIBTRxTqWAjhS4+LzbovhRyP/t8TlYyLhUB6m0LSfSkUeAtkRyCqEAuBAP1NIem+FAqFvoZmFB5YCFSGI4UgK/SyFCi0sBDoYhwpBBlLgUIJC4EupbfFZl2XghCCp6NSyGAh0OV4Tp2SHaHSdF0KxaIYXnhlxyBiIdAVibw82REqTdelwKkjCgUsBLoar46+5/ouBZ55RJKxEKgy9PR913Up8DkKJBMLgSrLW6Cf31W6LoUiLxeZSQ4WAlWFnr7/ui6FAqGf9iXjYCFQVXFNIUg4UqBgYyFQdYjCQgghZMeoFF2XAtcUKJhYCFRtXi+ETp7AputS4CmpFCwsBKopoZPFZl2Xggsu2REoDLAQyB/0sq6g61LQyxwd6RcLgfxFL48NXZeCBx7ZEcjAWAjkT3p5roKuS0GAIwUKDBYC+ZteHiO6LgW+GB4FAguBAoEjhQDzChYC+R8LgQJFFBfLjlAp+i0FjhLIz1gIFFBeffzO0m0pEPkTC4ECjqUQWAoU2RHIIFgIFAyCpRBYqn6jUwhhIVDQsBQCS1EUjhaoRlgIFFQshcDjaIGqi4VAQcdSCDyWAlUHC4GkYCkEnqJw+oiqhoVA0qj6+HWrj5SXYYJJdgTSERYCScVSCLwoJUp2BNIJFgJJx1IIvGg1WnYE0gEWAoUChaUQeCwFuhoWAoUMlkLgsRToSlgIFFJYCoEXrbAUqGIsBAo5Jn2cGKPvUuBIgSrAQqBQpERGyo5QKSwFMhQWAoUqNSZGdoRK0XcpcPqILsJCoFCm2O2yI1SKvkuBIwW6gIVAoY4jhSAwK2ZYFavsGCQZC4H0QGEpBIdd0ceQjAKDhUB6wZFCkESpfKmLcMVCID3hmkKQ2FV93NHkXywE0hWTCWqUPv6A1X0p8EXxwg8LgfRGL6MEwAClUMdUR3YECiIWAumRXtYTAAOUQoIpQXYEChIWAumVXs48AgxQCnGmOL7ZThhgIZCeqZw+Ch5VURFvipcdgwKIhUB6x5FCkCWYOYVkVCwEMgKOFIKM6wrGxEIgo1Dr6OeEGEOUQqIpUXYE8jMWAhmJKSlJdoRKM0QpcLHZWFgIZCRq3bpQbDbZMSrNEKXAxWbjYCGQ0ZiSk2VHqBJDlALAxWYjYCGQEZnq15cdoUqMUwpcbNY1FgIZFUtBEi426xcLgYyMpSAJF5v1iYVARqa3RWbAQKXAxWb9YSGQ0eltkRkwUCkAQLJZf9+AcMVCoHCgt6kjwGClkGJJkR2BKoGFQOGCpSBZA3MDWBWr7Bh0BSwECicsBclURUVjc2PZMegyWAgUTvS4yAwYrBQAoGlEU9kRqAIsBAo3elxkBgxYCk0sTaAa72bpGguBwpGpQQPZEarFcL89rYqVZyGFEBYChStzixayI1SL4UoBAJpaOIUUClgIFK7UuDiY4uJkx6gWlgIFBAuBwpm5VSvZEarNkKVQy1QLcao+W9oIWAgU7iwshdDDs5DkYCFQuFOiomBq2FB2jGozbilwCinoWAhEpQvMiqrfX636TX4ViaZERClRsmOEDRYCUSlLy5ayI9SIYUtBURS+FlKQsBCILjCZYG7eXHaKGjFsKQBAqwj9LvboBQuB6H/MKSlQIiJkx6gRQ5dCI0sj1FHryI5hWCwEIl9mnU8dAQYvBQDoaO0oO4IhsRCIytPzqahlDF8KbaxtYIFFdgxDYSEQlacmJUGNjZUdo8YMXwpWxcq1BT9iIRBVzAijBCAMSgHgFJK/sBCILs/Stq3sCH4RFqVQz1wP9U36ewekUMJCILo80zXXwJSQIDuGX4RFKQAcLdQEC4HoyiK6dJEdwW/CphRaRLRApBIpO4busBCIrkyJjjbM1BEQRqVgUkxoZ20nO4ausBCIri7iuuugmEyyY/hN2JQCAHSI6AAFiuwYusBCIKoERUFEaqrsFH4VVqUQa4pFE0sT2TFCHguBqHLMLVtCrVVLdgy/CqtSALjgfDUsBKLKi+jaVXYEvzPLDhBsjc2NUUetg7Pes7KjhBwWgn69vmIF3vj5Z5/LWsTFYdNjjwEAHC4X/rJ0Kebu2gWn242BzZvjH8OHI8Fuv+w+hRD464oVmLllC/IcDnRv1AhvjRiBZhfee7jE7cZj//0vFu3bhwS7Hf8YPhz9mzXTtn937Vpk5uVhyk03BeAWy6fWrQtzU+O9b0vYjRQURUHPyJ6yY4QcFoL+talXD/ufekr7WHz//drX/rxkCRbv348Zd9yBhRMn4lR+Pu756qsr7m/q2rX4eMMGvDViBJZNmoSoiAiMmjULDpcLADBj82ZsP3ECSydNwn2pqZg0dy6EEACAjLNn8dnmzXhu4MDA3WDJIrp0gaIYb40y7EoBKD09NdGUKDtGyGAhGINJVZEYE6N9xEVHAwDyHA7M2rIFr91wA/o1bYrOycl4/9ZbsSEzE5syMyvclxACH/7yC57u2xfDW7dG+6QkfHTbbTiVn4+F+/YBAA6cPo1hrVqhTUICJnXrhpyiIuQWFQEAnvr+e7w4ZAhibbbg3PhgM5sR0bmz7BQBEZalAAC9I3vLjhASWAjGcfjMGbR+8010eucdPDB3LjLPnQMAbDtxAi6vF/0umupoWa8eGtaqhY3HjlW4ryNnzyKroMBnm1o2G1IbNtS2aZ+UhF+OHkWxy4XlBw8iyW5HXFQUvt6xA1azGTe3aRO4GyuZpX17KJHGfN5T2K0plGlkaYRrzNfgqPuo7CjSsBCMo0vDhvhg5Eg0j4tDVkEB3li5EsOmT8f6hx9GdkEBIkwm1L7kl1hCdDSyCwoq3F/WhcsvXXO4eJvx116L3VlZ6P7++4iLisL0O+7AueJi/HXFCnx/3314dflyzN21Cyl162Larbci2QCvIFrGasAF5jJhWwpA6WjhaH54lgILwViGtGih/X97AKkNGqDjO+9g3u7diDQH5sfcYjLhzeHDfS57eP58PNS9O3acPImF+/ZhzW9/i6lr1+KPixZh1tixAckRbKYGDWBKTpYdI2DCdvoIABLMCWhp0f87JVUVC8H4akdGollcHNLPnEGC3Q6nx4NzxcU+18kuLLzs2UeJFy6/dCRxpW1WpadjX3Y2HuzWDWsyMjCkRQtER0TgtnbtsCYjo+Y3KkRYBwyQHSGgwroUAKBnZE+oYXQ3sBDCQ0FJCdLPnEGi3Y7OycmwqCp+Tk/Xvp6Wk4NjeXno1rBhhds3rlMHiXa7zzbnHQ5sPnaswm0cLheeXrgQb998M0yqCo8QcHm9AACXxwPPhf/XO1NKCiwXnXZrROHz2/Ayaptqh81rIrEQjOsvS5ZgTUYGjpw9iw1Hj2L8V1/BpKoY3aEDatlsuOe66/DskiVYlZ6ObSdO4JH589GtYUN0bdRI20fX997Dgr17AZSeuv3bHj3w5qpV+GHfPuzOysJv5s1DUkwMhrduXe74U1atwpAWLdCpfulL1Pdo1AgL9u7FrlOn8K+NG9HjmmuCc0cEmG3wYNkRAi6s1xTKdLd1x96SvXDDLTtKwLAQjO3E+fOY9M03OFNcjPioKPS45hosmzQJ8RdOS/3rDTdAVRTc+9VXcHo8GNisGf5xyXpAWm4uzjsc2udP9O6NQqcTv1uwAHkOB3pccw3mjh8Pm8X37W33ZGVh3u7dWP2b32iX3dq2LdZkZOCm6dPRPC4On9x+ewBvfXCY27aF2cBrCWUUUfZskzC3rngdNjk2yY4RECwEohpSVdgffhimC8/mNrKwnz4qk2pLhU0x3hNtWAhENWfp3DksCgFgKWisihVdbMZ59ySAhUDkF2YzbP37y04RNCyFi3SydkJdta7sGH7BQiDyj4hu3aDGxMiOETQshYuYFTOGRA/R/RvxsBCI/MRmg61PH9kpgoqlcIkkcxKus14nO0a1sRCI/MfWu7dhX+PoclgKFegR2UOX00gsBCL/UWJiENG9u+wYQcdSqIAep5FYCET+ZevXD8olz8kIByyFy9DTNBILgci/1IQEWK69VnYMKVgKV9AjsgfqqHVkx7giFgKRn6kqokaOhKKG56/H8LzVlWRWzBgaPTRkp5FYCET+Z+3dG6YLr+EUjlgKVxGq00gsBCL/UxMSYO3XT3YMqVgKlRBq00gsBKIAKJs2MplkJ5GKpVAJoTSNxEIgCoxwnzYqw1KopFCYRmIhEAUGp43+h6VQBT0ieyDRlCjl2CwEogDhtJEPlkIVmBUzRthHIFqJDupxWQhEgcNpI18shSqyq3aMsI+ACcH5q4KFQBQ4nDYqj6VQDUnmJAyKGhTw47AQiAKI00YVYilUUxtrG1xrDdzT4FkIRIHFaaOKsRRqoE9kHzQ2N/b7flkIRIFlSk7mtNFlsBRqQFVUDLMP8+sT21gIRIGl2O2IGjuW00aXwVKoIatixc32m2FVrDXeFwuBKMBMJkSNHQs1NlZ2kpDFUvCDOqY6uDH6xho945mFQBR4kSNGwNywoewYIY2l4CdNLE3QO7J3tbZlIRAFXkSPHojo3Fl2jJDHUvCjVFsq2kS0qdI2LASiwDM3awbbkCGyY+gCS8HPBkYNRLI5uVLXZSEQBZ5aty6iRo8O2zfNqSreS35mVsy41X4rkkxJV7weC4EoCKxWRN11FxSbTXYS3WApBECEEoGR9pGoZ6pX4ddZCERBoCiIuv12mOLjZSfRFZZCgFhVK26z34Y4Nc7nchYCUXDYBg2CpUUL2TF0h6UQQJFqJG6LuU17chsLgSg4LB07wtq7emcDhjtFCCFkhzC6Am8BDjoPorOt81Wvy0IgqhlTgwaIvu8+KGaz7Ci6xFIIISwEoppRExNhnzABSmSk7Ci6xemjEMFCIKoZtV49RN97LwuhhlgKIYCFQFQzat26iL73XqhRUbKj6B5LQTIWAlHNKLVrI3rCBKh2u+wohsBSkIiFQFQzSmws7BMm8FVP/YjL8xIpFguUiAhwpZ+o6pRatUoLoXZt2VEMhWcfSeYtKEDhzJnwnj4tOwqRbmhrCLVqyY5iOCyFEOAtKkLhrFnwnjolOwpRyFPj40sLISZGdhRDYimECFFcjMLPP4fnxAnZUYhClpqQUFoI0dGyoxgWSyGEiJISFM6eDU9mpuwoRCFHrV8f0ePH87TTAOPZRyFEsVoRfc89MLdtKzsKUUgxt2hRuqjsh0JYtWoVbr75ZiQnJ0NRFMyfP7/mAQ2EpRBiFIsFUaNHw9q/v+woRCHB2rt36XsiWK1+2V9hYSE6deqE999/3y/7MxpOH4Uw1759KJo3D3A6ZUchCj6zGZG33IKIDh0CdghFUTBv3jyMHDkyYMfQG44UQpildWvY778fCs/DpjCjxMQgeuLEgBYCVYylEOJMiYmwP/AATE2ayI5CFBSmBg1gf+ABmJMr917n5F8sBR1Qo6IQfc89iOjSRXYUooCydOqE6Pvu43MQJOLLXOiEoqqIHD4camIiHIsWAV6v7EhE/qMosA0eDGuvXrKThD2Wgs5Yu3SBKT4eRXPmQBQVyY5DVHM2G6Juvx2W5s1lJyFw+kiXzE2awP7AA1ATEmRHIaoRNS4O9v/7v6AWQkFBAbZt24Zt27YBANLT07Ft2zYcPXo0aBlCGU9J1THhdKJ48WK4tm6VHYWoyizt2yNy+HAoNltQj7ty5UoMGDCg3OUTJkzAjBkzgpolFLEUDMB18CCKFyyAOH9edhSiq1KioxE5YgQsrVvLjkIVYCkYhHA4ULxkCVwXhsREocjSoQNsw4ZB5fsohyyWgsFw1EChiKMD/WApGBBHDRRKODrQF5aCgXHUQDIpdjsihw/n6EBnWAoGJ0pKSkcNPEOJgoijA/1iKYQJjhooGDg60D+WQhgRJSVwrFwJ56ZNgMcjOw4Ziaoi4rrrYB04kKMDnWMphCFvXh4cK1fCtX07wG8/1ZClfXtYBwyAqW5d2VHID1gKYcyTnQ3HTz/BvX+/7CikQ+bmzWEbNAimpCTZUciPWAoEd2YmHMuWwcPXfqFKMDVoANvgwTDzPT4MiaVAGldaGhzLl8OblSU7CoUgNT4etoEDYWnTRnYUCiCWAvkQQsC1cyccK1ZAnDsnOw6FACU2Frb+/WHp1AmKyhdWNjqWAlVIeDxw/vorSlavhigslB2HJFAiI2Ht0wcR3bpBMfOtV8IFS4GuSDidcG7fDuemTfCePi07DgWBGheHiC5dENG5c9Bf1prkYylQpbmPHIFz0ya49u7l24EajaLA3Lo1rF26wNy0qew0JBFLgarMW1AA5+bNcG7ZwmdI65xityPiuusQkZoKNTZWdhwKASwFqjbh9cK9fz+cv/4K9+HDsuNQFZgaN0ZE166wtG4NxWSSHYdCCEuB/MKTmwvnpk1wbt8OOByy41BFrFZEdOyIiK5dYapXT3YaClEsBfIr4XLBtXMnnNu3w5OZyZfRkE1RYGrQAJZOnRDRsSOUiAjZiSjEsRQoYLxFRXAfOADXgQNwHzoEOJ2yI4UHiwXmpk1hadkS5pYtodrtshORjrAUKCiE2w13Rgbc+/fDdeAAF6j9TLHbYW7ZEpZWrWBu2pTPK6BqYymQFJ6TJ+Havx+u/fvhPXVKdhxdUhMTS0cDrVrBlJwMRVFkRyIDYCmQdN7z5+Havx/uAwfgPnIEcLlkRwpNZjPM11yjjQjU2rVlJyIDYilQSBFCwJuTA8+JE/CcPFn676lT4VcUZjNMSUkw1a8PU3IyTPXrQ61Xj689RAHHUqCQV64oLnwYpiguLYDkZKjx8SwAkoKlQLp0aVF4T5+GNz8fIj8fIlSfJ2GzQbXbocTEwBQfzwKgkMRSIMMRbjdEfj68BQWl/14oC+3zC/+K4mK/HE+x2aDExECNiYFit/v+e9HlisXil+MRBRJLgcKWcLshCgshXK7SF/jzeiG8XsDj0T4HAKiq9qGYTP/7f7O59Jc9T/8kA2EpEBGRhhOZRESkYSkQEZGGpUBERBqWAhERaVgKRESkYSkQEZGGpUBERBqWAhERaVgKRESkYSkQEZGGpUBERBqWAhERaVgKRESkYSkQEZGGpUBERBqWAhERaVgKRESkYSkQEZGGpUBERBqWAhERaVgKRESkYSkQEZGGpUBERBqWAhERaVgKRESkYSkQEZGGpUBERBqWAhERaVgKRESkYSkQEZGGpUBERBqWAhERaVgKRESkYSkQEZGGpUBERBqWAhERaVgKRESkYSkQEZGGpUBERBqWAhERaf4fX0VG5J6J36sAAAAASUVORK5CYII=", "text/plain": [ "\n", " | age | \n", "hypertension | \n", "heart_disease | \n", "avg_glucose_level | \n", "bmi | \n", "gender_Male | \n", "gender_Other | \n", "ever_married_Yes | \n", "work_type_Never_worked | \n", "work_type_Private | \n", "work_type_Self-employed | \n", "work_type_children | \n", "Residence_type_Urban | \n", "smoking_status_formerly smoked | \n", "smoking_status_never smoked | \n", "smoking_status_smokes | \n", "age_glucose_index | \n", "bmi_glucose_ratio | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2508 | \n", "0.316406 | \n", "0 | \n", "0 | \n", "0.176562 | \n", "0.341667 | \n", "False | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "False | \n", "False | \n", "False | \n", "False | \n", "True | \n", "1957.540 | \n", "0.300173 | \n", "
2435 | \n", "0.768066 | \n", "0 | \n", "0 | \n", "0.351636 | \n", "0.591667 | \n", "True | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "6003.270 | \n", "0.331619 | \n", "
2547 | \n", "0.060059 | \n", "0 | \n", "0 | \n", "0.250618 | \n", "0.216667 | \n", "True | \n", "False | \n", "False | \n", "False | \n", "False | \n", "False | \n", "True | \n", "True | \n", "False | \n", "False | \n", "False | \n", "418.750 | \n", "0.216119 | \n", "
3885 | \n", "0.914551 | \n", "0 | \n", "0 | \n", "0.342882 | \n", "0.691667 | \n", "True | \n", "False | \n", "True | \n", "False | \n", "False | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "False | \n", "7071.750 | \n", "0.373316 | \n", "
335 | \n", "0.426270 | \n", "0 | \n", "0 | \n", "0.500974 | \n", "0.544444 | \n", "False | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "False | \n", "3932.250 | \n", "0.266133 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
4661 | \n", "0.853516 | \n", "1 | \n", "0 | \n", "1.000000 | \n", "0.977778 | \n", "True | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "11855.025 | \n", "0.268662 | \n", "
4662 | \n", "0.926758 | \n", "0 | \n", "0 | \n", "0.024510 | \n", "0.494444 | \n", "False | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "True | \n", "False | \n", "False | \n", "4401.920 | \n", "0.485152 | \n", "
4663 | \n", "0.682617 | \n", "0 | \n", "0 | \n", "1.000000 | \n", "0.836111 | \n", "False | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "True | \n", "False | \n", "False | \n", "9484.020 | \n", "0.238549 | \n", "
4664 | \n", "0.768066 | \n", "0 | \n", "0 | \n", "0.313207 | \n", "0.494444 | \n", "False | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "True | \n", "False | \n", "False | \n", "5726.700 | \n", "0.309131 | \n", "
4665 | \n", "0.902344 | \n", "0 | \n", "0 | \n", "0.156166 | \n", "0.583333 | \n", "True | \n", "False | \n", "True | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "False | \n", "False | \n", "True | \n", "5399.040 | \n", "0.429002 | \n", "
1554 rows × 18 columns
\n", "Самое время оценить качество работы модели
