diff --git a/lab_2/lab2.ipynb b/lab_2/lab2.ipynb index 20ba785..9096c9f 100644 --- a/lab_2/lab2.ipynb +++ b/lab_2/lab2.ipynb @@ -4,102 +4,48 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "
Объекты вокруг Земли
\n", - " Ссылка \n", - "Оценки студентов на экзамене
\n", - " Ссылка\n", - "Прогноз цены мобильного телефона
\n", - " Ссылка\n", - "О наборе данных
\n",
- "Контекст
\n",
- "В космическом пространстве существует бесконечное количество объектов. Некоторые из них находятся ближе, чем мы думаем. Хотя нам может казаться, что расстояние в 70 000 км не может причинить нам вред, в астрономическом масштабе это очень маленькое расстояние, которое может нарушить многие природные явления. Таким образом, эти объекты/астероиды могут причинить вред. Поэтому разумно знать, что нас окружает и что может причинить нам вред. Таким образом, этот набор данных содержит список сертифицированных НАСА астероидов, которые классифицируются как ближайшие к Земле объекты.
О наборе данных
\n",
- "Контекст
\n",
- "Оценки, полученные студентами
\n",
- "Содержание
\n",
- "Этот набор данных состоит из оценок, полученных учениками по различным предметам.
\n",
- "Благодарности
\n",
- "http://roycekimmons.com/tools/generated_data/exams
\n",
- "Вдохновение
\n",
- "Понять влияние предыстории родителей, подготовки к тестированию и т.д. На успеваемость учащихся
О наборе данных
\n",
- "Этот набор данных был собран путём сбора данных с онлайн-сайтов.\n",
- "Столбцы выглядят следующим образом.\n",
+ "## 2 Датасет: Indicators of Heart Disease \n",
+ "https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease\n",
"\n",
- "Название: в этом столбце содержится название мобильного телефона.\n",
+ "Перевод контекста со страницы на Kaggle: \n",
+ " По данным Всемирной организации здравоохранения (ВОЗ), инсульт является второй по значимости причиной смертности во всем мире, на его долю приходится примерно 11% от общего числа смертей. Этот набор данных используется для прогнозирования вероятности инсульта у пациента на основе таких входных параметров, как пол, возраст, различные заболевания и статус курильщика. Каждая строка данных содержит соответствующую информацию о пациенте.\n",
+ "- Из этого описания очевидно что объектами иследования являются реальные пациенты.\n",
+ "- Атрибуты объектов: id, gender, age, hypertension, heart_disease, ever_married, work_type, Residence_type, avg_glucose_level, bmi, smoking_status, stroke\n",
+ "- Очевидная цель этого датасета - это научиться определять будет у человека сердечный приступ или нет.\n",
"\n",
- "Рейтинг: в этом столбце указаны оценки, выставленные телефону. Минимальная оценка — 0, максимальная — 5.\n",
+ "## 3 Датасет: Pima Indians Diabetes Database\n",
+ "https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database\n",
"\n",
- "Spec_score: в этом столбце указана оценка телефона на основе его характеристик. Минимальное значение — 0, максимальное — 100.\n",
- "\n",
- "No_of_sim: в этом столбце указано, поддерживает ли телефон две SIM-карты, 3G, 4G, 5G, LTE.\n",
- "\n",
- "Оперативная память: В этом столбце содержится информация о оперативной памяти телефона\n",
- "\n",
- "Аккумулятор: В этой колонке представлена информация о характеристиках аккумулятора телефона.\n",
- "\n",
- "Дисплей: В этом столбце содержится информация о размере экрана телефона.\n",
- "\n",
- "Камера: В этой колонке представлена информация о камере, задней и фронтальной.\n",
- "\n",
- "Внешняя_память: этот столбец содержит информацию о том, поддерживает ли устройство внешнюю память и\n",
- "какой объём памяти.\n",
- "\n",
- "Android_version: этот столбец сообщает нам о версии Android на телефоне.\n",
- "\n",
- "Цена: Цена телефона.\n",
- "\n",
- "Компания: Компания, которой принадлежит телефон.\n",
- "\n",
- "Встроенная_память: в этом столбце представлена информация о встроенной памяти телефона.\n",
- "\n",
- "быстрая_зарядка: показывает, поддерживает ли устройство быструю зарядку. Если да, то насколько.\n",
- "\n",
- "Screen_resolution: Это описывает разрешение экрана телефона.\n",
- "\n",
- "Процессор: В этом столбце приведена информация о процессоре телефона.\n",
- "\n",
- "Имя_процессора: в этом столбце описывается название процессора.\n",
- "
\n",
- "
начинаем...
первое...
Проблемная область: Это данные о ближайших к Земле объектах (астероиды и кометы), которые могут угрожать нашей планете. Важно анализировать их траектории, размеры и скорость для предотвращения потенциальных катастроф.
Объекты наблюдения: Астероиды, кометы и другие объекты.
Атрибуты: 'id', 'name', 'est_diameter_min', 'est_diameter_max', 'relative_velocity', 'miss_distance', 'orbiting_body', 'sentry_object', 'absolute_magnitude', 'hazardous'
Связи между объектами: Нет явных связей между объектами, но можно изучать корреляции между размером, скоростью и расстоянием объекта.
\n",
- "Получение сведений о пропущенных данных
Типы пропущенных данных:
None - представление пустых данных в Python
NaN - представление пустых данных в Pandas
'' - пустая строка\n",
- "
Тут понятно, что пропущенных значений нет, поэтому заполнять пустые места не нужно
И еще на сайте видно, что колонки \"orbiting_body\" и \"sentry_object\" не имеют никаких значений кроме \"Земля\" и \"false\" соответственно. Значит удалим их
