{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Начало лабораторной работы\n", "\n", "Выгрузка данных из csv файла в датафрейм" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Index(['HeartDisease', 'BMI', 'Smoking', 'AlcoholDrinking', 'Stroke',\n", " 'PhysicalHealth', 'MentalHealth', 'DiffWalking', 'Sex', 'AgeCategory',\n", " 'Race', 'Diabetic', 'PhysicalActivity', 'GenHealth', 'SleepTime',\n", " 'Asthma', 'KidneyDisease', 'SkinCancer'],\n", " dtype='object')\n" ] } ], "source": [ "import pandas as pd \n", "df = pd.read_csv(\"..//static//csv//heart_2020_cleaned.csv\")\n", "print(df.columns)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAGFCAYAAAASI+9IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsAUlEQVR4nO3dd3hUZd7G8e+khySEEkrogYQiHaWIIKgorgrygqivuKDILrv7sgii4rKKbRXLKtZFV1maLuJaQFFRBEHprBBQAoROIIFACpBeZt4/RkZDRIFM5plz5v5cV66YKZk7MeTOeU75OVwulwsREREgyHQAERHxHyoFERHxUCmIiIiHSkFERDxUCiIi4qFSEBERD5WCiIh4qBRERMRDpSAiIh4qBRER8VApiIiIh0pBREQ8VAoiIuKhUhAREQ+VgoiIeKgURETEQ6UgIiIeKgUREfFQKYiIiIdKQUREPFQKIiLioVIQEREPlYKIiHioFERExEOlICIiHioFERHxUCmIiIiHSkFERDxUCiIi4qFSEBERD5WCiIh4qBRELOyOO+5gyJAhFW47duwYHTp0oGfPnpw4ccJMMLEslYKIjRw7dowrr7ySyMhIvvjiC2JjY01HEotRKYjYxPHjx7nqqqsIDw9n6dKlxMbGMnr0aG644YYKjystLaV+/frMnDkTgP79+zNu3DjGjRtHbGwscXFxPPTQQ7hcLs9zMjIyGDp0KHXr1sXhcHjecnNzAXjkkUfo0qWL5/G5ubk4HA5WrFjhue3MrZozn1NSUkJiYmKFzwuwatUq+vbtS2RkJE2bNmX8+PHk5+dX+fslP0+lIGIDWVlZDBgwgJCQEJYuXUqtWrUAGDNmDEuWLCEjI8Pz2MWLF1NQUMAtt9ziuW3OnDmEhISwYcMGXnzxRZ5//nnefPNNz/2TJk0iNTXV87nef/99r38Nr7zyCkePHq1w2549e7j22msZNmwYW7duZcGCBaxatYpx48Z5/fXFTaUgYnE5OTkMGDCAlJQUwsPDqVmzpue+3r1706ZNG+bNm+e5bdasWQwfPpzo6GjPbU2bNmX69Om0adOGESNG8Oc//5np06d77k9OTua2226je/fuNGzYkDp16nj1a8jOzuZvf/sbkydPrnD7tGnTGDFiBBMmTCApKYnevXvz0ksvMXfuXIqKiryaQdxUCiIW9/XXX+N0OklOTmb37t0888wzFe4fM2YMs2bNAuDo0aN89tlnjB49usJjevXqhcPh8Hx86aWXsmvXLsrLywFISEjg008/JTs7u1q+hscee4wrrriCPn36VLh9y5YtzJ49m+joaM/bwIEDcTqd7Nu3r1qyBLoQ0wFEpGpatmzJsmXLiIuL4x//+Ae33347119/PZ06dQJg5MiRPPDAA6xdu5Y1a9aQkJBA3759z+s1pk+fzogRI4iLi6NGjRqesvCGXbt28eabb5KcnMyhQ4cq3JeXl8fYsWMZP358pec1a9bMaxnkRyoFEYvr2LEjcXFxAAwfPpwPPviAkSNHsmHDBsLCwqhbty5Dhgxh1qxZrF27ljvvvLPS51i/fn2Fj9etW0dSUhLBwcEAtG7dmjvuuIOsrCw+/vhjkpOTuf32272Sf/LkyYwZM4bExMRKpdCtWzdSUlJITEz0ymvJr9PykYjNvPrqq2RmZvLoo496bhszZgxz5sxh+/btjBo1qtJzDh48yD333MPOnTuZP38+L7/8Mnfffbfn/nXr1jFlyhTee+892rdvT+PGjSt9DpfLRVFREUVFRRQXFwPuI4pO31ZeXo7T6aS0tNTznN27d7NixQqmTp36s1/L5MmTWbNmDePGjSM5OZldu3axaNEi7WiuRtpSELGZOnXq8MYbb3DjjTcyePBgevbsyYABA4iPj6d9+/Y0atSo0nNGjhxJYWEhPXr0IDg4mLvvvpvf//73gPvch+HDh/P888/TrVu3s77u1q1biYyMrHDbwIEDKz3ud7/7HbNnzwYgPz+fRx999Kw7rjt16sTKlSv561//St++fXG5XLRq1arCkVPiXQ7XTw9GFhFbysvLo3HjxsyaNYuhQ4dWuK9///506dKFF154odpzLFy4kIULF3pKQfyPthREbMzpdHL8+HGee+45atWqxeDBg43mCQ4OJjQ01GgG+WUqBREbO3jwIAkJCTRp0oTZs2cTEmL2n/ygQYMYNGiQ0Qzyy7R8JCIiHtpSENs5UVDKicJS8orLKCgp++F9uft9cRn5JeXkF5e530rKKSwtJyTIQXhIEBGhwYSHBBEe8sP70Mr/XSMsmIaxEcTXjCS2hpZCxF5UCmI5RaXlpGUXkJZTwMGsAtJyCknLLuBgdgGHcgrJKy7zWZaoHwqiUa1I4mMjiI+NpFGtiu+jwvXPTKxDy0fit04UlrIlLZctabnsOZbHwWx3ARw7VWw62nmpGxXGRY1q0qFxLB0axdKhcU2a140yHUvkZ6kUxC+UljtJST/JlkO5JB/MJTktl31Z+dj1p7NmRIi7KBrFusuicSwt46IICnL8+pNFqpFKQYw4kJVPclqu521b+klKypymYxkVFRZMu/iaXNy8NpclxtEjoQ4RocGmY0mAUSmIT5SUOVm3N4tl24+ybEcmh3IKTUfye2EhQVzyQ0H0TYqjQ6NYbUlItVMpSLXJyitm+Y5Mlu/I5Jtdx326A9iO4qLD6Ne6Ple1q8/lresRrR3YUg1UCuJVO46cZNn2TJZtP0pyWi5O/XRVi9BgBz0S6nBV2wbc0Dme+jERpiOJTagUpMq+P3yC9zcdYmnKUS0LGRAc5KBvUhw3XdyEqy9qQHiI9kPIhVMpyAU5nlfMws2Hee/bQ+w4csp0HPlBbGQoN3SKZ9jFTejWrLbpOGJBKgU5Z06ni692ZjJ/QxorUzMpLdePjj9rWS+KYd2aMLRbY+JjI3/9CSKoFOQcZJ4s4p2NaSzYmMbhXC0PWU2QA3q3ci8v/aZjQy0vyS9SKchZrd59nHlrD/Dl9qOUaY+xLdSLCefOy1rw217NiYnQdZukMpWCVLI05SivLN/FlkMnTEeRahITEcKIns0Z3aeFjlySClQKArjn6y75/ggvL99NSsZJ03HER8JCghjWrQl/6NdS12MSQKUQ8JxOFx9vTefVr3aTejTPdBwxJDjIwbUdGvLHfq3o0DjWdBwxSKUQoMrKnSxMTucfX+1m7/F803HEj/RNiuOP/VvRu1Wc6ShigEohwJSWO3nv20PMWLGHg9kFpuOIH+vXuh4PXt+OpAYxpqOID6kUAsjSlKM8vjhFZSDnLCTIwW09mzFxQGtqR4WZjiM+oFIIAPuO5/Pox9tYsfOY6ShiUbGRoYy/KomRlzYnNDjIdBypRioFGysoKePl5buZ+c0+SsoDe1aBeEfLuCimXNeOARc1MB1FqolKwaY+3pLOk59uJ+NEkekoYkN9k+J48PqLaNNQ+xvsRqVgM6lHT/Hwom2s3ZtlOorYXHCQg1u7N+Xea9pof4ONqBRs4mRRKdOXpjJv7QFdkkJ8ql5MOE8N7chV7bSkZAcqBRv4amcm97+3lWOnik1HkQA2/OImTB10ka6pZHEqBQsrKi3nyU+3M3ftAdNRRABoXCuSZ4d30olvFqZSsKiU9JPc/c5mdmXq0hTiXxwOGHVpCx74TVsiQnWZbqtRKViMy+XijW/28vfPU3WYqfi1lnFRPHdzZ7pqApylqBQs5MiJIib9J5nVu3VkkVhDcJCDP/Rryd1XtSYsRCe9WYFKwSI+/S6DKR9+R25BqekoIuetXXxNXrmtK63qRZuOIr9CpeDn8ovLePijbbz37SHTUUSqJCYihBdv7cKVbXXoqj9TKfix/cfzGT1nI3uP6dLWYg9BDrjn6taMuzLJdBQ5C5WCn1qz5zh/enuTlovElq7vGM+zwztRIyzEdBQ5g0rBD83fcJCpi76ntFz/a8S+2jaM4Y2Rl9C0Tg3TUeQnVAp+pNzp4olPtvOv1ftMRxHxido1Qnnltm5clqiT3fyFSsFPnCoqZfz8zXylmQcSYIKDHEy5rh139UkwHUVQKfiFtOwC7pqzkdSjOjtZAtfQbo158n866ixow1QKhm3cn80f5n1LVn6J6SgixvVIqMO/7uhOdLh2QJuiUjDog02HeOD973S5CpGf6Ny0FnPu7E6tGprRYIJKwZC31h3goUXfo+++SGVtG8Yw766e1IsJNx0l4KgUDJizZj8Pf7TNdAwRv9YyLoq3xvSkUa1I01ECikrBx2au2sfji1NMxxCxhMa1Ivn373rSvG6U6SgBQ6XgQ298vZcnPt1uOoaIpdSPCeetMT1p3SDGdJSAoFLwkRkr9vD0kh2mY4hYUu0aocy7qycdGseajmJ7KgUfeGX5Lv7+RarpGCKWFhMRwqw7unNJizqmo9iaSqGavfBlKi98uct0DBFbqBEWzLy7enJxc01zqy4ahVSNnv9ipwpBxIsKSsoZM2cje47p7P/qolKoJq+t3MNLy3ebjiFiOzkFpYz61wYyTxaZjmJLKoVqsHhrunYqi1SjQzmF3DFrI6eKNG/E21QKXvbtgWwmvbtFZyqLVLOUjJP84a1vKdVlYrxKpeBFB7Ly+d3cbyku0w+piC+s3p3Fvf/Zgo6X8R6VgpfkFpRw56yNZOtqpyI+tSg5nWmfabnWW1QKXlBcVs7v537L3uP5pqOIBKR/fr2Xmas0sdAbVApV5HK5uP+9rWzYn206ikhA+9snKXy8Jd10DMtTKVTR80tTWZSsH0QR01wumPTuFjYfzDEdxdJUClXw7n/TeFnnIoj4jZJyJ396exNZecWmo1iWSuECbT6Yw18//M50DBE5Q8aJIv48fzPlTh2RdCFUChfgZFEp49/ZTGm5fuhE/NGaPVn8/YudpmNYkkrhAkz54DvSsgtNxxCRX/Dayj18vu2I6RiWo1I4Tws2HmTx1gzTMUTkV7hccO9/tpCWXWA6iqWoFM7D7sxTPPKRRmmKWMWpojL+PH8zZboUxjlTKZyjotJyxv17M4Wl5aajiMh5SE7L5VntXzhnKoVz9MQn29lx5JTpGCJyAf759V5Wph4zHcMSVArnYMn3R5i37oDpGCJygdwntiWTeUozGH6NSuFXpOcWMvn9raZjiEgVHc8rYerCbaZj+D2Vwi8od7qY8E4yJwo1yEPEDpZsO6LDVH+FSuEXzFq9Txe6E7GZhxdt08S2X6BSOItDOQU8vzTVdAwR8bIjJ4t4ZomORjoblcJZPLTwewpKdPipiB29tf4A3x7QKsDPUSn8jMVb0/lqpw5fE7ErlwseeP87SjQ6txKVwhlOFpbw6Mc6a1nE7nZl5jFjxR7TMfyOSuEMMcunsKDh27SI1PHMInb36ord7M7MMx3Dr6gUfio9Gcd/Z9Iy7QOWR9zLM6224HDo8tgidlVS5mTKB9/hcunf+WkqhdNcLvj0XnC51xiDCrO5+fDTbG06nWvrZRkOJyLVZcP+bOZvSDMdw2+oFE5L/jcc2ljp5pjM/zIjfyIfJX1GvTAd2yxiR89+vkPnLvxApQBQWgjL/3bWux3OMjqlzWNdzb/wQHOduyBiNzkFpbzxzT7TMfyCSgFg/etwKv1XHxacl84fjj7Cf1v+kx61TvogmIj4ysxv9pKVV2w6hnEqhcIcWDX9vJ4Sl76CBWUTmZf0NVHBOs5ZxA7yS8p59SsdoqpSWDUdinLP+2mOskL6pr3G5nqPcFdj7aQSsYO31h/gcG5gz18P7FI4mQ7r/1mlTxGWu5uHsibzTeK/aR0V2D9MIlZXUubkxS8De79hYJfCimlQ5p1f5E0PLebzkHt4OfFbgh1aUhKxqvc3HQ7oE9oCtxSOpcLmt736KR3FJxh06Dm+a/wsQxpkevVzi4hvlDtdPL80cK+iGrilsPJpcFXPVVBrHN/C9JP3sCRpEfERJdXyGiJSfT77/gjfHTphOoYRgVkKOfth24fV+hIOl5O2aQtYFXU/jyXoAnsiVuJywTOf7zAdw4jALIU1r1TbVsKZgvMzGZnxN5JbvEK/ujk+eU0Rqbpvdh1n/d7Au8RN4JVC/nHY/JbPX7bWkTXMLprIu0nLiAkp8/nri8j5m7kq8M5yDrxSWP+61444Ol+O8hJ6pM1kU52H+HOzwPthE7GaZTsyScsuMB3DpwKrFEryYeMbplMQevIAkzL/yrpWs+lUM3APfRPxd+VOF/PWHTAdw6cCqxQ2zXVf1sJPNDz8BYuYyBuJ6wgP0rkNIv5owcY0CgNoXnvglEJ5Gax91XSKShwl+Vx96CW2NHyC2+IzTMcRkTOcKCzlw82HTcfwmcAphZ2fwgn/vUZRRPZ2nsi5l2VJ79NMo0BF/MqcNftNR/CZwCmFTXNMJ/hVDly0SnufFRH38XTLrRoFKuIndh49xZo9x03H8InAKIXcg7BnuekU5yyoMItb0p9ia9PpXBOXbTqOiACzV+83HcEnAqMUNs3zzF62kpjM//J6wQQWtf6MuhoFKmLUsh2ZHMqx/+Gp9i8FZ7mRk9W8xeEso/PBeayPncLk5rtMxxEJWOVOF/PW2v/wVPuXwq6l5zRq09+FnDrMH48+rFGgIga9szGN4jJ7H55q/1KwwA7m83F6FOjcpG80ClTEx04UlvJ1qr13ONu7FE5mQOrnplN4naOskMvTZmgUqIgBn2y1/srDL7F3KWz70GdXQzXh9CjQrxPnk6RRoCI+8eX2TIpK7ft7xd6lkLLQdAKfaHboY74IuYeXNApUpNrlFZexMvWY6RjVxr6lcDId0jaYTuEzjuITDNYoUBGf+GSrfS9JY99SSPkICLwzgk+PAv0s6SMahmsUqEh1WLb9qG2XkGxcCotMJzDG4XLSLu0dVkffzyMJ203HEbGd/JJyVuy05xa5PUvh1BFIW2c6hXHB+ZnckfE4m1u8yuV1ck3HEbGVxTZdQrJnKWz/2JKXtagutY+sZk7xRBYkLdcoUBEvWb7Dnkch2bMUAnjp6Gwc5cX0THuTTXWnMq7pftNxRCyvoKScr3bYbwnJfqVQdBIOrjWdwm+FntjPvcemsLbVHDrG5JuOI2Jpi7+z3xKS/Uph/zfg1BLJr4k//DkfOSbyz8R1hAYF3lFaIt6watdxnE57/fuxXynsXWE6gWU4SvK45tBLfBf/BLdqFKjIeTtRWMqOI6dMx/Aq+5XCnq9MJ7CciKwUpuXcy5caBSpy3tbtzTIdwavsVQonDkGWZg5cCAcuEjUKVOS8rd+nUvBfWjqqMo0CFTk/G/Zl43LZ548oe5WClo685vQo0IVJSzQKVOQX5BSUsvOoffYr2KcUXC7Yt9J0CltxOMvokjaX9bFTuF+jQEXOat0e+ywh2acUju+CfPteztakkFOH+dPRh9nY8g0uibXPX0Qi3rJur32WWu1TCumbTCewvXrpX/Ef50TmJH1DZLD9Tu8XuVAb9ttnv4J9SuGwSsEXHKUF9EubwZb6jzFao0BFAMjOLyH1aJ7pGF5hn1LQloJPheXsYmrWZFYmvqNRoCLY59BUe5RCeSkc+c50ioDU/NBHGgUqAmzcn2M6glfYoxQyU6BMZ+KacnoU6NYmf+dGjQKVAJVqk8td2KMUtD/BL0QdS+aFk5P4NOljjQKVgLPveD7lNrg4nj1KQfsT/IbDVc5FafNZHT2ZhzUKVAJISbmT/VnWvxy9PUohY4vpBHKG4Pyj3PnDKNA+dU6YjiPiE7tscASSPUrh+G7TCeQsah9ZzbziCSxI+kqjQMX2dmdaf7+C9UvhZDqUWn+Tzc7co0DfYFPdqfyfRoGKje3K1JaCeVl7TCeQcxR6Yj/3HZvCmlZzaa9RoGJDWj7yB1laOrKaRoeXsNgxkdcT12sUqNjK3uN5lh/PqVIQIxwleQw89CJb45/klvgjpuOIeEVRqZO0nALTMarEBqWg5SMri8zaxlM5kzQKVGzD6ktI1i+FbJWC1f04CvR+nmqpy5WItVl9Z7O1S8FZDjn7TacQLwkqPM6t6dPY2mw6V2sUqFjUwWxrH0Rh7VLIOwrlupyC3dTM3Mg/CybyYevPNQpULCcrz9q/k6xdCqe0g9KuHM5Suh6cw/rYKdzbXAcTiHVk56sUzMk7ajqBVLOQU4cZd3QqG1u+STeNAhULUCmYpC2FgFEvfTnvOycyO2mVRoGKX8tSKRiUf8x0AvEhR2kB/dP+QXL9x7mj0SHTcUR+1smiUsrKrTtwyuKlcNx0AjEgPCeVR7Lv1yhQ8UsuF2QXWHdrwdqlUGCPmahyYZof+ojPQyfxYqtNGgUqfsXK+xVUCmJpQUW53Hj472xt8ncG1ddyovgHlYIpRbmmE4ifiDqWzEun7tEoUPELKgVTSrWeLD/6cRToA0zVKFAxSKVgSpkuoCaVBecfYbRGgYpBVj6r2eKlUGw6gfix06NA30n6iqgQndsgvnOqyLqjZy1eCtpSkF/mKC+mV9obJNedyh81ClR8pNxp3aPhLF4K1t1EE98KPbGPyRoFKj5S7rLu9DWLl4K2FOT8nB4F+ppGgUo1KrfwSE7rlkJ5Gbi0Tiznz1GSx7UaBSrVSKVgQrl2MkvVnB4FujTpA5pE6OdJvKfMwqUQYjqAiEkOXCSlvcfXEcsortvYdByxiZLoq4EupmNcEOuWQnC46QRiI0FFOUQW5ZiOITYR2aST6QgXzLrLR8Eh4LBufBGxsSDr/m6ybnLQ1oKI+CcL/8Fq3eQAIWGmE4iIVBZk3ZV5a5dCsEpBRPxQeIzpBBfM4qWg5SMR8UPhNU0nuGDWLgUtH4mIP4qINZ3gglm7FEJrmE