\n",
- " ну.... с написанием правил мне чат гпт помог, я не медик, поэтому... спасибо чату\n",
+ " ну.... с написанием правил мне чат гпт помог, ну а что, у меня 5 входных переменных... я не знала, на что наткнусь, когда дойду до этого момента, поэтому... спасибо чату\n",
"
"
]
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 143,
"metadata": {},
"outputs": [],
"source": [
- "rule1 = control.Rule(age['aged'] & hypertension['high'], stroke_risk['high'])\n",
- "rule2 = control.Rule(age['old'] & hypertension['high'], stroke_risk['high'])\n",
- "rule3 = control.Rule(age['middle'] & hypertension['high'] & glucose['hight'], stroke_risk['high'])\n",
- "rule4 = control.Rule(age['middle'] & hypertension['high'] & glucose['normal'], stroke_risk['medium'])\n",
- "rule5 = control.Rule(age['young'] & hypertension['high'] & glucose['low'], stroke_risk['medium'])\n",
- "rule6 = control.Rule(age['young'] & hypertension['low'] & glucose['normal'], stroke_risk['low'])\n",
- "rule7 = control.Rule(age['aged'] & glucose['hight'] & bmi['hight'], stroke_risk['high'])\n",
- "rule8 = control.Rule(age['old'] & glucose['normal'] & bmi['hight'], stroke_risk['medium'])\n",
- "rule9 = control.Rule(age['old'] & glucose['low'] & bmi['low'], stroke_risk['low'])\n",
- "rule10 = control.Rule(age['middle'] & bmi['hight'] & glucose['hight'], stroke_risk['high'])\n",
- "rule11 = control.Rule(age['young'] & bmi['hight'] & glucose['hight'], stroke_risk['medium'])\n",
- "rule12 = control.Rule(age['young'] & bmi['normal'] & glucose['normal'], stroke_risk['low'])\n",
- "rule13 = control.Rule(age['aged'] & heart_disease['high'], stroke_risk['high'])\n",
- "rule14 = control.Rule(age['old'] & heart_disease['high'], stroke_risk['high'])\n",
- "rule15 = control.Rule(age['middle'] & heart_disease['high'], stroke_risk['medium'])\n",
- "rule16 = control.Rule(age['young'] & heart_disease['high'], stroke_risk['medium'])\n",
- "rule17 = control.Rule(age['aged'] & hypertension['high'] & glucose['hight'] & bmi['hight'], stroke_risk['high'])\n",
- "rule18 = control.Rule(age['middle'] & hypertension['low'] & glucose['low'] & bmi['low'], stroke_risk['low'])\n",
- "rule19 = control.Rule(heart_disease['high'] & glucose['hight'] & bmi['hight'], stroke_risk['high'])\n",
- "rule20 = control.Rule(heart_disease['low'] & glucose['normal'] & bmi['normal'], stroke_risk['low'])\n"
+ "rules = []\n",
+ "\n",
+ "ages = ['young', 'middle', 'old', 'aged']\n",
+ "hypertension_levels = ['low', 'high']\n",
+ "glucose_levels = ['low', 'normal', 'high']\n",
+ "bmi_levels = ['low', 'normal', 'high']\n",
+ "heart_disease_levels = ['low', 'high']\n",
+ "\n",
+ "for ag in ages:\n",
+ " for hl in hypertension_levels:\n",
+ " for gl in glucose_levels:\n",
+ " for bm in bmi_levels:\n",
+ " for hd in heart_disease_levels:\n",
+ " # Определяем уровень риска\n",
+ " if ag in ['aged', 'old'] and hl == 'high' and gl == 'high' and bm == 'high' and hd == 'high':\n",
+ " risk = 'high'\n",
+ " elif ag in ['middle', 'old'] and hl == 'high' and gl == 'high' and bm in ['normal', 'high']:\n",
+ " risk = 'high'\n",
+ " elif ag == 'young' and hl == 'low' and gl == 'low' and bm == 'low' and hd == 'low':\n",
+ " risk = 'low'\n",
+ " elif gl == 'normal' and bm == 'normal' and hd == 'low':\n",
+ " risk = 'low'\n",
+ " elif ag == 'middle' and hl == 'low' and gl == 'low' and bm == 'low':\n",
+ " risk = 'low'\n",
+ " else:\n",
+ " risk = 'medium'\n",
+ " \n",
+ " # Создаем правило\n",
+ " rule = control.Rule(\n",
+ " age[ag] & hypertension[hl] & glucose[gl] & bmi[bm] & heart_disease[hd],\n",
+ " stroke_risk[risk]\n",
+ " )\n",
+ " rules.append(rule)\n"
]
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 144,
"metadata": {},
"outputs": [
{
@@ -256,7 +312,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAzWVJREFUeJztnQm4VeP3x9dtnmlWaZ6QZEqIUilzlCFT5jkhQkIqpBRCZvUzZ8oQRUQylsrUQPNcSvOk8Z7/83nz3v++p33mvc9wz/o+z3F1z7n77PFd37XWd62VEwgEAqJQKBQKhSJrUSjVO6BQKBQKhSK1UDKgUCgUCkWWQ8mAQqFQKBRZDiUDCoVCoVBkOZQMKBQKhUKR5VAyoFAoFApFlkPJgEKhUCgUWQ4lAwqFQqFQZDmUDCgUCoVCkeVQMqBQKBQKRZZDyYBCoVAoFFkOJQMKhUKhUGQ5lAwoFAqFQpHlUDKgUCgUCkWWQ8mAQqFQKBRZDiUDCoVCoVBkOZQMKBQKhUKR5VAyoFAoFApFlkPJgEKhUCgUWQ4lAwqFQqFQZDmUDCgUCoVCkeVQMqBQKBQKRZZDyYBCoVAoFFkOJQMKhUKhUGQ5lAwoFAqFQpHlUDKgUCgUCkWWQ8mAQqFQKBRZjiKp3gGFQqFQpD+27tgti9ZulZ27c6VYkUJSp2JpKV1cTUhBgV5JhUKhULhi7qrN8ubkJTJh9mpZsm6bBBzv5YhIrQqlpE3jKnJJi1rSsGrZFO6pIlHkBAIB5/VVKBQKRZZj6bpt0vvD6fLdvDVSuFCO7MkNbSbs+yc2qCQDOjWVmhVKJXVfFd5AyYBCoVAo8vD2lCXywOiZsjs3EJYEuJGCIoVypF/HJnJh81q+7qPCeygZUCgUCoXBsAlzZcgXcxLeTs8OjeTmNg092SdFcqDVBAqFQqEwEQEviABgO+9MWeLJthTJgZIBhUKhyHKgESA14CX6jJ5ptqvIDCgZUCgUiiwHYkE0Al6C7bFdRWZAyYBCoVBkefkgVQOxiAWjAdtju/NWb/Z0uwp/oGRAoVAoshj0EaASwA+w3TcmqXYgE6BkQKFQKLIYNBTyOipgwXYnzFnty7YV3kLJgEKhUGQptuzYbToL+okla7eZVsaK9IaSAYVCochSLF67NV+LYT/A9plpoEhvKBlQKBSKLAVDhwrS9yjih5IBhUKhyFIwfbAgfY8ifugVUigUiiwFY4j9qSP4f+T89z2K9IaSAYVCochSlC5exIwh9hO1KpYy36NIbygZUCgUiixGm8ZVfO0z0KZRFV+2rfAWSgYUCoUii3FJi1q+9hm49FgdZ5wJUDKgUCgUWYyGVcvKiQ0qeR4dYHtst0GVsp5uV+EPlAwoFApFlmNAp6ZSxGMywPbYriIzoGRAoVAoshw1K5SSfh2beLrN/h2bmO0qMgNKBhQKhUIhFzavJT07NPJkW3d2aCxdmqtWIJOgZEChUCgUBje3aSi3HFtJcvbsksI5sWsEihcpJIM6N5VubRr4tYsKn5ATCAT8bk2tUCgUigwA5uCkk06SlZt2SvNuT8gP89caIx+u2sC+j1gQjYCmBjIT2glCoVAoFAYjR46Ub7/9VsaNGycdOhwrU+cul49mrJHv5q8z0wedlCDnv4ZC9BGgfFCrBjIbGhlQKBQKhWzatEkOOuggOe6442TUqFGyZMkSadiwoTRr1kx+/vlnM4aY6YMMHWLWAC2GtbNgwYFeSYVCoVBI//79ZcOGDfLEE0/ImjVrTLpg586dsmLFCvM+hr9J9f1SvZsKn6ACQoVCochyzJo1S5588km57777pEKFCnLKKafI4sWLzXt///23IQWKgg1NEygUCkUWAxPQrl07WbZsmUydOlU6deokEydOlD179uR95rfffjPpAkXBhUYGFAqFIovx7rvvyoQJE+Spp56S7t27y9dff52PCFgyoCjYUDKgUCgUWYotW7bIHXfcIeecc46ceuqpJh2Qk5O/wUChQoWUDGQBlAwoFApFluLBBx+UtWvXGtGgLS3k3507d5ZixYpJxYoVJTc3VxYuXJjqXVX4DK0mUCgUiizEX3/9JY8//rj06dNH6tSpk/f78uXLG/HgueeeK2+88Yb8/vvvhhQoCjZUQKhQKBRZBpb9Dh06GI9/xowZUqJEibz3qB6oVq2avPbaa9K1a9eU7qciedDIgEKhUGQZaCo0fvx4+fTTT/MRAUD3QUB5oSJ7oJEBhUKhyCJs3bpVDj74YDn88MNl9OjR+7x/4YUXyvz582XKlCkp2T9FaqACQoVCocgiPPzww7J69WoZOnToPu/t3r1bvvjiCznttNNSsm+K1EHJgEKhUGQJZs+eLUOGDJFevXpJvXr19nmfGQTr16+X008/PSX7p0gdlAwoFApFFoCM8C233CIHHnig3H333a6fGTt2rKkcaN68edL3T5FaqIBQoVAosgAffvihSQGgEyhZsqTrZz777DNTZVC4cOGk758itVABoUKhUBRwbNu2zYgGmzZtaioI3KAlhdkNjQwoFApFAceAAQNk1apVZu5AKFBSSCtiLSnMTqhmQKFQKAow5s6dK4MHD5a77rpL6tevH/JzpAiOPvpoqVKlSlL3T5EeUDKgUCgUBRRkgW+99VYT/qeCIBQoKSQyoCWF2QtNEygUCkUBBWJBPH7Eg6VKlQr5ucmTJ8uGDRuUDGQxNDKgUCgUBRD//vuv3HbbbWY08dlnnx32sxAGLSnMbmhkQKFQKAogBg4cKCtWrDDlhAgDI5EBhINaUpi90MiAQqFQFDAwW2DQoEHSs2dPadiwYdjPUlL4yy+/aIogy6GRAYVCoShgID1AVUDv3r0jfvbzzz9Paknh1h27ZdHarbJzd64UK1JI6lQsLaWLqylKNfQKKBQKRQECTYV4Maa4dOnSET9vSworV67s2z7NXbVZ3py8RCbMXi1L1m0TZ6c7Ehi1KpSSNo2ryCUtaknDqmV92w9FaGgHQoVCoShAosEmTZqY1ID1+MOBkkJIADML+vXr5/n+LF23TXp/OF2+m7dGChfKkT25oc2Nff/EBpVkQKemUrNC6OoHhfdQzYBCoVAUEDz66KOybNkyefrppyMSAWdJoR9TCt+eskROfmKi/Lhgrfl3OCLgfJ/P83f8vSJ50DSBQqFQFAAsXLjQVBDccccd0qhRo6j+xpYUkibwEsMmzJUhX8yJ628hBbx6fTBd1mzZITe3CS+AVHgDTRMoFApFAQC9BKgK+Ouvv6LSCoAjjzzSDDB68803PdsPPHoMuVcY1LmpdGley7PtKdyhaQKFQqHIcIwdO9Z0G3z88cejJgKUFP7666+elhSiEXhg9EzxEn1GzzTbVfgLJQMKhUKRwdi+fbsRALZr107OO++8qP/Oj5JCxIK7I2gDYgXbY7sKf6GaAYVCochgDBkyRBYvXiyffPJJVKJBp16A9sNelRRSPkjVgNdAP8B2563eLA2qaNmhX9DIgEKhUGQoIAEDBgyQHj16mNx/tKCkkDbFXqYI6CNAeaAfYLtvTNLqAj+hZEChUCgyFJCA8uXLy/333x/T302aNMnzKYU0FIpUPhgv2O6EOat92bZiLzRNoFAoFBmIcePGmdHEI0eOlLJlYwufe11SuGXHbtNZ0E8sWbvNtDLW1sX+QCMDCoVCkWHYsWOHdO/eXdq0aSNdunSJ+e8hA4w2jnZKIZ0Nhw0bJr/99pu4VaMvXrs1X4thP8D2mWmg8AdKBhQKhSLDQAkhTYai7TToxMqVK2MuKYQEQD6OOOIIadCggfTp00dmzvz/EkKGDiUDyfqebISSAYVCocggLFmyRB588EG59dZbzRyCWBFPSWGtWv/f9GfBggVGtHjooYdK1apV5brrrjPTB5OBZH1PNkKTLwqFQpFBuP3222X//feXBx54IK6/tyWFlSpVCvmZzZs3y/z58/Ne8+bNMwTCpgj27Nljfq5evVree+89eeLpZ830QT9TBWyfcccKf6BkQKFQpCV07v2++PLLL81oYtoHxyoatCWFbIOoAh0InQbf+frnn3/y/qZMmTJSv359KVWqlGzdujdnX6hQIcnNzZWbb75ZBg0aJKWKFzFjiBf7KCKsVbFU1l9/P6GzCRQKRdpA596Hxs6dO+Wwww6TAw44QCZMmBBRK7Br1y6TUnAa+Z9//lm+++47KVGihOlcaEG4H4Pv9qIpEd915plnypgxY4zokM+//vrr0rZt27xt9B09U16fvNiX8kL6DHRtUVv6dow9LaKIDkqzFApFyhHN3Ht+g+eJwXnlp0VZN/f+iSeeMOH6999/P48IbNmyxeTw3bx7GhLZcD4GvHbt2ibMDxHo16+fNGzY0Bj7evXqGe8/Eg466CBDBrp27SpDhw6V/fbbL9/7h5fdIq/42Gfg0mN1WJGf0MiAQqFIKZhyx3AbetDH4lVCGooUypF+HZvIhQV0qh3LMyH7n376yZQQoubHiFuDv2rVqrzPMqAo2KvH0PMTAWDRokXN3yM6fOONN2LelzVr1hjiccwxx+T7PaTj3nvvNamLQ7o9K9v3q+1pdIDrfHy9ivL61S0826ZiX2hkQKFQpAw6935vHj84nO/09vH+LayQDwPfvn37fIa/SpUqYVMHlBRSItizZ8+49hPBoVN0uHHjRnnkkUdMlIAuiC+99JKcfHYXOeWp7z0lAxA+IkAKf6FkQKFQpCwiEC8RCAbbqVymeNrOvUd4Fy6cDyGw4Xy8eIz7scceK5dccon5W8L6L7zwginjixdeTSlEi/Diiy9K3759Zdu2bdKrVy9DMGyqgUgNBM0r9O/YJGtSQamEpgkUCkVKNAInPzFRdnjYRKZ4kUIyvkfrlBgOllHC6KHU+Sj3LVDl2/B98Iu8PuF8p2jw8MMPN62Dv/3225gbDDlxwQUXmAgEcwniPUYmI951110yZ84cufLKK6V///5So0YNTyM+TtzZobF0a9Mg4e0oIkMjAwqFIunwc+69X7llxHhLly4NafCpzbdAgW8NfLt27fIZf6oBojXqTz31lMyePVt++eWXhIiAnVLIYKN4MHXqVOP9T5w4UU4++WR55513pFmzZiE/T8qmUpniRguya0+uxHKprRaEiEC6RnoKIpQMKBSKpCKd597Tgz9UOH/RokUmRG7r7G04H0HdRRddlE+0V65cuYSPZ/ny5SYU361bt7CGNxogQCTHH+uUQiIJvXv3NuJAhIc0LCLNEA0xQdRZYdca6frUGClZ98iQVSIW9n3EgtlUJZIuUDKgUCiSCjv33q96dObeh6pHJ9S9bt26kN79ihUr8j5bsmTJPI+eGvvgcH6xYsXET+CJUyFAKD5RYMQR/0U7pRDiMHDgQFPOSLdDNAKkBYoUic1kvPbs41Lip+9k7GO/ybvTVpgxxEwf3Kd/RMVS0qZRFVM+GC+RUyQGJQMKhSKp8H3u/ezVcuXiMvsYeuvxY+gsMJDWwLdu3Tqfwa9WrVpCoflEQFOht99+W/73v/8ZY5wo7JRCIhrhQOSDqgBaHSNcRB9w5513xtXtEGEkx8BQpUNqlJe+vKSJdpZMU6iAUKFQJA3MvW/ad5yvPexZ0pY+fr4Edm03xq9mzZquYj28/uDGOekADDKiQUgA3QIjGfBIINqByI9Q/8UXXxyVOPCKK64ww5DcxIHR4rbbbjNdCkk1EOFQpDeUjikUMUI9m/iRjLn3ePPPvzlKTmrWQOrUqeN7ON9rMJb4r7/+kmnTpiVMBJwlhR06dHB9n+8hJfHNN98YsSPePGQkEaxdu9ZEGO644w4lAhkCXcEUiiigPfMzax598xbHSaNa5SXTQGMgRIM33nhjwgbZmSJA5Bg8pRCPnc6BdCM85JBDZOzYsSaV4EVq5NlnnzWDjLp3757wthTJgZIBhSIMtGd+/KAhDQr8hQsX5v2cuWKjSO1zfP/uTJ17T36e2QGE6L2AnVLI2GOLTZs25YkDqXqgmdFVV10Vszgw3HWnJJJtUmKpyAwoGVAoouiZDyKJ3uz7Py5YaxrqFOSe+bYhDnX3GHnnyxp+Z998GumgwK9Vr6FIbc6Tf8K8TJ17T1Mh8vrDhw837X29gLOk0IoDiTzQ4pjUABqBeMSB4fDKK6+Yig1SBIrMgZIBhcIF2jN/b5MdxGfBRt6+qIMnFAwILR944IFSt25dady4sQk3k6/n37yqV69uWu2C1oMn6Nz7IGCo6SfQokULI97zSs/y8djPjXfOdbzssstMAyN+PvTQQ+Z6eQ0iEUOGDJHzzz/fCDQVmYPMemIUSUc2iuWypWc+CvLVq1fvY+St4ac0zDbZAcywx7Bj5Fu2bJln6Hmh2I9WqIe2ws+599SrZxqeeeYZmTlzpkyZMiVm0WA4PYsEjpMS5zeQK4eNlSb1DpW33nrLTC70C6NGjTL3D2OWFZkFLS1U7INsFssVtJ75GzZscA3h2/8nv2tBKZvTwFvDb3/SU9+r+6v90G/FL4zv0SrtG9dMnz7dNBO65557TNSEaAplf88995ynehYL6AV3tJ96FkwJTY0qVKhgdAqKzIKSAUVci4t9v6CJ5boOn2xy/smax46i+/rrrzf96mkwEytoDINRD+XdQwYsMObBRt75by+a26TreU430IiHnDrplYYNG8o///xjxhNjSGPVs8RyDm3ffz/0LOPHjzdjlZmBwE9FZkHJgCJtF5dkI5keK4/diBEj5JZbbjHeObPonYI7p0gPwhDKuyfMHyzSC+XdkztOVUe9gh6BiRWU9D366KN5o4shak8++aRR4EdKE3g1EbBnh0ae6lnoY8DkRvoWpMt9pogeBTv5q4gKKpZLbs/8ZcuWmUXfGUrFM3z55ZfNe8EiPcvXMRJWpHfwwQcbhbjT6BNu9qJJTTKAwc7mufcYTScghNdee638/vvvpulQpulZmKrI/Txy5EglAhkKJQNZjnRdXApkz/w5q6X4I6OlT58+RqnvBAYfY0C6wHryJ554Yj7vPhaRXiaASBIE0qu595l039Ghz0YFACSOyM15550XNppC9M5L9Bk9U46vXylhEjV48GBzn4bbf0V6Q8lAFiOdF5dU9MxHLOknmNb2xdSJ+YyAEx9//LF07NhRsgnOuffxpqgyce49ESCAFw0RRDdCI6Bwo4/R89ieF16B7bHdRHQWDIB69913TaMhrxoXKZKPzIgpKnyBn4tLpiEZPfPZ/rBX3zEle+SLDz30UPN7G9qnFW02gggBuX7EfyAnwpWABAA+z9+lIxGgJJdui78uWW9+8m8nmD0A8Ka///57077XSQTIu0MObIoIPQvCXq8jV2yP7c5bvTkhMSTCR0YcKzIXSuOyFHZx8RrOxSXdy7tS0TOf76lVq5ZpO8vrzz//NHnWjz76KKEJcZkOIkn3n1heDr37fDm311BZIeUzbu59LCW51PozIpkKkuLFi+fbDu2Czz77bKMXadq0qZxyyinSa/gYCeSWkpxCexs3+aVniRVoXRDC9urVy7PSU0VqoNUEWYq+o2f62vila4vacS0uqQLe2xlPf+/794zpfoI0qZ5+Y3PTAXfffbdpl0u3PPrzZ0rDK69LchGXvvbaayYqgIaEiMGm1rdL0fLVfTuG2hVLycSebWL+uwceeMB0HKTipWLFvZEdRWZC0wRZimSI5TIJGBq/NdAs7td0OdsYPWbHIyJT7AWdDulp37VrV0MEAIYf4nRErfLmZzoSAQS4lEjSMyGe+RX8vRPcF0QLEJjS6hlitDuniK9EABCFCU5lRNPjYtiwYXLNNdcoESgAUDKQhUiWWC7WxSWVwNAQxvUT5Yvslto1DjAjYxEKMlK2SZMmRjyGJ4gQK1sDdZ9++qnpmXD11VdLJpXkUhpJr4RYiTWf5+/4e7Zjyw0vv/zyfT67fpf3qYFgsPdEYWIBA5UYgtSjRw/f9kuRPKQf1VYUGLEci0smhcT97pl/zjENpe9DbxuDj4gQ4Zh9vfjii+Zz5JFPOOEE86L/f7NmzbJCoU2PhWOOOUYOO+wwydaS3EHXnyPr16/P9x7i0s1b/5Uykl66GSI5jz32mFx44YWm7FWR+Sj4q4wipWI5N2AM07ExCcKuV35a5Mu2IRiI3gDHzgLK69JLLzW/Y+Qr42YtOUBcSPfB0qVLy3HHHZdHEJhqV6ZMMkxD8sAY5M8//1yef/55yeaS3F27CxtVPl0kGWHMaGGu9Z5y1eQn8R/oMqLFe++9Z3QC3KeKggElA1mIWB56L74Hb+ebb76Rr776Sj777DOTa0QpbUfapgsYuoSwy6+e+eHU7xiBM844w7zAjh07THmZJQfUcDOHnnN2+OGH54seEE3IZKAVKFmypPEys7kkt+Wtw1zr/Um3Hdp3nK/RvJz/dDPRADJPaSxjqolcKQoGtJogC5GMxQUcNP1FmT97lsyfP98sIIS7abhDrpz8cDpGB9K1Zz5iMmrTLTn44YcfjMYA1K9fPx85OOigg9Ly3IY6Lubet2vXzuSg0x2pmrjYevAEWeyjzieWaoJx48YZIvD1119LmzaxVyAo0hMqIMxCJEMst2vdChk3ZrSZxGb5JkQAI0Vf/VBd+NKlZ76X8KJnPrnjQw45RK677jojNoRgEV2h8xvRBEbiIkTkM7S1pU6dFrGkHogypCuIFqGfQJGeSfMr/ICt9w+lZ/Hze+ndEC0GDRpkRhWfdNJJvuyPIjXQyECWwtc+AzkiJ1YT+ff712TUqFH79OEH9Ng/6qijjGjMvvBw08Wj9WoyHD3zu7VpIMnA5s2bZdKkSSZqQPQAIsAAHEr1OL9EDYgeHH/88UkdVxwOXbp0kZkzZxoyE+nap0PfgVR56KmKSARjypQp5l6ChJ5//vm+7Y8i+VAykKVI1uJCD3brudpbzfZjRxxn1NKb97ZCRTTVvHnzfAShatWqkqljnVPdMx/FN1PwnFULjEnm/NMK2aYWeNEVMdmglI5Ji+Sfb7vttoS7+qH58Lskt2kScvcz+p7iSnK6Dp/sm54l2tkEF1xwgfz6668mZZVumh9FYlAykMVI1uKyfft2ufnmm/NywoS4//jjD5kwYYJ5QRSsiA6CQO0yLVkBRspJDo488kijss7U7nKpBI86OoPvvvsuL3pge+QzGtlJDiALfi/2TzzxhGljS7oDHUm6n/dUd6lMtZ6FlF/jxo3NHAVSUoqCBSUDWYxkLy6QgVmzZpn65GAPceLEiXnkgM8AVPJVqlQxJXbklQl549WSF3cSBPq3Fy1aVPyE9VBHTvxDdhQtS3jD8575qQiD01v+xx9/zCMHU6dONREFWuA6Sxo5z172nmfZgXBw7d5++21PIzJoPhh+5DUYOtTpuR/Fb3x44/Gm66IbODc0KvIKgzo3jTp6deONN8oHH3wgixYtMtUfioIFJQNZjlQuLqFAKNtJDmbPnm1+j+qcGmyqEpjwh1eLEJFBLwx+cRKEBg0a+KI/aNiwoXQ4/Sy56e4Hojba4Yx8OoXBwb///mvywrZigReRGs45Gg+rO+AnRC1eQEDYxpdffiknn3yy51qNnh0amfHIBSkyAFiu290yWBaUaZJUPQvPJM9enz59pHfv3gl/tyL9oGRAkfgCzC2UkyPdTqwpd57ufQc5DD99Ciw5IFwJaOVLZQJeLAaL/Lh9z6k/sD8Z+pIISF3st99+pnf8FVdcEfazkYx8tf1LmDaNKzZuT5sweKjSPwR+Tt0BzWZAo0aN8pU0QpRCETCG75AOeOutt0wfe/7NtSRlZEc4pyMxTUW9fyjNACCq1rNnT+n53IcyennxpOlZ7rvvPnnyySfNtefZUhQ8KBlQJByapXpg04SXpWGhf4ynZwfN+AVEiU5ysHDhQmOEaGVLaBujT2oBXcLPP/9sehqAmjVr5ose4OnGoj8g196qVSv57bffQjZbiSXXHSv8DoPH0jHQphV4cZ5ZRihpdOoOiNaQvqGaBBJFsym8S7rXUZZ2zz33GCOTzv0d0qnen7r+9u3bm65/AwcOTJquYsuWLebZgcAFp/gUBQdKBhR5SGRxWTb7d2nbtq2pb8f7s95eMoCewEkO8F4gBxgjjI4Vw82YMcOQAzr7scDZngfB+gPKHt1AF0AWYv7WTaMQL6FKlzB4vCAqQxmjJQiTJ0826QbyyrRPJmLAaGLAdeCFLoHrhHAxXZTy6Tz6m3MFeaX7JF08nfMq8qJQc1abAWH7pJri0LNAeLmGkGuEnnfddZcRn0IKFAUTSgYU+yDexYWeAtQes3DguaQC3M4InCwx4EV4GnLCYkrHNLx78t2WHPDCu3XqD2xqAUOGYJEIwpVXXmkqHxDZBcOrXHcqw+BegagM5WdWd0C0CAIVjAceeMC85q3ekhY19NEgFfX+VOMQaUFoy70XXHnhhwiV7+Pa8RxAAk4//XTT7EpRcKFkQBEWsS4ueBG33367PPfcc3LDDTdIqsHtTV7aSQ7+/vtv452y0EEOeFGyOGfOHCOeswRh7ty9o2WJIBx77LFmO6QHXn311XzzALzOdacyDO4HmDnw/vvvuzafgjT+e/CZKfG240Uyoxjcv4x1HjlypDHO3KfJAISZtJjtCUKJL8TtkksuMYRZUfCgZEDhKbidbr31VnnmmWdk9OjReYN30mn/MPqWGJBeQFNA2J9IgCUHhEfJjVNXDYgsIKazILzN5w86qqW8u7Wx7ErOIEjfw+B+AOIEAbPAwJx22mlmauODDz4onYb/njZ996NBMvUNTHKkpI9hTpdffrkkC6eccop88cUXef+2pABCwMAsRcGDkgGF58ADPPfcc2X8+PGmRJDwfLqC2//PP//MIwa8CMeiG6A9Mu85F8Pu3btL69at86IHs6u3l6I1mkhO4dQNAPUyDO4HSK8A9AOkkDBu9LdPh65+8SIZlQ/oMLjXmEcxbNgwSSbOOecc+fjjj/eZjfHpp58aEaii4EHJgMIX0CAIDxvhE/3yM2UBsaV0kIOhQ4eaSoVgoKp++eWXfc91pyoM7hcQlhJmJjKDFiNdavfTcX4FkRRSAvTWoIoglKjVz9TOO++8k+/fNA3zsvGUIr2gUwsVvoBF45NPPjGKckLC69evl0wAHhAVBbfcckvIdrwjRowwKRA/J9hFC/LWCD0zARAoPF1LBABalGTAj++hmmNg56YmxC+5++ohwoH7plBgt6wd+6R8MuhmI7jM29edO/OGAFGGmWwiAOy8ECJilBNC5JQIFGwoGVD4BhT7lEHRvaxz585pPUo3GBs2bMhrYAQo5apRo4YMGDDAiOE6duxoGgr5XUIYDaj4QOiZzuBcEm259tpr8/0eUWoy4Nf30O/hhpr/yL+Lfzf/jkQO7ftoPXo03iZb/vhSxo0bZ6IAp556qhEJ3nHHHaY8k/vMKVT1GtwzRGZos8xP5z1EZA9ijG4AQXC6TBNV+IfUJToVWQEEeOQeaTmLKvr111/PiIWFJjmkCWhgRNUB0QKEkfQZsLluOgumA6AjVHx4HQb3EkRTGJsMKXSC6hTuBr81A3yPX2mll4YOlGPq15fHb7stppLcJUuqyS2Oz6CxgRgAhJWMmvYa0ba/furV96RGmUJmeJgiO6BkQOE7qFmmHI+8Iwryhx56SNIdEBaMP2AGAp4S/QcsFq/d6qsBixXJCrfHA/o30ML50ksv3WfADaI+DJCf1QQYYb8GPiGoQ2T64osvmtkRaDf6SpOoSnJp4ANBIgoFnKWXXotuo2koxm+4DpR5vvLTorSdvqnwB5omUCQFXbp0MXPrH374YZM7ziTYfK6TDKSb8U1WuD0ejBkzxgjirrnmGtf38UT90l6wXbxxv0BVhB3e5ASGn0gN0wf56UZGIJxEnZyRMkLzRNLQ2XhZ+UApJL0RQKTUln2fz/N3/L2i4CN9VxBFgQMDVigroxnR559/LplEBvDiGLCTjsbXzzC4F4D8HX300SHnOTCR0S/tBdslLO8H6LDI9MW777477m1ABpwgLE+DKy8rHiiBpCdCrOeYz/N3/D3bURRspM+KpijwwAOivz9eD2pp+p9nChlwRgWcue50gJ9h8ERBK+ixY8eGjAqAEkUL+3IuGaBFqNuvHgxEBai9T6SxFlEFqrt5NtDTEBm46KKLTGolUeDRe9Uim+28oxGCAg0lA4qkAlX+22+/bYSFLKJ0+UtnsFC7kQGb6041MHh+hsETBZ3zmGKJgQsFctl+aEr35ObK+3efa5oddevWzXTFpKKB6pZE26sw1wK9AE2UEhnKhRYFkEJDU0FtP4267r///oQ1AgzN8hJ9Rs8021UUTGjTIUVKQA6ZcCgDgAi3ot5PR0BW6MtOHpdywmRNsIsFZSY+IScc1sC0UOacNmrUKC0qNlDaN2jQwPQWQECYisE/y1+6QXavXWZ6RrA/drkjVcX8jHhx2WWXGWLBvIp4+wDMmjXLEBWGAEGQ7TUbPHiwIRkfffSRmQIaDzJlCqQifaCRAUVKQMkePQiWLVtmWhfTaCVTxIPJyHVHAzR39UrukGMPqWOGylxxxRVy0EEHmal2RF2o2vjqq6/yGsgkGxhLOjiGSxH42biJ7R5wwvl5Sn2n34MRjhd01WRwEPX38RIBxj536tTJdOaks5+TvKGtoQQTwmGHZcUCCBZVA17fm2yP7c5bnZr7SeEvlAwoUoaDDz7YeD8YMvqvex2kCtdUJRYygHCQwUTBoJSMnHRKuhAGAlJIcuXJS481Aj1aKNPlEWEm8xPIOQ8ZMsT0d6B8DfEe3jAlnrQDTkZAkP2CnISrl/ezcRPbrXzYSa5DeBIZ+vP444+biFZwA6VoQYQCQ0+64sMPP5QyZcrkex9iQCQFwgxR3rp1a0zb95tgvTFJtQMFEZomUKRNz3ovJqJF21QFrx5jHgmEacnrfvnll0mbYBct1n3+tGyf+bWJAnTt2tX8dI6XxehQA8/AG+ZD8JPQNIDgkFIgtcCLCYzBRikRrF27VqpXr25KSfF03ZCsIUVFPrpbFszZO3CKdAHGFoN+0003xZxO4bhIG9ElsH///nHtEw2F+vTpY9p1n3nmmSE/B8HjuhAleO2116Le19aDJ2TUFEhFekAjA4qU4+KLLzZtfvv162cEZ/EAo0yelPwzeXwWw0CYpip8js9HEkS5iQedoCFLv2QOCfqPuzPcZu7nr5r8MroGPEg8yeuvv95oMOD4CNuaNGliwvTB0YObb75Zdu3aZYRr7dq1M5qNww8/3JR+YngITyfiJ7zxxhvm7/GAQyEZjZvYfvfe/fPGT9NelygUx89kPiZUxgJEiHZ6ZTygssKS3nBEAHDtuG6cy2j1DcnojJkJ7a8VsUMjA4q0ALchhozwKFoCwtuxlFChnN6dG4gp5EzIs0ihHGPM6THv5gWSfydyEU4N7+UEu3DIkYDZ34fO2XfcLREAjAYvctp0ekSdzovKjVBwRg/sy45t5tid0QNq4qOJHnAtDzvsMJMiYNBOKJC+6fTcj+I3PrjxeHnotqulbdu2hgQAvHJGKxNJoaSP9yKBCBE5fhpoxTNSmPkMnEMaFCFIjbYKgaFZzz//vHz77bcRexBk8hRIRWqhZECRNiDPfdZZZ5lhLXi3GJRI8MoI9+zQyEyhk6Be8e3btzfGEcPmFymJBNs+Npr2sBh3zh0GDkOMUA0DRBoBI8bwqEggesCgHEsO+P9NmzblTXS05IAX1QLB4Ws+j9EiAkF+Pl0NFz0QbFUAjYMI+xctWjTkdiAAt912m4ma1K1bN6Z9IO/P+fr3339lypQpRscRLRDXnnTSSSYCNG3atLDXMFkE68MbjzfdFRUFB0oGFGkFlO+Uoq1evdoYFSYFhjO+dEfzCoM65/e4CcETzsUQhhpnHE8PeAv7fvX9Spjk9soN2/OHzQMBKbZrk1zculnecJtYsH37dlMLDzEgPM2jzmQ8ogVoIYLnBIQCSvzg6AHzGkJFDzCYEKkFCxaE9X4JNR+aBM3AjL6nhGzKxLFxnanrZ3IgVQL16tXb53OkVBi9jBiSSFEs4LyTCiMagXbj0EMPjfk4IC7sH2SMYUah7sdUEyxF5kLJgCLtsGLFCmNgaM1KaLRcuXJJEe4xl358j9Z5njcL+KJFi0zL2biFjFFOsLPGce7KDXJj9+4y589Zcm6HVjLqnbfkn3/+SaixDSA3/u6775o0AsYcNfx5551niAFeZ6zbX7dunfz888/7RA+IEvBi0A55dQhC/fr1Q4rf/Ba7VSi6W7689YR8raTdwLGQCuJck59H0OrEm2++ac4VGhK0FbHgiSeeMGWINBS64IILJF58/fXXJlJFFAONTboSLEVmQsmAIi1BhzdatUIK8G6Dw7fJaKpC6SO5ZERjiSCaCXZOENonOoI3iBH/448/jEfoFchdW30BTXMom4T4kEqIx2t1Rg8QJBKJgACwbVC5cuV9ogelS5f2vXFTIHePbP5ljGyaMNxcR0SWiAarVq3q+nnIDJ0KOS+kD0gLQJpYIiEA1apVi2qmhvN6//HrL3LNhWdLj+43mXPjRQvkXr16hW1IpNUEinigZECRtsATIqzNwvzSSy/leZd+d60b36OVVCtdyBgCvvfqq6+WZGPlypXGgCIGHDhwYELDcEKBR5+wNcaPDnh4+/QjgBRADjB+scJGdEhLsL1g7QFpIELc6EFM1OCIlvLUfP/CzVvf6yVr5s8w0SW+m3voxBNPNFERSvYofwwGZIayQ6ozSAlAyOgSiLaAKEqsJa2ke4gEtW1cNeqS1nDXjP1mX6ZOnWo0G8Hwk2BBmLu2qG1GNSsKFpQMKNIalLnRIIba7Pvuuy9pi90plTeZ/DCCLXK1qcDs2bONp07ZH+KxaHP88QCRGlUcEANy2+TIKTmEGNApL5oqgunTpxsjP2rUKGOw3KIH9Dlwag84xipd+kuJ2s0kp1B0uoxYojzDux5hjgdSR66d6gEEeKSi2B+uMREDXlQKWCASJFVAWoC+AmgjIE7B6Y54NCLRCEHDwYpCuR84h6VK5d9OMsiyX8OfFKmD9hlQpDWICqDyRuCFoUpG1zry/BgBhipR650qUBKIh06J44UXXujJJLtQoK0uYWcqEJgb8cILL8iOHTvM+SesTr6cEHm4faCtLoY2VP08EQHSHdT5jxgxwlxTogjbJg6XQvjSHvollGBicDkuDD37TmtkIiz4PxABjPyWLVukd+/ephQTA0sYnn1r1aqVmbCJjgAhJGJMzkuwgBXdCukqEOmetO/zef6Ov48HkEMIF4SFvhDB/pxfnTHZnp9TIBWphUYGFGkPblEa5xC+/fDTz+TmCUGqe4/BEnrSmk/k1ymTUj5mGW+WVAmG9KqrrjJGOplDiBBQEirn3FNBADGAoEAOaMZk9wVjSeUHKZVIuXGMMkaMY0NQN3ToUJm4bJevlSFOQAQgB0QL0KNAGCACiChJZVD+B/C8OUZSNZAgXvTBgOz4WdIaLayoEcEjraadWLxmi7R97GvZEyhEf2PxQ2CrKFhQMqDICBC2pt3utPmrpOwF7kpqL7H/T8/JEXUrh5y2lyyQ5y5fvrxZ9Jkr4EXL5njAMvHLL78YUkD5HaWfhxxySJ6+gIoLvGgIQ6gmRxjTJ5980rTiJSLw7LPPmr4SFl4Z2CKzxsrcj4ZFRZpIF9D1kk5/kBTKCokEOAEBImVAfwDmaJx712MytVDoRk5eEpdIoIkSpIb9onWxJWY0VPp01jqpePotabGfivSHkgFFxgC193FnXiRbW97k+3eteetuGXDHdab7W6rBIs9YYvQD99xzj6snmExg1JnVADFA1Y4nTRMdqgYwmG7jqCESRHeItFByyERFBJpeNW4K7Nltqge2//Ca/DPpY/MdiASPPvrofXLqoZo1IVjletsOjBa2QdCGDRukcp2DpOR5AySnSHzTCr32uNF62MoTzjEEiIoJxIVcn78rNvOEYNH+ulubfcWKioIDJQOKjMKEX+fKle/62/YXrBjRXb56/1WjPE81GPRDjfrixYtNQx9KHd9//30j7Es1iFzQKveuu+4y/0ag17FjRxMxoPsgER2iGdTaQ2bwYq0HGwrxiPJa1N5PTq+8UWZP+8FMawR8N7oPKiScpY10D3SLGkBySHUQ9QgGDYc4hvu/Xi1ri1T0RexoS1pjBWPASWdAGKl8oIpj9OjR5li9aNfdv2MTjQhkAbRrhCKjcMwhtIH1mwwEZPf6lcaIeNU7IBHg+T322GOGDGCQELIRkqfLH33uUwm8e9TtlO5RecFIXoSeEALr+eO9EgmA1IRr92uBh4xhjKdxk5x7hmn9C3mivJFmQt9PmiKfT54hL33wpQT27JIKRffIsUcfkUcObPSABlduRADQM6FUtfqyrtje7/YSGGiIz7zVm+MS59EngtQLUQ3SL+genCWHzN1oWb9SzAQLgpJI1YMis6CRAUXGwe+mKqVzt8nOD3obtbaf45GjBbMC6KCHyv2KK64wKn9EhYTcyRXH2yjIC+BNU5JHJQIaAIBBJWeNMUacBxnAs0b3QO6dhkSxAvJVq8lRcsXV18pVl3cNS75IVbQ87Vzp2v9Fmbe1+L51/wx82r5RNs/+Sdb/PFoCG/cSPxoLEekgckAlAeWRVDxQIUGqoN8ns9Kyfp/KAs4t2gYII1EBpxbDibgIliIroGQgw5FMDzVd4GufgRyREkunSL0N08zMeybVocx+/pdNMmtdrhTOyZE9Af9ryYOBoaLfAYQA4I1T/kbZIbXmNWvWlFSAGn6iAEQFCFUjcrzjjjvMe5w/jP8333xjogUYLUr5qO3HeFFJEKlNsBNEFRAg0hAoXIrhng+ny/fz1giVdeFuEXut6pTYLlUWfyW/fT8+HwGEcLVp08ZED2ivfNozk9Oqsx9LN5EiIi6cS+4NIkYTJ040+gG3GQvONaP96R1lw45cufnqy+Tyiy/IirVDERpKBjIQqfJQ0wV+N1VZ/tINsnvtMvP/ZQ7rIOXbX29yxDmFi3g2HjlWEAIeM2ZMXotfq4THsBLiZlIhIeJkg4gADZGYe8AIakR4EACIQPB0PcL3eK0I27744gtTykeFCMSAcj30BqFAdIH3IRv0PvBrlPUJ1fZOZqTvAFUcpBnY76Ily0j1W0Z6VqaXaM9/yiPRj9Ay2c4q4HwiciTtQYqGCg/bqCpSh8TaFUsX6DVDERlKBjIIqeh2lq7wYzYBivTtS/6Q1e/0Mf8ud9wFUr71ZcYDS6S2P5Facgu8atTxGF5yxBZ08GOGA+V8aAj87FIYDMgIjXsw6Bh32vciJgw3tthi1apVpgUyxICoAmH4888/3wgPOZ7gwUmkSiA7CCdpIhQMr8oSW+2/Ud6451JzXkltkAZhTsZHE6fKK3/H3p7Zj2mAkBMiAKRhEJNCwpxglgWCSUZW9xsyTO79aIauGYqI0A6EGYJUdTtLV7BY4c15CUrT1n3+zP9HBFrv9UATbfKDkXonwfNvqxoQuTkBCSBigH7A7y6FwUAUSEkeqQLq3TGa0RABQH771ltvNSVwtCgm9E8TIlIfaApoPY1BtiC9ANzaInNve0EEwLcb9pNWV/QyRABQjUCKpmOnfQmIH1i/cXPEmRUISplNwHkPJgKAltA0p3r/lxXS9rEJumYoooJGBjIA6dDtLJ1AKRWL3YKcA+SHXXU8227OlLdk0VdvSZH9qkq1a541teQ5adS9jSY/GEu872DgJZK7T0aXQkR29957rzz99NPGW6fngBfzGyAWpDuIFtAWGV0EIW+iBeTsqZxAMOmsoPB6lDXLYZGcXDmn2AxZv3Se6T7Ia+X2wlLxkr0li37in9dvl7ZHNDJRIK4nqQqLmTNnmoFJlA5yTogKhLrOumYoYoVGBtIcXno9XnioqQDq+a+++kruvPNOOeigg4xYDq90wssPm8XKC9BU5exDK5vFtcKpN0uhwkU8NajksUnxJAKIAOIwN2Ak6KJHHX+/fv3EL9C+l3kNL774Yl76wqtBTqQGOEaOgfJJCAFTBREk8nsAGUDUacE55dx6Ba757j0BeW9hEROxgOxglPv0uNGz7wj53SLywO03mZQI1RhoLhAxcj4++OADkz5BC0CTJxpPcV7cfDldMxTxQCMDaQyvvZ5M7C/OJD1KvGixSsjWGQbHIF177bX/Lxzbkyt7Yribg5uq0K++46XXSfVrn0vLiW+0Aab1L/n2YHGexSOPPGIG7xA9cAshxwvC04T1MdAYKEoGaT3My+9ZCTTSefjhh80MA4BBRDfQ9pyL5f5JO5N2rU4c9JUs3bDdt+/br9AOeea0KiYKAiGgZwNki2oMlmmiBKRh0Fo4haWcF3sNdM1QxAuNDKQxvPZ6vPJQkwk7b954bA4igIIewwhQ64+66nDZtXxmXu4/HOw0N5qqsMjZ7mp4n+WP6Sg5Po1B4nvfmBS/l2W942DdgBO9evUyrXjJwdMq2IvQPZ7pwQcfbIwSQ4soEyS/T3thv4kAVQSkJRAnAiYe0mmP6oVbh70f8Vp7da04D9sXTPPt+9ju8qlfGm0IDZxoKYxmgsgERICoACTBSQQA/RAgBNan0zVDES+0qDRNQSkQCmBJs25nyQbNYPCOnGNxiRBQvla6dOm831UrV0wqz3hHpo/5R8oeeYaUqHukFClfLchYBaTGfsWl/SHV85qqUHM9c8XGvD4NjU7qLEvX751a59d45L4S31hkWuUiroMMkFN2A8druxQiKEykSyFeP9EFvo+w9eDBg01fALQClLaFKvGLFhgwvH5y8lRJ2Py8899EJJzBSyITlP21b99e/qx/kuzwsC1wuGtFxOX3US/4FjWidLXIwp/yrjPXkSFZVjhJSamdrAgxcYLyQq7Vs298oGuGIm4oGUhTUBMcqRQoUa8nnm5nyQaeIaNanQaBCAFeqRMYKUrU6D5H3fWEF5+XnKIlDCE47PAjZfhLL8hRjWrJjvLl5IIpM83xu9Zc+wy6vkFA4m3uEk43YMG449dee01OO+0004kOUR55/ljO+cCBA01ontJB9Bpt27Y173EdiBSQR6ciIBzIbQcb+WDDT/rHgj4CfB8vtCEdOnTI+zfXFdHiP//8Y45vy47d0rTvOEnGtfpuwnjTiZDXglqVPC9ptbMJRsycYioEEAbSrwEQKSBNRmro448/3ocIWNCC+I3Ji3XNUMQNJQNpCgyVHw+1Fx5qsoBXhAdMGRVhYaoIbr/9dmMo8JLcwO+psUb8xfAchuQs+fVb2bhopuSUKCu5rW+S05/5ybdFMxL4Rrq/RaolDwXKyhi5i6I8XJOhEiVKmDQB5IEcPw1ooulS+MMPP5hQ/Jw5c8z5o8TP2bsAozx9+nTT5IY+A+EMPV6/E9WqVTOGnf2g/M0aev7NT6Yehko74PlCFiACYPHarb6TOLb/wx9zTDoKYsW9tHzDdpOT9/LeQbdCqSwdFkkFENVh8iOEi8hOjx49TFUF15H0GHoRIgRUWyxatMg8F6RSXv1ymkiZSpLNa4YifigZSEPg9eCxprOH6jcwJDSzYZwsIkLrmSIeowY8XK4ag8VkPIgDCyne7EX3Pb23XPC/sHIqiIDFN99+LwdfcNo+jXWiAcad48Hbx1iEAwaFc0eXQoRn4boUYljseGTOHdEHctcQMSIzkyZNMuFrSAIGmZw2qQIL6v+ZUYBhx3DhzToNPX8brsNgJNBox9ljgLROMtDjjjvNOUMnwfVCREenwl4feJdDR8DKdum5QCQH8sX5hvQSBaNsFLEsrZh5j+oNCBvEgeeAqME3P0ySu6f4kzLJlDVDkRj0qqYhkuX1OD1UDAxhdmq8ydETJqZNbCrAsBWMF4pqRGvO0rXg9EAwCKNCBujXDlgsn/lmnkwONJCcIol1EvQKPW7tLs8+WNKUhqF9iMVIki+nAyF5/EhkwAowEfshQOPz9ARAc7F8+fI8Dx7CQBSBEk68d7xwPm/BOeP+WLBgQd42r776akMarHcP8fDz3NJmlwoGSuyYH/D7krUi5VqL31i6eKH88OmH+er9Eayu2bLDk/I9SloRsJIeQOPB0Cn+31aLcK24bry4VswfGD58uEnV0AwJUkDk4tBjTxKZ8r2kc1RLkd7Q0sI0xK9L1kun5370/Xs+vPF4KZ+70Xh+hJ7nzZuXV76HF4JKOdmwXewIc2PEnKNYowGeK135KBM0ZVhTlnjqxSUKzOWLHcrKsKGPmT79qORR/99www1RzxaApKE0h/QEg8eZ4UXBYftff/3VePkYVGee3oIoQIsWLcy5c3r0vJhGOGTIENm1a5f5LJEBKyBkVoBXYL8gHBj74BehcOe+Njioiaxte6/4Cc5l/6Zb5PJLLvRlFoItaUUjwLPGnAciEKQCwoFzz/1NtIC+Dzwrp116o0ytEP2Qo0TWjCNq/T8xUhQcaGQgDYGqPRm4o8etMuGD1/P9zpbvscCw+Eczf94rEMYmTEq4mcXOlpPFAmsgCVVTc81ivdenSX1EQP4bEdu+TSvzwqAz0Kd///5GrIe3TVqDEbrhRHkYbEr8COkzLjg4Z89nLIg6WMPOBD6EaYjSyNmjVif0jjGibj+UZ0+0wFnWadMDsRI1K05cuHChq8Fn/61vQqUI6SBeTA1Ey8CxEimy2gK/R1mXkX9DEgEbIWhZv1LM80IQC6IRqLF/CRPBeuyxx8zQIQiX1USEA58hhcaLCA/X8aX3PpOc09sUmLVJkXxoZCANQV7u0L7jfE0VsOzfXmu53HX7rSY87HYbkCMlJIwhwUBbT9H+Pz/x0rwAoVHGsOKdopom7BwPWFTZFqVYfgwz8mNmPUYOg8yL1MhJJ50kJ598svHigw09anonIEz2ugR79G6iPEgHokBA2SDpIIYEhQPlfFwbJyhf5Fy7AeKAsM3N4PN7q4gn/w2hsEbf+eK4nPtNKJwyQ6IbgPNww4tfyW9by8bUaCqWuv8D/10gj118rLknI6VA8qYCzlltcuv7TBKtWEraNKqSV9IKYaOlMGkPmgYlGoXbtG2HHPbgePETsUxVVGQe9KqmIXjYGEPsp9fD4tT9xuvk4gvONSFqpsEFGwAME0aIHD4/ETVhkJxeIkY7mCA4f7KoR/J28GzoJEiYlJQFUYl4QWSAigK/+jQkAkhJi4o7TY7eTYGPiA9DiffOCzKG8I6ZBEQ6OnXqlGfwmfDHHIJHH3006hA8RGDQoEGGIGBMjzjiiIhEADhLCLmW6EogB6E8fH5v7xEiE/RGwMAjKnQafIhmtCJKKyAkjUQKi3B6kYo1pWLXJ8QPIDT9+a3H5Linl5nzTdSG9AzH4gbG/kLyUNtD5smt294VdSqWzmdAIX/c67///rvpMsj/J4pypYpL7SSsGUoECi40MpCm6Dt6prw+ebFvNcNH77dNPu13uQnbuk26w3i4CdsIEVP6ZAmCkyzYnxg1C9IMCN7cogssspCQPn36GCEUuelowqShwHEQqXjwwQdlc8NTfTt/8Xqa2xf/njcemePE0Lt59Pweo0dLYUoCSQtQGYEnacv8MMaEiAmfRwKVAZxfjDStiulSyJwHzjdiUSoD3AAxIVeP6NB2G8RLRsxHbp97x17jevXquXr4XPtErqndD0Sk3Hco5yERTEnkmG77aJ7n0R8aVDavWU6arp1oOvxBnGyzH8pW0Upw/ultESvQtFCmCLkhghWqRDYd1wy3qJai4EDJQJoCz7b90NBtZxNFjd9GyI+ff+D6XqVKlfYJR8cCyEAoosCL+nRn8xQEU5RRhYouhKs/dwJPC4U1Svv7Ju321UuKCYGAFM4JyB0HbZPDG9Y0hp88PGLNSIAMkFPGg+S6IDa88cYbTVtaCAKGOZTgjMgORh/1OdUBtq2wJXUXXXSRMUjoD1DL49XPmjtfZi35R5YsWyHLliySrX8vksCuvYJD9pnzG2zwuUbRHEuswGDSPIlIAPoKjp+QOh0VMarse5erbpKrRi30sBd/QIoXKZzXix+CSdoKUsB9BUGGBNm8PQSNn9FEsxiyBPEi0kK5IJUhmbRmJDJXQ5H+UDKQxvAj5227nY2/7xzjabmBsDRhWBZ+P8rFWOQpqWORxcui13wwaXBOpmOhDdYrOP8f40p+nal95MFX/rNOWgz+PqmdBSOhbZmV8uAVpxmvPx5Q6UGenpQKoNTsnXfeydcd0IJH2vTuv/VWk5smNcDn0VE4w/kYWJozFS5fQ8occZqUrN9ciu5/ALWE+bZXrWxROfmQanLZcXVMONxvkDZBP4FaHmJJVIByR0gP94Vt0QtIfdRrf6mnFSODOjfNm1fhBM2W2C8ICoSAFBnNn/hJpIA0AkTFLfUBebv88stNzwd0As5SxUxZM16/uoVn21SkH5QMpDH8nEAW2LLGtKh1LqwWNqdMzTPGGsNtBwZ51VWQnDi55y5duuyTYyX3uWPrJteogv1/wsUWEBa0CXi7pDcuuO52+bLI0ZIuOLXaTnnh1s7m/wmn00muXbt2RigYbTmhsxkTVQTMB+Aa4enj+RO+5j28T6oTiJIQokcTwDmjQ50FBAqPvkbjw2Re+eayfE85k8awDZnCKeFPbFDJKOH9mGBHS108f/QqVBOgI2HgEmTAmXqy4JpDHIhKDJswN7G6f5bBnBxT99+tTfgqCSIulOJCDCBY7AeVN5R0QlAhBbyIdrG8QsZo6MTvIKyJNF+KBJ1aqIgXSgbSHF7XyTu9HnLB1OI7bwEWVnLuGAvy+TSjwQtC3Q4xIMzpHBAUT1dBvFGGqszPqe46H8CoryuUkjaNq8glLWq5eqN4vOSznUQBA8lCW/LAg2VPu9sllXDWkp93ZA0T4iakD2wvB0gMZX4Qo2jz6niiePUzZ840+X/OKSTI1v5b4HlSPhgc0kcAh+4g0Rp5uvBRWpcoOA9WUf/TTz+Z/SOiccUVV5huk9arJqURDCIjziqHeI8JIlS8aBF58OxDXSMCoUCqixJY7jt+EiEg9I+eAvJFh0AiVhwXupi+ffsmpemV12tGsx0z5IPBPRPWfijSG0oGMgAJez3/wc3reeihh8wAFovTTz/dkASU2yzKhDYJRRMaJWfK7/HsIQb0yY9WDZ7XVXBnITm2+5Py++qdUddlR+ONQg4wHkw3nLZglRQ+Y2/5XLIRap8JZ3Oegx83yEDwSGK8YDeVPi/IgAXXgpQLlQZEAiBt/I6BPpSqhdISeHU/9ezQSG5u0zCuv4UYoWHAkOLdEyWhxwJkMdjoQHyIUllwzxHV+u233/a5//CMo637zwnkSiCnkBxaqbA8d2WrhDxfrg2RAjtpkEoNogYcJwSAaBD6AioHIjUV8gJeRUp2THlPVn39mpkSCWmL1xFQpD+UDGQIvOp25ubd0OgHQRMGBLEWizMNUFisWZgRrCFWw+CiJYAYkMMm3EzoE2KA4j0UWMwhAkUat5Jix11q6sK99Eb/+OMPYwDpxoYndlHXK+SbypFb9SaE/xZLt2iGrSV3An0GYXun946QjIE/1M87Db5TvElEwU2lT30+OWxy1Fwj0gXU/X/xxRcmokNkoFu3buZlW9v6HWmKBhwf9xhhdkLrePzsN/qUYLA0kRLh3qMXBp73pk2bzO+5X1Hlx1v3X6HYHln44xi55bQjpO/tN4hXgAggNiRVwz6jZ0G8SSUHaRDIGg2eIAYQID+97XjXDAnkmkjJZU1KyNzPXzUCU64VKScID6k9jRIUPCgZyCDE4vXYHHA0XjU5UOa1ozxHL+CshyZ8ywLAwkatNZPsIAH0HIAUEMLF+6FPPaSA/urOkitK3/DWq7S5THY07uCZN0p4GTU5hoXSOQwFCzHpAvQNfneny9m6VjZ8Oli2bd8pgT27ZPf6lVJE9pjF3wobUd8jfoRw4cFjpImQBAPD7WbweYXqA8A0O8SShKTx2iwRAhgerhtaAs4T0R0MaqnKNVOST2aJoVkQAsgxY8YYgoMWgP4WobpMkv7gfqNlM2WN5NpJXxFqp7yRbpXRhtzRpFxyw23y6+/TZfRHH8i/q5dI21YtTYSLdspehu4hpkTXiFgw5ZDjRShL1Io+EZS+QmQg04hJaaYEMWjatKn4tWbc+s6v8suSvSmqcCicI4ao71j8m5xba6cMG9gvb32gORXdMrmfeL64dvS5iFcQq0g/KBnIQETsdlahlMz/frScUr+UDH/84YS/D2M/bNgwY2AIYRMNoFadaAAkAUMEMWCRY2El1AsxACx2h5x1jaytf6p4hTalV8iElx82hhXPmIgG2gYWWLwvv2uuIVq7Zn0llxxUzDT/od6fiXNoITDORAE4Z7YO3w2cO7xchJB2YYVAYCjDGSeMJAOOON94lhANO8chGKQUXnjhBeOp8j1nDPlcZq3dnTSlOWLOkSNHmvsGI4nBIxVANCBcKR5pKQwk54/BPBBNiBXEAMEl7ZpjEbTS9ZBICsaMe5e0CuQRouplyJ5rwP3Ad/FM2H3kPqVnBJE2RIZENCBw3K/oHvgd+g6OmXPjlYF1Og/0Tojmsh9Va3+p+/e38tQjD5iIHoTUAqJN5QqRQ+5RogUQffo9kAbRaEFmQ8lAhiNUtzPy/ZSXIbLz6iHFu6XcixQCoW08K0RsNsRLeJtIAYYK4wjqHHq0FOnYV3Z55Iya23X3Tjluw1dy101X5000RLmNyBHSkoya68Cn/WXZrKn79EugTNLp2SMo4/ecOxZTwt5EAvg7jBR5ZWfqAHGfWxklL4YNkVbgb7kGV155pVGqo/uAfISq9YewvfnJV9J/WiApNegQD47Tzk7AYEACmI0Qjuhg/GmVzLFRbYHXjkHlHGFgEVqyjVgBWSTUDVFDcEiXSu7PcDMgYgWRC0gd6TAMvHPcsgVpNt5DJ/HLL78YsSTRHdJH9JGA7HAOOHaIAZEEK6JMdlpxxw+vy6GlNhlS4wTOAISHGRFUGaHb4MUxEMmxpFaReVAyUECBh0y5GeFkFhcvgXFhoSZ0SEiaSAA5ewbKcDvRIpfIASRh7WEXSU7VxpJT2LumNIQzj69fKc8bxRBiYMlDY0BZ/DEory/dz/Oaa6ICRdYukMPXf2cMPV4dHiZeHgYLfQVGOto6cgw74WQMOoJMDCdNmZxllBhUJwit890cKwSAFs4cL2SI37mNE05Gd7pzau0yUQCiAewX54FrAUGKBJoIEUUiggDhIa1hxYG2mRT3NFGCWEAkBeNEeosQN+kw2kF36JB4yspeP4Sh7DNkAEMfqQETzwhpNj5LGSXpHYw/6RyiS+hyMLYQQwgB0QwiCdE2dvJKILp+4mvy1r2XmefbCSICkBjEkv369TORDqIeXHf6QBAlIFrA3/nRjErhD5QMFFBwWfFMMTDkjv0AiyuRABbCP//8M69uHtUxC+SlN/WUDk9+J357o4SVMYQspkQlOHamwd1yT7+k5Mj5PsrH0FawuLMAYtgQ76EqjwYspJTTkfagRTBaAc4veXbK0qwgECIQ3NkRj9cJvElnZIHeBqNzj5SlG/YdXewVivy7XuY/2dVoJuiSSJ4/GkLEucOo8Dd4l3jwlOQFd2FEhEfYmoZYsQCNweDBg02UgvsDMgBR9YoUQ3i4dnwH6ZtY9QdE2Ii2kUYgvcQzxLmA/BBFoBcHzxYiUFIIkAaiYaG+x2uBaOFpb8usT/btjcB1sxUynAPSUaSFWA84HiIvRHWIFBAx8LrbosJ7KBkowMCIkC9mkUlk+E803hHiOLxi8tQYIYR9v+TUlzcmL/G9VzopEdID3Mq8WChtD/kv5m+RX4rsbcGbDPU8IXJCxizupGjoOIcRJ6ViBX6hQIkhpWfkjAn/EzLHU+b4UKe7hZ4BkR+8aKILbo2aVq/bKEUvflp8RSAgDzbbJhed3zlqbxBhGh4mBAqDQVTB7RipkCD8TlqFeytakJqBDOGhoikhGsB3eSEY5D6n58bPP/9sDDah80RAegASzX1MpAlSxfPEeeE+IloAUeL+onKEaAFheuf58KPhUO6uHXJZxcXy0D09XN9nvzD4OB2sAXbaKCktogW8j7CXc0+0gMqlZI5FV0QPJQMFGHgUeFIsMoQb/QKLLuVSeOhUJKD0phNene6vSqB07MNcokXtiqWk0ey3jPF1A1oJ8sL7t7xQ/ql2rOk7v1diGR+i6U5ngVdPDphoAbluPDs66mH8WOhDAY8K4464kPA6KQAEb+EAUUAcR8rCTR8yc8VGOePp78VvjOl+gjSpHt3oae4PjBnNefAkwxlT8ulMPESTgsAyWkBI8dbxSiFipBnizcE7QSSGigFSEFxjCJ+XQE/AfYPxZ3mmQofBTEQLeMYgH5wTQvIYYYgBZLP7qNmep8XoxbBj6XSZOviKkKJNUhqsL5BYRMROzQBrAxEOiAGpEcppiSQQOQo1AVKRGigZKOAgpMhDh0cUCZFGr0bqKsgCRbgefDHhW7lu3KZ9+tx7Cba84qmLZOe2/2+1a4F3ikdiw5vxCqpyJCDFihQO2achWlLGhEB0FizgeP9EC4IFdeSy8Qbx/mzHQkSg4erpAaWVhJfxxtzq9X9dsl46Pfej+I1q09+Q2mUCZsEnnWF/2v+3/Q4gL6SWSIlg2CIJzvgMUR4EeNFGuMhro+FgeeM8IhoM1wsjWmDQmPOAB8z14jv8AuSOFB/3DpEeol2QAogTkQSeN84NBKHkAfWk0mVDfduXo1eNlfdHPBP2Hocg2eoiK+x1gigXpIB9RojIWgFBJsISKWqm8B9KBgo4EJYRbkaERo1zyDLFONoCE4Im/EfIlIXRmetNljf68nn1pf3RBxvDgkeFscXAclsHh5Vj6k4nAQlIjpTdskw+6XOx1KmcuEeJF8xCiNcHeSLcCykgBE5Kh9wzQjFSDBhPcsR4WhgDQqyhgJFEY4BwE0PB+GNe5Nj5OX/dDilzXuIlppFQeerLUnjzyrySSWe3RAvbihkdA8bNSRac/w8ZslEOzgfnybZwjgaWQABSBBCwREGEjWgG9znbjCVKkQioNsHAIjjE8HN+uB8QLOKtIzi9/c2fZMr6EqZPgNfgWdg49RMz8jxcFIRrjgAWYkA0IFh4aMEzSkqBiBApEXqboJchWhCN2FThD5QMFHCQb8TzQqSFgCoew+jWYtd2FST/R07XWY+cTG+052EB6X7xWaaqAUPCvuBNExImFO3W1MYSoHHTl8qKzfkNDP9Xs0JJmf/daNkw9RPZtnKB8bqJrHi1+PPI4c2TH8a7s70CELuherf7gxFAjQ8ZoIQTTYB9j4iM0+ATUoYU4BEDlOi07KWNb8NDDpWX1h3k+xTHfxf9Jus+e1qK7dpsIhTNmjUzRp8eAaQ/EPFRZkkahONAy4IB4ScEwgk0EEQSMHwI0wjNU57oRhwQrTqvIeeX74UMQoRpVpQI2B56BlIOkC0iPH5qcNyAwaeZF2WWkEn2AS+c9AmCw94/7TJk3i8U2rZWKvzwlHmuwpUq24mkNATj/ibSFQ7cv0QLEP6iIeFZg+hwXKEGOsUTwVREhpKBLAAPGA+WbUyTaA3yZYeUkMe6nWty3wxoYbEPRrIiA2cVmSFvPz/ERD5iFYZhOMuWryQ9+w2Sc8/vkrewfPDuSONVclyovTFMtumNW/gzHtCWF/0AnfloOMP3kBMndYAXjCeLF004FYPGwkqYG0+QqIKd2ggZI8IAcYAQQQpo7kOe3Nm33++OjLbkk+Y2J5RcKTv/nGAiNYxJtksMRhvPkQ6CnEeO2zb9gchYYmB/2v/nHGEEud/4nXO8tT0HEAdLEDhn6FaIClH+yjmzBILoWCz3CecVEoJXDlGjGiHaeRxegfOH1oHj5J7hxbmEEHBfzFu8TGr1eNfXlBxY8th58uKzTxsPPtI5ozQU8TIaIq5BpHMG4aOKhmgBQlqID88gaQTu70QimIrooGQgC8ADBkPHu3hv1iZPapD3X/ytTHyud556ONjQDR32nHxasq2vU9q4dTcNv0ZqVK1kogDxzIhv3ry58aDpUWCBsSLsjtElsgLwhljQKKFCABUvyPWSuiFvjuCK7ZE7Ja9tPT7OH+SNl/WY7XlkkUS9jagQr5+ctY3OEKmx6Ydg+NlnIFTb6KNLrjXiN0gOAjfOIboGIhmE/DmfNIuCGPCiDJOIQnALZowwERTOC0AL4iQLzp9cL0gv0RbOi42UWODRB0cW3KINNqJEqoaWwlwbwvKpAqQJwsQ55Ni41ugHSNO9+vFX8tC0/29c5ReOXD1Ovhs90lyHUG2ygwWcECnb9ploVTT466+/jCiYZ3Lj7iJS78L7ZEf5unntklM5ZrsgQ8lAFgAhEp7t5f1flC83/v/sAS/L7LiNmHaIN0CeG8/lgGufly0S3QIQDyoWy5U/BnTOG+FL5YQdBoRBpyFKJOBl0SMAcROgVIy/JQqAV2I9cCfizUEjPqNUjMWOfCpGG88Z40gY3D6KeLJEBSBv/A4dAR4Wxg2xFcaKc+ys3cZAskDjKboZLb87Mrph3edPS5MSG01FBGF7C8LbhIeJHPCCINBYCGMHELxCDCxJoHadLnd8Lhw4VzS8gRgR1ifFQpTALdoQ/DsiSxAUJyArbBPCwr0Vijjw8iptwL3LPvPMormwP4kWBadSAAZ2wh8LpcvwvR0//cRL5zeSzq2PzCsDjQaQONIGXE9mNMSSanvjxwXS99NZJoIpOYVSNmY7W6BkIEtw6rmXyF/1zxcpXNTTBjwfX3+0fD36PRNGxciRJ6YuHo9w0JcLfO16V3LpFJn5el/X9zGUiJTCNWixUROG5iDuY2FFV0GYko6ChJ6dIjgIBwsbZXzOYUxuwLAQ2sboTZs2zegY2KYVNwIiAzavz4v/x+jYWntyqHhHaAb4W7xmSjhRmGM4EZU5yw4hMRhSUgVu6Dp8svw4f40vIrN9EZDCEpAve7SSelUilxtyviBGGHwnSbAGELU5XrAzikDawHltIaLce5xXxK2xhPPxtrnWEAMI4d13322iOJAvrpeTQEAcgpdNiJiTLPAiUoVHD1GwvRcw9kSBgo29/ck1d1uSnfeN898IZ58b+Ymc+cwP4je61dskq2ZPM0QA8sb9Gg3QGdBfgCgiJDZYX5SuY7azDUoGsgQnP/yxzN0onrYFRmW8c+l0+XvkfabOGE/sxBNPzFug/fZG2+34UUY8McD1PRYePCyMK7lHjDhRg2AgbCNVwIJFTwI+g1APT5z8MiTBhpshDkQLgo0Ihscq+K2oD0U1HjCwRgklNmFncuUspLG0LMbbJVRNyJr9grhgVBA2koe34XS8cELlwQQIQvLIUy/KlMqniBQp5mv6JpohRtEeNzoIujmSakBpDkmwI54hZJYYcD64bhhbhhvFm8pBn8C9DNHAcHE/oFFwGm2+n1I/zjPRG8gBv+d6IKBzCjndwLmH3LDPED/uVY4FAkFUiO+GzBJNQWnPe1xj+lVYQAKpsqCyAUHdoX3H+SoQxUwsffx8Ceza28WSfcfAt2rVypBU7ulwPRycvRmIrEFiQiHVY7YjoaAKGJUMZAH8NsqvXdhQWjVrFNob9bgRijUyB/z1vlEhswiz+DpvZXrYs2DizVH2iEAJFTvEgMXeet/8nkXssSeHGYHdi8P/J+PGfirN6lWX3nfdYQwvJAd1Mws9AjKMvVXx85PfAzxAjBOGngWdtAlaBvoEoKSPpXteKGAcMQLkVG3UAj0IkRmOkwWaKAIRAgwjoVlaGiOow8C0ueZe+XrLvoJPP+EcYhQPCP2XLl3aCMy4xhhgZ/QATx4BpjW0kC6uvU01kI7BM4ecOY16sFdOGofrhXEmrcZ9xe8tqXMCgkcqjBfGmpf9f+dPK1jk/uRes2WXbmkLyGvwd0AGiDbYz3CPEa0gzcQ+2khE5/9N97WaoGrpQtIx5xdT2giBhiQHg33hvPPs2WoSZ/SGc8m1IQLEPA6qZ4LhRxfFaMZsR0I2CBiVDGQBkjGkhrbATuA94bWedOZ50umlad493IGAFC2cI1/dfpJcdu4ZJgdph6Jg/FhAWZBYjPGmub3p0oYhZBgORhHDQrj95M6Xylw5QN78+jfZU7L8Pmrs/Qvvkv22LZMdM8bLzJ++Mnl56xURcbDhfY6VGn8WPRZKGtwQZkYASOiaSXlee+J4n/QluOeee4xnigFDrMUCCzHA+PDdlNfhhfEeOgf26+Wflsn+rbpKMhDq/ogFRJuI2kD8AMdGOB0jjoFEI8FPro+dRIjxtNeLc8/LOWHSCc4d9w3bJMXA91mP3M3A8xMj73VVAWQhVEUFYXmiEUSpuN6WgFpU7HCDlD78NMkpVDgp15CUDftEBIZeAfy/JQicF3uuIdoQAyIYkAP6P9gIB82b0BQ4z6OfzoONUHFO0aBAMiNhaYIl2JkEJQNZAL/LymgLPLHn3tGyLFQMbUHIxuIGIdhd+xhPw35rxz4pjYqsNcp5PAwGzxA+x2Mi92wFfoQk8SYxmugACM1SZlmy8oHyW9GDJVD1IDOFMOwCmrtHpFBhqVFokyz/+DE5cP8SpkeArbXG00PRz3exqOG5sVAjsoIgYDz8BoaePK5dhDF8/D8pCXLoVldAPTfECZJQ+diz4yovTfT+iCSWc8ulc205r0Rz+LebkM4CTxRDbr1yvgPiZPUARBU4R1w/SjWJHqCOJ7rA0B1Ep8lIoSQKiI6TOMxYulZG/O3eLtiP6A7nDCLMtFIaZtkmX5xHG2GZPn260V3YtIhbhAUyjwaGiMH6PcV9jWDaY0DPRFOkSOmktxMswc40AaOSgQKOLTt2S1Of84ksnRO6HSnPPPm4IQF4bizCAOEcjVq8FAQdnLvENOFh4aGhErli262P8DkExNmwhJwv/dPxLL9bvkcKt7jIEIBY9BM84PRpXzXmaflmxIC8bovUU1NC5fQ6UX5zHpIBHl+IDhoHIhJOcRnhWtu+lsl/lKNBBtg3PoPXc9eoP+SnBWv93kk5fsUo2bBmVVRiOSIvTk+caAv5c3LOTu+cY4JwUabJT4gP90I4QAwwUqQXqCKhq6D1aDkniNuclQz8fySxaLrAD6/akOXVc6TGnA/3qaYg8oaIldQBz0Nw6SDrAKk0nlNejFNHXxMKNc+5XQo1PimmyoFYjqPWjkVy/+kHmSiiLW1l/93afQ/LQgGjkoECjmQ1//n7lVtlx9/z9/m9LckCmyo3lbV12kggp3BsD3wgV3ICe6Ty4glSbs1M8ytyxEQGMAwYFhYiiAHeIAs+3jneEy9bslbuuAukfOvL8iYbxgweFfK/0z6QwwqvMEaEEGkwWGRITbjVVYf73lDvuf0essU5QJiFd43XzHkmlMxCR7ic9AXHT2iZz6N4J2XgDMtuK15BZtftLH7jgN/+JwcU3+0acg/+HeeNa0q5JykdSADDePDcbfMdjAvhfNrYWkLIsdv5B5HAZzEKy5cvN1UnRBOclQyEkW2age1bYmBJAvn6dIsgeJ1v5zkpFNgjbbZ9L3s2rd6noiI47cKzF653A11QIV9uIFLT6I63ZFuh0p7su+vxbFotS569Ku/fXD+cBsh08+bNM0bA6BeUDBRwJKst8NqRvWTL4hn7/B7j4xxEs71waZlX4RjZWLKaMfJhScF/7+/37wqpu2aylNi9d3FmEUL9z4KEUI4QPd6ms06csDK5YBYo0xipfkv5p257z4636qLxMv3jF/KIRnDpl20IlO9wwjxqod4L/j2hVgwZIVn+HyOG1wwZIAQOQUD45jYPwOx31armehCeZZ+3lawiCxueJ37jwxuPlyNqRd8UisZKGI9gUKpHCLpt27ZGkEnKhioDGttQghkNqKxAnc89QjTJrUkT9xhCTCtStCTBijYhHcEEAQKWaoLgtSHbNP452frHl0b3QpSJ8lUAueS5I9ROlI5UHUTOTe/A58IBIlCmfCXZ7+qXfT1/bHnpExfInh3/nzLl+3h2pk2bZqJC6SpgTAaUDBRwJCsy8MF1zeX7T942feAxzPa2smmCkOrcOatl8dr8egajzq1YSk5qVFna1iwqm5fPDVm2hzdphXwYRkgC4Uu8YMLG9G3fnFvMc4+psORK4c8HSOHtG8zAHYRnlIXZn4RNw/VwjxUcO7oA5sPj2VMVwfFZQ0bFA8LBYFKCwcO7pmSOsDrliYTJMaD0Vzj2tPOky/9+k3Qabwxo+hTc2IljQwgKucNz59+0XuZ4MNzOxkahQFi4S5cu5n7hO2zUKuryuqVL81Uy8BMSBtgvSw7sT3QJXt4H0cCrEDcjuy9qVsGQMu4bKlnwoCEFnEO8atvrAB0H58P2UwhOFxClgsBRSRAM7ufr7uovn8m+Eze9xooR3WXX6oWuJHPLli1y2YiffRcwpiuUDBRwJKMGGeM9o+8pptYWT5l6fMK2eASohRH2hcNLr7wm3e7uK48PfUqWL10sK+b8Ln9N/z1f2R7hYWv0WWDxRFDO45UEexN4zogY0Q8gXGp6ywvyd2A/b3Ope3ZLrRLb5dM7TnVtyewF8E6Z/UBpIPlWSAYLMXn/4Dw2HhjGh59Wr2Fx2223mW2Y/Q4ETEUFizviyuJlykml61/1ta8933lX3b+l2/XX5P0bAxFubC3HTtSHa+lcolCgY9CDQ9SkDEgj0K0xFIgcQA4pv6Qxk52LkCg458HNkkjfAFIeqOidBIHS01BDeLxCvOI3ZkvQ9vfc2rvliP22GwEgxBsxMASMkDriQc4dRIw0IGkqwv8QYMgan7d/5/x/mnCxHTdcdWd/+aqwN3M/wmHlq7fLzpV7iRLrBteGKFmlSpWk/9AXkyJgTFcoGfAJ6dSYIpnVBBaQAnrEU77jbNUaPG2PFyE6G263ZXvOzny8aP5ijb5tFIQADK88FAhT9n3iBfm80P936fMaa169Vc5q3dx46hgiN88oVkCAEDsiTMSTohqAigEiLOTLQwEPmfPhHORDWReLOBP3ENk59QKkFCBuI1bXkpxy0eXa40Gp3K0ye8hFhhhSzQE5xFNkf8MB440YE7DfhHE5H5RHDho0aJ/P8xnur+BmThAH/oaZEERTHnvsMV+8dUtyMHyksCAFvDhO7ndSO+wL9wipGtIKpDqIJpFX5/4OZUjj+d2u4uWkWMvLpVitZhGrZuz7/y78RdZ9/ozs3pi/DTfEjRckhvPM9tHMcMz2fPNvSBnEnc/Zz9ufkDgIgfN6cT6oJOj75Mty7ai9BCrZkQEI5qhRo+ShsbOTXoKdTlAy4CHStTFFKvoMEDZ0Gnz7/85pe/R8x+jbhRNRGAtkpIWaBj6ExVl8IvWE9/PYjRBx13bJXfCT/P3de1KhyE7T6RBigMfhBkgP+Xu3bm2EoPHYMdB4WzQ6wqtnsYw2l0rjIQR3FmY41Xvvme3QWwGSESxsvP+j6fLm5MWSa+5S7++PS46pKX++0d+MtcXwWa8ZDzNYVxFMijCSVsiHQUEbQG8FCKLTqHDPUGaKMaIpE4SDiA33Icafe4vQNsJOLw2u83e8Ej5fhQsb42nTO1wrO7Qq2LhG+7tNOaVl+r/7yfx/S8i6nZDB/Nc5d+MqqVFog/S79GSzLgVvg5fb/cfzx/1EdQqtyLkOLVu2NPcg+x4MrgsNsjhGolfoNmjixbVMRgQTAfASRxdFJz799FN5dFappDtN6QQlAx4g3RtT+N2B8MkOlWTDkr/yGX8MG2CBYMF39t/nJ16e9XLxesnz8/fRisvwdgnJRkIyRvdarypn1WzZ+OVzsn7ZPNOeFVJAK1074hlhHxENQvzUYlugcyCMj6qdRZSWx6QDnIOIogWkiugAholQrk2z0HuBfXEbGOP3/dGxyO+yZfk8M7nOGd4nZE5fgHAGF/JoIx3Beoh4gCFK1LjG+vlwv+OY0DsQPaBxj61ksJEyyHFwqaOdqOhVxPLOHrcYAw5Ji0fAxzWhvJAyW44DQR6pLDQppHosqO2nxv+4444zaTyIQzKf1V3rVsiKF6/LW5dopUxUgKmhdRsdnJQSbJtOTUcoGUgQmdCYAtbbY/QCya1U39shNbl75N/Ff8jqd+43/8R4OQ0+L7z/SN475WEsiOSyowHbRbSEp5HqHgv5kLtHcvfslq3fviL7rZlhetfjAdGtjYgBymv6HfDIoYjnfYYe0R+AcDENUBDNQZKi9U6d76F0Z7CR9SYJRx99bEvZFChuFv8Na9fIrJ8nSs6enXnKd/u3OW26S6HqB3vawQ6SlLviT9n15RMmLRCc54eQoE4PZ3CJChAJ4lgI9RNZIO9MZMjeC0QEEAJy3vD+7ZAitgG5wggRXeHfyRbzxQPuGbplBlcy2HbFkMvgSgbSDvEq8W06j1JOdADxgogXzz7XDALH/hKlsqOWOS7Ev3yH2776HcHcOPUTWfvF83mkElKFhuSaa66Rf3YXT4rQOlYhbTKhZCABpHtjCsJ4sHWEdB06XSSLmnT1tC1wIcmVbnXXyYlHHGJU7eEGlYSD7RwIaYkEFhrCv4TS6fKXDpUUbr0INv/wlqz77i1jlFh8gkV9icLWSFvDiSGkioPvaXjUiRJocILsqtRIdpfYP784MBAwNeM7FkyTYyvvliYHVjDb2F6kjLy3tbHsMf5LjqclVa8994Tcd999eeFhC0gLBiOUDgIv9u6HhsjLI16RYU8OlYvOOtl4VZABvE+8OqpVrE4DotWmTf4wLCVxjEBOdclforAd/oIrGWzajby9M3rAT6Jv0bRMhgxCzBDl0lEwEdBqmBkgdBVkn6lwIeLBvkAKmAoaSnDrd4QKfc/Wlfv2QuHemDxvlZz/0s+SbiW2yYSSgTiR7o0p8LIJU5OPpyQNw/nO1KVpuc/kcfFs6FseCaiZ+TwLDKF4C8hEcEvb35dtlOFL/W8HHAq1V30vm379PF8ppBN4xYgCiajEGmbGsFoDh8eNR/z591Ok7d0vye+rdkZMV9keDo3K5crw69uZdJVf9zRLDGkRCByG2akoJz3krABw6m4WryPFkeOqu7n4mJrS6IBy+b4PPQEixeAIBCHpnj17SkEEItBggkAFBoAwBVcyIM51I1/ch/wd2opEwbZoxoXYk33g/9EVINIjSsi6RAqBZx4yiK6Dn7wGTt4qi/4t5m0Xwtw9UnzDYln+5j35Zjrw/LA/7MuVt9+vkQElA7Ej2Y0pCAUTwnPOrg8FjA69wlkACY2Sp8UDsyK+TxbskgVlmsTfhc9Rg9ytTWjxVyxgwSJ/hxfBfrE4WKMe3LeeEjsMCzXLdlhNqH71RavUlepXPS2pAte0e/0N0v3Ki13ft54yOX4WSAx6PLMMKKkb+skUqXr6zRLIKRRTmJUSySKFC8nDnZuZdJWXNer1ts81wkVmC1ihINeJWREo+0kN0VkQEpio7gahJBUndjlzNlrq2rVr3pCjbADPg9XUWJJA2oFzY0ptmzbNF0WAVGOoOU90ZKSENRwgW0TorAEPfhHBQLTpLD3kRaUH14l7IJTZKbJfVal2zbOS4+GYbZ7D0d1ayqVdL5c/Zs6SwhKQXetXyE3XXW3Kk4mqbE1yCXY6QslAHEjGZC0LSnHweHi48TDJwYfzmsk78zAiVGNBpGUvRtNZtleh+Zkyf/+jZG+gX2LWOfTv2CSqiAAeoNOoBxt2+29q6UkxENLk324hdbxhhHcwe25ZvElnO9vg9ra8ipUqK0c8/HXyNAMu56vU5mUy4+nrw36OxYjFkuuFwhpiQL/0cHX4FjQh6vbsJ6bNcrywxPD2kxvKLe0amQhBn49nyI5du2PSEKARYKG99sj9pdcFrYxAjPJP9AnoIoJ7I9AEiRzzZ3M2Jqy7+WzY/XkGH2NGjppwNWkDdAbZDlKGVqCIYJWfkDHbo5/8OYYaDQZGHI/ZjlwONvbhjDnbIg3A+3wWB4ZtO7uBEi3gu9HN8NNOiKQigdTPGbcMkAHjF3l27BVKF5P1W3fusw7UDqruap2CEux0gpKBGOF3XsvZmAIPCnEL3j4GkjIc8nrBZXt2GIgtwcKoQBqCFfzOsj2nJxZtDfKR1UvKZQcXlcL/7p3zHsnQW0V08GKB8XMabcgAUQwW8FCGHSKDwUKdzIJhm+ikQzVBJHx5WyupuV9RsyBzjfjJi4WRiA/XGTU3HhcLJe9x/Kj/IQYsqG5eEuFXFs79O9zk2b4+eGZj6dqygZx63qXyV9nDRQ44OGpPvWbRLbLswyGyaMZUoyGBvJr3Cxc20Q8U58HNdryKRFzUpLTIzHFGxW7HGBc0YLiDjbObsQ73skOZogHPHM8q4kyqPujwCNHivg31QrDJvcqzzz0AsaCkNBQopb3rrruM4JD0BUJbxKE/bCjjyX3BYxPOwjmjTCVzdsr4eZvEjyGe2megACIZNft3tqtjVK7BvdkxFDyczrI9VOg2rE5nNSa4Yfzd8oJcahYDp9H+df5KGfzRJCl/SEvZVdxNbLZKts79WTb/OlZ2r12Wb3t485G88+B/29nxzgWOfY00ThSwvwid3nzzTWMoU329vFwEODY7bhkhHAaU84J3RsdFhFeE1FmUAWVgx7Y7Q0qf/4gECoduRBRzhCB3tzzQvLBcdUFHc56btzsrr230krUuvTMqlpI2jarIpcfWMiQW0gq5u+GGG0y1RN5nc3LMZEkiGZbYpLvuxktwn8ditN1eznx3MLhXwhnpaF5U59DDAY8dL91qEPhpSQSpmOBKBiIvbmSVroT0tiBN5Ox9ATD+ODakBkn5kVaAEFM5wvqGc9Di4ttlzN+lkjJmOyeQayqBSE/4Be1AWMDgt6dZY79i8sfDnfO8fCcIG1OTb+v06TeP8Sf8hlIXBh8qFG9/0iEtGDzIZmrYIU2lXPX6Uq58Bdm/bBmpsX8xOaBiebPQwN4pASQHbI18NGHsSCCPSJgwmrbFGBnC55Ga1SQzkpNIeJD8rA2bBv+ecjha5tKdkUgPjymRAzr4IdCiO+H2466VwtUO8rRclCjQzqXTZf9f3zDRJydxi7arJmkpyt/cRJNEOtCx/L/uZo/n1Qte9+5AsxPJUEfy0J1dIffZ7+LFozLWNszu9iKsn2iOnZQkzxWklIZXFtx3kM9goaIdQARBD65kIIrA/pDOo9ST6KVdL0gZoU9AsEgnSdYue59BmpgZgeCQ9a1aw6ZS9czbZH3xqhEjmJGiAJERMPdi4tvJD51NUACRrLr11c9cKv9uzj95zgIFLg+h2+LCw8eAnnCeudvvCN9iiGkY4uzs5gSeHo1r0CNE6hsQC8gZWmKDoQsHhiCRHoDYRLPwMVjlzjvvlO+KNJPSdY/wpcNerMIhyBhhU1rtct4hWW6tdS0gPkQL8Kj5f4gZ2yhasaZUv/Y53/Z5w1t3yJi3hu/TGCYaUMpK4yS3JkH8jv2/4pWpSdHdQEgS9chD9dN3TsdM5OX3nIJYwPNPWop+FeHAdYW0BhMEGw0iaggxIHLJvYsTw7wS7nV+8h4aD7eJkRYQCNuRs3D5GlLmiNOkZL2jpUj5/OOjc/7TBazdmngHSD+gUwsLIJJVt77yf7fIzlXufboJu+Ehw6TJrTGT3Rp1iEA8TVXwfBD50Cr04Ycfdv0Mhohw9QsvvGAWeq+Al3DMMccYgWSoFr4WaAVYmClHCwdCmugraOiD13L3g4Nl2IL9ZfuuPSmrNx9+fgOZ+NGbJhRLAx6ukxngc9ddZl8jgc8iAKNElEW3/MnXSdkjz/C0SVAecvdI2VW/ydy3Bxilv9vUyXDAi8QA4MmS1rIv7k/usw25JXyN1hT94hHZtGyuMeRu0QkLOjRGa7BDeeVeRMfSCQz+wvgy1yOeORvc28FDmyD8wJJDyAZdRBE5Qz7CORdffvml0RI5kVO0hJSsUkteGvGKNDv0ECMi7fjMD55Wd3mJdE5fOaFkIAb8umS9dHruR9+/55WLm8i0L0aZfBqhNDvQwz5MGMWXXnrJzFT3CgivePDCtSQldEh1Aq9omplEA/uwE3HAiwgFjhvxEotIKMLCOcJ4kfckVI2h5YWo6Y5nR8mopd5FNBKZlmbBeeacUlJoJ6fxMpUQLkaG0ClaEvKqI/6pLau3+bf41apQUg789eW8MkCaV0VLpLhWCMhCedqjlxeX6dvLS8CHSA253/qBFXJS2X8iGvdwQ5+yFVQaIPakMok5D4mCZ7Jfv34mnYnRp7oDTQBriB3aRIWTM82AU2AbmJEWxPmxgETzd9xjkEuecz+qu3I8ShV4WYLtN9Kz4DFNQZ40GahcsbyZMkdojbp6HiSU4zwAkAC8Q689XAR5bJsafnqHuwHDynuEuYNnzccLW/YYPGkuGIQk8VbwJtxACRsT6Yg0YFwJRzrJxc8jh0r5Wi1lfa3EF7h4UGH/cvL3yvy/43oisiJHGwyMFVoKSxDwcEkrELbfU6ior0QALF33rzx+1z3GYNKwB9LWqVMnE3WJJrS+J6fI3nBu4aIS2LNLdq9fmTcg5sAbXpbC+/sToaHPAp0X7+sZvpxT4Q6eL6I3zK9IlAxg9BEFc99S5slPemKwhpDmJC3pjCKgkSFKydrWqFEjQwxoXGTB74nmoDfg2SDFgCaIiiivEfiPCBQtnGOqC+IpeY22BDtdoJGBGJDsxhQYAB4ePDNG0UIOeBD8ACpwjCcLPhGJUGCB4JaJdo5AJJB2oAMYeeRw0QYEhnjR5CSddeP8m571LCR4FnRbDF7ESEGwsDAIaFet5nHVtCd6TX+//2R589URZl9ZCG0vBVowY+DRgRBi5Wfwi2gNCm88K4zz1mLlk9JMyW3cKx4bHpmbty37VZOlxWvLsj37yYY9+Bn587o19i8hJzasLCOn7K2GydbmLukOooRoeGhUFO/gItJERLG4X6iKIiJAx01AGbTbs84aQMTAqUGgF0WwieJvqUQgQuh3ddc5h1eX1Zt2pO0QOi+hZCDNqgkO3K+YXHPAcmPAENgw6Y6QMcSA8hzKdPwCHiDfSfORUPlClL5EBYhUUP6TKPDgH330USMKjJTLRIVOhABgUCFJAwcONAsOeXfK79w0E2gcCDUiKOS4nD0WWJJyk1hNgMGHENiyUcKyaCZCgc/zPsfIOefn1IVr5LwXJ/u81yJ9jy8tR9XZWw7KfuLlEdIlMkTlikUs3QML5YgvddyZ1PY13QFBpUw5UpMzN0BeERsT7aIUFscC8ggw7BBfBKaR5ooA9EGk+ILbSzuFqG0f/zYpjYLm2jbZUZbYZiKUOscIOlb5yURX/TpBrnw3v6DMiqASmSgWbaqAel/CeaeccorrZ+iQxwJBu2O8dS/SBJFSBNabIIQJd6XsjpQFQ1oodWS4CmF1N1BOSb08n7EEB8aO4pwH/Jyej8n2as1kT2F/hGBcUxYJC8Kb9FSAoNCn3zlfwW0xpMoD4kPvAYgAx791897pdX6j+VFH5BlUqlho+IRglZwyNeHcB86pnSDSc5Gsdg+UPyriAyF9wvGkCmIhA5AImqRRHvjee++ZzqlO4DwQ2UTTgxDakoRw1QROIkAVFBoC1iZ6E/y7OyBLfG4otmTtNhMRpkMhvUL6SpOoS2wzDclJghcg0LrSr/Ay2y21YlrI94866ijxE4TSqRgg5B4KhOiIILBQEEZMFEQ+Ii0KLAhTp041AkJSADSv4VwQUiSyEIoIADxwQvJuFRBVSuTK7JEPyVW19uoW/LqmeAvBIG9Kr4BQSmqMPmJJjpuwLZ9l7jqi0TZHHxqyHaxnCARk5qRvTGTCgjQMmhIMBQv7gI+nmaZBqLhT1dQp1fqeggg6DyLqJQoYDdCR8HwRTeC5RAsQTAQsiOQhLmUmQCTwvEMaBgwYYPptcC+SfoBQkCr8Y8EK38u8AyLG8DuB4YckM32QnwWBCAB9YmIEDJGcEB6flygkAdm55HfZtGyOCbE5WwfbsBjjWOkuiI6AnJrXBoHvIDqAqM2tlbAF4T/CxEQRkhEZQByIKA0VPT8RVRKVwFMNB0gA9fycN7fKC/KifObiM9r4ck1pklJNNkQMG3Id0T6QAiLdAdnh/KLkR1BFXTahecL1NGh5/+03pWopfx/d3E2rpcu555jzhneIxwexYn/Qi7S/oa+8OOlvSUdwFfHWFPGDiiWeOzsiORTQsqD+516lJJHoAA2nwhl41i8qY2hqFQ58Fp0PkQSIqNUZEO1jJPYZHb0RMUfCziyJMikZiAOIQ1CLeoZAQHbv2iltSv9tetUjlCM/bAkBL3oA4I0TKqcRBw8HxhAvnYfWLa8WDzBEdD/koQ4FmqTQ44AcfqTFIpHIAOkRPH/CloDUBCTI/jsS0AkgvsOAugGFPB3XOM+eX1NSBDkis9/om2+iIiF/Kh7Im3IOabREKSFthknBcLzoRfCC+DfXFs+LPg+IIzn3TKWc993HkuOTXwSJ2TJ3sgnLolMhLcA+k+dF5X3w0SfIz3uo1EivaIAF+duC4q2lCtx7IJRGiWcT7QvjxDHa9MCwjaYigaofOhTyMxaHhrXigQceMM8rzcfO6xS+Y6lXKJYlUSYVEMYJr/uqX1QvVx659qx8v8PQYizoE07OmAcPIJzh33jweMh8DjZOJQBhNcYBx9MwxALBGmG4cJoAPHoMGDl7PNdEvotKCbwKC25JiA/llfRZQCtBRADDHgvILyJoQm/gtkjR+ZB2qUQP/Lim1x1eWvpccrIhL6QyIHoYdY4PL4fvx6tCN2Bf9pqjFUDrAJHAOyI8OnHiRJNW4L2TO18q/af59+jWnfWG/PDZqLz21ewr7agREA6avFVWBsp5O3M+iwbCZApOOOEEU9ZK51EnMPyE6lmX6AqKQxJrszM0JxDN4NbHbuDZhwhDACAhVB+hGSqzf8WsHzvsJdLvac4QMPu9Z4dGCW3D8rDqa6bKw1efsc/7hIoJw9Ea1FkuR3kZRoywOep6PnPhhRcabx7DQ50w+WZYfbgObKHA5LCxY8fm9QBwA6F9ctkYUrc5CvGmCcg3khuH2OCF8m9y1LYsKVpgdIkMEBVwIwI0OaIzGufR/ZrGucT8d03/nfSO3HthG5OGIAKxevVqQ06ICOBl4+2zmCKGRNxIvhWCQKUGpABSR78E7gE8LsgdYXrIApqOq8473ZfUBttjuxM+HmmuK98FYaNvPft5abc7ZaUw0Co9l45QGg1F7OBepNunbX3OvUzO3/b6QM9CdCCerqc8C0QfaGYVKiUJEcbRqFOnjkmfUc1CRRDpSZ4LDHQtn8v3amVRlCk9n+gMwc1tGsrAzk1N7+lYF2VCsUULiZxfa4dMHtFfunXr5hoyg5lTMheqBp8HEQZP610MHA/o9ddfb8p4eNhQr6MDwLuM1miTY0cRTOQhHIgK8MCijk80TYAHD+MnSgDBgcjgPeCRkhoI1WwoFCAphN8xqG7AQHNOqX92ommhFbJ27FNSRAJxXNPdIrm7pf7aSXL7qU0MoaKTG9eVa4B3A0mjHSsExwnIAUSOa4QwEwEWP1kMad7C/nIf2M5swI/UBttju4CSVtJGlBVynfHMju5ym+cExGsik6mlXemoG8BQU10EGSQySYkvBhxCG64SJhpwP61cudKk/4KfBUSDpAO4/4lCEBXk8zg6FgiIi/4zx5SrJqMSqKBD0wQeIJY6azt56+gapeWJi48xZW54fBgJQl8wby+6C3JZqRMmDIdRJw9NiPnUU081YTmIQjjhHh4zOgQWgnBATIigDC871tQE+0iUgygAokD+TU4QYmTb8RKShCAQ/YD0RAMMKqNW0VmE6vsP4cHIkpO3wAMibI/X8fzr70mvD36XGWv2mBa3dLYLJ/5kCFLLehVk4LnN9mk2wnehhqabWvA54rzRQhlvhxG1CPYIx3NeI5WScr7O7/WETC3UWJLVR93vPhvZMBAmk0B0jnuS9YOf9CGJ9jmMBogDIclEySDv6KEgB7ZCgfedTca459FT0ZsEUW31g4+Somf3k2wdO+wlNDLgAWzd+pe3tTL5ShpV5LiJBNevkGalNsq4W06Q928+KW/RIvzFA8ENHs3QmmgAoSC/aysPYPbk9wgzM0aWBxtiQK6eEHYw8GRR29smP6HAVEDy+tQVxwo0CYQeISykOQjt02XR2Zffdiuj7DFakF9nMaH5iRv4TkgO5VP8P0aa/cczxwMhFNm0XnUZ0/M0Wf2/7lJ08SQpsZt57kET+P5rSnLZcXXNovHmtce5GiIWNLZrzxENlohcUJ5H5INrDhGhoxoNnxARRiIC7DcRoFGP3iEty4