при просмотре типа данных на сайте kaggle выяснилось, что числовые колонки - это 3-7. По ним и будем просматриватьвыбросы и усреднять значения
" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Колонка est_diameter_min:\n", - " Есть выбросы: Да\n", - " Количество выбросов: 8306\n", - " Минимальное значение: 0.0006089126\n", - " Максимальное значение: 0.32962154705\n", - " 1-й квартиль (Q1): 0.0192555078\n", - " 3-й квартиль (Q3): 0.1434019235\n", - "\n", - "Колонка est_diameter_max:\n", - " Есть выбросы: Да\n", - " Количество выбросов: 8306\n", - " Минимальное значение: 0.00136157\n", - " Максимальное значение: 0.7370561859\n", - " 1-й квартиль (Q1): 0.0430566244\n", - " 3-й квартиль (Q3): 0.320656449\n", - "\n", - "Колонка relative_velocity:\n", - " Есть выбросы: Да\n", - " Количество выбросов: 1574\n", - " Минимальное значение: 203.34643253\n", - " Максимальное значение: 114380.48061454494\n", - " 1-й квартиль (Q1): 28619.02064490995\n", - " 3-й квартиль (Q3): 62923.60463276395\n", - "\n", - "Колонка miss_distance:\n", - " Есть выбросы: Нет\n", - "Колонка absolute_magnitude:\n", - " Есть выбросы: Да\n", - " Количество выбросов: 101\n", - " Минимальное значение: 14.8\n", - " Максимальное значение: 32.239999999999995\n", - " 1-й квартиль (Q1): 21.34\n", - " 3-й квартиль (Q3): 25.7\n", - "\n" - ] - } - ], - "source": [ - "numeric_columns = ['est_diameter_min', 'est_diameter_max', 'relative_velocity', 'miss_distance', 'absolute_magnitude']\n", - "for column in numeric_columns:\n", - " if pd.api.types.is_numeric_dtype(data[column]): # Проверяем, является ли колонка числовой\n", - " q1 = data[column].quantile(0.25) # Находим 1-й квартиль (Q1)\n", - " q3 = data[column].quantile(0.75) # Находим 3-й квартиль (Q3)\n", - " iqr = q3 - q1 # Вычисляем межквартильный размах (IQR)\n", - "\n", - " # Определяем границы для выбросов\n", - " lower_bound = q1 - 1.5 * iqr # Нижняя граница\n", - " upper_bound = q3 + 1.5 * iqr # Верхняя граница\n", - "\n", - " # Подсчитываем количество выбросов\n", - " outliers = data[(data[column] < lower_bound) | (data[column] > upper_bound)]\n", - " outlier_count = outliers.shape[0]\n", - "\n", - " # Устраняем выбросы: заменяем значения ниже нижней границы на саму нижнюю границу, а выше верхней — на верхнюю\n", - " data[column] = data[column].apply(lambda x: lower_bound if x < lower_bound else upper_bound if x > upper_bound else x)\n", - "\n", - " print(f\"Колонка {column}:\")\n", - " print(f\" Есть выбросы: {'Да' if outlier_count > 0 else 'Нет'}\")\n", - " if(outlier_count > 0) :\n", - " print(f\" Количество выбросов: {outlier_count}\")\n", - " print(f\" Минимальное значение: {data[column].min()}\")\n", - " print(f\" Максимальное значение: {data[column].max()}\")\n", - " print(f\" 1-й квартиль (Q1): {q1}\")\n", - " print(f\" 3-й квартиль (Q3): {q3}\\n\")\n", - " " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "так, теперь мы построим диаграммы, чтобы найти зависимость значения \"опасен ли объект\" от других колонок
" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaoAAAK9CAYAAAB1tChIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABg3UlEQVR4nO3deVxU9f4/8NcMMMMmi7IjglsqqZCgXFdMEVzTyty6F8SuVlzN5KpJpmBamJnXNBOrn0tlaWZZ3RQXknIhvblkrlfNXUFwQ0BZZj6/P/wy12Fm8DAMzhl8PR8PHjqfeZ8znxmGz2vOOZ85RyGEECAiIpIppbU7QEREVB0GFRERyRqDioiIZI1BRUREssagIiIiWWNQERGRrDGoiIhI1hhUREQkawwqIiKSNQYVPfJCQkIwevRo3e3s7GwoFApkZ2dbrU+Pgp49e6Jnz57W7kaNrFy5EgqFAr/99pu1u2IRtvJel1VQZWRkIC4uDr6+vnBwcICfnx+io6Px6aefQqvVWrt7JANffPEFFi5caO1uWF1JSQnS0tJkP8AQWYK9tTtwv1WrVsHf3x8zZsyAm5sbbt68iV9//RWjR4/Gpk2b8OWXX1q7i2RlX3zxBQ4fPoxXX321zh6jR48euHPnDlQqVZ09Rm2VlJRg1qxZAGBzWyWVtmzZYu0ukI2QVVD98ssvcHBw0Gt75ZVX0KhRI3zwwQdIT09HSEiIdTpHjwylUglHR0drd8MqiouL4eLi8lAeS84fBOoLIQTu3r0LJycna3elVmS1669qSFWqDCel8n/d/e677zBgwAAEBARArVajefPmmD17NjQajd6yPXv2hEKh0P14eXlhwIABOHz4sF6dQqFAWlqaXtu7774LhUJh8In17t27SEtLw2OPPQZHR0f4+/vjmWeewenTpwEAZ8+ehUKhwMqVK/WW+8c//gGFQqF3PKRyn7dKpUJ+fr5efU5Ojq7fVfeJr1u3DhEREXBycoKXlxf++te/4tKlSwav3fHjxzFs2DB4e3vDyckJrVq1wvTp0wEAaWlpeq+NsZ/KXUs9e/ZE27ZtDdYv1Z49e9C3b1+4u7vD2dkZ0dHR2LVrl17N7du38eqrryIkJARqtRo+Pj7o06cP9u/fr+vDjz/+iHPnzun6V5MPLkIIzJkzB40bN4azszOefPJJHDlyxKDO2H77HTt24LnnnkOTJk2gVqsRFBSESZMm4c6dO3rLjh49Gq6urjh//jwGDhwIV1dXBAYGYsmSJQCAP/74A7169YKLiwuCg4PxxRdfGDz+zZs38eqrryIoKAhqtRotWrTAO++8o9v9ffbsWXh7ewMAZs2apXst7n//Hj9+HEOHDkXDhg3h6OiIyMhIfP/993qPU/ne+/nnn5GUlAQfHx80btxY0mtZ+R6fP38+lixZgmbNmsHZ2RmxsbG4cOEChBCYPXs2GjduDCcnJwwePBjXr1/XW0fVY1SVr/tXX32Ft956C40bN4ajoyN69+6NU6dOSerXgQMH0K9fP7i5ucHV1RW9e/fGr7/+avCcq/up+ndrTGlpKZKTk+Ht7Q0XFxc8/fTTBn+/Usao6vpz/2uzYsUK9OrVCz4+PlCr1QgNDcXSpUsN+hUSEoKBAwdi8+bNiIyMhJOTE5YtWwYAuHjxIoYMGQIXFxf4+Phg0qRJKC0tNfr8pIwvpo4xjh492uDvcs2aNYiIiECDBg3g5uaGdu3a4f3336/uJdYjqy2qSjdv3kRFRQVu376Nffv2Yf78+RgxYgSaNGmiq1m5ciVcXV2RnJwMV1dX/PTTT5g5cyYKCwvx7rvv6q2vdevWmD59OoQQOH36NBYsWID+/fvj/Pnz1fYhPT3doF2j0WDgwIHIysrCiBEjMHHiRNy+fRtbt27F4cOH0bx5c6PrO3XqFD7++GOTj2dnZ4fPP/8ckyZN0rWtWLECjo6OuHv3rl7typUrkZiYiI4dOyI9PR15eXl4//33sWvXLhw4cAAeHh4AgEOHDqF79+5wcHDAuHHjEBISgtOnT+OHH37AW2+9hWeeeQYtWrTQrXfSpElo06YNxo0bp2tr06aNyT5L9dNPP6Ffv36IiIhAamoqlEql7g9vx44d6NSpEwDgpZdewtdff43x48cjNDQU165dw86dO3Hs2DF06NAB06dPx