{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Лабораторная работа №2\n",
    "\n",
    "## Общие данные\n",
    "\n",
    "Типы пропущенных данных:\n",
    "\n",
    "None - представление пустых данных в Python  \n",
    "NaN - представление пустых данных в Pandas  \n",
    "' ' - пустая строка\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 1 Датасет: NASA - Nearest Earth Objects \n",
    "https://www.kaggle.com/datasets/sameepvani/nasa-nearest-earth-objects\n",
    "\n",
    "Перевод контекста со страницы на Kaggle:  \n",
    "    В космическом пространстве существует бесконечное количество объектов. Некоторые из них находятся ближе, чем мы думаем. Несмотря на то, что мы можем думать, что расстояние в 70 000 км потенциально не может причинить нам вреда, по астрономическим меркам это очень небольшое расстояние, которое может нарушить многие природные явления. Таким образом, эти объекты/астероиды могут оказаться опасными. Следовательно, разумно знать, что нас окружает и что из этого может причинить нам вред. Таким образом, этот набор данных составляет список сертифицированных НАСА астероидов, которые классифицируются как ближайшие к Земле объекты.\n",
    "\n",
    "- По описаню можно понять, что объектами исследования являютя объекты, которые находятся в близи Земли\n",
    "- Атрибуты обьекта: id, name, est_diameter_min, est_diameter_max, relative_velocity, miss_distance, orbiting_body, sentry_object, absolute_magnitude, hazardous\n",
    "- В описании говорится о возможной опасности объектов, поэтому можно сделать вывод, что цель данного датасета научится определять опасность околоземных объектов\n",
    "\n",
    "## 2 Датасет: Indicators of Heart Disease \n",
    "https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease\n",
    "\n",
    "Перевод контекста со страницы на Kaggle:  \n",
    "    По данным Всемирной организации здравоохранения (ВОЗ), инсульт является второй по значимости причиной смертности во всем мире, на его долю приходится примерно 11% от общего числа смертей. Этот набор данных используется для прогнозирования вероятности инсульта у пациента на основе таких входных параметров, как пол, возраст, различные заболевания и статус курильщика. Каждая строка данных содержит соответствующую информацию о пациенте.\n",
    "- Из этого описания очевидно что объектами иследования являются реальные пациенты.\n",
    "- Атрибуты объектов: id, gender, age, hypertension, heart_disease, ever_married, work_type, Residence_type, avg_glucose_level, bmi, smoking_status, stroke\n",
    "- Очевидная цель этого датасета - это научиться определять будет у человека сердечный приступ или нет.\n",
    "\n",
    "## 3 Датасет: Pima Indians Diabetes Database\n",
    "https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database\n",
    "\n",
    "Перевод контекста со страницы на Kaggle:  \n",
    "    Этот набор данных изначально был получен из Национального института диабета, заболеваний пищеварительной системы и почек. Целью набора данных является диагностическое прогнозирование наличия или отсутствия у пациента диабета на основе определенных диагностических измерений, включенных в набор данных. На выбор этих случаев из более крупной базы данных налагалось несколько ограничений. В частности, все пациенты здесь — женщины в возрасте не менее 21 года индейского происхождения пима.\n",
    "- объект иследования - женьщины индейци пима\n",
    "- очевидно цель датасета это предсказание диабета.\n",
    "- атрибуты: Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age, Outcome"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "колонки: id, name, est_diameter_min, est_diameter_max, relative_velocity, miss_distance, orbiting_body, sentry_object, absolute_magnitude, hazardous\n",
      "колонки: id, gender, age, hypertension, heart_disease, ever_married, work_type, Residence_type, avg_glucose_level, bmi, smoking_status, stroke\n",
      "колонки: Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age, Outcome\n"
     ]
    }
   ],
   "source": [
    "import pandas as pd\n",
    "\n",
    "neo = pd.read_csv(\"..//static//csv//neo_v2.csv\", sep=\",\")\n",
    "healthcare = pd.read_csv(\"..//static//csv//healthcare-dataset-stroke-data.csv\", sep=\",\")\n",
    "diabetes = pd.read_csv(\"..//static//csv//diabetes.csv\", sep=\",\")\n",
    "\n",
    "print('колонки околоземных обьектов: ' + ', '.join(neo.columns))\n",
    "print('колонки пациентов: ' + ', '.join(healthcare.columns))\n",
    "print('колонки индейцев: ' + ', '.join(diabetes.columns))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#Проверим пустые занчения"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Околоземные обьекты\n",
      "id                    0\n",
      "name                  0\n",
      "est_diameter_min      0\n",
      "est_diameter_max      0\n",
      "relative_velocity     0\n",
      "miss_distance         0\n",
      "orbiting_body         0\n",
      "sentry_object         0\n",
      "absolute_magnitude    0\n",
      "hazardous             0\n",
      "dtype: int64\n",
      "\n",
      "id                    False\n",
      "name                  False\n",
      "est_diameter_min      False\n",
      "est_diameter_max      False\n",
      "relative_velocity     False\n",
      "miss_distance         False\n",
      "orbiting_body         False\n",
      "sentry_object         False\n",
      "absolute_magnitude    False\n",
      "hazardous             False\n",
      "dtype: bool\n",
      "\n",
      "Пациенты\n",
      "id                     0\n",
      "gender                 0\n",
      "age                    0\n",
      "hypertension           0\n",
      "heart_disease          0\n",
      "ever_married           0\n",
      "work_type              0\n",
      "Residence_type         0\n",
      "avg_glucose_level      0\n",
      "bmi                  201\n",
      "smoking_status         0\n",
      "stroke                 0\n",
      "dtype: int64\n",
      "\n",
      "id                   False\n",
      "gender               False\n",
      "age                  False\n",
      "hypertension         False\n",
      "heart_disease        False\n",
      "ever_married         False\n",
      "work_type            False\n",
      "Residence_type       False\n",
      "avg_glucose_level    False\n",
      "bmi                   True\n",
      "smoking_status       False\n",
      "stroke               False\n",
      "dtype: bool\n",
      "\n",
      "bmi процент пустых значений: %3.93\n",
      "\n",
      "Индейцы\n",
      "Pregnancies                 0\n",
      "Glucose                     0\n",
      "BloodPressure               0\n",
      "SkinThickness               0\n",
      "Insulin                     0\n",
      "BMI                         0\n",
      "DiabetesPedigreeFunction    0\n",
      "Age                         0\n",
      "Outcome                     0\n",
      "dtype: int64\n",
      "\n",
      "Pregnancies                 False\n",
      "Glucose                     False\n",
      "BloodPressure               False\n",
      "SkinThickness               False\n",
      "Insulin                     False\n",
      "BMI                         False\n",
      "DiabetesPedigreeFunction    False\n",
      "Age                         False\n",
      "Outcome                     False\n",
      "dtype: bool\n",
      "\n"
     ]
    }
   ],
   "source": [
    "# Околоземные обьекты\n",
    "print(\"Околоземные обьекты\")\n",
    "# Количество пустых значений признаков\n",
    "print(neo.isnull().sum())\n",
    "\n",
    "print()\n",
    "\n",
    "# Есть ли пустые значения признаков\n",
    "print(neo.isnull().any())\n",
    "\n",
    "print()\n",
    "\n",
    "# Процент пустых значений признаков\n",
    "for i in neo.columns:\n",
    "    null_rate = neo[i].isnull().sum() / len(neo) * 100\n",
    "    if null_rate > 0:\n",
    "        print(f\"{i} процент пустых значений: %{null_rate:.2f}\\n\")\n",
    "\n",
    "# Пациенты\n",
    "print(\"Пациенты\")\n",
    "# Количество пустых значений признаков\n",
    "print(healthcare.isnull().sum())\n",
    "\n",
    "print()\n",
    "\n",
    "# Есть ли пустые значения признаков\n",
    "print(healthcare.isnull().any())\n",
    "\n",
    "print()\n",
    "\n",
    "# Процент пустых значений признаков\n",
    "for i in healthcare.columns:\n",
    "    null_rate = healthcare[i].isnull().sum() / len(healthcare) * 100\n",
    "    if null_rate > 0:\n",
    "        print(f\"{i} процент пустых значений: %{null_rate:.2f}\\n\")\n",
    "\n",
    "\n",
    "# Индейцы\n",
    "print(\"Индейцы\")\n",
    "# Количество пустых значений признаков\n",
    "print(diabetes.isnull().sum())\n",
    "\n",
    "print()\n",
    "\n",
    "# Есть ли пустые значения признаков\n",
    "print(diabetes.isnull().any())\n",
    "\n",
    "print()\n",
    "\n",
    "# Процент пустых значений признаков\n",
    "for i in diabetes.columns:\n",