Rv2BRLH/VwRICpnX7XdScC2r8qEfAOeO3cZxhfIkQQcy+JACD1RGSQKASRANYrBmNBkqk4sEQAxwTtAk2LSJmynpE+Xfjbj76myxpkCREAGhnwCTSmWPDPZhn+v1flxeeflYYH7C9vvDI87CKPsUYpTteuUAp4L4CB58EiYoAojVuAh5yIAS+EgYh28JAxVBjocKAJCOp3vN9oohp4AYQaSQMADCNevBvQJVDbjvguGnAsnGOMbLAAkpIktoNHQVqFngoQGeeIWjwhBHpW0EdZnR1ok0izESIthP2JcpA+YD8hYyx2EDLIIOrqaEB5H6FTSBQpGsids/mPX33UkzW1s6APhMkEkFaETHOf8tyQdgw1syReQICZ4skgI9JQRCshAM6ZImieIPdECyDtEAEiqIgPbeqUyOzJT0z0dGph8SyMMikZ8AkwVxZpwtDcvNzwkeaWcynwtAkZw3rJEfsNcvU0F4EYkJfG0JCfhxQQGWAhID8YDoT4MXb8DFf2h1iQ80AoEMJB73JIAcY+lECQiABllMOHD4/qeKiyQAeAUI+8PMYfj4afNsphxwdjUDHODDyB8NBshfx4IpUYTuDNkN5gMaMOmzQAZAOih5aBnCfnjRp+CFE0RIoFFHHh119/bcSHEJd40lXx9FFP1tTOgj4QJp3BM8pzSSUL9xnPKmOGuUe9ilqiQ4AAkxLFiWCdIw3B2kMUk+cPLRFzSyDJRDO5z1kbQxESryuBBmXI2GEvoWTAY3A6MUQYl3hybPw94V+MH2HlSGU3XoJoAF4rxICfVkVMDh8PHY/bzWCxzxhsjnfcuHH7vI8YkXNCoxCYPqFBxIekABAlwfgxkm6LBoI5vIVQIX9SHBh6+yLiwXFYQDqCy/eIQlDqZzusQVAQKiG+5LOJAiMPAWBBXbJkiQl/UqFBRILjgSCQEoEA0bGNcx3NOF2OC++JBZPSy1DEK1wfdTMKumxROaXpgTH3UU9WZCDS/AKru9mx+Depu2aytGne1DxjGIpI3SwVoQGZR6+C5oZnjnuW5500Js9qpCZBkUAEjsmokAqeW5wl1gR6DjCUCGGtjRJABFgr+Ayli0TxImHYhLky5IvEu6LemaVRJiUDHoIRu4hebI9uQtFO9Xe0IE/Hg4hRZlvktpMNiADGC++ZcBwPJg16bCqB6IGzwoESNPYZhu80qHiwGH5KBFloUAnbDmUYNBg/CwNVD8EgqkJeHSMNEUEQ6TT8ePy26RFRAFID/B4lPt43fxMsksQ753dEX/CA6H8OkaFEijRNItce7x8SwMLGdyAc5PxxDCyqdsgTlRKQRc4fxxiNAeMckVagYgTyQCOgaGBTG5u2bJNzO50tJx3VRN56be+QpHSc2gkuOaaWfD9/TciBMK0aVJIjy26RRX9MMuJVctrcB5xjvFiIAS/yy8xU8Hrcd0EDzzpTAElPQjARNEOiLSDYiHwhsKwBsYK1A+eGZx8dAuJYtAHObUGg+Q5SaRB1KotoyhWum6EbkpEuK6hQMuARMNx4z4Sg8YKpG08ENHvh4cCYEr5nYUsF8ApYcFkoOEYWBkJ75LotMWDh5TbCGJPTQx1PmgRGz+cxhvTWh/k7QQdDCALhQesZsx0MK4aePgqQIcL4RA+IMAA8bTx8p8ePd0ElwlNPPWXSAaFImG12ArFgMWLf8ITwtiOlcYIBseD4OF6uEeFNPHcWO74jeHukDSAolsCQkojUUhkQXSCdgMdE3Xc8A6sQJ+J1cR45f/HC72oC54THaDUa3DPcb5YY8BNdCqCqxBIDfnLu4qmLL6jA48f7RjuDcBUSHVzGzH2O0h9jTlovWvBco2nh73gmESVDAmwU0I5CRzht2xiTpkBMbKd6xgO/02UFFUoGEgShWxgs6QCMN+EtNy83HhAmx6jgaZILj0VR7xUwckQm0A1gzK262JYs0lOfXgh4+CwiECGb5iBtgPCH/Libd8Z7GHDy5TavzwsdA8C4Ug6JcbWGH8/PbTAR3gfeDAsJhCAUWMwQR7H4ER1Az8HxRCuOspUIRAA4fhZKjAwRACIStPANBR419AyINlkkIVqRgKdEEybOBdciGvIQDM4nf2erVhKBn/PjSQ9cdmwdT7oHcsyI3jA2vIguQbAhiVxrGz2goRJjcrMNnAtSY5BE1hUIbbgJhZBcKnS4d6PZNpon2yODZxJhtN0+pJgoGSSAyBhVTzyHVCywfiKk5XoRsUsE2TB22EsoGUgAGGjEL7BZPGcYttchSR5AjAGlaTSwwUtOJvDG8a5g9aQ9nODW4aGFGGBg8c6cQ5XIO0IU7CAeZ3ifn3hvvMfn8dKtl28NP13K8Ig5t5Fgp5lFmsEOmSBXT1iU70CLQDOTcGAfSX/wHaRDiFzg3fB9pEai9bQ5f7RYxsuCYIWbDgmIVlCpAbkkIuCst44FECBIGtcnUaLKAtt+6LfiF8befJwcUiM0oUqEWHOvWnIAUUCkBsnCGDpTC1TRFGTwjHDvck/jqdNIKJJmhVw/zwrpKu7fUCQApwgSANmmRBCyj7G3hB3SMWTIEBOhom06JIDn3EYjWG8Q9TKUi+vk1XpaUMcOewrIgCI2/Pvvv4Hbb78dEhVo3bp1YOHChb5+39q1awOHHnpooEaNGr5/lxtuueWWQLVq1QK7d+92ff+7774LHHXUUeZ8VKpUyfzkVbhwYfPv0qVL5/1u//33D7Rq1Spw8803B9q2bRuoX79+YMuWLftsc/369ebzr776alT72KJFi0D79u3Dfmb58uVmm2+++abZh3r16rl+t8WSJUsCjzzySKBJkybm7ypXrmzOxZQpUwK5ubmBWDB69OhATk5O4O677w4MGzYsUKhQocC8efNCfp5zWq5cuUDz5s0Da9asCcSLRYsWBYoVKxbo169fwCtc+vKkQL3eYwK1e33q3euujwNVuzxo7od333035vMbK/bs2ROYPn164LnnngtceumlgTp16uTdow0aNAhcccUVgZdeeinw559/+r4vyQLHPHTo0ECJEiUCjRs3Dvz8889R/+2KFStCPo+7du0K/O9//zPPE58577zzzLl1Pss8RwcccIB5Bjp37hz46aefQn7XV199ZbbzxhtvxHGUinihZCBG/PLLL8Y4sMAOGTLEPGDJAA8jCyUv/j+ZmDRpknk4eUgtWCAxWCeeeKJ5r3z58oGaNWuah51/87NKlSqBChUq5BGDk046KfDiiy8GVq9ebbZx2WWXBU444QTX7xw/frz5u1mzZkXcPxY1Pvvxxx+H/RwLGZ8bNGjQPsdjsWHDhsDw4cPNvnIMJUuWDFx00UWBMWPGBHbu3BmIB7/99pshROecc465X7Zt22aIxfXXX+/6+c8++8x8b5s2bQKbNm0KJILLL7/cXIfNmzcHvMKStVsDje4b6xkRqHX3J2Z7X/70S+D000831+bYY48NfP/994FkYtmyZYF33nkn0L1798ARRxxhCBv7UrFixUDHjh0Djz76aOCHH34IbN++PZBpWLx4sSHfHA+ElnswVkC4zz333HwkgGcK8sR2O3XqFPj999/z3l+6dGmgZ8+egbJly5r18tprrw389ddfUX0XhAIHJNH7XxE9lAxECW78hx9+OFC0aNFAs2bN8jHfZIGowIEHHmjISCLeYqzYuHGjiUocf/zxgRtvvNEs1Dzc1pPC0GG4brvttsCIESOM0atatWreoomH/dRTT5koCgssL4wt0Y6TTz7Z9TvxJFhEoiFbGLzatWuHjFxY4AFy7sqUKWMWJguMPJ77BRdcYLwmSEC7du0Cr7zyijn2RLBy5UpDkjAuzigE9xLnMJjYYYy4x8466ywTgUoE3KMcy9NPPx3wGiN/XuxpZODtnxfnbRuSduSRR+YZmNmzZwdSAQzRF198EejTp4+5H0qVKmX2qXjx4oYE33PPPYFPP/00sG7dukC6AtKOwSbKxNoByY4X3LM869zHeO2NGjUy5wOihJNkMWPGDBNZ4T7eb7/9zHniOYg1osWz2KtXr7j3VxEblAxEgblz5waOO+44Y8S4sXfs2JGyfSFsiVdJ+Nhr1ozh5Vjff/99swBi1G3oz74gBSyKePpdunQxC3VwGBX2jxF6+eWX9/mOVatWmfDrqaeemhdFwOPA63KGzQklQhgigSgDizPefjiwjxCUunXrmmMgdEmoslu3bsbzYz8OO+wwsx94iF4A7+uYY44JVK9efZ9t8v2Qnbvuuivvd5wXzskll1wSdxTCCQgF18+v+/Xpr+ckSAI+MT/Ln3BRYOzYsfvcixicWrVqmXvtpptuMvdOKsE1IUVEqB3PlbC3fS4gtkR6Xn/9dUPa0yG18M8//5jniP2DCHPPJQIiXGwLcsvPM888MzB16lTzHsf77bffmt/xHsTjscceS2iN6tu3ryHMc+bMSWi/FdFByUAYcIM///zzhg2zqCY7bBkKsHAYN552POE+wMLAw4vXiJeMQbaeDy8MJzn4O+64I/Daa6/lhdZ5scDMnz8/7PbPPvvswEEHHRTWsz/44IMDHTp0MN4fYXFrkMlvs9ASYowEIgh4EJEiJYQv7f4T9rehTQz1nXfemS+86QU4biINHJddMIOBfgBCwLUYPHiw2R/IiRepJ1I4Vh/hJ4gQEOKPVUNgPn/nB4HWV95jPEsIHemRYBAdgaBxv3OuHnroocDWrVsD6bI+8BzgefMMHXLIIXn3GPcV15+I2LRp00xkMZkg0sUzDNF97733EtoW9yMRK3t8kIHJkyfnvffhhx8aZ4n3iLxxPrwgoKxtRPwgGAr/oWTgP7zwwguBli1b5i00hG9t/pIH3cucqxcgd4nxZh/DPXgsQkQTeJh79+5tHiy8LbtowbwPP/xwk79HA/Hll18G/v7773yiO8LwfBajCwGJdv/4GxalUMBDf+CBB8z/E3ocNWpU4OKLLzZhfP6WnCFhQjQBbp4Wx8bCdOWVV4bdF4iCvZa82D7HRMg0UmohXhBZ4bs4plAgdMr555zy2XvvvdcTj5JtcC9zXZOhaUFDgKgwz8hHIgG9Pg2cMvDTQJH9qpr7hPuXKAaE4PPPPw95DUlDEXrmviEd5de1SwTsJ/c8RI+0mk2ncc9BrvF2ue/8Wk/wxK+++mrznWeccUbM4XknuHcgEkQ92N4pp5xiooEQHdZJIlk2VYAgl5SJ1xERopRsH82Owl8UKDKwZfuuwIzlGwK/LF5nfvLvaMNpVvGOyp0HAEYNs+YGT1eQz2SxwQNhYWQh+vrrr00Y86qrrjIKfwy401s57bTTzEKFx0hOOVQ4Go/M5gipCCBCQnSA7UWbR2cxDCUQBGz7iSee2Of3H3zwgdlfjsuG8DH6t956a2DixIl5RsB+Ds/Lbf+5jnidGBArauQ4/PYsCW/zfUQtIi22tlJhwIABnn0/Qkq2Gcqw+oU5f28KPPDxjECrwV8H6gSRAP7N73l/7qpNJiJ09NFH5xkP9CUQVQjBuHHjQn4HqSTuCxtFSvYxxgruQ6I0AwcONMeH0NYKank+uae5T70QBRPpoyqC5wqhbryGmb/j2eL8sq/oeiBt4JNPPskTVUZTGZAo2BeEjw0bNsxI4WYmIePJQN4C9GiIBejRvQsQnwsF1LU8nM7cOKpZSEI6AgOOIcegE2LnoXSG+DHYLDQQAogBBCHaY+Hhg42zqBQpUiTQo0ePvFwj6mC+C2FdNCB8yP64LRYcA++5bQuvGl0E+4L3z/5D0iAz/A3q+Ouuu854voQnncb1m2++CVxzzTUmrMxn0VYQ9eD/ycX7DRZNCBqRh3CLMcfP/qBD8VLkB1GCYCDoTGXeOhwxp0KE60H6yQkWe7xZ7l+IbqQKF4gm28HjJp+dCeAenTlzpolEdu3aNZ8mh//nXuU9PhNtVIfzRqqL+4iIUKQUXihwv3z00UfmuWJ/MMIQDPvskzK0UTsEnskSdrLWsT5H0gUpspQMxBOa5PP8XbCngdFzEgGUt9T2pwMI2bMwEsJnoaCSwankJ+RvH14WUhbaePOTLKg2ZE1Y3a0MiPfx6qIBixlhRLyHYCAG43tYfIKBuJDvd9sexIKFD4ESfw8JwvuHvFlhE0TmvvvuM+kRrqP1xn799deAn0A4BolBaR7OiyEXSliciAVeIakRrmO8okHuEVt5QL03x2pzuukIKlKc1SZO8DuuPYSAlFUk4wXh5B7DEPJ8ULmSaSAVR28FogSQeFvSSFku0QSiCuiV3M4X9zRhfNYEjGU8qRPOIx6/7RXCMw6ptpUBEFvWSHqEkGrkWSNqkEzgsEFEOFesA0QuwvXpUGQJGUhEtMTf8fcW1rN2kgFeF154YVKPiQedBxvxDQwcb4cF0+4PRg+RH/oFvEgYu1MdTCMbPhdPcxkU+XjaLEKI/tyEXBZ4LXzOqSsIB8KVnN9gRTBeBftL2D94YSIEabUEocACxTlxKrpZsKhAIGJiUxl8jtAzRtrP/Dnfh0eOdxcuCsPnWGwRFtoQ9x9//BFTg6VgcJ9wHmigA0ly1oKnGyjD47qROw8FiA3pLAhBNKVwkKhnn33WRIxsORr9IjIV5P0hQpwjQvQ2hYnBx/MnzQcJgvBCKDHM8QhgedbIxRM9Y/uQWKJwbpUBjz/+eF5lAMSF3yezARprHelKHAVbdgqpVGQxGUi8nGnvi+3Y3KrN4TlJAZ6aH+BBg91SSgXjxyuE2TujExgUyvoIlxOyp9wvGkNG3pm/d8vDuwHhFuU/hNRh/U8++WRE7xRdAgsQKulowMKOsQpusGMbGQUvYgsWLDC/d9Nq2Ppmar75DKQEModID4NKjp48tF047SLHYuZnioBIDMaL8xiuSRIkgf3jc8GVKUR1qK6Ih7AEp7ggi+lQ2uYGIlzcP5GEbdw3LPyQJrfmUG7AWGEg+RsMB/doKsuAvby/0MXwfJ5//vmG2NprDXEmHQiRJD0QzXXnMxBRnAu2gbYH8kFUAY+bPiLhKgMgtFxD9idZ4H6xFQs2tYZ2RJGlZMDrRidXPvSSYd0oYVEqP/PMMyYkj0HyQqlMOJiyMjraEQIkj2sFcbwolYLpw3Dx6sg3J9rkBq+BbfOdkcKChFd5sKjhjkUfQYibBSNaUA6Gd+6sE2cxYj+Dw7pUPfB7+1muA4Iy8qvWQ4Issd+EMEN1W4No8Z32XFMWxfWFiHkNqzkJl+emzwD7wELulq6AHIRKm4QD5CE4qmW1EummeeFaksLhWkYDCAEK9lgIgT3XGEgMBiWkEOp0JUfxljrjrFB9Asm2IlReRIjogYBWiLXHmTLk77lHrVHlGebZYp0igmcrA4hcETEId864LmgKkgHWCtvbxHmP4xQospAMeN0ClRfbC9YQAB4CvGsemmjq+Pk8BggDiwIfxkq43eb+WJRQw/KQ9u/f3yz4EA4/wtbsC+SC7yacFwyESTzI9mGKp5PiyJEjzd9HK1Qib88Cdv/99++zjeASK3oLsNBhMJn/QHkhn2OhevDBB02UhP+P5BVAcFhAICK29MlGX/CE8FC5BokCgsE2IXOhQG4TI4imIZzoijAt3loshov7M5gIcO0hmumWU7WCUhr3RAsIARoVCMGECRNi+j6iRUQX7DW3ivhMBNUGRJ84FlJ6wc8NzxjRNFIkCCstEea5w2hDwGyJIESRyCQpG+fMANJLROyive95nhJtZBQNKNUkEhFMBtBPKbKQDPgxHIXtsV0neEDwfO0NF/xwEKrmdzBpFO4s4Fa5HjyIhzpchFzhhuH4AUgGYXEeINvZjcWCnus8UMw3gJDE6y1xPCwyGNpoQWQEQZQ9FxhP9sW5D0QJ6BCIgJNziRfNPjv7DODZ8J5VObuB9/gMYUxqrvHI7bUl7ElDJFtySZtgSAYkKVbgVXEMHFs4g8Riy2CYSOI2rhX7RN42WtiBTs4X9186CunQc2CUYwWEBw0N5M4K22IBIXArskXMmmkd7YiW8ezEUuqMBgnyQ+TAGY3E6PM8cN/zDEAa+Eys54TqArb31ltvBZIBSLSNaNgX/SYUWUYGKAv0kgQEv6h7Bhh5bjAnA8XLRpQHaybkaHUFeF/keGnCQTSAh5QFOF3CkeT+rdEjBcJigreI4tiLel3IBscf7fHSa5zzarUG6BvI6zoHAzkZP+fTTb9A5QCCqVDfi+EgCsPCQYiUKIObscazInKCUNSWSxHNQS1NeDXScUEeIC0o30OllKh8oJKBhTeaVrp8J8ceafqiEwg5nboXOhkma3hWLLAdIN9+++24/p7ripguXkLAOYEIEp3Bo4Ws24FZ6QrIK5oizhtRxVjSPhBi0pKW8BKVwQHguWANs1FLW31Du2JSEEQKo71/EPIlU2jNfiGUtlEPdEFe9ZpRBAI5/EfSHH1Hz5TXJy+WPbne72rhQjlyaYtasvHrl+Wpp54yvws+JczvbtasmRx22GF5L2Z0lyxZUtIZY8eOlQsuuEC2bt0qHTt2lBdeeEEOOOAAT7b92Wefyemnn25monNuosHFF18sP/30k8yaNUsuueQS+fLLL838cuact2nTRtq2bSv33XeffP311+bfwVi0aJHUq1fPHMe1117r+h133323DB061OwXM9IPOuggGTNmjNnXUNi+fbuMHz9ePvjgA/n4449l3bp1Urt2bencubOce+65ctxxx+XNWwf//POPtGjRQkqXLi0//PCDlCtXbp9tsr1zzjlHjjjiCPn000/NfPZo8Pbbb8tFF10kU6dOlaOOOiriLPalS5dKrVq1pFKlSuZ8Mgs+HXHNNdfI559/LgsXLpSiRYvGtY1t27aZ+5h7iPuvVatWMW/j33//Nc/5gAEDzL979eolt912W9o9y1zLK6+8UrZs2SLPPPOMeXZycnIi/h334wMPPCBfffWVeS75/woVKsjgwYPNc3DggQfK7bffbq4H6wKf//77783PX375Rfbs2SP777+/HH/88XLCCSeYV/PmzaVEiRL7fFf//v3lscceM89DsWLFJFlYvHixdOjQQRYsWCC7du2Suas2y5uTl8iE2atlybpthuFYcMZqVSglbRpXkUta1JKGVcsmbT8zDRlBBloPniCL123zbfuVS4hM7Xum63ssyFOmTInqQUwXzJs3T+644w4ZPXq0MWQ89MuWLZNvv/1WmjRp4sl38BBWr15drrrqKhk0aFDEz3Obvf7663L55ZdL2bJlZfPmzWYB7tevnzF+LFKvvPKK2d6GDRtcDSyG/sUXX5Tly5dLqVKl9nkfA4qRfvDBB6V3794ybNgws/CtX7/eGO5oj4vzBDH48MMPZeXKlYZAYdghBscee6ycdtppMmfOHJk8ebLUqVNnn23wdxdeeKG0a9dO3n//fdd9DQXIEQTm2A7nSINTr4y4wF18TE35ZvTbxliUKVNG0hFr1qyRmjVrSp8+feSee+5JaFsQgrPOOsucewjBiSeeGPc+cZ88++yz5vo+9NBDcumll0rhwoUlleD47rrrLkMAuH/+97//mXMXCZMmTTKG/4svvpBDDz1U7r//fkNghwwZYs4Vv2O73JehyBjrBJ+15ODHH380ZITPH3300YYYtGzZ0rwgnxBuyC7E5eSTT5ZkY/6qjdL307/ku3lrjFMXzlm075/YoJIM6NRUalaI/pnMFqQ9GdiyY7c07Tsu32LoNVhcBxy5Q6b89L188sknxphi/Dk1LLCbNm3KCDLAfrKo4RlXq1bNeAPnn3++Ma542qtXrzYPOt61F+jWrZs5X3jsTs/Zifnz58ubb74pb7zxhsydO1eKFy9uPI+mTZuac8ri5dweUYE///zT1aODMOAtscAFY+fOnWbBYjH/+eefzQJ29tlny8aNG+Wbb76J6/hyc3PNIgsxGDVqlDlOPCAM9sCBA6V79+77eEyvvvqqITSc99deey1mj2npum1yyxs/ya8rtxeYBe6RRx4xXiRRDIxIonASAqINGKl4wbMOQYG04UnzzLRv315SAY7nsssukyVLlsijjz5qnodQz5UF9zokgPNAtBISDNF+/PHHzfN20kknGRJw6qmnxryGcZ9Pnz49L3rACyIOIKyQAogvUTfu9WSukW9PWSIPjJ4pu3MDMUWMeWaKFMqRfh2byIXNa/m6j5mGtCcDM1dslDOe/t737xnT/QRpUn1vKJdQJiE1DB0eBA9cqj2GcCC0hwdx7733GiZP6LNnz575Qp+rVq0yYVWMJg91jRo1Ev5eFgkWYjxpp4e2du1aeffdd00kgJAuhAqvGs8Lz5vF48gjj5QGDRrIO++8k/d3xxxzjFlkWFiCMWLECBPaZIGrX7/+Pu9jbHgRxcFb4XtI7xBN4LwkCh6TW265xUQbiIisWLHCHNcZZ5xh0glEC7gGt956q0lhPPfcczHfMwVxgeM61K1b1xijl19+2bPtQgjOPPNMc70xhBimRMB9yjODN3zKKacYY0w6MFnniCgFqQueC+5/noNwmDZtmiEBrFN8lkggz/jTTz9tSD/35J133mkiZV6BZwCiYokBzz9kAVStWtVcAxs94BmMNx0UCcMmzJUhX8xJeDs9OzSSm9s09GSfCgLSngz8umS9dHruR9+/58Mbj5cjapWXTAOGmJznr7/+aowtXhgetBt4kHlYMWITJ06UypUrJ/TdeM5EGTCETzzxhMmNEwFAq8B75PXYJzx0G6bndmOhgHCRHnj++efN7yEppA/w+vG4neBvWCQhMHxHMGbMmGHeZ/F7+OGH8xEVvC1IRqIgMnDeeeeZBbhv374mekHEgBe5Vgw/pIxzAQmCiMSCgrrAQQq7dOkiv//+u+fGlbA2hID00Lhx40yeOxFwn3300UeGQBIxIKWFkQ71PHkB9DNdu3Y154c0Cp59kSJ79SBu4DnnHsRRadSokdx8880mdw7RglRcccUVhhg0bJice4D7H6J/9dVXG6KO44QGh9QYRMQSBNKVbqk/J3iOIBlEREIRaQhzrw/2EhAvMKhzU+mSZgQ6VQgfg0oDIJgqSN/jFQhZIw5s3bq1YeB4NhihcAsXQjOERQjk8NQIoScKHnQ8YjwDQuOEEQm18hNSQC7bma8nlIjRJqUBAbD4448/zL8RKwWDYyM/ycIXDAwwCxHRAvKkFqQfypcvnyfCSwQYGxZs8q0sxODggw82EQc8U1IX7AeiQ7xUctAQIYjO33//HXH7LHBeEAHAdt6ZskTSBU8++aQJVfvhZXNfQQ65xtzP3CeJgHuzU6dOMnPmTONhs20MLteZ+9VLQJYh0JBYohykoyADoYgAZIF94/MQUaIIkFw0MWhtiEghrOOeSxYRAJAxjDxrCw4GKUmiK2iB+D0RMq4NzyJOAM8wIlk0TMHAkeE4SAG5nW9SaETOvESf0TPNdhUZEBlASX1oEjQDM/qekqfQTmeQBkCwh8FFJUzuGu87Um7RCQwvJAJRER5VLAI3wGJEBAAtAAsQgJiwAEQKbwI8GHLt5GjxBgCLBmF48p3BeXgIBUZ39uzZ+xwnuVHCu3gUTs+Q/yeS8N5770kiYNFi0WWxmzBhQr7UCzlVUgLoBBB83XjjjUZwiHeJx8TnWfTxjgjb8oIwOMFCdPITE2XH7lzxCsWLFJLxPVqnXEMAiYLckVdGgOkXiBCQesJr5n7GC/UCGCSeNe4xolYQweuuuy7h8DfPDB48Whaiehj2UNUMhOGJRHE/kW6BkEIMINoICyEDkGH2L1Vgn4ikcL2DgXlBbOtMLRBBADxTtmKB5xWtBpUJRAUg9whEnfqmrsMny48L1npaVUaK7fh6FeX1q71Lp2Qq0t4dxkCjnPYTRXdskPdGvmFU5+kKjAqef+PGjQ0RwADykCE4ioUIALw0HjQWTwwUpX2RQD4SYSIiPYRKqLDJrZKmgFTwAEdDBACfZZFgUUNUBjD2iAqDiQDGFYPuJqZiAaIUkbSCkwgQ8SBcmagQDOKFl8Lij4F3LticMwiQJUUQAYBwk/9HYc05Q+uAV4RIjcoDzh+LP8QG9P5wutEIeAm2x3ZTDUr4OGbOoZ8gQkDunLJK7km8bC+AZ0vaCeOFNoT7jHsdchOPD8XfQBx5/hDWEqUjOuBGBIhOcH/xWfQBN910k0nr4T3zzLAWsA3IRCqJAKDck3108/aJtrBmQViIILJmES2zaTeeYZwArh1EABBl49iIghBtAJQPUjXgdXk522O781ZvlmxH2pMBQAkVDM4P5EhAiq2dZxTghLrxMLhpCaWnC8h7Y+ww/PzEM6dqIJFSMkrkKD3EO6HmHy/XzePC0JEHx8tGlQyb50HGSFPvj3AQz536fIxnNOBzLIwYfsLIAOPtltt/6aWXjCIfTyqYHOGVc82sTsACj5wFJREywPaJuLBYkZ919mdg/wmPQqggCWgf3IBugP3mPLPQER7F44EMQJwOObZtgV3gWPA5XsLCyRDf8izgLRNtghDwzHgFUm+sCaSq8M4h0Nz3sZAOrj+5de4HoiRE5+irEQyebe4niDHbJz0FGYV8E8HjGCHR3Jt+CfRiBesD6Q2ek2jAM8s5pEcB1wnyDiFwgueX35Ni4nmhj4BfNoDtvjEpfVJrqUJGkAGaRfjRcAgEJEc+Gny7YbWEAzGAsFhuWHJdw4cPN+r4VIC8O4sBhhtPFMONl8yC5AVYjBB4YdAwrBhAHkK8WogH54BFh9A9KnoWeMKVPMhOD54wIXlPjF40sBEYPEb6BnDuWQSD9QKkE8iBcg4oRwwmCZwPfgaTIvYfo5vIecKTZ3HDoDnz3ZBESIYta8NjjAZ4bwjpqJ7AMECeDjjxfCnsUzVWqhc4iCLGCpKdLFhCgCFFswHB9BLcB1xz9CgQQtIR6GQgjOHAc0FE4bvvvjNEmuhA8P1MpAhSTh8QPoe3jYaGyBNeM/cbJBfDm25lzkS+qFTino4HkByItYVTN0HUh/NAvw2/bADbnTBntWQ7MoIM0DWKWmqvmSHbY7sNqpQ15WJ4MYSlKBvDY8UAkyPEKLK4YHhsKMtPUFOP5494iRwoBpN8HHl+r8Giw+LEixA2XhDHileCqppwHbm+G264wWgU3IDRJWLx1ltvxUQGUGtzjlFsQ0SCyYBt+kOKwAnCpIgQIW1uzU5YrDmGeEFon9IyKhucxh4yhKdC2Jh+CPFeD8LCnPc9VQ4SM3OwgC1wXFM0IFxfDEUyAenCsFhCQPrJa0AGCYsj3OM5IW2G8I0y5GDNAfco1TREvcj/Q6Sd4F6CeLMN0gb0A0GEB+lAMAhJwAHwoiLGT3CMPBPxCi2df0eUEqIF2Yd09bznPtN4y08sWbvN6NOyGWkvIEy10Iq8L0aJB5KbE1aOQcAj4GGtUqWKZ/vDpaD5CYYOQsICQ0482la2sQKPnDQA+UdylACDTBSAn7F4IAjoyF9ivCM1luE8suixECKAJDrBAsCC4PQK8DbQCTibBnGOiCigd2Cfgz0sqiwgJ0QwuD6xgu9iscejJSphzwHbhXhQNgXZYPHOhGZaE7odKaWK7dVo2Efd7//HQ6TXBR4xArBEthnv3xHhI61FCSukjry1H8fK/UAEifvNViOQaiRawHNEVA1SxJphG5nxsusKRJuIBs8MwkIibnQe5MVzn8zrlsj/EzEjskr0i2cj1u2wvjojLPZcESl58b2xcvFr05PaayYbkTFkIB1qTGnmwQOMwSZkx6nDO4QYwPiJIMQLjBvGnxAhxo58mh8lQhhcQpUQAAwfHQFh9YTi8VwIj1uBYizg3BBdYQEkihAOnEPOF1EWvCnK9GhAZFXGgLwo4VHONblWC8gLqQsMDt51MIje8P2kdoKJQiTw/aRk+F48M5uTpRYcgoBHz8wBtxbE6dpMa8WI7rJr9ULfv0eRWmA8LXFN1f9DCCDzPHex/i3rB6nGYKA3efPzH+Tur/JHXfzAhxnaayYryYCXzVnu7NBYurVpEPffY8jItWOsCO8R5saTtcQAVXk0wEOgjpnQNEYRdXEiIW43kHsn3QABwFuzg4EgAOyrsxkIkQgEeeR8SZHEAjwiwnpUGIQDYiw8b/aLxYO8IB4R59RWDPDdhHvx7Gy0gAUDrwPDPHLkSNdto8AmjRBrzTmpC4gAIPRrw9ukZ9COQHSICHgx6Alh1JjJs6T3BP9Fqj2a7Ja65ZJnGGgAhfIdQmkrPBLdZiLb4H7kXqMxD539bBtsP84BokC6ZHLPsqzyXaTAiApwT0LweQa53/H6+R2eL+WBKOsRysZzbtIF9PkgQshzGq5xkhsg/ERX7HFxLjg3EPDFm/ZI4TPuE78xRiMDmUUGvGjb2r9jE0+7TuGFWmKA54gIj9pZiAE3OYYkGBhkSq9YLHhwaKWLRxvrQxQKXFYEVAiQEMHhgSNiggCg/g/VnIi/I0KBh48XHkop7wa+i+0T7qTqIBQIJ1KzTQiVc2fTCoRbUeljmKlegCQ5WwkTgoR4ITZ0657IeSdtg8aA8xktICUYfNTiEAEbkSFyQvSB80bpWiz5b7wcwp6UUhFxsD95sVgWrVJXql/1tBS0BQ4xKb0j/vrrr5hLXv0C5IsKA64Bzycla4mAPD7GG3ExuXxSXGhM6AcAWcXgE4Ej3QcppR8AaT8MG6SXZxEyThqD/Uo3ox4v0GdwPoiaQoDc1jzWBogZWiR+2hfRN2dFE5U4iIB51azbQN7J9bcPQE4G9ZrxCxl55PRfb1m/kqmljmViFc0l/Bjowo2LUIgXoTJC2OTAaAuKYcVDssQAI4d3znvkoalJZxGJtX1tKAQPBiJCQTkTofVoRg2zMNFPgMUMYROCLAx0NCDdwIIH+WChCwWMvdPzBnZIDN9F5ADD7hxTDNlCW8CxhWqjjBHi/McSWYH8IBwlPUMVgiUCdJ9jwaeEjLSGWxknKmcWMjeD76y5JmzKdhGEEtXg54F168tlH//ju2aAccfJAscMISa6lS5EAOCFExnjvkD3AaFsdEjTkGOhI4EUGhEQiA/P+vXXX2/U/ghuIbmk3jgXtgqA/+c+I0pBWpHPuHXazHRAskiVInhGbBts8ImEWN8Tp4d0G5oSmnIRlUM4TUSQqo3g1sWTfJ5cW6tiqawmAhkbGXAib5b1nNVGEbrPqNeKpaRNoypy6bG1TNVAMoHRw/BDDAgx44GyMOGpkFKgdtiLkcJ2MBAEgFaghCEhHnjpeCDx1HnD0vHE8YgJ17OdaMACiVeIlx0KNG+haoOwKpERIgV4Wewz+w9xgUDhYdnziMdFtQPnM5QnRT0ygkTOR7Q12BCfHj16mDQNbYUBVRGIvogKsA8sbE5Db/8fMkd6yJZHWYMf/BOi57bPfo/mrl2xlEzsGd118wJEcWjjS0lsqhvhuGHavBVyad/nZWu5OlJov/z6nmjn3pMCC64iwXulGgejRgSAxkCk2SBEdnnF+OP9IjjEEYAsp+M5igQIMDNO3Lx7Xs6qAKqPMPacH37aF/8mMhnLutR39Ex5ffJiX8oLcRa7tqgtfTt6M949U5HxZMAJSkPiZft+AuOEuhqDg+dMuAxjCxvG++QV3KY2ElhUMNQQAH6GGgyUCNhPDCIGmvBqNBPQMNZ8P55TKKLDPuIlQAjYPscC4UAzgdfP9xGut99HzhfRI4tpuGmLEBYW2Gj7HeD98/14ejQ9wcgz8AU9AqFdDDwLHCQOkMdkIXMz+ERgYg33+rnABXL3SP3c5TL8plM960sRDnh1nDOuLQQr3SqR8qKIORK2nDPcWGieMQgpJJbIlVMrw31D62IIPvcBzzfeLVEnXnjMOAGQVc4P9ykRQaJf6dI8CGAOIN/WuAcbfIiAJcAYc9Ytp8HnGCHlPMNetYW2Tl/7oeG1SIlgfI9WSXcW0w0FigykGzAi1Fvz0LN4MIgEr5iFE0NExADVOkaXXJslBqEWbx5CSpEgAPwt9cgsTizAeOSJVDOEAiVa5DUxxOTQIw2cwXNAZEf6AzEix0dZFwsMx09khHpkzg2LBTlV9p3QIgsqugmEV1QTsKgSuofk8L4zbeC2n6QeEGkFTz0E3OYIFK1XT490vDkMPvsMIbFgH9k3jLzT4GPsvOym5/cCt/XdXrJu0SwTccEb9XKcbagR05xfKkPSBV6OhSb9FUpDw31hSQBeLwSTtKFbegkizLNB1In7CoIAgU6WdoBnj31wM/b82znAjGfB5u6DvXueh2CNE88RGiCiRFQmeQmdTeAvlAz4BHKUhJ8JmbNI0kTIrScBYTU8e4w73jEPEwYeUoDOgAePbbBw2MFAsHEIAB3L8Kb9BosDXjchUHLr4UoeWQzxtgmncmshpCNdwWLHMYUCiyk5Vpq58F0QBnKsiPdYeIhMBC+WnCtysvwdnggemm1DGxzS56czhMn3QQSoPiAFATlAzQxhgbwla2H2c4F7/sJDDeEhh4+YkTA2pIDr4yWp4TpzDRCNRtuSNhnwciz0dS1rG7LpVv5mQSQMA8g9FY23TyqNdAGEF20KmhmvCBuOQijvnjXERjZIZXDdgsP59v/jaRrFc45OwqsZEdkw1CsdoGTAY2B0KBXCwKMLICTI6M5ogLqev0OExU87F5wFiLAiHjSGlUU92QItvGqOh30hOoFXEAzCpKiqnXMdMDp4SXYuPEr6aAD5secBkaFT/EgUAOOGp4ZXBVh8bTjfgkhJcEif/abagMWKags7WIj+BHSdDO6R7jeSscCx8GOkiZpw7fDcaRCFsNSLdJJtIoVRc+sIWRB6ktx7cm25o9Px5j5zm1tCColnIx6SheNA5QF9PiASaA6c0/pCkW7u4VDevXPoGmuHNe7BBh8i4HWaghJONDc0IPOiFDedes0UZCgZ8AgwcQwe5YIYPVg+4dlYPEyMHOpkDCELqzVolCIRysb7IloA88a4JRssPpRMopYmQmAjHTRMwljb4T1OcPykSlBcc37wum3OMVqQOsCgWQ+fCEU4QKAQbEKanOBWJ8yLpoDIBSkPyBWkgwoGqidSgWQucBAgSAHHTJUDRIicdiKLNr0qKLdDJ5IOZXJ+Eaxnz6wmJx8bmtjz7LulqKIB9zdGlPQBxBvCSiWS9fCDDT7iVVuKxzmH5IYS6yHkS+Z1Yb1i3aKDZ7jUXqb3miloUDKQIHiIyXXzEKMF6N27t4kMBI/iDff3hMTRARCmJjSOESMNgJfAgwxJwMiSSkBrgAeCIbPEINrRwV6ARYmQJg87+41nTjSAPu2QH3r54306DT66AXQHqPJZtNwmJIYD5INQvtPD54WHS8qE825BxAQRIpoDtBikF/CA+T1EpF+/fsYQMvCF/eUYiDDE07o4kxc4jAmREO5diCYpJ+5b0jKxgO1gcBDOQfjSAX6lXlrU2V9G3dzGPLMYV346l0+IMiQ5WvD3VF44PXrILuF1fu/cNhEcN++eF88Az0g6gYoLBJR+pY3SrddMQYCSgQTDo4RbMTx4lYT33BoMBYNTjiKZCABlbITTMG54qSzK4UKEEAGMK8SABw2iwAJuiUGiPfOjATMBIASERumgyMJIC2WiGhhmctLUcttby44UxrOnjNDZdjga8D0QCbf8JfsB+QAYfKo1ECUiQiTkT6kbBIWmQnhtKJ3pkEcUg4gG/QvSKbSd7AUOzxNxJl4tBgjShq6AcxKNN0l4m7JQBGlepBwySXUOcedccf4A+f7gPDmfCQ7hO717iJgFEUVr4CHb6Gd4dkhlcd+yNqRT/4ZwIPqEg0SUwK/7Il+VSJS9ZtyqRBR7oWQgDvAgswjiyVMeiIcVzVQxwuwYf0gAIVVUt1YHEOtgIIDhJd9oiQGaA8iAJQYImvwID5Kbx5gSircgEsI+UHpE5QFiRwy4E+RTWeQI85NiQD+AABIPnnMaChAuSITbsaBH4D1uY5TN7JPticDxsy8WVCUQiiUqwELMuFvbgjhdkKoFDqNErwoWcYRtRJ4wdNyfkDE3QEQxYISCiQ6lA5JVjw4BtSWyNgpGbp571WnwnRoZ0lfBAj37ogGPWzSR9AuiRBpf0dSH9COjx9MdEH6ieOz3Oeeck7W9ZjIJSgZiAMYW7x/jgyFHMEdr33AGN9RgIBYSvDCvxDt2mh7EgJw430v6AGLAi+hBosQAURKLEzlmvBY38B2IkljsiJiwHywILAyVqx0oyzftlI8+GSOtWx4vD959i7z56ghDhDDOhPNJNwSDBTdU+2R6AnAN7P9jvOy+0uzHeXuzb3hZLN6cK6IH6YpULXCcL7xRSAFkiUgXERVSAMGRGXLC5LYxerH2yfALyWjkVHnSM+aZdgP3VyixHgQ43mcQ8oEDQuSBqhnIlxcNy/wEjglkm7LTbO81kwkocGQg0ZsBI4JBpdGNraHFeGDMYei8z0NJ69FQ4S87GAgdAKFzOxgIAkCeOrjVptfg+xAgchx8P6WB1PrbckW8vlCLEmHN4LI8+/80TwoFtofGAWNuPRxurVnL1sl7v/4tE2avNjPJ9zFqFUpJozK7pFX1HHnnpSdN9QCGBSLDOQSEGkO1a2ZOAYsOBotQtwXaClIXbiCFkQneVaoXOKIqEF/ufUgrzwSerx1LjDEishPKMCYbyRoLXfGbATJt0o/5Ru06U2h+per4HvQurEMMQ+J6MIMj2qFoyQb7SQqJNKiXpawKf1AgyECeFxXG4ERqM2pBC17CpQiiUFpTv84CyBAO3iMa4OYFcRr5DAtn8GAgFOxupXjJAMQA4wcxID9OjhgvBXLCQg5xoUzPGnweXAsMsBXrOUv0aIpEZIAadrZrG/YQBoVMsEDGE+4+uHyO1Fn9ozw9sG9eSSIqf+cUNDfDuGPrJiO0DJU+cIJ9g2jQVyCeGupsBLoQptHxTECGEVsilqOPBl0kKTlNByRrLDTDn6oU3WlIEOkw7iV7n9lhW36ClA4VOhABnj3udRwUtwZHqQTaHdqKE9UIruxRpB8ymgx4nV8lnE2ZFMB7J8cMEydXR78AxGrBIERqBwNhTGHphK0hAeE8cL+BkSf07vTwCfFTy+zMY7J/hC/ZVwRQzq57wQaWhSc4r4nx57whcOI7+PdH01d71vUtXrJHqRxGLBgIsIj0EGZlAVVED8SraC6sCBTyx7/JCaeD5/frkvXS6bm9Hnsy594jvIQUE40bMmRIUhqBAYg9aUs0S5SJUilD10OvJp8mCkTDpJnoOZAumhJFASQDXrYZBYTACaXTUMQ5WYuBI9zMzsWOz9jBQHgFdjAQaQDCz8laGDFq5NPdQvqEEW0JHwacMjynh0+oF4EfUQMiBhw/Hr9NJdAF0UlkyCOjcSD/x3Emo+vb2c1qxE322h17uPFiidBYcJ3It5I+4HphzBSxA1JJdIV7iXuNSBPRMwY9pbKiIJmRAedYaLREiC4hBTw/yTbGiHZte2OuC9FL7vF06PlA91UiA3RRVaQ3MpIMeGlwbm6zt7UuZTuE94Mb4mAoEfwRbicP7edgIDdweTDabgYf1bIN0bMAYeDdJuchvgtXkkQUAXEjURAqJDCgpEIsMaBSgoWetAALDD+JfPjdPAfSxs0ZL9kbcmNnswjhLeG9EtpOp6EwmQqa4VAVAxEl0mSbGBFNo0EU+o1U5LFJIR3qs2YADDxqpyxdOM8QAAR9EG+7jJJygxylApTKEu2C4JO6IUqR6lHJdnAZzyHOliJ9kXFkwI9ubWunfGpU0W5gSh7epB0MdNRRRxlD6PVgIDxzN4NvQ+8AQ4yRdjP4lCZ54ZEQTSAPzPFCDOiGht4BQmLb/bIfCAWdHfv86PrmJdlTeAOqQyCX9HBg3oYF/e5tEyMIKqkyShOTXbHhdzVB7sa/Zelz17iKB0mr8bykshcA+0MfEmYeUL7MOkUKLxmTK0Ollqi8IoWhabn0RkaRAb/ajJb97kmZNnGcqafG4AWfEkrliADwSiQfSDgxlMF39jsnz+Zm8PH8o+1s6FXOj7a9eH5EQ4JByoCIgV9d37yA9h73FlRsYOQx/m4NtqhcsXMe6KvRvn1783miaMkIW/vaZ4Ddn/ed/D3madeBRTyj5MYR5zLtL5Xg2YWw33///cbRoByYSYLBOqBkgMgA61ss3RkVyUdGkQG/2oweV6+i3HpYIZPvt164E7169TJCnWgbAdm2osEG39mEB7bsZvDJ7aebKpgwO6kB5wx3CybinXHR1b52fUsEOpXMO5AaI9RL6Jk0QThAqokuEaomfE2EgHbHVNb42TrX7w6EI7seIlede7oRp0J8WD7tEmobaaEZYgQ2BIgX+ptUCSxpDMUzio6AyCHaAqKgyXQqcBpoTMX6R6twRXoiY8iA3w95qW8ekz8nTTD/T5jP+ZAjyqGe3bnQkScMHpHLT/Ko9u/IoboZfF6ZVNbGA+wU4rGosPDR+pdFZnrRg3zzxhKFziv3DrZ3AyVj0XZu5FlAj2KjS1R5oClAW+CXl4rT8MP8NeLl7ei8jyi/xfvH4ybaR6kfx0lnTZwBqgpoakXuHsKA0p/2zpYcpKJBE+SFUD2tk0n7PfzwwyaFkIyUBt+NhoSeA6RZESMj4A3VSEyRGmQMGfC7zeh5zapIyxIrzOAaKggQDNpTw8NMRYE1+BAB6yVjEPHm3Qx+Ih3H0gWE99BGIIqiCx1CPNImTk/H7zyt1z3lFfEBQ4Zxmzx5clx/D6HGS6UckfuHFBO9CrwU3KFXuO72e+SbUidKoaK0Uc7xJcJkCQEVK6wVGFjElMH6G6ZEQgx4cd6IrrBGWGJw0kknmTbGyQJCPiKdNCMjYkF7Y/bBL+A4kWokxYrmygqe0ZYQcVSkDzKGDCSjzWhg9AMh81qER90MPgLDTBkeEg8gPmgVrFiKaWRM/+Mnv0tG1zcve8or4u9GSMdBqmmovEkEhNJpYEQjI7xrCCaNc2hQkwjoq0H1C0b5mgEj5NN/vMvbb/7qedlvzUwjHoYEEBmBCGBISS1SahypsQ7GEGcDYkB3TfaX6haO25KDI444IikpBdY5zjlkhSZJRPi87pxIWoB7BofC9vewgCC49W1RpA4ZQQaS1WZ004hrZd3qlfuohLmRCf+FGtjiNfhuHhz7Igrh1b9j/Vse6Ouuuy7fueD3REMefPBBadrqtKTUdntB9ib23DvASBE76MZJmS3CQa+eA54pauNJIRB1w8AiNqTDYawGEQU9JIXUHGWOhKO9HAvd/8KWhsTYtQEjzv7SqIumW6QKSIeEmzjqBNtAW2SjBpAEUg50/bQpBcSXfnYuZR/QddA2GGJCTwBSCaRyvAARE4gOJZjBJduQwFSIGRUZTgaS1Uyk/tx3ZdfqhSYEyAvxjQWLC4ugX0bX+e8MuCQG5PxG//BHUrq+eUH2ZvQ9RYeWxAE8YK418zj69Onj+fa559ETQAooa6UMjiZG9N6PJKblbyGlGDGmUUIunEbGq7HQtMVmf9xAC2LEkRg/CEE8ZXyE0+lZYMkBrc1ZB6heslEDonF+9DNhv2lvzHnk/4kY8PJCyExUgAgAjapsahXC49QgKdIDGUEGktVmtOHCj6TszrXGK8EDJvxHVzFYLDc0Clx+b9+3r0j/judvkvnvcO/hDdGq2ALPCPFj7969jbe4cMOujIgMuHWOU0QH8sqo0Ol052VvDTdMnTrVtDsm7E4uHZ0KgkPSccHguSQXTcidPv3ck24pOy/alhPFwGOmz4ITfCdiPNYJUga2gRd9PxI1oggQbUoBYTLOCI2zLDlo1qyZpylKSB9VU5SP8oxDsJwD2xIREBIhsM2ZOE+ICBXphYwgA6lqM6rYm/ez3eQQUrL4UZpkW/kmq+ubHz3lFZGBCM4OtnIbL+0XIB4YJdTviM5QvpNCwAACPGc6ZBK9o8wR4+j3WGia5iCAdIqHaUdOnh/QVwFDZxt3eVU1wBJNGsVGDTCkHDdVPqQSbErBre9DPCAVRE8CZq6gI0BPcMYZZyQkhubcMOOFpkxMN33nnXc82VdFlpGBZBgcDSO7g1woAi/EUXSdc1M+Z0I1AVCyFzvoQkkZGFMqWcyTDaoXUJ7TxAjvuF27dsZAUfFz+OGHm5w31S3JGAvNUDK0MiyZEAB+0n4Yw0aXUsA+QghIXxAh8KOMkGeS8k4bNfjll1/MvjAl1UYNiGQmOnuD7UKA0DNwTPSMIF0aDMhPNNEDUgWcN1JNVDSkajS3IoPJQLKqCVRgln5ln15ByV58wAjgCae6exzhdzxVctmkBwhjE9K+4oorfG1iFAzEjQjiUOFjbGmihN5h2LBhJm3mJAS2x0I8ZCUW4G3blAIvUhacEwiBJQfxTlDlGD777DPT3njmzJmmzTRpEZsG4bjRGpDeiUbs6OW4eUWWkgG/+wxo6Vn6NoTyAkr2YgdGD0+O/D0le6kEHjgRCvp80JuA8kGEe2gYaLWLIUaY5jcQ2AFLQCBKpC+IXCAipB0xmhvSHLZ+PxmEwILlnH4Olhjw3egdOE+WGFCtEGvFAN4/aSK8esgYUUIaRxGdQVvFsUJIQmkYvB43r8hiMuC3wdGmNIkhXWcTACV78YGmMHTTIzye7LG8TtAgh6FYGLRRo0blDT8i7EwO307TtE2MCOUnG08//bSpgOjYsaPpxYDqn9w7RhIDiVH2s0wwFNBb/Pjjj3nkgNbQAO2FJQeIEqNtT4xWgaoPSA8EwXZfBGg8EHv6PW5ekeVkwM/ZBNquNnGk49RCJ5TsxQY7rRJFOSWFqQDGhkE7AwcONOF5yvvcBgCxr7aJESVrDMbBW0fnkswOoLRrRuhIOSBRC7xvSwiIFkAIUt2Cl+qg8ePHG60B5ACBMESAskVLDmgUFOm8UQZJhYDTfFDt8Pvvv5v27X6Om1f4g4wiA35NLdRBNuk5XtoLKNmLD+SFeZH/Tkb43a0cjXw8neogAxj3SAaKcDheOaWJtN095phjzN917tw5aZENPG86+vF9aAkQ9dHQB0LA79KBEFiw