61bt3Dx4kX861//AgC4urpK7sfMmTMxZ84c9O/fH/3798f+/fsRGxuLsrKyBy67bt06lJSU4OWXX0ajRo2wd+9eLF68GBcvXsS6dev0ajUaDfr164cePXpg3rx5WL16NcaPHw8XFxdMnz4dzz//PJ555hlkZGQgPj4enTt3RtOmTQHc26UXHR2NS5cu4cUXX0STJk2we/dupKSk4MqVK1i4cCG8vb2xdOlSvPzyy3j66afxzDPPAADat28PADhy5Ai6du2KwMBATJs2DS4uLvjqq68wZMgQrF+/Hk8//bRef5OSkuDt7Y2ZM2eiuLhY8usJAKtXr0ZZWRkmTJiA69evY968eRg2bBh69eqF7OxsvPbaazh16hQWL16MyZMnY/ny5Q9c59y5c6FUKjF58mTcunUL8+bNw/PPP489e/ZUu9yRI0fQvXt3uLm5YerUqXBwcMCyZcvQs2dP/Pzzz4iKikKPHj3w2Wef6ZZ56623AED34Q0AunTp8sA+TpgwAZ6enkhNTcXZs2excOFCjB8/HmvXrtXVSBmjqvYHAM6dO4c33ngDPj4+uralS5fi8ccfx1NPPQV7e3v88MMPSEpKglarxT/+8Q+95U+cOIGRI0fixRdfxNixY9GqVSvcuXMHvXv3xvnz5/HKK68gICAAn332GX766SeD5yZ1fJFq69atGDlyJHr37o133nkHAHDs2DHs2rULEydOlLYSIUOtWrUSAHQ/8fHxory8XK+mpKTEYLkXX3xRODs7i7t37+raoqOjRXR0tF7d66+/LgCIq1ev6toAiNTUVN3tqVOnCh8fHxEREaG3/PLlywUAsWDBAoPH12q1Qgghzpw5IwCIFStW6O4bNmyYaNu2rQgKChIJCQm69hUrVggAYuTIkaJdu3a69uLiYuHm5iZGjRolAIj//Oc/QgghysrKhI+Pj2jbtq24c+eOrv7f//63ACBmzpypa+vRo4do0KCBOHfunNF+VhUcHKzXt/tFR0eLxx9/3Oh91dFqtaJly5YiLi5O73FLSkpE06ZNRZ8+fXRt7u7u4h//+Ee16xswYIAIDg6ucT+uXr0qVCqVGDBggF4/Kt8L9z/v7du3CwBi+/btev2tKj09XSgUCr3XNyEhQQAQb7/9tq7txo0bwsnJSSgUCrFmzRpd+/Hjxw3ed7NnzxYuLi7iv//9r95jTZs2TdjZ2Ynz588LIYTIz883WLZS7969Rbt27fT+DrRarejSpYto2bKlrq3yvdetWzdRUVFh5FUzrfI97u3tLW7evKlrT0lJEQBEWFiY3t/syJEjhUqlqvZvs/J1b9OmjSgtLdW1v//++wKA+OOPP6rt05AhQ4RKpRKnT5/WtV2+fFk0aNBA9OjRw+gyxsaH6lS+ZjExMXrvo0mTJgk7Ozu910LqGHW/O3fuiIiICBEQECCuXLlS7bri4uJEs2bN9NqCg4MFAJGZmanXvnDhQgFAfPXVV7q24uJi0aJFC733ek3GF1OvXUJCgt7f6MSJE4Wbm1uN32P3k9Wuv0orVqzA1q1bsXr1arzwwgtYvXq13qd8AHr7XG/fvo2CggJ0794dJSUlOH78uF5teXk5CgoKkJ+fj5ycHHz77bdo3749vLy8jD7+pUuXsHjxYsyYMcPgE/v69evh5eWFCRMmGCynUCiMrm/fvn1Yt24d0tPT9XZf3u9vf/sbjh8/rtvFt379eri7u6N37956db/99huuXr2KpKQkveMoAwYMQOvWrfHjjz8CAPLz8/HLL79gzJgxelui1fXzQTQaDQoKClBQUCBpKwQADh48iJMnT2LUqFG4du2abvni4mL07t0bv/zyi26XloeHB/bs2YPLly+b1b/qbNu2TffJ//7nL3VSxv3vt+LiYhQUFKBLly4QQuDAgQMG9X//+991//fw8ECrVq3g4uKCYcOG6dpbtWoFDw8P/Pnnn7q2devWoXv37vD09NS9VgUFBYiJiYFGo8Evv/xSbT+vX7+On376CcOGDdP9XRQUFODatWuIi4vDyZMnDXbhjB07FnZ2dpJeh6qee+45uLu7625HRUUBAP7617/C3t5er72srMzo7umqEhMT9Y5fde/eHQD0XqeqNBoNtmzZgiFDhqBZs2a6dn9/f4waNQo7d+5EYWGh9Cf2AOPGjdN7H3Xv3h0ajQbnzp3TtdVkjKqUlJSEP/74A+vXr4efn5/Rdd26dQsFBQWIjo7Gn3/+iVu3bumto2nTpoiLi9Nr27hxI/z9/TF06FBdm7Ozs8G4KnV8qQkPDw8UFxdj69atNV62kix3/XXu3Fn3/1GjRqFZs2aYPn06XnjhBXTt2hXAvc38N954Az/99JPBG7DqL2737t26ffoA0LJlS2zYsMHkgJ2amoqAgAC8+OKL+Prrr/XuO336NFq1aqX3R/gg06ZNQ/fu3TFw4ECMHz/eaI23tzcGDBiA5cuXIzIyEsuXL0dCQoJBsFX+IbRq1cpgHa1bt8bOnTsB/O+PujbHlao6fvy47nVUKpVo0aIFUlNTMWrUKJPLnDx5EgCQkJBgsubWrVvw9PTEvHnzkJCQgKCgIERERKB///6Ij4/XG3jMVfm6tWzZUq/d29sbnp6eD1z+/PnzmDlzJr7//nvcuHHDoP/3c3R01Hu/AYC7uzsaN25s8J5zd3fXW9/Jkydx6NAhg+UrXb16tdp+njp1CkIIzJgxAzNmzDC5jsDAQN3tyt2O5qj6IagytIKCgoy2V33tpKyz8vdT3bL5+fkoKSkx+nfRpk0baLVaXLhwAY8//vgDH18KKX2syRgFAMuWLcOKFSuwbNky/OUvf9G7b9euXUhNTUVOTg5KSkoM1nX/hwVjv89z586hRYsWBu+/qq+X1PGlJpKSkvDVV1+hX79+CAwMRGxsLIYNG4a+fftKXocsg6qqoUOHYvr06dizZw+6du2KmzdvIjo6Gm5ubnjzzTfRvHlzODo6Yv/+/XjttdcMvnPVvn17vPfeewDuvaEXLVqEnj17Yv/+/XqfWoB7+05XrlyJzz//3OTkjprYsmULtm3bhpycnAfWjhkzBvHx8ZgwYQJ++eUXfPLJJ9ixY0et+2ApISEhuuNs165dw6JFi/C3v/0NzZo1M/jDqlT5u3j33XcRHh5utKZyq3XYsGHo3r07vv32W2zZsgXvvvsu3nnnHXzzzTfo16+f5Z+QRBqNBn369MH169fx2muvoXXr1nBxccGlS5cwevRog/ebqa0TU+1CCN3/tVot+vTpg6lTpxqtfeyxx6rta2VfJk+ebPCputL9xyUB1GpGWG2ea03XKWXZh+VBfazpGLV3715MnDgRf//73w22ck6fPo3evXujdevWWLBgAYKCgqBSqbBx40b861//MljXw5rhp1AojP5Oqk5o8/HxwcGDB7F582Zs2rQJmzZtwooVKxAfH49Vq1ZJeiybCKrKmVWVb47s7Gxcu3YN33zzDXr06KGrO3PmjNHlPT09ERMTo7vds2dPBAQEYMWKFUhJSdGrTUlJQXh4OIYPH250Xc2bN8eePXtQXl7+wCATQmDatGl4+umnTQ7k9+vXrx8cHR0xYsQIdOvWDc2bNzcIquDgYAD3Dpj26tVL774TJ07o7q/cCqk6u7E2XFxc9F7H7t27IzAwEFu2bDH5/Conl7i5uekta4q/vz+SkpKQlJSEq1evokOHDnjrrbd0QWXubsvK1+XkyZN6W2j5+fkP/JT/xx9/4L///S9WrVqF+Ph4XXttdmWY0rx5cxQVFT3wtTL1OlQ+NwcHB0mvd33h7e0NZ2dnnDhxwuC+48ePQ6lUGmzl1aWajFH5+fkYOnQowsPDdbND7/fDDz+gtLQU33//vd6W3Pbt2yX3Jzg4GIcPH4YQQu+9U/X1kjq+APfGVWO7Y+/f/VlJpVJh0KBBGDRoELRaLZKSkrBs2TLMmDHD4IOTMbI6RrVx40aj7R9//DEUCoXuhasMrPvTvKysDB9++KGkx6kMvqpTM3NycvDdd99h7ty5JgeCZ599FgUFBfjggw8M7qv66WLNmjU4dOiQ0dmDxtjb2yM+Ph6HDh3CmDFjjNZERkbCx8cHGRkZev3ftGkTjh07hgEDBgC494fbo0cPLF++3GB2o6U+mVZ+kqvu+EZERASaN2+O+fPno6ioyOD+yim9Go3GYHeIj48PAgIC9J6ni4uL0d0mDxITEwMHBwcsXrxY7/lLOcuFsfebEKJG02ulGjZsGHJycrB582aD+ypnwwL3ji9Utt3Px8cHPXv2xLJly3DlyhWDdVSdQl1f2NnZITY2Ft999x3Onj2ra8/Ly8MXX3yBbt26wc3N7aH2B3jwGKXRaDBixAiUlZVh/fr1Rr9bZmxdt27dwooVKyT3p3///rh8+bLeoYySkhJ89NFHenVSxxfg3oeq48eP672nfv/9d4OvnVy7dk3vtlKp1M1QNTU9vipZbVGNGjUKrVu3xtNPPw1fX1/k5+dj06ZN2L59O6ZPn4527doBuDd91NPTEwkJCXjllVegUCjw2WefmRyA8/Ly8PnnnwMACgoKsGzZMtjb22PgwIF6dVu2bEGfPn2q/SQaHx+PTz/9FMnJydi7dy+6d++O4uJibNu2DUlJSRg8eLDe+iqnh0o1e/ZsTJkyxeRxEwcHB7zzzjtITExEdHQ0Ro4cqZs+GhISoje9fdGiRejWrRs6dOiAcePGoWnTpjh79ix+/PFHHDx4UHKfKhUVFSEzMxPAvYP2ixYtgoODg96btyqlUolPPvkE/fr1w+OPP47ExEQEBgbi0qVL2L59O9zc3PDDDz/g9u3baNy4MYYOHYqwsDC4urpi27Zt+M9//qPbbQvcC761a9ciOTkZHTt2hKurKwYNGvTAvnt7e2Py5MlIT0/HwIED0b9/fxw4cACbNm0yOammUuvWrdG8eXNMnjwZly5dgpubG9avXy/peEtNTZkyBd9//z0GDhyI0aNHIyIiAsXFxfjjjz/w9ddf4+zZs/Dy8oKTkxNCQ0Oxdu1aPPbYY2jYsCHatm2Ltm3bYsmSJejWrRvatWuHsWPHolmzZsjLy0NOTg4uXryI33//3eL9loM5c+Zg69at6NatG5KSkmBvb49ly5ahtLQU8+bNe6h9kTpGZWRk4KeffsJLL71ksIXk6+uLPn36IDY2VrdF8uKLL6KoqAgff/wxfHx8jH4YMWbs2LH44