    "    null_rate = diabetes[i].isnull().sum() / len(diabetes) * 100\n",
    "    if null_rate > 0:\n",
    "        print(f\"{i} процент пустых значений: %{null_rate:.2f}\\n\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "После этого видно, что в атрибуде bmi датасета Indicators of Heart Disease есть пустые значения, заполним значением Unknown\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "healthcare['bmi'] = healthcare['bmi'].fillna('Unknown')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Проверим датасет по числовым данным, для выявления аномальных распределений"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "                 id  est_diameter_min  est_diameter_max  relative_velocity  \\\n",
      "count  9.083600e+04      90836.000000      90836.000000       90836.000000   \n",
      "mean   1.438288e+07          0.127432          0.284947       48066.918918   \n",
      "std    2.087202e+07          0.298511          0.667491       25293.296961   \n",
      "min    2.000433e+06          0.000609          0.001362         203.346433   \n",
      "25%    3.448110e+06          0.019256          0.043057       28619.020645   \n",
      "50%    3.748362e+06          0.048368          0.108153       44190.117890   \n",
      "75%    3.884023e+06          0.143402          0.320656       62923.604633   \n",
      "max    5.427591e+07         37.892650         84.730541      236990.128088   \n",
      "\n",
      "       miss_distance  absolute_magnitude  \n",
      "count   9.083600e+04        90836.000000  \n",
      "mean    3.706655e+07           23.527103  \n",
      "std     2.235204e+07            2.894086  \n",
      "min     6.745533e+03            9.230000  \n",
      "25%     1.721082e+07           21.340000  \n",
      "50%     3.784658e+07           23.700000  \n",
      "75%     5.654900e+07           25.700000  \n",
      "max     7.479865e+07           33.200000  \n",
      "                 id          age  hypertension  heart_disease  \\\n",
      "count   5110.000000  5110.000000   5110.000000    5110.000000   \n",
      "mean   36517.829354    43.226614      0.097456       0.054012   \n",
      "std    21161.721625    22.612647      0.296607       0.226063   \n",
      "min       67.000000     0.080000      0.000000       0.000000   \n",
      "25%    17741.250000    25.000000      0.000000       0.000000   \n",
      "50%    36932.000000    45.000000      0.000000       0.000000   \n",
      "75%    54682.000000    61.000000      0.000000       0.000000   \n",
      "max    72940.000000    82.000000      1.000000       1.000000   \n",
      "\n",
      "       avg_glucose_level          bmi       stroke  \n",
      "count        5110.000000  5110.000000  5110.000000  \n",
      "mean          106.147677    28.893237     0.048728  \n",
      "std            45.283560     7.698018     0.215320  \n",
      "min            55.120000    10.300000     0.000000  \n",
      "25%            77.245000    23.800000     0.000000  \n",
      "50%            91.885000    28.400000     0.000000  \n",
      "75%           114.090000    32.800000     0.000000  \n",
      "max           271.740000    97.600000     1.000000  \n",
      "       Pregnancies     Glucose  BloodPressure  SkinThickness     Insulin  \\\n",
      "count   768.000000  768.000000     768.000000     768.000000  768.000000   \n",
      "mean      3.845052  120.894531      69.105469      20.536458   79.799479   \n",
      "std       3.369578   31.972618      19.355807      15.952218  115.244002   \n",
      "min       0.000000    0.000000       0.000000       0.000000    0.000000   \n",
      "25%       1.000000   99.000000      62.000000       0.000000    0.000000   \n",
      "50%       3.000000  117.000000      72.000000      23.000000   30.500000   \n",
      "75%       6.000000  140.250000      80.000000      32.000000  127.250000   \n",
      "max      17.000000  199.000000     122.000000      99.000000  846.000000   \n",
      "\n",
      "              BMI  DiabetesPedigreeFunction         Age     Outcome  \n",
      "count  768.000000                768.000000  768.000000  768.000000  \n",
      "mean    31.992578                  0.471876   33.240885    0.348958  \n",
      "std      7.884160                  0.331329   11.760232    0.476951  \n",
      "min      0.000000                  0.078000   21.000000    0.000000  \n",
      "25%     27.300000                  0.243750   24.000000    0.000000  \n",
      "50%     32.000000                  0.372500   29.000000    0.000000  \n",
      "75%     36.600000                  0.626250   41.000000    1.000000  \n",
      "max     67.100000                  2.420000   81.000000    1.000000  \n"
     ]
    }
   ],
   "source": [
    "print(neo.describe())\n",
    "print(healthcare.describe())\n",
    "print(diabetes.describe())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Аномальное рапределение будем искать по z-индексую. Z-индекс показывает, насколько далеко значение находится от среднего в стандартных отклонениях. Значения Z-индекса больше 3 или меньше -3 обычно считаются аномальными."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Аномалии в наборе данных Neo:\n",
      "В атрибуте 'est_diameter_min' обнаружены аномалии: [1.1982708007, 1.0293308202, 1.5085335612, 1.0246014747, 1.4078454339, 1.5507970872, 1.5224918504, 2.8350124902, 1.4208720673, 1.1818299089, 2.2727673228, 1.8053232555, 1.6693791177, 1.7240703244, 1.1709948272, 1.4809997207, 1.332155667, 1.0878148336, 4.5767266723, 1.2780709882, 1.2093582639, 1.5651464359, 1.1982708007, 2.2727673228, 1.4208720673, 1.332155667, 1.0340819954, 1.1080388213, 4.5767266723, 1.4208720673, 2.2832579402, 2.3689449936, 1.1390819672, 2.8090209395, 1.214940408, 2.0443487103, 1.0581688593, 2.9549829311, 1.5507970872, 1.5224918504, 1.0828167784, 2.6825941712, 1.2839702958, 1.133848361, 3.4084346887, 1.1818299089, 2.091967709, 1.0878148336, 1.6089960451, 1.0679599752, 2.3689449936, 1.9344387205, 1.3018321019, 1.6389095149, 1.6464743776, 1.4208720673, 2.1016237932, 1.7805532918, 3.1956188672, 1.0340819954, 1.5651464359, 1.1872849879, 1.2261821132, 1.1080388213, 4.1740243339, 1.0878148336, 1.7642290811, 1.2721987854, 1.2780709882, 1.85590173, 3.0658787593, 1.9344387205, 1.6617090174, 1.7161489408, 2.9549829311, 1.2663535629, 3.4399725466, 1.4013769717, 1.1818299089, 1.2318419127, 1.3694777373, 1.2958507267, 4.1740243339, 1.8904055193, 1.6848256925, 1.5224918504, 1.4208720673, 1.038855101, 1.128638801, 1.1982708007, 1.5016024791, 1.2547435637, 2.091967709, 1.0878148336, 1.1709948272, 1.3885290704, 1.1496217629, 1.4208720673, 1.3694777373, 1.1818299089, 2.0349557812, 1.128638801, 1.1496217629, 1.8991312347, 1.1709948272, 2.9549829311, 1.4208720673, 1.0878148336, 1.4208720673, 1.2721987854, 1.2780709882, 1.3260349677, 1.5651464359, 1.1602590821, 1.2093582639, 1.7723723926, 2.9549829311, 1.1496217629, 1.5085335612, 1.0581688593, 1.2605351968, 1.3383046182, 1.0828167784, 1.0828167784, 3.4084346887, 2.1905591097, 2.7450798165, 1.5507970872, 1.5224918504, 1.332155667, 1.4208720673, 1.1602590821, 1.4340192346, 2.091967709, 1.2605351968, 1.1182913782, 1.2721987854, 1.2038017674, 1.1872849879, 1.7004151927, 1.6693791177, 1.1982708007, 1.5085335612, 1.3018321019, 1.0246014747, 1.8991312347, 1.0293308202, 1.6313794097, 1.7805532918, 2.4578477463, 1.5224918504, 1.4013769717, 1.0878148336, 1.0293308202, 1.2721987854, 2.6336313095, 1.0293308202, 1.2432400055, 1.2780709882, 1.0246014747, 2.3043846658, 1.1763998937, 1.4340192346, 1.6770846216, 1.6464743776, 3.602093458, 1.3018321019, 1.2261821132, 1.6089960451, 1.2958507267, 2.6825941712, 2.3689449936, 2.3043846658, 2.1406958967, 1.0630531449, 1.0581688593, 1.4606796427, 1.0878148336, 1.4208720673, 1.2898968334, 1.2721987854, 1.0728894545, 2.091967709, 2.9549829311, 1.7723723926, 1.4809997207, 1.4208720673, 1.4809997207, 1.2038017674, 1.4340192346, 1.3569222899, 1.1602590821, 2.4465549617, 1.3444819516, 3.1956188672, 1.2205483181, 23.0438466577, 1.4340192346, 2.1210698788, 3.0517923259, 1.5507970872, 1.1182913782, 1.0878148336, 1.3444819516, 1.0778416872, 1.4013769717, 2.5383702936, 1.4274305148, 1.2780709882, 1.7642290811, 1.8904055193, 1.0293308202, 1.3506877983, 1.7082639526, 2.1308602925, 1.1029478453, 3.4084346887, 1.0828167784, 3.1956188672, 1.5651464359, 2.2727673228, 1.2375278366, 1.0246014747, 1.5942446807, 1.0728894545, 2.091967709, 1.1982708007, 1.2547435637, 1.6089960451, 1.5507970872, 1.5224918504, 1.332155667, 1.133848361, 1.6389095149, 2.1804944048, 1.0728894545, 1.0340819954, 1.2547435637, 1.2093582639, 2.9549829311, 1.3018321019, 2.0349557812, 2.3257068746, 1.6693791177, 1.474195145, 1.0828167784, 1.7805532918, 2.1016237932, 1.4208720673, 1.0878148336, 1.0728894545, 8.6408203645, 1.4013769717, 2.1804944048, 1.0728894545, 1.4274305148, 2.3257068746, 1.5085335612, 2.3689449936, 1.0340819954, 2.1905591097, 1.4606796427, 1.5507970872, 1.5224918504, 