9DPm2EYNONdEEqgessSAKgW34UKkjRCXBjcTIipDt0qaMvkxbl4nkPqHjCIDQG+w9IZXnoBXULIXn1gPgRjlZJT2JRuEtTE25ONR6uO1xgIMFKI3wtmU4XEst956q0l7JGMOAGV0EALq6ql2wKhCCDgOvGcIgVvfhFQDMvX999/nkYM//vjD/J4qEksOiAZg6CmrJEXgBs71HX0GqOOWYcg4MgC8bDParU3y84sFHYnkCPH9+DuvoGQvdrz99tvGK8cY2Px8MsBSRO4db55WvxCBRGvnKY+DFLAtOurZJkZ+e+e0FiZlQDie7n6M8IUcECFAfAhJSUdC4ARdWEkpWHJAioEKCo6BNsykAxjGBonYtm2bERKSJkBY+OB36zWlm2HISDLgZZtRhT9IRD388e/LleylEHh/eH6ow5MFDAm98THaqPJJDeCBegXSHbaJEYbLNjFCDe+n5gEvGT0DuosBAwbkpQzI0xMh8KpRkN8g2kIFh9UaUGpKZABS5axSIKWkYu/MRMaSAaDlKumPeLu+xUv2Ant2S6EckZuOqSh3nnuCx0dT8EFnP3LtDCVCiJcMUApH2SAGe8SIEb6WMdJOePjw4TJ06FBT/te2bVvTu+DUU0/1RWzI8sp3QTzomEjlAx43KQO8bCIEmUIInIBQoTGwUQN6EHD+aErU8MLeMnldcS0DzzBkNBnwqs2oIjmIteNYPGSvQZndsuT9gTL3t0lm8aVnPepuRXSg1z85e+r5kzFKlx4G5PKpw6ds0KlE9xN47Uw3JIVAwxy6GhKRYPJhtGV2sQByRcMeSvoolSSNQISAEkQIgW35namg0RFlqIYY1D1fNub6N+FVe4b4gwJBBpzQFpcFD7GSPRb61157zZTFIebCwD3wwANRj5fNVuCx0j6XXvTU6/stUqSrHV4z+gTC915MyYsVLH+EvCEFlAOinLdNjCpVquTpd0E6zjrrLJOCodKANAiEAFEjhMCr0cHZMG5eu4l6jwJHBhQFG7GQPbrF0df+oYceMvXneKDUrae7cCtVgDBhFCFQDKXyCytWrDDDaiZPnmyaBjH4Kpn9AEKBYUDsD5322J/LL7/ckKJGjRp59h30HaBKA0+a0jx6OZAyKFeuXIEgBDpULnPh3fxLhSIJwPCzCDB9kJ/hvANU2xia+fPnG/EWZV5M4CN/S6MaRX7i9Pzzz5te/34SAURztDhGSEfOGS88HYgAwOij/Ee7cM899xhjTdqCQV1ED7zwm4i8MOmwefPmRnRHKR/nBC0D+gX6K2QyIOkF6XuyCUoGFAUeCLWYvkZpF4v8Sy+9ZFIGRAk2bNiQ6t1LC6Dip3TMrZ2sF8CQ0sKWqYM04qHk77jjjpN0BOkB7g28eNIXRAxatWplyuk4T6ShEgFdFEkT0D6ZFyktJgNyL2Y6ISBaV5C+J5ugaQJF1oFBKxgmatqJHpC7xgimImedDmAJwFMlX06zHj/GEBNxQEQHGWPKXTLEiV6W1X3++ecmhYLRxrtnDkGiTYw474wF5v5DN8G5OeWUU8xERlIG1PBnGnTcfOZC6ZUi60AtNCI50gdWXEj6ADEb7VizDVQPTJs2zdTEew0aFx199NHGuI0ePdqkazKJCAAGDZ1++umm7wIRDUYDE2ki348hR2MRD0iPsB3SVx9++KERLZKaWLdunYkQEKnJNGCgGUPsJxAMKxHwHkoGFFkLyrmIDlBGR/tY6s0bNmxoQsOo3bMFjN8lX04O20u8/vrrppMgERfIBkr6TAd6B46LlNN1111n7pW6desaUmknAsYKSmAhS6Qj2A69FohekVLJRG1Lm8ZVTKmvH2C7VA4pvIeSAUXWg7AvjWgYsMI4V1rW0puAoTf0xy/IQCyHN8p8+lCz6OMRI+LlMnaYTn9EHoi8FCTQeY9UE+dv8ODBRghID388evQAwQN8IgHSRHUF5YYQArYNEchEQnBJi1q+jTJnu5QQK7yHkgGF4j/gHY8cOdL0V2eMa9euXU2TGIxlQZXW0CqXxjcYbi+A6I4wOuOGEWpCsqirL6hAM4B+YN68eUZcuHXrVhNlQiRJWWssaSciDBAnWiSjR6CsETEhhIDSWNr/0riI99IZDauWNZ1evY4OsD22q43j/IEKCBWKEPj555/lvvvuM53VaLNKvwIEXulSCpcoGDCDh0s9PWN/EwV96zFW1MzT3Y9zlm1gOaV0ELEhnQYRZVLeetNNN0XdxAijz7AfCBV/S5fGqlWrmv4YnGNGIaMnQGiYrtBx85kHjQwoFCFAj37aq1IHTova0047zZSYUR9fEPDmm2/K+vXrTa1/IiAkTttnzg/hbvQB2UgEAESRVBOCwNmzZ5uZCwxdQmyIged3kcCYYyIqDz/8sDzzzDPmPuTvIAKA0kbEmOkMDHY/j+cHMFxOiYB/0MiAQhEFeEwoLyNSgKIcsR2RAkryMvV4DjvsMNNvAQ82XiB0I53CuaH987333uuZ9qCggBA/DZ2GDRtmPHqElMxBgFhGijIhVqQs06lB4PwSoRo7dmzat2bXcfOZAyUDCkUM4HFBQ0BTGqbt0Z0Or7hp06aSSUC9jtiNcjl+xgMiAHi+jB9+6623PK9GKGhAP8B5IoWAWJWSSzvNkNC/G2iPDHEIBuWZkIzgbpF5czxmr5Yl61zmeFQoZdT+iPzI7ScDOm4+M6AUXqGIAXhyGEBmu9M5jjp6RIbkyilRTGdg+Bk1a8sJEbm1adMmLkKEOPD44483jXFspEQRHqSarrrqKpkxY4Zp7kQnQpoNUWmBZoOWxE7QApkUFc2ImOroBFUuiF2dOfquwydL+6HfyuuTF8viICIA+De/530+x+f5O79xYfNaJtd/fL2K5t+RhIX2fT7P3ykRSA40MqBQJAD6EVAXTle9v//+24R0+/Tps8/inS7Kd7x48vqTJk0yoWvKKGOdY4+ojWE+lA/iudLFUREffvvtN0MEMOy0zaZ3AWWeaAzQCkyZMkXOPvtsM975p59+MiOWlyxZYv6WiheIRaKeN7l9DHYyoOPm0xdKBhQKj5T5GNdHHnnEtN/FyPbu3TutptDReZHudkQ3eOwxOISp2Ve81kigYyNREZrjvPDCC0YroPAGTDGkARbnFcJGxIYqFgsIJpoMejhce+21RksAaWh4zs2e5OR7dmgkN7dpKMlEOmgaFP8PJQMKhYdgIScETyMaogbMPKBlbYUKFVK9a1KnTh3TByAYRDYYmBMOqNfpRUCpHJqJTNNIZNL9w/UgNUAUxgnKNSFjLNnoVJ4aM03KtostshMOgzo31ZB8FkPJgELhAyjZYwgNxACxFx44TWQSGWyTKNA2oHFwgrAzZWyhQv2UseGVEvHo1KmTqX0n163wDwsWLJAGDRrs0+gKkSE9DEgfaB2/wmuogFCh8AE0hKFOnIUd0RgDeugwB0EgpZAKBCvP2T/CzZYIIDB86qmn8t6nDI4SNlrjEukgb61EwH8899xzhghg/GlPbAc7Qcy4HqD3h9ONRsBLsD22q8hOaGRAoUgCmGyHyJAQMKF2+hVcc801psFMsoD6HxEaBoYSN0raLEhpkEZYsWKFvPrqq8YzveCCC4wBos1u69atk7af2Q56NjDJkDbRiArtT1od0zL7qDZnmGoAvzC+RysV72UhlAwoFEkEIjyEYAxBYkAS45MZTBNcZ06TGYR+8bQ+DiXMOu6442Tq1Kmm/31wsyTC/0QwAPvCssDnIQLVq1dP8KgVXqLv6JmmPNCPYUBUGHRtUVv6etw9UJH+UDKgUKQANJ0hF0/ovXHjxkYQhqduu/d17NjREAKEe9F09Ium2cyJDSrIec2qyuH1DtinZp3RzYsWLcrLUzNfAOISbT99RfLQevAE0y/AL9SuWEom9oy9/4Qis6FkQKFIIejiRzdDmtAg8KPFMWFh2xVw0KBBphohFBCSkef9bt4a49WF8xbt+0x+G9CpaZ5QDO+fUcNOQECYvvfRRx8VmMFMBQFbduyWpn3H7dNQyEtwtWf0PUXL/LIMSgYUijTA999/b3QEEydONGQAkSGRAcRjhPVRkAfDi2YzXY6uaRokoWkAGH6+E60A6QLq3+kyqEgPzFyxUc54+nvfv2dM9xOkSXUVi2YTtJpAoUgDMOmOeQFEBhCK2cE0cHWEfMGtahkA0+uD6aa0LNbcMZ/n7/j72176PI8IUAFBW+FevXqZXgKkDZQIpBfQgRSk71GkDzQOpFCkCTD8hOwJ0VsywE8aBRHGt1PqiAh40XUOfLwwV2598m3p2bml1KhRQ1MCaQ4EoQXpexTpA73iCkWagCmIDEByjqu1QFOA2BCNAKkBL/HZP+UkUKqCEoEMAJUhfl+lnP++R5Fd0MiAQpEmOOSQQ0yHOWYbkLPnhdKffvQ0Lzr99NPlurf+8K3ZzOtXt/B0uwrvgaiPyhA/qwkYFqTiweyDXnGFIk2AZ05joHDlg1QNeA00BGx33urN2mwmA9CmcRVf+wwwNVCRfdA0gUKRIaCPQKRZ8PGC7b4xae9oXEV645IWtXwhAoDtMj5YkX1QMqBQZAhoKOSnEWDGvCL90bBqWdMrwmtiyPbYrkaHshNKBhSKDGk2Q2dBP7Fk7TbTyliR/qBpFL0ivATbY7uK7ISSAYUiA7B47VZfu84Bts9MA0X6g+6RNI3yEv07NtHxxVkMJQMKRQZAm80ognFh81rSs0MjT7Z1Z4fG0qW5agWyGVpNoFBkALTZjMINN7dpKJXKFE+oLTURASUCCn3yFYoMgDabUYSLEIzv0VqOr1fR/DuSsNC+z+f5OyUCCqCRAYUiA6DNZhThQK6fplF5o6znrDaC0H1GWVcsZfoIUD6oVQMKJ3RqoUKRIeg7eqavzWa6tqgtfT0WpSlSBypDEISiAyH9Q9RHyZ4iFJQMKBQZAry+9kO/9W3743u0Um9RochSqGZAocgQaLMZhULhF5QMKBQZBG02o1Ao/ICSAYUig6DNZhQKhR9QMqBQZBi02YxCofAaKiBUKDIUb09Zos1mFAqFJ1AyoFBkMJau2ya9P5wu381bY4x8OFJg30csiEZAUwMKhcJCyYBCUQCgzWYUCkUiUDKgUBQwaLMZhUIRK5QMKBQKhUKR5dBqAoVCoVAoshxKBhQKhUKhyHIoGVAoFAqFIsuhZEChUCgUiiyHkgGFQqFQKLIcSgYUCoVCochyKBlQKBQKhSLLoWRAoVAoFIosh5IBhUKhUCiyHEoGFAqFQqHIcigZUCgUCoUiy6FkQKFQKBSKLIeSAYVCoVAoshxKBhQKhUKhyHIoGVAoFAqFIsuhZEChUCgUiiyHkgGFQqFQKLIcSgYUCoVCochyKBlQKBQKhSLLoWRAoVAoFIosh5IBhUKhUCiyHEoGFAqFQqHIcigZUCgUCoUiy6FkQKFQKBSKLIeSAYVCoVAoshxKBhQKhUKhyHIoGVAoFAqFQrIb/wfMrorY/hoq7gAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAv05JREFUeJztnQd4FOX2xs+m0wOB0HsTEBBEERT4o4AFxd57r3jt13YV9dq99opd7F0UVEQRRASlCIIiRSAgPQmd9P0/vy9M3Cy7m2wys5ndPe/z5EmyZWZ2dnfO+53znvd4vF6vVxQKhUKhUMQtEmr6ABQKhUKhUNQslAwoFAqFQhHnUDKgUCgUCkWcQ8mAQqFQKBRxDiUDCoVCoVDEOZQMKBQKhUIR51AyoFAoFApFnEPJgEKhUCgUcQ4lAwqFQqFQxDmUDCgUCoVCEedQMqBQKBQKRZxDyYBCoVAoFHEOJQMKhUKhUMQ5lAwoFAqFQhHnUDKgUCgUCkWcQ8mAQqFQKBRxDiUDCoVCoVDEOZQMKBQKhUIR51AyoFAoFApFnEPJgEKhUCgUcQ4lAwqFQqFQxDmUDCgUCoVCEedQMqBQKBQKRZxDyYBCoVAoFHEOJQMKhUKhUMQ5lAwoFAqFQhHnUDKgUCgUCkWcI6mmD0ChUMQOduYXycrsnVJQVCIpSQnSLqOO1EnVy4xC4Xbot1ShUFQLSzdsl7dmZcmUPzdKVs4u8frc5xGRNo1qy9CumXJm/zbSuWm9GjxShUIRDB6v1+v73VUoFIpKrfJX5+ySWz/5TX5YtlkSEzxSXBL8UmLdP6hTY7nv+J7SulHtCL0KhUJRGSgZUCgUYa/yG9ZJlme/Xy5FJd6QJCAQKUhK8Mhdo3rIaQe0ETdCSx2KeISSAYVCEdYq3+MRseOqccOILnLV0M6uCN5a6lDEO5QMKBRxjnd/yZI7xy8Ke5VvBx48oaecWoUMgV3BW0sdCkUplAwoFFEGO9PYT09ZKo9MWiI1hdSkBJl87ZBKB1Y7g3dVSVA0lDoUinChZEChiAI4kcYmGN788W9SkyCw9m/XSG4b2a1CcmNn8LaLBNlV6lAoahpKBhQKF8OpNDbbHfbYVMkvKhG3IRC5sTN4N66baisJqmqpQ6FwE5QMKBQuhZNp7LNfniUz/sqOuEYgHFjkpnOTurJ00w7btsu54ZzWVKlDoXAjlAwoFC6Ek2lsSg7DH59W7W0r/iEtAztkyLgL+9uyPW1tVNQE9BOmULgwI2CXqI/tNKmbWi6NjfagopKDovLgPFLGWbZxu3TKrFrbobY2KmoamhlQKFwEJ2r5/mnsIQ9PkVU5u2zbvkIkwSMysmdzeeCEXmGt4rW1UeEWKBlQKFwEJ2r5vmnsHflF0nPM1+VWngr7EM4qXlsbFW6CkgGFwiVwupY/+drBJuMw8qnpju1DUblVvLY2KtyGhJo+AIVCUb6W7wTY7pszs4woTeE8rJU+WR7KPmQBnNKEvOezbYWiqlAyoFC4BIjHnBL1sd0pSzYadboicuC8k43B14BsABoBSgN24o7xi8x2FYrqQK8MCoULQC0fFbmTyMreZToLnMk9KCqzir/g9V9s9TgAbA8RokJRHSgZUCgcAL3ii9ZulXlZueY3/4fCquydjov62P6mHflG4KaoGSzduMP27I9va6NCUVWoz4BCYROq0yseqVo+++EY3pi5UtRmIHZgaULGjOpR04eiiFIoGVAoqonK9IpzC73942atktd+WrmXyjxStXyzH49XiUCMwdKEjJHyZEDdDBWVhX4qFIpqwLdXHFSUAvZXmVu94lykyR44GaPZ/uyVufLajFUO7kVRU0ATQvBfu2W3uhkqwob6DCgUVYTdveJ97/lGcnYViFNokZ4m2TsKXDmpUGEP+rROl3mrt6iboSJsKBlQKKqYEbBzDO7h3ZvK179vEKfAxb9pvVTZsD1fZxLEMLCpCOftVTdDhQUlAwqFC+YHRDucLnEonIe6GcY3tLVQoQgTiAXt7hV3Eqz+WjRIc8zdULwl0jmzjjROLRFdW0Qv1M0wvqFkQKEIs32QroFoSrWTBmbp7tgxexJk8dLl0nzOWCl46ypJXTXT3KzEIPqgbobxCyUDCoVL5gc4haLZHxiFuZPw1G8qE76eLAXNe0l+24NKb/NE13lSqJthPEPJgELhkvkBTiB36uuyeu73e6r6zoHAn9p6X6kz+DzHMwINE/LM72gjZdEAdTOMXygZUChcND/ATpTs2iLbfvpAPInJEdlfg4NPF09CoqMZgfMGtJXcxTMlpWhnBaTMS53CseOIBzdDRXxByYBCUUlEYn6AnfDUaiCe5DTxFhdGZH9pLbuKJ9EZH7PkRI90zqwrr/20SrydBklBUp3gDzYkAJ2EZg6q42aoiC8oGVAoKolIzQ+wC6zQkxo2l6LcdY6n7tm+t6TYsW0XFhbJX5t2mP/JPoSEkgDb3AwV8QMlAwpFJRFNWgELlAgSazcQb1G+s/vxFlccpKu6bY9HvJ4EKY6+0x+14FQz00ARP9DZBApFGJMIow21OvST+ged6KhugBVFiccZImBBOxMij+Ubd0iPFg1q+jAUEYI6ECoUVZxE6Hbw1Tar6j2/FYpwobML4gdKBhSKEJMIo5EERBLe4iIp2rhCkpurjW0sQmcXxA9UM6BQ+E0iZAARcweimQgYju84zy8VDeb+8JbD+1HUFPgO8F3gO8F3QxG7UM2AQuGTEbBjJLEbEJmygEdyv3le8lYv1FJEHIDvRv20ZNm/bUPTWZOSlCDtMupInVQNI7EAfRcVij0aAUoDisrjmDZemZW6RX4pzJOiLeskuWGLmj4kRQRmF/gC+temUW0Z2jVTzuzfRjo3rVdjx6aoHlQzoFCIyNkvz5IZf2VHdWkgEjBr/5Ii2fzVM7JjwTfSuHFj2bx5szQcdonU6zvSsfZChbthiWxVcBi9UM2AIu4RjZMIawrFhXmS/8l/DBEAEAGwY96XSgTiGNZ3B0I97LGppuSmiC4oGVDEPaJxEmFQOJzo8ySlyvqVewvJCrNXy+4Vc013gSJ+oYLD6IWSAUXcAZvVRWu3yrysXPP728UbYqdzwGERn2VxHAg5Xz0jnqia3qBwWnD4nmYIogYqIFTEpZNgLIWsSKv4fd0MGYQEOeC2BCmRndPHSZ0hF0T0eBTuFhwO7NhYNQRRABUQKmIaseAk6DZs/PheSWvTU2p17CdJ6c3LkREuJ7UTvbK7RJOOilJh4cAOGTLuwv41fSiKCqBkQBGzUCdBBy2OS0IPJoIf6JVFYWHytYOlU6a2HboZSt8VMYlYcRJ0KyrqHNiLCCgziOvswJszVTvgdigZUMQcYslJ0E2olsvgnoFJNQ43HEOcATI+ZcnGmj4MRQVQMqCIKaiToHuFijVtV5yc6JGOiZuleMv6ve6LOFGJM1KSlb3LdPEo3AvtJlDEFBALohFQKPzx32P3lZ51dkiPHj2kdv2GUpiWLt169JQlq9ZK85P/I8XehAgRFq/jLaBuA9/Ildk7pUeLBjV9KIog0MyAImagToKKYCv+5D++lD4N8qR79+7SsmVL2bUtVwo3rpBF0yZIgwOOlRLxRDBzEV9EwALDjRTuhWYGFDHnJKhkQAGMG6K3RLInPWfsk7t9/pz85z//kQ0bNpQ9JiG9haS17xOpI4pbIgCYcqhwL/TdUcQMMBRSImAfXCH4qwpKis2vpJwVsvODm8vmKJSUlMhdd90lRUX/1K7r9jmSOxw/JJwZo/Z82oTZq3Jq+hAUIaCZAUVMYEd+kXEWVNiE6nQO1BAItogDd/81R7bN/UIStm+UgoKCkM/BOEkSnF8TeTcuFWnSWeIZd47/XbbnFclVQ+P7PLgVSgYUMYFV2TtjymK4pmCZCUVbQrto60ZZ+9IV4i3M2+s+Y5IUYFXuSallHBSdxudXHizbtu0rZ45bKPEOWn6b1E2VUw9oU9OHovCDlgkUMQEVJ1UPBP7iretl+9wJsvGj/0ZVVgACs2vpTElJCEwHg6Xnk9KbReR1Lt24Q9bn6Xhn33kFtAAr3AXNDChiAjUpTjL14KhaR/vA65UPLxso3ZrXl/777ycpu3fLmt3RdVkgk7F93kQpys8P63mptepIJHDdB/OlRgAJciGpo/WXFmCdV+AuaGZAERNol1En8uHY65Wi3HVSuHWTWZ1GJQp3S4NayVI7JVG2bNkiRxxxhHiLCyVaYK36a3cZWOFjMzIyJDExUdLS0sz/qcmxvVqHoroRiHxpAV62cXtNH4rCB9G1BFAogqBOapK0aVRbVjmYfqQuvfGjeyQhKUWkpEgKsv+WpPpNpMXFzzm2zyZ1U2TzjgLHLuve5DQZ/vg0yVsxT7J3FMmzzz5rxhJXy3o4grCOseGQc6RkZ25Z54A/Tj/9dPnwww/lpptuktatW8sVV1whOav+lDpR8jqrAo8nwfXzCsaM6lHTh6LYA/d+WhSKMDG0a6a5yDiFpPqNJbVZZ8lf+6fkr19uxGqlrWnFjn05D+7U2NH1nRUwUtv0lOYXPSt1e40wr6toyzqJJkBeGg6/TJIaNC13+3777Wd+v/vuu9K2bVu54447pFOnTqXPKcwLaE2scB46r8B9UDKgiBmc2b+Nsz4DngTJOOpqqT/gFL/WNGfSzUgipy5cJYd0zHCMcFjwJCaJJyml7PXtXj7bsdKH1+rrt7HvntU92oFGR1xZ7vbVq1fv2ZVXmjVrZkoEmzZtMre1adPG0depCA2dV+AuKBlQxAw6N60ngzo1djQ7YKWk6/YaHpHWtJzCJJnz0q0RMa0pl3LftbXCMcVV3o/V129zeh5CU6t9X0nKaFV2W926dc1vtALTp0+XL7/8UjZv3mxuO//88yU5a5Zjr1NRuXkFCndAyYAipnDf8T0lyWEyAJqOvFrSWu/reL2Z7S9fsVI2f/VsxGrbkI7MoWdLY9lq/6q5pFgapZa2AzoBtlu/79Fy8sknm/9XrVplfhcXF0tCQoKce+65snbtWnNbixYtZMLbL8nuFXM1O1BD0JZg90DJgCKm0LpRbbkrAqKkYq9X9jvrFokEatetLzsWTJLcqW+U3hCBDEGx1yPt27aTtJRk2zISbId5ARs3bnQw65AozfseKu+9956kpqaW3Q4RaNCggSkRPPXUU+a2vNR0+fzvNKndtL0pASkij4/n/V3Th6DYA/0GKGIOpx3QRq4+tFQk5hS8kiBr81MkEvj6ywly2mmnybaf3pfsiU9KSVGB4ytZtBe/rMqVK/+vo20ZCbaT893LpgPDSez01Jbflyw32QBrvyA3N1eaNm0qBcn1JPPUu+XRxXVk3MyV4q3dMGY7CtyOcTNXyXu/ZNX0YSiUDChibYTxmPGLZMjDU+Sp75Y5v0NvJAbciOzbtqm88847MmPGDEnP+V3WvXSF5K1aUHoIDh4D1ZacnYVy9f+137OvqmUIrOft/Okdyf/7D8eNcNjbJdffJs2bl+o56tWrZ4YUJScnS0GrfqZrIq1NL3NfsTtb8eMK6kjoDigZUEQ9uJCc/fIs0y8/btYq4zUQkWu8J8FxfULzeknGQwEMGDBA/vrrL7ntmssk+8MxsvbFy6Ukf7dj+6Yx45NZS+TaEd2kX8mf4i0qCL+rwVtinpc98QnZPPUt8SQmSyQwe+6v8sorr5jWwm3btpnbah9wgtQffrnpmkBsqHCXI6GiZqFkQBHVePeXLBn22FSZ8Ve2+T/SI4y5kCU6tNKlFLB4ysfSo0cPue222+SXX34xqvgxY8bIkiVLpHu75pKQWlucxJbiZBl1wsly/0XHyKbXrpbdq0qtdSssU+y5P2/lfMl967oyM6BIuRv267ufDBs2TC677DLzP/4J6YPPNn9rScBdUEdCd8Djjfch24qoxdNTlpopaLGMtS9dLim7c2T37t0m1Z2SkmJU8KNGjZJzr7lNThj7i+PHsO29WyRddkjfvn3lo48+koz2PaT54FMkN615aWulT3D17rFoTsleKmu+f0eKsteU2xbuhq2v+8DRgMwx5L54vsyf/bPUrl1bWnXtbUoDCcloPJQIuBG0A5/dv606EtYgNDOgiNqMgFuIQMG6pbZ/kag+0PJWuHm17Ny50xABs6+CAlm5cqU8+eSTMmzEETbvNcixJKdIenq6fPbZZ+b/3FV/yIGJq+TvFy6RAX9/KBNGHyKH7PpJ1r4yWlY/erJsfOUKWfXxI3sRAVCn2+A9VX3nkJ5YIBn168qZZ55p5hF0OO22Pd0LSgTcCnUkrHkoGVBEpUbgzvGLxC3I/eEtKSrMty/Ieb1SXJAvvfN/D/qQfffdV8464zSJBLZtyZHFixfLoEGDytr03nijtM1xwmcfS9OUQnnzif9Kz1YNSy1+i4uNvsEfOBvicOhkUKZ80S51l7z99tvy888/y3V3PSz5DTuoRiAKoI6ENQslA4qoA2IjavWugNcr+asXSu43L9gX5Dwe2f3XHPnm03eDPuSGG26Q+2651vFVNq9o0H77mDLFlClTTHq/qKjIBHz0C6Tk0TD4zgHgtoULF5bbDjV7nA1LX55zZIAMwPcv3mNKKXfeeae8NWuVJLh0ep+iPNSRsGahZEARde2DiI0iLRQMhraN68hN1/3LmALt/HOGbdut3XWgsTwOhvPOO0+6dmwn9TxkJJxDelKRTP5qgpx99tllgT4pqXSVDSEgQ/H888/LokWLZNKkSWX3WQp+wPCghsMvddxOGUMjSiu71v9lHAivv/56adj9ECnR8kDUQB0Jaw5KBhRRhbdmZTk+e6Cy4Dh6N0mWVq1ayajTz5daHfa31a0v0BQ+gOdA/fr1ja3u379MctTad9XMiXLcccfJww8/bBz8AJkBjo9ywcyZM6VWrVpy+eWXy5o1a6Rnz55y+OGHl9sOw4NYsTstGuR4c756xhwfnRfHHH+SFNVq6Ng+FfYjJUlDUk1Bz7wiqjDlz42uyQpwHM9df7qMHj1aZpa0tzXgBZvCd8kllxg3wi1btsi9994ruxZMctTaN3/RZDPghwxAXl6ecfCrU6dOeTOhnTvlhx9+MH+zIn/wwQfLtpGc0doMD3K6Zs/5yv3meSnausH8TQnjh18XO7pPhf1ol1H62VJEHkoGFFGDHflFkuUSpzKyAkxITM3LdSzgBZrCRzcBnQUEvFtvvVUWzJ0tJbvt789mSmJB1gLJ37jK1N/xOsjPz5euXbuWPQYyADHwzYZQJujdu7c0bFi6Iq/b50hHrZOtfedOff0fLwMEmMXFETM4UtgDaPTnC0qHSCkiDyUDiqjBquyd7pCCkSL3iDTb+od8Ofk7ST/gGEdT9fX6HGX+btKkibz22msyfPhwsxqnvfKY53+WhDR7V1MmmBYWyKYJT5igihhw6tSp5j4yABASQA8/oFxg4aabbjKZC4gK9r+1Oh7g+Ijgc/ZJlEOb7m1mFCmDI4U94Lt988e/Gf8QReShpkOKqMG8rFw5/jn7RHp2wHx9SoodTYMXb10va567yKS+SdOjFeg46kop6n6kY/vM/epp2fbrVwHv4zisIUAQgS5dupjWQwyRLKKQmZkpudt3SYur33F0FgHnf+0Tp8k7414zJMQ6rkgaHLF967fCHjx4Qk859YA25W6j7ZBuA0SGaAsoKVhW3YrqQ8+kImrgRnGRCQAO18MTGzQ1gc1bXCAbNmyQNkNPc4QIWAGNlDtEgEBvmR35AzfCuXPnmvsR7AGIAGWCtm3byvLlyyU5k9HAzgZIow9IbyannnqqtGnTxhgylb2ewjwp2rJOkhu2cGz/3m0bJOfH9023BJ8Dp7Mg8TS8aGDHxpJXWGxEw2iFKBH6rlz5ZLVpVFuGds2UM/u3kc5N69XgEUc/lAwoogasBLgAxF8qyyO1MttIk6R82bSrRKTvyaZUYWegpRxBa17ON8+X1d6DEQFW3xABugjwH1i2bFnZdEDKFxCBhx56SB54MbhPgp1AG8Cx+hIBC7uXz5akviMdCdKcsx1LfzZtpa1SdsruHseJNO9mbldSUD0UFZfIMU9Ply27C40+J5BomFsYSsZwstd+Wmk0PPcd31NaN3J2Xkeswn1LLYUiCEgJshKIR/Tq01e6d+8uTY+5pjQTYfOKuyRvpxmNbBGBQEhNTS37+9BDD5VrrrmmnKAQkkBQJjtwyy23yM033iCRQHFhvtFT+ANx4455XzrabbF93kTz9+LZP8rLZ/eRDe/eLsXbS4dmaQW26mC0NETA/F1B95B1P8PKGFqGlkYRPpQMKKIKpATd4jMQSQw44AD56feVUpLZ1ZHglli7vkhSaPU9PgNkA8CsWbPkhRdeMAOTLJAlAJQNPHUbyyPf/SVOwxqMlJubW07ICMhSFOf+LSV/LzJZDzvBRzBv5bxy8xdOuPERaXLifySxbiPzv2oIIgtIQX5RiYoQqwglA4qoArVBJ30GvEUF7lvReb3ywavPiqfzoIh0LQQD3gZWwCfQduvWzZgR/XOYXtlnn32M9XCLi56VtNb7itOACKANICMRqKxBi+O68Y+WlkFsNIRKTkyQoXXWl5u70PDwq8STlKJzEFwAhpi9pxmCsKBkQBFVQCREbdDu7ECiR6R41zZyv65b0RVtWS9rVi6XWh37OZryrtWhX8jHWJ0CVnZgxowZZe2FdBhw+7pGvUuHEUUgKBLgd/812/xtGSEFOuak/K1mdoSdhlB3j+ohj95zW0TnLijCFyEy1ExROSgZUEQdEAkl2UwGvCUlJlXutlWdWdGuXSielFqSlN7c0X0lNWxuuhYCoW7duuUCLDV6Vsi7du2S1q1by4gRIySx8yBJH3x2xIKib81++/btpsPBwhlnnFF2O2ZJ3uU/yvbpb5nbqpohsJ63Zdo46ZqcY8omKY2aR2TugiJ8MMyMoWaKykHJgCLqgFr4rlE9bN3mgR0aO+qUV52At3HGR9K8c0/HAyzbhxAEwo4dO8r0AQgFN23aVHbf6tWrZcOOIsk4/LKIBUVrKJFvzX7evHnmd8uWLeX11183rYbmsUyWzM+XnOnvSPbEJ0tLQWG+1+yP52VPfEK2znhP+vTpY5wZ04df7vjcBUXVQDmRoWbLNtrv0BmLUDKgiFpUv1RQGrj6Ja+VdVvzXNcOhiVw7a2rTMDLzt0amX0mJpfLAvhi4sSJ0q9fv7LJhBYwG/q75WDxSmRKLL5DiayShXW71fVw2223GZLCTAVgeSHQBkjXROOiPYr/CkiBdX/++qUiXz1YrttiV1L9iMxdUFTvGvHmTNUOVAZKBhRRB5TCKIarKyRMSkiQQalZ8vGD/5JVOe6ao25ZAi99+27zf0lRab3eaQw6eIDZ98233yl1WnWVlOZdjHkQ5QMC6tKlS2X27Nnlgr63XlNJa9cnYkHRdyiRJWj0RVZWlvE5ePTRR+Wkk04qu51Jj4Dn5Xx8t6x98XLJX/iNFOas3SujYQgHJkx7CGJay27iOfo/0uLSsdJo2KWS1rSd43MXwoGWKQKDa8SUJRtr+jCiAmpHrIgq0EMMEbALD5zQUya/94pMTj5A3AZS0tZKNFLWurL0BynO7FLqeugb8Gnh27LOmPikrZktl5x6jNx1112mnS/90Iulbt+jHM+slHNI/OmDkI8dMGCAXHDBBXLxxRfLddddJ6+88orphvB3VWR7kISdSQ0k48jRktaqYtMg635PSZF4E9yTFVBL5MDgjCwcc7haF1cAJQOKqAHKYExF6CW2C6lJCfL4qfvJ5W/NFXeAr2PggMeq1ElrXbP3SgZC6vWk6Vllt7r8ZUMeHD0uavYlxbJz2quS88sXlXoOgfHyyy+Xp59+Wn7//Xfp2bNnwBW06QYYfmlpgA8ju+Ga4OstKTWk9PNZUPyDCaMPkR4tGtT0Ybga+ulRRA1QBqMQthNsb+w0581xKtvemJqUKMPrbwi48mVV7lhaek+QrGh1X5Y2b9NLml/0rDTod4wk1M8Up5G3eqGp9Rf9OS2sYM3wIgI2I5h79eq112PwB6AVsir+AG4gAobceBIcnwER7WC4kSI0lAwoogJLN2w3ymC7DYfY3rzVW6QmYQX43avmy0098uXFWy6QDh067PU4J611ww0mBE4CaPqwSyMSFLd+/6rJQmzbtq1Sj7esk7FNXrRoUZkXgq9LYSz4A1jHHa3HH89DztwGPUOKqACTy5yyIWa79RyuJ7LqDyRSQ7y2fe4E+fvFy2Td27fJRacfb1z8jjvuuL22UZi9WvJX/Wq7tW5VEdEAFGZtvrCw0BgRIXqkPHDKKafIggULyvQCSQ2aRrU/gHXc0Xr8kYRnz5AzRWiookIRFWCEqVM2xGa7TCIOMh3NjpX/lrkTjQ7AGPskJou3uLDMStcCq9bDDjtMJk+eLH/++WfAbW2e+JS0uPg599SrI4RwuykI+pzPc845R9544w354IPyZZdGR1wZtf4Ahgx6EsTrLXFdO6wb0SajtooHKwHNDChcjx35RWaWuZPYnlfkGNnggr1t3gQT+As3rpCCdUvMb18i0Lx1O0ls3FaydibImxO+l3adu5YLVNbfpi1u0vNRGcSqO4woHEAEcB9866239rIqTs1sF5X+AGWeB+uWGLGgEoGKAcEf2sV5TUssILq+DYq4xKrsnXvsgZxFn9bpsuDvrfaSgpJiKfr7dzl5xCB55513yt2VnNHa9KozcwCr4RYej0APbp22XeTER6RTwXbZvOB78SyfLsf+X3/jqseKF+OchDrppfVuIyCLbWLgn0GpDKxyAG6JDFXyxaDzb5ElFXRNuJEMMYcB+2UGSqW2cGZ6ZayB7/JZB5U6USpCQzMDihrHzvwiWbR2q8zLyjW/+b8mlMCXDu5g68wDLuIlxUWy4YvH5fPPP5fu3buX1aszT73bpPvr9R1p2gX3Xul7pCClvrm/3qkPyeTifeTuR58tu3fbT+8ba13S5+F3GERPndl3GFEoDBs2TAYOHLjX7f5jjcHirYlRE0hNK6fHI0Vb18v2Xz4zbpS1Ox0YNcdf01kBhpp1yqxX04cSFdDMgKLGugMQBaIFoATgG54Ii20a1ZahXTPNyOJIKYG9RYWSkeqVtTbp87iI5+xxytshYnrdfXvaw2nl8zTtKi+sLpaG+4+UFnkrjUKeDEHeqvmm/k3auyKPAA/96LShmTMcHfAdRhQK6CwwFmKSYqAMQVpamuTl5ZmBTwkOeyLYCf9Wztwprzju6RArgNgz1ExROajpkCLixkH4BdAmWJFgz7p/YIcM+emvbGfXs6ziiwrCNp4Jti1S96Paijx1+dGGFPA1MzPvh5xTZfHfPw58b0jtFdNk/fr15UoO6f2OkeS2+5WKFP3cA4u3rJP2tQskK6Vt1OgNEMrlZS2Qje/dUennNGzYUHJzc/e6HVviDz/80Fgrt7jgKYlGxJtotLp48ISecuoBWiKoLJQMKCJqJXzn+EXG6CecurxTKn8nLrYcK0EsZ9JzMun5u4yA7YUXXpDa+w6T+sMvd8Sq2Be1a9eW3YUlktyohWnHo2uhV/vm0rFtK/n8h3mSee5jEg0wl6WiAlmL0dDWDbZtl1kLzc991LbtKdyJG0d0lSuHdqrpw4gqaJlAEbHhQo9MWlKl50aCCAA7Vl0dGteR58/YT86Ycq+ceuqp8uOPP8rXP86WvEMvtG1lx3YaDr9M8lYt2CtQ7tpV2nVRt3CL5OTkmL/XJeXLnFkzpH77vR343ArOU/aeEoudgBwpYhudM+sqEagCVECoiEhGoKpEINqA/iElOVnee+89MxjniiuukK5njhGvx76edraTkJgkbU66OehjLCIAmOzH+OEzTj1FIoWqJhyt5+HJECjzEQr+o5WB/zk3nQkOJ0M12VqzWLpxhyzbuL2mDyPqoGRA4bhGgNJAvCC/sEhO+99nsmrVKhk7dqxMnD5X5m8s1SLYioREKW7SWZp06inp6ekhH0oN/aijjpIfv/40IoEw++vnxEuXQ5hOiVbmpGDTKtn1e+VnEFjAbdC/e6Bt27Zy9913/7OPwjwzfdFJeIvyS3+7ZLxxvIFS3Zszs2r6MKIOSgYUUTdcyNXwJMjfJfVl2IlnyVlnnSVNDznJsaDAduk5J+Dddttt5raUlJSgq+aFv85xPBCy8t4xb4IZKlSY83fpcVaSgFir+ORGLY1yns6LcMH8Ad9trVy5shwZcHrgE9vdMX+SrH3xcmMzXZy3QzMFEQZlxSlLNtb0YUQdlAwoom64UDSsTC55aJw88sgjUrvjAY71hLPdvIYdZf78+aaz4KuvvpImTZoE7K1n1UxQcjoQWp4AtbsPkZQmbaukk7CGIDFNkA6McGcSmGPxCcC8dt9jcHLgk9UKWbJlreyY+qqU7N6mHQA1gKzsXXv5lShCQ8mAIiqHC7kZkJ+FOV45/5LLjXGQkzBthMlp8vLLL5tSwIEHHmgm9QVDJAKhHdMAreexnbq9hlfruEaOHFmOHDDwafeKubYPfGJ7bBdjIJwPizxJxllSEXnwbq/MLu88qQgNJQOKqBwuBAgX4ZINHp8aAROjVZt3yt1PvOS41x9Bs26z9mUGO5988okx4LHS5f4gEBat/s3+QEhWYMVckeIiW6cBWp0TuDZWFd98881e2ZKcr54xx2zncbI9tmshKb2ZZgVqEJFyLo0VKBlQRO1wIS7j/ds1Mn9XRAqs+zEwevaMvuI4PB55/s0Pnd+PiIw6/gRp3LixJCcnl5EAVqbBgD2y4EZoZyAsLpIOm2dJo8OvsHUaINuhbIDLYlVRUFBQ5kRoITFvi+R+84Ktx5nr1wrJdEpFzSFSzqWxAj1biqgeLnTbyG7yzTWD5ez+baVtRu29jHb5n9u5f/K1g2Xchf2lUZ3AIju7kZwSmWDQp3dP2bx5sxnTa5GCUEjYnWvr5EMrEM75dYEj0wAhF2w3KaOVbdvMz883ds64OTrVChlJTwMVKZYHn+x2GeWnVSpCQ02HFFGdovtz/XY5vEczGTOqh4yRHrIjr1CmzF4ojTObSf26tc0FwX+WeaRWDDvWrZC6DlvIEgTuuK7U2fD444+vVFBgpez9Y4rk7pl8WH175NJA2HDYJRXOR6hu50Tu5LFhPc+ygg4GBj6V7NxiShu0a4ZDZMiGmNLAN88H9ESwPA2cLhWYfZT+EfMTLCuLNhm19/reK0JDz5bCEUQq4F73wXzxfDBfahXvlB1LZ8n66R9K4eYs6d27t/z6668BnwNB4JLpdfgCXbhplWnlYyqhUyDg7Npa6sUfKOhlZGRIdna2sSm23Akt1X3xrA/LAmFCUvKeIUaVD4Qe8Urqb59JnZXTZZuIGcXspDixVod+kivhkYHKkKNwBz5Z9zM3AY1AMJdEy9PAyfcfWGTDIgXxPsOAkuDQLpk1fRhRByUDCkcQiYBrgX3sSqwjni5DpMU+hxohW9qmmUEfz4qBqYirHNQ0mFVhYZ5p5UvqO9Kx1bJn/R8hHwMRABABRHS+tXP+tiMQpqammmmATivn6ZyoVS9ddm/fYvu2eR0MRGLgU90+RxriEWjgE+8r7ZN0TdA1UBGcfP/98c+xek2SoPxt8QNEy2cdpAOKwoWSAYUjiETADTXudUPbXvLcpAVy2fCeAS+IjEceN2uVI90OBMyijctNyx+tfPX7jRKnXu+GHz8wf+NCiP2xPxAUWmJCfxFduIEwaXeubF08Q7bO+aJcIKT+zjRApwMP2y+q1VDEhwxUVAbwBz4M6CuCPYduC0oRZCB4/8x5SEw29X+L4IUDJ9//YPB4EsqyA9vmfC75f/8pTUbdIPGSFUAk3CmzXk0fStRByYDCMTgZcEOBum+J1ysPTlktt959v6Qt/14OOuggOe2002TIkCHSrFkzObN/G3ntp5XOpbT3GSStux5i0sRFWzdKYt1GtgrrSNHvWjGvLCgHIgKUBuixR1iIAyGkAHKACU84gbBxo3TJzVoitVMSzZyDIp9yQ6SV89Z+LBLQvHlzWbt2baWfv2nTpko/lsBfuHFF2f+cw3AbMi1PAwiq3cLKULCIWf39j5Hszavjp3Tg9crFgzrU9FFEJbSbQOEYCLg15T5oXfgaDDpLdmT2lE8//dSQAYIHavvDB/SWhvkbJMHBQgbHQL04sV6GCQR2tvIVFxaU62kPBAL3Tz/9VBbIrr76akMEWrVqJR07djQ/QfdRmCfFm1dJwbolkrZ7s3zywbuyc+dOU25o3br13o+PkHLe2o91LjdujJztLFbPdevWDft5dnsahAP22WjYJSJxMieBM3zOqz/L2S/PMnNRFJWHkgGFY+jctJ4M6tS4xl0IW4y6Rh58+iUZMWKEab1jhbxixQpZ+MqtUlRY4PhF2ipfONnTHggNGjSQNWtKMwd5eXny6KOPygEHHCB///23+YEYsa2uXbsGfL5VVvjrr7/kiCOO+McVsGFDoxOoiWmA7KfcfoNkOZwARIjzGC54n+z0NAgHZp9hdklEM6y1x4y/smXYY1PNxFRF5aBkQOEo7ju+pyTVMBnILyiST9akyYMPPmhWkpCBBQsWyC1XXyL1l34VdelTWvmO6dFYzj777JCP8y8dsKqFBDRt2tS0F86cOdOICimhjBs3rsL9kmkAnDt0Ar6IxDTAqtTsbdcsVJF8INTcNv0t83ekMwTR9vm2A2Qk84tK5OaPf5Onpyyt6cOJCigZUDiK1o1qy12jetTsQSQkyjpJlwOGHSOdO3eWW265xQSzu+66SxZ+NlZuGNFlzwPda9xi7IOLCqRv4e9SvGCifPTRR/Lcc8+Z19OoUakLY2WCOfV1hhqx6iewQYwoofz444+y//77B31usGmI5bYfoSFI4WDgwIH2HUM1g3ju9Hcke+KTVRrvrKg6Hpm0RN7TDEGF8HjVukoRAcDO+VLWFAgmu+Z/JenLvzHZgW3btpnRvyeddJIcfvjhsnB3A3n+l2wzbjkSOgdL0FXZVr78Vb9KnUXjZdem1bJuXekKvFu3btK9e3eZMGGCITfWV5nOAl5fsO6BQPD3IfCFr2IfvYU1GdAfdCO0uPg5cQp/v3hZpdr5fFGnTh2jdQgHlED8Mx92gjkLlW3lVNgD5pFMvnaIWZwoAkPJgCJioH535/hFEQu4/qjvyZf8j26RJUuWSGZmpqmZ87eV/r7omn/Lulb/Jws3Fxudg9PHaFz1Eoslb9dOKUxLD9jTnvfXHEla+ZNsWv6bue3CCy+U4447zrgNEuytgI8+YOvWrbLPPvvIn3/+KcuWLZPbb79d3nnnnb1W+ARz36+9f8AMFfCDwfIwyDz1Hklr09PWGjWraHwNaH90EziXlFuqilCtnApnWg6xI1cEhpIBRUSBwvfWT36TH5ZtjkjALQevV8aOqCcFu7abQDl//vxyd0MQyBo036evdDnqAtmV3l427fI6Xjy4tXexDDmwl1x87a0y65c5RjFfsnWD1E1LNql8AjWrfVarBB8CL50AixcvNqLAV155xWQLIANWTXvo0KFy1VVXySOPPCJz586tcKXL6OOff/7Z/E23wOrVq6v0WpjU1/zCZ8STlGJLcDNDkIoKZN1LV1QomKwKevXqZTQQNY2UFl2l+Tn/q+nDiHkwn0Q9CAJDyYCiRrB0w3Z5a1aWTFmyUbKyd0WsWr/2ldHlesd9QQ9+u3btzIoPFf727dulTnojaXX8TZKX2Z22AEeyAzvmTZTD0nNMt0P9+vXlgQcekHnz5pU9pl69eqa2b6XxKQ/QL495Dsd60UUXybPPPmsIzn//+1/zeAgD5MC0NyYnGxIRzKDH/3brf7QVlCBCBctA26zba4RkHHW1TWdIJHviEwG9/6sLtBZpaWllGgonUFnjopTmXaT5uY+K2xHNfgUsPhhYxhwTxd5QMqCocezML5KvFq2X6z8ov1J3Autev870zgdCrVq1TNAk8HLBs0RzGec9LckNnbPaLcxZK2vHXiJuA94EnBNIUbioP+AU24Ygbfup1GUxWlCW/u/Yz1g071X+2bLOiC1xJ8SUyDwns720uOApcSv+0bhAmrxRq3NggunUG4bW9GG4EtpNoHCFdfE+zSKTugtljoN2wLLu5eJn0vLeBJP6dhJm5ZicVqnHsuLnokx2wCIrBGwGEpltJSWZkgKg24BMgQUyBJ06dQq5fd/ARcnBykbgLRAM7H+//fbbaxpgVZXzZhpgUYHJCEQTEUAYmHnq3UZEWa/vSGM45U+ELCMq7udxPJ7nRcKnoTr4R+yaICV5pfoSpzpHnARZSBYfir0RH04UCtcjUoONEnaWDu6pLCACkfDcT8loKfnrl1f4WCud/ccff5jn8QOJsUSQ/G/5C1x33XXl2g4RBVqDi4LBCkhW+t8iR7m5pZMRA4F9B5oQ6dQ0QDeC0gjTH8sMpipYOfvO0Wh+0bPGlCgSEw6rA+uYE1JrG7KWt+Z3SaqfGVXiRz7dK7N3So8WDWr6UFwHzQwoXDXYyEk0r5skid7gq4JTTjnF1JD5YYbBWWedJQMOHiSRgNcTPHgEu9AacZ3fatLqAkD/QGYDkyH+trYxYMCAco8nu4BOIdC2rWxDKODoSMYhaIfB9k2mC2Dti5fL9rkTTEnE/5jNuOecteZ+2gd5fDQRAUoiaCSMaDLMLgoez/N4fvHOrVGx2javMTFZarXbT3b8NlnWj4uuIUgFRc7oQ6IdqhlQuAZjxi9ydJJg3m+TZETGVrOqnjNnTsDHQQSYbGc5FR51xiUyv8VRUlPCRgItfgi0CppBOWE64PkL/Pr37y+zZs0q+585Bd9++21QS2InWuyqMg2wKq89HIQ7/dApsWQ0IvvrZ6XRiMujJjswYfQhmhkIACUDCld1GAx/fJpj2z8+ZaF88vpzsmrVKpM+z8nJKbsPBf/gwYPNYB9+ZsyYYdz6CFytr/vA0QsdX8HVj55caatdVtx4A1AygCxQ169Ov7sT6NOnT7mOCMgG/gexBGr9pPjtbKOk/TWaBHrmmIsKpHj3Nkmq30TcDt6lhWMON5lIRXlomUAR84ON2B7bfeyuf5uhO5MnTzaDd6z0Nhfy9u3bS79+/UydnZG/pNfptX/r9VckJX+rOImSresloaTyJj+QABT+kAD0AaGIAMShsrACWlUm8/nDlwiwXYsIcDzhHJObgRaCoG3nACrxksKuWpaiJmANQoLEREOJo01GbSUCQRAb30pFzMCJwUZsj+0CAtFhhx0mb731lmzYsMH00kMETj31VGO2c9NNN5kygpVCH3XCyXLEgd3EqVlLXEB3LvulTKjnD+r9lAl69+5tsgHlnluJgBFO/7y1vR07doR8HOcQx8Nwt2sdj1M9/YFAZoe2Pfr4+V3Zro3KtA8iirR7GqDREOzpGIkWcMxJDTJdn83gjPZpXdppo9gbWiZQuNK2mGljduHBE3rKqQe0CfkY3AhfffVVM71vu6eOdD7yAklp10e2FCU53uEQynN//PjxcsIJJ8jpp58ur732mjEBOvbYY00NnaBKvd7qJPBvPwxGMGqqvu6WPv/iLetl1