price-builder-backend/services/service.py

55 lines
2.3 KiB
Python
Raw Normal View History

2024-10-13 16:53:07 +04:00
import pandas as pd
import joblib
from typing import List, Dict
from schemas.schemas import LaptopCreate, LaptopResponse, PredictPriceResponse
class LaptopService:
def __init__(self, model_path: str, feature_columns_path: str, poly_path: str, scaler_path: str):
2024-10-13 16:53:07 +04:00
try:
self.model = joblib.load(model_path)
except FileNotFoundError:
raise Exception(f"Model file not found at {model_path}")
except Exception as e:
raise Exception(f"Error loading model: {str(e)}")
try:
self.feature_columns = joblib.load(feature_columns_path)
except FileNotFoundError:
raise Exception(f"Feature columns file not found at {feature_columns_path}")
except Exception as e:
raise Exception(f"Error loading feature columns: {str(e)}")
try:
self.poly_transformer = joblib.load(poly_path)
self.scaler = joblib.load(scaler_path)
except FileNotFoundError:
raise Exception("Polynomial transformer or scaler file not found.")
except Exception as e:
raise Exception(f"Error loading polynomial transformer or scaler: {str(e)}")
2024-10-13 16:53:07 +04:00
def predict_price(self, data: Dict[str, any]) -> PredictPriceResponse:
# Преобразование данных в DataFrame
input_df = pd.DataFrame([data])
# Применение One-Hot Encoding к категориальным признакам
input_df = pd.get_dummies(input_df, columns=['processor', 'os'], drop_first=True)
# Добавление отсутствующих признаков
2024-10-13 16:53:07 +04:00
for col in self.feature_columns:
if col not in input_df.columns and col != 'price':
input_df[col] = 0
# Упорядочивание колонок
2024-10-13 16:53:07 +04:00
input_df = input_df[self.feature_columns]
# Преобразование с использованием PolynomialFeatures
input_poly = self.poly_transformer.transform(input_df)
# Масштабирование данных
input_scaled = self.scaler.transform(input_poly)
2024-10-13 16:53:07 +04:00
# Предсказание цены
predicted_price = self.model.predict(input_scaled)[0]
2024-10-13 16:53:07 +04:00
return PredictPriceResponse(predicted_price=round(predicted_price, 2))