2.4019003012, 1.6313794097, 1.2958507267, 1.2605351968, 1.4208720673, 1.6926024946, 1.1872849879, 2.091967709, 1.9794975866, 4.6190746028, 1.3885290704, 1.0340819954, 1.1872849879, 3.9678475407, 1.4208720673, 1.0679599752, 2.3689449936, 1.1496217629, 1.1982708007, 1.6389095149, 1.6313794097, 1.7082639526, 2.35806068, 5.230641758, 1.2605351968, 1.1872849879, 1.7561231848, 1.4208720673, 1.0978802603, 1.2898968334, 1.5942446807, 1.214940408, 1.4208720673, 1.0878148336, 1.0533070151, 1.2261821132, 1.8053232555, 1.2489785407, 1.3821493588, 1.8904055193, 1.0828167784, 1.4208720673, 1.3885290704, 1.3383046182, 1.128638801, 1.2780709882, 8.1013048824, 1.6848256925, 1.4539684294, 1.1872849879, 1.2780709882, 2.091967709, 1.2605351968, 1.1982708007, 1.0484675089, 3.5039264111, 1.5651464359, 1.0340819954, 1.5651464359, 1.2839702958, 3.602093458, 3.1956188672, 1.8220277059, 2.3908645717, 1.4208720673, 1.3018321019, 1.0630531449, 1.5651464359, 1.2038017674, 2.1308602925, 1.6617090174, 2.2727673228, 1.4406383667, 1.1496217629, 1.2898968334, 2.9010484143, 1.0778416872, 2.2623249055, 1.1496217629, 2.3689449936, 1.3199423904, 2.6336313095, 1.0878148336, 1.3885290704, 1.4208720673, 1.2038017674, 2.8350124902, 1.3821493588, 3.1956188672, 1.1818299089, 1.2958507267, 2.2727673228, 3.5855433419, 1.6089960451, 1.1080388213, 1.1602590821, 1.2958507267, 1.0778416872, 1.7561231848, 1.5651464359, 1.5507970872, 1.5224918504, 2.9549829311, 3.4399725466, 1.1982708007, 3.4084346887, 2.091967709, 2.3043846658, 1.1982708007, 1.7240703244, 1.2547435637, 1.214940408, 1.0581688593, 1.8220277059, 1.1818299089, 1.8644681832, 1.4013769717, 1.6617090174, 1.3383046182, 1.8220277059, 1.1982708007, 1.6313794097, 1.6770846216, 1.4208720673, 1.0978802603, 1.2898968334, 1.1080388213, 1.2721987854, 1.9613494437, 1.128638801, 1.0293308202, 1.0878148336, 1.6926024946, 1.038855101, 1.038855101, 1.0828167784, 1.6389095149, 1.1763998937, 1.1602590821, 1.2038017674, 1.5295193534, 1.6693791177, 2.3689449936, 1.1234531767, 1.5085335612, 1.1872849879, 1.813656249, 1.4274305148, 1.2318419127, 1.4078454339, 1.038855101, 1.128638801, 1.8904055193, 1.2605351968, 1.2898968334, 1.8220277059, 1.5224918504, 2.091967709, 1.0246014747, 1.6617090174, 1.4340192346, 1.6089960451, 1.332155667, 1.813656249, 1.4208720673, 1.3383046182, 1.4013769717, 1.7723723926, 2.8350124902, 1.0293308202, 1.1982708007, 1.3018321019, 1.2898968334, 1.8220277059, 1.1182913782, 1.2605351968, 1.4809997207, 2.0823559905, 1.3199423904, 1.2780709882, 2.9549829311, 2.1016237932, 1.5651464359, 1.4208720673, 1.0484675089, 1.1982708007, 1.0878148336, 3.4084346887, 1.3885290704, 1.0293308202, 1.3383046182, 4.1357566488, 1.5869197917, 1.2547435637, 1.4340192346, 1.1131532961, 1.2839702958, 1.4208720673, 1.8220277059, 1.8220277059, 1.5085335612, 1.2958507267, 1.0630531449, 2.7450798165, 1.5224918504, 3.4084346887, 1.2432400055, 2.091967709, 1.8991312347, 1.2093582639, 1.0293308202, 1.5507970872, 1.5224918504, 1.2721987854, 1.4340192346, 1.0581688593, 1.5651464359, 1.6389095149, 1.3383046182, 1.2839702958, 1.0246014747, 1.1496217629, 1.6693791177, 1.8220277059, 2.2623249055, 1.5651464359, 1.4208720673, 1.0293308202, 1.5224918504, 1.4340192346, 1.038855101, 1.0878148336, 1.2958507267, 1.6617090174, 1.214940408, 1.2839702958, 1.5651464359, 2.9549829311, 1.0828167784, 1.2663535629, 1.2780709882, 3.1956188672, 2.6215308728, 3.7201031034, 2.3689449936, 1.5507970872, 1.5224918504, 1.8220277059, 1.3383046182, 1.0293308202, 37.8926498379, 1.0728894545, 1.214940408, 2.091967709, 1.0630531449, 1.1982708007, 1.2547435637, 3.9678475407, 1.4606796427, 1.3383046182, 1.7400229507, 1.474195145, 1.6389095149, 1.0679599752, 2.3689449936, 23.0438466577, 1.4340192346, 1.3018321019, 1.3694777373, 1.7240703244, 1.5507970872, 2.3689449936, 2.1210698788, 1.4947032424, 1.8220277059, 1.1602590821, 1.1763998937, 1.1872849879, 3.9678475407, 1.0533070151, 2.1016237932, 2.063264836, 1.0878148336, 1.3885290704, 1.1496217629, 1.0293308202, 1.3018321019, 1.8904055193, 1.5579552413, 3.602093458, 2.9549829311, 1.8220277059, 3.4084346887, 1.0293308202, 1.3949382293, 2.2727673228, 1.7240703244, 1.4674218336, 4.1740243339, 1.2958507267, 1.2780709882, 1.6089960451, 2.2415837861, 1.8991312347, 2.091967709, 1.0246014747, 1.4143437531, 1.2605351968, 2.1016237932, 1.2205483181, 1.6848256925, 1.3383046182, 2.3043846658, 2.8877193076, 1.6693791177, 1.0728894545, 2.3908645717, 1.1982708007, 1.2605351968, 1.6464743776, 2.5383702936, 1.6617090174, 1.0728894545, 1.1602590821, 1.1763998937, 1.0293308202, 1.1182913782, 1.2721987854, 1.214940408, 2.063264836, 1.038855101, 1.3885290704, 1.7240703244, 1.2780709882, 1.0928359587, 1.0978802603, 2.658, 1.9613494437, 2.3689449936, 1.4809997207, 1.1496217629, 1.1602590821, 1.4947032424, 1.2318419127, 3.5039264111, 1.6089960451, 1.2898968334, 1.8904055193, 1.5085335612, 1.2958507267, 1.0630531449, 1.5224918504, 2.6336313095, 1.128638801, 1.2721987854, 1.1982708007, 1.4340192346, 1.1182913782, 1.4208720673, 1.5651464359, 3.9678475407, 1.4143437531, 1.4809997207, 1.5942446807, 1.1872849879, 2.3043846658, 1.6770846216, 1.6389095149, 1.4208720673, 1.0679599752, 1.6693791177, 2.0349557812, 1.128638801, 1.4406383667, 1.0828167784, 1.0828167784, 1.038855101, 2.9549829311, 1.2721987854, 1.7004151927, 1.6693791177, 1.4208720673, 3.4084346887, 1.2780709882, 2.2312846442, 1.2205483181, 1.4406383667, 1.4340192346, 1.6770846216, 3.1956188672, 1.5507970872, 1.3885290704, 1.6238839022, 1.6770846216, 2.8350124902, 4.1357566488, 2.7832676807, 1.214940408, 2.7450798165, 3.2550298576, 1.1080388213, 3.4084346887, 1.1982708007, 1.3694777373, 1.6089960451, 1.214940408, 1.6848256925, 3.5039264111, 1.5723708236, 1.2038017674, 2.7832676807, 1.4208720673, 1.3885290704, 1.1872849879, 1.5507970872, 1.5224918504, 1.7400229507, 1.1602590821, 1.1982708007, 1.0246014747, 1.3018321019, 1.4340192346, 2.3908645717, 1.4208720673, 1.5942446807, 2.4019003012, 1.0246014747, 1.5295193534, 1.1872849879, 1.0293308202, 1.5651464359, 1.5224918504, 1.2205483181, 1.4208720673, 1.2489785407, 1.2093582639, 1.2780709882, 1.0246014747, 1.0778416872, 1.3694777373, 1.0778416872, 4.7049496112, 1.5295193534, 1.8904055193, 1.3506877983, 1.7082639526, 7.4568426097, 1.0728894545, 1.1234531767, 1.4208720673, 1.3694777373, 1.5507970872, 1.5224918504, 1.2839702958, 1.2958507267, 1.0484675089, 1.0533070151, 1.4208720673, 2.6336313095, 1.9704026214, 1.5507970872, 23.0438466577, 1.8388867207, 1.2038017674, 1.3694777373, 1.2261821132, 1.1982708007, 1.2605351968, 1.7240703244, 1.4208720673, 3.1956188672, 1.0828167784, 1.6089960451, 2.0537849952, 1.038855101, 1.5651464359, 1.1982708007, 1.5085335612, 1.7400229507, 1.2780709882, 1.4208720673, 1.3694777373, 1.8220277059, 1.0293308202, 1.038855101, 1.0728894545, 1.0828167784, 1.0878148336, 1.4078454339, 1.6693791177, 1.0978802603, 7.4568426097, 2.3257068746, 1.0978802603, 2.2108281036, 1.2839702958, 1.5224918504, 1.1602590821, 1.5507970872, 1.5224918504, 5.230641758, 2.4019003012, 3.0658787593, 1.5085335612, 1.5224918504, 2.091967709, 1.7004151927, 1.6926024946, 1.4947032424, 1.0581688593, 1.6089960451, 1.3694777373, 1.1080388213, 2.9549829311, 1.4208720673, 1.1390819672, 1.3018321019, 1.3885290704, 1.9704026214, 1.7082639526, 1.0340819954, 1.1818299089, 2.2312846442, 1.1763998937, 1.2489785407, 1.8220277059, 1.8991312347, 1.7561231848, 1.2721987854, 1.2780709882, 1.9344387205, 1.3885290704, 1.332155667, 1.6770846216, 1.313877806, 3.1956188672, 4.7049496112, 1.1763998937, 1.5942446807, 1.214940408, 1.3260349677, 1.4539684294, 1.2261821132, 1.4674218336, 1.3885290704, 1.2432400055, 1.133848361, 1.2958507267, 1.1818299089, 1.4013769717, 2.091967709, 1.6617090174, 1.9794975866, 2.2727673228, 1.1982708007, 3.9678475407, 2.4465549617, 1.474195145, 1.1496217629, 2.1804944048, 1.1602590821, 2.9549829311, 2.2727673228, 1.5942446807, 1.3821493588, 1.3821493588, 1.1496217629, 1.2038017674, 1.4208720673, 1.332155667, 1.6389095149, 1.0828167784, 1.2898968334, 1.038855101, 1.2721987854, 3.0658787593, 1.2780709882, 1.4274305148, 1.2898968334, 1.4208720673, 3.6522035696, 1.0293308202, 1.2205483181, 1.6464743776, 2.9960908385, 1.3383046182, 2.8612445378, 1.6089960451, 1.1080388213, 1.4208720673, 1.0928359587, 3.4084346887, 1.5016024791, 1.5507970872, 1.5224918504, 2.091967709, 1.1602590821, 1.9704026214, 2.9549829311, 1.2780709882, 1.3694777373, 1.7561231848, 1.2721987854, 1.2038017674, 1.1496217629, 1.0436502383, 1.3885290704, 3.602093458, 1.1982708007, 1.2605351968, 1.3018321019, 1.1763998937, 1.214940408, 1.1080388213, 1.6693791177, 2.2108281036, 4.53476699, 3.1956188672, 1.3821493588, 1.0246014747, 1.1080388213, 1.4013769717, 8.6408203645, 1.4208720673, 1.133848361, 1.4013769717, 1.1818299089, 1.0630531449, 1.8904055193, 2.2727673228, 1.1763998937, 3.4084346887, 1.4274305148, 1.1872849879, 2.2727673228, 1.1927652464, 1.313877806, 1.214940408, 1.5085335612, 1.3383046182, 1.6089960451, 1.0778416872, 1.7004151927, 1.0436502383, 1.3694777373, 