/JfyvX5h4uGwy4x7YFOBEAIYsGmVZLatEPUmPxwzMW7tkpi7QauJwVkCVkc6JyC8lAyoIjpwUaHd28qL5zdr9JWyTd/NF9+/CunNF3rgONgOZQUS69madJm+Xh55pln9rqboD5mzBij2L/yyiuNvfATTzwhDz30kNx8881lj0PrgOUwHRCQBVbtDCqqjNug06jM/qy5BpEcAGTdv3vF3Cq1Mba4dKzjbYAY/JAliDa4ncBQNiRbyDTV0ypYJMQTlAwoXItLxs2WSb9Xv8WMEcVXDe3sqiFKvp77dT35xiho5cqVQR9vzU3417/+ZeYRHHPMMfLdd98ZvQATB7n4nnHGGSZ7QEcEVsRsk5Q/rYO+YslQYKbBlClT9grQkSYR4XYo+Pb5h5O6NwZHJcWmzx9fhMrAk1JLWl/7vusCntuDsBtRmWtDvCD6aKciLkBwtoMIVGaeOVkIyhL5RSURG5zERXtInfXSMKXEiAADEQFKAfwAiAAgM4CWgcFCBHuCZl5entE7jB07VkaNGmWIAASB7dKOV1kiACACwH+lTqAh8xAphEME7OrzZzvBdAa+t6V12N91QbfMLljXdrZeG+IJmhlQuA6k64c9NtUEZ6fnmdutT6gsbhzRVa4cWmoN/MUXX8gFF1xgXP4C9dKzSm/WrFmFA3WaNm1qMgG+44jdMq7XKdjd51+0c0tp3dtPZwDcRgAUzl4b4g2aGVC4Dow4Jl1vJ9ge2/UnHZQGIgZviSQnlAoaLSIAjj76aFmyZImcc8455n8mJ1oiQfM0r9d4HlRUV6c7wgkiAELtu6ZaBdEIUBqwaz3DdpLqpAecJxAtRMA6F7rGq961IR6hZEDhOuOhH5Zttj1dz/bY7rKN2x0lHYFg+SYkbFomK5+5UJ6+7kwj9PO9YJPyf/nll+Wrr74yXQB4IWCEhO8B7YUWOnbsaEiD78yBSMA3Y+EfGCPZKuh4n3+UwxooZPr+wxwQFa8IdG2IRygZULgKb83Kst10yALbfXNmlqOkwxcm2G/fKF0TNsgbp3WWZS/+Sz4e96IJ9mQDevbsaboIyAosXLhQfv75Z5OO/9///icDBw6UG264wbQWXnzxxUZACJYvXy5vvPGGmTvg7zsQKVgkBgJTU1kBp/r8YwGGICUkSP6eUd3RYAZU00j0uTZUBKYeLlq7VeZl5ZrfsTIFUTUDCldhyMNTZFVO6dhcp+aZT7luiJz56KcyY1OSMz3R3hJpsHW5JM19X1avWGYmBbJ6Tk1NNSs3au/hrqZxBeS5OA9Gwqvf7XCyzz8WAAFg8BNeCsZzoUO/qJouWBNom1Fbpt4wNOB9LB5YqEz5c6Nk5ewq5z3CGWXI2tCumXJm/zbGSTUaoWRA4RrsyC+SnmO+dtTkhy/ulpculNon3uNonzgWxn3XjjeqfmyPWfn/8ssvZVMFcUEcMWKE1KpVSz799FP5/vvvjT/A+eefbzIBzZs3N8+FONx6663y1FNPyUEHHSRHHnmk/Pe//62SmI9yQ0lCcthDgiqLQASFNke6HexGJPr8ox1Mglw79pKy/2t1PFAyT76jRo8p2uYWrM7ZZcqJZBHJHoTKJFr3R6upkZIBhWtAym3kU9Md38+6cTdKs7MecnaVxAjgKfdJ4e4dJrXPHAFfQBAgBngA0BaIBoBZCFlZWSb13qlTJzPch4wAQXzTpk3y448/GoFgmzZtZMWKvSccBgL7yezcW3a32F/SjCNfs72U8kVb1snu5bOr5cjnD/9BUHbCrX3+boP/AKzMU++WtHb7icdpM60oxgSfiYZV9R6JVlMjLbgp4m7OeFJ6U+cDiccjS9blyo7Vi4MGaVbSBPdFi0o7Ggj63IamYPHixeaH2/ixesgpL1SWCBi1/RFXSlL7vlI3iCMf22WFndR3pNTvN6rKjnz+cIoIAH9CowgMzhFZIEZjWxoLReWuQU9XwwEV4sAPLcubd+RHjamRUkSFa5CSFKGPo7fmyQ2ZAmYK+GoHIAGk/31nCli3WTqDyiTyyCw03H+ktLj4WUlr29vcVlFt3bqfxzOWl/59t4IShyK8c4VuQIWElbsGvftLli1W6NFmaqSZAYVr0C6jjqnbOR2ra5c4J1D0RaIn+CtBG9CwYUOz6qdcQF0dcsDo5KVLl8qaNWsMEaCMQLaAWQOVFQzW7X+S1B9yTpXsaQ0p8CQYI5+EOumy7af3w3o+xwoZcdKgCK2DIrxzxdAmFVtWAK9Xlvy5WO78zt6s1h3jF8nAjo1dryFQMqBwDRDuoMp1upvg8znTpNc93+yRDDkDAnHepuD1dyYkWqBFkNbBFi1aGBdBRIK07UEI5syZY0Yq16tXz9y3bNmyoNvEg+DKR9+SJ37abP6vairdel7DIedIyc5c2bGAc1U5RKLDIbVld8f3EQswepDcdUZjwfRGRWh4dmbLta8vlkSbP1+WqdG4C/uLm6FkQOEq0J4zbtYqR/r/EfYM7ZIp9WunSttGdRwlHRWp9An2BE7LPhgdwKpVq0x3gaUbIFNglQxoKbTaCgPpDxAbHnXKOfLMzE22kRyCScPhl0neqgXV1hDYBaODOPSCqB/KU9FURTs/g2a+QhSfq0ggMcEjIwf2lPEL1jlqeNYp071th6oZULgK9Ok6ZQTEdrfsLjA9w5AOp8yNuNDv/mt2yMcwRAgiYAEPgoyMDGnSpIn5oTxQWVBm+Ouvv+T1RflSWGRfXdjY8CYkGqc/t8Bu18FIAxJDy5/xAFj4nWN1fN/PoGosKndtSPB4ImJ45lZoZkDhKmDYQZ/ujL+yHSEFny9YJ5/+ulb6tkl3jHQQrPo3KpA/27c30wjNKjY5LWB/vzUqGEdB2gf58QX3UyKgBk+mIBhoH/S272P/a0lMMir0pIxWUpS9RpwGGgpfAaUv0pq2i0pF/MZPH5DirRv38nVA4V9330Md+wxunzfR/K0ai4oD9cAOGTJv9RZHFyJTlmyUMdJD3AolAwrXAcMOphY68cW0tjl/zVZhEcB/djptWBeWcfe/ajIQb/y0Qr5ZtE7Wby807YaB+vvzF06W4ty/TcD37xbgf0YSBwMrZDIJJR0GijiUemaVWa/PUZI7eWy1t0UJBO0Dw5j4IfhjuIS/AghGBECtniMikl63XTuyfHbAkhGeDrRyprXpZautMjMJ8rIWlJE3Q0CivKziJPAEuG1kNznyiR8c3U9W9i5jXexrauQmuPOoFHENVLcYdjg5WtipFQAXlquGdpKzX55V3rUswCQ8+vtT+x0jJf1GSf1df0v+9Ndl+fxZZQERLQCPowwQrKWQ2zdu3CgtMrtKskNBkuBbt0t/W8gAOgk6JvjBRCkcRKMivmhb+UyPfwYETwdaOcWm0gefBwgT2y27rTDPEE91bAyMu0f1MN9Rp7uY2P7K7J1lpkZug5IBhSuBcxeGHXb1+0YKR/dsLue8+nPZNMSKSEfJHrHfzrqtJOmo2+WlxztKo9zF8sMPP8i8efOMeyGjiUOVCBJSazuuFvfUyzSlDrusi8Pef5Qq4pMbZErr6z7Yy+XRInwIM3O/ecG0ctoBCMXOaa/tJfhk3xhLRRuZcgyQa49H0rOmyb0X3iJbkxqK5/CbYsZYrSpQMqBwLXDualw3tUqWoDWBQzo1lo/m/V1117LiEhkzcankTn3L9PczwRC9AD+ByIDlSpjYwHlHRV83u4oeZ2UxfP/2h6WV8H8cMxkQVvp3TkSz62BFLo87Fkwyng60clY1nW89b+u0cbLll8/3OveQEPatKC2jkD3J/eZ5WbWnbbZOq67SOJaM1aoA9x6ZQrEnQzD52iGmDg+cUvuyWU8Vts/jU5MS5MQ+LWX6stL+/irDp7+/bq/hpqOgQ4cOMmTIEFNr/+dhpY9r3769jBw5Uo4edVz19lvZw6uEKt03AIVyS/R1XvR93Lp16wK2UMaCIr7M5bFNr71cHiF/2ROfFG9RgQlWYQe3ogLJnviEbJnxXsBzb+kTwt12LMHjLf3MdaxXIvcdXEumvfagKVeh1dmwbKGDriN79r/HWM2tiKlBRYgzqMmQioGBceLdKtZQhA8Eec9MWSafzl/r2D72b5Muc7K2VHpC2cAODeWYDsnyn283SJF5uA2XFL6SxYWy88NbZMf6VabTINTXtO1+B4sccYs4jbWvjK4wMxAuLGLj+/ogQeglIAWWkyG98i0ueEpiBdZKPnfqG+VcHvFRoH2SromKxJLW/VamoWT7JjMl0n8olu+2ISGepJSozbJUFY3qpMioXi3krIPaBO31HxKB8enBRiS7AVEfKeNhzrSiFLx/6bVTKgzUVQXb7dkyXR44oZc8/+0i+einxeKt09jvwumVtMLtUrJmoeTM/FjeWbVYvmUanJ2KcFK8ngRJGnCO1P/2CWNbjPOgv9Ke48J18NgjhsiHe2qgTrvZ2RHs/bfrD6yX/RFrivhgLo+UDja+d0dp22GfI6VWh36lLan+nSi566Qw61fJ/WW86RqAPJFtCUYEECymFe+0VZ8QTcjZWSCN66WENP0ZGgHDMzcjajMD8TRnWhE59t4wqUga/PCYTJ061fwfzB/AAhftFhc/59jxNPnledm5drmxJA6FFpeOdVQtjlHO2rGXBL0/lD4glHdAOGhx6YuS3DD6RIQVqv+LCmTdS1cEdXkM9hnErTKYsNR6P3y1GRYaDr9U6u9/jMQjHjyhp5waZKzw0g3bZfjj0xzb9+RrB6sDod1gqhR96BjTgIqYnHU/j+d5PF8RfdiRX2SyP04ipzBRps2YVfY/F11S4wXrlpjfvkSAC256v2OcmwbnLZEN9bpUSATMiOO1v0fEzS4YOBcchwWyGX369JFBgwZJ7969pVmz6gkAee7u5b/E3OS9yrg8BvsMhuowsYiZPxEAOxdOkXgFQ4NYSIYyPEu0WZfE9tium4lAVJYJ4nHOdDyA2nBOTo75yc3NLfvb92f1Dq94W4x0/OKc1ri17F63NOhjqMuyKmPAUGLnA02PuDMHkyAlzbpV+DBW3fskb5ZlDvoMWG52weAfdHgP+QkGVqytWrUyNsz4JIQyVrKCW6wq4p1yeeRzCgmDNNCeaiGeHQkrGhp0nwOGZ3iPsF23I6rIgN1zppvUTQ2aMlKEDy7Y1CwDBfJQQZ4fhvUEAgG3UaNG5qd26+4iEfBNychsKmtCkAHGDfOzZWeetK6T4agKObFBs0r193/3yVvS7LRuktx6X1t7yVmJ562ab7sVMeTBch2khZL3OdBnALIA2cGsCEV83prfJa1V7E0tDOXyGKoEA9ALYEwFateuXaYb4DOKHXas6y/sHBrU2gHDM0yNoqE0HTVkgNQO/ebxOGc60uBCjYgrWOAOFeSDzbEnbWwFdf7GkrZbt25ltwX64XEECguL1m6VkU9Nd/z1p9evK8FCH8GpdevWZupgWrNOsjoC/f3JjVpIwYa/Qj6O87Ttu7GScfajRnxom5tdcVE5NzsnwGcm2OeGTgpfFOWsFW/LbjEXyCBwiAVzZew/vg5JSQHdJ/3JgUUEQDABoS/i3ZHQGho0ZlQPxw3PbhzRNWoWnFFDBkjtWK5u8TZnuqrgIuG/Gg+1Ord+mKgXqNbIxck/YKNm9w3egYJ6gwYNytWTqwpaRQkBTipe2f70Lz+RF597Wu644w6zuvK98A4dOlT22Wcfyc7OltW7IuPmVrd+uuRuDL46POecc8wI499//112e1bKHE9XW/ZL0Mn55vlqjS9mxU9AZ2UfCkxsJK1N37fvStcfqa27xxwRsGBEgnuyQGa6YZBzUJHmm+8p399A3+FIOBK6PetQmaFBV1XD8AyyQWmAjEC0EIGo6SaoCZUnp2XSpElmmAoX2poENb/Krsx9fwKZtwDq3aFW5P6rc+vvunXr1viXPJK9wOvXr5d///vf8sYbb5Td/+eff0qXLl0imqlo/utrsnnZr2ZMsf8Ffr/99jNka8aMGSZ4ZGZmSkqfUZLY57iqX5T3tCnmTn1dtv30QbWO3QrsuChCHCGagVLXlbUkbn3t+zX+GXQS61/7l+SvX+74fpzugnE7+AQtHHN4hT40q+Ooay0qMgP4CDjZW+6fMmKFdeWVV5ppaqeffrq8/fbb1d4PF2aCc1VS76xOA4Eg4Bu0WV117ty5wuDOCixaEcleYMRXr7/+ulxyySVy2WWXydq1a835jWSmgsA8Z+pXUlKw20wnpH6+efM/Toe//vpruYczArn+zA8kvWCnJBxwqnhpGPKE0TSEkY23RLInPS/b538d8qGBatlWG2GnTp3M/8xWAHz2f/vtt2q1GEazJXFl4fUk7lWW8i+VgMTU2pKADXWQlteKUDYxsW3vuJxXUNmhQa0b1TaZ4zI/myUbzfTBvfxsMmqba0coUyO3IyrIAIZCkZgzjaJ5zJgx8tRTT5VddPzny5PuZHUTTtrdelygCyGqav+A3bZtW9OWFSr1Ts3a16I2XoB51Gs/VW1lWZnPAl9mfxx88MEm6OKZ7xuMWFVgauVkpqJoy3q55qrL5cYbbzRB4euvv5bbbrutnDrcAp+JfffdV6ZPny5bp7wj6Ut+ltRDzpO09n0q72a3an453/xQCJRUtD7jkAD/+6vrNRALlsQVwV/pz3tukS7LiKh2xwMk0Y8Y+Y7EtoYhVYSyiYk2aUyiDeEMDerctJ5ZMBInYtXp1vVlAnrLe4752vE68Zmpc+WJ/z1kFM2+p4TUOGUCK6gHa4GCwVcl9U76FEKgqDwYD4xnhJ0EkawA8w8q0o/4XwjenpUl785e7QhZZYU+oEmRNF873ZCARYsWmc/KAQccYIgJ//sCcuhbm/cPIg26DRRv7YxyToWWm13eijmmfZCugZq6JFSomo8xS2J/8NpXP3py2QqfLAsEb2txsjQ6/IoqWRRXROqYjxCPjoTgw0sHSL92jWr6MFwD15OBSNVlg/muU18/++yzKwzwPE4RGVDHoxc438ZxoAwbYiBSoDpfKMtrp/H3i5dJZmqJHH744XLEEUfIsGHDzGft1FNPlc8//zysbZnVX1KqEaolJKVISVGBIQK333yj3H///YZI2OUWaDc4rpKEZDMOOFZXsYFcHgnWOAYS4MOxu/5nMt8LZipiKNQfcEq1JiZGM9qqXX30kIF5Wbly/HMzHN/Pk0e3lpkT3pWxY8capbhl40lmIJgQT1GznhN29gIHsikNRzxkO7wl0jpllzx7cneT+jfK/pwcefbZZ+Whhx6q1mfSP4PgBBg2RJbNbmLhtO1yRXAqYBK4t8+dUM5noLpBOtgwpECoKumIBUS78M8uuD4/Han5zx3bt5X77rvPiMTeeecd6d+/f5mS3+V8KS5BL/ANI0pV/U70AodreW03UpOT5K6R+5j6P1kBSyD6n//8xxABugbOOOMM+de//hV2mclOIkB5jGOzYB0LPhUWEQjUVkp2oyqaF2riNWlJ7NTK2d/l0QTnIedUa58ev5HYoUD2gPkIeVkLzP+xZvscCmpXHyWZAWq0+0ZAM+DfZsJpmTx5shH+nXLKKQ7uXVEdPPHtEnny22VSHObHOFQvcHUsr+3CtsnPSe7sCWX/k6GiRY8getZZZ8nixYtNOyEmM6H68u0CQZ79YA7kf8ngPjpb/O2HIQoc1+jRo2Xp0qUycWJoS+PKIDWznTS74GmpSZCCt3P1zPYIwkwrdGLUcGWGIfki1MTEUh1+7JcSbhjRJe7s6l1PBiLRW96yfoqcm7HCeKRzkV24cKEsWbLEZAWo03755ZeO7VtRNfim8JkrUtmFe6JHpNgrQVOCdpcfqpbWfV22z/zQmBsdeOCBpnvliy++MGUrHgMx4L7GjRubz+gPP/wQ0mCmuqAVtUOHDsZjgd9r1qwxngEXXnihPProo7J6daly/aijjjLtuJYLHi2ZtEOScQv3MgPBQFwbSLCbaffI6DBRUlggnqRkxwK1E6/Pn3BUFr4TE5scf4sk1W8i8YIHQ0w4jEVEBRkYM36Ro73lict/lKXv3RdQ0XzLLbeYi5nCPSBgV8UZzCID/zqss1x9WJeICBPDuVjT499g2dfSMj/LENP58+eXpdqxG8Z3nhJBJAR+tLe++eabcuSRRxrCQavgtGnTjNshJbRZs0onO0JW8BSwvDg4zv/7v/8zhl12IJC+we6Vczjg2pAz6XnJOPxy27aZPfEJ2bHgm4iYASFIrcqciXgwfApHVByLcL1mAKD0dNJn4NnrTjc12ECtTT169FDNgItACp+VOwG7Kp8JsgKPTl5qthMJy+uKPjtWbbZk3WJZ+9IV8ttnY00gnTt3brmgT3qeDEFFRKA6F2tW4+eff775e//995dDDjnECBbZ54gRI4yWBkAEDjroIKMF4PtBRsCaIcFxfvvttwG3H65GgGMIpG9gBY1KviYCE90XO+ZNMKI8UNVrg/U8skAWEQD1+h7lXL2+pFjSDznDtGiy4g8H8WD4FMyuPl4QFWTA6TnTww7c15jK4C7nK3biw099ltTo9ddfb8Rcbmy7ihfYPbXyPR+hEO2DlBzsJp3WBdQ/aBjv+Zy1RkHOam3NmzeXpYkrSvkHuiij3u/bt6/JHnTv3l1eeOEFGThwoLmPz/Crr75a7vH+or5zzz3XfLZfeuklU/+nbZGSGbV+gjhlM36ef/55Y8KEpfCDDz5otsv2fY852HckHOEixGTOnDkhBW/VDcjhgiC9+6/Z5m/U+dkTnzQpfpPVCWc7tP0VFZiMgGX3zPsG0jrs75wjYEKi1Ok22Hg10KJJZ0bDYZfI/oceHTTQWwSuTr3QTn2xPuEwHhAVZYJI9ZaTmiXFyUUPXH755TJq1Cj5+OOP5dNPPzVe9UzbO+644+T44483Q2t8p+opovf9v+3jX+XtX9aIVxxqG/v1K9nx61dVto9FvNeyZUtDWEnLoyHAeAjR3ssvvywXXHCBvP/++8Z/gCAKMTCGNVu3yqWXXmrS+JQYEPX16tVLfvnlFxMAqP0vW7ZMBgwYYASJBPITTjhBxo8fb/aLPoFSwYcffmgIB4OEKF8MHz683IQ8gka/fv3MtnztkoPBat21wLFCUNjHihV7+324pSXOP81OyaLREVdWyRCorie/XNmnJlLx1jHlrZgn2V89HVRgGOuGT6EWjGf3bxt0wmEsIWrIQKR6y/EYOPTQQ2XBggVGDDVkyBBzOxeumTNnGmLwySefmKExrKCOOeYYQwxo/2JCmyK6XAd7ZCRJ5u/vy9fJA4zFayQNZfyBYA4Q5PlM8UNWqn379mZOghUksCNmVY7ZFTV7y3yIWj7bIE2P2A+RIeB5jF1et26dUfdDBtguwlhS8ZAAPsvXXnutyQwgEAS0MpIBgBAwo+Pdd981K1hfEkB5DYLy448/lhMcBpun4Q8IDiS8Ot0Q4QRkpwR4oRT4lssjWQXL5dEiRPxQZoF81WTAtUyKtnz7oiGu/iVTygqxbPhU2eFlsYyoIgN2tn1dP6yzjA4gIgPUZr/66iuzygr04eeUQRYsYsAAFlq+6DzgAn700UeX671WuHtqZdGEeyXxqFsdvdD5W836goBMMGBFTicLq3A+S4FA5wAEFUtiBmphSdymTRsj7uN2tkNwpaxFVoDgzbb4rLLyhiDw2b3zzjvlkUceMaSA7QAee+aZZ5pMwsUXXyzz5s2Ta665xmQhWPH7gv1jhmSVHyDCmAyFA8s7wX/bVUVZQO7UX5IalGqA7EC4rXm+CvxwskApzbtI83MflZqC1c2ya+Z70nTzPPNZ9EWry15ylDBH+4TDaEfUkYHqqMmt3vKimW/J6qnvy0033WSm0bVq1apax0NdFVLAD9kDUqZkFyAGlBRY1Slc2k3iEenXNFFmrXdeC3LvoLry1tMPGv8K35UwqXoCNSl/evFJtwcCwb13795mFU9Af+KJJ+Tqq0t95clQITpkVU7WitU8GQZrEBaZLQI2osCHH37YCAW/+eYf4RqYMGGCKZNRUrjnnnskK6tUU0GAQIfA0C6IBiULWgYx6OKzzdCkcC4jZC+cdvWs23ekZIxwRvFfESh1YLoULtyUir+8b335cdzD5Syvm40cLan7Dg9vCmaMYMLoQyqccBjtSIhW9zlqvQyWARUJC637eTzP69eo0FyMaRmkhYqgTWq1qryINCnE4qeffjIp1scff9zUAa+66ipp0aKFuQD/73//MxdphcumVnpFVu2KDOPvvm8vE+xp1YMQsGKHOKJFQVxHuj4YEQCM1caSmDQ9JQH+53PGCp/VO8EZdf8VV1xhiAAgvf/HH3+YbBcrdzoB+MxTAgNkFSzXQLZHICMrABGABEBSIAcQAb4zlsER+8L90Kyag3xvICY83h+RsPfeMdc5xX9FqAoRACaD4IK1GcfwzKxN8vWPpWJJwGehZMm0uCQC4U44jFZEZWbAF1WZMw3bRRjo38vMCo2LdLt27Ww5NvQH7IuMAVPnGEe63377mXQwBIQLdzzW4Nw2tbKmVhdTpkwxmSMEgZAExKnBQFsf9sOWuG/27NlGF8DIbYI9wkBS+uPGjTPkgkwAQR4x7DPPPCOPPfaY2Q4r+TvuuMN87hDI+rsXoi0ga8B9t99+uxEn+q7mSevzua7OBEJEt7QgRgLVH/TzfEgiwPnkfFcXZG8gejU9e8ECrz1p83LJeuOmcl0gNW34VFOYEAeZgagnA76o7Jxp0q3UK31fumWpSoshqyW7wUoNwRa1W9KxXFjJKEAKuMBTg9VRxjU3tTLSdUeU/0zDpM7/0UcflYkHA2HVqlWmPEBLH6l9iCxEgJouHS3oCFDjo+InE0Aqn0yXNSyI1b0VfAnwPBdCUVDiMbXtpJQ0KSrIkxb1kmXlsj/N49gWx2bpCdg3mQAISUUtglaJwh/hCAvtRHUU/5XRCFRm/HJlQatfvb4jnWsvDBNJs16XvxfPk/zNa4zuoSYNn2oKHtUMxDZovUIgZYF0PhdVBFVOgwwBF2uIwWeffWYuvKiqLQX54MGDqzTEJRYRqamVzeqnyvpt+RFRJD/55JNmFU9gfeWVV0K2p1IGQH9Cux3BlPQ9nx9a+yAFjB4mZQ8pwC2TlkECPl9r6voIBWkHfOCBB8xtlsiuTqcDJaFB071U74x0bZi3ViY/d6fsWv9X2SqezyXttaEuF2QVsCb2D4zWWGS7AmZVURXFfygEGvdMZ0B1ZjA47UBYVXB+MlJKZNXML6V45xZJH3yWxAvaajdBbOPf//63qbUCVlB8qRH/IZSKJFhl0ZZldSZwMSUVy4WeCzAXfYJAvCJSmYFjejWXiQvXO2Z5Ta/yncd0NwGbtsAbbrjB/K4oG0Swp5WQwM6KnzITg3/ILFB6IiDhBki6GmLJ9qwsAN0wdBnQUui7Oq5oloO1Om7u2SLrPntUVv0+N2zfALejTnojKUhpUGXfh0CAXNBV5Nt66X9+KjM+2s2peOuzQatscqMWjo10dgsS1Wcg9oE2gEBLWhXB37Bhw4zwB0JQU+p/3goMYyAG/JDOJeXKagNiwG+ISzwhUlMrP73iYDn22X965e3Gl6MHygO3XCNvvPGGGe5DT39FnwWsgAn8/E3QHzRokMlgIehD30KdmUwAQH/C3AA0KjhlWmBln3HgMZIy4EzxSkIV6+YvGMe/cEEA5LidnqhoJ5zOXrDYsEovwfYZDal4j7fELKASEjzi9SS69jjtwORrB5fpzWIZcUsGLK8ADFj4ILMiR6FNmyFKa8setCaBMMzKGEASuLBDYCAGZA5YLcYDnJ5aaaUBnTI2OrBtuuR+fLd89913hgycdtppIT+XCAvJBkBM+Rx269bNfBZY8aNrQeCKtoWLMfqWk046yWQJCDLW1xnSiAfAmvo95NFvl7Fhok41Jim+IUe3TzLGQ9XNAEBc8EdwG/wNlaoLpkpSAuzTp0+5kmRlUG+/w6XREaPFzSjLChTsFkmpJbGGxASP6UAbd2F/iQfELRkIBL6wrL4IuBi/+Pu31yQQkVleBmgb+BKiLUB8iCKdem2swumplVYa0BHL40SP1Jn6mCybP8u8d4cddljQx5LSR+k/depUQ/QQuqIFINCj+kdkiOK8a9euJnvF46z0M58HTIAso5h7771X2g8701bHzpyvnpLtv35d4eNCCQUh25bDYSDUtK6gqgZKoV4HBC7QKOaKUH/AKdJwyDkxn4p3K1J1amH8Agb/3nvvGaU1NV03gd5wRGcEAGrADIzhoovTHKtDbGmpL1NaiDU4PbWStlPAl/4um2uDRbPelrVLfzPvG0LAQMBfgDIV6n2CBroC+voJ9BABQECgowDhK34VbA+nu479hsiNDzwjPy9dK/++7Y6yvv99+w8xxlxiU4GFbaYfdolJYVcEfyLgq4vwJwKWJS+2xtZ+LATyKHAC/oG2ukTA/3VYRICSXzgoNwzJqUmGNsB85kpKwh7Y5HbcPapH3BABoJmBAKBWiwELqm9qtm4GFxpaFSkn0LpImpO6pNWyCMGJhVWFUyn8QGlAuyyvC2d/JHVWTTcB/amnnjIBHNMfq1OEv1H7c3/Pnj3N31jzQgasryXvHS2olLEwK0JtnnnwieJt3l2SGzbfo3jYAyYhblkn+SvmSoP2vaSofgtbRWiWP//WT+81HQ3VBR00dDqQBYH8RCNo6cTQCZ8Hzkkod8VgWQ+rC6MmZy9UF6VkxWNKUbFwvblxRFe5cmgniScoGQgCMgMYtZDa9TUocjMIFpMmTTLEACEZ9rZkFCyTI0bauqn04bapldZ+mGHO6NKqEowE8RrRXQdZb4gaGpRTTjnF3E+vPv4CBH7ug7hRGqB1kPY/axWJDwbvn4VmHXtIq+NvlE1JjbnyhnSCczpgdPrzHZn2xfu2CAP91fV2pOjDhR2dEHR3XHTRRXu5D6JDgCSw/YoutRAKsn3BSgpWa2Ttjv0kMb18a6Rib1TUNRPMrv7uUT32GmAXD1AyEAR8ebmAs9pmRRfKJtaN4ELNcVvjlyktkIq1xi+TsnbL+OXKmkU5PbWyqjMvfNGpTqFMf/xKOfTA3vLBBx8Y335Eqv4BrkuXLqbEQ40flz8yOoH68xkc1Pfk0fLsrE1SVFxi7JNrEhCNnb9+KdmTnq/wscHMh2iPRAAZCRFfMNACCHmuChmwHu+bBfDXQvBecj/kIJAfQSDweXjuuefMYyvKvFjDkBodcrqkdurvimwBn438tUskrVW3Gtc5sOcGtZJly+5CE+RDfZ+t+wd1aiz3Hd8zrkoDvlAyEAJcLCzDF8vTPRrBhYvjt1oWrfHLTFeEGOCRH+nxy2U20n9ulKycADbSjWrL0K6ZRi/QuWk921P4/mlAu7aL6v6ErrVl7Nix5oKIB8D8+fPLBRvONQOBMKexLprW15CVMm2Dy5cvN90E4+Zukk//Kq5yN0BNjGMmoDP3A41LOEN8fAN0dVBR8MVYzHdOCFoM3qPKgsmPixcvDpjF8LV3ropVMZ8FSDoaIITC0WZSlFlLxPPHZFnXclDYFtBO4KVz+sn0pZvDsquPVygZqAAYvXBB50KFORA1wmgGbzcjl62WRdorSU1a45eZfufk+GXfNHxVGXt1p1b6pwHtzjg8cEJPM0zrvPPOkzfefq/CcbYEEN4DPls333yz0amw0tzauIekj7hS3IZg45jJPBHoERAGMtepyHAnEp0E1ZmLECqDwHYhB6T47TBf4rPAuQjVhWAdj5tMigiwC+4YLs3adpK6h15cozoHf8OgymYg4xVKBioBVgHU2xHjUTZwS3rdDiBYgxRADqzxy7SzWeOXmzdHpGYPqhvEUfoTZO0iFU5pEZITPXJI6zSZNG+5JKUHsL3dsk52L58t7YpWy3FDDzICQiZesqIlWHKRH3HCGbK00ylS5NKGn7WvjJbCjSvK/icTAJFBZ0O6O1xUNpVeXTi1H4ZMQYLCbSH0JUhcVyhH0l0SzrG6zaSIoT6H9ulSOu46hAW0yXYBB485XqyE7YCSgUqCHnD8Byw/eTd86ewGym4sbSEGiN5YdQwYMKCsM6E6cxvsSsPfMKKLXDW0c7WmVjrdpVAZ+A/E6dqqsUk/M7QIrceLS1Nr5Lgqi3WvXycF65YYXQBkBrJMip/sQCCdQChUdhJiVeEbVCujD6gqYfD1E6iqEJKyJEJS9EorV64M+jh/IyOmM2YcdbW4AZ9cPlCOPLCb0cv46xxSG7cyg7GOv+4BmbbO+WOJlyFDdkDJQBjABhZB19133y3/+c9/JJbBxfmLL74wxIAOBVY91FatzgQMbipLiJwW/lkINw0IkRj++DSpUXhLxFNSLNcPbSu3nDJYzjrrLLluzEM1f1yVyAw0lJ3GSRCnPdwPCVChUvA1ZSgEQWGVWtljYJXvG8iwgGYYVDgmS+GWI+gwIfijE0BrQHcCP08//XTQ5/i/FreYFJEZGLBPa/P6Ka/SemmBFtpWQ06R3+v2iejxxPr4YTvgzhykS0FW4J577jGtYG+++abEMlitnXvuuSZTQA84ynja4P73v/8ZdTxqeIY9UVoItdIiDV9qfmMf7hi/yGzXHwR+vvR92jQ0vytaDZBRoIRQo/AkiDcxWR6ZtlbSDz7NrApdcVwhYE34I+AxHwHbYyyGKwp+Jkglp0lyZntJbdHV/OZ/p2ERgWDwNUWivc9/RetLBAiy/sOlArkthqtLoBRJRojhUogOMaDKLxZp2L5n0HPlT2rKmRTVkAEQx3TndVeYjhBKjL5iUQTYKzdvl99r7RvRY2JxoKgYmhkIE5yuCy+80JABZsvzpY0n0PKEx741fhmiwMrJd/yyr3NcJM2C3DbzoKpZj2e/X+664/JFo+Qi+fN/Z5gLPl0RlJRCoaxu3LFfSA3FjnlfSmF2cPOdSHgGhLJSBqx0r7jiCkOK7Qa6kYbtuskF970qKwvqVOlcoUHw1GsiDUdcXiPiPUji3y9cbP4mYwQZ4DVw3WA43BPzi2X+hryIHpNmBioHJQNVAK1DTBCcPXu2EfswSCYeQV3Vd/xyVlaWWSla45c79BkoRz87y5XTxHbkF0lPh6chVgUpiR4pKCaYuTMzkOgROfugdrLwjTuNviFUMA7HOc9fQ1G0tfzq3ElY7oHB9AIEMwKb5ZJI+p4VvB2XTqsVsdyIafFKSYj33zpXeSvnSfaXT5c7V77nP61pO6m735GS0rbP3uI9B8DmzzqwjTTJmmLMtf653WNKH/998iW5e05kv3GqGag8lAxUEQiFDj74YLM6IlVueavHK/gYzZ07t4wYMGVv4OjHZH29Lo4PGKoKFq3dKiOf+mfUb7S6ptUEzmuyWu799+iQbYII2hoOvzTsXvPqjk2uCrADppQQyugHzwQMgapiw0yAJqNAkPb3UcCYqG7vEZLU/4zw+/JLiqWkuMicq7zfvzPdHHR1BMqMWCZFyY1aSZPj/i1O4bphnWWf4pVy+OGHmzLjJ59PlN1JdaV+eiORrkOlXo//iygB126CykPJQDUnCeJBQC2M1Hmoscfx1uNKDfTCT1bL39uq1tPt9Bd9XlauHP9caQuXovJZgVrbV8uipy8P+bjqCtl8xyZTB480GGWOSZdvRwCZLgaYkTUguLPSxdUznMunJfizxIVk0Yq6DrPtXJ2zf6ZpfcawKhQc8yXweiU5UeTo+mvl9clzpMMhoyQ7z65RWZFfMMQblAxUE3PmzDF1cpgwIjtf7/+quuzFAiKRhq9OCtCtmQE3A2Ha5tf/Jbs2Ba/r293ilv3lk7JjfmQyBIBAz/f4xBNPNAOili5dWuVtsUhgweAPTL9wGGx0wNGSNPBcsQvZE5+QxFU/V+h14KQvgZfuGESxLhmoVJ1SYrxBuwmqif3331/effddI6a76aabzG0o3RHO0R42btYqIwbzD4r8z+3cz+N4fCCFfLRiVfZOx1cEbJ9sS1VAZsadVXn3ImfScyGJAEGG0oBd6wu203DYpZUam2wHrHo7VtKWIVd1YE0iRJPgC/QG++x/sCkN2HmuGg2/THZKWtBhZJAbgMZg208fOKIhgAiY3zVMBMgKYDKmRKDyUDJgA7DwfeKJJ+TRRx+V6575yDjaoaAHFdXLrft5PM+jJz8WEKl2nqruh2wCmRlFaFjBavv0t2THgm9CPhYBnKl72xRk2A7bM9uNQN+8tQ8MxkBVAzWKfotY8Ld/+RBPhk3th4vXk2DruZKERGl2zLUBNQMcj2+WI6F2ffHaYJvsVpSUeOWqOBtBXF0oGbAJV111lZx1/zj5eE2asbYNVzTH43ke5jy49UU70EW4fT+UaNzcz1/TML3qRQWS8+VTkjP9nQrbB1HC212HZntsN7FRy4D32zVgC1W/FUSrOyyJlbm1LUSW6AwwMrJQp0UnSWzZw/bVM+cqsdW+Ur9V571IBseDw2XZMXRm0mHsXv55+ee8+nPMLK4igdj9NEQYfOh+2GrPgB9se9+L8g9xJNLwnj37qSrQarjV7tdJUM+tzP15WQtk7UtXyPb5Xwd8HBMIraCDjwDqdifA8dTrc9Ret7Pvqlj++oPVO+6JdqXsfTsO6CJgzDE2wy1btjQDqFK6H1rhe1BVsN3UfYfvZYzE8DFEvfz2pNSSxPqx3f3E1zqWFleRgJIBGxBJl71oQSTS8C3TU2X+nJ9l3LhxMmbMGGPle8ABB5jaKHMWKgKiTeqKbs0O2B0w2F7R+iWyfe4Eke2b9gp+/M94Yu7/+8XLZON7dwTt9+ccYyhjbQNDIdLUToAVNINu9kJSqqQ07SApzbtIg3Y9quxmyPwNArYTIMtA1wCaohEjRhjxYJ1OBzpWU2e7Sa17l78tOU0GjjxFGnftJzuS06X9fgNdMw47EoiFxVUkELu9bREE0/OYxGcn2B7bra7LXk2CNDwCSSdW3xiz/D75Azn45lKxl7VCLQtOtWpVajvXHNxUfly6QbxiX/3WDvA6TJreprqyOS8lxbLhkwdNgM+dPLas9zwhKUVKigqMe1yityikfwCgBm7Vn0l/b8zdZtzynIQxzeF46zcJ6mbYoIpuhswDAJiH4Y9htQDaNeGQbeBHQitiUq26kpjeTJxEcsPmkti4vdTveWjZeVro8UidVscIebQi2hElvsDiamDHxuUmlirKQzMD1QTtg4zRtTvgsT22u2yjMyuWSMDJNDwObdvnTSwfPPcQAdTbrMZCgfar2267TQbv30N2TnvVVUQAFG9ZJ1u+HWurwIxugLqef1LY3sI8M4aY6YNmHHFRflAlui8IbGzP6sNPSm8WAXc7j2Sedo+0uPg5qdd3pCQ3bLHXPvmf27mfx9FPb3UiVHR855xzjlx77bXliCR1dv9OgKrAGtTDdMfPp/wkjsPjkebnPx7yPMUbrMWVIjiUDFQTTg6VYbtvzoze9JZTaXi2h21tUfaaoDVbOjyYH+E7KAXgO0/XB+OYH3vsMbn66qvlz4mvmtHIbgHp/MKs+bL9169l96w9pjtVrGdbBCl36uumG8AKTH379pVOnTqVM67ht1XvtgYKkYK3huRYRIFgyWMhAowr9iT+M4vCSaQ2K22NqyjFbt2PsQ799Hgf+Ar4AgGzHlL5jCHmM0LNfb/99gt5PhANW6jMeG9meFxz3Q0SKdR0e5+bEAuLK6ehpkPVhNPDbqLdThPdAy2TiHnsQmpSghydME8evfu2gPfjDoe4bcmSJWZld+SRR8rJJ59siMH9999v9AQMm7rzzjvNBdpXBIr2g1VETQsLG/z4pFx+xvGyaku+jPs9XxJbdA97VfePte/z5doC8Y1nQt6vv/5adhvnqaRuZoUDhZI3LZG1U98rl4InOLa44ClxJbi8eTxSPO9TWfP1S0EfRvDHGZCgTusfQr8Nuz0hz4d3+0bZtewX2TZngtQt2SG5ubkhD4XP4KdTZ7v3XMU41JEwNJQMxLDLnltAkEXVaxe2TnpWhnWoLQsXLjQKaX907dpV/vzzT2nSpImZn/7XX3+ZWfEARfeNN94oF198cUD7aMgL6URWEVw8QpKCPYHGThC8e2amyKDUNfL0zzmmBS1cN7dwh/5UZaBQYdYCyf76acnPXmtWya2vc8bExk7g0BfIK4HJixAkLId79+4ti1aur/T58IhXqMBX5lxDONp33kcKj3vQ9ecqVhHtiysnoWSgGoiUpW0sjOCkvQdVb3Wxddo42TLjvQofh2agffv2ZvWLgCs9Pd0MliIrwG3Uu5mueMopp8gRRxxhRtf6osxKeslGycre20Gy1P/QbitXryR6i6Vg3meS0Ovo8If8mK+yVwpWL5TNXz8btIxigbR/rR6HVW2gUEmxyTyga0ha9bPUOuVBU592K8xKvqhA1r10hdFNWOUSC4wihzBmp+8jDYdd4tiAJTPX4OIXjMhPEXnEwuLKKahmIMpc9ljlPv300zJs2DC55ZZbJFpw1dDO8sAJPU2KP1wNAY9P8BbLed2S5Oz9M0MGt7Vr15oWrpycHDM3giAwdOhQQwwmTJhgUrkIxaj3kllgNUg9GQEZ9zNAxtI73Dyio5xZf6kkffpv2TL9bZGSIp/w74SVq0d2LP1ZkvY/sdQ3PkwDH+PY5/FIapteUnefQyp8fJ0DTzRzBKq0L4JlUoo0OmK0dD5utFHwO9U7b6ebYecz7yinI2FqIKBssrXVAMk4cnTVzkdiknke57PPmTcHfRyfx93Lf3H1uYplVMfCPNahmYEoyAxc1z1f/pjxjRkNvGHDP2lI0uCMXo0mhJOGt+7PW/mrZH/5lEnBHnbYYfLtt98GfPwDDzxgygZvvPGGKQfw8/PPPxtVOJmBCy64QLKzs808embIn3DCCUZPsGLFCnMbz+VxI0eONPXjiRMnmvN70IVjZG3j/R07J5aAb+efM6RO14G2bbfN+h/kh9cejMhAoS3Txkn64LMlGoCHgpU1YbYI739Bq362no9O2TPl2xf/u9ftDCgqrpspmw+8zLZ9KcLDJ5cPlD5t7DGIiyUoGagGGEu8r8OaAerSWY+ebNrA/JGRkSGbN2+WaESoNLyZ6JhRW4Z2yZRHLjtWdq4LPZIVEMRpeUMN/p///EcuvfRSE9DJFNxwww3y3nvvGVLASvC6666TunXryssvv2wIABoDHk/24MEHHzTja/laIKobcNb1sqKJfQE6WHp56/S3pcEhZ9g3Sc7rNd4BpMX969h2T62zUvBFG5ZLcvMu9o/GtRPeEtk25wvjswCaN28um3aV2D7FLzlBZOUzF5ade7Y74IgTZHFRY2M6lIADoOoGagSxUHZ1AkoGXN5NUJS7Vv5+4ZKg9/fr18+sbmiDQvyEYI5AF03YvHW77HfIcLniqqvl2GNGGothq6ZHZ4BvNiQU6CAg1X/IIXunyNEK/Pvf/5Z33nnHkAI0A0yZxLGQsstXX31lbsejnqlyZ555pnzx/U/yRfF+4k1Mtn/Uq5/ID8Ga3TPmIRpYCuMkaAGClH787fbPsy8plvy/F0tys06OjMa1E7gsrh37z3cq89R7JK1tL3tb8bwlsnvlr+bcG/J17HWS0CJ8MajCXqhmIDiUDFQTY8YvcsxljzQ5q5jNXz8X8nH0fdMbbb2VWMVCDqwfSAItdG69QBOMR48eLW3atDEiLt/j7N69u3GFCwV836n5QoLoC3/llVfk9NNPD/hYSAFai7feessEf2u6XOPGjQ2poq2M0bN41Tc49jbJyk+TYpvf2rTkBKmzfr789smzUrh5tRnyg0mOk2nxkty1cuKJJ8qn3810dF+508ZJQ5eXC/ierN6TbWvcsafUOfl+R89H+oBTjFWzqzMmcQLtJggOFRC62GWP7W6Z/XnIxxA4aZEjPe4b8L777ju55557TP2bnunMzEwZPny4SZljxoN4jrp5TQPB3n333Wf+zsrKks8/L/96WckGA6v75cuXGw0Bz8NGl9vOOOMMs+oPZCULKYIoULsF1nQ5RGX77ruv/PLLLya70LjjvrIiz34iAPIKS+T0fq3Eu2Wd+Z9edicH1zQfdIrJlnzwwQeO7yuxdgPJnfpG6f8uXWfwncHe2KDTIQ6ejxJDjKoiSFSII4srSo+KwFAy4GKXvbyV8ypsDyOtTQC0ghrBk9Q6NXRrhY3Knvo3QinEdWeffXZZOYHVMAY8Tz75pJnjjk1vJMHx4NkOON5bb7213Dx2Xl8wsMK3nN8QApIdYAIdWopHHnlEjjrqKNNVACAKb7/9tlnxcztE4cMPPzSZiPPOO8/8/7///U9at25tSga9T7xKEh1KpPDe/rqzXpnVLaY2Tg6uKWm6j3lvI7EvBgpt++l9yZ74pNERmPkKYSBSKnvLNTGlXR8Hz8eey6tLM3LxBhZXZx3UpqYPw7VQMmAD7ju+pyTZTAbYXqt1wTsVSP+T0r7jjjtMipuVLYETi1nKBmQHmJjGfVjPtm3b1gTETZs2mecTMBnMQvD88ccfjREPvdaQCIR0tNzddddd8umnn5qA6cQqj+Mhe+E7ZGjRokXy8ccflz3GavXzBVkQMh0IBa0gByA2P/30k3nN6AdmzpxpNAEQDM4LOgCIElkTRIKkzTkvr776qiFK559/viEFlC3e/n6BI1kB66I0ZfFGY+fbqGkLx/vzE3HPS04zo2sjNVAocdUsWf/KVUazALze0G241v35a6vvRVEZeIsLI3I+nIC2JVaNgLNo65RZ2kqq2BtKBmwAk7Dustnicu34x2Tx7OlBV8YETVbziN3op8d/AKtdgjn3UQKABLAShhTMmDFDVq1aZZTz+PZTZ0dZT7kAtz4Cca9evYwBD+lyWvAIipACyAFz0CELOLURPOfOnVtubntVgJiP0oAv0YAYMEAIK2HS+QsWlAYT2gQPOugg005J9oLjQ2PAYyyCAzhWyM0+++xjugsgMpwXVvzz5s0zq358B/z1E9x/7733mtdXu35DM3zHSSTvCZq33f+YRCotHqmBQsmNWpjzHCqrEwzeIj5TzpYXjLVy7rqInA+7jzthZ7YULPpW1r76L9eWYdwIFlcs2hTBoYUsm3DaAW1k8458W1z2Rg9pK7c+OjXgqthy1zv66KPNCvqFF14wK1xq5Ndff735oZ2OFf1HH31kVsGk3fv37y9dunQxQkNWz2vWrDEXa2a59+jRw+gOyCawYmaVbAVgNAfU2Sk1EHSZvPbUU0+ZCxFZBbILCBR9xYqszCuD77//fq/b2C46AISDmAFBeFjR85ohBmwfEsC54XgpdZx77rnyxRdfGDEghIdBRDyW18322Nb06dPN+YLw8Djf/UEennnmGVM2oMxy8MhTZYnTQcLjkdbd+srg/ztUnlwyK2Jp8UjghptulssefkMyzn6sLAXv8YRed1j312rTUzzG5Nc5QAQQD0bynNgBiMuad26XFum1pEP7drJj+2Yz0llRMe4e1UPHF1cA7SawGVUddkMaC/bKh/bUA9rImDFj5O67796L/XNBwFaX4IYLIcGcFfayZcvMihdScPjhh5etePAhGD9+vCEG33zzjckY0I44aNAgozWYP3++TJkyxUyfY/WPqQ/iOtLsZBvIKMyePduQCAIlqXieT7rdCr7Y+xJ8WYlbJMIiBhZJ6NixY7kgDAjo6AW4nYwFKX32BUlBD0CHgf/8AMSBkydPNsQEkoKNMMeJqyC3cS44dhwGr7zySmNE9Pjjj5usBpoCSBQCSvaBhoDsB+eA44MoUHpZsc0rzc99VJxG0Zf3S+cO7WVF19Mc39faV0abz0Tz8590fF8Jy36Qkk6DysyU3JZi3z53gvEZcPWApSClFE9hnniTa7nuvLoZN47oKlcOLZ3QqQgOJQMO4KcFS+SBb1fJ/I0FlXbZo55FGstirwQ2ugD8swMEdVL3rPwJ/ARCat2s/MeOHWuCKUGN+/Dd903Vkl5HKc8KmZGtBG9KAscdd5wJhmyLQItrH7VzbqMDAZLBap+SAlkFfiABVnodQkIKn785XsoUEAR+yFIAiAfH5UsSEDGScXj++edNMIcUYAh08803m0xAICxdutRkIyiBYBhE3R0NATbD6AggERdddFE5rwVGFZMxGTx4sCmpcE7QK0CAUNlDONAeQJQ4t0edeYmMmVm9EkhlsPOj2yV75WLHh/xYrXSgzXUfOCpocyMBCOZAGC0DlhThw39xpagYSgZsBqtPVuwEqJ8WrajQZW/Nz1/L9nkTZcEPk8xq2xdXXHGFCfBWixzB8tlnnzVueYDA+9xzzxmhH39DAFjVk1on2JNOJ7gSHAnGvoAIkPKHXNCWhwARkR0lB7z9IQ4QA7IJBGD2zcodcsAP20Y3QOYAckCQRUPASp3sAQSBH0oT69evLyMHrMLxDeA1cRGGDBCY+X3SSSeZwM15CHWBZuLgu+++a16D1XkAEeE56AL8iQSPQYfw0EMPmb+t/ZLBgNTwWi655BJjV4wjXSScJfnabXzmLMnfuU06XfumFKQ0cNxkh8/N7x1Pkayc3Y7ty7qc2OVsaGegDmTC1OLSsa4esKQID8EWV4qKoWTAJnAaqaWzwiXgkMKmpm2BAMOADIYOpSQllLnssfrncQRA+uWpb1ugdo6BENsmkBG4qG0TuAj4Vmsaq+L//ve/Zv+sjhHCsfqmVY60OcSElDmpc+73B0SCfZMxIONAaYHgyioZckDQRHsAOeCHdj3IBaNfLXJAFoFgb2UO+MG8B6DYHzhwYFkGgdfBCp7SBq2BBG9rqBDgGP11CJQROK+k+PEl4NxQ1uC1s2/OBVkIVv+8BoIIx4nYEQJF1oPj4FyzHYtEnHXWWeYx6B8i6SxJgE795n7zeiZtbuCYcZWVFr/psPYmOzLilhflr8RWjrTTmeDNH3YGcJsIge/UQl97ZiYU1us7Ul0Boxy+Fua0D2rXQPhQMmADUOuz6ho3blzZbe3atSsT4oUCgZYgxgWPAEt9n7S8BVb2rJyfeOIJ8xjc9S6//HKz+mZVz0rWAgGSFDtCOLoIIAMEW2rmL774olmNU1IgKBBAA4F9/fDDD4YY8MOxEZwpJUAMqL1TLpg0aZLJGiC+g0zwOsiIQAz4jfgPkaIvOSDgW0ZH1PXpaiAbAEmgZMDkQNL2vlkEugEAwZrXz/N5LMeE2JFVPaAjgs4KdAAYK0ESLJdBsiWUBNgmxIPzQAaD12QJMF977bVypQUnnSUJ0Dt//VKOaZFndBH1WnaW4Y//0yJpN0Z33CIXn3KMnHbaafLdnD+k2QVPSzwie+ITsmPBN+Vuc9r9UeE8Hj25txzeo5laDFcTSgaqCabakVb/7bffypnlsNK3zHRCgfY+AhUgFc8PK1VWrMFAEGTiHm8dAZvVti8I0AR8HkfAJatA8GSFTEaBtjyCMGUFSEUw8HrQD0A6+IHc0Lo4atQos39eN8dAvR1iwA/nAbCat7IG7BsxJFMXISe0NTJPnhKDpSkgbU9XA1kPyAH6Ao6TwUEQGUoCPJd6P6TH0lIQwDl/lDhY/XN8ZATwUWB76BfYDlmMyy67zGQ7uJ8uCcofnCcMiiBvZBQgSRzT0298KG9vDUyY7MAJqYvkg5efkvXbC6X9KbdKQUZHR9LiLZN2yjuXHmyEk7Rxcl7yB1wsSa26iyfBxosnK2+bygPBtl+VjIN1Tnct+Uk2fXzvXveTccrd70xJa9tbswNRCh08ZA+UDFQTrJBR7xPMfO1vSWFb7nfBwCo8WC82QsBQgZo6PCtaHkfpAF2AL3hbmdRHpoAVOoHwzjvvNMHz9ddfNwGQoEpgZoAPQTvUhZztsVKHFEBAUN2TycDNj+PgN8SG47K0BvSaWyOWWYlDIli187ogPUbYtnq1yRrggkg5A+Ekq38yAZxPfrNtdBEQDMD9iAcxXELvQInA6mTwBd0PZDLIpFhjiS1s377dCCw5VrZNxoVjJziQQeB96XLpk7KjdgspKU1+24b0Wsny+VWHyLQlG+XO8QulsLjE9kBkpcWPLJktn771sjlHvF+ct4x9D5a6I/8tJPXtSsHjDVBR+6ANO6paCWLP87BJ7layypwDy2nTdJCs2iAtL3lOvAn2D6SKBpCpSmB2gkfEIWd1x6CDh+yDkgEbQGBk5Uvw5WLCKeXCa634g4HA51/DZ+VG8MJdL5QvP2B1jEkOanyeQznA/zm0BJINQEcAENJdffXVJtgR1Fl5k74n0FodCP7180DggsrzIQcICQk2ZAogBrQtkn6ntAEJoOzBcZBBIGjTmUALo68YkR+eT3qfDAIKf2r8rOqtqYWs/i3dAa+TkgpkACJmTRzknEB42A9OjHQbAO6jC8FfhwAJQUjJa4acAbImCDd3eFNl2GNTJb8otHteuMCsks8JJQgn1fekxfP/+N58piBlCfWaSOcz75Rd9dsY3/wyu9w46SIAw+tvkJduvbCMvPOZQrty91uT5eXf9h4THsvAzQFCuHvFPNn180fS7PT/SqG9H3XHoYOH7IOSAZvA6pKedhTp1J8JVgS2UOAihEAQoLrHdY80O+1+4YA0OgJB2gsZRuPflWARD44R4oBokWOlxm6Z/0AKCIoEYHQKBEn/DoRgoK4PMUCrgAWwcUpLSDBuhhAU6zUSqMkCWCUFhgLxWI6HkgoXZ9L1kBLmBRDMuR/BIc+DTNAlYbU1Gre7PQTAmj547LHHysSJE83rowSAARHnhayGpUXAEwFyYoFtkG3AvwHC8NJLLxk/A87r+EWb5eaPS0sf0QArKG+ZNk62znjP3EbGxtthoDQafmlpBsKmLIS1r93zv5JavY8Qt8N8Lr3FsuaFS6VeQoH5fqJtgWwiaH3m++XScMg51S5J2E20nABtd50z68o1h3WStx662eid6vc5QhoefpVEU+fA2f3byhib3V/jFUoGbACrT4IoAYRVOPVwVmIE+FAgeBFwEM1Rq0bBzxAhAli4oP7OqpwVDytr2gADAaEdwZZVNUESkSFBEBAwH374YdO2R8qe7gN+sAAOBVbUECCMkki1sz0+VhwTr5H/OTZ0Bpbgj8BPuYIuCF+hJcfPcZElIGuA+I9yBnoH9kG2Bathzi9dD2QBOP/Wx5hMBFkKBIpkED777DOjneA1ICjkoocAkjIO+7GCAcdKeyXg+ZADxIYQii0tD5J3fy/NMLgZaASSEhOk5Od3ZOV375Td3mDgqZI++GxbV+/si/Tyvnm/y7cfj4uISZMd4JjzVs2XRvPfNtktCC+fH7JVfJ7OvvM5mbozs1RPEQ5pKimWkuIi6Vzwlyyv002iqQ3vkE6Npc6iz2TsY/dL/QGnGEIULZmeydcO1s4Bm6BkwAbgYnfNNdeYlT4r26qC2j3padrf/J33KgOEbwRcVr9kAFhdBwOugwQ6+vJJi7OStjoMWHnT7w9RIZiT7eCx1oRAC3x0IB6UHriwolZn8BCpV8DFlTS+5X7ICh6zIEgPpQm0DJQLeN1kNhD5cT+PpZURUmWl78kSkEEgC8FF6uSTTzY6CIgGXgs8H/8BjpkOC99JiPxYZQSEdGQ9IBv+eg1IEK+VtDpEjq4Kq/uh3n6HS6PhlzGKzraVtV0oW6GvmCs5Xz1jWufIcECcBp33b/mxsJ19+9qz6k3cuESeOOsgOfuEo2RnSsOocvIDDWc8Lb9O+2qv2xHfLl+/RW58f66kte9jyENl9Ry8D6mF26VWnbqyJd8bNYJEM3G1pEg2TnxGdiyYJHV7jZBGIy4zo5fdfMwDO2TIuAv71/ShxAzcncuKAhCoWF1Ta68OEQC0JyJsQntQFeBtgOkRnQi0EKINsIKZP6jjIz5kdU4KnuBBwCd1SpaD9D7qcyb+vf/++ybVT7BHHwDYD/V7Vvys9gnueBpYRACw2uI4mBtACYRzhLqf1TpEAPJBMGd1TpqfdDbExLJDBqz8WanTvon6n5UcRIAuCTIEBEHEkwwognywDx5rlSa4QEMEIBWcC8gLIkbONcSBLIHVBcLrIxjwnpKtoCyBAJFsxaAWibLt3ZukOM99GQJrBZczeaykFG43okiyTXWatpHpu5rbNtDGbMdbIrsmPih/vjBa7rrpakPYjNd/FK0pCPBF7QeUuw0hofUdguA0mDdO1r54ufFoaFE/uVKvj/ehIKW+bCtMMEQgWs4J2YEib4JkHHW1yQxACDZ99pC4GTp4yH5oZqCaIABSHmCFjTCtukD1TgqcenpVwVtKZgAyQLAlmAcyG7KA2I7SBNkBtA6o9HE/tMSI3G91INC+x8oZYR9dAWgNWN0HA1kOsgwICgnGZCtYxZP6t9wPIUAEa0oTVqqe4E6nAdkEAj/PgzBgjkTmANEmF1/8FPA1INXPMbINtkeLIccP0aAsQvkFESVZCcv3wBpmBPGgZGAZI5FZgBiwTcgDz6NrpFH77lLv1IdcG+B2zJ0o3z1yuRFHck4WNv4/SWXwT2KSvaWI7L+k1bJPy8ZH8961H/26FKRGT3tXcv4WWfbYP+27fD4oIUEkIZUQXEpO/N/20NNF9j9FEpKSo05tX2Xh6fplrs72PHhCT7UZthlKBqoBTh1pbQIt4js7wCqa4Ed/f7C6f2VBmpuVNitrglqoVkVAvR8i8PLLL5uSAIGevnyCLivl22+/3Zj6sD2shyE/BFpW6v4dCFgOoz/AYY+SB+QCcuIrbkTEB5mChJA58AUZAI4d0SOZikAkgwwKF3BEl1Zbp2WHTLB/4403jJGRpUvgWDivlkCTNDr/+xoj0Q7K66VMQJYE4SXvMx0Sf9TeV+oglHNp+rcwd53kvD7aHOv3cxc7aqZj+fsDPv8HXfk/+XVn/ahJjVvzGphe6AsIJCUpCCUZpLE/ZpWKCuMFhIOSQvn7lWukxUXPuFI3oIOHnIGSARs8BkjLhlodhwNrQBD9//S+Vxek49EREDDRI7ACqgg89sYbbzQEBxEewZhuATICeBVQV2dqImZGPIbyCCUGSgKIECERCBRJuWLPjJGQlfYHlB/IXJCmZxXG9skCsEpnIiLBhe0Q8BH+We6HVosiGQVIAF0QBH86CAiACAUhAFzQySigCaBcgGiS0gSeC5xfsi6BOiX4KlCKgBTQkcBzID2AANH8khekuFbgAUrugFeS8rdKzm/TJCGtrtTpPsQZ22GfyX+A4VfXjnlI8g+7UaIJTHIs3BjcJZTaOanzuIO3RPZrXkv+2rhdtpW4Qzegg4ech5KBaoBULDVTgoudDJqVMitigmGw6X3hgACK2I40OsGZIF6RlwCrZlbzlqUvqWcEdtTpfYFY0epAII1PvR0yg9bgzDPPLJufwMcMUSBiS4gCt0MuICv8pi4PoSLz4Ot+aHkZUJ4guBPMuY9aPqUDiI5FNNgHegOOg4wG7WIQDasVkePib4SKZEp87Yd9AaHAtwGSQ5YETchH4ydI62vfd+VKyR/hiN6qO/yIkg/nmu9C5ql3S1qbXraWJZzEutevk4J15TNSFpIaNJXmFz1rRHS2ukJG4L2xC11StsjSwnSTLHAKVZ3qqrAfKiCsIhDMUb8mTW53gGDlbbXe2QFWz1gc0/bID9kMVuSBwIqagE3gJA1Pah89ASUEygIEWKuujwaALIJVe0cwaA0MQkPBbx7L9hjARMBAoEcQphZLsCV1DyGgRusbnDmnEBZW5rgFAnQAVpsj4kdW7/gOWPfzHIYYQSKwIoYocIwQCu6jnRBNAZkctgWhoIRARoHzjTaCc3/uuecaDwa2g5YAB8S0jFZRQQRAJIJNUsPm0iAj0+hlMMgCdDIQ7KJlfeEtDiyuBY2OuNKcRzvfcy62xTtypGTrhr3PER0hhbvF63WH64/HWyK/LlzsKBF4+Zz9jU8AxkH+Z5n/uZ37aR+ka0CJgLPQzEAVQbAgIJGCroxjX7hgVU3GgZY9Vrp2gdQ6NX7S5HjxW6JHgjnBH10A9XUCItkJyxeAgEtGgVWyNbEQgyECOcGS9kBS9dTcsUemG4GsieX0hlYAQsFz2TZqfgYOWaAcQS2fwGL5AfDaeR4Bhw4JjpWLM+fcyhhAyiz3Q4K/NfwIgSNpfkgBq1fOIcdENwSvESLB8XKOISxkF/gqkEVBMEiZBMJkdUOkNO8SNb30kcL2D26VnOULojK1HkgzYGWRnB5etOWt62Tb+ixJa9JaElPSpFO7tjL/x8ny5MtvyiO/p4lbkJrokfxiZ8IDK33ftsBgU10VkYOSgSoAJTwCM1a8pJOdADV5ghW6BMx37AQ1e1K7iPxw2yNNz4qf1TzBlNV1IBdEgiOBEgMgMgissvmfcgJBmhIBJQDOCz4GBGkex0eMtkH6+7Ft5m9fINZC9EdpAgU/gkOOD30DpYNQZIuLtzVhkawDQR9RJ0Ge44QUQGr4//TTTzdBH50DXQOUHXgOZQ5KM+yH47XICwJC/jcdFo+NlbFZGba+D9GOh4Y3kXOOGlymq7AQDcY1VpnDF3yWIaMNDr3IsbHGiR6R7XMninfO++b7ZJkd8Z1ArHrRm7/KjOWbxaEY7BqMu+BAGdQ5tJmZIrLQMkEVQNqcABrK1Ke6oCWQlTOGOnaD1T5kg9U9GQhsgxHI0X1AMPcnAhj9MGqX5yFCRH/Aapm2PhwKSbfzm3ZAhH6UDsgIAAI6qXiEfKzMeSz6AsoEbIMMC4EXgkUgpzRCBoHyAeWMirIurObQQXDsaCyeeuopQ1IIQpAUMgD8T3YAQSbZHNocabdELIjGAKMkiAIXYzIdZBk4BoIcAc34E4xDLBfjV+gwcf45Z5cRAYKahW0/vS/ZE580g5JoRXSlC+GKuXtl3Pg88n7X6tjPsVILQb5J7yFldth8/gAuiJBU6uLRVGqpCvA4+vaP0gFmCvdAyUCYwAOAoEJwJIA6BSuYWQY9doI2PlruqLcTiLkokr6nru8LFP2QBYyEaAGkFMBKnAFElAbIIBDcCcSUBqyBQgQGygm4ABLccSgkCOMPwCqbwIs+gCwEJkRkC6jN00HBcflnDioL/AHI1LAfyiHWRZbMA3bDlBogWaz+eB2IMylFWOJKMiWUK3g+JISMAcJFCFCrpk2kaMt6G85+bMAEq+RakpzZXjzJaeZzZDlYAoxr1r10heRllS8juAEE+sa5v5vSWKd9esi4L6aYMtDs5evljvsfkeSGzR3d/66EOlIkiSYDZrUko+shG/beK8/KtikvuTajYgfQC05ZomTAbVAyECZIgRM8WWk6DQIxFwyCkR1A0EetnqCPaA5RIUSDUgS1dNr6IACk+MkWUKMnjY5pEMGTtkJIA8/jsZj08DyyAFy8OC9c1HABxBUQwZ6VWSAFS/aA/UIWKLPweAgEWQJS9pYToB0YPHiwIR2UCcgYUDqAnKAxYKUPEWF1BjkgC8H0RwgJJRQ6JiiZ0GeOyJFjg/AUr15gJr0pSslqk9PuNcY0ba77QHIOvlpK+pwotZuVWlabzpKtG4yosKSwtFTkBpCpyFvzu+Rk9JAWl46VwuMelNun7zR6EF7La1u67pGvOXgMInLyBVeYc0JJiu8J4lW0LmhVvKmx77Wflb3L6AQU7oFqBsIANW1S5axeSXlHApAO6uEEKX8v/coCIR/iP46ZbAZtf2yXwG2BND1qf/ZDUKZEQSaAwM5+ERVSsqDVDpEgtXeEd5wPCAYqfLZNtoD9sOom3c7KmpIEJAKBH2UDMgAQCLYJ0UC3QLoZoyNW5dW1dbZAGQCbZVb4eBFAghhbTPcD4PX7Ti8EdIdQNiCDwTkha0D3AcRi9O33yenjFtlybLEIq22uTcou+emJ0YYMdLr4CSlo2M4V7XSldsrMDEio8Ra/sSd1lmMG9jSaFLQ1dMnwffn89xyp/X8XSTxgwuhDpEeL6HGtjHVoZiAMEAgJgNSoIwXS3tSvUf6HCwIdFsIEWQI0x01wxiDIIgIEYYIxaX9W8GghAP9DBPAGYBVNCpi2RAiRtfKmxsr2IBekiSEDrLQR/VFOoV8fHwJIBa+B/xFDWnoCNAZsEwLC3/ymJEH3AM+rLtApQFIgKIgB0Q5ABPifMc1kCKxjsYDPAfdBAtBOQCjQHXD7gO7tjAraDHZR7AUruGblpZoe/VG3Pi+FGR1dQQSAb+q9po+pZfOmJrtmfQfR37z7xWSpdXDFpmCxAjoHFO6BkoFKgsCBcJAVYiB7XKdAQKKrIBwhIalHUvmk4nHdI6gzUZFUPQERUEfHKZBVOA6BtODRKkjanho+mQR68SkXUDZgVcVzSWNCGpgpwBwF0sGk/ikB4DjICpxyBM+HLDAAhv0gFGSeQCBQNiBwsy/0CDgAcnFEQIiXQ3WSV+gDeK2UNHg9HCMrfcohnCd+aB8kewAskSQiQ4IHrodmAE1BgbkfgRdOaIoQoD8/KUXml7QyUw5rGtbnx3Q32NimW1WYHvpGtQ1h5vvD5wtNTd2hF0WNYZMdoIVQ4R7ou1FJoD5n5UowjDQQEhKQEbiFAhc7BIcEYFbEiOEIwFj/EgQBdXMIAkGPQElAZ7uUIljZsyK+//77zWOpYwKIAq8fy2A6AyBDZAQgDaTd2Q+OfuyTlTererIPbJsSwQcffGCEehwXmQ4ugv6wVuiUL1iNI1hE3U/pghkN7J/WxXCAFoHjhchxbtBGcIxkOyAZCBW5EFM+oNRBVgKhIVkQyBQiUbQCRx55pBl4RHlozrRJctsRXcI6jniEtQqv6eBrygHWsbhElNcmo7Ys/HWOIehk4BCrbi5Iklrt+7p27oXd4J3AS0DhHigZqAQIJKx0Wblao04jCWrt+PWHyg4QdBlbi48/KXvc8wigZAesDgIyAGQC6L8n+LHCZ5usksk+YDmMqp4giiaAFTPPR/FPsEaZz4qZ/RAwWU2z4malDVHiHPkaCVkXYIRRkBLup62QoAvhYD8WWCFZAkIujkwNROyHhgD9AZkFiAfHbpGUUOD14iVAaQJdAnXZo48+2pADAPHhmCidUOZg24gpEXNBEihVkNGAmHB+cGJEVIji+/IRvaRlduko56qiLNtBG1lJ6ZAlhf2o6XKAPygxDe2SaTqSIOS0wvJZqNvnSNd8DjjGNIdX7RAiNRVyF5QMVAK0/7DipfZdE0DMhjqfQE1A9sXChQtNTZ9gTnDlWAnO1sRDzHYIxijk8RDAgIfATRBkUBAjfS3rXQDZee2110wGgQsWpQNIAv4BpPNZ2RMscQlEB8Bj0Qj41979QTCmFs9qiNU50xEJwCj5IQGWU6E/kSAzwIoeYkBPNqt1MhOI/OgUCAQIByZGnA9KGOgY2BbnCq0EOgqyDOgoIERkDiAYvMdfffWVyWxAEKxj4Jxw3vBPwP2QjErBvPGlvfSF+Sagh6topwd/SNpqqfXdQ1L0d2n5RDsVYh/47J/YO9N8RvEpgZzj9+Gkt0G4oAw2smdzx7QxFiFSuAtKBioBVrQEV3rqawqs6hHvWYN8aPXjYkKgIs1PWp26I4pkQFCj3k0AZWVLqQD1Pqt6sgKQAAIqKXtWyWyLNkFIAelwAiLlCSt1TpmBFQzBmQsZK+dAk/8qAgJFgjCrcgRUdBfQ0ofAL1RrIa2BvEbIBOSFzAIrK1oCrUFECCYhK+g6IEgQGUoUbB87ZTIO6CcgJQgZ8UKg/AIxQRgKWeJ8kRHgPjQP/rB0GGRibjrpENn+3r9l96r55r6KVnbW/XlZv5ke/A8ful4KctbJt7cfJw8OqSeFv38n3u2bwj6niugAQRAB6q/TvjKfR75zfKfWbNgsSenOehuEAyYDXjakY8gBQtUB2z3rIJ086DYoGagArKwJGE4MJAoHrIapwaO+Z1VPUMI0iDQjgZW0OsGUgIn4jjo35IFgyKqaY4fQkEGgvs8q3LJUZoVP+p/SwJgxY4yYj/Q/IsGLL77YrKjp1WdULeeDgFmRfqEisA90ClOnTjX/8xsyQlo+FOg64JghAOg3yCxQskC4iC8CtX4EgOgZ6HigLEDWgfPG35ApNA50CODhAFFg1X/NNdeYmQWs/PkbMsEMBXQSvkBICLHi+PFdOHLwgTLtrlPknbO6S78Gu8Szc/NegkfjYpiz1oz93fbOjXJl9xLx7thsshFkRzivZx1zmHTInS0//+dIad3QOTOrsmNySUo6buD1mhU3AlQybrTX8lnmO7x8w1bX6BluHNHVjAju3LSeI50zFiHqlBn7XgrRBvUZqAAM9WGVjACuolS4k6A8wEqdGjhBjNUppAAnP4IKQZDVLKt/sgOUNFj9U2OndRBiwAWH18DKmhU0AZ8VOQOKGAyEip8SAGUFVuxkQvwtW1mZo0ug1EAgHjVqVLVfGySGVD41eUgKr5PVutXmWNF5oZOBEgofZV4TpAdHREoBiAMhP6RjyYRACDhn3MZrJ1NAMCZVSzkEbca0adNMBwLkguwDboYcIyUROjIgCJxDjhEfAwtkYyARxxx/kpkF/8eSpWYyXlHuurKBOAR/CAerQrolyMJQpuA37xOeDmPGL5Jxs1Y5tjIDtXdvkK27i830QbcEoljHgyf0lH6NCk22je8bjpiQ8121MiV7/wtq7LgI0BAVMgIQAQurc3bJsMemSr6NLYCpSQky+dohOoHQhdDMQAgQ+JiMhxNdTREBAgUiPy4grGpp7yNDQN2a/mQCHFkDBG6scikV8DeDd1j5kzmwzJIod6AFwC+BFkKEiYgNqcMjnCOrQJaAlQslhkDTEjkOSANpdlbjZBKq6xzIfvBCsOYEQGzYD+TGfwiOLygLkB0gSEPaKD9Q96c9ESLA6yPbwCAYsiWUFiBKEAisiyE9rNA4XxwDr5vXRhYB0SLng1IDhIcgTqcFWQW0A9znSwR4HroKzsuubbkyf+oEKVi3RAo3rjBEgPeNfUAE0E9QmiF7QSDmWOgCQesBzuzfxlEiAHbVairbZn4g6548XW7qVSzr377FNS6BsQTrnBbP/cQEWj6rZOD4bNKpQrnpwvPPrZFjs1b9AztkmADtSwQAAfuuUT1s3SeEQ4mAO6GZgRDg4s8KEpGZk3MIAoEA++GHHxpff5zwWEUQPEj7k85G6c/KnJU0gjwmAlLOICCiiifw8NYSyGjXI+gR2FiR0GXAqhiRHRkASgy0zoV7fARXSAmrYbbLRa6qYGXMeWZVjo4BkkG6H6IDsSFw+65gIWqs6imREPwJqNg3Q3wQOkIu0D9YTom8VkgQAZzADjmgTEG5A90F++NcUyKgZEJpBfEhLZKcK7QWkLJA0xwpo1CSsMgBxMD3a0WGhewNJILyDYHfIlBkb+hQYH9YP3NOyeqc88rP8uPyzcbH3QlwfIgYz22cJY/f+x/Jr93E2PEq7ANCUY+3RLyz35es7981RBudDGSeUhOfBb6rTVu2kaX7XR6xDI1nj5ofER+1+4pS9k9PWSqPTFpiSwniyqGdqr0dhTPQzEAQsHKGxSNQizQRYIXIKplUNKt7yhSUB1jRsvKnbs3/lAkQuXE7K1ZWyVxcsDYlhU06m/Y/ViDUuAlo1CghOQRRtsXrC5cIAMgGwRNdAWl0shK081UVbM/qJiBVT3mDVT4BlqDPsUNmAIQIQSEiLAgQr48sBUQAoSUlDMookALODRdZbuNYeQwaAUge+ge2DwEg/Y8OAcIFgYA8QLIoH1B6YEVPtsAfVlmmZcuWZtv+RIDj4jG8Lxwn7Y7cj5gRAsPrQpAJEaBEwyhpSiY5k56RooLSqYlOgHOCwc07y0ptthOTUx3ZT1zCW0r0GNKU/ea1hggAaxYInytKYpSVeL/777+fFG1Z5+ghNW+QJp9cPtBYAC8cc7hMvWGojBnVo1K1+6uGdpYHTuhpUvzhagh4PM+jRKJEwN3QzEAQsPpmlU1AtQbuOA1S2gQxeusJ7qjaWXGSSuRvAn+rVq1MsOS4CEAQBS7svI2k9q2BO5Q3WK2zuiW4kUYnu8D2AqX/qwMCJToCnAcpZbDyCRdkNiAoBFN/YBDECp2uCMoHVkcBgZ+uBogbgRqSwKqfsgfBnuOAVFAyoORAGYByD/tCQIiAi7ZFSAXP49wyx8ESMVIegkyRqUA/wGMgalbJiP0SzNk+wZ0Mju/XiWOjQ4FjJuBD0MjK8B4jTsT3gEDMYyh5cPwco+Wj0HTgCZI22Pla8t8vXiYJSSnS/PwnHd9XLMNacf81/XNpnPuHLJwxucwoi/Zg9CuU/cgQ8fklG8R3h8/OmY9+KtM3JDjSXkhAPrt/WxP8qwM0BLd+8pv8sGyz2WaoUpZ1P2JBRJNaGnA/NDMQAAQHBGgEm0gQAYIbqXpWo6wcCGQQANLTrBIRGeH4hx0yAYYLCO58EAFWkwRKAinCO4IJqWdWu2QIEAeSnkScxirXbiIACJKQDrZPyQCRXrg6At/MgD/wMSCIUjLgXHHx5Hxwu6V94HZEnqz0aYXk8WQC0EpQMuD9JDvAuaK8wvMhXZQiCMYEcTIFiBYhZegIeA7EAPKFRoASBpoGgMAQEypKEFzgfYkA5Iz2RggA5RkyTJQ5ICCUfigF4PvAcfKaeAwkiCwH3ghkGshGbZjxseROfcNs0ynOTldBvT5HSfGW9aoZCDPw/3zLYfLMMa1k3evXyX8PqWNW3B+c00PWfPaYnDBsYBkRoAWX6wiZLrICfKb4HNChxGcZjDnzMMd8Buxq5SOgj7uwv3xzzWBDLtpm1N5rvqOxWs6obe6ffO1g83glAtEBzQwEAI51fFEJGARWp0CQJrgQkEjVk74miBDIEPtRzyZFbdn6klYEvGUECwIKK1cCPs8hQKGkt3QAkIFIAgLA66H+ToAmCEJWKgNKF5Qt+PEHWQ4uorwe0vloICzDIW4nEwARIqDSCkkWJRSJo3TAOec9ti7YZGIQK1rmQwR4ugtI5dP2CFmhhMBro/sAHQNkDPW/r/kR/xPMeQxlGzIH6CF4fyF5rA59wWeMbA2tm5AWsgPMUGDfBBHITsvRb0pSnXRxCiVb18vq5y6SVpe/LIkNwi8ZxSMIeKTaIcF8dshaoT0h00SXCMSUTB2CXTJzfGdZZPB+UhqgXMd77zs59OyXZ8mMv7JtFY+yQkcgSFB2AowhXpm90wwdYtYAFsPqLBid0MxAkIFErMCdIgKsJhHe0R/PipMpeqxGCeasshEH0gqHJoBMAbV5Lh6o0Al2lAu40FB3tBz6aK+DPCCaIzhGmggAAia990xYtEodrNgrg0AOhARnVuisqgmwZGoodRB8IT1oCciEIAZk1Y92gSAfighAWDh/uC9aRABDJfQIaDFYtfH+E4jZNiSMjgzA+0D2A8EfQYALvC8R4DloGXCB5DhoYaR8goCQ98WXCLBvtsuxkw1guwQHRI189nj/eK89KbUksbazY1499ZuKJzlNhnVv5uAFYU+Ai4G1B06R+zYqFehSVgIQOMB3kvcdjQ7vI1kivu8QAUCmis8VGSFfIuDUECzL28ApEPgZQ9ynTUPzW4lA9ELJgB8IzgRgJwYSEdzQIbACxBKXoM1q1iIBqMhRG9OixjAdMhTWWF9q3qy6WY1SayZIsQolOBJESM2TKXADEM0RLAl4BG0roxEKvrMJAK+JVTXKflbh6BE4P1xcSd+TOeFckGal9s/KmlU7pCoQ2DarblZvZE24GHPuCcKUBiBbrN55HFbE7JNj5z1iJQepYd8Ead5HSKN1gQeIFckiIKIkoEM4OB5LrGhNiwSUB9g2+g4yQTyH95vyAZkPiAO6Bt7Txm33cVxlbiyXBx4mNx4/QJybMegpm8OAyj6a4RWPjL3pLFOSglQC6/3lM0lWh3kelAL8E69Wq2wgMaq28ilqEkoGAgwkIi0fqIWsqmDFi/qfgI8ojRQ6ojhWDAjTCProAri4sKomLc5zeBxZA4I8gZCghC8AQY10I6l1sgLhTvOLBHgtBDU0D0xmI7iGqkj5ZgYIpqywc3JyTEAkoBJAmZ4IySDgkxkhAJOepV5PWp5zAplCnAehAwR3zifnmUwCWQC2RfAnc0HwRdCFPoP3hKCM2AtCQHaGLAMkgXIEegPOPcfqS1zIIFn/o0fgPaa0ACEgA2TpNNB5sB3OCdsgG0GLGWSEgExJyKj8PR4jNmTfCSmRUfnfc9/98sx9t8vuFXOdC9aeBNPB4N2RHb0uiN4SObhDIxk/bqz5/PC5A7ynkHU+n2SIIJ2WTXYgkF0KhNMOaCMjuje11U1QoagMVDPgAwReEAEu5NRxqwtOLdtEPU4vOsGdXnjq+wQVLvZM+WM1YaUbWV1yoWDVST86hIHuAHQAKJAJgBYoC5B6JpvBateNIEhSOiCoW2n9QDMNmBdAgKYcgOkP2QWeiwiQYEp3B6QIYSTKe3QBlA18BZGQIoSSBFJU+ryX1G4594gNIRVctP2B6JHHIcIk24KbIQ6BeDRAtgD7DJTBoAOBbgNaBiEhZBLIVJANIKMDIDmsIK3hRxA8SgDA6kyAjLCipEOELARGSezr+fe+kHvnOLdet/DcsW3kqAG9JKlBU2l+0bOSkJyyRw7mDLZMGyd1ex8uSfWbkJqQqACXypIi+eHmEWWrbSubQzmI7yufO7JHEL9QIJNljRV3oqf/8O5N5YWz+1V7O4r4gWYGfEBWgMDLKr26IAVNrZiUPgGc+jABnhIA/easnAkA1LkpE7AqJOXPqpR2OMoApJHpHGAFiWjOlwgAtsEKmce7FQQ0VkysziFGBE1KAP7gIorpECtltBKcI4gAq26eRxsWNVhKB5AgsiL+nRGUDBjChAkRwkXStKTgWalTqghEBABEhQAMCQAQL46TjAO3QyQs+BIBRJxkIHhPSfuz6oeA8N5bRIAOBVaQ2D8TMHg/OXaIIkSCzwjvL8SGzwflBwSOkARSyTdfeaHjKn9C8fknHW3+Lt62US7cD/Mo5wI0r6f+gFMlqUFm9BAB4PHIrh9eK5d2t0yuyAjxeQVkodD3BAPf20BE4N1fsmwhAuDr3zfIe79k2bItRXxAycAekN4jI2DVpasKVpdc9AnurOpJ7fObFSOrT1YN1L+pKRKwWAmTHSB1TVqZdjUCIYEI9TqmQ6FAkOHxpLrdDLIiBD3EcqTyERhaoDRCGYWVPeeOsgklAgIkAkKCLdkTVtuQikAXUgIMF2O2DWnggkuXBdkI9BkI9RD2BQIrcjIrZA7IAEAy0CXwXiIahIz4g+wGrwURGK8FTQedHbQTIiDj+An6kEsCPOSOrIgl7IQQ0U1CuyLEA+JCEOF1sl06Mcg05GxcJ8Vb14uTSNydIxv+Lg0cZKz2Sc52tKXRMjyKlqSkdZwD6myWTTM/MyTeAkTeEg/yeYGQ8jlEWEpZKRAQ/Qbq4b9z/CJbj/uO8YvMdhWKyiCuyABtMIvWbpV5WbnmN//7ZgUIvBUN3glWn8cECNEXgZ06Nh0BrBpII9JexIqfx5A+REBI0OJ+esv5nyBHcGBlzOq3soSE4ImOgOe5HdT80REQICE96AhI+1MWoTzCRZcSCitirIPRBtD+R8reIln+4DnUbXFs5L0jSFP3J+MCEcB4idU522Sf/AQiThAB3icshwHkgVW+NQDJFwyKsoyB+DyQ0r/oootMBoLHcux8lijfIBilXdI/KxFo6iPHTEkBUsF5gmBQHsnIW+9YfZ3t5iyabv5GAc/nFBK27af3pcuW2SLFhY7s15OQEBUDktBPJCeIceC7/ohScR+OkhYo71niQToJ+IyTFeBzSGYvEMgSkn20JoYCzHyKbPaeZntsV6GoDGKeDCzdsN1MgRvy8BTZd8zXMvKp6XL8czPMb/7n9mvG/SifT5td4UAiVntcMH07DbiN/7kd8xrEcqR5sR612s4IMlz4qHmzamRVSG2aiwL3seJl5RwqtRgMbIf6MytrX3W7W4FOggwI6XyyJugD8GinREAgJKCzIiYgsULGppeLpv/cA4IuqX9S8JRiOHe4A5LdoXTiC4gXgZbzzLlnBc45sy7EgOANgaOez3kkGPtnEngPyQRwXFzoOfeWVTWaAJ5PRghiwGuiJEBmwzKW8ScDgQyg2AdlBl4zBI8Sy/M3nOmYIQ3b3T5vonktEBzOP5kssi/fv3yvpG5YGDUreDthka99M1Nkyg2HGmEfpB34lrkgA1ZmgKwOny0L1oRRWmMBRIu/n3/5VUlu0l5uevBZabvfwTLitIuMq5/dw6nYHttdttH91wVFzSNmBYThWGfS2svdAzs0kgdP7B2wFYfThKUvK3iASpwvOqtbVoeohzGrIVBwYfVtIeICDzHAVwBdAD9WTdkOULdG+Q65oGzgdiC0YrVPkOS8cG4hYaymqL8iruL8QrK4gPqCx5KWR5RI2YEUO6t6Uq+VWWniJUCQ5Tm8R5SFSOfyXpK54X2BiCBEtESDgMAN4YD0EQzI6kBayCRQpiGIsj1eB6SATFMovwOeS7AIBmrQiE0hJGgRZOhVktxqX6PItzPg5a2aLxvfu8O8J6xwabUElLAgRS0uHSvJDfcuy8QySgrzZPefP8oRbRJl3DMPl/vs8Z4iBCVjBVjhIxglG8Q5Q9gKUURbYs0DoRTUa9Dh0uek0TLlz42SlbPLcl2wtuyYRsMuK2JF7CMmMwMIcZjDjZsXqIhxW3fPWplrnsfz/cGF2yICgBUbAQv1N0GDVDQrKy4CkANrtWCRCFa4GNrQe24nEQAI0QhGBCY3czsCMV0DpPs5B6xAOV4rI8L/mLJAqqjV+xIBHsfKn4srDm+cZ7oPOK+MDa5sypltslpHGEhNH/Egq2B0BbyXBGBW5b5EgG2zPzpMyOxA+KyMAzV2BIeQAF4H78Wb734g7focIuddP0a+m7ekXDnKAscdCryXuCpS1qDN9akrj5NEk0nw2je1sLhIcr56xmQxLFMnCAElEpCUVleS0ptLvMGTkCS1uh4i38xbXs4rgM8BgT9QZgA9EGTQygxAEHlcw1adZFf/C2R+y2Nk3KxVsmovImC27Nhr4do3ZclGx7aviB3EXGbArtacG0Z0MdO6AF9qaoG+ASJQfzzBgIBHZoDUNUGCC21V0v/hgtUyF3QuQgRMt4Gea2s4Cysm0uRkBsiSsCpFiEXAxf0PHYEV3Pl4oqsgE4AIjwDMqp7zakfNGY0CxwVY2SH2832fee+sLA+lCjIIkEI6FggUHDPahNG33ycvfLtIvlu8QZIbEkB9js3rlWb1kuWInq3kzP5tpHPTeua1B5vFYIHP0ZhHnpbf6/SW6cs2l2Ww7EL2xCekYPFUU6IhqwQh4vVDXiE5dVvvIxlnPiLxCD53fL4QUo4+tLPRj6AVoI2QzBWfCd4/zhcZLbwiMAhDIwKJo1Q0fW2JFPc5UYQSj40ZnXDBJ5G5CeoOqIgbMsCK/uaP7RPMMHbzxD4tzMqM+m8wWIQAkRgEgItpIIcxJ0FQQpNAi9tbb70lbgLqatLiBDf0FPyQGUA0CHlByU+ZgwDLqhuCgJ0vHR6QANKsDHEiq8JF2U7hGRkIdAKBABEgy0O2ACEipQKOFxLARZ/3vev+B0vvi+6X6cuyKyxHmdG2ngQ5pFNjabjsS3n6gbtCHlv7YWdK8kFnGiGYXfXkf4Lc67Ltpw9MWYmMACSLjAAlJ4gZhCit5T6SedY/afJ4BaRpx4LS7hdrQmhFaDDwVEkffHbZ+a5pMLoYu2CFIubLBE615lx/x30hiQBKfkxuaAVk5YowLtJEABCouLCzosMExw1g1UTdnxIGq26Oi1IK9X1WV2QL6ARAdU+qFTEef/MamBSIENAyX6IMQ7bF7gsros9Qx08NnRIRZAbxIJ4DpPApL9z0wqey9eDR8uOyzebxFQbsPavD6Us2yJeefnL7KxPLBIj+YsL6A06Rkn6nS35RsX1EoLhIvEUFkvPlU4YI4IgJqWEVi4AScyYIGoSMINahXVtb9hvtaH7MvySzfTfzd2WIQN1eIwwRAG4gAoBBQgpFXJABp1pz1rQIbUBE2hgyYCmNaxIELFariJlqGqRMqbGT9ie9zv/02BN0aP2jXo/XAt0XgOOmxIIqnxQsPzyP50Mmwrmohmoh9QWEhAAYCJbTIBbFaBRIEZPRIFBCWOoddJK8ucQrCUkpxqs+LCQkSmGJyLglJTLsX4+UaSAAr5Ng0nDIOXseXP1g4t2z7bys32TXh7fI9vlfm/3g70A3By1xjFEmu4UiHqDr+H3W967WoEQKxV6PDLzm6YBdIf7AwbHh8Etdd96YKKhQhEJSrLQP0jVgN1iRzfl7l9Rp3lF2rlse8DG+U+tqGmQkGHzDcB/UzqHaJJ0ErYOUSwhwXBQRBlJqwSsAkR7pf9LSFmilgwSg0MeHgZo8ugdeC+JATIhwYAxFCPgMvDUrK6Bam2e1aVRbhnbNLKvZA9L9wcCxsz8yGij6CQRkOdBm3PbKBNnRfc9Xp4orP+u1LJC2si07yXRR0HbWpnsfeWV9S0MW7AK7Wv/ubZK/cn5ZQKOtk7INRBZDLM4595ENgbDxPngL86RRSrHkFsbEZaJa14F563bLjff8T+6/JbB3gIVGR1xp2jXdkhEAHAmjhRWKmNcM4COAUtfuPl1AHfi0/VvIsIa5xlyGFS4taKwU6Q7AQAdPAbeAdDoGPNTpSatHEgQSavCY5qC6J7gjruJvCAHCP8SBBCFgaQIItpRbcHajjGClzKnXQ2ogA7Qikp73H/saTgupdf+gTo3lukHN5cAeHUMOeaLzgGwFjoYcPyTnwEOPlHV9LrLVuz/BWywbXrlKEnbnSr8bXpOsglq2fpYpD+RlLZAdnz9gzi8lGTwWyMogjuV9IasEIJCIKnF9xAq621l3yOLiTGd8DvbU06PhAsRn58wDW8vX911kPCj4bFilFQvJGa2lxcWlplVuQtuM2jL1hvLeGwpFTJIBjINo2XEK0fZlQkRISj6Qja5TgCAhBGSVb7XikQUgFc/qnt5+q5TCxRQxIK2BDFqCEBCc6Pm32vb8e+4xCcLdkYmGtO9ZglF0IuEK7BI9IkWFBZIz6XnZsaB0EFEg8DqYWIiRECtnjIvumpotK3an2KoOJ9Ds36quNFv7o4wv6iVO4e8XL5Oi7NJpjhABPh8QMbIutFoCfDM43wQ5hJzvfTnV0QCHhkESk+1ZSXMpc3BFznXg5eNaGxLAVE2EpbTK0g5rymLXPiUrk9s4ZhBVFajPgKKyiPr83478IpMWdhJZ2btM3TlaWnNobcIamVVfJLQMBBUujKw64ZakmxHGUfdHhc99XOyx5YUEIBqk84HaO50XrEYZthSs1Y6gBGmgjk1XAYH518KmVW4hLYY3JCZLxlFXS0KddNn580fmeMlk+IIMBYI6CAgZl5bd9pcVX0+zvS0cIvNz1nY5rvcRkvjbOkcyXBgM1etzlBzRZLvplaeDAlJF94BFBCBvlHMgAmRqIAVkEQ5sXU/m/L3D1uMiH3Bwx8bStfZOefm3PJs26nH8OtC8dTszybJ1h05SlNpQ3ux2oKnH/734V3k7p614drtrbcV7dtZBOsZYEQeZAQRiWAs7jWhqzSEoc2GnZQxHNCfLAhgvsQ+rvRLRHyn1c845x3jrUwtnxgAkgNIFCnbq1PT2+2oayBxcddVVIdP2dCPQ05+V3Moo7e3C1m+elS1zJpYRAH58j4OVYNu2bWXgVY85Wo6qnZwo24OIHe1A0ZZ1suiBk42jIcJIvvp0a1iXAMoD6CLo8gC8l4g8vbUbGTOu/MJiWwIu+0tLTpTJ1w4xbp92eYNEAsf0ai4L1mwN4CLoPvCZGtghQ8Zd2L+mD0URBYiOpa4LWmaiqTWHDgcscZmSRz3Yv85eFbAaJzXKqhKwoiQwUxYAVkaA4M9jaR9EmU7bGq2BGA2RJUAUGEjY6GveFAy0G776wXg54onpkm+W99UHx93g0Iulwe710qdLqf88JRZeB7/5H20INfQthzhDBADbdZIIgKT0ZjJx0rcm08F0RYSmGDoBq6XQIgLoPBjoZJVkjm6+Wz5abY95Flmiu0f1KLP9xtyrcd1UU/IpLC4Jy1iJgGfcFL12eTOGxoTf1tlq/OQkkhI8ct/xPWv6MBRRgqgnA5FqmYm21hxa9xDeoZgnzV4dENStYStYAiOqI6hbg5EQUxHI8fhn1U/amcFLDAZiHgOT/xDhhWrNsghCRSYtd4z/Q4psvBizr8TkFBl43bNBV1CkzvscOEA27sI0yD0q8fDhkRvGPGhaNRFrWkQAMDAL4gYomWAJTS3c0oO8ctuF0uPk62RNRt8q7916b/slr5VTDxhZ7j4GAVE2OP+5SbJsR7IIg4JC1d73GDj1aFZHFqwtX95xEtFCBIAv4VIoYp4M0DLD5dnJ72g0tuaQ2mZ1Ti3eIgPoHlZm7zRZDsgNr6kyOghrKEuwWey9e/c2rYGk1ykPkBkgg0BmghbDyvRnWx0EkIpgj3eyhdSa7tYps7Tt0BcEsCtvulPume3syj0S2L5rtxEMWv4OzGWw2lItZTzZHisDhBCUTgMyBeMfuFImLd9RJdEmHQ0E8OxJz8mr0/+Z8eELAteAvDny+6cTJb/1gVK/60EidRuX+25DKOp78kTW/y5/TnhJtvc5Survf3T4Xg8xjhtHdJVTD1CtgCKOyADBjB5yJ7sJ2mTUjhrxoL+Q8NSL/yXXvfWTzFmbV+n+e1/Mnz/f9Nb7w5rid//99xunQBz5cA7EVpiJf5ACq4WwMrAyA5b5TiDgI1Ch5W8VwXbfnJkVVHXd54ADRWbPkGhH3q4dRrRplWTQYZD1oWxglZgQfGJIhGU0ug+6KNAYQBhOa9TIrODDbeektXHr5OelRf1U490QDMysaFk3QWZ/87yc2skjD495Us658nqZN/83SfCWSO+OLeSj9942j92w4VI54pmZkluoRMA615QGyAgoEVCEi+jKfQcBwYwvghNgu0O7ZEq0gf77j3Kam7awz37PDTgtjf+5HVHc8MenydkvzzLP8wW+AIFALR1BIKtIJrXhGcA8Aayb6WQIhwj4ZwaCAUMhJ2v2oaa7pUZZmSggvF5p07CWEXiSfaEMgJ7EIgKUcuj4oAxEeyrTG/GNQFQI4fNdwVNS+eaawaZtjZY7/28f/3P7yfs1NS2NjEnOz15rdCahABmwCCEi05KC3fLVOy/JQZ2byfI5U+XmG64te2yd9AzZEueGSMC69iEWRJSpREARl90EVvqYYOYUJl87OGD62K2ocv/9npXFXaN6mBouEwZ9nQIDAWMaAgaCRd+Rw2Ef87vvlukQSEkHaiHtOeZrx8tBwaa7UWLZ1+H9O426stt0E0AAGETkO3SHLA+ug6zaGctLIKaFjjICLaoVTd70LUEV5u+W4w47WDav/9uQPFpMrX2xD8SZgUAHB5kJxIzoFHgecyHQMkA4aXP01TlEqpPIrTCZvYzaZrFC+2A0XaMU7kNM0GrS27jKzfgr29aVo9WaE01fsuq0aXHu+GHy4+Yd+fLA2ceGfDzBG/dFO0Y0W5mBYGWCVdk7HQ/EbJ+AFqiFNBLlqHppSbKrwL7BRL7weEtk3dzJ5jwfdNBBJpPja/BEi6iVvifoohmgdLN27VpD9Cj9EKiDgfNjnbfs7BJZt3plufst0oHm5McffzTOlBbIQDANkg4V2lU3bNhgSAjZJXQnZCnwecCfIlo7fOzA+CsPNtekcDU/CkVlEAO5z1LQQsOqNp5bc8gI2NWvzXbaHXZGhX4GdhABX81AsDKBG1pInS5HHbZPpmNlEK8nQbbNnWDcHtEA+BIBCMLxxx9f9j+2y7QdPvXUU8Z7gNZQxnNbbYcVISMjQxo0COzJgQYF/wKsvc1xeb1y8803m/3MmFGqySAjgHMlXQ3cxmeCjo4jjzwyqjt8qvPZYLHTq1W6IVx92jQ0v5UIKOxEzHybqGOS3o7X1hwnRjhvajNUTjrvsvJteImJ5oe/CRrUn+1ARZkBN7SQIrJ0UrNw1dBO5qJvO+EoKZbdK+bK8YcOKOelT4YA4KcwZMgQky1gVY4pEXMtaE9FbIguZOvWraZk5JumDwUmVgYD+4MwAD5H/kHeAqUMgGlVoHKV1UkU64i2RYkiOhFT1JI6N+ltO1bH0daa49QI5+K+J8uZhduNcyCaAC7elg8AtV/fdK+TmQE3tJA6VY4iWCfnrJDWDYaZiz5uf3Zt3xjyFBdJ8cw35fznHi9rKST4T5s2zThVMsIYq2dEgtg+8/4yBtt6n3v16mXS9OgImDPBWGkmHYbyg0AoiMDUH5AATJx8n4snRagJkuC1114zWQUMk+hYiVTpxg2IpkWJInoRU2TA382sqgK6aGvNcbL/fu7a3TL50ecc101U1FrolhZSu4M1SElKlDWfPiL/rrNCHn/8cZPhQrdhBwi6Od88LztWLSkjAmDnzp2GKGADzUodM6kBAwYY0Sgtqbg9+gfxr776ygyT+te//mUIRKApkqH8KBo2bGiIgH9rIcdVGQdK9kmLI90qvqUbpyyi3YBoW5QoohcxUybwzxDQYoP4D1SUdo321hyr/94JWP33TqNWvXSp1byzLMkuMCpx1OlubCF1ohx1z3E95cE7bpInnnjC9Pfz+T2la2mQrWqzj/W83Kmvy44F//hEkN0hK0ALYbdu3crGXDOSe/HixSYLgFHVLbfcshcxox0R3wFspen+oBSA6C8QGHTku/qnQwQiACHwB/oC39bFYGUkNAyUMCJVuqkp8FmklfXBE3rKlUM71fThKOIEMdFaWNGqmWBJDzlTx7wx2JoTrSOcy96bPzdWyhDJTS2kVtdGRfbJlVn5ccFnO8w/oCaP/TMr9HPvekEaDr/UjMT1JFY+iUdZgCmFuWQEfIiABWu0NKOkUeoj2Ovfv7/xF2C/ZAsYzYv5EGr+QC2jPA7RIc/BcRKBob/D5W1XXyKfffR+WVeCf7bBF4xOhoAEAgQCa2tITCDgj2F76aYGYBk0UYoiA6WlAUUkEfNkwBdVteN1M2q6/76qYsdwHeysC+TVb86UuWu2hxUcnZruRvfGbR/PN+WocGbYE6gTxCv3n9THZAEsMC+gT58+ps8eA6Crr75akho0lYxjrpe0Vt0rJB4kTTiViAVzvnpGirZuCPrYgQMHmhY/gKkQWQnIAf38AHU/VtIEeer0tBv6A/fCY8++VJZKM2l14BGytSgpLIdL3+/j1txsOXHEYMnZuM5kJ5iNANAwfPnll2VzEoJ9nsxUxShpNfTXvsTKokQR3YgrMhCLiLYRztU1RDokfZt8sy5ZPEmlYkY7QErWGqcbLhatXC+H3/6aJLXuWWlis0+6yLcPXyF33XOPHDnymHLEdObMmTJo0CATlH9duloaHXGl1Grf1xCI0ISD/Xqkbe1imfHopVK0ZX3AR1HjJxNAyp4hUtTgqe8//PDDcsMNN5R7LALDY4891kwunDhxojGYCkTo8DCgdbEyhO7iQe3lu8WbQmaDejZOkOmvPSC1C7ea46PFsDKfK7t0Fk6CLNvE0YNiblGiiH4oGYhyzMvKleOfc94z/5PLB5r+5urArrn1aZv/lLzGXcUuUJutjk7kwQcflDGPPS+XPfKWzF2fv1c5Chvgto3rSJ/W6SZmz1u9xZgo+U5A9F1FF/7xnTz59hdVKhGUkiaRbVNekfU/fmQCKWUBPALIOGRlZZkAjzYhJyfHrMLpFGH+hNXe6W8PTOsf7oAQAh5fVUJX9lo95pTYni636/NV0fFVFbwu7JuDzb9QKGoSSgaiHNGSGbB75XZ496by9e/B0+Dh1uyrA5T5DPUZMWKEGdfsm/6eOWO6/Ouqq2TYv5+X33NKKp09ANXVI5y6Ty25eVQf4+ZHzz4qfoyiGFdMWygeAt99951JybP6DwYeP3LkSFm+fLlc9tSn8t4fkWnl87fHjkTm6cr/6yiPTl4qTiHarM0V8YOY7CaIJ0TCeKW6I5ydMET6fskmuenwribFH26Hgd1qbbwWbr/9dqOyX7RoUZk1L5mUhh17S5tLnpE/c0vr2RUFKN/7q1sGeW/xbrn+mQ9NWYCJg8x9QI1PKyF9+wj/GC4ViggAMgpTp06VA0+7JmJEwDoX6AAgkaz6I9FJdPVhXRwxfrJcBJUIKNwKzQzEANzeTeCE2tsS/ZFGrqoY0U61Nqp60u19+/Y1QdbOtHV14C0qkLUvXi6JeVvM/9nZ2bJ+/XqjSSAzQLdAZeAGkV645ZyqdhI58Vqro0tRKCIBJQMxgDHjFzlmvFLdOmek2gHd0EJKieC8884zqvzl0tQVgjbaDAvWLJT179xushd33HGHESgyGwATH38DoGBwQ/tedQJquJ1Edpe1qqtLUSichpKBGICb+u/dQFRqqoUUB72ePXtK0449ZO1+F7iq1W3rOzfIpmW/yT333CP33nuvTJ8+vWw2QU1/vpxuAa0q7Mrs2KFLUSichmoGYgCWZ74b65y0kDk53IdMgD98a/aRnO6Guc5///tf+b1OLyksdg8RoC3x0IvvNBkLjo/sQGWJgNMOl+G+35SDlm3cHjFr8wdO6OkKXYpC4TSUDMQI3DjCGUMkesmdBCWBQNbFNYV9Bw4zvgBuMsOjPXFjchPjKAgJuPXWW11D6Nxqjx2v1uaK+IWSgRiBG0c400vvdAhh+5QE3IK3f17tyi9VVs5u2Ziz1XQ8MGPATYTOjmyQk+A7QGnim2sGm7IUglp/SsD/3M79lNV4vIoFFdEEtb2KIbhthDM1+0ggUvup7CraPUcj5doUvXUbB50KWZOErqrZoEi79lGOQ58yRnrEpLW5Ir7hxkWMIkbqnFwkI4FI7SfaVtH+KJEEI3D84YcfopJouSkbVFO6FIXCKbjjKqqIyTpnNBgi2Qk3rqLLoaTITCAMJzvgFqIVDSRFoYhmKJ2NUVh1zprsv2e1hN++k4ZIHL9bVmVuDlB0EI8+7zS57d83BJxAWBGhcxvJcStJUSiiFe64iipits7J4B0nfQYgMm6BmwNU6/Q0efjm/7qS0EVzNkihiBW49+qliIk6J3PsnfQZIKPhFkSiLFJV0jSse/NqETo3+Ay4MRukUMQKlAwo4tYQyW5Yq2i3obqkyUlCF+3ZIIUiVqBkQBGXhkhOwW2raNC2Ue1qkSanCF0sZIMUiliBkgFFXBoiOQU3raItUO9/75cs1xG6WMgGKRSxAiUDioi1O94woost27LDEMkpuGkV7Ys7xi8yo3ndROhiJRukUMQClAwo4tIQyUkQsNxFBUSKSrxy6ye/uYbQxVI2SKGIBSgZUMSlIVK8wa6Jf9UhdLGaDVIoYgEeL24kCkUNoCYNkZzE2S/Pkhl/ZbtOO0DwZpAOvhPVBSUHMg0QDLYb6rXCGapyKtgupQEyAkoEFApnoWRA4QrEyuAXCM7wx6eJW8Fkvak3DI04oTusW6aMnfZXpciDdT/aC0ouWhpQKJyHkgGFwkaMGb/IMcdFO0CAXjjmcEeIVmUIXaxmgxSKaIeSAYXCRgx5eIqrrHsDYcLoQ4wDZU0jVrJBCkUsQL95CkWcjDB220Alyx5boVDUPLSbQKGIlxHGUTBQSaFQ1Az0qqBQxNiKOxR04p9CoQgEJQMKRRytuHXin0KhCAT3X70UiiiBW0cYW9CJfwqFIhiUDCgUMT7C2IJO/FMoFMGgZEChiPERxkAn/ikUilBQMqBQxPgIY6AT/xQKRSgoGVAo4mCEsU78UygUoaBkQKGwGazAWYm7BTrxT6FQVAQlAwqFzWAFfpcNkwF9ES63IDPBmOEHT+gpVw7tZOuxKBSK2IOSAYXCAZx2QBu5YUQXW7Z18SHt5eCOjc3fFZUfrPsHdsiQydcO0YyAQqGoFHRQkULhIN79JUvuHL9Iikq8YQkLCeqUGqj1WwFdJ/4pFAqnoGRAoXAYq3N2ya2f/CY/LNtsgnwoUmDdjwgR7UEw0Z9O/FMoFHZCyYBCESHoyl6hULgVSgYUihqAruwVCoWboGRAoVAoFIo4h3YTKBQKhUIR51AyoFAoFApFnEPJgEKhUCgUcQ4lAwqFQqFQxDmUDCgUCoVCEedQMqBQKBQKRZxDyYBCoVAoFHEOJQMKhUKhUMQ5lAwoFAqFQhHnUDKgUCgUCkWcQ8mAQqFQKBRxDiUDCoVCoVDEOZQMKBQKhUIR51AyoFAoFApFnEPJgEKhUCgUcQ4lAwqFQqFQxDmUDCgUCoVCEedQMqBQKBQKRZxDyYBCoVAoFHEOJQMKhUKhUMQ5lAwoFAqFQhHnUDKgUCgUCkWcQ8mAQqFQKBRxDiUDCoVCoVDEOZQMKBQKhUIR51AyoFAoFApFnEPJgEKhUCgUEt/4f+EfuFWcntkAAAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -266,51 +322,2307 @@