IMPEB8fj3379sHf3x+fffaZ7gNPpZqML2PGjMGCBQsQFxeHF154AVevXkVGRgYef/xxvWNyf//733H9+nX06tULjRs3xrlz57B48WKEh4dL//qL2fMF68DSpUtF//79RUBAgLC3txceHh4iLi5ObNy40aB2165d4i9/+YtwcnISAQEBYurUqWLz5s0G04qjo6P1prp7eHiIrl27GqwTgFAoFGLfvn167camYJaUlIjp06eLpk2bCgcHB+Hn5yeGDh2qmxZbOXXXyclJXLp0SW/ZqlPAK6e7Vk4/r8rU/WvXrhVPPPGEUKvVomHDhuL5558XFy9eNFj+8OHD4umnnxYeHh7C0dFRtGrVSsyYMcPoYz1oerqx13HTpk1G66s6cOCAeOaZZ0SjRo2EWq0WwcHBYtiwYSIrK0sIIURpaamYMmWKCAsLEw0aNBAuLi4iLCxMfPjhh3rrKSoqEqNGjRIeHh4CQI2mqms0GjFr1izh7+8vnJycRM+ePcXhw4cNnrex6elHjx4VMTExwtXVVXh5eYmxY8eK33//3eBrCAkJCcLFxcXo62dsen9wcLAYMGCAXtvt27dFSkqKaNGihVCpVMLLy0t06dJFzJ8/X5SVlenqdu/eLSIiIoRKpTKYqn769GkRHx8v/Pz8hIODgwgMDBQDBw4UX3/9ta7mQe+96lS+x99991299srXbt26dXrtxh7L1PT0qssa+7qHKfv37xdxcXHC1dVVODs7iyeffFLs3r3bZL2509OrvmbG3jNSxqjU1FS9v6v7f+7v1/fffy/at28vHB0dRUhIiHjnnXd0X5U5c+aMrs7Y+6nSuXPnxFNPPSWcnZ2Fl5eXmDhxosjMzDTotxDSx5fPP/9cNGvWTKhUKhEeHi42b95sMD3966+/FrGxscLHx0eoVCrRpEkT8eKLL+pNv38QhRAyOkJJRERUhayOUREREVUlq2NURObIz883mBJ7P5VKhYYNGz7EHtkujUbzwAkXrq6uNTp1FVFtcdcf2byQkBCjU2IrRUdH87pNEp09e/aBXwBOTU01OIEzUV3iFhXZvNWrVxucxfx+Us48Qff4+fk98PthljhTCFFNcIuKiIhkjZMpiIhI1rjrzwitVovLly+jQYMGZp+yh4hIToQQuH37NgICAkxexUGuGFRGXL58+aGeF4yI6GG5cOGC5Cs5ywWDyogGDRoAuPcLrcn5wcrLy7FlyxbExsZa5MzrRERVmTvOFBYWIigoSDe+2RIGlRGVu/vc3NxqHFTOzs5wc3NjUBFRnajtOGOLhzNsa0clERE9chhUREQkawwqIiKSNQYVERHJGoOKiIhkjUFFRESyxqAiIiJZY1AREZGsMaiIiEjWGFRERCRrDCoiIpI1BhUREckag4qIiGSNQUVERLLGoCIiIlljUBERkawxqIiISNYYVEREJGsMKiIikjUGFRERyZq9tTtQX4RM+xFqO4F5nYC2aZtRqlHg7NwB1u4WEdUjj+o4wy0qCwiZ9mON2omIaupRHmcYVLX0oDfJo/AmIqK69aiPMwyqWpD65qjvbyIiqjscZxhUREQkcwwqIiKSNQYVERHJGoOKiIhkjUFFRCRjUU09LFpnixhUREQytmTEExats0UMKiIiGfNyd0YLb+dqa1p4O8PLvfoaW8agqoUnfCxbR0RkTEKXpiYHa+X/3V+fMahqoajCwaJ1RERVlZVp8MmOM3CwV8Db2Q4O/zdqOyhx77a9Av9v5xmUlWms29E6xKCqhcu3KyxaR0RU1Zbjuci/fRfOKnuoVA7wbuAIAPBu4AiVygHOKntcLbyLLcdzrdzTusOgqgWVncKidUREVeXeKoVGCKjtFRBCoLRcCwAoLddC/F+7Rgjk3iq1ck/rDi/zUQu+bo64cbdEUh0RkTn83NWwUyhQVFqBsgoBO8W9oLpxpwwaoYTKXgE7hQJ+7mor97TucIuqFkZ1aWLROiKiqmJb+8FFbY+iUi3KNQLK/9tBo1QA5RqBolItXB3tEdvaz7odrUMMqlr49b8XLFpHRFSVUqmAm6M9FAAEgIp7G1So0N67rQDgpraHUll/DzEwqGph49Fii9YREVW1/8INlGkEhIn7BYBSjcD+CzceZrceKgYVEZGMXSsuw4Ubd6qtuXDjDq4Vlz2kHj18DCoiIhn76feDFq2zRQwqIiIZW/eH1qJ1tohBRUREssagIiIiWWNQERHJmJfEU4VKrbNFDCoiIhnr2T7AonW2iEFFRCRjM/uFWrTOFjGoiIhk7PLt2xats0UMKiIiGXv2w70WrbNFDCoiIhm7U27q5Enm1dkiBhURkYw5SDzXrNQ6W8SgIiKSMV9XacO01DpbVH+fGRFRPVBYbtk6W8SgIiKSsXKNtGNPUutsEYOKiEjGAj2kXWJeap0tYlAREclYgMQAklpnixhUtdBA4rm1pNYREVV16UapRetsEYOqFm5LPHgptY6IqKr8ImlX7pVaZ4sYVEREMsbJFAwqIiJZC3RXWbTOFjGoiIhkzEVZYdE6W8SgqgV7C9cREVV14KrGonW2iEFVC1oL1xERkSEGFRERyRqDqha4RUVEVPcYVEREJGsMKiIikjUGFRERyRqDioiIZI1BVQsRTdwsWkdEVJWfm7Szokuts0UMqlrIvy3tbMVS64iIqvJzk3ZqJKl1tkgWQbVkyRKEhITA0dERUVFR2Lt3r8nab775BpGRkfDw8ICLiwvCw8Px2Wef6dUIITBz5kz4+/vDyckJMTExOHnypMX7rSmRFkBS64iIqprcL8SidbbI6kG1du1aJCcnIzU1Ffv370dYWBji4uJw9epVo/UNGzbE9OnTkZOTg0OHDiExMRGJiYnYvHmzrmbevHlYtGgRMjIysGfPHri4uCAuLg537961aN8vScwfqXVERFW9vOqIRetskdWDasGCBRg7diwSExMRGhqKjIwMODs7Y/ny5Ubre/bsiaeffhpt2rRB8+bNMXHiRLRv3x47d+4EcG9rauHChXjjjTcwePBgtG/fHp9++ikuX76MDRs2PMRnRkRUeyXl0k4ZILXOFln1fKllZWXYt28fUlJSdG1KpRIxMTHIycl54PJCCPz00084ceIE3nnnHQDAmTNnkJubi5iYGF2du7s7oqKikJOTgxEjRhisp7S0FKWl/9vsKSwsBACUl5ejvNz0VQ/VdvrXf1Erhd6/96tuPUREpjgpBe4fPUyNMw6ofpyx5THIqkFVUFAAjUYDX19fvXZfX18cP37c5HK3bt1CYGAgSktLYWdnhw8//BB9+vQBAOTm5urWUXWdlfdVlZ6ejlmzZhm0b9myBc7Ozib7Ma+T8fbZkYafbDZu3GhyPUREprxloXGmpKTEUl166GzyChQNGjTAwYMHUVRUhKysLCQnJ6NZs2bo2bOnWetLSUlBcnKy7nZhYSGCgoIQGxsLNzfTU8ufmLUZ5fd9qFErBWZHajHjNyVKtQpdu4MCOJAaZ1bfiOjR1jZts95tU+MMABxOMz3OVO4pskVWDSovLy/Y2dkhLy9Prz0vLw9+fn4ml1MqlWjRogUAIDw8HMeOHUN6ejp69uypWy4vLw/+/v566wwPDze6PrVaDbXa8DsIDg4OcHBwMNmPkgqF0RPOlmoVKNX87w1U/n/rIiKqKY1GAWOXRKw6ztij+nHGlscgq06mUKlUiIiIQFZWlq5Nq9UiKysLnTt3lrwerVarO8bUtGlT+Pn56a2zsLAQe/bsqdE6JT2uheuIiKoa2cXDonW2yOq7/pKTk5GQkIDIyEh06tQJCxcuRHFxMRITEwEA8fHxCAwMRHp6OoB7x5MiIyPRvHlzlJaWYuPGjfjss8+wdOlSAIBCocCrr76KOXPmoGXLlmjatClmzJiBgIAADBkyxFpPk4jILBt+k7bLbsNvhZj9VB13xkqsHlTDhw9Hfn4+Zs6cidzcXISHhyMzM1M3GeL8+fNQKv+34VdcXIykpCRcvHgRTk5OaN26NT7//HMMHz5cVzN16lQUFxdj3LhxuHnzJrp164bMzEw4Ojo+9OdHRFQbdyuk7ZORWmeLFEIIw7nUj7jCwkK4u7vj1q1b1U6mCJn2o95ttZ3AvE4aTN1rp7fvGADOzh1QJ30lovqt7Rs/oui+g1SmxhlXe+DwHNPjjNRxTY6s/oVfWyb1xeOLTETmspM4gEits0X1+KnVPaXEV09qHRFRVXc0lq2zRRxCa0Ftp3hwUQ3qiIiqcnaws2idLWJQ1cIzTzSyaB0RUVUvdG9s0TpbxKCqhT8uSzstutQ6IqKqdp66ZdE6W8SgqgWpJyuuxyc1JqI6VnJX2sEnqXW2iEFVC0cu37ZoHRFRVReuSBs/pNbZIgYVEZGM3bRwnS1iUBERkawxqIiISNYYVEREMhYq8eocUutsEYOKiEjGhvdrY9E6W8SgIiKSsQ5BDeHkUP1Q7eygRIeghg+pRw8fg4qISMY8XFR4zLeBycFaCaClbwN4uKgeZrceKgYVEZGMBXo4AUKYvFL4vXZxr66eYlAREcnY3bsVOJZb/Zd5j125jbt3K6qtsWUMKiIiGfto92mUaaq/vm2ZRuCj3acfUo8ePgYVEZGM/X4236J1tohBRUQkYz+fKrRonS1iUBERyZjUiy/U54s0MKiIiEjWGFRERCRrDCoiIhlr5Gxv0TpbxKAiIpKxdS91smidLWJQERHJ2MVCabP5pNbZIgZVLTSSeFp9qXVERFXFf3LYonW2iEFVCzfLLVtHRESGGFS1oLFwHRERGWJQERHJ2BMSDx1IrbNFDCoiIhk7IPHQgdQ6W8SgIiIiWWNQERGRrDGoiIhkzMPCdbaIQVULDVTSXj6pdUREVfn7uVi0zhZxBK2FCo20E+tLrSMiqkrqIF2fB/P6/NzqnFriqye1joioKt8GKovW2SIOobXAM1MQUV3LLbxr0TpbxKAiIpKx3Ft3LFpnixhUREQydlPihpLUOlvEoCIikjGFhetsEYOKiEjGGrlKO4mf1DpbxKAiIpKxhaPaWLTOFjGoaoGb5ERU12Z8c9KidbaIQVULAfaWrSMiqipP4mw+qXW2iEFVC5cqLFtHRFSVkLhPRmqdLWJQERHJWAtvR4vW2SIGFRGRjHm4Olu0zhYxqIiIZKxHC0+L1tkiBhURkYx9sfeSRetsEYOKiEjGThdIm80ntc4WMaiIiEjWGFRERCRrDCoiIpI1BhUREckag4qISMa+evEvFq2zRQwqIiIZc1Xbw92x+hOGujvaw1Vdf08qyqCqBalXf6m/V4khorpmDwUK71Z/wtDCuxWw57n+yJgWjaR9gpFaR0RU1Y9HLkE8oEb8X119xaCqhQvXpZ0WXWodEVFV5wtKLFpnixhUtVD0oI85NawjIqrqrkZr0TpbxKAiIpIxHydpx56k1tkiBhURkYyt/k+eRetsEYOKiEjGpB7hrs9HwhlUREQkawwqIiIZayDx0JPUOlvEoCIikrE7EmcNS62zRQwqIiIZ4zEqBlWtSN3Srsdb5EREdY5BVQsBzpatIyIiQwyqWrheZtk6IiIyxKCqhTsSdwpLrSMiIkMMKiIikjUGFRERyRqDioiIZE0WQbVkyRKEhITA0dERUVFR2Lt3r8najz/+GN27d4enpyc8PT0RExNjUD969GgoFAq9n759+9b10yAiojpg9aBau3YtkpOTkZqaiv379yMsLAxxcXG4evWq0frs7GyMHDkS27dvR05ODoKCghAbG4tLl/Svbtm3b19cuXJF9/Pll18+jKdDRGRRajvL1tkiqwfVggULMHbsWCQmJiI0NBQZGRlwdnbG8uXLjdavXr0aSUlJCA8PR+vWrfHJJ59Aq9UiKytLr06tVsPPz0/34+np+TCeDhGRRX2c2NaidbbI3poPXlZWhn379iElJUXXplQqERMTg5ycHEnrKCkpQXl5ORo2bKjXnp2dDR8fH3h6eqJXr16YM2cOGjVqZHQdpaWlKC0t1d0uLCwEAJSXl6O8vNzkY6vt9E+upVYKvX/vV916iIhMWbXjkt5YY2qcWbXjEjoHB5hcjy2PQQohhNVOZXj58mUEBgZi9+7d6Ny5s6596tSp+Pnnn7Fnz54HriMpKQmbN2/GkSNH4OjoCABYs2YNnJ2d0bRpU5w+fRqvv/46XF1dkZOTAzs7w+3jtLQ0zJo1y6D9iy++gLMzTytBRLavpKQEo0aNwq1bt+Dm5mbt7tSIVbeoamvu3LlYs2YNsrOzdSEFACNGjND9v127dmjfvj2aN2+O7Oxs9O7d22A9KSkpSE5O1t0uLCzUHfuq7hfaNm2z3m21UmB2pBYzflOiVKt/hr/DaXE1fn5ERJYaZyr3FNkiqwaVl5cX7OzskJenfwnlvLw8+Pn5Vbvs/PnzMXfuXGzbtg3t27evtrZZs2bw8vLCqVOnjAaVWq2GWq02aHdwcICDg4PJ9ZZqjJ9utlSrMLivuvUQEZliqXHGlscgq06mUKlUiIiI0JsIUTkx4v5dgVXNmzcPs2fPRmZmJiIjIx/4OBcvXsS1a9fg7+9vkX4TEdHDY/VZf8nJyfj444+xatUqHDt2DC+//DKKi4uRmJgIAIiPj9ebbPHOO+9gxowZWL58OUJCQpCbm4vc3FwUFRUBAIqKijBlyhT8+uuvOHv2LLKysjB48GC0aNECcXHc/UZEZGusfoxq+PDhyM/Px8yZM5Gbm4vw8HBkZmbC19cXAHD+/Hkolf/L06VLl6KsrAxDhw7VW09qairS0tJgZ2eHQ4cOYdWqVbh58yYCAgIQGxuL2bNnG929R0RE8mb1oAKA8ePHY/z48Ubvy87O1rt99uzZatfl5OSEzZs3V1tDRES2w+q7/oiIyLQhj0nbEyS1zhYxqIiIZOxsicqidbaIQVULUid72u6kUCKytnKNZetsEYOqFhQSXz2pdUREVTVp5GTROlvEIbQWyrSWrSMiqurgYeNXkjC3zhYxqIiIZOyKhetsEYOKiIhkjUFFRESyxqAiIiJZY1AREZGsMaiIiGRM6vkm6u95KRhURESyVmrhOlvEoCIiIlljUBERkawxqIiIZKyhnWXrbBGDiohIxooknoJNap0tYlAREclYmbBsnS1iUBERkawxqIiISNYYVEREJGsMKiIikjUGFRERyRqDioiIZI1BRUREssagIiIiWWNQERGRrDGoiIhI1hhUREQy5mbhOlvEoCIikrHhXYMtWmeLGFRERDL204k8i9bZIgYVEZGM5RbctWidLWJQERHJWLGF62wRg4qIiGSNQUVERLLGoCIiIlljUBERkawxqIiIZEzqIF2fB/P6/NyIiGze37tIG6al1tmi+vvMiIjqgY92ay1aZ4sYVEREJGsMKiIikjUGFRERyRqDioiIZI1BRUREssagIiIiWWNQERHJGL/wW7+fGxGRzZP67aj6+y0qBhUREckcg4qIiGSNQUVERLLGoKoFN4mvntQ6IiIyxCG0Fhq42lm0joioKoWF62wRg6oWrhRqLFpHRFSVsHCdLWJQ1QKnjRIR1T0GFRERyRqDioiIZI1BRUQkY4Pbu1m0zhYxqIiIZOy7Q4UWrbNFDCoiIpI1BhUREckag4qIiGSNQUVERLLGoCIiIlljUBERydjznRtZtM4WMaiIiGRscPuWFq2zRQwqIiIZ6xDkieZeLtXWNPd2QYcgz4fUo4ePQVULKgvXERFVpdUKXLxZUm3NpRsl0Grr7/nTGVS1UGHhOiKiqr7/4yJKK6oPobsVAt//cfEh9ejhY1DVAi/zQUR17bv9VyxaZ4sYVEREMna3XNqFV6XW2SIGFRGRjLmqLVtnixhUREQyduHGXYvW2SIGFRGRjN0pkzabT2qdLWJQ1UITN2kvn9Q6IqKqlEppASS1zhbJYgRdsmQJQkJC4OjoiKioKOzdu9dk7ccff4zu3bvD09MTnp6eiImJMagXQmDmzJnw9/eHk5MTYmJicPLkSYv3+3yhtPl8UuuIiKq6cLPMonW2yOpBtXbtWiQnJyM1NRX79+9HWFgY4uLicPXqVaP12dnZGDlyJLZv346cnBwEBQUhNjYWly5d0tXMmzcPixYtQkZGBvbs2QMXFxfExcXh7t36uw+XiKi+snpQLViwAGPHjkViYiJCQ0ORkZEBZ2dnLF++3Gj96tWrkZSUhPDwcLRu3RqffPIJtFotsrKyANzbmlq4cCHeeOMNDB48GO3bt8enn36Ky5cvY8OGDQ/xmRERkSXYW/PBy8rKsG/fPqSkpOjalEolYmJikJOTI2kdJSUlKC8vR8OGDQEAZ86cQW5uLmJiYnQ17u7uiIqKQk5ODkaMGGGwjtLSUpSWlupuFxYWAgDKy8tRXl5u8rHVdvr7hNX/t49YbWRfcXXrISIyxVLjjC2PQVYNqoKCAmg0Gvj6+uq1+/r64vjx45LW8dprryEgIEAXTLm5ubp1VF1n5X1VpaenY9asWQbtW7ZsgbOzs8nHntfJePvsSMNjUhs3bjS5HiIiUyw1zpSUVH++QDkzO6i0Wi1OnTqFq1evQqvVf8F69OhR645JMXfuXKxZswbZ2dlwdHQ0ez0pKSlITk7W3S4sLNQd+3JzczO5XNu0zXq31UqB2ZFazPhNiVKtQu++w2lxZvePiB5dlhpnKvcU2SKzgurXX3/FqFGjcO7cOQihv/mpUCig0Ug7lYeXlxfs7OyQl5en156Xlwc/P79ql50/fz7mzp2Lbdu2oX379rr2yuXy8vLg7++vt87w8HCj61Kr1VCrDb/W7eDgAAcHB5N9KNUojLdrFQb3VbceIiJTLDXO2PIYZNZkipdeegmRkZE4fPgwrl+/jhs3buh+rl+/Lnk9KpUKERERuokQAHQTIzp37mxyuXnz5mH27NnIzMxEZGSk3n1NmzaFn5+f3joLCwuxZ8+eatdJRCRH/k6WrbNFZm1RnTx5El9//TVatGhR6w4kJycjISEBkZGR6NSpExYuXIji4mIkJiYCAOLj4xEYGIj09HQAwDvvvIOZM2fiiy++QEhIiO64k6urK1xdXaFQKPDqq69izpw5aNmyJZo2bYoZM2YgICAAQ4YMqXV/iYgepiKJ55qVWmeLzAqqqKgonDp1yiJBNXz4cOTn52PmzJnIzc1FeHg4MjMzdZMhzp8/D6Xyfxt+S5cuRVlZGYYOHaq3ntTUVKSlpQEApk6diuLiYowbNw43b95Et27dkJmZWavjWERE1lAh8YJ2UutskVlBNWHCBPzzn/9Ebm4u2rVrZ7Dv8/5jRlKMHz8e48ePN3pfdna23u2zZ88+cH0KhQJvvvkm3nzzzRr1g4hIbu5IPLGN1DpbZFZQPfvsswCAMWPG6NoUCgWEEDWaTEFERPQgZgXVmTNnLN0PIiIio8wKquDgYEv3g4iIjHBUAncl7NZztPoJ8eqO5KD6/vvv0a9fPzg4OOD777+vtvapp56qdceIiAh4zNcJh67ckVRXX0kOqiFDhiA3Nxc+Pj7VTvPmMSoiIsuRElI1qbNFkoPq/tMkVT1lEhERUV2px3s1iYioPjD7pLT/+c9/sH37dqMnpV2wYEGtO0ZERASYGVRvv/023njjDbRq1Qq+vr5QKP53YsT7/09ERFRbZgXV+++/j+XLl2P06NEW7o5tcVAA5YbXLjNaR0RkjqfbNcS3fzz4ZN9Pt2v4EHpjHWYdo1Iqlejataul+2JzpIRUTeqIiKrK/u9Ni9bZIrOCatKkSViyZIml+0JERFXcKJU2y1pqnS0ya9ff5MmTMWDAADRv3hyhoaEGJ6X95ptvLNI5IqJHnRKAlAiqz1O4zQqqV155Bdu3b8eTTz6JRo0acQIFEVEdaeSkRL6EU6M3cqq/UWVWUK1atQrr16/HgAEDLN0fIiK6z50Kabv0pNbZIrMiuGHDhmjevLml+0JERFUUlVu2zhaZFVRpaWlITU1FSUmJpftDRESkx6xdf4sWLcLp06fh6+uLkJAQg8kU+/fvt0jniIiIzAqq6s6eTkREZElmBVVqaqqkui+//BJPPfUUXFxczHkYIiKiup16/+KLLyIvL68uH4KIiOq5Og0qIXjuICIiqp36+w0xIiKqFxhUREQkawyqWgh0lXbqKKl1RERkiEFVC5eKpB2Dk1pHRESGahxUGo0Gv/zyC27evPnA2uDgYIMvAxMREdVEjYPKzs4OsbGxuHHjxgNrDx8+jKCgILM6RkREBJi5669t27b4888/Ld0XIiIiA2YF1Zw5czB58mT8+9//xpUrV1BYWKj3Q0REliF1kK7PEw7MOoVS//79AQBPPfWU3kUThRBQKBTQaDSW6R0R0SOuhZc9/ltQIamuvjLrmW3fvt3S/SAiIiOK7jw4pGpSZ4vMCqro6GhL94OIiIy4XGzZOltk9m7NHTt24K9//