1.6164228334, 1.5942446807, 1.3885290704, 1.4208720673, 1.6770846216, 2.0070351411, 1.0778416872, 1.0581688593, 1.0728894545, 1.1602590821, 2.1308602925, 1.2038017674, 1.1818299089, 1.3018321019, 2.0349557812, 1.1496217629, 2.8612445378, 1.0728894545, 1.4208720673, 1.4809997207, 1.7240703244, 1.0246014747, 1.6770846216, 2.063264836, 1.0728894545, 1.2780709882, 1.6617090174, 1.6693791177, 1.3018321019, 1.6770846216, 1.2489785407, 1.4013769717, 1.2663535629, 1.4606796427, 1.5651464359, 2.9549829311, 1.2205483181, 1.7723723926, 1.0293308202, 1.1982708007, 1.1080388213, 3.602093458, 2.6215308728, 1.5869197917, 1.4208720673, 1.4078454339, 1.2898968334, 1.332155667, 1.5507970872, 1.5224918504, 1.2958507267, 2.9960908385, 2.6336313095, 1.85590173, 1.7082639526, 1.6693791177, 1.2375278366, 1.7400229507, 1.0828167784, 1.3821493588, 1.038855101, 1.0484675089, 1.0246014747, 1.2780709882, 1.1496217629, 1.3694777373, 1.6389095149, 2.3689449936, 1.8991312347, 2.1113244479, 1.8220277059, 1.3444819516, 1.2898968334, 2.1406958967, 1.3694777373, 1.5942446807, 1.6089960451, 3.9678475407, 1.038855101, 1.9704026214, 1.2839702958, 1.6389095149, 1.0679599752, 1.6693791177, 2.4465549617, 1.1982708007, 2.3257068746, 1.3018321019, 1.3821493588, 1.2605351968, 1.0630531449, 1.1496217629, 3.1956188672, 1.4078454339, 1.7642290811, 1.1872849879, 1.2780709882, 1.1080388213, 1.0340819954]\n",
      "В атрибуте 'est_diameter_max' обнаружены аномалии: [2.6794149658, 2.3016536853, 3.3731835891, 2.2910785472, 3.1480380919, 3.4676877062, 3.4043952726, 6.3392806452, 3.1771665298, 2.6426520142, 5.0820622309, 4.0368255207, 3.7328451875, 3.8551384433, 2.6184240349, 3.3116160501, 2.978790628, 2.4324279148, 10.2338719537, 2.8578536096, 2.7042072872, 3.4997738255, 2.6794149658, 5.0820622309, 3.1771665298, 2.978790628, 2.312277636, 2.4776501261, 10.2338719537, 3.1771665298, 5.1055199644, 5.2971220406, 2.5470647106, 6.2811617709, 2.7166893409, 4.5713026859, 2.3661375011, 6.6075427063, 3.4676877062, 3.4043952726, 2.4212519237, 5.9984629228, 2.8710448625, 2.5353620113, 7.6214916608, 2.6426520142, 4.6777820041, 2.4324279148, 3.5978245324, 2.3880311019, 5.2971220406, 4.3255364773, 2.9109850751, 3.6647130844, 3.6816286314, 3.1771665298, 4.6993736648, 3.9814381981, 7.1456210173, 2.312277636, 3.4997738255, 2.6548499417, 2.7418265579, 2.4776501261, 9.3334021504, 2.4324279148, 3.9449361533, 2.844722965, 2.8578536096, 4.1499224279, 6.8555133165, 4.3255364773, 3.7156943217, 3.8374256911, 6.6075427063, 2.8316526503, 7.6920124549, 3.1335741707, 2.6426520142, 2.7544822542, 3.0622453143, 2.8976103136, 9.3334021504, 4.2270752462, 3.7673847787, 3.4043952726, 3.1771665298, 2.3229506246, 2.523713081, 2.6794149658, 3.3576852183, 2.8056919027, 4.6777820041, 2.4324279148, 2.6184240349, 3.1048453901, 2.5706324102, 3.1771665298, 3.0622453143, 2.6426520142, 4.5502994579, 2.523713081, 2.5706324102, 4.246586539, 2.6184240349, 6.6075427063, 3.1771665298, 2.4324279148, 3.1771665298, 2.844722965, 2.8578536096, 2.9651043282, 3.4997738255, 2.5944181791, 2.7042072872, 3.9631451512, 6.6075427063, 2.5706324102, 3.3731835891, 2.3661375011, 2.8186423881, 2.9925401008, 2.4212519237, 2.4212519237, 7.6214916608, 4.898239078, 6.1381850734, 3.4676877062, 3.4043952726, 2.978790628, 3.1771665298, 2.5944181791, 3.2065644897, 4.6777820041, 2.8186423881, 2.5005755404, 2.844722965, 2.6917825833, 2.6548499417, 3.8022439609, 3.7328451875, 2.6794149658, 3.3731835891, 2.9109850751, 2.2910785472, 4.246586539, 2.3016536853, 3.6478752572, 3.9814381981, 5.4959146391, 3.4043952726, 3.1335741707, 2.4324279148, 2.3016536853, 2.844722965, 5.8889786358, 2.3016536853, 2.7799691647, 2.8578536096, 2.2910785472, 5.152760759, 2.6305101311, 3.2065644897, 3.750075218, 3.6816286314, 8.0545258335, 2.9109850751, 2.7418265579, 3.5978245324, 2.8976103136, 5.9984629228, 5.2971220406, 5.152760759, 4.7867415442, 2.3770590956, 2.3661375011, 3.2661789745, 2.4324279148, 3.1771665298, 2.8842970035, 2.844722965, 2.3990537526, 4.6777820041, 6.6075427063, 3.9631451512, 3.3116160501, 3.1771665298, 3.3116160501, 2.6917825833, 3.2065644897, 3.0341704805, 2.5944181791, 5.4706632051, 3.0063530383, 7.1456210173, 2.7292290091, 51.5276075896, 3.2065644897, 4.7428564339, 6.824015094, 3.4676877062, 2.5005755404, 2.4324279148, 3.0063530383, 2.4101272816, 3.1335741707, 5.6759685287, 3.1918316641, 2.8578536096, 3.9449361533, 4.2270752462, 2.3016536853, 3.0202297334, 3.8197943216, 4.7647484646, 2.4662663578, 7.6214916608, 2.4212519237, 7.1456210173, 3.4997738255, 5.0820622309, 2.7671963667, 2.2910785472, 3.5648394788, 2.3990537526, 4.6777820041, 2.6794149658, 2.8056919027, 3.5978245324, 3.4676877062, 3.4043952726, 2.978790628, 2.5353620113, 3.6647130844, 4.8757337138, 2.3990537526, 2.312277636, 2.8056919027, 2.7042072872, 6.6075427063, 2.9109850751, 4.5502994579, 5.2004386672, 3.7328451875, 3.2964005564, 2.4212519237, 3.9814381981, 4.6993736648, 3.1771665298, 2.4324279148, 2.3990537526, 19.3214617164, 3.1335741707, 4.8757337138, 2.3990537526, 3.1918316641, 5.2004386672, 3.3731835891, 5.2971220406, 2.312277636, 4.898239078, 3.2661789745, 3.4676877062, 3.4043952726, 5.3708123486, 3.6478752572, 2.8976103136, 2.8186423881, 3.1771665298, 3.7847742368, 2.6548499417, 4.6777820041, 4.426291165, 10.328564805, 3.1048453901, 2.312277636, 2.6548499417, 8.8723768253, 3.1771665298, 2.3880311019, 5.2971220406, 2.5706324102, 2.6794149658, 3.6647130844, 3.6478752572, 3.8197943216, 5.2727839755, 11.6960705369, 2.8186423881, 2.6548499417, 3.9268108181, 3.1771665298, 2.4549348932, 2.8842970035, 3.5648394788, 2.7166893409, 3.1771665298, 2.4324279148, 2.3552660868, 2.7418265579, 4.0368255207, 2.7928009194, 3.0905799213, 4.2270752462, 2.4212519237, 3.1771665298, 3.1048453901, 2.9925401008, 2.523713081, 2.8578536096, 18.1150684236, 3.7673847787, 3.2511722452, 2.6548499417, 2.8578536096, 4.6777820041, 2.8186423881, 2.6794149658, 2.3444446221, 7.8350176433, 3.4997738255, 2.312277636, 3.4997738255, 2.8710448625, 8.0545258335, 7.1456210173, 4.0741778073, 5.3461357073, 3.1771665298, 2.9109850751, 2.3770590956, 3.4997738255, 2.6917825833, 4.7647484646, 3.7156943217, 5.0820622309, 3.2213653189, 2.5706324102, 2.8842970035, 6.4869414603, 2.4101272816, 5.058712276, 2.5706324102, 5.2971220406, 2.9514809114, 5.8889786358, 2.4324279148, 3.1048453901, 3.1771665298, 2.6917825833, 6.3392806452, 3.0905799213, 7.1456210173, 2.6426520142, 2.8976103136, 5.0820622309, 8.0175186488, 3.5978245324, 2.4776501261, 2.5944181791, 2.8976103136, 2.4101272816, 3.9268108181, 3.4997738255, 3.4676877062, 3.4043952726, 6.6075427063, 7.6920124549, 2.6794149658, 7.6214916608, 4.6777820041, 5.152760759, 2.6794149658, 3.8551384433, 2.8056919027, 2.7166893409, 2.3661375011, 4.0741778073, 2.6426520142, 4.1690775995, 3.1335741707, 3.7156943217, 2.9925401008, 4.0741778073, 2.6794149658, 3.6478752572, 3.750075218, 3.1771665298, 2.4549348932, 2.8842970035, 2.4776501261, 2.844722965, 4.3857106837, 2.523713081, 2.3016536853, 2.4324279148, 3.7847742368, 2.3229506246, 2.3229506246, 2.4212519237, 3.6647130844, 2.6305101311, 2.5944181791, 2.6917825833, 3.4201092472, 3.7328451875, 5.2971220406, 2.5121176727, 3.3731835891, 2.6548499417, 4.0554586606, 3.1918316641, 2.7544822542, 3.1480380919, 2.3229506246, 2.523713081, 4.2270752462, 2.8186423881, 2.8842970035, 4.0741778073, 3.4043952726, 4.6777820041, 2.2910785472, 3.7156943217, 3.2065644897, 3.5978245324, 2.978790628, 4.0554586606, 3.1771665298, 2.9925401008, 3.1335741707, 3.9631451512, 6.3392806452, 2.3016536853, 2.6794149658, 2.9109850751, 2.8842970035, 4.0741778073, 2.5005755404, 2.8186423881, 3.3116160501, 4.6562895481, 2.9514809114, 2.8578536096, 6.6075427063, 4.6993736648, 3.4997738255, 3.1771665298, 2.3444446221, 2.6794149658, 2.4324279148, 7.6214916608, 3.1048453901, 2.3016536853, 2.9925401008, 9.2478330051, 3.5484605292, 2.8056919027, 3.2065644897, 2.4890864394, 2.8710448625, 3.1771665298, 4.0741778073, 4.0741778073, 3.3731835891, 2.8976103136, 2.3770590956, 6.1381850734, 3.4043952726, 7.6214916608, 2.7799691647, 4.6777820041, 4.246586539, 2.7042072872, 2.3016536853, 3.4676877062, 3.4043952726, 2.844722965, 3.2065644897, 2.3661375011, 3.4997738255, 3.6647130844, 2.9925401008, 2.8710448625, 2.2910785472, 2.5706324102, 3.7328451875, 4.0741778073, 5.058712276, 3.4997738255, 3.1771665298, 2.3016536853, 3.4043952726, 3.2065644897, 2.3229506246, 2.4324279148, 2.8976103136, 3.7156943217, 2.7166893409, 2.8710448625, 3.4997738255, 6.6075427063, 2.4212519237, 2.8316526503, 2.8578536096, 7.1456210173, 5.8619212367, 8.3184034225, 5.2971220406, 3.4676877062, 3.4043952726, 4.0741778073, 2.9925401008, 2.3016536853, 84.7305408852, 2.3990537526, 2.7166893409, 4.6777820041, 2.3770590956, 2.6794149658, 2.8056919027, 8.8723768253, 3.2661789745, 2.9925401008, 3.8908096001, 3.2964005564, 3.6647130844, 2.3880311019, 5.2971220406, 51.5276075896, 3.2065644897, 2.9109850751, 3.0622453143, 3.8551384433, 3.4676877062, 5.2971220406, 4.7428564339, 3.3422580561, 4.0741778073, 2.5944181791, 