}
],
"source": [
- "stroke_ctrl = control.ControlSystem([\n",
- " rule1, \n",
- " rule2, \n",
- " rule3,\n",
- " rule4,\n",
- " rule5,\n",
- " rule6,\n",
- " rule7,\n",
- " rule8,\n",
- " rule9,\n",
- " rule10,\n",
- " rule11,\n",
- " rule12,\n",
- " rule13,\n",
- " rule14,\n",
- " rule15,\n",
- " rule16,\n",
- " rule17,\n",
- " rule18,\n",
- " rule19,\n",
- " rule20,\n",
- "])\n",
+ "stroke_ctrl = control.ControlSystem(\n",
+ " rules\n",
+ ")\n",
"\n",
- "stroke = control.ControlSystemSimulation(stroke_ctrl)\n",
+ "stroke_simulation = control.ControlSystemSimulation(stroke_ctrl)\n",
"stroke_ctrl.view()"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 145,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "=============\n",
+ " Antecedents \n",
+ "=============\n",
+ "Antecedent: age = 72\n",
+ " - young : 0.0\n",
+ " - middle : 0.0\n",
+ " - old : 0.0\n",
+ " - aged : 0.18\n",
+ "Antecedent: hypertension = 1\n",
+ " - low : 0.0\n",
+ " - high : 1.0\n",
+ "Antecedent: glucose = 220\n",
+ " - low : 0.0\n",
+ " - normal : 0.0\n",
+ " - high : 0.6799999999999999\n",
+ "Antecedent: bmi = 30\n",
+ " - low : 0.0\n",
+ " - normal : 0.0\n",
+ " - high : 0.08000000000000002\n",
+ "Antecedent: heart_disease = 0\n",
+ " - low : 1.0\n",
+ " - high : 0.0\n",
+ "\n",
+ "=======\n",
+ " Rules \n",
+ "=======\n",
+ "RULE #0:\n",
+ " IF (((age[young] AND hypertension[low]) AND glucose[low]) AND bmi[low]) AND heart_disease[low] THEN stroke_risk[low]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[young] AND hypertension[low]) AND glucose[low]) AND bmi[low]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[low] : 0.0\n",
+ "\n",
+ "RULE #1:\n",
+ " IF (((age[young] AND hypertension[low]) AND glucose[low]) AND bmi[low]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[young] AND hypertension[low]) AND glucose[low]) AND bmi[low]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #2:\n",
+ " IF (((age[young] AND hypertension[low]) AND glucose[low]) AND bmi[normal]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[young] AND hypertension[low]) AND glucose[low]) AND bmi[normal]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #3:\n",
+ " IF (((age[young] AND hypertension[low]) AND glucose[low]) AND bmi[normal]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[young] AND hypertension[low]) AND glucose[low]) AND bmi[normal]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #4:\n",
+ " IF (((age[young] AND hypertension[low]) AND glucose[low]) AND bmi[high]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[young] AND hypertension[low]) AND glucose[low]) AND bmi[high]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #5:\n",
+ " IF (((age[young] AND hypertension[low]) AND glucose[low]) AND bmi[high]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[young] AND hypertension[low]) AND glucose[low]) AND bmi[high]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #6:\n",
+ " IF (((age[young] AND hypertension[low]) AND glucose[normal]) AND bmi[low]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[young] AND hypertension[low]) AND glucose[normal]) AND bmi[low]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #7:\n",
+ " IF (((age[young] AND hypertension[low]) AND glucose[normal]) AND bmi[low]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[young] AND hypertension[low]) AND glucose[normal]) AND bmi[low]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #8:\n",
+ " IF (((age[young] AND hypertension[low]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[low] THEN stroke_risk[low]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[young] AND hypertension[low]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[low] : 0.0\n",
+ "\n",
+ "RULE #9:\n",
+ " IF (((age[young] AND hypertension[low]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[young] AND hypertension[low]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #10:\n",
+ " IF (((age[young] AND hypertension[low]) AND glucose[normal]) AND bmi[high]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[young] AND hypertension[low]) AND glucose[normal]) AND bmi[high]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #11:\n",
+ " IF (((age[young] AND hypertension[low]) AND glucose[normal]) AND bmi[high]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[young] AND hypertension[low]) AND glucose[normal]) AND bmi[high]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #12:\n",
+ " IF (((age[young] AND hypertension[low]) AND glucose[high]) AND bmi[low]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[young] AND hypertension[low]) AND glucose[high]) AND bmi[low]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #13:\n",
+ " IF (((age[young] AND hypertension[low]) AND glucose[high]) AND bmi[low]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[young] AND hypertension[low]) AND glucose[high]) AND bmi[low]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #14:\n",
+ " IF (((age[young] AND hypertension[low]) AND glucose[high]) AND bmi[normal]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[young] AND hypertension[low]) AND glucose[high]) AND bmi[normal]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #15:\n",
+ " IF (((age[young] AND hypertension[low]) AND glucose[high]) AND bmi[normal]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[young] AND hypertension[low]) AND glucose[high]) AND bmi[normal]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #16:\n",
+ " IF (((age[young] AND hypertension[low]) AND glucose[high]) AND bmi[high]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[young] AND hypertension[low]) AND glucose[high]) AND bmi[high]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #17:\n",
+ " IF (((age[young] AND hypertension[low]) AND glucose[high]) AND bmi[high]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[young] AND hypertension[low]) AND glucose[high]) AND bmi[high]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #18:\n",
+ " IF (((age[young] AND hypertension[high]) AND glucose[low]) AND bmi[low]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[young] AND hypertension[high]) AND glucose[low]) AND bmi[low]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #19:\n",
+ " IF (((age[young] AND hypertension[high]) AND glucose[low]) AND bmi[low]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[young] AND hypertension[high]) AND glucose[low]) AND bmi[low]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #20:\n",
+ " IF (((age[young] AND hypertension[high]) AND glucose[low]) AND bmi[normal]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[young] AND hypertension[high]) AND glucose[low]) AND bmi[normal]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #21:\n",
+ " IF (((age[young] AND hypertension[high]) AND glucose[low]) AND bmi[normal]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[young] AND hypertension[high]) AND glucose[low]) AND bmi[normal]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #22:\n",
+ " IF (((age[young] AND hypertension[high]) AND glucose[low]) AND bmi[high]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[young] AND hypertension[high]) AND glucose[low]) AND bmi[high]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #23:\n",
+ " IF (((age[young] AND hypertension[high]) AND glucose[low]) AND bmi[high]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[young] AND hypertension[high]) AND glucose[low]) AND bmi[high]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #24:\n",
+ " IF (((age[young] AND hypertension[high]) AND glucose[normal]) AND bmi[low]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[young] AND hypertension[high]) AND glucose[normal]) AND bmi[low]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #25:\n",
+ " IF (((age[young] AND hypertension[high]) AND glucose[normal]) AND bmi[low]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[young] AND hypertension[high]) AND glucose[normal]) AND bmi[low]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #26:\n",
+ " IF (((age[young] AND hypertension[high]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[low] THEN stroke_risk[low]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[young] AND hypertension[high]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[low] : 0.0\n",
+ "\n",
+ "RULE #27:\n",
+ " IF (((age[young] AND hypertension[high]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[young] AND hypertension[high]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #28:\n",
+ " IF (((age[young] AND hypertension[high]) AND glucose[normal]) AND bmi[high]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[young] AND hypertension[high]) AND glucose[normal]) AND bmi[high]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #29:\n",
+ " IF (((age[young] AND hypertension[high]) AND glucose[normal]) AND bmi[high]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[young] AND hypertension[high]) AND glucose[normal]) AND bmi[high]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #30:\n",
+ " IF (((age[young] AND hypertension[high]) AND glucose[high]) AND bmi[low]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[young] AND hypertension[high]) AND glucose[high]) AND bmi[low]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #31:\n",
+ " IF (((age[young] AND hypertension[high]) AND glucose[high]) AND bmi[low]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[young] AND hypertension[high]) AND glucose[high]) AND bmi[low]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #32:\n",
+ " IF (((age[young] AND hypertension[high]) AND glucose[high]) AND bmi[normal]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[young] AND hypertension[high]) AND glucose[high]) AND bmi[normal]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #33:\n",
+ " IF (((age[young] AND hypertension[high]) AND glucose[high]) AND bmi[normal]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[young] AND hypertension[high]) AND glucose[high]) AND bmi[normal]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #34:\n",
+ " IF (((age[young] AND hypertension[high]) AND glucose[high]) AND bmi[high]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[young] AND hypertension[high]) AND glucose[high]) AND bmi[high]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #35:\n",
+ " IF (((age[young] AND hypertension[high]) AND glucose[high]) AND bmi[high]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[young] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[young] AND hypertension[high]) AND glucose[high]) AND bmi[high]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #36:\n",
+ " IF (((age[middle] AND hypertension[low]) AND glucose[low]) AND bmi[low]) AND heart_disease[low] THEN stroke_risk[low]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[middle] AND hypertension[low]) AND glucose[low]) AND bmi[low]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[low] : 0.0\n",
+ "\n",
+ "RULE #37:\n",
+ " IF (((age[middle] AND hypertension[low]) AND glucose[low]) AND bmi[low]) AND heart_disease[high] THEN stroke_risk[low]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[middle] AND hypertension[low]) AND glucose[low]) AND bmi[low]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[low] : 0.0\n",
+ "\n",
+ "RULE #38:\n",
+ " IF (((age[middle] AND hypertension[low]) AND glucose[low]) AND bmi[normal]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[middle] AND hypertension[low]) AND glucose[low]) AND bmi[normal]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #39:\n",
+ " IF (((age[middle] AND hypertension[low]) AND glucose[low]) AND bmi[normal]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[middle] AND hypertension[low]) AND glucose[low]) AND bmi[normal]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #40:\n",
+ " IF (((age[middle] AND hypertension[low]) AND glucose[low]) AND bmi[high]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[middle] AND hypertension[low]) AND glucose[low]) AND bmi[high]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #41:\n",
+ " IF (((age[middle] AND hypertension[low]) AND glucose[low]) AND bmi[high]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[middle] AND hypertension[low]) AND glucose[low]) AND bmi[high]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #42:\n",
+ " IF (((age[middle] AND hypertension[low]) AND glucose[normal]) AND bmi[low]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[middle] AND hypertension[low]) AND glucose[normal]) AND bmi[low]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #43:\n",
+ " IF (((age[middle] AND hypertension[low]) AND glucose[normal]) AND bmi[low]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[middle] AND hypertension[low]) AND glucose[normal]) AND bmi[low]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #44:\n",
+ " IF (((age[middle] AND hypertension[low]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[low] THEN stroke_risk[low]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[middle] AND hypertension[low]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[low] : 0.0\n",
+ "\n",
+ "RULE #45:\n",
+ " IF (((age[middle] AND hypertension[low]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[middle] AND hypertension[low]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #46:\n",
+ " IF (((age[middle] AND hypertension[low]) AND glucose[normal]) AND bmi[high]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[middle] AND hypertension[low]) AND glucose[normal]) AND bmi[high]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #47:\n",
+ " IF (((age[middle] AND hypertension[low]) AND glucose[normal]) AND bmi[high]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[middle] AND hypertension[low]) AND glucose[normal]) AND bmi[high]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #48:\n",
+ " IF (((age[middle] AND hypertension[low]) AND glucose[high]) AND bmi[low]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[middle] AND hypertension[low]) AND glucose[high]) AND bmi[low]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #49:\n",
+ " IF (((age[middle] AND hypertension[low]) AND glucose[high]) AND bmi[low]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[middle] AND hypertension[low]) AND glucose[high]) AND bmi[low]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #50:\n",
+ " IF (((age[middle] AND hypertension[low]) AND glucose[high]) AND bmi[normal]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[middle] AND hypertension[low]) AND glucose[high]) AND bmi[normal]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #51:\n",
+ " IF (((age[middle] AND hypertension[low]) AND glucose[high]) AND bmi[normal]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[middle] AND hypertension[low]) AND glucose[high]) AND bmi[normal]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #52:\n",
+ " IF (((age[middle] AND hypertension[low]) AND glucose[high]) AND bmi[high]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[middle] AND hypertension[low]) AND glucose[high]) AND bmi[high]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #53:\n",
+ " IF (((age[middle] AND hypertension[low]) AND glucose[high]) AND bmi[high]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[middle] AND hypertension[low]) AND glucose[high]) AND bmi[high]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #54:\n",
+ " IF (((age[middle] AND hypertension[high]) AND glucose[low]) AND bmi[low]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[middle] AND hypertension[high]) AND glucose[low]) AND bmi[low]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #55:\n",
+ " IF (((age[middle] AND hypertension[high]) AND glucose[low]) AND bmi[low]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[middle] AND hypertension[high]) AND glucose[low]) AND bmi[low]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #56:\n",
+ " IF (((age[middle] AND hypertension[high]) AND glucose[low]) AND bmi[normal]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[middle] AND hypertension[high]) AND glucose[low]) AND bmi[normal]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #57:\n",
+ " IF (((age[middle] AND hypertension[high]) AND glucose[low]) AND bmi[normal]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[middle] AND hypertension[high]) AND glucose[low]) AND bmi[normal]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #58:\n",
+ " IF (((age[middle] AND hypertension[high]) AND glucose[low]) AND bmi[high]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[middle] AND hypertension[high]) AND glucose[low]) AND bmi[high]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #59:\n",
+ " IF (((age[middle] AND hypertension[high]) AND glucose[low]) AND bmi[high]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[middle] AND hypertension[high]) AND glucose[low]) AND bmi[high]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #60:\n",
+ " IF (((age[middle] AND hypertension[high]) AND glucose[normal]) AND bmi[low]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[middle] AND hypertension[high]) AND glucose[normal]) AND bmi[low]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #61:\n",
+ " IF (((age[middle] AND hypertension[high]) AND glucose[normal]) AND bmi[low]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[middle] AND hypertension[high]) AND glucose[normal]) AND bmi[low]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #62:\n",
+ " IF (((age[middle] AND hypertension[high]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[low] THEN stroke_risk[low]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[middle] AND hypertension[high]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[low] : 0.0\n",
+ "\n",
+ "RULE #63:\n",
+ " IF (((age[middle] AND hypertension[high]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[middle] AND hypertension[high]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #64:\n",
+ " IF (((age[middle] AND hypertension[high]) AND glucose[normal]) AND bmi[high]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[middle] AND hypertension[high]) AND glucose[normal]) AND bmi[high]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #65:\n",
+ " IF (((age[middle] AND hypertension[high]) AND glucose[normal]) AND bmi[high]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[middle] AND hypertension[high]) AND glucose[normal]) AND bmi[high]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #66:\n",
+ " IF (((age[middle] AND hypertension[high]) AND glucose[high]) AND bmi[low]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[middle] AND hypertension[high]) AND glucose[high]) AND bmi[low]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #67:\n",
+ " IF (((age[middle] AND hypertension[high]) AND glucose[high]) AND bmi[low]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[middle] AND hypertension[high]) AND glucose[high]) AND bmi[low]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #68:\n",
+ " IF (((age[middle] AND hypertension[high]) AND glucose[high]) AND bmi[normal]) AND heart_disease[low] THEN stroke_risk[high]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[middle] AND hypertension[high]) AND glucose[high]) AND bmi[normal]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[high] : 0.0\n",
+ "\n",
+ "RULE #69:\n",
+ " IF (((age[middle] AND hypertension[high]) AND glucose[high]) AND bmi[normal]) AND heart_disease[high] THEN stroke_risk[high]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[middle] AND hypertension[high]) AND glucose[high]) AND bmi[normal]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[high] : 0.0\n",
+ "\n",
+ "RULE #70:\n",
+ " IF (((age[middle] AND hypertension[high]) AND glucose[high]) AND bmi[high]) AND heart_disease[low] THEN stroke_risk[high]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[middle] AND hypertension[high]) AND glucose[high]) AND bmi[high]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[high] : 0.0\n",
+ "\n",
+ "RULE #71:\n",
+ " IF (((age[middle] AND hypertension[high]) AND glucose[high]) AND bmi[high]) AND heart_disease[high] THEN stroke_risk[high]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[middle] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[middle] AND hypertension[high]) AND glucose[high]) AND bmi[high]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[high] : 0.0\n",