4gIlKZlo8MiaxtOoGISGVaPjIkqp7pBCIilUWoFMxQKYiIP9KWgiFRcaYTiIhUpn0KhqgURMQfWXgVw+KlYN1vvIjYVEQtCI82neKCWbsUamhLQUT8TGxT0wmqxNqlEF3fdAIRkYpim5hOUCXWLoWajQCH6RQiIj+KtfawJmuXQmjkD8UgIuIntKVgWJ2WphOIiPxI+xQMUymIiD/RloJhdVuZTiAi8qNazUwnqBLrl0IdlYKI+ImIWMvv57RBKWj5SET8RP2LTCeoMhuUQgI6LFVE/EL9dqYTVJn1SyE0EmpZe2+/iNiEthT8RHxn0wlERKBBe9MJqswepdCoq+kEIiJaPvIbKgURMS2mkS1GBKsURES8oYH19yeAXUohsjbUbmE6hYgEssYXm07gFfYoBYD4LqYTiEgga9bLdAKvsE8paAlJRExxBEOTHqZTeIV9SqFxN9MJRCRQNexo6RGcP2WfUmjSHYLDTacQkUDU7FLTCbzGPqUQGglN7bH5JiIWY5P9CWCnUgBo2c90AhEJRNpS8FMtrzCdQEQCTe0EiGlgOoXX2KsUGnWF8FjTKUQkkCRcbjqBV9mrFIKCoUUf0ylEJJC0vtZ0Aq+yVymA9iuIiO+EREDL/qZTeJUNS6G/6QQiEiha9IWwGqZTeJX9SqFeG10HSUR8o/VA0wm8zn6lANBusOkEIhIIbLY/AexaChcNMZ1AROyufntbjgK2Zyk07gY1m5hOISJ2ZsOlI7BrKTgc0G6Q6RQiYmdtbzCdoFrYsxQALrrRdAIRsas6raCJPYbqnMm+pdC0J0Q3NJ1CROyo0y2mE1Qb+5ZCUBC0s+fmnYgY1ulm0wmqjX1LAaDjcNMJRMRumvSAOgmmU1Qbe5dCs15QN9F0ChGxExtvJYDdSwGgy22mE4iIXQSFQodhplNUK/uXQufb3EO1RUSqKulqqFHHdIpqZf9SqBnv/h8pIlJVAbDyYP9SALj4TtMJRMTqYptCm+tMp6h2gVEKSVfrshciUjXd73IP8rK5wCiFoGDo9lvTKUTEqkIiodso0yl8IjBKAdxLSMHhplOIiBV1vMn2O5hPC5xSiGkAne17arqIVKOeY00n8JnAKQWA3uMBh+kUImIlzXpDw46mU/hMYJVCXFJAHD0gIl7U8/emE/hUYJUCwGXjTScQEauo1RzaBtZslsArhWa93JfVFhH5NX0mQHCI6RQ+FXilAHDZ3aYTiIi/i2kEXW43ncLnArMU2lwHca1NpxARf3bZ3RASZjqFzwVmKTgc0P8B0ylExF9FN4SLA+NktTMFZikAtB8K8Z1NpxARf9T3HgiNNJ3CiMAtBYcDrppqOoWI+JuaTeDiO0ynMCZwSwEgcQC06Gs6hYj4k8snQUjgXhInsEsBYMAjphOIiL+IawNdR5pOYZRKockl0PYG0ylExB8MfDLgzks4k0oB4MqHNLJTJNAlXg1JA0ynME6lAFC/reYtiASyoBD3VoKoFDyuehgiA+N66SJyhu5joJ5OaAWVwo9q1NFOZ5FAFFlbJ7P+hErhp7qNhCY9TKcQEV/q/xd3MQigUqjI4YDrn9NOZ5FA0aAjXHKX6RR+RaVwpvhO0ON3plOISHVzBMONrwT8IahnUin8nCv+CtENTKcQkerU+8/QqIvpFH5HpfBzImrq8DQRO6ub6N6XIJWoFM6m401w0Y2mU4iI1zlg8CsQGmE6iF9SKfySG17QMpKI3XQfA80vNZ3Cb6kUfkmNOjD4ZdMpRMRbYpvpfKRfoVL4Na0HQrfAnMAkYi8OGPwShEebDuLXVArnYuCTULuF6RQiUhWX3Q2trjCdwu+pFM5FeDQMeQ0c+naJWFKTHu6rIcuv0m+5c9X8UvdfGiJiLRGxcNNMnaR2jlQK5+PKh6B5H9MpROR8DH4ZajUzncIyVArnIygYhs+CmHjTSUTkXFxyl843Ok8qhfMVXR+Gz4GgUNNJROSXNOigKxNcAJXChWjWE675m+kUInI2EbHuP9501vJ5UylcqF5/gA7DTKcQkTM5guGmWRCXaDqJJakUqmLwy1CvnekUIvJTA5+AxKtMp7AslUJVhEXBrW9rtrOIv+g2Cnr90XQKS1MpVFXdVvC/8yFEa5ciRjW/zD05UapEpeANzXrB/7wGOEwnEQlMtZrDzfMgWEcFVpVKwVva/w9c/ZjpFCKBJywGblsAUXVNJ7EFlYI3XTYeevzedAqRwBES4V6+ra8DPrxFpeBt1z4Nba4znULE/oJCYPhsSOhrOomtqBS8LSgIhs2ExpeYTiJiYw648R/Q5jemg9iOSqE6hNWA29+D+M6mk4jY02+ehs63mE5hSyqF6hJZG367EBp0NJ1ExF76T4GeY02nsC2VQnWqUQdGLoL6F5lOImIPvf4E/SebTmFrKoXqFlUXRn4EcW1MJxGxth5jddVTH1Ap+EJ0PRj1MdRNMp1ExJr6TITrngGHThCtbg6Xy+UyHSJgnMyA2ddD9h7TSUSs44oHod99plMEDJWCr506Cm8NhaPfm04i4v8GPgmX/p/pFAFFpWBCYS7MvxUOrjWdRMRPOeCG5+GS0aaDBByVgimlhfDuKNj1uekkIv7FEQxD/gGdbzWdJCCpFEwqL4PFd8Pmt0wnEfEPYTEwfBYkXW06ScBSKfiDr56ElU+bTiFiVmxT99VOG7Q3nSSgqRT8xbdz4JNJ4Cw1nUTE9xp1g/99B2IamE4S8FQK/uTAGnh3JOQfM51ExHfaDYah/4TQSNNJBJWC/zlxGBaMgPTNppOIVL/L7oYBj+qkND+iUvBHpUXw8d2w9R3TSUSqR3C4e55yt9+aTiJnUCn4s7WvwhcPgavcdBIR76nVHG6eC426mE4iP0Ol4O/2roD/3AmF2aaTiFRd0kAY+rr70vLil1QKVnDiMHw4FvZ/YzqJyIUJCoErH4TLJmj/gZ9TKViF0wmrX3Cf06DDVsVKYpvCTf+Cpj1MJ5FzoFKwmsOb4P0xutKqWEO7QTD4ZS0XWYhKwYqK8+CzyZCsy2OIn4qsDb95FjoNN51EzpNKwcq2fQgfT4CiXNNJRH7U5jq44QWdnWxRKgWrO3UUlkx2F4SISRG14DdP6+qmFqdSsIvUz93XTjqRZjqJBKKkgTDoRagZbzqJVJFKwU5K8mH5E7D+NZ3wJr4RVR+ueVxbBzaiUrCj9M3w0Xg4stV0ErGroFDoORb6TYaImqbTiBepFOzKWQ7rX3fPadCOaPGmlv3hN89AvTamk0g1UCnYXUE2fP132PgGlJeYTiNWVqsZXPMEXDTYdBKpRiqFQJG9D758BFIWmk4iVhMaBZeNd1/mWjMPbE+lEGjSNsAXD0LaetNJxN+FREL3u6DPRIiKM51GfESlEKhSFsFX0+DYdtNJxN8Eh0G3UXD5vRDT0HQa8TGVQiBzuWDHYvc+h4xk02nEtKAQ6HIbXH4/1GpqOo0YolIQt91fwtfPwcE1ppOIrwWHQcfh7i2DOi1NpxHDVApS0YE17i2HPctMJ5HqFlkHLhkNPX6nZSLxUCnIz0tPhg1vwPfvQ1mh6TTiTXGtodcfofP/6mgiqUSlIL+sMAeS/w0bZ2qGg9W17A+9/g+Srtb0MzkrlYKcG5fLPS9645uw8zNdW8kqYuKh0y3QZQTUa206jViASkHO38l02DQPvvsPZO0ynUbOFBwOba9zF0GrKyEo2HQisRCVglRNxhb3fofvP9Blu01r1A26joAOwzT+Ui6YSkG8w+Vyny39/XuwbSHkZ5pOZH+OIGjSw71V0PYGqNvKdCKxAZWCeJ+zHPavgtQl7uE/2kHtPSERkNAP2l7vHnsZXc90IrEZlYJUv6w97nLYs8x9HkRpgelE1hLbDBL6QuuBkDgAwqJMJxIbUymIb5UVw8F1sPcr9/v0zVBWZDqVf6nVDFr0hRZ93G+1mplOJAFEpSBmlZfCke/g0Eb3W9oGyD1gOpXvOIKhXlto3BWaX6YSEONUCuJ/8jLdBZGxBY7tgGOp7v0SVh8SFBoF9dtBg/bQsCPEd4GGHXRWsfgVlYJYQ3kZ5OyH4zvh2E44nup+O5nuLhF/OZkuPBZqN4NazaF2C/dbreYQlwi1E3Qmsfg9lYJYn7PcXQynMuDUETiV/sP7DCjIgdJ8KCmAkvwf/7v0h48548ffEeS+hLQj2P0+KAhCa7gvHhdZGyJr/fC+NtT44bYadSG2KdRurvMDxPJUChK4XC73jm+H44cC0Jm/IioFERHxCDIdQERE/IdK4WfccccdDBkypNLtK1aswOFwkJub6/NMIiK+oFIQEREPlUIVrFq1ir59+xIZGUnTpk0ZP348+fn5nvtbtGjBCy+84Pn4wQcfpEmTJuzfv5/8/Hxq1qzJe++9V+FzLly4kKioKE6dOsX+/ftxOBy888479O7dm4iICDp06MDKlSsrPGfx4sV07tyZyMhIHA4HDoejwpbOmTleeOEFWrRoUeFzOBwOFi5ceNbnLFu2rNLndTqdTJs2jYSEBCIjI+ncuXOlr0dErEWlcIH27NnDtddey7Bhw9i6dSsLFixg1apVjBs37mcf/9xzz/H666+zdOlSWrRoQVRUFLfeeiuzZs2q8LhZs2Zx0003ERMT47ntvvvuY9KkSWzevJlLL72UQYMGkZWVBUBubi633HIL/fv3JyUlhYyMDG6++Wavfq1Op5NJkyYRHR1d4fZp06Yxd+5cXnvtNbZt28bEiRO5/fbbK5WWiFhHiOkA/mrx4sWVfgmWl/94gtS0adMYMWIEEyZMACApKYmXXnqJfv36MWPGDCIiIjyPffPNN3nsscdYvnw57dq189w+ZswYevfuTUZGBvHx8WRmZvLpp5/y5ZdfVnjdcePGMWzYMABmzJjBkiVLmDlzJvfffz+pqakUFBQwefJkGjVqBEBkZCTFxcVe+17MmTOH4uJibrzxRvLy8gAoLi7mySef5Msvv+TSSy8FoGXLlqxatYrXX3+dfv36ee31RcR3tKVwFldccQXJyckV3t58803P/Vu2bGH27NlER0d73gYOHIjT6WTfvn2exy1atIixY8fSqFEjOnToUOE1evToQfv27ZkzZw4Ab731Fs2bN+fyyy+v8LjTv3QBQkJCuOSSS9i+fTsATZs2JSQkhPnz5+N0Or3+fSgoKODBBx/kmWeeISTkx78hdu/eTUFBAVdffXWF78HcuXPZs0eXyhaxKpXCWURFRZGYmFjhrXHjxp778/LyGDt2bIXS2LJlC7t27aJVqx+HnaxevZoFCxbgcDh45JFHKr3OmDFjmD17NuBeOrrzzjtxnMelEOLj45kxYwZPPvkkERERREdH8/bbb1/w132mZ599ljZt2jBo0KAKt5/eYvjkk08qfA9SUlK0X0HEwrR8dIG6detGSkoKiYmJv/i4Bx54gJtuuolmzZpx+eWXM3ToULp37+65//bbb+f+++/npZdeIiUlhVGjRlX6HOvWrfNsPZSVlfHtt99W2HcxatQoZs2aRdeuXZkwYQKTJ0+usNR1oTIyMpgxY8bP7iO46KKLCA8P5+DBg1oqErERlcIFmjx5Mr169WLcuHGMGTOGqKgoUlJSWLp0Ka+88orncXXq1AHcS0UTJkzgzjvvZNOmTYSFhQFQu3Zthg4dyn333cc111xDkyZNKr3Wq6++SlJSEu3atWP69Onk5OQwevRoz/2TJk3C4XAwffp0QkNDiYmJqXQuRVlZGUVFRZ7/drlcno9PKy0txel0EhQU5HndYcOG0bVr10qZYmJiuPfee5k4cSJOp5M+ffpw4sQJVq9eTc2aNX+23ETE/2n56AJ16tSJlStXkpqaSt++fenatStTp0717Oz9OY8++ihOp7PSMtJdd91FSUlJhV/0P/XUU0/x1FNP0blzZ1atWsVHH31EXFwcAPPnz+fdd9/l3XffJTQ09Kyvfd999xEZGUlkZCT33XcfBw8e9HwcGem+dPPNN9/M119/7XmO0+nkiSeeOOvnfPzxx3nooYeYNm0a7dq149prr+WTTz4hISHhrM8REf+max/5gXnz5jFx4kTS09M9WxAA+/fvJyEhgc2bN9OlS5dqzzFkyBAmTJhA//79q/21RMQ/afnIoIKCAjIyMnjqqacYO3ZshUIwISwszLN0JCKBSb8BDHrmmWdo27YtDRs25C9/+YvpOLz77ruVDocVkcCi5SMREfHQloKIiHioFERExEOlICIiHioFERHxUCmIiIiHSkFERDxUCiIi4qFSEBERD5WCiIh4qBRERMRDpSAiIh4qBRER8VApiIiIh0pBREQ8VAoiIuKhUhAREQ+VgoiIeKgURETEQ6UgIiIeKgUREfFQKYiIiIdKQUREPFQKIiLioVIQEREPlYKIiHioFERExEOlICIiHioFERHxUCmIiIiHSkFERDz+H06EL7qMOn92AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "import pandas as pd \n", "df = pd.read_csv(\"..//static//csv//heart_2020_cleaned.csv\")\n", "\n", "labels = 'Курящие', 'Некурящие'\n", "sizes = [df[df[\"Smoking\"] == \"Yes\"].shape[0],df[df[\"Smoking\"] == \"No\"].shape[0]]\n", "\n", "print(len([df[df[\"Smoking\"] == \"Yes\"].count(),df[df[\"Smoking\"] == \"No\"].count()]))\n", "\n", "plt.pie(sizes, labels=labels)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdwAAAGFCAYAAABXIkLKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAo1klEQVR4nO3dd3xV9eH/8ffNDglCmCHsPUVEBRRBUBBUUCCu/qxK1Za2UrS4yxcrjoq24igOihbarwN/Lig4WkdFlmjFBCgrhEDYI5BAQua99/vH0UgMIyH3ns85576ej8d9ZN3xDoG8+ZzzOZ+PLxgMBgUAAMIqynQAAAAiAYULAIANKFwAAGxA4QIAYAMKFwAAG1C4AADYgMIFAMAGFC4AADagcAEAsAGFCwCADShcAABsQOECAGADChcAABtQuAAA2IDCBQDABhQuAAA2oHABALABhQsAgA0oXAAAbEDhAgBgAwoXAAAbULgAANiAwgUAwAYULgAANqBwAQCwAYULAIANKFwAAGxA4QIAYAMKFwAAG1C4AADYgMIFAMAGFC4AADagcAEAsAGFCwCADShcAABsQOECAGADChcAABtQuAAA2IDCBQDABhQuAAA2oHABALABhQsAgA0oXAAAbEDhAgBgAwoXAAAbxJgOAOAUyoul4nyprEgqK/zu7UneL//urb9ciomXYhKk6Djr7fcfx9WTEhpI8WdICWdICQ2t9xMbSklNJZ/P8DcNeA+FCzhB8SHp4BbpYM53ty3Soe/eFu61N0tMgtSwrdSovZTSXmrU4Yf3G7aRYuLszQN4hC8YDAZNhwAiQtlRac9qKS+7aqEezJFK8k2nqxlflHRGK6uAKwu5vdSsp9Skk+l0gKNRuEC4FO6TcldIuV9atz2rpUCF6VThU6+J1GaA1Lq/9bZFH0bDwDEoXCBU9m/6oWC3f2mNXiNZTIKU1ldq019qc77Uup+UmGI6FWAMhQucjoBf2rlKyl0u5a60CvZonulUDueTmnb9bhQ8QGo/WGrQ0nQowDYULlBT5SVS9mfShkXSxg+l4oOmE7mcT2p5jtRzjNTjKmtCFuBhFC5wMsX50qZ/ShsWSps/sy65QXik9f2ufMdIKW1NpwFCjsIFfqy8WNr4gbTmbWnzJ5K/zHSiyNOizw/l26i94TBAaFC4gCT5K6zDxWvessq2rNB0InwvtfcP5du4o+k0wGmjcBHZDu+Svpotrfq7dPSA6TQ4lVb9pPNuk3qO5ZIjuA6Fi8i08xtpxQvSugVSoNx0GtRWvSZS35ukc2+RGrY2nQaoEQoXkcNfIa3/h/Tli9KOr0ynQSj4oqUuI6X+v5A6DDGdBjgpChfeV3xI+mau9NXL0uEdptMgXFJ7Sxf8Ruo5TopmmXg4D4UL7zqQJX35gpQ5Tyo/ajoN7HJGK2nAr6Rzbpbi65tOA1SicOE9uV9KX/xR2vypJP56R6z4BtJ5t0gD77S2HQQMo3DhHQc2S5/83loJCvheYoo0+B7pvJ8zsxlGUbhwv6ID0ufTpW/meHs3HtRNSjvp4qlSr3TJ5zOdBhGIwoV7lRdb52iXPiOVHjadBm7R8hxp+CNSu4GmkyDCULhwn0BAWj1P+uxR6fBO02ngVl0vl4ZNk5p2MZ0EEYLChbtk/1v6eKq0Z43pJPCCqBjp7Bulob+TkpuZTgOPo3DhDnv/K338oLWZABBqccnWNbwX/EaKSzKdBh5F4cLZykukfz8qrXheCgZMp4HXNWgjXTVT6nCR6STwIAoXzrXzG+m9X0kHNppOgojiszZIGD6N0S5CisKF8/jLrct8lj3DZT4wJ6W9NOZFqe35ppPAIyhcOMueNdaodi+TouAAviip/6+kSx6UYhNMp4HLUbhwhoBfWjpDWvyk5C8znQaoqnFnaexLUqtzTSeBi1G4MG//Rum9X0q7VplOApyYL1oaOEka8juWiMRpoXBhTiAgffm8tYBFRYnpNEDNNOthndtN62M6CVyGwoUZh7ZJ702QcleYTgLUXlSMdNF91qYIrMuMGqJwYb/sz6S3b7E2hgfcrOsV0rhZ7LuLGqFwYa8lM6TPHmERC3hH0+7ST96QGrU3nQQOR+HCHqWF0oLbpXXzTScBQi8xRbrmb6xQhZOicBF+ednSvBuk/etNJwHCJypGGvEHqf8E00ngUBQuwivnC+nNG6WSfNNJAHv0vUm6/CkuHUI1FC7CZ9XfpUWTpUC56SSAvVoPkK57VUpuajoJHITCRegFAtInD0rL/2w6CWDOGa2kn7wutTjLdBI4BIWL0Corkt75ubTxfdNJAPNi60lXPS/1Gmc6CRyAwkXoHD0ovTpO2vWt6SSAswx/xFoWEhGNwkVoHD0o/f1Ka7cfANVddJ809HemU8AgChd1V3RA+vtV0t61ppMAznb+RGnEY6ZTwBAKF3VTuF/622iusQVq6txbpCtmsAZzBKJwcfqO7LXK9sBG00kAdznrJ9Zkqqho00lgIwoXp+fwbqts87JMJwHcqfd10piXpKgo00lgE37SqL3Du6S5V1C2QF2sftNaXzzARh6RgsJF7RTskOZcLh3MNp0EcL/M16V//EbiQGNEoHBRc/m5VtkeyjGdBPCOjFelhZMo3QhA4aJm8nOlOVdI+dtMJwG8Z9XfpffvMp0CYUbh4tRKDkuvXSMV5JpOAnjXf16Rlj1rOgXCiMLFyQX80lvjpf0bTCcBvO+Th6T1i0ynQJhQuDi5D++Tsj81nQKIDMGA9O4vpN2ZppMgDChcnNjKv0hfzzadAogs5UXS69db17rDUyhcHN/mT6SP7jedAohMR3ZJb1wvlR01nQQhROGiun3rpbd+JgX9ppMAkWt3hvTuz7lcyEMoXFRVdEB6/Tqp9LDpJAA2LLImUsETKFz8oKJUmncD19oCTrLsGenb10ynQAhQuPjBP34jbf/SdAoAP7bwDmnrUtMpUEcULiyL/2gtpg7AeQLl0ps3SnmsYe5mFC6k7H9L/37MdAoAJ1N80FqEpqLMdBKcJgo30hUfkub/WhIzIQHH27Oa/xy7GIUb6Rb91rrmD4A7LH9O2rrMdAqcBgo3kmW+Kf33PdMpANRGMCC990trUxG4CoUbqfK3Sx/cYzoFgNNRkMu/XxeicCNRICDN/5VUWmA6CYDTtXoeR6hchsKNRCtmSluXmE4BoK4W/VY6zBwMt6BwI82etdJnj5hOASAUig9ZR6tYb9kVKNxIUlFqLYbu5zo+wDO2fC59+aLpFKgBCjeSfPqwtG+d6RQAQu3TadYuX3A0CjdS5HwhrXjedAoA4VBRIr3zc1ahcjgKNxKUF0sLbherSQEetneNtOLPplPgJCjcSLD0GSk/13QKAOG2ZIZ0ZK/pFDgBCtfrDm2z9tME4H1lhdZcDTgShet1//yddX4HQGTIfF3alWE6BY6DwvWy7M+kDYtMpwBgp2BA+ugB0ylwHBSuV/nLpQ/vM50CgAm5y1n20YEoXK/6+hXpwCbTKQCY8vGDUjmnk5yEwvWikgJp8ROmUwAwKT/XWjcdjkHhetGSGVLxQdMpAJi29GkuE3IQCtdrCnZIK18ynQKAE3CZkKNQuF7z2aNcBgTgBxmvcZmQQ1C4XrJnjbT6TdMpADhKkMuEHILC9ZLFT1rX4AHAsXKXS1sWm04R8Shcrzi4hUUuAJzYkqdMJ4h4FK5XrHie0S2AE8tZLO38xnSKiEbhesHRg1LG66ZTAHC6JTNMJ4hoFK4XfDVbKj9qOgUAp9vwvrRvg+kUEYvCdbvyEunr2aZTAHCFoPzLWX3KFArX7TLfkIr2m04BwOEq6rfUx60maVDmcO0uKDYdJyLFmA6AOggGWSsVwEmVNO6ht+PH6pGt3VW63xpjzV2+VQ9c1t1wsshD4brZxg+kvM2mUwBwoEOpA/UX/yi9uL1tta+9sTJXd1zSWfXiqAA78aftZsv/bDoBAAcJRsVoe9plml4wXB9sbXLC+x0uqdDb3+zQTee3sy8cKFzX2v61lLvCdAoADhCMS9ba1DGaumewMjYn1+gxr6/MpXBtRuG61fLnTCcAYJg/KVVfNBqn323vp92b4mr12A17jihze77Oat0wPOFQDYXrRod3sYwjEMFKU7rqvcRxemRbTxXlnf7FJvO+zqVwbUThutHad1nGEYhABc0H6OXgaM3c3k7BoK/Oz7cwc7emjurB5Cmb8KfsRmveMp0AgE2CvmjtSrtUfywcofnbmoX0uQtLK7Qwc5euO69NSJ8Xx0fhuk1etrQ7w3QKAGEWjE3S+tQr9eC+IfpPdv2wvc4bX22ncG1C4brNmrdNJwAQRoF6TbWscbqm7Oin3KyEsL9exvZ8bdxzRF1Tw1fqsFC4brOWwgW8qKxhJy1MGqcHt52pooPRtr72goydundkN1tfMxJRuG6ye7V0YJPpFABC6HCz8/Q3jdaM7R1DMhHqdHywZjeFawMK100Y3QKeEPRFaW/aMD1VNFJv5aaajqOteUf1310F6pnWwHQUT6Nw3SIYtC4HAuBawZhEbWoxWg8fGKpl2c4qtw/W7KZww4zt+dxi+0qpYLvpFABOQyCxsVa0/oUuCTyvEVljtOyQ84rtgzV7TEfwPEa4bsG1t4DrlDdorw+Sx+nB3LNUcMjZv25zDhRxWDnMnP03ABZ/hfTf+aZTAKihwqZn69Woq/TH3E7y73XPgUQOK4cXhesGOZ9LRw+YTgHgJILyaX/axXq2+DK9tj3NdJzT8tHaPbpnBLOVw4XCdYNN/zSdAMAJBGMSlN3iCj1y8GIt3pJiOk6dZO8v0s78YrVsmGg6iidRuG6wdanpBAB+JJCQov80Hacpuy5QVpZ3CmrJpv26vh9LPYYDhet0RXnSvvWmUwD4TsUZbfSvM8Zpau7ZysuKNR0n5JZkHaBww8Q9Z/Mj1balkoKmUwAR72iT3nqlxYPqfuBx/XpzP+WVea9sJWlZ9gEFAqH5nTN+/Hj5fL4T3vLz80PyOm7BCNfpti4znQCIWEH5lJd2kWaWXK65O1qZjmOL/KPlWr2zQH1CtDH9yJEjNWfOnCqfW758udLT00Py/G7CCNfpOH8L2C4YHaec1mN0W9Kfde6WX2jursgo2+8t2bQ/ZM8VHx+v1NTUKrdGjRpVfn3u3Llq2LDhCR//+eefVxkNb9iwQSNHjlRKSopSUlI0fvx4FRQUVN5//PjxGjNmTOXHGRkZ8vl82rp1a+XnhgwZojvvvPOEj8nLy1NKSkq1XAsWLFDfvn2VkJCgDh06aNq0aaqoqKjxnwWF62RHD0r71plOAUSMYHwDrWozXpf7XtDQrGv1aV6jUz/Ig77ICl3hhtKhQ4d08cUXS7KKeOHChfr66691yy23hPR1jlekS5Ys0U033aQ77rhD69at06xZszR37lw99thjNX5eCtfJti0T52+B8Kuo31L/ajVJ/Yqf07hNl2p9YT3TkYzK3F6gknK/6RjVzJs3T/n5+Xrttdd01lln6cILL9Ts2bP17rvvavPmzSF5jU2bNumvf/2rfvvb31b5/LRp03T//ffr5ptvVocOHTR8+HA98sgjmjVrVo2fm3O4TsbhZCCsihv31FtxY/XYtm4q3c/443tl/oDW7CzQee3sGeEXFBQoOTlZUVFRat68ua666io9/vjjio39YWJaq1atVFZWpp49e6px48aVn+/fv79iYmK0bt06derUqc5Z7r33Xk2YMEEdOnSo8vnMzEwtW7asyojW7/erpKRER48eVb16p/5PGoXrZEyYAsLiYOqFmlUxSrN2cPnLiXyz7ZBthVu/fn2tWrVKwWBQ69at080336zU1FTdfffdlfdZsmSJ5syZoyVLlhz3OXy+uu8lvHjx4srXWbBgQZWvFRYWatq0aRo3bly1xyUkJNTo+Slcpzp6UNq71nQKwDOCUbHKTbtM0wuG6cOtTUzHcbxvth2y7bWioqIqR6edO3fW8OHDlZGRUeU+7du314ABA/Tyyy8rLy+vcpS7cuVKVVRUqHv37nXKEAwGddddd2nq1KlKSam+Yljfvn21cePGOo2iKVyn2rZcnL8F6i4YX1+rm43R1L2DtHpzsuk4rpGxPd/W1yspKakc4S5dulR33HFHtfukp6frgQce0E9/+lNNnz5dR44c0YQJEzRu3LgqRRgIBFRSUiJJKisrkySVlpZWfi4QCMjv96uiokIxMVYNfvrpp2rRooVuv/324+Z78MEHNWrUKLVp00ZXX321oqKilJmZqbVr1+rRRx+t0fdI4TrVNg4nA3XhT26hxSnpmrL9XO3OijMdx3X2HynV7oJitWgQ/mUrCwoKlJiYKJ/Pp+bNm2vs2LGaPHlytfvFx8frww8/1KRJkzRgwAAlJCRozJgxeuaZZ6rcb+HChUpMrJq7W7eqmzIsWbJEjRs31kMPPSRJKioq0vTp06ucNz7WiBEjtGjRIj388MN64oknFBsbq27duum2226r8ffpCwaDDKOc6OVh0o6vTacAXKekUTe9mzBWj2zroWJ/tOk4rvbST8/RyF6ppmOExTPPPKP8/PzKwrUDI1yn2r/RdALAVfJTz9fL/tGaub2d6SiesXpHvmcLNyYmpvJwsm2vaeuroWbyt0ulh02nABwvGBWjnWkj9Mcjw7VgazPTcTxn094jpiOEzcSJE21/TQrXifZvMJ0AcLRgXJLWNb9KU/ddpFWb65uO41mb9xWajuApFK4TsR0fcFz+pGZa2ihdU7b3046seNNxPG/7oWKVlPuVEMu58FCgcJ2IES5QRVlKZ/0jcZx+n9tLRXn88reLPxBUzoEidW9xhukonkDhOhEjXECSdLh5P80JXqlntrdXMFj3lYRQe5v3FVK4IULhOlFetukEgDFBX7T2pA3TU0Uj9fa25qbjRLwszuOGDIXrNEcPSqUFp74f4DHB2HramDpav98/VCuzGVE5RTaFGzIUrtMc3GI6AWCrQGITrWiSrik7+mtrVs0WgYd9svdTuKFC4TrNwRzTCQBblDfooPfrj9PUrb115BC/ipxqV36x6Qiewd9ypzlE4cLbCpudo7/7rtRTuR3l38setE53uKRCxWV+JcYxO7yuKFynYYQLDwr6orSvxcV6tvgyvZ7bwnQc1NLugmJ1aMpOS3VF4TpN/jbTCYCQCcYkaHOL0Xokb6i+2NLQdBycpj2HSyjcEKBwnabYvk2fgXAJJDbS103G6X92na+srPBv74bw2lNQYjqCJ1C4TlPCJUFwr/Iz2uqfZ6Rr6rY+OsREKM/Yc5jCDQX+RThNCbsEwX2KmvbR69FX6sncrirfx4pQXsMINzQoXCcJ+KUyrnmDOwTl04G0IZpZcrn+tr2l6TgIo32HS01H8AQK10lKD0sKmk4BnFQwOl45LS7Xo4eG6bMtKabjwAaFpRWmI3gChesknL+FgwXjG2hVs3GasnugNmyuZzoObHSEwg0JCtdJOH8LB6qo30qfNEjX1Ny+2p8VazoODCgsKTcdwRMoXCdhhAsHKW7cS2/GjdXj27qqdD8rQkUyDimHBoXrJKWMcGFeXovBeqnscs3e2cZ0FDhEYQmFGwoUrpMwwoUhwahYbUu7TNMLhuujnMam48Bhjpb7FQwG5fNxyVddULhOwjlc2CwYX1+ZzcZq6p5BWrM5yXQcOFQwaB1Wrp/AOfy6oHCdhBEubOJPTtO/G47T/2w/V3uy4kzHgQsUl/sp3DqicJ2Ec7gIs5JG3fVOwlg9uq27ig+w3RpqLhAwncD9KFwnCTAxAeGRn3qBZvtH6fnt7UxHgUsFgizKU1cUrpNEc2gPoROMitGOtBF68vClWri1qek4cDl/gMKtKwrXSWISTCeAhwQSG6tJ8TY9GTtbT7LUMeoo2ne2JFYYqwsK10li4k0ngIdEF+1VYtFe0zHgFVGMcOuK5WOchBEuAKeKYnxWVxSukzDCBeBUFG6dUbhOwggXgFNFcRlZXVG4TkLhAnAqRrh1RuE6CYeUATgVhVtnFK6TMMIF4ETRcVIsv5/qisJ1Eka4AJwoqZnpBJ5A4ToJhQvAiZJZqSwUKFwnoXABOBEj3JCgcJ0kLtl0AgCoLpnCDQUK10nqtzCdAACqo3BDgsJ1kvhkKbGR6RQAUFVyc9MJPIHCdZqGrU0nAICqkpg0FQoUrtM0bGM6AQBUxQg3JChcp2lA4QJwGM7hhgSF6zSMcAE4DYUbEhSu03AOF4CTxCRICQ1Mp/AECtdpGOECcBIWvQgZCtdpGjDCBeAgZ7A+QKhQuE6T2FCK5/ANAIdo1sN0As+gcJ2I87gAnCK1l+kEnkHhOhGHlQE4RWpv0wk8g8J1IiZOAXACXxSHlEOIwnWiZt1MJwAAKaW9tcY7QoLCdaIWfUwnAADO34YYhetEzXtJ0XGmUwCIdKlnmk7gKRSuE8XESc26m04BINI1p3BDicJ1Kg4rAzCNQ8ohVavCHT9+vMaMGVPt859//rl8Pp/y8/NDFAtKO9t0AgCRLDFFatDKdApPYYTrVBQuAJOaM7oNtbAU7tKlSzVo0CAlJiaqdevWmjRpkoqKiiq/3q5dO/l8vmq3Y0fPQ4YM0Z133nnC1/jxaHvu3Lnq2bOnEhMT1alTJ82ePbvK/X0+n+bPn1/58Z133qkhQ4ZUfrx161b5fD5lZGSc8DGvvPKKfD5flVylpaW6++671bJlSyUlJal///76/PPPT/EnVAOpZ0pxTMcHYAgLXoRcyAs3OztbI0eOVHp6ulavXq0333xTS5cu1cSJE6vc7+GHH9bu3bsrb9dee+1pv+a8efN066236tZbb1VmZqbuuusu3X777Vq4cGFdv51KRUVFmjp1qpKTq5bgxIkTtWLFCs2bN0+rV6/WNddco5EjRyorK6tuLxgVLbU8p27PAQCnixnKIRdT2wcsWrSoWun4/f7K9x9//HHdcMMNlaPAzp0767nnntNFF12kF198UQkJCZKk+vXrKzU1tfJxiYmJKi0tPZ3vQU8//bTS09M1efJkSVKXLl307bff6oknntDo0aNP6zl/7Mknn1SPHj1UUVFR+bnc3FzNmTNHubm5SktLkyTdfffd+uijjzRnzhz94Q9/qNuLtjlfyllct+cAgNPRfpDpBJ5T6xHu0KFDlZGRUeX28ssvV349MzNTc+fOVXJycuVtxIgRCgQCysnJqdVrvfDCC0pOTlbjxo3Vv3//aiPW78v/q6++0sCBA6t8beDAgVq3bl1tv73j2rVrl2bMmKGnnnqqyufXrFkjv9+vLl26VPl+Fy9erOzs7Lq/cJsBdX8OAKitpt2YMBUGtR7hJiUlqVOnTlU+t2PHjsr3CwsLNWHCBE2aNKnaY9u0qd0awTfccIOmTJmi0tJSzZkzR1dffbW2bNmili1bSrLK/8UXX6xyLvZYPp+vVq93IlOmTNE111yjs846q8rnCwsLFR0drW+++UbR0dFVvvbjowCnpdV5ki9aCvpPfV8ACJVOw0wn8KRaF+6p9O3bV+vWratWyqejQYMGlc8zbdo0PfXUU1q/fn1l4X5f/j169NCyZct0xx13VD522bJl6tGj7otuZ2Rk6O2339bGjRurfe3ss8+W3+/Xvn37NGhQGA6/xCdb18Htzgz9cwPAiXS6xHQCTwr5pKn77rtPy5cv18SJE5WRkaGsrCwtWLCg2qSpmvD7/SopKVFBQYFmzZql2NhYde3atdr9Jk+erHfeeUczZsxQVlaWXnzxRc2dO1f33ntvlfuVl5erpKREJSUl8vv9CgQClR9/f/64rKxMwWCw8jF/+tOfNHny5MpztMfq0qWLbrjhBt1000169913lZOTo6+++kqPP/643n///Vp/v8fVYUhongcAaiK2ntR24Knvh1oL+Qi3d+/eWrx4saZMmaJBgwYpGAyqY8eOuu6662r9XDNnztTMmTMVFxenzp0767XXXlPr1tX3ih05cqRmzZql6dOn6/7771fbtm31/PPPV5swdbyZ0ImJiVU+7t+/v3JyctSuXTtJ1uSuHxf3sebMmaNHH31Ud911l3bu3KkmTZpowIABGjVqVK2/3+PqNkpa9mxongsATqXdhVJMvOkUnuQLHjucg/r06aP58+dXFq5xwaD0VDepcI/pJAAiwWVPSv0nmE7hSaw09SPx8fEhm2wVEj6f1PUy0ykARAomTIUNhfsjK1euVNu2bU3HqKp7iA5PA8DJpLSXGnc0ncKzKFw3aH+RFN/AdAoAXsfs5LCicN0gOlbqPNx0CgBex+HksKJw3YLDygDCKTpOaj/YdApPo3DdotNwKSbBdAoAXtXmfCkuyXQKT6Nw3SI+mUUwAIRPr3TTCTyPwnWTbleYTgDAi2ISpJ5jTKfwPArXTbpebm1mAACh1PUyKYErIcKNwnWTpCZs2Qcg9M76iekEEYHCdZve1deDBoDTltRU6sj1t3agcN3mzGs59AMgdHpdLUWHfB8bHAeF6zZx9aQ+N5hOAcArzub3iV0oXDc67zZJDtpgAYA7tTxXSj3TdIqIQeG6UeOOUseLTacA4Hbn/sx0gohC4bpVv5+bTgDAzeIbSD3HmU4RUShct+o8QmrYxnQKAG7V+1prTghsQ+G6VVSUdO6tplMAcCsOJ9uOwnWzvjexoQGA2mtzgdS8p+kUEYfCdbN6jVhwHEDtDb7bdIKIROG63Xm3mU4AwE1anSd1YmUpEyhct2vZV2p5jukUANxi8L2mE0QsCtcL+v/KdAIAbpB2ttTlUtMpIhaF6wW90qWm3U2nAOB0jG6NonC9ICpKumSq6RQAnCz1TKnb5aZTRDQK1yu6XSG16mc6BQCnYnRrHIXrJcMeMp0AgBM16yl1H206RcSjcL2k3UCp0zDTKQA4zeC7JR87jJlG4XrNJb8XW/cBqNS0m9RjjOkUEIXrPS16S73YAQTAdwbfY02shHH8FLxo6BQpKsZ0CgCmNe3GFnwOQuF6UeOO0tk3mk4BwLTL/8To1kH4SXjVkPulmETTKQCY0vs6qf0g0ylwDArXq+qnSv0nmE4BwISEBtKlj5lOgR+hcL3swt9K9RqbTgHAbhdPlZKbmk6BH6FwvSyxoTTiD6ZTALBTWl/p3FtNp8BxULhed9b1UoehplMAsIMvSho1g4lSDsVPJRKMepoJVEAkOPdWaws+OBKFGwkatbdmLQPwruTm7BrmcBRupDh/orU9FwBvuvRRa3YyHIvCjRTRMdKVM1mBCvCi9oOl3teaToFToHAjSVofadBdplMACKXoOOnyp0ynQA1QuJFm8D1Sam/TKQCEytApUtMuplOgBijcSBMdK42dZf2vGIC7db5UGniH6RSoIQo3EjXvwaxlwO3qp0ljXmJjeRehcCPVwDulVueZTgHgdPiipatfkZJYutVNKNxIFRUtXT2HtZYBNxr6gNT2AtMpUEsUbiRr2Fq6Zq71v2UA7tBhqHQhVxu4EYUb6doPloZPM50CQE0kp0rjZrNWskvxU4N0wW+kXummUwA4GV+UlD6bbfdcjMKF5cqZUvNeplMAOJHB91pHpOBaFC4scfWk616VEhqaTgLgx9oNki66z3QK1BGFix80am9dauDjrwXgGElNpfSXOW/rAfwEUVWnYdZScQDMi0mQrn9dqp9qOglCgMJFdYPvlrqPNp0CiGy+KGncX6TW/UwnQYhQuDi+MS9JTbuZTgFEruGPSD2uMp0CIUTh4vjik61DWfWamE4CRJ5+v5AumGg6BUKMwsWJNe4o3TSfmcuAnbpeLo18wnQKhAGFi5NLPVP66TtSXH3TSQDva3O+dPVfmZHsUfxUcWqtzpX+35tSTKLpJIB3NT/T+ncWy78zr6JwUTPtBkrXv8rG9UA4NOog3fiulNDAdBKEEYWLmus0zNrSLyrGdBLAO+q3kG6cLyU3M50EYUbhona6j5LGzmI1KiAUElOkG9+TUtqaTgIb8FsTtXfm1dLoZyX5TCcB3CupmXTzQqlZd9NJYBMKF6en703SyOmmUwDu1LCNdMtH1lUAiBgULk7fgF9KF081nQJwl6bdpVv+ZV3njojiCwaDQdMh4HLLnpU+/r0k/ioBJ9XyXOmGt6R6jUwngQEULkJj7bvSe7+U/KWmkwDO1GGItVxqXJLpJDCEwkXo5H4pvfETqfig6SSAs3S/Ukp/RYrhOvZIRuEitA5sll67WjqUYzoJ4Ax9b5JGPctyjaBwEQZFB6Q3rpd2fG06CWDWwDuk4Q+bTgGHoHARHuXF0rs/l9YvNJ0EMGPYNOnCO02ngINQuAifQED6eKq0YqbpJIB9YpOkK5+zFogBjkHhIvxW/kX66D4pGDCdBAivJl2ka/9XatbNdBI4EIULe2z4QHrnVqn8qOkkQHj0SpdGPyfFJ5tOAoeicGGfPWult8ZLeVmmkwChExUrjXhM6j/BdBI4HIULe5UWSu9Plla/aToJUHdntJKumSu1Ps90ErgAhQszVv2v9OG9HGKGe3W8WBr3spTU2HQSuASFC3P2rbcOMe/fYDoJUHO+KGnwvdJF97GYBWqFwoVZZUelf/2P9J9XTCcBTi2xkZQ+W+o0zHQSuBCFC2fI+lhacLtUuNd0EuD42l8kXfW81LC16SRwKQoXzlGUJy2cJG1YZDoJ8IPERtKIP0h9fmI6CVyOwoXzfPuq9OH9UtkR00kQ6XpfJ414nIlRCAkKF850eJf0r6nS2rdNJ0EkSmknjXramokMhAiFC2fbulT68D5p71rTSRAJomKkAb+WhjwgxdUznQYeQ+HC+QJ+6etXpH8/JpXkm04Dr0o721qasUVv00ngURQu3KMoT/r0IescLxshIFTikqWhU6T+v+S6WoQVhQv32blK+uAeaed/TCeB23UbJY2czqU+sAWFC3cKBqWM16VPHpKK9plOA7dpO1Aa9pDUup/pJIggFC7craRA+vwJ6au/SIFy02ngdKlnSpf8Xuo83HQSRCAKF95QsFNaMVP6Zi4bIqC6Rh2s87S90iWfz3QaRCgKF95SlCetfMka8TKjGY07SYPulnpfK0VFm06DCEfhwptKj0j/mSOteF4q3GM6DezWpKs0+B5rRMvMYzgEhQtvqyi1Jlcte1Y6lGM6DcKteS9p0GSpx1iKFo5D4SIyBPzSf9+Tlj7NqlVeE5Mo9RwrnTNeatPfdBrghChcRJ5N/5S+fEHK+YIFNNysaXerZM+6TkpMMZ0GOCUKF5GrYKe05v9LmfOk/RtMp0FNxCQcM5odYDoNUCsULiBJu76VMt+0dicq2m86DX6sabfvRrPXM5qFa1G4wLH8FVL2p1LmG9LGD6WKEtOJIldsktR9lHTOz6S255tOA9QZhQucSEmB9N/51iHn3BWS+KcSdg1aS11GSF1GSu0GSbEJphMBIUPhAjVxaKu04QNp8yfStmWMfEPFFyW1POe7kr1MSu1lOhEQNhQuUFvlxdLWpVb5bv5EyttsOpG7xNWXOg61RrGdL5WSm5pOBNiCwgXqKj9XyllijXy3LrE+xg+iYqxLeNoNtEaybS+UYuJMpwJsR+ECoZafK21dZo2Cd62SDmRFzk5GUTHWjOIWfaS0PlLa2dbqT5yLBShcIOz85VJetrR/vbRvw3dv10sHt0iBCtPpTp8v2irX74u1RR/rHGxsoulkgCNRuIApFWVSXpZVvvs3WG/3rbfWfHbMClg+qX6q1LCNNYO4YRvr1rynNXKNq2c6IOAaFC7gNAG/VHxIOnpQOppn3Yq/f/+gdavycZ61FeH3JR0Vc8wtuvrHvmM+F5sgJTWVkptJSc2k5ObW+8nNpPotrJLlfCsQEhQu4AXBoFW47PkKOBaFCwCADdgwEgAAG1C4AADYgMIFAMAGFC4AADagcAEAsAGFCwCADShcAABsQOECAGADChcAABtQuAAA2IDCBQDABhQuAAA2oHABALABhQsAgA0oXAAAbEDhAgBgAwoXAAAbULgAANiAwgUAwAYULgAANqBwAQCwAYULAIANKFwAAGxA4QIAYAMKFwAAG1C4AADYgMIFAMAGFC4AADagcAEAsAGFCwCADShcAABsQOECAGADChcAABtQuAAA2IDCBQDABhQuAAA2oHABALABhQsAgA0oXAAAbEDhAgBgAwoXAAAbULgAANiAwgUAwAYULgAANqBwAQCwwf8BUwBe+FvMkMQAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "import pandas as pd \n", "df = pd.read_csv(\"..//static//csv//heart_2020_cleaned.csv\")\n", "\n", "labels = 'Пьющие', 'Непьющие'\n", "sizes = [df[df[\"AlcoholDrinking\"] == \"Yes\"].shape[0],df[df[\"AlcoholDrinking\"] == \"No\"].shape[0]]\n", "\n", "plt.pie(sizes, labels=labels)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Данная диаграмма означает, что большинство опрашиваемых не употребляют алкоголь" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHHCAYAAACiOWx7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABCSklEQVR4nO3de1gWdf7/8dfNGUVQIUATjdI8ZZqYRnbwQKJim2lnLVbNymBXpdWyr6nplmXrMSkqU2rV9VCr5WFVwtRKPJGUByR30y9uCYqJJMpBmN8ffZmft6ANt+gN+Hxc11yX98z7M/O+72n1tTOfe26bYRiGAAAAcEkuzm4AAACgJiA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAJqocTERNlsNnPx8vLSzTffrNjYWGVnZzu7PVRDf/zjH+3+m3Fzc1NISIgee+wx7d+/365206ZNZt3ChQsr3F/Xrl1ls9l0yy232K2/4YYb1K9fvyv2PoAryc3ZDQC4ciZPnqzQ0FAVFBTo66+/1rvvvqu1a9dq7969qlOnjrPbQzXj6empefPmSZLOnTun//znP0pISNC6deu0f/9+NW7c2K7ey8tLixcv1uDBg+3WHz58WFu3bpWXl9dV6x24GghNQC3Wp08fderUSZL09NNPy9/fXzNmzNBnn32mxx9/3Mndobpxc3MrF4DuuOMO9evXT2vWrNHw4cPttvXt21eff/65cnJyFBAQYK5fvHixgoKC1KJFC508efKq9A5cDdyeA64hPXr0kCQdOnRIkvTLL7/oL3/5i9q1aycfHx/5+vqqT58++u6778qNLSgo0KRJk3TzzTfLy8tLjRo10oABA/Sf//xH0m9XF86/vXPh0q1bN3NfZbd3li5dqpdfflnBwcGqW7eu/vCHP+jIkSPljr19+3b17t1bfn5+qlOnju6991598803Fb7Hbt26VXj8SZMmlatduHChwsLC5O3trYYNG+qxxx6r8PiXem/nKy0t1axZs9S2bVt5eXkpKChIzz77bLngcLFbVLGxseX2WVHvb731VrnPVJIKCws1ceJENW/eXJ6engoJCdHYsWNVWFhY4WdlRXBwsKTfAtWFHnjgAXl6emr58uV26xcvXqxHHnlErq6uDh8XqI640gRcQ8oCjr+/vyTpxx9/1MqVK/Xwww8rNDRU2dnZeu+993Tvvffa3Y4pKSlRv379lJycrMcee0wjR47Ur7/+qqSkJO3du1c33XSTeYzHH39cffv2tTvuuHHjKuzntddek81m04svvqhjx45p1qxZioiIUFpamry9vSVJGzduVJ8+fRQWFqaJEyfKxcVFCxYsUI8ePfTVV1+pc+fO5fbbpEkTTZ06VZJ0+vRpjRgxosJjv/LKK3rkkUf09NNP6/jx43r77bd1zz33aPfu3apfv365Mc8884zuvvtuSdI///lPrVixwm77s88+q8TERA0ZMkR//vOfdejQIc2dO1e7d+/WN998I3d39wo/h8rIzc0139v5SktL9Yc//EFff/21nnnmGbVu3Vp79uzRzJkz9cMPP2jlypWW9p+TkyPpt3P+448/6sUXX5S/v3+FIa9OnTp64IEH9I9//MP8jL/77jvt27dP8+bN0/fff+/4GwWqIwNArbNgwQJDkvHFF18Yx48fN44cOWIsWbLE8Pf3N7y9vY3//ve/hmEYRkFBgVFSUmI39tChQ4anp6cxefJkc938+fMNScaMGTPKHau0tNQcJ8l46623ytW0bdvWuPfee83XX375pSHJuP766428vDxz/bJlywxJxuzZs819t2jRwoiMjDSPYxiGcebMGSM0NNS47777yh3rzjvvNG655Rbz9fHjxw1JxsSJE811hw8fNlxdXY3XXnvNbuyePXsMNze3cusPHjxoSDI++ugjc93EiRON8/8K/eqrrwxJxqJFi+zGrlu3rtz6Zs2aGVFRUeV6j4mJMS78a/nC3seOHWsEBgYaYWFhdp/p3//+d8PFxcX46quv7MYnJCQYkoxvvvmm3PHOFx0dbUgqt1x//fVGamqqXW3Z+Vu+fLmxevVqw2azGZmZmYZhGMaYMWOMG2+80TAMw7j33nuNtm3b2o292HsHagJuzwG1WEREhK677jrzW1A+Pj5asWKFrr/+ekm/Tfx1cfntr4GSkhKdOHFCPj4+atmypb799ltzP59++qkCAgL0pz/9qdwxLrydVBlPPfWU6tWrZ75+6KGH1KhRI61du1aSlJaWpoMHD+qJJ57QiRMnlJOTo5ycHOXn56tnz57asmWLSktL7fZZUFDwuxOQ//nPf6q0tFSPPPKIuc+cnBwFBwerRYsW+vLLL+3qi4qKJP32eV3M8uXL5efnp/vuu89un2FhYfLx8Sm3z+LiYru6nJwcFRQUXLLvn376SW+//bZeeeUV+fj4lDt+69at1apVK7t9lt2SvfD4FfHy8lJSUpKSkpK0fv16vffee/Lx8VHfvn31ww8/VDimV69eatiwoZYsWSLDMLRkyRLmy6HW4vYcUIvFx8fr5ptvlpubm4KCgtSyZUszJEm/3dKZPXu23nnnHR06dEglJSXmtrJbeNJvt/VatmxZ4byWy9GiRQu71zabTc2bN9fhw4clSQcPHpQkRUdHX3Qfp06dUoMGDczXOTk55fZ7oYMHD8owjIvWXXgbLTc3V5LKBZUL93nq1CkFBgZWuP3YsWN2rzds2KDrrrvukn1eaOLEiWrcuLGeffZZffLJJ+WOn56eftF9Xnj8iri6uioiIsJuXd++fdWiRQuNGzdOn376abkx7u7uevjhh7V48WJ17txZR44c0RNPPFGJdwXUHIQmoBbr3Lmz+e25irz++ut65ZVXNHToUE2ZMkUNGzaUi4uLRo0aVe4KjjOU9fDWW2+pQ4cOFdacH2SKiop09OhR3Xfffb+7X5vNpn/9618VTla+MBxlZWVJ+v+Toi+2z8DAQC1atKjC7ReGmS5duuivf/2r3bq5c+fqs88+q3B8enq6EhMTtXDhwgrnRpWWlqpdu3aaMWNGheNDQkIu2vulNGnSRC1bttSWLVsuWvPEE08oISFBkyZNUvv27dWmTRuHjgVUd4Qm4Br2ySefqHv37vrwww/t1ufm5tp9hfymm27S9u3bVVxcXCWTmcuUXUkqYxiG/v3vf+vWW281jytJvr6+5a6AVOS7775TcXHxJYNi2X4Nw1BoaKhuvvnm393v/v37ZbPZ1LJly0vu84svvlDXrl3NSeyXEhAQUO49XWqy9rhx49ShQwc9+uijFz3+d999p549e17WLdOKnDt3TqdPn77o9rvuuktNmzbVpk2b9Oabb1bpsYHqhDlNwDXM1dVVhmHYrVu+fLl++uknu3UDBw5UTk6O5s6dW24fF46vjI8//li//vqr+fqTTz7R0aNH1adPH0lSWFiYbrrpJv3tb3+r8B/t48ePl+vd1dX1d584PWDAALm6uurVV18t179hGDpx4oT5+ty5c/r000/VuXPnS96ee+SRR1RSUqIpU6aU23bu3DnzFp8jUlJS9Nlnn+mNN964aCB65JFH9NNPP+mDDz4ot+3s2bPKz8936Ng//PCDMjIy1L59+4vW2Gw2zZkzRxMnTtSTTz7p0HGAmoArTcA1rF+/fpo8ebKGDBmiO++8U3v27NGiRYt044032tU99dRT+vjjjxUXF6cdO3bo7rvvVn5+vr744gs9//zzeuCBBxw6fsOGDXXXXXdpyJAhys7O1qxZs9S8eXPzIYouLi6aN2+e+vTpo7Zt22rIkCG6/vrr9dNPP+nLL7+Ur6+vVq1apfz8fMXHx2vOnDm6+eabtWnTJvMYZWHr+++/V0pKisLDw3XTTTfpr3/9q8aNG6fDhw+rf//+qlevng4dOqQVK1bomWee0V/+8hd98cUXeuWVV/T9999r1apVl3wv9957r5599llNnTpVaWlp6tWrl9zd3XXw4EEtX75cs2fP1kMPPeTQ57Rhwwbdd999l7za9uSTT2rZsmV67rnn9OWXX6pr164qKSnRgQMHtGzZMq1fv/53r8CdO3fO/FmU0tJSHT58WAkJCSotLdXEiRMvOfaBBx5w+L8DoKYgNAHXsJdffln5+flavHixli5dqo4dO2rNmjV66aWX7OpcXV21du1avfbaa1q8eLE+/fRT+fv766677lK7du0u6/jff/+9pk6dql9//VU9e/bUO++8Y/cTL926dVNKSoqmTJmiuXPn6vTp0woODlaXLl307LPPSvrtitOLL74o6be5PxVd7VixYoV8fX0VHh4uSXrppZd08803a+bMmXr11Vcl/Tbvp1evXvrDH/4gSfr888/l4eGhtWvXKjIy8nffT0JCgsLCwvTee+/p5Zdflpubm2644QYNHjxYXbt2dfhzstlseuONNy5Z4+LiopUrV2rmzJn6+OOPtWLFCtWpU0c33nijRo4caek2ZGFhod1n5+vrq9tvv11///vf1bNnT4f7B2oLm3E519YBwAGbNm1S9+7dtXz5coevvpzv8OHDCg0N1aFDh3TDDTdUWDNp0iQdPnxYiYmJl308ANcm5jQBAABYwO05ADWej4+PBg0adMmJ2rfeeqv5szAA4AhCE4AaLyAgwJzAfDEDBgy4St0AqK2Y0wQAAGABc5oAAAAsIDQBAABYwJymKlJaWqqff/5Z9erVq/KfMAAAAFeGYRj69ddf1bhxY7sfNK8IoamK/Pzzzw7/ICYAAHCuI0eOqEmTJpesITRVkXr16kn67UP39fV1cjcAAMCKvLw8hYSEmP+OXwqhqYqU3ZLz9fUlNAEAUMNYmVrDRHAAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYIGbsxsAKpKZmamcnByHxgYEBKhp06ZV3BEA4FpHaEK1k5mZqZatWqvg7BmHxnt511HGgXSCEwCgShGaUO3k5OSo4OwZ+fd7Qe7+IZUaW3ziiE6snq6cnBxCEwCgShGaUG25+4fIM7i5s9sAAEASE8EBAAAsITQBAABYQGgCAACwgDlNqJXS09MdGsfjCgAAF0NoQq1ScvqkZLNp8ODBDo3ncQUAgIshNKFWKS08LRkGjysAAFQ5QhNqJR5XAACoakwEBwAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALnB6afvrpJw0ePFj+/v7y9vZWu3bttGvXLnO7YRiaMGGCGjVqJG9vb0VEROjgwYN2+/jll180aNAg+fr6qn79+ho2bJhOnz5tV/P999/r7rvvlpeXl0JCQjRt2rRyvSxfvlytWrWSl5eX2rVrp7Vr116ZNw0AAGocp4amkydPqmvXrnJ3d9e//vUv7d+/X9OnT1eDBg3MmmnTpmnOnDlKSEjQ9u3bVbduXUVGRqqgoMCsGTRokPbt26ekpCStXr1aW7Zs0TPPPGNuz8vLU69evdSsWTOlpqbqrbfe0qRJk/T++++bNVu3btXjjz+uYcOGaffu3erfv7/69++vvXv3Xp0PAwAAVGtuzjz4m2++qZCQEC1YsMBcFxoaav7ZMAzNmjVL48eP1wMPPCBJ+vjjjxUUFKSVK1fqscceU3p6utatW6edO3eqU6dOkqS3335bffv21d/+9jc1btxYixYtUlFRkebPny8PDw+1bdtWaWlpmjFjhhmuZs+erd69e2vMmDGSpClTpigpKUlz585VQkLC1fpIAABANeXUK02ff/65OnXqpIcffliBgYG67bbb9MEHH5jbDx06pKysLEVERJjr/Pz81KVLF6WkpEiSUlJSVL9+fTMwSVJERIRcXFy0fft2s+aee+6Rh4eHWRMZGamMjAydPHnSrDn/OGU1Zce5UGFhofLy8uwWAABQezk1NP34449699131aJFC61fv14jRozQn//8Z3300UeSpKysLElSUFCQ3bigoCBzW1ZWlgIDA+22u7m5qWHDhnY1Fe3j/GNcrKZs+4WmTp0qPz8/cwkJCan0+wcAADWHU0NTaWmpOnbsqNdff1233XabnnnmGQ0fPrxG3A4bN26cTp06ZS5HjhxxdksAAOAKcmpoatSokdq0aWO3rnXr1srMzJQkBQcHS5Kys7PtarKzs81twcHBOnbsmN32c+fO6ZdffrGrqWgf5x/jYjVl2y/k6ekpX19fuwUAANReTg1NXbt2VUZGht26H374Qc2aNZP026Tw4OBgJScnm9vz8vK0fft2hYeHS5LCw8OVm5ur1NRUs2bjxo0qLS1Vly5dzJotW7aouLjYrElKSlLLli3Nb+qFh4fbHaespuw4AADg2ubU0DR69Ght27ZNr7/+uv79739r8eLFev/99xUTEyNJstlsGjVqlP7617/q888/1549e/TUU0+pcePG6t+/v6Tfrkz17t1bw4cP144dO/TNN98oNjZWjz32mBo3bixJeuKJJ+Th4aFhw4Zp3759Wrp0qWbPnq24uDizl5EjR2rdunWaPn26Dhw4oEmTJmnXrl2KjY296p8LAACofpz6yIHbb79dK1as0Lhx4zR58mSFhoZq1qxZGjRokFkzduxY5efn65lnnlFubq7uuusurVu3Tl5eXmbNokWLFBsbq549e8rFxUUDBw7UnDlzzO1+fn7asGGDYmJiFBYWpoCAAE2YMMHuWU533nmnFi9erPHjx+vll19WixYttHLlSt1yyy1X58MAAADVms0wDMPZTdQGeXl58vPz06lTp5jfdJm+/fZbhYWFKTh6ljyDm1dq7Ol9X+rE6ukOjS3M+reyPhql1NRUdezYsVJjAQA1U2X+/Xb6z6gAAADUBIQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWODU0TZo0STabzW5p1aqVub2goEAxMTHy9/eXj4+PBg4cqOzsbLt9ZGZmKioqSnXq1FFgYKDGjBmjc+fO2dVs2rRJHTt2lKenp5o3b67ExMRyvcTHx+uGG26Ql5eXunTpoh07dlyR9wwAAGomp19patu2rY4ePWouX3/9tblt9OjRWrVqlZYvX67Nmzfr559/1oABA8ztJSUlioqKUlFRkbZu3aqPPvpIiYmJmjBhgllz6NAhRUVFqXv37kpLS9OoUaP09NNPa/369WbN0qVLFRcXp4kTJ+rbb79V+/btFRkZqWPHjl2dDwEAAFR7Tg9Nbm5uCg4ONpeAgABJ0qlTp/Thhx9qxowZ6tGjh8LCwrRgwQJt3bpV27ZtkyRt2LBB+/fv18KFC9WhQwf16dNHU6ZMUXx8vIqKiiRJCQkJCg0N1fTp09W6dWvFxsbqoYce0syZM80eZsyYoeHDh2vIkCFq06aNEhISVKdOHc2fP//qfyAAAKBacnpoOnjwoBo3bqwbb7xRgwYNUmZmpiQpNTVVxcXFioiIMGtbtWqlpk2bKiUlRZKUkpKidu3aKSgoyKyJjIxUXl6e9u3bZ9acv4+ymrJ9FBUVKTU11a7GxcVFERERZk1FCgsLlZeXZ7cAAIDay82ZB+/SpYsSExPVsmVLHT16VK+++qruvvtu7d27V1lZWfLw8FD9+vXtxgQFBSkrK0uSlJWVZReYyraXbbtUTV5ens6ePauTJ0+qpKSkwpoDBw5ctPepU6fq1Vdfdeh9o3pLT093aFxAQICaNm1axd0AAKoLp4amPn36mH++9dZb1aVLFzVr1kzLli2Tt7e3Ezv7fePGjVNcXJz5Oi8vTyEhIU7sCJer5PRJyWbT4MGDHRrv5V1HGQfSCU4AUEs5NTRdqH79+rr55pv173//W/fdd5+KioqUm5trd7UpOztbwcHBkqTg4OBy33Ir+3bd+TUXfuMuOztbvr6+8vb2lqurq1xdXSusKdtHRTw9PeXp6enwe0X1U1p4WjIM+fd7Qe7+lQvAxSeO6MTq6crJySE0AUAt5fQ5Tec7ffq0/vOf/6hRo0YKCwuTu7u7kpOTze0ZGRnKzMxUeHi4JCk8PFx79uyx+5ZbUlKSfH191aZNG7Pm/H2U1ZTtw8PDQ2FhYXY1paWlSk5ONmtwbXH3D5FncPNKLZUNWQCAmsepoekvf/mLNm/erMOHD2vr1q168MEH5erqqscff1x+fn4aNmyY4uLi9OWXXyo1NVVDhgxReHi47rjjDklSr1691KZNGz355JP67rvvtH79eo0fP14xMTHmVaDnnntOP/74o8aOHasDBw7onXfe0bJlyzR69Gizj7i4OH3wwQf66KOPlJ6erhEjRig/P19DhgxxyucCAACqH6fenvvvf/+rxx9/XCdOnNB1112nu+66S9u2bdN1110nSZo5c6ZcXFw0cOBAFRYWKjIyUu+884453tXVVatXr9aIESMUHh6uunXrKjo6WpMnTzZrQkNDtWbNGo0ePVqzZ89WkyZNNG/ePEVGRpo1jz76qI4fP64JEyYoKytLHTp00Lp168pNDgcAANcup4amJUuWXHK7l5eX4uPjFR8ff9GaZs2aae3atZfcT7du3bR79+5L1sTGxio2NvaSNQAA4NpVreY0AQAAVFeEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABa4ObsB1F6ZmZnKycmp9Lj09PQr0A0AAJeH0IQrIjMzUy1btVbB2TPObgUAgCpBaMIVkZOTo4KzZ+Tf7wW5+4dUauzZH3fp1FcLr1BnAAA4htCEK8rdP0Sewc0rNab4xJEr1A0AAI5jIjgAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALKg2oemNN96QzWbTqFGjzHUFBQWKiYmRv7+/fHx8NHDgQGVnZ9uNy8zMVFRUlOrUqaPAwECNGTNG586ds6vZtGmTOnbsKE9PTzVv3lyJiYnljh8fH68bbrhBXl5e6tKli3bs2HEl3iYAAKihqkVo2rlzp9577z3deuutdutHjx6tVatWafny5dq8ebN+/vlnDRgwwNxeUlKiqKgoFRUVaevWrfroo4+UmJioCRMmmDWHDh1SVFSUunfvrrS0NI0aNUpPP/201q9fb9YsXbpUcXFxmjhxor799lu1b99ekZGROnbs2JV/8wAAoEZwemg6ffq0Bg0apA8++EANGjQw1586dUoffvihZsyYoR49eigsLEwLFizQ1q1btW3bNknShg0btH//fi1cuFAdOnRQnz59NGXKFMXHx6uoqEiSlJCQoNDQUE2fPl2tW7dWbGysHnroIc2cOdM81owZMzR8+HANGTJEbdq0UUJCgurUqaP58+df3Q8DAABUW04PTTExMYqKilJERITd+tTUVBUXF9utb9WqlZo2baqUlBRJUkpKitq1a6egoCCzJjIyUnl5edq3b59Zc+G+IyMjzX0UFRUpNTXVrsbFxUURERFmTUUKCwuVl5dntwAAgNrLzZkHX7Jkib799lvt3Lmz3LasrCx5eHiofv36duuDgoKUlZVl1pwfmMq2l227VE1eXp7Onj2rkydPqqSkpMKaAwcOXLT3qVOn6tVXX7X2RgEAQI3ntCtNR44c0ciRI7Vo0SJ5eXk5qw2HjRs3TqdOnTKXI0eOOLslAABwBTktNKWmpurYsWPq2LGj3Nzc5Obmps2bN2vOnDlyc3NTUFCQioqKlJubazcuOztbwcHBkqTg4OBy36Yre/17Nb6+vvL29lZAQIBcXV0rrCnbR0U8PT3l6+trtwAAgNrLaaGpZ8+e2rNnj9LS0sylU6dOGjRokPlnd3d3JScnm2MyMjKUmZmp8PBwSVJ4eLj27Nlj9y23pKQk+fr6qk2bNmbN+fsoqynbh4eHh8LCwuxqSktLlZycbNYAAAA4bU5TvXr1dMstt9itq1u3rvz9/c31w4YNU1xcnBo2bChfX1/96U9/Unh4uO644w5JUq9evdSmTRs9+eSTmjZtmrKysjR+/HjFxMTI09NTkvTcc89p7ty5Gjt2rIYOHaqNGzdq2bJlWrNmjXncuLg4RUdHq1OnTurcubNmzZql/Px8DRky5Cp9GgAAoLpz6kTw3zNz5ky5uLho4MCBKiwsVGRkpN555x1zu6urq1avXq0RI0YoPDxcdevWVXR0tCZPnmzWhIaGas2aNRo9erRmz56tJk2aaN68eYqMjDRrHn30UR0/flwTJkxQVlaWOnTooHXr1pWbHA4AAK5d1So0bdq0ye61l5eX4uPjFR8ff9ExzZo109q1ay+5327dumn37t2XrImNjVVsbKzlXgEAwLXF4dCUn5+vzZs3KzMz03yQZJk///nPl90YAABAdeJQaNq9e7f69u2rM2fOKD8/Xw0bNlROTo75+2+EJgAAUNs49O250aNH6/7779fJkyfl7e2tbdu26X//938VFhamv/3tb1XdIwAAgNM5FJrS0tL0wgsvyMXFRa6uriosLFRISIimTZuml19+uap7BAAAcDqHQpO7u7tcXH4bGhgYqMzMTEmSn58fT8YGAAC1kkNzmm677Tbt3LlTLVq00L333qsJEyYoJydHf//738s9ewkAAKA2cOhK0+uvv65GjRpJkl577TU1aNBAI0aM0PHjx/X+++9XaYMAAADVgUNXmjp16mT+OTAwUOvWrauyhgAAAKojh6409ejRo9wP6QIAANRmDoWmTZs2lXugJQAAQG3mUGiSJJvNVpV9AAAAVGsO/4zKgw8+KA8Pjwq3bdy40eGGAAAAqiOHQ1N4eLh8fHyqshcAAIBqy6HQZLPZNGbMGAUGBlZ1PwAAANWSQ3OaDMOo6j4AAACqNYdC08SJE7k1BwAArikO3Z6bOHGiJOn48ePKyMiQJLVs2VLXXXdd1XUGAABQjTh0penMmTMaOnSoGjdurHvuuUf33HOPGjdurGHDhunMmTNV3SMAAIDTORSaRo8erc2bN+vzzz9Xbm6ucnNz9dlnn2nz5s164YUXqrpHAAAAp3Po9tynn36qTz75RN26dTPX9e3bV97e3nrkkUf07rvvVlV/AAAA1YLDt+eCgoLKrQ8MDOT2HAAAqJUcCk3h4eGaOHGiCgoKzHVnz57Vq6++qvDw8CprDgAAoLpw6PbcrFmz1Lt3bzVp0kTt27eXJH333Xfy8vLS+vXrq7RBAACA6sCh0NSuXTsdPHhQixYt0oEDByRJjz/+uAYNGiRvb+8qbRAAAKA6cCg0bdmyRXfeeaeGDx9e1f0AAABUSw7Naerevbt++eWXqu4FAACg2uK35wAAACxw6PacJKWkpKhBgwYVbrvnnnscbggAAKA6cjg0PfjggxWut9lsKikpcbghAACA6sih23OSlJWVpdLS0nILgQkAANRGDoUmm81W1X0AAABUa0wEBwAAsMChOU2lpaVV3QcAAEC15tCVpqlTp2r+/Pnl1s+fP19vvvnmZTcFAABQ3TgUmt577z21atWq3Pq2bdsqISHhspsCAACobhwKTVlZWWrUqFG59dddd52OHj162U0BAABUNw6FppCQEH3zzTfl1n/zzTdq3LjxZTcFAABQ3Tg0EXz48OEaNWqUiouL1aNHD0lScnKyxo4dqxdeeKFKGwQAAKgOHApNY8aM0YkTJ/T888+rqKhIkuTl5aUXX3xR48aNq9IGAQAAqgOHQpPNZtObb76pV155Renp6fL29laLFi3k6elZ1f0BAABUCw7/9pwk+fj46Pbbb6+qXoAaLz093aFxAQEBatq0aRV3AwCoSg6Hpl27dmnZsmXKzMw0b9GV+ec//3nZjQE1Scnpk5LNpsGDBzs03su7jjIOpBOcAKAacyg0LVmyRE899ZQiIyO1YcMG9erVSz/88IOys7P14IMPVnWPQLVXWnhaMgz593tB7v4hlRpbfOKITqyerpycHEITAFRjDj1y4PXXX9fMmTO1atUqeXh4aPbs2Tpw4IAeeeSRSv2l/+677+rWW2+Vr6+vfH19FR4ern/961/m9oKCAsXExMjf318+Pj4aOHCgsrOz7faRmZmpqKgo1alTR4GBgRozZozOnTtnV7Np0yZ17NhRnp6eat68uRITE8v1Eh8frxtuuEFeXl7q0qWLduzYUbkPBZDk7h8iz+DmlVoqG7IAAM7hUGj6z3/+o6ioKEmSh4eH8vPzZbPZNHr0aL3//vuW99OkSRO98cYbSk1N1a5du9SjRw898MAD2rdvnyRp9OjRWrVqlZYvX67Nmzfr559/1oABA8zxJSUlioqKUlFRkbZu3aqPPvpIiYmJmjBhgllz6NAhRUVFqXv37kpLS9OoUaP09NNPa/369WbN0qVLFRcXp4kTJ+rbb79V+/btFRkZqWPHjjny8QAAgFrIodDUoEED/frrr5Kk66+/Xnv37pUk5ebm6syZM5b3c//996tv375q0aKFbr75Zr322mvy8fHRtm3bdOrUKX344YeaMWOGevToobCwMC1YsEBbt27Vtm3bJEkbNmzQ/v37tXDhQnXo0EF9+vTRlClTFB8fb86zSkhIUGhoqKZPn67WrVsrNjZWDz30kGbOnGn2MWPGDA0fPlxDhgxRmzZtlJCQoDp16lT4+3oAAODa5FBouueee5SUlCRJevjhhzVy5EgNHz5cjz/+uHr27OlQIyUlJVqyZIny8/MVHh6u1NRUFRcXKyIiwqxp1aqVmjZtqpSUFElSSkqK2rVrp6CgILMmMjJSeXl55tWqlJQUu32U1ZTto6ioSKmpqXY1Li4uioiIMGsqUlhYqLy8PLsFAADUXg5NBJ87d64KCgokSf/zP/8jd3d3bd26VQMHDtT48eMrta89e/YoPDxcBQUF8vHx0YoVK9SmTRulpaXJw8ND9evXt6sPCgpSVlaWpN9+A+/8wFS2vWzbpWry8vJ09uxZnTx5UiUlJRXWHDhw4KJ9T506Va+++mql3isAAKi5KhWayq6muLm5ycfHx3z9/PPP6/nnn3eogZYtWyotLU2nTp3SJ598oujoaG3evNmhfV1N48aNU1xcnPk6Ly9PISFM6AUAoLaqVGiqX7++bDbb79aVlJRY3qeHh4eaN28uSQoLC9POnTs1e/ZsPfrooyoqKlJubq7d1abs7GwFBwdLkoKDg8t9y63s23Xn11z4jbvs7Gz5+vrK29tbrq6ucnV1rbCmbB8V8fT05AnoAABcQyoVmr788ku714ZhqG/fvpo3b56uv/76KmmotLRUhYWFCgsLk7u7u5KTkzVw4EBJUkZGhjIzMxUeHi5JCg8P12uvvaZjx44pMDBQkpSUlCRfX1+1adPGrFm7dq3dMZKSksx9eHh4KCwsTMnJyerfv7/ZQ3JysmJjY6vkPQEAgJqvUqHp3nvvLbfO1dVVd9xxh2688cZKH3zcuHHq06ePmjZtql9//VWLFy/Wpk2btH79evn5+WnYsGGKi4tTw4YN5evrqz/96U8KDw/XHXfcIUnq1auX2rRpoyeffFLTpk1TVlaWxo8fr5iYGPMq0HPPPae5c+dq7NixGjp0qDZu3Khly5ZpzZo1Zh9xcXGKjo5Wp06d1LlzZ82aNUv5+fkaMmRIpd8TAAConS7rt+cu17Fjx/TUU0/p6NGj8vPz06233qr169frvvvukyTNnDlTLi4uGjhwoAoLCxUZGal33nnHHO/q6qrVq1drxIgRCg8PV926dRUdHa3JkyebNaGhoVqzZo1Gjx6t2bNnq0mTJpo3b54iIyPNmkcffVTHjx/XhAkTlJWVpQ4dOmjdunXlJocDAIBr12WFpiNHjujMmTPy9/d3aPyHH354ye1eXl6Kj49XfHz8RWuaNWtW7vbbhbp166bdu3dfsiY2NpbbcQAA4KIqFZrmzJlj/jknJ0f/+Mc/1KNHD/n5+VV5YwAAANVJpUJT2VO0bTabAgICdP/991f6uUwAAAA1UaVC06FDh65UHwAAANWaQz+jAgAAcK0hNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFjg1NE2dOlW333676tWrp8DAQPXv318ZGRl2NQUFBYqJiZG/v798fHw0cOBAZWdn29VkZmYqKipKderUUWBgoMaMGaNz587Z1WzatEkdO3aUp6enmjdvrsTExHL9xMfH64YbbpCXl5e6dOmiHTt2VPl7BgAANZNTQ9PmzZsVExOjbdu2KSkpScXFxerVq5fy8/PNmtGjR2vVqlVavny5Nm/erJ9//lkDBgwwt5eUlCgqKkpFRUXaunWrPvroIyUmJmrChAlmzaFDhxQVFaXu3bsrLS1No0aN0tNPP63169ebNUuXLlVcXJwmTpyob7/9Vu3bt1dkZKSOHTt2dT4MAABQrbk58+Dr1q2ze52YmKjAwEClpqbqnnvu0alTp/Thhx9q8eLF6tGjhyRpwYIFat26tbZt26Y77rhDGzZs0P79+/XFF18oKChIHTp00JQpU/Tiiy9q0qRJ8vDwUEJCgkJDQzV9+nRJUuvWrfX1119r5syZioyMlCTNmDFDw4cP15AhQyRJCQkJWrNmjebPn6+XXnrpKn4qAACgOqpWc5pOnTolSWrYsKEkKTU1VcXFxYqIiDBrWrVqpaZNmyolJUWSlJKSonbt2ikoKMisiYyMVF5envbt22fWnL+PspqyfRQVFSk1NdWuxsXFRREREWbNhQoLC5WXl2e3AACA2supV5rOV1paqlGjRqlr16665ZZbJElZWVny8PBQ/fr17WqDgoKUlZVl1pwfmMq2l227VE1eXp7Onj2rkydPqqSkpMKaAwcOVNjv1KlT9eqrrzr2ZoEKpKenOzQuICBATZs2reJuAAAXqjahKSYmRnv37tXXX3/t7FYsGTdunOLi4szXeXl5CgkJcWJHqKlKTp+UbDYNHjzYofFe3nWUcSCd4AQAV1i1CE2xsbFavXq1tmzZoiZNmpjrg4ODVVRUpNzcXLurTdnZ2QoODjZrLvyWW9m3686vufAbd9nZ2fL19ZW3t7dcXV3l6upaYU3ZPi7k6ekpT09Px94wcJ7SwtOSYci/3wty969c8C4+cUQnVk9XTk4OoQkArjCnzmkyDEOxsbFasWKFNm7cqNDQULvtYWFhcnd3V3JysrkuIyNDmZmZCg8PlySFh4drz549dt9yS0pKkq+vr9q0aWPWnL+PspqyfXh4eCgsLMyuprS0VMnJyWYNcKW5+4fIM7h5pZbKhiwAgOOceqUpJiZGixcv1meffaZ69eqZc5D8/Pzk7e0tPz8/DRs2THFxcWrYsKF8fX31pz/9SeHh4brjjjskSb169VKbNm305JNPatq0acrKytL48eMVExNjXgl67rnnNHfuXI0dO1ZDhw7Vxo0btWzZMq1Zs8bsJS4uTtHR0erUqZM6d+6sWbNmKT8/3/w2HQAAuLY5NTS9++67kqRu3brZrV+wYIH++Mc/SpJmzpwpFxcXDRw4UIWFhYqMjNQ777xj1rq6umr16tUaMWKEwsPDVbduXUVHR2vy5MlmTWhoqNasWaPRo0dr9uzZatKkiebNm2c+bkCSHn30UR0/flwTJkxQVlaWOnTooHXr1pWbHA4AAK5NTg1NhmH8bo2Xl5fi4+MVHx9/0ZpmzZpp7dq1l9xPt27dtHv37kvWxMbGKjY29nd7AgAA155q9ZwmAACA6orQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABW7ObgDVW2ZmpnJycio9Lj09/Qp0AwCA8xCacFGZmZlq2aq1Cs6ecXYrAAA4HaEJF5WTk6OCs2fk3+8FufuHVGrs2R936dRXC69QZwAAXH2EJvwud/8QeQY3r9SY4hNHrlA3AAA4BxPBAQAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFjAz6gAtUB6erpD4wICAtS0adMq7gYAaidCE1CDlZw+KdlsGjx4sEPjvbzrKONAOsEJACwgNAE1WGnhackw5N/vBbn7h1RqbPGJIzqxerpycnIITQBgAaEJqAXc/UPkGdzc2W0AQK3GRHAAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwwKmhacuWLbr//vvVuHFj2Ww2rVy50m67YRiaMGGCGjVqJG9vb0VEROjgwYN2Nb/88osGDRokX19f1a9fX8OGDdPp06ftar7//nvdfffd8vLyUkhIiKZNm1aul+XLl6tVq1by8vJSu3bttHbt2ip/vwAAoOZyamjKz89X+/btFR8fX+H2adOmac6cOUpISND27dtVt25dRUZGqqCgwKwZNGiQ9u3bp6SkJK1evVpbtmzRM888Y27Py8tTr1691KxZM6Wmpuqtt97SpEmT9P7775s1W7du1eOPP65hw4Zp9+7d6t+/v/r376+9e/deuTcPAABqFKc+p6lPnz7q06dPhdsMw9CsWbM0fvx4PfDAA5Kkjz/+WEFBQVq5cqUee+wxpaena926ddq5c6c6deokSXr77bfVt29f/e1vf1Pjxo21aNEiFRUVaf78+fLw8FDbtm2VlpamGTNmmOFq9uzZ6t27t8aMGSNJmjJlipKSkjR37lwlJCRchU8CAABUd9V2TtOhQ4eUlZWliIgIc52fn5+6dOmilJQUSVJKSorq169vBiZJioiIkIuLi7Zv327W3HPPPfLw8DBrIiMjlZGRoZMnT5o15x+nrKbsOAAAANX2ieBZWVmSpKCgILv1QUFB5rasrCwFBgbabXdzc1PDhg3takJDQ8vto2xbgwYNlJWVdcnjVKSwsFCFhYXm67y8vMq8PQAAUMNU2ytN1d3UqVPl5+dnLiEhlfvdLwAAULNU29AUHBwsScrOzrZbn52dbW4LDg7WsWPH7LafO3dOv/zyi11NRfs4/xgXqynbXpFx48bp1KlT5nLkyJHKvkUAAFCDVNvQFBoaquDgYCUnJ5vr8vLytH37doWHh0uSwsPDlZubq9TUVLNm48aNKi0tVZcuXcyaLVu2qLi42KxJSkpSy5Yt1aBBA7Pm/OOU1ZQdpyKenp7y9fW1WwAAQO3l1NB0+vRppaWlKS0tTdJvk7/T0tKUmZkpm82mUaNG6a9//as+//xz7dmzR0899ZQaN26s/v37S5Jat26t3r17a/jw4dqxY4e++eYbxcbG6rHHHlPjxo0lSU888YQ8PDw0bNgw7du3T0uXLtXs2bMVFxdn9jFy5EitW7dO06dP14EDBzRp0iTt2rVLsbGxV/sjAQAA1ZRTJ4Lv2rVL3bt3N1+XBZno6GglJiZq7Nixys/P1zPPPKPc3FzdddddWrdunby8vMwxixYtUmxsrHr27CkXFxcNHDhQc+bMMbf7+flpw4YNiomJUVhYmAICAjRhwgS7ZzndeeedWrx4scaPH6+XX35ZLVq00MqVK3XLLbdchU8BAADUBE4NTd26dZNhGBfdbrPZNHnyZE2ePPmiNQ0bNtTixYsveZxbb71VX3311SVrHn74YT388MOXbhgAAFyzqu2cJgAAgOqE0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABggVN/RgWA86Wnpzs0LiAgQE2bNq3ibgCg+iI0AdeoktMnJZtNgwcPdmi8l3cdZRxIJzgBuGYQmoBrVGnhackw5N/vBbn7h1RqbPGJIzqxerpycnIITQCuGYQm4Brn7h8iz+Dmzm4DAKo9JoIDAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsICfUQHgsPT0dIfGBQQE8Jt1AGocQhOASis5fVKy2TR48GCHxnt511HGgXSCE4AahdAEoNJKC09LhiH/fi/I3T+kUmOLTxzRidXTlZOTQ2gCUKMQmgA4zN0/RJ7BzZ3dBgBcFUwEBwAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAv49hwAp+DBmABqGkITgKuKB2MCqKkITdeAzMxM5eTkVHqco1cCgEvhwZgAaipCUy2XmZmplq1aq+DsGWe3AtjhwZgAahpCUy2Xk5OjgrNnHPp/9Wd/3KVTXy28Qp0BAFCzEJquEY78v/riE0euUDcAANQ8hCYANQ7fvAPgDIQmADUG37wD4EyEJgA1Bt+8A+BMhCYANc7lfPOOW3sAHEVoukB8fLzeeustZWVlqX379nr77bfVuXNnZ7cF4DJxaw/A5SI0nWfp0qWKi4tTQkKCunTpolmzZikyMlIZGRkKDAx0dnsALkNV3Nr76quv1Lp160ofm6tUQO1AaDrPjBkzNHz4cA0ZMkSSlJCQoDVr1mj+/Pl66aWXnNobT/UGqoYjt/Yu9yqVp6eXPv30EzVq1KjSYwlcQPVBaPo/RUVFSk1N1bhx48x1Li4uioiIUEpKihM746negLNdzlWqgv/uU+7GeerXr59Dx76cwFVYWChPT0+HjuussYREVGeEpv+Tk5OjkpISBQUF2a0PCgrSgQMHytUXFhaqsLDQfH3q1ClJUl5eXpX3dvjwYRWcPSPf2wfI1e+6So0t+vkH5e//UoVZ/1ZpUUGlxpY93JKxjGXsb2NLiwsrPbb0zCnJMBz632/x8cM6/d16hwOXZJNk1KixHp5eWvj3j8v9XWyFi4uLSktLHTrutTbWmce+nLHBwcEKDg52aOzFlP27bRgW/ps1YBiGYfz000+GJGPr1q1268eMGWN07ty5XP3EiRMN/fa3AgsLCwsLC0sNX44cOfK7WYErTf8nICBArq6uys7OtlufnZ1dYaodN26c4uLizNelpaX65Zdf5O/vL5vNdsX7ra7y8vIUEhKiI0eOyNfX19ntwALOWc3DOat5OGfVl2EY+vXXX9W4cePfrSU0/R8PDw+FhYUpOTlZ/fv3l/RbEEpOTlZsbGy5ek9Pz3L37OvXr38VOq0ZfH19+YuhhuGc1Tycs5qHc1Y9+fn5WaojNJ0nLi5O0dHR6tSpkzp37qxZs2YpPz/f/DYdAAC4dhGazvPoo4/q+PHjmjBhgrKystShQwetW7fOoQmJAACgdiE0XSA2NrbC23GwxtPTUxMnTnT468a4+jhnNQ/nrObhnNUONsOw8h07AACAa5uLsxsAAACoCQhNAAAAFhCaAAAALCA0AQAAWEBoQqVNnTpVt99+u+rVq6fAwED1799fGRkZdjUFBQWKiYmRv7+/fHx8NHDgwHJPW4fzvPHGG7LZbBo1apS5jnNW/fz0008aPHiw/P395e3trXbt2mnXrl3mdsMwNGHCBDVq1Eje3t6KiIjQwYMHndjxta2kpESvvPKKQkND5e3trZtuuklTpkyx+00zzlnNRmhCpW3evFkxMTHatm2bkpKSVFxcrF69eik/P9+sGT16tFatWqXly5dr8+bN+vnnnzVgwAAndo0yO3fu1Hvvvadbb73Vbj3nrHo5efKkunbtKnd3d/3rX//S/v37NX36dDVo0MCsmTZtmubMmaOEhARt375ddevWVWRkpAoKKvejwqgab775pt59913NnTtX6enpevPNNzVt2jS9/fbbZg3nrIargt+6xTXu2LFjhiRj8+bNhmEYRm5uruHu7m4sX77crElPTzckGSkpKc5qE4Zh/Prrr0aLFi2MpKQk49577zVGjhxpGAbnrDp68cUXjbvuuuui20tLS43g4GDjrbfeMtfl5uYanp6exj/+8Y+r0SIuEBUVZQwdOtRu3YABA4xBgwYZhsE5qw240oTLdurUKUlSw4YNJUmpqakqLi5WRESEWdOqVSs1bdpUKSkpTukRv4mJiVFUVJTduZE4Z9XR559/rk6dOunhhx9WYGCgbrvtNn3wwQfm9kOHDikrK8vunPn5+alLly6cMye58847lZycrB9++EGS9N133+nrr79Wnz59JHHOagOeCI7LUlpaqlGjRqlr16665ZZbJElZWVny8PAo9wPGQUFBysrKckKXkKQlS5bo22+/1c6dO8tt45xVPz/++KPeffddxcXF6eWXX9bOnTv15z//WR4eHoqOjjbPy4U/88Q5c56XXnpJeXl5atWqlVxdXVVSUqLXXntNgwYNkiTOWS1AaMJliYmJ0d69e/X11187uxVcwpEjRzRy5EglJSXJy8vL2e3AgtLSUnXq1Emvv/66JOm2227T3r17lZCQoOjoaCd3h4osW7ZMixYt0uLFi9W2bVulpaVp1KhRaty4MeesluD2HBwWGxur1atX68svv1STJk3M9cHBwSoqKlJubq5dfXZ2toKDg69yl5B+u/127NgxdezYUW5ubnJzc9PmzZs1Z84cubm5KSgoiHNWzTRq1Eht2rSxW9e6dWtlZmZKknleLvyGI+fMecaMGaOXXnpJjz32mNq1a6cnn3xSo0eP1tSpUyVxzmoDQhMqzTAMxcbGasWKFdq4caNCQ0PttoeFhcnd3V3JycnmuoyMDGVmZio8PPxqtwtJPXv21J49e5SWlmYunTp10qBBg8w/c86ql65du5Z7lMcPP/ygZs2aSZJCQ0MVHBxsd87y8vK0fft2zpmTnDlzRi4u9v+surq6qrS0VBLnrFZw9kx01DwjRoww/Pz8jE2bNhlHjx41lzNnzpg1zz33nNG0aVNj48aNxq5du4zw8HAjPDzciV3jQud/e84wOGfVzY4dOww3NzfjtddeMw4ePGgsWrTIqFOnjrFw4UKz5o033jDq169vfPbZZ8b3339vPPDAA0ZoaKhx9uxZJ3Z+7YqOjjauv/56Y/Xq1cahQ4eMf/7zn0ZAQIAxduxYs4ZzVrMRmlBpkipcFixYYNacPXvWeP75540GDRoYderUMR588EHj6NGjzmsa5VwYmjhn1c+qVauMW265xfD09DRatWplvP/++3bbS0tLjVdeecUICgoyPD09jZ49exoZGRlO6hZ5eXnGyJEjjaZNmxpeXl7GjTfeaPzP//yPUVhYaNZwzmo2m2Gc96hSAAAAVIg5TQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0Arll//OMfZbPZzMXf31+9e/fW999/b9aUbdu2bZvd2MLCQvn7+8tms2nTpk129StXrrxK7wDA1URoAnBN6927t44ePaqjR48qOTlZbm5u6tevn11NSEiIFixYYLduxYoV8vHxuZqtAnAyQhOAa5qnp6eCg4MVHBysDh066KWXXtKRI0d0/PhxsyY6OlpLlizR2bNnzXXz589XdHS0M1oG4CSEJgD4P6dPn9bChQvVvHlz+fv7m+vDwsJ0ww036NNPP5UkZWZmasuWLXryySed1SoAJyA0AbimrV69Wj4+PvLx8VG9evX0+eefa+nSpXJxsf/rcejQoZo/f74kKTExUX379tV1113njJYBOAmhCcA1rXv37kpLS1NaWpp27NihyMhI9enTR//7v/9rVzd48GClpKToxx9/VGJiooYOHeqkjgE4C6EJwDWtbt26at68uZo3b67bb79d8+bNU35+vj744AO7On9/f/Xr10/Dhg1TQUGB+vTp46SOATgLoQkAzmOz2eTi4mI36bvM0KFDtWnTJj311FNydXV1QncAnMnN2Q0AgDMVFhYqKytLknTy5EnNnTtXp0+f1v3331+utnfv3jp+/Lh8fX2vdpsAqgFCE4Br2rp169SoUSNJUr169dSqVSstX75c3bp1K1drs9kUEBBwlTsEUF3YDMMwnN0EAABAdcecJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABY8P8AhZItBU6MXz0AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "\n", "df = pd.read_csv(\"..//static//csv//heart_2020_cleaned.csv\")\n", "\n", "plt.hist(df[\"BMI\"], bins=30, edgecolor='black')\n", "plt.xlabel('BMI')\n", "plt.ylabel('Частота')\n", "plt.title('Распределение BMI')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Данная диаграмма показывает, что большинство опрашиваемых имеет индекс массы тела в диапазоне от 20 до 40" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/x0lEQVR4nO3de3zP9f//8fvbDu/NMIzZxsYc50xOoUKUhg4U5bO0qCgK6SCVlsopHShFSihnOVQ6CKEShSKrYTRNOU5sjB1sz98ffnt/vb1HzHi9cLteLu/LZa/n+/l6vR6v92uv7f5+PV+v99thjDECAACwoSJWFwAAAHAmBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAuMzs2rVLfn5+Wr16tdWl4Bw888wzatasmdVlXLYIKleIqVOnyuFwuB5+fn6qXr26Hn30Ue3bt8/q8gAUopdeeknNmjVTy5YtrS7FdiZMmKCuXbsqIiJCDodD999//3nNv3DhQrVv315hYWFyOp2qUKGC7rrrLsXHx+fb/7PPPtM111wjPz8/RUREKC4uTidOnHDrM3DgQG3atEmfffZZQTfrquZtdQEoXC+99JIiIyOVkZGhH374QRMmTNCXX36p+Ph4FS1a1OryAFygAwcOaNq0aZo2bZrVpdjS6NGjdeTIETVt2lR79uw57/k3b96sUqVKacCAASpTpoz27t2rDz/8UE2bNtWaNWtUv359V9+vvvpKd9xxh1q3bq23335bmzdv1iuvvKL9+/drwoQJrn4hISG6/fbb9dprr+m2224rlO28qhhcEaZMmWIkmXXr1rm1Dxo0yEgyM2fOtKgyAIXpjTfeMP7+/ubIkSNWl2JLO3fuNLm5ucYYYwICAkxsbOwFL3Pv3r3G29vb9OnTx629Vq1apn79+iY7O9vV9txzzxmHw2ESEhLc+n7yySfG4XCYHTt2XHA9VxuGfq5wN954oyQpKSlJkvTvv//qySefVN26dVWsWDGVKFFC0dHR2rRpk8e8GRkZevHFF1W9enX5+fkpNDRUXbp00Y4dOyRJO3fudBtuOv3RunVr17JWrlwph8OhOXPm6Nlnn1VISIgCAgJ02223adeuXR7r/umnn3TLLbcoMDBQRYsWVatWrc44Ht+6det81//iiy969J0+fboaNWokf39/lS5dWvfcc0++6z/btp0qNzdXY8eOVe3ateXn56dy5cqpT58+OnTokFu/SpUqqVOnTh7refTRRz2WmV/tY8aM8XhNJSkzM1NxcXGqWrWqnE6nwsPD9fTTTyszMzPf1+pUZ3rd8h47d+506//uu++qdu3acjqdCgsLU79+/XT48OH/XM+LL77ottzixYuradOmWrRokUffefPmufZPmTJldO+99+qff/7xWF6tWrVcv7/XXnutx7Jat26tOnXqaMOGDWrRooX8/f0VGRmpiRMnuvXLysrSCy+8oEaNGikwMFABAQG6/vrrtWLFCo/acnNzNW7cONWtW1d+fn4qW7asbrnlFq1fv16Szvpa5u27o0ePKiAgQAMGDPBY/t9//y0vLy+NHDnyrK/nokWL1KxZMxUrVszjuZ9++kkdOnRQqVKlFBAQoHr16mncuHGSpPvvv/8/a8zb53m/r998840aNGggPz8/1apVSwsWLPBY559//qmuXbuqdOnSKlq0qK699lp98cUXbn3yjv+VK1e62nbv3q1KlSqpcePGOnr06Bn7SVLHjh3PeEyfrmLFih7H1IUKDg5W0aJF3X7f//jjD/3xxx/q3bu3vL3/b3Cib9++Msbok08+cVtGu3btJEmffvppodZ2NWDo5wqXFyqCgoIknfyjsmjRInXt2lWRkZHat2+f3nvvPbVq1Up//PGHwsLCJEk5OTnq1KmTli9frnvuuUcDBgzQkSNHtHTpUsXHx6tKlSqudXTv3l0dOnRwW++QIUPyrWf48OFyOBwaPHiw9u/fr7Fjx6pdu3bauHGj/P39JUnffvutoqOj1ahRI8XFxalIkSKaMmWKbrzxRn3//fdq2rSpx3IrVKjg+gN/9OhRPfLII/mue+jQoerWrZsefPBBHThwQG+//bZuuOEG/frrrypZsqTHPL1799b1118vSVqwYIEWLlzo9nyfPn00depU9ezZU/3791dSUpLGjx+vX3/9VatXr5aPj0++r8P5OHz4cL7/vHJzc3Xbbbfphx9+UO/evVWzZk1t3rxZb775prZt25ZvEDjdqa9bni+//FKzZs1ya3vxxRc1bNgwtWvXTo888oi2bt2qCRMmaN26dee8nR9//LEkKSUlRe+++666du2q+Ph41ahRQ5Jcr2OTJk00cuRI7du3T+PGjdPq1avd9k96ero6d+6sSpUq6fjx45o6daruvPNOrVmzxu1349ChQ+rQoYO6deum7t27a+7cuXrkkUfk6+urXr16SZLS0tL0wQcfqHv37nrooYd05MgRTZ48We3bt9fPP/+sBg0auJb3wAMPaOrUqYqOjtaDDz6oEydO6Pvvv9fatWvVuHFj1/ZJ0vfff69JkybpzTffVJkyZSRJ5cqVU7FixdS5c2fNmTNHb7zxhry8vFzzzJo1S8YYxcTEnPE1zM7O1rp16/L9/V66dKk6deqk0NBQDRgwQCEhIUpISNDixYs1YMAA9enTx/XPUpJ69Oihzp07q0uXLq62smXLun5OTEzU3XffrYcfflixsbGaMmWKunbtqq+//lo33XSTJGnfvn1q0aKFjh07pv79+ysoKEjTpk3Tbbfdpk8++USdO3fOdztSU1MVHR0tHx8fffnll/mGrjzfffedvvzyyzM+f7EcPnxY2dnZ2rt3r8aOHau0tDS1bdvW9fyvv/4qSWrcuLHbfGFhYapQoYLr+TyBgYGqUqWKVq9erccff/zib8CVxOpTOigceUM/y5YtMwcOHDC7du0ys2fPNkFBQcbf39/8/fffxhhjMjIyTE5Ojtu8SUlJxul0mpdeesnV9uGHHxpJ5o033vBYV95p1aSkJCPJjBkzxqNP7dq1TatWrVzTK1asMJJM+fLlTVpamqt97ty5RpIZN26ca9nVqlUz7du3d63HGGOOHTtmIiMjzU033eSxrhYtWpg6deq4pg8cOGAkmbi4OFfbzp07jZeXlxk+fLjbvJs3bzbe3t4e7YmJiUaSmTZtmqstLi7OnHrIfP/990aSmTFjhtu8X3/9tUd7xYoVTceOHT1q79evnzn9MDy99qefftoEBwebRo0aub2mH3/8sSlSpIj5/vvv3eafOHGikWRWr17tsb5TtWrVytSuXdujfcyYMUaSSUpKMsYYs3//fuPr62tuvvlmt9+d8ePHG0nmww8/POt6Tn/djDHmm2++MZLM3LlzjTHGZGVlmeDgYFOnTh1z/PhxV7/FixcbSeaFF1444/L3799vJJnXXnvNbdskmddff93VlpmZaRo0aGCCg4NNVlaWMcaYEydOmMzMTLflHTp0yJQrV8706tXL1fbtt98aSaZ///4e6z/19zRP3vGY9xqeasmSJUaS+eqrr9za69Wr57Z/87N9+3Yjybz99ttu7SdOnDCRkZGmYsWK5tChQ/9ZnzGev2enqlixopFk5s+f72pLTU01oaGhpmHDhq62gQMHGkluv4NHjhwxkZGRplKlSq7fl7zjf8WKFSYjI8O0bt3aBAcHm+3bt7ut99R+eZo1a2aio6PPWu+ZXMjQT40aNYwkI8kUK1bMPP/8826//3nHSXJysse8TZo0Mddee61H+80332xq1qxZoHquZgz9XGHatWunsmXLKjw8XPfcc4+KFSumhQsXqnz58pIkp9OpIkVO7vacnBwdPHhQxYoVU40aNfTLL7+4ljN//nyVKVNGjz32mMc6LuS06n333afixYu7pu+66y6Fhoa63jFt3LhRiYmJ+t///qeDBw8qJSVFKSkpSk9PV9u2bfXdd98pNzfXbZkZGRny8/M763oXLFig3NxcdevWzbXMlJQUhYSEqFq1ah6n+rOysiSdfL3OZN68eQoMDNRNN93ktsxGjRqpWLFiHsvMzs5265eSkqKMjIyz1v3PP//o7bff1tChQz3edc6bN081a9ZUVFSU2zLzhvvyG74oiGXLlikrK0sDBw50/e5I0kMPPaQSJUp4nOY/k7z6EhISNHHiRAUEBOjaa6+VJK1fv1779+9X37593fZlx44dFRUV5bGOvNdyx44dGjVqlIoUKeJxB4y3t7f69Onjmvb19VWfPn20f/9+bdiwQZLk5eUlX19fSSfPUP377786ceKEGjdu7HE8OBwOxcXFeWzX+R4P7dq1U1hYmGbMmOFqi4+P12+//aZ77733rPMePHhQklSqVCm39l9//VVJSUkaOHCgx5nBgh6vYWFhbmdESpQoofvuu0+//vqr9u7dK+nk2bemTZvquuuuc/UrVqyYevfurZ07d+qPP/5wW2Zubq7uu+8+rV27Vl9++aXbmdn8LFiwQOvWrdOoUaMKtA0XYsqUKfr666/17rvvqmbNmjp+/LhycnJczx8/flxS/n8j/Pz8XM+fqlSpUkpJSbl4RV+hGPq5wrzzzjuqXr26vL29Va5cOdWoUcPtn0veOPu7776rpKQktwMvb3hIOjlkVKNGDbex18JQrVo1t2mHw6GqVau6xsYTExMlSbGxsWdcRmpqqtsf6pSUFI/lni4xMVHGmDP2O33oIm8s+mynpBMTE5Wamqrg4OB8n9+/f7/b9DfffON2av1cxMXFKSwsTH369PEY805MTFRCQsIZl3n6+gvqr7/+kiTXEE0eX19fVa5c2fX8fzm1zhIlSmjGjBkKDw8/6zokKSoqSj/88INb2/LlyxUdHe1a1ieffOIKPXnCwsIUEBDg1la9enVJJ69Byus/bdo0vf7669qyZYuys7NdfSMjI10/79ixQ2FhYSpduvQ5bevZFClSRDExMZowYYKOHTumokWLasaMGfLz81PXrl3PaRnGGLfpvCHeOnXqXHB9eapWreoRck59/UJCQvTXX3/l+/kgNWvWlHRyv55a03PPPae1a9fK4XDo2LFjZ11/Tk6Onn32WcXExKhevXoXujlujh8/rtTUVLe2kJAQt+nmzZu7fr7nnntc2/Taa69JkmuoOr/rwTIyMlzPn8oYU+jXz1wNCCpXmKZNm3qMmZ5qxIgRGjp0qHr16qWXX35ZpUuXVpEiRTRw4ECPMxVWyKthzJgxbtcHnOrU8JCVlaU9e/a4xszPtlyHw6GvvvrK7bqA/JYpyfWO8fQ/XqcvMzg42O2d8alODxDNmjXTK6+84tY2fvz4M15cl5CQoKlTp2r69On5XgOSm5urunXr6o033sh3/rwQYBdLly6VdPIak/nz56tbt25avHjxf+67/DRp0kRLly7VoUOHNH36dPXq1Uvh4eFn/d3Pz/Tp03X//ffrjjvu0FNPPaXg4GDXBa15//wvhvvuu09jxozRokWL1L17d82cOVOdOnVSYGDgWefLezNx+sXal4uffvpJU6dO1fjx49W7d29t3LjxjGctJ0+erJ07d2rJkiWFXsecOXPUs2dPt7bTw9+pSpUqpRtvvFEzZsxwBZXQ0FBJ0p49ezyOtT179uR7Ld2hQ4dc1yzh3BFUrjKffPKJ2rRpo8mTJ7u1Hz582O0AqlKlin766SdlZ2cXygWhefLOmOQxxmj79u2ud0x5p4JLlCjhduHfmWzatEnZ2dn/+Q+qSpUqMsYoMjLS9a7wbP744w85HI583+Gfusxly5apZcuW+b57Ol2ZMmU8tulsF7wOGTJEDRo00N13333G9W/atElt27a9qO/SKlasKEnaunWrKleu7GrPyspSUlLSOe0nSW79br/9dv3000967bXXdNNNN7mtI2/oKs/WrVtdz+cJCgpyLe/OO+9UjRo1NGbMGM2ZM8fVZ/fu3UpPT3c7q7Jt2zZJJ+9qkU4eD5UrV9aCBQvcXsPTh3iqVKmiJUuW6N9//y2Usyp16tRRw4YNNWPGDFWoUEHJycl6++23/3O+iIgI+fv7u+7iO7U+6eQQ0rnuj/+yfft2jzMAp79+FStW1NatWz3m3bJli+v5Uw0bNkyxsbFq0KCBGjdurFdeeUUvv/yyx/zHjh3TsGHD1LdvX49lFIb27du7gvO5Ov0sTN4bqfXr17uFkt27d+vvv/9W7969PZaRlJTk9jksODdco3KV8fLy8njnMG/ePI9bQO+8806lpKRo/PjxHss42zuP//LRRx/pyJEjrulPPvlEe/bscZ3Gb9SokapUqaLXXnvNdcviqQ4cOOBRu5eXV763/p6qS5cu8vLy0rBhwzzqN8a4xv4l6cSJE5o/f76aNm161qGfbt26KScnJ98/tCdOnDinW3fPZM2aNfr00081atSoM4aQbt266Z9//tH777/v8dzx48eVnp5e4PWfql27dvL19dVbb73l9tpNnjxZqamp6tix43kvMycnR1lZWa7T5o0bN1ZwcLAmTpzodir9q6++UkJCwlnXkZGRofT0dI9T8CdOnNB7773nms7KytJ7772nsmXLqlGjRpLkOrt26nb99NNPWrNmjduy7rzzThljNGzYMI/1F/R46NGjh7755huNHTtWQUFBrmPgbHx8fNS4cWPXLdF5rrnmGkVGRmrs2LEev3cFrW/37t1ud7mlpaXpo48+UoMGDVxnGjt06KCff/7Z7fVKT0/XpEmTVKlSJdWqVcttmXl30NWvX19PPvmkRo8ene8nvo4bN07p6el67rnnClT7fwkNDVW7du3cHnnyGzLduXOnli9f7vaGqHbt2oqKitKkSZPchtAnTJggh8Ohu+66y20Zqamp2rFjh1q0aHERtujKxhmVq0ynTp300ksvqWfPnmrRooU2b96sGTNmuL1Tlk6emv7oo480aNAg/fzzz7r++uuVnp6uZcuWqW/fvrr99tsLtP7SpUvruuuuU8+ePbVv3z6NHTtWVatW1UMPPSTp5Pj9Bx98oOjoaNWuXVs9e/ZU+fLl9c8//2jFihUqUaKEPv/8c6Wnp+udd97RW2+9perVq7t97kJewPntt9+0Zs0aNW/eXFWqVNErr7yiIUOGaOfOnbrjjjtUvHhxJSUlaeHCherdu7eefPJJLVu2TEOHDtVvv/2mzz///Kzb0qpVK/Xp00cjR47Uxo0bdfPNN8vHx0eJiYmaN2+exo0b5/HH6lx98803uummm8767rhHjx6aO3euHn74Ya1YsUItW7ZUTk6OtmzZorlz52rJkiXnPRSSn7Jly2rIkCEaNmyYbrnlFt12223aunWr3n33XTVp0uQ/LwDNM336dEkn/5EtWrRIO3fu1MCBAyWd/Ac8evRo9ezZU61atVL37t1dtydXqlTJdTtn3m2t0dHRCgsL07///quPP/5Ye/bs8agjLCxMo0eP1s6dO1W9enXNmTNHGzdu1KRJk1xnCTt16qQFCxaoc+fO6tixo5KSkjRx4kTVqlXLLSi3adNGPXr00FtvvaXExETdcsstys3N1ffff682bdro0UcfPe/X9X//+5+efvppLVy4UI888sg5n7m8/fbb9dxzzyktLU0lSpSQdPK4mTBhgm699VY1aNBAPXv2VGhoqLZs2aLff/+9QMMn1atX1wMPPKB169apXLly+vDDD7Vv3z5NmTLF1eeZZ57RrFmzFB0drf79+6t06dKaNm2akpKSNH/+fLfr404XFxen+fPn66GHHtLq1avd+n7zzTcaPny423Vz5+rzzz93fS5Udna2fvvtN9eQ62233faf17vUrVtXbdu2VYMGDVSqVCklJiZq8uTJys7O9riod8yYMbrtttt0880365577lF8fLzGjx+vBx980HVNS55ly5bJGFPgv51XtUt+nxEuijN9Mu3pMjIyzBNPPGFCQ0ONv7+/admypVmzZo1p1aqVx62Rx44dM88995yJjIw0Pj4+JiQkxNx1112uT1YsyO3Js2bNMkOGDDHBwcHG39/fdOzY0fz1118e8//666+mS5cuJigoyDidTlOxYkXTrVs3s3z5crd1/9fj9FsT58+fb6677joTEBBgAgICTFRUlOnXr5/ZunWrMcaYxx57zNxwww3m66+/9qgpv9tsjTFm0qRJplGjRsbf398UL17c1K1b1zz99NNm9+7drj7ne3uyw+EwGzZscGvPbx9lZWWZ0aNHm9q1axun02lKlSplGjVqZIYNG2ZSU1M91nf68s7l9uQ848ePN1FRUcbHx8eUK1fOPPLIIx63wuYn73XLe/j7+5tatWqZN9980+PW2Tlz5piGDRsap9NpSpcubWJiYly31htjzPHjx83dd99tKlSoYHx9fU1wcLBp06aN+fzzz/PdtvXr15vmzZsbPz8/U7FiRTN+/Hi3frm5uWbEiBGmYsWKxul0moYNG5rFixeb2NhYU7FiRbe+J06cMGPGjDFRUVHG19fXlC1b1kRHR3vsJ2POfnvyqTp06GAkmR9//PE/X8c8+/btM97e3ubjjz/2eO6HH34wN910kylevLgJCAgw9erV87iVOY/+4/bkjh07miVLlph69eoZp9NpoqKizLx58zz67tixw9x1112mZMmSxs/PzzRt2tQsXrzYrU9+tx0bY8zKlSuNw+FwfTxBXr/Q0FCTnp5+zvWeKjY29ox/D6ZMmfKf88fFxZnGjRubUqVKGW9vbxMWFmbuuece89tvv+Xbf+HChaZBgwbG6XSaChUqmOeff951+/up7r77bnPdddf95/rhyWHMBZzHB87RypUr1aZNG82bN6/AZxlOtXPnTkVGRiopKck1Xn66F198UTt37tTUqVMveH24vLRu3VopKSln/CI5u+jcubM2b96s7du3n9d8DzzwgLZt26bvv//+otRVqVIl1alTR4sXL74oy7/a7N27V5GRkZo9ezZnVAqAa1QAwAJ79uzRF198oR49epz3vHFxca5PBYb9jR07VnXr1iWkFBDXqOCyVKxYMcXExJz1Ytd69eq5vhIAsIukpCStXr1aH3zwgXx8fNw+lO5cRURE/OeHBcI+rPjAuisJQQWXpTJlyrguzjyTU7/DBLCLVatWqWfPnoqIiNC0adPO+lk9ACSuUQEAALbFNSoAAMC2CCoAAMC2LutrVHJzc7V7924VL16cL3oCAOAyYYzRkSNHFBYWdtYPBpQu86Cye/du233xGgAAODe7du1ShQoVztrnsg4qxYsXl3RyQ/M+ShoAANhbWlqawsPDXf/Hz+ayDip5wz0lSpQgqAAAcJk5l8s2uJgWAADYFkEFAADYFkEFAADYFkEFAADYFkEFAADYFkEFAADYFkEFAADYFkEFAADYFkEFAADYFkEFAADYlqVBJScnR0OHDlVkZKT8/f1VpUoVvfzyyzLGWFkWAACwCUu/62f06NGaMGGCpk2bptq1a2v9+vXq2bOnAgMD1b9/fytLAwAANmBpUPnxxx91++23q2PHjpKkSpUqadasWfr555+tLAsAANiEpUM/LVq00PLly7Vt2zZJ0qZNm/TDDz8oOjrayrIAAIBNWHpG5ZlnnlFaWpqioqLk5eWlnJwcDR8+XDExMfn2z8zMVGZmpms6LS3tUpUKAMB5SU5OVkpKitVlXLAyZcooIiLCsvVbGlTmzp2rGTNmaObMmapdu7Y2btyogQMHKiwsTLGxsR79R44cqWHDhllQKQAA5y45OVk1omoq4/gxq0u5YH7+RbV1S4JlYcVhLLzFJjw8XM8884z69evnanvllVc0ffp0bdmyxaN/fmdUwsPDlZqaqhIlSlySmgEA+C+//PKLGjVqpKBOT8gnKNzqcgos++AuHVz8ujZs2KBrrrmm0JablpamwMDAc/r/bekZlWPHjqlIEffLZLy8vJSbm5tvf6fTKafTeSlKAwDggvkEhcsZUtXqMi5rlgaVW2+9VcOHD1dERIRq166tX3/9VW+88YZ69eplZVkAAMAmLA0qb7/9toYOHaq+fftq//79CgsLU58+ffTCCy9YWRYAALAJS4NK8eLFNXbsWI0dO9bKMgAAgE3xXT8AAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2LA0qlSpVksPh8Hj069fPyrIAAIBNeFu58nXr1iknJ8c1HR8fr5tuukldu3a1sCoAAGAXlgaVsmXLuk2PGjVKVapUUatWrSyqCAAA2IltrlHJysrS9OnT1atXLzkcDqvLAQAANmDpGZVTLVq0SIcPH9b9999/xj6ZmZnKzMx0TaelpV2CygAAgFVsc0Zl8uTJio6OVlhY2Bn7jBw5UoGBga5HeHj4JawQAABcarYIKn/99ZeWLVumBx988Kz9hgwZotTUVNdj165dl6hCAABgBVsM/UyZMkXBwcHq2LHjWfs5nU45nc5LVBUAALCa5WdUcnNzNWXKFMXGxsrb2xa5CQAA2ITlQWXZsmVKTk5Wr169rC4FAADYjOWnMG6++WYZY6wuAwAA2JDlZ1QAAADOhKACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsy/Kg8s8//+jee+9VUFCQ/P39VbduXa1fv97qsgAAgA14W7nyQ4cOqWXLlmrTpo2++uorlS1bVomJiSpVqpSVZQEAAJuwNKiMHj1a4eHhmjJliqstMjLSwooAAICdWDr089lnn6lx48bq2rWrgoOD1bBhQ73//vtWlgQAAGzE0qDy559/asKECapWrZqWLFmiRx55RP3799e0adPy7Z+Zmam0tDS3BwAAuHJZOvSTm5urxo0ba8SIEZKkhg0bKj4+XhMnTlRsbKxH/5EjR2rYsGGXukwAAGARS8+ohIaGqlatWm5tNWvWVHJycr79hwwZotTUVNdj165dl6JMAABgEUvPqLRs2VJbt251a9u2bZsqVqyYb3+n0ymn03kpSgMAADZg6RmVxx9/XGvXrtWIESO0fft2zZw5U5MmTVK/fv2sLAsAANiEpUGlSZMmWrhwoWbNmqU6dero5Zdf1tixYxUTE2NlWQAAwCYsHfqRpE6dOqlTp05WlwEAAGzI8o/QBwAAOBOCCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC1Lg8qLL74oh8Ph9oiKirKyJAAAYCPeVhdQu3ZtLVu2zDXt7W15SQAAwCYsTwXe3t4KCQmxugwAAGBDll+jkpiYqLCwMFWuXFkxMTFKTk62uiQAAGATlp5RadasmaZOnaoaNWpoz549GjZsmK6//nrFx8erePHiHv0zMzOVmZnpmk5LS7uU5QI4RXJyslJSUqwu44KVKVNGERERVpcB4AwsDSrR0dGun+vVq6dmzZqpYsWKmjt3rh544AGP/iNHjtSwYcMuZYkA8pGcnKwaUTWVcfyY1aVcMD//otq6JYGwAtiU5deonKpkyZKqXr26tm/fnu/zQ4YM0aBBg1zTaWlpCg8Pv1TlAfj/UlJSlHH8mII6PSGfoMv3GMw+uEsHF7+ulJQUggpgU7YKKkePHtWOHTvUo0ePfJ93Op1yOp2XuCoAZ+ITFC5nSFWrywBwBbP0Ytonn3xSq1at0s6dO/Xjjz+qc+fO8vLyUvfu3a0sCwAA2ISlZ1T+/vtvde/eXQcPHlTZsmV13XXXae3atSpbtqyVZQEAAJuwNKjMnj3bytUDAACbs/xzVAAAAM6EoAIAAGyLoAIAAGyLoAIAAGyrwBfTpqena9WqVUpOTlZWVpbbc/3797/gwgAAAAoUVH799Vd16NBBx44dU3p6ukqXLq2UlBQVLVpUwcHBBBUAAFAoCjT08/jjj+vWW2/VoUOH5O/vr7Vr1+qvv/5So0aN9NprrxV2jQAA4CpVoKCyceNGPfHEEypSpIi8vLyUmZmp8PBwvfrqq3r22WcLu0YAAHCVKlBQ8fHxUZEiJ2cNDg5WcnKyJCkwMFC7du0qvOoAAMBVrUDXqDRs2FDr1q1TtWrV1KpVK73wwgtKSUnRxx9/rDp16hR2jQAA4CpVoDMqI0aMUGhoqCRp+PDhKlWqlB555BEdOHBAkyZNKtQCAQDA1atAZ1QaN27s+jk4OFhff/11oRUEAACQp0BnVG688UYdPny4kEsBAABwV6CgsnLlSo8PeQMAAChsBf4IfYfDUZh1AAAAeCjwR+h37txZvr6++T737bffFrggAACAPAUOKs2bN1exYsUKsxYAAAA3BQoqDodDTz31lIKDgwu7HgAAAJcCXaNijCnsOgAAADwUKKjExcUx7AMAAC66Ag39xMXFSZIOHDigrVu3SpJq1KihsmXLFl5lAADgqlegMyrHjh1Tr169FBYWphtuuEE33HCDwsLC9MADD+jYsWOFXSMAALhKFSioPP7441q1apU+++wzHT58WIcPH9ann36qVatW6YknnijsGgEAwFWqQEM/8+fP1yeffKLWrVu72jp06CB/f39169ZNEyZMKKz6AADAVazAQz/lypXzaA8ODmboBwAAFJoCBZXmzZsrLi5OGRkZrrbjx49r2LBhat68eaEVBwAArm4FGvoZO3asbrnlFlWoUEH169eXJG3atEl+fn5asmRJoRYIAACuXgUKKnXr1lViYqJmzJihLVu2SJK6d++umJgY+fv7