From e83da8582dd26a7f740fbc1270db241b65c4fa2e Mon Sep 17 00:00:00 2001 From: maxnes3 Date: Sun, 13 Oct 2024 16:54:23 +0400 Subject: [PATCH] com --- main.py | 65 +----------------------------------------------- requirements.txt | 9 +++++++ 2 files changed, 10 insertions(+), 64 deletions(-) diff --git a/main.py b/main.py index b11b34b..fa4cae6 100644 --- a/main.py +++ b/main.py @@ -1,7 +1,7 @@ from fastapi import FastAPI, Depends, HTTPException from sqlalchemy.orm import Session from typing import List -from models import Laptop +from models.models import Laptop from schemas import LaptopCreate, LaptopResponse from database import SessionLocal, engine, Base from pydantic import BaseModel @@ -14,66 +14,3 @@ model = joblib.load('laptop_price_model.pkl') feature_columns = joblib.load('feature_columns.pkl') app = FastAPI() - -# Определение Pydantic модели для входных данных -class LaptopData(BaseModel): - processor: str - ram: int - os: str - ssd: int - display: float - -def get_db(): - db = SessionLocal() - try: - yield db - finally: - db.close() - - -@app.post("/laptops/", response_model=LaptopResponse) -def create_laptop(laptop: LaptopCreate, db: Session = Depends(get_db)): - db_laptop = Laptop(**laptop.dict()) - db.add(db_laptop) - db.commit() - db.refresh(db_laptop) - return db_laptop - - -@app.get("/laptops/", response_model=List[LaptopResponse]) -def read_laptops(skip: int = 0, limit: int = 10, db: Session = Depends(get_db)): - laptops = db.query(Laptop).offset(skip).limit(limit).all() - return laptops - - -@app.get("/laptops/{laptop_id}", response_model=LaptopResponse) -def read_laptop(laptop_id: int, db: Session = Depends(get_db)): - laptop = db.query(Laptop).filter(Laptop.id == laptop_id).first() - if laptop is None: - raise HTTPException(status_code=404, detail="Laptop not found") - return laptop - - -# Эндпоинт для предсказания цены -@app.post("/predict_price/") -def predict_price(data: LaptopData): - input_data = data.dict() - - # Преобразование данных в DataFrame - input_df = pd.DataFrame([input_data]) - - # Применение One-Hot Encoding к категориальным признакам - input_df = pd.get_dummies(input_df, columns=['processor', 'os'], drop_first=True) - - # Добавление отсутствующих признаков, если они есть - for col in feature_columns: - if col not in input_df.columns and col != 'price': - input_df[col] = 0 - - # Упорядочивание колонок согласно обучающей выборке - input_df = input_df[feature_columns] - - # Предсказание цены - predicted_price = model.predict(input_df)[0] - - return {"predicted_price": round(predicted_price, 2)} diff --git a/requirements.txt b/requirements.txt index e69de29..da37b04 100644 --- a/requirements.txt +++ b/requirements.txt @@ -0,0 +1,9 @@ +fastapi +uvicorn +sqlalchemy +psycopg2-binary +pydantic +joblib +pandas +numpy +python-dotenv \ No newline at end of file