+ "\n",
+ "RULE #72:\n",
+ " IF (((age[old] AND hypertension[low]) AND glucose[low]) AND bmi[low]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[old] AND hypertension[low]) AND glucose[low]) AND bmi[low]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #73:\n",
+ " IF (((age[old] AND hypertension[low]) AND glucose[low]) AND bmi[low]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[old] AND hypertension[low]) AND glucose[low]) AND bmi[low]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #74:\n",
+ " IF (((age[old] AND hypertension[low]) AND glucose[low]) AND bmi[normal]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[old] AND hypertension[low]) AND glucose[low]) AND bmi[normal]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #75:\n",
+ " IF (((age[old] AND hypertension[low]) AND glucose[low]) AND bmi[normal]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[old] AND hypertension[low]) AND glucose[low]) AND bmi[normal]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #76:\n",
+ " IF (((age[old] AND hypertension[low]) AND glucose[low]) AND bmi[high]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[old] AND hypertension[low]) AND glucose[low]) AND bmi[high]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #77:\n",
+ " IF (((age[old] AND hypertension[low]) AND glucose[low]) AND bmi[high]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[old] AND hypertension[low]) AND glucose[low]) AND bmi[high]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #78:\n",
+ " IF (((age[old] AND hypertension[low]) AND glucose[normal]) AND bmi[low]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[old] AND hypertension[low]) AND glucose[normal]) AND bmi[low]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #79:\n",
+ " IF (((age[old] AND hypertension[low]) AND glucose[normal]) AND bmi[low]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[old] AND hypertension[low]) AND glucose[normal]) AND bmi[low]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #80:\n",
+ " IF (((age[old] AND hypertension[low]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[low] THEN stroke_risk[low]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[old] AND hypertension[low]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[low] : 0.0\n",
+ "\n",
+ "RULE #81:\n",
+ " IF (((age[old] AND hypertension[low]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[old] AND hypertension[low]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #82:\n",
+ " IF (((age[old] AND hypertension[low]) AND glucose[normal]) AND bmi[high]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[old] AND hypertension[low]) AND glucose[normal]) AND bmi[high]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #83:\n",
+ " IF (((age[old] AND hypertension[low]) AND glucose[normal]) AND bmi[high]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[old] AND hypertension[low]) AND glucose[normal]) AND bmi[high]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #84:\n",
+ " IF (((age[old] AND hypertension[low]) AND glucose[high]) AND bmi[low]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[old] AND hypertension[low]) AND glucose[high]) AND bmi[low]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #85:\n",
+ " IF (((age[old] AND hypertension[low]) AND glucose[high]) AND bmi[low]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[old] AND hypertension[low]) AND glucose[high]) AND bmi[low]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #86:\n",
+ " IF (((age[old] AND hypertension[low]) AND glucose[high]) AND bmi[normal]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[old] AND hypertension[low]) AND glucose[high]) AND bmi[normal]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #87:\n",
+ " IF (((age[old] AND hypertension[low]) AND glucose[high]) AND bmi[normal]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[old] AND hypertension[low]) AND glucose[high]) AND bmi[normal]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #88:\n",
+ " IF (((age[old] AND hypertension[low]) AND glucose[high]) AND bmi[high]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[old] AND hypertension[low]) AND glucose[high]) AND bmi[high]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #89:\n",
+ " IF (((age[old] AND hypertension[low]) AND glucose[high]) AND bmi[high]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[old] AND hypertension[low]) AND glucose[high]) AND bmi[high]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #90:\n",
+ " IF (((age[old] AND hypertension[high]) AND glucose[low]) AND bmi[low]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[old] AND hypertension[high]) AND glucose[low]) AND bmi[low]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #91:\n",
+ " IF (((age[old] AND hypertension[high]) AND glucose[low]) AND bmi[low]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[old] AND hypertension[high]) AND glucose[low]) AND bmi[low]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #92:\n",
+ " IF (((age[old] AND hypertension[high]) AND glucose[low]) AND bmi[normal]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[old] AND hypertension[high]) AND glucose[low]) AND bmi[normal]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #93:\n",
+ " IF (((age[old] AND hypertension[high]) AND glucose[low]) AND bmi[normal]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[old] AND hypertension[high]) AND glucose[low]) AND bmi[normal]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #94:\n",
+ " IF (((age[old] AND hypertension[high]) AND glucose[low]) AND bmi[high]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[old] AND hypertension[high]) AND glucose[low]) AND bmi[high]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #95:\n",
+ " IF (((age[old] AND hypertension[high]) AND glucose[low]) AND bmi[high]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[old] AND hypertension[high]) AND glucose[low]) AND bmi[high]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #96:\n",
+ " IF (((age[old] AND hypertension[high]) AND glucose[normal]) AND bmi[low]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[old] AND hypertension[high]) AND glucose[normal]) AND bmi[low]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #97:\n",
+ " IF (((age[old] AND hypertension[high]) AND glucose[normal]) AND bmi[low]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[old] AND hypertension[high]) AND glucose[normal]) AND bmi[low]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #98:\n",
+ " IF (((age[old] AND hypertension[high]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[low] THEN stroke_risk[low]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[old] AND hypertension[high]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[low] : 0.0\n",
+ "\n",
+ "RULE #99:\n",
+ " IF (((age[old] AND hypertension[high]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[old] AND hypertension[high]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #100:\n",
+ " IF (((age[old] AND hypertension[high]) AND glucose[normal]) AND bmi[high]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[old] AND hypertension[high]) AND glucose[normal]) AND bmi[high]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #101:\n",
+ " IF (((age[old] AND hypertension[high]) AND glucose[normal]) AND bmi[high]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[old] AND hypertension[high]) AND glucose[normal]) AND bmi[high]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #102:\n",
+ " IF (((age[old] AND hypertension[high]) AND glucose[high]) AND bmi[low]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[old] AND hypertension[high]) AND glucose[high]) AND bmi[low]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #103:\n",
+ " IF (((age[old] AND hypertension[high]) AND glucose[high]) AND bmi[low]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[old] AND hypertension[high]) AND glucose[high]) AND bmi[low]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #104:\n",
+ " IF (((age[old] AND hypertension[high]) AND glucose[high]) AND bmi[normal]) AND heart_disease[low] THEN stroke_risk[high]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[old] AND hypertension[high]) AND glucose[high]) AND bmi[normal]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[high] : 0.0\n",
+ "\n",
+ "RULE #105:\n",
+ " IF (((age[old] AND hypertension[high]) AND glucose[high]) AND bmi[normal]) AND heart_disease[high] THEN stroke_risk[high]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[old] AND hypertension[high]) AND glucose[high]) AND bmi[normal]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[high] : 0.0\n",
+ "\n",
+ "RULE #106:\n",
+ " IF (((age[old] AND hypertension[high]) AND glucose[high]) AND bmi[high]) AND heart_disease[low] THEN stroke_risk[high]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[old] AND hypertension[high]) AND glucose[high]) AND bmi[high]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[high] : 0.0\n",
+ "\n",
+ "RULE #107:\n",
+ " IF (((age[old] AND hypertension[high]) AND glucose[high]) AND bmi[high]) AND heart_disease[high] THEN stroke_risk[high]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[old] : 0.0\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[old] AND hypertension[high]) AND glucose[high]) AND bmi[high]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[high] : 0.0\n",
+ "\n",
+ "RULE #108:\n",
+ " IF (((age[aged] AND hypertension[low]) AND glucose[low]) AND bmi[low]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[aged] AND hypertension[low]) AND glucose[low]) AND bmi[low]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #109:\n",
+ " IF (((age[aged] AND hypertension[low]) AND glucose[low]) AND bmi[low]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[aged] AND hypertension[low]) AND glucose[low]) AND bmi[low]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #110:\n",
+ " IF (((age[aged] AND hypertension[low]) AND glucose[low]) AND bmi[normal]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[aged] AND hypertension[low]) AND glucose[low]) AND bmi[normal]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #111:\n",
+ " IF (((age[aged] AND hypertension[low]) AND glucose[low]) AND bmi[normal]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[aged] AND hypertension[low]) AND glucose[low]) AND bmi[normal]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #112:\n",
+ " IF (((age[aged] AND hypertension[low]) AND glucose[low]) AND bmi[high]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[aged] AND hypertension[low]) AND glucose[low]) AND bmi[high]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #113:\n",
+ " IF (((age[aged] AND hypertension[low]) AND glucose[low]) AND bmi[high]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[aged] AND hypertension[low]) AND glucose[low]) AND bmi[high]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #114:\n",
+ " IF (((age[aged] AND hypertension[low]) AND glucose[normal]) AND bmi[low]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[aged] AND hypertension[low]) AND glucose[normal]) AND bmi[low]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #115:\n",
+ " IF (((age[aged] AND hypertension[low]) AND glucose[normal]) AND bmi[low]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[aged] AND hypertension[low]) AND glucose[normal]) AND bmi[low]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #116:\n",
+ " IF (((age[aged] AND hypertension[low]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[low] THEN stroke_risk[low]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[aged] AND hypertension[low]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[low] : 0.0\n",
+ "\n",
+ "RULE #117:\n",
+ " IF (((age[aged] AND hypertension[low]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[aged] AND hypertension[low]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #118:\n",
+ " IF (((age[aged] AND hypertension[low]) AND glucose[normal]) AND bmi[high]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[aged] AND hypertension[low]) AND glucose[normal]) AND bmi[high]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #119:\n",
+ " IF (((age[aged] AND hypertension[low]) AND glucose[normal]) AND bmi[high]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[aged] AND hypertension[low]) AND glucose[normal]) AND bmi[high]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #120:\n",
+ " IF (((age[aged] AND hypertension[low]) AND glucose[high]) AND bmi[low]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[aged] AND hypertension[low]) AND glucose[high]) AND bmi[low]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #121:\n",
+ " IF (((age[aged] AND hypertension[low]) AND glucose[high]) AND bmi[low]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[aged] AND hypertension[low]) AND glucose[high]) AND bmi[low]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #122:\n",
+ " IF (((age[aged] AND hypertension[low]) AND glucose[high]) AND bmi[normal]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[aged] AND hypertension[low]) AND glucose[high]) AND bmi[normal]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #123:\n",
+ " IF (((age[aged] AND hypertension[low]) AND glucose[high]) AND bmi[normal]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[aged] AND hypertension[low]) AND glucose[high]) AND bmi[normal]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #124:\n",
+ " IF (((age[aged] AND hypertension[low]) AND glucose[high]) AND bmi[high]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[aged] AND hypertension[low]) AND glucose[high]) AND bmi[high]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #125:\n",
+ " IF (((age[aged] AND hypertension[low]) AND glucose[high]) AND bmi[high]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[low] : 0.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[aged] AND hypertension[low]) AND glucose[high]) AND bmi[high]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #126:\n",
+ " IF (((age[aged] AND hypertension[high]) AND glucose[low]) AND bmi[low]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[aged] AND hypertension[high]) AND glucose[low]) AND bmi[low]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #127:\n",
+ " IF (((age[aged] AND hypertension[high]) AND glucose[low]) AND bmi[low]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[aged] AND hypertension[high]) AND glucose[low]) AND bmi[low]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #128:\n",
+ " IF (((age[aged] AND hypertension[high]) AND glucose[low]) AND bmi[normal]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[aged] AND hypertension[high]) AND glucose[low]) AND bmi[normal]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #129:\n",
+ " IF (((age[aged] AND hypertension[high]) AND glucose[low]) AND bmi[normal]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[aged] AND hypertension[high]) AND glucose[low]) AND bmi[normal]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #130:\n",
+ " IF (((age[aged] AND hypertension[high]) AND glucose[low]) AND bmi[high]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[aged] AND hypertension[high]) AND glucose[low]) AND bmi[high]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #131:\n",
+ " IF (((age[aged] AND hypertension[high]) AND glucose[low]) AND bmi[high]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[low] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[aged] AND hypertension[high]) AND glucose[low]) AND bmi[high]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #132:\n",
+ " IF (((age[aged] AND hypertension[high]) AND glucose[normal]) AND bmi[low]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[aged] AND hypertension[high]) AND glucose[normal]) AND bmi[low]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #133:\n",
+ " IF (((age[aged] AND hypertension[high]) AND glucose[normal]) AND bmi[low]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[aged] AND hypertension[high]) AND glucose[normal]) AND bmi[low]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #134:\n",
+ " IF (((age[aged] AND hypertension[high]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[low] THEN stroke_risk[low]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[aged] AND hypertension[high]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[low] : 0.0\n",
+ "\n",
+ "RULE #135:\n",
+ " IF (((age[aged] AND hypertension[high]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[aged] AND hypertension[high]) AND glucose[normal]) AND bmi[normal]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #136:\n",
+ " IF (((age[aged] AND hypertension[high]) AND glucose[normal]) AND bmi[high]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[aged] AND hypertension[high]) AND glucose[normal]) AND bmi[high]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #137:\n",
+ " IF (((age[aged] AND hypertension[high]) AND glucose[normal]) AND bmi[high]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[normal] : 0.0\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[aged] AND hypertension[high]) AND glucose[normal]) AND bmi[high]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #138:\n",
+ " IF (((age[aged] AND hypertension[high]) AND glucose[high]) AND bmi[low]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[aged] AND hypertension[high]) AND glucose[high]) AND bmi[low]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #139:\n",
+ " IF (((age[aged] AND hypertension[high]) AND glucose[high]) AND bmi[low]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[low] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[aged] AND hypertension[high]) AND glucose[high]) AND bmi[low]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #140:\n",
+ " IF (((age[aged] AND hypertension[high]) AND glucose[high]) AND bmi[normal]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[aged] AND hypertension[high]) AND glucose[high]) AND bmi[normal]) AND heart_disease[low] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #141:\n",
+ " IF (((age[aged] AND hypertension[high]) AND glucose[high]) AND bmi[normal]) AND heart_disease[high] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[normal] : 0.0\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[aged] AND hypertension[high]) AND glucose[high]) AND bmi[normal]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.0\n",
+ "\n",
+ "RULE #142:\n",
+ " IF (((age[aged] AND hypertension[high]) AND glucose[high]) AND bmi[high]) AND heart_disease[low] THEN stroke_risk[medium]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[low] : 1.0\n",
+ " (((age[aged] AND hypertension[high]) AND glucose[high]) AND bmi[high]) AND heart_disease[low] = 0.08000000000000002\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[medium] : 0.08000000000000002\n",
+ "\n",
+ "RULE #143:\n",
+ " IF (((age[aged] AND hypertension[high]) AND glucose[high]) AND bmi[high]) AND heart_disease[high] THEN stroke_risk[high]\n",
+ "\tAND aggregation function : fmin\n",
+ "\tOR aggregation function : fmax\n",
+ "\n",
+ " Aggregation (IF-clause):\n",
+ " - age[aged] : 0.18\n",
+ " - hypertension[high] : 1.0\n",
+ " - glucose[high] : 0.6799999999999999\n",
+ " - bmi[high] : 0.08000000000000002\n",
+ " - heart_disease[high] : 0.0\n",
+ " (((age[aged] AND hypertension[high]) AND glucose[high]) AND bmi[high]) AND heart_disease[high] = 0.0\n",
+ " Activation (THEN-clause):\n",
+ " stroke_risk[high] : 0.0\n",
+ "\n",
+ "\n",
+ "==============================\n",
+ " Intermediaries and Conquests \n",
+ "==============================\n",
+ "Consequent: stroke_risk = 0.49999999999999994\n",
+ " low:\n",
+ " Accumulate using accumulation_max : 0.0\n",
+ " medium:\n",
+ " Accumulate using accumulation_max : 0.08000000000000002\n",
+ " high:\n",
+ " Accumulate using accumulation_max : 0.0\n",
+ "\n",
+ "0.49999999999999994\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from pprint import pprint\n",
+ "\n",
+ "def fuzzy_pred(row):\n",
+ " stroke_simulation.input[\"age\"] = row[\"age\"]\n",
+ " stroke_simulation.input[\"glucose\"] = row[\"avg_glucose_level\"]\n",
+ " stroke_simulation.input[\"bmi\"] = row[\"bmi\"]\n",
+ " stroke_simulation.input[\"hypertension\"] = row[\"hypertension\"]\n",
+ " stroke_simulation.input[\"heart_disease\"] = row[\"heart_disease\"]\n",
+ "\n",
+ "\n",
+ " stroke_simulation.compute()\n",
+ " return stroke_simulation.output[\"stroke_risk\"]\n",
+ "\n",
+ "stroke_simulation.input[\"age\"] = 72\n",
+ "stroke_simulation.input[\"glucose\"] = 220\n",
+ "stroke_simulation.input[\"bmi\"] = 30\n",
+ "stroke_simulation.input[\"hypertension\"] = 1\n",
+ "stroke_simulation.input[\"heart_disease\"] = 0\n",
+ "\n",
+ "stroke_simulation.compute()\n",
+ "stroke_simulation.print_state()\n",
+ "stroke_predict = stroke_simulation.output[\"stroke_risk\"]\n",
+ "print(stroke_predict)\n",
+ "\n",
+ "# result = data.copy()\n",
+ "# result = result.sample(frac=0.01)\n",
+ "# result[\"stroke_predicted\"] = result.apply(fuzzy_pred, axis=1)\n",
+ "# # result[\"stroke_predicted\"] = result['stroke'].apply(lambda x: 1 if x> 0.5 else 0, axis=1)\n",
+ "\n",
+ "# print(result.head())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 147,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "MAE: 0.4596\n",
+ "MSE: 0.2265\n",
+ "RMSE: 0.4760\n",
+ "R² Score: -3.0918\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score\n",
+ "import numpy as np\n",
+ "\n",
+ "# Создаем копию данных и прогнозируем значения\n",
+ "result = data.copy()\n",
+ "result = result.sample(frac=0.01) # Берем 1% данных для теста\n",
+ "result[\"stroke_predicted\"] = result.apply(fuzzy_pred, axis=1)\n",
+ "\n",
+ "# Истинные и предсказанные значения\n",
+ "y_true = result[\"stroke\"]\n",
+ "y_pred = result[\"stroke_predicted\"]\n",
+ "\n",
+ "# Вычисляем метрики\n",
+ "mae = mean_absolute_error(y_true, y_pred)\n",
+ "mse = mean_squared_error(y_true, y_pred)\n",
+ "rmse = np.sqrt(mse)\n",
+ "r2 = r2_score(y_true, y_pred)\n",
+ "\n",
+ "# Выводим результаты\n",
+ "print(f\"MAE: {mae:.4f}\") # ближе к 0 - лучше\n",
+ "print(f\"MSE: {mse:.4f}\") # ближе к 0 - лучше\n",
+ "print(f\"RMSE: {rmse:.4f}\") # тоже\n",
+ "print(f\"R² Score: {r2:.4f}\") # а тут ближе к 1 - лучше"
+ ]
},
{
"cell_type": "markdown",
"metadata": {},
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
+ "source": [
+ "#### ну короче... противоречивые результаты, но в основном они говорят о том, что модель данная - такое себе. в чем я, собственно, не знаю, согласна или нет... по показателям людей здесь и правда мог бы быть инсульт, ведь риск его развития есть, а если вероятность его развития больше 0,2 вроде, то это высокая вероятность уже... короче сложно такие задачи решать с помощью нечетких переменных"
+ ]
}
],
"metadata": {