2.6305101311, 2.6548499417, 8.8723768253, 2.3552660868, 4.6993736648, 4.6136004289, 2.4324279148, 3.1048453901, 2.5706324102, 2.3016536853, 2.9109850751, 4.2270752462, 3.4836938254, 8.0545258335, 6.6075427063, 4.0741778073, 7.6214916608, 2.3016536853, 3.1191767052, 5.0820622309, 3.8551384433, 3.2812549716, 9.3334021504, 2.8976103136, 2.8578536096, 3.5978245324, 5.0123337231, 4.246586539, 4.6777820041, 2.2910785472, 3.1625687756, 2.8186423881, 4.6993736648, 2.7292290091, 3.7673847787, 2.9925401008, 5.152760759, 6.4571366717, 3.7328451875, 2.3990537526, 5.3461357073, 2.6794149658, 2.8186423881, 3.6816286314, 5.6759685287, 3.7156943217, 2.3990537526, 2.5944181791, 2.6305101311, 2.3016536853, 2.5005755404, 2.844722965, 2.7166893409, 4.6136004289, 2.3229506246, 3.1048453901, 3.8551384433, 2.8578536096, 2.4436554919, 2.4549348932, 5.9434686842, 4.3857106837, 5.2971220406, 3.3116160501, 2.5706324102, 2.5944181791, 3.3422580561, 2.7544822542, 7.8350176433, 3.5978245324, 2.8842970035, 4.2270752462, 3.3731835891, 2.8976103136, 2.3770590956, 3.4043952726, 5.8889786358, 2.523713081, 2.844722965, 2.6794149658, 3.2065644897, 2.5005755404, 3.1771665298, 3.4997738255, 8.8723768253, 3.1625687756, 3.3116160501, 3.5648394788, 2.6548499417, 5.152760759, 3.750075218, 3.6647130844, 3.1771665298, 2.3880311019, 3.7328451875, 4.5502994579, 2.523713081, 3.2213653189, 2.4212519237, 2.4212519237, 2.3229506246, 6.6075427063, 2.844722965, 3.8022439609, 3.7328451875, 3.1771665298, 7.6214916608, 2.8578536096, 4.9893041415, 2.7292290091, 3.2213653189, 3.2065644897, 3.750075218, 7.1456210173, 3.4676877062, 3.1048453901, 3.6311147929, 3.750075218, 6.3392806452, 9.2478330051, 6.2235757337, 2.7166893409, 6.1381850734, 7.2784680305, 2.4776501261, 7.6214916608, 2.6794149658, 3.0622453143, 3.5978245324, 2.7166893409, 3.7673847787, 7.8350176433, 3.5159280475, 2.6917825833, 6.2235757337, 3.1771665298, 3.1048453901, 2.6548499417, 3.4676877062, 3.4043952726, 3.8908096001, 2.5944181791, 2.6794149658, 2.2910785472, 2.9109850751, 3.2065644897, 5.3461357073, 3.1771665298, 3.5648394788, 5.3708123486, 2.2910785472, 3.4201092472, 2.6548499417, 2.3016536853, 3.4997738255, 3.4043952726, 2.7292290091, 3.1771665298, 2.7928009194, 2.7042072872, 2.8578536096, 2.2910785472, 2.4101272816, 3.0622453143, 2.4101272816, 10.5205871614, 3.4201092472, 4.2270752462, 3.0202297334, 3.8197943216, 16.6740069728, 2.3990537526, 2.5121176727, 3.1771665298, 3.0622453143, 3.4676877062, 3.4043952726, 2.8710448625, 2.8976103136, 2.3444446221, 2.3552660868, 3.1771665298, 5.8889786358, 4.4059542044, 3.4676877062, 51.5276075896, 4.1118757104, 2.6917825833, 3.0622453143, 2.7418265579, 2.6794149658, 2.8186423881, 3.8551384433, 3.1771665298, 7.1456210173, 2.4212519237, 3.5978245324, 4.5924028604, 2.3229506246, 3.4997738255, 2.6794149658, 3.3731835891, 3.8908096001, 2.8578536096, 3.1771665298, 3.0622453143, 4.0741778073, 2.3016536853, 2.3229506246, 2.3990537526, 2.4212519237, 2.4324279148, 3.1480380919, 3.7328451875, 2.4549348932, 16.6740069728, 5.2004386672, 2.4549348932, 4.9435619262, 2.8710448625, 3.4043952726, 2.5944181791, 3.4676877062, 3.4043952726, 11.6960705369, 5.3708123486, 6.8555133165, 3.3731835891, 3.4043952726, 4.6777820041, 3.8022439609, 3.7847742368, 3.3422580561, 2.3661375011, 3.5978245324, 3.0622453143, 2.4776501261, 6.6075427063, 3.1771665298, 2.5470647106, 2.9109850751, 3.1048453901, 4.4059542044, 3.8197943216, 2.312277636, 2.6426520142, 4.9893041415, 2.6305101311, 2.7928009194, 4.0741778073, 4.246586539, 3.9268108181, 2.844722965, 2.8578536096, 4.3255364773, 3.1048453901, 2.978790628, 3.750075218, 2.9379200884, 7.1456210173, 10.5205871614, 2.6305101311, 3.5648394788, 2.7166893409, 2.9651043282, 3.2511722452, 2.7418265579, 3.2812549716, 3.1048453901, 2.7799691647, 2.5353620113, 2.8976103136, 2.6426520142, 3.1335741707, 4.6777820041, 3.7156943217, 4.426291165, 5.0820622309, 2.6794149658, 8.8723768253, 5.4706632051, 3.2964005564, 2.5706324102, 4.8757337138, 2.5944181791, 6.6075427063, 5.0820622309, 3.5648394788, 3.0905799213, 3.0905799213, 2.5706324102, 2.6917825833, 3.1771665298, 2.978790628, 3.6647130844, 2.4212519237, 2.8842970035, 2.3229506246, 2.844722965, 6.8555133165, 2.8578536096, 3.1918316641, 2.8842970035, 3.1771665298, 8.1665754493, 2.3016536853, 2.7292290091, 3.6816286314, 6.6994627817, 2.9925401008, 6.3979372868, 3.5978245324, 2.4776501261, 3.1771665298, 2.4436554919, 7.6214916608, 3.3576852183, 3.4676877062, 3.4043952726, 4.6777820041, 2.5944181791, 4.4059542044, 6.6075427063, 2.8578536096, 3.0622453143, 3.9268108181, 2.844722965, 2.6917825833, 2.5706324102, 2.3336728776, 3.1048453901, 8.0545258335, 2.6794149658, 2.8186423881, 2.9109850751, 2.6305101311, 2.7166893409, 2.4776501261, 3.7328451875, 4.9435619262, 10.1400472517, 7.1456210173, 3.0905799213, 2.2910785472, 2.4776501261, 3.1335741707, 19.3214617164, 3.1771665298, 2.5353620113, 3.1335741707, 2.6426520142, 2.3770590956, 4.2270752462, 5.0820622309, 2.6305101311, 7.6214916608, 3.1918316641, 2.6548499417, 5.0820622309, 2.6671041722, 2.9379200884, 2.7166893409, 3.3731835891, 2.9925401008, 3.5978245324, 2.4101272816, 3.8022439609, 2.3336728776, 3.0622453143, 3.6144313359, 3.5648394788, 3.1048453901, 3.1771665298, 3.750075218, 4.4878670088, 2.4101272816, 2.3661375011, 2.3990537526, 2.5944181791, 4.7647484646, 2.6917825833, 2.6426520142, 2.9109850751, 4.5502994579, 2.5706324102, 6.3979372868, 2.3990537526, 3.1771665298, 3.3116160501, 3.8551384433, 2.2910785472, 3.750075218, 4.6136004289, 2.3990537526, 2.8578536096, 3.7156943217, 3.7328451875, 2.9109850751, 3.750075218, 2.7928009194, 3.1335741707, 2.8316526503, 3.2661789745, 3.4997738255, 6.6075427063, 2.7292290091, 3.9631451512, 2.3016536853, 2.6794149658, 2.4776501261, 8.0545258335, 5.8619212367, 3.5484605292, 3.1771665298, 3.1480380919, 2.8842970035, 2.978790628, 3.4676877062, 3.4043952726, 2.8976103136, 6.6994627817, 5.8889786358, 4.1499224279, 3.8197943216, 3.7328451875, 2.7671963667, 3.8908096001, 2.4212519237, 3.0905799213, 2.3229506246, 2.3444446221, 2.2910785472, 2.8578536096, 2.5706324102, 3.0622453143, 3.6647130844, 5.2971220406, 4.246586539, 4.7210649881, 4.0741778073, 3.0063530383, 2.8842970035, 4.7867415442, 3.0622453143, 3.5648394788, 3.5978245324, 8.8723768253, 2.3229506246, 4.4059542044, 2.8710448625, 3.6647130844, 2.3880311019, 3.7328451875, 5.4706632051, 2.6794149658, 5.2004386672, 2.9109850751, 3.0905799213, 2.8186423881, 2.3770590956, 2.5706324102, 7.1456210173, 3.1480380919, 3.9449361533, 2.6548499417, 2.8578536096, 2.4776501261, 2.312277636]\n",
      "В атрибуте 'relative_velocity' обнаружены аномалии: [133569.0447878095, 178961.5176317593, 138119.6179153084, 167372.8034566939, 125015.7533881835, 132185.0032723958, 133216.4743165159, 130955.1606471186, 182007.9842706731, 127074.1313123845, 129960.8927510987, 137878.6231423123, 193386.9752184064, 125629.5310624868, 125976.0754627193, 131436.9005275991, 152172.1335097544, 148000.8233501158, 154566.8113327776, 147174.3106387106, 127964.7940636339, 131253.2865042854, 130968.1274769806, 129355.5481879637, 137886.9477296724, 154379.8596630028, 129376.9104708406, 134599.1952316475, 135906.787243381, 138466.9421768693, 151386.2059704372, 131091.6215025047, 124952.2399952107, 163002.6775783674, 157914.6315118211, 136874.7093382614, 131710.7262772872, 135849.7168068071, 132166.4661563058, 131170.643861081, 129787.2375048544, 124552.5798701592, 152588.5002996656, 135717.2784111629, 126519.9676937381, 125726.7232248426, 135406.3750328902, 127641.4111352293, 133544.2814714088, 125443.514281873, 149936.050762195, 124683.7576632854, 127570.0164759572, 151273.9731861065, 153136.1656519474, 128895.0466029872, 146102.7446536144, 126411.124365819, 129888.648028003, 157827.4541830001, 133717.4702602355, 127727.8712019022, 127659.6758524709, 139267.7732204788, 130332.9183165029, 140190.9960361968, 126155.3609057936, 152270.5451025481, 128369.5862194735, 126468.1532099254, 134221.817887934, 125381.9533626806, 132674.6110412736, 127314.3315952944, 124725.522805276, 131523.5206398373, 138994.6453615912, 126122.2636702313, 147654.6174263146, 124706.0575097514, 138065.818937396, 124128.8141729245, 126076.0666894679, 158623.718271367, 140767.5352109368, 149542.0351088555, 139864.9953292708, 128985.1230780414, 138364.324442752, 147204.7558132136, 159358.004741025, 124547.774292491, 130396.68529735, 141471.1520480297, 128389.0649323619, 148000.0282587252, 141452.2576877659, 142197.3857248132, 132411.9222086879, 163760.4570028043, 133239.6225245527, 146968.0980752138, 132808.7133825516, 128299.3370977511, 133046.3719346965, 133827.4635660173, 151863.9929102808, 137771.7756194621, 133457.2050488324, 126831.9529653239, 156114.5330936358, 131071.824204872, 134187.3396517756, 136678.798419165, 135178.441976556, 132633.864893651, 131855.2673229425, 127753.675838258, 126759.369655309, 155255.6433500672, 137839.2263567118, 136810.81116229, 129451.5274067482, 150130.4696658263, 129194.7428147414, 128282.5103385488, 