" ] }, { "cell_type": "code", "execution_count": 343, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Время обучения модели: 0.25 секунд\n", "ROC-AUC: 0.84\n", "F1-Score: 0.29\n", "Матрица ошибок:\n", "[[434 52]\n", " [ 12 13]]\n", "Отчет по классификации:\n", " precision recall f1-score support\n", "\n", " 0 0.97 0.89 0.93 486\n", " 1 0.20 0.52 0.29 25\n", "\n", " accuracy 0.87 511\n", " macro avg 0.59 0.71 0.61 511\n", "weighted avg 0.94 0.87 0.90 511\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAJwCAYAAACZACVsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdI0lEQVR4nO3df3zN9f//8fvZbDObbYZt5vevCFukYsX8SOZH3kQ/pLJJiUb5GSs/kyYpFP2QGiqJ3kr0A/mZ35JFSIiW2OZNNpP9Pt8/fJ1Pp23n7DDnnO3cru/L6/Leeb6er9frcc46PDyez9fzZTAajUYBAACgUG6ODgAAAMCZkSwBAABYQLIEAABgAckSAACABSRLAAAAFpAsAQAAWECyBAAAYAHJEgAAgAXlHB0AADhKdna2zp8/r/z8fIWGhjo6HABOisoSAJfyww8/qF+/fqpSpYq8vLxUrVo19enTx9FhAXBiJEvAvyxcuFAGg0EGg0Fbt24tsN9oNKpmzZoyGAy69957HRAhrtXKlSvVpk0bHTp0SNOmTdO6deu0bt06vfvuu44ODYATYxgOKEL58uW1ZMkStWnTxqx98+bNOnXqlLy8vBwUGa7F+fPn9cQTTygqKkrLly+Xp6eno0MCUEpQWQKK0K1bNy1fvly5ublm7UuWLFHLli0VEhLioMhwLRISEpSZmamFCxeSKAGwCckSUISHH35Y586d07p160xt2dnZ+uyzz9SvX79Cj5k5c6buvPNOVa5cWd7e3mrZsqU+++wzsz5Xh/iK2tq3by9J2rRpkwwGgz799FM9//zzCgkJkY+Pj/7zn//ojz/+MDtn+/btTcddtWfPHtM5/339oUOHFoj93nvvVZ06dcza9u/fr5iYGNWrV0/ly5dXSEiIHn/8cZ07d87SR2eSmpqqgQMHKjg4WOXLl9ctt9yiRYsWmfU5efKkDAaDZs6cadberFmzAu9p/PjxMhgMysjIMHs/kydPNuv36quvmn2WkrRz5041b95cL7/8smrWrCkvLy81bNhQ06dPV35+vtnxubm5mjp1qurXry8vLy/VqVNHzz//vLKyssz61alTRzExMWZtgwYNUvny5bVp0ybrHxCAUoFhOKAIderUUUREhD755BN17dpVkvTNN98oLS1Nffv21RtvvFHgmDlz5ug///mPHnnkEWVnZ2vp0qV64IEHtHr1anXv3l2S9OGHH5r6f//995o/f75mzZqlKlWqSJKCg4PNzjlt2jQZDAaNHTtWqampmj17tjp16qTExER5e3sXGf/YsWOv+zNYt26dfvvtNw0YMEAhISE6ePCg5s+fr4MHD2rnzp0FErF/unz5stq3b69jx45p6NChqlu3rpYvX66YmBhduHBBzz777HXHV5gLFy4oPj6+QPu5c+e0detWbd26VY8//rhatmyp9evXKy4uTidPntQ777xj6vvEE09o0aJFuv/++zVq1Cjt2rVL8fHxOnz4sD7//PMirz1p0iS9//77+vTTTwskegBKMSMAMwkJCUZJxj179hjnzp1rrFixovHvv/82Go1G4wMPPGDs0KGD0Wg0GmvXrm3s3r272bFX+12VnZ1tbNasmbFjx44Wr3XixIkC+zZu3GiUZKxevboxPT3d1L5s2TKjJOOcOXNMbe3atTO2a9fO9Prrr782SjJ26dLF+O+vuSRjbGxsget1797dWLt2bYvvx2g0Gj/55BOjJOOWLVsKfU9XzZ492yjJ+NFHH5nasrOzjREREUZfX1/Tezpx4oRRkvHVV181O75p06Zm78loNBpfeOEFoyTjxYsXzd7PpEmTTK+fe+45Y1BQkLFly5Zmx7dr184oyTh58mSzc8bExBglGQ8cOGA0Go3GxMREoyTjE088YdZv9OjRRknGDRs2mNpq165tjI6ONhqNRuO7775rlGR88803LX4uAEofhuEACx588EFdvnxZq1ev1sWLF7V69eoih+AkmVV6/vrrL6Wlpalt27b68ccfrzmG/v37q2LFiqbX999/v6pVq6avv/660P5Go1FxcXHq06ePWrVqdc3XlczfT2Zmpv73v/+pdevWkmT1PX399dcKCQnRww8/bGrz8PDQM888o4yMDG3evPm6YivMn3/+qTfffFMTJkyQr69vgf3u7u4aMWKEWduoUaMkSV999ZUpbkkaOXKkxX7/tHLlSj399NMaM2ZMoUOcAEo3kiXAgqpVq6pTp05asmSJVqxYoby8PN1///1F9l+9erVat26t8uXLKzAwUFWrVtXbb7+ttLS0a46hYcOGZq8NBoMaNGigkydPFtr/448/1sGDB/Xyyy9f8zWvOn/+vJ599lkFBwfL29tbVatWVd26dSXJ6nv6/fff1bBhQ7m5mf8xc/PNN5v2l7RJkyYpNDRUTz31VIF9BoNBoaGh8vPzM2tv1KiR3NzcTJ/n77//Ljc3NzVo0MCsX0hIiAICAgrEnZiYqIcfflh5eXk6f/58yb4hAE6BOUuAFf369dOTTz6p5ORkde3aVQEBAYX2+/777/Wf//xHkZGReuutt1StWjV5eHgoISFBS5YssUus2dnZmjBhggYOHKibbrrpus/34IMPavv27RozZoyaN28uX19f5efnq0uXLgUmRTva4cOHtXDhQn300Ufy8PAosN/S/K7CWJqP9U8//fSTunbtqrvvvltjxozRo48+ynwloIwhWQKsuO+++/TUU09p586d+vTTT4vs99///lfly5fXmjVrzNZgSkhIuK7rHz161Oy10WjUsWPHFB4eXqDvW2+9pdTU1AJ3h12Lv/76S+vXr9eUKVM0ceLEIuMpSu3atbV//37l5+ebVZd++eUX0/6SFBcXp+bNm+uhhx4qdH/dunW1du1aXbx40WxY89dff1V+fr7pTsDatWsrPz9fR48eNVXBJCklJUUXLlwoEHdYWJiWL18ub29vLV++XIMGDdL+/ftVvnz5En1/AByHYTjACl9fX7399tuaPHmyevToUWQ/d3d3GQwG5eXlmdpOnjypL7744rquv3jxYl28eNH0+rPPPtOZM2dMd+hddfHiRU2bNk0jRowokTWg3N3dJV1Jzv5p9uzZxTq+W7duSk5ONkswc3Nz9eabb8rX11ft2rW77hiv2rFjh1auXKnp06cXWRHq1q2b8vLyNHfuXLP2119/XZJMdyt269ZNUsH3+e9+V916663y8fGRm5ubFixYoJMnT+rFF1+87vcEwHlQWQKKITo62mqf7t276/XXX1eXLl3Ur18/paamat68eWrQoIH2799/zdcODAxUmzZtNGDAAKWkpGj27Nlq0KCBnnzySbN+P/74o6pUqaLnnnvO6jmTkpL07bffmrWdPXtWly9f1rfffqt27drJz89PkZGRmjFjhnJyclS9enWtXbtWJ06cKFbcgwYN0rvvvquYmBjt3btXderU0WeffaZt27Zp9uzZZtUdSTpy5IhZTBkZGXJzczNr++233wq91tq1a3XPPfeoU6dORcbTrVs3derUSS+88IJOnDih5s2ba8OGDfrvf/+rwYMHq1mzZpKkW265RdHR0Zo/f74uXLigdu3aaffu3Vq0aJF69eqlDh06FHmNZs2aaezYsZo+fbr69u1baPUPQCnk4LvxAKfzz6UDLCls6YD333/f2LBhQ6OXl5excePGxoSEBOOkSZMK3L7/72tZWjrgk08+McbFxRmDgoKM3t7exu7duxt///13s75Xb4ufNWuWWXth15Zkdbsaz6lTp4z33XefMSAgwOjv72984IEHjKdPny5wu35RUlJSjAMGDDBWqVLF6OnpaQwLCzMmJCSY9bm6dIAt27+XDjAYDMa9e/cW+Ez+vfRARkaGccSIEcbQ0FCjh4eHsUGDBsbp06cb8/LyzPrl5OQYp0yZYqxbt67Rw8PDWLNmTWNcXJwxMzPTrN8/lw64KjMz09i4cWPj7bffbszNzbX6GQFwfgaj8V81dgBOYdOmTerQoYOWL19u8Q68knTy5EnVrVtXJ06cKLCaNwC4KuYsAQAAWECyBMDE29tbUVFRNt9mDwBlGRO8AZgEBwcXmPgNAK6OOUsAAAAWMAwHAABgAckSAACABSRLAAAAFpTJCd7eLYY6OgSgTDu28XVHhwCUadUDPO12LXv+nXl531zrnZwQlSUAAAALymRlCQAAFJOBuok1fEIAAAAWUFkCAMCVGQyOjsDpUVkCAACwgMoSAACujDlLVvEJAQAAWEBlCQAAV8acJauoLAEAAFhAZQkAAFfGnCWr+IQAAAAsoLIEAIArY86SVVSWAAAALKCyBACAK2POklV8QgAAABaQLAEAAFjAMBwAAK6MCd5WUVkCAACwgMoSAACujAneVvEJAQAAWEBlCQAAV8acJauoLAEAAFhAZQkAAFfGnCWr+IQAAAAsoLIEAIArY86SVVSWAAAALKCyBACAK2POklV8QgAAABZQWQIAwJVRWbKKTwgAAMACKksAALgyN+6Gs4bKEgAAgAVUlgAAcGXMWbKKTwgAAMACkiUAAAALGIYDAMCV8bgTq6gsAQAAWEBlCQAAV8YEb6v4hAAAgNObPn26DAaDhg8fbmrLzMxUbGysKleuLF9fX/Xp00cpKSlmxyUlJal79+6qUKGCgoKCNGbMGOXm5tp0bZIlAABcmcFgv+0a7dmzR++++67Cw8PN2keMGKFVq1Zp+fLl2rx5s06fPq3evXub9ufl5al79+7Kzs7W9u3btWjRIi1cuFATJ0606fokSwAAwGllZGTokUce0XvvvadKlSqZ2tPS0vT+++/r9ddfV8eOHdWyZUslJCRo+/bt2rlzpyRp7dq1OnTokD766CM1b95cXbt21dSpUzVv3jxlZ2cXOwaSJQAAXJnBzW5bVlaW0tPTzbasrCyL4cXGxqp79+7q1KmTWfvevXuVk5Nj1t64cWPVqlVLO3bskCTt2LFDYWFhCg4ONvWJiopSenq6Dh48WOyPiGQJAADYRXx8vPz9/c22+Pj4IvsvXbpUP/74Y6F9kpOT5enpqYCAALP24OBgJScnm/r8M1G6uv/qvuLibjgAAFyZHddZiouL08iRI83avLy8Cu37xx9/6Nlnn9W6detUvnx5e4RXJCpLAADALry8vOTn52e2FZUs7d27V6mpqbr11ltVrlw5lStXTps3b9Ybb7yhcuXKKTg4WNnZ2bpw4YLZcSkpKQoJCZEkhYSEFLg77urrq32Kg2QJAABXZsc5S7a4++67deDAASUmJpq22267TY888ojpZw8PD61fv950zJEjR5SUlKSIiAhJUkREhA4cOKDU1FRTn3Xr1snPz09NmjQpdiwMwwEAAKdTsWJFNWvWzKzNx8dHlStXNrUPHDhQI0eOVGBgoPz8/DRs2DBFRESodevWkqTOnTurSZMmeuyxxzRjxgwlJydr/Pjxio2NLbKiVRiSJQAAXFkpfjbcrFmz5Obmpj59+igrK0tRUVF66623TPvd3d21evVqDRkyRBEREfLx8VF0dLRefPFFm65jMBqNxpIO3tG8Wwx1dAhAmXZs4+uODgEo06oHeNrtWt5dZ9ntWpe/GWG3a5UkKksAALgyng1nFZ8QAACABVSWAABwZaV4zpK9UFkCAACwgMoSAACujDlLVvEJAQAAWECyBAAAYAHDcAAAuDKG4aziEwIAALCAyhIAAK6MpQOsorIEAABgAZUlAABcGXOWrOITAgAAsIDKEgAArow5S1ZRWQIAALCAyhIAAK6MOUtW8QkBAABYQGUJAABXxpwlq6gsAQAAWEBlCQAAF2agsmQVlSUAAAALqCwBAODCqCxZR2UJAADAAipLAAC4MgpLVlFZAgAAsIBkCQAAwAKG4QAAcGFM8LaOyhIAAIAFVJYAAHBhVJaso7IEAABgAZUlAABcGJUl66gsAQAAWEBlCQAAF0ZlyToqSwAAABZQWQIAwJVRWLKKyhIAAIAFVJYAAHBhzFmyjsoSAACABU5RWfrss8+0bNkyJSUlKTs722zfjz/+6KCoAAAo+6gsWefwytIbb7yhAQMGKDg4WPv27dMdd9yhypUr67ffflPXrl0dHR4AAHBxDk+W3nrrLc2fP19vvvmmPD099dxzz2ndunV65plnlJaW5ujwAAAo0wwGg9220srhyVJSUpLuvPNOSZK3t7cuXrwoSXrsscf0ySefODI0AAAAxydLISEhOn/+vCSpVq1a2rlzpyTpxIkTMhqNjgwNAIAyj8qSdQ5Pljp27Kgvv/xSkjRgwACNGDFC99xzjx566CHdd999Do4OAAC4OoffDTd//nzl5+dLkmJjY1W5cmVt375d//nPf/TUU085ODoAAMq40lvwsRuHJ0unTp1SzZo1Ta/79u2rvn37OjAiAACA/+PwYbi6devq7Nmzjg4DAACgUA6vLDGJGwAAxynNE6/txeHJknRlKC4zM7PQfbVq1bJzNAAAAP/HKZKl22+/vUCb0WiUwWBQXl6eAyICAMA1UFmyzimSpV27dqlq1aqODgMAAKAAhydLBoNBtWrVUlBQkKNDAQDA5VBZss7hd8MxwRsAADgzhydLJ06cYAgOAABHMdhxs8Hbb7+t8PBw+fn5yc/PTxEREfrmm29M+9u3b1/gcSqDBw82O0dSUpK6d++uChUqKCgoSGPGjFFubq5tgcgJhuFq165t+jkvL09z5sxRYmKiwsLCNGLECJUr5/AQAQCAndWoUUPTp09Xw4YNZTQatWjRIvXs2VP79u1T06ZNJUlPPvmkXnzxRdMxFSpUMP2cl5en7t27KyQkRNu3b9eZM2fUv39/eXh46OWXX7YpFodXlv5p3Lhxmjp1qjIzMzVr1iyNGDHC0SEBAFCmOeuDdHv06KFu3bqpYcOGuummmzRt2jT5+vpq586dpj4VKlRQSEiIafPz8zPtW7t2rQ4dOqSPPvpIzZs3V9euXTV16lTNmzdP2dnZNsXiVMnSypUrtXjxYi1btkyrVq3SihUrHB0SAAAoIVlZWUpPTzfbsrKyrB6Xl5enpUuX6tKlS4qIiDC1f/zxx6pSpYqaNWumuLg4/f3336Z9O3bsUFhYmIKDg01tUVFRSk9P18GDB22K26mSpZSUFDVp0kSS1LRpU6WkpDg4IgAAyjZ7Vpbi4+Pl7+9vtsXHxxcZ24EDB+Tr6ysvLy8NHjxYn3/+uSlP6Nevnz766CNt3LhRcXFx+vDDD/Xoo4+ajk1OTjZLlCSZXicnJ9v0GTnVhCCj0Sg3tyv5m8Fg4E45AADKkLi4OI0cOdKszcvLq8j+jRo1UmJiotLS0vTZZ58pOjpamzdvVpMmTTRo0CBTv7CwMFWrVk133323jh8/rvr165do3A5PlipVqmQax8zIyFCLFi1MCRMAALix7LnOkpeXl8Xk6N88PT3VoEEDSVLLli21Z88ezZkzR++++26Bvq1atZIkHTt2TPXr11dISIh2795t1ufqiFVISIhNcTs8WZo1axYLYgEAAKvy8/OLnOOUmJgoSapWrZokKSIiQtOmTVNqaqpp4et169bJz8/PNJRXXA5PlmJiYhwdAgAALstZCxZxcXHq2rWratWqpYsXL2rJkiXatGmT1qxZo+PHj2vJkiXq1q2bKleurP3792vEiBGKjIxUeHi4JKlz585q0qSJHnvsMc2YMUPJyckaP368YmNjbapuSU6QLO3fv9/i/qtvGgAAuI7U1FT1799fZ86ckb+/v8LDw7VmzRrdc889+uOPP/Tdd99p9uzZunTpkmrWrKk+ffpo/PjxpuPd3d21evVqDRkyRBEREfLx8VF0dLTZukzFZTA6eBa1m5tbkZO5DQaD8vLybD6nd4uhJREagCIc2/i6o0MAyrTqAZ52u1boYPst03P6nd52u1ZJcnhlSZJ27drFI08AAIBTcopkqVatWqbJVwAAAM7EKZKlNWvWqEqVKvLx8VFoaKjq16/vtBPOAAAoS/j71jqnSJaio6NNPxsMBlWsWFHR0dGaOXOmPDw8HBgZAABwdQ5PlvLz8yVJOTk5Sk9P1+nTp7V792698MILqlChgsVl0AEAwPWhsmSdw5Olqzw8PFS5cmVVrlxZYWFhqlq1qmJjY0mWAACAQzlNsvRvPXr0UJs2bRwdBgAAZRqVJesc/hC2du3aafHixbp8+bJZu8FgUGBgoIOiAgAAuMLhyVKLFi00evRohYSE6Mknn9TOnTsdHRIAAK7DYMetlHJ4sjR79mydPn1aCQkJSk1NVWRkpJo0aaKZM2eang4MAADgKA5PliSpXLly6t27t1auXKlTp06pX79+mjBhgmrWrKlevXppw4YNjg4RAIAyyWAw2G0rrZwiWbpq9+7dmjRpkl577TUFBQUpLi5OVapU0b333qvRo0c7OjwAAOCCHH43XGpqqj788EMlJCTo6NGj6tGjhz755BNFRUWZstCYmBh16dJFM2fOdHC0AACULaW54mMvDk+WatSoofr16+vxxx9XTExMoQ/UDQ8P1+233+6A6AAAgKtzeLK0fv16tW3b1mIfPz8/bdy40U4RAQDgOqgsWefwZKlGjRo6evSoGjZsaNZ+9OhReXh4qE6dOo4JDCVm9IB7NPWZnpr78UaNmflfSdKbL/RVx1aNVK2qvzIuZ2nnTyc0fs5K/Xqy4B2Qgf4+2v3pOFUPrqSQtmOUlnG5QB/A1S187y0tXvC2WVvN2nW0aNkqpaelaeF78/TDrh1KTTmjgIBKuqtdRw14aqh8fSs6KGKg9HB4shQTE6PHH3+8QLK0a9cuLViwQJs2bXJMYCgRLZvU0sA+d2n/r6fM2vcd/kNLv9mjP878pUD/CnphcHetfitWje+dpPx8o1nfdyb104Gjp1U9uJI9QwdKnTr1Gmjm3PdMr93d3SVJ5/6XqnNnz2rwM6NUu259pSSf1uzpU3Xu7FlNnv66o8KFk6CyZJ3D74bbt2+f7rrrrgLtrVu3VmJiov0DQonx8fZUwssxenrqJ7qQbl4N+mDFNm378biSzpxX4i+nNGXeKtWsFqjaoZXN+j35QBv5V6yg2YvX2zN0oFRyd3dXYOUqps0/4Mo/MOrWb6gpr8zSnW3bq3qNmrr1tlZ6fMgw7di6SXm5uQ6OGnB+Dk+WDAaDLl68WKA9LS1NeXl5DogIJWV23EP69vuftXHXEYv9KpT3VP//tNaJU//TqeS/TO2N64Uo7smuemLC4gLVJgAF/flHkh7o3lGP3NdF0yaOVUrymSL7XsrIUAUfX7mXc/gAAxyNFbytcvi3JDIyUvHx8frkk09MJeO8vDzFx8cX60G6WVlZysrKMmsz5ufJ4OZ+Q+JF8TwQ1VLNG9dUm0dnFNln0ANtNW14L/lW8NKRE8nqPmSucnKvJMieHuW0KD5Gz8/+Qn8k/6U61avYK3SgVLq5aZiemzhVNWvV0flz/9OiBW/r2aei9cGSz1XBx8esb9qFv/ThB+/q3l73OyhaoHRxeLL0yiuvKDIyUo0aNTLdFff9998rPT29WCt3x8fHa8qUKWZt7sG3y6PaHTckXlhXIzhAr47po3uHzFVWdtEl/qXf7NH6Xb8opIqfhvfvpI9eeVwdB7yurOxcTX3mPzpyIkVLv95jx8iB0qvVnf93V3H9ho10c9MwPdwzSpvWr1G3//Q27buUkaG4kbGqU7eeop8c4ohQ4WSYs2SdwWg0Onx84/Tp05o7d65++ukneXt7Kzw8XEOHDlVgYKDVYwurLAW1HUtlyYF6tA/XslmDlJv7f8Oo5cq5Kz8/X/n5Rvm3Gl5gWM2jnLvObJmhp19comXf7tXOpePUrEGorv7naTAY5O7uptzcPL3y/hq99M7Xdn1PMHdsI5OCS4MhMX116+2t9WTscEnS35cu6blnn1L58uX18mvz5Onl5dgAUaTqAZ52u1a9kfb78/S317vZ7VolyeGVJUkKDQ3Vyy+/fE3Henl5yetfX3gSJcfauPuIWt4/zaxt/pRHdeREil5buK7Q+UcGg0EGGeTpceU/yYdHL5C3l4dpf8umtTV/yqPqNHC2fvvj7I19A0AZcPnvv3X6zz90T9cekq5UlMY++5Q8PD310sw3SZQAGzg8Wdq/f7/F/eHh4XaKBCUl4+8sHTpuPrH00uVsnU+7pEPHz6hO9cq6P6ql1u84rP/9laHqwQEaNaCzLmflaM3Wg5KkE6f+Z3Z85QBfSdIvvyWzzhJQiLfnzNSdbdspOCRU//vfWS16b57c3NzVsXNXXcrI0HPPPKWsrMuKmzJdf1+6pL8vXZIk+QdUMs0XhWtiGM46hydLzZs3l8FgkNFoNP3C/jn0wh1xZU9Wdq7ualFfQ/u1VyW/Cko9d1FbfzymDjGv6exfGY4ODyiV/peaopcmjFV62gX5B1RS2C23au77HyugUqAS9+7R4YNX/mH6WB/zYZAln3+rkNDqjggZKDUcPmfp999/l3QlQWrWrJm+/vpr1a5d27T/nz8Xl3eLoSUWH4CCmLME3Fj2nLPUYPQ3drvWsZld7XatkuTwytI/kyGDwaAaNWpcU4IEAABwIzg8WQIAAI7DnCXrHL6C9z8ZDAZ+aQAAwKk4vLJUqVIlU4KUkZGhFi1ayM3t/3K48+fPOyo0AADKPGoU1jk8WZo9e7ajQwAAACiSw5Ol6OhoR4cAAIDLYvqLdQ5PltLT0y3u9/Pzs1MkAAAABTk8WQoICCg0q726SCWLUgIAcONQWLLO4clSvXr1lJqaqnHjxumuu+5ydDgAAABmHJ4sHT58WG+++aamTZumffv2acaMGapbt66jwwIAwCW4uVFassbh6yx5eHho5MiROnr0qKpXr67w8HCNGjVKFy5ccHRoAAAAjk+WrgoMDNTs2bO1b98+nTx5Ug0aNGBZAQAAbjCDwX5baeXwYbgWLVoUmOBtNBqVlZWlUaNGafjw4Y4JDAAAQE6QLPXq1cvRIQAA4LJYZ8k6hydLkyZNcnQIAAAARXKaOUsAAADOyOGVJQAA4DiMwllHZQkAAMACKksAALgwJnhb5/DK0osvvqi///7b0WEAAAAUyuHJ0pQpU5SRkeHoMAAAcEkGg8FuW2nl8GTJaDQ6OgQAAIAiOcWcpZkzZ8rX17fQfRMnTrRzNAAAuI5SXPCxG6dIlrZt2yZPT88C7QaDgWQJAAA4lFMkS59//rmCgoIcHQYAAC6nNM8lsheHz1kCAABwZg6vLLVr167QITgAAHDjUViyzuGVpY0bNyogIEDZ2dk6cuSIcnNzHR0SAABwsLffflvh4eHy8/OTn5+fIiIi9M0335j2Z2ZmKjY2VpUrV5avr6/69OmjlJQUs3MkJSWpe/fuqlChgoKCgjRmzJhryjMcnixdvnxZAwcOVIUKFdS0aVMlJSVJkoYNG6bp06c7ODoAAMo2Z11nqUaNGpo+fbr27t2rH374QR07dlTPnj118OBBSdKIESO0atUqLV++XJs3b9bp06fVu3dv0/F5eXnq3r27srOztX37di1atEgLFy68phvHHJ4sjRs3Tj/99JM2bdqk8uXLm9o7deqkTz/91IGRAQAAR+nRo4e6deumhg0b6qabbtK0adPk6+urnTt3Ki0tTe+//75ef/11dezYUS1btlRCQoK2b9+unTt3SpLWrl2rQ4cO6aOPPlLz5s3VtWtXTZ06VfPmzVN2drZNsTg8Wfriiy80d+5ctWnTxizrbNq0qY4fP+7AyAAAKPsMBvttWVlZSk9PN9uysrKsxpiXl6elS5fq0qVLioiI0N69e5WTk6NOnTqZ+jRu3Fi1atXSjh07JEk7duxQWFiYgoODTX2ioqKUnp5uqk4Vl8OTpbNnzxa6bMClS5e4nREAgDIkPj5e/v7+Zlt8fHyR/Q8cOCBfX195eXlp8ODB+vzzz9WkSRMlJyfL09NTAQEBZv2Dg4OVnJwsSUpOTjZLlK7uv7rPFg6/G+62227TV199pWHDhkn6v/UeFixYoIiICEeGBgBAmWfPwkRcXJxGjhxp1ubl5VVk/0aNGikxMVFpaWn67LPPFB0drc2bN9/oMAtweLL08ssvq2vXrjp06JByc3M1Z84cHTp0SNu3b3fIBwIAAG4MLy8vi8nRv3l6eqpBgwaSpJYtW2rPnj2aM2eOHnroIWVnZ+vChQtm1aWUlBSFhIRIkkJCQrR7926z8129W+5qn+Jy+DBcmzZtlJiYqNzcXIWFhWnt2rUKCgrSjh071LJlS0eHBwBAmWbPOUvXKz8/X1lZWWrZsqU8PDy0fv16074jR44oKSnJNCoVERGhAwcOKDU11dRn3bp18vPzU5MmTWy6rsMrS5JUv359vffee44OAwAAOIm4uDh17dpVtWrV0sWLF7VkyRJt2rRJa9askb+/vwYOHKiRI0cqMDBQfn5+GjZsmCIiItS6dWtJUufOndWkSRM99thjmjFjhpKTkzV+/HjFxsbaVN2SHJgspaenF6ufn5/fDY4EAAA4m9TUVPXv319nzpyRv7+/wsPDtWbNGt1zzz2SpFmzZsnNzU19+vRRVlaWoqKi9NZbb5mOd3d31+rVqzVkyBBFRETIx8dH0dHRevHFF22OxWA0Go0l9s5s4ObmZnFSmdFolMFgUF5ens3n9m4x9HpCA2DFsY2vOzoEoEyrHmC/x4C1irff/OBdce3sdq2S5LDK0saNG00/G41GdevWTQsWLFD16tUdFRIAAEABDkuW2rUzzy7d3d3VunVr1atXz0ERAQDgeljS0DqH3w0HAADgzJzibjgAAOAYPC3DOqeqLPELAwAAzsZhlaXevXubvc7MzNTgwYPl4+Nj1r5ixQp7hgUAgEuhTmGdw5Ilf39/s9ePPvqogyIBAAAomsOSpYSEBEddGgAA/H9MgbHOqeYsAQAAOBvuhgMAwIVRWLKOyhIAAIAFVJYAAHBhzFmyjsoSAACABVSWAABwYVSWrKOyBAAAYAGVJQAAXBiFJeuoLAEAAFhAsgQAAGABw3AAALgwJnhbR2UJAADAAipLAAC4MApL1lFZAgAAsIDKEgAALow5S9ZRWQIAALCAyhIAAC6MwpJ1VJYAAAAsoLIEAIALc6O0ZBWVJQAAAAuoLAEA4MIoLFlHZQkAAMACKksAALgw1lmyjsoSAACABVSWAABwYW4UlqyisgQAAGCBzZWlPXv2KD8/X61atTJr37Vrl9zd3XXbbbeVWHAAAODGYs6SdTZXlmJjY/XHH38UaP/zzz8VGxtbIkEBAAA4C5srS4cOHdKtt95aoL1FixY6dOhQiQQFAADsg8KSdTZXlry8vJSSklKg/cyZMypXjvniAACgbLE5WercubPi4uKUlpZmartw4YKef/553XPPPSUaHAAAgKPZXAqaOXOmIiMjVbt2bbVo0UKSlJiYqODgYH344YclHiAAALhxDGIczhqbk6Xq1atr//79+vjjj/XTTz/J29tbAwYM0MMPPywPD48bESMAAIDDXNMkIx8fHw0aNKikYwEAAHbGopTW2TxnKT4+Xh988EGB9g8++ECvvPJKiQQFAADgLGxOlt599101bty4QHvTpk31zjvvlEhQAADAPgwGg9220srmZCk5OVnVqlUr0F61alWdOXOmRIICAABwFjYnSzVr1tS2bdsKtG/btk2hoaElEhQAALAPg8F+W2ll8wTvJ598UsOHD1dOTo46duwoSVq/fr2ee+45jRo1qsQDBAAAcCSbk6UxY8bo3Llzevrpp5WdnS1JKl++vMaOHau4uLgSDxAAANw4bqW55GMnNidLBoNBr7zyiiZMmKDDhw/L29tbDRs2lJeX142IDwAAwKGu+WFuvr6+uv3220syFgAAYGcUlqy7pmTphx9+0LJly5SUlGQairtqxYoVJRIYAACAM7D5brilS5fqzjvv1OHDh/X5558rJydHBw8e1IYNG+Tv738jYgQAADcI6yxZZ3Oy9PLLL2vWrFlatWqVPD09NWfOHP3yyy968MEHVatWrRsRIwAAgMPYnCwdP35c3bt3lyR5enrq0qVLMhgMGjFihObPn1/iAQIAgBvHWddZio+P1+23366KFSsqKChIvXr10pEjR8z6tG/fvkD1avDgwWZ9kpKS1L17d1WoUEFBQUEaM2aMcnNzbYrF5mSpUqVKunjxoiSpevXq+vnnnyVJFy5c0N9//23r6QAAAArYvHmzYmNjtXPnTq1bt045OTnq3LmzLl26ZNbvySef1JkzZ0zbjBkzTPvy8vLUvXt3ZWdna/v27Vq0aJEWLlyoiRMn2hSLzRO8IyMjtW7dOoWFhemBBx7Qs88+qw0bNmjdunW6++67bT0dAABwIGddZ+nbb781e71w4UIFBQVp7969ioyMNLVXqFBBISEhhZ5j7dq1OnTokL777jsFBwerefPmmjp1qsaOHavJkyfL09OzWLHYXFmaO3eu+vbtK0l64YUXNHLkSKWkpKhPnz56//33bT0dAABwEVlZWUpPTzfbsrKyinVsWlqaJCkwMNCs/eOPP1aVKlXUrFkzxcXFmY1y7dixQ2FhYQoODja1RUVFKT09XQcPHix23DZXlv4ZpJubm8aNG2frKQAAgAuKj4/XlClTzNomTZqkyZMnWzwuPz9fw4cP11133aVmzZqZ2vv166fatWsrNDRU+/fv19ixY3XkyBHTMkbJyclmiZIk0+vk5ORix21zsrR//36L+8PDw209JQAAcBB7DsLFxcVp5MiRZm3FeQJIbGysfv75Z23dutWsfdCgQaafw8LCVK1aNd199906fvy46tevXzJB6xqSpebNm8tgMMhoNBbYZzAYlJeXVyKBAQCAssXLy8vmx6MNHTpUq1ev1pYtW1SjRg2LfVu1aiVJOnbsmOrXr6+QkBDt3r3brE9KSookFTnPqTDXtIL3rl27VLVq1Ws5FAAAOBFnXSzSaDRq2LBh+vzzz7Vp0ybVrVvX6jGJiYmSpGrVqkmSIiIiNG3aNKWmpiooKEiStG7dOvn5+alJkybFjuWakqVatWqZLgoAAFDSYmNjtWTJEq1cuVIVK1Y0zTHy9/eXt7e3jh8/riVLlqhbt26qXLmy9u/frxEjRigyMtI0Jahz585q0qSJHnvsMc2YMUPJyckaP368YmNjbapwXVOytGbNGlWpUkU+Pj4KDQ1V/fr1nTYzBQAARXNz0r++3377bUlXFp78p4SEBMXExMjT01PfffedZs+erUuXLqlmzZrq06ePxo8fb+rr7u6u1atXa8iQIYqIiJCPj4+io6P14osv2hTLNSVL0dHRpp8NBoMqVqyo6OhozZw5Ux4eHtdySgAAAJPC5kb/U82aNbV582ar56ldu7a+/vrr64rF5mQpPz9fkpSTk6P09HSdPn1au3fv1gsvvKAKFSooPj7+ugICAAD2w8iQdddUWZIkDw8PVa5cWZUrV1ZYWJiqVq2q2NhYkiUAAFCmXHOy9G89evRQmzZtSup0AADADigsWWfz406SkpIKbc/Ly9Prr79+3QEBAAA4E5uTpTZt2ujXX381a9u7d69atGihL774oqTiAgAAdmAwGOy2lVY2J0v9+/dX27ZtlZiYqJycHD3//PNq27at7r33Xv344483IkYAAACHsXnO0ksvvaRKlSqpffv2ql69ugwGgzZv3qzbb7/9RsQHAABuIGddZ8mZXNME71GjRsnf31+DBw/WsmXLSJQAAECZZXOy9MYbb5h+joyMVL9+/RQXF6dKlSpJkp555pmSiw4AANxQpXkukb3YnCzNmjXL7HW1atW0cOFCSVc+cJIlAABQlticLJ04ceJGxAEAAByAupJ1Nt8NBwAA4EpKbAVvAABQ+rgxZ8kqKksAAAAWkCwBAABYwDAcAAAujFE462xOlvbv329xf3h4+DUHAwAA4GxsTpaaN29uWsDKaDRKurK+ktFolMFgUF5eXslGCAAAbhgWpbSuWHOWGjZsqNmzZ0uS2rRpIx8fH02dOlW//fabTpw4Yfb/AAAAZUmxkqWNGzfqueeeU0ZGhrZs2aKFCxdq4cKFevDBB3Xq1CnVrl3btAEAgNLDYLDfVloVK1mqVKmSjEajcnNzJUm9e/fWoUOH1K9fP/Xs2VO9e/fWsWPHbmigAAAAjlCsZKlNmzYaMmSIAgICTG3lypXT8OHDdezYMdWtW1e33nqrhg8ffoPCBAAAN4KbwWC3rbQq1gTvLVu2qGLFipKuVJkKmwyWlZWlN9980zS3CQAAoCwoVrJ0NVGSRDIEAEAZUooLPnZj89IB0dHRNyIOAAAAp2RzspSUlGRxf61ata45GAAAYF+ss2SdzclSnTp1zD7Yq4tRsiglAAAoi2xOlvbt23cj4ihRf+2Z6+gQAAAoFYp1W7yLszlZuuWWW0w/5+Xlac6cOUpMTFRYWJhGjBhRosEBAAA42nUllOPGjdPUqVOVmZmpWbNmkSwBAFDKGAwGu22l1XUlSytXrtTixYu1bNkyrVq1SitWrCipuAAAAJyCzcNw/5SSkqImTZpIkpo2baqUlJQSCQoAANiHW+kt+NjNdVWWjEaj3NyunOLqHXEAAABlic2VpX8+7iQjI0MtWrQwJUwAAABljc3JEo87AQCg7GAYzjoedwIAAGCBzclSenq6xf1+fn7XHAwAALCv0nxLv73YnCwFBAQU+sHyuBMAAFAW2Zwsbdy4UdKV5Khbt25asGCBqlevXuKBAQCAG485S9bZnCy1a9fO9LO7u7tat26tevXqlWhQAAAAzuK6FqUEAAClG1OWrLvuBZKYGAYAAMoymytLLVq0MCVIly9fVo8ePeTp6Wna/+OPP5ZcdAAA4IZyo+hhlc3JUq9evUw/9+zZsyRjAQAAcDo2J0uTJk26EXEAAAAH4IFl1vEZAQAAWHBdD9ItzPnz568rIAAAYD9MWbLumh+kazQaNWTIEL344osKCgoq6bgAAACcgsFoNBqv9eCKFSvqp59+crpFKTNzHR0BAADXrrwdV0Gc8O1Ru11rapeGdrtWSWLOEgAAgAXXnbuyKCUAAKUXf41bZ3Oy1Lt3b9PPmZmZGjx4sHx8fExtK1asKJnIAAAAnIDNyZK/v7/p50cffbREgwEAAPblRmXJKpuTpYSEhBsRBwAAgEl8fLxWrFihX375Rd7e3rrzzjv1yiuvqFGjRqY+mZmZGjVqlJYuXaqsrCxFRUXprbfeUnBwsKlPUlKShgwZoo0bN8rX11fR0dGKj49XuXLFT4GY4A0AAJzO5s2bFRsbq507d2rdunXKyclR586ddenSJVOfESNGaNWqVVq+fLk2b96s06dPm00XysvLU/fu3ZWdna3t27dr0aJFWrhwoSZOnGhTLDYvHXDrrbda3O8MD9Jl6QAAQGlmz6UDXlx3zG7XmnhPg2s+9uzZswoKCtLmzZsVGRmptLQ0Va1aVUuWLNH9998vSfrll1908803a8eOHWrdurW++eYb3XvvvTp9+rSp2vTOO+9o7NixOnv2rDw9PYt1bZt/HQcOHFCFChX0xBNPyM/Pz9bDAQCAi8rKylJWVpZZm5eXl7y8vKwem5aWJkkKDAyUJO3du1c5OTnq1KmTqU/jxo1Vq1YtU7K0Y8cOhYWFmQ3LRUVFaciQITp48KBatGhRrLhtTpZ+/vlnjRkzRh9++KEmTZqkwYMHy93d3dbTAAAAJ2DPpQPi4+M1ZcoUs7ZJkyZp8uTJFo/Lz8/X8OHDddddd6lZs2aSpOTkZHl6eiogIMCsb3BwsJKTk019/pkoXd1/dV9x2TxnqVGjRvryyy/16aef6oMPPlCzZs20atUqW08DAABcTFxcnNLS0sy2uLg4q8fFxsbq559/1tKlS+0QZUHXPMG7Q4cO2rt3r+Li4vT000+rY8eO2rdvX0nGBgAAbjA3g/02Ly8v+fn5mW3WhuCGDh2q1atXa+PGjapRo4apPSQkRNnZ2bpw4YJZ/5SUFIWEhJj6pKSkFNh/dV9x2TwMN3LkyAJt3bp105IlS3THHXcoJyfH1lMCAACYMRqNGjZsmD7//HNt2rRJdevWNdvfsmVLeXh4aP369erTp48k6ciRI0pKSlJERIQkKSIiQtOmTVNqaqqCgoIkSevWrZOfn5+aNGlS7FhsTpaKqh7ddttttp4KAAA4mEHOuSplbGyslixZopUrV6pixYqmOUb+/v7y9vaWv7+/Bg4cqJEjRyowMFB+fn4aNmyYIiIi1Lp1a0lS586d1aRJEz322GOaMWOGkpOTNX78eMXGxhZrUvlVNi8dUBqwdAAAoDSz59IBL68/brdrPX93/WL3LerZswkJCYqJiZH0f4tSfvLJJ2aLUv5ziO3333/XkCFDtGnTJvn4+Cg6OlrTp0+3aVFKm5Olxx9/XHPmzFHFihVtOcyuSJYAAKWZPZOl6RvslyyN61j8ZMmZ2DzBe9GiRbp8+fKNiAUAAMDp2Jy7Go3GIktjAACgdOFButZdU6HvmWeekbe3d6H7Pvjgg+sKCAAAwJlcU7JkNBpVBueFAwDgchgtss7mZMlgMOiNN94wrVcAAABQll3TnCUAAFA2MGfJOpvvhouOji5yvhIAAEBZY3Nlafbs2YU+0uT8+fMqV66c/Pz8SiQwAABw4zFlyTqbK0t9+/Yt9Km/y5YtU9++fUskKAAAAGdhc7K0a9cudejQoUB7+/bttWvXrhIJCgAAwFnYPAyXlZWl3NyCzxPJyclhZW8AAEoZN8bhrLK5snTHHXdo/vz5BdrfeecdtWzZskSCAgAAcBY2V5ZeeuklderUST/99JPuvvtuSdL69eu1Z88erV27tsQDBAAANw5LB1hnc2Xprrvu0o4dO1SzZk0tW7ZMq1atUoMGDbR//361bdv2RsQIAADgMNf0uJPmzZvr448/LulYAACAnTFlyTqbK0sAAACupNiVJXd392L1y8vLu+ZgAACAfbmJ0pI1xU6WPDw85O7urmHDhikiIuJGxgQAAOA0ip0s/frrrxo/frxmzpypnj17Kj4+XjfddNONjA0AANxgzFmyrthzlmrVqqXFixdr3759yszMVLNmzTRo0CCdOXPmRsYHAADgUDZP8A4LC9NXX32l7777Tj///LMaNGiguLg4paWl3Yj4AADADeRmsN9WWl3z3XCRkZHavn27Pv74Y3355ZeqV6+eXn311ZKMDQAAwOEMRqPRWJyOvXv3LnJfbm6uvvvuO2VlZTnF3XCZBR9dBwBAqVH+mlZBvDbzd/5ut2sNal3bbtcqScX+dfj7+1vc/9BDD113MAAAAM6m2MlSQkLCjYwDAAA4AHfDWccK3gAAABbYcVQUAAA4GzdKS1ZRWQIAALCAyhIAAC6MwpJ1VJYAAAAsIFkCAACwgGE4AABcGFUT6/iMAAAALKCyBACACzMww9sqKksAAAAWUFkCAMCFUVeyjsoSAACABVSWAABwYTzuxDoqSwAAABZQWQIAwIVRV7KOyhIAAIAFVJYAAHBhTFmyjsoSAACABVSWAABwYazgbR2VJQAAAAuoLAEA4MKomljHZwQAAGABlSUAAFwYc5aso7IEAABgAckSAACABQzDAQDgwhiEs47KEgAAgAVUlgAAcGFM8LaOyhIAAHBKW7ZsUY8ePRQaGiqDwaAvvvjCbH9MTIwMBoPZ1qVLF7M+58+f1yOPPCI/Pz8FBARo4MCBysjIsCkOkiUAAFyYmx03W126dEm33HKL5s2bV2SfLl266MyZM6btk08+Mdv/yCOP6ODBg1q3bp1Wr16tLVu2aNCgQTbFwTAcAACwi6ysLGVlZZm1eXl5ycvLq9D+Xbt2VdeuXS2e08vLSyEhIYXuO3z4sL799lvt2bNHt912myTpzTffVLdu3TRz5kyFhoYWK24qSwAAuLB/D2PdyC0+Pl7+/v5mW3x8/HXFv2nTJgUFBalRo0YaMmSIzp07Z9q3Y8cOBQQEmBIlSerUqZPc3Ny0a9euYl+DyhIAALCLuLg4jRw50qytqKpScXTp0kW9e/dW3bp1dfz4cT3//PPq2rWrduzYIXd3dyUnJysoKMjsmHLlyikwMFDJycnFvg7JEgAALsye98JZGnK7Fn379jX9HBYWpvDwcNWvX1+bNm3S3XffXWLXYRgOAACUCfXq1VOVKlV07NgxSVJISIhSU1PN+uTm5ur8+fNFznMqDMkSAAAuzGCw33ajnTp1SufOnVO1atUkSREREbpw4YL27t1r6rNhwwbl5+erVatWxT4vw3AAAMApZWRkmKpEknTixAklJiYqMDBQgYGBmjJlivr06aOQkBAdP35czz33nBo0aKCoqChJ0s0336wuXbroySef1DvvvKOcnBwNHTpUffv2LfadcJJkMBqNxhJ/dw6WmevoCAAAuHbl7VjKWHUgxW7X6hEWbFP/TZs2qUOHDgXao6Oj9fbbb6tXr17at2+fLly4oNDQUHXu3FlTp05VcPD/Xef8+fMaOnSoVq1aJTc3N/Xp00dvvPGGfH19ix0HyRIAAE6GZMm5MAwHAIAL49Fw1jHBGwAAwAIqSwAAuDCDXVdaKp2oLAEAAFhAZQkAABfGnCXrqCwBAABYQLIEAABggVMkS0lJSSqDyz0BAOD03GSw21ZaOUWyVLduXZ09e9bRYQAAABTgFBO8qSoBAOAYTPC2zimSJenKk4IzMzML3VerVi07RwMAAHCF0yRLt99+e4E2o9Eog8GgvLw8B0QEAEDZR2XJOqdJlnbt2qWqVas6OgwAAAAzTpEsGQwG1apVS0FBQY4OBQAAl8LjTqxzirvhmOANAACclVNUlk6cOMEQHAAADuBGYckqp0iWateubfo5Ly9Pc+bMUWJiosLCwjRixAiVK+cUYQIAABfkFMNw/zRu3DhNnTpVmZmZmjVrlkaMGOHokAAAKLMMdvxfaeV0ydLKlSu1ePFiLVu2TKtWrdKKFSscHRIAAHBhTje+lZKSoiZNmkiSmjZtqpSUFAdHBABA2cU6S9Y5XWXJaDTKze1KWAaDgTvlAACAQzlFZalSpUoy/P/UNiMjQy1atDAlTAAA4MYpzXOJ7MUpkqVZs2aZkiUAAABnYjCWwXGuzFxHRwAAwLUrb8dSxpZfz9vtWpE3BdrtWiXJKSpL+/fvt7g/PDzcTpEAAACYc4pkqXnz5kVO5jYYDMrLy3NAVAAAAE6SLEnSrl27eOQJAAB2xgRv65wmWapVq5aCgoIcHQYAAIAZp0mW1qxZoypVqsjHx0ehoaGqX78+d8gBAHCD8VetdU5xN9y/11QyGAyqWLGioqOjNXPmTHl4eNh0Pu6Gc057f9ijhR+8r8OHftbZs2c164156nh3J0lSTk6O5r4xW1u/36JTp/5QRV9ftYq4U8+OGKWgoGAHRw6UDpa+Y5L09rw39e03Xyk5OVkeHh5q0qSphj47QuHhtzgwahTGnnfDbT36l92u1aZhJbtdqyQ5xcqP+fn5ys/PV1ZWls6ePavExES99tpr+vTTTzVx4kRHh4cScvny32rUqJHixk8qsC8zM1O/HD6kQYOH6NPlK/T6nLk6eeKEnh06xAGRAqWTpe+YJNWuXUdxL0zUfz9fpYUfLlFo9eoa8uTjOn/efreOw/kY7LiVVk5RWSrKl19+qdjYWP3xxx82HUdlyfnd0rRRgX/1/tvPB/brkb4P6Nt1G1UtNNSO0QGlX3G+YxkZGbqrVUvNf3+hWrWOsGN0sMaelaVtdqws3VVKK0tOM2