Su6dOmCS5cuAQA+++wz7Ny502KdIyIiMiuo1q9fj7i4ODg5OWH//v0oLS0FANy6dQtvv/22RTtIRESPNrNn/WVkZODjjz/W+0Jv165deXVfIiKyKLOC6sSJE+jRo4dBu7u7u6QzVhAREUllVlD5+fnh1KlTBu07d+5Es2bNat0pIiKiSmYF1dixYzFx4kTs2bMHCoUCly9fxurVqzF58mS8/PLLlu4jERE9wsyanj5t2jRotVr07t0bJSUl6NGjB9RqNSZPnowJEyZYuo9ERPQIMyuoFAoFpk+fjilTpuDUqVMoKipCaGgoXF1dLd0/IiJ6xJm162/MmDG4ffs2VCoVQkND0alTJ7i6uqK4uBhjxoyxdB+JiOgRZlZQrVq1Cnfu3DFov3PnDj799NNad4qIiO5p4iZtmJZaZ4tqtOuvsLAQQggIIXD79m04Ojrq7tNoNNi4cSN8fHws3kkiokfVXa0SgFZiXf1Uo6Dy8PCAQqGAQqHAY489ZnC/QqHArFmzLNY5IqJHnZtKiasS6+qrGgXV9u3bIYRAr169sH79ejRs2FB3n0qlQnBwMAICAizeSbl63MseRyScfv/xenz6fSKqW/mFZRats0U1GkErz5p+5swZNGnSRO9aVI8iKSFVkzoioqpuSRw+pNbZIrO2FYODg7Fz506ePZ2IiOocz55ORESyxrOnExGRrPHs6UREJGs8ezoREckaz55ORESyxrOnExGRrPHs6UREJGu1OmVC5dnTiYiI6opZQXX37l0sXrwY27dvx9WrV6HV6p8wkVPUiYjIUswKqhdeeAFbtmzB0KFD0alTp0f+VEpERFR3zAqqf//739i4cSO6du1q6f4QERHpMWt6emBgIBo0aGDpvhARERkwK6jee+89vPbaazh37pyl+0NERKTHrF1/kZGRuHv3Lpo1awZnZ2e98/0BwPXr1y3SOSIiIrOCauTIkbh06RLefvtt+Pr6cjIFERHVGbOCavfu3cjJyUFYWJil+0NERKTHrGNUrVu3xp07dyzdFyIiqkLqIG3WYG4jzHpuc+fOxT//+U9kZ2fj2rVrKCws1PshIiLL0D64pEZ1tsisXX99+/YFAPTu3VuvXQgBhUIBjUZT+54RERHBzKDavn27pfthkxwAlEusIyIi85gVVNHR0Zbuh02Sut3I7UsiMpezEiiRsF/PuR4fpKrV2dNLSkpw/vx5lJWV6bW3b9++Vp2yFdx3TER1rVkjJQ7nP3gUadao/iaVWUGVn5+PxMREbNq0yej9PEZFRGQZRyWEVE3qbJFZEfzqq6/i5s2b2LNnD5ycnJCZmYlVq1ahZcuW+P777y3dRyKiRxb33Ji5RfXTTz/hu+++Q2RkJJRKJYKDg9GnTx+4ubkhPT0dAwYMsHQ/iYjoEWXWFlVxcTF8fHwAAJ6ensjPzwcAtGvXjhdNJCIiizIrqFq1aoUTJ04AAMLCwrBs2TJcunQJGRkZ8Pf3t2gHiYjo0WZWUE2cOBFXrlwBAKSmpmLTpk1o0qQJFi1ahLfffrvG61uyZAlCQkLg6OiIqKgo7N2712TtkSNH8OyzzyIkJAQKhQILFy40qElLS4NCodD7ad26dY37RURE1mfWMaq//vWvuv9HRETg3LlzOH78OJo0aQIvL68arWvt2rVITk5GRkYGoqKisHDhQsTFxeHEiRO63Yv3KykpQbNmzfDcc89h0qRJJtf7+OOPY9u2bbrb9va1molPRERWYpHR29nZGR06dDBr2QULFmDs2LFITEwEAGRkZODHH3/E8uXLMW3aNIP6jh07omPHjgBg9P5K9vb28PPzk9SH0tJSlJaW6m5Xnq+wvLwc5eWmzz2hthP6t5VC79/7VbceIiJTLDXO2PIYJDmokpOTMXv2bLi4uCA5Obna2gULFkhaZ1lZGfbt24eUlBRdm1KpRExMDHJycqR2zaiTJ08iICAAjo6O6Ny5M9LT09GkSROjtenp6Zg1a5ZB+5YtW+Ds7GzyMeZ1Mt4+O9JwoujGjRuldZyI6D6WGmdKSkos1aWHTnJQHThwQJfIBw4cMFlXk4soFhQUQKPRwNfXV6/d19cXx48fl7yeqqKiorBy5Uq0atUKV65cwaxZs9C9e3ccPnwYDRo0MKhPSUnRC9/CwkIEBQUhNjYWbm5uJh+nbdpmvdtqpcDsSC1m/KZEqVb/dTicFmf28yGiR1f3Nzfjxn2ZZGqc8VQCO2aaHmds+coWkoPq/hPRyv2ktP369dP9v3379oiKikJwcDC++uorvPDCCwb1arUaarXaoN3BwQEODqZPKVuqMR7KpVqFwX3VrYeIyBQXZwVybxm2Vx1nXFyrH2dseQyy6smhvLy8YGdnh7y8PL32vLw8yceXpPDw8MBjjz2GU6dOWWydREQPw8Xblq2zRZK3qJ555hnJK/3mm28k1alUKkRERCArKwtDhgwBAGi1WmRlZWH8+PGSH+9BioqKcPr0afztb3+z2DqJiB6GUonnRpJaZ4skB5W7u7vu/0IIfPvtt3B3d0dkZCQAYN++fbh582aNAg24N0kjISEBkZGR6NSpExYuXIji4mLdLMD4+HgEBgYiPT0dwL0JGEePHtX9/9KlSzh48CBcXV3RokULAMDkyZMxaNAgBAcH4/Lly0hNTYWdnR1GjhxZo74REZH1SQ6qFStW6P7/2muvYdiwYcjIyICdnR2Ae2dMT0pKqnbygTHDhw9Hfn4+Zs6cidzcXISHhyMzM1M3weL8+fNQKv+3h/Ly5ct44okndLfnz5+P+fPnIzo6GtnZ2QCAixcvYuTIkbh27Rq8vb3RrVs3/Prrr/D29q5R34iIyPrM+h7V8uXLsXPnTl1IAYCdnR2Sk5PRpUsXvPvuuzVa3/jx403u6qsMn0ohISEQwvD7A/dbs2ZNjR6fiIjky6zJFBUVFUanjx8/fhxabT3eUUpERA+dWVtUiYmJeOGFF3D69Gl06nTv22h79uzB3LlzdceWiIiILMGsoJo/fz78/Pzw3nvv6U5O6+/vjylTpuCf//ynRTsoZ0pIu1hZ/b1ANBHVNRWAMol19ZVZQaVUKjF16lRMnTpV921nY5Modu3ahcjISKNfpq0PeOVNIqprDnZAmUZaXX1V6w/7bm5uJmf69evXD5cuXartQxARPbKKJYRUTepsUZ3ulXrQ7DwiIqIH4eETIiKSNQYVERHJGoOKiIhkrU6DqibXpiIiIjKGkymIiEjWzAqqXr164ebNmwbthYWF6NWrl+727du30axZM7M7R0REZFZQZWdno6zM8LvSd+/exY4dO2rdKSIioko1OjPFoUOHdP8/evQocnNzdbc1Gg0yMzMRGBhoud4RET3iPNVK3JBwVURPdf2dG1ejoAoPD4dCoYBCodDbxVfJyckJixcvtljniIgedSXl0k7CJrXOFtUoqM6cOQMhBJo1a4a9e/fqXYhQpVLBx8dH7xpVRERUO/YASiXW1Vc1em7BwcEAwGtOERE9JBL2+tWozhaZtVNz1apV+PHHH3W3p06dCg8PD3Tp0gXnzp2zWOeIiB51FRaus0VmBdXbb78NJycnAEBOTg4++OADzJs3D15eXpg0aZJFO0hERI82s3ZrXrhwAS1atAAAbNiwAUOHDsW4cePQtWtX9OzZ05L9IyKiR5xZW1Surq64du0aAGDLli3o06cPAMDR0RF37tyxXO+IiOiRZ9YWVZ8+ffD3v/8dTzzxBP773/+if//+AIAjR47oJlwQERFZgllbVEuWLEGXLl1QUFCAb775Bo0aNQIA7Nu3D6NGjbJoB4mI6NFmVlB5eHjgueeeg4uLC9LS0nSXm2/evDmio6Mt2kEiInq0mRVU69evR9++feHs7IwDBw6gtPTe19EKCwvx9ttvW7SDRESPsicfc7donS0yK6jmzJmDjIwMfPzxx3BwcNC1d+3aFfv377dY54iIHnW7Tt2yaJ0tMiuoTpw4gR49ehi0u7u7G738BxERmadM4hknpNbZIrOCys/PD6dOnTJo37lzJ68/RUREFmVWUI0dOxYTJ07Enj17oFAocPnyZaxevRqTJ0/Gyy+/bOk+EhHRI8ys71FNmzYNWq0WvXv3RklJCXr06AG1Wo3JkydjwoQJlu4jERE9wswKKoVCgenTp2PKlCk4deoUioqKEBoaCldXV0v3j4iIHnG1uoSJSqVCaGiopfpCRERkoP5eu5iIiOoFBhUREckag4qIiGSNQUVERLLGoCIiIlljUBERkawxqIiISNYYVEREJGsMKiIikjUGFRERyRqDioiIZI1BRUREssagIiIiWWNQERGRrDGoiIhI1hhUREQy5qCwbJ0tYlAREclYubBsnS1iUBERkawxqIiISNYYVEREJGsMKiIikjUGFRGRjHm52Fm0zhYxqIiIZKzorsaidbaIQUVEJGNS86ce5xSDioiI5I1BRUREssagIiIiWWNQERGRrDGoiIhI1hhUREQkawwqIiKSNQYVEZGMSb3MVD2+HBWDiohIzhqpLFtnixhUREQydr3MsnW2iEFFRCRjWgvX2SIGFRERyRqDioiIZI1BRUREssagIiIiWWNQERHJmIdK2jekpNbZIgYVEZGMKZTSAkhqnS1iUBERyZifh5NF62yRLIJqyZIlCAkJgaOjI6KiorB3716TtUeOHMGzzz6LkJAQKBQKLFy4sNbrJCKSq6Gd3SxaZ4usHlRr165FcnIyUlNTsX//foSFhSEuLg5Xr141Wl9SUoJmzZph7ty58PPzs8g6iYjkava3VyxaZ4usHlQLFizA2LFjkZiYiNDQUGRkZMDZ2RnLly83Wt+xY0e8++67GDFiBNRqtUXWSURE8mVvzQcvKyvDvn37kJKSomtTKpWIiYlBTk7OQ1tnaWkpSktLdbcLCwsBAOXl5SgvLzf5WGo7oX9bKfT+vV916yEiMsVS44wtj0FWDaqCggJoNBr4+vrqtfv6+uL48eMPbZ3p6emYNWuWQfuWLVvg7Oxs8rHmdTLePjvS8KxbGzdurKbXRETGWWqcKSkpsVSXHjqrBpVcpKSkIDk5WXe7sLAQQUFBiI2NhZub6QOUbdM2691WKwVmR2ox4zclSrX6U0UPp8VZttNE9Eh4cdWv2HXmlu62qXGma1N3LEv4i8n1VO4pskVWDSovLy/Y2dkhLy9Prz0vL8/kRIm6WKdarTZ6vMvBwQEODg4mH6tUY/x7C6VahcF91a2HiMiUC4Uao2NN1XHmQqGm2nHGlscgq06mUKlUiIiIQFZWlq5Nq9UiKysLnTt3ls06iYispZGztGFaap0tsvquv+TkZCQkJCAyMhKdOnXCwoULUVxcjMTERABAfHw8AgMDkZ6eDuDeZImjR4/q/n/p0iUcPHgQrq6uaNGihaR1EhHZitIKw0kTtamzRVYPquHDhyM/Px8zZ85Ebm4uwsPDkZmZqZsMcf78eSiV//ukcPnyZTzxxBO62/Pnz8f8+fMRHR2N7OxsSeskIrIV10o0Fq2zRVYPKgAYP348xo8fb/S+yvCpFBISAiEe/MmhunUSEdkKf3c1zl+/I6muvqq/OzWJiOqBJSOeeHBRDepsEYOKiEjGvNyd0cLb9Pc5AaCFtzO83KuvsWUMKiIimdv2zyfh5WJ8ermXiwO2/fPJh9yjh4tBRUQkc5/lnEWZRsBe8b9BWwnAXgGUaQQ+yzlrxd7VPQYVEZGMlZVp8MmOMyit0MC7gQp+7o4AAD93R3g3UKG0QoP/t/MMysrq76w/BhURkYxtOZ6L/Nt34ayy1/uqDnDvhNvOKntcLbyLLcdzrdTDusegIiKSsdxbpdAIAbW98VO2qe0V0AiB3FulRu+vDxhUREQy5ueuhp1CYfLME6UVAnYKBfz4PSoiIrKG2NZ+8G7giJKyCmg0WpSW37u8R2m5FhqNFiVlFfBxc0Rsa/NO5G0LGFRERDKmUtnh792bwk6pRN7tMlwrKQMAXCspQ97tMtgplXihW1OoVHZW7mndYVAREclcgIcTnFV2UCiAyiNVCgAKBeCsskOAh5M1u1fnGFRERDJWUaHFyl1nYadU4InGbmjayAUA0LSRC55o7AY7pQKrdp9FRYXhFX/rCwYVEZGM7b9wA2evFaORiwr29vZo6KoCADR0vXe7kYsKZwqKsf/CDSv3tO4wqIiIZOxacRnKNVo4mTgG5aSyQ7lGi2vFZQ+5Zw8Pg4qISMYauajgYKfEHRNnnrhTpoGDnRKNXFQPuWcPD4OKiEjGOgR5IqSRC64Vl0Gr1T8OpdXe25Jq6uWCDkGeVuph3WNQERHJmL29EqO7hqCBowPO37iDorsVAICiuxU4f+MO3BwdkNAlBPb29Xc4l8UVfomIyLTebXwBACt3ncXlG0UAgKLSCrTybYCELiG6++srBhURkQ3o3cYX0S298dvZfOQd+RVvPd0WkSHe9XpLqlL9f4ZERPWEvb0SEcENAQARwQ0fiZACGFRERCRzDCoiIpI1BhUREckag4qIiGSNQUVERLLGoCIiIlljUBERkawxqIiISNYYVEREJGsMKiIikjUGFRERyRqDioiIZI1BRUREssagIiIiWWNQERGRrDGoiIhI1hhUREQkawwqIiKSNQYVERHJGoOKiIhkjUFFRESyxqAiIiJZY1AREZGsMaiIiEjWGFRERCRrDCoiIpI1BhUREckag4qIiGSNQUVERLLGoCIiIlljUBERkawxqIiISNYYVEREJGsMKiIikjUGFRERyRqDioiIZI1BRUREssagIiIiWWNQERGRrDGoiIhI1hhUREQkawwqIiKSNQYVERHJGoOKiIhkjUFFRESyxqAiIiJZY1AREZGsMaiIiEjWGFRERCRrDCoiIpI1BhUREckag4qIiGSNQUVERLLGoCIiIlmTRVAtWbIEISEhcHR0RFRUFPbu3Vtt/bp169C6dWs4OjqiXbt22Lhxo979o0ePhkKh0Pvp27dvXT4FIiKqI1YPqrVr1yI5ORmpqanYv38/wsLCEBcXh6tXrxqt3717N0aOHIkXXngBBw4cwJAhQzBkyBAcPnxYr65v3764cuWK7ufLL798GE+HiIgszOpBtWDBAowdOxaJiYkIDQ1FRkYGnJ2dsXz5cqP177//Pvr27YspU6agTZs2mD17Njp06IAPPvhAr06tVsPPz0/34+np+TCeDhERWZi9NR+8rKwM+/btQ0pKiq5NqVQiJiYGOTk5RpfJyclBcnKyXltcXBw2bNig15adnQ0fHx94enqiV69emDNnDho1amR0naWlpSgtLdXdLiwsBACUl5ejvLzcZP/VdkL/tlLo/Xu/6tZDRCRV5VhS0zHFlscgqwZVQUEBNBoNfH199dp9fX1x/Phxo8vk5uYarc/NzdXd7tu3L5555hk0bdoUp0+fxuuvv45+/fohJycHdnZ2ButMT0/HrFmzDNq3bNkCZ2dnk/2f18l4++xIrUFb1eNoRES1sXXr1hrVl5SU1FFP6p5Vg6qujBgxQvf/du3aoX379mjevDmys7PRu3dvg/qUlBS9rbTCwkIEBQUhNjYWbm5uJh+nbdpmvdtqpcDsSC1m/KZEqVahd9/htDhznw4RkU55eTm2bt2KPn36wMHBQfJylXuKbJFVg8rLywt2dnbIy8vTa8/Ly4Ofn5/RZfz8/GpUDwDNmjWDl5cXTp06ZTSo1Go11Gq1QbuDg0O1b4RSjcJ4u1ZhcF9N3lBERA/yoPHJWL2tsupkCpVKhYiICGRlZenatFotsrKy0LlzZ6PLdO7cWa8euLcJbKoeAC5evIhr167B39/fMh0nIqKHxuqz/pKTk/Hxxx9j1apVOHbsGF5++WUUFxcjMTERABAfH6832WLixInIzMzEe++9h+PHjyMtLQ2//fYbxo8fDwAoKirClClT8Ouvv+Ls2bPIysrC4MGD0aJFC8TFcfcbEZGtsfoxquHDhyM/Px8zZ85Ebm4uwsPDkZmZqZswcf78eSiV/8vTLl264IsvvsAbb7yB119/HS1btsSGDRvQtm1bAICdnR0OHTqEVatW4ebNmwgICEBsbCxmz55tdPceERHJm9WDCgDGjx+v2yKqKjs726Dtueeew3PPPWe03snJCZs3bzZ6HxER2R6r7/ojIiKqDoOKiIhkjUFFRESyxqAiIiJZY1AREZGsMaiIiEjWGFRERCRrDCoiIpI1BhUREckag4qIiGSNQUVERLLGoCIiIlljUBERkawxqIiISNYYVEREJGsMKiIikjUGFRERyRqDioiIZI1BRUREssagIiIiWWNQERGRrDGoiIhI1hhUREQkawwqIiKSNQYVERHJGoOKiIhkjUFFRESyxqAiIiJZY1AREZGsMaiIiEjWGFRERCRrDCoiIpI1BhUREckag4qIiGSNQUVERLLGoCIiIlljUBERkawxqIiISNYYVEREJGsMKiIikjUGFRERyRqDioiIZI1BRUREssagIiIiWWNQERGRrDGoiIhI1hhUREQkawwqIiKSNQYVERHJGoOKiIhkjUFFRESyxqAiIiJZY1AREZGsMaiIiEjWGFRERCRrDCoiIpI1BhUREckag4qIiGSNQUVERLLGoCIiIlljUBERkawxqIiISNYYVEREJGsMKiIikjUGFRERyRqDioiIZI1BRUREssagIiIiWWNQERGRrDGoiIhI1hhUREQkawwqIiKSNQYVERHJGoOKiIhkTRZBtWTJEoSEhMDR0RFRUVHYu3dvtfXr1q1D69at4ejoiHbt2mHjxo169wshMHPmTPj7+8PJyQkxMTE4efJkXT4FIiKqI1YPqrVr1yI5ORmpqanYv38/wsLCEBcXh6tXrxqt3717N0aOHIkXXngBBw4cwJAhQzBkyBAcPnxYVzNv3jwsWrQIGRkZ2LNnD1xcXBAXF4e7d+8+rKdFREQWYvWgWrBgAcaOHYvExESEhoYiIyMDzs7OWL58udH6999/H3379sWUKVPQpk0bzJ49Gx06dMAHH3wA4N7W1MKFC/HGG29g8ODBaN++PT799FNcvnwZGzZseIjPjIiILMHemg9eVlaGffv2ISUlRdemVCoRExODnJwco8vk5OQgOTlZry0uLk4XQmfOnEFubi5iYmJ097u7uyMqKgo5OTkYMWKEwTpLS0tRWlqqu11YWAgAKC8vR3l5ucn+q+2E/m2l0Pv3ftWth4hIqsqxpKZjii2PQVYNqoKCAmg0Gvj6+uq1+/r64vjx40aXyc3NNVqfm5uru7+yzVRNVenp6Zg1a5ZB+5YtW+Ds7Gyy//M6GW+fHak1aKt6HI2IqDa2bt1ao/qSkpI66knds2pQyUVKSoreVlphYSGCgoIQGxsLNzc3k8vdLi5D53e3626rlQKzI7WY8ZsSpVqFrj1nypNo4KKqm84T0SOlvLwcW7duRZ8+feDg4CB5uco9RbbIqkHl5eUFOzs75OXl6bXn5eXBz8/P6DJ+fn7V1lf+m5eXB39/f72a8PBwo+tUq9VQq9UG7Q4ODtW+ERp6OOAvzb3x838L9NpLtQqUau4FVfRjXmjo4WJyHURE5njQ+GSs3lZZdTKFSqVCREQEsrKydG1arRZZWVno3Lmz0WU6d+6sVw/c2wSurG/atCn8/Pz0agoLC7Fnzx6T66yNVWOiEP2Yl9H7oh/zwqoxURZ/TCKiR4nVd/0lJycjISEBkZGR6NSpExYuXIji4mIkJiYCAOLj4xEYGIj09HQAwMSJExEdHY333nsPAwYMwJo1a/Dbb7/ho48+AgAoFAq8+uqrmDNnDlq2bImmTZtixowZCAgIwJAhQ+rkOawaE4XColK8tekwgIsYEu6P6f3aws3VcCuNiIhqxupBNXz4cOTn52PmzJnIzc1FeHg4MjMzdZMhzp8/D6Xyfxt+Xbp0wRdffIE33ngDr7/+Olq2bIkNGzagbdu2upqpU6eiuLgY48aNw82bN9GtWzdkZmbC0dGxzp6Hm6sac4a0x8aNFzFnSHub3swmIpIThRDCcC71I66wsBDu7u64detWtZMpqiovL8fGjRvRv39/BhUR1QlzxxlzxzU5sPoXfomIiKrDoCIiIlljUBERkawxqIiISNYYVEREJGsMKiIikjUGFRERyRqDioiIZI1BRUREssagIiIiWWNQERGRrDGoiIhI1hhUREQkawwqIiKSNQYVERHJGoOKiIhkjUFFRESyxqAiIiJZY1AREZGs2Vu7A3IkhAAAFBYW1mi58vJylJSUoLCwEA4ODnXRNSJ6xJk7zlSOZ5Xjmy1hUBlx+/ZtAEBQUJCVe0JEZFm3b9+Gu7u7tbtRIwphi/Fax7RaLS5fvowGDRpAoVBIXq6wsBBBQUG4cOEC3Nzc6rCHRPSoMnecEULg9u3bCAgIgFJpW0d9uEVlhFKpROPGjc