127110.0116702902, 150704.4400775741, 130388.674559724, 126319.9627269216, 131791.9481425642, 128189.3953378165, 146154.6848723778, 125959.0731302992, 136565.9288817797, 140612.0215799383, 128777.3257393231, 142665.0497658792, 144876.2098328784, 143134.8328520921, 124536.8490994847, 130464.4387370555, 138758.8754653902, 153487.5613109471, 124230.2578284114, 129105.1361385245, 128111.803818142, 128951.3461785685, 152265.8873351423, 124968.4386406283, 156468.6202516812, 151435.3211543124, 127096.0229422688, 127310.2931249813, 139065.064463772, 163299.3051251102, 132669.3424049852, 124821.8847500108, 127702.7129277724, 148088.2269932532, 129064.4453165519, 160232.5093383821, 144525.8169297994, 128512.2005497033, 126921.7632935369, 127425.3968132597, 126372.3126734974, 147544.9411883677, 135394.7492378372, 141465.2292876301, 129018.4285524296, 125556.2048682947, 146485.7587332014, 126709.1823121816, 125491.4411797087, 124436.659723353, 130441.6283602842, 154743.8358113618, 126610.1932618062, 160718.8586740236, 156817.1081677518, 125689.8477464683, 170893.0257857222, 124418.8546398292, 159280.9012776841, 139689.6732972972, 132162.6018115084, 127722.6449557294, 142458.62479052, 128850.5905368314, 137192.9557316735, 136816.0602077506, 139809.8412280051, 128941.0181377762, 131660.3833405103, 140701.3617093084, 136267.6939378135, 132643.2284246214, 153982.9247081868, 136986.6291056903, 124334.9263017727, 139280.4892669064, 150455.5920479704, 146586.2886461232, 134623.9581010456, 127196.0207391596, 152245.2519899442, 126658.3042626725, 147373.651367518, 125142.8568108466, 135173.0992853016, 142068.4110355133, 136289.6956250921, 128712.2917589622, 152709.0161953792, 136773.4610708546, 141588.089982463, 148818.2332753332, 126660.754913801, 131425.0853458036, 151407.9251475894, 143922.899315686, 154342.7347291801, 129130.4463649412, 134591.5057745164, 135821.4648501362, 146203.1434356829, 130451.9709649032, 132161.1257782004, 136694.2391430037, 140474.9900721982, 126817.5700618848, 127014.011399686, 174875.355323528, 142728.3728609656, 131534.8976539426, 140348.9086649723, 134806.9355298842, 125361.9215669236, 160130.8374403943, 124978.4999120228, 140799.1788978919, 151326.0929012612, 140894.7935353376, 134664.422009828, 151526.9247416744, 124540.3988536662, 124540.3987473744, 135335.1764569406, 132975.1426601286, 144538.0714696583, 125184.5679668231, 165645.5053288309, 138878.751843783, 147192.3321394662, 150090.6018134178, 134160.8233137016, 125805.2028498594, 133546.1466015252, 133199.625280361, 142993.5414228302, 132200.61608435, 155957.3797191203, 131159.6095262728, 137945.54235974, 153257.8003423096, 137347.9290847202, 147740.5715817348, 152474.062894155, 138774.6211855745, 134814.0368720297, 175424.7576660584, 137849.9596283372, 132493.814215952, 132207.0806102238, 131435.0823747514, 134515.2740888228, 127729.4511233959, 126745.4035901236, 124770.4490996942, 129024.6978783312, 144808.2965969255, 127112.1853012376, 137820.7501792013, 132305.0808553898, 126807.6704657116, 131218.843137894, 129695.3247846492, 130771.3567742633, 124758.6758734691, 131426.6296770763, 128658.3773268427, 129852.37161616, 133279.8401141107, 157754.1776942873, 183551.9075447364, 127918.5708900312, 136572.3636881386, 153456.290782767, 127473.8518726585, 137133.7347727289, 127352.7542581348, 124726.053114873, 167111.4536950266, 153613.8112017776, 131616.7063359008, 130355.666697415, 134252.0895533429, 132499.4218944026, 125015.2146935874, 157265.4319471282, 131751.6671135801, 129170.6220517855, 144952.0483385855, 134166.8828209795, 137425.023624303, 124378.1798638176, 133647.1336229933, 127559.2758511025, 133502.7425350759, 130054.3179280171, 135903.0026251764, 130174.3829013149, 129645.9379617563, 142875.2559434616, 133241.7686169715, 137351.7885489872, 126476.8839317002, 143871.4486603786, 142077.3122363303, 123977.8236505316, 191176.4581960964, 125189.2287540068, 140800.9109039456, 132581.3631610759, 131235.3870644567, 132179.4488160824, 124970.7216770924, 163565.7976780124, 124443.9967010674, 128868.5439514544, 131783.635065388, 139963.5293396094, 129477.5767454022, 152335.8774036544, 140581.7119455012, 136976.5366071271, 150499.4597267306, 184152.0614110542, 184152.0613296683, 127718.3472828732, 132754.3290190948, 136501.0460079347, 139243.3813647947, 138116.4872263333, 128024.6453200678, 124238.4747112307, 127478.0429180359, 142964.771945594, 136281.7452078259, 135505.881677984, 142179.8984297287, 131003.6053529574, 136241.525212726, 134729.1437909353, 137953.0932480526, 173394.7032442432, 142613.1938618042, 125889.1762484426, 134832.4875574852, 131461.8054369019, 142864.2876595489, 131381.9759553984, 130788.6685763911, 134285.7175471714, 136654.6913144093, 128869.5218555236, 126439.3279161745, 126135.4685182373, 140750.1698859454, 144755.2120979225, 129985.2467362832, 125956.6665873991, 133872.0813700528, 126014.3313909768, 156347.1524224652, 144796.7923959622, 144210.8658207708, 144486.9662447657, 156117.4228898543, 148210.4005751617, 135782.2648194444, 134298.2796329704, 139047.057784363, 134476.5607575458, 127366.7869392905, 126386.802435393, 180485.9223555463, 151036.5860495395, 130848.2803167012, 151548.2564197097, 166983.6441452224, 164246.4296438141, 154523.1184232591, 139114.3256889134, 148354.2772060482, 130240.3764151278, 126269.6788391213, 141097.3962305821, 145001.8295336556, 125271.3010773661, 147936.3968049588, 135409.4847384833, 124300.6670884118, 140833.5334319725, 127150.8969638927, 128133.4202532367, 131787.2705751234, 137552.6175028477, 137440.4793136006, 129061.6381820599, 126047.2038503774, 125011.4228052703, 125637.2675426848, 127646.819461678, 146830.3066242403, 126039.1198607903, 132280.0279535434, 135921.4669271315, 126119.3506603416, 131398.346002639, 152357.2697376083, 153617.5820903987, 128799.7847287121, 138615.0426589752, 124425.4306464252, 124425.4306980766, 148217.6022529543, 124337.4817174117, 134926.5146993507, 138844.7232893186, 161257.405433769, 129180.8343627565, 141726.597819723, 152327.0480070002, 129364.2914048467, 135868.1039224009, 151661.4223212043, 172227.3371904647, 160576.891427461, 123974.8916039255, 167039.8779069846, 128053.544035513, 169295.8306137059, 128873.0043210614, 128025.084290067, 126968.8003306931, 136523.0144025986, 166503.8716634884, 166844.7960924352, 127108.2680769463, 130533.7072744832, 156984.8576669903, 170373.8523031456, 144396.5177382606, 133133.8564250651, 141195.3083493955, 138895.530969334, 147945.6221816887, 127385.9072101001, 151246.3637115634, 154653.441549053, 129376.3554475844, 146169.1156295405, 130700.5904410132, 130390.1702120203, 135964.1795636509, 129592.6596205556, 126558.913801612, 128825.4555581674, 129407.4734099882, 132537.9587450454, 178340.2959816742, 137205.2897163227, 128716.2053013438, 124460.0334498348, 147685.8820849261, 137367.8478097646, 129651.9457009061, 131759.3341082833, 128486.39092204, 138789.5403584174, 129728.770087108, 135133.8506361644, 124717.8162920425, 124906.6323130046, 135115.6746260887, 146080.5739591752, 147723.5149380868, 127326.6505843265, 126931.1226199981, 134587.9239008285, 127817.7990932707, 143912.6787866292, 125864.9656512556, 149231.3353724315, 125296.1148970303, 129822.2350879741, 146128.4932654678, 127902.7735794396, 130340.0780011105, 125509.3668371862, 135017.5789021554, 137582.0071180337, 131032.0494245578, 166401.2262860885, 133282.5835085035, 129231.4874097701, 143674.0969021916, 125679.6404868449, 140286.2058667501, 141765.0224281276, 124391.7411785161, 135763.9322255536, 129876.6540816122, 136038.1129769902, 124979.0786923712, 137385.2769371888, 126542.3385312601, 130383.7993195531, 194056.4149889756, 148764.1217458118, 129437.2438189992, 129051.5738526504, 126130.2154003991, 126942.2150356469, 141638.7423944657, 135472.954552996, 153752.3420378566, 146353.497974105, 167365.7454700084, 124317.6092485268, 127824.6242807399, 133299.3675845416, 128423.9058331727, 131581.6816541267, 134519.1214163098, 128958.9288551579, 124124.4821132593, 159459.0173333104, 134773.957450084, 131918.7818789388, 124836.8376992501, 145044.1969564561, 130871.7704034263, 146086.5748868467, 130207.6699754314, 163954.9051907116, 136203.2162045395, 136236.4653758911, 151720.765075687, 126095.5642437328, 135861.0919805196, 148067.9796422581, 132474.5221402044, 147609.5254974043, 136537.769976314, 129240.8287370176, 141349.8132579571, 147177.7620666311, 159648.7518555167, 125639.7150161488, 128787.494221575, 139397.6393839462, 140796.5550583486, 129035.4827317427, 134337.0827609402, 132603.7656718246, 135908.3068410906, 125413.3665149656, 134672.7115132592, 124954.9204373816, 142135.4320034602, 147542.8742119858, 136059.5555609123, 145859.5586401909, 143180.4760526372, 141440.1519766745, 134110.1823066371, 141262.334655507, 148392.3872816975, 124607.4216735186, 143797.4700917029, 141123.1431563276, 236990.1280878666, 124556.9797677881, 132603.4855564852, 125333.6130061092, 154650.5602410265, 130446.9875177089, 127606.856665194, 