F2qBAADg6lWgoPLdd9+pRYsWeuihhwq7HgAAAJcCXaPSpk0b/fvvv4VdCwAAgBu+6wcAANhWgYZ+JGnNmjUqVapUvs/dcMMNBS4IAAAgT4GDSufOnfNtdzgcysnJKXBBAAAAeQo09CNJe/fuVW5ursejoCFl1KhRcjgcGjhwYEFLAgAAV5gCBRWHw1GoRaxbt07vvfee6tWrV6jLBQAAlzfLL6Y9evSoYmJi9P7775/xmhcAAHB1KlBQyc3NVXBwcKEU0K9fP3Xs2FHt2rUrlOUBAIArR4Euph05cqTKlSunXr16ubV/+OGHOnDggAYPHnxOy5k9e7Z++eUXrVu37pz6Z2ZmKjMz0zWdlpZ27kUDwBUsOTlZKSkpVpdxwTIzM+V0Oq0u44IlJCRYXcIVo0BB5b333tPMmTM92mvXrq177rnnnILKrl27NGDAAC1dulR+fn7ntN6RI0dq2LBh510vAFzJkpOTVSOqpjKOXwHfXu8oIplcq6uAjRQoqOzdu1ehoaEe7WXLltWePXvOaRkbNmzQ/v37dc0117jacnJy9N1332n8+PHKzMyUl5eX2zxDhgzRoEGDXNNpaWkKDw8vyCYAwBUjJSVFGcePKajTE/IJunz/Jh7/c71Sv59+2W+H9H/bggtXoKASHh6u1atXKzIy0q199erVCgsLO6dltG3bVps3b3Zr69mzp6KiojR48GCPkCJJTqfzijglCAAXg09QuJwhVa0uo8CyD+6SdPlvh/R/24ILV6Cg8tBDD2ngwIHKzs7WjTfeKElavny5nn76aT3xxBPntIzixYurTp06bm0BAQEKCgryaAcAAFenAgWVp556SgcPHlTfvn2VlZUlSfLz89PgwYM1ZMiQQi0QAABcvQoUVBwOh0aPHq2hQ4cqISFB/v7+qlat2gUPy6xcufKC5gcAAFeWAn/XjyQVK1ZMTZo0KaxaAAAA3BQ4qKxfv15z585VcnKya/gnz4IFCy64MAAAgAJ9Mu3s2bPVokULJSQkaOHChcrOztbvv/+ub7/9VoGBgYVdIwAAuEoVKKiMGDFCb775pj7//HP5+vpq3Lhx2rJli7p166aIiIjCrhEAAFylChRUduzYoY4dO0qSfH19lZ6eLofDoccff1yTJk0q1AIBAMDVq0BBpVSpUjpy5IgkqXz58oqPj5ckHT58WMeOXQEf4QwAAGyhQBfT3nDDDVq6dKnq1q2rrl27asCAAfr222+1dOlStW3btrBrBAAAV6kCBZXx48crIyNDkvTcc8/Jx8dHP/74o+688049//zzhVogAAC4ep1XUElLSzs5k7e3ihUr5pru27ev+vbtW/jVAQCAq9p5BZWSJUvK4XD8Z7+cnJwCFwQAAJDnvILKihUr3KaNMerQoYM++OADlS9fvlALAwAAOK+g0qpVK482Ly8vXXvttapcuXKhFQUAACAV8PZkAACAS+GCgsquXbt07NgxBQUFFVY9AAAALuc19PPWW2+5fk5JSdGsWbN044038v0+AADgojivoPLmm29KkhwOh8qUKaNbb72Vz00BAAAXzXkFlaSkpItVBwAAgAcupgUAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZlaVCZMGGC6tWrpxIlSqhEiRJq3ry5vvrqKytLAgAANmJpUKlQoYJGjRqlDRs2aP369brxxht1++236/fff7eyLAAAYBPeVq781ltvdZsePny4JkyYoLVr16p27doWVQUAAOzC0qByqpycHM2bN0/p6elq3ry51eUAAAAbsDyobN68Wc2bN1dGRoaKFSumhQsXqlatWvn2zczMVGZmpms6LS3tUpUJFJrk5GSlpKRYXcYFSUhIsLqEQnW5b8/lXj9wNpYHlRo1amjjxo1KTU3VJ598otjYWK1atSrfsDJy5EgNGzbMgiqBwpGcnKwaUTWVcfyY1aVAUs7RQ5LDoXvvvdfqUgCcgeVBxdfXV1WrVpUkNWrUSOvWrdO4ceP03nvvefQdMmSIBg0a5JpOS0tTeHj4JasVuFApKSnKOH5MQZ2ekE/Q5fu7e/zP9Ur9frrVZVyw3MyjkjHsD8DGLA8qp8vNzXUb3jmV0+mU0+m8xBUBhc8nKFzOkKpWl1Fg2Qd3WV1CoWJ/APZlaVAZMmSIoqOjFRERoSNHjmjmzJlauXKllixZYmVZAADAJiwNKvv379d9992nPXv2KDAwUPXq1dOSJUt00003WVkWAACwCUuDyuTJk61cPQAAsDm+6wcAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANiWpUFl5MiRatKkiYoXL67g4GDdcccd2rp1q5UlAQAAG7E0qKxatUr9+vXT2rVrtXTpUmVnZ+vmm29Wenq6lWUBAACb8LZy5V9//bXb9NSpUxUcHKwNGzbohhtusKgqAABgF7a6RiU1NVWSVLp0aYsrAQAAdmDpGZVT5ebmauDAgWrZsqXq1KmTb5/MzExlZma6ptPS0i5VeQAAwAK2OaPSr18/xcfHa/bs2WfsM3LkSAUGBroe4eHhl7BCAABwqdkiqDz66KNavHixVqxYoQoVKpyx35AhQ5Samup67Nq16xJWCQAALjVLh36MMXrssce0cOFCrVy5UpGRkWft73Q65XQ6L1F1AADAapYGlX79+mnmzJn69NNPVbx4ce3du1eSFBgYKH9/fytLAwAANmDp0M+ECROUmpqq1q1bKzQ01PWYM2eOlWUBAACbsHzoBwAA4ExscTEtAABAfggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtiwNKt99951uvfVWhYWFyeFwaNGiRVaWAwAAbMbSoJKenq769evrnXfesbIMAABgU95Wrjw6OlrR0dFWlgAAAGyMa1QAAIBtWXpG5XxlZmYqMzPTNZ2WlnZR15ecnKyUlJSLuo5LITMzU06n0+oyLtiVsB0JCQlWlwAAl5XLKqiMHDlSw4YNuyTrSk5OVo2omso4fuySrO+ichSRTK7VVVy4K2U7AADn7LIKKkOGDNGgQYNc02lpaQoPD78o60pJSVHG8WMK6vSEfIIuzjouheN/rlfq99PZDpvI2w4AwLm5rIKK0+m85Kf+fYLC5QypeknXWZiyD+6SxHbYRd52AADOjaVB5ejRo9q+fbtrOikpSRs3blTp0qUVERFhYWUAAMAOLA0q69evV5s2bVzTecM6sbGxmjp1qkVVAQAAu7A0qLRu3VrGGCtLAAAANsbnqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANuyRVB55513VKlSJfn5+alZs2b6+eefrS4JAADYgOVBZc6cORo0aJDi4uL0yy+/qH79+mrfvr32799vdWkAAMBilgeVN954Qw899JB69uypWrVqaeLEiSpatKg+/PBDq0sDAAAWszSoZGVlacOGDWrXrp2rrUiRImrXrp3WrFljYWUAAMAOvK1ceUpKinJyclSuXDm39nLlymnLli0e/TMzM5WZmemaTk1NlSSlpaUVem1Hjx49uc6925WblVHoy79Usg/uksR22AXbYS9sh71cKdshXTnbkv3v35JO/k8szP+1ecsyxvx3Z2Ohf/75x0gyP/74o1v7U089ZZo2berRPy4uzkjiwYMHDx48eFwBj127dv1nVrD0jEqZMmXk5eWlffv2ubXv27dPISEhHv2HDBmiQYMGuaZzc3P177//ysfHRxEREdq1a5dKlChx0evG+UtLS1N4eDj7yKbYP/bHPrI/9tG5M8boyJEjCgsL+8++lgYVX19fNWrUSMuXL9cdd9wh6WT4WL58uR599FGP/k6nU06n062tZMmSrlNIJUqU4JfD5thH9sb+sT/2kf2xj85NYGDgOfWzNKhI0qBBgxQbG6vGjRuradOmGjt2rNLT09WzZ0+rSwMAABazPKjcfffdOnDggF544QXt3btXDRo00Ndff+1xgS0AALj6WB5UJOnRRx/Nd6jnXDmdTsXFxXkMC8E+2Ef2xv6xP/aR/bGPLg6HMedybxAAAMClZ/kn0wIAAJwJQQUAANgWQQUAANgWQQUAANjWZRtURo0aJYfDoYEDB7raMjIy1K9fPwUFBalYsWK68847PT71FhfPiy++KIfD4faIiopyPc/+sYd//vlH9957r4KCguTv76+6detq/fr1rueNMXrhhRcUGhoqf39/tWvXTomJiRZWfHWpVKmSx3HkcDjUr18/SRxHVsvJydHQoUMVGRkpf39/ValSRS+//LLbd9ZwDBWuyzKorFu3Tu+9957q1avn1v7444/r888/17x587Rq1Srt3r1bXbp0sajKq1Pt2rW1Z88e1+OHH35wPcf+sd6hQ4fUsmVL+fj46KuvvtIff/yh119/XaVKlXL1efXVV/XWW29p4sSJ+umnnxQQEKD27dsrI+Py/WK1y8m6devcjqGlS5dKkrp27SqJ48hqo0eP1oQJEzR+/HglJCRo9OjRevXVV/X222+7+nAMFbJC+G7BS+rIkSOmWrVqZunSpaZVq1ZmwIABxhhjDh8+bHx8fMy8efNcfRMSEowks2bNGouqvbrExcWZ+vXr5/sc+8ceBg8ebK677rozPp+bm2tCQkLMmDFjXG2HDx82TqfTzJo161KUiNMMGDDAVKlSxeTm5nIc2UDHjh1Nr1693Nq6dOliYmJijDEcQxfDZXdGpV+/furYsaPatWvn1r5hwwZlZ2e7tUdFRSkiIkJr1qy51GVetRITExUWFqbKlSsrJiZGycnJktg/dvHZZ5+pcePG6tq1q4KDg9WwYUO9//77rueTkpK0d+9et/0UGBioZs2asZ8skJWVpenTp6tXr15yOBwcRzbQokULLV++XNu2bZMkbdq0ST/88IOio6MlcQxdDLb4ZNpzNXv2bP3yyy9at26dx3N79+6Vr6+vSpYs6dZerlw57d279xJVeHVr1qyZpk6dqho1amjPnj0aNmyYrr/+esXHx7N/bOLPP//UhAkTNGjQID377LNat26d+vfvL19fX8XGxrr2xelfYcF+ssaiRYt0+PBh3X///ZL4O2cHzzzzjNLS0hQVFSUvLy/l5ORo+PDhiomJkSSOoYvgsgkqu3bt0oABA7R06VL5+flZXQ7ykfeOQpLq1aunZs2aqWLFipo7d678/f0trAx5cnNz1bhxY40YMUKS1LBhQ8XHx2vixImKjY21uDqcbvLkyYqOjlZYWJjVpeD/mzt3rmbMmKGZM2eqdu3a2rhxowYOHKiwsDCOoYvkshn62bBhg/bv369rrrlG3t7e8vb21qpVq/TWW2/J29tb5cqVU1ZWlg4fPuw23759+xQSEmJN0Ve5kiVLqnr16tq+fbtCQkLYPzYQGhqqWrVqubXVrFnTNUSXty9Ov4uE/XTp/fXXX1q2bJkefPBBVxvHkfWeeuopPfPMM7rnnntUt25d9ejRQ48//rhGjhwpiWPoYrhsgkrbtm21efNmbdy40fVo3LixYmJiXD/7+Pho+fLlrnm2bt2q5ORkNW/e3MLKr15Hjx7Vjh07FBoaqkaNGrF/bKBly5baunWrW9u2bdtUsWJFSVJkZKRCQkLc9lNaWpp++ukn9tMlNmXKFAUHB6tjx46uNo4j6x07dkxFirj/6/Ty8lJubq4kjqGLwuqreS/EqXf9GGPMww8/bCIiIsy3335r1q9fb5o3b26aN29uXYFXmSeeeMKsXLnSJCUlmdWrV5t27dqZMmXKmP379xtj2D928PPPPxtvb28zfPhwk5iYaGbMmGGKFi1qpk+f7uozatQoU7JkSfPpp5+a3377zdx+++0mMjLSHD9+3MLKry45OTkmIiLCDB482OM5jiNrxcbGmvLly5vFixebpKQks2DBAlOmTBnz9NNPu/pwDBWuKyqoHD9+3PTt29eUKlXKFC1a1HTu3Nns2bPHugKvMnfffbcJDQ01vr6+pnz58ubuu+8227dvdz3P/rGHzz//3NSpU8c4nU4TFRVlJk2a5PZ8bm6uGTp0qClXrpxxOp2mbdu2ZuvWrRZVe3VasmSJkZTv685xZK20tDQzYMAAExERYfz8/EzlypXNc889ZzIzM119OIYKl8OYUz5ODwAAwEYum2tUAADA1YegAgAAbIugAgAAbIugAgAAbIugAgAAbIugAgAAbIugAgAAbIugAgAAbIugAuCc3X///XI4HK5HUFCQbrnlFv32229WlwbgCkVQAXBebrnlFu3Zs0d79uzR8uXL5e3trU6dOlldFoArFEEFwHlxOp0KCQlRSEiIGjRooGeeeUa7du3SgQMHJEmbN2/WjTfeKH9/fwUFBal37946evSoa/5nnnlGYWFh8vX1Vfny5TV48GDXN8+uXLlSDodDX3zxherVqyc/Pz9de+21io+Pd81/8OBBde/eXeXLl1fRokVVt25dzZo1y63G3Nxcvfrqq6pataqcTqciIiI0fPhwSXI7I3T6Y+XKlRf51QNwvggqAArs6NGjmj59uqpWraqgoCClp6erffv2KlWqlNatW6d58+Zp2bJlevTRR13z3HzzzVq8eLG2b9+uDz74QJMmTdL06dPdlvvUU0/p9ddf17p161S2bFndeuutys7OliRlZGSoUaNG+uKLLxQfH6/evXurR48e+vnnn13zDxkyRKNGjdLQoUP1xx9/aObMmSpXrpwkuc4G7dmzR5I0f/5813SLFi0u9ksG4HxZ/a2IAC4fsbGxxsvLywQEBJiAgAAjyYSGhpoNGzYYY4yZNGmSKVWqlDl69Khrni+++MIUKVLE7N2712N5f/75pwkNDTUffvihMcaYFStWGElm9uzZrj4HDx40/v7+Zs6cOWesq2PHjuaJJ54wxpz8dlun02nef//9/9weSWbFihXntO0ArMEZFQDnpU2bNtq4caM2btyon3/+We3bt1d0dLT++usvJSQkqH79+goICHD1b9mypXJzc7V161ZX24gRI1S0aFFVrlxZd955p+677z63dTRv3tz1c+nSpVWjRg0lJCRIknJycvTyyy+rbt26Kl26tIoVK6YlS5YoOTlZkpSQkKDMzEy1bdv2Yr4MAC4Rb6sLAHB5CQgIUNWqVV3TH3zwgQIDA/X++++f8zIefvhhdenSRRs2bNDAgQPVpUsXtWnT5pzmHTNmjMaNG6exY8eqbt26CggI0MCBA5WVlSVJ8vf3P78NAmBrnFEBcEEcDoeKFCmi48ePq2bNmtq0aZPS09Ndz69evVpFihRRjRo1XG2lS5dWVFSUYmJidN1112n+/Pluy1y7dq3r50OHDmnbtm2qWbOma3m333677r33XtWvX1+VK1fWtm3bXP2rVasmf39/LV++/GJtMoBLiKAC4LxkZmZq79692rt3rxISEvTYY4/p6NGjuvXWWxUTEyM/Pz/FxsYqPj5eK1as0GOPPaYePXq4LmZ999139fvvv2vnzp2aPn26li5dqoYNG7qt46WXXtLy5csVHx+v+++/X2XKlNEdd9wh6WQQWbp0qX788UclJCSoT58+2rdvn2tePz8/DR48WE8//bQ++ugj7dixQ2vXrtXkyZMv2WsEoPAw9APgvHz99dcKDQ2VJBUvXlxRUVGaN2+eWrduLUlasmSJBgwYoCZNmqho0aK688479cYbb7jm/+KLLxQXF6cjR44oPDxczz77rHr16uW2jlGjRmnAgAFKTExUgwYN9Pnnn8vX11eS9Pzzz+vPP/9U+/btVbRoUfXu3Vt33HGHUlNTXfMPHTpU3t7eeuGFF7R7926Fhobq4YcfvsivDICLwWGMMVYXAQDSyc9RadOmjQ4dOqSSJUtaXQ4AG2DoBwAA2BZBBQAA2BZDPwAAwLY4owIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGzr/wEehXYeULd0rgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "\n", "# Загрузка данных\n", "df = pd.read_csv(\"..//static//csv//heart_2020_cleaned.csv\")\n", "\n", "# Словарь для преобразования AgeCategory в числовые значения\n", "age_mapping = {\n", " '18-24': 21,\n", " '25-29': 27,\n", " '30-34': 32,\n", " '35-39': 37,\n", " '40-44': 42,\n", " '45-49': 47,\n", " '50-54': 52,\n", " '55-59': 57,\n", " '60-64': 62,\n", " '65-69': 67,\n", " '70-74': 72,\n", " '75-79': 77,\n", " '80 or older': 85\n", "}\n", "\n", "# Преобразование столбца AgeCategory в числовые значения\n", "df['AgeNumeric'] = df['AgeCategory'].map(age_mapping)\n", "\n", "# Выбор среза данных с 1-й по 30-ю строку\n", "df_slice = df.iloc[0:30]\n", "\n", "# Определение количества уникальных значений возраста\n", "unique_ages = df_slice['AgeNumeric'].nunique()\n", "\n", "# Гистограмма для возраста на срезе данных с настройкой bins\n", "plt.hist(df_slice['AgeNumeric'], bins=unique_ages, edgecolor='black')\n", "plt.xlabel('Возраст')\n", "plt.ylabel('Частота')\n", "plt.title('Распределение по возрасту (строки 1-30)')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Данная диаграмма показывает распределение возрастов опрашиваемых людей" ] } ], "metadata": { "kernelspec": { "display_name": "aimenv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.5" } }, "nbformat": 4, "nbformat_minor": 2 }