1e3s3NjUFFRHXKnHHG1rakKtlWrBIR0SOHQUVERLLGoLIgtVqN1NRUqNVqa3eFiOqpR3Gc4WQKIiKSNW5RERGRrDGoiIhI1hhUREQkawwqIiKSNQaVBS1ZsgQhISFwdHREVFQU9u7da+0uEVE98csvv2DQoEEICAiAQqHAhg0brN2lh4ZBZSFr165FcnIyUlNTsX//foSFhSEuLg5Xr161dteIqB4oLi5GWFgYlixZYu2uPHScnm4hUVFR6NixIz744AMA984XGBQUhAkTJmDatGlW7h0R1ScKhQLffvsthgwZYu2uPBTcorKAsrIy7Nu3DzExMbo2pVKJmJgY5OTkWLFnRES2j0FlAQUFBdBoNPD19dVr9/X1RW5urpV6RURUPzCoiIhI1hhUFuDl5QU7Ozvk5eXptefl5cHPz89KvSIiqh8YVBagUqkQERGBrKwsXZtWq0VWVhY6d+5sxZ4REdk+XjjRQpKTk5GQkIDIyEh06tQJCxcuRHFxMRITE63dNSKqB4qKinDq1Cnd7TNnzuDgwYNo2LAhmjRpYsWe1T1OT7egDz74AO+++y5yc3MRHh6ORYsWISoqytrdIqJ6IDs7G08++aRBe0JCAlauXPnwO/QQMaiIiEjWeIyKiIhkjUFFRESyxqAiIiJZY1AREZGsMaiIiEjWGFRERCRrDCoiIpI1BhUREckag6qO9OzZE6+++qq1uyFZSEgIFi5caO1uYMaMGRg3bpy1u0EkC9OmTcOECROs3Q2rY1CRbOTm5uL999/H9OnT9dqXLFmCkJAQODo6IioqCnv37rVSD6km7t69i9GjR6Ndu3awt7d/ZK5Ga0mTJ0/GqlWr8Oeff1q7K1bFoHqEaDQaaLVaa3fDpE8++QRdunRBcHCwrm3t2rVITk5Gamoq9u/fj7CwMMTFxeHq1atW7ClJodFo4OTkhFdeeUXv6tcknZeXF+Li4rB06VJrd8WqGFR1SKvVYurUqWjYsCH8/PyQlpamd/+CBQvQrl07uLi4ICgoCElJSSgqKtLd37NnTygUCoOfs2fPSlp+5cqV8PDwwPfff4/Q0FCo1WqcP38eV69exaBBg+Dk5ISmTZti9erVBn0/f/48Bg8eDFdXV7i5uWHYsGF619saPXq0wSfkV199FT179tTd/vrrr9GuXTs4OTmhUaNGiImJQXFxscnXa82aNRg0aJDBazR27FgkJiYiNDQUGRkZcHZ2xvLly02up7aMPbfK1/J+3333HTp06ABHR0c0a9YMs2bNQkVFhcn1arVavPnmm2jcuDHUajXCw8ORmZmpu//s2bNGf98KhUJvt+yDfu8AsGvXLvTs2RPOzs7w9PREXFwcbty4AcD4bum0tDSEh4dL7qsULi4uWLp0KcaOHftQr8v2xx9/oFevXrr33bhx4/Ren9GjRxt9je///Z4+fRqDBw+Gr68vXF1d0bFjR2zbtk3vcUpLS/Haa68hKCgIarUaLVq0wP/7f/8PwL0TyCoUCty8eVNvGYVCgQ0bNkjuKwAMGjQIa9asscyLY6MYVHVo1apVcHFxwZ49ezBv3jy8+eab2Lp1q+5+pVKJRYsW4ciRI1i1ahV++uknTJ06VXf/N998gytXruh+nnnmGbRq1Up3yfsHLQ8AJSUleOedd/DJJ5/gyJEj8PHxwejRo3HhwgVs374dX3/9NT788EO9LRStVovBgwfj+vXr+Pnnn7F161b8+eefGD58uOTnfuXKFYwcORJjxozBsWPHkJ2djWeeeQamzoF8/fp1HD16FJGRkbq2srIy7Nu3T+/TuFKpRExMDHJyckw+9urVq+Hq6lrtz44dOyQ/F2N27NiB+Ph4TJw4EUePHsWyZcuwcuVKvPXWWyaXef/99/Hee+9h/vz5OHToEOLi4vDUU0/h5MmTenXbtm3T+703btxY7/4H/d4PHjyI3r17IzQ0FDk5Odi5cycGDRoEjUYj+flJ7WtdePzxx6v93fXr18/kssXFxYiLi4Onpyf+85//YN26ddi2bRvGjx+vV9e3b1+917jq8dmioiL0798fWVlZOHDgAPr27YtBgwbh/Pnzupr4+Hh8+eWXWLRoEY4dO4Zly5bB1dVV8vOU2tdOnTrh4sWLug+ojyRBdSI6Olp069ZNr61jx47itddeM7nMunXrRKNGjYzet2DBAuHh4SFOnDghefkVK1YIAOLgwYO6thMnTggAYu/evbq2Y8eOCQDiX//6lxBCiC1btgg7Oztx/vx5Xc2RI0f0lktISBCDBw/We/yJEyeK6OhoIYQQ+/btEwDE2bNnTfb3fgcOHBAA9B7z0qVLAoDYvXu3Xu2UKVNEp06dTK6rsLBQnDx5stqfkpISk8sbe24rVqwQ7u7uutu9e/cWb7/9tl7NZ599Jvz9/U2uNyAgQLz11lt6bR07dhRJSUlCCCHOnDkjAIgDBw7o1QQHB+t+N8ZU/b2PHDlSdO3a1WR9dHS0mDhxol5bamqqCAsLk9zXmjL2mppy9uzZan93Fy9eNLnsRx99JDw9PUVRUZGu7ccffxRKpVLk5uaa7EvV368xjz/+uFi8eLEQ4n9/R1u3bjVau337dgFA3LhxQ68dgPj2228l91UIIW7duiUAiOzs7Gr7V5/xwol1qH379nq3/f399bZctm3bhvT0dBw/fhyFhYWoqKjA3bt3UVJSAmdnZ13dpk2bMG3aNPzwww947LHHarS8SqXS68exY8dgb2+PiIgIXVvr1q31dnscO3YMQUFBCAoK0rWFhobCw8MDx44dQ8eOHR/43MPCwtC7d2+0a9cOcXFxiI2NxdChQ+Hp6Wm0/s6dOwAAR0fHB677QRo0aIAGDRrUah3//ve/9T4dV1RU6PXt999/x65du/S2oDQajdHfHwAUFhbi8uXL6Nq1q157165d8fvvv9eobw/6vR88eBDPPfdctev48MMP8cknn+hul5WVITQ01OJ9Ncf9xyhr6tixYwgLC4OLi4uurWvXrtBqtThx4oRub8SDFBUVIS0tDT/++COuXLmCiooK3LlzR7dFdfDgQdjZ2SE6Orra9VTdGjanr05OTgDu7R15VHHXXx1ycHDQu61QKHSTGc6ePYuBAweiffv2WL9+Pfbt24clS5YAuDdoVDp69ChGjBiBuXPnIjY2VtcudXknJycoFAqLPzelUmmwG6+8vFz3fzs7O2zduhWbNm1CaGgoFi9ejFatWuHMmTNG1+fl5QUAuuMolW12dnZ6x8YAIC8vr9pjHpbY9ffkk0/i4MGDup8333xT7/6ioiLMmjVLr+aPP/7AyZMnLRK2pkj5vVcObNV5/vnn9fr+0ksv1Vmfa6o2u/4sZfLkyfj222/x9ttvY8eOHTh48CDatWtXo9cYgG7Zyh9zXL9+HQDg7e1t1vL1AbeorGTfvn3QarV47733oFTe+7zw1Vdf6dUUFBRg0KBBePbZZzFp0qQaL29M69atUVFRgX379um2jE6cOKF30LdNmza4cOECLly4oNuqOnr0KG7evKn71O3t7Y3Dhw/rrfvgwYN64axQKNC1a1d07doVM2fORHBwML799lskJycb9Kt58+Zwc3PD0aNHdVuNKpUKERERyMrK0k1u0Gq1yMrKMtiPf7+nnnrqgVdWDgwMrPZ+FxcXtGjRQnfbx8dH7/4OHTrgxIkTejXVcXNzQ0BAAHbt2qX3KXzXrl3o1KmTpHUA0n7v7du3R1ZWFmbNmmVyPe7u7np9b9iwocX7aq6NGzfqfeipqrqQaNOmDVauXIni4mLdlsquXbugVCrRqlUryX3YtWsXRo8ejaeffhrAvQ8m9x8jateuHbRaLX7++edqZzQ2bdrUYBJOTft6+PBhODg44PHHH5fc//qGQWUlLVq0QHl5ORYvXoxBgwZh165dyMjI0Kt59tln4ezsjLS0NOTm5uravb29JS1vTKtWrdC3b1+8+OKLWLp0Kezt7fHqq6/q/fHHxMSgXbt2eP7557Fw4UJUVFQgKSkJ0dHRuskOvXr1wrvvvotPP/0UnTt3xueff47Dhw/jiSeeAADs2bMHWVlZiI2NhY+PD/bs2YP8/Hy0adPGaL8qJ0ns3LlTb8ZdcnIyEhISEBkZiU6dOmHhwoUoLi5GYmKiyedoiV1/DzJz5kwMHDgQTZo0wdChQ6FUKvH777/j8OHDmDNnjtFlpkyZgtTUVDRv3hzh4eFYsWIFDh48aHTWpSlSfu8pKSlo164dkpKS8NJLL0GlUmH79u147rnndFuuD2KJvgL3PuCUlZXh+vXruH37tm6r4v4ZhlXVZtff888/j9TUVCQkJCAtLQ35+fmYMGEC/va3v0ne7QcALVu2xDfffINBgwZBoVBgxowZel/tCAkJQUJCAsaMGYNFixYhLCwM586dw9WrVzFs2DCL9nXHjh3o3r275K24esnaB8nqK2MHrAcPHiwSEhJ0txcsWCD8/f2Fk5OTiIuLE59++qneAVgARn/OnDkjaXlTB4ivXLkiBgwYINRqtWjSpIn49NNPDQ7Ynzt3Tjz11FPCxcVFNGjQQDz33HN6B3iFEGLmzJnC19dXuLu7i0mTJonx48frJlMcPXpUxMXFCW9vb6FWq8Vjjz2mOxBtysaNG0VgYKDQaDR67YsXLxZNmjQRKpVKdOrUSfz666/Vrqe2pB5sz8zMFF26dBFOTk7Czc1NdOrUSXz00Ucm16vRaERaWpoIDAwUDg4OIiwsTGzatEl3v9TJFA/6vQshRHZ2tujSpYtQq9XCw8NDxMXF6e6XMpniQX2tXM/972djgoODjb6H69KhQ4fEk08+KRwdHUXDhg3F2LFjxe3bt3X3S/n9njlzRjz55JPCyclJBAUFiQ8++MDgdbtz546YNGmS8Pf3FyqVSrRo0UIsX75cCCFtMoWUvgohRKtWrcSXX35Zq9fE1imEMDFfmOghE0IgKioKkyZNwsiRI63dHXqA4OBgzJo1C6NHj7Z2V+qtTZs24Z///CcOHToEe/tHdwcYJ1OQbCgUCnz00UfVfmmW5OHIkSNwd3dHfHy8tbtSrxUXF2PFihWPdEgBALeoiIhI1rhFRUREssagIiIiWWNQERGRrDGoiIhI1hhUREQkawwqIiKSNQYVERHJGoOKiIhkjUFFRESy9v8BgbUnDZ0Y7H4AAAAASUVORK5CYII=", - "text/plain": [ - "