128840.3836023352, 132583.9047238976, 140688.5548662425, 164625.4147164314, 140892.4671319465, 131371.9125902129, 142189.5325718005, 152204.3229879619, 124125.9961888195, 141284.3990218405, 135558.5862871843, 139109.6472390212, 124036.6786876465, 130826.6151949062, 131264.4920951588, 129160.2155739754, 129817.2712396532, 140456.091491941, 144684.240493676, 128389.7832139328, 133728.6874464342, 130780.4126380754, 156754.3210405952, 129090.7953806594, 125555.5912751262, 139318.2030658756, 126727.267038817, 128738.8576653415, 135956.2514753347, 176609.5022983572, 124494.6777797185, 124944.9225697678, 125197.1240188223, 149051.5146059004, 155406.6106088616, 157682.006505121, 125316.131456543, 133083.8970916925, 137448.7773015341, 154601.5221524534, 128526.8853789781, 145529.1689413122, 126836.8363129601, 139818.2468576789, 129938.7714853324, 143802.104562315, 145957.5614948274, 128440.1720630254, 124051.6727426804, 129859.3984867031, 126212.6105936186, 138186.159349977, 132953.4968021388, 163733.3129247286, 128734.1710416616, 149241.6319105703, 127047.9996725422, 138513.9856402976, 141584.519788915, 138803.2570766574, 144578.251037804, 126170.9831643905, 132114.9483451588, 129911.4359555188, 158499.4680564829, 124462.2418592425, 128360.0385130403, 130775.3722521432, 123966.4368986708, 167152.481509698, 135042.2618609754, 129060.6652992463, 124281.6822853081, 126418.2367116193, 127969.3789793042, 146529.5593798458, 128640.1042111442, 158443.9495487629, 157028.34325999, 153392.7437047274, 134155.8406213398, 127524.5862704726, 130014.0050148284, 124649.5120412375, 141545.0416015645, 147436.3698497222, 127035.7077279856, 141064.3959814116, 158900.1648566616, 132435.3962178036, 139072.650267353, 126584.9216556451, 138278.9953608588, 146497.2271048901, 127745.1947365988, 138007.0554630602, 136009.1603730006, 131084.2119454776, 125349.008859981, 134193.5602115486, 142108.935729529, 124786.2069695624, 136267.830967045, 130999.946819666, 126131.3437655952, 124100.0397729428, 127736.4499266251, 136923.5261823062, 124703.4684855499, 138058.9823592299, 133739.6400631055, 127495.1576432221, 127990.5321808433, 172208.9993065567, 137012.4058087091, 129706.7251124614, 125807.719189923, 127649.1705392981, 145305.8773592724, 126168.8477504994, 140612.4082657699, 132382.4701882932, 125717.5040685084, 126726.3871908322, 137855.7756511636, 130261.2587990132, 125813.6299068311, 139459.7719495714, 142948.1153351848, 137710.0341976435, 133921.1241194058, 129732.2862094418, 137403.4832583347, 153789.2161092922, 133446.571777647, 125844.7252093704, 138844.165028602, 147877.308087867, 124801.5960919775, 133727.291171838, 124508.9792210969, 141154.3801757077, 130526.4404756102, 135182.980473862, 131954.4825646241, 131950.4840796776, 132768.3077885405, 128367.8466871068, 132517.4030895744, 133285.9664395631, 133259.3010902009, 228242.2434668618, 125950.2733309705, 145382.2714153699, 128889.9329726758, 146654.7950571278, 139519.4170519634, 158556.0068257464, 139394.994787264, 128173.7957346504, 142445.7943486571, 145715.1344102254, 142328.2071683992, 132318.7157486315, 127895.2582475808, 130428.1438715419, 146896.526950519, 127391.6601901696, 129856.5203932912, 139606.1054756248, 135439.5192848633, 137572.6915135224, 125222.2358617541, 144687.3716861014, 124486.1298216842, 139282.4938015451, 207168.6686925272, 131354.0080303129, 146182.5850016318, 125620.2067000752, 127044.8857253149, 139105.2636821812, 133265.6594197067, 131575.0033719558, 135652.00629038, 134487.6215549191, 145130.3203948578, 138660.4640001118, 126874.1295825826, 134995.7822469934, 163285.7837794078, 130116.8369953199, 128770.5277299103, 127252.6775535139, 129246.0576137698, 134113.2777557244, 148337.8261962257, 125548.502639369, 125548.5027172907, 125074.6980394532, 142587.9099342601, 138680.2945045976, 159394.0656018125, 127980.0832573206, 133186.0885066922, 149896.3413337513, 127871.6081083384, 133867.9739344205, 156368.9685988652, 125875.9150517884, 157299.5000735874, 132301.2341032402, 134999.2888555982, 129849.1579730952, 136525.8839184256, 135448.9749945058, 129340.0296903233, 132793.7292919145, 134083.9394586238, 125194.8057624533, 135428.0562364788, 149010.5204755798, 145022.928741248, 127075.4706858768, 164471.1998394899, 124304.6385545864, 157312.1436108912, 127045.8992067592, 126952.8578109504, 150267.6666728478, 124566.708732502, 143872.1567574239, 139182.1112221128, 133886.486067071, 125390.752691566, 177510.7295602038, 151528.2959986157, 138835.9894640767, 130770.4822482604, 131516.2602845568, 129271.3092083959, 144794.5707388007, 124135.322340596, 147052.5910521239, 140115.0078285808, 125072.7373260004, 132909.3451896278, 124047.4215818884, 128562.8668511396, 128835.4325307538, 151102.4743999796, 126515.2408994419, 126189.4105726916, 140347.3532916719, 147117.3950382462, 126313.541578967, 131738.4262679008, 131537.8513943586, 127227.216994286, 149843.7442418908, 127874.948421361, 139317.8394963845, 157742.4051444262, 132417.1136575519, 141452.9943771182, 132308.7361709476, 124647.2806434275, 129142.4219427542, 130740.2847594194, 154581.8076981536, 187221.0733344144, 127015.9871583006, 149160.6452428978, 129256.6666398854, 138084.7165128119, 154243.0836316415, 126058.6942420756, 128214.7144037726, 139606.3015661095, 125252.2987777217]\n",
      "В атрибуте 'absolute_magnitude' обнаружены аномалии: [13.82, 13.82, 14.77, 14.46, 14.6, 14.02, 14.69, 14.77, 14.44, 14.02, 14.77, 14.77, 14.46, 14.34, 14.77, 14.6, 10.31, 14.7, 14.46, 14.6, 14.77, 12.44, 13.8, 14.13, 13.53, 12.58, 14.4, 14.34, 14.6, 14.81, 32.3, 14.6, 14.35, 33.2, 14.77, 14.44, 14.46, 32.3, 32.56, 14.77, 14.46, 14.04, 32.56, 14.46, 14.77, 14.6, 32.3, 14.27, 9.23, 14.13, 10.31, 14.13, 14.34, 14.77, 14.46, 14.02, 14.82, 14.4, 14.13, 32.95, 14.77, 14.46, 14.6, 32.56, 14.04, 32.56, 14.56, 14.46, 14.4, 32.95, 13.76, 12.76, 32.95, 32.3, 10.31, 14.6, 12.76, 13.53, 14.69, 14.77, 14.6, 13.76, 14.13, 14.77, 14.69, 14.31, 14.74, 14.84, 14.46, 14.77, 14.34, 13.84, 14.6, 12.44, 14.46, 32.95, 32.56, 14.84, 14.77, 14.34, 14.74, 32.95, 14.13, 32.95, 14.6]\n",
      "\n",
      "Аномалии в наборе данных Healthcare:\n",
      "В атрибуте 'hypertension' обнаружены аномалии: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]\n",
      "В атрибуте 'heart_disease' обнаружены аномалии: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]\n",
      "В атрибуте 'avg_glucose_level' обнаружены аномалии: [252.72, 243.58, 259.63, 249.31, 263.32, 271.74, 242.52, 250.89, 247.51, 243.53, 242.3, 243.5, 251.6, 247.69, 250.2, 254.6, 254.63, 246.34, 251.46, 267.76, 246.53, 244.28, 251.99, 253.16, 242.84, 249.29, 242.94, 247.48, 266.59, 243.73, 243.59, 250.8, 255.17, 267.61, 260.85, 248.37, 263.56, 247.97, 248.24, 253.93, 254.95, 247.87, 261.67, 256.74, 244.3, 242.62, 243.52, 267.6, 253.86]\n",
      "В атрибуте 'bmi' обнаружены аномалии: [56.6, 54.6, 60.9, 54.7, 64.8, 54.7, 60.2, 71.9, 54.6, 55.7, 55.7, 57.5, 54.2, 52.3, 78.0, 53.4, 55.2, 55.0, 54.8, 52.8, 66.8, 55.1, 55.9, 57.3, 56.0, 57.7, 54.0, 56.1, 97.6, 53.9, 53.8, 52.7, 52.8, 55.7, 53.5, 63.3, 52.8, 61.2, 58.1, 52.7, 53.4, 59.7, 52.5, 52.9, 54.7, 61.6, 53.8, 54.3, 55.0, 57.2, 64.4, 92.0, 55.9, 57.9, 55.7, 57.2, 60.9, 54.1, 56.6]\n",
      "В атрибуте 'stroke' обнаружены аномалии: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]\n",
      "\n",
      "Аномалии в наборе данных Diabetes:\n",
      "В атрибуте 'Pregnancies' обнаружены аномалии: [15, 17, 14, 14]\n",
      "В атрибуте 'Glucose' обнаружены аномалии: [0, 0, 0, 0, 0]\n",
      "В атрибуте 'BloodPressure' обнаружены аномалии: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]\n",
      "В атрибуте 'SkinThickness' обнаружены аномалии: [99]\n",
      "В атрибуте 'Insulin' обнаружены аномалии: [543, 846, 495, 485, 495, 478, 744, 680, 545, 465, 579, 474, 480, 600, 440, 540, 480, 510]\n",
      "В атрибуте 'BMI' обнаружены аномалии: [0.0, 0.0, 0.0, 0.0, 0.0, 67.1, 0.0, 0.0, 59.4, 0.0, 0.0, 57.3, 0.0, 0.0]\n",
      "В атрибуте 'DiabetesPedigreeFunction' обнаружены аномалии: [2.288, 1.893, 1.781, 2.329, 1.476, 2.137, 1.731, 1.6, 2.42, 1.699, 1.698]\n",
      "В атрибуте 'Age' обнаружены аномалии: [69, 72, 81, 70, 69]\n"
     ]
    }
   ],
   "source": [
    "from scipy import stats\n",
    "# Вычисляем Z-индексы только для числовых столбцов\n",
    "neo_zscores = neo.select_dtypes(include=['float64', 'int64']).apply(stats.zscore, nan_policy='omit')\n",
    "healthcare_zscores = healthcare.select_dtypes(include=['float64', 'int64']).apply(stats.zscore, nan_policy='omit')\n",
    "diabetes_zscores = diabetes.select_dtypes(include=['float64', 'int64']).apply(stats.zscore, nan_policy='omit')\n",
    "\n",
    "# Устанавливаем порог для поиска аномалий\n",
    "threshold = 3\n",
    "\n",
    "# Функция для нахождения аномалий и вывода сообщения\n",
    "def find_anomalies(zscores, df):\n",
    "    for column in zscores.columns:\n",
    "        # Проверяем, есть ли аномалии в Z-индексах\n",
