лаба 1 готова!

This commit is contained in:
a.puchkina 2024-09-14 11:02:38 +04:00
parent 29498513a5
commit a60bc0a460

View File

@ -11,7 +11,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 1, "execution_count": 63,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
@ -31,6 +31,111 @@
"df = pd.read_csv(\"..//static//csv//mobile phone price prediction.csv\")\n", "df = pd.read_csv(\"..//static//csv//mobile phone price prediction.csv\")\n",
"print(df.columns)" "print(df.columns)"
] ]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<pandas.core.groupby.generic.SeriesGroupBy object at 0x000001BFC924FE60>\n"
]
},
{
"ename": "TypeError",
"evalue": "unsupported operand type(s) for +=: 'int' and 'str'",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[1;32mIn[68], line 12\u001b[0m\n\u001b[0;32m 10\u001b[0m price \u001b[38;5;241m=\u001b[39m df[df[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcompany\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m==\u001b[39m c_value][\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPrice\u001b[39m\u001b[38;5;124m\"\u001b[39m]\u001b[38;5;241m.\u001b[39msum()\n\u001b[0;32m 11\u001b[0m c_total \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m count\n\u001b[1;32m---> 12\u001b[0m \u001b[43mp_total\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mprice\u001b[49m\n\u001b[0;32m 13\u001b[0m \u001b[38;5;28mprint\u001b[39m(c_value, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcount =\u001b[39m\u001b[38;5;124m\"\u001b[39m, count, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m price =\u001b[39m\u001b[38;5;124m\"\u001b[39m, price)\n\u001b[0;32m 14\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mTotal count = \u001b[39m\u001b[38;5;124m\"\u001b[39m, c_total)\n",
"\u001b[1;31mTypeError\u001b[0m: unsupported operand type(s) for +=: 'int' and 'str'"
]
}
],
"source": [
"average_prices = df.groupby('company')['Price']\n",
"print(average_prices)\n",
"\n",
"c_values = df[\"company\"].unique()\n",
"\n",
"c_total = 0\n",
"p_total = 0\n",
"for c_value in c_values:\n",
" count = df[df[\"company\"] == c_value].shape[0]\n",
" price = df[df[\"company\"] == c_value][\"Price\"].sum()\n",
" countrys = df1.groupby(\"Country\").size().reset_index(name=\"Count\")\n",
" c_total += count\n",
" p_total += price\n",
" print(c_value, \"count =\", count, \" price =\", price)\n",
"print(\"Total count = \", c_total)"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" price = 89 6,990\n",
"90 6,999\n",
"91 7,499\n",
"92 7,999\n",
"93 8,033\n",
" ... \n",
"854 36,990\n",
"855 45,215\n",
"856 69,999\n",
"857 68,899\n",
"858 63,490\n",
"Name: Price, Length: 186, dtype: object\n"
]
}
],
"source": [
"count = df[df[\"company\"] == \"Vivo\"].shape[0]\n",
"price = df[df[\"company\"] == \"Vivo\"][\"Price\"].replace(\",\", \"\")\n",
"print(\" price =\", price)"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [
{
"ename": "ModuleNotFoundError",
"evalue": "No module named 'matplotlib'",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[1;32mIn[61], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mmatplotlib\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpyplot\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mplt\u001b[39;00m \u001b[38;5;66;03m# type: ignore\u001b[39;00m\n\u001b[0;32m 3\u001b[0m df[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcompany\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m=\u001b[39m df[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcompany\u001b[39m\u001b[38;5;124m'\u001b[39m]\u001b[38;5;241m.\u001b[39mstr\u001b[38;5;241m.\u001b[39msplit(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m; \u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m 4\u001b[0m df1 \u001b[38;5;241m=\u001b[39m df\u001b[38;5;241m.\u001b[39mexplode(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcompany\u001b[39m\u001b[38;5;124m'\u001b[39m)\n",
"\u001b[1;31mModuleNotFoundError\u001b[0m: No module named 'matplotlib'"
]
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"df['company'] = df['company'].str.split('; ')\n",
"df1 = df.explode('company')\n",
"companys = df1.groupby(\"company\").size().reset_index(name=\"Count\") # type: ignore\n",
"company_counts_sorted = companys.sort_values(by='Count', ascending=False)\n",
"top_countries = company_counts_sorted.head(50)\n",
"\n",
"top_countries.plot.bar(x='company', y='Count', color=['green'])\n",
"plt.title('Top Countries by count of people')\n",
"plt.xlabel('Country')\n",
"plt.ylabel('Number of People')\n",
"plt.show()"
]
} }
], ],
"metadata": { "metadata": {