import math import random import numpy as np import matplotlib.pyplot as plt def get_distance(first: np.ndarray, second: np.ndarray) -> float: return math.sqrt(sum([(first[i] - second[i]) ** 2 for i in range(first.shape[0])])) + 1e-5 def affiliation_calculation(data: np.ndarray, centers: np.ndarray, k: int, m: int) -> np.ndarray: data_len = data.shape[0] u = np.zeros((data_len, k)) for i in range(data_len): for j in range(k): total = 0 distance = get_distance(data[i], centers[j]) for c in range(k): total += (distance / get_distance(data[i], centers[c])) ** (2 / (m - 1)) u[i, j] = 1 / total return u def variance_calculation(data: np.ndarray, centers: np.ndarray, u: np.ndarray) -> float: value = 0 for j in range(k): for i in range(data.shape[0]): value += get_distance(data[i], centers[j]) ** 2 * u[i, j] return value def center_update(data: np.ndarray, u: np.ndarray, k: int, m: int) -> np.ndarray: centers = np.zeros((k, data.shape[1])) for j in range(k): total = 0 for i in range(data.shape[0]): total += u[i, j] ** m * data[i] centers[j] = total / np.sum(u[:, j] ** m) return centers def fuzzy_c_means(data: np.ndarray, k: int, m: int, max_iter: int = 100, tol: float = 1e-5) -> ( np.ndarray, np.ndarray, float): centers = np.array([[random.randint(data.min(), data.max()) for i in range(data.shape[1])] for j in range(k)]) u = None value = 0 for _ in range(max_iter): u = affiliation_calculation(data, centers, k, m) new_value = variance_calculation(data, centers, u) if abs(new_value - value) <= tol: return centers, u, value value = new_value centers = center_update(data, u, k, m) return centers, u, value def visualise_resout(centers: np.ndarray, u: np.ndarray): center_colors = [[random.random(), random.random(), random.random()] for i in range(k)] point_colors = [] for i in u: tmp_color = [0, 0, 0] for j in range(k): tmp_color[0] += center_colors[j][0] * i[j] tmp_color[1] += center_colors[j][1] * i[j] tmp_color[2] += center_colors[j][1] * i[j] point_colors.append(tmp_color) plt.title("Нечёткая кластеризация") plt.xlabel("Размер зарплаты") if data.shape[1] == 1: plt.scatter(data[:, 0], [0] * data.shape[0], c=point_colors) plt.scatter(centers[:, 0], [0] * centers.shape[0], marker='*', edgecolor='black', s=100, c=center_colors) plt.gca().axes.get_yaxis().set_visible(False) else: plt.scatter(data[:, 0], data[:, 1], c=point_colors) plt.scatter(centers[:, 0], centers[:, 1], marker='*', edgecolor='black', s=100, c=center_colors) plt.show() if __name__ == '__main__': data: np.ndarray = np.array( [ [ random.randint(0, 500) ] for i in range(random.randint(40, 100)) ]) k = 3 m = 2 centers, u, value = fuzzy_c_means(data, k, m) print(f"Значение функции отклонений: {value}") print("Степени принадлежности первых 10 точек:") print(*u[:10], sep="\n") print("Центры всех кластеров:") print(*centers, sep="\n") visualise_resout(centers, u)