    "        anomalies = df[column][(zscores[column].abs() > threshold)]\n",
    "        if not anomalies.empty:\n",
    "            print(f\"В атрибуте '{column}' обнаружены аномалии: {anomalies.tolist()}\")\n",
    "\n",
    "# Находим аномалии\n",
    "try:\n",
    "    print(\"Аномалии в наборе данных Neo:\")\n",
    "    find_anomalies(neo_zscores, neo)\n",
    "\n",
    "    print(\"\\nАномалии в наборе данных Healthcare:\")\n",
    "    find_anomalies(healthcare_zscores, healthcare)\n",
    "\n",
    "    print(\"\\nАномалии в наборе данных Diabetes:\")\n",
    "    find_anomalies(diabetes_zscores, diabetes)\n",
    "\n",
    "except Exception as e:\n",
    "    print(f\"Произошла ошибка: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Теперь выполним 10 пункт, разобьем данные на выборки"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Набор данных Neo:\n",
      "Обучающая выборка:\n",
      "hazardous\n",
      "False    0.902681\n",
      "True     0.097319\n",
      "Name: proportion, dtype: float64\n",
      "\n",
      "Контрольная выборка:\n",
      "hazardous\n",
      "False    0.902686\n",
      "True     0.097314\n",
      "Name: proportion, dtype: float64\n",
      "\n",
      "Тестовая выборка:\n",
      "hazardous\n",
      "False    0.902686\n",
      "True     0.097314\n",
      "Name: proportion, dtype: float64\n",
      "\n",
      "Набор данных Healthcare:\n",
      "Обучающая выборка:\n",
      "stroke\n",
      "0    0.951321\n",
      "1    0.048679\n",
      "Name: proportion, dtype: float64\n",
      "\n",
      "Контрольная выборка:\n",
      "stroke\n",
      "0    0.951076\n",
      "1    0.048924\n",
      "Name: proportion, dtype: float64\n",
      "\n",
      "Тестовая выборка:\n",
      "stroke\n",
      "0    0.951076\n",
      "1    0.048924\n",
      "Name: proportion, dtype: float64\n",
      "\n",
      "Набор данных Diabetes:\n",
      "Обучающая выборка:\n",
      "Outcome\n",
      "0    0.651466\n",
      "1    0.348534\n",
      "Name: proportion, dtype: float64\n",
      "\n",
      "Контрольная выборка:\n",
      "Outcome\n",
      "0    0.649351\n",
      "1    0.350649\n",
      "Name: proportion, dtype: float64\n",
      "\n",
      "Тестовая выборка:\n",
      "Outcome\n",
      "0    0.649351\n",
      "1    0.350649\n",
      "Name: proportion, dtype: float64\n",
      "Набор данных Neo:\n",
      "Аугментация данных не требуется.\n",
      "\n",
      "Набор данных Healthcare:\n",
      "Необходима аугментация данных.\n",
      "\n",
      "Набор данных Diabetes:\n",
      "Аугментация данных не требуется.\n"
     ]
    }
   ],
   "source": [
    "from sklearn.model_selection import train_test_split\n",
    "def split_data(df, target_column, test_size=0.2, random_state=42):\n",
    "    # Разделяем данные на обучающую и временную выборки\n",
    "    X_train, X_temp, y_train, y_temp = train_test_split(df.drop(columns=[target_column]), \n",
    "                                                        df[target_column], \n",
    "                                                        test_size=test_size, \n",
    "                                                        random_state=random_state, \n",
    "                                                        stratify=df[target_column])\n",
    "    # Делим временную выборку на контрольную и тестовую\n",
    "    X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, \n",
    "                                                      test_size=0.5, \n",
    "                                                      random_state=random_state, \n",
    "                                                      stratify=y_temp)\n",
    "    \n",
    "    return X_train, X_val, X_test, y_train, y_val, y_test\n",
    "\n",
    "# Для набора данных neo\n",
    "neo_train, neo_val, neo_test, neo_train_labels, neo_val_labels, neo_test_labels = split_data(neo, 'hazardous')\n",
    "\n",
    "# Для набора данных healthcare\n",
    "healthcare_train, healthcare_val, healthcare_test, healthcare_train_labels, healthcare_val_labels, healthcare_test_labels = split_data(healthcare, 'stroke')\n",
    "\n",
    "# Для набора данных diabetes\n",
    "diabetes_train, diabetes_val, diabetes_test, diabetes_train_labels, diabetes_val_labels, diabetes_test_labels = split_data(diabetes, 'Outcome')\n",
    "def check_balance(y_train, y_val, y_test):\n",
    "    print(\"Обучающая выборка:\")\n",
    "    print(y_train.value_counts(normalize=True))\n",
    "    print(\"\\nКонтрольная выборка:\")\n",
    "    print(y_val.value_counts(normalize=True))\n",
    "    print(\"\\nТестовая выборка:\")\n",
    "    print(y_test.value_counts(normalize=True))\n",
    "\n",
    "print(\"Набор данных Neo:\")\n",
    "check_balance(neo_train_labels, neo_val_labels, neo_test_labels)\n",
    "\n",
    "print(\"\\nНабор данных Healthcare:\")\n",
    "check_balance(healthcare_train_labels, healthcare_val_labels, healthcare_test_labels)\n",
    "\n",
    "print(\"\\nНабор данных Diabetes:\")\n",
    "check_balance(diabetes_train_labels, diabetes_val_labels, diabetes_test_labels)\n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Для набота Neo \n",
    "- Пропорция классов сильно несбалансирована: только 9.73% объектов относятся к классу True (опасные), а 90.27% — к классу False (неопасные).\n",
    "- В данном случае, если модель будет обучаться только на этих данных, она может иметь высокую точность, просто предсказывая, что все объекты неопасные. Это приведет к тому, что модель будет плохо определять опасные объекты.\n",
    "\n",
    "# Набор данных Healthcare\n",
    "- Пропорция классов также сильно несбалансирована: только 4.87% объектов относятся к классу 1 (с инсультом).\n",
    "- Как и в предыдущем случае, если модель будет обучаться на этих данных, она может показывать высокую точность, просто предсказывая, что все объекты без инсульта.\n",
    "\n",
    "# Набор данных Diabetes\n",
    "- Здесь классы более сбалансированы, чем в предыдущих примерах, хотя класс 0 все еще составляет 65.15% и класс 1 34.85%.\n",
    "- Модель может научиться определять оба класса, но если точность по классу 1 будет низкой, можно рассмотреть методы аугментации.\n",
    "\n",
    "1. Oversampling (приращение данных): Увеличение числа примеров для меньшинства классов.\n",
    "2. Undersampling (уменьшение данных): Уменьшение числа примеров для большинства классов."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Oversampling для Neo:\n",
      "hazardous\n",
      "False    81996\n",
      "True     81996\n",
      "Name: count, dtype: int64\n",
      "\n",
      "Undersampling для Healthcare:\n",
      "stroke\n",
      "0    249\n",
      "1    249\n",
      "Name: count, dtype: int64\n",
      "\n",
      "Oversampling для Diabetes:\n",
      "Outcome\n",
      "1    500\n",
      "0    500\n",
      "Name: count, dtype: int64\n"
     ]
    }
   ],
   "source": [
    "from imblearn.over_sampling import RandomOverSampler\n",
    "from imblearn.under_sampling import RandomUnderSampler\n",
    "\n",
    "# Пример Oversampling для Neo\n",
    "X_neo = neo.drop('hazardous', axis=1) \n",
    "y_neo = neo['hazardous']                \n",
    "\n",
    "# Oversampling\n",
    "ros_neo = RandomOverSampler(random_state=42)\n",
    "X_neo_resampled, y_neo_resampled = ros_neo.fit_resample(X_neo, y_neo)\n",
    "neo_resampled = pd.DataFrame(X_neo_resampled, columns=X_neo.columns)\n",
    "neo_resampled['hazardous'] = y_neo_resampled\n",
    "\n",
    "print(\"Oversampling для Neo:\")\n",
    "print(neo_resampled['hazardous'].value_counts())\n",
    "\n",
    "\n",
    "X_healthcare = healthcare.drop('stroke', axis=1)\n",
    "y_healthcare = healthcare['stroke']\n",
    "\n",
    "# Пример Undersampling для Healthcare\n",
    "rus_healthcare = RandomUnderSampler(random_state=42)\n",
    "X_healthcare_resampled_under, y_healthcare_resampled_under = rus_healthcare.fit_resample(X_healthcare, y_healthcare)\n",
    "healthcare_resampled_under = pd.DataFrame(X_healthcare_resampled_under, columns=X_healthcare.columns)\n",
    "healthcare_resampled_under['stroke'] = y_healthcare_resampled_under\n",
    "\n",
    "print(\"\\nUndersampling для Healthcare:\")\n",
    "print(healthcare_resampled_under['stroke'].value_counts())\n",
    "\n",
    "# Пример Oversampling для Diabetes\n",
    "X_diabetes = diabetes.drop('Outcome', axis=1)\n",
    "y_diabetes = diabetes['Outcome']\n",
    "\n",
    "# Oversampling\n",
    "ros_diabetes = RandomOverSampler(random_state=42)\n",
    "X_diabetes_resampled, y_diabetes_resampled = ros_diabetes.fit_resample(X_diabetes, y_diabetes)\n",
    "diabetes_resampled = pd.DataFrame(X_diabetes_resampled, columns=X_diabetes.columns)\n",
    "diabetes_resampled['Outcome'] = y_diabetes_resampled\n",
    "\n",
    "print(\"\\nOversampling для Diabetes:\")\n",
    "print(diabetes_resampled['Outcome'].value_counts())"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}