epMD169FCbNm0cHQYcJCMj48qQrJ+fo0MBypyc7Gz9d/mnqlixom5q1MjR4cCB3Ji0ZJVTJEvt2rXTwIED9cADD8jb29vUbjAYFBhoebXPrKwsZWVlmbUZ3b3k5eV1Q2KFfWRlZWn26zPVtVt3+fr6OjocoMzYvGmjxo4eqczMy6pStareee8DVapUOldVBuzFKeYstWjRQqNHj1ZISIiefPJJ7dy5s9jHxsfHy9/f32x79ZX4GxgtbrScnByNGfmsjEajXpg4xdHhAGXK7Xe00rL/fqHFHy/VXW3aasyo4Tp37pyjw4IDMWfJOqdIlmbPnq3Tp08rISFBqampioyMVJMmTTRz5kylpKRYPDYuLk5paWlm25ixcXaKHCUtJydHY0YN15nTp/Xugg+oKgElrEKFCqpVu7bCb2muKVNfVjn3cvpixWeODgtwak6RLElSuXLl1Lt3b61cuVKnTp1Sv379NGHCBNWsWVO9evXShg0bCj3Oy8tLfn5+ZhtDcKXT1UQp6fff9e77CxUQUDonAgKlSb4xX9nZ2Y4OA45Eackqp5iz9E+7d+9WQkKCli5dqqCgIMXExOjPP//Uvffeq6efflozZ850dIi4Rn9fuqSkpCTT6z9PndIvhw/L399fVapW1egRz+jw4UN6c967ys/L0//OnpUk+fv7y8PT01FhA6WGpe+Yf0CAFsx/R+07dFSVqlV14a+/tPSTj5WakqJ7oro4MGrA+TnF0gGpqan68MMPlZCQoKNHj6pHjx564oknFBUVZVrFe+vWrerSpYsyMjKsno+lA5zTnt279MSA/gXa/9PzPg2OHapune8u9LgFCYt1+x2tbnR4QKln6Ts2ftIUjXtulA7s/0kX/vpLAQEBatosTE8+NUTNwsIdEC0ssefSAbuOp9ntWq3q+9vtWiXJKZIlT09P1a9fX48//rhiYmIKfaBuenq6evbsqY0bN1o9H8kSAKA0I1lyLk6RLH3//fdq27ZtiZ2PZAkAUJrZM1na/Zv9kqU76pXOZMkpJnjXqFFDR48eLdB+9OhRnTx50v4BAQAA/H9OkSzFxMRo+/btBdp37dqlmJgY+wcEAICL4GY465wiWdq3b5/uuuuuAu2tW7dWYmKi/QMCAAD4/5xi6QCDwaCLFy8WaE9LS1NeXp4DIgIAwEWU5pKPnThFZSkyMlLx8fFmiVFeXp7i4+N5kC4AAHAop6gsvfLKK4qMjFSjRo1Md8V9//33Sk9PL3LlbgAAAHtwispSkyZNtH//fj344INKTU3VxYsX1b9/f/3yyy9q1qyZo8MDAKDMMtjxf6WVU6yzVNJYZwkAUJrZc52lH06k2+1at9X1s9u1SpJTDMPt37/f4v7wcJbiBwDgRjCU3oKP3ThFstS8eXMZDAYZjUbTs+CuFrwMBgN3xAEAAIdximTpxIkTkq4kSM2aNdPXX3+t2rVrOzgqAADKPgpL1jlFsvTPxMhgMKhGjRokSwAAwCk4xd1wAADAQZz4eSdbtmxRjx49FBoaKoPBoC+++MJsv9Fo1MSJE1WtWjV5e3urU6dOBZ41e/78eT3yyCPy8/NTQECABg4cqIyMDJvicLpkyWAwmOYtAQAA13Xp0iXdcsstmjdvXqH7Z8yYoTfeeEPvvPOOdu3aJR8fH0VFRSkzM9PU55FHHtHBgwe1bt06rV69Wlu2bNGgQYNsisMplg6oVKmSKUG6cOGC/Pz85Ob2f3nc+fPnbTofSwcAAEozey4dsO/3go8bu1GahHgqKyvLrM3Ly0teXl5WjzUYDPr888/Vq1cvSVeqSqGhoRo1apRGjx4t6cpj0oKDg7Vw4UL17dtXhw8fVpMmTbRnzx7ddtttkqRvv/1W3bp106lTpxQaGlqsuJ1iztKsWbOoJgEAUMbFx8drypQpZm2TJk3S5MmTbT7XiRMnlJycrE6dOpna/P391apVK+3YsUN9+/bVjh07FBAQYEqUJKlTp05yc3PTrl27dN999xXrWk6RLMXExDg6BAAAXJI9axVxcXEaOXKkWVtxqkqFSU5OliQFBwebtQcHB5v2JScnKygoyGx/uXLlFBgYaOpTHA5Nltzd3YvVj3WWAAAo/Yo75OZsHJoseXh4yN3dXcOGDVNERIQjQwEAwCWV1kkwISEhkqSUlBRVq1bN1J6SkqLmzZub+qSmppodl5ubq/Pnz5uOLw6HJku//vqrxo8fr5kzZ6pnz56Kj4/XTTfd5MiQAABAKVC3bl2FhIRo/fr1puQoPT1du3bt0pAhQyRJERERunDhgvbu3auWLVtKkjZs2KD8/Hy1atWq2Ndy6NIBtWrV0uLFi7Vv3z5lZmaqWbNmGjRokM6cOePIsAAAcB1OvM5SRkaGEhMTlZiYKOnKpO7ExEQlJSXJYDBo+PDheumll/Tll1/qwIED6t+/v0JDQ013zN18883q0qWLnnzySe3evVvbtm3T0KFD1bdv32LfCSc5ydIBV23ZskXjxo3TTz/9pGeeeUbjxo2Tv7+/zedh6QAAQGlmz6UDfvrDfksH3FKzok39N23apA4dOhRoj46O1sKFC2U0GjVp0iTNnz9fFy5cUJs2bfTWW2+ZjVKdP39eQ4cO1apVq+Tm5qY+ffrojTfekK+vb7HjcKpk6aovvvhCL7zwgpKTkzVu3DiNGTPGpuNJlgAApZk9k6X9f9i2mvX1CK9Z/ATFmTg0Werdu3eR+3Jzc/Xdd98pKyvL5rvhSJYAAKUZyZJzcegEb2tDbA899JCdIgEAACicUw7DXS8qSwCA0syelaUDp+xXWQqrUTorS073IF0AAABn4hSPOwEAAI5RWheltCcqSwAAABZQWQIAwJVRWrKKyhIAAIAFVJYAAHBhBkpLVlFZAgAAsIDKEgAALsxAYckqKksAAAAWUFkCAMCFUViyjsoSAACABVSWAABwZZSWrKKyBAAAYAGVJQAAXBjrLFlHZQkAAMACKksAALgw1lmyjsoSAACABSRLAAAAFjAMBwCAC2MUzjoqSwAAABZQWQIAwJVRWrKKyhIAAIAFVJYAAHBhLEppHZUlAAAAC6gsAQDgwliU0joqSwAAABZQWQIAwIVRWLKOyhIAAIAFVJYAAHBllJasorIEAABgAZUlAABcGOssWUdlCQAAwAIqSwAAuDDWWbKOyhIAAIAFVJYAAHBhFJaso7IEAABgAZUlAABcGaUlq6gsAQAAWECyBAAAYAHDcAAAuDAWpbSOyhIAAIAFVJYAAHBhLEppHZUlAAAAC6gsAQDgwigsWUdlCQAAwAIqSwAAuDDmLFlHZQkAAMACKksAALg0SkvWUFkCAACwgMoSAAAujDlL1lFZAgAATmfy5MkyGAxmW+PGjU37MzMzFRsbq8qVK8vX11d9+vRRSkrKDYmFZAkAABdmsONmq6ZNm+rMmTOmbevWraZ9I0aM0KpVq7R8+XJt3rxZp0+fVu/eva/hKtYxDAcAAOwiKytLWVlZZm1eXl7y8vIqtH+5cuUUEhJSoD0tLU3vv/++lixZoo4dO0qSEhISdPPNN2vnzp1q3bp1icZNZQkAABdmMNhvi4+Pl7+/v9kWHx9fZGxHjx5VaGio6tWrp0ceeURJSUmSpL179yonJ0edOnUy9W3cuLFq1aqlHTt2lPhnRGUJAADYRVxcnEaOHGnWVlRVqVWrVlq4cKEaNWqkM2fOaMqUKWrbtq1+/vlnJScny9PTUwEBAWbHBAcHKzk5ucTjJlkCAMCFGey4zpKXl2eRydG/de3a1fRzeHi4WrVqpdq1a2vZsmXy9va+USEWimE4AADg9AICAnTTTTfp2LFjCgkJUXZ2ti5cuGDWJyUlpdA5TteLZAkAADi9jIwMHT9+XNWqVVPLli3l4eGh9evXm/YfOXJESUlJioiIKPFrMwwHAIArc9JFKUePHq0ePXqodu3aOn36tCZNmiR3d3c9/PDD8vf318CBAzVy5EgFBgbKz89Pw4YNU0RERInfCSeRLAEAACd06tQpPfzwwzp37pyqVq2qNm3aaOfOnapataokadasWXJzc1OfPn2UlZWlqKgovfXWWzckFoPRaDTekDM7UGauoyMAAODalbdjKSMlPcdu1wr287DbtUoSc5YAAAAsYBgOAAAXxoN0raOyBAAAYAGVJQAAXJg9F6UsragsAQAAWEBlCQAAV0ZhySoqSwAAABZQWQIAwIVRWLKOyhIAAIAFVJYAAHBhrLNkHZUlAAAAC6gsAQDgwlhnyToqSwAAABZQWQIAwIUxZ8k6KksAAAAWkCwBAABYQLIEAABgAckSAACABUzwBgDAhTHB2zoqSwAAABZQWQIAwIWxKKV1VJYAAAAsoLIEAIALY86SdVSWAAAALKCyBACAC6OwZB2VJQAAAAuoLAEA4MooLVlFZQkAAMACKksAALgw1lmyjsoSAACABVSWAABwYayzZB2VJQAAAAuoLAEA4MIoLFlHZQkAAMACKksAALgySktWUVkCAACwgGQJAADAAobhAABwYSxKaR2VJQAAAAuoLAEA4MJYlNI6KksAAAAWGIxGo9HRQcC1ZWVlKT4+XnFxcfLy8nJ0OECZw3cMuD4kS3C49PR0+fv7Ky0tTX5+fo4OByhz+I4B14dhOAAAAAtIlgAAACwgWQIAALCAZAkO5+XlpUmTJjHxFLhB+I4B14cJ3gAAABZQWQIAALCAZAkAAMACkiUAAAALSJYAAAAsIFkqA2JiYtSrV68C7Zs2bZLBYNCFCxfsHhOAohX2nf39999Vvnx5GXiqKeB0SJYAwAlMmDCBRAlwUiRLLmbr1q1q27atvL29VbNmTT3zzDO6dOmSJKl9+/YyGAyFbpMnTy70fJMnT1bz5s1Nr7Ozs9WgQQOzitbChQsVEBBgdtzJkydlMBiUmJhoajt48KDuvfde+fn5qWLFimrbtq2OHz+uLVu2yMPDQ8nJyWbnGD58uNq2bWvWVljsV69RWBz/jqeo7eTJk8rLy9PAgQNVt25deXt7q1GjRpozZ47FzxsojgMHDujjjz/WsGHDTG1l5XsDlAUkSy7k+PHj6tKli/r06aP9+/fr008/1datWzV06FBJ0ooVK3TmzBmdOXNGERERGjVqlOn16NGji3WNuXPnKiUlxebY/vzzT0VGRsrLy0sbNmzQ3r179fjjjys3N1eRkZGqV6+ePvzwQ1P/nJwcffzxx3r88cdNbVeXDEtISNCZM2e0e/fuYl+/Zs2apvd69bjdu3eb2mrWrKn8/HzVqFFDy5cv16FDhzRx4kQ9//zzWrZsmc3vF/incePGqUePHrrzzjttOq40fG+AsqCcowNAyVi9erV8fX3N2vLy8sxex8fH65FHHtHw4cMlSQ0bNtQbb7yhdu3a6e2331ZgYKCpr6enp3x9fRUSElLsGM6fP6+XXnpJY8eO1YQJE2yKf968efL399fSpUvl4eEhSbrppptM+wcOHKiEhASNGTNGkrRq1SplZmbqwQcfNPXJycmRJFWtWlUhISHKzMws9vXd3d1N7/XqcVfP888+U6ZMMb2uW7euduzYoWXLlpnFAdhiy5YtWrNmjQ4cOKAjR47YdGxp+N4AZQGVpTKiQ4cOSkxMNNsWLFhg1uenn37SwoUL5evra9qioqKUn5+vEydOXHcML774ojp06KA2bdoU2JeWlmZ23aZNm5rtT0xMVNu2bU1/4P9bTEyMjh07pp07d0q6MjTw4IMPysfHx9QnPT1dkszaiorDz89PDRs21OjRo01/WRTHvHnz1LJlS1WtWlW+vr6aP3++kpKSin088G/jxo1TdHS0br755gL7ysr3BijtqCyVET4+PmrQoIFZ26lTp8xeZ2Rk6KmnntIzzzxT4PhatWpd1/WPHj2qBQsWKDExscB1JalixYr68ccfTa///PNPtW/f3vTa29vb4vmDgoLUo0cPJSQkqG7duvrmm2+0adMmsz6nT5+WJIWGhhZ5nqtxGI1GHTp0SNHR0QoJCSnWMOPSpUs1evRovfbaa4qIiFDFihX16quvateuXVaPBQrz+eefa9++fUUO5ZaF7w1QFpAsuZBbb71Vhw4dKpBUlYSxY8fqiSeeUIMGDQpNltzc3MyuW66c+X964eHhWrRokXJycor8V/ITTzyhhx9+WDVq1FD9+vV11113me3fs2ePKlasqPr16xcZ5z/jaNiwoe655x6zybKWbNu2TXfeeaeefvppU9vx48eLdSzwb3l5eXrhhRc0bNgw1ahRo9A+ZeF7A5QFDMO5kLFjx2r79u0aOnSoEhMTdfToUa1cudI0wftaHTt2TJs2bdLEiROv+RxDhw5Venq6+vbtqx9++EFHjx7Vhx9+aDaHIyoqSn5+fnrppZc0YMAAU3t+fr6+/PJLPf/88+rfv7/c3d0tXiszM1OXL1/W3r17tXXrVjVr1qxYMTZs2FA//PCD1qxZo19//VUTJkzQnj17ru0Nw+V99913OnPmjOLi4q75HKXhewOUBSRLLiQ8PFybN2/Wr7/+qrZt26pFixaaOHGixfJ7cVy6dEkvvPCC2QRxW1WuXFkbNmxQRkaG2rVrp5YtW+q9994z+9eym5ubYmJilJeXp/79+5va//rrLz399NOKjo7Wa6+9ZvE6aWlp8vb2lo+Pj+69917dd999GjlyZLFifOqpp9S7d2899NBDatWqlc6dO2dWZQJskZmZqbFjx6pSpUrXfI7S8L0BygKD8ep9o0ApMHDgQJ09e1Zffvmlo0MBSg2+N8D1Yc4SSoW0tDQdOHBAS5Ys4Q98oJj43gAlg2QJpULPnj21e/duDR48WPfcc4+jwwFKBb43QMlgGA4AAMACJngDAABYQLIEAABgAckSAACABSRLAAAAFpAsAQAAWECyBMDppaenq3nz5srIyNCpU6duyPMNAaAoJEtwSTExMTIYDEVuFy5ccHSI+Ac/Pz+1adNGAQEBqlOnjoYMGeLokAC4ENZZgkuKiYlRSkqKEhISzNq3b9+uPn366K+//lJAQIBjgkORzp8/r3LlysnPz8/RoQBwIVSW4LK8vLwUEhJitv37YcALFy5UQECAvvjiCzVs2FDly5dXVFSU/vjjD7N+K1eu1K233qry5curXr16mjJlinJzc836TJ48uUAFq1evXmZ9tm3bpvbt26tChQqqVKmSoqKi9Ndff0mS2rdvr+HDh5v6LliwQAEBAfrxxx8lSXl5eRo4cKDq1q0rb29vNWrUSHPmzDE7/7hx4xQaGipPT09Vr15dY8eOVX5+frGPj4mJKRDz1c/on++zefPmZn02bdpkVrH79zH/lJiYKIPBoJMnTxboGxgYKD8/P0VGRspgMCgxMbHQc0hSnTp1NHv2bNPr8ePHq0aNGqbzXlVYZfHqec+dO6eHH35Y1atXV4UKFRQWFqZPPvnE7Pj8/HzNmDFDDRo0kJeXl2rVqqVp06aZ9p86dUoPP/ywAgMD5ePjo9tuu027du0qMm4AzofHnQBW/P3335o2bZoWL14sT09PPf300+rbt6+2bdsmSfr+++/Vv39/vfHGG2rbtq2OHz+uQYMGSZImTZpkdq6mTZvqu+++kyQ9++yzysrKMu1LTEzU3Xffrccff1xz5sxRuXLltHHjRuXl5RWIadmyZRoxYoS++uor3XrrrZKu/KVdo0YNLV++XJUrV9b27ds1aNAgVatWTQ8++KAkqXPnznrwwQdVpUoVHTx4UP369VPTpk3Vv3//Yh3vDFasWKF9+/bZdMxrr72md999V1u2bFGdOnVM7VcL6wkJCerSpYv++OMP3XHHHab9mZmZatmypcaOHSs/Pz999dVXeuyxx1S/fn1Tv7i4OL333nuaNWuW2rRpozNnzuiXX36RJGVkZKhdu3aqXr26vvzyS4WEhOjHH380JagASgeSJcCKnJwczZ07V61atZIkLVq0SDfffLN2796tO+64Q1OmTNG4ceMUHR0tSapXr56mTp2q5557zixZysrKkre3t0JCQiRJ3t7eZsnSjBkzdNttt+mtt94ytTVt2rRAPN98840GDBig5cuXKzIy0tTu4eGhKVOmmF7XrVtXO3bs0LJly0zJTseOHU378/Ly5O3tbUrGinO8o+Xk5Gjs2LEaO3asJkyYUKxjFixYoBdffFEbNmzQzTffXOB8klS1alWFhIQoMzPTbH/16tU1evRo0+thw4ZpzZo1WrZsme644w5dvHhRc+bM0dy5c02///r166tNmzaSpCVLlujs2bPas2ePqWrJ5HSg9CFZAqwoV66cbr/9dtPrxo0bKyAgQIcPH9Ydd9yhn376Sdu2bTMbesnLy1NmZqb+/vtvVahQQdKVIR1Lc20SExP1wAMPWIxl9+7dmj9/vnx9fU3J2z/NmzdPH3zwgZKSknT58mVlZ2cXGBJ7+eWX9dJLL+ny5csaOnSo+vfvb9Pxq1evlq+vr+l1bm6uypcvb9bnwIEDZn0Kq46lpaXJ19dXbm5uCg4OVs+ePRUfH2/x/c+bN0/+/v565JFHipUsrVy5Ulu2bNFNN92kZs2aFdifnp4uSfLx8Sn0+Ly8PL388statmyZ/vzzT2VnZysrK8v0Oz18+LCysrJ09913F3p8YmKiWrRoUWB4F0Dpwpwl4DplZGRoypQpSkxMNG0HDhzQ0aNHzZKI3377TXXr1i3yPN7e3lavtWPHDr3++usKDw/X0KFDzfYtXbpUo0eP1sCBA7V27VolJiZqwIABys7ONus3ePBg/fjjj/roo4+0dOlSbdmyxabjO3ToYPZeX3zxxQJxNmrUyKzPggULCvSpWLGiEhMTtXfvXs2cOVMLFiwoMEfqn/766y9NnTpVr7/+ugwGg9XPSroyB+zTTz+VwWDQ5MmTC+w/ffq0JCk0NLTQ41999VXNmTNHY8eO1caNG5WYmKioqCjTZ2Ltd1ac3ykA50dlCbAiNzdXP/zwg2mOypEjR3ThwgXTkM6tt96qI0eOWBxeyczM1O7du/XYY48V2Sc8PFzr1683Gwr7t8cee0yDBw9W165d1axZM33++ee67777JF1JDO688049/fTTpv7Hjx8vcI7AwEAFBgaqcePG+uyzz/Tf//5XHTp0KPbxPj4+Zu81KCioQB9PT0+zPqdOnSrQx83NzdSnYcOGuueee5SYmKhOnToV+t6nTp2qtm3bKjIyssAk7aKMGzdO999/v2rVqqXIyEj17t3brEq4Z88eVaxYUfXr1y/0+G3btqlnz5569NFHJV2ZF/brr7+qSZMmpri9vb21fv16PfHEEwWODw8P14IFC3T+/HmqS0ApRmUJsMLDw0PDhg3Trl27tHfvXsXExKh169am5GnixIlavHixpkyZooMHD+rw4cNaunSpxo8fL+lK5WnixImSpDZt2ig5OVnJycm6fPmysrKylJaWJunKROE9e/bo6aef1v79+/XLL7/o7bff1v/+9z9TLFf/wq1du7ZeffVVDRkyROfOnZN05S/uH374QWvWrNGvv/6qCRMmaM+ePWbv5a233tLBgwd18uRJffTRR1q3bp1atGhR7ONLWmZmpi5fvqy9e/dq69athQ6VSVcm2c+fP18zZsyw6fxXP6877rhDw4cPN1XK8vPz9eWXX+r5559X//795e7uXujxDRs21Lp167R9+3YdPnxYTz31lFJSUkz7y5cvr7Fjx+q5557T4sWLdfz4ce3cuVPvv/++JOnhhx9WSEiIevXqpW3btum3337Tf//7X+3YscOm9wHAsUiWACsqVKigsWPHql+/frrrrrvk6+urTz/91LQ/KipKq1ev1tq1a3X77berdevWmjVrlmrXri1Jmjlzpl599VVdvHhRDRo0ULVq1VStWjUtW7ZM3377rZ599llJ0k033aS1a9fqp59+0h133KGIiAitXLlS5coVXgB+6qmn1KxZMw0bNsz0unfv3nrooYfUqlUrnTt3zqxKJElfffWV2rdvr8aNG2vKlCl6/vnn9fjjjxf7+JKUlpYmb29v+fj46N5779V9992nkSNHFto3JydHAwYM0E033XTN15syZYry8/M1efJk/fXXX3r66acVHR2t1157rchjxo8fr1tvvVVRUVFq3769KfH5pwkTJmjUqFGaOHGibr75Zj300ENKTU2VdKXCtnbtWgUFBalbt24KCwvT9OnTi0zOADgnFqUELFi4cKGGDx9+XSt6X50rU9icmS+++EJffPGFFi5ceM3nBwDcWMxZAm6wf94V9m/ly5eXv7+/HaMBANiKyhJgQUlUlgAApRvJEgAAgAVM8AYAALCAZAkAAMACkiUAAAALSJYAAAAsIFkCAACwgGQJAADAApIlAAAAC0iWAAAALPh/9rcXK6O6ztAAAAAASUVORK5CYII=", "text/plain": [ "А ВОТ ТЕПЕЕЕЕЕЕЕЕЕЕЕРЬ я поправила недоразумения и вроде как модель проперло на выявление инсульта. Но, так как в данных ЛЮТЫЙ дисбаланс, то модель слаба на выявление инсульта все еще.
" ] } ], "metadata": { "kernelspec": { "display_name": "venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.6" } }, "nbformat": 4, "nbformat_minor": 2 }